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Preface

This book covers the introduction, theory, development and applications of type-2
fuzzy logic systems, which represent the current state of the art in various domains
such as control applications, power plants, health care, image processing and math-
ematical applications. The book is also rich in discussing different applications in
order to give the researchers a flavor of how type-2 fuzzy logic is designed for
different types of problems. Type-2 fuzzy logic systems are now used extensively in
engineering applications for many purposes. In simple language, this book covers
the practical use of type-2 fuzzy logic and its optimization through different training
methods. Furthermore, this book maintains the relationship between mathematics
and practical implementations in the real world. This book chapter also contains
the proper comparisons with available literature work. It shows that the presented
enhanced techniques have better results. This book would serve as a handy reference
guide for a variety of readers, primarily targeting research scholars, undergraduate
and postgraduate researchers and practicing engineers working in Type-2 fuzzy logic
systems and their applications.

Chapter Organization

Chapter 1: This chapter presents an interval type-2 fuzzy logic control-
based proportional-integral-derivative (IT2-FLC-PID) method for the lower-limb
exoskeleton. The proposed controller parameters are obtained using a well-known
and nature-inspired optimization algorithm, cuckoo search algorithm (CSA). In
order to investigate the effectiveness of the proposed technique, it is compared with
the traditional type-1 FLC-PID (T1-FLC-PID) and the conventional PID control
approach for exoskeleton system in health care applications.

Chapter 2: In this paper, a simplified approach to obtain mathematical models
of interval type-2 (IT2) Takagi-Sugeno (TS) fuzzy PID controller using one-
dimensional (1-D) input space presented. The proposed controller has been applied
to nonlinear unstable processes such as continuously stirred tank reactor (CSTR) and
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vi Preface

usefulness of the proposed controller model has been checked through simulation
study. It can be noted that as a model-free approach, these controllers can also be
implemented for other control applications.

Chapter 3: This chapter gives a basics of fractional order calculus, its extension
in fractional order PID, fractional order type 1 fuzzy and interval Type 2 controllers.
The study focused on designing and developing the IT2FOFPID controller to control
fractional order plants and produce better results than its conventional parts.

Chapter 4: Discussed the new two-layer interval type-2 fuzzy logic controller
(TL-IT2FLC), wherein tuning the proposed control parameters is done with ABC
techniques, for controlling magnetic levitation system to suspend steel ball in the
air without any mechanical support. Further, proposed controller is also tested in
presence of disturbance, varying reference positions, and random noise rejection to
show the efficacy of the proposed and shown superior performances.

Chapter 5: Presented a novel control strategy based on Type-2 fuzzy logic sets,
which can handle the uncertainties in the inputs as well as the grid disturbances in
the wind energy system.

Chapter 6: In this chapter, an interval type-2 fuzzy pre-compensated PID (IT2FP-
PID) controller is applied to control robotic arm and optimized for trajectory tracking
problem. Here, shapes of the antecedent membership function, i.e., 60 parameters,
are optimized using recent hybrid grey wolf optimizer optimization procedure. At
last, the simulation results are compared with other equivalent counterparts while
minimization of performance metric integral time absolute error (ITAE).

Chapter 7: Explained the Type 2 Fuzzy Logic Controller (T2FLC) design to
manage the rotational speed of the oscillating water column (OWC) wave power
plants. Finally, the realistic JONSWAP ocean wave model has been considered
while doing the extensive simulations. The suggested T2FLC has been used to
examine important OWC plant metrics such turbine power, output power, turbine
flow coefficient, and rotor speed.

Chapter 8: Developed intuitionistic type-II fuzzy logic by merging type-II fuzzy
logic, and intuitionistic fuzzy logic in a broader way. The proposed system can
be applied in various fields including; engineering, medical and agriculture etc. So,
extensive work is carried out for lung cancer patients, which consists sixteen medical
entities of infected patients.

Chapter 9: This chapter aims to discuss the applicability of IoT-based enabled
Type-2 Fuzzy Logic (T2FL) in the healthcare system for monitoring patients with
diabetes by extracting the physiological factors from patients’ bodies. A statistical
experiment reveals that the model is very efficient and effective for diabetes patient
monitoring, using patient risk factors.

Chapter 10: Presented a type-2 neuro-fuzzy system to deal medical problems and
enhance the higher uncertainties’ performance.

Chapter 11: In this chapter, the state-of-the-art literature study presented for health
care sectors along with evolving of fuzzy logic. In continuation, type 2 fuzzy systems
used to treat particular diseases paving the way to find further scope for further
developments.
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Chapter 12: This chapter presented type-2 fuzzy set-based image segmentation
process to get the boundary/edge detection in blurred areas of an image. In addition,
the method is verified by thermographic breast cancer image data set and the results
were satisfactory.

Chapter 13: A non-iterative General Type-2 Fuzzy Logic System in quality assur-
ance by image processing using Mamdani singleton model based onWagner-Hagras
algorithm has been described with Central Composite Design model to create a clas-
sifier. The experimental results showed that proposedmodel is better than the existing
models.

Chapter 14: In this chapter,multiple sources of information, a large volumeof data,
and different parameters encourage to discuss bimatrix game problemswith the type-
2 fuzzy backdrop. Further, bimatrix games with payoffs of the type-2 neutrosophic
fuzzy set (T2NFS) is presented. Finally, the established model is justified by offering
a real-world problem to mitigate environmental pollution.

Chapter 15: In this chapter, the appropriate literature survey presented about
achievement and cost expedients for discouraged arrivals Queueing System in the
interval valued type-2 fuzzy environment by centroid of centroids fuzzy ordering
approach. The discussed ordering approach can do this conversion effectively and
provide concrete solutions.

Chapter 16: This chapter compares type-1 and type-2 fuzzy principal component
analyseswhich are based on type1 and type2 fuzzyC-means algorithms, respectively.
The two clustering methods combine the k-means clustering algorithm and type 1
and type 2 fuzzy logic, respectively.

The Main Features of the Book are as Follows

• It has covered all the latest developments and a good collection of state-of-the-art
approaches of type-2 fuzzy and its applications.

• This book is very useful for the new researchers working in the field of “type-2
fuzzy logic” to quickly know the new research trends.

• The book is conciselywritten, lucid, comprehensive, application-based, graphical,
schematics and covers wider aspects of type-2 fuzzy.

Tijuana, Mexico
Patna, India

Oscar Castillo
Anupam Kumar
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Application of Interval Type-2 Fuzzy
Logic Control Approach
to the Lower-Limb Exoskeleton

Richa Sharma and Hossein Rouhani

Abstract Fuzzy logic control methods are an integral part of control engineering
and are widely used in applications such as robotics, rehabilitation, home appliances,
and many more. Here, an interval type-2 fuzzy logic control-based proportional-
integral-derivative (IT2-FLC-PID) control method is presented for the lower-limb
exoskeleton. The intention of the use of the IT2-FLC-PID approach is to handle
the system uncertainties and external disturbances encountered with the exoskeleton
plant. The optimal controller parameters can be obtained using a well-known and
nature-inspired optimization algorithm, the namely cuckoo search algorithm (CSA).
To investigate the efficacy of the IT2-FLC-PID control scheme applied to the
exoskeleton system, simulation results are compared with the traditional type-1
FLC-PID (TI-FLC-PID) and the standard PID control approach.

Keywords Interval type-2 fuzzy logic · Tracking controller · Rehabilitation ·
Exoskeleton · The cuckoo search algorithm

1 Introduction

It is anticipated that the elderly population older than the age of 65 years will get
double from the year 1997 to 2025 [1], and it is anticipated that many of them are
affected by limited mobility. Also, some conditions such as paralysis, spasticity,
pain, or loss of sensation are as disabling as spinal cord injury to an individual
and to society [2]. In recent times, rehabilitation robotics have gained considerable
advancements for helping people with various neurological conditions. For example,
the lower-limb exoskeletons are wearable rehabilitation robots that have been used
to retrain these populations to restore gait toward improving the user’s quality of
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life and reducing the burden on healthcare systems [3, 4]. An exoskeleton generally
integrates multiple technologies for sensing, actuation, and control, in the design
of a wearable mechanical structure [4]. Several researchers have been working on
designing and controlling different types of exoskeletons to achieve user-friendly
and medically beneficial functions. Several research prototypes of wearable robots
have been successfully commercialized, and their market has been rapidly evolving.
However, there has been no standard or best practice or some agreedmethod officially
available for exoskeleton devices [5].

The functioning of the rehabilitation lower-limb exoskeleton involves compli-
cated human interaction, time-varying dynamics, and disturbances; therefore, it is
challenging to design an exoskeleton along with a controller for efficient tracking
of rehabilitation training tasks [3]. Several control approaches have been proposed
to control an exoskeleton [6]. Fuzzy logic control (FLC) has been a widely used
controller for complex nonlinear systems [3] and has the potential to be used for
exoskeletons. The FLC approach has the nonlinear linguistic ability between inputs
and outputs and provides a model-free and intuitive approach for complex, uncer-
tain systems [7]. Chen et al. presented an adaptive control approach based on the
disturbance-observer for a complex mechanical system with nonlinearities and vali-
dated it on a robotic exoskeleton [8]. Kiguchi et al. presented the use of neuro-fuzzy
for a torque control scheme for an electromyogram-integrated robot exoskeleton [9].
Moreover, Yin et al. investigated a control approach that is adaptive and is based
on a fuzzy rule interpolation method in addition to a muscle–tendon model and
applied it to a robotic exoskeleton [10]. Several other authors also developed the
FLC approaches for exoskeleton control [11–14].

Another emerging technique in FLC is the IT2-fuzzy logic control (IT2-FLC),
which has become an excellent alternative to its traditional counterparts. The type-2
(T2) FLC approach proposed by Zadeh in 1975 can handle the uncertainties effi-
ciently because they have membership functions that themselves are fuzzy in nature.
This method seems the expansion to the standard type 1(T1) fuzzy sets. Notably,
the membership grade of every element of a T2 set is itself a fuzzy set in within the
limit of [0,1], whereas for a T1 fuzzy set, it is a crisp value in the range of [0,1].
It means that the T2-FLC systems have optional additional freedom to cope with
and inclusion of uncertainties. Moreover, the IT2-FLC is a unique case of T2-FLC,
and its use is simpler as compared to T2-FLC [15]. An IT2-FLC design provides an
additional option of freedom to manage uncertainties by offering the quality of foot-
prints of uncertainty with three-dimensional fuzzy membership functions. It has two
T1-FLC membership functions, i.e., the upper, and the lower membership functions,
and an additional feature footprint of uncertainty is present between both. As such,
it is possible to cover a larger number of uncertainties with limited membership sets
using the footprint of uncertainty feature of IT2-FLC, with the easier formulation of
the rule base of the system [16]. Incorporating uncertainties in the fuzzy sets make it
appropriate for applications where disturbances and noise are present in the system’s
performance [16]. Many recent works presented the successful use of this IT2-FLC
methodology for robotic control applications [17, 18]. Therefore, the application
of the IT2-FLC approach could be implemented for the control of rehabilitation
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exoskeleton systems. For the successful implementation of a useful control algo-
rithm, the most favorable values of controller parameters can be obtained by various
meta-heuristic and advanced optimization practices. In the presented chapter, an
effective method named as cuckoo search algorithm (CSA) is utilized as an opti-
mization tool to get the ideal values of controller gains for the discussed IT2-FLC
scheme. In recent years, the method CSA has been gaining extreme popularity for
discovering the optimumparameters for different controller techniques for robots [19,
20] and lower-limb prostheses [21]; therefore, it could also be a potential technique
for control of lower-limb exoskeletons.

Thekey contributionof this chapter is to illustrate the applicability of the IT2-FLC-
PID controller to the lower-limb exoskeleton as a complex and uncertain plant. The
ultimate goal of use of this control approach is to manage the external disturbances
and uncertainties present during the execution of any motor task. The CSA is used as
a tool to obtain optimized controller gains for the proposedmethod. To investigate the
successful application of discussed IT2-FLC-PID control approach, its performance
is assessed with its counterpart T1-FLC-PID and traditional proportional-integral-
derivative (PID) controller.

2 Mathematical Representation of a Lower-Limb
Exoskeleton

The mathematical model representation of the used lower-limb exoskeleton plant
considered for this work [14, 22], is presented here. This mathematical model
provides a relationship between the link positions (θLLEi ) and the external force
or torque (τLLEi ) of a lower-limb exoskeleton displayed in Fig. 1 [14]. Also, the
mathematical relation is presented by:

(MLLE
(
θLLEi

) + M̄LLE
(
θLLEi

)
)θ̈LLEi + (CFLLE

(
θLLEi , θ̇LLEi

)

+ CFLLE
(
θLLEi , θ̇LLEi

)
)θ̇LLEi + GLLE

(
θLLEi

) + ḠLLE
(
θLLEi

)

= τLLEi + FLLEi (t) + �(te, θLLEi , θ̇LLEi , θ̈LLEi ) (1)

The inertia matrix is given by

MLLE (θLLEi ) =
[
ML11 ML12

ML21 ML22

]
(2)

ML11 = mlle1d
2
lle1 + mlle2

(
l2lle1 + d2

lle2 + 2llle1dlle2cos(θLLE2)
) + Ille1 + Ille2 (3)

ML12 = mlle2

(
d2
lle2 + llle1dlle2cos

(
θLLE2

)) + Ille2 (4)
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Fig. 1 Basic design of
lower-limb exoskeleton

ML21 = ML12 (5)

ML22 = mlle2d
2
lle2 + Ille2 (6)

In this,mlle1 (2.6 kg) andmlle2 (3.2 kg) state the body mass of Link 1 and Link 2,;
llle1 (25 cm) and llle2 (30 cm) correspond to the total length of the Link 1 and the Link
2, respectively; τLLE1 as well as τLLE2 signify the external torques/forces on Link
1 and Link 2, respectively; Ille1 = 1

3mlle1llle1
2 and Ille2 = 1

12 mlle2llle2
2 evaluate the

moment of inertia for the Link 1 as well as the Link 2; dlle1 (12 cm) and dlle2 (15 cm)
correspond to the distance from the joint end to the centre of mass of the Link 1 as
well as the Link 2; and g represents the acceleration due to gravitation [14].

Further, the Coriolis and centrifugal force matrix is expressed as

CFLLE (θLLEi , θ̇LLEi ) =
[
CFlle11 CFlle12

CFlle21 CFlle22

]
(7)

CFlle11 = −mlle2llle1dlle2 θ̇
2
LLE2

sin(θLLE2) (8)

CFlle12 = −mlle2llle1dlle2(θ̇LLE1 + θ̇LLE2)sin(θLLE2) (9)

CFlle21 = mlle2llle1dlle2 θ̇LLE1 sin(θLLE2) (10)

CFlle22 = 0 (11)
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The gravity vector is presented below

GLLE (θLLEi ) =
[
Glle11

Glle21

]
(12)

Glle11 = (
mlle1dlle2 + mlle2llle1

)
gcos(θLLE1)

+ mlle2dlle2gcos(θLLE1 + θLLE2) (13)

Glle21 = mlle2dlle2gcos(θLLE1 + θLLE2) (14)

ζlle(θLLEi , θ̇LLEi , θ̈LLEi ) � M̄LLE
(
θLLEi

)
θ̈LLEi

+ CFLLE
(
θLLEi , θ̇LLEi

)
θ̇LLEi

+ ḠLLE
(
θLLEi

) = 0.2(MLLE
(
θLLEi

)
θ̈LLEi

+ CFLLE
(
θLLEi , θ̇LLEi

)
θ̇LLEi + GLLE

(
θLLEi

)
) (15)

The interaction between used lower-limb exoskeleton and the wearer are
characterized as

FLLE1(t) = 2cos(2π t) (16)

FLLE2(t) = 2sin(2π t) (17)

where ellei (t) symbolizes the tracking difference between the reference and the
measured trajectory with i = 1, 2 depicted the Joint 1 and the Joint 2.

Moreover, the frictional forces, as well as present disturbances in the plant, are
denoted as [14, 22].

�(te) = 1 + 3‖ėllei (t)‖ + 2‖ellei (t)‖ (18)

3 Controller Strategy

In this section of the chapter, a control strategy IT2-FLC-PID for a lower-limb
exoskeleton, is presented. Also, the optimization technique employed for getting
the controller gains is briefly discussed.
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3.1 An Interval Type-2 Fuzzy Logic PID Controller
(IT2-FLC-PID)

The fundamental design and implementation of the IT2-FLC-PID approach as
demonstrated in Fig. 2 is discussed in this section.

A standard PID controller is stated as:

UPI Di (t) = Kpli ellei (t) + Kili

∫
ellei (t)dt + Kdli

dellei (t)

dt
(19)

where Kpli , Kdli Kili denote the proportional gain, the derivative, and integral gain,
of a standard PID control method.

An intelligent control method FLC offers a nonlinear mapping among the
input variables and output variable quantities to the controller. Here, the FLC-PID
controller involves the aggregation of the FLC-PI as well as the FLC-PD controller
methods. This input vs. output variables mapping for designing the control approach
is expressed by the following equation [14], and more details are available in [7, 14]:

T
(
1 − z−1

)αllei �uP I LLE (k) + βllei uPDLLE (k) = kllei ellei (k) + qllei
(1 − z−1)

T
ellei (k)

(20)

where αllei , βllei , kllei , and qllei (i = 1, 2) are the scaling parameters of the stated
IT2-FLC-PID control technique for each joint of used exoskeleton.

The IT2-FLC-PID controller structure as shown in Fig. 3 consists of same compo-
nents as the T1-FLC-PID structure that are the fuzzification process, core inference
engine, created rule base, and finally, the defuzzification process. Also, the only addi-
tional component in IT2-FLC is the type-reducer [23]. The type-reducer converts the
T2 fuzzy sets to T1 fuzzy sets, and then these T1-fuzzy sets are plugged into the
defuzzification block to convert the fuzzy values into crisp values [15, 16].

The significant feature in the IT2-FLC-PID controller is itsmembership functions.
A singlemembership function of IT2-FLC consists of two T1membership functions,

Fig. 2 Fundamental scheme of used IT2-FLC-PID control approach to a lower-limb exoskeleton
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Fig. 3 Design structure of IT2-FLC-PID controller

i.e., the upper membership function, and the lower membership functions, and in
between these two, the additional footprint of uncertainty lies as indicated in Fig. 4
(a). Assume that an antecedent membership function can be represented by X̃i t2 and
the following consequent membership function is represented by Ỹi t2 therefore, the

uppermembership functions are represented as
(
μ̄X̄ ′

i t2
, μ̄Ȳ ′

i t2

)
, and lowermembership

functions are represented as
(
μ

X ′
i t2,

μ
Ȳ ′
i t2

)
, and the combined firing rule is given as

follows [16]:

f̃ f i t2 = [ f f i t2, f f
i t2] (21)

where f f i t2 =
(
μ

X ′
i t2

∗ μ
Y ′

i t2

)
; f f

i t2 =
(
μ −

X ′
i t2

∗ μ −
Y ′

i t2

)

Now, for the type-reducing of output, the centre of sets method is utilized and
then defuzzifier is applied as [16]:

uit2− f lc =
[ull f lc+urr f lc

2

]
(22)

where ull f lc =
∑ll

n=1 f f
i t2
Cn+∑N

n=ll+1 f f i t2Cn

∑ll
n=1 f f

i t2+∑N
n=ll+1 f f i t2

;

urr f lc =
∑rr

n=1 f f i t2Cn + ∑N
n=rr+1 f f

i t2
C

n

∑rr
n=1 f f i t2 + ∑N

n=rr+1 f f
i t2

In the above expressions, the switching points (ll, rr) are attained with well-
known Karnik–Mendel type-reduction method [16, 24].

In this chapter, the used key input variables are the tracking error/difference and
its derivative, and the output variable quantity is control torque output, i.e., torque
exerted by the actuators on the joints. Here,membership functions used for both input
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Fig. 4 Used Membership functions a input variables (tracking difference/error and derivative of
tracking difference) b the output variables (control torque output) for IT2-FLC-PID controller

variables are seven conventional triangular membership functions as indicated in
Fig. 4a whereas the stated output variables are seven singletonmembership functions
displayed in Fig. 4b that are: NegativeBig (NB), PositiveBig (PB). NegativeMedium
(NM), PositiveMedium (PM),Negative Small (NS), PositiveMedium (PM) andZero
(ZE). Using the mentioned input and output features, the 7 × 7 rule base is prepared
provided in Table 1 [16] which is used to generate the appropriate control action.

3.2 Cuckoo Search Algorithm (CSA)

For this work, the CSA is used as a tool to obtain optimized controller gains or param-
eters as needed for the implementation of an effective controlmethod. Thementioned
CSAwas founded by Yang and Deb in the year 2009. It runs on the parasitic breeding
actions of the famous cuckoo birds [25, 26]. A detailed description of this algorithm
can be found in [27, 28]. Additionally, the major rules for implementation of this
method are stated as follows [26–28]:

Each cuckoo bird can lay only an egg and place that in an aimlessly searched nest.

(a) The calculated best nest should contain the optimum solution as well as it must
keep this to all future group (iterations).



Application of Interval Type-2 Fuzzy Logic Control Approach … 9

Table 1 Rule base formulated between the stated input aswell as output variables for thementioned
IT2-FLC-PID and T1-FLC-PID control techniques

Tracking difference/error

NB NM NS ZE PS PM PB

Derivative of the tracking difference/error NB NB NB NB NB NM NS ZE

NM NB NB NB NM NS ZE PS

NS NB NB NM NS ZE PS PM

ZE NB NM NS ZE PS PM PB

PS NM NS ZE PS PM PB PB

PM NS ZE PS PM PB PB PB

PB ZE PS PM PB PB PB PB

PB: Positive Big NB: Negative Big, PM: Positive Medium, NM: Negative Medium,
PS: Positive Small, NS: Negative Small, and ZE: Zero

(b) The stated host nests are always fixed in number, and a host (presenter) bird
would detect an invader with a probability of [0,1].

For the implementation ofCSA, it is essential to select an appropriate performance
index. For this chapter, cost function used for this algorithm is the sum of integral
of absolute difference/error (IAE) of both joints and integral absolute change in
controller output torque [7].

The general steps involved in CSA is presented below [26–28]:

I. At random generate a population of Gcsa host cuckoo birds is generated, set
up the number of iterations (generations) = 100.

II. Create a cuckoo search with the Le�́y flight. Calculate its fitness value fc.
III. Randomly decided a nest u from the host residents. Calculate the fitness value

fu .
IV. Finally, decide if fc < fu ; if true, substitute u with a new candidate; if false,

keep this as the new solution.
V. Abandon a fraction of birds to avoid raiders with the likelihood of 0.25. Create

a brand-new nest.
VI. Preserve the current best solution. Check the generation and increment the

counter.
VII. Repeat steps II–VI till the final generation reaches.

4 Results and Discussions

In this segment, simulation results for the performance assessment of the applica-
tion of IT2-FLC-PID controller to a mentioned lower-limb exoskeleton plant for
a tracking job is presented. The comparison of the proposed controller is investi-
gated for its counterpart T1-FLC-PID method as well as the standard PID controller.
The MATLAB/Simulink platform is utilized for implementing this work. Also, the
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open-source IT2-FLC toolbox [29] is used to implement the IT2-FLC-PID control
approach. The desired trajectories for the Joint 1 and the Joint 2 of stated lower-limb
exoskeleton are provided in Eqs. (23) and (24) below:

θre f 1(t) = 0.8 + 0.2sin(2π t)rad (23)

θre f 2(t) = 1.2 − 0.2cos(2π t)rad (24)

For this work, the initial tracking errors for Joint 1 and Joint 2 are set as elle1(0) =
0.1 and elle2(0) = 0.15 radians [14, 22]. As discussed in the above section, the
controller parameters for all control schemes are optimized using the CSA. There
are four parameters for each joint that need to be optimized.Theoptimizedparameters
and resulting IAE values are detailed in Table 2. Additionally, the subsequent IAE
values obtained for the IT2-FLC-PIDare 0.007684 and0.0226 for the Joint 1 and Joint
2, respectively. These values are smaller than the IAE values of the other mentioned
controllermethods, the conventional T1-FLC-PID, and standard PID controllers. The
IAE values for T1-FLC-PID controller are 0.01242 and 0.06141 for Joint 1 and Joint
2, respectively, whereas the IAE values for PID controllers are 0.06253 and 0.1091
for the Joint 1 and the Joint 2. Also, the tracking performance of proposed control
schemes for the Joint 1 and the Joint 2 are displayed in Fig. 5a, b. Furthermore, the
controller outputs of all schemes for Joint 1 and Joint 2 of the lower-limb exoskeleton
are represented in Fig. 5c, d. Moreover, the tracking error performance of the Joint
1 and the Joint 2 for all control schemes are demonstrated in the Fig. 5e, f. From
Table 2 and Fig. 5e, f, it can be inferred that the tracking errors for the IT2-FLC-PID
control scheme are smaller as assessed to the stated two controllers, and it signifies the
superiority of IT2-FLC-PID over its counterpart T1-FLC-PID method and standard
PID controllers in terms of tracking performance. Therefore, this chapter provides
the application of IT2-FLC-PID control to the complex lower-limb exoskeleton plant
for tracking performance. In this work, the external disturbances and uncertainties
have already been present in the system under consideration which indicates that
the proposed IT2-FLC-PID outperforms other controller, i.e., T1-FLC-PID and the
traditional PID controller for trajectory tracking task for uncertain and complex
lower-limb exoskeleton plant. However, there are a few limitations of this study.
This study presents the simulation results for the stated control scheme employed
to a lower-limb exoskeleton, which does not include uncertainties and disturbances
present in the real world that may have an adverse effect on the performance of the
plant. In future works, the real-time implementation of the suggested IT2-FLC-PID
controller will be investigated in the existence of external disturbances and noises.
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Fig. 5 aThe sinusoidal trajectory trackingoutcome for the Joint 1;b the trajectory trackingoutcome
for the Joint 2; c control torque output for the Joint 1; d control torque output for the Joint 2; e
tracking error (difference) for the Joint 1; f tracking error (difference) for the Joint 2 of a stated lower-
limb exoskeleton for standard PID, conventional TI-FLC-PID, and stated IT2-FLC-PID control
techniques

5 Conclusions

In this chapter, a IT2-FLC-PID control technique is employed for the control of
a lower-limb exoskeleton plant. The optimized controller gains for this controller
scheme have been obtained using a CSA optimization technique. The simulation
outcomes are then compared to other control techniques, namely conventional
T1-FLC-PID and standard PID controller. From the performance outcome, it is
concluded that the IT2-FLC-PID control approach outperformed the other two
controllers in terms of tracking errors and was able to deal with the disturbances
and plant uncertainties. Overall, this chapter provides an idea of simulation work on
the applicability and suitability of discussed IT2-FLC-PID controller method for a
lower-limb exoskeleton plant for the tracking job. In future, the real-time execution
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of the stated control scheme should be the investigated. Moreover, modern control
techniques such as adaptive control, fractional order control method and intelligent
control like neural network based-control could also be explored for the tracking job
of a lower-limb exoskeleton.
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A Simplified Model of an Interval Type-2
Takagi-Sugeno Fuzzy PID Controller
using One-Dimensional Input Space

Ritu Raj, Anupam Kumar, and Prashant Gaidhane

Abstract Deriving analytical structures or mathematical models are quite common
to reveal the black-box nature of fuzzy controllers. However, this approach was
applied on a two-/three- dimensional input space resulting in complex models of
fuzzy controllers. In this paper, we propose a simplified approach to obtain math-
ematical models of interval type-2 (IT2) Takagi-Sugeno (TS) fuzzy PID controller
using one-dimensional (1-D) input space. The fuzzy PID control action is designed
by individually modelling and combining fuzzy proportional (F-P), fuzzy integral
(F-I), and fuzzy derivative (F-D) control actions on 1-D input space. In this approach,
the need of triangular norms and co-norms is eliminated, resulting in a simplified con-
troller model. To show the usefulness of the proposed controller model, we present
simulation studies on nonlinear unstable processes such as continuously stirred tank
reactor (CSTR). However, as a model free approach, these controllers can also be
implemented for other control applications.

Keywords Fuzzy control · Analytical structure · modeling · Nonlinear control ·
CSTR

1 Introduction

Fuzzy logic systems (FLS) have become quite popular in the last several decades
due to its capability to handle well-defined and ill-defined processes [1]. One of the
first applications of FLS was in the domain of control systems [2]. However, FLS
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based controllers were treated as black-box whose closed-form solutions were not
available. In early 1990s fuzzy controllers were developed to tackle this problem.
Ying [3] presented the simplest fuzzy PI controllers revealing their mathematical
structures. Later this approach was extended to fuzzy PD and lately to fuzzy PID
controllers.

Mizumoto [4] realized fuzzyPID controllers using “product-sum-gravitymethod”
and “simplified fuzzy reasoning method”. It was also shown that fuzzy PID con-
trollers cannot be constructed using min-max-gravity method. Misir et al. [5] pre-
sented a design method and stability analysis of a fuzzy PI plus derivative controller.
Later, Mann et al. [6] presented different fuzzy PID controller structure by manipu-
lating the rule base in different forms. Golob [7] further highlighted some simplified
structures of fuzzy PID controllers. These controller structures used “three one-input
one-output inferences with three separate rule bases”. Recently, type-1 fuzzy PID
controllers of Takagi-Sugeno (TS) type [8] and Mamdani type [9] were developed
using three inputs resulting in a three-dimensional input space. Raj et al. [10] sim-
plified the structure of a interval type-2 (IT2) fuzzy PID controller by utilizing a
two-dimensional input space. However, this structure of fuzzy PID controller used
three inputs. Further, Sain and Mohan [11] developed type-1 fuzzy PID controllers
using one-dimensional (1-D) input space which reduced the computational complex-
ity of the controller. In this chapter we extend the work in [11] to an IT2 fuzzy PID
controller using 1-D input space.

Apart from integer order fuzzy controllers, several works on fractional order
fuzzy controllers have been reported in the literature. A fractional order fuzzy PID
controller was proposed [12] where the controller parameters were suitably designed
using genetic algorithm based optimization. For uncertain systems such as two-link
manipulators, Kumar et al. [13] proposed a fractional order fuzzy proportional (F-
P) plus fuzzy integral (F-I) plus fuzzy derivative (F-D) controller. The controller
parameters were again tuned using genetic algorithm based optimization. Recently,
Kumar and Raj [14] presented a design method for a fractional order two-layer fuzzy
controller for controlling the mean arterial blood pressure. It is important to note
that the fuzzy controllers do not have an unique model. It depends upon the proper
selection of membership functions, rule base, inference mechanism, type-reduction
and defuzzification.

The objective of this work is to present a simplified modelling approach for IT2
TS fuzzy PID controller where each control action i.e., F-P, F-I, and F-D is realized
individually on a 1-D input space. The control actions are then merged to provide
the PID control law. A 1-D input space eliminates the need of triangular norms and
co-norms for deriving the controller model, hence, reducing the complexity. Most
often it is found in the literature [8–10, 15–21] that the controller model utilizes a
two-/three- dimensional input space (or state-space) resulting in complex controller
models [22]. Some works [23, 24] have utilised the parallel combination of F-P/F-
I/F-D control action to yield a fuzzy PID controller. However, the outputs of F-P/F-
I/F-D controllers are nonlinear functions of error and change of error in [23], and
the output of F-P controller is a nonlinear function of error and change of error, and
the outputs of F-I/F-D controllers are nonlinear functions of error and rate of change
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of error in [24]. Whereas the outputs of F-P, F-I, and F-D controllers are nonlinear
functions of change of error, error, and double change of error, respectively, in this
work. Moreover, a total of nine [23] and four [24] rules have been employed for F-P,
F-I, and F-D controllers, whereas only two rules have been considered in this work.
A similar approach has been reported for a type-1 Mamdani fuzzy PID controller
using 1-D input space [11]. However, it will be proven in this work that type-1 fuzzy
PID controllers are a special case of IT2 fuzzy PID controllers.

This chapter consists of five sections: Sect. 1 presents the background and lit-
erature survey relevant to this work. Section 2 discusses about conventional and
fuzzy PID controller theory. In Sect. 3 the mathematical model of IT2 TS fuzzy PID
controller in 1-D input space is derived. Section 4 presents the simulation study to
validate the controller structure. Finally, Sect. 5 concludes this chapter.

2 PID Controller: Conventional and Fuzzy

A continuous-time system can be controlled by a discrete-time controller as shown
in Fig. 1. The zero-order hold (ZOH) converts the discrete-time control signal u(k)
into continuous-time control signal u(t). r(t), e(t), e(k), di (t), do(t), y(t), and T
denote the reference signal, continuous-time error signal, error signal at kth sampling
instant, disturbance signal applied at input and output of the plant, plant response,
and sampling time, respectively. The control signal uP I D(t) of a continuous-time
linear PID controller in terms of error signal e(t) is given as follows:

uP I D(t) = Kc
Pe(t) + Kc

I

∫ t

0
e(τ )dτ + Kc

D

de(t)

dt
(1)

where Kc
P , Kc

I , and Kc
D denote proportional, integral, and derivative gains of

continuous-time linear PID controller. Differentiating Eq. (1) w.r.t t yields

duP I D(t)

dt
= Kc

P

de(t)

dt
+ Kc

I e(t) + Kc
D

d2e(t)

dt2
(2)

Fig. 1 A typical closed-loop computer control system [11]
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Fig. 2 Proposed block diagram of type-2 TS fuzzy PID controller using 1-D input space

At kth sampling instant, Eq. (2) can be expressed as

ΔuP I D(k) = Kd
PΔe(k) + Kd

I e(k) + Kd
DΔ2e(k) (3)

where e(k), Δe(k), and Δ2e(k) denote error signal, change of error signal, and
double change of error signal, respectively. Kd

P , K
d
I , and Kd

D are the proportional,
integral, and derivative gains of discrete-time linear PID controller. ΔuP I D(k) is
the incremental PID control action. The final PID control action of a conventional
discrete-time PID controller is given as

uP I D(k) = uP I D(k − 1) + ΔuP I D(k) (4)

One can see from Eq. (3), that the incremental PID control action can be gener-
ated by individually summing the proportional, integral, and derivative action with
respect to the inputs Δe(k), e(k), and Δ2e(k). Based on this approach, the block
diagram of a type-2 TS fuzzy PID controller is presented in Fig. 2. The fuzzy con-
trol actions, i.e. fuzzy proportional (ΔuP

s (k)), fuzzy integral (ΔuI
s (k)), and fuzzy

derivative (ΔuD
s (k)), are computed individually and summed together to arrive at

the scaled incremental fuzzy PID control action (ΔuP I D
s (k)). S is the scaling factor

and a unit delay element (z−1) is used to obtain the final fuzzy PID control action
(uP I D(k)).

Looking at Fig. 2, one can obtain the incremental fuzzy PID control action, similar
to Eq. (3), as follows:

ΔuP I D
s (k) = γP

s Δe(k) + γ I
s e(k) + γ I

s Δ
2e(k) (5)

Here, γP
s , γ

I
s , and γD

s are the gains of fuzzy proportional, fuzzy integral, and fuzzy
derivative controllers, respectively. Unlike previous works [10, 18, 21], it should be
noted that the gains γP

s , γ
I
s , and γD

s are only dependent on Δe(k), e(k), and Δ2e(k),
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respectively, i.e. γP
s = f (Δe(k)), γ I

s = f (e(k)), and γD
s = f (Δ2e(k)). This allows

us to tune each of the gains independently, irrespective of the other gains. Next we
discuss the principle components of an IT2 TS fuzzy controller.

2.1 Fuzzification

A typical IT2 fuzzy set [10, 19] for control application is shown in Fig. 3. The input x
(e, Δe, orΔ2e) is fuzzified by negative (N) and positive (P) fuzzy sets. The universe
of discourse (UoD) of the underlying type-1 fuzzy set (shown in dotted lines in Fig. 3)
is [−lx , lx ]. An IT2 fuzzy set is obtained by incorporating px deviation to UoD of
type-1 fuzzy set, i.e [−lx , lx ]. Hence, the UoD of IT2 fuzzy set is [−lx − px , lx +
px ]. Due to the deviation px , the membership functions of the fuzzy sets N and P
becomes uncertain. This uncertainty is captured by θx , given as θx = px/(2 · lx ).
Mathematically the fuzzy membership functions are given as follows:

μ
N
(x) =

{− 1
2·lx x + (0.5 − θx ) if − lx − px ≤ x ≤ lx − px

0 if lx − px ≤ x ≤ lx + px

μ̄N (x) =
⎧⎨
⎩

1 if − lx − px ≤ x ≤ −lx + px

− 1
2·lx x + (0.5 + θx ) if − lx + px ≤ x ≤ lx + px

μ
P
(x) =

⎧⎨
⎩

0 if − lx − px ≤ x ≤ −lx + px
1

2·lx x + (0.5 − θx ) if − lx + px ≤ x ≤ lx + px

μ̄P(x) =
{

1
2·lx x + (0.5 + θx ) if − lx − px ≤ x ≤ lx − px

1 if lx − px ≤ x ≤ lx + px

Fig. 3 Membership functions of interval type-2 fuzzy sets
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2.2 TS Rule Base

The TS rule base consists of IF-THEN statements incorporating the control strategy.
Here, single-input rule base for fuzzy integral control action is given as follows:

RI
1 : IF e(k) is N THEN ΔuI

1(k) = aI
1e(k) + aI

0
RI
2 : IF e(k) is P THEN ΔuI

2(k) = bI
1e(k) + bI

0

Similarly the control rules for fuzzy proportional and fuzzy derivative control actions
are given as follows:

RP
1 : IF Δe(k) is N THEN ΔuP

1 (k) = aP
1 Δe(k) + aP

0
RP
2 : IF Δe(k) is P THEN ΔuP

2 (k) = bP
1 Δe(k) + bP

0

RD
1 : IF Δ2e(k) is N THEN ΔuD

1 (k) = aD
1 Δ2e(k) + aD

0
RD
2 : IF Δ2e(k) is P THEN ΔuD

2 (k) = bD
1 Δ2e(k) + bD

0

In the rules, N and P represents the IT2 fuzzy sets as shown in Fig. 3, and aI
1 , a

I
0 , b

I
1 ,

bI
0 are the tuneable parameters of fuzzy integral control action. Similarly, aP

1 , a
P
0 ,

bP
1 , b

P
0 , and aD

1 , a
D
0 , b

D
1 , b

D
0 are the tuneable parameters of fuzzy proportional and

fuzzy derivative control actions, respectively. It can be seen from the rule base that
the need of triangular norms and co-norms is eliminated.

2.3 Input Space

An input space or state-space describes the relation between the input fuzzy sets and
the fuzzy rules. Each fuzzy rule is mapped into an individual input space as shown in
Figs. 4 and 5. The overall input space is obtained by merging the input space of both
the rules as shown in Fig. 6. Here, the input space is 1-D since each control action
takes single-input. The input space depicts certain zones (Z1, Z2, Z3) depending
upon the firing intervals of each rule. The lower and upper firing intervals due to
both the control rules in each zone are presented in Table 1 and depicted in Figs. 4
and 5.

The input space decides the computational complexity of the fuzzy controllers.
As each zone corresponds to a unique control law, the complexity increases with the

Fig. 4 1-D input space due to rule 1
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Fig. 5 1-D input space due to rule 2

Fig. 6 1-D input space due to both rules

Table 1 Resultant membership functions due to both rules in 1-D input space

Zone μ
1

μ̄1 μ
2

μ̄2

Z1 μ
N

1 0 μ̄P

Z2 μ
N

μ̄N μ
P

μ̄P

Z3 0 μ̄N μ
P

1

increase in the number of zones. Further, with increase in the number of inputs the
dimension of the input space also increases leading to complex control laws. Hence,
a 1-D input space reduces the computational complexity significantly.

2.4 Type Reduction and Defuzzification

To reduce the IT2 fuzzy sets to type-1 fuzzy sets, type reduction is incorporated. This
is achieved by a type reduction algorithm where the lower firing intervals of both
rules are utilized to obtain the lower scaled control output (ΔuCA

s (k)). Similarly the
upper scaled control output (ΔūC A

s (k)) is obtained from the upper firing intervals.
Mathematically these are given by

ΔuCA
s (k) = μ

1
· ΔuCA

1 (k) + μ
2
· ΔuCA

2 (k)

μ
1
+ μ

2

ΔūC A
s (k) = μ̄1 · ΔuCA

1 (k) + μ̄2 · ΔuCA
2 (k)

μ̄1 + μ̄2

(6)
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where CA denotes control action which is either fuzzy proportional (P), or integral
(I) or derivative (D). Each of the lower and upper scaled control outputs are treated as
individual type-1 fuzzy control outputs. The final crisp output is computed by taking
the average of the lower and upper scaled control outputs, i.e.,

ΔuCA
s = {ΔuCA

s (k) + ΔūC A
s (k)}/2 (7)

3 Controller Structure

In this section, we discuss about the IT2 TS F-P/F-I/F-D controller structure in 1-D
input space. The general structure is given in Eq. (5) where γP

s = f (Δe(k)), γ I
s =

f (e(k)), and γD
s = f (Δ2e(k)). Here we present the explicit form of the function

f (·). The mathematical expressions of the function f (·) is derived from the results
obtained in Table 1 and Eqs. (6) and (7).

Considering fuzzy integral (I) action, the firings intervals [μ
1
, μ̄1] (for rule 1)

and [μ
2
, μ̄2] (for rule 2) is obtained for zones Z1, Z2, and Z3 from Table 1. Their

membership grades are provided in Sect. 2.1. Using these expressions in Eq. (6),
we obtain the lower and upper scaled control outputs (ΔuI

s (k) & Δū I
s (k)) for the

corresponding zones as given in Eqs. (8)–(10).

Zone, Z1

ΔuI
s (k) = aI

1e + aI
0

Δū I
s (k) = (bI

1e + bI
0 + lebI

1 + 2lea I
1 + 2leθebI

1)e + 2le(aI
0 + 0.5bI

0 + θebI
0)

e + 2le(1.5 + θe)
(8)

Zone, Z2

ΔuI
s (k) = e

4le(0.5 − θe)
(−aI

1e − aI
0 + bI

1e + bI
0) + 1

2
(aI

1e + aI
0 + bI

1e + bI
0)

Δū I
s (k) = e

4le(0.5 + θe)
(−aI

1e − aI
0 + bI

1e + bI
0) + 1

2
(aI

1e + aI
0 + bI

1e + bI
0)

(9)
Zone, Z3

ΔuI
s (k) = bI

1e + bI
0

Δū I
s (k) = (−aI

1e − aI
0 + lea I

1 + 2lebI
1 + 2leθea I

1 )e + 2le(bI
0 + 0.5aI

0 + θea I
0 )

−e + 2le(1.5 + θe)
(10)

Now, using the expressions of ΔuI
s (k) & Δū I

s (k) for zones Z1, Z2, and Z3 in
Eq. (7) we obtain the final crisp output ΔuI

s for fuzzy integral action. Similarly the
expressions of f (·) is obtained for fuzzy proportional and derivative action. The
expressions are similar to Eqs. (8)–(10) where ′ I ′ is replaced with ′P ′ for fuzzy
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proportional action and with ′D′ for fuzzy derivative action. The final fuzzy PID
control action is the sum of the fuzzy proportional, integral, and derivative actions.

3.1 Properties

The properties of incremental IT2 TS F-P/F-I/F-D is enunciated below:

1. The incremental IT2 TS F-P/F-I/F-D controller is a nonlinear variable gain con-
troller as the gains are the function of Δe(k), e(k), and Δ2e(k).

2. The incremental IT2 TS F-P/F-I/F-D controller becomes a incremental type-1
fuzzy P/I/D controller when θΔe = θe = θΔ2e = 0.

a. The UoD of incremental IT2 TS F-P/F-I/F-D controller gets reduced to
[−lΔe, lΔe], [−le, le], and [−lΔ2e, lΔ2e] when θΔe = θe = θΔ2e = 0.

b. Zones Z1 and Z3 vanishwhen θΔe = θe = θΔ2e = 0.Only zone Z2 is present.

3. The control action for F-P is shown in Fig. 7 where the values are chosen as
aP
1 = 5, aP

0 = 0.1, bP
1 = 3, bP

0 = 0.2, lΔe = 1, and θΔe = 0.125 without loss of
generality.

4. The control action generated by F-P is (aP
0 + bP

0 )/2 at Δe(k) = 0. This is due
to the offset term present in the control rules. Same reasoning is applicable to
F-I and F-D control actions.

5. The control action generated by the incremental IT2 TS F-P/F-I/F-D controller
is continuous in nature and it increases monotonically from minimum to the
maximum value as seen from Fig. 7.

Remark The proposed IT2 TS fuzzy PID controller is obtained by individually
combining the incremental F-P, F-I, and F-D control actions. However, the control
effort becomes zero at e(k) = Δe(k) = Δ2e(k) = 0 only if the offset terms (a0, b0)
become zero.

Fig. 7 Control action due to
F-P
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4 Simulation Study

In this section, we employ the IT2 fuzzy P/I/D controller on some unstable/nonlinear
systems to evaluate the performance of the proposed scheme. Furthermore we com-
pare the results of the proposed method with linear PI, variable structure controller
(VSC) [25], and variable structure fuzzy controller (VSFC) [26].

Example 1 An unstable system with dead-time is considered which is given by the
transfer function F(s) as follows:

F(s) = e−0.25s/(s − 1) (11)

These type of systems are quite common in process control industries. Here, the
output of the system is to be regulated to a constant value. For this, the controller
parameters are tuned as given below:
IT2 Fuzzy P: aP

1 = 2, aP
0 = 30, bP

1 = 7, bP
0 = 60, lΔe = 1.

IT2 Fuzzy I: aI
1 = 0.0016, aI

0 = 0.024, bI
1 = 0.0056, bI

0 = 0.048, le = 1250.
IT2 Fuzzy D: aD

1 = 120, aD
0 = 1800, bD

1 = 420, bD
0 = 3600, lΔ2e = 0.017, and S =

1.5.
The parameters of linear PI, VSC, and VSFC controllers are provided in [26].

The set point responses are presented in Fig. 8a. To compare the performances,
we present a few performance metrics such as integral square error (ISE), integral
time absolute error (ITAE), rise time (tr ), percentage overshoot (%Mp), and settling
time (ts). All these values are tabulated in Table 2 for simulation time t = 10 s.
Furthermore, a step disturbance is introduced at 25 s to check the robustness of the
proposed scheme. The output responses in presence of disturbances are shown in
Fig. 8b. The proposed method performs significantly better in terms of ITAE, ISE,
tr , ts , and disturbance rejection in comparison to its counterparts.

Example 2 A continuous stirred tank reactor (CSTR) system with three state vari-
ables [25, 27] is considered. The dynamics of the highly nonlinear CSTR system is
given as follows:

.
x1 = −(1 + δ1)x1 + 2δ2x2d x2 + δ2x22.
x2 = δ1x1 − (1 + δ2x2d + 2δ3x2d)x2 − (δ2 + δ3)x22 + u
.
x3 = 2δ3x2d x2 − x3 + δ3x22

(12)

where x1, x2, and x3 are the concentrations (dimensionless) of the reactants in the
reactor zone, x2 is the measurable reactant concentration in the exit stream, and
the manipulated variable u is the feed concentration (dimensionless). The system
parameters are given by δ1 = 3, δ2 = 0.5, δ3 = 1, and x2d = 0.8796.

CSTR is a benchmark and challenging problem of process control industry. Here,
the feed concentration x2 is to be regulated to a constant value. The controllers are
tuned to maintain the feed concentration and the tuned parameters are as follows:
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Fig. 8 Set-point responses (Example 1) a normal condition and b in the presence of input distur-
bances at t = 25 s

Table 2 Performance metrics (Example 1)

Controller ITAE ISE tr (in s) % Mp ts (in s)

Linear PI 3.985 0.9615 0.56 81% 8.1

VSC [25] 3.224 0.2162 0.51 14% 13.5

VSFC [26] 0.2726 0.2305 0.53 22% 2.2

IT2 fuzzy
P/I/D
(proposed)

0.2143 0.1063 0.22 31% 2.1

IT2 Fuzzy P: aP
1 = 2.4, aP

0 = 36, bP
1 = 8.4, bP

0 = 72, lΔe = 0.83.
IT2 Fuzzy I: aI

1 = 0.007, aI
0 = 0.105, bI

1 = 0.0245, bI
0 = 0.21, le = 28.57.

IT2 Fuzzy D: aD
1 = 12, aD

0 = 180, bD
1 = 42, bD

0 = 360, lΔ2e = 1.67, and S = 2.
The parameters of linear PI, VSC, and VSFC controllers are provided in [26].

The output responses with linear PI, VSC, VSFC, and IT2 fuzzy P/I/D controllers
are shown in Fig. 9a. Here, a step disturbance is introduced at 3 s to check the
robustness. Further, tracking performance of the controllers is investigated and the
obtained responses are shown in Fig. 9b. The performance metrics ITAE, ISE, tr ,
%Mp, and ts for the four controllers are tabulated in Table 3 for simulation time t = 5
s. It can be deduced from Fig. 9 and Table 3 that IT2 fuzzy P/I/D controller performs
satisfactorily.
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Fig. 9 CSTR (Example 2) a set-point responses in the presence of input disturbance at t = 3 s, and
b tracking responses

Table 3 Performance metrics (Example 2)

Controller ITAE ISE tr (in s) % Mp ts (in s)

Linear PI 0.1415 0.493 0.2 10% 0.8

VSC [25] 0.1086 0.9303 0.68 0.4% 0.75

VSFC [26] 0.2213 1.097 0.7 1.3% 0.75

IT2 fuzzy
P/I/D
(proposed)

0.1446 0.2124 0.6 0.5% 0.7
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5 Discussions and Conclusions

In this chapterwe have presented a simplified structure of IT2TS fuzzyPIDcontroller
using a 1-D input space (state-space). The fuzzy PID control action is obtained by
individually modeling and combining F-P, F-I and F-D control actions in 1-D input
space. The computational complexity of control laws drastically reduces as the need
of triangular norms and co-norms is eliminated in 1-D input space. In this approach
the input space is divided into three zones where a distinct control law is activated
in each zone. The control laws obtained are validated on two systems, unstable first-
order system with time delay and CSTR. Both these systems are quite prevalent in
the process control industries. The results obtained with the proposed IT2 fuzzy PID
controller are compared with linear PI, VSC, and VSFC controllers. It is observed
that proposed scheme performs significantly better than its counterparts.

