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Preface

The study of interactions between light and materials has a long history, dating back 
to perhaps as early as the time even when the nature of light had not been settled. As 
science keeps advancing, there is one line in this study that can be traced by looking 
at the decreasing dimensions of the materials, from optics to photonics, and all the 
way down to nanophotonics. Nanophotonics studies light-matter interactions at the 
nanoscale, where the materials in most cases are structured into subwavelength 
building blocks so that exotic optical properties beyond those of bulky materials 
emerge. Over the past two decades, nanophotonics has attracted rapidly growing 
interest and become a vibrant research field that contains both fundamental and 
application-driven studies. Depending on the materials, geometries, sizes, and 
arrangements of the constituent elements, nanophotonics can be categorized into 
several subfields, including plasmonics, metamaterials and metasurfaces, photonic 
crystals, photonic-integrated circuits, and other resonant nanostructures that can 
perform photonic functions. These devices operate on different mechanisms, 
enabling unprecedented opportunities to control light at the nanoscale for unveiling 
new physics and achieving fascinating applications not possible with conventional 
techniques.

Artificial intelligence (AI), seemingly on a totally different subject to nanopho-
tonics at a first glance, is currently among the most promising techniques that can 
revolutionize the world from many aspects. The history of AI is a bit less than 
80 years, with the beginning marked by the early research on neural networks in the 
1940s. The popularity of AI nowadays has gone far beyond computer science and 
infiltrated many other research fields, such as physics, chemistry, materials science, 
and biomedicine, to name a few. After the astonishing success of the computer pro-
gram AlphaGo from Deepmind defeating the top professional Go players, even the 
public might develop the idea that a new era, where AI is competitive with human 
intelligence in completing certain tasks (i.e., weak AI), has come. In science and 
engineering, especially those fields fitting well with big data, the expected tasks 
include materials discovery, drug creation, and so forth.

It is interesting to picture how AI would transform nanophotonics. Although 
surely not a panacea for all the remaining challenges, AI can potentially assist the 
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design of nanophotonic devices. Conventional inverse design is based on a trail- 
and- error process, which can be extremely labor-intense. The initial guess of the 
solution to a design task usually relies on human knowledge, a combination of intu-
ition, the physical insights revealed from the study of modal systems, the experience 
accumulated during the previous practice, and reasoning. It is then examined with 
simulations by solving Maxwell’s equations but unlikely to meet the desired perfor-
mance in one shot. Therefore, adjustments to a handful of parameters and re- 
evaluation of the new designs need to be repeated until some preset criteria are 
reached. A variety of optimization methods have been developed to prevent this 
process from being almost blind. They also make it possible to search the enormous 
design space in a more comprehensive manner, yielding complex and non-intuitive 
structures that cannot be parameterized. But still, the conventional workflow 
requires considerable computation power and time for every design task, which 
could explode as the complexity of the devices and the scale of integration increase. 
AI or, more specifically, machine learning provides new solutions that work in a 
totally different logic. Through training, these so-called “data-driven” methods 
leverage many instances of known devices to improve the ability of finding opti-
mized designs for a certain set of design tasks. The questions on whether and how 
AI will benefit inverse design remain fairly open. On the one hand, no clear evi-
dence has suggested that the efforts in generating sufficiently large training sets for 
AI programs can be less fierce than those in the trial-and-error and optimization 
process. On the other hand, there certainly exist AI-related techniques, both algo-
rithms and hardware, that can change the game in some way. In a nutshell, the 
application of AI in nanophotonics, including but not limited to inverse design, 
appears worthwhile and deserves more research efforts.

What makes the combination of AI and nanophotonics more interesting is the 
other side of the coin. With the explosive growth of machine learning in recent 
years, the computing hardware based on general-purpose processors becomes inef-
ficient in implementing neural networks, raising the pressing need to develop 
application- specific hardware. Compared with the solutions based on electronic 
architectures, photonic circuits that can process coherent light signals are superior 
in speed and power efficiency. Some recent advances have demonstrated that spe-
cially designed nanophotonic circuits or structures can perform machine learning 
tasks like inference. Therefore, nanophotonics is not just fueled by AI passively; it 
offers improvement in return, making their relationships interactive.

Because the backgrounds of these two fields are very different, there is often a 
knowledge gap for people interested in this topic from either side. The goal of this 
book is thus to introduce the basics of nanophotonics and machine learning, espe-
cially deep learning, and to help the reader to get some sense on how they work and 
can be utilized to enhance each other. The first two chapters brief the fundamentals 
of nanophotonics, starting from surface plasmons and Mie resonances in modal 
systems and ending with representative nanophotonic devices and platforms. 
Although plasmonics and metamaterials have been discussed by several classic 
books separately, some emerging concepts, such as metasurfaces and dielectric pho-
tonics, might not have been covered adequately. As the preparation for the later part 
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on applications, these two chapters are intended to provide the essential knowledge 
to tour the field of nanophotonics. Chapter 3 is analogous to the first two but with 
the subject shifted to the fundamentals of machine learning. The very basic as well 
as most popular models and algorithms are discussed to close the first part for 
knowledge preparation. Chapters 4, 5, and 6 present selected examples to illustrate 
how the concepts can be put into effect. Whereas Chaps. 4 and 5 both discuss the 
application of deep learning in nanophotonics, the former focuses on inverse design, 
and the latter spans more diverse usage. Lastly, Chap. 6 flips the coin to introduce 
how machine learning can be performed on nanophotonic platforms.

In order to serve the aforesaid goal within a compact volume while keeping bal-
ances between fundamentals and applications as well as between nanophotonics 
and machine learning, we choose to skip some introductory contents such as the 
basics of electromagnetism (for nanophotonics) and relevant math (for machine 
learning), which are widely accessible from resources elsewhere. Some areas of 
nanophotonics like photonic crystals and circuits are not included either, partly 
because they have been described in classic textbooks and monographs, and partly 
because they are on the margin of nanophotonics if one defines the latter by the 
subwavelength dimensions of the building blocks and their separations. With these 
in mind, we hope that the general reader of all levels, (under)graduate students, 
professionals, and researchers who are new to or have been working on either side 
of this interdisciplinary area will still find this book friendly and useful.

We are sincerely grateful to our colleagues and many others who have contrib-
uted to the completion of this book. In particular, we thank Mr. Rohit Unni for draft-
ing an initial version of Chap. 3, and we are deeply indebted to Prof. Mingyuan 
Zhou and Mr. Xizewen Han for proofreading this chapter and providing invaluable 
suggestions in the midst of their busy schedule. In finalizing the book, requests for 
figures were made to some authors of the cited works. We wish to express our grati-
tude to all of them for generously sharing the original files or kindly directing us to 
the right person. Last but not least, given the extensive breadth of two very different 
domains of nanophotonics and machine learning and the rapid development of the 
playground where they interact, deciding the most suitable examples and references 
on the selected topics has been difficult. The current choice is made to the best of 
our knowledge. We apologize for unintendedly missing or slighting any important 
studies. Comments and suggestions are very welcome and will be greatly 
appreciated.

Austin, TX, USA Kan Yao  
  Yuebing Zheng  
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Chapter 1
Fundamentals of Nanophotonics

Abstract The study of nanophotonics is centered around the interactions between 
light and nanostructured metallic and/or dielectric architectures (Koenderink et al, 
Science 348(6234):516–521, 2015). Usually associated with resonant behaviors, 
light at these nanostructures can be controlled in sophisticated ways not possible to 
achieve with materials in the bulky form. Therefore, before diving into the discus-
sion of any nanophotonic devices and their design, it is beneficial for beginners to 
first establish an understanding of how light can interact with the basic building 
blocks of nanophotonic structures. This chapter is designated for this purpose. The 
two sections in the following focus on the fundamentals of plasmonics based on 
metallic structures and on Mie theory for dielectric nanoparticles, respectively.

1.1  Plasmonics and Surface Plasmons

Plasmonics, which studies the optical responses of and optical phenomena from 
metallic structures, is a major subfield of nanophotonics [1–4]. With its central con-
cept, surface plasmons, being considered as a bridge between photons and conduc-
tion electrons in metals, plasmonics offers the opportunities for light propagation and 
localization at extended surfaces of metallic films and in bounded geometries such as 
metallic nanoparticles. In this section, we introduce the basic theory of plasmonics.

1.1.1  Surface Plasmon Polaritons

From the classical electromagnetic point of view, surface plasmon polaritons (SPPs) 
are waves that propagate along the interface between a dielectric and a metal. 
Because of their resonant interaction with the collective oscillations of free elec-
trons in the metal, these electromagnetic waves are essentially confined at the metal- 
dielectric interface with enhanced field intensity and exponentially decay along the 
surface normal into each medium. To see how these characteristics arise and to get 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. Yao, Y. Zheng, Nanophotonics and Machine Learning, Springer Series in Optical 
Sciences 241, https://doi.org/10.1007/978-3-031-20473-9_1
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more insights into other physical properties of SPPs, it is necessary to solve 
Maxwell’s equations in this specific situation.

We first illustrate the simplest geometry on which SPPs propagate. Figure 1.1 
shows the side view of a two-dimensional (2D) platform, where a flat interface 
coincident with the x-y plane separates two isotropic, homogeneous, semi-infinite 
media. For simplicity, let us consider the upper half-space (z > 0) is occupied by a 
dielectric with nondispersive permittivity εd > 0, the lower half-space (z < 0) is filled 
with a metal characterized by a complex, frequency-dependent dielectric function 
εm(ω) = ε1(ω) + iε2(ω) where ε1(ω) < 0, and the electromagnetic waves propagate in 
the +x direction. By assuming the fields are time-harmonic and have a factor e−iωt, 
the governing wave equations in each medium are given by

 � � � �2
0
2 2

0
20 0E E H H� � � �k k, ,  (1.1)

where E and H are the electric and magnetic fields, respectively, k0 = ω/c is the 
wavenumber with c the speed of light in a vacuum, and ε is the corresponding per-
mittivity as defined above. For the system under study, the solutions can be classi-
fied into two groups depending on the field configuration. With the surface normal 
and propagation direction defining the plane of incidence, the solution that has the 
magnetic field perpendicular to this plane is designated as the transverse magnetic 
(TM) or p-polarized wave, and the other solution that has the electric field perpen-
dicular to the plane is the transverse electric (TE) or s-polarized wave [5].

Let us examine the suitability of the two solutions to SPPs. In the case of TM 
waves, the nonzero field components are as follows:

 
H Ae ey

d ik x k zx z
d� � ��
� �
,
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(1.2b)

Fig. 1.1 Propagation of SPPs at a flat interface between a semi-infinite dielectric and a semi- 
infinite metal. Electromagnetic fields are confined near the surface and decay exponentially into 
each medium along the surface normal. The only allowed field configuration has the magnetic field 
component transverse to the propagation direction and surface normal. (Reprinted from [1] with 
permission of Springer Nature)
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for the region z > 0 in the dielectric, and
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for the region z < 0 in the metal. Here, A and B are the amplitudes of the magnetic 
field in dielectric and in metal, respectively, kx is the propagation constant, and kz is 
the component of the wavevector in the direction along surface normal and is con-
nected to kx by

 
k k kz

d
x d

� � � �2
0
2� ,

 
(1.4a)

 
k k kz

m
x m

� � � �2
0
2� .

 
(1.4b)

At the interface z = 0, the boundary conditions require continuity of the tangential 
magnetic field Hy, simply resulting in A = B, and continuity of the tangential electric 
field Ex, yielding
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(1.5)

Keeping in mind that εd > 0 and the real part of εm is negative, Eq. (1.5) implies posi-
tive signs for the real parts of kz

d� �  and kz
m� � , which correspond to attenuation of the 

electromagnetic field from the interface into each medium, a configuration fulfilling 
the requirements of a surface wave. The negative signs are opted out because of 
their correspondence to the growth of field magnitudes, which is physically impos-
sible in passive media. From now on, we rename the propagation constant kx to the 
wavenumber of SPPs ksp.

In Eq. (1.5), the wavenumber ksp is related to the frequency ω in an implicit way. 
The explicit expression can be acquired by inserting Eq. (1.4) into Eq. (1.5) and 
rearranging the terms. This treatment leads to

1.1 Plasmonics and Surface Plasmons
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(1.6)

the dispersion relation of SPPs that propagate along a flat interface between a semi- 
infinite dielectric and a semi-infinite metal. While experimentally measured dielec-
tric functions can be used to calculate the dispersion in practice, it is instructive to 
study a simplified model where the property of metals follows the free-electron 
description

 
�m �

�

�
� � � �1

2

2

p ,
 

(1.7)

with ωp the plasma frequency of a metal and the damping of electrons neglected. 
The value of ω should be taken in the range ω < ωp. Figure 1.2a illustrates the dis-
persion diagram of an SPP propagating along the interface between a dielectric 
(εd = 2.25) and a metal described by Eq. (1.7). For comparison, also shown is the 
dispersion of electromagnetic waves propagating in the dielectric, known as the 
light line. It is clear from the plot that the dispersion curve of SPP lies to the right 
side of the light line in the constituent dielectric medium. At low frequencies, the 
two curves almost coincide, meaning that an SPP acts like a TM-polarized wave 
incident at a glancing angle. As the frequency increases, the dispersion curve of SPP 
is gradually bent towards the right, showing continuous increase in wavenumber. 
Therefore, SPPs are bound at the metal-dielectric interface. They cannot radiate 
light or propagate into the dielectric medium, and, reciprocally, cannot be excited 
by simple illumination from the dielectric constituting the interface. Without having 

Fig. 1.2 (a) Dispersion diagram of an SPP at the interface between a semi-infinite dielectric 
(εd  =  2.25) and a semi-infinite metal modeled as an undamped free-electron plasma 
(ωp = 11.9989 × 1015 Hz for silver [4]). The dashed line is the dispersion of electromagnetic waves 
in the dielectric medium. The horizontal line indicates the surface plasmon frequency. Both fre-
quency ω and wavenumber ksp are normalized to the plasma frequency ωp. (b) Dispersion of SPPs 
at an interface between silica and silver (black curve) and between air and silver (gray curve), 
along with light lines. The dielectric function of silver is taken from experimental data [6]. (Panel 
(b) is reprinted from [3] with permission of Springer Nature)
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the damping of electrons taken into account, the wavenumber ksp goes infinitely 
large under the condition:

 
� �d m� � � �� 0,

 
(1.8)

which is fairly obvious according to Eq. (1.6). This condition can also be obtained 
if we treat the SPP with infinite wavenumber, termed as the surface plasmon [3, 4], 
as an electrostatic wave and solve the Laplace equation for an electric potential 
function. The surface plasmon frequency ωsp can be easily determined from Eqs. 
(1.7) and (1.8) as

 

�
�

sp
p .�
�1 �d  

(1.9)

With real metals, the wavenumber of SPPs can never reach infinity owing to losses. 
According to Eq. (1.6), ksp will be complex-valued, and its imaginary part deter-
mines the propagation length of the SPP [7]:
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(1.10)

On propagating over the distance Lsp, which is about a few tens of micrometers for 
noble metals at visible wavelengths, an SPP decays to 1/e of its original intensity. 
The dispersion curve is folded at a finite maximum, as shown in Fig. 1.2b.

The solution of TE waves can be derived in the same manner, for which the non-
zero field components are the following:
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(1.11b)
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for the region z > 0 in the dielectric, and
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for the region z < 0  in the metal. Again, by applying the boundary conditions at 
z = 0, the continuity requirements of the tangential field components yield A = B and

 
A k kz

d
z
m� � � ��� � � 0.

 
(1.13)

As discussed above, in order to describe a surface wave that decays with increasing 
distance from the interface, the real parts of kz

d� �  and kz
m� �  must both be positive. 

Therefore, the only chance to equate the two sides of Eq. (1.13) is that A = 0 (and 
B = 0 as well). In other words, TE-polarized SPPs are not allowed to exist in the 
present system.

Before we proceed, it is well worth giving a further look at Eq. (1.4). Similar to 
how ksp is related to the propagation length Lsp, the wavevectors perpendicular to the 
interface provide a measure of the decay length of the fields into each medium 
involved:

 

� �d

z
d m

z
mIm k Im k

�
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1 1
, .

 

(1.14)

In the dielectric medium, δd is of the order of half the wavelength of the exciting 
light, while in the metal, δm is some tens of nanometers, comparable to the skin depth.

Knowing the decay lengths perpendicular to the interface helps to understand the 
SPPs on the surfaces of a metallic thin film (Fig. 1.3a), on the surfaces of a dielectric 
slab sandwiched between two metals, and in more sophisticated structures, such as 
alternating metal and dielectric multilayers. For simplicity, let us consider a metallic 
film with an air cladding and a dielectric substrate. The two interfaces between 
metal and air and between metal and the substrate each can support one SPP. When 
the thickness of the metallic film is much larger than the decay length δm, the SPPs 
at the two interfaces are decoupled and behave like those discussed above on the 
interface between a semi-infinite metal and a semi-infinite dielectric medium. For 
small thicknesses, the field confined at one of the interfaces can reach the other one 
and interacts with the field there before it decays to a negligible magnitude. This 
interaction between the fields at the two interfaces induces distortion of the disper-
sion curves. An example is shown in Fig. 1.3b for a 30-nm-thick silver film described 
by the free-electron model and on a glass substrate [4].

The dispersion relation of SPPs on a thin film can be derived by writing down the 
fields in each region as in the case of a single interface, but the solution is usually in 
an implicit form. One special solvable case is when the cladding and substrate are 
made of the same dielectric medium. The dispersion relation splits into two equa-
tions corresponding to two SPP modes that have odd and even parity in their longi-
tudinal electric field (Ex) distributions, respectively. They are thus called odd and 
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Fig. 1.3 (a) Propagation of SPPs on the surfaces of a thin metal film sandwiched between two 
dielectrics. (b) Dispersion diagram of the SPPs at the interfaces of a 30-nm-thick silver film with 
a vacuum cladding (ε1 = 1) and a glass substrate (εs = 2.25). (c) Odd (left) and even (right) SPP 
modes on a metal film sandwiched by the same dielectric medium. Red curves denote the trans-
verse electric field (Ez) profiles. (Panel (b) is reprinted with permission from [4]. Copyright (2005) 
Elsevier)

even modes. Meanwhile, the transverse fields (Ez and Hy) have the opposite parity, 
being even and odd for the two modes; see Fig.  1.3c. Again, when the metal is 
described by Eq. (1.7) and the wavenumber k is large, the asymptotic limits of the 
frequencies are as follows:
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for the odd mode, and
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(1.15b)

for the even mode, with d the film thickness. Some papers base the naming on the 
symmetry of transverse fields, which leads to the terms of symmetric (for ω+) and 
antisymmetric (for ω−) modes. A less obvious but important property of film SPP 
modes is that the high-frequency, odd mode has lower attenuation as well as poorer 
field confinement than the SPPs at a single interface, whereas the low-frequency, 
even mode acts in the opposite way. Therefore, odd (even) modes can propagate 
over longer (shorter) distances and are also called long-range (short-range) SPPs 
[8]. Given the same metal and dielectric medium, the dispersion curve of the single 
interface SPP is sandwiched between the curves of the odd and even modes due to 
splitting. As k goes infinite in the absence of losses, the limiting frequencies con-
verge to surface plasmon frequency ωsp.
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1.1.2  Localized Surface Plasmons

Besides SPPs at a planar metal-dielectric interface, resonant interactions between 
the oscillations of electrons in the metal and the electromagnetic field can exist in 
confined geometries, leading to another important type of excitations termed as 
localized surface plasmons (LSPs). Metallic nanoparticles that have a size much 
smaller than the wavelength are one of the major playgrounds of LSPs [9, 10]. The 
formation of LSPs can be intuitively understood as the collective oscillation of elec-
trons in the metallic nanoparticles driven by the electric component of the electro-
magnetic field (Fig. 1.4a). Unlike SPPs being propagating surface waves at a planar 
interface, LSPs in confined geometries are mostly associated with scattering or radi-
ating problems. In this section, we discuss the basic description and properties 
of LSPs.

We begin by considering a metallic sphere embedded in a dielectric medium, the 
simplest geometry that can be analytically solved. The dielectric functions of the 
metal and the surrounding medium are still εm(ω) and εd, respectively, as in the pre-
vious example. The interactions of this system with a plane wave can be obtained by 
using an exact electrodynamic approach, namely, the Mie theory [11–14]. However, 
we will keep it until the next section, where rigorous treatments are essential to 
unveil some unique properties of the dielectric spheres. When the sphere size a is 
much smaller than the wavelength of light λ, it is convenient to simplify and solve 
the problem under the electrostatic (or quasi-static) approximation [3, 4]. As its 
name stands, the electrostatic approximation treats the incident wave as an electro-
static field, which is uniform and has no phase variation (retardation) over the 
sphere. With this simplification, the problem can be described by the Laplace equa-
tion for a potential Φ:

 � �2 0� ,  (1.16)

and the electric field is then determined by E = − ∇Φ. In spherical coordinates, the 
general solution to Eq. (1.16) is

Fig. 1.4 (a) Oscillation of conduction electrons in a metallic nanosphere, driven by a time- 
harmonic electromagnetic field. (b) A metallic sphere with dielectric function εm(ω) embedded in 
an isotropic and homogeneous dielectric medium and placed in a uniform electrostatic field E
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if the system possesses azimuthal symmetry, as shown in Fig. 1.4b. The function 
Pl(·) denotes the Legendre polynomial of order l, and Al and Bl are coefficients to be 
determined. The standard way of solving this boundary-value problem is to write 
down the potentials in both regions, i.e.,
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for inside the sphere (r < a) due to the finiteness of the potential at the origin,
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for outside the sphere (r ≥ a), and impose proper boundary conditions at r = a and 
r = ∞. For an electrostatic field E = E0ẑ, it can be proven that the potentials are
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Equation (1.19b) is composed of two terms. The first term is nothing else but the 
potential of the applied field, and the second term can be related to an induced elec-
tric dipole at the center of the sphere, which is maximized when the modulus of the 
denominator |εm  +  2εd| is minimal, bringing in the resonant characteristic. This 
dipole resonance is the LSPs of the lowest order. When the loss of the metal is not 
significant, a more practical expression of the resonance condition is

 
Re m d� � �� �� � � �2 ,

 
(1.20)

while for a metal described by the free-electron model in Eq. (1.7) with no loss, 
the resonance simply diverges at the frequency � � �1 1 2� �p d/ .

An alternative approach for the analysis of LSPs is to consider the eigenmodes 
of the structure without applying the external field [15]. Under the electrostatic 
approximation, the solutions to Eq. (1.16) for the l-th order mode are
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(1.21a)
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where A is a normalization constant. The solutions are constituted to naturally fulfill 
the continuity requirement on the tangential electric fields at r = a, and by requiring 
the normal components of the electric displacement −ε(∂Φl/∂r) to be equal, we get

 
l lm d� � �� � � �� � �1 0.

 
(1.22)

Inserting Eq. (1.7) into Eq. (1.22), the frequency of the l-th order mode (or multi-
pole) is given by
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(1.23)

It can now be seen that the resonance condition ω1 after Eq. (1.20) is the mode fre-
quency for the dipole that has l = 1. Notice the mode frequencies are functions of 
the permittivity of the dielectric medium. The spectral shifts in response to the 
refractive index change in the environment are the key information for plasmonic 
sensing. Quasi-static resonance frequencies are independent of the sphere size. 
Practically, higher-order modes (l > 1) arise as the particle size increases or at higher 
frequencies, showing multiple nodes in the surface charge density distribution, as 
illustrated in Fig. 1.5. For very large mode indices (l → ∞), the mode frequencies in 
Eq. (1.23) approach the surface plasmon frequency ωsp in Eq. (1.9).

Next, because the dipole mode has several important properties related to the 
later discussion on optical antennas, we brief the reader on the concepts of near field 
and far field, which have frequent appearance in the context of nanophotonics and 
can be well defined on dipoles. In a dielectric medium of permittivity εd, the electric 
field of an electric dipole at the origin can be expressed by [17].

 
E r n p n n n p p� � � �� ���� �� � � � ��� �� ��

�
�

�
�
�

�1

4
3

1 1

0

2

� d

ikre

r
k

r r
ik·��

�



	
�

�e i t�
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in the spherical coordinate system. Here, p is the electric dipole moment, k is the 
wavenumber in the dielectric medium, and n is the unit vector in the direction of r. 
The near field is regarded as the zone where kr ≪ 1. The second term in the braces, 
as a result, dominates the field. It can be shown that the electrostatic field associated 
with the second term in Eq. (1.19b) has the expression
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Fig. 1.5 Frequencies of LSPs versus mode index l for a gold nanosphere embedded in a dielectric 
medium with n = 2.35. The dielectric function of gold is described by the free-electron model in 
Eq. (1.7) with the plasma frequency taken from [16]. Insets sketch the charge distributions on the 
gold surface for the first three modes l = 1, 2, 3. Net dipole moment (blue arrows) exists only 
for l = 1

with
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(1.26)

The second equator in Eq. (1.26) defines the polarizability α of the sphere under the 
quasi-static approximation. By comparing these equations with Eq. (1.24) in the 
limit of kr → 0, we can conclude that apart from the harmonic oscillation in time, 
the fields within the near-field region of an electric dipole (or dipole mode) have the 
properties of electrostatic fields. Figure 1.6a illustrates the electric field intensity 
around a plasmonic nanosphere at dipole resonance, where the fields are tightly 
localized near the sphere, with the distribution elongated along the dipole moment p.

The far field, on the other hand, is defined by the opposite limit kr ≫ 1. In this 
region, the electric field is dominated by the first term in the braces of Eq. (1.24), 
which is transverse to the radial direction, showing the typical behavior of radiation 
fields. Therefore, the far field is also referred to as the radiation zone. Within the far 
field, the radiation pattern and field distribution of a resonant plasmonic nanosphere 
resemble those of an electric dipole, which, in contrast to the near field, extend in 
the directions perpendicular to the dipole moment p, as shown in Fig. 1.6b. The 
properties of LSPs set the basis for the use of resonant nanoparticles in optical 
antennas and metasurfaces as building blocks.

With all the preparations above based on spheres, we close this section with a 
quick glance at LSPs in other geometries. Although the mode frequencies under the 
quasi-static approximation are independent of the particle size, in practical circum-
stances, the approximation is not strictly valid, and we will see in the next section 
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Fig. 1.6 (a) Electric field intensity around a resonant plasmonic nanosphere. (b) Electric field 
intensity at larger distances from a resonant plasmonic nanosphere. The black disks denote fictious 
spheres enclosing the particles, and the green arrows indicate the positions of the induced electric 
dipole. (Reprinted from [18] with permission of Springer Nature)

how the size parameter comes into play. In addition to size and materials, the shape 
of the particle will also influence the resonances. For particles elongated in certain 
directions, e.g., spheroids and rods, the mode frequencies will have dependence on 
the polarization direction of the incident field with respect to each principal axis. 
This can be seen from Fig. 1.7. When a rod is aligned parallel or perpendicular to 
the polarization direction, the incident electric field drives the electrons in the rod to 
oscillate over different lengths, resulting in two distinct resonances. The mode fre-
quencies and polarizabilities are determined by formulas similar to Eqs. (1.20) and 
(1.26), where the shape information is encoded via some geometric depolarization 
factors in the polarizability of the particle [12].

The quasi-static approximation fails to be valid when a nanoparticle has at least 
one dimension close to or greater than the wavelength of light. In this case, because 
the field across the particle is no longer uniform, the retardation effect needs to be 
considered [20]. Three examples of field intensity distribution around silver strips 
involving different dimensions are compared in Fig. 1.8. At normal incidence, the 
strip of subwavelength width acts just like a dipole in the cross-sectional plane. For 
wavelength-scale strips, the patterns show multiple nodes as the high-order modes 
do, but they are formed through the constructive interference of short-range SPPs 
bouncing back and forth between the edges, like the Fabry-Pérot resonances.

1.1.3  Excitation of Surface Plasmon Polaritons by Light

Lastly, we briefly discuss the excitation of SPPs in experiments. Opposed to LSPs 
that can be excited by simple light illumination, launching SPPs on a metal- dielectric 
interface needs special techniques. As discussed above, the dispersion curve of an 
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Fig. 1.7 LSPs in nanorods. Oscillation of conduction electrons in a metallic nanorod driven by an 
electromagnetic field polarized along (a) and perpendicular to (b) the long axis leads to longitudi-
nal and transverse resonances, respectively. (c) Measured scattering spectra of individual silver 
nanobars. For each spectrum, the peak at a longer (shorter) wavelength corresponds to the longitu-
dinal (transverse) plasmon resonance, except a substrate-induced splitting of the transverse peak 
for the nanocube (black curve). (Panel (c) is reprinted with permission from [19]. Copyright (2007) 
American Chemical Society)

Fig. 1.8 Electric field intensity distributions for the three lowest-order resonances l = 1, 3, 5 in 
30-nm-thick silver strips. The incident field has a wavelength λ = 550 nm and is polarized along 
the x-axis. At normal incidence, only odd order resonances can be excited because of symmetry. 
(Reprinted from [20, 21] with permissions of Springer Nature and Optica Publishing Group 
(© 2018))

SPP lies to the right of the light line of the constituting dielectric medium. In other 
words, the wavenumber of the SPP is always larger than the wavenumber of the 
exciting light, meaning that an extra momentum along the interface must be pro-
vided to couple the incident light to an SPP. Despite a variety of techniques achiev-
ing this [22], the following discussion is limited to the subcategory of optical 
means [4].

One of the most widely used strategies is coupling via a prism based on attenu-
ated total reflection (ATR). This is particularly useful for thin metal films. A repre-
sentative geometry known as the Kretschmann configuration [23] is illustrated in 
Fig. 1.9a, where a dielectric prism is attached to the bottom of a thin metal film, 
forming the structure we have seen in Fig. 1.3. Although SPPs cannot be excited by 
simple illumination from the medium constituting the interface because of the 
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Fig. 1.9 Optical excitation of SPPs. (a–c) Prism coupling in the Kretschmann configuration (a, b) 
and Otto configuration (c). (d) Grating coupling. (e, f) Near-field excitation by diffraction from an 
aperture (e) and small scatterers on the surface (f). (Reprinted with permission from [4]. Copyright 
(2005) Elsevier)

mismatch of wavevectors, in an asymmetric dielectric environment, the projection 
of the wavevector in the high-refractive-index substrate (i.e., the prism) along the 
bottom surface kx = kprism·sinθ = nprism·k0·sinθ can exceed the wavenumber k0 in the 
low- refractive- index cladding (e.g., air) and match ksp at the top interface for a cer-
tain angle of incidence θsp. This can also be seen from Fig. 1.3b, where the light line 
of the substrate crosses the dispersion curve of the SPP at the air/metal interface. 
The excitation of SPP thus happens as a result of the tunneling of evanescent waves 
from ATR through the metal film when θ ≈  θsp; otherwise the incident light is 
reflected off the metal/prism interface. In experiments, the excitation of SPP is iden-
tified as a minimum in the reflection intensity. The Kretschmann configuration can 
be varied by introducing another thin layer of dielectric medium with n1 < nprism 
between the metal and the prism (Fig.  1.9b). This adaption allows excitation of 
SPPs at both interfaces of the metal film if its thickness is smaller than the decay 
lengths. In occasions where the metal is thick or direct contact with a prism is unde-
sired, SPPs can be accessed by using the Otto configuration [24]. As illustrated in 
Fig. 1.9c, the prism is separated from the metal film by a small air gap, across which 
the evanescent wave from ATR at the prism/air interface is coupled to SPPs at the 
air/metal interface.

Another method, which is straightforward and can be simply formulated, is cou-
pling by a grating. The schematic is illustrated in Fig. 1.9d. According to the theory 
of optical diffraction, a one-dimensional (1D) periodic array of grooves with lattice 
constant a can provide wavevectors along the direction of periodicity x, with the 
amplitude being integer multiples of the reciprocal lattice vector G  =  (2π/a) x. 
Therefore, at the angle of incidence θ, the projection of the wavevector of the inci-
dent light along x is offset by the extra wavevectors from the grating [25]:
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where j is an integer, and SPPs can be excited when kx equals ksp.
Diffraction from other structures, for example, an aperture at the tip of a probe or 

the end of a fiber (Fig. 1.9e) and scatterers on the metal surface (Fig. 1.6f), can also 
be used to excite SPPs. These structures own the advantage of local excitation as 
they are subwavelength in size, and the reverse process allows high-resolution 
imaging of surface features, such as near-field scanning optical microscopy 
(NSOM). However, because the energy of the incident light is distributed over all 
the diffracted components with a broad range of wavevectors, the excitation effi-
ciency is usually lower than that of prism or grating coupling.

1.2  Mie Resonances in Dielectric Nanostructures

Plasmonics have enabled unprecedented opportunities in nanophotonics. However, 
the associated losses in metals, which convert a considerable amount of optical 
energy into heat through light absorption, could impede many applications. Resonant 
nanostructures made of high-refractive-index dielectric materials and semiconduc-
tors featuring low losses offer a different approach to manipulating light at the 
nanoscale [26]. In this section, we introduce the fundamentals of Mie theory for the 
analysis of dielectric resonators.

1.2.1  Mie Theory

The Mie theory, named after one of the pioneers who developed its formalism [27], 
gives the exact solution to the scattering of electromagnetic waves by homogeneous 
spheres. The real power of Mie theory is nevertheless far beyond this. Remarkable 
insights into scattering by small particles become accessible in light of Mie theory. 
Therefore, in some subfields of nanophotonics such as nanoantennas and metasur-
faces, it has been extensively used in the study of many diverse types of scatterers 
and resonators. This section is devoted to the mathematical basis of the Mie theory. 
For the history, development, theory in detail, and applications, we direct the inter-
ested reader to the classic works by Kerker [11] and by Bohren and Huffman [12], 
among many other excellent collections [28].

The standard problem of Mie scattering is illustrated in Fig. 1.10. A sphere of 
radius a is embedded in a linear, homogeneous, and isotropic host medium of refrac-
tive index nh h h� � � , with εh and μh being the relative permittivity and permeabil-
ity. Similarly, the refractive index of the sphere is ns s s� � � . The incident plane 
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Fig. 1.10. A plane wave 
propagating in the +z 
direction illuminates on a 
sphere of radius a, centered 
at the origin of the 
spherical coordinate 
system

wave is monochromatic, time-harmonic, and arbitrarily polarized, and its electric 
and magnetic field components are

 
E E k r H H k ri h i hi i t i i t� �� � � �� �0 0exp • , exp •� � ,

 
(1.28)

where kh is the wavevector in the host medium, r is position vector in space, and ω 
is the angular frequency of the fields. We denote the field inside the sphere by (E1, 
H1) and the field outside the sphere in the surrounding medium by (E2, H2). When 
solving the scattering problem, a common strategy is to write the total field in the 
unbounded region into two parts: the incident field (Ei, Hi) and scattered field (Es, 
Hs). In the present case, these fields are connected through

 E E E H H H2 2� � � �i s i s, .  (1.29)

The fields mentioned above should satisfy the vector wave equations

 � � � � � �2 2 2 20 0E E H Hk k, ,  (1.30)

at all points inside and outside the sphere, with k the wavenumber in the correspond-
ing medium. All the subscripts are omitted. The general solution to Eq. (1.30), i.e., 
the vector spherical harmonics M and N, can be accomplished with some neat math-
ematical treatment and expressed by
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(1.31b)

1 Fundamentals of Nanophotonics



17

 

Nemn
l

n
m n

r

n
m

n n m P
z kr

kr

m
dP

d k

� � � �� � � � � �

�
� �

1

1

cos cos

cos
cos

� �

�
�

�

ê

rr

d

dr
rz kr

m m
P

kr

d

dr
rz kr

n

n
m

n

� ��� ��

�
� � � ��� ��

ˆ

ˆsin
cos

sin

e

e

�

�
�

�
1

�� ,
 

(1.31c)

 

Nomn
l

n
m n

r

n
m

n n m P
z kr

kr

m
dP

d k

� � � �� � � � � �

�
� �

1

1

sin cos

sin
cos

� �

�
�

�

ê

rr

d

dr
rz kr

m m
P

kr

d

dr
rz kr

n

n
m

n

� ��� ��

�
� � � ��� ��

ˆ

ˆcos
cos

sin

e

e

�

�
�

�
1

�� .
 

(1.31d)

Here, Pn
m  is the associated Legendre polynomial of the nth degree and mth order; zn 

is one of the four spherical Bessel and Hankel functions jn, yn, h j iyn n n
1� � � � , and 

h j iyn n n
2� � � � ; and ês  (s = r, θ, φ) is the unit vector in the radial (r), polar (θ), or 

azimuthal (φ) direction. Two indices of M and N that do not explicitly appear on the 
right side are l in the superscript, which takes its value from 1 to 4 to indicate the 
choice of zn from the four options above in the given order, and e/o in the subscript, 
which denotes the even/odd dependence of the spherical harmonics on the azi-
muthal angle φ.

After some lengthy algebra, the incident field can be expressed by a series of 
vector spherical harmonics as
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By aligning the center of the sphere to the origin of the spherical coordinates, the 
expansions of the fields inside the particle are
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with ks = (ns/nh)∙kh, and the scattered fields are
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The choice of jn in Eqs. (1.32) and (1.33) is required by the finiteness of values at 
the origin, while the necessity of having hn

1� �  in the scattered fields is less obvious. 
With the asymptotic expressions of the spherical Bessel and Hankel functions for 
large values of kh

.r, one will see that only hn
1� �  corresponds to an outgoing spherical 

wave in accordance with the physical meaning of “scattering.”
The undefined variables an through dn in Eqs. (1.33) and (1.34) are the Mie coef-

ficients. Their expressions can be derived from the boundary conditions at the sur-
face of the sphere, which require the tangential components of (E1, H1) and (E2, H2) 
to be continuous. Here, we only show the two coefficients associated with the scat-
tered fields:
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where x = kh∙a is the size parameter, m = ns/nh is relative refractive index, and the 
prime denotes a derivative. If the sphere and the surrounding medium are both non-
magnetic, μs = μh = 1, and the coefficients can be reformulated to
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with jn and hn
1� �  replaced by the corresponding Riccati-Bessel functions φn and ζn, 

respectively.
The Mie coefficients are not defined just for the convenience of expression but 

have physical meanings. Recalling Eq. (1.34), the terms of electric field containing 
an have a radial component from Ne n1

3� � , whereas the magnetic field components with 
an are purely transverse to the radial direction. Therefore, the coefficients an repre-
sent the transverse magnetic (TM) components of the scattered waves. This leads to 
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a more intuitive interpretation of the coefficients an, in which they are associated 
with a class of field structures or “modes,” known as the electric multipoles. When 
n = 1, 2, …, the modes are in turn electric dipole (ED), electric quadrupole (EQ), 
and subsequent higher-order ones. In the same way, the coefficients bn are con-
nected to the transverse electric (TE) components of scattering and the magnetic 
multipoles. The field line patterns for the first four multipoles of a dielectric sphere 
are shown in Fig. 1.11.

The presence of a particle in an incident wave will disturb the original power 
flow, resulting in extinction of the incident beam. If the host medium is non- 
absorbing, the extinction can be broken down into two parts: absorption and scatter-
ing, both by the particle. This can be seen more clearly with the following analysis. 
Outside the particle, the time-averaged Poynting vector of the total field is
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The right side of the equation can be decomposed to three terms:
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corresponding to the components from the incident field, the scattered field, and 
their interference, respectively. Consider the particle is enclosed by an imaginary 
surface A. From the conservation law, the rate Wa at which energy is absorbed by the 
particle is equal to the net rate of energy flowing across the surface A:
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A
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(1.39)

where

Fig. 1.11 Field structures of four multipoles of the lowest order supported by a dielectric sphere, 
namely, electric dipole (ED) from a1, magnetic dipole (MD) from b1, electric quadrupole (EQ) 
from a2, and magnetic quadrupole (MQ) from b2. Curves in orange denote the electric displace-
ment lines, and curves in light blue represent the magnetic field lines. (Reprinted from [26] with 
permission from AAAS)
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Because Wi is zero in non-absorbing media, Eq. (1.39) can be rewritten as

 W W Ws aext ,� �  (1.41)

an expression that shows extinction is the sum of scattering and absorption. 
Furthermore, if each term in this equation is divided by the incident irradiance I0, we 
get, without walking through the derivation, the corresponding cross sections with 
the dimension of area. Specifically, the scattering cross section of a sphere is
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the extinction cross section is
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and the absorption cross section is just their difference. It is also convenient to 
define efficiencies by further dividing cross sections by the cross-sectional area of 
the sphere, resulting in
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Another useful quantity describing the efficiency for backscattering is given by [12].
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These dimensionless quantities provide a measure of the scattering, absorption, 
and extinction capability of a particle with respect to its physical size. This allows 
us to go beyond the picture of geometric optics to understand the interactions 
between a particle and the wave irradiating on it. Figure 1.12 compares the scatter-
ing efficiencies of silicon spheres in different contexts. In Fig.  1.12a, a 200-nm 
crystalline sphere is characterized in the visible region. It is evident that the effi-
ciency curve is well above unity over the entire range, especially around certain 
wavelengths that exhibit sharp spectral features. By evaluating the contributions by 
each term in Eq. (1.44), these features can be related to the Mie coefficients one by 
one: when the denominator of a Mie coefficient is close to zero, the term 
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Fig. 1.12 Scattering efficiencies (thick black curves) of a 200-nm crystalline silicon nanosphere 
(a) and a 1200-nm silicon microsphere (b). Contributions by individual Mie resonances are plotted 
in thinner curves. Only four resonances can be effectively excited in the first case due to loss, 
whereas modes up to 32-pole are recognized in the second case, where the relative permittivity of 
silicon is taken as a constant εSi  =  11.7. EO/MO, electric/magnetic octupole. EH/MH, 
electric/magnetic hexadecapole

overpowers others in the expansion, and the corresponding mode will dominate the 
scattering in a resonant behavior. Therefore, the multipolar modes we discussed 
above also appear frequently as “Mie resonances” in the literature. In the visible 
region, silicon has non- negligible loss [29]. This hinders the occurrence of high-
order modes at short wavelengths. However, for a particle made of lossless high-
refractive-index material, such as a micrometer-sized silicon sphere in the infrared 
region, high-order modes manifest themselves as sharp peaks with decreasing line-
widths, as shown in Fig.  1.12b. In even larger spheres sized some tens of 
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micrometers, resonances of very high orders can be excited through phase-matched 
evanescent field coupling [30]. In the last case, fields are highly confined in the 
sphere and near the surface, self-interfering while circulating along the perimeter, 
known as the whispering gallery modes (WGMs). An alternative notation is often 
used to label optical resonances in large spheres. Instead of only using n, the order 
of a Mie resonance, it employs an additional index l to denote the number of field 
intensity maxima in the radial direction. Because the order n describes the number 
of field intensity maxima in the azimuthal direction within the half sphere perimeter, 
both indices can be determined by inspecting the field distributions [31]. As shown 
in Fig. 1.12, every Mie coefficient has multiple peaks spreading towards the left, 
and the index l corresponds to the l-th peak of the curve for a Mie coefficient. This 
allows each peak of an to be labeled as anl (or TMnl) and that of bn as bnl (or TEnl). For 
example, the major peak of the magnetic dipole mode b1 can be denoted by b11 or 
TE11, and the first peak of the electric quadrupole mode a2 becomes a21 or TM21. 
Most nanophotonic study involving dielectric components deals with low-order Mie 
resonances with n ≤ 2 and l = 1. Naming them with Mie coefficients or multipoles 
is thus clear enough and more convenient. Nonetheless, the two-index labeling is 
favorable when a dielectric resonator is optically large and supports spectrally close 
high-order resonances [32], such as WGMs. For plasmonic nanoparticles that have 
a negative permittivity, the coefficients bn are usually vanishingly small. 
Consequently, the optical responses are dominated by electric multipoles, as what 
we have seen in the discussion of LSPs in Sect. 1.1.2.

