

Advanced Data
Structures and

Algorithms

Learn how to enhance data processing with
more complex and advanced data structures

Abirami A
Priya R L

www.bpbonline.com

http://www.bpbonline.com

Copyright © 2023 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor BPB Online or its dealers and
distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, BPB
Online cannot guarantee the accuracy of this information.

First published: 2023

Published by BPB Online
WeWork
119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-5551-792-0

www.bpbonline.com

http://www.bpbonline.com

Dedicated to
Our beloved students

&
Our family members and friends

About the Authors
Mrs. Abirami A has completed her M.E (Information Technology)
from Mumbai University, and is currently pursuing Ph.D. (Information
Technology), from Noorul Islam Centre for Higher Education,
Kumaracoil, Tamil Nadu. Her research interests are Computer
Networks, Cyber security, Network Forensics and Analysis of
algorithms. She has 17 years of teaching experience and has published
many papers in national and international conferences and journals and
work as an editorial board member of the Editorial Board of various
SCI/SCOPUS indexed journals.
Asst. Professor III - Information Technology Department,
Bannari Amman Institute of Technology, Sathyamangalam, Erode,
Tamil Nadu.

Mrs. Priya R. L is currently working as an Assistant Professor in V.E.S
Institute of Technology, Mumbai, having 18 years of teaching
experience for undergraduate students of Computer Engineering and
Information Technology disciplines in different Engineering Institutes.
She obtained her Master’s degree in Information Technology
Engineering from Mumbai University. She has also worked as a
Software Engineer in different firms in Chennai and Mumbai for 4
years. Her research interest is more into Artificial Intelligence, Internet
of Things (IoT), Software engineering, Data Structures, Data Mining
and Next Generation Networks. She has published more than 40 papers
in various reputed SCI / SCOPUS indexed journals and international
conferences.
Assistant Professor, Department of Computer Engineering,
V.E.S. Institute of Technology, Mumbai, India.

About the Reviewers
Mrs. Lifna C S, Assistant Professor at the Vivekanand Education
Society’s Institute of Technology, Mumbai. Her research interests are
Big Data Analytics, Social Analytics, Machine Learning, UX Design,
Blockchain. She has around 26+ research papers published in
international conferences & journals. She is an Innovation Ambassador
of VESIT - IIC (Institute Innovation Cell) formed under MHRD from
2019 onwards. She is also a member of the AI Research Group
established at VESIT, in association with LeadingIndia.ai at Bennett
University.

Dr. Lakshmanaprakash S completed his Ph.D. from Curtin
University, Sarawak, Malaysia in 2019. He is currently working as
Associate Professor in the Department of IT, BIT, and Erode, India. He
has published many papers in various reputed national/International
conferences and Journals. Dr. Lakshmanaprakash has also been a
reviewer in various SCI Journals. His research interest mainly focuses
on Cybersecurity and Machine Learning.

Acknowledgements
We wish to express our gratitude to all those people who assisted and helped
us to complete this book. We would like to show our appreciation to the
members of our student team (Riya Bhanushali, Amisha Das, Asiya Khan,
Disha Shah, Jay Visaria, and Mansi Thakkar of Shah and Anchor Kutchhi
Engineering College, Mumbai, and Ajay Nair from Vivekanand Education
Society’s Institute of Technology, Mumbai). They helped us to understand
their needs for the preparation of the contents associated with this book
during the Engineering course. First and foremost, I want to express my
gratitude to our friends and family members for their unwavering support to
complete the book successfully. Without their encouragement, we would
never have been able to finish it.
We owe a debt of gratitude to the student team who accompanied us in
writing this book. We gratefully acknowledge Dr. Lakshmanprakash S and
Mrs. Lifna C S for their kind technical scrutiny of this book.
Our gratitude also extends to the BPB team, who were kind enough to give us
enough time to complete the book’s first section and to approve its
publication.

Preface
This book covers a collection of complex algorithms and helps to face the
challenges in algorithmic analysis. Analysis of algorithms and handling
sophisticated data structures focus on the fundamentals of the computer
programming field. The book highlights how to find the best optimal solution
to a real-world problem using an appropriate algorithm. The book provides
theoretical explanations and solved examples of most of the topics covered.
This book also introduces the importance of performance analysis of an
algorithm, which helps to increase efficiency and reduces time and space
complexity. It shows how to create and design a complex data structure. This
book solves the basic understanding of greedy and dynamic programming. It
also gives importance to various divide-and-conquer techniques. This book
gives information about string-matching methods as well.
This book is divided into six chapters. The reader will go through advanced
data structures, greedy and dynamic programming, optimal solutions, string
matching using various techniques, and calculations of time and space
complexity using Asymptotic notations. To help learners better comprehend
the material, each topic is handled with appropriate examples. The specifics
are mentioned as follows.
Chapter 1 emphasizes the basics of algorithmic analysis. It will discuss the
need for analysis of algorithms and help us to choose a better suitable
algorithm for a given problem statement. In algorithmic design, the
complexity of an algorithm plays an important aspect to justify the design
decisions. Accordingly, algorithm efficiency is measured from two
perspectives such as time and space complexity. Hence, the major focus of
this chapter is on various types of asymptotic notations used for the
estimation of the time complexity of an algorithm and is discussed with
examples.
Chapter 2 discusses different complex data structures that may be used to
effectively tackle difficult situations. AVL Tree, Huffman Coding, Redblack
Tree, and several more search trees are among the advanced data structures
addressed.

Chapter 3 discusses the divide and conquer technique with the basic
introduction and various methods that are involved in it with suitable
examples. Divide and Conquer is the simplest and easiest technique of
decomposing a larger problem into simpler problems, to solve any given
problem statement.
Chapter 4 will cover information about various greedy algorithms such as
the knapsack problem, optimal merge pattern, subset cover problem, and so
on, in detail with various solved examples.
Chapter 5 discusses Dynamic Programming. It describes various classical
computer science problems and their optimal solutions using dynamic
programming approaches along with their applications. The need for dynamic
algorithms and introduction to NP-Hard & NP-Complete are discussed with
examples.
Chapter 6 describes different string-matching algorithms with suitable
examples. The chapter also provides description of genetic algorithms.

Coloured Images
Please follow the link to download the

Coloured Images of the book:

https://rebrand.ly/x0d84sg
We have code bundles from our rich catalogue of books and videos available
at https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best
practices to ensure the accuracy of our content to provide with an indulging
reading experience to our subscribers. Our readers are our mirrors, and we
use their inputs to reflect and improve upon human errors, if any, that may
have occurred during the publishing processes involved. To let us maintain
the quality and help us reach out to any readers who might be having
difficulties due to any unforeseen errors, please write to us at :
errata@bpbonline.com
Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade to the
eBook version at www.bpbonline.com and as a print book customer,
you are entitled to a discount on the eBook copy. Get in touch with us
at: business@bpbonline.com for more details.
At www.bpbonline.com, you can also read a collection of free

https://rebrand.ly/x0d84sg
https://github.com/bpbpublications
mailto:errata@bpbonline.com
http://www.bpbonline.com
mailto:business@bpbonline.com
http://www.bpbonline.com

technical articles, sign up for a range of free newsletters, and receive
exclusive discounts and offers on BPB books and eBooks.

Piracy
If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the
location address or website name. Please contact us at
business@bpbonline.com with a link to the material.

If you are interested in becoming an author
If there is a topic that you have expertise in, and you are interested in
either writing or contributing to a book, please visit
www.bpbonline.com. We have worked with thousands of developers
and tech professionals, just like you, to help them share their insights
with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers
can then see and use your unbiased opinion to make purchase
decisions. We at BPB can understand what you think about our
products, and our authors can see your feedback on their book. Thank
you!
For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:
https://discord.bpbonline.com

mailto:business@bpbonline.com
http://www.bpbonline.com/
http://www.bpbonline.com/
https://discord.bpbonline.com

Table of Contents
1. Analysis of Algorithm

Introduction
Structure
Objectives
Analysis of algorithm

What is analysis of algorithms?
Why to analyze algorithms?

Asymptotic notations
Θ Notation
Big O Notation
Ω (Omega) Notation

Example 1
Example 2
Example 3
Example 4

Time complexity
Calculating the time complexity
Calculating the rate of growth of an algorithm with respect to the

input
Example 5
Example 6
Example 7

General rules for time complexity analysis
Rule 1: Remove all lower order expressions & drop the constant

multiplier
Example 8
Example 9
Example 10

Rule 2: The running time of an algorithm is equal to the summation of
running time of all the fragments of the algorithm.
Example 11

Rule 3: In case of conditional statements; consider the complexity of

the condition which is the worst case.
Example 12

Recurrences
Substitution method

Example 13
Master theorem

Example 14
Recursive Tree Method

Example 15
Conclusion
Key facts
Questions

2. Advanced Data Structures
Introduction
Structure
Objectives
Advanced data structures
AVL Tree

RR Rotation
LL Rotation
LR Rotation
RL rotation

Huffman algorithm
Example 1
Example 2

2-3 Tree operation
Searching an element in 2-3 tree

Search an element in 2-3 Tree:
Inserting an element in a 2-3 Tree:
Red-Black Trees

Example 3
Example 4

Tries
Types of tries

Standard tries
Compressed tries

Suffix tries
Heap Sort

Types of heaps
Maximum Heap
Minimum heap
ReHeap-Up
ReHeap-Down

Algorithm for heap sort
Example 5

B Trees
Constructing a B-Tree

Conclusion
Key facts
Questions

3. Divide and Conquer
Introduction
Structure
Objectives
Divide and conquer
Binary search

Algorithm
Example 1
Example 2

Analysis of Algorithm
Finding the minimum and maximum

Naive method
Divide and conquer approach
Algorithm
Analysis of Algorithm

Merge Sort
Algorithm
Analysis of Merge Sort

Quick Sort
Algorithm
Analysis of algorithm

Best case

Worst case
Strassen’s matrix multiplication

Example 3
Analysis of algorithm

Conclusion
Key facts
Questions

4. Greedy Algorithms
Introduction
Structure
Objectives
Knapsack problem

Example 1
Example 2
Example 3

Job Sequencing with deadlines
Algorithm

Example 4
Minimum Cost Spanning Tree

Kruskal’s algorithm
Algorithm
Example 5

Prim’s algorithm
Algorithm
Example 6

Optimal Storage on Tapes
Optimal storage on single tapes

Example 7
Example 8

Optimal Storage on Multiple Tapes
Example 9

Optimal Merge Pattern
Example 10

Algorithm Tree (n)
Example 11
Example 12

Subset cover problem
Algorithm of set cover problem

Example 13
Container Loading Problem

Algorithm of Container Loading Problem
Example 14

Conclusion
Key facts
Questions

5. Dynamic Algorithms and NP-Hard and NP-Complete
Introduction
Structure
Objectives
Dynamic algorithms
All Pair Shortest Path Algorithm

Example 1
0/1 Knapsack Problem

Algorithm
Example 2
Example 3
Example 4

Traveling Salesman Problem
Example 5
Example 6

Coin Changing problem
Example 7
Example 8

Matrix Chain Multiplication
Example 9

Flow Shop scheduling
Algorithm

Optimal Binary Search Tree
Algorithm

Example 10
Example 11

NP – HARD & NP – COMPLETE

NP-COMPLETE problems
NP-HARD problems

Conclusion
Key facts
Questions

6. String Matching
Introduction
Structure
Objectives
The Naïve String-Matching Algorithm

Example 1
Algorithm for Naïve bayes string matching

Rabin Karp Algorithm
Example 2
Example 3

The Knuth-Morris-Pratt Algorithm
Example 4
Example 5
Example 6

Longest Common Subsequence (LCS)
Example 7
Example 8

Genetic Algorithms
Search Space
Fitness score
Operators of genetic algorithms

Conclusion
Key Facts
Questions

Index

CHAPTER 1
Analysis of Algorithm

Introduction
The chapter emphasizes the basics of algorithmic analysis. Donald Knuth
defines the term “analysis of algorithms” as the common technique for
theoretical estimation of required resources, that is used to provide a solution
to any specific computational problem. It will discuss the need for analysis of
algorithms and help us choose a more suitable algorithm for a given problem
statement. In algorithmic design, complexity of an algorithm plays an
important aspect in justifying the design decisions. Accordingly, algorithm
efficiency is measured in two perspectives, such as time and space
complexity. Hence, the major focus of this chapter is on various types of
asymptotic notations used for the estimation of time complexity of an
algorithm and is discussed with examples.

Structure
In this chapter, we will discuss the following topics:

Analysis of algorithm
Asymptotic Notations
Time Complexity
General Rules for time complexity calculation
Recurrences

Objectives
This chapter discusses the basics of analysis of algorithm, the need for
analysis of algorithms as well as the various notations, with examples. Apart
from these, time complexity calculation is the major content focused on, in
the chapter.

Analysis of algorithm
In this section, we give an overview of a generic framework on analysis of
algorithms. It analyzes the efficiency of algorithms, in terms of space
efficiency and time efficiency. To represent the complexity of an algorithm,
asymptotic notations are a very crucial and important factor in designing
algorithms. Therefore, various notations with solved examples are illustrated
here.
Space complexity is defined as the amount of memory space required to
execute an algorithm. Sometimes, space complexity is ignored as the space
used is minimal. But time complexity refers to the amount of time required
for the computation of an algorithm. Mostly, execution time depends on the
various properties such as disk input/output speed, CPU speed, instructor set
and so on. The calculation of time complexity and its rules with solved
examples are also described in this chapter. It is followed by the recurrences
in algorithm analysis and its three major types are discussed in the later
sections of this chapter.

What is analysis of algorithms?
In general terms, analysis of algorithms discusses the efficiency of an
algorithm. It tells the estimation of various resources required by an
algorithm to crack a specific problem of computation. The resources are the
necessary storage or the required time to execute a specific algorithm. The
estimated running time of an algorithm is called time complexity and the
estimated storage/memory needed for the execution of an algorithm is called
space complexity.