The approach in this chapter uses an integer order fuzzy controller. However, it
can be extended to a fractional order fuzzy controller. Fractional order fuzzy PID
controller introduces two extra degree of freedom which can provide further flex-
ibility in controller tuning. However, fuzzy PID controllers generally have a large
number of parameters to tune. To simplify the tuning process, one can employ any
heuristic based optimization algorithm such as genetic algorithm, particle swarm
optimization etc to obtain optimal performances.
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Fractional Order Interval Type-2 Fuzzy
Logic Controller

Snehanshu Shekhar and Anupam Kumar

Abstract This chapter gives an elucidation of fractional order calculus, its extension
in Fractional Order PID, fractional order Fuzzy type-1 and interval type-2 controllers
and their applications. Further, the proposed IT2FOFPID controller is employed to
control fractional order plants. The Influence of fractional order λ and μ on the
IT2FOFPID controller is studied in details. Further in order to the shows the superi-
ority of the proposed controller, the performance comparison of the proposed con-
trollers for step response is also done for fractional order plants. At last from the
simulation results, it is clear that IT2FOFPID controller is giving better results in
terms of ITAE, overshoot etc with existing controllers.

1 Introduction

Fractional calculus, characterised by differentiation or integration of non-integer
order, is recognised as an efficient tool to represent real dynamic systems. The con-
cept of fractional calculus dates back to 3rd century B.C., Archimedes introduced
in his book, “The Method of Mechanical Theorems”, popular as “The Method”. The
details of preliminary calculus even is found in the book, Archimedes Palimpsest [2].
The concept of power was pioneered in its modern form by René Descartes. The
work of Fermat and Pascal into the calculus of probabilities laid important platform
for Leibniz’ formulation of the infinitesimal/fractional calculus which resulted con-
troversy between Newton and Leibniz (the Leibniz-Newton calculus controversy).
The term “Fractional calculus” was originally coined to justify the extended imple-
mentation of a derivative of integer order dn y

dxn to define a fraction. Later the question
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became: “Can n be any number- fractional, irrational or complex?” Due to this query,
the name fractional calculus is preferable known as integration/differentiation of any
order [3]. Ever since the invention of notation dn y

dxn by Leibniz, there has been a
major shift in solving the real system having uncertainty as its inherent part which
affects decision-making component of intelligent system. Leibniz’s “general order
derivative” definition was used by Johann Bernoulli, John Wallis (1697) and later
by Leonhard Euler to express derivative algebraically (1730 and 1738). In 1772,
the famous Lagrange further extended the work of Leibniz to develop the law of
exponents to solve differential operators of integer order as:

dm

dxm
.
dn

dxn
y = dm+n

dxm+n
y (1)

The dot has been eluded in modern notation. A French mathematician and
astronomer, Laplace, extended the works done by his predecessors like Adrien-
Marie Legendre (Legendre function and symbol �). Pierre-Simon Laplace in his
five-volume Mécanique Céleste (Celestial Mechanics) (1799–1825). It included the
translation of the conventional geometric techniques to calculus and defining frac-
tional derivative by an integral (1820 vol. 3, 85 and 186).Works of Laplace including
Laplace transform, application of calculus to potential function, astro-physics and
mechanics, theory of probabilities and many more changed the perception of calcu-
lus and gave it a novel dimension of application. Euler and Lagrange were pioneer
to contribute in this field in the 1800s, while Abel was the first to implement it. The
first categorized works were done by the mid of 20th century by Liouville, Riemann
and Holmgren. The nth-order series and its expansion of exponentials was defined
by Liouville. Riemann contributed in solving for a definite integral. However, the
deductions of Liouville and Riemann [23, 24] were unified by Grunwald and Krug.

The requirement for solving the feedback amplifier was the vital step towards
implementation of this fractional calculus by engineers. Solution proposed by Bode
for a feedback loop, the performance could elude the effect of the changes in the
gain of the closed-loop amplifier [1] and proved to be game changer for application
in engineering. The solution, primarily, coined as “ideal cut-off characteristic” and
currently known as “Bode’s ideal loop transfer function” greatly abet in increasing
the robustness of the system to parameter changes, uncertainties or disturbances.
The works of Bode was carried forward fractional calculus systems, which consists
of both theory and applications. Recently, the practical applications of fractional
calculus witnessed a growth in many field like feedback control, signal processing
and many more.

Dynamic models of most of the real systems are represented using integer-order
differentiation and integration-based traditional calculus. Practically, these dynamic
systems are constituted using real objects, generally, observing behaviour that are
fractional in nature. However, for many of them, the degree of fractionality is very
low [1, 4, 5]. The foundation of PID controller is marked by the work of Taylor and
Foxboro (1930) who installed ’turn key’ control systems. This embedded the deriva-
tive action [35, 36]. This initial work is the base of current trends of controllers like
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Tilt-Integral-Derivative (TID) controller, multiterm fractional order PID (MFOPID)
controller and complex fractional order PID (CFOPID) controller [25]. The conven-
tional PID controller which is based on terms such as D-term and I-term that can be
generalized into non-integer order operations. The obtained controller is famously
known as Fractional order controller (FOC). FOC implementation on real system has
become possible only because of oustaloup recursive approximation (ORA) method
[1, 5, 7, 28, 33]. Use of FOC has been extended to fractional order fuzzy logic
(FOFPID) controller as a result of merging fractional order controller with fuzzy
logic controller [26]. Evolution of type-1 and type-2 Fractional Order Fuzzy Logic
Controllers was a leap step for controlling complex systems [10, 13, 16, 17]. Type-
1 FOFPID (T1FOFPID) controller finds application in a variety of field including
electrical systems [11, 12] to abreast field of biomedical [15]. In 2017, enhance-
ment of IT2FLC with fractional order known as the interval type-2 fractional order
fuzzy logic PID (IT2FOFPID) controllers were first time proposed by Kumar and
Kumar [9] and given new direction for research community [29]. After that many
papers have been reported on this concept. It shows that the proposed techniques are
well accepted among the researchers [38, 39]. Further, augmentation of result and
controlling through IT2FOFPID controller has resulted in its application in versatile
fields including economics, engineering, sports, sociology, finance, etc. [19].

2 Interval Type-2 Fuzzy Logic Controller

2.1 Oustaloup Recursive Approximation

Implementation of fractional controller requires thorough understanding in design
and implementation of robust and practical controller. It is generally implemented
with proper approximation of the fractional integrals and derivatives with rational
transfer functions. This approximation implements Oustaloup Recursive Approxi-
mation method [1, 7]. A general fractional derivative of order γ can be defined by
an Eq. (2) as:

G f (s) = sγ (2)

Generalized fractional order derivative as represented in Eq. (2) can be approxi-
mated with rational transfer function, as shown in Eq. (3):

G f (s) = sγ = K
k=N∏

k=−N

(s + wk
′)

(s + wk)
(3)

The poles (wk), zeros (w′
k), and gain (K) is calculated with the Eq. (4)

wk = wl(
wh

wl
)

K+N+ 1
2 (1+γ )

2N+1 , (wk)
′ = wl(

wh

wl
)

K+N+ 1
2 (1−γ )

2N+1 , and K = (w′
k) (4)
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Fig. 1 Oustaloup recursive approximation block diagram [21]

where, wh and wl are ranges of higher and lower frequencies and 2N + 1 is the
order of the system. It can be noted that Eq. (3) can be also represented using block
diagram as shown in Fig. 1.

2.2 Fractional Order PID Controller

Basic control action of controller in a feedback system includes proportional, deriva-
tive and integral controls. History of PID controller dates back to 1907 when Tagli-
abue Company developed the first automated temperature control system [37]. Its
effects on controlled system behaviour include:

• For proportional control: The output response of controlled plant increases, steady-
state error response and relative stability decrease.

• For derivative control: The over all relative stability along with sensitivity to noise
of the system increases.

• For integral control: The steady-state error of the system eliminates however
decreases the relative stability.

Fractional order controller finds application in a diversified field due to which
numerous works have been done for tuning the control parameters for better per-
formances. Tuning method includes biggest log-modulus tuning (BLT) method and
internal model control (IMC) method of designing conventional PID controllers,
amalgamation of premier methods, Cross-Entropy Method (CEM), for tuning con-
trollers for multi-variable processes [28, 33]. The researcher Podlubny was the first
to present a generalised form of PID control as P I λDμ where integrator and the
differentiator have the order of λ and μ, respectively.

Additionally, he depicted performances of fractional-order PID and integer order
PID for controlling the fractional order plants [5]. PID and FOPID controllers are
special forms of controllers represented by the generalized form, as shown in Fig. 3.
The pictorial representation of a generalized PID control systems are demonstrated
in Fig. 2.

In time domain, FOPID controller is represented by a generalized equation
(Eq. 5):

u(t) = KPe(t) + KI I
−λ
t e(t) + KDD

μ
t e(t) (5)
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Fig. 2 Fractional order PID representation

Equation (5) can also be represented as

u(t) = KPe(t) + KI
dt−λe(t)

dt−λ
+ KD

dtμe(t)

dtμ
(6)

The transfer function of FOPID controller (G(s)), in s-domain, is represented by
equation:

Gc(s) = U (s)

E(s)
= KP + KI

1

sλ
+ KDs

μ, (7)

Equations (5), (6) and (7) are formulated with the following conditions:

1. λ,μ > 0
2. System is considered to be at 0 initial conditions.

Fractional order PID controller contains two additional parameters (λ,μ) in com-
parison to classical controller (KP , KI and KD) for tuning which adds more control
reliability to the system [6, 7]. Important advantages include augmented closed-loop
performance, better noise/disturbance rejection capability, surged control of time-
delay system and increased robustness. The integration function eliminates the static
error, eluding error tracking of controlled variables to reference/set-point value, and
increases accuracy of control of systems. The degree of integration effect is depen-
dent on the integral coefficient KI which in turn in dependent upon λ. The derivative
parameter, KD improves the dynamic characteristics, without effecting steady-state
process. The variation trend of deviation signal (error) is echoed by differentiation
element, and an effectivemodified initial signal can be brought into the system before
the oversize of the deviation signal value. Overshoot, system noise and disturbance
rejection ability and rise time are inversely proportional to KD . The step responses
of system for different values of μ and λ can be seen in the case study section.

In addition, the FOPID control techniques are the classical PID controller and
expands it from point to plane for different controllers as described below and shown
in Fig. 3.

• P controller: When λ = 0 and μ = 0,
• PI controller: When λ = 1 and μ = 0,
• PD controller: When λ = 0 and μ = 1,
• PID controller: When λ = 1 and μ = 1.
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(a) Classical PID Controller (b) FOPID Cotroller

Fig. 3 Representation of conventional fractional order in two dimension

2.3 Interval Type-2 Fractional Order Fuzzy PD+I Controller

An IT2FOFPID controller is a controller implementing type-2 FLC with fractional
order enhancement. A type-2 fuzzy set is characterized by a three-dimensional mem-
bership function. Type-2 fuzzy logic is motivated from the fact of ambiguity in per-
severance of degree of belonging or membership function. The membership function
of a type-2 fuzzy set is three dimensional.

In addition, basic of all types of fuzzy system (type-n) remain the same [20]. How-
ever, “degree of fuzziness” is proportional to the type number. Higher type changes
the nature of the membership functions, thereby changing the operations depending
on the membership functions. The basic structure of the type-2 fuzzy rules is similar
to that of type-1 because the distinction between both the types is associated with
the nature of the membership functions. Hence, the only variation is that in the sets
involved in the rules of the types. In type-1 fuzzy system, defuzzification is done to
obtain a crisp output which may be seen as crisp (type-0) representative of the com-
bined output sets. In type-2 fuzzy system, output being type-2, an extended versions
of type-1 defuzzification is used since defuzzification operation in the type-2 gives a
type-1 fuzzy set at the output. As type is reduced to type-1 due to defuzzification, this
operation is called “type reduction” and the type-1 fuzzy set so obtained is called
“type-reduced set”. The type-reduced fuzzy set is further be defuzzified to obtain
a single crisp number, depending upon the applications and requirement. A gener-
alized fuzzy type-2 system is depicted in Fig. 4. An additional stage, type reducer
implementing Type-Reduction algorithm, abets the output processor for the conver-
sion of type-2 FS output into an equivalent type-1 FS [20]. For control applications,
the generalized closed-loop feedback FLC is depicted in the Fig. 5 for controlling
the plants.

Furthermore, the mathematical analysis of proposed controller is demonstrated.
Therefore, the output of IT2FOFPD+I controller (referred here as IT2FOFPID con-
troller) can be determined considering each of the gains individually and summing
them [29, 32]. The output of proportional control action is given as:
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Fig. 4 Type-2 fuzzy logic system

Fig. 5 Generalized closed-loop feedback FLC system

E = GP ∗ e(t) (8)

where GP is the gain of the proportional controller.
The output of derivative control action is given as,

CE = GDe ∗ dμe(t)

dtμ
(9)

where GDe is the gain of the derivative controller.
Similarly output of integral control action is given as:

I E = GIe ∗ d−λe(t)

dt−λ
(10)

where GIe is the gain of the integral controller.
Output of fractional order fuzzy PD controller is given as:

f (E + CE) (11)
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Fig. 6 IT2FOFPD+I/T1FOFPD+I controller

Assuming GC is the gain of the summing block, as shown in Fig. 6, the output of
the overall combined controller is given as,

u(t) = [ f (E + CE) + I E] ∗ GC (12)

Combining Eqs. (6) and (12) and approximating the non-linearity of control sur-
face of PD rule base (function, f ) we get,

u(t) ≈
[
GP ∗ e(t) + GDe ∗ dμe(t)

dtμ
+ GIe ∗ d−λe(t)

dt−λ

]
∗ GC (13)

u(t) = GP ∗ GC

[
e(t) + GDe

GP
∗ dμe(t)

dtμ
+ GIe

GP
∗ d−λe(t)

dt−λ

]
(14)

On comparing Eqs. (6) and (14) at the end, we can conclude that the scaling factors
proposed controllers can be represented in terms of fractional order PID gains,

GP ∗ GC = KP (15)

GDe

GP
= KD (16)

GIe

GP
= KI (17)

Here, the five parameters of proposed controller such as GP , GC , GDe, GIe,
μ and λ are tuning parameters for the proposed controller. In order to do fair the
comparision, T1FOFPD+I controller can be easily obtained by replacing type-2 to
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type-1 in the nonlinear block (function f ) as shown in the Fig. 6. Here, T1FOFPD+I
controller combines FOPID control and type-1 FLC to obtain a robust and effective
controller.Amalgamating these two techniques result in an improved controller called
T1FOFPID controller [26]. T1FOFPID minimizes error component of fractional
order system and the ambiguity or uncertainty of the response is handled by FLC
(refer Fig. 5). A T1FPID controller is a fuzzified PID controller which acts on the
same input signal, except for the control strategy being formulated as fuzzy rules.
The most general fuzzy controllers include fuzzy P controller, fuzzy PD controller,
fuzzy PD+I controller and fuzzy incremental controller.

3 Case Study

This section demonstrated detail case study of the controller (fractional order integro-
differential operators to the IT2FOFPID controller) for fractional order plants.

3.1 Influence of Fractional Order λ and μ

on the IT2FOFPD+I Controller

This subsection presents an appropriate description for addition of extra fractional
order integro-differential operators to the T2FOFPID controller. On adding these
extra degrees of freedom, the control performance of fractional order plants will
change in some way. For this study, the considered plant is GP(s):

GP(s) = 1

0.8s2.2 + 0.5s2.2 + 1
(18)

The ABC optimization technique is used to search optimal control parameters
of the proposed controller. i.e,GE = 1.1773,GCE = 0.9647,GI E = 0.4517,GU =
5.6070, λ = 0.8499, μ = 0.7830.

3.1.1 The Influence of Fractional Order Integration λ

The graphical representations of step response for plant, GP(s) for GE = 1.1773,
GCE = 0.9647,GI E = 0.4517,GU = 5.6070, μ = 0.7830 and variations in λ from
0.1 to 1.7 with 0.2 increments i.e., λ = 0.1:0.2: 1.7, are shown in Fig. 7. From Fig. 7,
it is inferred that the overshoots of system become larger, oscillation time increased,
settling time elongated and steady state error of the system is also increased for
undersized values of λ. When λ > 1, i.e., for larger values of λ, the output response
of the system has larger steady state errors and has larger settling time. It can be
concluded that the λ control parameter is not selected to undersized or oversized.
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Fig. 7 The step responses of FO plant with variation in λ

The undersized value can produce larger steady state error and higher overshoots.
The oversized value may lead to a higher settling time and even make the system
unstable.

3.1.2 The Influence of Fractional Order Derivative μ

The step responses of fractional order plant,GP (s) forGE = 1.1773,GCE = 0.9647,
GI E = 0.4517, GU = 5.6070, λ = 0.8499 and μ = 0.5: 0.1: 1.3, are depicted in
Fig. 7. When μ varies from 0.5 to 0.9, the overshoots and oscillation time become
lower and settling time also reduced. In continuation, when μ varies from 1.0 to 1.3,
the overshoot of the systembecomes larger. Itmeans that the systemperformancewill
decline for undersized or overlarge values of μ. Hence, the overlarge and undersized
values of μ will cause the system unstable.

From the above study, it can be concluded that the integro-differentiation order of
the TIIFOFPID controller is necessary to keep in a proper range in order to maintain
in a suitable control performance (Fig. 8).

3.2 Performance Comparison of the Proposed Controller
for Fractional Order Plant

This subsection presents an appropriate description for addition of additional frac-
tional order integro-differential operators to IT2FPID controller. Annexing these
additional degrees of freedom, the output performance of the proposed controller is
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Fig. 8 The step responses of FO plant with variation in μ

studied for fractional order plant. Here, structural design of proposed IT2FOFPID
controller is also shown in Fig. 6.

The non-integer order plus time delay plant, considered as case study here, is
given as:

GP(s) = K

T sα + 1
e−Ls (19)

where, GP(s), K , T , L and α are the transfer function, process gain, time constant,
dead time and fractional orders of the system respectively. Here, the parameters’
values are considered as K = 0.9931, T = 2.3298, L = 1.0006 and = 1.0648.

In order to present the effectiveness of the proposed controllers, the step response
have been examined and comparedwith existing controllers such as T1FOFPD+I and
PID.The objective function for optimization for this study is the ITAE.Here, theABC
optimization techniques are used for finding optimal scaling factors of the proposed
controllers. The obtained optimal ITAE values for T2FOFPD+I, T1FOFPD+I and
PID controllers are 3.263, 4.864 and 6.70 respectively. All the simulations study is
carried out in the MATLAB.

Furthermore, the closed loop performances for proposed controllers are shown
in the Fig. 9. From Fig. 9, it is clear that the unit step response of the T2FOFPD+I
controller is better than that of the T1FOFPD+I and PID controllers. The proposed
controller is giving similar better settling time with PID, while approximate similar
settling time for T1FOFPD+I controller. The proposed controller is also showing
better oscillation in response. From ITAE values, it is evident that ITAE is minimum
for T2FOFPD+I controller compared with conventional counterparts. Therefore, it is
clear that enhancement of the proposed controller with fractional calculus is giving
better results. It can be used for other non-linear plants for better accuracy.



40 S. Shekhar and A. Kumar

0 2 4 6 8 10 12 14 16 18 20
�0.2

0

0.2

0.4

0.6

0.8

1

1.2
IT2FOFPD+I
T1FOFPD+I
PID

Fig. 9 The unit step responses for IT2FPD+I, T1FPD+I, PID controllers

3.3 Conclusions

In this chapter, the new combined IT2FOFPD+I controller is presented and applied
successfully to control fractional order plants. The proposed controller is enhanced
version of the IT2FLC to fractional order controllers. The influence of changing
fractional order parameters for proposed controllers are also studied. Further, the
performance comparison is also investigated for the fractional order plants. From the
simulation results, it is observed that IT2FOFPD+I controller is giving better results
than T1FOFPD+I and PID controller. In future, the hardware implementation needs
to be done for the proposed controller which is more prone for uncertainties.
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Artificial Bee Colony Optimized
Precompensated Interval Type-2 Fuzzy
Logic Controller for a Magnetic
Levitation System

Anupam Kumar, Ritu Raj, Prashant Gaidhane, and Oscar Castillo

Abstract Magnetic Levitation System (MLS) is highly nonlinear and unstable
complex system wherein the load disturbance and external noise adversely affect the
system’s performance. Therefore, controller design for controlling the ball position
is a complex task for researchers. In this chapter, a novel two-layer interval type-2
fuzzy logic controller (TL-IT2FLC) approach is presented for MLS to suspend a
steel ball in air without any mechanical support. For optimal controller design, well
known optimization technique i.e., artificial bee colony (ABC) is employed to obtain
the required control parameters. In addition, the MLS is also tested in presence of
disturbance, varying reference positions, and randomnoise to show the efficacy of the
proposed method. Finally, the simulation results clearly show that the performance
of TL-IT2FLC approach is superior to a two-layer type-1 fuzzy logic controller
(TL-T1FLC), and a conventional T1FLC.
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1 Introduction

Magnetic Levitation System (MLS) is a highly nonlinear, unstable, and uncertain
system. It is mainly due to the nonlinear open-loop unstable complex dynamics but
lower order model can be calculated via linearization. The obtained model easily
handled with linear/nonlinear methods. Uncertainties come in the system because
of modeling error, electromagnetism interference, and other outside disturbances.
Due to these uncertainties, the position control of the levitated object becomes very
difficult. Thus, it is essential to design intelligent controllers for better performance
and accurate positioning of levitated objects. The concept of MLS can be utilized for
various applications such as maglev vehicle, wild tunnel magnetic levitation system,
high-speed maglev motor, magnetic levitation anti-vibration system, and maglev
trains.

Fuzzy logic theory was developed in 1965 [1] and it becomes immense famous
in control applications for several real world challenging task. The fuzzy controller
is based on human expertise knowledge. For generating enhanced performance, it is
classified into three categories: direct action fuzzy logic controller (FLC) type, hybrid
FLC type, and gain scheduling FLC type [2]. Furthermore, many control researchers
have proposed the hybrid structures of FLCs for different control applications by
producing effective controllers. Kim et al. [3] proposed a two-layered fuzzy logic
controller (TL-FLC), a combination of fuzzy pre-compensator followed by conven-
tional FLC for the system having deadzone. It provided better performance than
conventional fuzzy controllers.Kumar andRaj [4] presented fractional order TL-FLC
for controlling mean arterial blood pressure for blood pressure control and proposed
controller perform found better than conventional controllers. Most recently, Sharma
and Kumar [5] proposed a two-layered interval type-2 FLC (TL-IT2FLC) design for
regulating mean arterial blood pressure using SNP drug delivery. Here, the pre-
compensated IT2FLC was introduced in front of the main IT2FLC controller that
reduces the effect of uncertainties and external disturbances. Further, the simula-
tion results claimed that the proposed controller produced better results than existing
methods. From the above discussion, it clear that the proposed TL-IT2FLC controller
can also be employed to MLS that is highly complex in nature.

For the past fewdecades, it has been shown in several researchworks that IT2FLCs
have produced better results than its conventional counterparts because of the addi-
tional degree of freedom presented in the membership functions (MFs) due to foot-
print of uncertainty (FOU) [6–8]. Kumar and Kumar [9] studied the interval type-2
fuzzy PID (IT2FPID) control approach for controlling redundant robot manipula-
tors while tuning the control parameters was done using genetic algorithms. From
the simulation results, it was observed that the proposed controller was superior to
the conventional T1FLC and PID controllers. Kumbasar and Hagras [10] proposed
IT2FPID controller for cascade control structure for path tracking problem of mobile
robot application via Big Bang–Big Crunch (BB–BC) optimization method. Due
to its prominent performance, it is reported in many control applications [11–14].
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Considering the literature above, it is apparent that the type-2 fuzzy controller’s
performance has been superior to its conventional counterparts.

In this chapter, a new TL-IT2FLC controller is demonstrated for a complex MLS
which is high prone to uncertainties. Further, the number of control parameters of
TL-IT2FLC, TL-T1FLC and single layered T1FLC (SL-T1FLC) are comparatively
high and their tuning cannot be easily done by trial-and-error methods, therefore,
optimization techniques based on heuristics are used to tune the controllers. In this
workwe employABCoptimization technique to tune the controller parameters.Here,
the total design parameters of TL-IT2FLC, TL-T1FLC and SL-T1FLC is eight, eight
and four respectively. It is a complicated process for tuning such large number of
control parameters. Further, it is seen that optimizing all three specifications: MFs,
fuzzy rules and scaling factors is a cumbersome process. Therefore, the few control
parameters are taken fixed such as scaling factors and rule base for showing the
importance of the proposed controllers, whereas, the MFs are upgraded to type-2
MFs. Therefore, the proposed TL-IT2FLC approach is compared to TL-T1FPID and
SL-T1FLC for ball tracking and shows better results.

The rest of this chapter is organized as follows: Section 2 provides the mathemat-
ical description of MLS. Section 3 presents the details of the proposed TL-IT2FLC
scheme and in Sect. 4 the basics of ABC optimization technique is presented. At last,
Sects. 5 and 6 describe the simulation results and conclusions, respectively.

2 Mathematical Analysis of Magnetic Levitation System

A electromagnetic suspension system is a platform for performing magnetic suspen-
sion experiments where a steel ball is levitating in the air with nomechanical support.
The basic block diagram of the MLS is shown in Fig. 1. The working of MLS is
given as: when electric current goes through the windings, an electromagnetic force
is generated which pulls the suspended object upwards. The current in the coil is
adjusted such that it generates a force just sufficient to counterbalance the weight
of the object at some equilibrium point. Thus, the object is suspended at the corre-
sponding equilibrium point. For stable control of the object position, feedback loop
is used. The distance of the object from the bottom of the electromagnet is measured
by a light source and sensor assembly. The signal from the sensor is used to generate
a control voltage using a digital controller, which drives a suitable current through
the coil.

The mathematical modeling of MLS is described in this section. Here, we have
considered that the steel ball is not under the influence of any external forces except
electromagnetic force (F) and gravitational force (mg). Along with this, it is also
assumed that there is no influence of inductance on current flowing in the electro-
magnet and is considered as control current. The output current of power amplifier
is assumed to be linear and in phase of input voltage. Thus, the dynamic equation in
vertical direction can be expressed [7, 11] by the following equations,
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Fig. 1 Basic block diagram of MLS system

m
d2x

dt2
= 2Ki0

x0
i − 2Ki20

x3
x (1)

After applying Laplace transformation to (1), we get

x(s)s2 = 2Ki0
mx20

i(s) − 2Ki20
mx30

x(s) (2)

Now, applying boundary condition mg = −K (i0/x0)
2 then open-loop transfer

function can be expressed as

x(s)

i(s)
= −1

As2 − B
(3)

where, x = the position of the steel ball levitating from reference level; m = mass
of steel ball, i = current in electromagnetic coil, g = acceleration due to gravity, x0
= reference position of the steel ball, and A = i0/2g, B = i0/x0.

The input voltage (Vin) of the power amplifier is defined as input variable, and
the output voltage (Vout ) of sensor is referred as output variable. Here, the output
voltage provides exact information of the ball position. Thus,mathematical modeling
of MLS can be expressed as
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G(s) = Vout (s)

Vin(s)
= Ksx(s)

Kai(s)
=

−
(

Ks
Ka

)

As2 − B
(4)

where, Ka is power amplifier gain and Ks is sensor amplifier gain.
After getting transfer function of MLS, we can get state-space variables. Then

the state variables are defined as x1 = Voutandx2 = V̇out . The system’s state-space
equation is given as

[
ẋ1
˙x2

]
=

[
0 1
2g
x0

0

][
x1
x2

]
+

[
0

− 2gKs

i0Ka

]
vin (5)

y = [
1 0

][ x1
x2

]
= x1 (6)

The dynamics of MLS is constructed using (5) and (6) with specifications from
[7, 11].

[
ẋ1
˙x2

]
=

[
0 1

653.4 0

][
x1
x2

]
+

[
0

2499.1

]
uin (7)

y = x1 (8)

A few fundamental meanings of different strategies, fuzzy numbers are given in
this part which will be essential in the current study.

3 Two-Layered Interval Type-2 Fuzzy Logic Controller

In this section, detailed design and implementation of the TL-IT2FLC scheme are
introduced along with rules and MFs. TL-IT2FLC scheme comprises of an interval
type-2 fuzzy pre-compensator controller (IT2FPC) and the conventional interval
type-2 fuzzy proportional derivative (IT2FPD) controller. The IT2FPC is inserted
to change the control signal, to compensate for overshoot and steady-state error
in the output response and meliorate the output performance to counteract the load
disturbances and measurement noise. Figure 2 demonstrates the TL-IT2FLC scheme
for levitating a steel ball at a given reference position. The presented controller, i.e.,
TL-IT2FLC is inspired by a recent paper [5]. The mathematical analysis of the
TL-IT2FLC is given as:

The control law of IT2FPC is given as:

Up(t) = I T 2FLC1
(
ep(t), ėp(t),Up(t − 1)

)
(9)
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Fig. 2 The structural diagram of TL-IT2FLC scheme for MLS

where Up(t) is the output of IT2FPC, and the three input is considered as ep(t),
ėp(t), and Up(t − 1).

Now, the changed reference position rpre(t) and the new (updated) error et (t) for
IT2FPD can be given as:

rpre(t) = Up(t) + r(t) (10)

et (t) = rpre(t) − y(t) (11)

In the end, the input to the MLS, i.e., final control output is obtained as below:

u(t) = I T 2FLC2(et (t), ėt (t)) + KIt rpre(t) (12)

where KIt is the feed-forward gain. For the first layer, the terms KPp , KCE p , KUp

and αp are the scaling factors for IT2FPC and the terms KPt , KCEt and KUt are the
scaling factors for IT2FPD controller.

In the TL-IT2FLC scheme, the two layers of IT2FLCs are utilized. Here, the
pre-processing block’s purpose is to scale input and output variables into physical
range [15, 16]. Further, the TL-IT2FLC scheme consists of two layers and is given
as follows [5]:

(1) First Layer: In the present study, the two IT2FLCs are utilized for each layer
for MLS applications. In the IT2FPC, there are three input variables, namely
ep(t), ėp(t), and Up(t − 1) and a single output variable, namely Up(t). Here,
the input MFs of the first layer are given as: Negative (NEMLS), Zero (ZMLS)
and Positive (P OMLS) with the specification in the MFs as mN=0.2, mZ=0.9
and mP=0.2 [17]. On the other hand, the output MFs are distinguished by
seven singleton such as Negative Big (NB_MLS) = −1, Negative Medium
(NM_MLS) = −0.6667, Negative Small (NSMLS) = −0.333, Zero (ZMLS) =
0, Positive Medium (PMMLS) = 0.667, Positive Small (PSMLS) = 0.333, and
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Positive Big (PBMLS)= 1. For the IT2FPC, the rule base with three input vari-
ables and a single output variable and three triangular type MFs will produce
27 rules [3] as given in Table 1.

(2) Second Layer:The second layer of the proposed controller is traditional IT2FPD
controller as shown in Fig. 2. The inputs of standard IT2FPD controller are
described by three triangular MFs, namely Negative (NEMLS), Zero (ZMLS)
and Positive (P OMLS) as shown in Fig. 3a. Whereas, the output MFs are distin-
guished by five singletons such as Negative (NMLS) = −1, Negative Medium

Table 1 Rule base for
IT2FLC/T1FLC of first layer

IF THEN

ep(t) ėp(t) Up(t − 1) Up(t)

NEMLS N EMLS N EMLS N SMLS

ZMLS ZMLS

P OMLS ZMLS

ZMLS N EMLS PSMLS

ZMLS ZMLS

P OMLS N SMLS

P OMLS N EMLS PMMLS

ZMLS PSMLS

P OMLS ZMLS

ZMLS N EMLS N EMLS ZMLS

ZMLS N SMLS

P OMLS N SMLS

ZMLS N EMLS ZMLS

ZMLS ZMLS

P OMLS ZMLS

P OMLS N EMLS PSMLS

ZMLS PSMLS

P OMLS ZMLS

P OMLS N EMLS N EMLS PMMLS

ZMLS PSMLS

P OMLS ZMLS

ZMLS N EMLS PMMLS

ZMLS PSMLS

P OMLS ZMLS

P OMLS N EMLS PBMLS

ZMLS PSMLS

P OMLS ZMLS
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Fig. 3 Illustration of the MFs of a IT2FLC and b T1FLC respectively

Table 2 Rule base for
IT2FLC/T1FLC of second
layer

Error/rate of change of error NEMLS ZMLS P OMLS

N EMLS NMLS NMMLS ZMLS

ZMLS NMMLS ZMLS PMMLS

P OMLS ZMLS PMMLS PMLS

(NMMLS)=−0.8, Zero (ZMLS)= 0, Positive Medium (PMMLS)= 0.8, Posi-
tive (PMLS) = 1. Here, the total number of rules is 9 as given in Table 2 [10,
17].

4 A Brief on Artificial Bee Colony

In this section, the well-known artificial bee colony (ABC) optimization technique
proposed by Karaboga [18] is briefly described. Different techniques were proposed
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in the literature on the concept of honey bees; among them, ABC has become quite
popular in the research community [19]. It is applied in many engineering applica-
tions such as power system application [20], wireless sensor networks [21], control
systems [22], artificial intelligence [23] etc.

ABC optimization technique proposed in [24] has mainly three categories of bees,
i.e., employed bees, onlooker bees, and scout bees. For optimization, ABC method
requires the following four phases.

4.1 Initialization of Phase

In this phase, the initialization of the population is done randomly in the given search
range (U , L) using Eq. (13).

xij = Lmin
j + rand(0, 1)

(
Umax

j − Lmin
j

)
(13)

where, i = 1,..,N f ood (number of food sources) and j = 1,..,Dp (dimension of the
optimization parameter).

4.2 Employee Bee Phase

Each employee bee utilizes a food source for which the bee is selected. It searches
for a new candidate solution in its vicinity by Eq. (14).

vij = xij + ran[−1, 1](xij − xmj ) (14)

where m and j are mutually exclusive in the proposed techniques.

4.3 Onlooker Bee Phase

The role of the onlooker bee is to choose the food sources based on the dance
performed by the employed bees in the hive. Once the food sources are selected
probabilistically, which are given as:

pi = 0.1+ 0.9× F(Xi )

max(F(Xi ))
(15)

where Xi =(xi1, . . . .x
i
Dp
),

Then, the onlooker bee works similarly to the employed bee acts in its phase.



52 A. Kumar et al.

4.4 Scout Bee Phase

In every cycle, the limits of trial counters of all solutions are examined after both
phases i.e., employee bees and onlooker bees. Here, said limit is exceeded the max
values, then, abandoned solution can be produced. The linked employed bees became
scout. After that scout bee will generate new solution with Eq. (13). In this chapter,
the performance index (objective function) for the proposed controller is chosen as
an integral absolute error (IAE) for all simulation work, i.e.,

F =
∫
|e(t)|dt (16)

5 Simulation Results

In this section, the effectiveness of this new enhanced TL-IT2FLC approach is
presented to control MLS. The performance analysis and robustness testing of the
presented control approach are done along with other conventional TL-T1FLC and
SL-T1FLC controllers. The presented controllers and magnetic levitation system are
implemented in the simulink environment of MATLAB as illustrated in Fig. 2. The
optimal controller parameters for TL-T1FLC and SL-T1FLC approach are listed
in Table 3 using ABC optimization technique. In order to accomplish a reasonable
assessment, the rule base are taken same for TL-T1FLC and TL-IT2FLC for step
response as well as load disturbance and noise rejection analysis.

In the first performance study, the step response and the load disturbance (applied
at t= 1 s) for the MLS is examined and shown that the proposed controller produces
better results. The step response along with load disturbance and controller output
of the presented controllers are shown in Fig. 4. From the Fig. 4 and Table 4, it is

Table 3 Optimal controllers
parameters

Parameters Controller
TL-T1FLC

Parameters Controller
SL-T1FLC

KPp 84.8017 Kp 8.5098

KCE p 0.2687 KCE 0.0742

KUp 0.0338 KPD 0.7010

αp 0.8494 KPI 29.8920

KPt 9.9465 – –

KCEt 0.2320 – –

KUt 0.9936 – –

KIt 0.0059 – –
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Fig. 4 Performance
comparison of the a Output
response and b control signal
for SL-T1FLC, TL-T1FLC,
and TL-IT2FLC with load
disturbance
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Table 4 Summary of
performance comparison of
controllers

Controller IAE

Step + Load
disturbance

Random Noise + Load
disturbance

TL-IT2FLC 0.01065 0.01226

TL-T1FLC 0.02274 0.02532

SL-T1FLC 0.07496 0.07898

evident that TL-IT2FLC structure produces better results in terms of lesser over-
shoots, smaller IAE values, and best load disturbance suppression. For instance, the
varying reference position at different levels is also considered as illustrated in Fig. 5.

Moreover, the robustness against noise rejection and external load disturbance
rejection of the enhanced TL-IT2FLC scheme is also investigated. At first, the effect
of adding random noise of maximum amplitude ±0.01 (as illustrated in Fig. 6c) at
the system’s output is studied. Further, the simulation is again done for the varying
reference positionwith noise. The output responses with the controllers are presented
in Fig. 6. Therefore, it is evident from the figure that TL-IT2FLC is more robust
against random noise compared to TL-T1FLC and SL-T1FLC schemes.
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Fig. 5 Performance
comparison of the a Output
response b control signal of
varying reference position
for SL-T1FLC, TL-T1FLC,
and TL-IT2FLC
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6 Conclusions

In this chapter, a TL-IT2FLC scheme is proposed to control MLS for accurate posi-
tioning of a steel ball in air. The proposed controller is a combination of IT2FPC and
conventional IT2FLC. The IT2FPC is utilized to overcome the problem of change in
control signal due to the effect of external disturbance, random noise such as back-
ground light, unwanted electromagnetic induction as well as disturbances generated
by processing circuit. An interval type-2 fuzzy logic controller has been incorpo-
rated to enhance the closed-loop response of the proposed controller. The compar-
ative study has been executed to depict that the TL-IT2FLC approach gives better
response than TL-T1FPID and SL-T1FLC for step response with load disturbance
and varying reference positions. At the end of simulation, the robustness analysis is
also done for load disturbance and noise.
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Fig. 6 Illustration of the a
Output response of step input
along with load disturbance
b Output response of varying
reference position c random
noise for SL-T1FLC,
TL-T1FLC, and TL-IT2FLC
for the addition of noise in
the feedback path
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Application of Type-2 Fuzzy Logic
Controllers in Renewable Energy
Systems

Suraparaju Krishnama Raju

Abstract Handling the uncertainties in the input and controller parameter tuning
is a major challenge in the grid integrated operation of renewable energy systems.
This chapter proposes a novel control strategy based on Type-2 fuzzy logic sets
(T2-FLSs) which can handle the parameter uncertainties in the inputs as well as the
grid disturbances. The unique features in the type-2 fuzzy sets such as foot print of
uncertainty and third dimension in the membership function (MF) enables them to
model the uncertainties very effectively. A novel control strategy is designed for the
grid integrated operation of wind energy system that can tolerate the variations in
the wind speed as well as grid side disturbances. The performance of the proposed
strategy is validated with the simulation results and also compared with the other
conventional controllers.

1 Introduction

The steady rise in energy demand poses a challenge to many nations due to the
depletion of fossil fuels and carbon emissions. Renewable energy sources (RES)
play a key role in mitigating these concerns and many countries are putting efforts
to develop the alternate energy sources especially from wind, solar, bio-mass, tidal
etc. [1]. Among all the renewable energy sources, in the recent past wind and solar
have drawn a special attention for the reason that bulk amount of energy production
is possible [2]. In general, the power distribution from source to load takes place
by connecting all the sources and loads to a common network known as utility
grid. To export power to the grid, all the connected sources need to be operated in
synchronization with the grid parameters like voltage, frequency, and phase etc. All
the connected sources are supposed to be in compliance with certain grid standards
known as the grid codes.
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The major issue with RES based power plants is, the inputs to these plants such
as wind, solar etc., are highly uncertain and is a limitation to export bulk amount of
power to the utility grid. In order to adhere the grid codes, the output power from the
RES is transformed into different forms with the help of power electronic converters
(PEC). Further, in case of wind energy, different topologies are proposed with variety
of machines and turbines, to tackle with the uncertainty in the wind speed. However,
the control of the PECs stands out as the major issue in the grid integrated operation
of any RES. Moreover, the system models with RES, are highly non-linear with
parameter uncertainty, and designing the control schemes for such systems needs a
comprehensive analysis.

To design an effective control scheme, it is necessary to understand the RES
structure and control objectives. In this chapter the application of type-2 fuzzy sets
and the design of controller parameters will be discussed in detail. To be more
specific, let us consider a doubly fed induction generator (DFIG) based wind power
plant which is connected to the utility grid through a two stage power electronic
converters, generally known as back to back converters. The basic schematic diagram
is shown in Fig. 1.

The turbine is directly coupled to the rotor of the DFIG, and the rotor windings are
electrically connected to the PEC known as rotor side converter (RSC). The input to
the RSC is supplied through a DC link, which is continuously charged from another
PEC known as grid side converter (GSC). The stator of DFIG and GSC are directly
connected to the grid.

In this topology, under normal operating conditions i.e. if there is a steady wind
speed, then the power flow will be from stator to the grid. In case of any variations
in the wind speed, the RSC injects the controlling power to the rotor circuit, so
that the stator could continue supplying the power to the grid, without violating
the standard grid codes. Further, in case of any faults on the grid side, the DFIG is
expected to remain connected to the grid, generally known as fault ride through (FRT)

Controller Controller

Vdc

To grid

GSC RSC

DFIG

Fig. 1 The single line diagram of the proposed grid connected DFIG
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capability. In practice, with reference to DFIG topology although there are multiple
control objectives that are to be met, but in this discussion for easy understanding,
the control objectives are framed as follows.

• Supplying the power to the grid in variable wind speed conditions and
• Achieving fault ride through capability.

To achieve the above control objectives, the controlling action is initiated through
RSC and GSC. Basically in both these converters, the switches are operated at a
particular duty ratio to track the output parameters at the reference levels. The control
scheme has to decide the appropriate duty ratio tracking the reference parameters
which are mostly variable in nature. In case of DFIG topology, there are many
subsystems that are interconnected, so the controlling action at any subsystem is very
much dependent on the parameters of the other subsystems present in the loop. This
makes the system model very complex and requires decentralized control schemes
for each subsystem.

2 Control Scheme

The single line diagram of the system with the proposed controllers is shown in
Fig. 1. The controller designated for the RSC tracks the reference powers based
on the operating conditions. Further, the input to the RSC is the DC source that
goes through a change in its voltage levels as and when the RSC is controlled.
The controller designated for the GSC has to ensure that the DC voltage levels are
maintained at required levels to support the RSC.

In order to understand the system behavior it is necessary to derive the dynamic
modelling of the system. For this purpose, the equivalent circuit of the DFIG in an
arbitrary reference frame [3] is derived as shown in Fig. 2, where.

vs—represents the stator voltage
vr—represents the rotor voltage
Rs—represents the stator resistance
Rr—represents the rotor resistance
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Fig. 2 Equivalent Circuit for modelling the DFIG
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ωr—represents the rotor speed
ωs—represents the synchronous angular speed
Lls—represents the stator leakage inductances
Llr—represents the rotor leakage inductance
Lm—represents the mutual inductance
λs—represents the stator flux
λr—represents the rotor flux

The stator and rotor fluxes can be expressed as

λs = Lsis + Lmir (1)

λr = Lr ir + Lmis (2)

where,
Ls = Lls + Lm and
Lr = Llr + Lm

The voltage across the stator and rotor windings can be derived as

vs = Rsis + dλs

dt
+ jωsλs (3)

vr = Rr ir + dλr

dt
+ j(ωs−ωr )λr (4)

In general the synchronous reference frame model is widely used for control
analysis of machines, therefore it will be convenient to implement the decoupled
control if the flux and voltages are expressed in d − q-axis components. The stator
and rotor flux are expressed as

λsd = Lsisd + Lmird (5)

λsq = Lsisq + Lmirq (6)

λrd = Lr ird + Lmisd (7)

λrq = Lr irq + Lmisq (8)

Similarly, the d and q-axis components of the voltages across stator and rotor are

vsd = Rsisd + dλsd

dt
− ωsλsd (9)
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vsq = Rsisd + dλsq

dt
+ ωsλsd (10)

vrd = Rr ird + dλrd

dt
− (ωs−ωr )λrd (11)

vrq = Rr irq + dλrq

dt
+ (ωs−ωr )λrq (12)

The input power is expressed in terms of active and reactive components at the
stator circuit and is derived as

P = 1.5(vsd isd + vsq isq) (13)

Q = 1.5(vsq isd − vsd isq) (14)

The main control objective is to accurately track the given reference powers, even
in the presence of various disturbances such as wind speed variation and fault and
load changes in the utility grid. To achieve this, the active and reactive powers of
the DFIG are controlled, with the help of both the RSC and GSC. Traditionally
the control schemes are proposed based on the PI or PID controllers [4], and the
limitations of these schemes are explained in the next section.

3 PI/PID Controller

The control scheme to track the output powers of the DFIG with PI controller is
shown in Fig. 3, and the rotor currents are considered as controlling variables. The
control objectives can be achieved through the RSC, by generating the appropriate
firing pulses to its switches. The most popular approach to control the converters is
d−q vector control, which uses the cascaded feedback loops to track the given refer-
ences. The control strategy with stator voltage oriented scheme using PI controllers
is considered in this discussion. The RSC generally uses a two stage controller
consisting of active power controller and reactive power controller. At first, the volt-
ages and currents that are in 3-phase abc form also known as stationary reference
frame are converted into synchronous reference frame or d − q form. A three phase,
Phase lock loop (PLL) is used for generating the voltage phase angle, which is
required for transformation from abc to d − q and vice-versa. For a given wind
speed the MPPT algorithm decides the appropriate power to be extracted, hence the
control scheme has to track this reference power to ensure maximum power from the
wind turbine. This is achieved by generating a d-axis reference current (id ) to the
PI controller. Similarly the q-axis reference current is generated by comparing the
reactive power reference and the actual reactive power that is being fed to the grid.
The reference d − q axis currents are compared with the measured rotor currents,
and the resulted errors are fed as input to the current controllers.
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Fig. 3 Control scheme for RSC using PI/PID controller

The controller outputs vdr and vqr are the rotor voltage references in synchronous
frame, which are transformed into stationary frame using dq to abc transformation.
The rotor voltages can serve as the three phase reference waveforms to the Pulse
width modulator, which generates the gate control pulses to IGBTs that are part of
the rotor side converter.

The grid side converter is controlled to maintain the DC link voltage at a constant
level and also to control the reactive power when required. The control system of
the GSC is shown in Fig. 4. The three phase abc components are converted to dq
components so that the reference signals can be generated in synchronous with the
stator voltage. The dc link voltage level is maintained with reference to idc and
the reactive power is controlled through the iqc reference. Then, the error signal
becomes a reference to the PI/PID controller, whose outputs act as a reference signals
for the PWM pulse generator. By comparing the reference signal with a carrier
signal the pulse width of the switching pulses can be determined. In general, the
PI/PID controller parameters are designed using linearized models, which limits the
performance under complex non-linear environment [5, 6]. Moreover, the controller
parameters need to be tuned to cope with the variable operating conditions such as
faults, wind speed variations etc. [7, 8].

4 Type-1 Fuzzy Logic Controller (Type-1 FLC)

In order to overcome the issues in conventional controller, in [9], a control algorithm
based on type-1 fuzzy logic sets (FLSs) is developed to determine the controller
parameters. To appreciate the type-1 fuzzy sets, a control scheme with type-1 fuzzy
logic controller is designed as shown in Fig. 5. The fuzzy rules are framed based on
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the quantitative knowledge and experience and the designed membership functions
are shown in Fig. 6. The performance of the type-1 FLC is compared with that of
conventional PI/PID controllers. In case of typ-1 FLC, the membership functions are
not adaptive to minimize the output error for change in operating conditions. Hence
always there is trade-off between the performance and the robustness. Further there is
an uncertainty in defining the rules, as well as in the membership functions because,
once the MFs are chosen for a particular operating conditions, there is a possibility
that the degree of MF may vary in accordance with change in operating conditions,
which is highly uncertain. Such uncertainties cannot be modelled using type-1 fuzzy
sets [10]. Both conventional controllers and type-1 fuzzy controller are unable to
handle the parameter uncertainty, which motivates to look for an alternative that can
deal with the uncertainty in the controller parameters along with the plant parameter
uncertainty.
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Fig. 6 MFs for type-1 FLC a Input1 b Input2 c Output
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5 Proposed Control Scheme with Type-2 FLC

Type-2 fuzzy logic sets, an extension of type-1 fuzzy logic sets, are introduced as
a promising tool with a features such as three dimensional membership function
and foot print of uncertainty (FOU). The membership grade in any type-1 FLS is
defined as a crisp number in [0,1], where as in type-2 FLS, the membership grade
for each element in the set is defined as another fuzzy set in [0, 1] [11]. The unique
features of type-2 fuzzy sets i.e. the third dimension in the MF and the FOU offers
an additional degree of freedom in modeling the uncertainties. The existing control
schemes in renewable energy systems are facing serious challenges to upkeep the
good performance over wide operating conditions. Hence an attempt has been made
to address the limitations of type-1 FLSs, by exploring the type-2 FLSs.