The above framework of Mie theory for spheres can be extended to concentric 
multilayer spheres and nonspherical particles such as spheroids, as long as the 
boundaries coincide with the surfaces of a coordinate system where the wave equa-
tion is solvable by separation of variables. For particles with irregular shape, scat-
tering problems are usually dealt with by using numerical methods. In this case, a 
very useful tool for gaining physical insights is the multipole expansion, which 
extracts multipole moments of the resonant particle from numerically computed 
field distributions. Despite several general forms of exact expressions in classic 
textbooks [17], here we introduce an alternative faormulation more manageable in 
the study of nanophotonics [33, 34]. For a given scattering problem in a vacuum, 
once the total electric field E is known, the induced electric current density J in the 
scatterer (i.e., the particle) is given by J = −iωε0(εr − 1)E. This current density J is 
the source that generates all the multipole fields outside the particle. Subsequently, 
the individual multipole moments can be expressed in terms of proper integrals over 
J. The results of the four lowest orders of multipoles, namely, electric dipole p, 
magnetic dipole m, electric quadrupole Qe, and magnetic quadrupole Qm, are
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where α, β = x, y, z denoting the Cartesian components of the corresponding vectors 
(p, m, J, r, and their cross products) and tensors (Qe, Qm, and the Kronecker delta 
δ). Equation (1.47) presents the exact multipole moments valid for any particle size 
and shape, and they can be further related to the contributions to the total scattering 
cross section in a way analogous to Eq. (1.42):
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(1.48)

When the size of the particle is much smaller than the wavelength of light, approxi-
mations can be made to simplify the expressions in Eq. (1.47), resulting in
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In some recent works, the second term in the braces on the right side of Eqs. (1.47a) 
and (1.49a) is associated with the so-called toroidal dipole and listed separately in a 
third family of toroidal multipoles [35]. In contrast to p and m possessing connec-
tions to oscillating charges and circular currents, a toroidal dipole corresponds to a 
poloidal current distribution. Because of the nonexistence of magnetic currents, 
higher-order toroidal multipoles appear only in the corresponding expressions of 
electric multipoles. The different treatments of toroidal multipoles, either merging 
them into the electric counterparts as in Mie theory or categorizing them as an inde-
pendent group, manifest the difference in solving scattering problems [36]. In Mie 
theory, as seen in the above derivations for a sphere, the Mie coefficients an and bn 
are determined by matching the tangential field components at the surface of the 
particle. The solutions do not classify the fields based on the charge-current distri-
butions but their far-field properties such as polarization. Since an electric dipole 
and a toroidal dipole have identical radiation patterns, their contributions to the 
scattering cross section are mixed in an and not separable in Mie theory. The multi-
pole expansion, on the contrary, starts with a known field (current) distribution E (J) 
inside the particle and rearranges it into distinct groups based on the characteristic 
field (current) structures. The difference between toroidal and electric multipoles in 
the radial component of the near field can thus be captured, providing a route to 
further separating them. In some emerging research topics of nanophotonics such as 
non-radiating excitations (i.e., anapoles), treating toroidal multipoles as a third class 
of elementary sources in addition to electric and magnetic ones enables a clear 
physical picture for interpretation and design.

1.2.2  Interactions Between a Sphere and a Dipole

Other than the Lorenz-Mie approach using the vector spherical harmonics expan-
sion, the same formalism can be obtained by the Hertz vector (Debye potential) 
method [37]. Without repeating the derivation for the scattering of plane waves, in 
the following, we show how the interactions between a sphere and a dipolar emitter 
can be solved with the Hertz functions. The framework of solving the dipole-sphere 
coupling is sometimes referred to as generalized Mie theory1.

The coupled dipole-sphere system has several possible combinations: the dipole by 
nature can be from the electric or magnetic transition of an atomic system (i.e., an 
electric dipole, a magnetic dipole, or a superposition of them), and it can be positioned 
outside or inside the sphere and be aligned tangential or vertical to the sphere’s sur-
face. The dielectric function of the sphere also has a significant impact on the interac-
tion, but the mathematical treatment varies based only on two sets of parameters: the 
nature of the dipole and its orientation, as shown in Fig. 1.13. As an example, when an 
electric dipole p is tangentially coupled to a sphere of radius a at a distance d from the 
north pole and the origin of the coordinates is aligned to the center of the sphere, the 

1 More generally and frequently, the term “generalized Lorenz-Mie theory” is used when the inci-
dent field has a complex beam profile [54].
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total fields can be expressed by two auxiliary potentials u and v, of which the magnetic 
and electric fields are transverse to the radial direction, respectively. In the region 
r > rs = a + d concerning the far field, these potentials are written as [37–39]
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Expressions for the regions r ≤ a and a < r ≤ rs can be found in [37]. The same as 
in the prior section, φn is the Riccati-Bessel function related to the spherical Bessel 
function, ζn is Riccati-Bessel function related to the spherical Hankel function of the 
first kind, and the prime denotes a derivative. The terms with Mie coefficients an and 
bn, which are determined from boundary conditions at r = a and just identical to Eq. 
(1.36), correspond to the scattered field, whereas the other terms in the square 
brackets account for the incident field from the dipole. For a vertical electric dipole, 
v vanishes due to unmatched symmetry, leaving the only contribution from u:
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(1.51)

In both cases, the field components associated with each potential are given by
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Fig. 1.13 A dipolar emitter coupled to a sphere of radius a at a distance d. The emitter can be an 
electric dipole p (a) or a magnetic dipole m (b), and it can be aligned tangential or vertical to the 
sphere’s surface. (c) The emitter can also be chiral, containing non-orthogonal electric and mag-
netic dipole moments
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. The solutions for amag-

netic dipole m can be derived in a similar manner, but a more convenient way is to 
take advantage of the duality theorem and replace every electric and magnetic quan-
tities in Eq. (1.52) with their dual quantities. For more complex situations, such as 
a chiral emitter containing both electric and magnetic dipole moments, the solution 
is simply the superposition of fields contributed by p and m [40–42]. Essentially, 
with the analytical expression of the fields known everywhere, the interactions 
between the sphere and the dipolar emitter can be readily characterized.

The cross sections of a sphere coupled with a dipole can be defined following Eq. 
(1.42) but may not be measured by experiments as easily as in the case of the plane 
wave illumination. Instead, integration of the total power radiated into the far-field 
region is of more practical interest, as it allows one to calculate the modification of 
the dipole’s radiative decay rate through the following relation [43]:
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In Eq. (1.53), γ and P are the radiative decay rate and the radiated power reaching 
the far-field region, respectively, with the subscript 0 denoting the values for a 
dipole in free space and r for the same dipole coupled to a sphere. The meaning of 
decay rates will be introduced in the beginning of the next chapter. Because the 
expression of P0 is well formulated in electrodynamics for both electric and mag-
netic dipoles, the enhancement factors of the radiative decay rates for the four 
dipole-sphere combinations are [44–46]
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Dropping the terms corresponding to the incident fields results in scattering effi-
ciencies analogous to Eq. (1.44):
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A noticeable difference between Eqs. (1.44) and (1.55) is that when the sphere is 
excited by a dipole, each Mie coefficient is multiplied by a distance-dependent 
weighting factor [39]. These factors provide a measure on how strong the Mie reso-
nances are modulated by the source. Figure 1.14 presents the scattering efficiencies 
of a 200-nm silicon sphere under different excitation conditions in free space. The 
line shapes of the spectra are distinct from those in Fig. 1.12a predicted by the stan-
dard Mie theory.

Similarly, the non-radiative decay rate γnr and total decay rate γtot can be analyti-
cally solved [37]. These solutions lead to the evaluation of the Purcell factor and 
efficiency of the coupled system. We also leave the discussions to the next chapter 
with the applications of optical antennas.
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Fig. 1.14 Scattering efficiencies of a 200-nm silicon nanosphere excited by electric dipoles (a) 
and magnetic dipoles (b) at a distance of 1 nm. Contributions by individual Mie coefficients (solid 
curves) are plotted for the tangential dipoles. (Reprinted with permission from [39]. © 2021 Optica 
Publishing Group)

1.2.3  Scattering by a Circular Cylinder

Another important type of building blocks in nanophotonics is the nanowires. 
Nanowires made of high-refractive-index dielectric materials also support Mie reso-
nances in the optical regime. In analysis, the wires are usually treated as infinitely 
long circular cylinders, which reduces the task to a 2D problem. The procedure of 
solving 2D problems is essentially akin to that introduced in Sect. 1.2.1, except the 
analysis is based on expansions of cylindrical harmonics. In this section, we present 
the formalism of normal incidence light scattering by infinite circular cylinders. For 
the detailed derivation and the results of oblique incidence and nanowires of a non-
circular cross section or a finite length, the interested reader can refer to [11–13, 47].

Let us assume a cylinder of radius a is aligned along the z-axis in a vacuum, and 
the incident plane wave propagates in the +x direction, as illustrated in Fig. 1.15. 
The cylinder is nonmagnetic and has a relative permittivity ε. Depending on the 
polarization of the incident wave, the solutions may take different forms. When the 
electric field is polarized along the axis of the cylinder (Fig. 1.15a), i.e., TE polar-
ization, the scattering and extinction efficiencies are given by.
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with the Mie coefficients
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Fig. 1.15 Scattering of normal incidence plane wave by a circular cylinder of radius a. (a) TE 
polarization. (b) TM polarization. Conversion of Cartesian coordinates (x, y) to polar coordinates 
(r, θ) is defined by r = (x2 + y2)1/2 and θ = tan−1(y/x)

where Jn and Hn
1� �  are the Bessel and Hankel functions of the first kind, respectively. 

When the magnetic field is polarized along the axis of the cylinder (Fig. 1.15b), i.e., 
TM polarization, the efficiencies are
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with the Mie coefficients
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Please note that two equivalent conventions are being used in the literature to define 
the transverse direction, which take the cross-sectional plane and cylinder axis as 
the reference, respectively. Here we follow the former to keep consistency between 
the definitions in 2D and 3D geometries. Compared with the results in Sect. 1.2.1, 
despite the small difference in summation and in the leading coefficient caused by 
the reduced dimension, the meaning of the Mie coefficients is also different. In the 
3D case, an and bn coexist and correspond to electric and magnetic multipoles, 
respectively. For the present case, an is solely associated with TM-polarized plane 
waves, and bn can only be excited by TE-polarized incidence (Fig. 1.16a). They can 
both be electric or magnetic, and the nature of each resonance needs to be deter-
mined by examining the field distributions. The alternative two-index labeling (TMnl 
and TEnl) is particularly useful in this case, since it is defined based on field patterns 
and can be related to the leaky modes in waveguide theory [48–50]. Figure 1.16b, c 
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Fig. 1.16 (a) Scattering efficiency of a silicon nanowire of radius a = 62.5 nm. The normal inci-
dence plane wave is unpolarized, containing TE- and TM-polarized components which are equal 
in magnitude. For TE (TM) polarization, only bn (an) modes can be excited. (b, c) Field distribu-
tions of the nanowire in (a) at 650-nm wavelength, corresponding to a0 for TM-polarized incidence 
(b) and b1 for TE-polarized incidence (c), respectively. (d) Comparison of field structures of b1 in 
a dielectric sphere and in a dielectric cylinder. (Panel (d) is reprinted with permission from [14]. 
Copyright (2020) Elsevier)

shows two examples of a0 and b1, which correspond to the magnetic dipole reso-
nance under TM- and TE-polarized excitations, respectively. The field structures of 
b1 in a dielectric sphere and in a dielectric cylinder are illustrated in Fig. 1.16d. Also 
worth mentioning is, unlike in the case of spheres, the scattering of TE-polarized 
plane wave off an infinite cylinder has the electric dipole (b0) appearing at the lon-
gest wavelength, followed by magnetic dipole b1 and higher-order modes.

The 2D version of multipole decomposition can be derived by expanding the 
scattered field as a series of cylindrical harmonics [51, 52]. With the configurations 
in Fig. 1.15, the coefficients for TE polarization are given by
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and those for TM polarization are
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Here, m takes integers, η is the wave impedance of the host medium, k is the wave-
number, r and φ are the polar coordinates, Jm is the Bessel function of the first kind 
and order m, J = −iωε0(ε − εh)E is the induced current density with εh the relative 
permittivity of the host medium, and the integrals are computed over the cross- 
sectional area of the cylinder. These coefficients are related to the scattering cross 
section by
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Equation (1.62) has a form similar to that of Eqs. (1.42), (1.56a), and (1.58a), but 
the summation runs over all the integer orders, including negative ones. Practically, 
the series is truncated at a finite m. Moreover, when the scatterer is mirror symmet-
ric and the incident plane wave propagates along the axis of symmetry, the coeffi-
cients of orders ±m are degenerate, reducing the sum to nonnegative orders only, as 
seen above in the case of circular cylinders.

When a nanowire is coupled to a line source parallel to its axis, Mie resonances 
are modulated in a similar manner as in Sect. 1.2.2 [53]. Because line sources have 
no physical realization in the optical region, we will not discuss this situation 
further.
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Chapter 2
Nanophotonic Devices and Platforms

Abstract Understanding the optical properties of elementary structures lays the 
foundation of creating more complex optical phenomena, a process that largely 
relies on rational design. The design of nanostructures, from individual resonators 
to their arrangements, is one of the major activities in nanophotonics research. 
Depending on the degree of complexity, it can be conceived with known physical 
principles, derived by analytical tools, and searched through extensive simulations 
and optimizations. In Chap. 2, we discuss some classical nanophotonic devices, 
particularly from the categories of optical antennas, metamaterials, and metasur-
faces. The chosen devices are exemplary of their class in illustrating the working 
principle, which is essential for understanding the contents in the later chapters.

2.1  Optical Antennas

Optical antennas (or, interchangeably, nanoantennas) are devices capable of con-
verting the propagating and localized optical fields into each other [1–4]. In nano-
photonics, optical antennas are an important concept for two reasons. On the one 
hand, analogous to the radio-frequency (RF) and microwave counterparts, optical 
antennas enable efficient interactions of light with nanoscale matter, such as quan-
tum emitters and fluorescent molecules, leading to improved performance for a 
variety of applications including but not limited to microscopy, sensing, photovolta-
ics, and light sources. On the other hand, owing to their resonant characteristic, 
nanoantennas can strongly scatter or “reemit” light in a predefined manner and are 
thus used as building blocks of metasurfaces for transforming waveforms [5]. This 
section introduces the basic concepts of optical antennas.
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2.1.1  Properties and Parameters of Optical Antennas

To give a definition to optical antennas before any discussion, we quote the state-
ment from Ref. [1]—a compact history of antenna is also provided in the nice 
review that “an optical antenna is a device designed to efficiently convert free- 
propagating optical radiation to localized energy, and vice versa.” This definition 
was made in the sense that the principle of optical antenna is developed based on 
and conceptually in analogy to that of the RF and microwave antennas, as sketched 
in Fig. 2.1. Based on the reciprocity theorem, the transmitting and receiving abilities 
of an (optical) antenna are not independent but connected.

Despite the obvious analogy, optical antennas differ from RF and microwave 
antennas on certain aspects. The most significant one is probably the form of the 
transmitters and receivers. For example, in the transmitting mode, classical anten-
nas are fed by transmission lines that carry electric currents, whereas the sources of 
optical antennas are localized light emitters such as quantum dots (QDs), molecules, 
atoms, or ions. In both cases, the transmitters are much smaller (~1/100  in size) 
compared to the wavelengths of operation, but the absolute size and localized nature 
of the light emitters make it necessary to introduce some modifications to the well- 
established antenna theory for radio wave and microwave [6]. In the generic prob-
lem of optical antennas, the transmitter or receiver is usually described by an electric 
dipole. This classical model was proven sufficient to resemble a two-level quantum 
emitter that mostly resides in the ground state as well as any subwavelength neutral 
system of charges to the first order in multipole expansion [7]. An optical antenna, 
in its transmitting mode, modifies the dipole emission in several ways. To see this, 
we first consider the radiation properties of an oscillating electric dipole p.

Figure 2.2a sketches the geometry of the problem. For the convenience of analy-
sis, the dipole p is aligned along the z-axis at the origin, and the fields are expressed 
in the spherical coordinates. Without repeating the derivation, which is available in 
almost all the electrodynamics and electromagnetics textbooks, the fields of such a 
dipole p in a dielectric medium of permittivity εd are given by

Antenna

(a) (b)

Antenna

Transmitter Receiver
Radiation Radiation

Fig. 2.1 Principle of optical antenna for transmitting (a) and receiving (b) electromagnetic energy. 
The transmitter or receiver is an object sized in the order of ~1/100 of the operating wavelengths, 
ideally a quantum emitter or absorber, such as an atom, ion, quantum dot, molecule, etc. (Reprinted 
from [2] with permission from Springer Nature)
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Fig. 2.2 Radiation of an oscillating electric dipole. (a) The dipole p is aligned vertical at the origin 
of a spherical coordinate system. (b) The electric field (in blue and green) and magnetic field (in 
red) patterns of the vertical dipole. Only the upper half-space is shown because of mirror symme-
try. (c) Directional pattern of the dipole on a plane containing the z-axis. The diagram outlines the 
angular dependence of the radiation intensity in the radial direction. In contrast, the pattern on the 
x-y plane is omnidirectional. (Panel (b) is reprinted from [8] with permission. Copyright 
(2016) IOP)
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where Zd is the wave impedance of the medium. All the other field components are 
vanishing for the given system. Note that Eq. (2.1a) and (2.1b) can be directly refor-
mulated from Eq. (1.24) by choosing p =  |p|·nz with nz the unit vector in the +z 
direction. A visualization of these fields is presented in Fig. 2.2b [8]. In the far-field 
region where kr ≫  1, the electric field is dominated by its polar component Eθ, 
which forms with Hφ a transverse electromagnetic field propagating mainly in direc-
tions perpendicular to the dipole orientation following sin2θ. The typical radiation 
pattern of a dipole p is thus a toroid symmetric about its axis, as shown in Fig. 2.2c.

The radiation properties of the emitter can be modified by coupling it to an opti-
cal antenna. The most obvious and straightforward change happens to the angular 
distribution of the radiated power. Essentially, an optical antenna “redirects” the 
radiation of the emitter into certain directions with concentrated power density. 
Such angular dependence of radiation intensity is characterized by a function p(θ,φ), 
which can be highly directional if engineered properly. By integrating p(θ,φ) over a 
surface enclosing the emitter and the antenna, we obtain the radiated power Prad. 
This leads to the definition of a fundamental parameter of antennas, the directivity
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The first term on the right side is the reciprocal of the radiated power averaged over 
all directions. Therefore, directivity is the ratio of the radiation intensity in a given 
direction to the averaged value. In addition to Prad carried by the free-space radia-
tion, a certain amount of power is dissipated into heat and absorbed by the optical 
antenna, assigned to Ploss. The ratio of Prad to the total power dissipated by the 
antenna P defines another useful measure, the efficiency erad of the antenna:
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(2.3)

It is easy to see that erad ≤ 1, and the equator holds only when the antenna elements 
are made of lossless materials. Combining the directivity D and efficiency erad 
results in the gain of the antenna:
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which takes into account both the losses of the antenna and its directional properties.
The three parameters defined above describe the characteristics of antennas in 

general. For optical antennas, it is worth mentioning that the term Ploss in Eq. (2.3) 
has more than one channel, namely, the absorption by the antenna. The transmitter 
or emitter itself also has internal losses from the non-radiative transitions, and the 
intrinsic quantum efficiency of the emitter is defined by
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where the superscripts “0” denote the absence of the optical antenna and the “i” in 
the subscript indicates the internal losses of the emitter. With inclusion of the inter-
nal losses, Eq. (2.3) can be rewritten into [1].
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On many occasions, ηi is taken to be unity for the sake of simplicity of calculation, 
assuming the emitter is an ideal one. The total efficiency erad is therefore lower than 
ηi. However, in the cases where the emitters have a poor intrinsic quantum effi-
ciency, it is possible that erad is higher. This property suggests promising applica-
tions of optical antennas in microscopy and light sources.

Another important change to an emitter coupled with an optical antenna is in the 
process of its spontaneous emission. A quantum emitter at an excited energy state 
can spontaneously transit or decay to a lower energy state, e.g., the ground state of 
a two-level system. This process emits a photon with the energy equal to the 
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difference between the two states. Discovered by E. M. Purcell in 1946, the sponta-
neous decay rates are dependent on the dielectric environment, or specifically, the 
local density of electromagnetic/optical/photonic states (LDOS) [9–11]. As men-
tioned before, some characteristic parameters of classical antennas need to be 
reconsidered for optical antennas, in order to reflect their difference such as the feed 
source. Despite its physical significance, LDOS is a quantity in the present regard 
and context related to the input impedance of classical antennas defined based on 
circuit theory. We skip the derivation, which is available elsewhere demanding a 
quantum mechanical treatment, and discuss in the following from a more practical 
perspective. According to Fermi’s golden rule, the decay rate of a quantum emitter 
is proportional to LDOS. Therefore, coupling an emitter with a resonator, e.g., by 
placing it in proximity to an optical antenna or in a cavity that has higher density of 
states than the free space, can increase the decay rates of the emitter, known as the 
Purcell effect. The enhancement of spontaneous emission is characterized by the 
Purcell factor Fp, defined as the ratio between the decay rate of the emitter in the 
coupled system, γ, and that in free space, γ0; for ηi = 1, it can also be expressed by 
the ratio of the power dissipated by the coupled system, P, to the power radiated by 
the emitter in free space, P0 [7]:
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The second equator in Eq. (2.7) relates the quantum mechanical and classical pic-
tures of the Purcell effect. This brings great convenience in practice, because the 
evaluation of the spontaneous decay rates involves the dyadic Green’s function, 
which may not be easily obtainable for complex systems, whereas the power dissi-
pation can be computed numerically by integrating the Poynting vector over a sur-
face that only encloses the emitter. A similar relation has been seen in Eq. (1.53), 
where the integration of the total radiated power Pr is defined over a surface enclos-
ing the whole coupled system, giving the radiative part of the Purcell factor. Lastly, 
it should be emphasized that the interaction between a quantum emitter and a reso-
nant nanostructure nearby modifies not only the emitter’s decay rates but also the 
energy levels, or, in other words, the emission frequency. The latter becomes non- 
negligible when the interaction is strong enough to fall in the “strong coupling” 
regime. Strong coupling is an emerging research field in nanophotonics. Several 
comprehensive reviews on the theory and observation are available [12–14]. 
Nevertheless, our discussion only deals with the weak coupling, where the emission 
frequency is unaltered.

In antenna theory, the application of the reciprocity theorem helps to bridge the 
transmitting and receiving capabilities of an antenna. This connection holds for 
optical antennas as well. A useful relationship between an emitter’s excitation rate 
γexc and spontaneous decay rate γrad can be established by [2].
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The superscripts 0 denote variables in the absence of the antenna, and all the angle- 
dependent functions are defined for the same polarization state. Clearly, the enhance-
ment of the excitation rate can be greater than that of the emission rate, if the 
excitation light comes from a direction of high directivity.

Optical antennas also increase the efficiency of an emitter capturing light. 
Equivalent to the antenna aperture of classical antennas, the absorption cross sec-
tion σ of optical antennas describes the effective area that the incident light is 
absorbed, and it scales with the enhancement of local field intensity:
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Here, σ0 is the absorption cross section of the dipolar emitter p without being cou-
pled to an antenna, np is the unit vector along the dipole orientation, and E and E0 
are the electric fields at the emitter in the presence and absence of the antenna, 
respectively. Given that the local field enhancement by a resonant nanostructure can 
be as strong as 2–3 orders of magnitude, an emitter that is coupled to an optical 
antenna effectively interacts with the incident light in an area about 104–106 times 
of its real spatial extension.

Before proceeding further to specific examples, we summarize in Fig. 2.3 some 
typical designs of optical antenna. As can be seen, the number, shape, and arrange-
ment of the antenna elements can be very different. These variations are aimed at 
enhancing different aspects of the antenna’s properties and performance, such as 
directivity and LDOS, providing a rich toolbox to manipulate light-matter interac-
tions on the nanometer scale.

Fig. 2.3 Scanning electron microscope (SEM) images of optical antennas (top to bottom, left to 
right): monopole antenna, dimer antenna, bowtie antenna, dipole antenna, Yagi-Uda antenna, and 
antenna circuit. Other variants include cross antennas, spiral antennas, split-ring resonators, slot 
antennas, etc. The devices can be made of plasmonic or dielectric materials. (Reprinted from [2] 
with permission from Springer Nature, from [3] with permission from IOP, and from [15] with 
permission from Springer Nature, respectively)
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2.1.2  Single Particles as Optical Antennas

Individual nanoparticles can function as optical antennas. The simplest form of 
these monopole antennas is a sphere. Because the directional behavior of optical 
antennas is a major characteristic concerned in antenna design and engineering, we 
mainly consider the radiation patterns herein and leave the brief discussion on spon-
taneous emission to Sect. 2.1.4. Also, we would extend the applicable range of the 
term “nanoantennas” slightly to include resonant nanoparticles that have exotic 
scattering properties but are not necessarily coupled with localized emitters. With 
no disruption to introducing the basic principle, this extension allows for a smooth 
transition as we move on to metasurfaces in the next section.

As discussed above, the radiation of an isolated dipole is omnidirectional on the 
plane perpendicular to the dipole orientation. The symmetry of the radiation pattern 
can be broken by placing a plasmonic nanosphere near the emitter in the configura-
tion sketched in Fig. 2.4a. The particle either reflects or attracts the dipole emission, 
depending on several variables, such as the dipole-sphere distance [16, 17], the 
wavelength of operation, and the size of the sphere [18], as summarized in 
Fig. 2.4b, c. Although the directional behaviors of this system can be fully assessed 
with rigorous analysis by methods like generalized Mie theory, it is instructive to 
examine them using a simple yet physically intuitive model, which will help us to 
understand more sophisticated cases where analytical solutions do not exist. 
Recalling LSPs in Sect. 1.1.2, under the quasi-static approximation, an electric 
dipole moment in the particle will be induced by the external field. For the present 
system, if we simplify the plasmonic nanosphere into an induced dipole pin at its 
center, the problem reduces to solving the interference of two dipoles: an exciting 
dipole p and an induced dipole pin at a distance d. The latter can be calculated by 
using Eq. (1.26), with the electric field E0 replaced by the exciting dipole field at the 
center of the sphere. Therefore, the relative phase between the two dipoles is deter-
mined by their distance and the polarizability of the sphere. Strictly speaking, this 
two-dipole model may be oversimplified. Compared with the exact solution, the 
treatment here ignores the fact that the nanosphere is in the near field of the exciting 
dipole, which varies rapidly across the dimension of the particle, inducing higher-
order resonances. However, because of the dominance of the dipolar mode in radia-
tion, the seemingly naive model predicts the far-field characteristics quite well. As 
an example, Fig. 2.4b compares the reflected power efficiencies of an 80-nm silver 
sphere calculated with dipole approximation and by multipole expansion. The 
reflected power efficiency is defined as the ratio of the power radiated into the half-
space where x < 0 (see Fig. 2.4a) to the total power radiated in all directions. Only 
slight deviations are seen for small dipole-sphere distances, confirming the validity 
of the two-dipole-interference model in explaining the far-field radiation properties. 
On the other hand, higher-order modes make significant contributions to the decay 
rates and cannot be simply neglected when evaluating near-field quantities.

The picture of interference can be extended to explain the directional behavior of 
antennas involving multipoles or dipole arrays. Let us first consider the cases of 
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Fig. 2.4 (a) A dipole (red arrow) coupled with a single nanosphere antenna. (b) Dependence of 
the reflected power efficiency on dipole-sphere distance at the emission wavelength of 600 nm. 
The sphere is 80 nm in diameter and made of silver, and the refractive index of the surrounding 
medium is 1.5. (c) Forward-to-backward emission ratio as a function of wavelength and sphere 
size, when an electric dipole is tangentially coupled with a gold sphere at 1 nm in free space. 
(Panels (a) and (b) are reprinted from [16] with permission. © 2011 Optica Publishing Group)

multipoles, which could arise from a variety of single nanoparticles, such as high- 
refractive- index dielectric beads and specially shaped metallic resonators [19]. To 
illustrate how the interference between multipoles can result in directional scatter-
ing, an analysis based on the phase symmetry of multipoles is employed [20]. 
Figure 2.5a shows the principle of suppressing backward scattering with the lowest 
four orders of multipoles in a dielectric sphere, namely, the electric dipole (ED), 
magnetic dipole (MD), electric quadrupole (EQ), and magnetic quadrupole (MQ) 
(see Fig. 1.11), all excited by a plane wave propagating from the left with in-plane 
electric fields. With this choice of polarization, ED and EQ are in-plane, whereas 
MD and MQ are out-of-plane. The corresponding in-plane and out-of-plane far-
field scattering patterns are summarized and color-coded in the middle row of 
Fig. 2.5a. The phase symmetries of the far field of individual multipoles comply 
with the following rule: the electric fields have opposite parities for (i) multipoles of 
the same nature and adjacent orders and (ii) multipoles of different natures but the 
same order. The former case applies to, e.g., the ED and EQ pair. The electric field 
(red arrows) of an ED has even symmetry, while the electric field of an EQ has odd 
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Fig. 2.5 (a) Phase-symmetry analysis for directional scattering based on interference of multi-
poles. With proper alignments and balanced amplitudes, electric dipole, magnetic dipole, electric 
quadrupole, and magnetic quadrupole are paired up or mixed altogether to produce directional 
scattering. Curves in purple and blue represent the in-plane and out-of-plane scattering patterns, 
respectively. Red arrows indicate the relative phase of the electric fields in the forward and back-
ward directions. (b, c) Directional scattering of light by a silicon nanosphere with a radius of 
75 nm in free space. (b) Forward and backward scattering cross sections and their ratio. (c) Far- 
field scattering patterns at four selected wavelengths. (Panel (a) is reprinted from [20] with permis-
sion. © 2018 Optica Publishing Group. Panels (b) and (c) are reprinted from [21] with permission 
from Springer Nature)

symmetry. When their amplitudes are balanced and phases are properly aligned, ED 
and EQ emit light in such a way that their fields interfere constructively in the for-
ward direction and destructively in the backward direction, leading to a directional 
scattering pattern with suppressed backscattering (top left panel). A similar analysis 
can be deduced for MD and MQ.

The latter case has a representative example of the ED and MD pair. Owing to 
their opposite phase parities, total cancellation of backward (bottom left panel) or 
forward scattering is achievable with properly overlapped ED and MD. These 
effects were discovered by Kerker et al. [22], and the conditions for zero-backward 
and zero-forward scattering are named after him as the first and second Kerker con-
ditions [23], respectively. Antennas that operate in this principle are known as 
Huygens sources [24]. The high directivity of these elementary sources holds the 
promise for controlling the reflectance and transmittance of metasurfaces after inte-
gration. Observation of Kerker-type directional scattering by high-refractive-index 
subwavelength spheres has been reported by several groups [21, 25, 26]. Figure 2.5b, 
c shows one example for silicon nanoparticles, where the maximum forward-to- 
backward scattering ratio is obtained at ~660-nm wavelength.

The analysis remains valid for more sophisticated situations, where, for example, 
higher-order modes also come into play, or, the multipoles are excited by a local 
emitter. Involvement of higher-order multipoles could help to improve directivity, 
as shown in the bottom row of Fig. 2.5a. In fact, the constructive or destructive role 
of each multipole in determining backscattering can be recognized by inspecting 
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Eq. (1.46), where the opposite signs of an and bn and the alternating sign of the n-th 
order terms just coincide with the aforementioned rule on phase symmetry. 
Excitation by local emitters offers another variable, the nature of the emitter, to the 
interference process. It has been demonstrated that at close wavelengths, the emis-
sion of an electric dipolar emitter and of a magnetic dipolar emitter can be directed 
into opposite directions by the same silicon nanosphere [18].

We then consider nanorods, another class of fundamental building blocks of opti-
cal antennas. To function as an antenna or an element of an antenna, a nanorod 
should carry an electric current oscillating along its main axis (see Fig. 1.7a for the 
longitudinal resonance). Under the quasi-static approximation, one can still use the 
induced dipole moment pin to describe the far-field scattering property of the 
nanorod; the only difference from the case of a sphere is that the polarizability is 
now a function of the aspect ratio.

As the length of the nanorod increases, the quasi-static approximation gradually 
fails, and some other methods should be considered for analysis. By treating highly 
elongated nanorods as nanowires, the Fabry-Pérot model has proved both effective 
and intuitive [28, 29], while several more accurate and sophisticated analytical 
models are also available [27, 30]. Figure  2.6a, b summarizes the comparison 
between simulated and analytically solved near fields of two gold nanowires at the 
first- and third-order resonances, respectively. Experimentally, these patterns can be 
imaged by using NSOM. The formation of the node patterns is similar to those in 
Fig. 1.8 for metal strips, except the involved modes are not short-range SPPs but 
longitudinal resonances of the nanowires, which are essentially discretized 1D SPPs 
because of the finite wire lengths. On an infinitely long metal wire, the SPPs are 
bound at the surface, propagating along the axis with ksp  >  k0, or, equivalently, 
λsp < λ0. The truncation of the wire leads to radiation, and a nontrivial phase shift 
resulted from the reflection of SPPs at both ends of the wire further modifies the 
radiation patterns of high-order resonances, producing noticeable differences as 
compared to the classical RF antenna theory [3], as shown in Fig. 2.6c.

2.1.3  Multiparticle Nanoantennas

Multiple nanoparticles that are properly arranged provide more opportunities for 
engineering the near- and far-field properties. Near-field distributions around a 
nanoantenna largely determine its functionality. As introduced in the preceding sub-
section, the enhancement of local field intensity is associated with the antenna aper-
ture (or absorption cross section) as well as impedance (or LDOS). Therefore, 
tremendous efforts have been devoted to designing and optimizing structures which 
can offer stronger field enhancement, and introducing local shape singularities, such 
as a gap between resonant elements, turns out to be an effective strategy for this 
purpose. Figure 2.7 compares the near-field distributions of a nanorod antenna and 
of a gap antenna [31]. Under the same excitation conditions, it is obvious that the 
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Fig. 2.6 Plasmonic nanowire antennas. Comparison between simulated and analytically solved 
near fields of the first-order (a) and third-order (b) resonance of two gold nanowires. Upper row: 
Top view of the near-field distributions on a plane slightly above the nanowire. Left/right panels 
are the amplitude/phase. Rectangles outline the nanowire, and the horizontal lines indicate the cut-
ting lines. Lower row: Probed field amplitudes and phases along the cutting lines. Curves in black 
and red are based on simulations and an analytical model, respectively. (c) Comparison between 
the emission patterns of plasmonic (black dashed curves) and RF (red curves) wire antennas for the 
first four resonances. (Panels (a) and (b) are reprinted from [27] with permission. Copyright (2010) 
American Chemical Society. Panel (c) is reprinted from [3] with permission from IOP)

Fig. 2.7 Two-photon-induced luminescence (TPL) maps (top) and SEM micrographs (bottom) of 
a gold nanorod (a) and of a gap antenna composed of two nanorods aligned end to end (b), both 
excited at 730-nm wavelength. The TPL signal is proportional to |E|4. The length of the rods is 
500 nm. (Reprinted from [31] with permission. Copyright (2008) American Physical Society)

field intensity is drastically enhanced at the gap, giving rise to a preferable site for 
attachment of nanoloads.

One difference worth mentioning between optical gap antennas and their RF 
counterparts is the property of the gap [1]. While in both cases the gap functions as 
a feed point, for RF and microwave dipole antennas, the two arms are connected to 
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a feed source via impedance-matched feed lines, and the current through the gap 
does not carry localized energy. In contrast, an optical gap antenna is fed by a load 
in the gap region of high LDOS to facilitate the excitation and emission. In addition 
to nanorods, nanospheres and nanotriangles are also common building blocks in 
constructing gaps in a dimer configuration (see Fig. 2.3). The influence of the geom-
etry of individual elements on antenna properties, mainly the field intensity, reso-
nance wavelength, and radiation efficiency, has been widely studied. Detailed 
discussions can be found in several comprehensive reviews, such as [1–4, 32].

The coupling between multiple resonant elements is more influential in deter-
mining the far-field properties of the nanoantennas. The best example of this appli-
cation is probably the optical Yagi-Uda antenna [33]. Well-known for its 
unidirectional radiation characteristic, a generic RF Yagi-Uda antenna, named after 
the two inventors, consists of a series of parallel metal rods in a linear array [6]. One 
of the rods in the middle is essentially a dipole antenna, serving as a driven element. 
The other rods are all parasitic, and the typical arrangement is to place one “reflec-
tor,” i.e., a rod slightly longer than the driven element, on one side of it opposite to 
the radiation direction while several “directors,” i.e., rods slightly shorter than the 
driven element, on the other side coincident with the radiation direction. The driven 
element induces a current in each of the parasitic rods, making them secondary 
sources of radiation. Therefore, the behavior of a Yagi-Uda antenna can be repre-
sented by a linear array of parallel dipoles. At optical frequencies, this design can be 
carried out by plasmonic nanorods and dielectric nanoparticles [34], as illustrated in 
Fig. 2.8a, b, with a dipole acting as the driven element. In practice, the exciting 
dipole has different forms of realization, such as placing a QD at one end of the feed 
element (see Fig. 2.8c) [35], exciting the feed element with an electron beam [36] 
or a light beam [37–39], or applying a DC voltage over a nanoscale feed gap [40].

The analysis of optical Yagi-Uda antennas consisting of dielectric elements is a bit 
more complicated due to the possible coexistence of electric and magnetic resonances. 
Nevertheless, the low-loss property and more tuning factors in design still make them 
promising solutions to achieving highly directional radiation (Fig. 2.8d) [41].

2.1.4  Controlling Spontaneous Emission with Nanoantennas

In Sect. 1.2.2, we have presented the formulae to compute the modification of a 
dipole’s radiative decay rate by a coupled sphere. Because the analytical solution 
contains the exact field information at every point in space, integration of the 
Poynting vector over a surface enclosing only the emitter gives the total power dis-
sipation P by the antenna and, in turn, the closed-form expressions of Purcell factors 
via Eq. (2.7) [42]:
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Fig. 2.8. (a, b) Optical Yagi-Uda antennas composed of plasmonic nanorods (a) and high- 
refractive- index dielectric nanospheres (b). (c) Radiation patterns of a five-element gold Yagi-Uda 
antenna, excited by a QD at one end of the feed element. (d) Directivity of the silicon Yagi-Uda 
antenna in (b). (Panels (a) and (b) are reprinted from [34] with permission. Copyright (2020) 
Elsevier. Panel (c) is reprinted from [35] with permission from AAAS. Panel (d) is reprinted from 
[41] with permission. © 2012 Optica Publishing Group)
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Here, Re(·) represents the real part of the summation in the parenthesis. The results 
for non-radiative decay rates can be obtained by subtracting the radiative decay 
rates from the total decay rates, and the efficiencies of the coupled system as an 
optical antenna are simply the ratios of the radiative decay rates to the total decay 
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rates. Figure  2.9a shows the decay rates and quantum efficiencies of an electric 
dipole near a silver nanosphere [43]. It can be seen that, as the dipole-sphere dis-
tance decreases, the radiative decay increases with a relatively smooth slope and is 
dominated by the dipole mode of the sphere (upper panel), consistent with the previ-
ous model used for Fig. 2.4b. In contrast, the non-radiative decay rate increases in a 
much more drastic manner at small distances, where the contributions by higher- 
order resonances become significant (middle panel). This explains the failure of the 
dipole model in approximating the Purcell factor. The distinct behaviors of the 
radiative and non-radiative decay rates result in a non-monotonic line shape of the 
quantum efficiency (lower panel). On the one hand, due to the dominant non- 
radiative decay channel, the quantum efficiency decreases rapidly when the emitter 
is very close to the particle, known as quenching. On the other hand, as formulated 
in Eq. (2.6), for emitters that have a poor intrinsic quantum efficiency, the extrinsic 
efficiency of the coupled system can be substantially higher.