Why to analyze algorithms?
Multiple solutions are available for a single problem; analysis will present the
best algorithm to solve the given problem out of the multiple solutions. Even
though the objective of the algorithms is to generate the expected output, the
ways in which the outputs are generated, are different. The algorithm varies
in the time and the space complexity. The various cases of analysis such as
the worst, best and the average are performed with the help of asymptotic
notations, to finalize the best algorithm.

Asymptotic notations
The main idea of asymptotic analysis is to have a measure of efficiency of
algorithms, that does not depend on machine specific constants, and neither
requires algorithms to be implemented and time taken by programs to be
compared. Asymptotic notations are mathematical tools to represent time
complexity of algorithms for asymptotic analysis. The following 3
asymptotic notations are mostly used to represent time complexity of
algorithms.

Θ Notation
In this theta notation, the function bounds between the upper and the lower
bound, and so it is called as an average case of T(n).

Average-case T(n) = average expected time of algorithm over all inputs of
size n.

Figure 1.1 features the average case Theta Θ Notation:

Figure 1.1: Average case Theta Θ Notation

Big O Notation
In this Big O notation, the function defines an upper bound, and so it is called
the worst case of T(n).

Figure 1.2 features the worst-case Big O Notation:

Figure 1.2: Worst case Big O Notation

Ω (Omega) Notation
In this Ω notation, the function defines a lower bound, and so it is called the
best case of T(n).

T(n) = minimum time of algorithm on any input of size n.
It is a slow algorithm that works fast on some input.

Figure 1.3 features the best-case Omega Ώ Notation:

Figure 1.3: Best case Omega Ώ Notation

Table 1.1 features the Asymptotic notations:

Asymptotic Notations Case Function Bound

Big O Worst Case Upper bound

Omega Ώ Best Case Lower Bound

Theta Θ Average Case Tight Bound

Table 1.1: Asymptotic Notations

Example 1
Find Upper Bound, Lower Bound and Tight Bound for the following function
2n+5.

Solution 1:
Consider f(n)=2n+5,

g(n)=n {consider the highest degree of f(n)}
Refer to Table 1.2:

Lower Bound Tight Bound Upper Bound

Omega Ώ Theta Θ Big O

Best Case Average case Worst case

2n 2n 3n

Table 1.2: The constant value consideration for the asymptotic notations

Big O:
f(n)<=c*g(n)
2n+5<=c*n
C=3// as per Table 1.2
2n+5<=3*n

For n=1, 7<=3 → False
For n=2, 9<=6 → False
For n=3, 11<=9 → False
For n=4, 13<=12 → False
For n=5, 15<=15 → True
Therefore f(n)=O(g(n))

2n+5=O(n) for all n>=5, C=3
Omega (Ώ):

f(n)>=c*g(n)
2n+5>=c*n
C=2
2n+5>=2*n

For n=1, 7>=2 → True
Therefore f(n)= Ώ(g(n))

2n+5= Ώ(n) for all n>=1, C=2
Theta (Θ):

C1*g(n) <= f(n) <= c2*g(n)
C1*n <= 2n+5 <= c2*n
C1=2, c2=3
2*n <= 2n+5 <= 3*n

For n=1, 2 <= 7 <=3 → false
For n=2, 4 <= 9 <=6 → False
For n=3, 6 <= 11 <=9 → false
For n=4, 8 <= 13 <=12 → false
For n=5, 10<= 15 <=15 → true
Therefore f(n)=Θ(g(n))

2n+5= Θ(n) for all n>=5, c1=2, c2=3

Example 2
Find Upper Bound, Lower Bound and Tight Bound for the following function
3n+2
Solution 2:
Big O:

f(n)=O g(n);
3n+2 =O(n) for all n>=2, c=4

Omega Ώ :
F(n)= Ώ g(n);

3n+2= Ώ(n) for all n>=1, c=3
Theta Θ:
F(n)= Θ g(n);

3n+2=Θ(n) for all n>=2, c1=3 & c2=4.

Example 3

Find Upper Bound, Lower Bound and Tight Bound for the following function
3n+3
Solution 3:
Big O:

f(n)=O g(n);
3n+3 =O(n) for all n>=3, c=4

Omega Ώ:
F(n)= Ώ g(n);

3n+3= Ώ(n) for all n>=1, c=3
Theta Θ:

F(n)= Θ g(n);
3n+3=Θ(n) for all n>=3, c1=3 & c2=4

Example 4
Find Upper Bound, Lower Bound and Tight Bound for the following function
10n2+4n+2
Solution 4:
Consider

f(n)= 10n2+4n+2, g(n)=n2 {consider the highest degree of f(n)}
Refer to Table 1.3:

Lower Bound Tight Bound Upper Bound

Omega Ώ Theta Θ Big O

Best Case Average case Worst case

10n2 10n2 11n2

Table 1.3: The constant value consideration for the asymptotic notations

Big O:
f(n)=O g(n);

10n2+4n+2 =O(n2) for all n>=5, c=11

Omega Ώ:
F(n)= Ώ g(n);

10n2+4n+2 =Ώ(n2) for all n>=1, c=10
Theta Θ:

F(n)= Θ g(n);

10n2+4n+2=Θ(n2) for all n>=5, c1=10 & c2=11

Time complexity
Time complexity is not the execution time of a particular algorithm; it
informs about the rate of growth of an algorithm based on the inputs. Refer to
Figure 1.4:

Figure 1.4: Growth of a Function

Consider the given example to calculate the time complexity of two different

methods, to solve the problem of identifying if the number is prime or not.
Prime number: A prime number cannot be formed by the product of smaller
natural numbers, and it should be greater than 1.
For example, 7 is a prime number, as it is formed by the product of 1*7 and
7*1, and not formed by the product of smaller natural numbers.

Find if the given number is prime or not.

Algorithm 1 Algorithm 2

For i = 2 to n-1
If i divides n
n is not prime

For i = 2 to √n
If i divides n
n is not prime

Assumptions: The computer takes one millisecond to perform the division operation.

Algorithm runs for n-2 times
For n=7,
Takes 7-2=5ms
For n=11,
Takes 11-2=9ms
For n=101,
Takes 101-2=99ms
For n=1000003,
Takes ≈106 ms

Algorithm runs for √n-1 times
For n=7;√7=2.6 [consider the integer
value]
Takes √7-1=2-1=1ms
For n=11, √11=3.3
Takes √11-1=3-1=2ms
For n=101; √101=10.04
Takes 10-2=9ms
For n=1000003
Takes ≈√106 ms≈103 ms

From the analysis, it is clearly understood that algorithm 2 takes much less
time to compute for larger input values. After computing the time complexity
of both the algorithms, algorithm 2 runs efficiently. The time complexity of
the program is how fast the output is generated for the given input, as the
input size increases. The approximate time taken by algorithm 1 is
proportional to n and is represented by O(n) in computational terms, which
will be discussed later in this chapter. The approximate time taken by the
algorithm 2 is proportional to √n and is represented by O(√n) in
computational terms.

Calculating the time complexity
The running time of an algorithm depends on the following factors:

Single vs multiprocessor
Read/write speed of memory
32-bit architecture vs 64-bit architecture
Input size

When we bother about the time complexity, all the preceding factors need not
be considered. The factor that is very important is the input size, how an
algorithm works for varying input, or the time taken by the algorithm for
varying inputs. The basic consideration is the rate of growth of the time taken
with respect to the input.

Calculating the rate of growth of an algorithm with
respect to the input
For the calculation purpose, a model machine is to be considered with an
assumption of Single processor, 32-bit architecture, and sequential execution
of the Read/Write operation. The unit of time taken by the arithmetic and
logical operations, assignment operations and return statement, are
considered as one.

Example 5
Sum (a, b)
{
Return a + b
}
In Example 5, the return statement takes 1 unit of time and the addition
operation takes 1 unit of time. So, the total time taken is 2 units.
As per this, the algorithm grows in constant time.
T(n)=1 -- [1]
Figure 1.5 features the rate of growth of algorithm:

Figure 1.5: Rate of growth of Algorithm for constant function- Example 5

Example 6
Sum (Sum of elements of array A, n)
{

Statement No. Statement Details Cost of Execution Time taken in units

1 Sum=0; 1 (C1) 1

2 For i=0 to n-1 2 (C2) n+1

3 Sum=sum + A[i]; 2 (C3) n

4 Return Sum 1(C4) 1

}
In Example 6, the return statement 1 takes 1 unit of time and is executed once
so that the total time taken is 1. In the statement 2 which is the “For” loop,
there are 2 operation assignment and the increment, so the cost is 2 and is
executed for n+1 times, which includes the false statement as well. Statement
3 which is an additional operation along with the assignment operation, takes
the cost of execution as 2 and the time taken for the execution as n times. The
4th statement is the return statement which is executed with the cost of 1 and
the unit of time taken is also 1.
As per Example 6, the algorithm grows as follows,
T(n) = 1+2(n+1) + 2n+1

= 4n + 4
= Cn + C` [C= C2+C3 & C`=C1+C2+C4] --------------------- [2]

As per equation [2], the growth of the algorithm is in the linear manner, as
can be seen in Figure 1.6:

Figure 1.6: Rate of growth of Algorithm for linear function - Example 6

Example 7
For “Sum of Matrix “the expression will be
T(n)= an2 + bn + c -- [3]
As per equation [3], the growth of the algorithm is in the quadratic manner,
as can be seen in Figure 1.7:

Figure 1.7: Rate of growth of Algorithm - Example 7

The other time complexities are discussed in the following Table 1.4:
Notation Time Complexity

O(nc) Polynomial time

O(log n) Logarithmic time

O(n log n) Linearithmic

O(2n) Exponential time

O(n!) Factorial time

Table 1.4: Asymptomatic notations and their complexities

General rules for time complexity analysis
While calculating the time complexity, always consider a very large input
size and the worst-case scenario.

Rule 1: Remove all lower order expressions & drop the
constant multiplier

Example 8
T(n) = n3 + 4n2 + 7n + 2.

Applying Rule 1, T(n) is ≈n3

In the worst-case scenario, the time complexity of the algorithm is O(n3).

Example 9
T(n) = 6n2 + 9n + 3.

Applying Rule 1, T(n) is ≈n2

In the worst-case scenario, the time complexity of the algorithm is O(n2).

Example 10
T(n) = 5n + 1.

Applying Rule 1, T(n) is ≈n
In the worst-case scenario, the time complexity of the algorithm is O(n).

Rule 2: The running time of an algorithm is equal to the
summation of running time of all the fragments of the
algorithm.

Example 11

Rule 3: In case of conditional statements; consider the
complexity of the condition which is the worst case.

Example 12

Recurrences
A recurrence is a recursive description of a function, or in other words, a
description of a function in terms of itself. A recurrence equation describes
functions in terms of its value on smaller inputs. Recurrences generally use
divide and conquer strategy. Let us consider the running time of an algorithm
of size n as T(n).
There are three types of recurrence methods:

The Substitution method
Recursive tree method
Masters method

Substitution method
The Substitution method provides a condensed way of proving an
asymptotic bound on recurrence by induction. We can use the substitution
method to establish both upper and lower bounds on recurrences. This
method is powerful, but it is only applicable to instances where the solutions
can be guessed.

Example 13

Here T(n) is the run time of an algorithm. So, for the given information,
we will use the substitution method.
In the substitution method, we will use two columns: build solution and
expand scratch.
In build solution, we will be substituting the value of with the value
returned from the expanded scratch.
Initially, we will be substituting for in the build solution, the value
for which will be fetched from scratch. In scratch solution, we will
consider the equation, T(n) = 2 T(n/2) + n and in place of n, we will be
substituting n/2. Hence, we get the result T(n/2) = 2 T(n/22) + (n/2) by
substituting n with n/2.
Now we will be substituting in the build solution from the result
returned from the scratch solution. After substituting, we can see that
the equation in the build solution becomes T(n) =22 T(n/22) + 2n
highlighted as equation 1.
Now in the equation, we have T(n/22). Hence, we will again be finding
a value to substitute in its place, from the scratch solution. So again,
consider the equation T(n) = 2 T(n/2) + n and in place of n substituted,
n/22.
Once we get the result from scratch, substitute it in the build solution.
Hence, after substitution, the equation becomes T(n) = 23 T(n/23) + 3n.
We can continue the same steps to substitute T(n/23) in the build
solution. This process has to be done 3 or 4 times in the example.
In this case, we have considered it 3 times. After substitution, we can

observe that it follows a specific pattern of substitution. For example,
T(n) = 2 T(n/2) + n after substitution becomes 22 T(n/22) + 2n, that
further, after substitution, becomes 23 T(n/23) + 3n and that further after
substitution becomes 24 T(n/24) + 4n. So, we can observe that there is a
number that always gets incremented after substitution. Hence, we can
formulate a general formula as T(n) = 2i T(n/2i) + i.n, where i is the
number that gets incremented.

Solution 13:

This implies T(n) = 2i T(n/2i) + i.n ------ 4

After formulating the general formula, we will consider T(1) = 1.
Therefore, (n/2i) from equation 4, will also be considered as 1.
Hence, we will solve for (n/2i) = 1 and try to find a solution for which
we took as an incremented variable previously.
Hence, we get i = log2n. We will be substituting the value of i in the
general formula, which we formulated, that is, equation 4.
After substituting and solving the equation, we will get T(n) = n + n
log2n, where the n before the addition sign can be ignored, as it is very
small as compared to n log2n. Hence, the time complexity becomes O(n
log n).

Now, T(1) = 1
Therefore, (n/2i) = 1
n = 2i

i = log2n

From equation 4,
T(n) = 2log2n T(1) + (n) log2n …… (Since we considered (n/2) = 1)

= n log2
2 (1) + n log2n

= n + n log2n

This states that the complexity is O(n log n)

Master theorem
Master theorem is used in calculating the time complexity of recurrence
relations (divide and conquer algorithms) in a simple and quick way. It
provides an asymptotic analysis of an algorithm.
There are 3 cases in the Master theorem that need to be considered and the
equation that can be solved using the Master theorem will be of the form T(n)
= a T(n/b) + f(n). Such types of equations can be solved using the Master
theorem. The three cases which need to be checked are stated as follows.
General format

T(n) = a T(n/b) + f(n)
Where,
a >= 1
b > 1
f(n) should be positive.
There are three cases possible.
Case I:
f(n) < nlog

b
a then

T(n) = Ø(nlog
b
a)

Case II:
f(n) = nlog

b
a then

T(n) = Ø(nlog
b
a log n)

Case III:

f(n) > nlog
b
a then

T(n) = Ø(f(n))

Example 14

This equation is of the form T(n) = a T(n/b) + f(n), where a=2, b=2 and
f(n)=n.