AType-2 fuzzy set,A, canbe characterizedby a type-2 fuzzymembership function
μA(x, u), where x ∈ X and μ ∈ Jx ⊆ [0, 1] i.e.

A = {(x, u), μA(x, u)} ∀x ∈ X,∀u ∈ Jx ⊆ [0, 1] (15)

in which 0 ≤ μA(x, u) ≤ 1. The general type-2 FLSs are computationally intensive,
hence in this design the interval type-2 fuzzy logic sets (IT-2 FLSs) are used, whose
secondary membership grade is considered as unity. An interval type-2 set Ã is
characterized as

Ã =
∫
x∈X

∫
u∈Jx

1/(x, u), Jx ⊆ [0, 1] (16)

=
∫
x∈X

[∫
u∈Jx

1/u

]
/x (17)

where Ã:X → {[a, b] : 0 ≤ a ≤ b ≤ 1}. The union of all the primary memberships
represent the uncertainty of Ã, and can be called as foot print of uncertainty of Ã.

6 Type-2 FLC Design

The proposed control structure with type-2 FLC is shown in Fig. 5. The first step in
the design process is to normalize the rotor currents in terms of per unit values and
then transform the three phase quantities from abc to dq components. To calculate
the d-q components, the reference frame is derived by taking the angular difference
between stator flux vector and physical rotor direct axis. The main advantage of the
vector control is the d and q components of rotor currents would enable independent
control of the rotor excitation and electrical torque.At a givenwind speed, the amount
of active power to be injected is decided by the maximum power tracking algorithm
which is taken as the reference value for vdr . The reference value for the vqr is
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generated from the set point value of the amount of reactive power to be injected.
The step by step design procedure for the current controller is explained as follows
[12]. The errors to the current controller are defined as

ud = idre f − idr (18)

uq = iqre f − iqr (19)

and the derivative of the each error is calculated over a fixed time period and are
represented as u̇d and u̇q . Finally, the controller parameters represented by Ke and
Kd are chosen to scale the errors in the desired range; similarly the gain Ku is
chosen to scale the output without pushing the controller to saturation mode. The
final controller inputs after the scaling are expressed as

uqi = Keuq (20)

u̇qi = Kdu̇q (21)

In the proposed type-2 FLC design, at first the crisp inputs to the controller are
transformed to fuzzy variables using different membership functions as shown in
Fig. 7. Based on the magnitude of the error input, each input membership function is
mapped to a output membership function and the mapping criterion is defined with
set of rules, this process is known as inference mechanism [13]. After the mapping
process the derived output is in type-2 form which cannot be used as it is, for the
reason that computational burden would be high. To improve the controller response
time, the type-2 fuzzy sets are transformed back to type-1 by a process known as
type reduction operation. Finally, the type reduced sets are used to calculate the
crisp value with the help of different defuzzification techniques, by this process the
computational burden or process delay of the controller can be drastically reduced.

The error inputs are fuzzified using three Gaussian membership functions and
the output with five MFs. The fuzzy sets for the inputs are defined as Negative-
NEG, Zero-ZER, and Positive-POS and for the output as: Negative Large—NL,
Negative Medium—NM, Zero—ZR, Positive Large—PL, Positive Medium—PM.
The normalized values of the errors and output are defined in the range of +1 to
−1.The rules for mapping the input and output membership functions are defined
using IF–THEN logic as follows.

If ud is x1 and u̇d is y1 then Vd isw1

If uq is x2 and u̇q is y2 then Vq isw2

By following the above logic, there are 9 rules defined for the entire range of
the error and derivative of the error, which are listed in Table 1. In the mapping
process of type-2 fuzzy sets, various operations such as meet, join, join aggregation
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Fig. 7 Membership functions for type-2 FLC a Input1 b Input2 c Output
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Table 1 Rules for type-2
FLC

E/�E NEG ZER POS

NEG NL NM ZE

ZER NM ZE PM

POS ZE PM PL

and meet implication are involved. In this algorithm, for performing all these opera-
tions only min-method and max method are used. Further, in the literature there are
various techniques are proposed for the type reduction operation, however the best
accuracy has been achieved with the ‘height type reduction’ technique. To convert
the output from fuzzy to crisp value, centroid type defuzzification technique is used.
The challenging task in the design is, to choose the appropriate values of controller
parameters (Ke, Kd , and Ku). The controller parameters are tuned by analyzing the
simulation results, and also by following the rules described in [14]. Further any
heuristic algorithm based optimization may be applied for better accuracy.

.

7 Simulations and Results

To test and validate the proposed type-2 FLC performance, simulations have been
performed in a test system as shown in Fig. 8 and a comparative analysis of the results
has been done with the type-1 FLC and PI controller. The model consists of a 9 MW
wind farm that comprises six 1.5 MW wind turbines which are directly connected
to a 25-kV distribution line, and is connected to a 120-kV grid through a 30-km,
25-kV feeder. The load is connected on the 25 kV feeders through a transformer.
In order to simulate the network disturbances, a three phase circuit fault on 25-kV
feeder and a voltage sag on 120 kV system are programmed in the simulink model.
The performances of the system with the type-2, type-1 FLC’s and PI controller are
plotted and discussed.

Infinite Bus 
bar

120 kV

120 kV/25 kV

Grounding 
Transformer

25kV/690V
DFIG with 
convertersFault 

Initiation 
Breaker

Fig. 8 Grid connected DFIG test system
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All the simulations in this work are performedwith the following operating condi-
tions; a constant wind speed of 12 m/s, reference terminal voltage and rotor speed at
1 p.u.

8 Fault on 25 kV System

Considering the system in Fig. 8, a three phase fault is initiated for a time period of
0.08 s, and the responses of the system for PI and FLCs is recorded. The performance
of all the three controllers is compared in terms of different indexes and listed in Table
2. The responses of the system especially the voltages, currents and powers with PI
controller in the loop are shown in Fig. 9. From the results, it is noticed that after
initiation of the fault, the voltage level at the stator windings has reduced to 0.1 p.u.,
soon after the fault clearance it has restored to normal valuewith damped oscillations.
From the power system stability perspective, damping the current oscillations within
the prescribed time limits plays an important role in maintaining the grid stability. In
this study, both the stator and rotor currents settle after 0.09 s and 0.1 s respectively.
The oscillations in the current in turn lead to sustained oscillations in the voltage
level of the DC link, and also in the active and reactive powers.

The response of the system with the type-1 FLC is shown in Fig. 10. At the time
of initiation of fault the voltage level at the stator windings drops to 0.15 p.u., and
during the fault period the stator current rises to 5 times of it rated value, however
there is a reduction in the current oscillations compared to that of PI controller. The
high currents in the stator windings, caused a fivefold increase in the rotor windings,
which is due to strong magnetic coupling between the rotor and stator. The sudden
change in the voltage levels further lead to oscillations in the GSC output powers.
Further, during the fault period, due to the difference in the input and output powers
of the RSC, there is a sharp rise in the voltage level of the dc link to 1.341 p.u.,
however, the presence of the protection circuit doesn’t allow it to deviate further
and brought back to normal value. There is a rise in active power amplitude with
oscillations peaking to 3.9 p.u. also the reactive power levels with negative peak of
6.1 p.u.

The performance of the system with the type-2 FLC is shown in Fig. 11. During
the fault period there is a reduction in the magnitude of the stator currents by 0.85%

Table 2 Performance of PI, Type-1 FLC and Type-2 FLC

Controller Voltage drop
during the fault
(p.u)

DC link voltage
(p.u.)

Settling time of
stator current (s)

Settling time of
rotor current (s)

PI 0.1 1.342 0.66 0.76

Type-1 FLC 0.13 1.341 0.36 0.46

Type-2 FLC 0.15 1.34 0.18 0.26
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Fig. 9 Responses with PI controller

with an improved settling time. In the PI case, after clearing the fault, the rotor current
waveform gets distorted very severely, in contrast with the proposed type-2 FLC it
settles within 0.2 s. Also an improvement is observed in the oscillation of the dc link
voltage. It is observed that the dynamic response of the controller is fast enough to
cope with the standard grid codes, which was seen in terms of non-triggering of the
protection system. Further, when compared with PI and type-1 FLC, the proposed
type-2 FLC damped out the power oscillations within 0.2 s, which helped the voltage
recovery to acceptable limits.
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Fig. 10 System response with Type-1 FLC

9 Remote Fault on 120 kV System

In order to analyze the impact of remote fault, a voltage drop of 0.15 p.u. lasting
0.5 s is initiated at t = 7 s on the 120 kV bus. The responses of terminal voltage,
rotor current and rotor speed are plotted and discussed. As depicted in Fig. 12, at the
instant of fault, with type-1 FLC, the terminal voltage level dropped to 0.85 p.u; after
the clearance, the oscillations in the rotor current and speed are settled after 2 s. With
the type-2 FLC, the fault voltage is maintained at 0.86 p.u. and quickly recovered to
the steady state. The oscillations in the rotor speed and current are damped out much
faster to type-1 FLC without degrading the transient performance. This shows that
a properly optimized type-2 FLC may perform much better than that of type-1 FLC
or PI/PID controllers.
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Fig. 11 Responses with Type-2 FLC

10 Conclusion

In this chapter, a novel Type-2 fuzzy sets based control scheme is proposed for the
grid integrated operation of DFIG. The design process of the proposed controller is
explained and is tested for various disturbances such as three phase short circuit fault,
wind speed variations etc. Further, a comparative analysis is done with the PI and
Type-1 FLC. The analysis of the simulation results showed that the dynamic response
of the type-2 FLC is fast enough to cope with the standard grid codes. Moreover,
the proposed type-2 FLC based control strategy is able to effectively tolerate the
network faults and input variations, adapting to the change in operating conditions.
The analysis in this chapter proves that the type-2 FLC is a valid option for controlling
the systems that have uncertainty in the parameters.
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Fig. 12 Responses for a remote fault
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Abstract With advances in technology, the control system becomes more complex
and enhanced controllers are required for them. Fuzzy based controllers are always
preferred for intelligent control of such systems. Fuzzy logic system is developed and
advance versions are proposed. The interval type-2 fuzzy logic controller (IT2-FLC)
has gained wide recognition for controlling systems with nonlinearities and uncer-
tainties. This chapter presents systematic strategy to get maximum benefit from the
shapes of the antecedentMF parameters. For experimental studies the interval type-2
fuzzy precompensated PID (IT2FP-PID) controller is designed for robotic arm and
optimized for trajectory tracking problem. Various constraints are considered dur-
ing optimization procedure. 60 parameters are tuned in a high dimensional problem
using recent enhanced algorithm. The robustness of the controller in the presence of
external disturbances, measurement noise and parameter variations is investigated.
The results are compared with other equivalent counterparts. Minimization of perfor-
mance metric integral time absolute error (ITAE) is selected as a objective function
and hybrid grey wolf optimizer and artificial bee colony algorithm (GWO-ABC) is
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1 Introduction

In the last few decades, control system design has advanced by the incorporation of
fuzzy logic systems (FLS). Thus, fuzzy logic controllers (FLC) proved their applica-
bility in ill-structured nonlinear systemswith uncertain parameters [26]. In literature,
multiple characteristics of FLC are mentioned, like (i) low design, development and
operating cost, (ii) rule base formation based on knowledge of human expertise, (iii)
when exactmathematicalmodel is unavailable, FLCcan be applied based on dynamic
model, and (iv) the ability of general framework of FLC to handle uncertainty, etc.
Over the past few years, many authors proposed variants of FLC for different types
of applications [13, 25]. Earlier, control designers mentioned FLC as type-1 fuzzy
logic controller and recommended it over other conventional counterparts.

Pre-eminently, the concept of type-2 fuzzy set (IT2-FS) was proposed by Zadeh
[40]. He extended the structure of type-1 fuzzy sets (T1-FS) by introducing uncer-
tainty in IT2-FS. Subsequently, Karnik and Mendel [18], and other researchers [19]
contributed a complete type-2 FLS theory by establishing characteristics of mem-
bership grades, theoretic working, and formulae for type-2 relation composition. To
be specific, IT2-FLCs were upgraded with the rules assimilating antecedents or con-
sequent with uncertainty therein [31]. Overall, the IT2-FLC, including the FOU in
IT2-FSs, turn out as a developed FLC tool than T1-FLC.

Control systemproblems have larger uncertainties due to interference of unwanted
signals in the closed-loop. T1-FLCs, with fuzziness or the uncertainty in between [0,
1], are found less suitable for complex control applications [8, 9]. After introduction
of IT2-FLC, it has been seen as a viable alternative in such control problems. But,
now the parameters of controllers are increased. On one side they provide better
degree of freedom to designers, contrary, on the other side, it takes larger time for
tuning methodologies to execute the operation.

In recent years, many researchers proposed different strategies to maximize the
structures of IT2-FLC to extract maximum benefits from the FOU. Few studies [12,
28], have tested and presented strategies to rearrange structures of the IT2-FSs to
get maximum advantage from them. Difficulty in tuning and high dimensional struc-
tural variables induce complexity and their limitations induces constraints in the
optimization problem. As no exact mathematical model is available, Meta-heuristic
optimization algorithm (MOEAs) are found perfect for optimization [35]. In last two
decades, many researchers [8, 27, 31, 35] presented successful studies about opti-
mizing IT2-FLC usingMOEAs. Advancing on this research track, differentMOEAs,
namely, Tabu Search [5], ABC-GA [11, 26], BigBang-BigCrunch optimization [28],
cuckoo search [12, 36, 37], BFO [4], chaotic PSO [34], CSA optimization [1], etc.,
have been tested for variants of FLC on diverse applications.

Conventional PID controllers is observed to have limitations in robust control
problem. FLC based precompensator PID (FP-PID) controllers was suggested in
[22, 23] by Kim et al. The FLC induce many features like knowledge based infer-
ence, fuzzy decision making and enhance the results. In the response, unwanted
undershoots and overshoots are minimized and steady state error is diminished.
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Fig. 1 Block diagram of overall control system design

Inspired by this, this chapter also present IT2-FLC based precompensated controller
and further enhances the shapes of the antecedent MF structures (Fig. 1) [14].

The chapter contributes in terms of simple controller tuning approach using IT2-
FLC and optimization algorithm. Several parameters of an advanced IT2FP-PID
controller for a robotic manipulator with 2-DOF controls are optimized to track
desired trajectory. Maximum benefit of IT2-FLC is acquired by optimizing shapes
of antecedent MFs, while considering its constraints. This will also help to achieve
optimal benefits of FOU in the proposed controller. If all parameters are considered,
the optimization problem becomes high-dimensional constrained problem. Hence,
the GWO-ABC algorithm is applied for its features and low computational cost.

The prime contributions of this chapter are given as follows:

• The benefits of IT2-FLC and the most of FOU are acquired using systematic
strategy to tune the controller parameters, shape of MFs, and scaling factors.

• The implementation of interval type-2 fuzzy based precompensated PID controller
is discussed for 2-DOF robotic manipulator’s end-effectors path tracking problem.

• A technique to handle high-dimensional constrained optimization problem is
described using hybrid GWO-ABC algorithm.

• The performance index (I T AE) is defined and the comprehensive analysis is car-
ried out. The results are compared with other equivalent conventional controllers.

• The distinct nonlinear dynamics, like (a) signal disturbance, (b) feedback path
noise, (c) model uncertainties, and (d) variations in payload are applied and the
robustness analysis is presented.

Rest of the chapter progresses in this manner. Section 2 describes the essentials
of GWO-ABC optimization algorithm and robotic manipulator. It also briefs the
features of FLS structures of type-1 and type-2 FLCs. Proceeds by Sect. 3, defin-
ing detailed structure,implementation strategy, and tuning of IT2FP-PID controller.
Simulation result analysis is discussed in the next section. Further, Sect. 5 covers
robustness analysis for distinct nonlinear dynamics. Finally, the chapter is concluded
in Sect. 6.
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2 Optimization Algorithm and Type-2 FLC

2.1 GWO-ABC Algorithm

Several swarm intelligent based optimization algorithms were proposed by resear-
chers in last few decades [33]. Few of them are widely appreciated for their ability
to get globally optimized solution in available high dimensional search space. Then
also, the conventional versions of these algorithms have certain limitations, such as,
poor exploration abilities and immature locking to local optima [15]. Henceforth,
with the aim to improve their performance, modified or hybrid versions are proposed
by inculcating goodmethodologies of different algorithms.NovelGWO-ABC is such
a newly proposed algorithm which inherit the advantages of conventional GWO [33]
and ABC [17]. It is evident from the comparative analysis that GWO-ABC performs
much better and have faster convergence.

The GWO-ABC succeeds in 3 phases, known as, population initialization phase,
GWO phase, and ABC information sharing phase. The major features of the algo-
rithm can be deciphered from [15]. By hybridizing major features of two algorithm,
each solution element shares informationwith other element andoverall global search
technique is ameliorated to elude inappropriate stagnation. In controller tuning prob-
lems, with multiple- dimensional search space, such extensive techniques provide
exhaustive coverage and attain jump-offs from any locally sub-optimal regions to
deduce optimal controller parameters.

2.2 Features of Type-2 FLC

From the beginning of fuzzy sets, the problem of uncertainty handling is of concern.
Contradicting to the nature of fuzziness, the uncertainty consideration is low in design
of type-1 fuzzy set. In the basic type-1 fuzzy logic system (T1-FLS) structure, as
depicted in Fig. 2a, different units like fuzzifier, inference engine, fuzzy rules, and
defuzzifier are integrated. Initially, crisp input is transformed to type-1 fuzzy set
(T1-FS) using fuzzifier and each input is designated by single layer MFs. We can
observe from the triangular MFs in Fig. 2c that at any point ( x ′) in T1-FS has unique
MF value (μ′). Thus, there is no uncertainty about the value of the MFs and hence
criticism was made. To‘ overcome the above criticism, more sophisticated type of
fuzzy sets, i. e. “type-2 fuzzy set” incorporating uncertainty about their MFs were
proposed by Lotfi A. Zadeh.

Figure 2b shows the structure of an interval type-2 fuzzy logic system (IT2-FLS).
It can be observed that it is similar to T1-FLS shown in Fig. 2a. All units of FLC, (i)
fuzzifier, (ii) inference engine, (iii) defuzzifier are common in both the FLS, extra
unit (iv) type reducer is introduced.

The input signals to fuzzifier are converted to IT2-FS. These input signals may
have uncertainties in the form of external noise and parameter variations. The
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Fig. 2 General Illustrations of the a Structure of Type-1 fuzzy logic system, b Structure of Type-2
fuzzy logic system, c T1-FS, d IT2-FS

Table 1 The rule base of the type-1 and interval type-2 fuzzy logic controllers

E ⇓/CE ⇒ N Z P

N NL NM Z

Z NM Z PM

P Z PM PL

IT2-FS represent the uncertainty in terms of finite region represented as footprint
of uncertainty (FOU). As depicted in vertical slice representation in Fig. 2d, the IT2-
FS is designated as UMF( Ã)-the upper membership function, and LMF( Ã)-lower
membership function and noted asμ

Ã
(x),∀x ∈ X andμ Ã(x),∀x ∈ X , respectively.

For ease, the upper membership function is fixed to unity.
The operation of ‘fuzzifier’ is to map crisp input to type-2 fuzzy sets. Further, the

inference engine is activated and output is generated. Type reducer converts the output
signal to T1-FSs. Finally crisp output is obtained through defuzzifier. In this work,
Karnik-Mendel (KM) algorithm is implemented among many in literature. Takagi-
Sugeno-Kang (TSK) type IT2-FLSs can be obtained in the open source toolbox [38].
Details of type-2 FLC and reasoning mathematically of IT2-FS can be found in [19,
38, 39] (Table 1).
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3 Controller Design and Optimization Method

The controller details are discussed in this section followed by MF structure rep-
resentation and the strategy of MF optimization. At last, optimization algorithm
implementation technique is presented.

3.1 Design of the Proposed IT2FP-PID Controller

Figure 3 demonstrates proposed IT2FP-PID controller, which is designed by con-
necting two modules (a) and (b) in series.

The first module-(a) is an interval type-2 (IT2) FLC based precompensated con-
troller and the second module-(b) is a conventional PID controller. Module-(a) stabi-
lizes the transient response by compensating unwanted overshoots and undershoots.
Along with this, steady state error is diminished as per performance criteria. FLC in
this module can be adjusted by incorporating the problem oriented knowledge based
rule base [32]. The IT2-FLC have two inputs, symbolized as (1) e(t)—normalized
error and (2) �e(t)—rate of change of error. As shown, gain elements KE and KCE

are multiplied to these inputs, respectively, as given below.

E(t) = KEe(t) = KE (Yd(t) − Y (t)) (1)

CE(t) = KCE
de(t)

dt
= KCE�e(t) (2)

where, e(t) is obtained by taking difference between the actual and desired trajectory.
The output of module-(a) U is multiplied by gain KU to get u(t) as shown:

u(t) = KU I T 2FLC (E(t),CE(t)) (3)

here, the I T 2FLC (E,CE) is meant to be a nonlinear function based on inference
of IT2-FLC;

Fig. 3 Design of IT2 fuzzy precompensated PID controller
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Thus, desired output for the first module obtained as

Ymod(t) = u(t) + Yd(t) (4)

The new error signal e′(t) is obtained as a difference between Ymod(t)-the output
response and Y (t)-the current response.

e′(t) = Ymod(t) − Y(t) (5)

This signal is fed to PID controller i.e. module-(b). The final actuating signal u′(t)
which moves the position of links, is derived as

u′(t) = KPe
′(t) + KD

de′(t)
dt

+ KI

∫
e′(t)dt (6)

3.2 Proposed Methodology for Optimization of IT2FP-PID
Controller

IT2FP-PID controller is tuned to optimal values using systematic methodology pre-
sented in this section. Along with controller parameters, elements of antecedent MFs
are also optimally reshaped to minimize the objective function.

Referring to Fig. 3, both the inputs to FLC—e(t) and �e(t)—are represented by
a pair of three triangular MFs and output by five singletons at 1, 0.8, 0,−0.8, and
–1. The MFs are represented by different labels like ‘P, Z, N’ and ‘PB, PM, Z, NM,
NB’ as shown in Fig. 6. In this work, the knowledge of designer is acquired in terms
of 3 × 3 rule base. The details of MFs and FLC used in this work are represented as
follows.

Input MFs: Positive-P, Zero-Z, Negative-N.
Output MFs: Positive Big-PB, Positive Medium-PM, Zero-Z, Negative Medium-
NM, Negative Big-NB,
Each Type-1 Input MFs: Triangular with labels (lim, cim, rim; i = 1, 2, . . . and
m = 1, 2, 3. . . . ).
Each Type-2 Input MFs: Triangular with labels (lim, cim, rim; i = 1, 2, . . . and
m = 1, 2, 3. . . . ).
Rule base: 3x3 rule base and Sugeno inference mechanism.
Software: Fuzzy Logic Toolbox in MATLAB.

While optimizing the shapes of the MFs of both type-1 and type-2 FLC, few
constraints are assigned and fulfilled to get new optimized shapes without losing the
generosity of the classical FLCMFs. In this work we have 2 inputs i = 2 and 3 MFs
for each input m = 3. For every triangular shape notation l is used for left corner, c
is used for center and r is used to represent right corner. Thus, for type-1 input, we
can name l1N , c1N , r1N for N MF of input 1, and so for others. For type-2, we can
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name l1N , c1N , r1N , h1NU , h1NL for N MF of input 1, and so for others. All these
labels are represented in Fig. 6.

To maintain the shape originality, following constraints are defined for input 1
and 2 of both type-1 and type-2 FLC

I nput1 : c1N < c1Z < c1P ; l1N < c1N < r1N ; l1Z < c1Z < r1Z , l1P < c1P < r1P .

I nput2 : c21N < c2Z < c2P ; l2N < c2N < r2N ; l2Z < c2Z < r2Z , l2P < c2P < r2P .

Along with this, we have to optimize the height of IT2-FSs. Hence, upper height
is fixed to 1 and lower height is varied in between 0 to 1. The constraints are as given
below

I nput1 : 0 < h1NL < 1; 0 < h1ZL < 1; 0 < h1PL < 1; h1NU = h1ZU = h1PU = 1

I nput2 : 0 < h2NL < 1; 0 < h2ZL < 1; 0 < h2PL < 1; h2NU = h2ZU = h2PU = 1

The parameters given above can be observed from Fig. 6a and b.

3.3 The Controller Implementation on Robotic Manipulator

Many studies reported that the control problem ofMIMOmachine robotic manipula-
tor is nonlinear and coupledwith other parameters. In this control problem, the torque
(τ1, τ2) are manipulated based on the link positions (θ1, θ2). Figure 5 illustrate the
input output control parameters used in this problem. Here, two links of robotic arm
are regulated by two independent controllers employed at separate link. The 2 DOF
robotic model and the technique is taken from [14] and the load is varied for further
simulations. The parameters of the robotic manipulator used for the simulation study
are listed in Table 2.

Controller implementation procedure and their parameters are explained here.
PID: Classical PID controller is used here. It is similar to module-(b) of IT2FP-

PID controller as depicted in Fig. 3.Here, no FLC is used and only 3 controller param-
eters, namely KP , KI , and KD are designated. For two such controllers attached to
2 links, 6 parameters are needed to tune.

FPID: FLC based PID controller, designed as FPID controller and depicted in
Fig. 4. For both the controllers, 8 parameters to tune, namely KE1 , KE2 , KCE1 , KCE2 ,
KP1 , KP2 , KI1 , and KI2 . Basic triangular T1-MFs, as illustrated in Fig. 6a are imple-
mented and 3x3 rule base is used.

TIFP-PID:The FPID controller structure is depicted in Fig. 5. Controller parame-
ters KE , KCE , KU , KP , KI , and KD are to be optimized.Alongwith this, 9 × 2 = 18
variables used to define MFs are needed to tune per link. Thus for 2 separate links
2 × (6 + 18) = 48 parameters are required. As two inputs (E,CE) are applied
to FLC and each input is represented by 3 MFs (‘N’, ‘Z’, and ‘P’), their struc-
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Table 2 Parameters of the robotic manipulator

Variables
(unit)

Description Link 1 Link 2

m1,m2 Mass (kg) 1 1

l1, l2 Length (m) 1 1

I1, I2 Centroid inertia (kgm2) 0.2 0.2

v1, v2 Coefficient of viscous friction 0.1 0.1

d1, d2 Coefficient of dynamic friction 0.1 0.1

g Acceleration due to gravity (m/s2) 9.81 9.81

lc1, lc2 Distance between joint of link and center of
gravity (m)

0.5 0.5

mpl The payload mass at the end of Link 2 (kg) – 2 at t = 0

Fig. 4 Block diagram of FPID controller for 2—DOF robotic manipulator

tural parameters are designated as shown in Fig. 6a. Thus parameters l1N , c1N ,

r1N , l1Z , c1Z , r1Z and l1P , c1P , r1P are designated for link1. Similarly, parameters
l2N , c2N , r2N , l2Z , c2Z , r2Z and l2P , c2P , r2P are designated for link2.

IT2FP-PID: As depicted in Fig. 5, the IT2FP-PID controller have similar struc-
ture as of FPID controller. Here also, controller parameters KE , KCE , KU , KP , KI ,

and KD are to be optimized. Along with this, 24 variables used to define type-2 MFs
are needed to tune per link. Thus for 2 separate links 2 × (6 + 24) = 60 parameters
are required. In this case also, two inputs (E,CE) are applied to FLC and each input
is represented by 3 MFs (‘N’, ‘Z’, and ‘P’), their structural parameters are desig-
nated as shown in Fig. 6b. Thus parameters l1N , c1N , r1N , h1N , l1Z , c1Z , r1Z , h1Z
and l1P , c1P , r1P , h1P are designated for link1. Similarly, parameters l2N , c2N ,

r2N , h2N , l2Z , c2Z , r2Z , h2Z and l2P , c2P , r2P , h2P are designated for link2.
Being high-dimensional optimization problem, GWO-ABC algorithm is applied

for solving the problem. As reported in Table 3, all parameters are tuned to get
minimum value of the objective function.
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Fig. 5 Block diagram of T1FP-PID and proposed IT2FP-PID controllers for 2—DOF robotic
manipulator

Fig. 6 General structures of input MFs for all the inputs and links of a T1-FLC and b IT2-FLC

Table 3 List of tuning parameters of the PID, FPID, T1FP-PID, and IT2FP-PID controllers
Contr. Links Antecedent MF parameters Scaling factors

PID L1 – KP1 , KI1 , KD1
L2 – KP2 , KI2 , KD2

FPID L1-I1/I2 Fixed Triangular MFs KE1 , KCE1 , KP1 , KI1
L2-I1/I2 KE2 , KCE2 , KP2 , KI2
L1-I1 l1N1 , c1N1 , r1N1 , l1Z1 , c1Z1 , r1Z1 ,

l1P1 , c1P1 , r1P1

KE1 , KCE1 , KU1 , KP1 , KI1 , KD1

T1FP- L1-I2 l1N2 , cI N2 , r1N2 , l1Z2 , c1Z2 , r1Z2 ,

l1P2 , c1P2 , r1P2
PID L2-I1 l2N1 , c2N1 , r2N1 , l2Z1 , c2Z1 , r2Z1 ,

l2P1 , c2P1 , r2P1

KE2 , KCE2 , KU2 , KP2 , KI2 , KD2

L2-I2 l2N2 , c2N2 , r2N2 , l2Z2 , c2Z2 , r2Z2 ,

l2P2 , c2P2 , r2P2
IT2FP- L1-I1 l1N1 , c1N1 , r1N1 , h1N1 , l1Z1 , c1Z1 ,

r1Z1 , h1Z1 l1P1 , c1P1 , r1P1 , h1P1

KE1 , KCE1 , KU1 , KP1 , KI1 , KD1

L1-I2 l1N2 , c1N2 , r1N2 , h1N2 , l1Z2 , c1Z2 ,

r1Z2 , h1Z2 l1P2 , c1P2 , r1P2 , h1P2
PID L2-I1 l2N1 , c2N1 , r2N1 , h2N1 , l2Z1 , c2Z1 ,

r2Z1 , h2Z1 l2P1 , c2P1 , r2P1 , h2P1

KE2 , KCE2 , KU2 , KP2 , KI2 , KD2

L2-I2 l2N2 , c2N2 , r2N2 , h2N2 , l2Z2 , c2Z2 ,

r2Z2 , h2Z2 l2P2 , c2P2 , r2P2 , h2P2

I1:- Input1‘e(t)’, I2:-Input2 ‘�e(t)’
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4 Simulation Results and Analysis

This section presents the performance analysis of IT2FP-PIDcontrollerwith classical
PID, Fuzzy PID , and T1FP-PID controllers. As discussed above in Figs. 4 and 5,
individual controllers are applied to every link and tuning parameters required for
these controllers are listed in Table 3.

4.1 Deriving Objective Function

Proper selection of objective function is important in optimization problem. In this
simulation, minimization of integral time absolute error (I T AE) is opted for its
suitable features. It is found reliable for least percentage of overshoot (%Mp) and
reduction of oscillations. The responses settling time (ts) and rise time (tr ) are also
found to be reduced, which eventually minimize the steady state error Ess . Thus, for
error e(t) over time t , the objective function is formulated as

Obj_ f un = I T AE =
∫

t |e(t)|dt (7)

For two links of manipulator with errors el1 and el2, the objective functions are
reformed as

Obj_ f unl1 = I T AE1 =
∫

t |el1(t)|dt (8)

Obj_ f unl2 = I T AE2 =
∫

t |el2(t)|dt (9)

Single objective function is designed by taking weighted sum, with w1 = 1 and
w2 = 1, of both link functions.

Obj_ f un = w1 × Obj_ f unl1 + w2 × Obj_ f unl2 (10)

4.2 Experimental Settings

The experimental setup for simulation studies is uniform for different controllers.
Some parameter ranges for links Li where i = 1, 2, are

Algoritham setup 30 search agents, 100 iterations, 20 runs.
KEi , KCEi , KUi Range(Lb,Ub) [0,500]
KUi , KPi , KIi , KDi Range(Lb,Ub) [0,500]
Software MATLAB Simulink, fuzzy logic toolbox by MATLAB [38].



86 P. Gaidhane et al.

4.3 Results and Discussion

The initial shapes of MFs for these FPID, T1FP-PID, and IT2FP-PID controllers
are represented in Fig. 6a and b, respectively. From these shapes we can decide
the Min-Max values of structural parameters to define constraints, as given above.
After complete experimentation and simulation of different controllers the optimized
scaling parameters are noted in Table 4 and corresponding optimized MFs structures
are depicted in Figs. 7 and 8, for T1FP-PID and IT2FP-PID controllers, respectively.
The most remarkable observation to emerge from these plots is that the optimized
structures maintained the conditions of constrains and the triangular shapes, only,
their width is varied to get most of FOU.

The values in Table 4 are noted when simulation of all iterations are over, i.e.
after completion of stopping criterion. The values for IT2FP-PID for both the links

Table 4 Table showing results of parameter values of controller after optimization
Controllers
⇒

PID FPID T1FP-PID IT2FP-PID

Parameter
⇓

Link1 Link2 Link1 Link2 Link1 Link2 Link1 Link2

KP 423.02 425.11 125.71 16.121 401.11 412.11 17.121 186.02

KI 97.541 1.0121 131.062 0.0054 79.441 41.041 425.31 8.5460

KD 145.40 477.11 – – 0.0452 0.3115 0.0014 0.0024

KE – – 22.488 14.481 55.785 438.41 478.31 221.27

KCE – – 0.1745 1.0010 0.0004 0.0049 0.0521 0.0021

KU – – – – 98.527 2.8455 69.760 21.8651

I T AE 0.08240 0.0612 0.0112 0.0114 0.002142 0.001249 0.00000121 0.00000341

The “best results” are indicated by bold values

Fig. 7 Optimized structures of input MFs of T1FP-PID (Input—1/2: I1 /I2 and Link—1/2: L1/L2)



Tuning of Interval Type-2 Fuzzy Precompensated PID Controller … 87

Fig. 8 Optimized structures of input MFs of IT2FP-PID (Input—1/2: I1 /I2 and Link—1/2: L1/L2)

Fig. 9 Comparative analysis of responses of robotic end-effector with variable payload by opti-
mized controllers

are much smaller than other controllers values. The comparative analysis of I T AE
values, 2.41 × 10−06 and 5.76 × 10−06, for the separate links of IT2FP-PID, are also
demonstrated in Fig. 10. The least values substantiate the excellence of IT2FP-PID
controller and ensure the exact tracking of defined desired path by tip of the robotic
arm. Finally, it is also evident that the GWO-ABC algorithm accomplishes optimal
values of performance metric after constrained optimization.

To exhibit further proofs of performance of proposed controller, various plots of
different nature are demonstrated. In these plots desired results are demonstrated in
comparison with results obtained by all four IT2FP-FPID, T1FP-PID, FPID, and
PID controllers. For further convenience, the enlarged illustrations are also included
in the plot to get better view. These plots and observations are noted as follows.
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Fig. 10 Analysis of minimized ITAE values for all controllers applied to Link1 and Link2 (Not
to the scale)

1. Figure 9a shows the desired trajectory tracking by both the robotic links. Exact
path tracking of IT2FP-PID can be observed as it effectively eradicates the over-
shoots and undershoots.

2. Figure 9b demonstrates X and Y coordinate of tip of the robotic arm versus
time taken by the arm. Optimized IT2FP-PID follows both the coordinates in an
efficient way and accordingly enhance the performance.

3. Figure 9c demonstrates path traced by robotic end effector with respect to the
predefined desired trajectory. Thus, in case of IT2FP-PID, the path following is
more accurate than others.

4. Figure 9d demonstrates position errors for both the links generated by comparing
actual resultswith desired results.We can clearly observe how IT2FP-PID reduces
the position errors from initial time.

5 Robustness Analysis

In control systemdesign procedures, alongwith desired response analysis, robustness
analysis for different variations like

1. Model uncertainties i.e. variations in system parameters,
2. Low frequency external disturbances in the control path,
3. High frequency random feedback noise

are absolutely essential. Hence, the efficiency of IT2FP-PID is again tested after
inserting following non-linearity in the system under unusual circumstances. These
signals are introduced in the forward and feedback path as depicted in Figs. 4 and 5.
The experimentation and simulation procedure described earlier is followed for these
non-linearity, as well, Thus, all controllers are tuned to minimize I T AE . Lets dis-
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cuss the robustness analysis after introducing different variations one-by-one in the
following sections.

5.1 Analysis of Impact of Model Uncertainties

Timely changes in physical properties of robotic structure may vary its proper
behaviour and affect the overall performance. Some variations such as frictional
forces affects the mathematical model and balance of robotic manipulator The lubri-
cants in the joint and other timely wear and tear affects these frictional forces [10].
Frictions like Coulomb friction and viscous friction may also degrade the opera-
tion. Henceforth, robustness against such periodic changes must have to be tackled
by applied controllers. In this study, we apply ±5% and / or ±20% variations to
different physical characteristics, as given below,

±5%:- masses of links i.e. m1,m2, and m1 + m2

±20%:- lengths of the links L1, L2 i.e. l1, l2 and l1 + l2
±20%:- coefficient of viscous friction i.e. v1, v2 and v1 + v2
±20%:- coefficient of dynamic friction i.e. d1, d2 and d1 + d2

Thus, these physical characteristics are increased or decreased, as above, and the
values of objective function are recorded. Table 5 noted the individual and collective
results for these variations. At last, the overall average percentage variation with
respect to original I T AE values are calculated and noted in last row. From Table 5,
it is evident that the IT2FP-PID controller results are varied by negligibly small value
1.21%.Whereas, other controllers performance like PID (7.128%), FPID (4.9124%),
and T1FP-PID (4.965%) is varied by considerably larger values which affect their
robustness against the physical parameter variations. Ipso facto, the overall findings
clarify the superiority of IT2FP-PID over others and authenticate the impression of
FOU in MFs to ensure the boundedness of the position tracking error.

5.2 Analysis of Impact of External Disturbances

Influences of external disturbance always affects the devices, equipment, instruments,
and machines in industrial process control system. Hence, analysis of impact of
external disturbances is very essential for any controller. As illustrated in Figs. 4
and 5, the disturbances are incorporated in respective links and control output is
examined. Distinct disturbance signals of the nature ‘Asinωt’ N -m, is applied to
both the links, as represented in table shown in Fig. 6. The simulation is carried out
for time period of 4s. The results of objective function for all the controllers are
examined and noted in Table 6. Amplitude and frequency of the disturbance signal
are varied for wider analysis.
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Table 5 Results for analysis of impact of model uncertainties
Controllers
⇒

PID FPID T1FP-PID IT2FP-PID

Parameter ⇓ Link1 Link2 Link1 Link2 Link1 Link2 Link1 Link2

Optimum
I T AE

0.08220 0.01210 0.01837 0.01414 0.00217 0.000121 0.00000195 0.00000475

m1 (−5%) 0.08610 0.02031 0.01801 0.01242 0.00369 0.000172 0.00000241 0.00000576

m2(−5%) 0.08620 0.02053 0.01811 0.01201 0.00329 0.000161 0.00000240 0.00000571

m1 + m2
(−5%)

0.08630 0.02041 0.01836 0.01205 0.00366 0.000171 0.00000238 0.00000571

l1 (−5%) 0.08779 0.02393 0.01795 0.01357 0.00381 0.000162 0.00000238 0.00000575

l2 (−5%) 0.08711 0.02148 0.01725 0.01186 0.00560 0.000124 0.00000274 0.00000555

l1 + l2
(−5%)

0.08757 0.02124 0.01785 0.01265 0.00247 0.000144 0.00000247 0.00000574

All m and
l (−5%)

0.07985 0.01935 0.01784 0.01142 0.00245 0.000154 0.00000244 0.00000574

v1 + v2
(−15%)

0.0824 0.02444 0.01245 0.01124 0.00214 0.000144 0.00000212 0.00000457

d1 + d2
(−15%)

0.09134 0.02155 0.01939 0.01324 0.00354 0.000144 0.00000212 0.00000457

All d and
v (−15%)

0.09137 0.02175 0.01930 0.01337 0.00373 0.000182 0.00000214 0.00000746

All above 0.04772 0.017545 0.02459 0.01774 0.00245 0.000145 0.00000144 0.00000541

m1 (+5%) 0.08811 0.02888 0.01470 0.01551 0.00345 0.000145 0.00000124 0.00000457

m2 (+5%) 0.08547 0.02124 0.01642 0.01124 0.00124 0.000124 0.00000124 0.00000452

m1 + m2
(+5%)

0.03454 0.04421 0.01142 0.01575 0.00127 0.000128 0.00000232 0.00000451

l1 (+5%) 0.0451 0.01244 0.01245 0.01440 0.00441 0.000175 0.00000285 0.00000565

l2 (+5%) 0.02540 0.02122 0.02124 0.01245 0.00541 0.000144 0.00000124 0.00000452

l1 + l2
(+5%)

0.09451 0.02443 0.02002 0.01355 0.00374 0.000156 0.00000124 0.00000242

All m and
l (+5%)

0.08534 0.02124 0.01245 0.01744 0.00344 0.000147 0.00000742 0.00000451

v1 + v2
(+15%)

0.0865 0.02659 0.01456 0.01231 0.00451 0.000145 0.00000124 0.00000545

d1 + d2
(+15%)

0.09108 0.02122 0.01935 0.01305 0.00457 0.000156 0.00000145 0.00000457

All v and
d (+15%)

0.0254 0.0124 0.014 0.01294 0.00364 0.000166 0.00000223 0.00000527

All above 0.09786 0.02024 0.04104 0.01347 0.00347 0.000144 0.00000122 0.00000154

Overall %
variation

7.128% 4.9124% 4.965% 1.21%
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The standard deviation (STD) of I T AE for separate links are observed for the
given controllers. IT2FP-PID controllers have least deviation even after the introduc-
tion of various external disturbances. The results are represented in bold. Thus, pro-
posed controller perform efficiently against disturbance variations compared to other
controllers. For graphical representation, disturbance of 2.0sin60t N-m is applied in
both the links of robotic arm. These plots and observations are noted as follows. For
further convenience, the enlarged illustrations are also included in the plot to get
better view.

1. Figure 11a shows the desired trajectory tracking by both the robotic links.
2. Figure 11b demonstrates X and Y coordinate of tip of the robotic arm versus time

taken by the arm.
3. Figure 11c demonstrates path traced by robotic end effector with respect to the

predefined desired trajectory.
4. Figure 11d demonstrates position errors for both the links generated by comparing

actual results with desired results.

The STD values obtained from all the controllers demonstrates that IT2FP-PID
gives the best performance in the presence of external disturbances.

5.3 Analysis of Impact of Random Feedback Noise

As demonstrated in Figs. 4 and 5, sensors are connected in feedback path in closed
loop control. Generally, high frequency random noise is induced in the system
through these sensors, because of some environmental conditions, and some reper-
cussions are added in overall system due to these signals. This section conducted a
comprehensive experimentation for analysis of impact of random feedback noise. In
this view, random noise is applied in feedback path of either or both Link 1 and Link
2 and different plots are obtained as discussed below,

1. Figure 12a demonstrates the high-frequency random noise signal applied to feed-
back path in both the links.

2. Figure 12b demonstrates the trajectory tracking performance by both the robotic
links.

3. Figure 12c demonstrates X and Y coordinate of tip of the robotic arm versus time
variation.

4. Figure 12d demonstrates path tracked by robotic end effector with respect to the
given desired trajectory.

5. Figure 12e demonstrates position errors for both the links generated by comparing
actual results with desired results.

Minimized I T AE values are noted in Table 7. Finally, all results drive us to
conclude that the controller and optimized shapes enhance the performance of the
robotic arm. The optimized IT2-FS, depicted in Fig. 8, in IT2FP-PID also helps to
suppress the external noise and restrain uncertainties in the system compared to other
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Table 6 Results for analysis of impact of external disturbances

Controllers ⇒ PID FPID T1FP-PID IT2FP-PID

Disturbance ⇓ Link1 Link2 Link1 Link2 Link1 Link2 Link1 Link2

Link1 1sin60t 0.08641 0.02145 0.01875 0.01345 0.00245 0.000164 0.00000325 0.00000457

2sin50t 0.08452 0.01886 0.01754 0.01457 0.00299 0.000178 0.00000345 0.00000475

3sin50t 0.0854 0.02475 0.01895 0.01345 0.00386 0.000177 0.00000344 0.00000457

1sin30t 0.08457 0.01243 0.01754 0.01112 0.00124 0.000174 0.00000344 0.00000457

2sin30t 0.04575 0.01244 0.0124 0.0454 0.00245 0.000144 0.00000244 0.00000452

3sin30t 0.0245 0.0445 0.01244 0.0114 0.00454 0.000111 0.00000314 0.00000452

STD 3.24E-4 7.12E-4 7.11E-4 3.74E-4 2.59E-5 8.44E-6 1.14E-07 1.74E-08

Link2 1sin60t 0.09141 0.02447 0.01247 0.01245 0.00246 0.000174 0.00000124 0.00000456

2sin60t 0.0864 0.02457 0.01754 0.01234 0.00454 0.000144 0.00000124 0.00000457

3sin60t 0.0854 0.01245 0.01774 0.01554 0.00444 0.000452 0.0000063 0.00000523

1sin30t 0.04566 0.0223 0.014427 0.01745 0.00241 0.000145 0.00000210 0.00000542

2sin30t 0.02154 0.01241 0.01124 0.01241 0.00121 0.000121 0.00000134 0.00000541

3sin30t 0.01245 0.02414 0.01745 0.01124 0.00211 0.000201 0.00000231 0.00000678

STD 7.21E-6 1.04E-3 2.14E-4 1.41E-5 7.40E-5 3.26E-6 6.34E-08 2.01E-07

Both 1sin60t 0.04521 0.02114 0.01544 0.01124 0.00124 0.000158 0.00000203 0.00000785

2sin60t 0.08451 0.02124 0.01745 0.01241 0.00750 0.000174 0.00000548 0.00000548

3sin60t 0.07541 0.0120 0.01124 0.0124 0.00854 0.000201 0.00000108 0.00000304

1sin30t 0.05421 0.01048 0.01541 0.01885 0.00341 0.000111 0.00000345 0.00000644

2sin30t 0.09174 0.01241 0.01754 0.01452 0.00246 0.000174 0.00000311 0.00000654

3sin30t 0.0854 0.02124 0.01447 0.01321 0.00301 0.000145 0.00000311 0.00000641

STD 3.75E-4 9.44E-4 1.32E-4 5.01E-4 4.77E-5 4.05E-6 9.44E-08 7.10E-08

The “best results” are indicated by bold values

Fig. 11 Comparative analysis of responses of robotic end-effector when external disturbance signal
of 2.0sin60t is introduced in both the links
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Fig. 12 Comparative analysis of responses of robotic end-effectorwhen external noise is introduced
in both the links

Table 7 Results for analysis of impact of random feedback noise
Controllers ⇒ PID FPID T1FP-PID IT2FP-PID

Random noise at ⇓ Link1 Link2 Link1 Link2 Link1 Link2 Link1 Link2

Link1 0.1124 0.02654 0.03951 0.01021 0.00395 0.00586 0.0003865 0.0004124

Link2 0.1214 0.04547 0.04754 0.01124 0.003955 0.005784 0.0005112 0.0004125

Both links 0.10241 0.040214 0.04965 0.01021 0.00341 0.002354 0.0004562 0.0004325

controllers with un-optimized MFs. The response of classical PID and FPID, using
uniformMFs, is not up to expectation and hence not suggested for handling complex
systems with uncertainties.

6 Conclusions

Multiple observations are reported in different studies that IT2-FLC, with FOU in
MFs, is manifested as an efficient tool for dealing with nonlinearities, disturbances,
and high level of uncertainties in control system. However, the IT2-FLC based opti-
mization problem is formulated as a complex high-dimensional constrained prob-
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lem. Hence, overall parameter optimization takes more time to get best results. In
this chapter, we proposed an efficient technique to tune the IT2FP-PID controller
and its MFs structure. Constrained handling procedure is also proposed by selection
of proper boundary. The controller is examined for trajectory tracking problem of
2-DOF robotic manipulator when applied with variable payload. In this experimen-
tation, minimization of performance metric integral time absolute error (I T AE) is
used as an objective function.

In interval type-2 fuzzy precompensated controller IT2-FLC is cascaded with
basic PID controller. Additionally, the shapes of antecedent MFs are optimally
designed to get best advantages of FOU. This enhancement compensates for the
effect of unknown nonlinearities and reject the overshoots and undershoots. Recently
introduced hybrid GWO-ABC algorithm is applied and results are evaluated against
performance of T1FP-PID, FPID, and conventional PID controllers.

Comparative results and analysis in illustrations and tables significantly empha-
size the effectiveness of IT2-FLC in the proposed controller. Robustness analysis for
different nonlinear elements like

• Model uncertainties i.e. variations in system parameters,
• Low frequency external disturbances in the control path,
• High frequency random feedback noise.

has been carried out which emphasize the observations and support the positive
effect of the FOU. Overall, the controller is robust and efficient compared to other
counterparts. As a whole, following observations are noted

1. Maximum benefit of FOU can be derived from IT2-FLC with optimized shapes
of MFs. It will enhance the performance to handle disturbances and uncertainty.

2. Theproposed IT2FP-PIDcontroller demonstrates its efficiency to control complex
nonlinear systems with high uncertainties,

3. Added tuning parameters extend extra degree of freedom to the designer to
enhance the performance.

4. Swarm inspired hybrid GWO-ABC algorithm revealed as viable alternative for
the low- and high-dimensional constrained optimization problems.