The spontaneous emission of emitters coupled to a sphere has been extensively 
studied in the literature using the analytical tool. Interesting enough, the effects on 
electric and magnetic dipoles are quite different. Figure 2.9b compares the extrinsic 
quantum efficiencies of a magnetic dipole and of an electric dipole near a silver 
nanosphere, suggesting that the quenching of the magnetic dipole is much weaker 
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Fig. 2.9 Decay rates and efficiencies of dipole emitters coupled to a plasmonic nanoparticle. (a) 
Radiative decay rates (upper panel), non-radiative decay rates (middle panel), and extrinsic quan-
tum efficiencies (lower panel) of an electric dipole near a silver sphere with a radius of 30 nm. The 
dipole has an intrinsic quantum efficiency ηi = 1% and an emission wavelength of 433 nm. The 
refractive index of the environment is 1.3. Solid lines are based on the exact solutions, dashed lines 
are contributions by the dipole mode unless labeled otherwise, and dotted lines are evaluated in the 
absence of the particle. (b) Comparison between the extrinsic quantum efficiencies of a magnetic 
dipole and of an electric dipole near a silver sphere with a radius 50 nm. Both emitters are ideal 
with a 100% intrinsic quantum efficiency. The refractive index of the surrounding medium is 1.5, 
and the wavelength is 576 nm. All the values are averaged over all orientations of the emitters. 
(Panel (a) is reprinted from [43] with permission. Copyright (2011) American Physical Society. 
Panel (b) is reprinted from [44] with permission. Copyright (2016) American Chemical Society)
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Fig. 2.10 Comparison between the Purcell factors and radiative decay rate enhancements of a 
magnetic dipole (a) and an electric dipole (b) coupled to a silicon sphere with a radius of 85 nm in 
free space. The x-axis for dipole-sphere distance is truncated at 1 nm on the left. (Reprinted with 
permission from [18]. © 2021 Optica Publishing Group)

than that of the electric dipole [44]. Another comparison is made for dielectric 
nanoparticles [18], where similar results are attained, as shown in Fig.  2.10. 
Extended discussions on different types of emitters and dielectric environments are 
available in several studies; see, e.g., [45–50].

Lastly, we remind the reader of another useful formula in evaluating the modifi-
cation of spontaneous decay rates. According to Poynting’s theorem, in a linear, 
lossless, and nondispersive medium, the time-averaged power P radiated by an 
emitter with a harmonic time dependence must be equal to its rate of energy dissipa-
tion. For an electric dipole p at r0, this yields [7]

 
P Im� � �� ���

2 0p E r· .
 

(2.11)

One can further decompose the field E into the dipole’s own field E0 and the field Es 
scattered by the nanostructures, i.e., E = E0 + Es. These two terms are connected to 
P0 and the change of radiated power. When normalized by P0 as in Eq. (2.7), the first 
term reduces to unity (see Eq. (2.10)). The same results apply for magnetic dipoles 
with the interchange of dual quantities.

2.2  Metamaterials and Metasurfaces

Another major playground of nanophotonic research is the field of metamaterials 
and their 2D counterparts, metasurfaces. The term “metamaterial” was coined 
around 2000 to name artificially constructed materials which possess novel electro-
magnetic responses that do not occur in nature [51–53]. Albeit this description sub-
tly underrates the possible properties of naturally occurring materials and does not 
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include a few key characteristics emphasized in some later definitions, it highlights 
the major aim of the research. The significance of enabling new electromagnetic 
properties can be seen in Fig.  2.11a, which classifies materials in the parameter 
space based on their permittivity ε and permeability μ. Noticeably, conventional 
transparent dielectrics only fill the first quadrant featuring positive ε and μ. Metals 
at frequencies lower than their plasma frequency (see Eq. (1.7)) have negative ε and 
positive μ, a combination that does not support propagating waves, as illustrated in 
quadrant II. Inclusions of quadrant IV with positive ε and negative μ are rare; known 
examples are magnetized ferrite materials at microwave frequencies, and waves 
therein must still be evanescent. Another region where propagating waves are sup-
ported is quadrant III. With both ε and μ taking negative values, a material exhibits 
a negative refractive index, opposite in sign to the indices of common dielectrics in 
quadrant I. Many exotic phenomena associated with negative refractive index were 
predicted, as early as in 1968 by Veselago [54], but no material in nature fulfills the 
requirements of simultaneously negative ε and μ. Moreover, most media dealt with 
in optics are nonmagnetic (i.e., μ is unity), limiting the available choice of materials 
to a very narrow strip denoted by the green dashed line in Fig. 2.11a.

The research of metamaterials is largely related to the pursuit of access to the 
traditionally unreachable regions in the electromagnetic parameter space. The key 
concepts allowing the solution of metamaterials to be distinct from and go “beyond” 
(which is what the prefix “meta” means) conventional materials are as follows [51]: 
metamaterials are composed of artificially structured and arranged elements with 
the scales of inhomogeneity much smaller than the wavelength of interest, and the 
properties of metamaterials are essentially determined by the elementary units 
rather than the constituent materials. The response of a metamaterial is therefore 
expressed by effective, homogenized parameters.
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Fig. 2.11 Electromagnetic parameter space for the permittivity ε and permeability μ of (a) materi-
als in general and (b) the subset of all-dielectric metamaterials. The horizontal and vertical axes 
denote the real parts of ε and μ, respectively. (Panel (a) is reprinted from [51] with permission from 
Springer Nature. Panel (b) is reprinted from [55] with permission from Springer Nature)
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Whereas optical metamaterials manifest their unusual properties based on accu-
mulated effects from light interacting with the artificial elements during propaga-
tion, metasurfaces achieve novel control over the wavefront of light by introducing 
abrupt changes on an interface, usually in the form of a single layer of optical anten-
nas with subwavelength lateral spacing and spatially varying geometric parameters 
[5, 56]. In this regard, metasurfaces can be considered as a class of metamaterials 
with a reduced dimensionality. The invention of metasurfaces opens the door to “flat 
optics,” where revolutionary research is ongoing.

In this section, we discuss the basics of metamaterials and metasurfaces, from 
the design of elementary building blocks to how they can be assembled to produce 
novel optical phenomena. This completes the preparation of essential knowledge of 
nanophotonics for the later discussion on applications.

2.2.1  Optically Resonant Building Blocks

As stated above, the lack of magnetic response in materials, especially at optical 
frequencies, is a major obstacle to accessing larger areas in the parameter space for 
novel phenomena. The reason behind this problem is that the magnetic component 
of an optical field interacts with atoms in a much weaker strength than the electric 
component does. With metamaterials, nonetheless, such limitation can be lifted, 
because the functional building blocks of a metamaterial are the artificially struc-
tured subwavelength elements, not any more the atoms of the constituent materials. 
During the early days of metamaterials, considerable efforts were devoted to the 
realization of artificial magnetism, or more specifically, negative permeability [57]. 
A variety of structures based on metals were proposed to induce strong magnetic 
responses to the incident magnetic field under resonant conditions. Some of them 
turned out to be more efficient after experimental verifications in the microwave 
regime, which were refined and adapted in the succeeding development for optical 
magnetism [58]. Because it is in general much easier to obtain the electric elements 
of metamaterials, we focus our discussion on the design of magnetic elements. And 
another note to keep in mind is that the Mie resonances introduced in Chap. 1 can 
be electric- or magnetic-type for high-refractive-index dielectric nanoparticles. In 
other words, magnetic responses are “built-in” and more dependent on the size, 
rather than shape, of the particles. Therefore, despite that a decent coverage of the 
parameter space can be achieved by using all-dielectric metamaterials (Fig. 2.11b) 
[55], only the design of plasmonic elements will be discussed in the following.

The elementary unit of magnetic responses is a magnetic dipole. Knowing that 
the absence of optical magnetism in nature results from the very weak coupling of 
atoms and the magnetic field of light, all about the trick needed for designing an 
optically active magnetic element is to induce a resonance that mimics a magnetic 
dipole, i.e., a small current loop. The first yet most successful design of such “meta- 
atoms” in metamaterial research is the split-ring resonator (SRR) [59, 60]. 
Figure 2.12a shows the typical geometry of a single-slit SRR, which is a square ring 
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with an opening cut through one edge. Another popular shape of SRRs is a circular 
split ring. The working principle of an SRR can be intuitively understood from its 
geometry, as a metallic ring is known to be able to accommodate a loop of current. 
A better model to gain insight into the principle is the equivalent LC circuit [51], as 
illustrated in the inset of Fig. 2.12a. The inductance L is related to the current loop 
and thus can be estimated based on an SRR’s size and shape. However, a complete 
ring only couples to the external magnetic field weakly, meaning that the inductive 
response alone is nonresonant. Now, it is easier to see why the ring needs to be 
“split.” By intentionally introducing a gap, the loop of conduction current is 
dammed, and charges accumulate at the two opposing facets across the gap, form-
ing a capacitor with an equivalent capacitance C connected in series to the inductor. 
Thus, the resonant behavior of SRRs can be well explained by the LC circuit model.

The original design of SRRs as elements of metamaterials, proposed by Pendry 
and coworkers, comprises a pair of split rings, one of which is slightly smaller in 
size and placed concentrically inside the larger ring with their gaps facing opposite 
directions [60]. The reasoning behind this double-ring arrangement brings us a 
more optical perspective on SRRs. The current loop in a single-ring SRR can be 

Fig. 2.12 Split-ring resonators (SRRs) as elements of artificial magnetism. (a) A single SRR on a 
substrate. Insets show the equivalent LC circuit (upper left) and SEM micrograph (upper right). (b) 
Transmission (red) and reflection (blue) spectra of an array of SRRs lying on a substrate. The 
incident field is polarized parallel (left) and perpendicular (right) to the gap of the SRRs, respec-
tively. (c, d) Excitation of magnetic resonance in SRRs by the magnetic (c) or electric (d) compo-
nent of the incident field. (e) No magnetic response can be excited when the magnetic field is 
parallel to the SRR plane and the electric field is perpendicular to the gap. Small red arrows denote 
the conduction current i. (Panels (a) and (b) are adapted from [51, 61] with permissions from 
Springer Nature and AAAS, respectively. Panels (c)–(e) are adapted from [51] with permission 
from Springer Nature)
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treated as a magnetic dipole m perpendicular to the plane of SRR, and the oscillat-
ing charges near the gap act like an electric dipole p parallel to the gap. Therefore, 
a single-ring SRR at resonance exhibits bianisotropic coupling of electric and mag-
netic responses. Double-ring SRRs can effectively minimize this effect, because the 
electric dipole moments of the two rings largely cancel each other. Meanwhile, 
additional capacitance is introduced by the concentric rings. These advantages 
make the double-ring SRR a very successful design of magnetic elements and a 
prototype in the research of metamaterials at microwave frequencies. Nonetheless, 
for optical metamaterials, the preferred choice of building blocks is based on the 
single-ring structure.

The favor of single-ring SRRs over their double-ring cousins in the optical 
regime resides mainly on two facts. First, geometrical scaling is a basic strategy for 
shifting the operating wavelengths of SRRs. As suggested in [62–64], linear scaling 
is thought valid for frequencies below ~100 THz, where the kinetic energy of elec-
trons in the metal can be neglected (as in an ideal metal). The resulting sizes of 
SRRs are in the range of several hundreds of nanometers, which is already challeng-
ing for fabrication of concentric structures. The inset of Fig. 2.12a shows the SEM 
micrograph of a single SRR with its magnetic resonance designed at ~3-μm wave-
length [61]. The corresponding transmission and reflection spectra of a planar array 
consisting of such unit cells are presented in Fig.  2.12b. For frequencies above 
100 THz, the linear scaling breaks down due to electron inertia, and for single-slit 
SRRs, the resonance frequency saturates near the boundary between visible and 
near-infrared light. Second, with minimized electric polarizability, double-ring 
SRRs can only be excited by aligning the magnetic field component of the incident 
light with the magnetic dipole moment of the SRRs. When SRRs are lying on a 
substrate, this requires oblique incidence. The excitation of single-ring SRRs, in 
contrast, has more options even at normal incident [51]. Figure 2.12c–e summarizes 
the possible configurations of alignment between SRRs on a substrate and the inci-
dent fields. The standard way of excitation, as illustrated in Fig. 2.12c, is having the 
magnetic field component of incident light penetrating the SRR plane, which will 
induce a current circulating in the ring. The problem with this scheme in practice is 
the difficulty of constructing vertical SRRs with micro- and nano-fabrication tech-
niques. An alternative approach that works for SRRs lying on the substrate is shown 
in Fig. 2.12d. Because the magnetic field is parallel to the SRR plane, its interaction 
with the out-of-plane magnetic dipole moment is forbidden. The electric field com-
ponent of the incidence, on the other hand, takes over the key role to induce the 
current loop. The critical factor of this excitation scheme is the orientation of the 
SRRs with respect to the polarization. When the electric field is polarized along the 
gap, currents are excited in both the gap-bearing arm and the one parallel to it but 
with different magnitudes. This asymmetric pair of current segments results in a net 
current loop in the SRR, thereby inducing an out-of-plane magnetic dipole. The 
other possible orientation has the electric field perpendicular to the gap (see 
Fig. 2.12e). In this case, currents are excited symmetrically in the two arms parallel 
to the polarization, which gives no magnetic response [65]. The different behaviors 
of SRRs under different polarizations can be clearly seen in Fig.  2.12b. The 
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reflection peaks between 1- and 2-μm wavelengths correspond to the electric reso-
nance of the metallic arms, which has a weak dependence on the polarization. In 
contrast, the magnetic resonance at ~3 μm is present only for the configuration in 
Fig. 2.12d.

The saturation of the magnetic response of SRRs at optical frequencies demands 
alternative designs of magnetic elements. In addition to introducing more slits to 
SRRs, a possible shortcut is taking advantage of the coupling between resonant 
electric elements. Two nanoparticles placed in proximity are strongly coupled. The 
interactions between two resonant plasmonic particles can cause new modes arising 
from hybridization of the plasmons supported by individual particles [67, 68]. 
Having in mind that the task is to find a structure where a current loop can be 
induced, transverse coupling of two nanorods turns out to be a sensible choice. 
Figure 2.13a plots the energy-level diagram of the plasmon hybridization for two 
identical nanorods in a transverse configuration. Two hybridized modes arise 
through the coupling between the dipolar resonances of the nanorods at frequency 
ω0, of which the low-energy antisymmetric mode corresponds to a pair of antiparal-
lel currents. Together with the displacement currents across the gaps near the ends 
of the nanorods (Fig.  2.13b), the antisymmetric currents constitute a magnetic 
dipole moment. An important note is that the nanorods need to be stacked in the 
direction of wave propagation; otherwise placing them side by side on a plane 

Fig. 2.13 (a) Energy-level diagram illustrating the transverse coupling of two identical dipolar 
resonators. The lower-energy antisymmetric mode is associated with antiparallel currents in the 
coupled resonators. (b) The antiparallel currents in paired nanorods and the displacement currents 
in the gaps form a current loop that gives rise to a magnetic dipole moment. Magnetic response 
arises in an array of these elementary cells. (c) Cross-sectional view of a current loop in a pair of 
trapezoidal-shaped nanostrips excited by TM-polarized light. (d) Simulated electric displacements 
(arrows) and magnetic field distributions (color map) of the electric (left) and magnetic (right) 
resonances in the structure in (c). (Panel (d) is reprinted from [66] with permission. © 2007 Optica 
Publishing Group)
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perpendicular to the wavevector reduces the system’s symmetry to the same situa-
tion as in Fig. 2.12e.

The idea of stacking paired resonators has been widely used for designing mag-
netic elements at optical frequencies. A representative design based on nanostrips is 
illustrated in Fig.  2.13c. The cross section of the structure highly resembles the 
stacked nanorods. Taking fabrication constraints into account, the sidewalls are pur-
posely tapered so that the upper strip is slightly narrower [66]. The fabricated sam-
ples with varying widths and periodicities are demonstrated to exhibit magnetic 
responses across the entire visible wavelength range. And similar to the left panel in 
Fig. 2.12b, an electric resonance is also observed at shorter wavelengths. Figure 2.13d 
compares the field distributions of the electric and magnetic resonances. 
Concentrated magnetic fields in the spacer and circulating electric displacements, 
especially the antiparallel currents in the nanostrips, can be clearly seen for the 
magnetic resonance.

A very useful trick for creating optical magnetism is based on the concept of 
mirror image. Vertical “staples” with varying geometric parameters fabricated on a 
dielectric-coated gold substrate were demonstrated to exhibit negative permeability 
in the near- and mid-infrared regimes [73]. Although the working principle of this 
design has a clear picture related to the LC circuit, where the effective inductance 
and capacitance, respectively, come from the upper loop and gaps between the sta-
ple’s footings and substrate, treating the structure as a staple and its image mirrored 
below the gold surface eases the analysis. An even simpler element can be obtained 
by sandwiching a metallic nanodisk and a metal substrate with a thin dielectric layer 
[74, 75]. At normal incidence, the nanodisk and its mirror image act just like the 
stacked nanorods or nanostrips discussed above.

We emphasize again that the elements of metamaterials must be much smaller 
than the wavelength of interest. These subwavelength building blocks are some-
times called “meta-atoms” to reflect their elementary role in constituting “metama-
terials.” One may wonder whether more abstract connections exist in this analogy. 
For instance, in chemistry, molecules with identical chemical formulae can have 
different spatial arrangements of atoms, known as isomers. If the properties of a 
metamaterial are attained from the elementary units, will the arrangement of them 
be a determining factor? The answer is, not surprisingly, yes. Global ordering or 
randomness aside, the alignment of elements within a unit cell largely determines 
the achievable responses, which can be much more complicated than negative 
permittivity/permeability resulting from resonant electric/magnetic dipole moments. 
Figure 2.14a depicts the concept of stereo-SRR dimer [69]. Two SRRs are stacked 
with different orientations, described by a twist angle. In this vertical coupling 
scheme, the hybridization of the modes supported by individual SRRs is sophisti-
cated but can still be explained with the tools we have introduced so far [68]. For 
simplicity, let us discuss two special cases, where the twist angles are 0° and 90°, 
respectively. To ensure effective excitation, the field is incident from the top and 
polarized along the gap of the upper SRR. When the twist angle is 0°, the electric 
and magnetic dipolar resonances of both SRRs can be excited. The electric dipole 
moments along the gaps are coupled transversely as in Fig. 2.13a. Meanwhile, the 
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Fig. 2.14 (a) A stereo-SRR dimer containing stacked SRRs with a twist angle. (b) SEM micro-
graph of a two-layer chiral metamaterial. Scale bar: 400 nm. (c) Stacked and twisted gold nanorods 
as chiral building blocks and plasmonic realizations of the Born-Kuhn model. (d) An asymmetric 
pair of nanoantennas as chiral building blocks and photonic realizations of Fano resonances. Left: 
Bright mode at the higher energy level. Right: Dark mode at the lower energy level. (Panel (a) is 
reprinted from [69] with permission from Springer Nature. Panel (b) is reprinted from [70] with 
permission. © 2010 Optica Publishing Group. Panel (c) is reprinted from [71] with permission. 
Copyright (2013) American Chemical Society. Panel (d) is reprinted from [72] with permission 
from Springer Nature)

out-of-plane magnetic dipole moments interact in a longitudinal configuration, 
which, opposite to the transverse one, leads to parallel dipole moments at the lower 
resonance frequency and antiparallel moments at the higher frequency. The two 
processes of hybridization compete, and it was shown that in this case, the electric 
dipole-dipole interaction dominates. A similar analysis can be done for the twist 
angle of 180°. The situation becomes drastically different when the twist angle is 
90°. Under the aforementioned excitation conditions, only the resonances of the 
upper SRR can be excited directly, and those of the lower SRR are accessed through 
coupling. Because of the orthogonal orientations of the SRRs, the electric dipoles 
are perpendicular to each other and have minimal interactions. Hence, the energy 
levels are determined by the longitudinal coupling of magnetic dipoles. As the twist 
angle varies continuously between these discrete states, the hybridized modes 
evolve in a complex manner, and contributions from higher-order electric multi-
poles are non-negligible for some intermediate positions. Therefore, the optical 
properties of the metamaterials composed of a lattice of such stereo-SRR dimers 
have a strong dependence on the twist angle.

The twisted SRRs have been used to construct chiral metamaterials. A structure 
is chiral if it is not superimposable on its mirror image [76–78]. In optics and 
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photonics, the interest in chiral structures is derived from the fact that they interact 
with circularly polarized light (CPL) differently, resulting in many fascinating 
effects that enrich the research themes of chiral optics or simply chiroptics. The 
definition of chirality requires that a chiral metamaterial must possess no structural 
symmetry. In other words, no center of inversion or mirror planes are allowed. 
Helices are the most intuitive chiral structures [79], but the fabrication is generally 
more challenging. Stacking planar elements (which by themselves are achiral) with 
twists is thus regarded as an easy alternative. Figure 2.14b shows the SEM image of 
a chiral metamaterial comprised of stereo-SRR dimers with a twist angle of 90°. To 
avoid linear birefringence, four dimers are organized two-by-two in a super cell, 
rotated by 0°, 90°, 180°, and 270° with respect to the stacking axis [70]. Strong opti-
cal activity was demonstrated from this metamaterial. A simpler design based on 
corner- stacked and orthogonally twisted nanorods is sketched in Fig.  2.14c. The 
simplification of geometry, given that the fundamental resonance of a nanorod is the 
electric dipolar mode, allows the optical response of the nanorods pair to be viewed 
as two orthogonally coupled harmonic oscillators and interpreted by the Born-Kuhn 
model [71]. The vertical spacing between the rods determines the alignment of field 
vectors and the structure. Qualitatively, a quarter-wavelength spacing matches the 
twisting rate of the field vectors as a circularly polarized plane wave propagates, 
giving rise to hybridized bonding and antibonding modes that can be selectively 
excited by using CPL.

Due to mirror symmetry to the axis along the thickness direction, planar asym-
metric elements are intrinsically achiral. However, this symmetry can be broken in 
the physical realizations by, e.g., introducing a substrate [80]. The resulting planar 
chiral structures are important building blocks for chiral metasurfaces. Figure 2.14d 
illustrates an example of paired asymmetric nanoantennas consisting of a nanorod 
and an L-shaped nanoparticle. This structure was first used in the study of Fano 
resonances in plasmonic metamaterials [72, 81–83]. The short arm of the L-shaped 
structure enables the coupling of super-radiant or “bright” electric dipolar mode 
(parallel currents in the left panel) to the sub-radiant or “dark” electric quadrupolar 
mode (antiparallel currents in the right panel), despite that the two nanoantennas are 
placed on the same plane perpendicular to the incident wavevector. Soon afterwards, 
the application of this geometry extends to chiral metasurfaces [84], because it 
exhibits different efficiencies for polarization conversions from left- to right-handed 
CPL and vice versa.

2.2.2  Metamaterials

In the preceding subsection, although not mentioned explicitly, we already base 
some discussions on the optical properties of metamaterials (e.g., the spectra of an 
SRR array in Fig. 2.12b), instead of those of the individual constituent elements, as 
the evidence of a desired resonance. Nonetheless, on many occasions, the function 
of a metamaterial is carried out by more than one resonance mode, and judicious 
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arrangements of the elementary units (in the spatial, spectral, and temporal domains) 
are crucial. In this subsection, we briefly discuss the essential concepts of metama-
terials, including how their responses can be expressed by effective and homoge-
nized parameters and be realized by designing the structures based on 
elementary units.

A little preparation before going into details is an extension of the electromag-
netic parameter space. The classification in Fig. 2.11a applies to isotropic materials, 
of which the permittivity and permeability are complex-valued scalars. These 
parameters become tensors if a material is anisotropic. In the following, we consider 
nonmagnetic materials with μ = 1, and the tensor of permittivity has been diagonal-
ized to the form
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Here, x, y, and z denote the principal axes of the material. In naturally occurring 
materials, crystals exhibit optical anisotropy with all the diagonal elements being 
positive. A crystal is termed to be biaxial when εxx, εyy, and εzz all take different val-
ues and uniaxial when two of them are identical; the medium is isotropic otherwise. 
To see the difference anisotropy makes to the optical properties, it is helpful to first 
derive the dispersion relation. For a time-harmonic plane wave with angular fre-
quency ω, the wave equation in an anisotropic medium is
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where k = (kx, ky, kz) is the wavevector. Equation (2.13) can be further rewritten to [85]
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where k0 0 0� � � �  is the wavenumber in a vacuum. Solving Eq. (2.14) for biaxial 
media is possible, but we choose to continue with uniaxial materials, which are 
related to a class of metamaterials in the following discussion. Without loss of gen-
erality, we align the optic axis in the z direction so that εzz = ε∥ and εxx = εyy = ε⊥. Note 
that some literatures use the subscripts in the opposite way, where parallel and 
orthogonal are defined with respect to the plane perpendicular to the optic axis. 
After some algebra, the dispersion relations can be obtained from the nontrivial 
solution to Eq. (2.14):
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The first term on the left side corresponds to a spherical isofrequency surface in the 
momentum space (or k-space), which describes the dispersion of waves polarized in 
the x-y plane, known as TE or ordinary waves. The latter naming comes from the 
fact that waves polarized perpendicular to the optic axis have a velocity independent 
of the propagation direction. The second term also defines a dispersion relation, but 
the associated waves are polarized in a plane containing the optic axis, known as 
TM or extraordinary waves. In a crystal with positive ε⊥ and ε∥, the isofrequency 
surfaces of extraordinary waves are ellipsoidal.

Unusual optical properties arise when anisotropy becomes extreme. Imagine an 
ellipsoidal isofrequency surface that is highly elongated. The wavevector along the 
major axis of the ellipsoid can thus be much greater than k0, allowing sub- 
diffractional modes to propagate. Even more striking phenomena occur when one of 
the tensor components is negative. The isofrequency surfaces of extraordinary 
waves are no longer bounded but turned into hyperboloidal, giving rise to the con-
cept of hyperbolic metamaterials [85–90]. Figure 2.15 depicts the isofrequency sur-
faces for two possible combinations of ε⊥ and ε∥, where the hyperboloids can be 
twofold (when ε∥ < 0, ε⊥ > 0) or onefold (when ε⊥ < 0, ε∥ > 0). According to a widely 
used classification, the former with one tensor component being negative is named 
type I, whereas the latter with two components being negative is type II. In some 
literatures, type I/II is alternatively called dielectric/metallic type [90], a reflection 
of their difference in optical responses. The unbounded nature of hyperbolic disper-
sions implies that in principle, waves with an infinitely large wavevector can be 
supported.

In nature, there exist some materials possessing hyperbolic dispersions in the 
optical regime. However, building hyperbolic metamaterials is still of great interest 
because of their simple realizations and flexibility of engineering anisotropy. By 
definition, regardless of the specific type, a hyperbolic metamaterial has metallic 

Fig. 2.15 Isofrequency surfaces of waves in hyperbolic metamaterials. (a) εzz < 0, εxx = εyy > 0. (b) 
εzz > 0, εxx = εyy < 0. The green sphere in (a) is the isofrequency surface of ordinary (TE-polarized) 
waves, and the blue hyperboloids in both panels are for extraordinary (TM-polarized) waves. 
(Reprinted from [90] with permission of AIP Publishing)
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and dielectric behaviors along different principal axes. Therefore, the general strat-
egy of its realization is to restrict the movement of free electrons within a metal 
along certain directions. Figure 2.16 illustrates two practical schemes, both of which 
manifest the design principle in a very straightforward fashion.

Next, let us prove the structures in Fig. 2.16 display hyperbolic dispersions. This 
works in the sense that the response of a metamaterial can be homogenized and 
expressed by effective material parameters [51, 91]. For the multilayer structure 
consisting of alternating metallic and dielectric thin films (Fig. 2.16a), the stack is 
not necessarily periodic, but all the layers are supposed to be deep subwavelength in 
thickness. We define the filling ratio of metal as f = dm/(dm + dd), where dm and dd are 
the total thicknesses of metallic and dielectric layers, respectively [87]. The effec-
tive permittivity tensor can be determined by considering the boundary conditions, 
which require the tangential components of the electric field across an interface to 
be continuous. In the system in study, this leads to

 E E Em d s
� � �� � ,  (2.16)

where the superscripts indicate any direction parallel to the interface (i.e., perpen-
dicular to the z-axis) and the subscripts m, d, and s denote the quantities’ association 
with the metallic layer, dielectric layer, and the stack, respectively. The effective 
electric displacement in the tangential direction is taken as the averaged displace-
ment in all layers:

 
D fD f Ds m d

� � �� � �� �1 .
 

(2.17)

With the help of the constitutive relations, Eq. (2.17) can be rewritten as

 
� � �s s m m d dE f E f E� � � �� � �� �1 ,

 
(2.18)

Fig. 2.16 Realizations of hyperbolic metamaterials. (a) Layered metal-dielectric structure. (b) 
Arrays of metallic nanowires embedded in a dielectric host. (Reprinted from [89] with permission. 
Copyright (2019) Wiley)
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where the electric fields can be cancelled out as a result of Eq. (2.16). Therefore, we 
get the effective permittivity in the x-y plane:

 
� � �s m df f� � � �� �1 .

 
(2.19)

Boundary conditions also require the normal components of the electric dis-
placement across an interface to be continuous:

 D D Dm d s
  = = .  (2.20)

Similar to what has been done to the tangential electric displacement, by averaging 
the normal components of the electric field in all layers, the effective normal electric 
field is given by

 
E fE f Es m d
  � � �� �1 ,

 
(2.21)

and again, the electric fields can be cancelled out upon application of the constitu-
tive relations, resulting in the final expression of effective permittivity in the z 
direction:
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(2.22b)

For the metallic nanowire array in Fig. 2.16b, the tensor component in the direc-
tion parallel to the nanowires is attainable by applying the boundary conditions for 
tangential fields. The result has the same expression as Eq. (2.19), except that it 
applies to the direction parallel to the optic axis (z-axis):

 
� � �w m df f � � �� �1 .

 
(2.23)

Here, the subscript w stands for wires, and the filling ratio f is defined based on the 
area occupation of metal in the x-y plane. Another method of describing the response 
of a periodic array of metallic wires to electric fields polarized along the wires is the 
effective Drude model [51]. The wire array has a diluted density of electrons and 
enhanced electron mass, resulting in significantly depressed effective plasma fre-
quency. The derivation of the other tensor component is less straightforward than 
for multilayers. We present the expression below for completeness
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whereas interested readers are referred to [87] for the details.
From Eqs. (2.19), (2.22b), (2.23), and (2.24), one can tell that the sign of each 

tensor component has strong dependence on the filling ratio and the permittivity of 
metal, which is highly dispersive in the optical regime. Based on noble metals and 
conventional dielectric materials, both designs in Fig. 2.16 can produce hyperbolic 
dispersions in certain wavelength ranges. Note that for a given structure, the disper-
sion relation it displays varies depending on the operating wavelength and can be 
type I or II hyperbolic or elliptical.

It is worth emphasizing again that the formulae derived above are the homoge-
nized “effective” permittivity tensors of the metamaterials. They are valid in describ-
ing the macroscopic responses of the composite structures as a whole but not the 
microscopic interactions between the waves and each subwavelength constituent 
element. It is usually not possible to get analytical expressions when the building 
blocks have a complex architecture or are arranged in a random order. Numerous 
approaches have been developed to tackle this practical difficulty, including various 
forms of effective medium theory [91–93] and protocols [51] to retrieve the effec-
tive material parameters from measured or simulated transmission and reflection 
spectra.

The unbounded dispersion enabled by hyperbolic metamaterials has led to an 
important device for super-resolution imaging, termed as a hyperlens. Without 
reviewing the history of metamaterial research along this line [94–97], where the 
initial concept of perfect lens [98] evolves first to superlens [99] and then hyperlens 
[100], we focus on the role of hyperbolic metamaterials.

Light scattered off an object contains a spectrum of components in the momen-
tum space. The components with low wavevectors are propagating waves that cor-
respond to coarse spatial features, while the remaining components with high 
wavevectors are evanescent waves carrying the subwavelength information of the 
object. With conventional imaging devices, because evanescent waves cannot reach 
the far field, images reconstructed from propagating waves lack details and thus are 
diffraction-limited. The missing components with high wavevectors, however, are 
supported for propagation by structures with hyperbolic dispersion (Fig.  2.17a), 
allowing them to get involved in the image formation. Hence, when an object con-
taining fine features is placed in proximity to a surface of a planar hyperbolic mul-
tilayer, super-resolution imaging can be achieved at the opposite surface.

The scheme can be modified for far-field super-resolution imaging, which 
requires conversion of evanescent waves to propagating waves. In addition to intro-
ducing designed scatterers at the output surface, an elegant method is constructing 
a hyperbolic metamaterial in a curved geometry. The most common design is based 
on concentric cylindrical or spherical multilayers [101]. The new solution brought 
in by this so-called hyperlens is a magnification mechanism. For example, in a con-
centric cylindrical multilayer (Fig. 2.17b), as waves propagate outwards, their tan-
gential wavevectors are gradually compressed as a consequence of the conservation 
of angular momentum. Eventually, the wavevectors are small enough so that the 
associated waves become propagating in the surrounding medium, resulting in a 
magnified image in the far field. Multilayer structures with elliptical dispersion can 
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Fig. 2.17 (a) Planar multilayer metamaterials with hyperbolic (red curves) or elliptical (blue 
curve) dispersions. The orange circle represents the dispersion of light in an isotropic surrounding 
medium. (b) A hyperlens made of concentric multilayer metamaterials that display the same dis-
persions as in (a). (c–e) Far-field super-resolution imaging is attainable by using a hyperlens with 
elliptical (c) or hyperbolic (d) dispersion, but not by air alone (e). The objects are two line sources 
separated by a subwavelength distance of ~80 nm at the inner boundary. (Reprinted from [94] with 
permission from Springer Nature)

be used in the same way as along as the achievable wavevectors are large enough. 
Figure  2.17c, d shows the simulated field patterns for far-field super-resolution 
imaging using hyperlenses with elliptical and hyperbolic dispersions, respectively. 
In contrast, the same objects, i.e., two line sources with a deep-subwavelength sepa-
ration, cannot be resolved in air without a hyperlens (Fig. 2.17e) [94].

Lastly, we discuss the design of metamaterials which exhibit a negative index of 
refraction. Located in the third quadrant in Fig.  2.11a, negative-index materials 
(NIMs) were once considered purely hypothetical, although many intriguing phe-
nomena like negative refraction (Fig. 2.18a) had been predicted more than half a 
century ago [54]. The access to simultaneously negative values of ε and μ was 
opened by the invention and subsequent blooming of metamaterials [57], which 
were largely inspired by Sir John Pendry for his pioneering works on suggesting 
essential building blocks for NIMs and using NIMs as superlenses, among other 
new physics and applications [60, 98, 105–107]. Research efforts during the pursuit 
of NIMs were split to several streams, such as reexamining the phenomena associ-
ated with electromagnetic wave propagation and designing novel structures that 
operate at optical frequencies. Since the main purpose of this section is to help 
establish a basic understanding of the design principles of meta-atoms and metama-
terials, here we focus on explaining two design examples of NIMs instead of any 
associated phenomena. Moreover, negative refraction can be realized on different 
platforms like anisotropic [108, 109] or chiral metamaterials [110]. In line with the 
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Fig. 2.18 (a) Scheme of negative refraction at the interface between air and a negative-index 
material (NIM). Following Snell’s law, the refracted light beam is on the same side of the surface 
normal line as the incident light beam. (b) A microwave NIM consisting of periodic arrays of unit 
cells combining copper SRRs and wires on fiberglass circuit board material. (c) Experimental veri-
fication of negative refraction. (d) Design of NIM based on combined electric and magnetic reso-
nant structures. (e) SEM image of fabricated fishnet structure. (Panels (b) and (c) are reprinted 
from [102] with permission of AAAS. Panel (d) is reprinted from [103] with permission. © 2005 
Optica Publishing Group. Panel (e) is reprinted from [104] with permission from Springer Nature)

earlier preparation of building blocks, we restrict our discussion to the standard 
scheme based on simultaneously negative ε and μ.

The requirement of constructing an NIM is straightforward: overlapping two sets 
of elements with negative effective permittivity and permeability in the same fre-
quency band. But this seemingly simple solution is not practical until the ingredient 
of artificial magnetism becomes available. Figure 2.18b shows the first experimen-
tal verification of a negative refractive index in microwave region [102]. The NIM 
consists of a 2D array of SRRs and metallic wires, both of which are lithographi-
cally deposited on opposite sides of circuit boards. The negative μ is provided by the 
SRRs at frequencies above their resonance, and the negative ε at matched frequen-
cies is obtained by engineering the wire lattice so that its effective plasma frequency 
is brought down to microwave region but well above the SRR resonant frequency. 
When illuminated by a beam of microwaves with the electric field polarized along 
the wires, the structure exhibits simultaneously negative ε and μ. Negative refrac-
tion was demonstrated on a wedge-shaped sample, as shown in Fig. 2.18c.

Owing to the saturation of magnetic response of SRRs at high frequencies, con-
struction of optical metamaterials with a negative refractive index must employ 
other building blocks, such as stacked nanorods or nanostrips. Interestingly, unlike 
in the microwave realization where two lattices of elements are interleaved, 
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elementary structures with respective negative effective ε and μ at optical frequen-
cies may be combined into one through judicious design. Figure 2.18d illustrates an 
example of this process [103]. Whereas the desired electric response is still from 
metallic wires, one can clearly see how the designs of magnetic meta-atoms evolve 
but manifest the same basic concept of a current loop, from SRRs, (mirror-imaged) 
vertical staple pairs, stacked nanostrips, and eventually the combined fishnet struc-
tures. The SEM image of a fabricated sample for near-infrared NIM is shown in 
Fig. 2.18e [104].

2.2.3  Metasurfaces

In the beginning of this section, we introduce metasurfaces as the 2D counterparts 
of metamaterials. It is also seen in the literature that metasurfaces are sometimes 
regarded as a class of metamaterials with a reduced dimensionality or, in other 
words, planar metamaterials [56]. The latter makes good sense in several aspects. 
For example, most metasurfaces are also made of arrays of subwavelength resona-
tors, and they enable extraordinary optical responses not available from interfaces 
between two conventional materials. In addition, the significantly reduced losses 
and simplified fabrication of metasurfaces, thanks to their 2D nature, are in line with 
the pursuits in metamaterial research. Nonetheless, there are still enough reasons 
based on which we feel it is more appropriate to treat metasurfaces as a concept in 
an equal position to metamaterials. The most important one is the essence of meta-
surfaces in transforming waveforms is to create abrupt and spatially varying phase 
jumps with subwavelength thickness and resolution at an interface, which lifts the 
dependence of conventional optical devices on effects accumulated during light 
propagation in bulky materials, including metamaterials that are described by effec-
tive and homogenized parameters [5]. Since the milestone work published in 2011 
by Capasso group [111], metasurfaces have become one of the major themes of 
nanophotonics research and revolutionized the landscape of flat optics, which has 
been covered by quite a few nice and timely reviews focusing on different topics 
[112–118]. Clarifications of the relation of metasurfaces to reflect-/transmit-arrays, 
frequency selective surfaces, and blazed gratings can be found in [5, 118–120] as 
well. Here, we again limit our discussion to a concise walk-through of the basics of 
metasurfaces for wavefront engineering. Working principles of the devices which 
perform other functions like novel absorption properties [121, 122], polarization 
conversion [123, 124], and manipulation of near fields [125, 126] or surface waves 
[127] can be deduced from these basics.