Now we will check for the 3 cases mentioned previously.

Case I: f(n) <nlog
b
a. Therefore, in our case n < nlog

2
 2, that is, n<n

(since log22 = 1). But the n<n condition does not hold true. Hence, this
case cannot be used.
Case II: f(n) =nlog

b
a, therefore in our case n = nlog

2
 2, that is, n=n (since

log22 = 1). The n=n condition also holds true. Hence, this case can be
used.
Case III: f(n) >nlog

b
a, therefore in our case n > nlog

2
 2, that is, n>n

(since log22 = 1). However, n>n condition does not hold true. Hence,
this case cannot be used.
Hence in our equation only case II holds true. Therefore, we will be
using case II for the solution of this problem.
From case II, the run time of an algorithm becomes T(n) = Ø(nlog

b
alog

n). Therefore, run time T(n) = Ø(nlog
2
2log n), that is, T(n) = Ø(nlog n).

Solution 14:
Here a=2 and b=2
f(n) = n
Therefore, nlog

b
a = nlog

2
2

f(n) = nlog
b
a -----------------Case II

Therefore, T(n) = Ø(nlog
b
alog n)

T(n) = Ø(nlog n)

Recursive Tree Method
A recursion tree shows the relationship between calls to the algorithm. Each
item in the tree represents a call to the algorithm. A recursive algorithm can
be developed in two main steps. Step 1 is developing the base part and Step 2
is developing the recursive part. Recursive Tree can be most used to generate
a good guess, which can be cross checked if required, using the substitution
method.

Example 15
T(n) = 3 T(n/4) + n2

In this equation, f(n) = n2 and we will be having 3 branches of it since
we have 3T(n/4) and n will be substituted by n/4.
Now as we can observe in the following Figure 1.8, n2 has three
branches and n has been replaced by n/4.
Now for each (n/4)2, we will be having 3 branches and n will be
replaced by n/4. Hence, here we already have n/4, therefore it will be
(n/4*4) = n/14, that is, substituting n/4 for the n in the numerator.
Now we have (n/16)2 and each of it will have 3 branches. This recursive
tree will have branches recursively until we have T(1).
Now we will be formulating a general formula from the tree. From the
tree we can observe we have our root node as n2, three (n/4)2 branches,
nine (n/16)2 branches, will be having twenty-seven (n/64)2 branches and
so on.
Adding all of them, a general formula needs to be formulated. After
adding and solving the equation as done in the following figure, we
have got the result T(n) = 16n2/13. Here, we are ignoring 16/13 as it is a
very small value as compared to n2. Hence, we will have time
complexity as O(n2), that is T(n) = O(n2).

Solution 15:

Figure 1.8: Recursive Tree

Conclusion
In this module, we have discussed the need of analysis of algorithms and to
choose a better algorithm for a particular problem. The main concern is the
time complexity and space complexity which has been discussed previously
in this chapter. We also learned about the measurement of an input size, that
is, an algorithm’s efficiency, as a function of some parameter, indicating the
algorithm’s input size. Asymptotic notations are the expressions which are
used to represent the complexity of an algorithm, that is, Average case, Best
case and Worst case.

Various Advanced Data Structures are explained in the next chapter, which
are used to store and handle data in a very effective manner, for easier and
faster access and alteration of data. AVL tree, B / B++ tree, Red Black tree,
Tries, and other sophisticated data structures are explored in the next chapter.

Key facts
An essential component of computational complexity theory is analysis
of algorithms.
Analysis of algorithms refers to the complexity calculation of an
algorithm on the basis of time and space required for the execution.
Certain algorithms need more space, but less time for execution or vice
versa. It is better to take into account both time and space complexity
while solving a problem.
The time complexity of an algorithm quantifies how long it takes an
algorithm to run in relation to the size of the input. We should be aware
that the time to run depends on the length of the input rather than the
machine’s actual execution time.
An algorithm’s computational time for a given input, n, is expressed
using asymptotic notation.
There are three various asymptotic notations, such as Big O, Theta, and
Omega. Big O represents the worst-case scenario of an algorithm, theta
for average-case and Omega for best-case scenario of an algorithm.
An equation or inequality known as a recurrence, defines a function in
terms of the values it takes on smaller inputs.
The major types of recurrence methods are substitution method,
Iteration method, Recursion tree method and Master theorem.

Questions
1. Which are the different methods of solving recurrences? Explain with

examples. [MU DEC’18 (10 MARKS)] [MU DEC’19 (10 MARKS)]
2. Compute the worst-case complexity of the following program segment:

[MU MAY’19 (5 MARKS)]
Void fun(int n, intarr[]){

Int i = 0, j = 0;

for(; i< n; ++i)

while(j < n && arr[i] < arr[j])

j++;

}

3. Give asymptotic upper bound of T(n) for the following recurrences and
verify your answer using suitable recurrence method: [MU MAY’19
(10 MARKS)]
T(n) = T (n – 1) + n

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:
https://discord.bpbonline.com

https://discord.bpbonline.com

CHAPTER 2
Advanced Data Structures

Introduction
To store data effectively and organize it for quick access and change, data
structures are utilized. Arrays, Linked Lists, Stacks, Queues, and other
fundamental data structures are a few examples. This chapter discusses
several sophisticated and complex data structures, including the AVL tree,
the Huffman algorithm, Heap and many more.
A height-balanced binary search tree known as an AVL tree, is one in which
each node is assigned a balance factor, which is determined by deducting the
height of the node’s right sub-tree from the height of its left sub-tree. A tree
is said to be balanced if the balance factor for each node is between -1 and 1.
Otherwise, rotations must be used to balance the tree.
Huffman coding is a lossless data compression algorithm. For each character
entered into this algorithm, a variable-length code is assigned. The codes for
the most common characters are the shortest, while the codes for the least
common characters are longer. Essentially, there are two sections. A
Huffman tree should be built first, and then another should search the tree for
codes.
In data structures, a 2-3 Tree is a sort of tree where each node is either a 2
node or a 3 node. It is a particular variety of B-Tree with order three. A node
with a value of two in the tree is one with two child nodes and one data
component. A node with three child nodes and two data components is
known as a “3 node” in the tree.
In terms of self-balancing binary search trees, red-black trees are one type.
Each node of the binary search tree also contains an additional bit that
represents “red” and “black,” which aids in maintaining the tree’s balance
during insertions and deletions, in addition to the user data.
Tries are sometimes referred to as digital trees, radix trees, or prefix trees.
Tries is a tree-based data structure for storing strings that enables rapid

pattern matching. A heap is a complete binary tree. In case of Min Heap, the
parent node’s value must be lower than or equal to that of either of its
children. In case of Max Heap, the parent node’s value must be greater than
or equal to that of either of its children.
B-tree is a type of tree data structure that keeps its data sorted and offers
logarithmic-time searches, sequential access, insertions, and removals. The
binary search tree is generalized by the B-tree, which supports nodes with
more than two children.

Structure
In this chapter, we will discuss the following topics:

Advanced Data Structures
AVL Tree
Huffman Algorithm
2-3 Tree Operation
Red-Black Trees
Tries
Heap Sort
B Trees

Objectives
By the end of this chapter, the learner will understand and analyze, and be
able to choose appropriate data structures and algorithms for the chosen
problem statements. It helps the learners understand the required
mathematical aspects, in order to design the algorithms for any given specific
problem. The learners will be able to comprehend the design approaches with
various performance analysis such as efficiency, correctness and so on.

Advanced data structures
Data Structures are used to store data and manage the data in a very efficient
way for easy and faster access and for modification of data. Data Structures
are used in every program. Some examples of data structures are arrays,

stacks, queues, linked lists, binary trees, and hash tables. This module
consists of AVL tree, Red Black tree, B/B++ tree, Tries, and so on.

AVL Tree
The AVL Tree was developed by Russians, Adelson-Velsky and Landis
(hence AVL). The key here is to keep the height of a binary search tree
balanced.
Definition: A binary search tree called an AVL tree, has nodes with balance
factors of 0, +1, or -1.

Balance factor= Height (left subtree) – Height (right subtree)
We perform rotation in AVL tree only in case the Balance Factor is other
than -1, 0, and 1. There are basically four types of rotations, which are as
follows:

LL rotation: The node that was inserted is in the left subtree of the left
subtree of A.
RR rotation: The node that was inserted is in the right subtree of the
right subtree of A.
LR rotation: The node that was inserted is in the right subtree of the
left subtree of A
RL rotation: The node that was inserted is in the left subtree of the
right subtree of A, where node A is the node whose balance Factor is
not -1, 0, or 1.

The initial 2 rotations LL and RR are single rotations whereas the next 2
rotations LR and RL are double rotations. A tree’s minimum height must be
at least 2 to be unbalanced. Let us examine each rotation now.

RR Rotation
When a Binary Search Tree (BST) becomes imbalanced because an element
is incorporated into the right subtree of the right subtree of A, we apply RR
rotation, which is an anticlockwise revolution, to the edge under a node with
a balance factor of -2. Refer to Figure 2.1:

Figure 2.1: RR Rotation

In the preceding Figure 2.1, node A has balance factor of 2 on the grounds
that a node C is embedded in the right subtree of A right subtree. We play out
the RR turn on the edge below A.

LL Rotation
We perform LL revolution, which is a clockwise rotation, on the edge
beneath a node with a balancing factor of 2, at the point when BST becomes
uneven because an element is embedded into the left subtree of the left
subtree of C. Refer to Figure 2.2:

Figure 2.2: LL Rotation

Since a node A is embedded in the left subtree of the left subtree of node C in
the model shown in Figure 2.2, node C has a balancing factor of 2. On the
node under A, we perform the LL revolution.

LR Rotation
Without a doubt, double rotations are more difficult than one rotation. LR
rotation = RR rotation + LL rotation, that is, first RR rotation is performed on
subtree and afterward, LL rotation is performed on full tree. By full tree, we
mean the first node from the way of embedded node, whose balance factor is
not - 1, 0, or 1. Refer to Figure 2.3:

Figure 2.3: LR Rotation

Step 1: Because a node B was added to the left subtree of C and the right
subtree of A, C developed a balance factor of 2, making it an unbalanced
node. In Figure 2.3, the inserted node is in C’s right subtree’s left subtree.
Step 2: Because LR rotation = RR + LL rotation, RR (anticlockwise) is done
first on the subtree rooted at A. After RR rotation, Node A has evolved into
the left subtree of B.
Step 3: Node C is still unbalanced after RR rotation, with a balance factor of
2, because inserted node A is to the left of C.
Step 4: Starting at node C, we rotate the complete tree clockwise now. Node
C is now the right subtree of node B, while A is the left subtree.
Step 5: Each node’s balance factor is now -1, 0 or 1, indicating that BST is
now balanced.

RL rotation
RL rotation = LL rotation + RR rotation, that is, first LL rotation is conducted
on subtree and afterward, RR rotation is performed on the whole tree, which
is the primary node from the way of the embedded node whose balancing
factor is not 1, 0, or 1. Refer to Figure 2.4:

Figure 2.4: RL Rotation

Step 1: A became an unbalanced node with a balance factor of -2, as a result
of a node B being added to the left subtree of C and the right subtree of A.
The inserted node is in the left subtree of A’s right subtree in Figure 2.4, of
RL rotation.
Step 2: The subtree rooted at C is rotated in LL (clockwise) first, because RL
rotation =LL rotation +RR rotation. After RR rotation, Node C has evolved
into the right subtree of B.
Step 3: Because of the right-subtree of the right-subtree node A, node A
remains unbalanced after executing LL rotation, with a balance factor of -2.
Step 4: We now conduct RR rotation (anticlockwise rotation) on the entire
tree, starting with node A. Node C is now the right subtree of node B, while
node A is the left subtree of B.
Step 5: Each node’s balance factor is now either -1, 0 or 1, indicating that
BST is now balanced.

Huffman algorithm
Huffman codes or Huffman algorithm is an entropy encoding algorithm.
David Huffman invented it in 1952. It is used widely for data compression.
The fundamental principle of Huffman coding is to employ shorter bit strings
to encode the most common character, than to encode less common source
characters.