As a extension to this work, experimental investigations of proposed controller and
its real-time evaluation can be carried out. Design and implementation of hardware
model of IT2FP-PID could be tried, which can provide an interesting opportunity
for further research.
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Design of Type 2 Fuzzy Controller
for OWC Power Plant

Sunil Kumar Mishra, Mano Ranjan Kumar, Bhargav Appasani,
Amitkumar Vidyakant Jha, and Avadh Pati

Abstract The oscillating water column (OWC) wave power plants’ rotor speed
control is suggested in this book chapter. To get the most electrical output power
from ocean waves, a Type 2 Fuzzy Logic Controller (T2FLC) is used to manage
the rotational speed. A maximum power point tracking (MPPT) method is created
that offers the best rotor speed reference to do this. The main goal of T2FLC is to
match the reference speed with the real rotor speed. For input fuzzification, a triangle
membership function of the interval type has been selected, and an inference engine
of the Takagi–Sugeno type has been suggested. T2FLC’s output is considered to be
of the crisp type. Finally, the realistic JONSWAP ocean wave model has been taken
into account while doing the extensive simulations. The suggested T2FLC has been
used to examine important OWC plant metrics such turbine power, output power,
turbine flow coefficient, and rotor speed.

Keywords Ocean energy · Oscillating water column · Rotation speed control ·
Power generated · Type 2 fuzzy logic control

1 Introduction

Ocean energy is a form of renewable energy that may be used in a variety of ways to
produce electricity. When converting wave energy into electrical energy, oscillating
water columns (OWC) are often employed techniques. The control system plays
crucial role in the proper functioning of the OWC plants. Several control approaches
have been applied in the control of OWC plant. There are mainly two categories of
control: (i) airflow control and (ii) rotational speed control.
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The assessment of the state-of-the-art OWC technology, which explored a broad
viewpoint from sea waves to grid connection, was presented in Delmonte et al. [1].
TheWells turbine and doubly fed induction generator (DFIG) used at the OWCwave
power plant was described in Mishra et al. [2] as having improved efficiency due to a
rotational velocity regulatingmechanismdesigned tomaximize turbine output power.
Fuzzy Maximum Power Point Tracking (MPPT)-Backstepping Controller was the
name of the scheme. The article [3] discussed studies on wave energy cost reduction
strategies. The development and testing of dependable and controlled power take-off
(PTO) technology for OWC converters was the main objective. For OWCwave PTO
systems, nonlinear control algorithms were put out inMishra et al. [4].Wells turbine,
DFIG, and irregular wavemodelsmade up the system.A fuzzy logic controller (FLC)
was suggested inMishra et al. [5] for the OWCwave energy facility to stop theWells
turbine from stalling.

In Rajapakse et al. [6], it was suggested that a battery bank may be connected
directly to the dc-linkage of a power conversion scheme, which would smooth the
energy sent to the grid. Model predictive controllers (MPCs) for the rectification
and conversion of the power converter were also developed to keep the rotor velocity
inside its optimal range. InMishra et al. [7], aWells turbinemodelwas producedusing
MATLAB’s Xilinx System Generator (XSG) package. Lekube et al. [8] worked on
a distinct MPPT control approach for the OWC in order to maximize the quantity of
electricity transmitted to the grid. Another study [9] discussed the pattern, modelling,
and regulation of the OWC in order to maximize the NEREIDA power plant’s energy
output. A sliding mode control (SMC) strategy utilizing DFIGs, and Wells turbines
was developed in Barambones et al. [10]. Contributions included: (i) an adaptive
SMC structure that eliminated the need to calculate the system uncertainty bounds
and (ii) a Lyapunov study of stability for the control method.

An optimization based MPPT approach for choosing the proper external rotor
resistances of wound rotor induction generators (WRIG) was developed in Mishra
et al. [11]. The study in Mishra et al. [12] sought to quantitatively assess the power
production of anOWCplaced on the southBrazil coast.Mishra et al. [13] investigated
event-triggered backstepping controllers (ET-BSC) and event-triggered slidingmode
controllers to control the rotating speed (ET-SMC). The study [14] concerned with
the optimization of a wave energy converter’s (WEC) efficiency. The WEC was an
OWC device, and it was powered by a bidirectional flow impulse-turbine connected
to a permanent magnet synchronous generator (PMSG). A lower order model of an
OWC was reported in Suchithra et al. [15]. The strategy involved modelling of the
capture chamber’s hydrodynamic and aerodynamic coupling.

A centralized airflow management technique for a complex ocean energy system
is detailed inMishra et al. [16] in order to reduce the output power variance. The paper
offers a straightforward method in Mishra et al. [17] for creating a PID controller
to manage the OWC system’s turbine velocity. The PID controller’s goal was to
maximize the amount of wave energy extracted from OWC. A unique Fuzzy Gain
Scheduled- SMCwas used inM’Zoughi et al. [18] to simulate anOWC and a rotating
velocity control for stall-free operation. A FLC and airflow reference generator
were constructed as well as verified in a simulation environment in Napole et al.
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[19] to show how an OWC system’s efficiency may be increased by controlling the
turbine speed. The nonlinear model predictive controller developed in Magana et al.
[20] maintains the efficacy of a self-rectifying turbine coupled to an OWC while
maximizing the electro-mechanical power generated. An array of OWC WECs and
nonlinear dynamics were modelled in state-space in Gaebele et al. [21]. To keep a
reference turbine angular speed, the second-order SMC, which produces a smooth
torque signal to a generator, was designed. The control mechanisms for a small
WEC based on a PMSG were the main topic of Noman et al. [22]. It assesses the
effectiveness of two control strategies: robust adaptive control (RAC) and conven-
tional field-oriented control (FOC). In Roh and Kim [23], deep learning methods
were utilized in the study to forecast the turbine generator’s rotational speed in an
OWC-WEC.

In the above-mentioned studies, airflow control as well as rotational speed
control have been implemented. Linear as well as nonlinear control techniques were
proposed. The Type 1 FLC was studied in Mishra et al. [5], M’Zoughi [18], and
Napole et al. [19]. To the best of authors’ knowledge, Type 2 FLC (T2FLC) is yet
to be explored. Therefore, this research designs a T2FLC for OWC ocean energy
plants for extracting the maximum energy. The controller works as a feedforward
rotational speed controller wherein rotor speed tracks the reference speed. The refer-
ence rotor speed is generated using an MPPT algorithm that takes air velocity as
input and provides reference speed as output. Finally, the realistic Joint North Sea
Wave Project (JONSWAP) ocean wave model has been taken into account for the
thorough simulations. The suggested T2FLC has been used to examine important
OWC plant metrics such turbine power, generated power, turbine flow coefficient,
and rotor speed. The rest of the chapter is organized as follows: Sect. 2 discusses
the modeling overview of OWC plant; Sect. 3 describes the MPPT algorithm and
design of the T2FLC; Simulation results are presented in Sect. 4 whereas conclusion
is given in Sect. 5.

2 Modeling of OWC Plant

As seen in Fig. 1 [17], the OWC system is often built on the ocean’s edge. The
OWC is surrounded by four walls. Where the waves of the ocean crash into it, it is
uncovered. The head of the column is filled with air, and the OWC tank is partially
filled. A DFIG attached to theWells turbine drives it, which is housed in a cylindrical
container at the top of the chamber. The chamber’s air is squeezed and released as a
result of changes in seawater levels. As a result, the bidirectional airflow is brought
on by the water’s oscillation. The Wells turbine is designed in such a way that its
spinning is always one way, despite the airflow’s alternate course. Then, descriptions
of the mathematical equations for the OWC tank, DFIG, Wells turbine, and ocean
waves follow.
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Fig. 1 Schematic representation of OWC plant

2.1 Wave Model and Chamber Dynamics

The JONSWAPmodel of the seawaves, one of the simulations often used in research,
was employed to assess the efficacy of the suggested control systems [17]. Figure 2
depicts the JONSWAP wave band, which has a peak frequency of about 0.5 rad/s.
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Fig. 2 JONSWAP wave spectrum
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The OWC contains a sealed chamber with top and bottom apertures, as well as
four side walls (Fig. 1). The container’s bottom, which is half buried in water, gets
struck by the waves. A two-way air flow is caused by the rising and decrease of the
sea level. The wave height is the measurement of this difference in sea depth. The
mathematical expression for air velocity is given by Mishra et al. [17]:

Vx =
(
AOWC

Aduct

)
.
∂h(t)

∂t
(1)

The representation for air velocity as presented in (1), provides the input to Wells
turbine.

2.2 Wells Turbine Dynamics

Self-rectifying turbines include the Wells turbine [17]. Air flow supply is bidirec-
tional, yet it still goes in the same way. Its stalling behavior is a drawback, though.
The torque of the turbine is presented as Napole et al. [19]:

Tt = ft (φ).V 2
x (2)

where, f t (φ), a function of turbine flow coefficient, φ, can be stated as:

ft (φ) = Ct .kt .r.(1 + φ−1) (3)

Ct characterizes the Wells turbine characteristics. The Ct varies with φ as shown in
Fig. 3. The turbine flow coefficient, φ, is provided by:
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Fig. 3 Turbine characteristics
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φ = Vx .(rωr )
−1 (4)

As demonstrated in Fig. 3, φ ≤ φth = 0.3 offers highest torque coefficient, which
would therefore deliver the most turbine torque and hence the greatest production
power.

TheWells turbine is attached to a DFIG. So, the turbo-generator equation is given
by:

dωr

dt
= 1

J
(Tt − F · ωr − Te) (5)

where, ωr is rotor speed; F is frictional coefficient; Te is the electro-magnetic torque
of DFIG.

2.3 DFIG Dynamics

A dynamic direct-quadrature (dq) DFIG version was taken into account in this inves-
tigation. The benefit of the dq model is that all three phases may be represented as
dc quantities inside a stationary framework using a synchronous rotating frame [16].
The state equations of DFIG are given as:

dψds

dt
= − RsLr

K
ψds + ωeψqs + RsLm

K
ψdr + vds (6)

dψqs

dt
= −ωeψds − RsLr

K
ψqs − RsLm

K
ψqr + vqs (7)

dψdr

dt
= Rr Lm

K
ψds − Rr Ls

K
ψdr − (ωr − ωe)ψqr + vdr (8)

dψqr

dt
= Rr Lm

K
ψqs + (ωr − ωe)ψdr + vqr (9)

where, K = Ls Lr − L2
m . ψds , ψqs , ψdr & ψqr are dq flux quantities. Rs & Rr are

DFIG resistances whereas Ls , Lr & Lm are DFIG inductances.ωe is the stator supply
frequency, vds , vqs , vdr & vqr areDFIG voltages. The flux statesψds,ψqs,ψdr andψqr

have initial conditions ψds0, ψqs0, ψdr0 and ψqr0 respectively. The electromagnetic
torque and output power expressions are:

Te = −M
(
ψqsψdr − ψdsψqr

)
(10)

Pg = Teωr (11)

where, M = −(
3
2

)( p
2

)( Lm
K

)
. p is number of pole of DFIG.
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3 Design of MPPT and T2FLC Algorithm

The Fig. 4 presents the complete schematic diagram of OWC plant including back-
to-back converters at rotor side and its control scheme. To feed nearly about 30% of
the power generated from the grid to the rotor of the DFIG, there are two AC/DC
converters known as the grid side converter (GSC) and rotor side converter (RSC).
This flow of power is controlled by rotational speed controller that is consists of
MPPT and T2FLC. Next, the MPPT algorithm and T2FLC design details have been
presented.

3.1 Design of MPPT Algorithm

The next algorithm is the best reference speed calculation algorithm [16]. The
following processes are taken to compute it using information about air velocity:

Step 1: Calculate the value of Vx using (1).
Step 2: Calculate peak values of Vx as following:

if Vx �= 0 and V̇x = 0
Vxp = Vx

else
Vxp = 0

end

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(12)

Step 3: Pass Vxp through zero-order-hold (ZOH) as:

V xp = ZOH(Vxp) (13)
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Fig. 4 MPPT and T2FLC scheme for OWC plant
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Step 4: For threshold value of flow coefficient, φth = 0.3, compute the reference
speed using Eq. (4) as:

ωre f = V xp(rφth)
−1 (14)

Step 5: Calculate ω1d by limiting the minimum and maximum values of ωre f as:

if ωre f ≤ ωe

ω1d = ωe

elseif ωre f ≥ ωe

ω1d = ωrp

else
ω1d = ωre f

end

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15)

where, ωe is the minimum value of ω1d and ωrp is the maximum value of ω1d .
Step 6: To prevent any abrupt changes in reference value, pass ω1d through a low

pass filter. The new reference value is calculated as:

z1d = h f ⊗ ω1d (16)

The frequency domain representation of h f is given as:

Hf (s) = 1

1 + 0.1s
(17)

As a result, the z1d is the optimum reference speed to be utilized for the proposed
controllers. The next stage would be to create a backstepping type rotor speed regu-
lator that would force the real rotor speed to follow the optimum reference speed
z1d .

3.2 Design of T2FLC Algorithm

Fuzzy sets are used in fuzzy logic, and there are two types of type 2 fuzzy logic
that may be distinguished: generalized type-2 fuzzy logic and interval type-2 fuzzy
logic. The computational complexity associated with generalized type-2 fuzzy logic
is greatly reduced by interval type-2 fuzzy logic, which employs at least one interval
type-2 fuzzy set. In engineering practice, interval type-2 fuzzy logic was there-
fore widely used. In order to implement T2FLC, this research suggests a zero-order
interval type-2 fuzzy logic [24].

Figure 5 shows the graphical user interface of interval type 2membership function.
Here, input represents the rotor reference speed that is generated from the MPPT
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Fig. 5 T2FLC input membership function

block. The range of rotor speed is taken as [158 214] rad/s. The 9-membership
function have been taken which are of triangular type with lower and upper bound.
The 9 crisp type functions have been considered for output of T2FLC. Next, the
inference engine rules are shown in Fig. 6 for the proposed system.

4 Results and Discussion

This section describes the mathematical simulations of T2FLC of OWC plant. The
parameters for OWC plant simulation have taken from Mishra et al. [16]. First, the
working of MPPT algorithm is discussed. Then, the comparison of T2FLC with
uncontrolled plant is carried out. The JONSWAP irregular wave model has been
considered that gives realistic sea scenario as shown in Fig. 7.Next, Fig. 8 displays the
air velocity produced within the OWC chamber. The air velocity has unidirectional
flow due to the self-rectifying nature of the Wells Turbine.
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Fig. 6 T2FLC Takagi–Sugeno rule editor

Fig. 7 JONSWAP irregular
wave
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4.1 Performance of MPPT Algorithm

The MPPT algorithm is provided in previous section. First step is to generate air
velocity waveform using JONSWAP irregular wave. Then, second step is to detect
peak values of the air velocity followed by passing through the zero-order-hold
(ZOH) in third step. This completes detection of peak values as shown in Fig. 9.
The steps 4, 5 and 6 are used to evaluate the reference rotor speed which is further
supplied to T2FLC block. The reference rotor speed is shown in Fig. 10.
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Fig. 8 Air velocity inside
OWC chamber
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Fig. 9 Air velocity peak
values with ZOH
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Fig. 10 Reference rotor
speed generated using MPPT
algorithm

0 10 20 30 40 50
0

50

100

150

200

Time (s)

R
ef

er
en

ce
 R

ot
or

 S
pe

ed
 (r

ad
/s

)



108 S. K. Mishra et al.

4.2 Performance of T2FLC

The performance of the T2FLC has now been examined and contrasted with that of
the unregulated plant. Figure 11 shows the turbine flow coefficient for uncontrolled
plant. Onmany instances, the value flow coefficient crosses the 0.3 limit which causes
turbine stalling. As illustrated in Fig. 12, the T2FLC controlled OWC plant turbine
flow coefficient remains within in the allowed limit, i.e. below 0.3 that prevents
turbine stopping.

Further, in Fig. 13, the uncontrolled plant’s rotor speed, which is caused by turbine
stalling, hangs between 157 and 158 rad/s. The real rotor speed in the T2FLC-
controlled OWC plant, as seen in Fig. 14, closely tracks the reference rotor speed
to prevent turbine stalling and optimize output power. Figure 15 shows the control
signal produced by the T2FLC.

The turbine torque for uncontrolled OWC plant is shown in Fig. 16. The peak
turbine torque remains around 300 N-m for uncontrolled OWC plant whereas for
T2FLC controlled OWC plant as shown in Fig. 17, it reaches upto 400 N-m.

Fig. 11 Turbine flow
coefficient for uncontrolled
OWC plant
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Fig. 12 Turbine flow
coefficient for T2FLC
controlled OWC plant
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Fig. 13 Rotor speed for
uncontrolled OWC plant
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Fig. 14 Rotor speed for
T2FLC controlled OWC
plant
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Fig. 15 Control signal for
T2FLC controlled OWC
plant
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Finally, the output power waveforms generated for uncontrolled and T2FLC
controlled OWC plant are shown in Figs. 18 and 19, respectively. The peak power
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Fig. 16 Turbine torque for
uncontrolled OWC plant
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Fig. 17 Turbine torque for
T2FLC controlled OWC
plant
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for uncontrolled OWC plant is around 50 kW whereas for T2FLC controlled OWC
plant, it is around 75 kW. This clearly shows the improvement of using proposed
control strategy.

Fig. 18 Output power for
uncontrolled OWC plant
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Fig. 19 Output power for
T2FLC controlled OWC
plant
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5 Conclusions

This book chapter suggested utilising T2FLC to manage the rotating speed of ocean
energy plants using oscillating water columns. The T2FLC and MPPT algorithms
provide the ocean waves’ maximum electrical output power. The best rotor speed
reference was thought to be produced using the MPPT algorithm. The reference
speed was followed by the actual rotor speed thanks to the T2FLC. As a result,
the turbine flow coefficient stays within the allowable range of 0.3, preventing the
turbine from stalling. As a consequence, compared to an unmanaged OWC plant,
the output power is maximized. Triangular membership functions of the interval
type were used to achieve the T2FLC input fuzzification. For running simulations
that closely resembled true sea scenarios, the JONSWAP irregular wave model was
taken into consideration.
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Intuitionistic Type-II Fuzzy Logic-Based
Inference System and Its Realistic
Applications to the Medical Field

Mukesh Kumar Sharma and Nitesh Dhiman

Abstract In this chapter, wemerge type-II fuzzy logic, and intuitionistic fuzzy logic
in a broaderway, to develop an intuitionistic type-II fuzzy logic. In intuitionistic type-
II fuzzy logic,we deal the uncertainty, concerningwith the truth values aswell as false
values. Intuitionistic type-II fuzzy logic is a stimulus of traditional intuitionistic type-I
fuzzy logic in such a way that ambiguity is presented into linguistic variables that can
be handled by using the truth grades and false gradeswith some hesitationmargin. On
the other hand, the proposed intuitionistic type-II fuzzy logic-based inference system
accommodate intuitionistic fuzzy IF–THEN rules, which holds intuitionistic type-II
fuzzy sets (IFTy(II)). We also discussed the applications of proposed system in the
various fields including; engineering, medical and agriculture etc. We applied over
methodology over a data of lung cancer patients, which consists sixteen medical
entities of infected patients. We also gave an example to illustrate our proposed
technique.

Keywords Intuitionistic type-II fuzzy set ((IFTy(II)) · Intuitionistic type-II fuzzy
inference system · Lung cancer · MATLAB

1 Introduction

The fuzzy logic was given by Zadeh [1] in 1965, as a universality of the traditional
notion of a bi-valued set and a premise to shelter the degree of truthfulness, as
demonstrated in human wording [2, 3]. Despite the extensive utilize of type-1 fuzzy
set, earlier works have settled that type-I fuzzy logic models ambiguity to a fixed
degree in real-life utilizations [4]. Zadeh [5] gave a generalization of his previously
given type-I fuzzy set (Ty(I)) theory, to incorporate type-II fuzzy set (Ty(II)) theory
accomplish of handling uncertainties where Ty(I) grapples due to membership func-
tions of Ty(II) are ourselves fuzzy sets. In the Ty(I) based system the knowledge
used to build certain rules, with uncertain antecedents and consequents, and these
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uncertainty present in this system translate into membership functions. Some other
theories exist in which the uncertainty of the antecedent and consequent parts is in
Ty(II) form. Ty(II) is more applicable in such situations in which, it is quite hard to
find accurate membership values for a given fuzzy set. Later, Atanassov [6] gave the
theory of intuitionistic fuzzy logic, to enhance Zadeh’s fuzzy set theory, in which
the uncertainty can be handle by taking the degrees of truthiness and falseness, with
some hesitancy margin. Atanassov and Gargov [7] generalized the concept of intu-
itionistic fuzzy logic over interval valued intuitionistic fuzzy logic. Mendel et al.
[8], used Ty(II) based system whose degrees of truthiness are present in the form of
intervals gives better performance in real-life applications in compare with the Ty(I)
based system. In the study of fuzzy set theory, Ty(II) based logic is anextension of
traditional fuzzy set-based logic i.e., Ty(I) based logic. In Ty(II) based logic, the
uncertainty is not restricted over linguistic values, but also existing in the form of
the truthinessvalues. On the contrary, intuitionistic fuzzy sets can also be examined
as generalization of Ty(I). To represent the uncertainty of belonging of element of
a universal set, the intuitionistic fuzzy setsnot restricted over truthiness values, but
also a falseness value.

Nguyen et al. [9] introduced interval Ty(II) in the context of intuitionistic fuzzy
sets during the process cmeans clustering s being used. Soto et al. [10] gave a novel
approach for time series prediction with the help of ensembles of artificial neuro
fuzzy inference system-basedmodels using interval Ty(I) and Ty(I) integrators. Lin
et al. [11] introduced a TSK-type-based self-evolving compensatory in the context
of interval type-2 fuzzy neural network. Tung et al. [12] also conducted a study on
e-type-II fuzzy inference system: an evolving by using type-II neural fuzzy inference
system. Abiyev and Kaynak [13] introduced the concept to identify and control of
time-varying plants based on type-II fuzzy neural structure. Lin et al. [14] simplified
interval type-II fuzzy neural networks. A hierarchical type-II fuzzy logic control
[15] have also been discussed for autonomous mobile robot. John and Czarnecki
[16] introduced the concept of type-II adaptive fuzzy inferencing system and aspects
related to given methodology. Khanesar et al. [17] gave a noise reduction property
of Ty(II) based logic systems with the help of some new type-II membership func-
tions. Juang andTsao [18] gave a self-evolving algorithmwith parameter learning and
online structure, based on interval type-II fuzzy neural network. Amethod of defuzzi-
fication for type-II fuzzy numbers [19] and its applications have also been discussed.
Castillo et al. [20] gave a differential evolution algorithm with type-II fuzzy logic-
based system. Naderipour et al. [21] introduced a type-II fuzzy community detection
model in large-scale social networks.

Wediscuss the generalized concepts of fuzzy set theory, Ty(II)based logic systems
and intuitionistic type-II fuzzy set (IFTy(II)) based logic.Wewill give a novel way to
represent the IFTy(II). Ty(II) based logic consists IF–Then rules, and the uncertainty
is handled by Ty(II).Wewill also introduce IFTy(II) based inference system. Finally,
we will describe briefly the utilizations and problem of intuitionistic fuzzymodelling
Ty(II) based logic.

The proposed work is divided into nine sections, in the second section we gave
concept of some basic definitions. In the third section, we gave the various step of the
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proposed algorithmbased on IFTy(II)based logic. In the fourth section,mathematical
formulation is given, a block diagram of the proposed model is also given in this
section. In the fifth section, we gave the architecture of the IFTy(II) based logic
inference system. In the sixth section, we described the process of data collection,
and we also characterized the including factors into three/four linguistic form. In
the seventh section, intuitionistic fuzzy rule for the proposed inference system. In
the eighth section, we contain numerical computation section. In the last and ninth
section, we gave the conclusion of our proposed work.

2 Basic Preliminaries

2.1 Type-II Fuzzy Set (Ty(II))

A Ty(II) is a fuzzy set, whose truthiness value contains uncertainty, i.e., the
membership value is a fuzzy set. A Ty(II) is defined as:

Ty(II) = {((x, �)μTy(II)(x, �)): x ∈ X & � ∈ Ix ⊆ [0, 1]}

where, Ix: Primary membership value and μTy(II)(x, �) is the secondary membership
value, also 0 ≤ μTy(II)(x, �) ≤ 1. Geometrical representation of Ty(II) is given in
Fig. 1.

Example 1 LetX= {2, 4, 5} be an age setwith the primarymembership of the points
of X respectively, I2 = {0.7, 0.6, 1.0}, I4 = {0.5, 0.7, 0.8}, and I5 = {0.5, 0.5, 0.6}.
The secondary membership function of the point 2 is:

μTy(II)(2, �) = (0.1/0.7) + (0.7/0.6) + (0.6/1.0)

i.e., μTy(II)(2, 0.7) = 0.1 is the secondary membership grade of 2 with the primary
membership grade 0.2.

Fig. 1 Geometrical
representation of Type-II
Fuzzy set

Primal Variable x

Primal Membership 

FOU

Third Dimension 
0
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Similarly,

μTy(II)(4, �) = (0.7/0.5) + (0.7/0.7) + (0.6/0.8)

μTy(II)(5, �) = (0.8/0.5) + (0.6/0.5) + (0.6/0.6)

Ty(II) can be expressed as:

Ty(II) = (0.1/0.7) + (0.7/0.6) + (0.6/1.0)/2 + (0.7/0.5) + (0.7/0.7)

+ (0.6/0.8)/4 + (0.8/0.5) + (0.6/0.5) + (0.6/0.6)/5.

2.2 Intuitionistic Type-II Fuzzy Set (IFTy(II))

A IFTy(II) is a set, whose membership and non-membership grades contains uncer-
tainty, i.e., the membership function and non-membership grades are intuitionistic
fuzzy sets. A IFTy(II) is defined as:

IFTy(II) = {((x, �, σ),μIFTy(II)(x, �), νIFTy(II)(x, σ)): x ∈ X & � ∈ Ix,

σ ∈ Jy ⊆ [0, 1]}

where, Jx , is called the primary membership function, Jy is called the primal
non-membership and μTy(II)(x, �) is the secondary membership function and
νIFTy(II)(x, σ), is called the secondary non-membership function also 0 ≤
μIFTy(II)(x, �) + νIFTy(II)(x, σ) ≤ 1.

Example 2 Let X = {2, 4, 5} be an age set with the primary membership of
the points of X respectively , I2 = {0.7, 0.6, 1.0}, I4 = {0.5, 0.7, 0.8}, and
I5 = {0.5, 0.5, 0.6} & J2 = {0.3, 0.2, 0}, J4 = {0.5, 0.2, 0.1}, and J5 = {0.5, 0.5, 0.2}.
The secondary membership function of the point 2 is:

μIFTy(II)(2, �) = (0.1/0.7) + (0.7/0.6) + (0.6/1.0);

νIFTy(II)(2, �) = (0.7/0.3) + (0.2/0.2) + (0.4/0)

Similarly,

μIFTy(II)(4, �) = (0.7/0.5) + (0.7/0.7) + (0.6/0.8);

νIFTy(II)(4, �) = (0.2/0.5) + (0.2/0.2) + (0.3/0.1)
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μIFTy(II)(5, �) = (0.8/0.5) + (0.6/0.5) + (0.6/0.6);

νIFTy(II)(5, �) = (0.1/0.5) + (0.2/0.5) + (0.2/0.2)

IFTy(II) can be expressed as:

IFTy(II) =
{
[
(
0.1

0.7

)
+

(
0.7

0.6

)
+

(
0.6

0.1

)
]/2, [

(
0.7

0.3

)
+

(
0.2

0.2

)
+

(
0.4

0

)
]/2

}

+
{
[
(
0.7

0.5

)
+

(
0.7

0.7

)
+

(
0.6

0.8

)
]/4, [

(
0.2

0.5

)
+

(
0.2

0.2

)
+

(
0.3

1

)
]/4

}

+
{
[
(
0.8

0.5

)
+

(
0.6

0.5

)
+

(
0.6

0.6

)
]/5, [

(
0.1

0.5

)
+

(
0.2

0.5

)
+

(
0.2

0.2

)
]/5

}
.

3 Proposed Algorithm for the Intuitionistic Type-II Fuzzy
Logic Based Model

Step 1: Consider the set of input factors involve in the problem defined as:

I = {I1, I2, .........In}

Step 2: Applying fuzzification process to make triangular intuitionistic fuzzy
number for each input factors given below:

I F = {(τ, μ(τ), ν(τ )) : τ ∈ I ;μ, ν : I → [0, 1]}

Step 3: Generate secondary membership and non-membership values denoted
by μIFTy(II)(τ, �) and νIFTy(II)(τ, σ) by giving a membership and non-membership
grade to each input variable with set of primal membership value and primal non-
membership value.

Step 4: After the step 3, we have the generalized IFTy(II), IFTy(II), is three-
dimensional space defined as:

IFTy(II) = {((τ, �, σ),μIFTy(II)(τ, �), νIFTy(II)(τ, σ)): x ∈ I&� ∈ Ix,

σ ∈ Jy ⊆ [0, 1]}

Also, consider the output factors ‘IFTy
Out (II)’ (categories into m linguistic

categories) in IFTy(II) form, which denotes the final crisp output of the system.
Step 5: Now, for the inference system process, we need to use some rules based on

knowledge-based system. For this process, consider the conditional and unqualified
intuitionistic fuzzy proposition for obtained IFTy(II) input factors in the form;
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′ ′

′ ′

′ ′

′ ′

I
THEN

Step 6: The consequent part obtained from the intuitionistic fuzzy rule-based
system, is present in IFTy(II) form. The reduces the IFTy(II) to convert it in the form
of IFTy(I) by fuzzifying the area obtained in the third direction of the IFTy(II).

Step 7: Now, we obtained the output in the form of IFTy(I) using defuzzification
process, we finally get the crips output of the proposed system.

4 Mathematical Formulation of the Problem

Consider a set of input variable ‘τ ’ over a Universe of discourse X, formulate trian-
gularmembership function aswell as for the input variableswith the help of triangular
IFTy(II) whose membership and non-membership grades are given as:

μtr i (τ ) =

⎧⎪⎨
⎪⎩

τ−x
y−x x ≤ τ ≤ y
z−τ
z−y y ≤ τ ≤ z

0 else

vtr i (τ ) =

⎧⎪⎨
⎪⎩

τ−x
y−x x ≤ τ ≤ y
z−τ
z−y y ≤ τ ≤ z

0 else

with x < x < y < z < z. Symbolically, to move from a IFTy(I) to an IFTy(II), a
symbol is considered for the IFTy(II) put over the symbol for the intuitionistic fuzzy
set; so, A denotes a IFTy(I), whereas IFTy(II) denotes the comparable IFTy(II).
Zadeh [5] enhanced all of this to type-n fuzzy sets. The present work focuses only on
IFTy(II) in order to develop a IFTy(II) based inference system. By giving a member-
ship and non-membership grade to each input variable x with set of primal member-
ship value (� ∈ Ix) and primal non-membership value (σ ∈ Jy) to generate secondary
membership and non-membership values denoted by μIFTy(II)(x, �)&νIFTy(II)(x, σ).
The membership and non-membership grades of a generalized IFTy(II), IFTy(II), is
three-dimensional (considering secondary membership and non-membership values
on the same ordinate), where the additional (third) dimension is the value of the
secondarymembership function and non-membership function at everyelement on its
bi-dimensional domain known as its “footprint of uncertainty (FOU)”. Now, develop
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Input Variable

Intuitionistic type-II
fuzzy inference

Fuzzification

Rule/Knowledge based

Input Processor

( )

input sets

Defuzzification

Type Reducer

Final
Output

( )

output
t

Output Processor

Fig. 2 Proposed intuitionistic type-II fuzzy inference system (block wise)

an IFTy(II) based inference system which consists two major components namely:
(a) Input processor and (b) output processor, the input processor further consists
following sub-components:

• The input variable
• Fuzzification and
• IFTy(II) based inference (based on IFTy(II) rules).

In the similar way the output processor further consists two sub-components as
follows:

• IFTy(II) to IFTy(I) reducer and
• De-fuzzifier.

The geometrical representation of block diagram of the proposed system is given
in Fig. 2.

5 Proposed Fuzzy Inference System

The architecture of the proposed IFTy(II) based inference system is given by Fig. 3.
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Crisp Output
DefuzzificationFOU

First Input Second Input

Fig. 3 Proposed intuitionistic type-ii fuzzy inference system

6 Data Collection Process

The secondary data of lung cancer infected patient is collected [22], out of 1000 lung
cancer infected patient, we have taken 20 patients data set, to apply our approach to
the conducted data set. The patients with the values of their various symptoms are
given in Table 1.

Further, we have categorized the input and output factors in three and four
linguistic categories. The categories are given in Table 2.

7 Intuitionistic Fuzzy Rules for the Proposed Intuitionistic
Type-II Fuzzy Inference System

For the proposed intuitionistic type-II fuzzy system the conducted intuitionistic fuzzy
rules, with sixteen input factors and one output factor is given by Table 3.

8 Numerical Computation

Consider the patient one with patient ID P1, with age 33, air pollution 2, alcohol use
4, dust allergy 5, genetic risk 3, balance diet 2, obesity 4, smoking level 3, chest pain
2, coughing of blood 4, fatigue 3, weight loss 4, shortness of breath 2, swallowing
difficulty 2, dry cough 3, and coughing up.
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Table 2 Linguistic categorization of including factors

Age For Membership value
Young (Y):- [0–30]
Medium (M):- [25–60]
Old (O):- [>=55]
For Non-membership
value
Young (Y):- [0–32]
Medium (M):- [24–62]
Old (O):- [>=52]

Chest Pain (CP) For Membership value
Lesser (Lr):- [0–3]
Middle (Ml):- [2.5–6]
Higher (Hr):- [5.5–10]
For Non-membership
value
Lesser (Lr):- [0–3.2]
Middle (Ml):- [2.2–6.2]
Higher (Hr):- [5.2–10]

Air Pollution (AP) For Membership value
Lesser (Lr):- [0–3]
Middle (Ml):- [2.5–6]
Higher (Hr):- [5.5–10]
For Non-membership
value
Lesser (Lr):- [0–3.2]
Middle (Ml):- [2.2–6.2]
Higher (Hr):- [5.2–10]

Coughing of Blood
(CB)

For Membership value
Lesser (Lr):- [0–3]
Middle (Ml):- [2.5–6]
Higher (Hr):- [5.5–10]
For Non-membership
value
Lesser (Lr):- [0–3.2]
Middle(Ml):- [2.2–6.2]
Higher (Hr):- [5.2–10]

Alcohol Use (AU) For Membership value
Lesser (Lr):- [0–3]
Middle (Ml):- [2.5–6]
Higher (Hr):- [5.5–10]
For Non-membership
value
Lesser (Lr):- [0–3.2]
Middle (Ml):- [2.2–6.2]
Higher (Hr):- [5.2–10]

Fatigue (FT) For Membership value
Lesser (Lr):- [0–3]
Middle (Ml):- [2.5–6]
Higher (Hr):- [5.5–10]
For Non-membership
value
Lesser (Lr):- [0–3.2]
Middle (Ml):- [2.2–6.2]
Higher (Hr):- [5.2–10]

Dust Allergy (DA) For Membership value
Lesser (Lr):- [0–3];
Middle(Ml):- [2.5–6]
Higher(Hr):- [5.5–10]
For Non-membership
value
Lesser (Lr):- [0–3.2]
Middle (Ml):- [2.2–6.2]
Higher (Hr):- [5.2–10]

Weight Loss (WL) For Membership value
Lesser (Lr):- [0–3]
Middle (Ml):- [2.5–6]
Higher (Hr):- [5.5–10]
For Non-membership
value
Lesser (Lr):- [0–3.2]
Middle (Ml):- [2.2–6.2]
Higher (Hr):- [5.2–10]

Genetic Risk (GR) For Membership value
Lesser (Lr):- [0–3]
Middle (Ml):- [2.5–6]
Higher (Hr):- [5.5–10]
For Non-membership
value
Lesser (Lr):- [0–3.2]
Middle (Ml):- [2.2–6.2]
Higher (Hr):- [5.2–10]

Shortness of Breath
(SB)

For Membership value
Lesser (Lr):- [0–3]
Middle (Ml):- [2.5–6]
Higher (Hr):- [5.5–10]
For Non-membership
value
Lesser (Lr):- [0–3.2]
Middle (Ml):- [2.2–6.2]
Higher (Hr):- [5.2–10]

(continued)
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Table 2 (continued)

Balance Diet (BD) For Membership value
Bad (Y):- [0–3]
Average (M):- [2.5–6]
Good (O):- [5.5–10]
For Non-membership
value
Bad (Y):- [0–3.2]
Average (M):- [2.2–6.2]
Good (O):- [5.2–10]

Swallowing Difficulty
(SD)

For Membership value
Lesser (Lr):- [0–3]
Middle (Ml):- [2.5–6]
Higher (Hr):- [5.5–10]
For Non-membership
value
Lesser (Lr):- [0–3.2]
Middle (Ml):- [2.2–6.2]
Higher (Hr):- [5.2–10]

Obesity (OB) For Membership value
Lesser (Lr):- [0–3]
Middle (Ml):- [2.5–6]
Higher (Hr):- [5.5–10]
For Non-membership
value
Lesser (Lr):- [0–3.2]
Middle (Ml):- [2.2–6.2]
Higher (Hr):- [5.2–10]

Dry Cough (DC) For Membership value
Lesser (Lr):- [0–3]
Middle (Ml):- [2.5–6]
Higher (Hr):- [5.5–10]
For Non-membership
value
Lesser (Lr):- [0–3.2]
Middle (Ml):- [2.2–6.2]
Higher (Hr):- [5.2–10]

Smoking (SM) For Membership value
Lesser (Lr):- [0–3]
Middle (Ml):- [2.5–6]
Higher (Hr):- [5.5–10]
For Non-membership
value
Lesser (Lr):- [0–3.2]
Middle (Ml):- [2.2–6.2]
Higher (Hr):- [5.2–10]

Chronic Lung disease
(CL)

For Membership value
Lesser (Lr):- [0–3]
Middle (Ml):- [2.5–6]
Higher (Hr):- [5.5–10]
For Non-membership
value
Lesser (Lr):- [0–3.2]
Middle (Ml):- [2.2–6.2]
Higher (Hr):- [5.2–10]

Output For Membership value For Non-membership
value
None (N):- [0–2.5]; None:- [0–2.7]
Stage I:- [2.2–4.5]; Stage I:- [2.1–4.7]
Stage II:- [4.2–6]; Stage II:- [4.1–6.2]
Stage III:- >6; Stage III:- >6.2

Table 3 Intuitionistic fuzzy rules for the proposed inference system

Fuzzy rules Age AP AU DA GR BD OB SM CP

1 Y Lr Lr Lr Lr G Lr N Lr

2 Y Lr Lr Lr Lr B Ml Lr Lr

3 Ml Lr Lr Ml Ml A M Lr Lr

4 Ml Lr Lr Hr G A N Hr Lr

5 Ml Ml Lr M B A Lr Lr H

6 O H M Hr M A Hr Lr Lr

7 Y Hr M Hr Ml A Ml Lr Lr

8 O Lr Lr Lr Lr A Lr N Lr

(continued)
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Table 3 (continued)

Fuzzy rules Age AP AU DA GR BD OB SM CP

9 Ml Lr Lr Lr Lr B Lr Lr Lr

10 O Lr Hr Hr Hr G Ml Lr Hr

11 Y Ml Hr Hr Hr B N Hr Hr

12 Ml Lr Lr Ml B A Ml Ml Hr

13 O Ml Ml Hr Lr A Ml Lr Lr

14 Y Lr Hr Hr Hr B Hr Hr Hr

15 Y Ml Hr Ml Ml A Ml Lr Ml

16 Y Ml Lr Hr Ml A N Ml Ml

17 M Lr Hr Hr B A Hr Hr Hr

18 Ml Ml Ml Ml Lr A Ml Ml Ml

19 Y Lr Ml Lr Lr G Lr N Lr

20 O Lr Lr Lr Hr A Ml Lr Lr

Fuzzy rules Age CB FT WL SB SD DC CL Output

1 Y Lr N N N N N Lr N

2 Y M Lr Lr Lr Lr Lr Lr Stage I

3 Ml Lr Lr Lr Ml Ml Ml Ml Stage I

4 Ml N N Lr N N Lr Hr Stage II

5 Ml Lr M Lr Lr M Lr Ml Stage II

6 O Hr Hr Ml Ml Hr Hr Hr Stage III

7 Y Ml Hr Ml Hr Lr Lr Hr Stage II

8 O Lr N N N N N Lr N

9 Ml Ml Ml Ml Lr Ml Lr Lr Stage I

10 O Hr Hr Hr Hr Hr Hr Hr Stage III

11 Y N N Hr N Hr Hr Hr Stage III

12 Ml Ml Ml Ml Ml Ml Hr Ml Stage I

13 O Ml Hr Lr Ml Mr Hr Hr Stage I

14 Y Hr Hr Hr Hr Hr Hr Hr Stage III

15 Y Ml Ml Hr Hr Lr Ml Ml Stage II

16 Y Ml Ml Ml N Ml Ml Hr Stage I

17 M Hr Ml Ml Ml Hr Hr Hr Stage III

18 Ml Ml Ml Ml Ml Ml Ml Ml Stage I

19 Y M; N M; Lr Lr N Lr N

20 O Lr Hr Lr Hr Lr Lr Lr N
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3

0.6667
(0.2500)

0.2857
(0.6000)

4

0.5714
(0.4000)

0.8571
(0.1000)

33

0.6667
(0.250

0)

0.4571 
(0.5263)

2

0.8571
(0.100)

0.6667
(0.2500)

4

0.2857
(0.6000)

0.8571
(0.1000)
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2

0.6667
(0.250

0.6667
(0.250

3

0.8571
(0.1000)

0.2857
(0.6000)

Aggregated Output

Defuzzification

0.2857 0.3571

0.054 0.6

2

0.2857
(0.6000)

0.6667
(0.2500)

Let I = {33, 2, 4, 5, 3, 2, 4, 3, 2, 4, 3, 4, 2, 2, 2, 3} be set of inputs with member-
ship values {0.4571, 0.6667, 0.8571, 0.5714, 0.2857, 0.6667, 0.8571, 0.2857, 0.6667,
0.8571, 0.2857, 0.8471, 0.6667, 0.6667, 0.666, 0.2857} and non-membership values
{0.5263, 0.2500, 0.1000, 0.4, 0.6, 0.2500, 0.1000, 0.6000 0.2500, 0.100, 0.2500,
0.2500, 0.2500, 0.600} with respect to these input the output of the inference system
is {0.4571/0.5263, 0.5714/0.4000, 0.2857/0.6000, 0.2857/0.6000, 0.6667/0.2500,
0.2857/0.6000, 0.2857/0.6000, 0.6667/0.2500}. Take minimum set of value, we
get {0.2857, 0.6000}. Corresponds to this output the set of membership and non-
membership values assign for the third dimension is {0.3571/0.054} and corre-
sponding value of FOU is given in the form of triangular membership function
[0.2857, 0.3214, 0.3571] and triangular non-membership function [0.054, 0.327, 0.6]
after the defuzzification process [23, 24], we reduce the intuitionistic type-II fuzzy set
in the form of intuitionistic type-I fuzzy set with membership and non-membership
values of the output 0.3214 and 0.327. Now, taking the average of membership and
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non-membership values, we get the final output of the system i.e., 0.3242. The value
is slightly large to the range of none category of the output factor; hence the patient
is suffering by the Stage-I of the lung cancer category.

In the intuitionistic fuzzy systems generally employ intuitionistic type-I fuzzy sets
(IFTy(I)), on behalf ofambiguity by numbers in the range [0, 1]. But an IFTy(II) give
rise to truth as well as false values that are intuitionistic fuzzy sets, instead of a crisp
number. IFTy(II) offer chance to model levels of vagueness which IFTy(I) strug-
gles. This additional dimension gives more degrees of liberty for improvedpicture
of vagueness compared to (IFTy(I)). So, the major reason to adopt the IFTy(II), due
to additional way to think upon the problem in more appropriate way. The numer-
ical example illustrates the advantage of IFTy(II) based inference system over then
traditional IFTy(I) based inference systems.

9 Conclusion

We extend the Ty(I) logic, in order to obtain the intuitionistic fuzzy logic, and further,
develop an IFTy(II) based fuzzy inference system. We generalized the concept of
IFTy(II) in the form of IFTy(II) in novel way. Due to this generalized IFTy(II),
we can get a third additional dimensional for the conducted study. The objective
behind the concept of IFTy(II) is to handle the uncertainty into linguistic variables
form that can be handled by using the membership functions as well as the non-
membership functions.We applied proposed concept over secondary data lung cancer
patient. In this work, we have presented the novel concept of underlying IFTy(II)
based logic and We have discussed in some detail IFTy(II) theory, fuzzy reasoning
and develop an IFTy(II) based inference system with the Mamdani approach. In
this study, an IFTy(II) based approach to the lung cancer patient’s prediction is
presented. The IFTy(II) based logic can accommodate more imprecision thereby
imprecise knowledge andmodelling better than the type-I fuzzyor intuitionistic fuzzy
approaches. The key point in this design of intuitionistic type-II fuzzy logic-based
inference system is to model the level of each lung cancer infected patient.

For the future prospective, we will show that how IFTy(II) based logic can be
applicable to identify and the solution process of many real-world complex problems
including engineering and agriculture fields etc. In future, we intend to learn the
parameters of the IFTy(II) using Gaussian membership function and some hybrid
approach to evaluate the real-world datasets. We will apply this concept over the
Sugeno’s type fuzzy inference system.
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An Enhanced Internet of Things Enabled
Type-2 Fuzzy Logic for Healthcare
System Applications

Joseph Bamidele Awotunde , Olaiya Folorunsho, Isah Olawale Mustapha,
Olayinka Olufunmilayo Olusanya, Mulikat Bola Akanbi,
and Kazeem Moses Abiodun

Abstract Due to advancements in information and communication technology, the
Internet of Things has gained popularity in a variety of academic fields. In IoT-based
healthcare systems, numerous wearable sensors are employed to collect various data
from patients. The healthcare system has been challenged by the increase in the
number of people living with chronic and infectious diseases. There are several
existing IoT-based healthcare systems and ontology-based methods to judiciously
diagnose, and monitor patients with chronic diseases in real-time and for a very
long term. This was done to drastically minimize the vast manual labor in health-
care monitoring and recommendation systems. The current monitoring and recom-
mendation systems generally utilised Type-1 Fuzzy Logic (T1FL) or ontology that
is unsuitable owing to uncertainty and inconsistency in the processing, and anal-
ysis of observed data. Due to the expansion of risk and unpredictable factors in
chronic and infectious patients such as diabetes, heart attacks, and COVID-19, these
healthcare systems cannot be utilized to collect thorough physiological data about
patients. Furthermore, utilizing the current T1FL ontology-based method to extract
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the ideal membership value of risk factors becomes challenging and problematic,
resulting in unsatisfactory outcomes. Therefore, this chapter discusses the applica-
bility of IoT-based enabled Type-2 Fuzzy Logic (T2FL) in the healthcare system, and
the challenges and prospects of their applications were also reviewed. The chapter
proposes an IoT-based enabled T2FL system for monitoring patients with diabetes
by extracting the physiological factors from patients’ bodies. The wearable sensors
were used to capture the physiological factors of the patients, and the data capture
was used for the monitoring of patients. The results from the experiment reveal that
the model is very efficient and effective for diabetes patient monitoring, using patient
risk factors.

Keywords Type-2 fuzzy logic · Internet of Things · Ontology fuzzy logic ·
Healthcare systems · Patients monitoring · Risk factors · Chronic and infectious
diseases

1 Introduction

The Internet of Things (IoT) based smart environments comprise various small
devices enabled with computational features, sensors, and actuators [1, 2]. Various
patients’ physiological data can be collected using these devices connected to the IoT-
based systems through a wireless network, and useful information can be extracted
from them, and processing for decision [3, 4]. The emergence of the IoT-based wear-
able monitoring systems in smart healthcare systems is receiving suitable attention
in recent times, and becoming popular these days in healthcare sectors [5].

In recent time, the number of chronic and infectious diseases suffering by patients
globally is alarming, and require long-term planning for medical monitoring, and
treatment continuously [6]. The situation has become serious for any patient or
elderly to visit the hospital and in most cases unable to see their physicians [7, 8].
The IoT-based systems have become an effect to reduce the visitation of physicians
by patients and offload patients from the hospital [9]. The IoT-based enabled various
wearable sensors to orient and effective technique records vital physiological signs
of the patient like electromyography (EMG), blood pressure, electrocardiography
(ECG), heart rate, temperature, and gyroscope among others [10]. Other important
features like contextual data around patients like humidity or temperature can be
captured using sensors like infrared, camera, or contact [11].

But, due to the heterogeneous nature of IoT-based sensors and devices, the
captured data produce erroneous and inaccurate data that resulted in weakening
the interpretation accuracy, and energy proficiency of the system [12]. And most
existing techniques are not proficient in extracting precise physiological features
from the patients’ body and participation values for bodily parameters as many of
these systems use conventional technologies and techniques like fuzzy logic, classic
ontology, and risk score calculators [13, 14]. Various data fusion has been proposed
in recent times combining multi-source data enabled with ontology or fuzzy logic



An Enhanced Internet of Things Enabled Type-2 Fuzzy Logic … 135

Fig. 1 The Type-1 fuzzy set and type-2 fuzzy set membership function [2]

for deciding to provide a better quality of service [15, 16]. However, these methods
are inadequate due to their inconsistency and uncertainty of captured data, thus not
efficient for accurate decision-making in healthcare systems. To sincerely deal with
this issue, there should be the proper enumeration of the ambiguity in the sensor data
(Fig. 1).