The significance of introducing phase shifts to an ordinary interface between two 
isotropic media can be seen by reexamining Snell’s laws of reflection and refraction 
[111]. As illustrated in Fig. 2.19a, an interfacial phase gradient dΦ/dx in the plane 
of incidence optically acts as an effective wavevector in the same direction, which 
adds to the tangential component of the incident wavevector and in turn deflects the 
transmitted light as a consequence of wavevector conservation [119]. This change at 
the interface leads to the generalized law of refraction
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Fig. 2.19 (a) Schematic for deriving the generalized 2D Snell’s law of refraction. The interface 
between the two media (with refractive indices ni and nt, respectively) hosts an array of optical 
antennas with subwavelength thickness and separation, which introduces a constant interfacial 
phrase gradient dΦ/dx in the plane of incidence, providing an effective wavevector along the inter-
face that deflects the transmitted light beam. Although not shown, the same argument applies to 
reflection. Such anomalous responses can be as extreme as negative reflection/refraction or total 
conversion into surface waves. (b) In a more general 3D case, the phase gradient dΦ/dr does not 
lie in the plane of incidence, further enabling out-of-plane reflection and refraction. (c) A metasur-
face with a properly designed phase profile Φ can carry out desired functions like lensing or form-
ing structured light beams. Such control of light by flat optics can be multifunctional, 
multiwavelength, angle-/polarization-dependent, etc. (Panels (a) and (b) are reprinted from [119] 
with permission of IEEE. Panel (c) is reprinted from [114] with permission of Springer Nature)
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where λ0 is the wavelength in a vacuum. Meanwhile, the law of reflection is gener-
alized to
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Equations (2.25a) and (2.26a) can be alternatively derived by using Fermat’s prin-
ciple. Similarly, when the phase gradient has a component perpendicular to the 
plane of incidence (along the y-axis in Fig.  2.19b), out-of-plane refraction and 
reflection occur [128], which are governed, respectively, by the following equations:
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In theory, with a properly designed phase gradient, the refracted and reflected light 
can be directed into arbitrary directions.
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Interfacial phase jumps are usually realized with optical scatterers (or antennas, 
if we take the extended definition) with subwavelength spacing and spatially vary-
ing geometric parameters. The requirement of subwavelength separation differenti-
ates metasurfaces from diffractive optical components, and the spatial variation of 
scatterers carries out the phase profile needed to perform the desired optical func-
tionality with a planar device. A good example to explain how the phase profile can 
be determined for a given functionality is the focusing of a normally incident plane 
wave, as illustrated in Fig. 2.19c. Because waves from different parts (described by 
the radial coordinate r) of an incident flat wavefront should remain in phase when 
arriving at the focal point, the flat lens needs to impart a phase profile Φ(r) that 
compensates the phase difference resulting from the different optical paths the 
refracted waves take, yielding
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where f is the focal length. The phase profiles of many other flat optical devices, 
such as flat axicons and lenses for generating structured light [119], non-diffracting 
beams [129], and hologram [130], can be derived following the same principle.

Thus far, everything we have been talking about is theoretical. The actual ability 
of controlling wavefront relies on the scattering properties of individual optical 
antennas. The complete control requires a full coverage of 2π phase range for the 
scattered light, along with sufficient amplitude and well-defined polarization. A 
single resonance of an optical antenna, nonetheless, only provides a tuning range of 
phase up to π [119]. Therefore, early demonstrations of metasurfaces utilize 
V-shaped plasmonic antennas [111, 132], which offer extended phase responses 
from two independent and orthogonal resonance modes, as shown in Fig. 2.20a. At 
a given wavelength, by choosing the arm lengths (h), spanning angles (Δ), and ori-
entations of the antennas relative to the polarization of the incident light, the desired 
0 to 2π phase coverage can be achieved for cross-polarized scattered light. Based on 
this library of two-oscillator scatterers, the first metasurface with a constant phase 
gradient was realized by periodically translating a super cell whose eight elements 
scatter mid-infrared light with nearly equal amplitudes and progressive phase delays 
of π/4 (see Fig. 2.20b, c), serving in the first demonstration of generalized laws of 
reflection and refraction.

A major limitation of metasurfaces using two-oscillator plasmonic antennas is 
the low efficiency, because the cross-polarized scattered light from a single layer of 
resonators carries only a small portion of the incident power. A simple yet very 
effective method to boost the efficiency, although it works for reflective metasur-
faces only, is to place optical antennas at a small distance above a backplane as in 
reflect-arrays. The extended phase response is made possible for co-polarization 
even with simple scatterers like nanorods. The mechanism can be understood in two 
ways: (1) The antenna and its mirror image each support a dipolar resonance, equiv-
alent to a two-oscillator element. (2) The antenna, spacer, and backplane form a 
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Fig. 2.20. (a–c) V-shaped plasmonic optical antennas as building blocks of metasurfaces. (a) A 
V-shaped optical antenna supports two orthogonal modes, which have symmetric (left) and anti-
symmetric (right) current distributions and are excited by the incident field components along the 
ŝ  and â  axes, respectively. (b) SEM image of a metasurface consisting of an array of V-shaped 
gold optical antennas on a silicon substrate, which generates a constant interfacial phase gradient 
along the x-axis. Highlighted is a super cell containing eight elements spanning a periodicity of 
Γ = 11 μm in the x-direction. (c) For a y-polarized plane wave excitation from the substrate (z ≤ 0) 
at normal incidence, the cross-polarized scattered electric field (Ex) from individual antennas in the 
highlighted super cell in (b) exhibits a linear phase progression in steps of π/4, resulting in an 
anomalously refracted plane wave as indicated by the tilted wavefront (red line). (d) Fabry-Pérot 
cavity for reflect-array metasurfaces. (e) SEM image, with a super cell highlighted, of a metasur-
face to achieve high-efficiency anomalous reflection of y-polarized light. (f) Dielectric nanopillars 
are good choices for transmissive metalenses, with circular (anisotropic) cross sections suited for 
applications insensitive (sensitive) to polarization. (Panels (a)–(c) are reprinted from [111] with 
permission from AAAS.  Panel (e) is reprinted from [131] with permission. Copyright (2012) 
American Chemical Society. Panel (f) is reprinted from [114] with permission of Springer Nature)

Fabry-Pérot cavity, where the reflected light excites the antenna repeatedly with a 
phase delay, as sketched in Fig. 2.20d. The reflective metasurfaces for demonstrat-
ing anomalous reflection (Fig. 2.20e) [131] and hologram [133] in the near-infrared 
region can reach efficiencies at high as ~80%, limited mainly by the absorption 
from the ohmic loss of metals. The general strategy for achieving high-efficiency 
transmission is to match the impedance of the metasurface with that of free-space 
Z0. This requires rational design as well as optimization of the optical antennas. In 
the ideal case, if the surface electric and magnetic polarizabilities αe and αm, which 
can be related to equivalent surface electric and magnetic currents, are adjusted 
properly under the constraint [134]

 
� �m e Z/ � 0 ,  

(2.28)

complete control over the transmitted light is attainable with no reflection. It is 
worth noting that under the above condition, individual antennas constituting the 
metasurface essentially function as Huygens sources. Therefore, this type of trans-
missive metasurfaces is sometimes referred to as Huygens surfaces.

One last class of building blocks widely used is high-refractive-index dielectric 
nanopillars. Although dielectric nanoparticles resonating under Kerker conditions 
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can already serve as the elements of Huygens surfaces, nanopillars, with a 
wavelength- scale height and subwavelength lateral dimensions including spacing, 
provide another route to high transmission [135]. The working principle is not as 
easy to visualize as in the previous schemes. In contrast to those involving two reso-
nances, the wavelength-scale height of the nanopillars allows for occurrence of 
high-order modes. In this regard, nanopillars can be considered as waveguides trun-
cated on the top and bottom facets [136], which operate as resonators with low- 
quality factors. An attractive property of nanopillars is that at a given wavelength, 
the coverage of 2π phase range can be accomplished by varying their lateral dimen-
sions with a fixed height, while the transmission remains high and nearly constant. 
Such correspondence between transmission, phase, and geometric parameters is 
easy to establish by simulations with simple parameter sweep. An example of circu-
lar nanopillars is shown in Fig. 2.20f.

In all the examples discussed above, the phase response comes from the disper-
sion of the antenna resonances, tuned by varying the shape of individual elements in 
the array. Another very important and fundamentally different approach to introduc-
ing interfacial phase jumps is to use the Pancharatnam-Berry (PB) phase [138, 139], 
which is a geometric phase realized by spatial-variant polarization manipulation. 
Following the earlier scheme proposed by Hasman and coworkers [140–142], the 
realization of PB phase in metasurfaces is based on anisotropic optical antennas 
(e.g., nanorods, nanofins, slit apertures, SRRs, etc.) that are identical in shape across 
the array but take spatially varying orientations [143–145]. The PB phase can be 
explained with an elegant picture on the Pioncaré sphere [112, 141]. However, the 
principle of its use in metasurfaces is more intelligible when put into the Jones cal-
culus. Let us consider nanorods, for example. For such an anisotropic optical 
antenna, its Jones matrix is
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Here, tl and ts are the forward scattering coefficients for the incident light polarized 
along the rod’s long and short axes, respectively, α is the angle by which a nanorod 
is rotated relative to a chosen direction in the metasurface plane, and R is the rota-
tion matrix
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When the incident light is circularly polarized, its electric field vector can be 
expressed by (1 ± i)T, where the +/− sign corresponds to left−/right-handed CPL 
and T denotes the matrix transpose. The transmitted light is then given by [114].
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Equation (2.31) reveals that the transmission consists of two CPL components. The 
first part is co-polarized with respect to the incidence and modulated by a constant 
coefficient, whereas the other one differs from it not only in handedness but by car-
rying an extra phase term exp(±i2α) in the coefficient. Therefore, in the transmis-
sion, the cross-polarized CPL scattered from optical antennas taking different 
orientations (described by the rotation angle α) receives a relative phase ±2α. 
Obviously, this geometric phase can sweep from 0 to 2π, and it is possible to opti-
mize the antennas so that the amplitude of cross-polarized CPL is maximized (see 
Fig. 2.21a). The introduction of PB phase greatly simplifies the design and fabrica-
tion of metasurfaces. Wavefront engineering by various phase profiles, such as 
anomalous refraction (Fig. 2.21b) [137] and focusing (Fig. 2.21c) [145], was dem-
onstrated with it soon after the advent of the metasurface prototype. Many state-of- 
the-art high-performance metalenses are also based on this approach.

Fig. 2.21 Pancharatnam-Berry phase from identical anisotropic optical antennas with spatially 
varying orientations. (a) At a given wavelength, a dielectric nanofin can convert a large portion of 
circularly polarized incident light to its counterpart of opposite handedness (i.e., cross-polarized 
CPL) in transmission, with a phase shift twice the rotation angle of the nanofin. The co-polarized 
CPL component receives no such geometric phase. (b) Schematic of a metasurface consisting of a 
dipole antenna array. A super cell (in red) contains eight identical nanorods, separated by a dis-
tance S and rotated progressively with a step of π/8. The structure creates a constant phase gradient 
along the x-axis for transmitted CPL that is opposite in handedness to the incident one. (c) 
Schematic of split-ring apertures milled through a metal film used to focus CPL. (d, e) Geometric 
phase remains workable in the configuration of Fabry-Pérot cavity for reflected light, except that it 
applies to the CPL component with preserved handedness. (d) Phase delay as a function of gold 
nanorod orientation encoding phase level. (e) Reflectivity of co- and cross-polarized CPL under 
normal incidence. (Panel (a) is reprinted from [114] with permission from Springer Nature. Panel 
(b) is reprinted from [137] with permission. Copyright (2012) American Chemical Society. Panel 
(c) is reprinted from [5] with permissions of Springer Nature and Optica Publishing Group. Panels 
(d) and (e) are reprinted from [133] with permission of Springer Nature)
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As a closing remark, the PB phase is applicable to reflected light as well. The 
only difference is, in reflection, it is associated with the co-polarized CPL compo-
nent [133]. Figure 2.21d, e shows the phase chart and polarization-resolved reflec-
tance for nanorods placed above a backplane (see Fig. 2.20d). High-efficiency and 
broadband metasurface holograms were demonstrated on this platform.

References

1. Bharadwaj, P., Deutsch, B., Novotny, L.: Optical antennas. Adv. Opt. Photon. 1(3), 
438–483 (2009)

2. Novotny, L., van Hulst, N.: Antennas for light. Nat. Photonics. 5(2), 83–90 (2011)
3. Biagioni, P., Huang, J.-S., Hecht, B.: Nanoantennas for visible and infrared radiation. Rep. 

Prog. Phys. 75(2), 024402 (2012)
4. Krasnok, A.E., et al.: Optical nanoantennas. Physics-Uspekhi. 56(6), 539–564 (2013)
5. Yu, N., Capasso, F.: Flat optics with designer metasurfaces. Nat. Mater. 13(2), 139–150 (2014)
6. Balanis, C.A.: Antenna Theory: Analysis and Design. Wiley, Hoboken (2015)
7. Novotny, L., Hecht, B.: Principles of Nano-optics, 2nd edn. Cambridge University Press, 

Cambridge (2012)
8. Girwidz, R.V.: Visualizing dipole radiation. Eur. J. Phys. 37(6), 065206 (2016)
9. Purcell, E.M., Torrey, H.C., Pound, R.V.: Resonance absorption by nuclear magnetic moments 

in a solid. Phys. Rev. 69(1–2), 37–38 (1946)
10. Pelton, M.: Modified spontaneous emission in nanophotonic structures. Nat. Photonics. 9(7), 

427–435 (2015)
11. Baranov, D.G., et al.: Modifying magnetic dipole spontaneous emission with nanophotonic 

structures. Laser Photonics Rev. 11(3), 1600268 (2017)
12. Törmä, P., Barnes, W.L.: Strong coupling between surface plasmon polaritons and emitters: a 

review. Rep. Prog. Phys. 78(1), 013901 (2014)
13. Ramezani, M., Berghuis, M., Gómez Rivas, J.: Strong light–matter coupling and exciton- 

polariton condensation in lattices of plasmonic nanoparticles [Invited]. J.  Opt. Soc. Am. 
B. 36(7), E88–E103 (2019)

14. Dovzhenko, D.S., et al.: Light–matter interaction in the strong coupling regime: configura-
tions, conditions, and applications. Nanoscale. 10(8), 3589–3605 (2018)

15. Caldarola, M., et al.: Non-plasmonic nanoantennas for surface enhanced spectroscopies with 
ultra-low heat conversion. Nat. Commun. 6(1), 7915 (2015)

16. Rolly, B., et  al.: Crucial role of the emitter–particle distance on the directivity of optical 
antennas. Opt. Lett. 36(17), 3368–3370 (2011)

17. Bonod, N., et al.: Ultracompact and unidirectional metallic antennas. Phys. Rev. B. 82(11), 
115429 (2010)

18. Yao, K., Zheng, Y.: Directional light emission by electric and magnetic dipoles near a 
nanosphere: an analytical approach based on the generalized Mie theory. Opt. Lett. 46(2), 
302–305 (2021)

19. Hancu, I.M., et  al.: Multipolar interference for directed light emission. Nano Lett. 14(1), 
166–171 (2014)

20. Liu, W., Kivshar, Y.S.: Generalized Kerker effects in nanophotonics and meta-optics. Opt. 
Express. 26(10), 13085–13105 (2018)

21. Fu, Y.H., et al.: Directional visible light scattering by silicon nanoparticles. Nat. Commun. 
4(1), 1527 (2013)

22. Kerker, M., Wang, D.S., Giles, C.L.: Electromagnetic scattering by magnetic spheres. J. Opt. 
Soc. Am. 73(6), 765–767 (1983)

References



72

23. Zambrana-Puyalto, X., et al.: Duality symmetry and Kerker conditions. Opt. Lett. 38(11), 
1857–1859 (2013)

24. Jin, P., Ziolkowski, R.W.: Metamaterial-inspired, electrically small Huygens sources. IEEE 
Antennas and Wirel. Propag. Lett. 9, 501–505 (2010)

25. Geffrin, J.M., et al.: Magnetic and electric coherence in forward- and back-scattered electro-
magnetic waves by a single dielectric subwavelength sphere. Nat. Commun. 3(1), 1171 (2012)

26. Evlyukhin, A.B., et  al.: Demonstration of magnetic dipole resonances of dielectric nano-
spheres in the visible region. Nano Lett. 12(7), 3749–3755 (2012)

27. Dorfmüller, J., et  al.: Plasmonic nanowire antennas: experiment, simulation, and theory. 
Nano Lett. 10(9), 3596–3603 (2010)

28. Novotny, L.: Effective wavelength scaling for optical antennas. Phys. Rev. Lett. 98(26), 
266802 (2007)

29. Dorfmüller, J., et al.: Fabry-Pérot resonances in one-dimensional plasmonic nanostructures. 
Nano Lett. 9(6), 2372–2377 (2009)

30. Taminiau, T.H., Stefani, F.D., van Hulst, N.F.: Optical nanorod antennas modeled as cavi-
ties for dipolar emitters: evolution of sub- and super-radiant modes. Nano Lett. 11(3), 
1020–1024 (2011)

31. Ghenuche, P., et al.: Spectroscopic mode mapping of resonant plasmon nanoantennas. Phys. 
Rev. Lett. 101(11), 116805 (2008)

32. Bidault, S., Mivelle, M., Bonod, N.: Dielectric nanoantennas to manipulate solid-state light 
emission. J. Appl. Phys. 126(9), 094104 (2019)

33. Maksymov, I.S., et al.: Optical Yagi-Uda nanoantennas. Nanophotonics. 1(1), 65–81 (2012)
34. Paniagua-Dominguez, R., Luk’yanchuk, B., Kuznetsov, A.I.: 3 – Control of scattering by iso-

lated dielectric nanoantennas. In: Brener, I., et al. (eds.) Dielectric Metamaterials, pp. 73–108. 
Woodhead Publishing, Duxford (2020)

35. Curto, A.G., et  al.: Unidirectional emission of a quantum dot coupled to a nanoantenna. 
Science. 329(5994), 930–933 (2010)

36. Coenen, T., et al.: Directional emission from plasmonic Yagi–Uda antennas probed by angle- 
resolved cathodoluminescence spectroscopy. Nano Lett. 11(9), 3779–3784 (2011)

37. Kosako, T., Kadoya, Y., Hofmann, H.F.: Directional control of light by a nano-optical Yagi–
Uda antenna. Nat. Photonics. 4(5), 312–315 (2010)

38. Kim, J., et al.: Babinet-inverted optical Yagi–Uda antenna for unidirectional radiation to free 
space. Nano Lett. 14(6), 3072–3078 (2014)

39. Dregely, D., et al.: 3D optical Yagi–Uda nanoantenna array. Nat. Commun. 2(1), 267 (2011)
40. Kullock, R., et  al.: Electrically-driven Yagi-Uda antennas for light. Nat. Commun. 11(1), 

115 (2020)
41. Krasnok, A.E., et  al.: All-dielectric optical nanoantennas. Opt. Express. 20(18), 

20599–20604 (2012)
42. Schmidt, M.K., et al.: Dielectric antennas – a suitable platform for controlling magnetic dipo-

lar emission. Opt. Express. 20(13), 13636–13650 (2012)
43. Mertens, H., Koenderink, A.F., Polman, A.: Plasmon-enhanced luminescence near noble- 

metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model. 
Phys. Rev. B. 76(11), 115123 (2007)

44. Chigrin, D.N., et al.: Emission quenching of magnetic dipole transitions near a metal nanopar-
ticle. ACS Photonics. 3(1), 27–34 (2016)

45. Chew, H.: Transition rates of atoms near spherical surfaces. J.  Chem. Phys. 87(2), 
1355–1360 (1987)

46. Klimov, V.V., Ducloy, M., Letokhov, V.S.: Spontaneous emission of an atom in the presence 
of nanobodies. Quantum Electron. 31(7), 569–586 (2001)

47. Guzatov, D.V., Klimov, V.V., Poprukailo, N.S.: Spontaneous radiation of a chiral mol-
ecule located near a half-space of a bi-isotropic material. J.  Exp. Theor. Phys. 116(4), 
531–540 (2013)

2 Nanophotonic Devices and Platforms



73

48. Klimov, V.V., et al.: Eigen oscillations of a chiral sphere and their influence on radiation of 
chiral molecules. Opt. Express. 22(15), 18564–18578 (2014)

49. Alaeian, H., Dionne, J.A.: Controlling electric, magnetic, and chiral dipolar emission with 
PT-symmetric potentials. Phys. Rev. B. 91(24), 245108 (2015)

50. Guzatov, D.V.: Radiative and nonradiative spontaneous decay rates for an electric quadrupole 
source in the vicinity of a spherical particle. J. Exp. Theor. Phys. 122(4), 633–644 (2016)

51. Cai, W., Shalaev, V.M.: Optical Metamaterials. Springer, Cham (2010)
52. Ziolkowski, R.W.: Metamaterials: the early years in the USA.  EPJ Appl. Metamater. 1, 

5 (2014)
53. Tretyakov, S.A.: A personal view on the origins and developments of the metamaterial con-

cept. J. Opt. 19(1), 013002 (2016)
54. Veselago, V.G.: Electrodynamics of substances with simultaneously negative Values of ε and 

μ. Usp. Fiz. Nauk. 92(7), 517 (1967)
55. Jahani, S., Jacob, Z.: All-dielectric metamaterials. Nat. Nanotechnol. 11(1), 23–36 (2016)
56. Kildishev, A.V., Boltasseva, A., Shalaev, V.M.: Planar photonics with metasurfaces. Science. 

339(6125), 1232009 (2013)
57. Smith, D.R., Pendry, J.B., Wiltshire, M.C.K.: Metamaterials and negative refractive index. 

Science. 305(5685), 788–792 (2004)
58. Monticone, F., Alù, A.: The quest for optical magnetism: from split-ring resonators to plas-

monic nanoparticles and nanoclusters. J. Mater. Chem. C. 2(43), 9059–9072 (2014)
59. Hardy, W.N., Whitehead, L.A.: Split-ring resonator for use in magnetic resonance from 

200–2000 MHz. Rev. Sci. Instrum. 52(2), 213–216 (1981)
60. Pendry, J.B., et al.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE 

Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999)
61. Linden, S., et al.: Magnetic response of metamaterials at 100 terahertz. Science. 306(5700), 

1351–1353 (2004)
62. Klein, M.W., et al.: Single-slit split-ring resonators at optical frequencies: limits of size scal-

ing. Opt. Lett. 31(9), 1259–1261 (2006)
63. Zhou, J., et al.: Saturation of the magnetic response of split-ring resonators at optical frequen-

cies. Phys. Rev. Lett. 95(22), 223902 (2005)
64. Tretyakov, S.: On geometrical scaling of split-ring and double-bar resonators at optical fre-

quencies. Metamaterials. 1(1), 40–43 (2007)
65. Mühlig, S., et al.: Multipole analysis of meta-atoms. Metamaterials. 5(2), 64–73 (2011)
66. Cai, W., et al.: Metamagnetics with rainbow colors. Opt. Express. 15(6), 3333–3341 (2007)
67. Prodan, E., et al.: A hybridization model for the plasmon response of complex nanostructures. 

Science. 302(5644), 419–422 (2003)
68. Liu, N., Giessen, H.: Coupling effects in optical metamaterials. Angew. Chem. Int. Ed. 

49(51), 9838–9852 (2010)
69. Liu, N., et al.: Stereometamaterials. Nat. Photonics. 3(3), 157–162 (2009)
70. Decker, M., et  al.: Twisted split-ring-resonator photonic metamaterial with huge optical 

activity. Opt. Lett. 35(10), 1593–1595 (2010)
71. Yin, X., et al.: Interpreting chiral nanophotonic spectra: the plasmonic Born–Kuhn model. 

Nano Lett. 13(12), 6238–6243 (2013)
72. Wu, C., et al.: Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and 

identification of molecular monolayers. Nat. Mater. 11(1), 69–75 (2012)
73. Zhang, S., et al.: Midinfrared resonant magnetic nanostructures exhibiting a negative perme-

ability. Phys. Rev. Lett. 94(3), 037402 (2005)
74. Liu, Y., et  al.: Compact magnetic antennas for directional excitation of surface plasmons. 

Nano Lett. 12(9), 4853–4858 (2012)
75. Liu, N., et al.: Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 

10(7), 2342–2348 (2010)
76. Collins, J.T., et al.: Chirality and chiroptical effects in metal nanostructures: fundamentals 

and current trends. Adv. Opt. Mater. 5(16), 1700182 (2017)

References



74

77. Hentschel, M., et al.: Chiral plasmonics. Sci. Adv. 3(5), e1602735 (2017)
78. Mun, J., et  al.: Electromagnetic chirality: from fundamentals to nontraditional chiroptical 

phenomena. Light Sci. Appl. 9(1), 139 (2020)
79. Gansel, J.K., et  al.: Gold helix photonic metamaterial as broadband circular polarizer. 

Science. 325(5947), 1513–1515 (2009)
80. Menzel, C., Rockstuhl, C., Lederer, F.: Advanced Jones calculus for the classification of peri-

odic metamaterials. Phys. Rev. A. 82(5), 053811 (2010)
81. Miroshnichenko, A.E., Flach, S., Kivshar, Y.S.: Fano resonances in nanoscale structures. Rev. 

Mod. Phys. 82(3), 2257–2298 (2010)
82. Luk’yanchuk, B., et al.: The Fano resonance in plasmonic nanostructures and metamaterials. 

Nat. Mater. 9(9), 707–715 (2010)
83. Yao, K., Liu, Y.: Plasmonic metamaterials. Nanotechnol. Rev. 3(2), 177–210 (2014)
84. Wu, C., et al.: Spectrally selective chiral silicon metasurfaces based on infrared Fano reso-

nances. Nat. Commun. 5(1), 3892 (2014)
85. Ferrari, L., et al.: Hyperbolic metamaterials and their applications. Prog. Quantum Electron. 

40, 1–40 (2015)
86. Poddubny, A., et al.: Hyperbolic metamaterials. Nat. Photonics. 7(12), 948–957 (2013)
87. Shekhar, P., Atkinson, J., Jacob, Z.: Hyperbolic metamaterials: fundamentals and applica-

tions. Nano Convergence. 1(1), 14 (2014)
88. Smolyaninov, I.I., Smolyaninova, V.N.: Hyperbolic metamaterials: novel physics and appli-

cations. Solid State Electron. 136, 102–112 (2017)
89. Huo, P., et al.: Hyperbolic metamaterials and metasurfaces: fundamentals and applications. 

Adv. Opt. Mater. 7(14), 1801616 (2019)
90. Guo, Z., Jiang, H., Chen, H.: Hyperbolic metamaterials: from dispersion manipulation to 

applications. J. Appl. Phys. 127(7), 071101 (2020)
91. Choy, T.C.: Effective medium theory: principles and applications. Oxford University Press, 

Oxford (2015)
92. Sihvola, A.H.: Electromagnetic mixing formulas and applications. Institution of Electrical 

Engineers, London (1999)
93. Milton, G.W.: The theory of composites. Cambridge University Press, Cambridge (2002)
94. Lu, D., Liu, Z.: Hyperlenses and metalenses for far-field super-resolution imaging. Nat. 

Commun. 3(1), 1205 (2012)
95. Zhang, X., Liu, Z.: Superlenses to overcome the diffraction limit. Nat. Mater. 7(6), 

435–441 (2008)
96. Kawata, S., Inouye, Y., Verma, P.: Plasmonics for near-field nano-imaging and superlensing. 

Nat. Photonics. 3(7), 388–394 (2009)
97. Padilla, W.J., Averitt, R.D.: Imaging with metamaterials. Nat. Rev. Phys. 4(2), 85–100 (2022)
98. Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 

3966–3969 (2000)
99. Fang, N., et  al.: Sub-diffraction-limited optical imaging with a silver superlens. Science. 

308(5721), 534–537 (2005)
100. Liu, Z., et al.: Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science. 

315(5819), 1686–1686 (2007)
101. Jacob, Z., Alekseyev, L.V., Narimanov, E.: Optical hyperlens: far-field imaging beyond the 

diffraction limit. Opt. Express. 14(18), 8247–8256 (2006)
102. Shelby, R.A., Smith, D.R., Schultz, S.: Experimental verification of a negative index of 

refraction. Science. 292(5514), 77–79 (2001)
103. Zhang, S., et  al.: Near-infrared double negative metamaterials. Opt. Express. 13(13), 

4922–4930 (2005)
104. Valentine, J., et al.: Three-dimensional optical metamaterial with a negative refractive index. 

Nature. 455(7211), 376–379 (2008)
105. Pendry, J.B., et  al.: Transformation optics and subwavelength control of light. Science. 

337(6094), 549–552 (2012)

2 Nanophotonic Devices and Platforms



75

106. Pendry, J.B., et al.: Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. 
Lett. 76(25), 4773–4776 (1996)

107. Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science. 
312(5781), 1780–1782 (2006)

108. Podolskiy, V.A., Narimanov, E.E.: Strongly anisotropic waveguide as a nonmagnetic left- 
handed system. Phys. Rev. B. 71(20), 201101 (2005)

109. Yao, J., et  al.: Optical negative refraction in bulk metamaterials of nanowires. Science. 
321(5891), 930–930 (2008)

110. Pendry, J.B.: A chiral route to negative refraction. Science. 306(5700), 1353–1355 (2004)
111. Yu, N., et al.: Light propagation with phase discontinuities: generalized Laws of reflection 

and refraction. Science. 334(6054), 333–337 (2011)
112. Chen, H.-T., Taylor, A.J., Yu, N.: A review of metasurfaces: physics and applications. Rep. 

Prog. Phys. 79(7), 076401 (2016)
113. Shaltout, A.M., Shalaev, V.M., Brongersma, M.L.: Spatiotemporal light control with active 

metasurfaces. Science. 364(6441), eaat3100 (2019)
114. Chen, W.T., Zhu, A.Y., Capasso, F.: Flat optics with dispersion-engineered metasurfaces. Nat. 

Rev. Mater. 5(8), 604–620 (2020)
115. Dorrah, A.H., Capasso, F.: Tunable structured light with flat optics. Science. 376(6591), 

eabi6860 (2022)
116. Lalanne, P., Chavel, P.: Metalenses at visible wavelengths: past, present, perspectives. Laser 

Photonics Rev. 11(3), 1600295 (2017)
117. Li, G., Zhang, S., Zentgraf, T.: Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2(5), 

17010 (2017)
118. Genevet, P., et al.: Recent advances in planar optics: from plasmonic to dielectric metasur-

faces. Optica. 4(1), 139–152 (2017)
119. Yu, N., et al.: Flat optics: controlling wavefronts with optical antenna metasurfaces. IEEE 

J. Sel. Top. Quantum Electron. 19(3), 4700423–4700423 (2013)
120. Larouche, S., Smith, D.R.: Reconciliation of generalized refraction with diffraction theory. 

Opt. Lett. 37(12), 2391–2393 (2012)
121. Ra’di, Y., Simovski, C.R., Tretyakov, S.A.: Thin perfect absorbers for electromagnetic waves: 

theory, design, and realizations. Phys. Rev. Appl. 3(3), 037001 (2015)
122. Alaee, R., Albooyeh, M., Rockstuhl, C.: Theory of metasurface based perfect absorbers. 

J. Phys. D. Appl. Phys. 50(50), 503002 (2017)
123. Grady, N.K., et al.: Terahertz metamaterials for linear polarization conversion and anomalous 

refraction. Science. 340(6138), 1304–1307 (2013)
124. Yang, Y., et al.: Dielectric meta-reflectarray for broadband linear polarization conversion and 

optical vortex generation. Nano Lett. 14(3), 1394–1399 (2014)
125. Yao, K., Zheng, Y.: Near-ultraviolet dielectric metasurfaces: from surface-enhanced circu-

lar dichroism spectroscopy to polarization-preserving mirrors. J. Phys. Chem. C. 123(18), 
11814–11822 (2019)

126. Wang, Z., et al.: Manipulating Smith-Purcell emission with babinet metasurfaces. Phys. Rev. 
Lett. 117(15), 157401 (2016)

127. Sun, S., et al.: Gradient-index meta-surfaces as a bridge linking propagating waves and sur-
face waves. Nat. Mater. 11(5), 426–431 (2012)

128. Aieta, F., et al.: Out-of-plane reflection and refraction of light by anisotropic optical antenna 
metasurfaces with phase discontinuities. Nano Lett. 12(3), 1702–1706 (2012)

129. Li, Z., et  al.: Graphene plasmonic metasurfaces to steer infrared light. Sci. Rep. 5(1), 
12423 (2015)

130. Ni, X., Kildishev, A.V., Shalaev, V.M.: Metasurface holograms for visible light. Nat. 
Commun. 4(1), 2807 (2013)

131. Sun, S., et al.: High-efficiency broadband anomalous reflection by gradient meta-surfaces. 
Nano Lett. 12(12), 6223–6229 (2012)

References



76

132. Ni, X., et al.: Broadband light bending with plasmonic nanoantennas. Science. 335(6067), 
427–427 (2012)

133. Zheng, G., et al.: Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10(4), 
308–312 (2015)

134. Pfeiffer, C., Grbic, A.: Metamaterial Huygens’ surfaces: tailoring wave fronts with reflection-
less sheets. Phys. Rev. Lett. 110(19), 197401 (2013)

135. Arbabi, A., et al.: Subwavelength-thick lenses with high numerical apertures and large effi-
ciency based on high-contrast transmitarrays. Nat. Commun. 6(1), 7069 (2015)

136. Arbabi, A., et  al.: Dielectric metasurfaces for complete control of phase and polarization 
with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10(11), 
937–943 (2015)

137. Huang, L., et al.: Dispersionless phase discontinuities for controlling light propagation. Nano 
Lett. 12(11), 5750–5755 (2012)

138. Pancharatnam, S.: Generalized theory of interference, and its applications. Proc. Indian Acad. 
Sci. Sect. A. 44(5), 247–262 (1956)

139. Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 
Math. Phys. Sci. 392(1802), 45–57 (1984)

140. Bomzon, Z., et al.: Space-variant Pancharatnam–Berry phase optical elements with computer- 
generated subwavelength gratings. Opt. Lett. 27(13), 1141–1143 (2002)

141. Bomzon, Z.E., Kleiner, V., Hasman, E.: Pancharatnam–Berry phase in space-vari-
ant polarization- state manipulations with subwavelength gratings. Opt. Lett. 26(18), 
1424–1426 (2001)

142. Hasman, E., et al.: Polarization dependent focusing lens by use of quantized Pancharatnam–
Berry phase diffractive optics. Appl. Phys. Lett. 82(3), 328–330 (2003)

143. Lin, D., et  al.: Dielectric gradient metasurface optical elements. Science. 345(6194), 
298–302 (2014)

144. Khorasaninejad, M., et al.: Metalenses at visible wavelengths: diffraction-limited focusing 
and subwavelength resolution imaging. Science. 352(6290), 1190–1194 (2016)

145. Kang, M., et  al.: Wave front engineering from an array of thin aperture antennas. Opt. 
Express. 20(14), 15882–15890 (2012)

2 Nanophotonic Devices and Platforms



77

Chapter 3
Fundamentals of Machine Learning

Abstract Machine learning (ML) is a subfield of broader artificial intelligence (AI) 
that through programming gives computers the ability to learn from data (Alpaydin 
E, Introduction to machine learning. MIT Press, Cambridge, 2014; Géron A, 
Hands-on machine learning with Scikit-learn, Keras, and TensorFlow: concepts, 
tools, and techniques to build intelligent systems. O’Reilly Media, Inc., Sebastapol, 
2019; Goodfellow I, Bengio Y, Courville A, Deep learning. MIT Press, Cambridge, 
2016). Owning advantages in tackling problems that are too complex for explicitly 
programmed algorithms, ML is considered as a powerful technique for making 
data-driven predictions and decisions. Early applications of ML, launched a few 
decades ago, were restricted to some specialized tasks, such as pattern recognition. 
With explosive growths of data and computational power over the succeeding 
decades, nowadays ML can be found in numerous applications even in our daily 
lives, from filtering email spam, ranking the search results, recommending videos 
and posts to language translation. The use of ML also extends widely into scientific 
domains, among which optics and photonics are, surprisingly or not, actively 
involved. In this chapter, we discuss the basics of ML in a descriptive manner. In 
particular, focus will be devoted to its most vibrant subfield of deep learning (DL) 
(Goodfellow I, Bengio Y, Courville A, Deep learning. MIT Press, Cambridge, 2016; 
Kelleher JD, Deep learning. MIT Press, Cambridge, 2019).

3.1  Introduction

3.1.1  Brief History of Machine Learning and Deep Learning

ML encompasses a vast variety of algorithms, which share in common the goal of 
learning patterns from data and generalizing them to make accurate predictions [1]. 
The current umbrella of modern ML techniques has developed over decades from 
sources in different fields. Tracking the complete history of ML or even the nar-
rowed class of DL is not only difficult but probably unnecessary for nonspecialists. 
Since the purpose of this chapter is to prepare the reader with essential knowledge 
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for the later discussion on photonics-related applications, most of which center 
around DL, here we only summarize a few influential events in the development of 
DL.  More comprehensive yet still compact surveys are available in many (text)
books such as [3, 4] or online resources.

At the very core of DL is the concept of artificial neural networks (ANNs) or 
interchangeably neural networks (NNs). ANNs were inspired by the biological pro-
cesses of neurons, with connections between nodes aimed at mirroring how syn-
apses work together in the human brain. Attempts to model neural connections 
computationally as neural networks date back to the 1940s and 1950s (Fig. 3.1). In 
1943, McCulloch and Pitts proposed a model, now regarded as the first ANN archi-
tecture (the neurons were in a rather primitive form though), to describe nervous 
activity with propositional logic [5]. The next milestone was the development of 
Hebbian theory, which described an important idea of how the repeatedly firing con-
nections between cells (neurons) led to growth and learning over time [6]. The the-
ory postulated that the efficiency of one synapse firing into another would increase 
with repeated attempts to fire, or “neurons that fire together wire together.” Research 
on new models of neuron activity continued in the 1950s. In particular, the percep-
tron proposed and implemented by Rosenblatt enabled the training of a single neu-
ron and served as an early prototype for image classification algorithms [7]. In 
1971, Ivakhnenko published a paper on group method for data handling [8]. 
Overlooked for many years, this work provided the early blueprint for modern deep 
learning, enabling training of an eight-layer network. The neocognitron, developed 
in 1980, also showed the power of networks containing multiple hidden layers for 
visual pattern recognition [9]. These multilayer networks mirrored the concepts in 
Hebbian theory, with the connections between neurons in different layers being 
strengthened in the same way as synaptic connections. The procedure was further 
developed and made more feasible with backpropagation, an algorithm for effi-
ciently calculating how to adjust the states of neurons in multilayer networks. 
Backpropagation was first implemented in conjunction with neural networks by 
Rumelhart, Hinton, and Williams in 1986 [10] and is probably the most important 
algorithm in DL. While there was progress on many fronts throughout the succeed-
ing years, such as the invention of some important network architectures, the avail-
able computational power at the time made any large-scale practical implementations 
infeasible. After entering the new millennium, especially since the mid-2000s, the 
massive rise in computational resources through increased transistor counts and the 

Fig. 3.1 Timeline of some milestones in the development of machine learning and deep learning
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development of graphics processing units (GPUs) helped boost the research of neu-
ral networks. It became possible to implement network structures with large num-
bers of layers and hundreds of thousands to millions of internal connections. These 
highly complex neural networks came to be described as “deep neural networks,” 
and the associated subfield of ML utilizing them was termed as “deep learning.” By 
the mid-2010s, deep neural networks have exploded in popularity, winning open 
contests and matching/surpassing human performance on certain recognition tasks 
and games as sophisticated as Go [11, 12]. And the wave is still ongoing.

Parallel to the development of neural networks, many other ML algorithms, such 
as random forests, k-nearest neighbors, linear/logistic regression, support vector 
machines, gradient boosting, and various clustering techniques, have been invented 
and continuously improved over the years. These algorithms also possess the ability 
to use data to develop a model’s internal logic and capability to make predictions 
and/or gain knowledge. However, the goals of the model and the mechanism of 
training would differ considerably between different approaches. Each algorithm 
comes with pros and cons for different tasks and scenarios, depending on the goals 
of the model and the data available.

3.1.2  Categorization of Machine Learning Techniques

ML techniques can broadly be split into three categories: supervised learning, unsu-
pervised learning, and reinforcement learning [1]. In some works, semi-supervised 
learning is considered as another one. These categories are defined by what type of 
data and how the data are utilized for training as well as the end goal of the trained 
model. Generally, the most basic out-of-the-box implementation of a certain algo-
rithm will fit into one specific category. However, in tackling practical problems, 
most algorithms have numerous variations where some may fall into a different 
category or fulfill the criteria of multiple categories (Fig. 3.2).

In supervised learning, the goal is to learn a mapping from the input to some 
output provided by a supervisor. The outputs as desired solutions are called labels, 
and therefore, the datasets for supervised algorithms are labeled data consisting of 
examples of input-output pairs. The input is typically a vector, and the output can be 
one or more values depending on the tasks. The final goal of a model after training 
is to take in an input vector and produce an output prediction as close to the true 
output value, often called “ground truth,” as possible. At this point, it will be helpful 
to make a clarification on two terms in ML, algorithms and models. In simple words, 
an algorithm is a procedure of how a problem can be solved, while a model is a 
computer program that implements a specific algorithm and processes data to solve 
the problem. The differences between these two terms in many contexts are some-
what subtle, and it is common that they are used interchangeably, as we will be 
doing in the later parts of this book.

Over the course of training, a model is fed with the labeled dataset and gradually 
adjusts its parameters based on the computation of a cost function, which indicates 
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Fig. 3.2 Categorization of ML systems, typical tasks, and corresponding algorithms. Supervised 
and unsupervised learning build models off a training dataset, with the difference being whether 
the data include labels (desired solutions). Supervised learning can be further broken down into 
classification and regression tasks based on the output variable type. A certain class of algorithms, 
such as neural networks, can be used in different tasks with different implementations (e.g., deep 
self-organizing map, deep Q-learning, etc.). Although not shown in this diagram, semi-supervised 
learning is treated as a separate type of ML in some works. PCA, principal component analysis; 
t-SNE, t-distribution stochastic neighbor embedding; SARSA, state-action-reward-state-action

how well the model is making the prediction. As an example of supervised learning, 
a model could be trained to identify whether a cat is present in an image. For the 
training data, the input is the image represented by a matrix or vector of pixel val-
ues, and the output is the label given by a single binary number, 0 or 1, indicating 
whether a cat was present in that image. The model will be exposed to many images 
that either do or do not contain a cat and try to learn patterns that are indicative of 
whether the image contains a cat or not.