Example 1
Generate Huffman code for the given input “mississippi”.
Count the characters which are repeating, as shown in Table 2.1:

Character Frequency

m 1

i 4

s 4

p 2

Table 2.1: Character Frequency Count

Arrange the frequencies either in ascending or descending order, as shown in
Table 2.2:

Character Frequency

m 1

p 2

i 4

s 4

Table 2.2: Sorted Frequency Character Count Set

Add the first two frequencies 1 + 2 = 3 and let us give it ‘o’, as shown in
Figure 2.5:

Figure 2.5: Huffman tree after inserting m & p

Refer to the following Table 2.3:
Character Frequency

o 3

s 4

i 4

Table 2.3: Sorted Frequency Character Count Set

Now, in the next step, add the ‘o’ in ascending manner with the remaining
characters and start adding the lowest frequencies, that is, 3+4 =7. Let us give
it ’q’, as shown in Figure 2.6:

Figure 2.6: Huffman Tree after adding o and s

Now take the remaining two frequencies and add it and let’s give it ‘r’, as
shown in Table 2.4:

Character Frequency

i 4

q 7

Table 2.4: Sorted Frequency Character Count Set

Refer to the following Figure 2.7:

Figure 2.7: Huffman Tree after adding i and q, then coded with 1 & 0

Traverse the tree from the starting node. When we move to the left child,
write 0 and when we move to the right child, write 1.
The codes are as shown in Table 2.5:

Character Frequency

m 100

p 101

i 0

s 11

Table 2.5: Huffman Code set

Example 2
A networking company uses a compression technique to encode the message
before transmitting over the network. Suppose the message contains the
characters shown in Table 2.6 with their frequency:

Character Frequency

a 5

b 9

c 12

d 13

e 16

f 45

Table 2.6: Character Frequency Count Set

Note that each character in the input message takes 1 byte.
Solution: First draw the Huffman tree.
Step 1: Add frequencies of ‘a’ and ‘b’. Let’ us give it ‘l’, as shown in the
following Figure 2.8:

Figure 2.8: Huffman Tree- 5 & 9 inserted

Refer to the following Table 2.7:
Character Frequency

l 14

c 12

d 13

e 16

f 45

Table 2.7: Character Frequency Count Set

Step 2: Now take the two least frequencies and add them, that is, ‘c’ and ‘d’.
Let us give it ‘m’, as shown in the following Figure 2.9:

Figure 2.9: Huffman Tree- 12 & 13 inserted

Refer to the following Table 2.8:
Character Frequency

l 14

m 25

e 16

f 45

Table 2.8: Character Frequency Count Set

Step 3: Add ‘l’ and ‘e’ frequencies and name them ‘n’, as shown in the
following Figure 2.10:

Figure 2.10: Huffman Tree -16 inserted

Refer to the following Table 2.9:
Character Frequency

m 25

n 30

f 45

Table 2.9: Character Frequency Count Set

Step 4: Now add the frequencies of ‘m’ and ‘n’. Let’s give it ‘o’. Refer to the
following Figure 2.11:

Figure 2.11: Huffman Tree- 25 & 30 added

Step 5: Traverse the tree from the starting node. When we move to the left
child, write 0 and when we move to the right child, write 1. Refer to the
following Figure 2.12:

Figure 2.12: Final Huffman Tree after inserting 45

Refer to the following Table 2.10:

Characters Code-word Frequency Total Number of
Bits

a 1100=4 bits 5 4*5=45

b 1101=4 bits 9 4*9=36

c 100=3 bits 12 3*12=36

d 101=3bits 13 3*13=39

e 111=3bits 16 3*16=48

f 0=1bit 45 1*45=45

Table 2.10: Huffman Code Set

Total Number of Bits = (4*5)+(4*9)+(3*12)+(3*13)+(3*16)+(1*45) =224

Size of 1 char = 1 byte= 8 bit = 8 *100 =800 bits
Total number of bits saved by Huffman coding = 800 -224 = 576bits.

2-3 Tree operation
2-3 trees are also known as 3 order B-tree. Every internal node has a
maximum of two data elements and a maximum of three children in this tree.
The main advantage of the 2-3 tree is that it is the most balanced as compared
to BST, and hence, the complexity of insertion, deletion in 2-3 trees is O(log
(n)).
For example, refer to the following Figure 2.13:

Figure 2.13: 2-3 Tree

Searching an element in 2-3 tree
The Searching process in 2-3 trees is very much like that of a Binary Search
Tree. Let us assume that we want to find the number ‘X’ in the tree, and then
let M1 and M2 be the two values stored in the root node such that M1 < M2.
Then,

If X < M1, search the X in the left child of the node.
Otherwise, search in the right child of the node.
If M1< X>M2, (that is, the node has three children) then search in the
middle child of the node to find the X.

Search an element in 2-3 Tree:
Let us assume the following 2-3 tree in which we must find the location of 8
in the tree. Then, it can be searched as shown in Figure 2.14:

Figure 2.14: 2-3 Tree

Step 1: Compare 8 with the root element. Here, 8< 14, therefore we will
search for the element in the left child of the node. Refer to Figure 2.15:

Figure 2.15: 2-3 Tree

Step2: Now we will compare 8 with another node element, which is, (5, and
9). Since 5<8<9, we will search in the middle child of the node, as shown in
Figure 2.16:

Figure 2.16: 2-3 Tree

Hence, in this, we can carry out the searching operation easily using 2-3 tree.

Inserting an element in a 2-3 Tree:
Let the elements to be inserted are 1, 12, 8, 2, 25, 5, 14, 28
Step 1: Inserting 1. Refer to Figure 2.17:

Figure 2.17: Insertion of 1 in 2-3 Tree

Step 2: Inserting 12. Refer to Figure 2.18:

Figure 2.18: Insertion of 12 in 2-3 Tree

Step 3: Inserting 8. Refer to Figure 2.19:

Figure 2.19: Insertion of 8 in 2-3 Tree

Step 4: Inserting 2. Refer to Figure 2.20:

Figure 2.20: Insertion of 2 in 2-3 Tree

Step 5: Inserting 25. Refer to Figure 2.21:

Figure 2.21: Insertion of 25 in 2-3 Tree

Step 6: Inserting 5. Refer to Figure 2.22:

Figure 2.22: Insertion of 5 in 2-3 Tree

Step 7: Inserting 14. Refer to Figure 2.23:

Figure 2.23: Insertion of 14 in 2-3 Tree

Step 8: Inserting 28. Refer to Figure 2.24:

Figure 2.24: Insertion of 28 in 2-3 Tree

Hence, in this way we can insert various elements into the 2-3 Tree.

Red-Black Trees

Red-Black Tree is a self-balancing binary search tree. Each node has an
additional node that indicates whether it is red or black in color. These colors
indicate whether the tree is balanced, every time a node is inserted or deleted.
Rules for insertion of node:

If it is an empty tree, then create a black root node.
If there is no empty node, insert the new node or new leaf as red. There
are two possibilities which are checked after inserting the red leaf.

If the parent of the red node is black, then no changes need to be
made.
If the parent of the red node is red, then we need to check the
following things for the red node:

If the parent node has black or absent sibling, then we need to
rotate and then recolor it.
If the parent node has a red sibling, then recolor and check
again whether the tree satisfies all the conditions.

Example 3
Construct a red-black tree for the following sequence: 10, 20, -10, 15, 17, 40,
50, 60.

1. As it is an empty tree, 10 will be inserted as the root node colored as
black, as shown in Figure 2.25:

Figure 2.25: Construction of red-black tree – inserted 10

2. 20 will be inserted to the right as following the rules of binary search
tree and colored as red leaf node, as shown in Figure 2.26:

Figure 2.26: Construction of red-black tree – inserted 20

3. -10 will be added to the left as a red node, as shown in Figure 2.27:

Figure 2.27: Construction of red-black tree – inserted 10

4. 15 will be added to the left of 20 as a red node. Since a red leaf cannot
have a red parent, changes need to be made. Here, the changes are made
according to top rule 2-> b -> ii, as shown in Figure 2.28:

Figure 2.28: Construction of red-black tree – inserted 15

5. 17 will be added to the right of 15 as a red node. Since a red leaf cannot
have a red parent, changes need to be made. Here the changes are made
according to top rule 2-> b -> i, as shown in Figure 2.29:

Figure 2.29: Construction of red-black tree – inserted 17

6. 40 will be added to the right of 20. Since a red leaf cannot have a red
parent, we need to make changes. Here the changes will be made
according to rule 2 -> b -> ii, as shown in Figure 2.30:

Figure 2.30: Construction of red-black tree – inserted 40

7. 50 will be added to the right of 40. Since a red leaf cannot have a red
parent, we need to make changes. Here, the changes will be made
according to rule 2 -> b -> ii, as shown in Figure 2.31:

Figure 2.31: Construction of red-black tree – inserted 50

8. 60 will be added to the right of 50. Since a red leaf cannot have a red
parent, we need to make changes. Here, the changes will be made

according to rule 2 -> b -> ii, as shown in Figure 2.32:

Figure 2.32: Construction of red-black tree – inserted 60

Now, if we check the tree again, we can see that the tree does not satisfy all
the conditions of red black tree since 40, that is, the red node has 17 as a
parent node, which is also a red node. Hence, changes must be made.
Changes will be made according to rule 2 -> b ->I (rotate and recolor), as
shown in Figure 2.33:

Figure 2.33: Construction of red-black tree

Example 4
Construct a red-black tree for the following sequence: 50,60,70,90,20,15,10.

1. Inserting 50 as root node, as shown in Figure 2.34:

Figure 2.34: Insertion of 50 in red-black tree

2. Inserting 60, as shown in Figure 2.35:

Figure 2.35: Insertion of 60 in red-black tree

3. Inserting 70, as shown in Figure 2.36:

Figure 2.36: Insertion of 70 in red-black tree

4. Inserting 90, as shown in Figure 2.37:

Figure 2.37: Insertion of 90 in red-black tree

5. Inserting 20, as shown in Figure 2.38:

Figure 2.38: Insertion of 20 in red-black tree

6. Inserting 15, as shown in Figure 2.39:

Figure 2.39: Insertion of 15 in red-black tree

7. Inserting 10, as shown in Figure 2.40:

Figure 2.40: Insertion of 10 in red-black tree

Tries
A tries is also known as a digital tree, radix tree, or prefix tree in computer
science. To allow quick pattern matching, tries is a tree-based data structure
for storing strings. Tries are used to retrieve information. The character, and
not the key, is stored in each node using tries. The key relates to the path
from the root to the node. Tries uses a key’s character to direct the search.
The string associated with that node’s prefix is shared by all the node’s

descendants.

Types of tries
Let us now discuss the three different tries of Tries.

Standard tries
The Standard tries for a set of strings S is an ordered tree in which:

Each node, other than the root, is assigned a character label.
A node’s children are arranged alphabetically.
The strings of S are produced by the paths leading from the external
nodes to the root.

Compressed tries
By compressing chains of redundant nodes, compressed tries are created from
regular tries. A requirement to be a compressed tries is:

Tries should have nodes of degree of at least 2.

Suffix tries
The features of suffix tries are as follows:

A suffix is a compressed trie that contains all of the text’s suffixes.
The suffix trie for a text X of size n from an alphabet of size d.
Suffix tries stores all the n(n−1)/2 suffixes of X in O(n) space.
Suffix tries supports prefixes matching queries and arbitrary pattern
matching in O(dm) time, where m is the length of the pattern.
It is possible to construct suffix tries in O(dn) time.
Applications:
Word matching.
Prefix matching.

Heap Sort

The (binary) heap is an array object that is a complete or almost complete
binary tree. The leaves are on at most two different levels. The tree is
completely filled on all nodes except the lowest.

Types of heaps
There are two types of heaps: Maximum and Minimum heaps.

Maximum Heap
Max heap is a binary tree in which every parent node contains a value greater
than or equal to the child nodes.
Key-value of all nodes > key value of sub-tree
Refer to Figure 2.41:

Figure 2.41: Maximum Heap

Minimum heap
Min heap is a binary tree in which every parent node contains values smaller
than or equal to the child nodes.

Key-value of all nodes < key value of sub-tree
Refer to Figure 2.42:

Figure 2.42: Minimum Heap

ReHeap-Up
Assume we have an almost complete binary tree with N elements, whose 1st
N-1 elements satisfy the order property of the heap, but the last element does
not. The ReHeap-up operation repairs the structure so that it is a heap, by
floating the last element up the tree, until that element is in its correct
location in the tree.
Consider a maximum heap in which we want to insert a node value 35, using
ReHeap-Up, as shown in Figure 2.43:

Figure 2.43: ReHeap-Up Operation

ReHeap-Down
Assume we have an almost complete binary tree that satisfies the order
property of the heap, except in the root position. This situation occurs when
the root is deleted from the tree, leaving 2 disjoined heaps. To correct the
situation, we move the data in the last tree node to the root. Obviously, this
action destroys the heap properties. To restore the heap property, we use re-
heap down.
Consider a minimum heap in which we want to delete a node, Using ReHeap-
Down, as shown in Figure 2.44:

Figure 2.44: ReHeap-Down Operation

Algorithm for heap sort
Let us now look at the algorithm:
void heap(int a[], int n, int m)

{

int largest = m;

int l = 2*m+ 1;

int r = 2*m + 2;

// if left child node is larger than root node

if (l < n && a[l] > a[largest])

largest = l;

// if right child node is larger than largest so far

if (r < n && a[r] > a[largest])

largest = r;

// if largest node is not root node

if (largest != m)

{

swap(a[m], a[largest]);

heap(a, n, largest);

}

}

void heapsort(int a[], int n)

{

for (int m = n / 2 - 1; m >= 0; m--)

heap(a, n, m);

for (int m=n-1; m>=0; m--)

{

swap(a[0], a[m]);

heap(a, m, 0);

}

}

int main()

{

int a[] = {121, 20, 130,46, 27};

int n = sizeof(a)/sizeof(a[0]);

heapsort(a, n);

count << “Sorted array is \n”;

printArray(a, n);

}

Example 5
Create a Max-Heap & Min-Heap for the following sequence: 10, 20, 4, 8, 21,
50, 17.
Max-Heap:
Refer to the following Figure 2.45:

Figure 2.45: Construction of Max-Heap

Here,

8 & 21 are compared, 21 is greater- swapped with its parent node 20.
50 &17 are compared, 50 is greater- swapped with its parent node 4.
21 & 50 are compared, 50 is greater- swapped with its parent node 10.
17 & 4 are compared, 17 is greater- swapped with its parent node 10.

Min-Heap:
Refer to the following Figure 2.46:

Figure 2.46: Construction of Min-Heap

8 & 21 are compared, 8 is lesser- swapped with its parent node 20.
50 &17 are compared, 17 is lesser- as its parent node 4 which is lesser,
and thus, it is not swapped.
8 & 4 are compared, 4 is lesser, and so it is swapped with its parent
node 10.
50 & 17 are compared, 17 is lesser, as its parent node 10 which is lesser.
Thus, it is not swapped.

B Trees
An m-way tree, or a tree where each node may have up to ‘m’ children, is

referred to as a B-tree of order m.

Each non-leaf node has one fewer key than the number of children it
has, and these keys divide the keys in the children into groups
resembling a search tree.
Every leaf is at the same height.
Every non-leaf node has at least [m/2] children, with the exception of
the root.
The root either has two to m children, or it is a leaf node.
A leaf node can hold m-1 keys at the most.
“m” should always be an odd number.