When considering the requirement of an IoT-based healthcare system for greater
exemplification of patient information, imprecision and uncertainty must be elim-
inated. Existing methods based on ontology or type-1 fuzzy logic (T1FL) [17–20]
for knowledge extraction from collected data with hazy data and uncertain charac-
teristics are inefficient and ineffective. Because of its single membership value with
the membership function, the T1FL cannot properly represent the uncertainty in the
degree of membership. Because of its single membership function, the T1FL model
is unreliable when there is a lot of uncertainty in the collected data, and fusing data
becomes exceedingly difficult. The use of Type-2 fuzzy logic (T2FL) for decision-
making in smart healthcare systems has recently been investigated. Because it is a
simplified version of fuzzy logic, the T2FL may be used to correct large amounts of
uncertainty in IoT-based source data.As a result, this chapter discusses the application
of IoT-based enabledT2FL in healthcare systems, aswell as the limitations and future
possibilities of T2FL in dealing with the uncertainty inherent in decision-making
systems’ responses. This chapter’s key contributions are as follows:

(i) present the applicability of IoT-based enabled T2FL model in the healthcare
system with their possible application challenges.

(ii) proposes an IoT-based enabled T2FL system for monitoring patients with
diabetes by extracting the physiological factors from patients’ bodies.

(iii) Prospects of IoT-based enabled T2FL model in smart healthcare systems.
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2 Applications of Internet of Things and Type-2 Fuzzy
Logic in Healthcare Systems

The rise of IoT-based systems as a new paradigm area of study has piqued the interest
of researchers, academics, and government agencies [21]. The Internet of Things
(IoT) includes an IP address for recognition, integrated into devices attached to a
wireless network and connected to the Internet [22]. IoT-based devices are globally
linked in real-time with other devices to gather data in real-time [23]. IoT-based tech-
nology implementation and applications are supported bymany technologies such as
embedded systems, Wireless Sensor Networks (WSNs) [24], cloud computing [25,
26], fog computing [27, 28], and edge computing [29, 30]. Their real-world appli-
cations include smart cities [31–33], smart transportation [34, 35], smart agriculture
[36, 37], smart grid [38, 39], and smart supply chain management [40, 41]. The
primary goal of IoT-based applications is to provide data in real-time for processing
to make the right decisions and provide a sophisticated existence for humans [42].

The applications of IoT-based systems to real-world problems sometimes are
characterized by high levels of numerical uncertainties and linguistics [43], and
this has resulted in poor implementation of captured data using various devices
attached to IoT-based systems. The emergence of fuzzy logic models (FLS) and
their application to real-world applications have great success, especially in data with
numerical uncertainties and linguistic [44]. The traditional T1FLmodel and ontology
fuzzy logic have been the common fuzzy logic applied to various fields and been the
vast majority of all fuzzy logic systems [45]. But, the T1FL cannot completely handle
the high level of imprecision and uncertainties in IoT-based systems applications.
This was so because of the use of precise and crisp fuzzy sets used by the T1FL
model. Hence, the T2FL model was designed to handle a higher level of uncertainty
for improved performance with a high level of accuracy [46, 47].

The T2FL’s major goal and purpose are to manage uncertainty in information
to increase the accuracy performance for the particular application it was designed
for and of any system. The 2FL model surpasses the T1FL model in many aspects;
nonetheless, their building principles are the same and follow practically the same
approach [48]. The main variation between T1FL and T2FL models is the type of
the membership functions [49]. The T2FL model employs stronger membership
functions, which increase the model’s effectiveness in dealing with the issue of
uncertainty in real-world applications, particularly in IoT-based applications.

Once the membership function is selected, the fact that the genuine amount of
membership is undetermined is no longer captured in the T1FL model [50]. Because
the provided input is supposed to be in a precise condition with a single value
of membership, uncertainty exists inside a specific application [43]. However, the
dynamic unstructured environments linkedwith numerical and linguistic ambiguities
generate challenges in forming rigorous and accurate experiences and consequent
membership functions throughout the construction of a fuzzy logic system [43, 44].
Under particular operating settings and environments, the design of the T1FL model
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might become considerably sub-optimal, resulting in uncertainty and inaccurate find-
ings in any application [51]. However, due to the associated uncertainties and changes
in the environment, the selected T1Fl model sets may no longer be appropriate. This
feature can lead to poor control and inefficiency due to degradation in T1FL model
performance, resulting in the waste of resources spent on tuning the T1FL model or
frequent redesigning of the model to find ways to deal with various uncertainties and
issues that may arise when using the model [52, 53].

The conversion of T2FL into an equivalent T1FL fuzzy system was embraced by
the output processor with an additional stage. This procedure was implemented using
a Type-Reduction (TR) algorithm in the conversion of T2FL into T1FL fuzzy system.
There are various arguments in favor of the T2FL system that show the potential
abilities of the model to produce better application performance. The followings are
the main reasons for the statement:

(i) The T2FL model gives room for modification and increases the empathy of a
rule-based system.

(ii) The T2FL based on rules can help in dropping the complications involved in
modeling a system.

(iii) The complex input/output relationship that seems impossible using the T1FL
system can be obtained easily in the T2FL model.

(iv) The T2FL system may be used to describe these input/output interactions
without changing the number of rules involved in any way.

The T2FL system has been used and discovered pattern recognition, business and
finance, electrical energy, risk indexing of power transformer breakdowns, and other
fields are among them. real-world automatic control, modeling of micro-milling
cutting forces, cyber security, and healthcare and medical. This chapter, on the other
hand, focuses on healthcare and medical systems to cover many areas where the
T2FL model is relevant for both short and long-term studies and applications.

The use of IoT-based enabled wearable monitoring systems in healthcare is a
new technology, and a lot of academics have identified the problem of data fusion
for IoT-based systems [54]. There are several wearable healthcare gadgets acces-
sible for illness diagnostics, which are often smartphones and other devices [55].
The Internet of Medical Things (IoMT) refers to IoT-based medical equipment that
connects with one another to distribute sensitive data [56]. The use of artificial intel-
ligence has substantially aided in the processing of recorded data and transforming
it into useful information that medical specialists may utilize for clinical decision-
making and competence [57, 58]. The authors presented an IoT-based equipped with
a comfortable method of wearability in [59].

The wearable sensors were utilized to gather physiological and environmental
characteristics of the patient that may be used to monitor the patient’s health state.
The authors presented amethod for analyzing and detecting heart attacks using fuzzy
logic-based expert systems in [60]. When compared to other current models used
in illness analysis and identification, the model outperforms them. The authors of
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[61] presented an IoT-based real-time remote monitoring system for patients. The
suggested solutions ensure the ECG’s integrity in real-time, and a smartphone or
computer may be used to access the monitor in real-time or by utilizing previously
recorded data.

The authors proposed an IoT-based enabled wearable body sensor network for the
diagnosis and monitoring of COVID-19 pandemic patients in Awotunde et al. [3].
The suggested technique is effective in monitoring COVID-19 patients by alerting
medical experts and so making suitable decisions on what to do before the patient
spreads the pandemic inside an environment. In Wang and Cai [62], the authors
described a data networking-based IoT that was coupled with an edge cloud to create
a secure healthcare monitoring system. The model used ciphertext and signature
to increase the security of medical data transmission and hence the efficiency and
effectiveness of data retrieval. Systemmaintenance increases the security and privacy
of the IoT-based environment while also ensuring that an attacker does not get access
to the cloud. The authors of Reddy et al. [63] suggested a Firefly-BAT (FFBAT) and
ArtificialNeuralNetwork (ANN)predictionmodel for feature selection usingFFBAT
and diabetes mellitus classification using the ANN model. The model was able to
decrease the number of features by eliminating extraneous factors from the dataset,
and ANN was used for dataset prediction. When compared to other existing models
utilizing the same dataset, the suggested model performed better.

Another paper by the authors, Lee et al. [64], offered a T2FL-based smart diet
recommendation. To recover meal records from a collection of recorded meals, the
T2FL food ontologymodel was predefined. As a result, the ontology creation process
was employed to carry out the acquisition of the T2FL personal food ontology. Each
person’s diet objectives were established, and T2FL assigns details to the various
sorts of food. Then, to calculate the remaining calories for supper, the T2FL infer-
ence mechanism and fuzzy operators are combined with the T2FL personal food
ontology. Finally, the personal food guide pyramid specified by field experts was
utilized to develop the T2FL-based diet planning instrument, the T2FL-based menu
recommendation machinery, and the T2FL-based semantic description mechanism
to create a personal night meal plan. The suggested recommender outperformed
the T1FL-based system and had promising performance when compared to existing
ontology recommenders.

The authors of Habib et al. [65] presented a self-adaptive data gathering and fusion
body sensor network for patient health monitoring. The biosensor was utilized to
collect data, which was then sent to the fusion model for decision making using
fuzzy set theory and a decision matrix. The suggested method enables medical
specialists to make real-time and even distant decisions without physically viewing
the patient. The authors of Muzammal et al. [66], Wu et al. [67] presented a multi-
modal device data synthesis approach to allow an ensemble technique from a body
sensor network for medical data. The data collected from numerous sensors were
merged and utilized to predict disease using ensemble classifiers. When compared to
previous relevant works for disease prediction, the findings of the suggested system
indicated a higher performance accuracy. The authors in Pinto et al. [68] suggested
a genetic ML model enables parallel data in a wearable sensor network utilizing
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an IEEE 802.15.4 network. The suggested technique used the Genetic ML model to
allow a trade-off between several user-definedmetrics, which is the key benefit of the
provided system.When compared to the Gur Game approach, the suggested strategy
performs much better under different communication conditions and outperforms
traditional periodic communication techniques over the IEEE 802.15.4 network. In
Liu et al. [69], the author presented a DST-based fault-tolerant for event detection by
looking at the impact of spatial correlation between nodes and their states on event
detection. As each detector node’s output was described, the proposed technique
integrated them using weighted probability rather than crisp values, depending on
their unique approach to identification. This allows the physician to avoid sending
unneeded information by selecting and removing the affected parameters from the
system.

3 The Challenges of the Internet of Things and Type-2
Fuzzy Logic in Healthcare Systems

One of the primary issues with IoT-based solutions in healthcare is data security and
privacy [70]. The patients’ impression of an IoT-based environment is critical to the
platform’s usability [71]. Most users feel that their data is not safe on the IoT-based
platform; thus, utilizing it becomes tough for some of them since they believe that
their information is not secure on the cloud. Identifying and addressing the security
and privacy issues of IoT-based systemswill go a longway toward altering the attitude
of patients and other users, allowing them to have complete faith in the deployment
of IoT-based healthcare systems. As a result, several studies, such as Awotunde et al.
[72], Sajid et al. [73], Rizvi et al. [74], have been done in these areas.

The issue of data connection between the IoT-based systems and protocols during
implementation needs to take with precaution and care. As the smart sensors inte-
grated into IoT-based network increases, there is going to be a possible increase in
the security hazard within the systems [75]. Though IoT increases the quality of
community life and created business competitiveness globally, the IoT-based appli-
cations will surely attract attacks, hacking, and other possible cyber fraud. Research
conducted by Hewlett Packard (2014) revealed over 70% of widely deployed IoT-
based systems are significant defects with various forms of defaults. These flaws
come in various ways like the disappointment of computer security, insecure network
nodes, evasion in transport encryption, and authorization failure. Each computer on
average contained at least 25 holes breaching the computer network connections.
Hence, failure to protect the IoT-based applications in healthcare systems will bring
serious opposition to the usage and acceptance of the system by individuals and
medical sectors. IoT technology support critical strategic resources and utilities such
as smart transportation, smart agriculture, and smart grid among others that need
serious security services.
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The IoT-based devices and sensors are not usually empowered with data encryp-
tion models that can protect the data transmission from one network node to another.
The IoT-based systems produce a huge amount of data on patient wellbeing, house-
hold information, given financial details, and the situation of any organization, which
can be processed and analyzed for decision-making within the organizations. There-
fore, the security challenges can be reduced or eradicated by periodic training and
educating the users on the need to take the security issues of the IoT-based systems
with seriousness and the developers should always be educated to integrate security
technologies like intrusion detection models, encryptions, and firewalls during soft-
ware development. The training will teach users how to utilize the security features
built into their smartphones and other connected devices.

When dealing with smart healthcare systems, the problem of privacy and protec-
tion must be thoroughly explored in order to prevent any compromises in client secu-
rity and privacy. Security and privacy issues have arisen as a result of the massive
volume of data created in the healthcare system, resulting in new risks and vulnerabil-
ities in IoT-based platforms. When developing devices and sensors to be utilized by
IoT-based applications, software developers should consider security mechanisms.
The incorporation of security measures into computer software and hardware would
undoubtedly aid in the reduction of security and privacy concerns in IoT-based
systems. Designers’ adoption of the client–server architecture will undoubtedly aid
in data sharing in IoT-based contexts to ensure client data security and privacy. The
usage of client–server architecture will aid in transmitting data and information to
clients while keeping other sensitive data protected by a suitable certificate.

The applicationsT2FLmodel byvarious researchers in several fields have revealed
positive results when compared with the traditional T1FLmodel. Despite these posi-
tive results of the T2FL technique, there are still some issues like the complexity
of meet and join operation, and type-reduction occurrence limiting the appropri-
ateness of the T2FL model in real-world applications. Generally, the processing
times of T2FL are higher that T1FL systems due to the inference processing, and
the computer overhead reduction. The interpretability of T2FL sets does not mask
the type-reduction challenges due to the inherent complexity and redundancies in
varied applications. The representation theorem for the T2FL model by Mendel and
John [76] plays a significant role in describing T2FL set processes. But in practice,
the theorem is more problematic in principle to apply and comprehend. At both
theoretical and implementation levels, there is work currently ongoing on solving
the processing time issue in the hardware and software stages. These works have
been successful in reducing the T2FL model time issue, but there are still more
works needed in the area of theoretical and algorithms implementation for the T2FL
technique.
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4 The Proposed Internet of Things-Based Enabled Type-2
Fuzzy Logic Framework

T2FL model for healthcare monitoring system presented based on IoT. The T2FL
method calculates and visualizes the degree of uncertainty in various physiological
data captured using sensor and devices. Combination concepts based on the T2FL
system, the physiological properties of patients acquired using multiple devices and
sensors are merged to enable the exact merging of heterogeneous sensor data. The
suggested system was designed to effectively solve the problem of ambiguity and
inconsistency of the T1FLmodel in the IoT-based healthcare system, the T2FLmodel
was developed to handle various physiological parameters obtained from patients.
Because the sensor data is inherently inconsistent and unreliable, the T1FL technique
will not be effective for managing the acquired data utilizing such sensor devices.
T2FL model is used to derive correct associative value from data acquired by multi-
sensors on patients’ physiological aspects. This was done to assess the data and
offer an effective outcome that medical specialists might utilize for decision-making.
Medical professionals may access the resulting patient data in real-time, remotely,
and from any location for correct diagnosis and treatment.

The proposed IoT-based enabled T2FL system uses sensor-captured patient data
as precise input to the T2FLmodel. Each sensor is analyzed by the five components of
the T2LF model to determine the degree of membership: (i) fuzzifier, (ii) T2F rule,
(iii) inference engine, (iv) reducer, and (v) defuzzifier. The T2FL rule applies the
received crisp input data translated by fuzzifier to the “if–Then” rule. T2FL outputs
were totally transformed to T1FL outputs using the type-reducer. Using defuzzifi-
cation, the T1FL was further turned into a crisp value. The defuzzification results
indicate the average points of the type-reduced set’s right and left ends. Figure 2
depicts how fuzzification was utilized to convert sensor data into a T2FMFs interval
and then into a T1Fs interval. The fuzzy membership values for the sensor data were
calculated using the triangle membership function, with membership values of x, a,
b, and c for every input.

f (x; a, b, c) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, x ≤ a
x−a
b−a a ≤ x ≤ b
x−c
b−c b ≤ x ≤ c
0, c ≤ x

(1)

f (x; a, b, c) = max

(

min

(
x − a

b − a
,
x − c

b − c

)

, 0

)

(2)
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Fig. 2 The proposed IoT-based enabled type-2 fuzzy logic system

The Footprint of Uncertainty (FOU), Lower Membership Function (LMF), and
Upper Membership Function (UMF) were described using four linear functions and
five points a, b, c, d, and e. As a result, the following equations are used to express
the centroid of the Type-2 fuzzy logic membership function.

traigular(x, a, b, c, d, e) = max(0, min(T1, T2, e)) (3)

UMF = T1(x, a, b, c) (4)

LMF = T1(x, d, e, c) (5)

c =
∑q

i=1 μ(xi ).x1
∑q

i=1 μ(xi ).
(6)

�c1, c2� =
[∑q

i=1 μ′(xi ) · x1
∑q

i=1 μ′(xi )
,

∑q
i=1 μ′′(xi ) · x1
∑q

i=1 μ′′(xi )

]

(7)

The μ′ (xi) and μ′′ (xi) were used to signify the LMF and UMF values for the
minimizes and maximizes weighted averages, respectively. Age (age), blood sugar
(BS), weight (wgt), body temperature (BT), and patient health state are the raw inputs
for diabetes prediction andmonitoring (PHC).Because all of the variables are utilized
for the input and are uncertain, the ranges of the values are set by the input variables
for the border of the uncertainty of UMF and LMF. The T2FL model was used to
compute the membership value of the collected data, and the results of the model’s
prediction provide the basis for the proposed system’s knowledge engine to represent
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the membership value of each sensor data and process it for decision making. The
T2FL model was utilized to deal with the uncertainty and inconsistency of sensor
data from IoT-based systems, and the membership function output is transformed to
mass value. The rules are fused to get the outcome for decision-making.

The finite set of mutually exclusive and exhaustive is denoted as � =
{θ1, θ2, . . . , θn}, �is the frame of discernment (FoD), 2� represents the power set of
�, and the 2� elements can be formulated as.

2� = {θ, {θ1}, {θ2}, . . . , {θn}, {θ1, θ2}, . . . , �}, the m is the mass function defined
as a mapping from the power set 2�totheintervalo f [0, 1] fulfills the subsequent
conditions:

{
∑

A≤θ

m(A) = 1
m(θ) = 0

(8)

A focal element happened if mA > 1, and mA is the mass function that char-
acterizes how toughly the signal supports the propostion_A. the focal set and their
associated mass value are represented by the Basic Probability Assignment (BPA)
called BoE, or Basic Belief Assignment (BBA):

(R,m) = {
A, 〈m〉 : A ∈ 2�,m(A) > 0

}
, (9)

The subset of the set isR, 2�, A(∈ R) each has an associated non-zero mass value
m(A).

The associate belief function, Bel can be used to denoted BPA, and plausibility
function PI, and this can be formulated as follows:

Bel(A) =
∑

∅ 	=B(≤A)

m(B) (10)

P I (A) =
∑

B∩A 	=∅

m(B). (11)

4.1 The Dataset Used for the Evaluation of the Proposed
Model

The National Institute of Diabetes, Digestive and Kidney Diseases created the Pima
Indians Diabetes Database dataset. The dataset was gathered to determine whether
or not a patient has diabetes based on certain specified characteristics and diagnostic
amounts in the dataset. The dataset’s main limitation is that all of the patients are
females who are at least 21 years old and have Pima Indian ancestry. There are many
medical predictor characteristics and one outcome variable. These variables include
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Table 1 Pima dataset
attribute characteristics

Name of the attribute Categorized value

Age (year) Age

Plasma Glucose Level PGL

Diastolic Blood Pressure (mm Hg) DBP

Body Mass Index (kg/m2) BMI

Frequency of pregnancy Preg

Diabetes Pedigree Function DPF

Thickness of Triceps Skin (mm) TTS

2-h Serum Insulin 2HSI

Label class (0 or 1) Class

BMI, Insulin level, Glucose, the number of pregnancies, and age, among others. As
shown in Table 1, the dataset has 8 different features with 768 instances.

4.2 Performance Evaluation Metrics

The suggested model was assessed using four different performance metrics: accu-
racy, F1-score, sensitivity, and specificity. In statistics, the sensitivity for true positive
rate and specificity for true negative rate define the performance of a binary classifi-
cation test or classification function. The number of ill patients accurately diagnosed
is measured by sensitivity, which is the percentage of sick patients that are correctly
detected. The specificity is used to identify the number of patients who are accu-
rately classed as healthy, or the proportion of healthy patients correctly detected.
As a result, the metrics True Positive (TP), False Negative FP, True Negative (TN),
and False Negative (FN) are computed. The following are the equations used for the
computation of the metrics.

Accuracy is the ratio of correctly classified instances in percentage as presented
by Eq. (12)

Accuracy = TP + TN

TP + TN + FP + FN
(12)

The F1Score is the harmonic mean between the recall and precision as illustrated
by Eq. (13)

F1Score = 2 × Precision × Recall

Precision + Recall
(13)

Sensitivity is the proportion of the number of TP by the number of all of the
positive estimations as shown by Eq. (14)
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Sensitivity = TP

TP + FN
(14)

Specificity is the proportion of the number of TN by the number of all of the
positive estimations as shown by Eq. (15)

Specificity = TN

TN + FP
(15)

Experimental Results

The suggested systemwas built using Python programming language on an Intel Core
i7-2600 CPU with 8 GB RAM running Windows 10. The programming language
collects input from diabetes datasets to determine the risk value of a diabetes patient.
The PIMA diabetes datasets were classified using the Python computer language’s
Keras Library. The datasetwas divided into several folds for training and testing using
k-fold cross-validation techniques. The suggested model’s efficacy was confirmed
by comparing the findings to the performance of traditional fuzzy logic and T1FL-
based models. Table 2 displays the suggested model’s performance metrics findings
utilizing four metrics, namely accuracy, F1-score, sensitivity, and specificity. Using
the four measures, the suggested model greatly outperforms other models. Each
folding of the dataset is used to determine the patient’s diabetes status.

The results of the proposed system using cross-validation on the dataset give
accuracy that is higher than 90% across all the folds, and the performance metrics
used. The accuracy has the highest of 95.7% at tenfold, F1-score of 97.6 at tenfold,
the sensitivity of 98.1% at nine-fold, and specificity of 97.1% at tenfold respectively.
The proposed model performs best in terms of sensitivity of 98.1% but performs
significantly better across all the metrics and the cross-validations.

Table 3 compares the proposed model to the T1FL scheme; the findings suggest
that the T2FL model can reliably identify patients whether they have diabetes or not.
The theory shows that the suggested model greatly outperforms the T1FL set across
all performance criteria utilized to evaluate the models.

Table 2 The performance of the diabetes dataset using the four metrics

Accuracy (%) F1-score (%) Sensitivity (%) Specificity (%)

Twofold 93.3 93.6 95.5 93.0

Threefold 92.4 94.2 97.8 91.9

Fourfold 90.6 92.7 93.7 90.5

Fivefold 91.9 95.1 97.3 92.3

Sixfold 93.9 95.7 95.9 94.3

Sevenfold 91.4 92.1 93.6 92.1

Eightfold 92.6 94.8 96.3 92.9

Ninefold 92.3 95.3 98.1 91.6

Tenfold 95.7 97.6 97.4 97.1
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Table 3 The comparison of T1FL with the proposed T2FL model

T1FL scheme T2FL scheme

Acc (%) F1-S(%) Sen. (%) Spe. (%) Acc. (%) F1-S (%) Sen. (%) Spe. (%)

Twofold 98.3 86.8 88.7 89.2 93.3 93.6 95.5 93.0

Threefold 90.6 81.3 80.3 84.4 92.4 94.2 97.8 91.9

Fourfold 90.3 79.5 77.5 82.5 90.6 92.7 93.7 90.5

Fivefold 83.7 81.3 78.2 84.2 91.9 95.1 97.3 92.3

Sixfold 85.8 89.6 93.5 85.6 93.9 95.7 95.9 94.3

Sevenfold 89.9 87.6 84.7 89.7 91.4 92.1 93.6 92.1

Eightfold 89.4 86.9 84.3 89.3 92.6 94.8 96.3 92.9

Ninefold 83.7 81.6 79.3 84.2 92.3 95.3 98.1 91.6

Tenfold 87.2 84.6 83.6 87.8 95.7 97.6 97.4 97.1

5 Directions of Future Research

The applications of the T2FL model-enabled IoT-based system have witnessed a
rise in recent times due to the acceleration in diagnosis, monitoring, treatment, and
management of various diseases in healthcare systems. Though the huge amount of
existing literature in these areas has enhanced the study of various applications of
the T2FL model for diagnosis and recommendations, a lot still needs to be done in
the areas of disease management and treatment using T2FL systems. This model
can be used in drug management for various diseases, and treatments. There is still
a need for further research to help in the implementation and enhancement of the
approaches used for the T2FL model enabled IoT-based systems within healthcare
systems. The potential research directions from the findings of this study are stated
as follows.

The utilization and implementation of optimization in the area of T2FL are still a
big open issue. The use of this will surely help in the application of T2FL in health-
care systems. The applications of choice of rules, defuzzification models, operations,
type reduction, and membership functions are still carried out manually. There are
still efficient opportunities of improving the T2FLmodel using evolutionary, learning
algorithms, and metaheuristics models to enhance the T2FL within IoT-based appli-
cations in healthcare systems. The generation of big data from healthcare systems is
no more a big issue, especially with the use of IoMT-based applications, the T2FL
will very helpful in dealing with problems of uncertainty that will arise using various
sensors in capturing various data. But this new trend will still need a lot of effort to
deal with very critical issues in this area.
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6 Conclusion

The issue of uncertainty and imprecision in the prediction and diagnosis of IoT-
based based captured data using various sensors has been a challenge for many
decades, and this has limited the huge benefits that would have been derived from
this modern technology. The application of Fuzzy Logic model is one of the popular
techniques use to improve the certainty, accuracy, and precision of IoT-based systems
in healthcare sectors. However, T1FLmodel has not be able to deal with the problem
of uncertainty that arise from IoT-based captured data from sensors, hence, T2FL sets
have be prove useful in this direction. Therefore, this chapter review the applicability
and issues of using IoT-based enabled T2FL scheme in the healthcare system, and
future prospects of their applications in healthcare systems. The proposed an IoT-
based enabled T2FL system for monitoring patients with diabetes using various
sensors and devices to capture the physiological factors from patients’ bodies. The
results of the proposedmodel revealed that T2FLcanbe used to enhanced the problem
of uncertainty that may arise from using captured data using sensors. The proposed
model was evaluated using various performancemetrics, and the results was compare
with the T1FL model. The performance of the T2FL model was significantly better
in term of accuracy, Sensitivity, specificity, and F1-score when compared with the
T1FL model. The future work will look at the possibility of using optimization
algorithms to enhance the performance of the T2FLmodel, the present work can still
be extending in term of security, the IoT-based system can be secure using various
security algorithms like encryption, blockchain, intrusion detection among others.
This reduce the security concern by defend against all kinds of cybersecurity attacks
like black hole, gray hole, denial of service and wormhole within the IoT-based
platforms.
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Artificial Neural Network Based Type-2
Fuzzy Optimization for Medical
Diagnosis

Nitesh Dhiman, Nivedita, and Mukesh Kumar Sharma

Abstract In this work, we generalized the notion of fuzzy logic and neural network
in order to develop type-2 neuro fuzzy system. With the help of proposed system,
we will be able to deal medical problem to enhance the performance for reimbursing
the higher uncertainties. For the validity of proposed system, we are giving numer-
ical trials to justify our approach. Further, the parameters involve in the output of
the proposed system is optimized by using teaching learning-based optimization
(TLBO).

Keywords Type-2 fuzzy set · Neuro fuzzy system · Type-2 neuro fuzzy system ·
Teaching learning-based optimization (TLBO)

1 Introduction

In present era of vagueness Zadeh [1] gave the fuzzy logic approach to overcome
the uncertainty. Professor Zadeh also gave the notion of a linguistic variable and its
application [2] to estimated reasoning. Traditional neuro fuzzy systems have been
functional in several real time applications. Due to the use of membership function
only, it cannot be able to handle the uncertainly in a well manner. To remove such
difficulty, we are adopting type-2 fuzzy set-based neuro fuzzy inference system. So,
that the outcome can be more optimize with minimum error. The targeted output
will be assumed to be 1 and the expected output can be found in such a manner that
will give minimum error. The type-2 fuzzy set provide third dimension to study, and
reduce the quantity of doubtful information in more appropriate way. The basic idea
for this proposal is to get an error free or low error solution by the applicability of
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proposed type-2 neuro fuzzy system. To handle more uncertainty in a better mode,
the generalization of type-1 fuzzy set and systems are considered in the form of
type-2 fuzzy set. As we know, there is fixed truth function value in type-1 fuzzy
set-based systems, whereas in type-2 fuzzy set, truth function value is fluctuating.
Basically, a fuzzy set govern to input values so that they can be converted into fuzzy
variables. To overcome the demerits of fuzzy sets, Zadeh in 1975, gave an idea
of type-2 fuzzy set. The truth value of type-2 fuzzy set is 3 dimensional. In many
circumstances, when we have doubt in deciding the truth grade as a number in [0, 1].
In these cases, type-2 fuzzy set provide needed framework to validate and work with
this evidence. Xie and Lee [3] introduced an extended type-reduction method for
general type-2 fuzzy sets. Castillo andMelin [4] gave the adaptive noise cancellation
using type-2 fuzzy logic and neural networks. Castillo et al. [5] also provide an
evolutionary computing for type-2 fuzzy systems to regulate the non-linear dynamic
plants. Coupland and John [6] introduced a new and well-organized technique for the
type-2 meet process in 2004. Hagras [7] gave hierarchical type-2 fuzzy logic control
architecture for autonomous mobile robots. Hagras [8] also gave type-2 fuzzy logic
system for self-directed mobile robots. Hwang and Rhee [9] introduced an interval
valued type-2 fuzzy C spherical shells procedure. Figueroa et al. [10] have a type-2
fuzzy system to follow themobile objects. Garibaldi et al. [11] provided a case study;
the association between interval type-2 fuzzy sets and non-stationary. Lin et al. [12]
introduced a type-2 fuzzy logic model to design buck DC-DC converters. Lynch
et al. [13] have given an embedded type-2 FLC for real-time speediness control of
marine and traction diesel machines. Later Mittal et al. [14] provided a review on
type 2 fuzzy logic-based applications. Rhee and Hwang [15] introduced a type-2
fuzzy C-means clustering procedure. Rhee and Hwang [16] also gave an interval
type-2 fuzzy perceptron with their applicability. Sepúlveda et al. [17] integrated a
progress platform for brainy control based on type-2 fuzzy logic. Ontiveros-Robles
et al. [18] gave a comparative analysis of noise robustness of type 2 fuzzy logic
controllers. Ruiz-García et al. [19] introduced a concept on general forms of interval
type-2 fuzzy sets. Ruiz-García et al. [19] introduced a concept on general forms of
interval type-2 fuzzy sets. Sennan et al. [20] proposed a type-2 fuzzy logic-based
particle swarm optimization algorithm based on Internet of Things.

Artificial intelligence (AI) has various branches like machine and deep learning;
Knowledge based systems, fuzzy logics, robotics, and many more. Researchers want
to choose their research area in the field of AI because of its various applications. In
simplest form, artificial intelligence is when human behaviour is ascribed to intelli-
gence. The applicability oftype-2 fuzzy logic approach over various areas including
science and technology plays a vital role in that field.

In case of medical diagnosis, data cannot be dealt with type-1 fuzzy set due to
advanced directive of fuzziness involved with the information. So, type-2 fuzzy set is
needed to be presented for attempting such information. If someone wants to operate
all the methods of calculating the severity level of type-2 fuzzy set based medical
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diagnosis, then one can use the neural network amongst the basis and termini. Addi-
tional, if someone wants the controls of all the approaches without doing physically
then one can generate the AI algorithm into neural network and make it artificial
neural network. The basic objectives of the work are as follows:

a. Our objective is to use artificial intelligence (AI) especially in reasoning, in the
development of medical diagnosis.

b. The type-2 fuzzy set will provide us an additional dimensionality, so that we are
able to think in three-dimensional space, to deal the uncertainty.

c. To develop type-2 neuro fuzzy system by merging fuzzy inference system with
neural network.

d. To optimize the parameters, involve in the output of the proposed algorithm. We
apply the teaching learning-based optimization (TLBO).

e. The expected output of proposed system will give minimum error after applying
the optimization tools for the known parameters.

2 Basic Concepts

2.1 Type-2 Fuzzy Set

A type-2 fuzzy set A on universal set X can be describe in such a way in which the
membership value is again a fuzzy set, defined by:

A = {((τ, v),µA(τ, v)) : τ ∈ X and v ∈ Iτ ⊆ [0, 1]} (1)

where, Iτ : Primary membership function and µA(τ, v) : S econdary membership
function, also 0 ≤ µA(τ, v) ≤ 1.

2.2 Standard Operations on Type-2 Fuzzy Set

Let A1 = {((τ, v1),µA1(τ, v1)) : τ ∈ X and v1 ∈ Iv1 ⊆ [0, 1]} and

A2 = {((τ, v2),µA2(τ, v2)) : τ ∈ X and v2 ∈ Iv2 ⊆ [0, 1]}

are two type-2 fuzzy sets on universal set X. Then,

Union: A1 ∪ A2 ⇔ {((τ, v1 ∨ v2),µA1(τ, v1) � µA2(τ, v1))}
Intersection: A1 ∩ A2 ⇔ {((τ, v1 ∧ v2),µA1(τ, v1) � µA2(τ, v1))}
Complement: A1 ⇔ ((τ, 1 − v1),µA1(τ, v1)) and
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A2 ⇔ ((τ, 1 − v2),µA2(τ, v2))

where, � represents t-norm,
∨

indicatesmax t-co-norm, and∧denotesmin t-norm.

2.3 Artificial Neural Network (ANN)

ANN is commonly referred as Neural networks (NN). NNs are computing based
structures encouraged by the biological NN that establish human brains. It is consti-
tuted with three layered structures “input layer”, “hidden layer” and “output layer”.
The hidden layer may consist more than one layer. The various sections of the human
brain are wired to proceed different types of information and the parts of brain are
arranged in different layers. During the decision-making process, the information
arrives in the brain, each layer does its specific job of processing the information,
arising understandings, and transfer it into the next layer.

2.4 Uncertainty in Medical Diagnosis

In practice, the physicians routinely encounter diagnostic uncertainty. Despite its
influence on health care management the measurement of diagnostic ambiguity is
unwell understandable. To conduct a systematic view so that one can describe that
how diagnostic ambiguity measured in medical training. The term “diagnostic ambi-
guity” lacks a clear meaning, and there is no complete framework for its dimension
in medical field. The diagnostic ambiguity can be defined as a subjective perception
of a failure to deliver an accurate description of the patient’s health. The advance-
ments in the measurement of diagnostic ambiguity can expand our understanding of
diagnostic decision-making system to overcome the diagnostic errors.

3 Proposed Type-2 Fuzzy Set-Based Systems

In this section, we describe the architecture of type-2 neuro fuzzy system (Fig. 1)
and Various components of the proposed system (Fig. 2).

3.1 Architecture of Proposed Type-2 Neuro Fuzzy System

See Fig. 1.
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Fig. 1 Type-2 neuro fuzzy system

3.2 Architecture of Proposed System

See Fig. 2.

4 Algorithm of the Proposed System

Step 1: Consider the set of involved input factors;

I = {I1, I2, .........In} (2)

Step 2: Applying fuzzification process to make type-2 fuzzy set for each input
factors.
Step 3: Now, for the inference system process, we need to use some rules
based on knowledge-based system. For this process, consider the conditional and
unqualified intuitionistic fuzzy proposition for obtained type-2 fuzzy set input
factors.
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Identify the problem

Affecting Factors

End

Not optimal

Revise
Solution

Targeted 
value

Obtained
value

Type-2
neuro fuzzy

system

Fig. 2 Various components of the proposed system

Step 4: In this step the type-2 fuzzy set is converted into the form of type-1 fuzzy
set by fuzzifying the area obtained in the 3rd direction of the type-2 fuzzy set.
Step 5: We aggregate the type-1 fuzzy set obtained by layer 4.
Step 6: In this study, “Sugeno’s based inference system” is employed; we will do
the defuzzification of the aggregated area obtained in layer 5.
Step 7: The final crisp output will be calculated by the following linear equation;

y = a1I1 + a2I2 + .....anIn + c (3)

where, ai represents the weights.
Step 8: TLBO is used to optimize the unknown weights or parameters involve
in the outcomes of neuro fuzzy system. TLBO works on the consequence of
impact of an educator on the results of student. TLBO is a two-phased algorithm
it consists:

(i) Teacher’s phase
(ii) Learner’s phase

In TLBO technique a group of students is measured as population and numerous
topics offered to the students are measured as unlike project variable. The unlike
variables are essentially the restrictions elaborate in the objective function. This
procedure does not necessitate any ‘algorithm-specific’ control parameters.
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Table 1 Input factors and their linguistic ranges

S. no Symptoms Linguistic ranges

1 HRCT (CT) <8 mild (M) 7–15 moderate (Md) >14 risky

2 Blood level (BS) <5 (M) 4–10 (Md) >9 risky

3 X-ray level (XS) <5 (M) 4–10 (Md) >9 risky

4 U.G.C. level (UGC) <5 (M) 4–10 (Md) >9 risky

5 Data Collection

In this section, we have collected a secondary data collected from [21]. The data
contained post-COVID19 patientswithHCRT thorax, blood test, chestX-ray,U.S.G.
whole abdomen, kidney function test, liver function test and RTPCR report. Out of
these factors, we have categories high-resolution CT (HRCT), blood severity, X-ray
severity and U.G.C. severity have divided into three linguistic categories as shown
in Table 1.

The output factors i.e., severity level is categories into five linguistic categories;
low (0–0.2), M (0.2–0.4), Md (0.4–0.6), risky (0.6–0.8), and very risky (0.8–1).

6 Fuzzy Rules

The fuzzy rules for the type-2 neuro fuzzy system model are shown in Table 2, we
have taken two input and one output-based neuro fuzzy system out of various rules,
we have shown only 12 rules.

Table 2 Fuzzy rules foe the
type-2 neuro fuzzy system

Rules IF AND THEN

1 CT is M BS is Md Severity is Md

2 XS is risky UGC is risky Severity is very risky

3 UGC is M BS is M Severity is M

4 BS is risky XS is risky Severity is risky

5 XS is M CT is Md Severity is Md

6 CT is risky BS is M Severity is Md

7 BS is Md XS is risky Severity is risky

8 XS is M UGC is Md Severity is low

9 CT is M CT is M Severity is Md

10 CT is M BS is Md Severity is Md
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7 Numerical Computation

Let us consider a patient with the input data.

CT BS UGC XS

5 3 10 12

Based on the output obtained from Fig. 3, the final crisp output will be calculated
by the following linear equation:

y = a10.34 + a20.967 + a30.7 + a40.967

where, ai represents the weights. Let us consider the targeted values as 1. We now
apply the TLBO technique to find the error of that system. TLBO is used to optimize
the unknown weights or parameters involve in the outcomes of neuro fuzzy system.

From the Chart 1. We obtained the optimized values of the coefficients.

a1 a2 a3 a4 y

0.5828 0.5622 0.1813 0.1705 1.03

Fig. 3 Antecedent and consequent part of proposed system
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The error of that system can be obtained by

y = |targated value − obtained valued|2
2

= |1.000 − 1.030|2
2

= 0.00045.

0
0.5
1

1.5
2

1 2 3 4 5 Mean -0.2
-0.1

0
0.1
0.2
0.3

1 2 3 4 5 Mean

-1

0

1

2

1 2 3 4 5 Mean -0.5
0

0.5
1

1.5
2

1 2 3 4 5 Mean

-2

0

2

4

6

1 2 3 4 5 6 -2

0

2

4

6

1 2 3 4 5 6

-2

0

2

4

6

1 2 3 4 5 6

Teaching Phase-I 

(a) 
Learner Phase-II

(b) 
Teaching Phase-II
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8 Conclusion

Type-2 fuzzy logic can be applicable in development of the neuro fuzzy system
in the field of medical diagnosis in many aspects. While studying type-2 fuzzy sets
uncertainty can be handled in 3-dimension figure by increasing the dimensionality of
primarymembership function in the form of secondarymembership function. During
this work, we have merged the type-2 fuzzy inference system with neural network.
The weights used in the output of proposed neuro fuzzy system are handled by
TLBO technique. The concept of type-2 fuzzy logic showed the impact of uncertain
information with the help of neuro fuzzy system. Type-2 neuro fuzzy system have
the ability of deal with the membership grade in higher dimensionality. Based on the
proposed type-2 neuro fuzzy system, we can easily handle the doubtful situations
that cannot be dealt with fuzzy logic or intuitionistic fuzzy logics. The applicability
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in the medical field of proposed neuro fuzzy system has given in this work by taking
numerical example. From the numerical computation we got the error 0.00045 of
the proposed system. For future perspective, we will try to develop a methodology
to obtain an optimal process with the help of type-3 fuzzy logic that cover all the
heterogeneous non-linear data of post COVID-19 patient.
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A Survey on Type-2 Fuzzy Logic Systems
in Healthcare

Sindhu Rajendran, B. Sahana, Shaik Farheen, B. N. Meghana,
and Sona Theresa Babu

Abstract Fuzzy logic plays a key role in various areas, particularly medicine. One
of the major problems faced by developed and developing countries is medical treat-
ment. There has been a great deal of concern in finding an alternative to traditional
methods of diagnosis due to imprecision and inaccuracy. The fuzzy logic has made
identification and diagnosis process rapid, thus minimizing the intervention time and
treatment methods with greater accuracy. In fuzzy logic, type 2 logic systems and
type 2 Fuzzy-based methods are preferred since they offer the major advantage of
demonstrating a variety of outputs and provide a powerful framework for reasoning.
This chapter includes the study of type 2 fuzzy logic systems used for treating partic-
ular diseases and their role in the development of the medical diagnostic system. The
first aim broadly discusses how fuzzy logic has evolved over the years and its need in
different sectors. The second aim is to analyze the applications of type 2 fuzzy logic in
various branches and discusses recent developments that have occurred mainly in the
medical sector. The third aim is to include type 2 fuzzy systems that are used to treat
particular diseases paving the way to find further scope for further developments.
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1 Introduction

The word Fuzzy means inexact or imprecise. Fuzzy logic was first conceptualized by
Lofti A Zadeh in 1973. Fuzzy logic is a branch of artificial intelligence and a concept
with numbers where the true values of variables can be any real number between
0 and 1 [1]. In contrast to other traditional logical systems, Fuzzy logic provides
a mean to amend reasoning which is approximate rather than accurate, especially
human reasoning. It uses a logic and decision mechanism which has no boundaries
rather than binary logic (0 or 1) or human logic. From recognizing handwriting to
detecting cancer, fuzzy logic has simplified and improved effective methods. Any
system working on logic can be evaluated by fuzzy logic. Based on web applications
and interfaces (even in the absence of an expert) users can expect results from the
web applications which work on an inbuilt knowledge base. It can be concluded that
fuzzy logic can represent human intelligence, unlike Boolean or crisp logic [2].

Fuzzy logic systems manipulate membership functions (these are functions that
measure the degree of truth in fuzzy sets) which simulate variables with a rule-based
inference engine. In a fuzzy set, its elements are all mapped in between [0, 1] and are
characterized by membership functions. Fuzzy logic has two categories-T-1 and T-2.
Type-2 fuzzy logic (T-2 FL) was conceptualized in 1973. Type 1 fuzzy set (T-1 FS)
is employed to find the extent of achieving the features of the object, whereas Type-2
Fuzzy set (T-2 FS) cannot determine the extent of achieving the characteristics of
the object [3].

Type-2 fuzzy logic system (T-2 FLS) has uncertainty in its membership function
also. T-2 FL is an inference generalization of the conventional type 1 fuzzy logic
(T-1 FLS). Membership functions in T-2 FLS are T-2 FS’s. Knowledge utilized in
assembling rules for fuzzy logic systems is often uncertain. This uncertainty leads to
uncertainty in consequent membership functions, which cannot be operated by T-1
FS. T-2 FS’s are beneficial in deciding the exact membership function of fuzzy logic
sets, the membership grades of T-2 FS’s are T-1 FS’s [4].

Abbreviations

Denoted as Full form

T-1 FLS Type 1 Fuzzy Logic System

T-2 FLS Type 2 Fuzzy Logic System

T-1 FS Type 1 Fuzzy Set

T-2 FS Type 2 Fuzzy Set
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1.1 Fuzzy Logic Versus Boolean Logic System

Every output has a degree. A precise hypothesis is considered the limiting case of an
estimated hypothesis. Fuzzy logic is a concept that depends on the degrees of truth
and is based on possibility theorywhereas traditional logic systems likeBoolean logic
are dependent on true or false and probability theory. Here is an example comparing
fuzzy logic and Boolean logic.

Boolean/binary logic: The logic that generates a single value representing either 0
or 1; on or off; true or false; yes or no as output is called Boolean/binary logic.

In Boolean logic, truth is a result of reasoning obtained from inexact or partial
knowledge.

Fuzzy logic: It is a concept of partial truth ranging between completely true and
completely false.

In fuzzy logic truth is a result of recognizing, interpreting data and information
which is imprecise and non-numerical.

According to theAristotelian logic, either the person is perfectly all right (healthy)
or the person is not at all healthy (probably dead).

Let ‘p’ be the degree that reflects his/her health condition,
p = 1 (it denotes that person is healthy).
p = 0 (it denotes that he/she is not healthy at all and may be suffering from

terminal cancer).
The same matter when discussed using fuzzy logic, there comes another factor

that is to be taken into consideration ‘i’.
i.e., p + i = 1.
Here, ‘i’ denotes the degree of illness.
In extreme conditions, p = 0 and i = 1 (a person is not at all healthy).
For a small injury, p = 0.9999, and i = 0.0001.
Painful ulcer, p = 0.45 and i = 0.55.
Terminal cancer, p = 0.05 and i = 0.9.
This shows that Boolean Logic is a subset of Fuzzy Logic.

1.2 T-1 FLS Versus T-2 FLS

A T-2 FS is specified by a fuzzy membership function, i.e., the membership grade of
each element that belongs to the T-2 FS is a fuzzy set in the interval 0–1, whereas in
T-1 FS it is a crisp number in [0, 1]. Inmany circumstances that we come across in real
life, T-1 FS is examined as the first-order estimation whereas T-2 FS is examined as
the second-order estimation [5]. Uncertainty is only restricted to lingual parameters
in T-1 FL while in T-2 FL it is also present in membership functions (Fig. 1).

Comparative study onT-1 FLS and T-2 FLS [7].
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Fig. 1 T-1 and T-2 fuzzy logic systems [6]

(1) Classification accuracy and noise resistance

The noise resistance and accuracy of T-2 FLS are more advanced than that of T-1
FLS.

(B) Performance

Users are more satisfied with the outputs of the T-2 FLS than T-1 FLS due to its
highly accurate results in disease diagnosis.

(C) Handling uncertainties

T-2 FLS is more efficient in operating uncertainties and in the classification of
imprecision data compared to T-1 FLS.

(D) Prediction

T-2 FLSoverrules T-1 FLS in prediction as there aremore rules in T-2when compared
with T-1.
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1.3 Need for T-2 FLS

Digital transformation in all sectors all over the world is rapidly advancing with time.
There is a need for a logic system that deals with human uncertainties and predicts
risks sooner (be it in the medical field or industrial sector, or business). One such
intelligence that evaluates every logic-related system is Fuzzy logic. It works on an
extent of probabilities of inputs to produce a particular output.

Fuzzy logic acknowledges human emotions through conversion analysis. It
assigns truth values like true, partially true, likely, untrue, and very true to linguistic
variables leading to the desired fuzzy output. Since uncertainty is common in fields
such as medicine, fuzzy logic assumes such uncertainty using fuzzy set theory, and
other fuzzy methods derived from fuzzy set theory can be considered legitimate
objects to deal with such uncertainty. As fuzzy logic deals with uncertainties and
possibilities to obtain accurate conclusions, it helps in diagnosis, monitoring the
patient, and measuring the extent of the danger of diseases in medical applications.
To increase the diagnosis of a disease, T-2 FLS is much more capable than T-1
FLS when uncertainty modeling is used. Since T-2 FS has more parameters and the
membership degree of each element in sets will be a fuzzy set itself, uncertainties
are overseen (Table 1).

The applications of T-2 FL methods in the medical field are mentioned in Table 2.

2 Methodology of Diagnosing Disease Using T-2 FL

The Fuzzy logic is preferred when there are a lot of segments of information and
when they are disposed to scalar quantities. Figure 2 shows the approach to finding
the probability of disease using scalar quantities in the medical field [6].

Step 1: Selecting the Proper Fuzzy Method
Every method doesn’t suit a particular disease.
Ex-FES for Chronic kidney disease and spinal cord disorders are diagnosed by a
rule-based type-2 fuzzy system.
Step 2: Define and Model Disease
Analyzing the disease is the main step to knowing about the inputs to be given so
that we end up with the expected output.
Step 3: Assigning Input Variables
From step 2 we get to know the inputs to be used. In this step, symptoms of the
particular disease are given as inputs.
Step 4: Fuzzifying Input Value.
In this step, the input values are charted from 0 to 1 using input membership
functions.
Step 5: Executing Applicable Methods to Compute Fuzzy Output Functions



170 S. Rajendran et al.

Table 1 Applications of type 2 fuzzy logic in various fields [8]

Sl no. Fields Applications

1 Education field E-learning evaluation, academic progress of a student,
learning outcomes of a student

2 Wireless communications Decoding, estimating channel, channel equalization

3 Architecture Computes worth of housing locations on site of plan,
also gives us an outcome of most profitable to the least

4 Business, management field Computing, documentation reduces and save budget

5 Defense field The automatic target recognition was used by the
North Atlantic treaty of organization

6 Psychology Criminal investigation and analysis of human
behaviour

7 Security system The proper security system in trading

8 Finance field Used in fund management and to make predictions in
Stock market

9 Medical field Monitoring patients, diagnosis of diseases,
decision-making in radiotherapy, etc.

10 Manufacturing industry Enhancement of milk and its products (cheese, yogurt,
butter) manufacturing

11 Aerospace Altitude control in aircraft and satellites

12 Automotive and transportation Speed and acceleration control, braking of automotive
(Like train, bus, car), traffic control

13 Industrial field Applied in wastewater treatment, and activated sludge
treatment

Basedon the interactions between rule bases and inference engine fromknowledge
base output will be computed. The output of the T-2 FLS will be a T-2 FS which
will be type-reduced to type-1 by type-reduction.
Step 6: Defuzzifying the Output
Defuzzification is a process of finding a key number as an output i.e., it is used to
fetch the fuzzy results into a single number/crisp number. Type-reduced set will
be defuzzified into a crisp number (type-0).
Step 7: Producing Output
In this step, we get the disease as the output.