Typical supervised learning tasks can be split into two subcategories based on 
what the model is trying to predict: regression and classification. In regression tasks, 
the predicted output is one or more continuous variables that can take on any real- 
valued number. As a result, for each output variable, there are infinite possible val-
ues for the model to predict. In classification tasks, the predicted output is a 
categorical variable, meaning that it can take only one out of a finite number of 
possible values. These values can be viewed as “classes” or “categories” which the 
data can fall into, and the goal of the algorithms is to correctly classify the instance 
given the input variable. The previously listed example of cat identification is a clas-
sification task: it has two possible classes for the data, “contains cat” and “does not 
contain cat.” A classification task can have more than two classes, e.g., sorting 
images of geometric shapes into predefined groups like circle, square, triangle, etc. 
Notably, however, the model cannot generalize to groups that are not included in the 
training dataset. If a model is trained only on recognizing circles, squares, and tri-
angles, and an image of an octagon is fed in, the model will try to fit it into one of 
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the three labeled categories. Therefore, it is important that the training data are 
representative of all the possible classes the model could expect to see and have a 
sufficient number of examples for each class to train a good classifier. Although a 
totally fair comparison would be difficult, regression is considered by many people 
to be easier than classification. The reason behind this belief is that classification is 
constrained to discrete values, and constrained problems are generally more diffi-
cult to solve. On some occasions, algorithms for classification are adapted to output 
continuous values, which will then be converted to class labels. For instance, if the 
label is binary like in the cat identification task, the model may output a real number 
in the interval [0,1], which gets converted to one state or the other based on a pre-
defined threshold, like 0.5. Output values of 0.51 and 0.99 will both be interpreted 
as a prediction of the label “contains cat,” while a larger value represents a higher 
confidence from the model in its prediction. Nonetheless, once converted to the 
same discrete value for a certain label, the outputs are equal.

Supervised algorithms have extraordinary predictive power, whereas the main 
drawback is the need for labeled data. Acquiring raw data can often be done quickly, 
but the requirement for labeled data implies that there needs to already have some 
other ways to make correct predictions. In many cases, this means manual labeling. 
Since many complex tasks require thousands to even several millions of training 
samples, it can be exceedingly slow and/or costly to acquire enough labeled data. 
Therefore, data acquisition is often the most significant bottleneck in ML.

Unsupervised learning is distinct from supervised learning in that the data does 
not have labels. In other words, the data are not paired and only consist of input vec-
tors. Since there are no target values to predict, the goal of unsupervised learning is 
usually different from that of supervised learning. In unsupervised learning, the 
general course is to feed the model with raw data, letting it learn useful information 
or patterns in the input, while the user has less control over what the model is learn-
ing compared with supervised learning. One of the most common goals of unsuper-
vised algorithms is clustering, i.e., splitting the instances in the datasets into distinct 
groups by some measure, mostly based on similarities or regularities. Taking text 
sorting as an example, an unsupervised learning algorithm can split papers and 
books into groups based on the occurrence frequency of certain words. This tends to 
coincide well with human-recognizable topics and genres, since those usually fea-
ture frequent use of some particular words and terms less commonly found else-
where. To this end, unsupervised models can potentially perform the same task as 
supervised learning algorithms do, but notably, the same classification result is not 
guaranteed—it depends on the nature of the input data and the design of the cost 
function. Let us still consider the task of sorting geometric shapes. One can apply a 
clustering algorithm to a dataset of images of circles, squares, and triangles as 
before, but unlike with the supervised case, the clustering algorithm does not know 
those three categories while training. Therefore, it is possible that the algorithm 
ends up with some way other than the geometric shape to divide the images into 
several (not necessarily three) groups, if that criterion of categorization proves to be 
useful in increasing the “distance” between clusters. A core advantage of unsuper-
vised learning is the algorithms’ ability to find highly unintuitive structures or 
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implicit patterns within the data, although this can also be a downside in the sense 
that such information is sometimes not interpretable.

Reinforcement learning (RL) is a third type of learning wholly separate from 
supervised and unsupervised ones. While the latter two are defined based on whether 
the training data are labeled or not, RL is an entirely different paradigm more closely 
linked to the conventional notions of soft AI, where the system, called an agent, 
attempts to act intelligently based on some reward measure. In RL, a set of scenarios 
(environment) needs to be defined in the first place, with actions an agent can take 
and observables it can measure at all times, including some assessments of its per-
formance. The agent makes observations in the environment, takes actions, and gets 
rewards in return. The aim of the agent is to learn an optimal strategy (i.e., a sequence 
of correct actions), called a policy, to maximize the reward over time. Self-driving 
cars are a good example of a system that utilizes RL. In this case, the agent is the 
car, which can observe things about its environment, such as its own position and 
the positions of nearby objects (cars, pedestrians, road signs, etc.), and take any 
action like human drivers. A more detailed description of RL is given in the later 
section.

3.1.3  Popular Platforms to Train and Deploy 
Machine Learning Models

At some point of reading, interested readers may want to build a model or download 
one to see how things actually work. The core algorithms and techniques described 
later in this chapter can be implemented in many programming languages and inte-
grated with commercial software, although some are more common and better sup-
ported for ML tasks than others. Python, an open-source and general-purpose 
programming language, is the most popular choice for ML modeling. It has numer-
ous free and easily accessible libraries specialized for data engineering, fast matrix 
operations, and implemented ML algorithms. For data engineering purposes, for 
example, the libraries NumPy and pandas offer easy handling of large collections of 
data as well as fast matrix operations.

The most comprehensive library of ML algorithms is scikit-learn [13], usually 
abbreviated as sklearn. Sklearn features customizable implementations of a wide 
variety of over 100 popular ML models, termed as estimators, covering both super-
vised and unsupervised learning models with instructive examples. It also provides 
easy-to-use toolboxes for data preprocessing and model selection/evaluation. The 
main limitations of sklearn within the scope of this chapter are the relatively naive 
implementation of neural networks, mostly multilayer perceptron, and insufficient 
scalability, especially the lack of GPU support.

For neural networks, the most popular platform might be the open-source library 
TensorFlow [14]. TensorFlow was developed by Google as the second generation of 
an internal product for ML and DL research, later released to the public and is still 
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actively updated. As the name suggests, it organizes data (usually in the form of 
multidimensional arrays) as tensors and is particularly strong in performing massive 
amounts of matrix operations required by the training and inference of deep neural 
networks. TensorFlow is designed to be run efficiently on both central processing 
units (CPUs) and GPUs, giving high flexibility for implementing ML on most hard-
ware, from personal computers, mobile devices to high-performance computer clus-
ters. Despite its extraordinary capability, TensorFlow is not the easiest to deploy. As 
a result, other libraries have been developed to make the creation of neural network 
models more user-friendly. Two of the most popular alternatives are Keras [15] and 
PyTorch [16]. Both libraries allow for quick and simple implementations of com-
mon network models, while the former has become the official high-level applica-
tion programming interface of TensorFlow since the release of TensorFlow 
2.0 in 2019.

3.2  Deep Neural Networks

3.2.1  Basics of Artificial Neural Networks

Let us now narrow down the discussion to artificial neural networks (ANNs). ANNs 
are composed of a large collection of processing units called artificial neurons, or 
simply neurons. These neurons, each containing a numerical value, are connected to 
other neurons in an interconnected graph, similar to biological neurons in the human 
brain. Just as brain cells send electrical signals to one another via synapses, neurons 
in an ANN will signal the other neurons they are connected to in the form of numeri-
cal transformations. For each connection between two neurons, there is a numerical 
value associated with it, called weight. Weights are parameters of a network to be 
adjusted during the training process. The functionality of neural interconnects, as 
illustrated in Fig. 3.3a, is to take the value of the previous neuron, modify that value 
with the associated weight by multiplication, and send the product to the output 
neuron. In the typical ANN architecture, a given neuron has many neurons con-
nected to it and sending it signals, and the value of that neuron is calculated by two 
mathematical operations. The first one is the summation of all the values fed into the 
neuron via preceding connections. This essentially gives the weighted sum of all the 
values of the previous neurons. A trainable bias term is often added to the sum as 
well, introducing another degree of freedom to shift the linear function. The second 
operation is a nonlinear mapping, which further transforms the weighted sum and 
defines the value of the current neuron. The nonlinear mapping mimics the activa-
tion of a biological neuron, which fires when the received stimulations exceed a 
certain threshold. Therefore, the nonlinear mapping is also termed as the activation 
function. The nonlinear nature of activation functions is critical for an ANN to 
tackle complex representations in the data; otherwise linear mapping is inadequate 
on most occasions.
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Fig. 3.3 Neurons and neural networks. (a) Connections of neurons into a neuron in the subsequent 
layer. The value of the neuron under consideration, denoted by y, is calculated by (1) taking the 
sum of the values of all the previous neurons (xi), weighted by the strength of each corresponding 
connection wi, and adding a bias term b to the weighted sum and (2) applying an activation func-
tion f to the summation. (b) For a deep fully connected neural network, this process is extended as 
every neuron from one layer is connected to every neuron in the adjacent layers. Values from the 
input neurons [x1, …, xn] are transformed multiple times before the network produces the values of 
the output neurons [y1, …, ym]

In a typical neural network, neurons are organized into a series of layers, includ-
ing an input layer that takes in the data and an output layer that gives the final 
numerical outputs (Fig. 3.3b). In between these two layers are one or more “hidden 
layers,” with the naming reflecting the fact that these intermediate layers cannot be 
observed directly from a network’s input or output. The number of hidden layers, or 
the depth of the network, is an important factor influencing an ANN’s performance 
and level of training difficulty. ANNs with at least two, but usually many more, hid-
den layers are called deep neural networks. As already mentioned earlier, the associ-
ated subfield of ML that utilizes deep neural networks for modeling is termed as 
deep learning. In a deep neural network, the hidden layers close to the input/output 
layer are sometimes referred to as lower/upper layers.

The values in the hidden layers serve as intermediate states to aid in transforming 
the input data into the output predictions. These intermediate values often do not 
have easily interpretable meaning in relation to the data, and as a result, the internal 
functions of most ANNs are more akin to a black box. The general working mecha-
nism of a neural network is as follows: Input data come into the first layer, and a 
series of numerical transformations are performed as the data pass through the 
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hidden layers before arriving at the output layer. The transformations are deter-
mined by the weights of the connections between the neurons of successive layers, 
the bias terms, as well as the activation function at each neuron. The goal of training 
an ANN, as we will discuss next, is to optimize the learnable parameters, i.e., 
weights and biases, following some procedures such that the output prediction can 
be sufficiently accurate.

The training of neural networks includes two processes, forward mapping, where 
the input data are transformed through the hidden layers into an output prediction, 
and backpropagation, where the prediction from forward mapping is evaluated by a 
loss function in comparison to the true paired output (ground truth), and all the 
weights of the network are adjusted in the hope of making future predictions more 
accurate. These two processes are repeated continually, iterating through all the 
training data and adjusting the weights until convergence of the loss is reached, 
which indicates the network performance stops improving.

Now, let us walk through an example for a standard fully connected feedforward 
neural network to showcase the underlying mathematics. For the forward mapping, 
a single sample from the training dataset is fed in the form of an n-dimensional vec-
tor into the input layer of the network, resulting in a prediction in the form of an 
m-dimension vector at the output layer. Given the numerical values of the input, the 
values of neurons in the first hidden layer and in turn all the successive layers are 
calculated (Fig. 3.3b). The mathematical operations at each neuron, as described in 
the beginning of this subsection, can be expressed in the following form: for the i-th 
neuron in the n-th hidden layer, the summation is given by
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where yj
n−1  is the value of the j-th neuron in the previous (input) layer, wij
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weight currently stored for the connection between yj
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eration, and bi
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values from all the neurons in the previous layer plus the bias, is then transformed 
by an activation function f to calculate the final value of the current neuron:
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Once the computation for the n-th layer is completed, the process is repeated for 
each successive layer until the final (say the N-th) output layer. Next, this predicted 
final output is compared to the ground truth output (also an m-dimensional vector t) 
paired with the input that is originally fed in the network. The comparison is per-
formed by evaluating a loss function L, e.g., the mean square error (MSE)
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to see how much the network is “off” from the desired performance.
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Evaluation of loss initiates the process of backpropagation, which is illustrated in 
Fig. 3.4. Backpropagation calculates the contribution of the individual weights to 
the loss and adjusts them accordingly to minimize the network’s error. Gradient 
descent is the most common approach for this operation, by which the gradient of 
the loss with respect to every single weight is calculated, representing the contribu-
tion to the loss by each weight parameter. Since the end result of the loss is a nested 
function of various components that are each differentiable, the computation can be 
accomplished with simple chain rule of differentiation. This is simplest to see with 
the weights leading into the final output layer,

 

�
�

�
�
�

�
�

�
�

L

w

z

w

y

z

L

yij
N

i
N

ij
N

i
N

i
N

i
N

.

 

(3.4)

When calculating the gradients with respect to the weights in the previous layer, the 
terms can be expanded to account for each value yi

n  being based on the values from 
the previous layer, as shown in Fig. 3.5 for the layer N − 1. As one goes back further 
and further in deeper networks, this could involve calculating millions of derivates 
for the update of all trainable parameters. The gradient represents the direction of 
steepest ascent for the loss function, and consequently, the negative of the gradient 
gives the direction of steepest descent, where the change in the weights would pro-
duce the biggest decrease in the loss function. After the gradients with respect to all 
weights are calculated, the weights are adjusted in the opposite direction of the 
gradient by taking a step

Fig. 3.4 Illustration of backpropagation. For a single neuron connection, the gradient of loss with 
respect to the weight associated with it can be calculated using the chain rule of derivatives. For a 
network with multiple layers, derivatives are expanded for all the connections moving backwards 
through the network

3 Fundamentals of Machine Learning



87

Fig. 3.5 Illustration of the procedures of forward mapping (left column) and backpropagation 
(right column) for a neural network with N layers in total. Neurons in the input and output layers 
are shaded. Input variables x, neuron values y, connection weights w, weighted sums (with biases) 
z, and the loss function L are color-coded for clarity
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where the factor multiplied to the gradient term is called the learning rate η. The 
goal of the training process is to update the weights over and over again until con-
vergence of the loss.

The learning process of an ANN is essentially an optimization; the possible val-
ues for all the weights form a vast space with some global minima of the loss 

3.2 Deep Neural Networks



88

computation. However, the loss is usually non-convex, meaning that if we optimize 
the loss with respect to the connection weights through gradient descent, instead of 
reaching the global minimum, we usually reach some local minima or saddle points. 
On the other hand, the negative of gradient represents the steepest descent at the 
current weight configuration, but moving too far in that direction could actually 
increase the loss. Conversely, moving only slightly will also mean a miniscule 
reduction in loss. As with other optimization problems, the challenge lies in finding 
the right middle ground to help the network converge to as low of a minimum as 
possible, with not too many steps so the optimization is done in a reasonable time. 
In general, it is prudent to have a relatively large learning rate at the beginning of 
training and decrease it over time, while the choice of the initial learning rate as well 
as how much and when to reduce it can make a big difference in the efficacy and 
speed of the training. For the most popular software implementations of ANNs, dif-
ferent types of optimizers exist to automate this process effectively. Nonetheless, 
some fine-tuning and trial and error will still be needed on a case by case basis.

3.2.2  Activation Functions

As mentioned before, the activation function is a mapping that is applied to the 
weighted sum of the inputs from the previous layer combined with a bias term. The 
activation function serves several purposes, the most important one of which is to 
add nonlinearity to the transformations. If simply taking the weighted sum of the 
neuron values with a bias term, we end up with a linear transformation of the inputs. 
And it can be proved that if every transformation in a stack is linear, no matter how 
deep the stack is or how complex the transformations are nested, the entire network 
is still linear [3]. The neural network has the same expressive power as a simple 
linear regression model while being far less efficient in learning. In order to model 
more complex representations, nonlinear transformations are necessary in the inter-
mediate layers. Even with a small degree of nonlinearity at each neuron, when 
applied over the large scale of connections and nested over many layers, the net-
work gains a massive expressive potential. Although any nonlinear function can add 
this extra expressive power in principle, a good choice of activation function for 
neural networks should meet at least a few conditions: (1) the function is differen-
tiable everywhere; and (2) since the training process for a sufficiently complex 
ANN involves calculating the derivative many times, this calculation needs to be 
computationally inexpensive. Moreover, it should also avoid outputting values in 
the range of (0, 1) too often, as this can cause gradients to approach zero when mul-
tiplied over many successive layers, known as the vanishing gradient problem. 
These requirements on mathematical properties are general and do not decisively 
determine a network’s performance. There are a number of commonly used activa-
tion functions in the training of ANNs, which suit different problems and tasks. In 
the following, we introduce a few popular ones. Another useful note is that in 
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practical circumstances, it is possible that an ANN employs different types of acti-
vation functions for neurons in certain layers or modules.

The most common activation function in fully connected feedforward neural net-
works is the rectified linear unit (ReLU), which is defined as
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bringing all negative values to 0 (Fig. 3.6a) in contrast to the linear operator of iden-
tity f(x) = x.

The nonlinearity added by the action of bringing negative values to 0 has shown 
remarkable results in training ANNs. The “on-and-off” nature of ReLU mirrors bio-
logical neurons, which are either firing or inactive, and the total percentage of neu-
rons that are firing at the same time is typically low at any given instant. In the same 
way, about half of the neurons using ReLU for their activation functions will be 
inactive. This sparse activation has been shown to improve training in many cases 
[17]. Furthermore, because ReLU is scale-invariant for positive inputs, it is not 
prone to the vanishing gradient problem.

Despite the broad success of ReLU in processing various types of data, it does 
suffer from several disadvantages which have prompted a number of variations to be 
developed. Firstly, and quite noticeably, the function is not differentiable at 0. This 
is typically addressed by arbitrarily setting the derivative to be either 0 or 1 at the 
point, or using instead a smooth approximation like the softplus function, whose 
derivative is the logistic function, though the former solution is faster to calculate. 
Secondly, the outputs of ReLU are not centered at 0, which means gradients can 
shift in a certain direction over time in some cases. While gradients do not shift 
towards 0, the network can run into a similar trouble called the “dying ReLU” prob-
lem, where neurons become inactive for almost all inputs, halting the training. Some 
alternatives to the ReLU include the leaky ReLU
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Fig. 3.6 Activation functions for (a) ReLU, (b) sigmoid, and (c) Swish

3.2 Deep Neural Networks



90

which shifts the negative values to 0.01x rather than 0, and a similar variant called 
the parametric ReLU
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which shifts 0 to a·x, with the coefficient a a parameter for each neuron that is 
learned through training. This leakage can effectively avoid the dying ReLU prob-
lem and has been shown to give better results in some cases.

Another common activation function is the SoftMax function:
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The SoftMax function takes in a K-dimensional input vector and normalizes it 
into a distribution where all values sum to 1. Because the outputs of the SoftMax 
function are in the range of (0, 1), it can be prone to the vanishing gradient problem 
and is thus not often used in the hidden layers. Instead, the SoftMax function is typi-
cally reserved for the final layer of ANNs used for multi-class classification prob-
lems, such that the output of the final layer can be interpreted as the probability of 
each of the possible classes. Two other activation functions, the hyperbolic tangent 
(tanh) and the sigmoid (or logistic) function (Fig. 3.6b), have been commonly used 
historically in training ANNs. However, both suffering from the vanishing gradient 
problem that leads to difficult optimization, their usage has shown a decreasing 
trend in recent years. One combination of these activation functions, called Swish 
and developed by Google, has been popularized recently. Figure  3.6c plots the 
Swish function, which is defined as the multiplication of the input x and a standard 
sigmoid function:
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The Swish has been shown to outperform ReLU in certain particularly deep net-
works. Nonetheless, due to the obviously higher computational cost, it is not suit-
able for all tasks.

3.2.3  Training of Deep Neural Networks

The above subsections detailing the training process give the steps to pass one data 
sample through the ANN to update the weight parameters. For a dataset with tens of 
thousands of samples, this means tens of thousands of weight updates after feeding 
every single sample in the dataset, but given the high complexity of an ANN and all 
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its possible weight configurations, this number of updates alone is not enough for 
most tasks. With a suitably conservative learning rate, each update is expected to 
push the network performance a miniscule amount towards improvement along the 
hyperspace of weight configurations. Since the initialization of weights is random, 
the starting point is likely to have extremely high error and be located a far distance 
from the actual global minimum. Thus, to continue reducing the error after all the 
data samples have been fed through, the same data need to pass through the network 
in more iterations, and a single iteration is called an epoch. Each epoch represents a 
full feedthrough of the training dataset. Many ANN training tasks could have hun-
dreds to thousands of epochs, meaning each individual data point will be seen by the 
network hundreds to thousands of times. To illustrate why this is useful, consider 
the earliest couple of epochs in a simplified learning task. One of the earliest sam-
ples in the dataset might provide some unique critical information towards making 
a correct prediction, but because the weight initialization is so poor and noisy, the 
update will essentially focus on adjusting the weights to be less terrible; and if this 
sample is only seen once, the unique feature it carries may be wasted, whereas it 
may have provided a more useful update if it was seen at the end of training. At their 
core, weight updates revolve around strengthening connections that are helpful 
towards making an accurate prediction and weakening connections that are detri-
mental, but how useful this update is depends on what the current configuration of 
connections is. This explains the necessity and importance of feeding the same data 
repeatedly until the loss converges.

Feeding through each sample multiple times in repeated epochs is no doubt 
important, but there are also other factors to consider. While in theory, we would 
like each sample in the training dataset to provide some unique and valuable insight 
to assist the network in approaching optimal weights, in practice, the data are noisy, 
and the gradients from each individual sample have high variance. This means that 
some weight updates might contradict one other, and some may pull the loss func-
tion away from a minimum rather than towards it. If the dataset contains enough 
signal and is suitably designed, the loss function should still converge, but its path 
in the hyperspace of weight configurations may be chaotic and zigzagging, rather 
than smooth. Another factor to consider is the computational and time efficiency. 
Since each weight update involves calculating hundreds of thousands to millions of 
derivates, repeating the computation for all the samples and repeating the whole 
process for each epoch can quickly add up to an unwieldy total training time. One 
method to address these problems is called batch learning.

In batch learning, instead of running backpropagation and weight updates after 
each sample is fed through, an update is calculated only after all the samples are 
processed for a given epoch. This update will be an aggregate of the gradients from 
all the samples. The previous paradigm of feeding through samples individually and 
calculating updates for each one of them is called stochastic gradient descent, or 
online learning. There are a few notable advantages of batch learning over online 
learning. The first and most prominent one is the computational efficiency. Current 
popular software implementations of ANNs are extremely efficient in processing 
linear operations with large matrices in sublinear time. In other words, at each step 
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along the backpropagation, calculating the gradients for a matrix encompassing all 
the samples takes less time than the time it takes to compute for a single sample 
multiplied by the size of the dataset. As a result, the most significant computational 
bottleneck in the training of ANNs is how many times the weights are updated, not 
how many gradients need to be calculated. In this regard, batch learning can provide 
a large reduction in the time consumed to conduct a single epoch of training. The 
second advantage is in reducing the previously mentioned instability from gradients 
of a single sample. Accumulating all gradients before an update of the learnable 
parameters significantly reduces variance and provides smoother and stabler 
updates.

The improved stability comes with some downsides, however. First, while each 
individual update is more likely to be accurate to the desired gradient towards the 
minimum, since only a single update is calculated per epoch, a larger number of 
epochs will be required to reach convergence. This can potentially offset the reduc-
tion in training time per epoch. Meanwhile, it also means that for individual training 
steps, the network learns slower but potentially more carefully. A second disadvan-
tage is the purely negative treatment of noise and variance, which are sometimes 
beneficial. The hyperspace of the loss function is, in practice, never convex, and is 
riddled with many local minima and saddle points. The stable updates from batch 
learning can also make them more prone to get stuck at some local minima. 
Gradients of high variance provide the opportunity to knock the weight configura-
tion out of where it gets stuck and onto a point where the gradients may lead to a 
lower local minimum. This is also why it is advised for training to start with a higher 
learning rate and decrease it over time. The initial weight configuration, being com-
pletely randomized, has little chance to be around the global minimum. Thus, more 
aggressive learning steps early on can help avoid higher error inflection points along 
the desired optimization path. A last disadvantage is one of practicality. When deal-
ing with massive datasets, storing a matrix containing the entire dataset may have 
the hardware run out of memory.

To alleviate these concerns, a middle ground between batch and online learning 
becomes the most popular strategy in training ANNs, which is called mini-batch 
learning. Neither passing through the entire dataset nor a single sample at a time, the 
dataset is broken up into small chunks, called mini-batches, which are fed through 
in the fashion of one at a time, with the gradient being calculated as an aggregate of 
all samples only from the mini-batch. To make this clearer, for a total of N samples 
in the dataset and a mini-batch size of b, N/b weight updates will be calculated dur-
ing each epoch (cf.: batch learning would have one update, and online learning 
would have N updates). Generally, the size of the mini-batches will be far smaller 
than that of the full training dataset and is specified by the user prior to training. The 
historical convention is based on factors of two, with the most common choices 
being 32, 64, and 128. The intuition behind is that CPU/GPU calculates the gradi-
ents using a memory architecture organized in powers of 2, potentially allowing for 
more efficient allocation of resources. Practically, however, the benefit of keeping 
batch sizes to strictly powers of two is almost negligible. As with the general trade- 
off between batch and online learning, larger mini-batch sizes offer a trade-off 
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between shorter computation time and overly careful learning that may get stuck in 
undesired local minima. Finding the right batch size can be a process of trial and 
error depending on the task at hand, though only large changes to batch sizes, such 
as doubling or halving, will make noticeable differences to training. One can also 
take the same approach with dynamic learning rates to adjust the batch size over 
many epochs: smaller batch sizes are valuable in the beginning to encourage explo-
ration of the hyperspace and avoid undesired local minima, whereas larger batch 
sizes are used towards the end as one is approaching the global minimum. Overall, 
mini-batch learning inherits some advantages from batch learning in computational 
efficiency and gradient stability as well as some from online learning in greater 
adaptability and learning speed.

3.2.4  Overfitting

One of the most significant pitfalls to watch out for when training ANNs, as with all 
ML models, is overfitting (Fig. 3.7). Any dataset is assumed to contain both useful 
information and noise, i.e., unwanted random fluctuations. The fundamental goal of 
any ML algorithm is to extract the signal that enables it to make accurate predictions 
when receiving independent data unseen in the training set. Again, if a model’s task 
is to identify whether an image contains a cat, it will be trained on a set of labeled 
images with some of them containing cats. Then the end goal is, when given a 
brand-new picture for which the information about the presence/absence of cats is 
lacking, the model can have it correctly identified. Overfitting occurs when a model 
gets “overly powerful than necessary,” such that it not only picks up the actual pat-
terns in the data that are helpful to make correct predictions but also mistakenly 
treats the noise as useful information and relates it to the label. If this happens, the 

Fig. 3.7 (a) Data are underfit. Obvious discrepancies between the fit curve (in red) and training 
data points (in blue) indicate high bias error. (b) Data are properly fit. Despite some residual error, 
the model can be very generalizable to new data. (c) Data are overfit. The model treats noise as 
meaning patterns. Though it can match all the training data points well, the model is overly specific 
and has high variance, likely to generalize poorly on new data
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model can classify perfectly on training data, but it would not generalize well, per-
forming poorly on new data. Conversely, attempts at making the model more gener-
alizable to new data could make it perform worse on the training data. This 
phenomenon is known as the bias-variance trade-off. ML models have both bias 
error and variance error. Bias is the error between the predicted and true values. 
High bias indicates underfitting, where the model is not learning enough of the use-
ful information. Variance, on the other hand, is how sensitive the model is to small 
fluctuations in the data, or essentially how prone it is to overfitting by learning too 
much of the noise. The trade-off between these two sources of error is fundamental 
to the field of ML, and it can be shown that a completely unbiased model must have 
unbounded variance, and vice versa [18]. Therefore, a practical challenge of train-
ing ML models is managing and balancing bias and variance. Ideally, the errors on 
training data and on unseen new data should be very close and small, indicating 
good training and generalization performance of the ML model.

To assess how well a model will generalize on independent new data, there is no 
other way but to actually test it on new data. Therefore, for all ML tasks, it is recom-
mended to have two datasets, a training set and a test set. We have mentioned train-
ing set several times in the above discussion, which is what is fed into the model 
through the training process. In common practices, the training set is larger than the 
test set, but the latter needs to have a substantial amount of samples as well. Most 
ML models will see the same data from this set over and over again during training 
as it is repeatedly fed through. Meanwhile, the test dataset is not used at all at any 
point during training. Instead, it is solely used in the post-training stage to evaluate 
how well the model performs on independent new data. In the case of ANNs, this 
means feeding the samples from the test set forwards to make predictions, compar-
ing them to the corresponding labels to evaluate the network’s accuracy, but not 
conducting the backpropagation to update weights. It is exceptionally important for 
users to watch out for data leakage, when data outside of the training set directly or 
indirectly affects training, as it can cause overfitting. The evaluation on the test set 
should only be conducted after the training is complete. If a user continually retrains 
a model while tuning its architecture or hyperparameters until a low test score is 
reached, it is essentially an indirect form of data leakage, because knowledge from 
the test data has been used since the first retraining. To this end, it is prudent to fur-
ther split the training dataset into two: one set that is actually used for training and 
another validation set that serves as a proxy to estimate the model’s performance on 
the test set. The validation set should be a random cross section of the data that is 
different every time the model is retrained, in order to prevent the over-tuning prob-
lem mentioned previously.

The extreme plasticity of ANNs, resulting from the massive learnable parameters 
to optimize, promises one of their greatest strengths as an algorithm but also makes 
them more susceptible to overfitting than most ML models. While the above descrip-
tions on training and test sets introduce how one checks for overfitting, they tell 
little about how to avoid or alleviate the problem. There are a couple of methods for 
ANNs to address overfitting. First, according to statistical information theory, the 
upper bound of the expected difference between training and test errors grows with 

3 Fundamentals of Machine Learning



95

the capacity, or complexity, of the model but decreases with a larger number of 
training samples [18]. As such, having a larger training dataset can reduce the 
chance of overfitting. Intuitively, when more samples are used, the variance error 
tends to smooth out as opposed to what the actual patterns do. However, since 
obtaining labeled data is often a big hurdle, this simple solution is rarely practical, 
and the training time will increase accordingly. The second trick is changing the 
validation strategy. One popular choice is the k-fold cross-validation. In this method, 
the training data is randomly partitioned into k folds (or sections), and the same 
model is trained k times: In the first iteration, the first fold is used as validation, and 
the remaining k − 1 folds are used for training. Next, the second fold is used for vali-
dation while the remaining for a fresh round of training from scratch. The process 
continues for every fold left, and the average validation error across all folds is 
calculated at the end. Because the folds are random each time training is conducted, 
this method is quite robust for tuning models to prevent overfitting. In fact, it is rare 
for a model to perform well on cross-validation but poorly on the test set, if both sets 
are drawn from the same source and sufficiently large. Although running validation 
for k iterations increases the total training time, it ensures that a high validation 
score will not be obtained by chance, which is particularly important when the train-
ing dataset is small. Third, one can also choose to simplify the model architecture. 
If the task is not too complex, using a far deeper network than needed or having too 
many neurons per layer will make the model more liable to overfitting, since the 
excess connections will try to pick up additional patterns in the data. For a given 
problem, there are no hard and fast rules as to the right network complexity. Finding 
a suitable model architecture will typically require some trial and error and could be 
time-consuming.

Another class of approaches to avoiding overfitting is regularization, which 
refers to any modifications to a learning model which are intended to reduce its 
generalization error but not training error [3]. As mentioned above, the upper bound 
on the degree of overfitting decreases with a larger training set and increases with 
the model capacity. Regularization deals with the problem with a focus on the latter 
by reducing the complexity of a model. A versatile and computationally inexpensive 
strategy is the use of a technique called dropout. Dropouts are applied to specific 
layers of an ANN and have the network to randomly ignore some neurons during 
certain training steps. When a neuron is “dropped out,” it outputs the value 0, essen-
tially having no connections to the neurons in the previous layer. Dropout restricts 
the model’s power in picking up patterns from the training data, implying weakened 
predictive capabilities and an increase in the training error, but at the same time 
makes it generalize better to new data. Another popular strategy, which often 
includes regularization explicitly in the naming, is the application of an extra pen-
alty term to the loss function. Techniques using different penalties like L1 and L2 
norms (of the weights) are thus named as L1 and L2 regularizations, respectively. 
The core idea is to force the network to only use as many connections as it abso-
lutely needs and disregard others by setting their weights close to 0. Also worth 
mentioning is, for both strategies, applying regularization too aggressively can 
cause the network to abandon useful connections and lead to underfitting.
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As a quick recap, all the methods discussed above on avoiding overfitting result 
in a worse performance on the training dataset, underlying the fundamental bias-
variance trade-off. Managing this balance is one of the central concerns in train-
ing ANNs.

3.3  Variations of Neural Networks and Popular Models

A deep fully connected network has extraordinary power to model a wide variety of 
datasets. In fact, the universal approximation theorem states that a feedforward neu-
ral network with at least one hidden layer with any activation function can approxi-
mate any continuous function mapping from a finite-dimensional space to another, 
given that the network has enough neurons [3]. In practice, however, while standard 
feedforward networks can be applied to any problem, they may require an unwieldy 
amount of computational resources and/or achieve poor convergence. As such, sev-
eral variations of network architecture have been developed over the years, which 
can differ in the number of connections between neurons, the way neurons are con-
nected, and how values are transformed from layer to layer. These alternative archi-
tectures typically trade some of the raw predictive power and plasticity of fully 
connected NNs for a more focused and efficient network structure tailored to some 
specific types of problems and input data. In this subsection, we introduce two vari-
ations of NNs, namely, convolutional and recurrent NNs, and a few popular DL 
models, chosen based on their current appearance in photonics research.

3.3.1  Variations of Neural Networks

3.3.1.1  Convolutional Neural Networks

Convolutional neural networks (CNNs) are a type of NNs most applied to process-
ing grid-like data such as images. Compared with other NN architectures, CNNs are 
distinguished by the use of convolutional layers, which execute a special linear 
operation called convolution. The main function of a CNN is to break down the 
input image into a series of features, from local ones extracted by the early layers to 
higher-level ones assembled in the later layers, and learn how to associate those 
features with the desired output [3, 4, 9]. This is reflected in the most common struc-
ture of CNNs, where convolutional layers for feature detection are arranged right 
after the input layer, followed by fully connected layers to learn the hidden relations 
within the features and produce the final output. For image data, each input image 
is represented by a tensor of pixel values in the shape of height × width × depth. The 
last dimension refers to the number of channels, which takes different values based 
on the color space, e.g., 1 for gray scale; 3 for red, green, and blue (RGB); and so 
forth. The following discussion assumes 1 channel for simplicity.
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Convolutional layers work by sliding a filter of fixed size, or a convolution ker-
nel, over the image and performing a convolution operation in each position 
(Fig. 3.8a). The filter itself is a matrix but typically in a much smaller size than the 
input image. As a result, a filter operates on a small window out of the total image, 
called the receptive field. The convolution produces a single value that is the sum of 
all the values in the receptive field weighted by the respective values in the filter. An 
ideal filter will be able to extract low-level features like edges, curves, and lines, and 
the numerical output of the convolution can be interpreted as a score of how well 
that particular part of the image in the receptive field matches the feature defined by 
the filter, i.e., how “edge-like” or “curve-like” that part of the image is. Once the 
convolution is computed, the window slides to a new portion of the image that 
becomes the next receptive field, and the image values therein are convolved with 
the filter values to produce another numerical output. This process is repeated so 
that the sliding filter covers the entire image, going left to right and top to bottom, 
where the user can predefine how far the receptive field moves each time, called the 
stride. The output of the current convolutional layer is another matrix, usually in a 
smaller size than the input image. There are two factors that affect the dimension of 
the output: stride and padding. Both are chosen prior to training as part of the hyper-
parameters. Stride, as just mentioned, controls how far the receptive field moves 
between each convolution; higher strides result in lower output dimensions. Padding 
adds extra pixel values around the perimeter of the input image. The main advantage 
of using padding is to adjust the output to a desired dimension (e.g., equal to the 
input). It also yields practical benefit if there are useful features at the boundary of 
the images. Overall speaking, for an n × m input image with an a × b-sized filter, 
stride length s, and number of padding layers p, the final output dimensions are 
given by [(n − a + 2p)/s + 1] × [(m − b + 2p)/s + 1].

To give a simple example, the Modified National Institute of Standards and 
Technology (MNIST) database is a commonly used dataset for benchmarking NN 
implementations for image processing [19]. MNIST contains over 60,000 grayscale 
images of handwritten digits 0–9 in a fixed size of 28 × 28 pixels. Different images 
of the same digit may differ based on the handwriting style, so identification of a 

Fig. 3.8 Typical CNN architecture. (a) A convolutional layer slides a small filter (outlined 3 × 3 
square) over an image, performing in each position a convolution between the filter values and the 
respective image values in the receptive field to generate a feature map. (b) A CNN uses alternating 
convolution and pooling layers to learn abstract features in the image, followed by fully connected 
layers to output the prediction. Nonlinearity applied to the feature maps after convolution is not 
shown in the diagram
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digit requires the algorithm to recognize some characteristic patterns that help to 
differentiate between different digits. In the case where a 3 × 3 filter is used, the 
receptive field will start with the 3 × 3 area on the top left corner of the image and 
produce the first value, which is assigned to the top left grid in the next hidden layer. 
Then, with a stride length of 1, the receptive field will shift 1 pixel to the right for 
the next convolution computation. This process is repeated until pixels in the right-
most column are reached, and it will start over from the leftmost column but 1 pixel 
lower. As the filter runs over the entire image, the final output will be a 26 × 26 
matrix, 2 pixels smaller in each dimension than the input, if conducted without pad-
ding. This output is essentially a new “image” that serves as a feature map, indicat-
ing how different parts of the input image match with the desired feature represented 
by the filter.

It is common to have multiple filters in a convolutional layer, because there are 
different useful features in every image, but each filter is associated with one par-
ticular feature. The additional filters operate in the exact same fashion, and the gen-
erated feature maps are stored to another channel. For example, with a convolutional 
layer that has ten filters, we will obtain ten feature maps from a 28 × 28 MNIST 
image and produce a 3D tensor of shape 26 × 26 × 10. Depending on the task, such 
procedures would be repeated with additional convolutional layers to extract higher- 
level features. Lastly, fully connected layers will be applied to the flattened feature 
maps to produce the final output. For example, a CNN trained on the MNIST dataset 
may learn to identify a semicircle, a diagonal line, and a horizontal flat line, and if 
those features are located on top of each other in the given order and proper orienta-
tions, the end result of recognition is highly likely to be a digit 2 (Fig. 3.8b).

Unlike the goal of learning in a fully connected layer which is to optimize the 
weights between each input and output neuron connection, the goal in a convolu-
tional layer is to learn the filter matrix. Starting with randomized values in the fil-
ters, a CNN tries to learn what specific types of features help to reduce the loss. In 
theory, a fully connected layer can do everything a convolutional layer can. However, 
the main advantage of convolutional layers is the high computation efficiency [4]. 
CNNs prioritize the detection of local information, i.e., the relation of each pixel to 
its neighbors, to achieve sparse connectivity. For data where the relation between 
distant pixels is not typically meaningful, this saves a lot of computational resources 
for training. In the above example, where 28 × 28 pixels are mapped to a 26 × 26 
matrix, a fully connected layer would have (28)2 × (26)2 = 529,984 weights to opti-
mize. In comparison, a single 3 × 3 filter, which is shared across all the positions as 
it slides over an image, only has nine trainable parameters. This massive reduction 
in the number of parameters allows convolutional layers to train more efficiently 
than similarly sized fully connected layers. Another route to improving computation 
efficiency is to follow each convolutional layer with a pooling layer. The latter oper-
ates by sliding another window over the feature map with predefined size and stride, 
but the output is either the maximum or average of the values in the receptive field. 
This down-sampling operation essentially summarizes the response of nearby pix-
els. For most image-based ML tasks where the location of high-level features being 
off by a few pixels will not significantly affect the classification, pooling effectively 
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reduces the output dimension, further easing the computational requirements for the 
succeeding layers. Typically, a CNN stacks several segments, each containing one 
or a few convolutional layers and a pooling layer, and fully connected layers are 
added after the last pooling layer, as shown in Fig. 3.8b.

While all the above examples are detailed on 2D grayscale images, the same can 
be applied to input data of any dimension, whether those are 1D spectra, 3D color 
images with RGB channels, etc. For processing data containing spatial relationships 
between neighboring elements and between patterns, CNNs can offer a high predic-
tive power and more efficient training.

3.3.1.2  Recurrent Neural Networks

Recurrent neural networks (RNNs) are a class of NNs specialized for processing 
sequential data [2]. Compared with feedforward networks discussed thus far, RNNs 
introduce a unique topology to the architecture, i.e., cyclical connections. In the 
simplest form, an RNN has a single, self-connected neuron in the hidden layer, as 
sketched in Fig.  3.9a. We will base the following brief discussion on this basic 
architecture. For advanced variations of RNNs (e.g., long short-term memory and 
gated recurrent units) as well as an emerging class of alternative NNs termed trans-
formers, the interested reader is referred to other sources such as [4, 20, 21].