Refer to the following Figure 2.47 for an example of B-tree:

Figure 2.47: Example of a B-tree of order 5

Constructing a B-Tree
Let us say the B-tree is empty when we begin, and the key appears as
follows:
1,12,8,25,5,14,28,17,7,52,16,48,68,3,26,29,53,55,45
Let us consider we want to build a B-tree of order 5. The first four keys go
into the root, as shown in Figure 2.48:

Figure 2.48: Insertion of 1,12,8,2,25 into the B-tree

We have to split the 5 keys once added because it is a B-tree of order 5, and
hence the root node can only have a maximum of 4 keys.
To put the fifth key in the root would violate condition 5. Therefore, when 25

arrives, pick the middle key to make a new root, as shown in Figure 2.49:

Figure 2.49: Splitting of a B-Tree

5, 14, 28 goes into the leaf node, as shown in Figure 2.50:

Figure 2.50: Insertion of 5, 14, and 28into the B-tree

We take the middle key, promote it (to the root), and split the leaf because
adding 17 to the right leaf node would overfill it. Refer to the following
Figure 2.51:

Figure 2.51: Insertion of 17 into the B-tree

Split the lead as shown in the following Figure 2.52:

Figure 2.52: Splitting of a B-tree

7 and 52 get added to the leaf nodes, as shown in Figure 2.53:

Figure 2.53: Insertion of 7 and 52into the B-tree

16 and 48 get added to the leaf nodes, as shown in Figure 2.54:

Figure 2.54: Insertion of 16 and 48 into the B-tree

We divide the rightmost leaf by adding 68. We promote 48 to the root, and
then we split the leftmost leaf by adding 3>, as shown in the following Figure
2.55:

Figure 2.55: Insertion of 68 into the B-tree

Also refer to Figure 2.56:

Figure 2.56: Splitting of a B-tree

Then, promoting 3 to the root; 26, 29, 53, 55 then go into the leaves. Refer to
the following Figure 2.57:

Figure 2.57: Insertion of 3 into the B-tree and split

Also, refer to the following Figure 2.58:

Figure 2.58: Insertion of 26, 29, 53 and 55 into the B-tree

Adding 45 causes a split of 25,26,28,29 and promoting 28 to the root then
causes it to split. Refer to the following Figure 2.59:

Figure 2.59: Splitting of a B-tree

Conclusion
A data structure is of 2 types: Primitive and Non-Primitive. Non-primitive

data structures are divided into 2 categories: linear and non-linear data
structures. An array is a collection of similar data elements. A stack follows
LIFO, where operations are done at the only one end. A queue follows a
FIFO, where operations can be done at both the ends, such that every
example of data structure has its advantages as well as disadvantages. AVL
trees require O(log n) time for simpler operations. AVL trees are useful for
searching elements. Balancing capabilities of AVL tree is the major factor,
that is, if the tree is unbalanced, then it will take longer time for operations to
be performed. Red-Black trees are similar for simpler operations that take
O(log n) time as AVL trees. The properties should be noted while inserting
the nodes. B-tree offers O(log n) for deletion and insertion of the elements.
Unlike a hash table, B-tree provides an ordered sequential access to the
index. B-tree provides iteration of keys as well. Tries is also a tree that stores
characters or strings. It offers O(n), where n is the length of the key for
insertion, searching and deletion operations. Unlike hash tables, Tries easily
print every word in alphabetical order. But it needs a lot of memory for
storing the characters. Therefore, we can say that tries are faster but require a
huge memory for storing characters. Huffman algorithm is easy to implement
and it helps in shortening down the messages.

Key facts
Advanced data structure is the one used for organizing, storing, and
managing the data in a more efficient manner with ease of access and
modification.
AVL Tree is determined as a height balanced binary search tree, where
each node is associated with balance factor. It is computed by finding
the difference between the height of the left subtree and height of the
right subtree. The balance factor should be -1,0 or 1 for an AVL tree.
Huffman Algorithm is a kind of data compression technique, used to
encode the most frequent characters by shorter length of bits of
characters without losing much data. It takes a variable-length code to
encode any given source character.
2-3 Tree is a type of tree structure, in which each internal node
represents either two children with one data element or three children
with two data elements.

Red-Black Trees, a self-balancing type of binary search tree used to
represent each node of the tree with an extra bit, where an extra bit is
often interpreted as either in red or black color.
Tries is known for sorted tree-based data structure or radix trees. It is
typically used to store a set of dictionary words, in which any word in
the dictionary can be searched using the word’s prefix. It helps to
generate the finite alphabet completion list in an efficient way.
Heap Sort is one of the popular and more efficient sorting algorithms in
data structure. It is a kind of selection sort, where the minimum element
is located and placed in the beginning of the tree. The same process is
repeated for the remaining elements until all elements are placed in the
tree structure. Hence, it is known as an in-place algorithm.
B-Trees is a special kind of m-way based tree structure applied mostly
for disk access. A B-Tree of order m can have a maximum of ‘m-1’
number of keys with ‘m’ children. It is capable of organizing and to
manage enormous data storage and facilitates search operation.

Questions
1. Define AVL tree. Construct AVL tree for the following data:

21,26,30,9,4,14,28,18,15,10,2,3,7 [MU MAY’19(10 MARKS)]
2. Write a note on AVL trees [MU DEC’18 (5 MARKS)]
3. What is the optimal Huffman code for the following set of frequencies,

based on the first 8 Fibonacci numbers? [MU MAY’19 (5 MARKS)]
a:1 b:1 c:2 d:3 e:5 f:8 g:13 h:21

4. Explain Huffman Algorithm. Construct Huffman tree for
MAHARASHTRA with its optimal code. [MU DEC’18 (10
MARKS)]

5. Explain Red Black Trees [MU DEC’18 (5 MARKS)] [(MU MAY’19 (5
MARKS)][MU DEC’19 (5 MARKS)]

6. Define AVL tree. Construct AVL tree for the following data:
63,9,19,27,18,108,99,81 [MU DEC’19(10 MARKS)]

7. Explain Huffman Algorithm. Construct Huffman tree & find Huffman
code for the message: KARNATAKA [MU DEC’19 (10 MARKS)]

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:
https://discord.bpbonline.com

https://discord.bpbonline.com

CHAPTER 3
Divide and Conquer

Introduction
This module discusses divide and conquer technique with the basic
introduction and various methods that are involved in it with suitable
examples. In computer science, divide and conquer is an algorithm design
paradigm. Divide and Conquer is the simplest and easiest technique of
decomposing a larger problem into simpler problems, to solve any given
problem statement.
Binary Search is a searching algorithm for finding an element’s position in a
sorted array. It follows the divide and conquer approach, in which the list is
divided into two halves, and the item is compared with the middle element of
the list.
The Max-Min problem is used to find a maximum and minimum element
from the given array. We can effectively solve it using this approach.
Merge sort is one of the most popular and efficient sorting algorithms. It
divides the given list into two equal halves, calls itself for the two halves and
then merges the two sorted halves.
Quicksort is the widely used sorting algorithm that makes nlogn comparisons
in the average case, for sorting an array of n elements. It picks an element as
pivot and partitions the given array around the picked pivot.
Strassen algorithm is a faster recursive method for matrix multiplication,
where it divides the matrix into four sub-matrices of dimensions n/2 x n/2 in
each recursive step.

Structure
In this chapter, we will discuss the following topics:

Divide and Conquer
Binary Search

Finding the minimum and maximum
Merge-Sort
Quick Sort
Strassen’s Matrix Multiplication

Objectives
By the end of this chapter, the learner will understand the concept of Divide
and Conquer techniques. The learner will get a clear view on the various
algorithms that come under Divide and Conquer techniques. The Time
complexity of various algorithms is represented with different cases.

Divide and conquer
The divide and conquer technique divides the larger problem into smaller
subproblems and the solution is the combination of those smaller
subproblems.
Divide and Conquer solves a problem in 3 steps, as depicted in Figure 3.1:

Figure 3.1: Major steps of Divide and Conquer Technique

The steps in Divide and Conquer are as follows:

1. Divide: This step breaks the larger problem recursively into smaller
problems.

2. Conquer: This step involves recursively solving the sub-problems
independently.

3. Combine: In this step, combine solutions of the smaller subproblems to
get the solution of the original big problem.

Subproblems are like the original problem having smaller arguments and
therefore they can be solved independently. When the subproblem comes to
the smallest possible size, then they can be combined to generate a proper
solution for bigger or the given original problems.
Divide and conquer should be used when the same subproblems are not
evaluated many times.
In this module, some divide and conquer algorithms are explained such as
binary search, max-min problem, sorting algorithms, that is, quicksort and
merge-sort, as well as Multiplication of matrices (Strassen’s algorithm).

Binary search
Binary Search is a search algorithm that finds the position of the target value
from the sorted array. Binary Search is also known as Half-Interval Search or
Logarithmic Search. This algorithm works on the principle of Divide and
Conquer, and is implemented only on a sorted list of an array. This algorithm
compares the target value to the middle value of the array. If they are not
equal, the half in which the target value is not present, is removed, and the
search continues on the remaining half. This procedure is repeated until the
target value is found.

Algorithm
Let us now look at the algorithm:
Input : A = sorted array

N = size of array

Key = value to be searched

Search (A, Key, N)

Set start = 0

Set end = N-1

While (start < end)

Set mid = (start + end) /2

If (Key == A[mid]) then

Return mid

Else if (Key < A[mid]) then

Set end = mid – 1

Else

Set start = mid + 1

End

End

Return (-1) //value not found

Example 1
Sorted array

Value to be searched is Key = 23
Step 1

Here, A[mid] = 13 <23
That is, A[mid] < Key
Hence, start = mid+1 = 5 and mid = (start +end) /2 = 13/2= 6
Step 2

Here, A[mid] = 20 <23
That is, A[mid] < Key
Hence, start = mid + 1 = 7 and mid = (start +end) /2 = 15/2 = 7
Step 3

Here, A[mid] = 23 = Key
Hence, Value is found in the array at position 7.

Example 2
Sorted array

Value to be searched is Key = 23

Step 1

Here, A[mid] = 16 <23
That is, A[mid] < Key
Hence, start = mid+1 =5 and mid = (start +end) /2 = (9+5)/2 =7
Step 2

Here, A[mid] = 56>23
That is, A[mid] > Key
Hence, end = mid-1 =6 and mid = (start +end) /2 = (5+6)/2 =5
Step 3

Here, A[mid] = 23 = Key
Hence, Value is found in the array at position 5.

Analysis of Algorithm
Worst-case time complexity = O (log n) comparisons: In the worst case,
the value n does not exist in the array at all. Through each recursion or
iteration of Binary Search, the size of the admissible range is halved. This
halving can be done O (log n) times. Thus, O (log n) comparisons are
required.
Best-case time complexity = O (1) comparisons: In the best case, the value
n is the middle element in the given array. Hence, only 1 comparison is
required.

Finding the minimum and maximum
The Max Min problem is to find the maximum and minimum value from the
given array. There are two approaches for finding the minimum and
maximum value in an array, and they are explained as follows.

Naive method
It is a basic method in which minimum and maximum value can be found by
simply comparing each value of an array. Hence, this approach is simple but
requires 2(n-1) comparisons, that is, (n-1) comparison to find maximum
number and (n-1) comparison to find minimum number.
The number of comparisons can be reduced by using Divide and Conquer
approach.

Divide and conquer approach
In this approach, there are the following three cases:

If there is only one element in an array, then it is said to be both
minimum and maximum.
If the array contains only two elements, then maximum and minimum
value can be decided using only one comparison.
If the array contains more than two elements, then the array is divided
into two halves from the middle. Then using a recursive approach,
minimum and maximum are found in each half independently. Later,
return the maximum of two maxima of each half and minimum of two
minima of each half.

Algorithm
Let us now look at the algorithm:
//Using Divide and Conquer Approach.

MaxMin (a, low, high)

If (n==1) then

return (a[0], a[1])

else if (n==2) then

if (a[1] < a[2]) then

return (a[1], a[2])

else

return (a[2], a[1])

else

mid = (low + high)/2

[Left_Min, Left_Max] = MaxMin (a, low, mid)

[Right_Min, Right_Max] = MaxMin (a, mid+1, high)

If (Left_Max>Right_Max) then

max = Left_Max

else

max = Right_Max

end

If (Left_Min<Right_Min) then

min = Left_Min

else

min = Right_Min

end

return (min, max)

end

Analysis of Algorithm
From the preceding algorithm, MaxMin creates two problems of size n/2, and
thus the recurrence relation is:
T (n) = 2T(n/2) +2 , n > 2
T (n) = 1 , n = 2
T (n) = 0 , n = 1
When ‘n’ is a power of 2, n=2k for some positive integer ‘k’, then:
T (n) = 2T(n/2) +2

= ٢(٢T (n/٤) +٢) +٢
= ٤T(n/٤) +٤ +٢
= ٢k-١ T (٢) + Σ ١ ≤ I ≤ k-١ ≤ ٢i
= ٢k-١+ ٢k - ٢

T(n) = (3n/2) – 2
Hence, (3n/2) - 2 is the best-case, average-case, and worst-case number of
comparisons.

Merge Sort
Merge sort is a sorting technique based on divide and conquer technique.
With worst-case time complexity being Ο(n log n), it is one of the most
respected algorithms.
Merge sort first divides the array into equal halves and then combines them in
a sorted manner.