2.1 Type-2 Fuzzy Systems

The basic rules of inference continue to apply in any type-n fuzzy logic. The degree
of fuzziness increases as n in type-n increases. It changes the characteristics and
operations of membership functions but basic principles remain the same. The only
difference between concepts of T-1 and T-2 FL is in relation to the characteristics
of membership functions. The output sets of T-1 fuzzy systems are T-1 FS. Then
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Table 2 Applications of T-2 FLS in the medical field [9]

Sl no. Disease Diagnosis

1 Diabetes Utilizing statistical data and the framework of the T-2
fuzzy neural system blood glucose levels of the patient
can be controlled. The fuzzy inference was used for the
diagnostic program of diabetic patients by dynamical
dose analysis answers to glucose tolerance tests

2 Heart disease T-2 fuzzy expert system is used to diagnose a possible
heart disease for a patient. One of the applications is the
use of incomprehensible control of the artificial heart as
a whole. Maintaining sufficient organ filling by
controlling the pumping rate is the main function of the
artificial heart control system

3 Lung cancer Risk factors and symptoms of lung cancer are gathered
to generate rules of the fuzzy logic system and are
stored in the rule base. T-2 fuzzy inference engine fires
irrelevant rules and output is delivered as the probability
of disease

4 Leukemia T-2 FL is implemented in designing Fuzzy expert
system for treatment of lymphocytic leukaemia [10]

5 Bechterew’s disease T-2 fuzzy rule-based expert system is operated in
diagnosing Bechterew’s disease (a type of arthritis). T-2
FL manages the ambiguity related to lingual parameters
in the rules and indefinite numeric inputs in the whole
diagnosis process

6 Asthma T-2 fuzzy logic expert system is employed to check the
severity level in the diagnosis of asthma and chronic
stage pulmonary diseases

7 Depression T-2 fuzzy expert system is employed in the diagnosis of
depression as a demanding aspect in the treatment of
depression is to reduce time loss and increase accuracy

8 Malaria T-2 FLS builds its rules and sets the fuzzy logic
provisions from the data available and the same is used
in the diagnosis of malaria

9 Spinal cord disorders Hybrid rule-based T-2 FLS is utilized to supervise the
high variability of diagnosing chronic disorders and
severity

10 Paediatric The fuzzy logic is accustomed to analyzing the pattern
and interpretation of changes in the cardiotocograph
(pattern of foetal heart rate and uterine contractions)
during childbirth that may lead to inessential or lethal
medical intervention damage

11 Oncology The utility of the fuzzy logic concept in oncology has
been associated with the function of segregation
(discrimination of common tissue from cancer) and
treatment advice function

(continued)
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Table 2 (continued)

Sl no. Disease Diagnosis

12 Gerontology The fuzzy logic concept is used for clustering in
gerontology

13 Neurology Fuzzy logic and neural networks find their prime roles
in neurology. Such as signal and image processing,
clustering analysis, etc.

14 Radiation Diagnostic imaging and radiation therapy planning have
become very popular topics in this field that uses fuzzy
logic

15 Odontology A Fuzzy logic method called the Fuzzy expert system
helps to keep a record of dental radiographs and
automatic polishing of Cobalt chromium

16 Malignant tumor of the breast Fuzzy logic methods have a pre-diagnosed malignant
tumor of the breast (breast cancer) by extracting smears
of breast mass and sorting data with a sensitivity of
98.6% which is integral in the early treatment of such a
deadly disease

Fig. 2 Flowchart for
diagnosing disease using T-2
FL [6]
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Fig. 3 Type2 fuzzy system architecture [11]

Defuzzification is done to obtain output that must be a crisp illustrative of all the
integrated output sets. The output sets of T-2 fuzzy systems are-2 FS. A crisp number
is obtained as the product of a fuzzy system on the Defuzzification of T-1 whereas a
T-1 FS is obtained as an output of a fuzzy system on the Defuzzification of type-2.
This performance of type-2 Defuzzification is known as “type-reduction” and the
fuzzy set acquired at the output which is of type-1 is called the “type-reduced set”.
This type-reduced fuzzy set i.e., T-1 FS is again defuzzied to obtain a crisp number
as the product of the T-2 FLS [11] (Fig. 3).

2.2 Operations on T-2 FL

T-2 FS, Ãi (i = 1, 2…., r) have secondary membership functions as T-1 FS. Binary
operations of minimum and maximum, and the unary operation of negation, are
to be extended from crisp numbers to type-1 fuzzy sets to enumerate the union,
intersection, and complement of T-2 FS, as for each x, µÃi (x, u) is a function (where
µÃi(x) is a crisp number in the T-1 FS) [11]. Let the T-2 FS be Ã1 and Ã2, i.e.

Ã1 =
∫

x

µÃ1(x)/x (1)

Ã2 =
∫

x

µÃ2(x)/x (2)

The union of T-2 FS: Ã
The ∪ of Ã1 and Ã2 gives A T-2 FS.

Ã1 ∪ Ã2 =
∫

x

µÃ1∪Ã2
(x)/x (3)
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Typically, a union of two secondary membership activities is formed between all
potential pairs of primary membership. If one or more pairs of all potential pairs give
the same output (point), it means that the one with the highest membership rate is
taken [11].

The Intersection of T-2 FS.
The ∩ of Ã1 and Ã2 gives A T-2 FS.

Ã1 ∩ Ã2 =
∫

x

µÃ1∩Ã2
(x)/x (4)

The discrepancy between the two functions of secondary membership is made
between all potential pairs of primarymembership. If one ormore pairs of all potential
pairs give the same output (point), it means that the one with the highest membership
rate is taken [11].

Complement of T-2 FS.
The complement of set Ã gives a T-2 FS.

Ã
′ =

∫

x

µÃ
′
1(x)/x (5)

In Eq. (5) µÃ1 is a secondary membership function, that is, for every value of
x, µÃ1 is a function (contrary to T-1 case where, at every value of x, µÃ1is a point
value) [12].

3 Type Reduction

In T-1 FLS, the output relative to rules is a T-1 FS in space. The defuzzifier combines
all the type-1 output sets in certain ways to obtain a crisp output that represents the
combined output sets. For example, the centroid defuzzifier gives the centroid of the
fusion of all the output T-1 FS as the crisp output. InT-2 FLS, the result relative to
rules is a T-2 FS in space. The type-reducer in fuzzy system integrates the output
sets in different ways just as the T-1 defuzzifier and centroid computation results in
a T-1 FS which is called a “type-reduced set” [6].

3.1 Centroid Type Reduction

In the case of T-1 FLS, the centroid defuzzifier integrates all the output sets in T-1,
the centroid of this set will be crisp output. Let the combined output fuzzy set of all
output sets be B, the centroid defuzzifier is mentioned in Eq. (6).
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Fig. 4 Framework of type-2 reduction in healthcare [6]

yc(x) =
∑N

i=1 yiµB(yi)∑N
i=1 µB(yi)

(6)

where, the output set B is summed to N points.
The centroid type-reducer comes into play in combining output sets of T-2. It

integrates all the product sets of T-2 by computing their union. The expression for
the centroid type-reduced set is an elongation of the centroid defuzzifier of T-1 FS
(Eq. 6). The final expression of the type-reduced set is given in Eq. (7) (Fig. 4).

Ỹc(x) =
∫

�1 . . . . . . . . . . . .

∫
�N τ l=1

N µDi(�i)

∑N
i=1 yi�i∑N
i=1 θi

(7)

where {�1,……..,�N} are such that
∑N

i=1y i �i
∑N

j=1y j �j = y.

3.2 Height Type Reduction

In the case of T-1 FLS, the height defuzzifier restores each output of a T-1 FS with a
singleton set at the point where that output set has maximum membership and so the
centroid of all the output sets of T-1 comprising singletons is computed. The product
of a height defuzzifier is mentioned in Eq. (8).
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Yh(x) =
∑M

l=1 y
−1µB

(
y−1

)
∑M

l=1 µB
(
y−1

) (8)

When it comes to T-2 FLS, the height type-reducer supplants each output set of T-2
with a T-2 singleton set whose region features only one point, i.e., the membership
of which may be a type-1 set in [0, 1]. The expression obtained for the type-reduced
set within the T-2 FLS is an elongation of (8) which is given as (9).

Ỹh(x) =
∫

�1............

∫
�M τ l=1

M µD1(�1)

∑ M
l=1y

−1�1∑ M
l=1θ1

(9)

where {�1,……..,�M} are such that
∑M

l=1y
−1 �1

∑M
l=1/y

−1 �1 = y.

3.3 General and Interval T-2 FLS

A complex T-2 interval fuzzy set is a fuzzy set where the membership grade of
all domain points is a crisp set at any specified intervals set in [0, 1]. Interval T-2
FS require much simpler mathematics i.e., primarily interval arithmetic compared
to general T-2 FS. We use general T-2 or interval T-2 reckoning on the amount of
uncertainty and complexity [13].

Moderate uncertainty and non-critical problems: for instance, for classifying
flowers, IT2 fuzzy logic is usually recommended (Fig. 5).

Moderate uncertainty and critical problem: as an example, for medical applica-
tions, GT2 fuzzy logic is usually recommended.

High uncertainty in data: GT2 fuzzy logic is usually recommended.

Fig. 5 GT2 and IT2 FDS Behavior accuracy improvement versus uncertainty [13]
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4 T-2 FL Techniques in the Development of the Medical
Field

T-2 FL is highly suitable in the medical domain. Therefore, the results of the research
study vali-dated the effectiveness of the use of fuzzy meth-ods in the diagnosis
process, presenting new in-formation to researchers about the type of disease that
was the main focus. This will help determine the diagnostic features of the neglected
medical fields. In the medical field, these tasks have to be accomplished for getting
outputs on any input of medical data in any fuzzy logic system [14]. Outputs
of different fuzzy tasks i.e., Clustering, Ranking analysis, Pattern Recognition,
Classification, Fea-ture extraction, and Prediction are shown in Fig. 6.

Clustering: Clustering is an output of a set of data (containing all sorts of cells and
genes), where the data is grouped into different sets called clusters depending on the
properties of the cells and genes. All the cells in one cluster will be diagnosed as one
disease while different clusters are not related to each other.

Prediction: Prediction deals with analyzing data at present using techniques like
artificial intelligence and statistics to predict future complications. For example, the
type-2 fuzzy rule-based system has improved prediction accuracy to predict breast
cancer.

Pattern recognition: Recognizing regularities and patterns in a sample of data, so
that irrelevant patterns can be removed and the decision-making process is simplified.

Fig. 6 Outputs of different Fuzzy tasks [4]
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Classification: Classification accords with membership function which includes an
individual of a particular class (elements that have the same property).

Ranking analysis: Ranking analysis is about ranking alternatives from best to worst.
In the medical field, alternatives are criteria we include in the decision-making
process. For example, the health performance of the patient and the risk factor of the
disease.

4.1 T-2 Fuzzy Rule-Based System and Its Role in Diagnosis
of Spinal Cord Disorders

It is most commonly used fuzzy inference system for a variety of problems. The
framework of the T-2 fuzzy rule-based system is identical to that of the T-1 fuzzy
logic system.

Figure 7 explains the architecture of the T-2 fuzzy rule-based system.
It has four elements [15]:

(1) User interface.
(2) Knowledge base.
(3) Inference engine.
(4) Working memory.

Fig. 7 Architecture of fuzzy T-2 rule-based system [15]
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A rule-based system can either be a forward-chaining approach or a backward-
chaining approach. Initially, information is gathered from the data that we get from
study shreds of evidence and that information is stored in working memory. The
rules and parameters that are required by the information gathered are analyzed with
the material present in working memory. These rules are then analysed using an
inference engine so that we end up with fuzzy results. Using the user interface, the
fuzzy results could be depicted in different forms, most preferably the graphical user
interface [15].

1. User interface: This enables humans to interact with the expert system.
2. Fuzzifier: A set of crisp input given by the user is converted into fuzzy sets based

on inference rules from the knowledge base.
3. Knowledge base: To allow appropriate reasoning, it is necessary for any fuzzy

logic system to store the rules and relations of linguistic variables derived from
fuzzy set theory, so the knowledge base of FES represents this task.

4. Inference engine: The Inference engine is accountable for generating output
by sending the inference inputs from the fuzzifier to fuzzy input. It estimates
linguistic values to map them accordingly to fuzzy sets.

5. Defuzzifier: From a fuzzy output, realized using a decision-making algorithm,
it is converted into a single crisp value, understandable by a human.

Diagnosing spinal cord disorders—In themodern day, a good chunk of our popula-
tion faces problems related to our spinal cord. T2 rule-based system is used to handle
the high uncertainty of disease diagnosis and gives themost appropriate result. It uses
the method of forward and backward chaining for diagnosis, considering the most
common spinal cord disorders—spinal stenosis and disc herniation.

Figure 8 gives the framework of forward chaining phase. If the primary problem
of the patient is pain in the leg and the lower back or in the arm and neck, the system
activates the knowledge base of the module of disc herniation while if the primary
problem is a pain in both legs and both arms, the system activates the knowledge
base of the module of spinal stenosis. The knowledge base of each module consists
of the rules regarding the severity of pain in a specific location, the initial time of
pain, and the dependence of pain on certain conditions.

Figure 9 depicts the mechanism of the backward chaining phase. The system tries
to investigate some clinical symptoms to prove the primal diagnosis. The maximum
value among the two primal diagnoses specifies the direction to select the next
module. If the value of herniated disc disorder is maximum, the system activates
the module of the nerve root to assure itself of the diagnosis and recognizes the
compressed nerve root and the exact location of the abnormal disc.

4.2 T-2 Fuzzy Neural Systems

T-2 FLS inmedical fields oftenwant to set healthy lifestyles in patients by diagnosing
disease thoroughly and springing up with appropriate diet and medicine or treatment
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Fig. 8 Forward chaining phase [16]

Fig. 9 Backward chaining phase [16]

to be followed. Diagnosis of diabetes may well be done using T-2 fuzzy neural
systems. T-2 fuzzy neural network-based identification system uses two datasets in
diagnosing diabetes. T-2 fuzzy neural network is an integrated combination of the
T-2 fuzzy inference scheme and neural network structure. The accuracy of neural
network T-2 FLS can be increased by considering different fuzzy rules [17] (Fig. 10).

The first layer includes the input layer which distributes the signal. Layer 2
includes T-2 membership functions utilized in mentioning undetermined terms. The
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Fig. 10 Flowchart of neural network of T-2FLS used treating diabetes [17]

third layer includes the rule layer which consists of the fuzzy rule used for diagnosis.
The Fifth and sixth layers execute type reduction and defuzzification functions. The
inference engine is employed to seek out the crisp output that helps in diagnosing
diabetes [17].

Fuzzy Neural System Application to Diagnose Erythemato-Squamous Diseases

In dermatology, the differential diagnosis of erythemato-squamous diseases is chal-
lenging due to the main reason stating different classes of the disease share the clin-
ical features with very few differences. Therapeutically, patients are first assessed
with regard to 12 features, which include a degree of scaling and erythema; itching;
formation of papule; if lesion borders are present or absent; genealogicalchart; and
involvement of the oral mucosa, knees, elbows, and scalp, which are important symp-
toms in the differential diagnosis of Erythemato-squamous diseases. The fuzzy neural
system is advantageous in the aid of determining skin type, differential diagnosis,
and treatment decision-making [18].

Method of diagnosing Erythemato-squamous diseases.

Analysis of dataset

In dermatology, Erythemato-squamous disease diagnosis is a difficult mission
because all the six classes (pityriasisrubra, seborrheic dermatitis, psoriasis, lichen
planus, chronic dermatitis, and prosea) share almost common clinical features with
slight deviations. A patient with a specific disease may have the symptoms of another
disease at a very initial stage and characteristic features of the following stages, which
is another complication faced by dermatologists when accomplishing the differen-
tial diagnosis of these diseases. On analysing the samples under a microscope, the
histopathological featureswere deduced. The genealogical chart feature in the dataset
to be assembled may take the value ‘1’ if any of these diseases have been diagnosed
in the family and the value ‘0’ if none in the family is diagnosed. Age features can
be indicated by the patient’s age. All other features (clinical and histopathological)
can be attributed to values ranging from 0 to 3 (0 indicating absence of features; 1
and 2 indicating relative intermediate values; 3 indicating highest amount).
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Proposed Algorithm [Fuzzy Neural Network (FNN)]

Fuzzy logic architectures are utilized in solving several complexities, which include
categorization, identification, and detection. Among known convenient and easy
methods for mapping an input to the corresponding output, the easiest approach is
fuzzy logic. This mapping of input to output is attained using the if–then rule. Gener-
ally, linguistic terms are used to detail the values of variables in the fuzzy system.
A membership function in a fuzzy system characterizes each fuzzy value. Imple-
menting fuzzy logic reduces the complexity of data and handling of uncertainty and
imprecision. The FNN, a combination of fuzzy logic and Neural networks allows us
to map and design nonlinear systems. The dataset analysis obtained represents the
FNN classifier’s input signals. These input signals are again classified into six spec-
ified classes. The input signals of the system are evenly distributed in the first layer
of FNN. The second layer consists of membership functions describing linguistic
terms.

The nonlinearity and linearity approximated via fuzzy and neural network systems
has this structure:

yj = bj +
m∑
i=1

aijxi (10)

xi represents the input signals of system. yi represents the output signals of the
system. i = 1,…,m denotes the number of input signals while j = 1,…,r represents
the number of rules. bj and aij as the coefficient of the fuzzy set input. In the third
layer, the rule layer is mounted where number of nodes is made equal to number of
rules. The output signals of third layer are to be multiplied by the output signals of
the fourth layer inducing the fifth layer. The Fuzzy Neural Network output signals
enumerated in the sixth layer as shown below:

uk =
∑r

j=1 Wjkyj∑r
j=1 μj(x)

(11)

uk denotes the output signals of network system (k = 1,….,n).

4.3 T-2 Fuzzy Expert System

Expert systems require comprehensive data about a specific area and strategies to
solve problems. The Fuzzy expert system considers decision-making and problem-
solving despite uncertainty and imprecision. In the last decade, the fuzzy expert
system has found a vast number of advantages in the medical field as in the diagnosis
of child anemia, skin cancer, prostate cancer, brain tumor, breast cancer, cardio-
vascular diseases, hypertension, ovarian cancer, liver disorder, and more diseases
have been diagnosed accurately. Expertise is the principle behind FES, a vast body
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of detailed knowledge of diagnosing is fed from human to computer [9]. In any
system with high ambiguity, vagueness, and complexity, fuzzy logic is appropriate
for modelling. When T-1 is compared with T-2 FLS it is found that T-2 FS can
regulate the uncertainties efficiently because T-2 FS has more parameters. Figure 11
depicts the components of T-2 FLS.

The process of diagnosing a disease is always uncertain and complicated. The
decision about the disease is takenbasedon expert systemknowledge and thepatient’s
condition (Fig. 12).

Generally, a rule-based T-2 fuzzy expert system has three main modules:

(1) Knowledge base—This module contains all the rules and data that will be used
in diagnosing and decision-making.

(2) Inference engine—This module infers inputs based on the rules of the knowl-
edge base. This inference process is based on the adopted logic from the
knowledge base.

(3) Working memory—This module provides space for the temporary storage of
input data and rules that are used in the inference module. The three modules
communicate by the user interface to the user, the input is taken from the user
and final results are transmitted to the user by the user interface.

Diagnosis of leukaemia

The proposed system for diagnosis of leukaemia using T-2 FL includes two stages.

Stage-1 of the Proposed System

The first phase of the proposed system determines if the blood test is healthy or
sick considering the factors introduced for the disease by the expert system. In T-2

Fig. 11 A schematic diagram of diagnosing disease using fuzzy neural network [17]
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Fig. 12 Components of T-2 FLS [9]

fuzzy modeling of diagnosing leukaemia, platelets, white blood cell, red blood cells,
and haemoglobin are taken as system inputs. After that, the system is built using a
fuzzy c-means clustering algorithm (Allocating membership functions to each data
point matching to each cluster core based on the stretch joining the data point and
cluster core) for clustering of the blood test statistics. The proposed index is used
for determining new rules. Then, gradually T-1 fuzzy rule base is modified into an
interval T-2 rule-based system with unsettled standard deviation and a stable mean.
After the rules of the methods are determined, T-2 fuzzy output sets are type-reduced
and defuzzified to get the final result [9].

Stage-2 of the Proposed System

In the first stage, we obtain the result of the blood test. In the second stage, symptoms,
the period of disease until its improvement, and the output of stage one are combined
to obtain the final diagnosis of leukaemia. Following a direct approach for inference,
this stage works on expert knowledge. Based on physician knowledge, the marked
symptoms will occur in types of leukaemia. If the symptoms suddenly occur, the risk
of being diagnosed with ALL and AML will increase, whereas if symptoms occur
for a long time, the risk of CLL and CML will increase. The expert system predicts
the presence or absence of leukaemia. If a patient is diagnosed with leukaemia, the
proposed system determines the type of leukaemia from the knowledge base of the
expert system [9].

5 Future Scopes

Fuzzy logic systems have a wide range of scope to be developed especially in the
medical field. Intelligent systems and machine learning can be applied to achieve
parameters like sensitivity and specificity. T-2 FL can also perform tasks machine
learning cannot. Perfection of the models is very important, especially in the fields
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like the medical field where one cannot afford incorrect classification or false diag-
nosis [19]. The most common and huge challenge is to make it behave like a diag-
nostic specialist (like a real humandoctor). The accuracy of thesemodels is disputable
as they depend on various parameters such as the database used, and the number of
factors taken into consideration during patient isolation. When the best algorithm is
to be selected while extracting algorithms to their real-time applications, accuracy is
not the only parameter to be considered [19]. There has been research continuing on
general and interval-2 FLS. One of the future works in T-2 FLS is that the optimiza-
tion of the footprint of the uncertainty of interval T-2 and general T-2 fuzzy diagnosis
system can be fetched by a high-level optimization algorithm. Future study of T-2
has more to do with its design and applications.

6 Conclusions

Fuzzy logic plays an important role in drug industry design, disease management,
andmedical trials. Fuzzy set theory and all other theories improved from it developed
knowledge-based systems and decision-making inmedicine. The basic working of T-
2 FL and itsmethods involved in themedical domain brought ease and accuracy to the
field. This chapter formalizes different T-2 FLmethods concentrating on the medical
field and how it depicts its importance in different health monitoring equipment
and diagnosing diseases. These systems have formed an integral part of the medical
field from diagnosing disease to monitoring surgeries. T-2 fuzzy expert systems have
diagnosed leukaemia with an accuracy of 97% which makes it quite reliable. The
uncertainty in diagnosis, chiefly in cases where lingual terms are utilized, is run
efficiently by T-2 FLS. In the case of high uncertainty in data, GT2 fuzzy logic
systems are more accurate compared to IT2 fuzzy logic systems. [20]
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Type-2 Fuzzy Set Approach to Image
Analysis

K. Anitha and Debabrata Datta

Abstract Segmentation is an essential task in image analysis process. Due to non-
homogeneous intensities, blurred boundaries, noise and minimum of contrast it is
a challenging task for image analysists. It has wide range of applications in all
fields exclusively in the field medical imaging for disease deionization and early
detection. The root cause for non-homogeneous intensities is uncertainty. Various
tools have been introduced to handle uncertainty. We have introduced type-2 fuzzy
based image segmentation process for edge detection in blurred areas of an image.
When compared with classical fuzzy set, it has upper and lower membership values.
Since it has more membership values it can handle higher level of uncertainty. In
this chapter we have proposed equivalence function associated with strong negation
relation which will address each intensity It of an image I through the membership
values. This method is verified with thermographic breast cancer image data set and
the results were satisfactory.

Keywords Type-2 fuzzy set · Interval type-2 fuzzy set (IT2FS) · Footprint of
uncertainty (FoU) · Fuzzy image

1 Introduction

Image processing is the technique of converting low quality image into high quality
image based on certain algorithms for extracting optimal information. There are
two major classifications like analog and digital image processing. Analog process
handles only hard copies where as digital copies are used in digital image processing
techniques. This chapter deals about digital image processing based on type-2
fuzzy set. Classification of digital image, feature selection and extraction from an
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image,multi-scale signal analysis, pattern recognition, hiddenMarkovmodels, linear
filtering, image editing, image enhancement and image restoration are some of the
techniques used in this process. It has the following basic steps:

(i) Importing an image: In this process image can be imported with the help of
acquisition tools using single sensor, line sensor and array sensor.

(ii) Image enhancement: In this step image is being prepared for further
analyzation by doing noise removal, contrast adjustment and sharpening the
image.

(iii) Multi resolution and wavelets: Here images are converted in to various levels
or degrees of resolution which brings time frequency information about the
image.

(iv) Compression: Image compression helps to reduce the storage space.
(v) Segmentation: This process partitions the digital image into different segments

to identify the boundaries and location of object.

At last processed image is coded into the form of information or knowledge base
which is elaborated in (Fig. 1).

Medical image processing is one of the most innovative and useful techniques
in digital image analysation. In this process computer tomography (CT), Magnetic
Resonance Images (MRI), PositronEmissionTomography (PET),OpticalCoherence
Tomography,Ultrasound, Single PhotonEmissionComputedTomography (SPECT),
OpticalCoherenceTomography (OCT) andMammographic images are being consid-
ered (Fig. 2). It offers non-invasive technique to capture the structural information
about a patient or a group of people.

Computed tomography (CT) produced sinogram images which contains detailed
informationmore than the conventionalX-ray. PositronEmissionTomography (PET)
is the latest method which produces 3D images and it is especially used to study the
brain function. MRI is a powerful technique which concentrates on soft tissues and
it uses magnetic field to produce radio waves. It identifies the difference between
grey and white matter in the brain. Single-Photon Emission Computed Tomography

Fig. 1 Image transformation
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Fig. 2 Image modality

(SPECT) is generally used nuclear image processing through radioactive tracers
which analyses neurological disorders. All imaging paradigm takes pivotal role
in clinical applications like chemotherapy, radiotherapy, pathology, computer-aided
diagnosis and periodic monitoring of patients. Active contour process is one of the
image segmentation processes which fixes the boundary of an image with respect to
the area of interest.Contour gives smooth shape and closed region for the imagewhich
will enable the clinician to analyse the characteristics fromCT,MRI, Thermographic
images for early detection of diseases.

1.1 Soft Computing Approaches in Image Processing

Soft computing technique is the process of combining computational methods with
biological models. The main objective of soft computing techniques used in medical
imaging is to handle uncertainties in image data. Fuzzy logic, Genetic algorithm,
Rough set, Neural network and Artificial Intelligence are some of the soft computing
approaches. Chouhan et al. [5] reviewed various image processing techniques based
on soft computing especially fuzzy image processing and segmentation. Figure 3
illustrates various forms of soft computing techniques.

Prof. Zadeh [27] proposed the conceptualization of fuzzy logic in the year 1965.
It is a logical approach to handle uncertainty and vagueness with truth values in
between 0 and 1. It employs the partial truth through membership values. Gaussian
fuzzifier, Singleton fuzzifier are basic types in the process of fuzzification. Rough set
theory handles uncertainty through indiscernibility relation which was introduced
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Fig. 3 Soft computing approaches

by Pawlak in 1982. This theory classifies the objects based on boundary values
which is the difference between upper and lower approximation. Genetic algorithm
is a subset of evolutionary computation. It tries to find the optimal solution from
population of possible solution by doing replication process. This method is used
in image segmentation and image enhancement with spatial and frequency domain
method. But construction of objective function alongwith its operators is difficult and
time consuming. Also, this method fails to handle uncertainty. All above mentioned
concepts are lacking in handling uncertainty. Type 2 fuzzy set is the generalized form
of type 1 fuzzy set which handles uncertainty more than type 1 fuzzy.

Zadeh [27] constructed fuzzy set with operators in view of variables having
linguistic values used to approximate the reasoning. Existence of uncertainty in
signals are handled with the help of fuzzy logic [14]. Hagras [10] used fuzzy logic
controls in automated robots. Deep insights about type 2-fuzzy sets and systems
are discussed in [15, 16]. Ensafi and Tizhooash [8] developed partially dependent
approach of image enhancement through Type-2 fuzzy image processor using Type-2
fuzzy upper and lower membership values which are defined as follows:

μU PP(y) = μ(y)0.5

μLOW (y) = μ(y)2

whereμ(y) ∈ [0 1].
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Lesion features in coordination of maximum energy and radial distance by trained
ANN is introduced by Shan et al. [23]. Claudia proposedType-2 fuzzy logic based
edge detection algorithm to handle intrinsic uncertainty [9] along with simulated
results. Various soft computing techniques in bio medical imaging are analysed by
Devi et al. [7]. Castillo et al. [4] presented the survey about type 2 fuzzy image
processing applications in the aspects of image segmentation, edge detection and
filtering the image.Krinidis andChatzis [13] proposed active based contour algorithm
to detect an object from an image using curve evolution technique and concluded that
fuzzy energy based active contour is more efficient than conventional snakemethods.
Pereira and Bastos [22] proposed different types of edge detectionmodels. Xian et al.
[26] proposed fully automatic breast ultra sound image segmentation process and
introduced cost function to find global optimum. Castillo et al. [3] presented liter-
ature survey about various image processing techniques like segmenting an image,
filtering, classification and edge detection through type-1 fuzzy, type-2 fuzzy and
interval valued type 2 fuzzy sets. Mijares et al. [17] used CNN techniques and
demonstrated comparative results with other classification techniques for thermo-
gram image analysis. Jafar et al. [12] used RT2FNN network for image interpola-
tion. Murugeswari and Vijayalakshmi [18] introduced interval type-2 CNN method
for image classification. A distributed approach type-2 fuzzy logic algorithm was
proposed by Benchara [1] and it is implemented in MRI data set. Shikkenawis
and Mitra [24] proposed new membership function based on orthogonal basis for
improving the image quality of grayscale images. Idris and Ismail [11] proposed
fuzzy ID3 algorithm for breast cancer disease classification. They used fuzzy decision
tree for disease classification.

Preliminary concepts of type-2 fuzzy sets are demonstrated in Sects. 2 and 3
explains type-2 fuzzy image contouring process, Sect. 4 exhibit the proposed work
followed by experimental results and conclusion in Sects. 5 and 6.

2 Type 2 Fuzzy Set- Notation and Terminology

Definition 2.1 (Fuzzy Set) A fuzzy subset F of universe U is illustrated by its
membership function μF : U → [0, 1] which associates with each element u ∈ U,
a corresponding number μF (u) ∈ [0, 1] where μF (u) is graded membership value.
The set of all possible points ofUwith positive μF (u) values form support ofF and
its supremum value is known as height of F .

There are various reasons for existence of uncertainties in type 1 fuzzy sets.
When same word gives different meaning in different regions, decision is taken from
different people but rate of acceptance may be differed, uncertain and noisy. Model
cannot be constructed by type 1 fuzzy for the above uncertain cases. Type-2 fuzzy
able to overcome these uncertainty issues since it has three-dimensional membership
values. Zadeh introduced the concepts of type-2 fuzzy sets in Zadeh [27].
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Definition 2.2 (Type-2 Fuzzy set) (
�

F) Type-2 fuzzy set corresponds to type-2

membership function μ(

�

F)(x, u),x ∈ X,u ∈ Jx ⊆ [0, 1]. Hence (
�

F) is defined
by

(
�

F) =
{(

(x, u), μ(

�

F)(x, u)
)
|∀x ∈ X,∀u ∈ Jx ⊆ [0, 1]

}
(1)

where three-dimensional membership function μ(

�

F)(x, u) takes its range 0 ≤
μ(

�

F)(x, u) ≤ 1 and Jx primary membership of x,∀x ∈ X ,x = x ′, (u, μ(

�

F)
(
x′, u

)
)

denotes vertical slice of μ(

�

F)
(
x′, u

)
and it is denoted by

ℱ̌( ) = ∫ ′ ,

′ ( ) ≤ 1 (2)

Another way of representing (
�

F ) is

(
�

F) =
⎧⎨
⎩

∫ ∫
μ(

�

F)(x, u)/(x, u)Jx ⊆ [0, 1] → for continuous case∑
x∈X

∑
u∈Vx

μ(

�

F)(x, u)/(x, u)Jx ⊆ [0, 1] → for discrete case (3)

Here
˜

denotes union of all admissible u and x . The amplitude of secondary
membership function is known as secondary grade.

Example Let X = {1, 2, 3},Jx1 = {0.2, 0.3, 0.7},Jx2 = {0.4, 1},Jx3 =
{0.3, 0.4, 0.8}

After assigning grades for elements of Jx1 , Jx2 and Jx3 type-2 fuzzy set is defined
as follows

�

F = (0.5/0.2 + 1/0.3 + 0.5/0.7) + ((0.5/0.4 + 1/1)/2)

+ ((0.5/0.3 + 1/0.4 + 0.5/0.8/3)/3)

Definition 2.3 (Interval type-2 fuzzy set (IT2FS)) In type-2 fuzzy set the variable the

secondary variable u ∈ [0, 1], at each x ∈ X,∀u ∈ [0, 1], i f μ(

�

F)(x, u) = 1 then

(
�

F) is called IT2FS.

The secondary membership function is a vertical slice of μ(

�

F)(x, u) which is
defined by

μF
(
x = x ′, u

) =
∫

fx (u)/u where u ∈ Jx ⊆ [0, 1] (4)
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Definition 2.4 (Footprint of uncertainty) (FoU)The essential membership function

of (
�

F) contains uncertainty. Union of all primarymembership forms boundary region
of this uncertainty and it is known as footprint of uncertainty (FoU)

FoU
(
(

�

F)
)

=
⋃
x∈X

Jx (5)

FoU of IT2FS is defined by.

FoU (F) = ⋃
∀x∈X

[
μF (x), μF (x)

]
, where μF (x), μF (x) are upper and lower

membership functions associated with upper and lower bounds of FoU (F).

Definition 2.5 (Fuzzy Image) Let Imn is intensity of the image I in mnth pixel,
m = 1, 2, ..M;n = 1, 2, . . . N . If μmn its membership value then fuzzy image [8]
FI is defined as

FI =
¨ M,N

m,n=1,2...

μmn

Imn
(6)

Each grey level membership is calculated by

μ(Imn) = Imn − IMin

IMax − IMin
(7)

One of the most commonly used membership functions to fuzzify the image is
S − f unction,

μ(I(x, y)) = S(I(x, y); p, q, r)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 I (x, y) ≤ p
[I(x,y)−p]2

(q−p)(r−p) p ≤ I (x, y) ≤ q

1 − [I(x,y)−r ]2

(r−q)(r−a)
q ≤ I (x, y) ≤ r

1 I (x, y) ≥ r

. (8)

3 Type-2 Fuzzy on Image Contouring

The essential step in image processing is image segmentation which is still compli-
cated due to the noise, quality and uncertainty of several images. Active contour
model is one of the key techniques in image segmentation process. This model
moves with a curve or snakes which tracks the restricted characteristics of imposed
image to minimize the energy function. Type-2 fuzzy has more degrees of freedom
when compared with type1 fuzzy which offers to handle the possibility of more
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uncertainty. Various types of membership functions like Gaussian, trapezoidal and
triangular can be available for both type-2 fuzzy set and IT2FS. The following figures
represent membership function of IT2FS and type-2 fuzzy set (Figs. 4 and 5).

Lots of research is going on in the field of image segmentation process with
the help of IT2FS and general type-2 fuzzy set techniques. Dawoud [6] proposed
threshold method along with type 2 fuzzy measures and tested the effectiveness
with thermoscopic images. Nguyen et al. [19] et al. proposed novel genetic IT2
FCM clustering algorithm. In this algorithm chromosome pixels are divided into
two clusters which are act as mask for remaining channels and they used M-FISH
images for testing their algorithm. Palanivel and Duraisamy proposed fuzzy cluster-
based colour texture image segmentation method [20, 21]. In this method they used

Fig. 4 Interval valued Type-2 fuzzy-Gaussian-membership function

Fig. 5 Type-2 fuzzy-Gaussian-membership function
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ICICM method to extract harlick features and exhibited comparative results with
other conventional techniques.

Let K be the curvewhich emerges in the image domainQ, an image I compressed
in two regions then the energy function is demonstrated as [22]

MinE f (K , k1, k2,m) =μ length(K ) + γ1 ∫[m(x, y)]r |I(x, y) − k1|2dxdy
+ γ2 ∫[1 − m(x, y)]r |I(x, y) − k2|2dxdy (9)

k1 =
∫
[m(x, y)]rI(x, y)dxdy∫

[m(x, y)]r dxdy
(10)

k2 =
∫
[1 − m(x, y)]rI(x, y)dxdy∫

[1 − m(x, y)]r dxdy
(11)

wherem is themembership function, r weight exponent of fuzzymembership,μ ≥ 0,
fixed values k1, k2 > 0 then the membership of each pixel is calculated by

m(x, y) = 1

1 +
(

γ1(I(x,y)−k1)
2

γ2(I(x,y)−k2)
2

) 1
r−1

(12)

Length K =
∑

i, j

√(
Pi+1, j − Pi, j

)2 + (
Pi, j+1 − Pi, j

)2
(13)

where Pi, j = H [m(x, y) − 0.5], H—Heavyside function.
Various optimization techniques have been proposed to solve this objective

function.
The inner, outer and curve region of the image is defined as

SL =
⎧⎨
⎩

K ⇒ {(x, y) ∈ I|m(x, y) = 0.5}
inside(K ) ⇒ {(x, y) ∈ I|m(x, y) > 0.5}
outside(K ) ⇒ {(x, y) ∈ I|m(x, y) < 0.5}

(14)

4 Proposed Method by Type-2 Fuzzy Set

Let us defined the equivalence function ϕ : [0, 1]2 → [0, 1] with associated with
strong negation relation\. If θ1(x) = x, θ2(y) = y be automorphisms then

ϕ(x, y) = 1 − |x − y|with strong negation n(x) = 1 − x (15)

For type-2 fuzzy set the corresponding equivalence function is defined as
ζ : [0, 1] → [0.5, 1] such that
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⎧
⎨
⎩

ζ (x) = 1 i f x = 1
ζ (x) = 0.5 i f f 0 < x < 1
ζ (x) is an increasing function

Then for an image I, and each intensity of the set It the membership function is
given by

μIt (a) =
{

ζ [ϕ(a, db(t))], i f a ≤ t
ζ [ϕ(a, d0(t))] , i f a > t

(16)

db(t) =
∑t

a=0 an(a)∑t
a=0 n(a)

; d0(t) =
∑T−1

a=t+1 an(a)∑T−1
a=t+1 n(a)

(17)

where n(a)—number of pixels with intensity a
T [0, 1] ⊆ [0, 1], T−Set of all closed sub-intervals.
Now the corresponding S function (8) will be converted to

S(a, p, q, r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 a ≤ p

2
( a−p
a−r

)2
p ≤ a ≤ q

1 − 2
(
a−r
r−p

)2
q ≤ a ≤ r

1 a ≥ r

(18)

The proposed method has following steps.

(i) Import the image
(ii) Image contouring by (9)
(iii) Fuzzification of contoured image using S(a, p, q, r) in (18)
(iv) Evaluation of segmented result.

Evaluation process needs true positive (TP), similarity (SI) and false positive (FP).
Let.

SA be the objection region selected by proposed method, SR-real region of object
then error metrices are given by

⎧⎪⎨
⎪⎩

T P = |SA∩SR |
|SR |

FP = |SA∪SR−SR |
|SR |

SI = |SA∩SR |
|SA∪SR |

(19)
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5 Experimental Results

The data set provided by Silva et al. [25] and it can be downloaded from [2]. This set
contains 63 thermographic images in RGB, JPEG format with dimension 680 × 480
×3. Our proposed method give efficient result for different thermographic image and
results are displayed as follows. Image-j software is used for contouring process and
fuzzification process is taken place by MATLAB 2021b (Figs. 6, 7, 8, 9, 10 and 11).

Segmentation process done through boundary and region level.Goodnessmeasure
is used to evaluate the performance and the results are displayed as follows.

Average True Positive Value: 99.24%
Average False Positive Value: 19.35%
Similarity Index: 86.7

Accuracy:
TruePosi tive + TrueNegative

T ruePosi tive + TrueNegative + FalsePosi tive + FalsePosi tive

= 98.23%

Fig. 6 Input image-original
thermographic image

Fig. 7 Gaussian blur 3D
filter
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Fig. 8 Grey level graph

Fig. 9 Linear Regression graph of Filtered image

Fig. 10 Image contouring with RGB graph
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Fig. 11 Output of
fuzzification through type-2
fuzzy sets

This method gives maximum accuracy in the process of segmentation in both
boundary and region level.

6 Conclusion

We exhibited the mathematical concepts about type-2 fuzzy sets along with its prop-
erties. Applications of type-2 fuzzy set in image processing and its role in image
segmentation, edge detection are briefly discussed. Since Type-2 fuzzy set covers
maximum level of uncertainty it can handle uncertainty in various fields of decision
making. Experimental results shows that the proposed method give optimal result in
various forms image analysis process.

References

1. Benchara, F.Z., Youssfi, M.: A new distributed type-2 fuzzy logic method for efficient data
science models of medical informatics. Adv. Fuzzy Syst. (2020). https://doi.org/10.1155/2020/
6539123

2. Bottema, M.J., Slavotinek, J.P.: Detection and classification of lobular and DCIs microcalcifi-
cations in digital mammograms. Pattern Recogn. Lett. 24, 1209–1214 (2000)

3. Castillo, O., Sanchez, M.A., Gonzalez, C.I., Martinez, G.E.: Review of recent Type-2 fuzzy
image processing applications. Information 8(97), 1–18 (2017)

4. Castillo, O., Melin, P., Castro, J.R.: Computational Intelligence Software for Interval Type-2
Fuzzy Logic. Proceedings of the 2008 Workshop on Building Computational Intelligence and
Machine Learning Virtual Organizations, pp. 9–29 (2008)

https://doi.org/10.1155/2020/6539123


200 K. Anitha and D. Datta

5. Chouhan, S.S., Kaul, A., Singh, U.P.: Soft computing approaches for image segmentation-a
survey. Multimed Tools Appl. 77, 28483–28537 (2018)

6. Dawoud, A.: Segmentation of Dermoscopic images by the fusion of Type-2 fuzziness measure
in graph cuts image Binarization. Int. J. Imaging Robot 2(15), 73–87 (2015)

7. Devi,M., Singh, S., Tiwari, S., Patel, S.C., Ayana,M.T.: A survey of soft computing approaches
in biomedical imaging. Hindawi J. Healthcare Eng. 21, 2040–2295 (2021)

8. Ensafi, P., H.R., Tizhoosh, R.: Type-2 Fuzzy Image Enhancement. Springer, Berlin, Heidelberg,
LNCS 3656, pp. 159–166 (2005)

9. Gonzalez, C.I., Melin, P., Castillo, O.: Edge detection method based on general Type-2
fuzzy logic applied to colour images. Information 8(104), https://doi.org/10.3390/info8030104
(2017)

10. Hagras, H.A.: A Hierarchical Type-2 fuzzy logic control architecture for autonomous mobile
robots. IEEE Trans. Fuzzy Syst. 12, 524–539 (2004)

11. Idris, N.F., Ismail, M.A.: Breast cancer disease classification using fuzzy-ID3 algorithm with
FUZZYDBD method: automatic fuzzy database definition. Peer J. Comput. Sci., e427 (2021).
https://doi.org/10.7717/peerj-cs.427

12. Jafar, T., Chunwei, Z.,Ardashir,M.Z., Saleh,M.,MosaviAmir,H.:Medical image interpolation
using recurrent Type-2 Fuzzy neural network. Front. Neuro-Inf. 15(75) (2021)

13. Krinidis, S., Chatzis, V.: Fuzzy Energy-based active contours. Trans. Image Process. 18, 2747–
2755 (2009)

14. Mendel, J.M.: Uncertainty, fuzzy logic, and signal processing. Signal Process 80, 913–933
(2000)

15. Mendel, J.M.: Type-2 Fuzzy Sets and Systems—A Retrospective, pp. 523–532. Springer,
Berlin, Heidelberg. https://doi.org/10.1007/s00287-015-0927-4 (2015)

16. Mendel, J.M., Bob John, R.I.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2),
117–127 (2002)

17. Mijares, S.T., Woo, F., Flores, F.: Breast cancer identification via thermography image segmen-
tationwith a gradient vector flow and a convolutional neural network. J. Healthcare Eng. 98(19).
https://doi.org/10.1155/2019/980619 (2019)

18. Murugeswari, P., Vijayalakshmi, S.: New method of Interval type-2 fuzzy-based CNN for
image classification. Int. J. Fuzzy Logic Intell. Syst. 20, 336–345 (2020)

19. Nguyen, D.D., Ngo, L.T., Watada, J.: A genetic type-2 fuzzy C-means clustering approach to
M-FISH segmentation. J. Intell. Fuzzy Syst. 27, 3111–3122 (2014)

20. Palanivel, M., Duraisamy, M.: Adaptive color texture image segmentation using α-cut
implemented interval Type-2 Fuzzy C-Means. Res. J. Appl. Sci. 7, 258–265 (2012)

21. Palanivel,M.,Duraisamy,M.:Color textured image segmentation using ICICM-IntervalType-2
Fuzzy C-Means clustering hybrid approach. Eng. J. 16(5), 115–126 (2012)

22. Pereira, C.L., Bastos, C.A.C.M.: Tsang IngRen&GeorgeD.C.Cavalcanti: fuzzy active contour
models. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011), pp. 1621–1627
(2011)

23. Shan, J., Cheng, H.D., Wang, Y.: Completely automated segmentation approach for breast
ultrasound images using multiple-domain features. Ultrasound Med. Biol. 38(2), 262–275
(2012)

24. Shikkenawis, G., Mitra, S.K.: Image denoising using 2D orthogonal locality preserving
discriminant projection. J. IET Image Process. 14(3), 554–560 (2019)

25. Silva, L.F., Saade, D.C.M., Sequeiros, G.O.: A new database for breast research with infrared
image. J. Med. Imaging Health Inf. 4(1), 92–100 (2014)

26. Xian, M., Zhang, Y., Cheng, H.D.: Fully automatic segmentation of breast ultrasound images
based on breast characteristics in space and frequency domains. PatternRecogn. 48(2), 485–497
(2015)

27. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

https://doi.org/10.3390/info8030104
https://doi.org/10.7717/peerj-cs.427
https://doi.org/10.1007/s00287-015-0927-4
https://doi.org/10.1155/2019/980619


Non-iterative Wagner-Hagras General
Type-2 Mamdani Singleton Fuzzy Logic
System Optimized by Central Composite
Design in Quality Assurance by Image
Processing

Pascual Noradino Montes Dorantes and Gerardo Maximiliano Mendez

Abstract This paper presents the implementation of a non-iterative General Type-
2 (GT2) Fuzzy Logic System (FLS) in quality assurance by image processing
using Mamdani singleton model based on Wagner-Hagras (WH) algorithm. The
antecedents and consequents are modelled and remain fixed. The modelling of the
rule base uses the Central Composite Design (CCD) model to create a classifier in
an industrial quality area. Results show that the implementation of the WHGT2FLS
model provides very close or better results with a few alpha-cut versus an Interval
Type-2 model (IT-2) FLS system depending on the type of membership function
selected for the system.

Keywords General type-2 · GT2 FLS · Fuzzy logic · Quality assurance · Artificial
vision quality assurance · Non-contact measurement

1 Introduction

1.1 GT-2 Literature

The GT2 models show slow development due to various challenges as mentioned by
different authors [1–15]. The existing literature presents theoretical or experimental
proposals and as ismentioned byMendel in [1] theGT2 technology is in their infancy.
The challenges that must be faced are listed in (Table 1) and due to these challenges,
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Table 1 Implementation
challenges of GT2 model

Challenge References

Difficult to implement [2]

Information are non-functional [3]

Information is un useful [3]

Information not needed [3]

Complex learning process [5–9]

Hard computation [5, 8, 9, 11–13]

Defuzzification very complex [5, 13, 14]

Exhaustive computational time [5, 8, 9, 11–13]

Impractical to usage [5]

Method iterative and algorithmic [15]

Determination of the number of alpha planes [11]

the development of GT2 applications is not widely documented in the literature as
corroborated by [7, 15, 16].

Mendel in [1] recommends the use of optimization models to generate the neces-
sary parameters iteratively until an acceptable performance of the system is obtained.
In contrast, several authors [5, 8, 9, 11–13, 17] mention that the GT2 models do not
require to be tuned because, they do not reflect the uncertainties of the real world.

On one hand, Melin and Castillo [2] mention that GT2 systems are too much
difficult to implement and difficult to use. On the other hand, Gilan et al. [3] and
Salehi et al. [5]mentions that the third dimension information is unnecessary, useless,
impractical, and non-functional.