Enabled by the cyclical connections, RNNs can in principle take data sequences 
of arbitrary lengths and incorporate the inputs at earlier time steps into the computa-
tions, essentially remembering the past and using that information to help make 
better predictions. This is particularly useful for processing sequences where the 
context around an individual input element is just as important as the element itself 
and where an input could have multiple correct outputs depending on the preceding 
elements in the sequence. One area where RNNs are commonly used is natural lan-
guage processing. In this application, data are sentences comprising a series of 

Fig. 3.9 Typical RNN architecture. (a) A recurrent neuron. A hidden state h is calculated based on 
the input x and the hidden state itself from a previous time step and is then used to calculate the 
output y. U, V, and W denote the corresponding weight matrices, which are shared across all time 
steps. (b) Unfolded computational graph of the RNN cell in (a)
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inputs, each an embedding of an individual word. For example, most smartphones 
incorporate a predictive text feature for messaging. When given a partially complete 
sentence, the app would suggest the potential next word so the users do not need to 
type it out. The most recently typed word is often not informative enough for intuit-
ing the intended sentence. Adding even a single additional word can have important 
consequences. For example, “I can’t” and “That can’t” may be related to drastically 
different contextual information. Let us then take a quick look on how the architec-
ture of an RNN is beneficial for processing sequences. Figure 3.9b illustrates the 
computational graph of an RNN cell, which is essentially Fig. 3.9a unfolded through 
time. A recurrent neuron maps from an input sequence x of arbitrary length [x1, 
x2, …, xn] to an output sequence y = [y1, y2, …, yn] via a hidden state h that is con-
tinually updated at each time step t:
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Here, f(h) and f(y) are the nonlinear activation functions. In Eq. (3.11), the first term in 
the parentheses contains information from preceding inputs, unless at the initial step 
where h0 is from initialization. There are several algorithms for training RNNs. 
Among them, the backpropagation through time is commonly used and known to be 
efficient in computation time. Details of training methods can be found in some 
textbooks and monographs [22].

3.3.2  Popular Deep Learning Models

The above discussions have covered the major variations of NN structures. For 
many DL tasks, the models need to be tailored with more specifications and, there-
fore, built with more complicated architectures using the basic NN components 
(just like a CNN contains both convolutional and fully connected layers). In the 
following, we briefly discuss a few popular DL models. Although in ML textbooks 
they may be introduced in a different order to better reveal the ideas behind and 
connections between them [2, 3], we simply present them as a preparation for the 
later chapters of applications in photonics research.

3.3.2.1  Mixture Density Networks

Mixture density networks (MDNs) are a class of NNs that combine a deep neural 
network with a mixture model, a classic statistical model for representing a proba-
bility distribution with multiple distinct subpopulations. The aim of MDNs is to 
model multimodality with deep neural networks [23, 24]. In a conventional 
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network, each neuron in the output layer corresponds to a discrete value for the 
desired prediction. While this framework seems to be straightforward, it requires an 
underlying assumption that there is only a single correct output for every input. If 
multiple identical or near identical inputs with differing outputs exist in the training 
dataset, the training can be significantly hampered, because different outputs will 
pull the weights in conflicting directions. Even if convergence is attained, due to the 
deterministic nature of the network, it may converge to the mean between those cor-
rect answers, not reflecting the true input-output mapping.

MDNs provide a solution for modeling multimodal data. Instead of using dis-
crete values, it is also practical to describe the likelihood of a variable to take each 
of its possible values. Common probability distributions include the Gaussian dis-
tribution, Bernoulli distribution, Multinoulli distribution, etc. In order to model 
more complicated distributions and tackle multimodality, MDNs take one step fur-
ther by employing mixture distributions, a straightforward yet powerful method to 
combine simple distributions. Specifically, MDNs use Gaussian distributions as the 
mixture components [3]. As a consequence, the neurons in the output layer of an 
MDN correspond to the parameters (πk, μk, and σk) defining the mixture model [24]:
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Equation (3.13) describes a conditional density function, the probability of the mod-
eled variable t given an input x, where πk, μk, and σk are the mixing coefficient, the 
mean, and the standard deviation of the k-th Gaussian component, respectively. In 
practice, the number of components in the mixture is predefined by the user as a 
hyperparameter. For an M-dimensional vector modeled by a mixture model with N 
components, the total number of output neurons is given by (M + 2) × N, of which 
M × N is for the means. An example with two Gaussian components (N = 2) for a 
single variable (M = 1) is shown in Fig. 3.10. In most cases, unless the data contain 
many distinct subpopulations, a small number of components would suffice.

The training of MDNs needs some special considerations due to the change at 
the output layer. A different kind of loss function than one that directly compares the 
prediction and ground truth (such as MSE) is needed. As we are modeling a mixture 
Gaussian distribution, following the principle of maximum likelihood, negative log- 
likelihood can be used for the loss function. Working with the natural logarithm 
allows the loss (or, in this case, error) to be expressed in the common form of sum-
mation rather than product [23], alleviating data underflow issues. A trained MDN 
is still deterministic, always producing the same parameters for a given input. 
However, because the distribution is probabilistic, it introduces stochasticity. When 
a certain input has multiple possible correct answers, an ideally performing MDN 
would produce a probability distribution with peaks around each of those values, 
i.e., the correct answers are captured as modes in the distribution.

The application of MDNs can be quite diverse. One example is the linguistic 
features in speech synthesis, where the same text can be spoken in different ways 
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Fig. 3.10 In an MDN, the input vector x maps to a series of parameters of Gaussians, μk, σk, and 
πk, which together form a mixture model. The shown example uses two Gaussian components 
(k = 1, 2) to model a single variable

[25]. Interestingly enough, MDNs have been used in the development of Siri, where 
it is also made recurrent [26]. In computer vision tasks, the recurrent MDN can be 
further combined with CNNs [27].

3.3.2.2  Generative Adversarial Networks

We now move on to generative models. While more rigorous definitions require 
statistical terms, we quote a concise one from [24]: “approaches that explicitly or 
implicitly model the distribution of inputs as well as outputs are known as genera-
tive models.” Generative adversarial networks (GANs) are an important class of 
NNs in this category, and the framework was first proposed by Goodfellow et al. in 
2014 [28] “for estimating generative models via an adversarial process.” The goal 
of GANs is to generate synthetic data similar (in distribution) to the real data it is 
trained on. When it comes to image data, to which GANs are most often applied, 
this means that a model would create fake images indistinguishable from real ones. 
In terms of network architecture, a GAN consists of two separate neural network 
components that act to compete with each other. The first one is the generator, which 
maps vectors randomly sampled from a simple distribution (e.g., a Gaussian) as the 
input (also referred to as noise) to new candidate data as the output. The second 
component is the discriminator, which takes in data both from the training set (i.e., 
real data) and the samples created by the generator (i.e., fake data) and tries to tell 
whether it is real, a task of binary classification (Fig. 3.11). The goals of both net-
works during training are in direct opposition: The discriminator attempts to reduce 
the error when distinguishing between real and fake data, while the generator aims 
for the discriminator to have a higher error by producing data that look like they are 
from the training set. Accordingly, the training of GANs contains alternating steps 
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Fig. 3.11 Typical architecture of a GAN consisting of two NNs: a generator (left) and a discrimi-
nator (right). The generator takes in random input vectors to create fake data that look indistin-
guishable to the training data, and both fake and real data are fed into the discriminator, which aims 
to tell them apart. Fully connected layers are drawn for illustrative purposes. In practice, convolu-
tional layers are often employed as well

of optimizing the discriminator and the generator [28], along with other tricks to 
address some technical difficulties [2].

The reader may have realized that for processing image data, the discriminator 
needs to be armed with convolutional layers to extract embeddings from the input. 
What deserves a few extra words is about the generator. As fake images are mapped 
from noise vectors, layers operating the opposite of convolution, namely, transposed 
convolutional layers [29], are employed to perform up-sampling. Through training, 
the generator learns the mapping from a simple distribution to the true data distribu-
tion. The generator of a trained GAN can be used to produce new data hopefully as 
realistic as the real ones.

GAN itself has many variations. The architecture introduced above is the vanilla 
version, where the input only has a random sample from a simple distribution. 
Additional information can be added to the generator input, e.g., the label of the 
image that we hope to generate—it can be concatenated with the random sample 
and together serve as the input. This is an example of the conditional GAN (cGAN), 
as we restrict what we want the generator to produce with some extra conditions 
(here the label of the image).

3.3.2.3  Autoencoders

Autoencoders are a type of NNs that learn to copy their inputs to their outputs [3]. 
This seemingly trivial task can be actually difficult in practice, as it requires finding 
a good way of efficient data representation. Traditional autoencoders were used 
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primarily for dimensionality reduction [30] and feature detection [2], while some 
recent variations have turned generative and are used in computer vision tasks.

The standard architecture of autoencoders comprises a series of hidden layers 
with decreasing numbers of neurons, followed by layers with increasing numbers of 
neurons until the final output that has a dimension identical to the input layer. It is 
then obvious that the central layer has the fewest neurons—usually much fewer than 
the input/output layer. Because the goal of the entire network is to reconstruct the 
input or, in other words, approximate the identity function, the representation at this 
central layer with the lowest dimensionality must contain the most important fea-
tures of the input data in a highly compressed form. In this sense, those representa-
tions are called codes (or codings, latent representations, etc.), and the two halves of 
the network are termed encoder and decoder, respectively (Fig. 3.12). Detailed dis-
cussion on more aspects of autoencoders in the traditional category is available in 
most textbooks.

Variational autoencoders (VAEs) are the best known type of autoencoder varia-
tions that serve as generative models [31]. The practical usage of VAEs, much like 
GANs, is to generate samples that resemble the ones from some desired dataset. 
When a standard autoencoder encodes data into a latent representation z, it places 
no restriction on the distribution of z, as its sole purpose is to reconstruct the input. 
However, this is not the case for VAEs. In the inference phase of a generative model, 
one can only sample noises from a known distribution. If such known distribution is 
too different from the one learned during training as the decoder input, no effective 
sampling of z can be obtained for the decoder to generate new data similar to x. To 
match the learned distribution of z during training with such known distribution, the 

Fig. 3.12 Schematic of a standard autoencoder. The input and output layers are of the same 
dimension, with the smallest number of neurons in the central layer. The first half of the network, 
i.e., the encoder, compresses the input x into a code z in the latent space, and the second half, i.e., 
the decoder, is designed to reconstruct the input x with minimal loss by outputting x’ from 
the code z
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objective function of VAE uses an additional regularization term besides the stan-
dard reconstruction loss. Given two probability distributions P and Q over the same 
variable, their statistical distance can be measured by the Kullback-Leibler (KL) 
divergence, defined as.
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The actual objective function for training VAEs is known as the evidence lower 
bound (ELBO), which differs from the KL divergence between the learned distribu-
tion of representation z and the known distribution by a negative sign and another 
term commonly used in other autoencoders [3]. Therefore, maximizing the ELBO 
is equivalent to simultaneously maximizing the reconstruction likelihood and mini-
mizing the KL divergence.

3.4  Miscellaneous Machine Learning Techniques

3.4.1  Dimensionality Reduction

Data in ML are often high-dimensional, with each dimension comprising a feature 
useful for making predictions. ML algorithms tend to leverage their power most 
strongly with large datasets, both in terms of the number of samples and the number 
of features, which nonetheless can pose challenges. Besides the obvious concern 
over computational efficiency, a frequently discussed problem is the “curse of 
dimensionality” [2, 3, 32]. As the number of dimensions (features) in the data 
increases, the volume of the feature space grows drastically, and thus the data points 
become sparse. This can cause problems for many ML algorithms, particularly 
those for classification and clustering that are based on measuring the distances 
between data points, such as support vector machines, k-nearest neighbor classifi-
ers, or k-means clustering. In theory, increasing the size of the training set could 
help to overcome the curse of dimensionality. However, this solution is not very 
practical, because when the number of dimensions increases, maintaining the same 
density of data requires exponentially larger numbers of samples. Alternatively, if 
an approach can reduce the number of dimensions (features) without sacrificing 
crucial information, it will offer significant advantages in understanding data and 
enabling ML algorithms. Reducing the data to two or three dimensions also helps 
for the purpose of visualization.

One of the most popular techniques for dimensionality reduction is principal 
component analysis (PCA). PCA transforms a dataset into an orthogonal coordinate 
system, where the space is spanned by a set of vectors called principal components 
(PCs) [33]. In essence, PCs are the linear combinations of vectors from the original 
coordinate system, and they are constructed such that along their directions, the 
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maximum amounts of variance in the data are preserved. Specifically, the first PC 
contains the largest amount of variance in the dataset, the second contains the next 
most while being orthogonal (i.e., linearly uncorrelated) to the existing component, 
and so on (Fig. 3.13a). In this way, the most useful information in a high-dimen-
sional dataset can be concentrated into a reduced number of dimensions: one only 
needs to project it onto a subspace defined by the first few PCs, whereas dropping 
the remaining components will likely not cause much loss of important information.

To construct the principal component coordinate space, first the covariance 
matrix of the data points is calculated. For a dataset X comprised of N feature vec-
tors [X1, X2, …XN], the covariance matrix KXX is
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where the covariance of a variable with itself, along the diagonal, is the variance of 
that feature vector. The covariance between different variables describes how one 
variable would change in response to a change in the other, such as whether they are 
directly or inversely correlated. PCs are then computed by doing the eigen-decom-
position of the covariance matrix. The eigenvectors of KXX are the PCs, and the cor-
responding eigenvalues represent the amount of data variance contained in each 

Fig. 3.13 (a) Diagram of principal component analysis on a 2D dataset. The first principal com-
ponent is the direction in space which contains the most variance when the data is projected onto 
it, and the second PC is orthogonal to the first. (b) Diagram of simplified t-SNE embedding from 
2D to 1D. A probability distribution models points based on their proximity to each other, and the 
lower-dimensional embedding seeks to preserve such relative distance and place similar points 
close and dissimilar points far
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PC. Therefore, in deriving the final matrix of PCA, the eigenvectors can be well 
ordered through ranking their respective eigenvalues, allowing the user to optimize 
their choice that to what degree the dimensionality can be reduced.

Another popular method for dimensionality reduction is t-SNE, which, differing 
from PCA, is a nonlinear algorithm [34]. The goal of t-SNE is to embed a high-
dimensional dataset in a 2D or 3D space while having the relative distance between 
data points preserved, i.e., similar samples tend to be located near one another, and 
dissimilar samples are more likely to be far apart. Given a set of N data points [x1, 
x2, …, xN] in a high-dimensional space, t-SNE employs the conditional probability 
pj|i to represent the similarities of point xj to point xi, which describes the chance that 
xj would be chosen as the neighbor of xi if such selections were made based on a 
Gaussian distribution centered at xi (Fig. 3.13b). The mathematical expression 
of pj|i is
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The similarity of points i and j, pij is then defined as
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Likewise, in the low-dimensional space where the data points are mapped to [y1, 
y2, …, yN], the pairwise similarities qij are given by
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Equation (3.18) is defined based on a Student’s t-distribution rather than a 
Gaussian. In brief, this choice is made to handle the distant data points better. For 
more detailed justification, we direct the interested readers to the original work [34]. 
The distance between the probability distributions pij and qij is measured by the KL 
divergence in Eq. (3.14). By minimizing the KL divergence, the representation of 
the points in the low-dimensional space matches the similarity relations of the data 
points in the high-dimensional space.

Although not obvious from the procedure described above, t-SNE has a few 
hyperparameters that can be tuned to adjust the spread of the compressed data, and 
bad choices of parameters can result in low-quality clustering. In contrast, PCA will 
produce a deterministic decomposition. Despite this, the nonlinear nature of t-SNE 
holds the promise for dimensionality reduction of more complicated datasets that 
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may be linearly inseparable. Moreover, because t-SNE is specifically designed for 
compression down to two or three dimensions, it is often a better choice for visual-
ization of data where a PCA reduction may have a non-trivial amount of informa-
tion contained past the third principal component.

3.4.2  Transfer Learning

As powerful as NNs can be for certain problems, they are not by their nature very 
adaptable. NNs, like all standard ML algorithms, are, at their core, an optimization 
algorithm, and one that is data-driven rather than purely algorithmic. NNs are built 
with the assumption that the data they are trained on are representative. Solving any 
new problem that does not match the training data distribution requires both new 
data and a new model, which can be expensive on many occasions and inefficient if 
training the model from scratch.

In real-life situations, humans can use intuition and reasoning to adapt the knowl-
edge needed for solving one problem to solving another. Transfer learning covers a 
series of methods to translate a similar idea to the realm of ML [3]. As its definition, 
categorization, and applications have been covered by several comprehensive sur-
veys [35, 36], here we only explain the concept briefly. The weight parameters 
stored through training of a NN constitute a form of learned knowledge, and the 
goal of transfer learning is to convey that knowledge to related problems. For the 
simplest case possible, imagine adding new input variables to a task which already 
has a trained NN. If the new variables indeed contain useful information for making 
predictions, their inclusion should be solely beneficial. However, the previous NN 
only accepts input vectors in a fixed length, and with the new input variables, it no 
longer fits. This necessitates a different neural network with more neurons in the 
input layer and many more weights for all the new connections this will create. 
Training the new model from scratch with the reconfigured dataset is just straight-
forward, but one may feel something is not quite right, because all we want to 
address is adding new input variables to a NN whose training cost has been paid. 
Transfer learning can be helpful in this situation. A NN breaks a problem down into 
various levels of abstraction through its hidden layers. Some of them, as the mani-
festations of certain knowledge, could be reused in another NN to incorporate new 
information. Compared with training a new model from scratch, which usually has 
a high initial loss, a transfer learning approach is more likely to start from a better 
initialization.

A more common use case is transfer learning between different but similar types 
of tasks. For example, the knowledge gained in a model for identifying cats in 
images can be used for another model for identifying tigers. A CNN trained on the 
former problem typically devotes its early convolutional layers to learning the 
important spatial features about cats, such as which parts of the image correspond 
to ears, eyes, and tails. Later layers may focus on learning the correct orientations 
of those features relative to each other, such as how far apart the eyes should be, 
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where the end of the tail can possibly be located, and so on. When it comes to train-
ing a new model for identifying tigers, likely a considerable number of features that 
have helped in the first task are still useful, owing to the visual similarities between 
the two animals. Meanwhile, the orientation information may need to be reevalu-
ated due to tigers being much larger than cats and many other subtle differences. 
Consequently, the knowledge learned in the lower layers can be transferred with 
minimal adjustment, and that in later layers will still be far closer to the ground truth 
than a random initialization. Taking advantage of the knowledge from a related task 
(of cat identification), it is reasonable to expect the model for identifying tigers to 
be trained much faster, and possibly with a better optimum.

3.4.3  Reinforcement Learning

Reinforcement learning is a unique type of ML separate from supervised and unsu-
pervised learning. While the latter two have been described under the umbrella of 
AI, the actual working mechanisms of both techniques are far from what the general 
public would think of when they hear the term: an artificial entity able to “think” 
like a human and make reasoned, intelligent choices. RL, on the other hand, fits a 
little better into that notion, as it involves training an agent to make decisions based 
on some predefined reward measure [2]. Some real-world applications are robot 
control and self-driving cars.

A typical RL problem contains a few key components and concepts [37]. First is 
an agent. This is the part of the algorithm that acts as a discrete “intelligent entity”. 
The agent has access to a set of predefined actions [a1, a2, a3, … an] in the action 
space A. Second, an environment is defined, which is where the agent is put in and 
consists of a set of states [s1, s2, s3, ... sn] in the state space S. In the maze navigation 
problem, for example, the states are all the squares in the grid that the agent can 
occupy, the current state is where the agent stands, and the actions would be moving 
in any direction allowed. The next component is the policy. The policy is an algo-
rithm, for example, a NN, the agent uses to map its current state to probabilities of 
choosing each possible action. There also need to be a system of feedback, called 
reward, the agent receives from the environment after each action, and subsequently, 
a value, which is a function of states that the agent uses to estimate its future reward 
when taking a certain action in a given state. Rewards are numerical values. Positive/
negative rewards are often assigned to desired/undesired actions for completing the 
task. In RL, the objective of the agent is to learn a mapping from the intermediate 
states and values to an optimal sequence of actions so that its expected cumulative 
reward can be maximized. It is worth noting that an agent may accept negative 
rewards in the short term if that ultimately helps to maximize the expected reward 
over the long term.

The agent-environment interaction in RL can be summarized as follows 
(Fig. 3.14). First, the agent observes its current state st. Then, using the estimate of 
the value and its policy, the agent chooses an action at to take. In the next time step, 
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Fig. 3.14 Flowchart of reinforcement learning process. The agent observes its current state and, 
using its estimates of values and its policy, chooses an action. The environment proceeds to its next 
state and gives the agent a reward, and the agent uses these to update its value estimates, and the 
process repeats

the agent moves to the state st+1 and gets an immediate reward rt+1 from the environ-
ment, based on which the agent updates and improves its internal model of the 
policy. This process is repeated until some terminal state is reached. The whole 
sequence constitutes what is called an “episode”, essentially a single run through 
the given scenario. The training revolves around a series of episodes, such as differ-
ent runs through the same maze, during which the agent learns more and more 
towards the optimal solutions to maximize the cumulative reward over time. It is 
easy to see that, during early episodes, the agent has no useful information and will 
act randomly until it hits the goal by pure chance. However, it will reinforce the 
states and actions that led to high rewards and gradually improve in the later 
episodes.

For cases with a finite number of states and actions, it is common for the agent to 
store an internal table of all the possible states V(s) and/or state-action pairs Q(s,a), 
which is filled with the agent’s estimates of the values and will be continually 
updated through the training process as the agent receives more feedback. The pol-
icy may be for the agent to always choose the action that has the highest estimated 
value, which is called a greedy policy; or it may occasionally choose a random 
action with some probability ε to test if that can be more optimal, called ε-greedy. 
Generally speaking, a good policy has to make trade-offs between “exploitation,” 
meaning that using the information it has learned from the past to make decisions, 
and “exploration,” which favors choosing actions that currently seem to be subopti-
mal, in order to gain more information and improve the accuracy of value estima-
tion. In the early stages of training, the agent has little information about the system, 
so exploration is more important.

There are many algorithms for reinforcement learning [38], such as Q-learning, 
which goes through episodes and iteratively update value tables based on the differ-
ence between the expected and actual outcomes, and temporal difference learning 
which uses bootstrapping. For a given scenario, most common RL algorithms can 
be proven to reach optimality eventually, although the speed and route could vary 

3 Fundamentals of Machine Learning



111

widely. Some algorithms also have versions incorporating other types of ML mod-
els, primarily deep neural networks, which are used to estimate the state and action 
values in lieu of tables.
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Chapter 4
Deep-Learning-Assisted Inverse Design 
in Nanophotonics

Abstract Of the several possible ways in which nanophotonics and machine learn-
ing could blend, inverse design of nanophotonic structures enabled or assisted by 
ML algorithms is probably the most straightforward one. Historically, the design of 
optical and photonic devices is intuition-based, starting with deriving prototypes 
from some known physical principles and followed by manually tuning a handful of 
variables, which define the prototypical structures, to optimize the performance. We 
have seen examples of this type in the previous discussions on, for instance, optical 
antennas and SRRs. Nonetheless, as the demands for better device performance, 
such as higher efficiency, smaller footprint, and novel functionalities, keep increas-
ing rapidly, the involved variables and in turn complexity of the design tasks 
explode, posing a substantial challenge for intuition-based design strategies to 
tackle. Computer programs have been introduced to the optimization of circuits and 
electromagnetic devices since the 1960s (Temes, Calahan, Proc IEEE 
55(11):1832–1863, 1967; Cheng et  al, Int J RF Microw Comput Aided Eng 
20(5):475–491, 2010; Weile, Michielssen, IEEE Trans Antennas Propag 
45(3):343–353, 1997; Vai, Prasad, IEEE Microw Guided Wave Lett 3(10):353–354, 
1993), if not earlier. In photonics, the application of evolutionary and gradient- 
based algorithms to optimization problems can be tracked back to at least the late 
1990s (Molesky et  al, Nat Photonics 12(11):659–670, 2018; Spuhler et  al, J 
Lightwave Technol 16(9), 1680–1685, 1998; Dobson, Cox, SIAM J Appl Math 
59(6):2108–2120, 1999). The usage of optimization algorithms in inverse design 
has dramatically enhanced researchers’ capability to explore the enormous design 
possibilities beyond traditional devices built upon elements in regular shapes and 
simple arrangements. ML, particularly DL, provides an alternative route of design 
optimization to novel nanophotonic devices in demand (Yao et al, Nanophotonics 
8(3):339–366 (2019); Wiecha, et al, Photonics Res 9(5):B182–B200, 2021; Jiang 
et  al, Nat Rev Mater 6(8):679–700, 2021; Ma et  al, Nat Photonics 15(2):77–90, 
2021). Compared to conventional optimization techniques, which by following pre-
defined search rules approach the final design from an initial guess stepwise through 
iterative cycles of simulation and fitness evaluation, DL-based design methods uti-
lize the data from many simulations in advance and iteratively feed them into the 
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DL model to improve its performance. This optimization process is essentially the 
training we talk about in the last chapter.

Concerning the necessity of using DL for photonic inverse design and the perfor-
mance of this method in comparison to that of advanced optimization techniques, 
there are no simple answers in a general sense. Nonetheless, some critical compari-
sons have been made in the literature, e.g., in [1, 2]. On the one hand, it is important 
to keep in mind that when the same simulation tool is deployed for data generation 
and fitness evaluation, data-driven design methods cannot outperform iterative opti-
mizations without a constraint of time. Additional errors are inherent to ANNs. For 
a not very large number of design tasks, it is typically much more efficient to 
approach better designs by running additional iterations of optimization than spend-
ing the same computation power on supplementing the training data [1]. On the 
other hand, DL-based design methods do have the advantage that once fully trained, 
ANNs can produce designs almost instantaneously, usually in the order of a few 
milliseconds, which is negligible compared with the time needed for completing 
even a single simulation. Therefore, for applications which involve heavily repeti-
tive design tasks based on a common dataset, DL-based design methods can still 
serve as useful tools alternative to optimization techniques.

In this chapter, we discuss the application of DL to inverse design of nanopho-
tonic structures and devices. The main purpose is to bring the reader a brief idea 
about one possibility that how the basic concepts introduced in the preceding chap-
ters from two distinct disciplines can be connected. For the latest progress in this 
research direction as well as the utility of sophisticated DL models, we refer inter-
ested readers to some excellent review articles [1–6]. We would also like to remind 
the reader that, although not among the foci of this chapter or this book, advanced 
nanophotonic optimization techniques such as topology optimization (TO) have 
been critically discussed, reviewed, or systematically introduced in several classic 
works [7–10].

4.1  Inverse Design and Non-uniqueness Problem

We start by formulating nanophotonic inverse design. A nanophotonic structure or 
device can be associated with two types of characteristics by nature [2]. The first 
type contains variables that define the structure. The geometry and material proper-
ties of any components and the configuration of the incident light are the most com-
mon variables, known as design parameters. The second type is formed by variables 
which describe the optical responses of the structure. Examples of this type, which 
could vary across different applications, include the transmission (or reflection, 
absorption, scattering, extinction, etc.) behaviors or propagation properties (i.e., 
band structures [11]) over a certain wavelength range, the local field distributions or 
quantities derived from them (e.g., optical chirality [12] and nonlinear signals [13]), 
and far-field characteristics like radiation/scattering patterns, to name a few 
(Fig. 4.1). For the convenience of discussion, hereafter we denote design parameters 
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Fig. 4.1 Design parameters (left) and optical responses (right). Left: A nanophotonic structure can 
be described by parameters (x) in several categories, including geometry such as the dimensions of 
individual building blocks and layout of their assembly, the material properties of each element 
and the environment, and configurations of the incident light such as frequency, polarization, and 
propagation direction. Right: The optical response (y) of a nanophotonic device, depending on its 
functionality, can be expressed by a spectrum, a near- or far-field distribution, a band structure, etc. 
Computing the responses y of a device described by given parameters x is known as the forward 
problem, whereas retrieval of x from y is the inverse problem. (Reprinted from [2] with permission 
from Springer Nature)

by the variable x and optical responses by y, and they each span a space termed 
design space and response space, respectively.

It might be trivial but still necessary to point out that there exists a mapping 
between design parameters x and optical responses y. For any given structures and 
excitation conditions, one can always determine the responses of interest by simula-
tions and/or measurements, a process of solving the forward problem. Accordingly, 
inverse design is to solve the inverse problem, which is defined in the reverse direc-
tion and seeks to find structures for known or desired responses. The history of 
applying DL to solving electromagnetic problems is just as long as that with opti-
mization techniques. Early attempts were made in the 1990s for microwave devices 
[14–21], followed by some for photonic crystals [22–24] (Fig.  4.2). The recent 
interests from the nanophotonic community are largely enabled by the tremendous 
development of DL and computation power during the past decade [2]. Essentially, 
DL is applicable to solving both forward and inverse problems. As the reasoning of 
its usage in inverse design has been explained in the introduction, now we only take 
a quick look at the forward problem. Traditionally, unless in exceptional cases 
where analytical solutions can be derived, the optical responses of a structure are 
modeled by using various simulation and numerical methods, such as finite- 
difference time-domain (FDTD), finite element method (FEM), boundary element 
method (BEM), finite integration technique (FIT), coupled dipole approximation 
(CDA), rigorous coupled wave analysis (RCWA), etc. These methods solve 
Maxwell’s equations by discretizing the structures and their responses spatially and 
temporarily, resulting in a huge number of nodes and associated degrees of freedom 
that are computationally costly. DL is useful in this case, because once a model 
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Fig. 4.2 Timeline of forward modeling and inverse design of electromagnetic devices based on 
ANNs, starting in the 1990s for microwave systems and running to the present for nanophotonic 
devices. Focus is given to recent years and on nanophotonic devices within the scope of this book. 
Items in regular/italicized text denote the use of ANNs for solving inverse/forward problems. 
Boxes with dashed outlines indicate hybrid design frameworks combining DL and optimiza-
tion methods

learns the mapping from x to y for a group of structures, it can predict the responses 
much faster and serve as a surrogate simulator [25]. Note again that in terms of 
accuracy, DL models cannot outperform the original simulation method used to 
generate the training data [1].

Training a DL model as a surrogate simulator is typically much easier than train-
ing one for inverse design. The key factor determining this difference is the so-
called non-uniqueness problem in the mapping from optical responses to design 
parameters. When solving a forward problem, the results are determinant. Every 
structure uniquely corresponds to one certain response. However, it is not rare that 
the same response comes from multiple different structures. To see this, let us con-
sider a simple example of light scattering by nanoparticles. When the scattering 
spectra from two particles, which could differ in size, shape, material, or other prop-
erties, are overlaid, if there is any intersection between the two spectra, at that wave-
length the scattering intensity has at least two possible sources. This one-to-many 
mapping or degeneracy of solutions causes confusion of standard ANNs during 
training. The consequence is the models will either have difficulty in converging or 
learn incorrect mapping between x and y. One may argue that the two spectra can 
still be considerably different if the comparison is made over a wavelength range, 
not just at a single wavelength. Indeed, the above example is extreme and oversim-
plified. Optical responses in the form of high-dimensional data are less likely to 
totally overlap for different structures. Nonetheless, in most problems in nanopho-
tonics, the design space and response space are both vast enough, where cases of 
very close optical responses coming from distinctly different structures often exist.

A variety of methods have been proposed to tackle the non-uniqueness problem 
in inverse design [1, 2]. Figure  4.3 presents a nice illustration summarized by 
Wiecha and coworkers [1]. For the ease of understanding, we reform the above 
example slightly in Fig. 4.3a, where the optical response is the extinction over a 
narrow range of wavelengths, and the design parameter is specified to the length of 
a gold nanorod. On the right panel, it is obvious that the mapping from extinction to 
the rod length (blue curve) is multivalued. As mentioned earlier, standard ANNs 
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Fig. 4.3 Non-uniqueness problem in inverse design and possible solutions. (a) Non-uniqueness 
arises when a response corresponds to multiple sets of design parameters within a given precision. 
This “one-to-many” mapping could confuse the ANNs in reaching convergence, resulting in non-
physical designs that do not coincide with any of the ground truths. (b) Tandem architecture. (c) 
Mixture density networks. (d) Conditional generative adversarial networks (cGANs) or autoen-
coders (cAEs). In (c) and (d), degenerated designs are coded in different colors. G generator, fwd 
forward simulator, D discriminator. (Reprinted with permission from [1] under a Creative 
Commons Attribution 4.0 International License (CC BY 4.0))

suffer from difficulty of convergence and fail in the attempt to suggest correct 
designs. A simple yet effective solution to non-uniqueness problem is cascading two 
ANNs in a tandem architecture [26], as shown in Fig. 4.3b. The tandem network 
contains a pre-trained ANN forward simulator, whose weights are fixed during the 
training of the other ANN for inverse design. The role of the pre-trained simulator 
can be understood in the following way: When the design network stands alone, the 
training is to minimize the error between the labeled ground truth designs and the 
model’s prediction. With one-to-many mappings in the training data, designs cor-
responding to the same response lead to conflicting directions of improvement. By 
attaching a simulator to the output layer of the design network, the training takes a 
different loss function, which computes errors not between designs but responses. 
Because the design-to-response mapping is one-to-one, the simulator excludes all 
the other designs, even if they have a very close or identical response to the current 
prediction. By doing so, a tandem network has no trouble in reaching convergence 
and can make predictions correctly. The drawback, however, is that only one design 
of the many possible candidates can be obtained; the others are made inaccessible 
by the surrogate simulator.

Mixture density networks represent another logic for solving the problem 
(Fig.  4.3c) [27]. Instead of modeling each design parameter as a discrete value, 
MDNs use multiple Gaussian distributions [28], a softer treatment to evaluate the 
fitness of the possible designs. The probabilistic nature of MDNs ensures easy con-
verge in the presence of degenerated solutions, which in principle are all accessible 
with different likelihoods. There are also a few limitations. First, the outputs of an 
MDN for inverse design are probability distributions of the design parameters. 
Usually, one still needs to sample these distributions to get the final design, and 
simply taking values from the most prominent peaks does not necessarily give the 
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best performance. Second, the complexity of an MDN has a strong dependence on 
the choice of its multimodality. For instance, when the degree of degeneracy of 
solutions is unknown and the user does not want to miss any possible designs, using 
a large number of Gaussian components increases the models’ complexity. Similarly, 
if the user describes the vector of N design parameters with an N-dimensional mixed 
Gaussian distribution, not N independent one-dimensional Gaussians, the imple-
mentation of the network will be considerably more complicated [29].

Other popular solutions to the non-uniqueness problem are cGANs [30] and con-
ditional autoencoders (cAEs) [31, 32]. Taking the former, for example, a cGAN also 
contains two parts, a generator and a discriminator (or, according to some authors, 
a critic), as shown in Fig. 4.3d. The unique feature of the generator, compared with 
the standard ANNs for inverse design, is the introduction of an additional latent or 
noise vector at the input layer, sampled randomly from a predefined latent distribu-
tion (e.g., a Gaussian); the output designs thus follow a distribution conditioned on 
the input responses. The randomness of latent vectors makes the network probabi-
listic rather than deterministic and helps to tackle the troubles arising from degener-
ated solutions. Meanwhile, the discriminator serves as a “trained loss” [1], as it 
takes as inputs the generated designs and true designs from the training set and tries 
to distinguish the former from the latter. cGANs do not have the limitations of 
MDNs, but their training is sometimes quite sensitive to the choice of 
hyperparameters.

4.2  Photonic Multilayer Structures

4.2.1  Planar Multilayer Stacks

As discussed earlier, DL-based inverse design is advantageous in applications which 
contain a large amount of repetitive design tasks based on a common dataset. 
Closely related to thin-film optics and friendly for data generation, planar multi-
layer stacks constitute a class of photonic structures particularly suitable for testing 
DL algorithms [33–35]. With increasing attention and research efforts attracted, 
multilayer structures have the potential to be used for creating a large dataset for 
photonic inverse design, just like the MNIST database for image processing. Before 
proceeding to more sophisticated nanophotonic devices and DL algorithms, we 
explain for starters the usage of basic DL models in the inverse design of multilayer 
structures. Although some concepts have been described in the earlier discussion, a 
walk-through with examples further breaks them down and makes each part easier 
to understand.

Let us first consider the simplest scenario, a fully connected neural network 
being used for solving electromagnetic problems. Figure  4.4 illustrates how the 
network and data are configured for the forward (left) and inverse (right) problem of 
multilayer structures [26]. For simplicity, the ANN has only one hidden layer, 
although practically there are usually a few more. In this example, the multilayers 
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Fig. 4.4 Fully connected NNs for solving electromagnetic problems based on multilayer struc-
tures. Left: A forward modeling network (simulator) with one hidden layer. Design vector   
comprised of thickness values for m layers is mapped to the response vector  , which is the 
transmission spectrum discretized into n points in the frequency domain. Right: An inverse design 
network with one hidden layer. Response vector   is mapped to the design vector  . Circles in 
blue and red denote neurons associated with design parameters and optical responses, respectively

are supposed to consist of two dielectric materials stacked alternatingly up to m lay-
ers, so the design parameters are the layer thicknesses d1, d2, …, dm, forming an 
m-dimensional design vector D. The optical response is chosen to be the transmit-
tance at normal incidence over a frequency band, and the continuous spectra are 
each discretized into n points, resulting in the n-dimensional response vector R = (r1, 
r2, …, rn). In principle, with a sufficient amount of data, i.e., paired structures and 
their transmittance spectra, the forward modeling network and inverse design net-
work can be trained separately, with the input and output data reversed.

In practice, the forward modeling network (or surrogate simulator) is very effec-
tive, thanks to the one-to-one mapping from design to response. Actually, except 
that the input design parameters sometimes need reformatting (e.g., from patterns/
tensors to vectors) first through convolutional layers, fully connected NNs are 
always the choice for solving forward problems. However, for a naive design net-
work, the influence of non-uniqueness problem is overwhelming. Not only will the 
convergence of its training be struggling, but frequent and significant inconsistency 
between the ground truths and predictions will occur. An example of unsuccessful 
design is shown in Fig. 4.5a. The target response comes from a randomly chosen 
20-layer stack composed of alternating silicon dioxide (SiO2) and silicon nitride 
(Si3N4) thin films. The response of the retrieved design, due to the model’s poor 
efficacy, is nevertheless nothing like the ground truth. Without employing complex 
networks, the simplest way to resolve this issue with standard ANNs is cascading 
the design network and a pre-trained modeling network in a tandem architecture. 
While the working principle has been explained above with Fig.  4.3b, Fig.  4.5b 
shows how the two ANNs are actually connected [26]. Because the two networks in 
Fig. 4.4 have reversed structures at the input and output layers, the cascading is just 
straightforward with no need for additional adaption. The tandem network is proved 
to be effective in overcoming the non-uniqueness problem. Successful retrieval of 

4.2 Photonic Multilayer Structures



120

100

80

60

40

20

0
0.15

(a) (b)

(c) (d)

0.2 0.25

r1

R D R

r2

r3

r1

r2

r3

0.15 0.2

Frequency [c/a]

Frequency [c/a]

Frequency [THz]

Intermediate layer M

Pretrained forward modeling network
T

ra
ns

m
is

si
on

 [%
]

T
ra

ns
m

is
si

on
 [%

]

T
ra

ns
m

is
si

on
 [%

]

0.25

Target response
Design response

Target response
Design response

Target response
Design response

300 450 600 750

80

100

60

40

20

0

80

100

60

40

20

0

Fig. 4.5 Tandem networks for overcoming non-uniqueness problem. (a) Direct use of naive ANNs 
for inverse design leads to substantial discrepancies between target response and the response of 
the inversely designed structure. (b) A tandem network consisting of cascaded inverse design net-
work and pre-trained forward modeling network. (c, d) Designs by the tandem network for a target 
response from the test set (c) and for a hypothetical target response (d). (Reprinted with permission 
from [26]. Copyright (2018) American Chemical Society)

20-layer designs for a test example and for a hypothetical response that is artificially 
created is presented in Fig. 4.5c, d. One thing worth mentioning again is that the 
retrieved design in Fig. 4.5c is not necessarily similar to the ground truth design. 
Tandem networks evaluate each prediction based on the fitness of its response. 
Therefore, the suggested design output by the intermediate layer is one of the degen-
erated candidates equivalent to the original one (including itself).

Next, let us move on to MDNs and see how they deal with the same design task. 
At this moment, we raise the requirements on device performance a little bit. In the 
last case, the example spectra are random, with no obvious connection to functional 
devices. Now, we will test whether DL algorithms can produce something useful 
and how well they can do the job as compared to other inverse design approaches. 
Figure  4.6a depicts a tandem architecture which combines an MDN for inverse 
design (left) and a simulator for optimization (right) [29]. Leaving the simulator 
apart, the MDN differs from the previous fully connected NNs mainly on the output 
end. While the input data, the optical responses R, are still vectors of discretized 
reflectance spectra, the output values are not the thicknesses of all the layers but the 
parameters defining the probability distributions of the thickness ranges. For a 
20-layer structure composed of 2 alternating materials, the output of MDN 
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Fig. 4.6 (a) A mixture density network for inverse design of multilayers (left) is combined with a 
simulator (right) in a tandem architecture for enhanced performance. (b) Histogram of response 
RMSE before and after optimization. (Adapted from [29] with permission of Walter de Gruyter)

corresponds to 20 independent sets of mixed Gaussian distributions, which are illus-
trated on the lower left of Fig. 4.6a as overlaid layers. The probabilistic nature of 
MDNs ensures the training will not be confused by non-unique mappings in the 
dataset and enables access to infinite candidate designs subject to sampling of the 
Gaussian distributions. If an MDN is trained properly, a naive design simply taking 
the thickness values from the most prominent peak for each layer can already pro-
duce designs with moderate accuracy. To take full advantage of MDNs, some resa-
mpling rules have been introduced to form a combined design-optimization 
framework. As sketched in Fig. 4.6a, when organized in a tandem architecture, an 
MDN and a surrogate simulator work jointly to improve design accuracy through 
iterations of evaluation and resampling with the guidance of mixture probability 
distributions (Fig. 4.6b).