Algorithm
Let us now look at the algorithm:
MergeSort(A)

{

n = length(A)

if (n<2) then

return mid = n/2

left = array of size(mid)

right = array of size(n-mid)

for i=0 to mid-1

left[i] = A[i]

for i = mid to n-1

right[i-mid] = A[i]

MergeSort(left)

MergeSort(right)

Merge(left,right,A)

}

Merge(L,R,A)

{

nL = length(L)

nR = length(R)

i = j = k = 0

while (i<nL && j<nR)

{

If (L[i] <= R[j]) then

{

A[k] = L[i]

k = k +1

i = i+1

}

else

{

A[k] = R[j]

j = j+1

}

k = k+1

}

while (i<nL)

{

A[k] = L[i]

i = i+1

k = k+1

}

while (j < nR)

{

A[k] = R[j]

j = j+1

k = k+1

}

}

Analysis of Merge Sort
In MergeSort(A), the first 5 lines are simple statements or simple operations,
and so, it will take time, say ‘C1’. The two for loops consist of executing
simple statements. Hence, together it will take some constant time say ‘C2.n’
If it takes T(n) time for an array of size n, then the left sub-array will take
cost T(n/2) and the other half will take T(n/2).
All merge function does, is it picks one element from either left or right sub-
array and then writes it into another array.
So, it would take cost ‘n.C3 + C4’
Therefore,
T(n) = 2 T(n/2) + C2.n + n.C3 + C4

= 2 T(n/2) +n (C2+ C3) + C4
Let us consider,
T(1) = C (for n=1)
Therefore,
T(n) = 2T(n/2) + n.C (Removing the constant values)
Now using Substitution method
T(n) = 2{2T(n/4) + C.n/2} + C.n

= 4T(n/4) + 2C.n
= 4{2T(n/8) + C.n/4} + 2C.n
= 8T(n/8) + 3C.n
= 16T(n/16) + 4C.n (By Substitution)

If we generalize, we can observe that,
T(n) = 2kT(n/2k) + K.C.n --(i)
Since,
T(1) = C (as considered)

Therefore,
n/2k =1
n= 2k

Therefore, k= log2n

Hence from (i)
T(n) = 2kT(n/2k) + k.C.n
T(n) = 2log

2
n.T(n/2log

2
n) + log2n.C.n

T(n) = n.T(1) + n.log2n.C -------------(Since 2log
2
n = n)

T(n) = n.C + C.n.log2n

Here, by dropping the lower order terms, that is, n. C and by dropping the
constant multiplier the Time Complexity is equal to O(n.logn) or we can also
say, Time Complexity is equal to O(n.logn).
The best case as well as worst case Time complexity of Merge Sort is
O(n.logn).

Quick Sort
Quick sort is also one of the divide and conquer algorithms. It is also called
the Partition exchange algorithm. For sorting, it uses the special variable
called Pivot. After sorting the elements, the left of the pivot is smaller than
pivot and the elements to the right are greater than it. The pivot can be
selected in any of the ways; first element as pivot and last element as pivot,
middle element as pivot or any random element as pivot.

Algorithm
Let us now look at the algorithm:
Quicksort(A, start, end)

{

If (start < end)

{

PIndex ← Partition (A, start, end)

Quicksort(A, start, PIndex-1)

Quicksort(A, PIndex+1, end)

}

}

Partition(A, start, end)

{

Pivot ← A[end] ……(1)

PIndex ← start ……(2)

For i ← start to end -1

{

If (A[i] <= pivot)

{

Swap (A[i], A[index]) …….(3)

PIndex ← PIndex +1 …….(4)

}

}

Swap (A. [PIndex], A[end])

return PIndex

}

Analysis of algorithm
Let us consider the best case as well as the worst-case scenario.

Best case
As Quick Sort works on divide and conquer rule, for best case, the array will
be already sorted. So, we go on dividing the array into a number of sub-
arrays. Hence, there will be no need to perform any sorting operation, while
conquering the sub-arrays.
In the partition (A, start, end) function, the statements which are numbered as
(1), (2), (3) and (4), are simple statements which will take some constant time
and together. Let us say they cost us “b”.
The for loop again consists of some simple statements which will cost, say “a
“. Hence, the for loop will take together “an’’ time. The for loop will be
executed one extra time but we neglect such a small cost while calculating
the rate of growth for very high values of n.
Therefore, the time expression here will be:

T = an+b

Here, the complexity is computed using the Substitution method, but it can
also be solved using Master’s method and Recursion tree method.
Now, the first statement is simple and will take the constant time C1.
The statement inside the condition will have time complexity as follows:

The first statement will take an+b cost, as discussed earlier.
The second and third statements will be the partitioning of an array. It
consists of an element pivot. For us, it will be best if we consider a
balanced partition, that is, Arrays to the left and right of pivot will have
value n/2 each.
Therefore, the time taken by quicksort is T(n/2) each.

T(n) = an+b
T(n) = 2T(n/2) + an+b+c
T(n) = 2T(n/2) + Cn
T(1) = C1
T(n) = 2T(n/2) + Cn ……(1)

 = 2(2T(n/4) + Cn/2)+Cn => 4T(n/4) +2 Cn
 = 4(2T(n/8) + Cn/4)+2Cn => 8T(n/8) +3 Cn

T(n) = 2kT(n/2k) + KCn
Let, n/2k = 1
Therefore, n = 2k

K = log2n

T(n) = 2log2n T(1) + log2n

 = nC1 + Cn log2n

T(n) = O(nlogn)
Hence, the time complexity is O(nlogn) for the best case.

Worst case
As we have already discussed about the best case, the worst case will be
when we have totally unbalanced partitioning.
In this case, in quicksort(A,start,end)

The if statement has complexity C1.
The first statement in if condition has time complexity as an+b, same as
in best case.
The next statement will have time complexity T(n-1) and the next

statement will cost the same.

T(n) = T(n-1)+Cn
= (T(n-2)+(Cn-1))+Cn => T(n-2)+2Cn-C
= (T(n-3)+(Cn-2))+2Cn-2 => T(n-3)+3Cn-3C

T(k)=T(n-k)+kCn-(k(k-1)/2)C
Let, n-k=1
n=k
T(n)=T(1)+Cn2-(n(n-1)/2)C
T(n)=C1+Cn(n+1)/2
T(n)=Cn2/2+Cn/2+C1
T(n)=O(n2)
Hence, the time complexity is O(n2) for the worst case.

Strassen’s matrix multiplication
Strassen’s Matrix is based on divide and conquer strategy, which includes a
smaller number of multiplications, in comparison to the traditional way of
matrix multiplication. The multiplication method is defined as:
[Z11 Z12 Z21 Z22] = [X11 X12 X21 X22] × [Y11 Y12 Y21 Y22]`

Z11 = S1 + S4 – S5 + S7

Z12= S3 + S5

Z21= S2 + S4

Z22 = S1 + S3 – S2 + S6

Where,
S1 = (X11 + X22) * (Y11 + Y22)

S2 = (X21 + X22) * Y11

S3 = X11 * (Y12 – Y22)

S4 = X22 * (Y21 – Y22)

S5 = (X11 + X12) * Y22

S6 = (X21 – X11) * (Y11 + Y12)

S7 = (X12 – X22) * (Y21 + Y22)

Example 3
Multiply the given two matrix using Strassen’s Matrix Multiplication:

Let Z = X × Y = [X11 X12 X21 X22] × [Y11 Y12 Y21 Y22]`

Z= [[0 0 3 4][1 2 0 0][0 0 2 1][4 3 0 0]] × [[0 0 2 1][4 3 0 0][0 0 3 4][1 2
0 0]]
S1 = (X11 + X22) * (Y11 + Y22)

= ([0 0 3 4] + [4 3 0 0]) * ([0 0 2 1] + [1 2 0 0])
= [4 3 3 4] * [1 2 2 1]
= [10 11 11 10]

S2 = (X21 + X22) * Y11

= ([0 0 2 1] + [4 3 0 0]) * [0 0 2 1]
= [4 3 2 1] * [0 0 2 1]
= [6 3 2 1]

S3 = X11 * (Y12 – Y22)

= [0 0 3 4] * ([4 3 0 0] – [1 2 0 0])
= [0 0 3 4] * [3 1 0 0]
= [0 0 9 3]

S4 = X22 * (Y21 – Y11)

= [4 3 0 0]* ([0 0 3 4]-[0 0 2 1])
= [4 3 0 0] * [0 0 1 3]
= [3 9 0 0]

S5 = (X11 + X12) * Y22

= ([0 0 3 4]+[1 2 0 0]) * [1 2 0 0]
= [1 2 3 4] * [1 2 0 0]
= [1 2 3 6]

S6 = (X21 – X11) * (Y11 + Y12)

= ([0 0 2 1] – [0 0 3 4]) * ([0 0 2 1]+[4 3 0 0])
= [0 0 -1 -3] * [4 3 2 1]
= [0 0 -10 -6]

S7 = (X12 – X22) * (Y21 + Y22)

= ([1 2 0 0] – [4 3 0 0]) * ([0 0 3 4] + [1 2 0 0])
= [-3 -1 0 0] * [1 2 3 4]
= [-6 -10 0 0]

Z11 = S1 + S4 – S5 + S7

= [10 11 11 10] + [3 9 0 0] – [1 2 3 6] + [-6 -10 0 0]
= [6 3 8 4]

Z12 = S3 + S5

= [0 0 9 3] + [1 2 3 6]
= [1 2 12 9]

Z21 = S2 + S4

= [6 3 2 1] + [3 9 0 0]
= [9 12 2 1]

Z22 = S1 + S3 – S2 + S6

= [10 11 11 10] + [0 0 9 3] – [6 3 2 1] + [0 0 -10 -6]
= [4 8 8 6]

Z = [[8 3 8 4][1 2 12 9][11 7 2 1][4 8 8 6]]

Analysis of algorithm
T(n) = 7T(n/2) + O(n^2) = O(n^log(7)) runtime.
Approximately O(n^2.8074) which is better than O(n^3)

Conclusion
Searching is the operation of finding the elements from the given set of data.
Binary search is more efficient than linear search. In binary search, the
elements in the array must be sorted, which is not in the case of linear search.
Binary search comes under divide and conquer using search technique. In
each step, the binary search algorithm divides the array into two parts and
checks if the element to be searched, is on the upper or lower half of the
array. Best case is O(1), and average case and worst case for binary search is
O(log2n).

In the Max-min problem, for a given array, we must find the maximum and
minimum elements. Before the divide and conquer approach, the maximum
and minimum elements could be found by comparing every element in the
list, but by using divide and conquer, the comparisons have reduced.
Merge sort sorts the list, using the divide and conquer technique. Merge sort
uses a two-way merge process. The best case and worst case for this sorting
technique is O(nlog2n).

Quick sort selects one pivot element and then moves it to the correct position
by fixing the pivot, then dividing the list into equal or unequal size. Best case
is O(nlog2n), and worst case is O(n2).

Key facts
Divide and Conquer: It repeatedly divides a problem into two or more
fragments of the same or closely similar type, until these are sufficiently
straightforward to be solved by themselves. The answer to the main

problem is then produced by combining the answers to the fragments.
Binary Search: A target value’s location within a sorted array is
discovered using this search process. The middle element of the array is
used as a comparison point for the target value in binary search. If the
target value and the middle element are not equal, the half where the
target cannot lie is omitted, and the search is then repeated on the other
half, using the middle element to compare to the target value once
again, until the target value is identified. The target is not in the array if
the remaining half is empty when the search is finished.
Finding the minimum and maximum: Suppose we have an array of
size N. Using the minimum number of comparisons, the aim is to
determine the array’s maximum and minimum elements by Divide and
Conquer Technique.
Merge-Sort: The Divide and Conquer paradigm serves as the
foundation for the sorting algorithm known as the Merge Sort. The
array is divided into two equal halves at first, and then they are merged
in a sorted fashion.
Quick Sort: QuickSort is a Divide and Conquer algorithm, like Merge
Sort. It divides the given array around a particular element that it selects
as a pivot. A partition() is QuickSort’s most important process. Given
an array and the pivot element, x, partitions aim to place x in the correct
order in a sorted array, with all smaller elements preceding x and all
greater elements following x.
Strassen’s Matrix Multiplication: It is a simple Divide and Conquer
method to multiply two square matrices. Divide matrices A and B in 4
sub-matrices of size N/2 x N/2. Calculate the multiplication values
recursively. ae + bg, af + bh, ce + dg and cf + dh.

Questions
1. Explain with example how divide and conquer strategy is used in

Binary Search? [MU DEC’18 (5 MARKS)]
2. Write an algorithm for finding minimum and maximum numbers from a

given set. [MU DEC’18 (5 MARKS)] [MU DEC’19 (5 MARKS)]
3. Sort the following numbers using Quick Sort. Also derive time

complexity of quick sort: 27,10,36,18,25,45 [MU DEC’18 (10
MARKS)]

4. Explain divide and conquer approach. Write a recursive algorithm to
determine the max and min from the given elements. [MU MAY’19 (10
MARKS)]

5. Write an algorithm for implementing Quick Sort. Also comment on its
complexity. [MU DEC’19 (10 MARKS)]

6. Write short note on Merge Sort [MU DEC’19 (5 MARKS)]

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:
https://discord.bpbonline.com

https://discord.bpbonline.com

CHAPTER 4
Greedy Algorithms

Introduction
A greedy algorithm is a method of problem-solving that chooses the best
choice available at the moment. It is unconcerned with whether the most
excellent result at the moment will produce the final best result.
The knapsack problem is stated as, given a set of items, with each having a
weight and a value, choose the number of each item to include in collection,
such that the total weight is less than or equal to a given limit and the total
value is as high as it can be.
The main goal of Job sequencing problems is finding a sequence of jobs that
is finished within deadlines and yields the most profit.
A subset of edges in a connected weighted undirected graph that joins all the
vertices with the least amount of edge weight is known as a Minimum
Spanning Tree (MST). Prim’s algorithm or Kruskal’s algorithm can be used
to derive an MST.
Optimal Storage on tapes is one of the applications in the Greedy method.
The objective of this algorithm is to find the Optimal retrieval time for
accessing programs that are stored on tape.
Create a single sorted file by combining several sorted files of varying
lengths. To build the final file in the shortest amount of time, we must
identify the optimal merge pattern. Given a collection of elements, the subset
covering problem aims to find the minimum number of sets that incorporate
(cover) all these elements.
The goal of an algorithm is to find the optimum solution to a certain problem.
When using a greedy method, choices are drawn from the available solution
domain. Being greedy, the closest option that appears to offer the optimum
solution is picked.

Structure
In this chapter, we will discuss the following topics:

Knapsack problem
Job Sequencing with deadlines
Minimum Cost Spanning Tree
Optimal Storage on Tapes
Optimal Merge Pattern
Subset cover Problem
Container Loading problem

Objectives
By the end of this chapter, the reader will learn about various greedy
algorithms such as the knapsack problem, optimal merge pattern, subset
cover problem and so on, in detail with various examples.