The GT2 systems, have a complex learning process as mentioned by [5–9]; their
computationally time is expensive [5, 8, 9, 11–13]. The GT2 system defuzzification
is very complex [4, 13, 14] and theGT2 system is iterative [15]. Due to the challenges
mentioned in previous paragraphs, the applications of the GT2 systems are mostly
theoretical or experimental as is shown in Table 2.

To detect and group repetitive information the GT2 model is used in [4], a clas-
sification system is presented in [5], while a model to regulate glucose levels is
presented in [7]. A diagnosis of depression is generated by GT2 model in [8]. To
approximate unknown nonlinear complex functions [9] uses the GT2 model, in [11]
is established an experimental application to compare the cost of the implementation
of the system based on the number of alpha planes used on GT2 system. A classifier
to medical issues is developed in [12], to generate the inspection a GT2 hybrid model
to clustering is presented in [14], in [15] is used the GT2 to regulate the traffic in a
crossroad.

Classification for medical diagnosis is presented in [16], while [17] uses the
GT2 to manage domestic appliances. In [18] is presented an application to regulate
the voltage and to improve and to handle disturbances in a power system via GT2
model, in [19] is presented a model to regulate the frequency in micro-grids. Pattern
recognition and clustering are generated in [20] by c-means algorithm. A model



Non-Iterative Wagner-Hagras General Type-2 … 203

Table 2 Brief Survey of GT2
applications in the literature

Authors Type

Theoretical Experimental Application

[18] X X Power systems

[19] X X AC micro grids

[20] X X Clustering

[21] X Glucose level regulation

[22] X Traffic scheduling

[23] X Medical diagnosis

[5] X X Classification

[4] X X Clustering

[11] X X Comparing

[24] X X Classifier

[25] X X Inspection

[26] X X Classification

[27] X X Control, Medical issue

[9] X X Regulation

[28] X X Classification

[17] X X Domestic appliances

[14] X X Clustering

[29] X X Medical diagnosis

[30] X X Tuning

to regulate the anesthesia is generated in [27], in [28] is used the GT2 to classify
customers. Medical diagnosis is proposed in [29] using GT2, finally in [30] GT2 is
used for tuning the system.

Various optimization models have been used to try to implement and optimize
GT2 systems such as: Ordered Weighted Averaging (OWA) in [5], [6] uses data-
driven, Kalman filters [8], Artificial Neural Networks (ANN) in [9], Least Square
Estimator (LSE) [10], in [14] is used a hybrid ANN to optimize clustering, Recur-
sive Least Squares (RLS) [14, 30], Least Squares (LS) in [16], Teaching Learning
Based Optimization (TLBO) in [18], a hybrid differential evolution algorithm,
Biogeography-Based Optimization (BBO) [21], searching algorithms [31], Particle
Swarm Optimization (PSO) in [14, 26, 32], Gradient-based method [32].

The main contribution of this work is the implementation of GT2 model in real
world process.
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1.2 Problems on Image Acquisition and Processing

Due to the problems generated in the acquisition and processing of digital images
such as: Variations produced by the camera, the shape of the lens of the camera which
produces variations on image [33]provides an online application. Using this appli-
cation could be obtained an sketch that shows the defects in the lens and variations
in the form of them.

Variations in the image as: The spatial position of the capture device, this posi-
tion causes distortions on the size of the sample that appears in the picture, this
phenomenon is called parallax [34] and cause changes in the dimension of the sample.

By the geometry of the object, the parallax changes the spatial positioning of the
object in a 3D environment [35] and produces perspective that derives on changes of
shape and dimension. The position of an edge of the object at the border of a pixel
causes loss of information or addition of it. e.g. Demant et al. [36] mentions, that is
necessary at least a width of 570 pixels to identify a bar code to obtain at least five
pixels for every thin line due to degradation in the filtering and segmentation phases
but, only with this condition, the identification is accomplished. The conformation
of the sensor, e.g. A charged couple device having several constraints as: The sensor
the field of view is very close to the 570 pixels, the loss of information in data
transmission is 10%, approximately. With this condition only have 523 pixels and
the identification of a bar code cannot be made as mention [36].

The fact of the pixel form are non-square; the thermal excitation of the neighbor
pixels in the sensor due to the charge of the photon. Other factors are, the exposition
time regulated by the F number [37]. Exists some perturbations caused by the envi-
ronmental conditions that produce a variation in the measurement data in an amount
near to a one standard deviation as is mentioned by the National Institute of Stan-
dards and Technology (NIST), [38]. These conditions produce corrupted data and
their values are increased or decreased due to the displacement of the Membership
Function (MF’s) in the FLS to the left or to the right due to the uncertainty [39].

2 Materials and Methods

2.1 Type-2 Fuzzy System

A type-2 fuzzy model also called IT-2 is based in a couple of Type-1 Fuzzy Sets (T1
FS) depicted on (Fig. 1) due to the uncertainty the IT-2 is delimited in an interval
delimited by two T1 FS (Fig. 2) [1].

A type-2 fuzzy set is represented by Ã and presented in (1) that shows the union
of all membership functions μ Ã(x, u) in a continuous universe restricted to (2).

Ã = {
(x, u),

(
μ Ã(x, u)

)|∀x ∈ X,∀u ∈ Jx ⊆ [0, 1]
}

(1)
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Fig. 1 Type-1 fuzzy set

Fig. 2 Type-2 fuzzy set

0 ≤ μ Ã(x, u) ≤ 1 (2)

Every value of x’ q shown in Fig. 2 is represented in a plane on (z, y) axiswith upper
and lower limits. Those limits are called secondary membership function depicted
in Fig. 3. The upper and lower limits are commonly called in literature left and right
membership grades.

Fig. 3 Secondary membership function on IT-2 model
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Equal to the Type-1 Fuzzy Logic System (T1 FLS) the IT-2 FLS depends on a
rule base in the form (3) with xn inputs and one output for T1 SFLS in the IT-2 FLS
model the rule changes and have two values at every input denoted by Ãi

n and two
values at every output given by G̃i and taken the form (4).

Ri : I F x1 is A
i
1 and x2is A

i
2 and . . . and Ai

n T HEN y is Gi (3)

R̃i : I F x1 is Ã
i
1 and xp=2 is Ã

i
2 T HEN y is G̃i (4)

2.2 General Type -2 (GT-2)

For this case, the secondary MF’s changes and acquire the shape of a T1 FS (Fig. 1).
The GT-2 secondaryMF’s are depicted in (Fig. 4) in there are enclosed all alpha-cuts
or alpha planes that conforms an Interval type-2.

The primary membership functions are given by (5). And are used the Center of
Sets (COS) type reducer to obtain the values of the consequents named: cil and cir ,

μa(x) = exp

[

−1

2

[
xi − xi

σxi

]2
]

(5)

where: μa(x) is the membership function value of the variable xi , xi is the mean of
the fuzzy set and σxi is the dispersion of the fuzzy set.

The alpha planes are called Ãα whose grades are at least equal to alpha or grater
and α ∈ [0, 1]. The depiction of an alpha plane is presented in (Fig. 5). Then, the
fuzzy set GT-2 type is given by (6) and denoted by Ãα ,

Fig. 4 Secondary membership function on GT2 model
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Fig. 5 Alpha plane (y, z axis) secondary membership function of GT2 model

Ãα = {
(x, u), μ Ã(x, u) ≥ α|x ∈ X, u ∈ [0, 1]} (6)

where:

aα(x) = Lower Membership Function ( Ãα) (7)

bα(x) = Upper Membership Function ( Ãα) (8)

The alpha plane, alpha cut or horizontal slice in the axis (y, z) is defined by (9)
and depicted in (Fig. 6).

RÃα
= α/ Ãα (9)

In the IT-2 models is required a type reduction that converts the type-2 output
to type-1 output obtaining a crisp output instead of an interval. In this proposal, the
type-reduction is performed by the COS method (9) as is mentioned by Mendel in
[1] in the Wagner-Hagras method.

Fig. 6 Alpha plane or horizontal slice on y, z-axis of secondarymembership function of GT2model
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YCOS = 1

[ycosl

(
x ′)

, ycosr

(
x ′)] (10)

And the upper and lower membership values are obtained by (11, 12).

ycosl

(
x

′) =
∑L

i=1 cl
(
G̃i

)
f
i(
x

′) + ∑L
i=1 cl

(
G̃i

)
f i

(
x

′)

∑L
i=1 f

i(
x ′) + ∑L

i=1 f i
(
x ′) (11)

ycosr

(
x

′) =
∑R

i=1 cr
(
G̃i

)
f
i(
x

′) + ∑R
i=1 cr

(
G̃i

)
f i

(
x

′)

∑R
i=1 f

i(
x ′) + ∑R

i=1 f i
(
x ′) (12)

2.3 Interval Type-2 Singleton Fuzzy Logic System (IT2
SFLS)/CCD Model

The IT2 SFLS/CCD requires a correlation matrix (13) of the input variable (xi ), the
additional parameter σxi is calculated the IT2 SFLS rule base [40],

Nk (13)

where:N represents the variables and k represents the possible states of every variable
in the control limits.

The upper and lower limits are produced by arithmetical calculus as is presented
in (14) and (15), their consequents are given by (16) and (17). Then the matrix to
conform rule base for the IT-2 is represented by (18).

N = xi − σxi (14)

N = xi + σxi (15)

y = yi − σyi (16)

y = yi + σyi (17)

Rb =

⎡

⎢⎢⎢
⎣

a
a
A
A

a
a

A
A

b
B
b
B

b
B

b
B

y1
yb
ya
yab

y1
yb

ya
yab

⎤

⎥⎥⎥
⎦

(18)
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For i = 1, a, b, ab.
Where: Rb represents the fuzzy rule base matrix, a represents the lower limit of

the IT-2 for the variable a, the upper limit of the IT-2 for the variable a is obtained by
a in the LCLa. A represents the lower limit of the IT-2 for the variable a, the upper
limit for the IT-2 for the variable a is obtained by A in the UCLa, b represents the
lower limit of the IT-2 for the variable b, the upper limit of the IT2 for the variable b
is obtained by b in the LCLb, B represents the lower limit of the IT-2 for the variable
b, the upper limit of the IT-2 for the variable b is obtained by B in the UCLb. The
interval for the output response is obtained byYi ,Y i . Those values represent the lower
and upper output or response for a specific pair of states (a, b, ab, 1) or treatments
of the inputs.

The Eqs. (14–17), presents the basis to obtain the antecedents of the rule base for
GT-2 mode given by (19–22),

m1 = a = a − σa (19)

m2 = a = a + σa (20)

y
i
= y − σy (21)

yi = y + σy (22)

where: m1 represents the lowest value function, m2 represents the upper value func-
tion, a represents the lower limit of the variable a, the upper limit of a is obtained by
a, b represents the lower limit of the variable b, the upper limit of b is obtained by
b, the interval for the output response is obtained byY1,Y 1. Those values represent
the lower and upper output or response for a specific pair of states or treatments of
the inputs.

3 Theory and Calculation

3.1 Proposal

The model of GT2 system is so similar to the IT-2 model, then; a type 2 rule base
could be used to develop a GT2 system. The model presented in [40] serves as a
basis to implement a more flexible model as the WH algorithm [1]. To create a GT2
model is required a combination of the data presented in [41] and presented on Table
3 with there, are obtained the values for the rule base (Table 4) in the type-1 singleton
model. Using (14–22) are obtained an IT-2 rule base to generate the antecedents and
consequents for the GT2 WH model (Tables 5, 6 and 7).
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Table 3 Data mining from industrial process image database used for CCD

Samples X1 X2 Goal

1 208 139 0.6

2 214 141 3.6

3 218 135 1.2

4 218 142 5.4

5 210 142 3

6 209 141 2.1

7 205 137 −1.5

8 218 143 6

9 206 141 1.2

10 211 146 5.7

11 211 147 6.3

12 208 143 3

13 207 145 3.9

Table 4 Rule base for Factorial design/2 k/ CCD model

Parameter Left lower limits Right lower limits Left upper limits Right upper limits

X2 198 218 198 218

Y −6 0 0 6

Table 5 Antecedents of first
variable, x1

L R σ

1 130 136 3.3

2 140 146 3.3

Table 6 Antecedents
of second variable, x2

L R σ

1 193 213 6.6

2 203 223 6.6

Table 7 Consequents for
four rules

Rule cl cr

1 −8 −4

2 −2 2

3 −2 2

4 4 8
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Assemble of the proposed systems consists in a singleton Gaussian fuzzifier (5),
product t-norm (23) from [1] and COS type reduction (10) to final output and (11,
12) to generate interval output left and right. Also use four alpha planes to emulate
the [1] example,

μA∩B(x) = [μA(x) ∗ μB(x)] (23)

where: μA(x),μB(x) represents the membership of Xi respectively at their fuzzy set
Xi, T represents any t-norm, both μA(x),μB(x) yields (5).

4 Results

Are used 10 pairs to test the GT2 WH model, the targets are obtained from Table 3.
The results obtained for one sample with a non-trained model are shown in Table 8.
The Root Mean Square Error (RMSE) was used as indicator to show the precision
of the GT2 system with different number of alpha cuts to see their performance in
different scenarios (Table 9). In Fig. 7 can be seen that the triangular membership
functions shown better values contrasted with GaussianMF’s and the best results are
obtained with more than one alpha cut. In contrast, when the results are placed in
millimeters, the best results are obtained using the Gaussian MF’s and are better in
a value near to 25% (Table 10 and Fig. 8).

Table 8 Estimated output, non-trained model. One input–output data pair

0 α-cut = IT2 = TISFLS 4 α-cuts 10 α-cut

T1 SFLS Gaussian 0.66127478 – –

IT2 Gaussian 0.441 – –

WH COS Gaussian 0.4660502 0.460

T1 SFLS Triangular 0.6

IT2 Triangular 0.675

WH COS Triangular 0.272 0.130

Table 9 RMSE in prediction (in sigmas)

0 α-cut = IT2 =
TISFLS

GT2 1 α-cuts GT2 4 α-cuts GT2 10 α-cut

IT2 Gaussian 1.12

WH COS Gaussian 1.375 1.33 1.42

IT2 Triangular 0.878

WH COS Triangular 1.05 0.803 1.129



212 P. N. M. Dorantes and G. M. Méndez

Fig. 7 RMSE of prediction evaluation in sigmas

Table 10 RMSE in prediction (in millimeters)

0 α-cut = IT2 =
TISFLS

GT2 1 α-cuts GT2 4 α-cuts GT2 10 α-cut

IT2
Gaussian

1.68

WH COS
Gaussian

2.39 1.99 2.13

IT2
Triangular

2.63

WH COS
Triangular

3.15 2.4 3.38

Fig. 8 RMSE of prediction evaluation in millimeters

On Fig. 9 are shown the tolerance zone for the industrial process delimited in
±5 mm demonstrating that the non-contact quality assurance process based on
artificial vision is an excellent option to evaluate online the quality of the goods.
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Fig. 9 Quality control process chart. Tolerance zone defined by ±3σ and RMSE of prediction
evaluation in millimeters

5 Discussion

As is mentioned in several papers, was proved that in some applications the precision
of the model does not depend directly on the training phase. The precision depends
on the mayor part in the modeling phase [40–44].

Actually, in all process exists a tolerance as is mentioned by international organi-
zations as International StandardOrganization (ISO) [45], NIST [46] and the Interna-
tional Bureau of Weights and pounds (BIMP) [45]. These tolerances are commonly
used in the control charts for statistical process control.

The results shown in the previous section provide accurate values without
worrying the problems shown in Sect. 1.2 that are generated in the acquisition and
processing phase of the images.

All values are placed into the two sigma of specification. That means that the
measurement accomplishes the accepted product criteria and themethod testedworks
with accuracy.

6 Conclusions

The most remarkable fact, in this application is that it can be used online to test
and evaluate quality features in a production process with an acceptable confidence.
In Fig. 9 where can see that the obtained predictions of quality features are in the
tolerance zone marked in the industrial control process delimited by ±sigma.

The error obtained in the measurements are below 1.5 sigma and is remarkable
that the images used for the test has to low resolution (640 × 480 pixels), with
high resolution the error are reduced and this is part of the future work. That means
that these classes of systems are an excellent opportunity to evaluate online quality
features.
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Type-2 Neutrosophic Fuzzy Bimatrix
Games Based on a New Distance Measure

Shuvasree Karmakar and Mijanur Rahaman Seikh

Abstract In reality, multiple sources of information, a large volume of data, and
different parameters encourage us to discuss bimatrix game problems with the type-2
fuzzy backdrop. Further, to apprehend the data in terms of three kinds of membership
values: truth, indeterminacy, and falsity, in the present investigation, we aspire to
depict bimatrix games with payoffs of the type-2 neutrosophic fuzzy set (T2NFS).
To do this, we define the Euclidean distance measure of T2NFSs. We describe an
aggregation operator of T2NFSs to aggregate information in terms of T2NFS. Then
based on the proposed distance,we also define a similaritymeasure of T2NFSs. Later,
we solve the bimatrix game utilizing the proposed similarity measure of T2NFSs.
Finally, we justify the establishedmodel by offering a real-world problem tomitigate
environmental pollution.

Keywords Type-2 neutrosophic fuzzy set · Algebraic operator · Normalized
Euclidean distance · Similarity measure · Bimatrix games · Pollution mitigating
problem

1 Introduction

Nash [15] presented the bimatrix game as a unique tool to design competitive prob-
lems in the non-cooperative game theory. Initially, the game theorists considered
numeric values for the payoffs of a bi-matrix game. Later, considering the insuf-
ficiency in the information, bimatrix games experienced their extensions in fuzzy
background. Recently, numerous initiatives took place in the fuzzy bimatrix games
[11, 25]. Li and Li [9] formulated bimatrix games taking fuzzy entities in the credi-
bility space. With a mean-area-based ranking of the intuitionistic fuzzy sets (IFSs),
An et al. [1] performed a method with a non-linear programming problem (NLPP)
for solving bimatrix games. Brikaa et al. [3] conceived a tourism planning strategy
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model in the light of the rough interval bimatrix game. Li and Tu [12] executed a
solution methodology for solving IF bimatrix games. Using the concept of the pro-
portion mix of the possibility and necessity expectation, Khan and Mehra [8] solved
bimatrix games with IF payoffs. To solve bimatrix games with trapezoidal IF num-
bers Li and Yang [10] used a difference-based ranking approach. Yang et al. [24]
used NLPP approach to resolve bimatrix games with IF backdrops. Furthermore,
IFSs emerged in the bimatrix games by numerous researchers [14, 20, 21] in several
ways. Karmakar and Seikh [7] developed dense NLPP for solving bimatrix games
having dense fuzzy payoffs. Bhaumik et al. [2] developed a neutrosophic bimatrix
game depend on (α, β, γ )−cut sets.

Reality allows decision-makers to depict their decisions in the shape of the type-2
fuzzy sets (T2FSs). T2FS is efficient in sketching out the exact membership value
of the intake information due to the deficiency of intentness, time, etc. Furthermore,
occasionally, due to impreciseness, inconsistency, and incomplete information, the
membership value of the intake data experiences variation. In that case, we have
three kinds of membership values: truth, indeterminacy, and falsity. Moreover, in
some cases, due to the large volume of data and multiple sources of information, a
two-dimensional fuzzy set is not enough to portray the situation. In 2020, Karaasalan
and Hunu [5] introduced the notion of type-2 neutrosophic fuzzy sets (T2NFSs) with
few of its properties to cover this gap. Karaasalan and Hunu [5] applied it to solve a
multi-attribute decisionmaking (MADM) problem. Ozlu andKaraslan [17] executed
a hybrid similarity measure of T2NFSs and used it to solve multi-criteria decision
making (MCDM) problems.

In the recent past, few works have been developed in the theory of matrix games
with type-2 fuzzy backdrops. Roy andBhaumik [18] analyzed thewatermanagement
problem in the light of type-2 intuitionistic fuzzy matrix games. Karmakar et al. [6]
defined a Minkowski distance and similarity measures of type-2 intuitionistic fuzzy
sets based on the Hausdorff metric and justified its applicability to the matrix game.
Seikh et al. [22] developed a new defuzzification method for type-2 fuzzy variables
and utilizing this method they solved thematrix game problemwith payoffs of type-2
fuzzy variables. Roy and Maiti [19] proposed a different kind of reduction method
of type-2 fuzzy variable and used it to solve Stackelberg games.

In reality, due to the lack of complete precise information, extensive sources of
information, etc., decision-makers (or the players for a game) fail to assess their
payoffs in terms of type-1 fuzzy sets. In this chapter, we portray a bimatrix game
with T2NF background to cope with such a situation. To the best of our knowledge,
this is the first attempt to discuss a bimatrix game in the T2NF environment. We
execute a quadratic type-2 neutrosophic fuzzy programming problem to solve the
game. But, it’s a tedious job to handle such a programming problem with T2NFSs.
We define algebraic operators of T2NFSs to aggregate the intake information. We
also represent the normalized Euclidean distance of T2FNSs, and in that context, we
define a similarity index of T2NFSs. Rather than the traditional way of solving, we
extend the notion of the composite relative degree of similarity to the positive ideal
solution in the T2NF scenario and solve the bimatrix game.We illustrate a problem to
alleviate environmental pollution to justify the applicability of the presented model.
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The contributions of the present chapter are as follows.
– The present chapter explores the solution methodology for a bimatrix game with
T2NF payoffs considering the truth, indeterminacy, and falsity of the imprecise
information. This is the first attempt in the bimatrix game theory considering type-2
fuzzy neutrosophic payoffs.

– Despite the traditional method, we develop the solution using the concept of play-
ers’ best choice towards the information. This method helps us to avoid the loss
of information which generally occurs during type reduction.

Wedesign the restof thechapter in the followingmanner.Werecallbasicdefinitions
associated with T2FNSs in Sect. 2. Section3 defines algebraic operations on T2NFSs
to aggregate the information. Section4 proposed the normalized Euclidean distance
measure and a similarity index ofT2NFSs,which helpsmake a ranking order ofT2NF
information. Section5 establishes a bimatrix game model in the T2NF scenario and
its solution approach. To justify the applicability of the proposedmethodology, Sect. 6
presents a real-world application. Finally, Sect. 7 concludes the discussion.

2 Preliminaries

Here, we recall some definitions to establish the subsequent discussion.

Definition 1 NFS ([23]) Let N be a non-empty set. A set Ã = {〈x, τA(x),
ιA(x), ξA(x)〉 : x ∈ N } is called a neutrosophic fuzzy set or NFS where τA(x), ιA(x)
and ξA(x) takes values from the interval [0, 1] and 0 ≤ τA(x) + ιA(x) + ξA(x)〉.
τA(x), ιA(x) and ξA(x) are termed as the truth, indeterminacy and falsity member-
ship values, respectively.

Definition 2 T2FS ([13]): Suppose U be the universal set. A T2FS ˜̃A is defined in
terms of its primary membership and secondary membership functions κ and ζ as
˜̃A = {(x, κ, ζA) : x ∈ U, κ(x)) ∈ jx ⊆ [0, 1]}.
Definition 3 T2NFS ([5]): Let T be a non-empty set. Then we can define a T2NFS
˜̃A in terms of its truth membership function τA(x), and indeterminacy member-

ship function ιA(x) and falsity membership function ξA(x) and is denoted as ˜̃A =
{〈x, τA(x), ιA(x), ξA(x)〉 : x ∈ T }where τA(x) = (τpA, τs A), ιA(x) = (ιpA, ιs A) and
ξA(x) = (ξpA, ξs A) are type-2 fuzzy elements. Also, 0 ≤ τpA + ιpA + ξpA ≤ 1 and
0 ≤ τs A + ιs A + ξs A ≤ 1.

For convenience, we represent a T2NFS as ˜̃A = 〈(τpA, τs A), (ιpA, ιs A), (ξpA, ξs A)〉
throughout the discussion.

Definition 4 Null T2NFS: A T2NFS ˜̃

 is called a null T2NFS if all of its truth

membership function τ
(x), and indeterminacy membership function ι
(x) and
falsity membership function ξ
(x) take the value zero. Thus, we can represent a null

T2NFS as ˜̃

 = 〈(0, 0), (0, 0), (0, 0)〉.
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3 Aggregation Operator of T2NFS

In several situation, we have to aggregate the information. This section develops the
algebraic operator of T2NFSs.

Let us consider three T2NFSs, ˜̃A,
˜̃B,

˜̃C ∈ T (U) having form ˜̃A = 〈(τpA, τs A);
(ιpA, ιs A); (ξpA, ξs A)〉, ˜̃B = 〈(τpB, τsB); (ιpB, ιsB); (ξpB, ξsB)〉 and ˜̃C = 〈(τpC , τsC );
(ιpC , ιsC ); (ξpC , ξsC )〉. Then the algebraic operations on the T2NFSs are defined as
follows.

1. ˜̃A ⊕1
˜̃B =

{〈(
τpA + τpB − τpAτpB, τs A + τsB − τs AτsB

)
;
(
ιpAιpB, ιs AιsB

)
;(

ξpAξpB, ξs AξsB

)〉}
.

2. ˜̃A ⊗1
˜̃B =

{〈(
τpAτpB, τs AτsB

)
;
(
ιpA + ιpB − ιpAιpB, ιs A + ιsB − ιs AιsB

)
;(

ξpA + ξpB − ξpAξpB, ξs A + ξsB − ξs AξsB

)〉}
.

3. h ˜̃A =
{〈(1 − (1 − τpA)

h

1 + (1 − τpA)h
,
1 − (1 − τs A)

h

1 + (1 − τs A)h

)
;
(
(ιpA)

h, (ιs A)
h
)
;

(
(ξpA)

h, (ξs A)
h
)〉}

.

4. ˜̃Ah =
{〈(

(τpA)
h, (τs A)

h
)
;
(1 − (1 − ιpA)

h

1 + (1 − ιpA)h
,
1 − (1 − ιs A)

h

1 + (1 − ιs A)h

)
;
(1 − (1 − ξpA)

h

1 + (1 − ξpA)h
,

1 − (1 − ξs A)
h

1 + (1 − ξs A)h

)〉}
.

The operators described above of T2NFSs assist us in establishing the following
theorem.

Theorem 1 Let us assumeacollectionof n numbers of T2NFSs ˜̃At (t = 1, 2, ..., n, ).

Also, supposeω′
t s indicates the weight associated to each T2NFS

˜̃At ,with
n∑

t=1
ωt = 1.

Thus, we can calculate the aggregated weighted algebraic sum (AWAS) as follows.

⊕n
t=1 ωt

˜̃At =
〈(

1 − ∏n
t=1(1 − τpAt )

ωt

1 + ∏n
t=1(1 − τpAt )

ωt
,
1 − ∏n

t=1(1 − τs At )
ωt

1 + ∏n
t=1(1 − τs At )

ωt

)
;

(
n∏

t=1

(ιpAt )
ωt ;

n∏
t=1

(ιs At )
ωt

)
;
(

n∏
t=1

(ξpAt )
ωt ;

n∏
t=1

(ξs At )
ωt

)〉
. (1)

Proof Suppose ˜̃A1 and
˜̃A2 betwoT2NFSs.ω1 andω2 aretwoweightvectorsassociated

to ˜̃A1 and
˜̃A2, respectively. Then by algebraic sum and scalar product, we have
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ω1
˜̃A1 ⊕ ω2

˜̃A2 = ω1〈(τpA1 , τs A1 ); (ιpA1 , ιs A1 ); (ξpA1 , ξs A1 )〉 ⊕
ω2〈(τpA2 , τs A2 ); (ιpA2 , ιs A2 ); (ξpA2 , ξs A2 )〉

=
〈(1 − (1 − τpA1 )

ω1

1 + (1 − τpA1 )
ω1

,
1 − (1 − τs A1 )

ω1

1 + (1 − τs A1 )
ω1

)
;

(
(ιpA1 )

ω1 ; (ιs A1 )
ω1

)
;
(
(ξpA1 )

ω1 ; (ξs A1 )
ω1

)〉
⊕

〈(1 − (1 − τpA2 )
ω2

1 + (1 − τpA2 )
ω2

,
1 − (1 − τs A2 )

ω2

1 + (1 − τs A2 )
ω2

)
;

(
(ιpA2 )

ω2 ; (ιs A2 )
ω2

)
;
(
(ξpA2 )

ω2 ; (ξs A2 )
ω2

)〉

=
〈(1 − (1 − τpA1 )

ω1 (1 − τpA2 )
ω2

1 + (1 − τpA1 )
ω1 (1 − τpA2 )

ω2
,
1 − (1 − τs A1 )

ω1 (1 − τs A2 )
ω2

1 + (1 − τs A1 )
ω1 (1 − τs A2 )

ω2

)
;

(
(ιpA1 )

ω1 (ιpA2 )
ω2 ; (ιs A1 )

ω1 (ιs A2 )
ω2

)
;

(
(ξpA1 )

ω1 (ξpA2 )
ω2 ; (ξs A1 )

ω1 (ξs A2 )
ω2

)〉
.

Consequently, the mathematical statement is valid for t = 2.
Let us assume that the statement is valid for t = k(some natural number), i.e.,

⊕k
t=1ωt

˜̃At =
〈(

1 − ∏k
t=1(1 − τpAt )

ωt

1 + ∏k
t=1(1 − τpAt )

ωt
,
1 − ∏k

t=1(1 − τs At )
ωt

1 + ∏k
t=1(1 − τs At )

ωt

)
;

(
k∏

t=1

(ιpAt )
ωt ;

k∏
t=1

(ιs At )
ωt

)
;
(

k∏
t=1

(ξpAt )
ωt ;

k∏
t=1

(ξs At )
ωt

)〉
.

Now for t = k + 1, we have

⊕k+1
t=1ωt

˜̃At =
(

⊕k
t=1 ωt

˜̃At

)
⊕ ωk+1

˜̃Ak+1

=
〈(1 −

k∏
t=1

(1 − τpAt )
ωt

1 +
k∏

t=1
(1 − τpAt )

ωt

,

1 −
k∏

t=1
(1 − τs At )

ωt

1 +
k∏

t=1
(1 − τs At )

ωt

)
;

( k∏
t=1

(ιpAt )
ωt ;

k∏
t=1

(ιs At )
ωt

)
;
( k∏
t=1

(ξpAt )
ωt ;

k∏
t=1

(ξs At )
ωt

)〉
⊕

〈(1 − (1 − τpAk+1 )
ωk+1

1 + (1 − τpAk+1 )
ωk+1

,
1 − (1 − τs Ak+1 )

ωk+1

1 + (1 − τs Ak+1 )
ωk+1

)
;

(
(ιpAk+1 )

ωk+1 ; (ιs Ak+1 )
ωk+1

)
;
(
(ξpAk+1 )

ωk+1 ; (ξs Ak+1 )
ωk+1

)〉

=
〈(1 −

k+1∏
t=1

(1 − τpAt )
ωt

1 +
k+1∏
t=1

(1 − τpAt )
ωt

,

1 −
k+1∏
t=1

(1 − τs At )
ωt

1 +
k+1∏
t=1

(1 − τs At )
ωt

)
;

( k+1∏
t=1

(ιpAt )
ωt ;

k+1∏
t=1

(ιs At )
ωt

)
;
( k+1∏

t=1

(ξpAt )
ωt ;

k+1∏
t=1

(ξs At )
ωt

)〉
.
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Accordingly, the principle of mathematical induction concludes the theorem. �

We can easily verify that the AWAS of T2NFSs meets the following properties:

(i) Monotonicity: For two families of T2NFSs ˜̃Bt and
˜̃At , if ˜̃Bt ≤ ˜̃At , for t =

1, 2, ..., n, then ⊕n
t=1ωt

˜̃Bt ≤ ⊕n
t=1ωt

˜̃At .

(ii) Idempotency: We have ⊕n
t=1ωt

˜̃At = ˜̃A, if ˜̃At = ˜̃A for t = 1, 2, ...n.

(iii) Boundedness: min
1≤t≤n

˜̃At ≤ ⊕n
t=1ωt

˜̃At ≤ max
1≤t≤n

˜̃At .

4 Novel Distance Measure and Similarity Index of T2NFSs

This section introduces the normalized Euclidean distance of T2NFSs depending on
the Hausdorff metric. Moreover, we present a similarity index of T2NFSs, which
help us to make an order of T2NFSs to solve various problems in reality.

4.1 Normalized Euclidean Distance

Suppose ˜̃A = 〈(τpA(r), τs A(r)); (ιpA(r), ιs A(r)); (ξpA(r), ξs A(r))〉 and ˜̃B = 〈(τpB(r),

τsB(r)); (ιpB(r), ιsB(r)); (ξpB(r), ξsB(r))〉 be two T2NFSs with r = 1, 2, . . . , n. Then

we can determine the normalized Euclidean distance of ˜̃A and ˜̃B depending on
Hausdorff metric as

de(
˜̃A,

˜̃B) = 1

3n

n∑
r=1

{(
|τpA(r) − τpB(r)|2 + |ιpA(r) − ιpB(r)|2 + |ξpA(r) − ξpB(r)|2

)
∨

(
|τs A(r) − τsB(r)|2 + |ιs A(r) − ιsB(r)|2 + |ξs A(r) − ξsB(r)|2

)}
. (2)

Theorem 2 Suppose T be the family of all T2NFSs. The normalized Euclidean

distance of two T2NFSs ˜̃A,
˜̃B ∈ T , depicted in Eq. (2) accomplishes the below-

mentioned properties.

Pd(1): de(
˜̃A,

˜̃B) ∈ [0, 1], ∀ ˜̃A,
˜̃B ∈ T .

Pd(2): de(
˜̃A,

˜̃B) = 0 ⇔ ˜̃A = ˜̃B for ˜̃A,
˜̃B ∈ T .

Pd(3): de(
˜̃A,

˜̃B) = de(
˜̃B,

˜̃A), ∀ ˜̃A,
˜̃B ∈ T .

Pd(4): If de(
˜̃A,

˜̃B) = de(
˜̃A,

˜̃C) = 0 then ∀ ˜̃A,
˜̃B,

˜̃C ∈ T , de(
˜̃B,

˜̃C) = 0.

Proof

Pd(1): We already have τp, τs, ιp, ιs, ξp, ξs ∈ [0, 1]. So, |τpA(r) − τpB(r)|2,
|τs A(r) − τsB(r)|2, |ιpA(r) − ιpB(r)|2, |ιs A(r) − ιsB(r)|2, |ξpA(r) − ξpB(r)|2,
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|ξs A(r) − ξsB(r)|2 must be some positive quantities. Thus we have, de(
˜̃A,

˜̃B) ≥
0. Also, |τpA(r) − τpB(r)|2, |ιpA(r) − ιpB(r)|2, |ξpA(r) − ξpB(r)|2 ≤ 1, which
shows |τpA(r) − τpB(r)|2 + |ιpA(r) − ιpB(r)|2 + |ξpA(r) − ξpB(r)|2 ≤ 3 or we

maywrite 1
3

(
|τpA(r) − τpB(r)|2 + |ιpA(r) − ιpB(r)|2 + |ξpA(r) − ξpB(r)|2

)
≤ 1.

Similarly,wehave 1
3

(
|τs A(r) − τsB(r)|2 + |ιs A(r) − ιsB(r)|2 + |ξs A(r) − ξsB(r)|2

)

≤ 1. Thus, we write de(
˜̃A,

˜̃B) ≤ 1. So, we can conclude de(
˜̃A,

˜̃B) ∈ [0, 1].
Pd(2): Letussupposethatde(

˜̃A,
˜̃B) = 0.Thisindicates

1

3n

n∑
r=1

{(
|τpA(r) − τpB(r)|2 +

|ιpA(r) − ιpB(r)|2 + |ξpA(r) − ξpB(r)|2
)

∨
(
|τs A(r) − τsB(r)|2 + |ιs A(r) − ιsB(r)|2

+|ξs A(r) − ξsB(r)|2
)}

= 0. Such relation is possible only if both the

quantities |τpA(r) − τpB(r)|2 + |ιpA(r) − ιpB(r)|2 + |ξpA(r) − ξpB(r)|2 and
|τs A(r) − τsB(r)|2 + |ιs A(r) − ιsB(r)|2 + |ξs A(r) − ξsB(r)|2 are equal to 0. This is
occurredifwehaveτpA(r) = τpB(r), ιpA(r) = ιpB(r), ξpA(r) = ξpB(r)|2, τs A(r) =
τsB(r), ιs A(r) = ιsB(r), ξs A(r) = ξsB(r), i.e., ˜̃A = ˜̃B. Thus we may conclude

de(
˜̃A,

˜̃B) = 0 or vice-versa.
Pd(3): From Eq. (2), we have

de(
˜̃A,

˜̃B) = 1

3n

n∑
r=1

{(
|τpA(r) − τpB(r)|2 + |ιpA(r) − ιpB(r)|2 + |ξpA(r) − ξpB(r)|2

)
∨

(
|τs A(r) − τsB(r)|2 + |ιs A(r) − ιsB(r)|2 + |ξs A(r) − ξsB(r)|2

)}

= 1

3n

n∑
r=1

{(
|τpB(r) − τpA(r)|2 + |ιpB(r) − ιpA(r)|2 + |ξpB(r) − ξpA(r)|2

)
∨

(
|τsB(r) − τs A(r)|2 + |ιsB(r) − ιs A(r)|2 + |ξsB(r) − ξs A(r)|2

)}

= de(
˜̃B,

˜̃A).

Pd(4): Property Pd(3): immediately proves the present property. �

4.2 Similarity Index of T2NFSs

The similarity index of a fuzzy set has broad application for dealing with numerous
problems in reality. Here, we describe a similarity index of T2NFSs. This similarity
index is built up based on the normalized Euclidean distance of T2NFSs.

Suppose ˜̃A,
˜̃B ∈ T be two T2NFSs. Then we can define the similarity index of

˜̃A and ˜̃B as

Se(
˜̃A,

˜̃B) = 1 − de(
˜̃A,

˜̃B)

1 + de(
˜̃A,

˜̃B)
. (3)
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We can easily verify that the similarity index of two T2NFSs ˜̃A, and ˜̃B, Se(
˜̃A,

˜̃B)

ensures the below-mentioned axioms.

Ps(1): Se(
˜̃A,

˜̃B) ∈ [0, 1], for any two T2NFSs ˜̃A and ˜̃B.

Ps(2): Se(
˜̃A,

˜̃B) = 1 ⇔ ˜̃A = ˜̃B for two T2NFSs ˜̃A and ˜̃B.

Ps(3): Se(
˜̃A,

˜̃B) = Se(
˜̃B,

˜̃A), for any two T2NFSs ˜̃A and ˜̃B.

Pd(4): If ˜̃A ⊆ ˜̃B ⊆ ˜̃C, then Se(
˜̃A,

˜̃B) ≥ Se(
˜̃A,

˜̃C) and Se(
˜̃B,

˜̃C) ≥ Se(
˜̃A,

˜̃C) for

any three T2NFSs ˜̃A,
˜̃B and ˜̃C ∈ T .

Now, based on the proposed similarity measure of T2NFSs, we incarnate the
following subsection.

4.3 Ranking Order of T2NFSs

To set the order of T2NFSs, we employ the proposed similarity index of the supplied

T2NFSs to the null T2NFS ˜̃

. Suppose ˜̃A, and ˜̃B be two T2NFSs. Also, Se(

˜̃A,
˜̃

)

and Se(
˜̃B,

˜̃

) are the similarity index of the T2NFSs ˜̃A and ˜̃


, respectively. Now,

we can make the ranking order of ˜̃A and ˜̃

 using the undermentioned rules:

(i) ˜̃A >
˜̃

 if Se(

˜̃A,
˜̃

) < Se(

˜̃B,
˜̃

)

(ii) ˜̃A <
˜̃

 if Se(

˜̃A,
˜̃

) > Se(

˜̃B,
˜̃

)

(iii) ˜̃A = ˜̃

 if Se(

˜̃A,
˜̃

) = Se(

˜̃B,
˜̃

).

Example 1 Let us consider four T2NFSs.

˜̃A =
{〈

(0.1, 0.4); (0.1, 0.3); (0.2, 0.3)
〉
,
〈
(0.3, 0.4); (0.2, 0.1); (0.1, 0.1)

〉
,

〈
(0.2, 0.1); (0.3, 0.3); (0.5, 0.2)

〉}

˜̃B =
{〈

(0.5, 0.2); (0.1, 0.4); (0.1, 0.1)
〉
, 〈(0.5, 0.6); (0.3, 0.1); (0.4, 0.1)

〉
,

〈
(0.2, 0.1); (0.1, 0.1); (0.6, 0.2)

〉}

˜̃C =
{〈

(0.2, 0.3); (0.4, 0.4); (0.1, 0.2)
〉
,
〈
(0.3, 0.3); (0.2, 0.4); (0.1, 0.1)

〉
,

〈
(0.3, 0.4); (0.1, 0.3); (0.2, 0.2)

〉}

˜̃D =
{〈

(0.5, 0.2); (0.1, 0.1); (0.2, 0.4)
〉
,
〈
(0.5, 0.6); (0.2, 0.2); (0.1, 0.3)

〉
,

〈
(0.3, 0.5); (0.1, 0.1); (0.2, 0.1)

〉}

Now, utilizing Eq. (3), we calculate the similarity index of the aforementioned

T2NFSs as, Se(
˜̃A,

˜̃

) = 0.82, Se(

˜̃B,
˜̃

) = 0.77, Se(

˜̃C,
˜̃

) = 0.83 and Se(

˜̃D,
˜̃

) =

0.79. Thus we assign the ranking order of ˜̃A,
˜̃B,

˜̃C and ˜̃D as ˜̃B >
˜̃D >

˜̃A >
˜̃C.
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5 Bimatrix Game with Type-2 Neutrosophic Payoffs

Consider a bimatrix game with T2NF payoffs. Suppose, P and Q be two play-
ers involved in this bimatrix game. Suppose �m = (a1, a2, . . . , am) be the set of
pure strategies for Player P and 
n = (b1, b2, . . . , bn) be the same for Player
Q. Moreover, Ym and Zn are the sets of mixed strategies for Players P and

Q, respectively, where Ym = {y = (y1, y2, . . . , ym) :
m∑
j=1

y j = 1, y j ≥ 0} and Zn =

{z = (z1, z2, . . . , zn) :
n∑

k=1
zk = 1, zk ≥ 0}.Suppose PlayerP chooses a j (∈ �m) and

Q chooses bk(∈ 
n) as their pure strategies to maximize their profit. Then at the sit-
uation 〈a j , bk〉, we can estimate gains for Players P and Q in the form of T2NFSs

as ˜̃
Γ jk and

˜̃
ϒ jk, respectively, where

˜̃
Γ jk =

〈(
τ
jk
pΓ , τ

jk
sΓ

)
;
(
ι
jk
pΓ , ι

jk
sΓ

)
;
(
ξ
jk
pΓ , ξ

jk
sΓ

)〉
and

˜̃
ϒ jk =

〈(
τ
jk
pϒ, τ

jk
sϒ

)
;
(
ι
jk
pϒ, ι

jk
sϒ

)
;
(
ξ
jk
pϒ, ξ

jk
sϒ

)〉
.Thuswemay express the payoffmatri-

ces for Players P and Q, respectively, as ˜̃
Γ = (

˜̃
Γ jk)m×n and ˜̃

ϒ = (
˜̃
ϒ jk)m×n . Con-

sequently, we may write the bimatrix game as ˜̃B =
(
Ym, Zn; ˜̃

Γ,
˜̃
ϒ

)
.

If Player P opts y ∈ Ym and Player Q opts z ∈ Zn as their mixed strategies then
the expected payoff for Player P is determined as

EP(y, z) = ⊕m
j=1 ⊕n

k=1 y j
˜̃

Γ jk zk

= ⊕m
j=1 ⊕n

k=1 y j
〈(

τ
jk
pΓ , τ

jk
sΓ

)
;
(
ι
jk
pΓ , ι

jk
sΓ

)
;
(
ξ
jk
pΓ , ξ

jk
sΓ

)〉
zk . (4)

We can calculate the expected payoff for Player Q in similar way as

EQ(y, z) = ⊕m
j=1 ⊕n

k=1 y j
˜̃
ϒ jk zk

= ⊕m
j=1 ⊕n

k=1 y j
〈(

τ
jk
pϒ, τ

jk
sϒ

)
;
(
ι
jk
pϒ, ι

jk
sϒ

)
;
(
ξ
jk
pϒ, ξ

jk
sϒ

)〉
zk . (5)

Now, we define Nash equilibrium solution (NES) of bimatrix games in neutrosophic
environment as follows.

Definition 5 Apair (y∗, z∗) ∈ (Ym, Zn) is called aNES of the neutrosophic bimatrix

game ˜̃B if the pair (y∗, z∗) satisfies the undermentioned inequalities

yT ˜̃
Γ z∗ ≤ y∗T ˜̃

Γ z∗, ∀y ∈ Ym and y∗T ˜̃
ϒz≤y∗T ˜̃

ϒz∗, ∀z ∈ Zn.

Such a pair (y∗, z∗) is called the optimal solution of the bimatrix game ˜̃B. More-

over, y∗T ˜̃
Γ z∗ and y∗T ˜̃

ϒz∗ are termed as the optimal values of the bimatrix game ˜̃B
for Players P and Q, respectively.

In 1995, Owen [16] proved that every bimatrix game approaches at least one
equilibrium solution. Extending the thought of Owen, we can say that determining
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the NES of a neutrosophic bimatrix game is equivalent to resolve the following
quadratic type-2 neutrosophic fuzzy programming problem (QT2NFPP):

max {y( ˜̃
Γ + ˜̃

ϒ)z} − ˜̃VP − ˜̃VQ

subject to y ˜̃
Γ ≤ ˜̃VPem,

˜̃
ϒz ≤ ˜̃VQen (6)

y ∈ Ym, z ∈ Zn.

Further, if (y∗, z∗, ˜̃V ∗
P ,

˜̃V ∗
Q) be the NES of the bimatrix game ˜̃B, then we have ˜̃V ∗

P =
y∗ ˜̃

Γ z∗, ˜̃V ∗
Q = y∗ ˜̃

ϒz∗ and y∗T (
˜̃

Γ + ˜̃
ϒ)z∗ − ˜̃V ∗

P − ˜̃V ∗
Q = 0.

We can rewrite Problem(6) as

max {⊕m
j=1 ⊕n

k=1 y j (
˜̃

Γ jk + ˜̃
ϒ jk)zk} − ˜̃VP − ˜̃VQ

subject to ⊕m
j=1y j

˜̃
Γ jk ≤ ˜̃VP for k = 1, 2, . . . , n

⊕n
k=1

˜̃
ϒzk ≤ ˜̃VQ for j = 1, 2, . . . ,m (7)

m∑
j=1

y j ,
n∑

k=1

zk = 1; y j , zk ≥ 0 for j = 1, 2, . . . ,m; k = 1, 2, . . . , n.

It is difficult to resolve Problem (7) in traditional approach. Thus, to evaluate the

NES of the bimatrix game ˜̃B, we extend the notion of the composite relative degree
of similarity index to the PIS [4] in the T2NF scenario. We establish the present
methodology based on the thought that the players’ best choice should have the great-
est distance from the positive ideal type-2 neutrosophic fuzzy solution (PIT2NFS).
Also, players’ best choice should have the lowest distance from the negative ideal
type-2 neutrosophic fuzzy solution (NIT2NFS). To determine the NES, we have to
follow the under-mentioned way.

Step 1: Calculate PIT2NFS and NIT2NFS for the columns of the payoff matrix ˜̃
Γ

as

˜̃
Γ +

j = max
1≤ j≤m

˜̃
Γ jk =

〈(
max
1≤ j≤m

τ
jk
pΓ , max

1≤ j≤m
τ
jk
sΓ

)
;
(

min
1≤ j≤m

ι
jk
pΓ , min

1≤ j≤m
ι
jk
sΓ

)
;

(
min

1≤ j≤m
ξ
jk
pΓ , min

1≤ j≤m
ξ
jk
sΓ

)〉
(8)

˜̃
Γ −

j = min
1≤ j≤m

˜̃
Γ jk =

〈(
min

1≤ j≤m
τ
jk
pΓ , min

1≤ j≤m
τ
jk
sΓ

)
;
(

max
1≤ j≤m

ι
jk
pΓ , max

1≤ j≤m
ι
jk
sΓ

)
;

(
max
1≤ j≤m

ξ
jk
pΓ , max

1≤ j≤m
ξ
jk
sΓ

)〉
(9)
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Step 2: Using Eq. (3), evaluate the similarity index Se(
˜̃

Γ +
j ,

˜̃
Γ jk) and Se(

˜̃
Γ −

j ,
˜̃

Γ jk) of

the T2NF entry ˜̃
Γ jk to the PIT2NFS

˜̃
Γ +

j and theNIT2NFS ˜̃
Γ −

j , respectively,
for j = 1, 2, . . . ,m.

Step 3: Find the relative index R jk using the rule

R jk = Se(
˜̃

Γ +
j ,

˜̃
Γ jk)

Se(
˜̃

Γ +
j ,

˜̃
Γ jk) + Se(

˜̃
Γ −

j ,
˜̃

Γ jk)
,

for j = 1, 2, . . . ,m. Also, shape the relative similarity matrix
Γ ∗ = (R jk)m×n for Player P. Γ ∗ is taken as the crisp equivalent of the

payoff matrix ˜̃
Γ.