In thin-film optics, 20-layer structures are sophisticated enough to create some 
desirable optical responses for applications. One representative example is known 
as the distributed Bragg reflector (DBR) [36, 37], which features a flat high- 
reflection band spanning tens or hundreds of nanometers and is widely used as mir-
rors in optical cavities. The unusual response of DBRs is not surprising to optical 
scientists and engineers [38]. The underlying physics is as trivial as the constructive 
interference of the partial waves reflected from every interface of the multilayers, 
which can be achieved if the thicknesses of the layers are tuned based on their 
refractive indices to be one quarter of the wavelength. For a stack of alternating 
materials, this leads to a periodic structure. Noticing it or not, what we just explained 
is a process of intuition or physics-based design. But can DL algorithms do it better, 
or at least equally well? The answers to these questions are crucial to justify the 
usefulness of DL-based methods for inverse design.

Figure 4.7 compares the responses and design parameters of a target DBR and a 
design produced by the MDN-based tandem optimization framework. Given the 
fact that in the training data containing 828,000 samples (70% for training), no 
information about periodicity is included at all, the results are quite encouraging. 
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Fig. 4.7 (a) Comparison of the target reflection spectrum of a 20-layer DBR and the responses of 
an inversely designed multilayer structure. (b) Comparison of layer thicknesses for the target DBR 
(horizontal lines) and the retrieved design (columns). The two materials used are magnesium fluo-
ride (MgF2) and tantalum pentoxide (Ta2O5). (Used from [29]  with permission of Walter de 
Gruyter)

The challenge can be further extended. Standard DBRs have a limited bandwidth, 
which is determined by the materials used for construction. In the frequency domain, 
the width of the high-reflectance zone ∆f is given by [35]
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where f0 is the central frequency and nH and nL are the refractive indices of the high- 
and low-index layers, respectively. Extending the width of the high-reflectance zone 
is a task of practical concern. Intuition-based design strategies suggest solutions 
which contain two DBRs with reduced number of layers and offset central frequen-
cies, plus a spacer in between and an optional cladding layer on the top [35]. Again, 
the MDN-based tandem optimization network manages to retrieve the design, as 
shown in Fig. 4.8. Additional tests on hypothetical broadband responses have also 
been demonstrated in [29].

Noticeable research efforts, using DL or DL-assisted frameworks, have been 
seen around the design of planar multilayer structures. From the optical side, other 
than ordinary responses such as transmission and reflection, inverse problems for 
topological states have been discussed in layered structures [39]. In parallel, 
attempts are being made to find better solutions of filters for thermal applications, 
where a broader wavelength range, a larger material library, and more layers of 
stacks are involved [40–43]. From the other side of data science, the training effi-
ciency for photonic inverse design is also in study [44]. Despite the simple geome-
try, multilayer structures could serve as a modal system for testing DL-based design 
methods.
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Fig. 4.8 (a) Comparison of the target spectrum of a 20-layer reflector with extended high- 
reflection zone and the response of an inversely designed multilayer structure. The target device 
contains two nine-layer periodic sub-stacks, with a spacing layer in between and a cladding layer 
on the top. (b) Comparison of layer thicknesses for the target reflector and the retrieved design. 
(Used from [29] with permission of Walter de Gruyter)

4.2.2  Multilayer Core-Shell Nanoparticles

Similar to multilayer thin films, the optical responses of core-shell particles can be 
analytically derived. Although many-layered nanoparticles do not have traditional 
applications at the industrial level as their thin-film cousins do, the interesting prop-
erties they possess are inspiring for new opportunities in, e.g., solar cells, radiative 
cooling [45], and optical cloaking [46]. The inverse design of multilayer core-shell 
nanoparticles can be done with no doubt using the algorithms introduced above, but 
here we would like to discuss another possible way in which DL models can be used 
for design purposes.

As a schematic, Fig. 4.9a illustrates the structure of a three-layer nanoparticle 
and a fully connected NN. With the previous preparation, it is easy to recognize this 
NN functions as a surrogate simulator for computing the optical responses of the 
particles. In some early attempts of inverse design in electromagnetics, the usage of 
NNs is limited to solving the forward problem to accelerate the optimization pro-
cess [20], during which the most time-consuming part is the simulations performed 
by electromagnetic solvers such as FDTD, FEM, FIT, etc. To some extent, the role 
of the pre-trained simulator in tandem networks is the same. In addition to this 
hybrid strategy and the inverse design NNs, interestingly, a surrogate simulator can 
be operated reversely as an optimizer [47], providing the third way that a NN can be 
used for inverse design. The mechanism of this working mode is based on back-
propagation. During the training of the simulator, weights are iteratively adjusted 
through backpropagation to reduce the error between the target responses and pre-
dicted responses. For inverse design, the error still measures the distance to the tar-
get responses, but the weights are fixed. Therefore, the variables being updated are 
the design parameters at the input layer, driven essentially by a gradient-descent 
search. Figure  4.9b compares the design results for an eight-layer nanoparticle 
made of alternating shells of titanium dioxide (TiO2) and SiO2. Whereas the 
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Fig. 4.9 (a) A fully connected NN as a simulator for the scattering of multilayer core-shell 
nanoparticles. (b) Gradient-based inverse design for an eight-layer core-shell nanoparticle (red 
dotted line), in comparison to the target spectrum (blue line) and a design based on interior-point 
optimization (black dashed line). Dimensions of the eight layers (unit: nm) by different methods 
are given in the legend. (Reprinted from [47] with permission. Copyright (2018) The Authors, 
some rights reserved; exclusive licensee American Association for the Advancement of Science. 
Distributed under a Creative Commons Attribution-NonCommercial License 4.0 (CC BY- NC 4.0))

gradient-descent method appears very accurate, another nonlinear optimization 
based on interior-point methods shows noticeable inconsistency. A noteworthy limi-
tation of this gradient-descent method is the final result highly relies on the initial 
guess: it can be one of the degenerated solutions if non-uniqueness is present, or it 
can get trapped at an undesired local optimum and does not suggest any correct 
design. When the latter happens, the design needs to start over with a new initial 
guess [2].
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So far, our examples only contain geometric parameters (film/shell thicknesses) 
in the design vector. It is natural to wonder whether and how other aspects of the 
inverse problem, as named in Fig. 4.1, can be dealt with by DL models. In a study 
of MDNs for multilayer design, the angle of incidence has been added to the design 
vector [27]. Later we will also see an example of metasurface where the polarization 
of the incidence is taken as a design variable [49]. Figure 4.10 shows another design 
task for multilayer core-shell particles [48]. A particularly interesting part is, in 
addition to the shell thicknesses, the materials of the core and shells are to be 
selected from a group of candidates as well. The complete network has a structure 
similar to the tandem architecture (Fig.  4.10b), where an intermediate layer of 
design parameters connects the inverse design module and the forward modeling 
module, but neither of the modules is pre-trained. In the design vector, the labels of 
material types are treated with no difference from shell thicknesses despite their 
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Fig. 4.10 (a) Schematic of a three-layer core-shell nanoparticle made of three different materials. 
(b) An inverse design network in which geometric parameters (t1–t3) and material types (m1–m3) 
are simultaneously encoded in the design vector. (c) Target spectra (solid curves) and predicted 
spectra (dashed curves) for ED (red) and MD (black). Inset: Far-field pattern showing directional 
scattering at the wavelength of 600 nm. (Reprinted with permission from [48]. Copyright (2019) 
American Chemical Society)
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different natures. Nonetheless, the loss function does need adaptions to have a prop-
erly weighted evaluation of errors from the predicted responses, shell thicknesses, 
and identification of materials. The training of this network turns out to be sensitive 
to some coefficients in the loss function, and it is not clear yet whether this can be 
avoided by using a tandem network. Figure 4.10c shows the design of a three-layer 
nanoparticle with spectrally overlapped ED and MD under the excitation of a lin-
early polarized plane wave. Although the desired spectra are hypothetical, the 
design captures the major features of interest. With close magnitudes and phases 
near the wavelength of 600 nm, the ED and MD of the nanoparticle fulfill the first 
Kerker condition, giving rise to directional scattering in the forward direction.

4.3  Metasurfaces

The diversity of the structures and functionalities of metasurfaces implies more 
powerful tools to be used for inverse design. When the building blocks are resonant 
particles in regular shapes, the metasurface design can be described by a set of 
parameters [50–54], and the complexity, if estimated merely by the dimension of 
the design vector, is not necessarily higher than that of a thin-film structure with 
many layers. In this case, the design can be performed in a fashion like what have 
been discussed above, where networks produce deterministic outputs.

The recent interests in applying DL to photonic inverse design were probably 
inspired, at least partially, by an attempt to design metasurface-like plasmonic nano-
structures via DL (Fig. 4.11) [49] (the early version was posted on arXiv in February 
2017). The function of the target nanostructures is not phase-related like beam shap-
ing or steering, but conceptually closer to that of thin films to produce desired spec-
tral features in transmission, except that the responses of nanostructures can be 
polarization-dependent. Despite the different physical mechanisms leading to the 
spectral features (interference for thin-film structures versus resonances for nano-
structures), data-driven design methods do not treat them very differently. 
Figure 4.11a shows the architecture of the network comprising cascaded inverse and 
direct networks. At the input layer, two sets of spectra for horizontal and vertical 
polarizations and material types are fed into three parallel group layers, followed by 
fully connected layers to predict the designs. Eight geometric parameters are used 
to describe the nanostructure in the shape of letter H. And again, the subsequent 
simulator is a fully connected NN, making predictions about the transmission based 
on received geometry, material types, and indicators of the polarization. The reso-
nance behaviors of H-shaped particles, compared with those introduced in Chap. 2, 
are markedly more difficult to comprehend for a human. One with knowledge of 
nanophotonics at some level might be able to deduce some of the possible ingredi-
ents like detuned ED modes in the asymmetric vertical arms and MD modes from 
the SRR-like super- and substructures. However, these are not informative enough 
to guide the design effectively, which conventionally is accomplished with a 
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Fig. 4.11 (a) A fully connected NN for designing plasmonic metasurfaces. The H-shaped plas-
monic unit cell is characterized by eight parameters, of which five denote the existence of the legs 
by a binary number (0/1) and three define the leg lengths and the tilting angle of leg 1, respectively. 
(b, c) Results of inverse design for spectra of two different samples shown in the insets. Insets: 
SEM micrographs of fabricated samples. (Reprinted from [3] (for an adapted version of panel (a)) 
with permission of Springer Nature and from [49] (for all panels) under a Creative Commons 
Attribution 4.0 International License (CC BY 4.0))

thorough parameter sweep and, if needed, assisted by gradient-descent or other 
optimizations.

Unlike most demonstrations that are purely numerical, the work by Malkiel et al. 
further tested the model with measured spectra of fabricated samples. Results for 
two representative devices are shown in Fig. 4.11b, c. Considering that each spec-
trum is only discretized into 43 data points, the accuracy of the retrieved designs is 
reasonably good.

4.3 Metasurfaces

https://creativecommons.org/licenses/by/4.0/
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Going beyond structures in regular shapes proves an effective way to achieve 
better or even unprecedented device performance. Many successful examples in 
photonic crystals and circuits have been demonstrated by using advanced optimiza-
tion techniques [7], ending up with very irregular and nonintuitive design patterns. 
Metasurfaces provide a suitable stage for DL to join the competition. For this type 
of tasks, the design layouts are usually processed as image data by convolutional 
and transposed convolutional layers. Compared with flattening discretized images 
into vectors, this significantly reduces the number of required weights in the net-
work, making the training much more manageable, and allows for better learning of 
high-level features in the design layouts. Nonetheless, given the vast design space 
and non-uniqueness problem, simply stacking (transposed) convolutional layers 
into a tandem architecture is often inadequate to survey the design space thoroughly 
and efficiently. Instead, generative models with stochastic components (e.g., GANs 
and VAEs) are superior options, which offer dramatically enhanced capabilities of 
learning rich distributions in image data and suggesting designs that contain com-
plex topological features. There is, of course, no restriction on applying generative 
models to devices described by discrete parameters. Here, we just shift our focus to 
free-form metasurfaces.

Figure 4.12 sketches the architecture of a cGAN for photonic inverse design, 
which is similar to the structure in Fig. 4.3d but includes a pre-trained simulator to 
evaluate the optical responses of the generated patterns. The loss function used to 
train the generator is therefore modified to account for errors from both the critic 
and simulator. Because the inputs and outputs of the three networks have different 
data structures, fully connected layers (for spectra and true/false) and convolutional 
layers (for discretized images) are used at the ends, with hidden (fully connected, 

Fig. 4.12 Structure of a cGAN for photonic inverse design. A pre-trained simulator is added to the 
generator-critic system. During training, weights in the generator are updated through backpropa-
gation of the losses defined by the simulator and critic, while the critic itself uses the loss following 
the Wasserstein GAN. (Reprinted with permission from [30]. Copyright (2018) American Chemical 
Society)

4 Deep-Learning-Assisted Inverse Design in Nanophotonics



129

(transposed) convolutional, pooling) layers properly configured and ordered 
between them. Figure 4.13a compares a few representative patterns from the test 
dataset and the corresponding patterns produced by the cGAN. Noticeably, the gen-
erated patterns highly resemble the original ones, not only in shape but also in their 
polarization-resolved responses (Fig. 4.13b, c). More interestingly, when the model 

Fig. 4.13 (a) Test patterns (upper row) and corresponding generated patterns (lower row) for a 
cGAN trained on a predesigned class of geometry data. (b, c) Polarization-resolved transmittance 
of a test sample (b) and of the generated pattern (c). Results are achieved when the critic is trained 
on the data of the elliptical class. (d, e) Same as (b, c) but for a model trained on a modified MNIST 
database. The network generates a modified “3” to best replicate the spectra for pattern “5,” which 
was removed intentionally from the training data. (Reprinted with permission from [30]. Copyright 
(2018) American Chemical Society)
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is tested with patterns from a class of geometric data not seen during training, it can 
still suggest alternatives that have similar optical responses. A demonstration is pre-
sented in Fig. 4.13d, e. When the cGAN was training on a modified MNIST data-
base, the class of digit 5 was intentionally excluded. However, upon receiving the 
spectra of a metasurface composed of an array of unit cells in the shape of 5, the 
network retrieves a design with digit 3. From the human perspective, there are some 
similarities in the geometric features of these two digits, which nonetheless are very 
unlikely to guide any intuition-based design. cGANs learn the implicit mappings 
between geometric features and optical responses. Not being distracted by the con-
cepts of “digits” or “letters,” they derive the design layout simply based on the 
implicit information.

VAEs can be used in a similar fashion. One example is shown in Fig. 4.14 [31]. 
Different from standard autoencoders employed in an earlier work for dimensional-
ity reduction to alleviate the non-uniqueness problem [52], VAEs as generative 
models solve it by inclusion of a latent space between the encoder and decoder. In 
essence, the architecture of the conditional VAE in Fig. 4.14 can be understood by 
analogy with the case of cGAN in Fig. 4.12. The generation model functioning as 
the decoder takes optical responses and sampled latent variables as inputs to recon-
struct the patterns encoded in the latent space by the recognition model. Although 
there is no discriminator to trick with, the reconstruction error needs to be mini-
mized during training the whole ensemble, by which the recognition model 
(encoder) gets optimized. Flexibility exists in the way of involving optical response 
data. Other than using pre-trained simulators as in the previous examples, it is trac-
table to integrate a prediction model (simulator) in the system and train the entire 
network in an end-to-end manner. Other strategies without using surrogate simula-
tors [55] or having an extra adversarial block [56] have also been used in recent 
works. One special feature of VAEs for inverse design is that the structure of the 

Fig. 4.14 Architecture of a conditional VAE for metasurface design. The recognition model (green 
box) encodes the input patterns of meta-atoms with their optical responses generated by the predic-
tion model (blue box) into a multivariate latent distribution, which is then sampled to provide latent 
variables to the decoding part, i.e., a generation model (orange box) conditioned on the predicted 
spectra. (Reprinted with permission from [31]. Copyright (2019) Wiley)
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latent space, where representations of the device patterns are encoded, can be visu-
alized using dimensionality reduction techniques such as t-SNE. This could provide 
possibly interpretable insights to understand the generated designs [31, 57].

4.4  Photonic Structures with Chiroptical Responses

In Chap. 2, we introduced metasurfaces and emphasized their 2D nature, which is 
manifested by subwavelength-sized and spaced optical antennas on a single inter-
face. As research on this topic advances, novel phenomena and applications based 
on devices consisting of more than one layers of antenna arrays have been demon-
strated. Albeit the resulting increase of device thickness may not change the domi-
nant role of abrupt phase jumps and critical coupling over the propagation effect, it 
sometimes blurs the boundary between metasurfaces and metamaterials. For our 
context, neither sticking to a certain preference of classification (and use of termi-
nology) nor forcing such devices into one of the two categories case by case is 
necessary. We simply treat these “layered metasurfaces” or “ultrathin metamateri-
als” as photonic structures and, in the following, discuss their connections to chirop-
tical responses.

Chirality is intrinsically a 3D property. A truly planar structure is achiral, because 
it will be superimposable on its (in-plane) mirror image if the plane it lies on is 
flipped over. Practically, nevertheless, planar chiral structures are made possible for 
several reasons [59]. To name a few, fabrication imperfections always render planar 
elements asymmetric in the thickness direction, the presence of a substrate breaks 
the out-of-plane mirror symmetry, and extrinsic chirality can be induced by oblique 
incidence [60]. Despite all these enabling factors, 3D nanostructures like helices 
with intrinsic chirality are generally believed to have stronger chiroptical responses, 
restricted only by the fabrication complexity. As discussed in Chap. 2, stacking lay-
ers of planar resonant building blocks provides an alternative pathway to creating 
strong chiroptical responses while retaining the ease of fabrication. The key to suc-
cess is the judicious design of the structures, which needs to deal with the reso-
nances of unit cells and their interactions in a more sophisticated way.

Figure 4.15 summarizes an interest attempt made by Ma et al. [58]. The chiral 
metamaterial shown in panel (a) comprises two layers of periodically arranged 
SRRs over a backplane. With the opening of SRRs in the bottom layer parallel to the 
lattice, chirality is introduced by twisting the orientation of SRRs in the top layer, 
giving rise to selective reflection of CPL. At a first glance, the design task seems to 
have nothing special. Because the device performance is characterized by the con-
trast between the reflection amplitudes for LCP and RCP incidence, one may expect 
that a tandem network or its equivalent would suffice. However, this idea is not well 
supported by Ma’s experiments. Using the primary network in Fig. 4.15b, where the 
polarization-resolved reflection spectra are processed by three parallel channels in 
the forward path, the simulator proves not effective in capturing resonant features 
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Fig. 4.15 (a) Schematic of a chiral reflect-array metasurface/metamaterial, which selectively 
reflects CPL of one handedness. Inset: Structure of a unit cell defined by five geometric parame-
ters. Two layers of gold SRRs with a twisting angle are stacked above a backplane, separated by 
dielectric spacers. (b) Structure of an ANN for designing photonic devices with chiral responses. 
The model combines a primary network (PN) and an auxiliary network (AN), which are stacked 
with the connection of two combiners. PN and AN operate independently to deal with the same 
design task based on polarization-resolved reflection and circular dichroism (CD) spectra, respec-
tively, and the results are mixed for further refinement by the two combiners. fc fully connected 
layer, (t)conv (transposed) convolutional layer. (Panel (b) is reprinted from [58] with permission. 
Copyright (2018) American Chemical Society)

(see Fig. 4.16a). To improve the predictive capability, an auxiliary network is trained 
to directly model the differential absorption of LCP and RCP (i.e., circular dichro-
ism (CD)) derived from the reflection spectra and is integrated with the primary 
network using an ensemble method [61]. The auxiliary network is also in the tan-
dem architecture, and as shown in Fig. 4.16b, it handles CD spectra with high preci-
sion, providing threshold information to the combiners for refining the results 
produced by the primary network. The combined network in Fig. 4.15b receives 
improved prediction accuracy, leading to not only on-demand inverse design of a 
certain type of chiral metamaterials (Fig. 4.16c, d) but also the discovery of some 
counterintuitive conditions that maximize the chiroptical responses.

It should be pointed out that the performance of NNs can be task specific. In the 
present case, although the discrepancy in the primary network’s output is attributed 
to the rarity of data points near the sharp resonances, a different model may totally 
resolve it without the help of an auxiliary network. For a given task, one usually 
begins by evaluating a few models and chooses the best one to fine-tune, whereas 
ensemble methods such as stacked generalization introduced in [62] are useful strat-
egies when single networks alone do not perform well enough.
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Fig. 4.16 Forward prediction (a, b) and inverse design (c, d) performance of the model in 
Fig. 4.15. In (a), results produced by the PN without AN (solid curves) are included for compari-
son. RL/RR/LL describes polarization-resolved reflection. The first letter denotes the handedness 
of the reflected light, and the second letter indicates that of the incidence. For cross-polarization 
conversion, RL and LR are equal in amplitude. In (b), the prediction is made by the AN. (Reprinted 
from [58] with permission. Copyright (2018) American Chemical Society)

4.5  Deep-Learning-Assisted Optimization for Inverse Design

While DL and optimization techniques have been compared extensively in the 
recent literature as two classes of approaches for inverse design, there is by no 
means any rule prohibiting their integration in a design framework. In fact, as the 
strengths and weaknesses of DL and conventional optimization are complementary 
on some measures (e.g., accuracy, computational cost, capability of searching 
global optima, etc.), it is rather interesting to work on the borderline where methods 
from both sides are combined so that even better performance can be achieved. In 
this section, we discuss two representative examples that showcase the joint efforts 
by DL and conventional optimization or, in particular, TO. The use of other optimi-
zation methods like generic algorithms can be understood similarly [63].

TO has proved a very useful tool for generating high-performance designs of 
photonic devices [7, 8]. It typically begins with a random distribution of dielectric 
functions, which is discretized with each pixel taking either the refractive index of 
a candidate material or that of air. This initial design is optimized through iterative 
evaluations of device performance (i.e., solving the forward problem), computation 
of gradients for directions of improvement, and updates of the device layout. Given 
the large number of design variables in the problem, determining the gradients with 
the brute force is computationally very expensive. This challenge, nevertheless, can 
be solved by using the adjoint method [8, 64–66], which employs only one 
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additional simulation in every iteration to determine the gradients, significantly 
reducing the computational cost. Without turning to the theory or formulation, here 
we outline the procedure briefly. For a given design task, an objective function F is 
defined based on some figure of merit, such as the field intensity at a specific loca-
tion or the efficiency of diffraction in a certain direction. The gradient of the objec-
tive function with respect to the local refractive index n(r) can be expressed by
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that involves two electric fields Eog and Eaj. The first field Eog is simply the solution 
of a direct simulation which evaluates the current design as solving a forward prob-
lem, and the other one, Eaj, is obtained from an “adjoint” simulation, where the exci-
tation is changed based on the function of the target device. For instance, if the device 
is to maximize the electric field intensity at a point r0, in the adjoint simulation, the 
current design is excited by an electric dipole at r0 [66]. With the gradient informa-
tion known from these two simulations per iteration, the refractive index profile n(r) 
can be adjusted constantly until it converges to a design with desired performance but 
no guarantee of global optimality [7]. When additional design suggestions are 
required, the whole procedure needs to start over with different initial guesses.

In general, for an inverse design task, although there is no provable guarantee of 
a globally optimal solution, applying global search techniques may result in a better 
chance of finding high-performance designs. One possible realization of such strat-
egies using DL was recently proposed by Jiang et al. for optimization of metasur-
faces [67]. Termed global topology optimization networks (GLOnets), the method 
combines adjoint-based computation with generative models. As depicted in 
Fig. 4.17a, the conditional GLOnet does not have a discriminator/critic or surrogate 
simulator like cGANs. Instead, a generator is connected to a module where physics- 
based gradients are calculated based on the adjoint method using an electromag-
netic solver. In other words, the network learns directly through simulations. This 
lifts the requirement of a training dataset. It is then important to see how a GLOnet 
differs from adjoint-based TO. In the current example, the target metasurface con-
sisting of silicon gratings deflects normally incident light of wavelength λ to the +1 
diffraction order at angle θ; see Fig. 4.17a for schematics of the direct and adjoint 
problems. When the device is discretized into m pixels, during the course of TO 
from iteration k to k + 1, the refractive index of the i-th element is updated following
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where E is the diffraction efficiency for the wavelength and angle pair and γ is a step 
parameter subject to tuning. This process applies to one device and takes place in a 
local region of the design space, which is determined by the initial layout of the 
dielectric functions. In contrast, promised by the nature of the generator, a conditional 
GLOnet optimizes a distribution of devices. During each iteration of training, the 
updates of weights take the efficiency gradient averaged over a batch of devices:
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Fig. 4.17 (a) Schematic of the conditional GLOnet optimizer, which combines a generator (left, 
blue box) and an adjoint-based process (right, orange box) providing physics-driven gradients. (b, 
c) Performance comparison of adjoint-based topology optimization (b) and condition GLOnet 
optimization (c). Plots for both methods are based on devices of the highest efficiency. For each 
cell that corresponds to a certain wavelength and angle combination, its value is taken from the 
best device out of 500 optimizations (each runs 200 iterations of forward/adjoint simulations) or 
500 designs generated by the network. (Reprinted with permission from [67]. Copyright (2019) 
American Chemical Society)
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Compared with optimizing individual devices from randomly generated initial lay-
outs with TO, conditional GLOnets allow for crosstalk between device instances 
seen during the whole training process. Moreover, mediated by the mapping from 
input noises z, the design space is sampled globally, which turns out to be effective 
in searching high-performance regions [67]. Figure  4.17b, c compares the best 
designs by TO and the GLOnet. While the latter produces better results for more 
wavelength and angle combinations, it consumes comparable or even fewer compu-
tational efforts: The total number of (direct and adjoint) simulations used for train-
ing the GLOnet is 2.5 million, which is about the amount for adjoint-based TO if 50 
devices are optimized for each wavelength and angle pair.

Another route via DL to enhancing optimization is to have the networks learn 
from optimized designs instead of randomly generated ones. Several successful 
attempts have been reported in this direction, such as training cGANs on a small set 
of topology-optimized high-performance designs of metagratings [68]. Starting with 
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structures already in some favorable regions of the design space helps to alleviate the 
data requirement of training, and the designs produced later by the trained ANN can 
be used to supplement the initial training set following various strategies [69]. Before 
closing this chapter, we introduce an example that shares the same spirit but contains 
new concepts of DL and of metasurfaces not covered in our discussion so far.

In the recent work by Kudyshev and coworkers, a different type of autoencoders, 
termed adversarial autoencoders (AAEs), was utilized in conjunction with TO for 
efficient optimization of nanophotonic devices [32]. Figure 4.18 shows the architec-
ture of an AAE, along with the design pipeline. The major new idea about AAEs is 
the introduction of a discriminative network, which is attached to a VAE and judges 
whether a sample is taken from a predefined model distribution (positive samples) 
or from the latent space of the VAE (negative samples). Therefore, an AAE can be 
understood as the combination of a VAE and a GAN, and its relationships to VAEs 
and GANs are discussed in detail in [70]. The design procedure proposed by 
Kudyshev et al. is similar to that used in [68], except that data augment is performed 
based on symmetry arguments and prior to training. With a moderate set of topology- 
optimized structures for the target function, the AAE network is trained for rapid 
generation of high-performance and topologically complex devices, which are then 
refined with TO or alternative techniques [32].

The optical function to be achieved by the metasurfaces is the idealized thermal 
emission. As illustrated in Fig. 4.19a, for photovoltaic cells that have a working 
band ranging from 0.5 to 1.7 μm, the radiation by an ordinary heater overlaps only 
a small portion of the band. To improve the efficiency of electrical power genera-
tion, the device needs to be optimized towards an ideal emitter whose emission 
spectrum fully coincides with the cell’s working band. According to Kirchhoff’s 

Fig. 4.18 Schematic of AAE-assisted TO for metasurface design. An AAE contains a VAE (top 
row) and an adversarial network (i.e., the discriminator) that guides the latent space to match a 
predefined model distribution (lower left). The AAE is trained on a training set of high- performance 
designs generated by TO, and upon completion of training, structures produced by the AAE are 
further refined. (Reprinted from [32] with permission of AIP Publishing)
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law of thermal radiation, the emissivity and absorptivity of an object are equal. 
Hence, developing an ideal emitter is practically equivalent to designing a perfect 
absorber operating over the same wavelength range. The mechanism and design 
principle of metamaterial and metasurface absorbers have been documented by sev-
eral nice reviews [71–73], but practically, it is still not a trivial task to find the exact 
structure for total absorption over a specific band with material constraints. The 
search is usually assisted by optimization techniques. For the present problem, the 
base structure for optimization is shown in Fig. 4.19b, where the top layer takes a 
simple form of a continuous thin film without patterning, and titanium nitride is 
used as an alternative plasmonic material due to its superior resistance to high tem-
peratures [74]. The performance of the devices generated by direct TO and AAE- 
assisted TO is compared in Fig. 4.19c, d. Noticeable improvement brought by the 
use of AAE can be observed in both statistics and for the best designs.

As a relatively new tool for photonic inverse design, DL has shown promising 
results in some applications and by certain measures. Despite the exciting ongoing 

Fig. 4.19 (a) Radiation of a thermal emitter corresponding to the blackbody emission spectrum at 
1800 °C (black curve), in comparison to the radiation of an ideal emitter (dashed blue curve) that 
perfectly overlaps the working band of a photovoltaic cell (gray region). (b) The base structure of 
a unit cell of the metasurface thermal emitter. Only the top layer is optimized. (c) Comparison of 
the statistics of 200 designs produced by TO and by AAE-assisted TO. (d) Comparison of the 
absorption/emissivity of the best designs (including a circular disk array) obtained by using differ-
ent methods. Inset shows the AAE-generated structure after TO refinement. (Reprinted from [32] 
with permission of AIP Publishing)
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progress, there remain a lot of open questions at different levels, ranging from, e.g., 
what other applications involving physics with high degrees of abstraction could be 
studied, how a suitable model can be determined for a given design task, whether 
establishing databases of photonic devices (like the MNIST database) is necessary 
and possible for testing design methods, to how new paradigms of inverse design 
can be developed based on existing DL and optimization techniques [75]. The 
exploration has just begun.
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Chapter 5
Deep-Learning-Enabled Applications 
in Nanophotonics

Abstract The data-driven nature of DL makes it well suited for exploring the enor-
mous design space in a different way than conventional optimization techniques do. 
Nonetheless, the possible usage of DL in optics and photonics can be much broader, 
going far beyond inverse design tasks. This chapter will focus on these applications. 
Specifically, we will discuss two types of problems: prediction of optical properties 
and interpretation of optical data. Examples are selected to feature representative 
DL methods and nanophotonic applications. The first two sections are dedicated to 
surrogate simulators, which, respectively, showcase the utility of transfer learning 
and the capability of rapid modeling of complex near fields in a variety of nano-
structures. Section 5.3 discusses the use of nanostructures for information encoding 
and its readout by an ANN.

5.1  Knowledge Migration by Transfer Learning

We start the discussion with a surrogate simulator used in scenarios similar to those 
in Sect. 4.2. As introduced earlier, the function of a surrogate simulator is to predict 
the optical responses for a class of nanostructures [1]. Having no concern of non- 
uniqueness in forward problems, the choice of DL model for building a surrogate 
simulator is as naive as a feedforward fully connected NN, and other than a handful 
of hyperparameters subject to tuning, there seems to have no reason for further dis-
cussion. Whereas it is true that training a surrogate simulator is a relatively simple 
task most of the time, the prerequisite condition of a sufficient data supply should 
not be forgotten. As seen in the last chapter, typically at least tens of thousands of 
samples are required for training to reach desirable performance. In many applica-
tions, generating or collecting such a large amount of data is not quite feasible or 
even possible. Taking inverse design, for example, the analytical solution of planar 
multilayers ensures that massive data generation is computationally cheap, but this 
is not the case for metamaterials and metasurfaces [2–6]. Moreover, a NN can only 
handle a very specific type of nanostructures. For instance, in Sect. 4.2, the number 
of layers and choice of materials are both fixed in each study. If one wonders if an 
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18- or 19-layer stack can totally resemble a 20-layer high reflector, or if a 21- or 
22-layer stack can further extend the high-reflection zone, the existing model trained 
for 20-layer thin films will have troubles in addressing these queries directly. A lazy 
yet somewhat painful solution is to train a different model for each number of layers 
at the cost of recreating new datasets, unless this factor is included in the design 
parameters.

On the other hand, from human intuition, adding or removing a few layers from 
a succession of thin films does alter the achievable optical responses but does not 
change the physical principles involved, which can be clearly seen from the formal-
ism of transfer matrix method [7–9]. Light is partly reflected at each interface of the 
multilayers in a fashion determined by the two materials forming that interface, and 
the total effect is just a consequence of interference. In other words, the problems of 
solving the optical properties of multilayer structures that differ in layer numbers 
are related. Some knowledge corresponding to the common underlying physical 
principles, although manifested in forms different from the analytical expressions, 
can likely be shared in DL implementations as well. And if applicable, this will 
significantly improve the sample efficiency of DL algorithms.

Transfer learning could provide a practical solution in this situation [11, 12]. 
Figure 5.1a illustrates the generic process, which takes place between two DL mod-
els. The first model aims at solving a problem for which a large dataset is available. 
Its training can be accomplished by following the standard workflow. The other 
model for a related task, by contrast, has very limited training data due to great 
expense of sample creation or collection, suffering a high risk of poor performance 
or overfitting. Transfer learning attempts to apply the knowledge gained during the 
training of the first model (source model) to the other one (target model), thereby 
improving the training of the latter. Going back to the example of multilayer thin 

target labelsSource labels

Source model Target model

Source task Target task

Source task

Transfer

Transfer

Target task

8-layer nanoparticle 8-layer film

8-layer film 10-layer film

Target data

small amount of
expensive
data/lables

Large amount of
cheap
data/lables

Source data

Transfer learned
knowledge

(a) (b)

Fig. 5.1 (a) Transfer learning between a source domain (left) and a target domain (right). 
Knowledge learned from a source model is used to ease or improve the training of a target model. 
The latter may suffer from a small dataset, leading to poor performance. (b) Examples of forward 
optical problems which transfer learning can be applied to. Upper row: Source and target tasks are 
similar, e.g., solving the transmittance of planar multilayer stacks with different numbers of layers. 
Lower row: Source and target tasks are of considerable difference, e.g., solving the scattering cross 
section of multilayer core-shell particles and the transmittance of planar stacks with the same 
number of layers. (Reprinted from [10] with permission. Copyright (2019) American Chemical 
Society)
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films, a well-trained surrogate simulator for a certain layer number can be used as a 
source to assist the training of simulators for structures with different layers, as 
shown in Fig. 5.1b. In a more general sense, knowledge transfer is possible between 
different physical problems, which arise from drastically different structures but 
exhibit optical behaviors governed by some common physical rules, such as scatter-
ing by multilayer core-shell particles and transmission/reflection of multilayer thin 
films [10].

The implementation of transfer learning is usually achieved by reusing some 
components of the source model in the target model. The portion of the reused parts 
in the entire model needs to be tuned, and the optimal strategy varies across differ-
ent situations. Figure 5.2 illustrates the architectures of two surrogate simulators for 
alternating TiO2 and SiO2 thin-film stacks with different numbers of films. Without 
loss of generality, the two NNs have identical architectures. The input layers taking 
vectors of film thicknesses have the dimension equal to the larger number of layers 
between the two stacks in the source and target domains; unused positions are set to 
0. The output layers take transmittance values uniformly discretized over the same 

Fig. 5.2 Architectures of two surrogate simulators involved in a case of optical knowledge trans-
fer. Upper: The source model has six hidden layers and is trained from scratch on a large dataset 
containing 50,000 samples. Lower: The target model dealing with a different forward problem has 
the same architecture but is trained (fine-tuned) on a small dataset of 500 samples, while the initial 
weights and biases of the first n hidden layers are duplicated from the source model. (Reprinted 
from [10] with permission. Copyright (2019) American Chemical Society)
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wavelength range and naturally fit the architecture. Six hidden layers are used 
between the input and output, leading to seven layers (W1–W7) of weights and 
biases. The source model is trained from scratch over a dataset of 50,000 samples, 
whereas for the target model, the first few layers of weights and biases are initial-
ized with values copied from the source model and the remaining layers with ran-
dom values from a normal distribution. To demonstrate the capability of knowledge 
migration, the target model is intended to be exposed to a truly small dataset of 500 
samples. The training is thus a process of fine-tuning of the network parameters.

Figure 5.3a, b shows the performance of this scheme when the source and target 
models are designed for ten- and eight-layer stacks, respectively, and vice versa. 
Spectrum error is defined as the spectrally averaged difference between the pre-
dicted transmittance and ground truth:
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Fig. 5.3 (a) Test errors of a target surrogate simulator for computing the transmittance of eight- 
layer stacks of alternating TiO2 and SiO2 thin films, with the first n hidden layers transferred from 
a source surrogate simulator for ten-layer stacks. (b) Same as (a) but with the source and target 
switched. (c) Transmittance spectra (red curves) predicted by a model trained from scratch on 500 
samples (i.e., direct learning) and by a model with transfer learning, in comparison to the ground 
truth spectrum (black curves) for an eight-layer stack. (Reprinted with permission from [10]. 
Copyright (2019) American Chemical Society)
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Direct learning refers to the case where the target model receives no information 
from the source and is trained from scratch independently on the 500 samples of its 
own. For knowledge migration in both directions, noticeable error reduction can be 
recognized when at least two layers of parameters are duplicated. The improvement 
in performance is further visualized in Fig. 5.3c with a selected example for the case 
where knowledge is transferred from ten-layer stacks to eight-layer stacks.

One of the reasons that direct learning based on 500 samples can still make pre-
dictions not far away from the ground truth is probably the limited complexity of the 
forward problem in study. Because the film thicknesses are restricted in the range 
between 30 and 70 nm, the achievable transmittance spectra may not be diverse 
enough in line shape. It is reasonable to assume that when the number of layers 
increases and the thickness ranges are extended, the improvement by transfer learn-
ing is more significant. Moreover, duplication of weights does not necessarily start 
from the first layer. In another trial of knowledge transfer between multilayer core- 
shell particles and multilayer thin films [10, 13], it is discovered that error reduction 
is maximal when certain layers in the middle of the NN are copied for initialization, 
and inclusion of additional layers is either not helpful or even harmful to the final 
performance.

An interesting extension of transfer learning is the multitask learning. When 
none of a few related tasks have adequate data or sample efficiencies are critical for 
these tasks as a whole, one possible solution is to build a model as shown in Fig. 5.4. 

Fig. 5.4 Surrogate simulators based on a common form of multitask learning. (Reprinted from 
[10] with permission. Copyright (2019) American Chemical Society)
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In multitask learning, the tasks share the same input but end up with task-specific 
outputs. Between these two layers, a few hidden layers containing generic parame-
ters are also shared across all the tasks, while higher layers are split into branches 
associated with each target domain. The training process needs to be adjusted 
accordingly, where data are fed in the model as a pool of samples, and during back-
propagation, parameters are updated in the shared layers and in task-specific layers 
which the samples belong to.

Finally, the applications presented in this section usually do not suffer from dif-
ficulties in data generation. Multilayer structures are chosen as examples here 
mainly because discussions can be focused on explaining the DL methods. From a 
practical point of view, the advantages of transfer learning have not been convinc-
ingly proved for complex nanophotonic systems with the pressing need for high 
sample efficiencies. Some concerned efforts were recently made in this direction for 
metasurface design [14–16].

5.2  Surrogate Simulators for Inferring Field Quantities

Until now, the surrogate simulators we have discussed, working alone or being a 
part of an inverse design framework, output optical responses of given structures in 
the form of a specific observable, such as transmittance or reflectance spectra, scat-
tering patterns, or near-field intensity maps. In nanophotonics, such modeling is 
usually done by performing full-wave simulations, in which the complete set of 
Maxwell’s equations is numerically solved through spatial and temporal discretiza-
tion. A real electromagnetic solver computes the vector electric and magnetic fields 
everywhere in the simulation domain, and aforementioned observables can all be 
derived from the 3D vector field distributions via some well-defined evaluations and 
transformations. If a surrogate simulator can totally resemble an electromagnetic 
solver, it will be a big advance in fast simulation and in generalization of data 
availability.