Knapsack problem
Given a set of items, each is associated with a particular weight with it. The
knapsack problem finds the set of items whose total weight is less than or
equal to the weight limit and the profit earned should be maximum.
There are mainly two types of Knapsack problem:

0/1 (Binary) Knapsack: Items cannot be divided further.
Fractional Knapsack: Items can be divided further.

In this chapter, fractional Knapsack problem is discussed. As the name
implies, there is division among the items in the fractional knapsack problem.
If it is not possible to take the entire object, we can even put a portion of it in
the knapsack. Among the given set of items, the item that needs to be
selected first is the item with the Maximum ratio.

In the Knapsack problem, ‘W’ represents the weight of the knapsack, ‘P’
represents the Profit, ‘n’ represents the number of items. The fractional

knapsack problem is solved as follows with different examples.

Example 1
Consider the total number of item as n=3, and weight limit of the
Knapsack=20. The profit of each item is (v1,v2,v3) = (25,24,15), and the
weight of each item is (w1,w2,w3)=(18,15,10).

Solution
Ratio is calculated as follows:

Optimal Solution:

The total profit in this case = 0 + 24 + 7.5 = 31.5

Example 2
Knapsack Capacity = 30. Refer to Table 4.1 to solve the Fractional Knapsack
problem:

Item A B C D

Value 50 140 60 60

Size 5 20 10 12

Ratio 10 7 6 5

Table 4.1: Knapsack Example

Solution:
Optimal Solution:

The total profit in this case =50 + 140 + 30 + 0 = 220

Example 3
Let us consider the capacity of Knapsack as W=60. Refer to Table 4.2 to
solve the Fractional Knapsack problem:

Item A B C D

Profit 280 100 120 120

Weight 40 10 20 24

Ratio 7 10 6 5

Table 4.2: Knapsack Example

Solution:
Optimal Solution:
Selection of Item A = 1 = 40
Selection of Item B = 1 = 10
Selection of Item C = 1/2 = 10
Selection of Item D = 0 = 0
The total profit in this case = 280 + 100 + 60 + 0 = 440

Job Sequencing with deadlines
The primary purpose of job sequencing problems is to identify a sequence of
jobs that is completed on time and generates the greatest profit.
According to the Job Sequencing Problem:

On a machine, there are ‘n’ jobs that need to be processed.
Each job ‘i’ has a profit pi ≥ 0 and a deadline di ≥ 0.

Profit is only earned if the job is finished by the deadline.
If the job is processed for a unit of time on a machine, it is considered as
finished.
There is only one machine accessible to process jobs.
On the machine, only one work is being processed at once.
A subset of jobs J that allows each task to be finished by its deadline,
constitutes a feasible solution.
A workable solution with maximum profit value is an optimal solution.

Algorithm
Let us now look at the algorithm:
AlgorithmJS(D,J,n)

{

D[0] := J[0] :=0;

for i := 1 to n

{

T[i] = -1; //create an empty time slot array

}

J[1] := 1;

for i := 2 to n

{

k := min(Dmax,D[i]); // select between maximum deadline and

deadline of ith job

if (k>-1) then

{

if (T[k] == -1) then //check if time slot is empty

{

T[k] := J[k]; //assign job to that time slot

}

Else

k--;

}

}

Example 4
Refer to Table 4.3 for this job sequencing problem:

Job 1 2 3 4 5

Profit 20 15 10 5 1

Deadline 2 2 1 3 3

Table 4.3: Job sequencing with deadlines question

The jobs are arranged in descending order as per the profit assigned with the
jobs. As per the previous example job, 1 is yielding more profit, with the
maximum deadline of 2. Thus, this job is considered first and assigned slot of
(1, 2). Next, job 2 is considered with the profit of 15 which is the next highest
profit. The deadline assigned is 2, as the slot (1, 2) is assigned to job 1, and
slot (0, 1) is assigned to job 2. Now the next job which gives the maximum
profit is job 3 with the deadline of 1. As the slot (0, 1) is already assigned to
job 2, job3 gets rejected and this continues. Thus, the solution is the sequence
of jobs (1, 2, 4), which are being executed within their deadline and gives the
maximum profit.
Refer to Table 4.4 for the solution:

Job Assigned Slot Job
Considered

Action Profit

{-} - 1 Assign[1,2] -

{1} [1,2] 2 Assign[0,1] 20

{1,2} [0,1][1,2] 3 reject 20+15=35

{1,2} [0,1][1,2] 4 Assign [2,3] 35

{1,2,4} [0,1][1,2][2,3] 5 reject 35+5=40

{1,2,4} [0,1][1,2][2,3] - - 40

Table 4.4: Job sequencing with deadlines answer

Total profit of this sequence is 40.

Minimum Cost Spanning Tree
A subset of the edges of a connected, undirected graph that joins all the
vertices together, without any cycles, and with the least amount of total edge
weight, is known as a minimal cost spanning tree. The Minimum Cost
Spanning Tree is a spanning tree for a connected, undirected graph that has
the lowest cost. Figure 4.1 features a complete graph:

Figure 4.1: Complete Graph

Figure 4.2 Features a Minimum Spanning Tree:

Figure 4.2: Minimum Spanning Tree

There are two basic algorithms for finding minimum cost spanning trees.

Kruskal’s algorithm
The result of this algorithm is a forest of trees. The forest is initially made up
of n single node trees (and no edges). We link two trees together without
cycles, by adding one edge (the cheapest one) at each step.

Algorithm
Step 1: Order all the edges according to non-decreasing weight.
Step 2: Select the smallest edge. Test to see if a cycle is built with the
currently formed spanning tree. Include this edge if a cycle does not develop.
Throw it away if not.
Step 3: Carry out Step 2 again and again until the spanning tree has (n-1)

edges.

Example 5
Consider the graph shown in the following Figure 4.3 to construct the
Minimum Spanning Tree with Minimum cost.

Figure 4.3: A weighted graph

For the given graph in Figure 4.3, the weight of the edges is tabulated in the
following Table 4.5:

Edge AB AC AD AE BC CD DE

Weight 1 7 10 5 3 4 2

Table 4.5: Weight of the edges

Based on the weights assigned for the edges, arrange the edges in ascending
order, as shown in the following Table 4.6:

Edge AB DE BC CD AE AC AD

Weight 1 2 3 4 5 7 10

Table 4.6: Weight of the edges in ascending order

Let us now see the Minimum Spanning Tree construction using Kruskal’s
Algorithm.
Step 1: The edge with the Minimum cost is AB, with the weight of value 1, is
to added 1st in the Minimum Spanning Tree. Refer to the following Figure
4.4:

Figure 4.4: Edge AB added to the Minimum Spanning Tree

Step 2: The next minimum weighted edge DE, can be added to the Minimum
Spanning Tree, and after adding, it must be checked whether it follows the
condition of Minimum Spanning Tree or not. In this case, as it is not forming
any cycle, it is added as the 2nd edge to the Minimum Spanning Tree. Refer
to the following Figure 4.5:

Figure 4.5: Edge DE added to the Minimum Spanning Tree

Step 3: Add the next minimum edge which is BC. It can be added to the
Minimum Spanning Tree as it is not forming any cycle. Refer to the
following Figure 4.6:

Figure 4.6: Edge BC added to the Minimum Spanning Tree

Step 4: The next edge with the Minimum cost is CD, and we will add it in
the Minimum spanning Tree as it is also not forming any cycle. Refer to the
following Figure 4.7:

Figure 4.7: Edge CD added to the Minimum Spanning Tree

Step 5: The next edge that needs to be added to the Minimum Spanning Tree
is AE, but this edge is to be discarded as it forms the cycle. It is the similar
case with the edges AC and AD. The final Minimum Spanning Tree using
Kruskal’s algorithm is shown in Figure 4.8:

Figure 4.8: Final Minimum Spanning Tree

The Minimum Spanning cost is calculated by adding the weights of all the
edges in the Minimum spanning Tree.
Minimum Spanning Cost = AB + DE + BC + CD = 1 + 2 + 3 + 4 = 10.

Prim’s algorithm
Prim’s algorithm starts with one node. Then, one by one, it adds disconnected
nodes to the new graph, choosing from among the available nodes, the node
whose connecting edge has the smallest weight each time.

Algorithm
Step 1: First, pick a starting vertex.
Step 2: Until there are fringe vertices, repeat Step 3 and Step 4.
Step 3: Choose a minimum-weight edge that connects the tree vertex with
the fringe vertex.
Step 4: Include the chosen vertex and edge in the shortest spanning tree T
[END OF LOOP]
Step 5: EXIT

Example 6
Consider the graph shown in the following Figure 4.9 to construct the

Minimum Spanning Tree with Minimum cost:

Figure 4.9: A weighted graph

Let us now see the Minimum Spanning Tree construction using Prim’s
Algorithm.
Step1: Select any one vertex as a starting vertex. In this example shown in
Figure 4.10, Vertex E is considered:

Figure 4.10: Vertex E added to the Minimum Spanning Tree

Step 2: With the selected vertex, now compare all the adjacent edges. The
edge with the Minimum weight is to be added to the Minimum Spanning
Tree. In this case, E has 2 adjacent edges EA and EB, where EA has weight

of 8 and EB has weight of 3. While comparing the weights of EA and EB, EB
is having the Minimum weight of 3, and so, EB will be added to the
Minimum Spanning Tree. Refer to the following Figure 4.11:

Figure 4.11: The Edge EB is now the part of the Minimum Spanning Tree

Step 3: Now, for both the vertices E and B, find the adjacent edges with the
minimum value and add it in the Minimum Spanning Tree. In this case, BC
has the Minimum weight of 1 and it satisfies the condition of Minimum
Spanning Tree. Refer to the following Figure 4.12:

Figure 4.12: The Edge BC added in the Minimum Spanning Tree

Step 4: In this step, the edges E, B and C are considered and found to be the

Minimum adjacent edge. The edge with the Minimum weight is BD, which
does not form any cycle. So add the edge BD to the Minimum Spanning
Tree. Refer to the following Figure 4.13:

Figure 4.13: The Edge BD added in the Minimum Spanning Tree

Step 5: In this step, the edges E, B, C and D are considered and found to be
the Minimum adjacent edge. The edge with the Minimum weight is DC, but
it forms a cycle and is thus discarded. The next edge with the Minimum cost
is AB and AD. AD forms a cycle if added, and so, it is discarded. Finally, the
edge AB is added to the Minimum Spanning Tree. After adding AB, all the
vertices are included in the Minimum Spanning Tree. Moreover, there is no
cycle. Refer to the following Figure 4.14:

Figure 4.14: Final Minimum Spanning Tree

Since all vertices are included in the tree, it is our final Minimum Spanning
Tree.

The Minimum Spanning Cost = BC + BD + EB + AB = 1 + 2 + 3 + 5 = 11

Optimal Storage on Tapes
Consider, given with “n” programs P1,P2,P3,…..,Pn of length L1,L2,L3…….,Ln
respectively, and store them on tapes of length L such that Mean Retrieval
Time (MRT) is minimized. Retrieval of the jth program is the summation of
the length of the first j programs on tape, such that 1 ≤i≤ n and Σ 1≤k≤j Li≤ 1.
Let us consider the magnetic tapes that provide the linear or the sequential
way of playing music. In an audio cassette, if there are four songs, then the
fourth song cannot be played directly. The first three songs are completed and
then it goes to the fourth song. Suppose the lengths of the songs are 6,4,5, and
3 minutes respectively. To play the fourth song of 6+4+5=15 minutes,
position the tape ahead. That is, the retrieval time taken to retrieve the fourth
song entirely is 15+3 =18 mins.
Now for the sequential access of data, there are some limitations such as, for
getting MRT, the sequences must have some order.

Optimal storage on single tapes
To reduce the MRT after storing all the programs on a single tape, we must
find the permutation of the program order.

Example 7
Suppose there are 3 programs of length 2, 5, 4 respectively. Find the Optimal
result.
Refer to Table 4.7:

Order of the
program

Total Retrieval Time Mean Retrieval
Time

123 2+(2+5)+(2+5+4) = 20 20/3

132 2+(2+4)+(2+4+5) = 19 19/3

213 5+(5+2)+(5+2+4) = 23 23/3

231 5+(5+4)+(5+4+2) = 25 25/3

312 4+(4+2)+(4+2+5) = 21 21/3

321 4+(4+5)+(4+5+2) = 24 24/3

Table 4.7: Optimal Storage on Tapes example

From the preceding table, we get the MRT 19/3, which is achieved by storing
the programs in the ascending order of their length.
The preceding program can be computed as:
Tj=0

for i=1 to n do

for j=1 to i do

Tj=Tj +L[j]

End

End

MRT=sum(T)/n

Example 8
Explain optimal storage on tapes and find the optimal order for n=3 of length
5, 10, 3.
Refer to Table 4.8:

Order of the
program

Total Retrieval Time Mean Retrieval
Time

123 5+(5+10)+(5+10+3)=38 38/3

132 5+(5+3)(5+3+10)=31 31/3

213 10+(10+5)+(10+5+3)=43 43/3

231 10+(10+3)+(10+3+5)=41 41/3

312 3+(3+5)+(3+5+10)=29 29/3

321 3+(3+10)+(3+10+5)=34 34/3

Table 4.8: Optimal Storage on Tapes example

From the preceding solution, we get the MRT 29/3, which is achieved by
storing the programs in the ascending order of their length.

Optimal Storage on Multiple Tapes

The problem of minimizing MRT when retrieving the program from multiple
tapes is the same as the concept of optimal storage on single tapes.
The programs are stored one at a time on each tape after being sorted, by
increasing program length. In the following example, working is explained.