Step 4: Determine PIT2NFS and NIT2NFS for the rows of the payoff matrix ˜̃
ϒ as

˜̃
ϒ+

k = max
1≤k≤n

˜̃
ϒ jk =

〈(
max
1≤k≤n

τ
jk
pϒ, max

1≤k≤n
τ
jk
sϒ

)
;
(
min
1≤k≤n

ι
jk
pϒ, min

1≤k≤n
ι
jk
sϒ

)
;

(
min
1≤k≤n

ξ
jk
pϒ, min

1≤k≤n
ξ
jk
sϒ

)〉
(10)

˜̃
ϒ−

k = min
1≤k≤n

˜̃
ϒ jk =

〈(
min
1≤k≤n

τ
jk
pϒ, min

1≤k≤n
τ
jk
sϒ

)
;
(
max
1≤k≤n

ι
jk
pϒ, max

1≤ j≤m
ι
jk
sϒ

)
;

(
max
1≤ j≤m

ξ
jk
pϒ, max

1≤k≤n
ξ
jk
sϒ

)〉
(11)

Step 5: Similar to Step 2, calculate the similarity index Se(
˜̃
ϒ+

k ,
˜̃
ϒ jk) and Se(

˜̃
ϒ−

k ,

˜̃
ϒ jk) of the T2NF entry ˜̃

ϒ jk to the PIT2NFS ˜̃
ϒ+

k and the NIT2NFS ˜̃
ϒ−

k ,

respectively, for k = 1, 2, . . . , n, using Eq. (3).
Step 6: Determine the relative similarity index R′

jk using

R′
jk = Se(

˜̃
ϒ+

k ,
˜̃
ϒ jk)

Se(
˜̃
ϒ+

k ,
˜̃
ϒ jk) + Se(

˜̃
ϒ−

k ,
˜̃
ϒ jk)

,

for k = 1, 2, . . . , n. Now, construct the relative similarity matrix ϒ∗ =
(R′

jk)m×n for Player Q. Note that, ϒ∗ is the crisp equivalent of the pay-

off matrix ˜̃
ϒ.

Step 7: Thus, we transform QT2NFPP (7) into the following
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max{
m∑
j=1

n∑
k=1

y j (R jk + R′
jk)zk} − vP − vQ

subject to
m∑
j=1

y jR jk ≤ vP for k = 1, 2, . . . , n

n∑
k=1

R′
jk zk ≤ vQ for j = 1, 2, . . . ,m (12)

m∑
j=1

y j ,
n∑

k=1

zk = 1; y j , zk ≥ 0 for j = 1, 2, . . . ,m; k = 1, 2, . . . , n.

Here, vP and vQ stand for the crisp equivalents of ˜̃VP and ˜̃VQ, respectively.

Problem (12) is the crisp equivalent of Problem (7). Now, solving Problem (12),
we can obtain the optimal strategies y∗ and z∗ for Players P and Q, respectively,
along with the optimal values of the game vP and vQ .

6 Numerical Illustration

To justify the proposed methodology and to check its applicability in real-world
situation we discuss the following problem.

6.1 An Application to Mitigate Environmental Pollution

Due to rapid industrialization, unplanned urbanization, etc., environmental pollution
increases daily. Regarding environmental pollution management issues, the govern-
ment and some non-governmental organizations (NGOs) adopt a few strategies as
the two players in the game. Both the government and the NGOs aim to maximize
citizens’ awareness to mitigate the pollution level. Suppose government takes two
strategies, a1: positive supervision of every action regarding environmental pollution,
and a2: implement numerous regulations to maintain the status quo. Similarly, NGOs
take some strategies; likewise, b1: conduct multiple ecological awareness programs,
and b2: arrange some ‘go-green activities’. However, the government and the NGOs
take whatever strategies; their implementation depends upon a few parameters, such
as the adaptability of local people, their daily needs, etc. So, to figure out the amount
of reduction of pollution level, a 2-dimensional fuzzy set is not enough. Thus, we
portray such a situation through a bimatrix game problem with payoffs of T2NFSs.

Suppose the government and the NGOs are assigned as Players P and Q,

respectively. Now, if Player P chooses strategy a j ( j = 1, 2) and Q opts strategy
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Table 1 T2NFS entries of the payoff matrices

Entries Linguistic
terms

T2NFS values

˜̃
Γ11

High {〈(0.8, 0.9); (0.2, 0.1); (0.3, 0.4)〉, 〈(0.7, 0.7); (0.1, 0.3); (0.1, 0.2)〉}
˜̃

Γ12
Average {〈(0.5, 0.5); (0.2, 0.1); (0.2, 0.1)〉, 〈(0.6, 0.5); (0.3, 0.2); (0.1, 0.2)〉}

˜̃
Γ21

Low {〈(0.3, 0.4); (0.3, 0.2); (0.2, 0.2)〉, 〈(0.5, 0.4); (0.2, 0.1); (0.1, 0.4)〉}
˜̃

Γ22
High {〈(0.9, 0.7); (0.3, 0.5); (0.2, 0.1)〉, 〈(0.6, 0.7); (0.2, 0.2); (0.1, 0.2)〉}

˜̃
ϒ11

High {〈(0.9, 0.8); (0.6, 0.5); (0.2, 0.2)〉, 〈(0.7, 0.8); (0.1, 0.3); (0.1, 0.3)〉}
˜̃
ϒ12

Average {〈(0.6, 0.5); (0.2, 0.4); (0.1, 0.1)〉, 〈(0.6, 0.7); (0.1, 0.1); (0.2, 0.2)〉}
˜̃
ϒ21

Low {〈(0.3, 0.5); (0.2, 0.3); (0.1, 0.1)〉, 〈(0.4, 0.4); (0.1, 0.2); (0.2, 0.2)〉}
˜̃
ϒ22

High {〈(0.8, 0.9); (0.2, 0.1); (0.3, 0.5)〉, 〈(0.6, 0.7); (0.3, 0.2); (0.1, 0.2)〉}

bk(k = 1, 2), the payoff matrices for P and Q, respectively are assigned with

some linguistic terms as ˜̃
Γ = (

˜̃
Γ jk)2×2 =

(
High Average
Low High

)
and ˜̃

ϒ = (
˜̃
ϒ jk)2×2 =

(
High Average
Low High

)
. Linguistic entries of the payoff matrices and their T2NFS repre-

sentations are enlisted in Table1.
Here, the entries of the payoff matrices signifies the amount of reduction of the

pollution level yearly. Now, we can solve the problem using few steps as depicted in
Sect. 5.

Step 6.1: Using Eqs. (8) and (9) calculate PIT2NFS and NIT2NFS, respectively for
Player P as

˜̃
Γ +
1 = {〈(0.8, 0.9); (0.2, 0.1); (0.2, 0.2)〉, 〈(0.7, 0.7); (0.1, 0.1); (0.1, 0.2)〉}
˜̃

Γ +
2 = {〈(0.9, 0.7); (0.2, 0.1); (0.2, 0.1)〉, 〈(0.6, 0.7); (0.2, 0.2); (0.1, 0.2)〉}
˜̃

Γ −
1 = {〈(0.3, 0.4); (0.3, 0.2); (0.3, 0.4)〉, 〈(0.5, 0.4); (0.2, 0.3); (0.1, 0.4)〉}
˜̃

Γ −
2 = {〈(0.5, 0.5); (0.3, 0.5); (0.2, 0.1)〉, 〈(0.6, 0.5); (0.3, 0.2); (0.1, 0.2)〉}
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Step 6.2: Utilizing Eq. (3), we evaluate the similarity index of the T2NFS entries to
the PIT2NFS and NIT2NFS.

Se(
˜̃

Γ +
1 ,

˜̃
Γ11) = 0.7652, Se(

˜̃
Γ +
1 ,

˜̃
Γ21) = 0.8779,

Se(
˜̃

Γ +
2 ,

˜̃
Γ12) = 0.9361, Se(

˜̃
Γ +
2 ,

˜̃
Γ22) = 0.9474,

Se(
˜̃

Γ −
1 ,

˜̃
Γ11) = 0.8779, Se(

˜̃
Γ −
1 ,

˜̃
Γ21) = 0.7652,

Se(
˜̃

Γ −
2 ,

˜̃
Γ12) = 0.9361, Se(

˜̃
Γ −
2 ,

˜̃
Γ22) = 0.9361.

Step 6.3: Construct relative similarity matrix Γ ∗ for Player P as

Γ ∗ = (R jk)2×2 =
(
0.4657 0.5
0.5343 0.5029

)
.

Step 6.4: Again utilisingEqs. (8) and (9) determine PIT2NFS andNIT2NFS, respec-
tively for Player Q as

˜̃
ϒ+

1 = {〈(0.9, 0.8); (0.2, 0.4); (0.1, 0.1)〉, 〈(0.7, 0.8); (0.1, 0.1); (0.1, 0.2)〉}
˜̃
ϒ+

2 = {〈(0.8, 0.9); (0.2, 0.1); (0.1, 0.1)〉, 〈(0.6, 0.7); (0.1, 0.2); (0.1, 0.2)〉}
˜̃
ϒ−

1 = {〈(0.6, 0.5); (0.6, 0.5); (0.2, 0.2)〉, 〈(0.6, 0.7); (0.1, 0.3); (0.2, 0.3)〉}
˜̃
ϒ−

2 = {〈(0.3, 0.5); (0.2, 0.3); (0.3, 0.5)〉, 〈(0.4, 0.4); (0.3, 0.2); (0.2, 0.2)〉}

Step 6.5: Utilizing Eq. (3), we evaluate the similarity index of the T2NFS entries to
the PIT2NFS and NIT2NFS for Player Q.

Se(
˜̃

Γ +
1 ,

˜̃
Γ11) = 0.9292, Se(

˜̃
Γ +
1 ,

˜̃
Γ12) = 0.9641,

Se(
˜̃

Γ +
2 ,

˜̃
Γ21) = 0.8868, Se(

˜̃
Γ +
2 ,

˜̃
Γ22) = 0.9355,

Se(
˜̃

Γ −
1 ,

˜̃
Γ11) = 0.8838, Se(

˜̃
Γ −
1 ,

˜̃
Γ12) = 0.9292,

Se(
˜̃

Γ −
2 ,

˜̃
Γ21) = 0.9355, Se(

˜̃
Γ −
2 ,

˜̃
Γ22) = 0.8927.

Step 6.6: Form the relative similarity matrix ϒ∗ for Player Q as

ϒ∗ = (R′
jk)2×2 =

(
0.5125 0.5092
0.4866 0.5117

)
.
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Table 2 Results for a bimatrix games with T2NFS entries

Player Optimal strategy Value of game Expected payoff

P y∗ = (0.4779, 0.5221) vP = 0.5015 ˜̃EP (y∗, z∗) =
{〈(0.63, 0.46); (0.24, 0.15);
(0.20, 0.11)〉, 〈(0.43, 0.44);
(0.23, 0.20); (0.10, 0.21)〉

Q z∗ = (0.0880, 0.9120) vP = 0.5095 ˜̃EQ(y∗, z∗) =
{〈(0.56, 0.63); (0.21, 0.21);
(0.17, 0.22)〉, 〈(0.43, 0.53);
(0.17, 0.15); (0.14, 0.20)〉

Step 6.7: Using the values of R jk and R′
jk in Problem(12), we have

max{0.9782y1z1 + 1.0092y1z2 + 1.02009y2z1 + 1.0146y2z2} − vP − vQ

subject to 0.4657y1 + 0.5343y2 ≤ vP

0.5y1 + 0.5029y2 ≤ vP

0.5125z1 + 0.5092z2 ≤ vQ

0.4866z1 + 0.5117z2 ≤ vQ

2∑
j=1

y j ,
2∑

k=1

zk = 1; y j , zk ≥ 0 for j = 1, 2; k = 1, 2. (13)

Solving Problem (13), we obtain (y∗, z∗), the optimal strategies, the value of the
games vP , vQ for Players P and Q, respectively. We gather the obtained NES in
Table2. Further, substituting the values of optimal strategies y∗ and z∗ in Eqs. (4)
and (5) we determine the expected payoffs for Players P and Q, which is depicted
in Table2.

From Table2, we observe that the expected payoff for Player P is ˜̃EP(y∗, z∗) =
{〈(0.63, 0.46); (0.24, 0.15); (0.20, 0.11)〉, 〈(0.43, 0.44); (0.23, 0.20); (0.10, 0.21)〉
and for Player Q is ˜̃EQ(y∗, z∗) = {〈(0.56, 0.63); (0.21, 0.21); (0.17, 0.22)〉,
〈(0.43, 0.53); (0.17, 0.15); (0.14, 0.20)〉. This indicates if the government imple-
ment strategy a1 with probability 0.4779, strategy a2 with probability 0.5221 and
NGOs implement strategy b1 with probability 0.0880, strategy b2 with probability
0.9120, then the amount of reducing the pollution will be ‘average’ according to the
estimation of T2NF linguistic variable depicted in Table1.
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7 Conclusion

Aiming to consider the truth, indeterminacy, and falsity of membership value of the
large volume of data, having multiple sources, we have presented a bimatrix game
in the T2NF background. To determine the solution to such a problem, we offer a
similarity index of T2NFSs, built up based o the normalized Euclidean distance of
T2NFSs. It was a challenging task to handle T2NFS payoffs. Suppose we want to
solve such a T2NF bimatrix game in the traditional method. In that case, we need a
defuzzificaion function, and the use of that defuzzification function loses the intake
data by a wide margin. So, to avoid such irregularity, we have solved the bimatrix
game using players’ best choices’ composite relative degree to the positive ideal
solution in the T2NF scenario. It is an excellent contribution to the present study.

In the present discussion, we have assumed that there must exist a solution to
the T2NF bimatrix game. But, we could not prove this assurance. This is a draw-
back of the present study. To overcome such a fault, we need further investigation.
Besides this, the researcher may imply the rendered model to explain various market
management problems, water-supply management problems, military science, urban
management problems, etc.
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Discouraged Arrivals Queueing System
in Interval Valued Type-2 Fuzzy
Environment

R. Ramesh and M. Seenivasan

Abstract We provide a survey in this article about cost and attainment stratagems
for discouraged arrivals Queueing System in the interval valued type-2 fuzzy envi-
ronment by centroid of centroids ordering technique. This technique is very remark-
able for defuzzification and it helps to convert the fuzzy numerals to crisp (classic)
numerals. This propounded ordering technique is very effective and provides the
accurate verdicts.

Keywords Type 1 fuzzy sets · Interval-Valued Type-2 Fuzzy Sets (IVT2FS) ·
Discouraged arrivals queueing system · Centroid of centroids ordering · Costs

1 Introduction

Queueing theory occupies a prominent place in our daily life environment.Mainlywe
meet massive queues in front of Temples, Hotels, Mobile networks, ATM, Theaters,
Hospitals, Malls, etc.…,. The ultimate aim of the system manager is the Time
governance. Here the queueing postulates employs a tremendous role.

Normal approaches may not provide a new aspect of research. So every day we
have to update with some new ideas. Here we show a new path for queueing models.
Queueing theory concepts and models can be applied in many fuzzy environments.
More authors have been approached with type 1 fuzzy sets and systems in queueing
models. Already we also analyzed the queueing theory models in type 1 fuzzy envi-
ronment. Now we are analyzing the Discouraged arrivals queueing models in type
2 fuzzy environments, particularly in interval-valued type-2 fuzzy sets (IVT2FS).
It can give different outlooks and furnishes more precisions. This approach can
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provide extraordinary perceptions instead of typical access. This is a new insight and
development in the research field.

The queueing preludes [5, 11] are very useful to solve the congesting problems.We
can solve these problems by fuzzy manner [12]. A long year ago Natvig analyzed the
discouraged arrivals queueing system.Then someauthors discussedwith discouraged
arrivals queues [3, 19]. The retention queuing system [13] surveyed by Kumar and
Sharma.

In the earlier period, Prof. Zadeh introduced and extended the fuzzy or type-1
fuzzy sets (T1FS). After that Mizumoto introduced some properties of (T2FS). Then
(IVT2FS) was extended by Mendel et al. [14, 15]. Recently Alterio et al. [2] and
Shuwang Qin et al. [18] analyzed the (IVT2FS) and logic.

The Type-2 fuzzy systems are the generalization of Type-1 fuzzy systems and
have more uncertainty states. Type1 fuzzy systems are functioning with a speci-
fied membership function, but the membership function of type-2 fuzzy systems is
varying.

An (IVT2FS) is occasionally determined by first-order and a general (T2FS) is
periodically determined by second-order model of uncertainty fuzzy set. It is feasible
to apply the (IVT2FS) instead of type-1 fuzzy sets.

More inventors utilized sundry ordering methods for defuzzifying the fuzzy
numerals. Some researchers are used distance and area rooted ordering techniques
[1, 4, 6, 7, 17, 20, 21]. Some inventors used centroid grounded ordering methods
[10, 22, 23] and Wingspans ordering technique [24]. Also some of the authors [8, 9,
16, 25] presented more ranking techniques for interval-valued type-2 Fuzzy numbers
(IVT2FN). Our provided ordering procedure is too better than the other.

2 Preludes

Definition 1 A (T1FS), Ã = {(x, ϕ Ã (x)); x m X} is indented by a membership
function ϕ Ã and a mapping ϕ Ã: X → [0, 1] where X is the universal set.

Definition 2 A Fuzzy Set Ã is called (T2FS) if it is represented by
Ã = {[(x,u), ϕ Ã (x,u)]; ∀x m X, ∀ u m Jx ⊆ [0,1]}, 0 ≤ ϕ Ã (x,u) ≤ 1. Here Jx

is primary and ϕ Ã (x,u) is secondary membership functions of x. This secondary
membership function produces the chances over the primary membership function.

Definition 3 A fuzzy set Ã is said to be (IVT2FS), if it has an upper and lower
membership functions respectively φ Ã

U (x) m [0,1], φ Ã
L (x) m [0,1] is termed by

Ã = {[φ Ã
U (x), φ Ã

L (x)]; ∀x m U}. This is a special case of (T2FS), whose all
the secondary membership values are equal to 1.

Definition 4 A type-1 Trapezoidal Fuzzy Number (TrFN) Ã (a,b,c,d;1) should have
the membership function
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Fig. 1 Type-1 TrFN

1 ------------------ 

 X 

Y
 P(b,1)         Q(c,1)

0     A(a,0)  B(b,0)        C(c,0)     D(d,0)

φ Ã (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x−a
b−a , a ≤ x ≤ b
1, b ≤ x ≤ c
x−d
c−d , c ≤ x ≤ d
0, otherwise

and the diagrammatic explanation is given in

Fig. 1.

Definition 5 An (IVT2FN) Ã = [AU, AL] = [(aU, bU, cU, dU;h1)(aL, bL, cL, dL;h2)]
should have the upper membership function.

φ Ã
U (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

h1(x−aU)
bU−aU , aU ≤ x ≤ bU

h1, bU ≤ x ≤ cU
h1(x−dU)
cU−dU , cU ≤ x ≤ dU

0, otherwise

and the lower membership function

φ Ã
L(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

h2(x−aL)
bL−aL , aL ≤ x ≤ bL

h2, bL ≤ x ≤ cL
h2(x−dL)
cU−dU , cL ≤ x ≤ dL

0, otherwise

here h1 and h2 are the upper height and lower height of the membership functions
and the diagrammatic explanation is given in Fig. 2.
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Fig. 2 IVT2FN

h1 ------------------      
2 -------------------    

X 

Y

1   
h

0            aU aL bU bL           cL  cU      dL dU

3 Queue Formation

Think about the customers appearing along Poisson structure in a sole server with
the fuzzy rate λ̃. They served by exponentially with fuzzy rate μ̃ in FIFO stream.
If the system grows up, then the arrival rate decreases moderately. The new arrival
(Fig. 3) gets discourage (discouraged arrivals) to enter the line.

This figure expresses that a woman discourages her entry in the ration shop queue
due to the long queue juncture.

Fig. 3 Discouraged arrivals
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(I) Performance Expedients

We take the finite capacity of the system as N. Each patron can stand by in the queue
in a specific service time duration (T). In the end of T If the service wasn’t start
then he feel renege with probability p, quits the line and not getting the service. If
the particular patron appeal for the service with retention tactics he may keep in that
same queue by q (= 1− p). If the system has n patrons then we take the probability as
Pn. The time distribution T with parameter ξ̃ accompanies an exponential structure.

By basic queueing theory, let us take

λ̃P0 = μ̃ P1
[(

λ̃

n + 1

)

+ μ̃ + (n − 1)ξ̃ p

]

Pn = [μ̃ + nξ̃ p]Pn+1 +
(

λ̃

n

)

Pn−1,

1 ≤ n ≤ N − 1 and
(

λ̃

N

)

PN−1 = [μ̃ + (N − 1)ξ̃ p]PN

Then
The forecasted patrons in the System (NS) = ∑N

n=1 nPn

⇒ (Ns) =
N∑

n=1

n

[
1

n!
n∏

k=1

λ̃

μ̃ + (k − 1)ξ̃ p

]

P0 (1)

The forecasted patrons Served in the unit time (E(CS)) = ∑N
n=1 μ̃Pn

⇒ (E(CS)) = μ̃

N∑

n=1

[
1

n!
n∏

k=1

λ̃

μ̃ + (k − 1)ξ̃ p

]

P0 (2)

Average Reneging Rate (Rr) = ∑N
n=1 (n − 1)ξ̃ pPn

⇒ (Rr) =
N∑

n=1

(n − 1)ξ̃ p
1

n!

[
n∏

k=1

λ̃

μ̃ + (k − 1)ξ̃ p

]

P0 (3)

Average Retention Rate (RR) = ∑N
n=1 (n − 1)ξ̃qPn

⇒ (RR) =
N∑

n=1

(n − 1)ξ̃q
1

n!

[
n∏

k=1

λ̃

μ̃ + (k − 1)ξ̃ p

]

P0 (4)

where P0 = 1

1+∑N
n=1

[
1
n!

∏n
k=1

λ̃

μ̃+(k−1)ξ̃ p

] .
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(II) Cost Expedients

Symbols
RR = Mean retention rate.
Rr = Mean reneged rate.
Ch = The holding cost/unit time.
Cs = The service cost/unit time.
Cl = The cost for every lost patron/unit time.
CR = The cost for every retained patron/unit time.
Cr = The cost for every reneged patron/unit time.
R = The cost of revenue by the service for every patron/unit time.
λlost = λPN = Mean rate for a missed patron.

AEC = Aggregate expected cost.
AEP = Aggregate expected profit.
AER = Aggregate expected revenue.

Now by using (1)–(4)

(i) AEC = C̃sμ̃ + C̃h Ñs + C̃l λ̃P̃N + C̃r R̃r + CR R̃R

(ii) AER = R̃ Ñs − R̃λ̃P̃N − R̃ R̃r

(iii) AEP = TER − T EC.

4 Centroid of Centroids Fuzzy Ordering
Method—Algorithm

The centroid of the trapezium (APQD) is appraised as the equilibrium prong (Fig. 4).
Split the trapezium AU as a rectangle (BPQC) and two triangles (APB), (CQD). We
get three centroids GU

1, GU
2, and GU

3 from these plane figures as in Fig. 4. The
centroidGU ofGU

1,GU
2, andGU

3 is to be the reference point and also the balancing
point which determines the ordering of generalized TrFN. Similarly, in this same
way, we detect GL of the trapezoid AL.

Contemplate a generalized trapezoidal fuzzy number ÃU = (aU, bU, cU, dU;h1). The

centroids are GU
1 =

(
aU+2bU

3 , h1
3

)
; GU

2 =
(
bU+cU

2 , h1
2

)
and GU

3 =
(
2cU+dU

3 , h1
3

)
.

These centroids are non-collinear points also GU
1, GU

2 and GU
3 create a triangle.

Then we catch the centroid
GU

ÃU = x0, y0 (ie. GU) of this triangle with the generalized TrFN

ÃU = (aU, bU, cU, dU;h1) as

GU
ÃU = x0, y0 =

(
2aU + 7bU + 7cU + 2dU

18
,
7h1
18

)

.
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P(bU, h1)     Q(cU, h1)                               P(bL, h2)    Q(cL, h2)  
h1  h2

GU
2  GL

2

--------------------------GU -----------------------GL

GU
1                     GU

3                             GL
1                              GL

3
X X 

0  A(aU,0)  B(bU,0)   C(cU,0)   D(dU,0)   0    A(aL,0)  B(bL,0)   C(cL,0) D(dL,0)                           

Fig. 4 Centroid of centroids

The ordering function of the generalized TrFN

ÃU = (
aU , bU , cU , dU ; h1

)
is R

(
ÃU

)
= x0 × y0

=
(
2aU + 7bU + 7cU + 2dU

18

)

X

(
7h1
18

)

Similarly, the ordering function of the generalized trapezoidal fuzzy number

ÃL = (
aL, bL, cL, dL; h2

)
is R

(
ÃL

)
= x0 × y0

=
(
2aL + 7bL + 7cL + 2dL

18

)

X

(
7h2
18

)

Finally the ordering function of the

IVT2FN Ã = [AU , AL ] is R( Ã) =
R
(
ÃU

)
+ R

(
ÃL

)

2
.

5 Illustration

Now the Government of Tamilnadu announced that, every house holder should
link the Aadhar number with their Electricity board number. The government also
arranged some special camp for this linking purpose in a free of cost. So every house
holder wants to link the Aadhar number and Electricity board number. So in these
special camps, a lot of crowds are waiting for to get the service. Here we consider
an M/M/1 queue with finite capacity (N). Most of the people are waiting in a long
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queue and utilized the service. Some of the people may get discourage with these
long line.

Let q = 0, 0.1, 0.2, …….., 1, since we take N = 10, the arrival rate λ̃ =
[(1,3,8,10;1) (2,4,7,9;0.9)], the service rate μ̃ = [(5,8,12,15;1) (6,9,11,13;0.9)]
and time distribution parameter ξ̃ = [(0.1,0.3,0.8,1.0;1) (0.2,0.4,0.7,0.9;0.9)]/hr
individually.

By our proposed Fuzzy Ordering approach we got R(λ̃) = 2.05, R(μ̃) = 3.74,
R(ξ̃ ) = 0.2.

(I) Performance Expedients

By using the queueing models we caught the performance expedients concerning q.
Table 1 configures that If q= 0, thenRR = 0. Itmeans that no patron has retained. If

q= 1 then Rr= 0, it means every reneging patrons have retained. If q gets increments
then Ns, E(CS) and RR are getting gradual increments but the Rr gets subsequent
decrease.

Figures 5, 6 and 8 are configuring. If q gets increments then Ns, E(CS) and RR
are getting gradual increments but the Rr gets subsequent decrease (Fig. 7).

(II) Cost Expedients

Let the arrival rate λ̃ = [(1,3,8,10;1) (2,4,7,9;0.9)]/hr, the service rate
μ̃ = [(5,8,12,15;1) (6,9,11,13;0.9)]/hr and time distribution parameter
ξ̃ = [(0.1,0.3,0.8,1.0;1) (0.2,0.4,0.7,0.9;0.9)]/hr.

Also N = 10,
∼
Cl = [(100,300,800,1000;1) (200,400,700,900;0.9)], C̃s =

[(10,30,80,100;1) (20,40,70,90;0.9)],
∼
Ch = [(21,23,28,30;1) (22,24,27,29;0.9)],

∼
Cr = [(55,75,125,145;1) (65,85,115,135;0.9)] and

∼
R = [(550,750,1250,1450;1)

(650,850,1150,1350;0.9)].

Table 1 Performance expedients versus q

S. no. q Ns E(CS) Rr RR

i 0 5180 × 10–4 1642 × 10–3 207 × 10–4 0

ii 0.1 5211 × 10–4 1645 × 10–3 186 × 10–4 20 × 10–4

iii 0.2 5240 × 10–4 1647 × 10–3 166 × 10–4 41 × 10–4

iv 0.3 5269 × 10–4 1649 × 10–3 144 × 10–4 62 × 10–4

v 0.4 5299 × 10–4 1651 × 10–3 122 × 10–4 81 × 10–4

vi 0.5 5330 × 10–4 1653 × 10–3 101 × 10–4 101 × 10–4

vii 0.6 5361 × 10–4 1655 × 10–3 80 × 10–4 120 × 10–4

viii 0.7 5392 × 10–4 1657 × 10–3 60 × 10–4 140 × 10–4

ix 0.8 5421 × 10–4 1659 × 10–3 39 × 10–4 156 × 10–4

x 0.9 5452 × 10–4 1662 × 10–3 19 × 10–4 171 × 10–4

xi 1.0 5483 × 10–4 1664 × 10–3 0 185 × 10–4
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Fig. 5 q versus Ns

Fig. 6 q versus E(CS)

Fig. 7 q versus Rr

By our proposed Fuzzy Ordering approach we got R(
∼
Cl) = 205.23, R(C̃s) =

20.52, R(
∼
Ch)= 9.12, R(

∼
Cr )= 37.46, R(ξ̃ )= 0.2, R(R̃)= 374.62, R(λ̃)= 2.05, R(μ̃)

= 3.74.
Here we calculated the variations in Cost stratagems w.r.t q.
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Fig. 8 q versus RR

Table 2 Cost expedients versus q

S. no q CR AEC AER AEP

i 0 0 8260 × 10–2 18,566 × 10–2 10,360 × 10–2

ii 0.1 5 8248 × 10–2 18,759 × 10–2 10,511 × 10–2

iii 0.2 10 8238 × 10–2 18,947 × 10–2 10,709 × 10–2

iv 0.3 15 8231 × 10–2 19,132 × 10–2 10,901 × 10–2

v 0.4 20 8221 × 10–2 19,311 × 10–2 11,090 × 10–2

vi 0.5 25 8219 × 10–2 19,593 × 10–2 11,374 × 10–2

vii 0.6 30 8208 × 10–2 19,771 × 10–2 11,563 × 10–2

viii 0.7 35 8199 × 10–2 19,964 × 10–2 11,765 × 10–2

ix 0.8 40 8188 × 10–2 20,162 × 10–2 11,974 × 10–2

x 0.9 45 8177 × 10–2 20,353 × 10–2 12,176 × 10–2

xi 1.0 50 8165 × 10–2 20,540 × 10–2 12,375 × 10–2

Table 2 configures that, If q gets increments thenAERandAEP are getting gradual
increments but the AEC gets subsequent decrease.

Figures 10 and 11 configure that, If q gets increments then AER and AEP are
getting gradual increments but the AEC gets subsequent decrease (Fig. 9).

6 Conclusion

Wehave analyzedwith a newCentroid based fuzzy ordering technique in the discour-
aged arrivals Queueing system in (IVT2FN) attitude. Discouraged arrivals queuing
models have been manipulated in many service mechanisms for estimating system
attainments in (IVT2FN) manner. The analyzer can clutch the foremost and supreme
determinations. This manner brought out in this paper forecasts factual illumination
for analyzers. We terminate that the sequel of fuzzy problems can be acquired by
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Fig. 9 q versus AEC

Fig. 10 q versus AER

Fig. 11 q versus AEP

the fuzzy ordering procedure very profitably. Our proposed method is very efficient
and more loyal. The verdicts which we got from this method are very strong and
concrete. Further, we will endeavor to get the performance expedients for (IVT2FS)
by using Incenter, Orthocenter, and Circumcenter-based orderings.
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Extension of Fuzzy Principal Component
Analysis to Type-2 Fuzzy Principal
Component Analysis

Daoudi Bouchra, Hamzaoui Hassania, and Gouiouez Mounir

Abstract This chapter compares type 1 and type 2 fuzzy principal component anal-
ysis which are based on type 1 and type 2 fuzzy C-means algorithms, respectively.
The two clustering methods are the combination of k-means clustering algorithm
and type 1 and type 2 fuzzy logic, respectively.

1 Introduction

The availability of data is growing exponentially, which has increased uncertainty
rates. On the other hand, real data are not always precise numbers or classes; they are
fuzzy data, they consider that all phenomena in the physical universe have an inherent
degree of uncertainty; therefore, Zadeh (1921–2017) introduced his fuzzy set theory
(1965) as a mathematical way to represent them. He also defined fuzzy logic, which
appeared in the context of fuzzy set theory, as a generalization of boolean logic based
on understanding the human language system and processing human reasoning. This
field has attracted a great deal of interest from the research community in various
areas, such as statistics, which is the science of collecting, analyzing, presenting,
and interpreting data. Among the most widely used statistical methods is principal
component analysis.

The basic idea of the Principal Component Analysis (PCA) is to analyze and
explore the set of multidimensional data in order to reduce the dimension of this
dataset. This approach is mainly characterized by its performance in the analysis pro-
cess in which it gathers elements that share the same characteristics. However, it has
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manyproblems [1] such as sensitivity to noise, the existenceof isolatedpoints and loss
of information. To overcome this limitation and make PCA more robust, researchers
proposed to use Zadeh’s fuzzy set theory [1, 2] as fuzzy principal component analysis
(FPCA) [3–12] or type 1 fuzzy principal component analysis (T1FPCA), which uses
the fuzzy c-means (FCM) algorithm [13], an unsupervised algorithm generalizing
the k-means algorithm. Their procedure is that each point in the data set belongs to
each cluster with a certain degree. And also, the fuzzy correlation matrix which is
computed using the membership degrees obtained by the FCM algorithm. Others
have shown that the type 1 membership function (MF) in FPCA can itself be fuzzy.
In this case, we talk about the type 2 fuzzy sets, which are used to handle more
uncertainty.

Type 2 fuzzy sets [14–17] are the extension or the generalization of type 1 fuzzy
sets [7, 18, 19], they are used in principal component analysis as type 2 fuzzy
principal component analysis (T2FPCA) [20, 21]. Which, their membership func-
tions are themselves fuzzy i.e., they are type 1 fuzzy sets. T2FPCA followed the
same approach, i.e., they relied on the interval-2 fuzzy c-means (IT2FCM) cluster-
ing algorithm [18, 22, 23] and the fuzzy correlation matrix.

Moreover, type 2 fuzzy sets are used in different fields due to their importance,
and in these papers [21, 24–32], their high performance is always found.

In this work, we will start with an overview of PCA and its algorithm. And we
will present FPCA as a solution to overcome the problems and the limitations of
PCA and make it more robust. Then we will put in light the impact that T2FPCA has
in this way. Finally, we will compare the results obtained after applying these last
two methods to two data sets.

2 PCA

Principal component analysis was first proposed byHotelling in 1933 as a fundamen-
tal method of multidimensional descriptive statistics, it allows to treat quantitative
variables. It is known to reduce the dimensionality of the dataset while keeping most
of the information. Mathematically, it is a change of basis from the canonical basis
representation of the original variables to the component basis representation.

2.1 The Main Steps of the PCA Algorithm

Consider a dataset X of p variables and n observations.

• Step 1. Normalize and standardize the dataset: to bring it to a common scale and
unit.

– Normalize the dataset by the following formula:
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X − Xmin

Xmax − Xmin
.

– Standardize the dataset by the following formula:

X − mean

Std
.

• Step 2. Compute the inertia matrix by the following formula:

Cp×p = 1

n

n∑

i=1

(
Xi − Xi

) (
Xi − Xi

)T
.

• Step 3. Determine the eigenvalues and eigenvectors of the covariance matrix.
• Step 4. Projection of dataset on principal components.

3 Type 1 Fuzzy PCA

The T1FPCA is based on the FCM clustering algorithm to find membership degrees.
The main objective of FCM [13] is to obtain the fuzzy partition for the dataset

X = (x1, x2, . . . , xn) into p fuzzy clusters, and the cluster centers by minimizing the
function Jm .

Jm(U,C) =
n∑

i=1

p∑

j=1

(
μi j

)m ∥∥xi − c j
∥∥2

where –U = (
μi j

)
n×p, (p ≤ n), is a fuzzy partition matrix,μi j ∈ [0, 1] is the mem-

bership degree of data point xi to the fuzzy cluster j.
– C = (

c1, c2, . . . , cp
)
are the cluster centers. c j is the j th cluster center of

the fuzzy cluster.
–

∥∥xi − c j
∥∥ is the Euclidean norm (distance) between xi and c j .

– m > 1 fuzziness parameter or the fuzzifier, it controls the fuzzy degree of
membership of each data (The particular case thatm = 1 corresponds to the k-means
algorithm). The larger m is, the more fuzzy the partition is.

3.1 The Steps for the T1FPCA

T1FPCA Summary: The first phase is to obtain the membership matrix from the
FCM clustering algorithm and the second phase is to calculate the fuzzy correlation
matrix and determine its eigenvalues and eigenvectors.
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Firstly, we fix p the number of clusters, the tolerance value ε, the maximum
number of iterations I ter_max , and choose the fuzziness parameter m.

• Step 1. Initialization of the elements of the membership matrix.
∀i = 1, . . . , n. ∀ j = 1, . . . , p. μi j ∈ [0, 1] such that:

∀i = 1, . . . , n
c∑

j=1

ui j = 1, (1)

• Step 2. determination of cluster centers c j by the formula:
for j = 1, 2, . . . , p.

c j =
∑n

i=1 μm
i j · xi∑n

i=1 μm
i j

, (2)

• Step 3. Membership matrix updating, such they satisfy the constraint (1) by the
formula:

μi j =
⎛

⎝
p∑

k=1

(∥∥xi − c j
∥∥

‖xi − ck‖

)2/(m−1)
⎞

⎠
−1

, i = 1, . . . , n and j = 1, . . . , p. (3)

• Step 4. If
∥∥U (k+1) −U (k)

∥∥ ≤ ε,where k is the iteration step.Or I ter_max reached
we go to step 5 otherwise we repeat steps 2 and 3.

• Step 5. Calculate the covariance matrix M using the fuzzy membership matrix
determined above.

Mkl =
∑n

i=1 u
m
i j (xik − x̄k) (xil − x̄l)∑n

i=1 u
m
i j

(4)

• Step 6. Determine the eigenvalues and eigenvectors of the covariance matrix M
as usual;

4 Type 2 Fuzzy PCA

In T2FPCA [2], we use the IT2FCM clustering algorithm [7, 24, 33], to obtain
the MF and the clustering centers (The same as the T1FPCA). We will apply the
following procedure.

To obtain the fuzzy partition for the dataset X = (x1, x2, . . . , xn) into p fuzzy
clusters and all the parameters to be extracted from the IT2FCMclustering algorithm,
two different objective functions are considered Jm1 and Jm2 to minimize.
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Jm1(U,C) =
n∑

i=1

P∑

j=1

μ j (xi )
m1 d2

i j (5)

Jm2(U,C) =
n∑

i=1

p∑

j=1

u j (xi )
m2 d2

i j (6)

where – C = (
c1, c2, . . . , cp

)
are the cluster centers.

–U = (
μi j

)
n×p, (p ≤ n), is a fuzzy partition matrix,μi j ∈ [0, 1] is the mem-

bership degree of data point xi to the fuzzy cluster j.
–m1 andm2 are twodifferentfuzzinessparameters(i.e. fuzzifiers).m1,m2 ≥ 1.
–di j : theEuclideandistancebetweenapoint xi andtheprototypeof the j th clus-

ter.

Using the Lagrange multiplier function to rewrite the objective functions given in
(5) and (6) we find:

J (U,C,m1,m2, α, γ ) =
n∑

i=1

p∑

j=1

μ j (xi )
m1d2

i j + γ

n∑

i=1

p∑

j=1

μ j (xi )
m2d2

i j

+
n∑

i=1

αi

⎡

⎣
p∑

j=1

μ j (xi ) − 1

⎤

⎦
(7)

where the coefficients α and γ are the parameters of the Lagrangemultiplier.

4.1 TheSteps for theT2FPCA

T2FPCA Summary: the IT2FCM algorithm is applied to the dataset X to obtain the
membership matrix and use it to compute the fuzzy mean and the fuzzy correlation
matrix and determine its values and eigenvectors.

Firstly,wefix p thenumberof clusters, the tolerancevalueε, themaximumnumber
of iterations I ter_max , and choose the fuzziness parametersm1 andm2:

• Step 1. Initialize the centroids.
• Step 2. Calculate the upper and the lower memberships matrix by the formulas:
for i = 1, . . . , n and j = 1, . . . , p

μ̄i j (xi ) =

⎧
⎪⎪⎨

⎪⎪⎩

1
p∑

k=1

(
di j
dki

) 2
(m1−1)

, if 1
p∑

k=1

(
di j
dik

) < 1
p

1
p∑

k=1

(
di j
dki

) 2
(m2−1)

, otherwise
. (8)
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μ
i j

(xi ) =

⎧
⎪⎪⎨

⎪⎪⎩

1
p∑

k=1

(
di j
dki

) 2
(m1−1)

, if 1
p∑

k=1

(
di j
dik

) ≥ 1
p

1
p∑

k=1

(
di j
dki

) 2
(m2−1)

, otherwise
. (9)

such they satisfy the constraint (1).
• Step 3. Calculate the cluster centers:

ci = cLi + cRi
2

, i = 1, . . . , c.

Such as the left value cL and a right value cR are obtained by theKarnik andMendel
(KM) iterative algorithm (in the Sect. 4.1.1) [14, 34, 35].

• Step 4. If
∥∥U (k+1) −U (k)

∥∥ ≤ ε,where k is the iteration step and

μi (xi ) =
μ̄i j (xi ) + μ

i j
(xi )

2
, i = 1, . . . , n and j = 1, . . . , p.

Or I ter_max reached we go to step 5 otherwise we repeat steps 2 and 3.
• Step 5. Compute the fuzzymean of the data (uP):

uP =
∑n

i=1 μi xi∑n
i=1 μi

(10)

• Step 6. Compute the fuzzy covariance matrix (CP)

CP = 1

n

n∑

i=1

μ2
i (xi − uP) (xi − uP)T (11)

• Step 7. Determine the eigenvalues and eigenvectors of the fuzzy covariancematrix
Cp as usual.

Table 1 The eigenvalues and their variability (the first five)

T1FPCA T2FPCA

Component Eigenvalue Variability(%) Eigenvalue Variability(%)

1 6.73 67.31 10 99.99

2 2.38 21.65 1.77 × 10−15 1.77×10−14

3 0.43 4.37 4.77×10−16 4.77×10−15

4 0.13 1.34 1.25×10−16 1.25×10−15

5 0.002 0.02 2.87×10−17 2.87×10−16
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Fig. 1 Correlation circle of the T1FPCA

4.1.1 TheKM Iterative Algorithm for Finding the Centers

• Step 1. Choosing the fuzzifierm arbitrary. For examplem = 2.
Compute centroid c(t)

j = (
c j1, . . . , c jM

)
, j = 1, . . . , p. by (2) such as

μi j (t) =
μ j (xi ) + μ

j
(xi )

2
, i = 1, . . . , n and j = 1, . . . , p.

• Step 2. Sort pattern indexes for all n patterns (i = 1, . . . , n) in each of M features
(l = 1, . . . , M) in ascending order.
(i.e., Sorted feature 1 : x11 ≤ · · · ≤ xn1

...

Sorted feature M : x1M ≤ · · · ≤ xnM)
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Fig. 2 Correlation circle of the T2FPCA

• Step 3. Find interval index k (1 ≤ k ≤ n − 1) such that xkl = c jl = x(k+1)l .

• Step 4. Updateμ
(t+1)
i j and c(t+1)

j :

μ
(t+1)
i j =

{
μ
i j

k ≤ i

μ̄i j k > i
i = 1, . . . , n and j = 1, . . . , p. (12)

c j
(t+1) =

n∑
i=1

(
μi j

(t+1)
)m · xi

n∑
i=1

(
μi j

(t+1)
)m , j = 1, . . . , p. (13)

• Step 5. If c j (t+1) is equal to c j (t), the procedure is terminated. Otherwise move to
step 3
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Fig. 3 Individuals scatter plot for T1FPCA

Get cRj = c j (t+1) = (
c j1, . . . , c jM

)
, j = 1, . . . , p.

In the case of calculating cLj , the procedure is the same as above, but (14) has to be
used instead of (12) in step 4,

μi j
(t+1) =

{
μ̄i j k ≤ i
μ
i j

k > i i = 1, . . . , n and j = 1, . . . , p. (14)
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Fig. 4 Individuals scatter plot for T2FPCA

5 NumericalComparison ofT1FPCAtoT2FPCA

In this section, we will numerically compare the two data analysis techniques, type 1
fuzzy PCA and type 2 fuzzy PCA by applying them to two real examples.

Example1 In this example,weuse thedataset decathlon2,whichdescribes the perfor-
mances of the athletes during two sports events (Desctar and OlympicG), it contains
27 individuals (athletes) describedby13variables, but in our case,wewill onlyuse the
individuals and the active variables (the first 10 variables and the first 24 individuals).

The results are presented in the following table.
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Fig. 5 Correlation circle of the T1FPCA

For T1FPCA (Table 1), the first two PCs account for 67.31% and 26.93%, respec-
tively, of the total variation in thedataset.A two-componentmodel, therefore, explains
94.24% of the total variance.

However, in the case of T2FPCA, the results obtained are very different from the
results ofT1FPCA.For example, thefirst principal component explains 99.99%of the
total variance, i.e. only one component is sufficient but we add the second component
for better visualization. In otherwords, the two-dimensional scatterplot of the 23 indi-
viduals given in Fig. 4 is a very good approximation of the original scatterplot in a ten
dimensional space. This result shows the ability of T2FPCA to obtain a better fit of
the first principal direction among all data. Therefore, the components derived from
T2FPCAexplain amuch larger share of the variance than their T1FPCAcounterparts.

Even if, we consider the first factorial plan for T2FPCA and T1FPCA (Figs. 1, 2, 3
and 4).
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Fig. 6 Correlation circle of the T2FPCA

Table 2 The eigenvalues and their variability (the first five)

T1FPCA T2FPCA

Component Eigenvalue Variability(%) Eigenvalue Variability(%)

1 8.58 78.02 10.99 99.99

2 2.69 26.93 1.77 × 10−15 1.61 × 10−14

3 0.02 0.26 3.73 × 10−16 3.39 × 10−15

4 0.006 0.05 2.13 × 10−16 1.94 × 10−15

5 0.0003 0.002 1.36 × 10−16 1.24 × 10−15
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Fig. 7 Individuals scatter plot for T1FPCA

The correlation circles (Figs. 1 and 2) show the relationships between all the vari-
ables (positively and negatively correlated variables) and the quality of the variable
representation.

For T2FPCA,we notice that there is a strong correlation between the variables and
for the quality of the representation of the variableswehave:×100m,×110m.hurdle,
×400m for example are well represented.

For the T1FPCA,we notice that the variables are scattered around the two factorial
axes, but they are more concentrated around the second axis and there is a correlation
between the variables (×100, long jump and×110.hurdle) and between (javelin, high
jump and×1500m).

Onthescoregraph(Figs.3and4)describedbyPC1andPC2,i.e.,onthefirstfactorial
plane (in the case of T1FPCA and T2FPCA) the individuals are well classified in both
cases, they define the homogeneous classes (four for T1FPCA and two to three for
T2FPCA).
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Fig. 8 Individuals scatter plot for T2FPCA

The individuals, in the case of T2FPCA (Fig. 4), are very close to each other, they
are dispersed around the first factorial axis, this is logical since the first axis presents
99.99% of the total variance. i.e., we can represent the scatterplot on the graph of the
distributionof the individualsby thefirst factorial axisonly.On thecontrary, in thecase
oftheT1FPCA(Fig. 4), theindividualsaredispersedaroundthetwofactorialaxes.And
this is also normal because the first PC expresses only 67.31% of the total variance.

Ifwecombinesuccessivelythecorrelationcircle(Figs. 1and2)withtheobservation
graph (Figs. 3 and 4), we can extract the same information (in the case of T2FPCA,we
only need the first PC to represent the variables and the individuals, but in the case of
type 1 FPCAwe need two axes).

Example2:winequality-reddataset In thisexample,weusethedatasetwinequality-
red: which is the quality of red wine based on physicochemical tests. It contains 1599
individuals described by12variables, but in our case,wewill only use thefirst 11 vari-
ables.
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The results are presented in the following table.
We see that the difference between the results obtained by applying the T2FPCA

and the T1FPCA (Table2) is the same as in the previous example.
For T2FPCA, the 1st PC explains 99.99% of the variance in total, compared to

78.02% for T1FPCA, i.e., T2FPCA approximates the original scatterplot in a 10-
dimensional space very well only by the 1st PC.

Even so, we consider the first factorial design for T2FPCA and T1FPCA (Figs. 5
and 6).

The correlation circles (Figs. 5 and 6) also show in this example that the variables
are well represented by the first factorial axis of T2FPCA. And also we notice that in
the case of the T1FPCA, the variables are dispersion on both axes, but they are more
concentrated on the first principal component although the variance expressed by the
first axis is not large enough (only 78.02%).

It is difficult to interpret the graph in the case of large samples (Fig. 8), but the dis-
persionof the individualsaround thefirstprincipal componentofT2PCAisclear.They
are very close to each other, i.e., they are very well classified (it represents one class).

And in the caseofT1FPCA, the scatter plot of individuals (Fig. 7) describedbyPC1
and PC2 illustrates a dispersion on both axes, but they are more concentrated on the
first principal component.

Ifwecombinesuccessivelythecorrelationcircle(Figs. 5and6)withtheobservation
graph (Figs. 7 and 8),we can extract the same information (in the case of type 2FPCA,
weonlyneed thefirst PC to represent thevariables and the individuals and inT1FPCA,
they aremore concentrated on the first principal component).

6 Conclusion

Weknow that PCA has been able to extract very interesting information from amulti-
dimensional dataset, using simple graphs, but themajor problemwith this algorithm is
the isolationofpoints and theexistenceofnoise.This iswhy the researchersused fuzzy
set theory to deal with these problems and to obtain a robust estimation of the PCA.

In this chapter, we presented a detailed study of T1FPCA and T2FPCA and a com-
parison between these two algorithms. The efficiency of the type 2 fuzzy PCA algo-
rithmwasillustratedontwodatasets(decatlon2andwinequality-red).FortheT1FPCA
method, we seek a fuzzy partition of the dataset into fuzzy clusters. T1FPCA uses
the FCM clustering algorithm to determine the membership function. The T2FPCA
methodusestheIT2FCMalgorithmtoconstructtheclustercentersofthefuzzypartition
of thedataset and themembership function for theseclusters.Weappliedbothmethods
to real data.We constated that T2FPCA improvesT1FPCAandT2FPCA retainsmore
information from X than T1FPCA.
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