Wiecha and coworkers demonstrated a DL-based framework as a general- 
purpose predictor of the optical responses of nanostructures [17]. The framework 
comprises two parts. The first one is a homebuilt simulation package based on CDA, 
which provides a scheme for accurate computation of the near fields of 3D nano-
structures as well as convenient data reconfiguration [18]. Figure 5.5 depicts the 
concept of CDA with an example of a nanosphere. The particle is discretized into 
small cubic cells centered at ri with a dipolar polarizability α(ri, ω). Each cell is 
assigned an electric dipole moment pi(ω) induced by the local electric field E(ri, ω), 
determined self-consistently by all the other induced dipoles pj(ω) and the incident 
field. The volume discretization can be extended to include the surrounding medium, 
but no dipoles will be induced there. The coupling between discretized dipoles can 
be evaluated by using the Green dyadic method, and the final result is the electric 
polarization distribution inside the particle. In many works, this method is also 
termed discrete dipole approximation (DDA) [19].
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Fig. 5.5 Schematic of coupled dipole approximation in the case of a sphere. Left: The volume of 
the sphere is discretized into small cubic cells. Central: Each cell is treated as an electric dipole 
with an effective polarizability. Self-consistent fields are obtained through calculating the coupling 
between all pairs of cells described by the Green’s dyad G. Right: Self-consistent electric polariza-
tion distribution in the sphere under external illumination. Each small red arrow represents the 
electric polarization of a cell. (Adapted from [17] with permission. Copyright (2019) American 
Chemical Society)

Fig. 5.6 A 3D CNN for predicting the electric fields inside three Si nanocubes on a glass substrate. 
Digits in the left panel denote the dimensions of the simulation domain and volume discretization 
scheme (number of cells (mesh grids) × mesh size). Red arrows in the right panel represent the real 
part of electric field vectors, taken from three of the six output channels. (Reprinted from [17] with 
permission. Copyright (2019) American Chemical Society)

The second part of the framework is a 3D symmetric fully convolutional NN. As 
shown in Fig. 5.6, the network receives information about the geometry of the nano-
structure and outputs in six channels the complex electric fields (real and imaginary 
parts of Ex, Ey, and Ez). A nanostructure made of one material is represented by an 
array of binary digits indicating whether the discrete cells are occupied by the mate-
rial (1) or not (0), and the predicted fields are given on the same grid of positions. 
The volume discretization strategy of CDA automatically saves the efforts to refor-
mat data. Other mesh grids that are commonly used in simulation tools, such as 
tetrahedrons, may require extra conversion between mesh labels and spatial coordi-
nates. The construction of the NN also features two interesting designs. In order to 
reinforce the ability to reconstruct fine spatial information—in the present case the 
internal fields—the NN uses an encoder-decoder architecture built with “U-Net”-
type shortcut connections between the corresponding down- and up-sampling 
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blocks. Moreover, because the NN has a very deep architecture of ~90 layers, which 
could cause degradation of training accuracy, it is organized in sequential residual 
blocks. Within one of such units, the first convolutional layer is added via a shortcut 
connection to the outputs of the last normalization layer [20]. The idea of residual 
learning is illustrated in Fig.  5.7 with a standard NN architecture. Intuitively, a 
residual network offers a solution that improves the model’s capability to fit simple 
mappings (e.g., identity) by adding shortcut connections, while the fitting of com-
plex mappings by the stack of nonlinear layers is not affected.

Despite the 3D nature of the task, the training of this NN uses 30,000 samples 
each for gold and Si nanostructures, around the same size as in the previous exam-
ples. On an NVIDIA P6000 GPU, the training takes about 2 or 10 minutes per epoch 
for gold and Si datasets, respectively, and it is terminated after 100 epochs as the 
validation accuracy saturates. Once trained, the 3D surrogate simulator can give 
predictions in less than 10 ms for one structure. This time increases to some tens or 
up to hundreds of ms if the hardware is changed to an Intel i7-3770 CPU, which is 
nonetheless still several orders of magnitude shorter than needed by an electromag-
netic solver. It is more interesting to take a tour to the results for Si nanostructures, 
which can be related to some earlier discussions in Sect. 1.2.

Figure 5.8a summarizes the magnetic responses of Si nanorods under normal 
incidence of TE and TM polarized plane waves at 700-nm wavelength, predicted by 
the 3D surrogate simulator (left column) and computed by the CDA package (right 
column). The magnetic response is characterized by the contribution to the extinc-
tion coefficient by the magnetic dipole moment of the nanorod, which does not have 
an analytical expression as for circular cylinders but can be extracted from the pre-
dicted/simulated near fields through multipole expansion [21, 22]. In Fig.  5.8a, 
decent agreement except small discrepancies of intensity at some points is obtained 
for both excitations, confirming the accuracy of the NN. In addition to derived phys-
ical quantities, a more direct evidence, the electric field distributions inside a reso-
nant nanorod are also presented. The circulating vectors perpendicular to the rod’s 
major axis evidently reveal the profile of a magnetic dipolar mode under TE-polarized 

Fig. 5.7 Sketch of a residual block. The input x is added to the output of a deeper layer via a 
shortcut connection, recasting the original desired mapping H(x) to the form F(x) + x. For a very 
deep architecture, optimization of the residual mapping F(x) is proved easier than of the original, 
unreferenced mapping H(x)
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Fig. 5.8 Reproducibility of complex near fields in Si nanorods and derived optical effects in the 
far field. (a) Maps of contributions to the extinction coefficient by the magnetic dipole moment of 
a nanorod, as functions of its length and width for TE and TM polarized excitations. (b) Electric 
fields inside a cuboid (100 × 100 × 200 nm3) and the scattering patterns by ANN prediction (solid 
line) and by simulation (dashed line). The height of the nanostructures is 200 nm, and the wave-
length is fixed at 700  nm. (Reprinted from [17] with permission. Copyright (2019) American 
Chemical Society)

illumination. Similar analysis can be performed for electric responses. On top of 
this, the geometric condition for directional scattering, a consequence of the Kerker 
condition [23], is found for the given thickness of nanostructures and wavelength. 
The predicted and simulated field distributions and scattering patterns are shown in 
Fig. 5.8b. While we have seen the far-field patterns in Sects. 2.1.2 and 4.2.2, the 
field distributions visualize some important aspects of the Kerker condition on 
dipole orientations and strengths, which states that ED and MD must be perpendicu-
lar to each other and have comparable magnitudes.

Accurate prediction of the near fields not only allows for easy derivation of mul-
tiple far-field behaviors but also enables the evaluation of mutual interactions 
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between coupled nanostructures. Two representative quantities of particular interest 
are the near-field enhancement, which has a direct relation to LDOS [24], and the 
optical chirality, which determines how light interacts with chiral substances [25–
27]. Figure 5.9 shows the corresponding results for Si nanocube dimers. In a sym-
metric dimer, when the incident field is polarized along the dimer axis, a well- known 
effect is the generation of an electric hotspot in the gap [28], while optical chirality 
vanishes on the symmetry planes or after volume integration. The 3D surrogate 
simulator successfully reproduces the correct trend for both quantities, with only 
the enhancement factor slightly underestimated. Similar deviations are observed in 
the study of gold nanorods [17]. In fact, for DL-based simulators, it is common to 
see noticeable errors near optical resonances, because they are relatively sparse in 
the dataset. Besides changing the excitation to CPL [29] or twisting the polarization 
direction off the dimer axis [29–31], the vanishing optical chirality in symmetric 
dimers can be activated by introducing a lateral shift between the two cuboids [32]. 
As shown in Fig. 5.9b, the dependence of chirality magnitude on the gap size and 
shift and the correlation between handedness and the direction of the shift are pre-
dicted with reasonable accuracy.

The implementation of 3D surrogate simulators requires sophisticated and likely 
task-specific models, plus extra configuration of data format. Efforts along this line 
are currently rare, probably because of the knowledge and skill gaps for researchers 
in the nanophotonic community. It is not clear yet if and how much an affordable 
increase in data size will improve the performance, especially for nanostructures 

Fig. 5.9 Reproducibility of near-field enhancement and optical chirality for Si nanocube dimers 
formed by two identical cuboids (120 × 200 × 200 nm3). (a) Symmetric dimers with different gap 
sizes. (b) Asymmetric dimers with varying gap sizes and lateral offsets. For all structures, excita-
tions are x-polarized plane waves normally incident from the top. Orange curves are obtained by 
superposing the fields from two separate models, each containing one of the two cuboids in the 
original location. (Reprinted from [17] with permission. Copyright (2019) American Chemical 
Society)
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under resonance conditions. The CDA simulation of in total 60,000 samples used in 
[17] took about 10 days on two workstations. Strategies and techniques for speed-
 up or smarter sampling will be helpful for further study of this topic.

5.3  Interpretation of Optical Information

Solving inverse problems is a process of seeking the underlying mapping from opti-
cal responses to physical variables. In inverse design tasks, the latter are the design 
parameters, and the one-to-many problem must be suitably taken care of, as dis-
cussed in Sect. 4.1. But supposing there is a subset of inverse problems, where the 
optical responses and physical structures have a one-to-one correspondence, train-
ing a DL model to retrieve the structures would be as easy as training a forward 
surrogate solver. Moreover, viewing from the standpoint of applications, uniquely 
determining a structure by some of its properties is just what information decoding 
does, and if the property is an optical response, it is the optical information stored 
in the structure being decoded.

A very interesting demonstration of high-density optical data storage and associ-
ated readout scheme is reported by Wiecha and coworkers [33]. The idea combines 
the advantages from both sides of nanophotonics and DL to address the challenges 
in information storage. Let us start by checking the feasibility of encoding informa-
tion into nanostructures. In traditional optical storage techniques like compact disks, 
data bits are stored on some media in the form of pits [34]. The smallest dimensions 
of individual pits and the areas between them, termed lands, are diffraction-limited 
to ensure that two distinct reflection states can be reliably achieved. Increasing the 
density of pits suffers from fundamental difficulties in writing and optical readout. 
Nanophotonics provides a viable solution to a part of these challenges [35]. 
Subwavelength nanostructures exhibit rich scattering behaviors. In the first two 
chapters, we have seen many examples. The next question is “how can binary data 
be encoded into a nanostructure?”. Figure  5.10 illustrates one possible scheme, 
which is designated for representing 9-bit information. Instead of using discrete 
values of the geometric parameters, here the structures are treated as patterns. Nine 
deep-subwavelength cuboids are organized into 3 × 3 grids, each occupied by Si 
(digit “1”) or air (digit “0”). To make symmetric geometries distinguishable in 
polarized spectroscopy, an L-shaped sidewall is added, while the whole structure is 
still subwavelength in all dimensions. Nine-bit structures have 29 = 512 possible 
variations. Ideally, each of them needs to possess a unique scattering spectrum to 
comprise an encoding system. An effective approach to quantifying and visualizing 
the uniqueness of spectra is the t-SNE [36], which displays similar data by nearby 
points and dissimilar ones by separated points. Figure 5.11 shows the layouts of 
nanostructures for encoding sequences of 2–5 bits and the corresponding t-SNE 
plots for experimentally collected spectra of hundreds of fabricated samples. Three 
types of spectra are analyzed: x-polarized scattering, y-polarized scattering, and 
using both as one set, denoted by XY polarization. These datasets behave similarly 
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Fig. 5.10 Encoding information in nanostructures. Left: 9-bit information is encoded in a Si nano-
structure consisting of nine cubic blocks. An L-shaped sidewall is introduced to distinguish sym-
metric geometries in polarized spectroscopy. The entire structure is subwavelength in size. Right: 
Examples to show the one-to-one correspondence between each geometry and a unique scattering 
spectrum. Curves in blue and orange are from x- and y-polarized light, respectively. (Reprinted 
from [33] with permission of Springer Nature)

Fig. 5.11 (a) Schemes for encoding 2–5 binary digits in Si nanostructures. Bit sequences are 
indicated by color coding. Inset SEM images show areas of 450 × 450 nm2 containing selected 
samples for “10,” “010,” “1001,” and “01010,” respectively. (b) t-SNE plots of the XY polarization 
training datasets for structures in (a), showing clear clustering of spectra and in turn identification 
of structures. (Reprinted from [33] with permission of Springer Nature)

for cases of 2–4 bits, while for longer strings, only the XY polarization sets can still 
be well separated into clusters, as shown in Fig. 5.11b.

Once confirming the one-to-one correspondence between the nanostructures and 
their spectra, the next thing to resolve is decoding the stored information, i.e., 
retrieval of the bit sequence from a measured spectrum. This task is much easier for 
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DL than inverse design. The architecture of the NN is chosen to be a 1D CNN, fol-
lowed by a fully connected network (Fig. 5.12a). Compared to the surrogate simula-
tors of spectra that only have the latter part, the introduction of a CNN enhances the 
model’s ability to conduct pattern recognition. The training and subsequent readout 
operation of the network are straightforward. Possible tricks, if any, are in the data 
collection phase. Because the training data are experimentally measured backscat-
tering spectra, the total amount of work needed for larger numbers of digits, e.g., 
9-bit sequences, is too massive for a proof-of-concept demonstration. As a compro-
mise, an artificially extended dataset is generated based on measurements from 4 
copies of the 512 different geometries. Briefly, for each geometry, semi- experimental 
data σ(λ) is created by multiplying the weighted sum of the four measured spectra 
σi(λ) by a random scaling factor C (0.9 < C < 1.1):
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under the constraint that the random weights wi add up to unity. Like symmetry is 
utilized in the extension of datasets for inverse design of metasurfaces [6], the rea-
soning of Eq. (5.2) can be based on the fact that variations between spectra of dif-
ferent copies mainly arise from fabrication errors and light intensity fluctuations. 
Using this method, the dataset is expanded to having 300 samples per geometry, 

Fig. 5.12 (a) Architecture of the NN used for spectra classification. (b, c) Accuracy of NNs 
trained on an artificially extended 9-bit experimental dataset using full spectra of backscattering 
(b) or backscattering intensities at discrete wavelengths between 500 and 740 nm (c). (Reprinted 
from [33] with permission of Springer Nature)
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sufficient for representing the underlying structure. Figure 5.12b shows the readout 
accuracy of a trained NN. Almost error-free performance is achieved.

Using full spectra for readout is practically not convenient. It is of great interest 
to relax the requirements on optical measurements as much as possible. A simple 
improvement is to instead use scattering intensities at a handful of discrete wave-
lengths. This simplification turns out to be sensitive to the number of probed wave-
lengths. As compared in Fig. 5.12c, sampling the spectra at one or two wavelengths 
leads to very large readout error, while the accuracy is recovered quickly as addi-
tional data points are added. An implicit limitation of this method is that spectra 
cannot be sampled at arbitrary wavelengths. Some prior knowledge about the spec-
tra is needed to ensure that the probed intensities of different samples are distin-
guishable, which can be analyzed by using t-SNE.

An even more aggressive simplification of the readout is made to get rid of any 
spectroscopy. The hypothesis is that spectral information after integration over fixed 
wavelength intervals still contains enough representations of the scattering proper-
ties, which can otherwise be acquired via imaging. Figure 5.13 shows the readout 
scheme based on RGB information of the sample images. Compared to the previous 
methods using spectroscopic data, the new scheme needs only several RGB values. 
This change not only simplifies the network structure, but, more importantly, pro-
vides a possible solution to the massively parallel readout of the encoded data [33]. 
In addition to the RGB values of polarization-filtered images, the scattering inten-
sity that contains independent information can be added to the input vector. This 
strategy proves effective in improving accuracy. For the 4-bit sequences, the readout 
is quasi-error-free.

Fig. 5.13 (a) Library of polarization-filtered dark-field images of 3 × 3 arrays of 4-bit nanostruc-
tures. In each image, the inset box on the upper left has an RGB color averaged over the 9 units, 
and the letter on the lower left denotes polarization. (b) Architecture of the NN for RGB color 
classification. (c) Readout accuracy of NNs for cases of 2–5 bits, trained on different datasets 
consisting of RGB and intensity values. X, X-filtered; Y, Y-filtered; XY, X-filtered and Y-filtered; 
XYI, XY plus scattering intensity I. (Reprinted from [33] with permission of Springer Nature)
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Chapter 6
Nanophotonic and Optical Platforms 
for Deep Learning

Abstract The preceding chapters introduced two classes of applications of DL in 
nanophotonics. In both cases, DL-based solutions provide an alternative to existing 
techniques, like advanced optimization algorithms for inverse design and electro-
magnetic solvers for forward modeling. These data-driven solutions, despite the 
pros and cons, are among the many advances ML has enabled across a wide spec-
trum of disciplines. From the standpoint of computer scientists, solving a problem 
from nanophotonics with DL may have nothing special in workflow compared with 
other tasks such as drug discovery or prediction of material properties; it is largely 
just a matter of feeding the ANNs data from another scientific domain. One of the 
most fascinating aspects of the interplay between DL and nanophotonics (or optics 
in general), which makes the latter a unique research field, is that the direction of 
application can be reversed. Owning the advantage in realizing massively parallel 
interconnections, nanophotonic systems as optical computing platforms have 
proved to be fast and power-efficient in implementing computational operations 
essential for ANNs. In the ideal case, once trained, they could run at the speed of 
light with little to no power consumption, leading to promising alternatives to elec-
tronic AI accelerators like GPU. In this chapter, we discuss photonic implementa-
tions of DL models for inference tasks (Wetzstein et al., Nature 588(7836):39–47, 
2020). Foci will be given to all-optical nanophotonic circuits and free-space diffrac-
tive optics, each starting with showing how analogues can be established between 
computational operations and behaviors of light waves, followed by a representative 
proof-of-concept demonstration. Training of ANNs has different requirements on 
computation and thus will not be discussed in detail. Nonetheless, training in optical 
hardware is still possible in several ways (Wetzstein et al., Nature 588(7836):39–47, 
2020; Wagner and Psaltis, Appl Opt 26(23):5061–5076, 1987; Hughes et al., Optica 
5(7):864–871, 2018; Wright et al., Nature 601(7894):549–555, 2022). In addition to 
AI applications, optical and photonic systems have also been used in other para-
digms such as neuromorphic computing (Shastri et al., Nat Photonics 15(2):102–114, 
2021). The reader interested in these topics or in hybrid optical-electronic systems 
for AI is referred to some recent review articles (Lima et  al., Nanophotonics 
6(3):577–599, 2017; Miller, J Lightwave Technol 35(3):346–396, 2017; Sande 
et  al., Nanophotonics 6(3):561–576, 2017; Brunner et  al., J Appl Phys 
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124(15):152004, 2018; Nahmias et al., IEEE J Sel Top Quant Electron 26(1):1–18, 
2020; Zangeneh-Nejad et  al., Nat Rev Mater 6(3):207–225, 2021; Wu et  al., 
Engineering 10:133–145, 2022; Huang et al., Adv Phys X 7(1):1981155, 2022).

6.1  Deep Learning with Nanophotonic Circuits

Before diving into any specific nanophotonic implementations of ANNs, it is impor-
tant to keep in mind that the recent development in this direction is a continuation 
of the earlier pursuit of analogue neural networks. As summarized in Fig. 6.1 taken 
from [1], the first optical demonstration of the Hopfield model, a type of recurrent 
neural networks, can be dated back to 1985 [14], even a year before the learning 
procedure of backpropagation was first described in the literature [15]. Although 
further advancement towards large-scale networks with reliable control over weights 
and nonlinearity was hindered in the 1990s by technical difficulties, with the con-
siderable progress in integrated photonic circuits over the subsequent two decades, 
many of the major obstacles have been relieved or overcome. These improved capa-
bilities stimulated research efforts to revisit the optical implementation of ANNs. In 
this section, we organize the discussion around the first coherent nanophotonic cir-
cuit for DL, reported by Shen et al. in 2017 [16], while another pioneering work of 
all-optical diffractive neural networks by Lin et al. [17] will be covered in the next 
section.

The applicability of optical and photonic systems to analogue computing for DL 
resides in the fact that the propagation of light through a medium or structure can be 
used to perform matrix multiplication. This led to the idea of universal linear optics 
[18–20], where a single programmable optical device, such as a photonic integrated 
circuit (PIC) [21], can implement all possible linear transformations as linear opera-
tions of optical modes. To see how the analogue works, let us first take a quick look 

Fig. 6.1 Timeline of AI as well as its optical and photonic implementations. Selections of mile-
stone works are made with preference to feature recent development. (Reprinted from [1] with 
permission of Springer Nature)
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at some mathematics [22]. While an N-dimensional vector can be realized by N 
modes in a lossless optical system with N channels at the input and output each, the 
transformation between input and output modes is described by a unitary N × N 
matrix U(N). It can be proven that an arbitrary unitary matrix U can be decomposed 
and represented by the product of a series of rotation matrices Tmn (1 ≤ m < n)
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and D a diagonal matrix with the modulus of each complex diagonal element being 
unity. The role of Tmn is to perform a transformation between channels m and n, 
which is a 2 × 2 unitary rotation, leaving the rest N − 2 dimensions of the matrix 
unchanged. The optical realization of the 2  ×  2 mode transformation is usually 
based on beam splitters, which, in nanophotonics, are implemented by Mach- 
Zehnder interferometers (MZIs) [18, 21]. For a circuit with N channels, a total of 
N(N − 1)/2 MZIs are needed to allow connections between all the channels. Two 
popular arrangements proposed by Reck et al. [23] and Clements et al. [22], respec-
tively, are sketched in Fig. 6.2a. Both of them feature mesh networks of beam split-
ters (shown as crosses), with the major difference being the sequence of crosses 
(i.e., S in Eq. (6.1)) that in turn determines the optical depth and compactness of the 
system. A second class of architectures known as recirculating meshes, which fur-
ther enable routing light in the backward direction, is also widely used in program-
mable PICs; detailed discussions can be found in [21, 24, 25]. Figure 6.2b refines 
the mesh plots into layouts of waveguides and MZIs, and the diagonal matrix D is 
also included as phase shifters in each channel. In the typical configuration, an MZI 
consists of two 50% directional couplers and two phase shifters. One phase shifter 
of angle θ is set between the two directional couplers to control the split ratio of the 
MZI, and the other of angle φ is placed after the couplers to control the differential 
output phase. This gives rise to an SU(2) transformation between the input and out-
put modes of the MZI:
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Fig. 6.2 (a) A universal unitary linear transformation U can be implemented by a mesh of beam 
splitters in the configuration proposed by Reck et al. (upper panel) or Clements et al. (lower panel). 
Each line represents an optical mode, and a crossing between two lines (channels m and n) denotes 
a beam splitter, described by a matrix Tmn. For a system with N channels, the mesh comprises 
N(N − 1)/2 beam splitters. (b) Illustration of (a) in integrated photonic platforms. Each line cor-
responds to a waveguide. Beam splitters are realized by Mach-Zehnder interferometers (MZIs) 
denoted by gray boxes, each consisting of two 50% directional couplers and two phase shifters, 
with the internal one (θ) controlling the split ratio and the external one (φ) controlling the output 
phase, to perform 2 × 2 unitary rotation. The diagonal matrix D is realized by phase shifters on all 
channels, denoted by the purple squares. (Panel (b) is reprinted from [20] with permission. © 2018 
Optica Publishing Group)
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By replacing the elements tmm, tmn, tnm, and tnn in Eq. (6.2) with the elements as func-
tions of θ and φ in Eq. (6.3), it becomes clearer why Tmn is introduced as a rotation 
matrix. Other variations of MZI blocks may differ slightly in configuration or 
involve more phase shifters, but they all function equivalently [26].

Many useful linear transformations are non-unitary. A general design framework 
which can tackle any linear operations was proposed by Miller [18]. The mathemat-
ical basis of this idea is that any linear transformation, when given in matrix form 
M, can be factorized using singular value decomposition (SVD) as [27]:

 M U V� � †.  (6.4)
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Here, U and V are m × m and n × n unitary matrices, respectively, with † denoting 
complex conjugate, and Σ is an m × n diagonal matrix with the diagonal elements 
(the singular values) usually chosen to be nonnegative real numbers [16, 20, 26]. 
The diagonal matrix Σ can be realized using different types of optical modulators 
for attenuation or amplification [16, 20]. Taking attenuators, for example, they can 
be implemented by MZIs, through which the transmissions of optical modes corre-
spond to the singular values of Σ. Therefore, the circuit realization of a linear trans-
formation M, according to Eq. (6.4), contains two blocks of MZIs for the universal 
unitary matrices U and V†, which are connected by a column of MZIs for the diago-
nal matrix Σ.

Instead of showing the layout of M as in Fig. 6.2 for individual unitary matrices, 
it is more informative to check out how the computational operations including 
matrix multiplications can be embodied in an optical version of ANNs. Figure 6.3a 
shows the design of an optical neural network (ONN) in the general architecture 
[16]. In addition to input and output being optical signals in photonic waveguides, 
each layer of the network is composed of an MZI-based optical interference unit 

Fig. 6.3 (a) Top row: Optical implementation of an ANN as cascaded layers. Bottom row: 
Realization of an individual layer that comprises an optical interference unit (OIU) in the form of 
a universal linear network (gray block) and an optical nonlinearity unit (red block). Horizontal 
lines represent waveguides in the photonic circuit. Note that the layout of OIU is based on the 
factorization defined in Eq. (6.4). (b) Schematic of a photonic integrated circuit implementing an 
n-layer ANN for vowel recognition. (Reprinted from [16] with permission of Springer Nature)
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(OIU) implementing M in the decomposed form and an optical nonlinearity unit 
(ONU). In principle, with proper weighting factors controlled by the states of phase 
shifters in the MZIs, the PIC can perform inference tasks such as vowel recognition 
fully optically (Fig. 6.3b). Progress in parallel and afterwards also demonstrated 
different applications of quantum transport simulations [28] and complex-valued 
NNs for various classification tasks [29].

The actual realization of ONNs on photonic circuits, however, may still be lim-
ited by a few factors. One that could be fundamental is the scalability. As discussed 
above, an N-channel circuit needs N(N − 1)/2 MZIs to build connections between 
all channels. This suggests that the number of MZIs grows as N2 for N-dimensional 
data vectors. Although mass fabrication of circuit elements may no longer be a 
major challenge, many practical issues like losses and crosstalk will have non- 
negligible influence on circuit performance for large-scale networks [16]. In the 
experimental work by Shen et al., a 2-layer ONN employing 56 MZIs was used to 
demonstrate vowel recognition. The chip was not large enough to include the full 
network architecture all at once, so instead, a feedback and control loop was adopted 
to pass signals through the chip multiple times (Fig. 6.4). In each run, the OIU was 
reprogrammed to implement a part of the matrix multiplication (UΣ or V) following 

Fig. 6.4 Experimental demonstration of vowel recognition using a nanophotonic neural network. 
(a) Workflow of the experiments. Laser pulses encoding input data vectors are coupled to an OIU 
in a programmable circuit, measured by an array of photodiodes, and read on a computer in one 
instance. Unless inference is made at the output layer, processed signals are sent back to the OIU 
with reprogrammed weighting factors for the next instance. (b) Optical micrograph of the OIU 
used in the experiments. Meshes of MZIs implementing the universal unitary matrices, which are 
SU(4) transformations herein, are highlighted in red; those for attenuation or the diagonal matrix 
multiplication core (DMMC) are highlighted in blue. Layout of the MZIs follows the pattern 
described by Reck (see Fig. 6.2). Inset: A single MZI that has two directional couplers and four 
phase shifters, with the two internal (external) determining ∆θ (∆φ). (Reprinted from [16] with 
permission of Springer Nature)
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SVD. Another simplification was made to ONU. The realization of optical nonlin-
earity once suffered from efficiency problems at low signal intensities. Recent prog-
ress in saturable absorbers and other nonlinear thresholders has showed promise for 
more practical all-optical nonlinearity [1, 30], yet most experimental demonstra-
tions thus far were still based on hybrid optical-electronic systems. With hybrid 
systems, optical signals need to be repeatedly measured, processed (electronically), 
and generated after each layer, as shown in Fig. 6.4a. For current challenges and 
advances in photonic implementations of nonlinearities, an insightful discussion 
can be found in a recent review [5]. In [16], nonlinearity was modeled on a com-
puter as the response of saturable absorbers:
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Here, σ and τs are the absorption cross section and radiative lifetime of the absorbing 
material, Iin is the input intensity, T0 is a constant initial transmittance, and Tm is the 
transmittance of the absorber to be solved for. The output intensity Iout is connected 
to the input by
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which is depicted in Fig. 6.5.
The desired weighting factors stored in MZIs are determined as a result of train-

ing. Albeit several schemes for all-optical training of ANNs have been proposed, 
currently it is still more practical to conduct training on a computer. For the vowel 
recognition task in [16], 360 data points from 90 people speaking 4 different vowel 
phonemes were split to halves for training and testing, respectively. Since each sam-
ple must pass the chip twice for a complete matrix M due to the aforementioned 

Fig. 6.5 Nonlinear response of a saturable absorber
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reason, the inference over 180 test samples using the two-layer ONN required 720 
experiments.

Figure 6.6a summarizes the experimental results for the ONN and a computer 
program implementing the same model. The ONN made 138 correct classifications 
out of 180 examples, giving an accuracy of 76.7%, somewhat worse than that of the 
electronic counterpart (91.7%). The difference in performance is largely attributed 
to the computational resolution of ONNs, which is limited by several factors related 
to the current hardware, such as photodetection noise, the precision of optical phase 
encoding, thermal crosstalk between phase shifters in the MZIs, etc. Another source 
of the misclassification, as seen in both systems for vowels C and D, comes from the 
proximity of these two vowels in the parameter space. In Fig. 6.6b, the projection of 
the test samples clearly reveals a larger overlap between vowels C and D. This is 
opposite to the situation of the example in Sect. 5.3. When samples cannot be sepa-
rated into clusters, the classification becomes challenging, and there is a much 
larger chance that ANNs will make wrong decisions.
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Fig. 6.6 (a) Confusion matrices for the nanophotonic circuit (left) and a computer program (right) 
implementing a two-layer neural network for vowel recognition. (b) 2D projection of the test data-
set based on the log area ratio coefficients. The larger overlap between spoken vowels C and D (see 
legend) results in lower classification accuracy. (Reprinted from [16] with permission of 
Springer Nature)
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6.2  All-Optical Diffractive Deep Neural Networks

A novel alternative to photonic circuits for implementing neural networks is based 
on free-space optics, and several demonstrations have been reported along this line 
[17, 31–37]. In order to adhere to the theme of this book, here we focus on the dif-
fractive deep neural networks (D2NNs) first proposed by Lin et al. [17]. For other 
schemes based on bulk optics and/or hybrid optical-electronic systems, interested 
readers are referred to recent reviews and references therein [1].

The theoretical basis of free-space implementations of neural networks is that 
many useful linear operations of waveforms naturally come with light propagation 
or light-matter interactions. A well-known example in Fourier optics is the Fourier- 
transform function of lenses. Similarly, correspondence can be established between 
linear matrix operations and light-matter interactions [1]. Figure 6.7a, b illustrates 
two elementary situations. In the first case, wave propagation in free space, accord-
ing to the Fresnel-Kirchhoff diffraction formula, is described by a convolution of 
the wave with a complex-valued kernel. Because convolution is a basic computa-
tional operation in CNNs, this implies the utility of free-space optics in image- 
related DL applications, as long as the kernel can be engineered in some way. The 
second case involves a thin layer of scatterers. In a 2D space (Fig. 6.7b), when a 
light wave passes through the film, the corresponding operation is a multiplication 
with a diagonal matrix. More complicated transformations can be built upon these 
two elementary operations. For instance, cascaded layers of thin scatterers with 
spacing in between carry out successive multiplications of alternating diagonal 
matrices and convolution matrices, as illustrated in Fig. 6.7c.

Fig. 6.7 Correspondence between wave propagation (top row) and linear matrix operations (bot-
tom row). (a) Wave propagation in free space is mathematically related to a convolution of the field 
with a complex-valued kernel. (b) Wave propagation through a thin layer of scatterers can be 
described by a multiplication with a diagonal matrix. (c) Combining (a) and (b), the interaction 
between an incident wave and layered thin scatterers with spacing corresponds to successive diag-
onal matrices and convolution matrices. In (b) and (c), operations are counted from the first layer 
of scatterers. (Reprinted from [1] with permission of Springer Nature)
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Fig. 6.8 Concept of diffractive deep neural networks (D2NNs). (a) The analogy between coherent 
light passing through successive diffractive layers with spacing and an ANN. Similar to the inter-
connections between neurons in ANNs, each point in a layer is virtually connected to other points 
in the preceding layer through the interference of incoming secondary waves and its local trans-
mission or reflection coefficient and to the points in the following layer through the secondary 
wave it generates and the local coefficients at those points. (b, c) Illustration of wave propagation 
in a D2NN (b) and the corresponding matrix operations (c). Complex optical fields Y at a diffrac-
tive layer can be expressed with their magnitude X and phase Ψ, which are modulated by the local 
transmission or reflection coefficient, mathematically as a multiplicative bias B via Hadamard 
product ∘. Further multiplication of the weighting matrices W is naturally performed by interlayer 
diffraction. (Reprinted from [17] with permission of AAAS)

The architecture of the all-optical D2NN launched in [17] follows this configura-
tion. The wave propagation process and analogue matrix operations are detailed in 
Fig. 6.8. Imagine that all the layers in the system, including the input and output 
planes and every intermediate diffractive layer, are pixelated. Then each pixel in the 
diffractive layers acts as a “neuron,” and its connections to all the neurons in the 
adjacent layers are realized through propagation and interference of secondary 
waves. Unlike photonic circuit implementations, which are based on a more rigor-
ous analogy to neural networks’ architecture, a D2NN possesses some unique differ-
ences in computation. The most important one is the function of individual neurons. 
In standard neural networks, a neuron applies a nonlinear activation function to the 
weighted sum of the outputs of the preceding layer, with all values involved being 
real and the weights and additive biases learnable. In contrast, data (encoded in 
waves) processed by a D2NN are complex-valued, and the function of a neuron is to 
modulate the incoming waves by the local transmission or reflection coefficient, a 
bias term that is learnable but contributes via element-wise multiplication. A very 
interesting property of the D2NN framework is, although nonlinearity can be 
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incorporated to the system as in photonic circuits, the prototypes of D2NN without 
inclusion of the equivalent of nonlinear activation functions still showed improved 
performance as the number of diffractive layers increased. In other words, multiple 
learnable diffractive layers appear to have more degrees of freedom than a single 
layer does on performing statistical inference and some other functions [37]. While 
there seems to be a contradiction between this property and the equivalence between 
a linear operation and its linear decomposition, possible explanations may hide 
behind practical factors, such as the finite sizes of the scatterers (not infinitesimally 
small) and of the layers (not infinitely large). A rigorous proof of the depth feature 
of D2NNs will be beneficial to fully address the puzzle. To avoid causing confusion, 
it is probably more appropriate to term the present implementation as diffractive 
optical networks when nonlinearity is absent [38]. Despite this issue, the depth fea-
ture brings up a potential advantage of D2NNs in reconfigurability: additional layers 
can be trained and added to an existing D2NN for enhanced performance. It is also 
reasonable to expect the application of D2NN framework to transfer learning [39, 
40] and ensemble learning [41] due to their architectural compatibility.

Free-space-based all-optical neural networks can, in principle, be realized on 
different length scales. Since coherent light sources are readily available in almost 
all optical bands, the only constraint on implementing D2NNs that can fall into the 
category of nanophotonic devices is the fabrication capability, including the cre-
ation of dense sub-micrometer-sized scatterers and precise alignment of the diffrac-
tive layers. The first experimental demonstration used a terahertz light source at 0.4 
THz, corresponding to sizes of individual neurons spanning some hundreds of 
micrometers. Figure 6.9 shows two fabricated D2NNs for classification and ampli-
tude imaging, which consist of five and four layers of 3D-printed phase masks, 
respectively. For a given printing material and interlayer distances, the phase values 
at each neuron are determined from training on a computer and converted to height 
profiles. The operation of a device is simply done by inserting the input object and 
D2NN into the optical path in front of a detector array. Compared to photonic inte-
grated circuits, this realization of neural networks allows for a much larger number 
of neurons and thus learnable parameters. For instance, the five-layer device shown 
in Fig. 6.9 has 0.2 million neurons, in a scale comparable to the state-of-the-art DL 
models for sophisticated tasks such as image classification [17].

Fig. 6.9 3D-printed 
D2NNs for classification 
(left) and amplitude 
imaging (right). (Courtesy 
of A. Ozcan)
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The fabricated D2NN classifier was tested with images of handwritten digits 
taken from MNIST. Without any complex conversion, input images were encoded 
into optical fields by a mask at the input plane, as shown in Fig. 6.10a, b. The read-
out of classification results was performed by an array of detectors at predefined 
locations on the output plane. As light propagation through and interference within 
the device lead to a redistribution of optical energy in space, only the detector cor-
responding to the correct label can receive a signal with maximum intensity. The 
performance of the fabricated D2NN and its electronic counterpart, based on tests 
with 50 and 10,000 samples, respectively, was summarized in Fig.  6.10c. The 

Fig. 6.10 Demonstration of all-optical classification of handwritten digits. (a) Schematic of the 
D2NN-based classifier. A 3D-printed digit as the target is placed in front of the device on the input 
plane. Under uniform illumination of terahertz waves, most of the transmitted energy is directed to 
the corresponding detector. Patterns on the layers of D2NN map the phase of transmission coeffi-
cient at each point. (b) An input image of digit 5. (c) Confusion matrices for the 3D-printed D2NN 
(left) and a computer program implementing the same model (right). (Reprinted from [1, 17] with 
permissions of AAAS and Springer Nature, respectively)
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classification accuracy of the computer program was 91.75%, while the fabricated 
device got a match of 88%. In a simultaneous demonstration of classification of 
fashion products from MNIST, similar accuracies were obtained. These values con-
firm the validity of the D2NN framework, and further improvements towards the 
performance of state-of-the-art CNNs (~99.6%) could be expected with additional 
layers, integration of nonlinearities, and refined sample preparation.

6.3  In Situ Training of Photonic Neural Networks

The reader may have noticed that in the above two examples of nanophotonic cir-
cuits and D2NNs, training is not performed on the same optical device but elsewhere 
on a conventional computer. A fair concern about this protocol is, if training must 
be done electronically, not only are the programs based on idealized models of the 
real devices, but all the aforementioned advantages of optical platforms in speed 
and energy efficiency are limited to the final stage of ANN implementation. Albeit 
these “end products” still provide potential performance enhancement for many 
applications, having the training of photonic neural networks done in situ by optical 
means is attractive to a broader audience.

In the demonstration of photonic neural networks in [16], an on-chip training 
procedure without using backpropagation was discussed. The idea is that the error 
gradient for a specific weight parameter can be obtained with the “brute force” of 
finite difference method by sending the same batch of training data into the ONN 
twice, with the value of that weight parameter modified by a small change. This 
approach offers a possible solution to training simple ONNs, but because the gradi-
ents are calculated sequentially for each weight, it becomes very inefficient as the 
network scales up.

Hughes et  al. proposed an alternative scheme for in situ training of photonic 
neural networks, which in theory is both efficient and scalable [3]. Essentially, they 
utilize the adjoint method to create a photonic analogue to the backpropagation 
algorithm. This, in the same way as how a photonic circuit performs inference tasks, 
allows the gradient to be determined in parallel at each weight element (i.e., phase 
shifters) through optical measurements. Figure  6.11a illustrates the operation of 
forward and backward propagations. The latter is adapted for the circuit implemen-
tation of OIUs where the weights are not given by matrix entries explicitly but 
parameterized as the permittivity of phase shifters. The loss gradient for a phase 
shifter in an arbitrary layer l then takes the form
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with Xl−1 and δ l
T  denoting the input vector and transposed backpropagating error 

vector, respectively. Hughes et  al. showed that the right side of Eq. (6.7) can be 
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Fig. 6.11 In situ training of a photonic neural network. (a) Operation of forward/backward propa-
gation (top/bottom row) and computation of the gradient of loss   with respect to the permittivity 
εl of each phase shifter. Ŵl , transfer matrix of layer l relating inputs Xl−1 and outputs Zl. fl, nonlin-
ear activation function. The prime and ⊙ denote a derivative and element-wise multiplication, 
respectively. ΓL, error vector, i.e., the difference between XL and the ground truth. δl, derived vector 
of ΓL as the error backpropagates. (b–d) Procedure for in situ measurements of the gradient at an 
OIU in layer l. The secondary subscript i (i = 1, 2, …) denotes the i-th phase shifter. Red and yel-
low ovals highlight two tunable phase shifters for illustration purposes, among others in light blue. 
(b) Fields of the original signal Xl−1 are sent in from the input ports. Intensities |eog,i|2 at each phase 
shifter are measured and stored. (c) Fields corresponding to the error δL are sent in from the output 
ports, resulting in adjoint fields eaj in the OIU and X*

TR at the input ports. Intensities |eaj,i|2 at each 
phase shifter are measured and stored. (d) Send Xl−1 + XTR in from the input ports so that the origi-
nal fields eog and time-reversed adjoint fields e*aj interfere. The gradient of loss with respect to εl,i 
can be obtained by measuring the intensities at each phase shifter and subtracting |eog,i|2 and |eaj,i|2 
from them. (Reprinted from [3] with permission. © 2018 Optica Publishing Group)

expressed by the solutions to two electromagnetic problems defined on an OIU. In 
particular, Xl−1 is related to the electric field distribution eog in the circuit when 
excited on the input ports by signals of the training data, and δ l

T  is related to the 
field eaj when excited on the output ports by sources corresponding to the loss. This 
is in line with the framework of adjoint method that involves an original (or direct) 
simulation and an adjoint simulation in each iteration, as introduced in Chap. 4. 
With some substitutions, Eq. (6.7) is rewritten to
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Note that in the present context, the evaluation of the gradient takes place only at the 
positions of phase shifters. Equation (6.8) contains the fields from two propagation 
processes, and their spatial overlap is not directly measurable. Interestingly, this can 
be resolved by playing a trick to the adjoint field. Noting that the interference of eog 
and the complex conjugate of eaj leads to the following intensity pattern
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the third term on the right side of our interest can be obtained by three intensity 
measurements on eog, eaj, and e eog aj� � , respectively. Because the complex conjugate 
of a field corresponds to the time-reversed process, eaj

∗  is physically generated by 
sources at the input ports with their amplitudes being the complex conjugate of what 
is received in the adjoint problem. The complete procedure is illustrated in 
Fig. 6.11b–d. Not limited to the numerical demonstration of an ONN-based XOR 
gate in [3], this in situ training protocol has recently been carried out experimentally 
on a hybrid digit-photonic platform for classification tasks [42]. The wide applica-
bility could make it influential in adaptive optical and photonic networks [43] and 
quantum information processing [44].
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