Example 9
There is a program of length L={12,34,56,73,24,11,34,56,79,92,34,92,46}.
Store the programs on three tapes and minimize MRT.
Solution:
Here, the Given Data can be seen in Table 4.9:

Table 4.9: Optimal Storage on Multiple Tapes example

The first step is to sort the data in ascending order of their size. Therefore, the
sorted data is as shown in Table 4.10:

Table 4.10: Optimal Storage on Multiple Tapes example

Now distribute the files among all three tapes, as shown in Table 4.11:

Table 4.11: Optimal Storage on Multiple Tapes example

MRTTape1 = ((11)+(11+34)+(11+34+46)+(11+34+46+73)+
(11+34+46+73+92)) / 5

= 567 / 5 = 113.4
MRTTape2 = ((12)+(12+34)+(12+34+56)+(12+34+56+79)) / 4

= 341 / 4 = 85.25

MRTTape3 = ((24)+(24+34)+(24+34+56)+(24+34+56+92)) / 4

= 402 / 4 = 100.5
MRT = (MRTTape1_+ MRTTape2 +MRTTape3) / 3 = (113.4 + 85.25 + 100.5)
/3

= 299.15 / 3 = 95.28

Optimal Merge Pattern
Optimal merge pattern is a pattern that involves merging two or more sorted
files in a single sorted file. There are many ways to do the merging, such as
the two-way merging method. Different pairing requires different amounts of
computing time.

Example 10
Consider the given files f1, f2, f3, f4, f5 with 25,40,13,5, and 40 numbers of
elements.
Solution:
If merge operations are performed according to the sequence, then,
M1 = merging f1 and f2 => 25+40 =>65

M2 = merging M1 and f3 => 65+13 =>78
M3 = merging M2 and f4 => 78+5 =>83
M4 = merging M3 and f5 => 83+40 =>123

Hence the total number of operations: 65+78+83+123 =349
Another solution is sorting the numbers in the ascending order, such as 5, 13,
25, 40, 40 until f1, f2, f3, f4, f5.

M1 = merging f4 and f3 =>5+13 =>18
M2 = merging M1 and f1 =>18+25=>43
M3 = merging M2 and f2 => 43+ 40=>83
M4 = merging M3 and f5 => 83+40=>123

Hence the total number of operations 18+43+83+123 =267
Binary merge trees can be used to depict two-way merge patterns. Let us

consider a set of n sorted files {f1, f2, f3, …, fn}. This is initially thought of as
a binary tree with a single node for each element. The next algorithm is used
to locate this optimal solution.

Algorithm Tree (n)
Let us now look at the algorithm:
for i := 1 to n – 1 do

declare new node

node.leftchild := least (list)

node.rightchild := least (list)

node.weight := ((node.leftchild).weight) +

((node.rightchild).weight)

insert (list, node);

return least (list);

Example 11
Using the algorithm, the problem can be solved as shown in the following
steps:
Initial Set:
Refer to Figure 4.15: the sequence is sorted

Figure 4.15: Optimal Merge – sequence sorted

Step1:
Refer to Figure 4.16:

Figure 4.16: 5 and 13 are Merged

Step2:
Refer to Figure 4.17:

Figure 4.17: 18and 25 are Merged

Step3:
Refer to Figure 4.18:

Figure 4.18: 40 and 40 are Merged

Step 4:
Refer to Figure 4.19:

Figure 4.19: 43 and 80 are Merged

Hence, the preceding problem takes 18 + 43 + 80 + 123= 264 numbers of
comparisons.

Example 12
Given a set of unsorted files: 6,2,3,7,10,14
Solution
Arrange these elements in ascending order that is,2,3,6,7,10.
Step 1: Merged 2 and 3. Refer to Figure 4.20:

Figure 4.20: Optimal Merge Pattern example

Step 2: Merged 5 and 6. Refer to Figure 4.21:

Figure 4.21: Optimal Merge Pattern example

Step 3: Merged 7 and 10. Refer to Figure 4.22:

Figure 4.22: Optimal Merge Pattern example

Step 4: Optimal Merge Pattern Refer to Figure 4.23:

Figure 4.23: Optimal Merge Pattern example

Hence, the merging cost is 5+11+17+28 = 61

Subset cover problem
The set covering problem is an optimization problem. Given a pair (X, F),
where X = {x1, x2 ,x3,……, xm} is a finite set (domain of element) and F={
s1, s2 ,s3 ,……, sn } is a family of subset X, such that every element of x
belongs to at least one set of F.
Consider a subset C ⊆ F (this is a collection of set over X). Therefore, we
can say that C covers the domain if every element of X is in the same set of
C.

Algorithm of set cover problem
The Greedy method selects the set S, at each stage that covers the greatest

number of remaining uncovered components. Let us now look at the
algorithm:
Greedy-set-cover(X,F)

{

U ï X
C ï ᅂ
While (U!= ᅂ)
do-select an S ᅡ F that maximize |S⩃U|
U ï U-S
C C⩂(S)
Return (C)

}

Example 13
Problem:
Let U={1,2,3,4,5} and S={S1,S2,S3}

S1={4,1,3} cost=5
S2={2,5} cost=10
S3={1,4,3,2} cost=3

Find the minimum cost and maximum cost set cover.
Solution:

1. { S1,S2 } = S1⩂S2 ={1,2,3,4,5}
Since S1⩂S2 = U, therefore, it is a set cover.

Total cost = cost(S1)+cost(S2) =5+10=15
2. {S1,S3 } = S1⩂S3 ={1,2,3,4}

Since S1⩂S3= U, therefore, it is not a set cover.

3. {S2, S3} = S2⩂S3 = {1,2,3,4,5}
Since S2⩂S3 = U, therefore, it is a set cover.

Total cost= cost(S2) +cost(S3) =10+3=13
4. {S1, S2, S3} = S1⩂S2⩂S3 = {1,2,3,4,5}

Since S1⩂S2⩂S3 = U, therefore, it is a set cover.

Total cost = cost(S1) +cost(S2) +cost(S3) =5+10+3=18

Therefore, Minimum cost=13 and set cover is {S2, S3}
And Maximum cost =18 and set cover is {S1, S2, S3}

Hence, we discussed that it was one of Karp’s NP-complete problems and its
other application is edge covering vertex covering. It is an NP-Hard problem
because there is no polynomial time solution available for this problem.
There is a polynomial time greedy approximate algorithm that provides a
[log(n)] approximate time complexity.
If the cost of every subset is ‘1’, then we can solve this problem in
polynomial time.
If the cost for every subset is different, then we must pick the minimum cost
and it is a non-polynomial time problem.

Container Loading Problem
The cargo will be put onto a big cargo ship. The cargo is divided into
identically sized containers and is containerized. Weights of various
containers may vary. Let us consider that the ship has a “c” cargo capacity
and an integer array of container “i”, with weights of “wi”. The ship must be
loaded with as much cargo as possible until the sum of the container weights
< c.

Algorithm of Container Loading Problem
The containers are arranged in ascending order and loaded in the ship.
Let xi ∈ {0,1}
xi = 1 – ith container loaded in the ship.
xi = 0 – ith container is not loaded in the ship.
The value is assigned such that,

Example 14
Consider the capacity of the cargo ship c=400 and the number of containers
m=8.

Refer to Table 4.12:

Table 4.12: Containers with corresponding weights

Step 1:
Arrange the containers in ascending order as per the weights, as shown in the
following Table 4.13:

Table 4.13: Containers arranged in ascending order

Step 2:
Add the container with the minimum value into the ship, which is W7 with
the weight of 20, which is less than 400.
Step 3:
Add the next container with the next minimum value into the ship. These are
W3 and W6, and since both have the weight of 50, either of one can be
added.
Add W3 first, 20 + 50 = 70 which is less than 400.
Step 4:
Now add W6, 70 + 50 = 120 which is less than 400.
Step 5:
Now add W8, 120 + 80 = 200 which is less than 400.
Step 6:
Now add W5, 200 + 90 = 290 which is less than 400.
Step 7:
Now add W1, 290 + 100 = 390 which is less than 400.
Step 8:
Now select the next minimum value container W4, 390 + 150 = 540 which
exceeds 400. Hence, stop the process. The selected containers for loading are

W7, W3, W6, W8, W5 and W1.

Conclusion
In combinational optimization, the knapsack problem is a well-known
example, for when an optimal item or finite solution is required, and yet an
exhaustive search is impractical. Job Sequencing with deadlines is used to
understand which job provides us a maximum profit and at the same time,
needs to be done within the range of the deadline provided. Minimum cost
spanning trees help us reach the target node with the minimum cost possible
among all the nodes. It consists of two algorithms – Kruskal’s and Prim’s.
Optimal Storage on tapes is one of the applications of the Greedy Method. It
is used for finding the optimal retrieval time for accessing programs that are
stored on tape. The least number of computations required to create a single
file from two or more sorted files is referred to as the optimal merging
pattern. Subset cover problems find their applications in many different
fields, such as data association problems in bioinformatics and computational
biology.

Key facts
Greedy Algorithm: Any algorithm that makes the locally optimal
decision at each stage when addressing a problem is said to be greedy.
Knapsack Problem: The fundamental tenet of the greedy strategy is to
compute the value/weight ratio for each item and then to arrange the
items according to this ratio. Then add the item with the highest ratio to
the knapsack until we can no longer add the next thing in its entirety.
Finally, add the next item as much as you can.
Job Sequencing with deadlines: Given a variety of jobs, each of which
has a deadline and an associated profit if completed earlier than the
deadline.
Minimum Cost Spanning Tree: The weights of all the edges in the
tree are added to determine the cost of the spanning tree. Many
spanning trees may exist. The spanning tree with the lowest cost among
all other spanning trees is known as a minimum spanning tree. Prims’s
and Kruskal’s algorithms are used to construct the Minimum Spanning
Tree.

Optimal Storage on Tapes: Find the sequence in which the programs
should be recorded in the tape for which the Mean Retrieval Time is
reduced, given n programs that are stored on a computer tape.
Optimal Merge Pattern: A binary merge tree with the shortest
weighted external path length is an ideal merge pattern.
Subset cover Problem: A set of subsets of a universe U of n elements,
say S = S1, S2…,Sm, are given, where each subset Si has a cost. Find a
S subcollection with a minimum cost that includes every aspect of U.
Container Loading problem: A sizable cargo ship will be loaded with
the container. The maximum number of containers must be put into the
ship based on the capacity of the ship.

Questions
1. Compare Greedy and Dynamic programming approach for algorithm

design. Explain how both can be used to solve knapsack problems. [MU
DEC’18 (10 MARKS)]

2. Explain Job Sequencing with deadlines. Let n = 4, (P1, P2, P3, P4) =
(100, 10, 15, 27) and (D1, D2, D3, D4) = (2, 1, 2, 1). Find a feasible
solution. [MU DEC’18 (10 MARKS)]

3. Differentiate between greedy methods and dynamic programming?
[MU MAY’19 (5 MARKS)] [MU DEC’19 (5 MARKS)]

4. Consider the instance of knapsack problem where n = 6, M = 15, profits
are (P1, P2, P3, P4, P5, P6) = (1, 2, 4, 4, 7, 2) and weights are (W1, W2,
W3, W4, W5, W6) = (10, 5 4, 2, 7, 3). Find maximum profit using
fractional Knapsack. [MU MAY’19 (10 MARKS)]

5. Construct a minimum spanning tree using Kruskal’s and Prim’s
algorithm and find out the cost with all intermediate steps. [MU
MAY’19 (10 MARKS)]

6. Given a set of 9 jobs (J1,J2,J3,J4,J5,J6,J7,J8,J9) where each job has a
deadline (5,4,3,3,4,5,2,3,7) and profit (85,25,16,40,55,19,92,80,15)
associated to it. Each job takes 1 unit of time to complete and only one
job can be scheduled at a time. We earn the profit if and only if the job
is completed by its deadline. The task is to find the maximum profit and
the number of jobs done. [MU MAY’19 (10 MARKS)]

7. Explain the knapsack problem with an example. [MU DEC’19 (10
MARKS)]

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:
https://discord.bpbonline.com

https://discord.bpbonline.com

CHAPTER 5
Dynamic Algorithms and NP-Hard and

NP-Complete

Introduction
This chapter talks about Dynamic Algorithms. The need for dynamic
algorithms and introduction to NP-Hard & NP-Complete are discussed with
examples.
The All Pairs Shortest Path (APSP) algorithm is an algorithm that can be
used to find the shortest path between all pairs of nodes in a graph. The APSP
problem is important in a variety of contexts, including transportation
networks, communication networks, and social networks. The 0/1 Knapsack
problem involves selecting a subset of items from a given set of items, such
that the total value of the selected items is maximized, subject to the
constraint that the total weight of the selected items does not exceed a given
capacity. It has many practical applications, including inventory
management, resource allocation, and selection of investments.
The Travelling Salesman Problem (TSP) involves finding the shortest
possible route that visits a given set of cities and returns to the starting city,
subject to the constraint that each city must be visited exactly once. The TSP
has many practical applications, including logistics, transportation, and
routing. The Coin Changing Problem involves finding the minimum
number of coins needed to make a given amount of money, given a set of
denominations of coins. It has many practical applications, including
currency exchange and vending machines.
Matrix chain multiplication is an optimization problem that involves
finding the most efficient way to multiply a sequence of matrices. It has
many practical applications, including computer graphics, machine learning,
and scientific computing. Flow shop scheduling involves scheduling a set of
jobs on a set of machines, such that the total processing time is minimized. It
is an important problem in manufacturing and production, where it is used to

optimize the use of resources and minimize the time required to produce a
product.
An optimal Binary Search Tree (BST) is a binary tree that is used to store a
sorted list of items such that the search time for any item is minimized.
Optimal BSTs are used in a variety of applications, including databases,
search engines, and data structures.

Structure
In this chapter, we will discuss the following topics:

Dynamic Algorithms
All Pair Shortest Path Algorithm
0/1 Knapsack
Traveling Salesman problem
Coin Changing problem
Matrix Chain Multiplication
Flow shop scheduling
Optimal Binary Search Tree
NP – HARD & NP – COMPLETE

Objectives
By the end of this chapter, the reader will learn about various classical
computer science problems and their efficient solutions, as well as using
dynamic programming approaches with their applications. Lastly, the chapter
will also discuss NP-Hard & NP-Complete problems.

Dynamic algorithms
Dynamic Algorithm is mainly an optimization algorithm. Dynamic
Programming can be used to optimize any recursive solution that contains
repeated calls for the same inputs. Instead of repetitive re-computation for the
results of subproblems at a later stage, the idea is to just store them. This
module consists of All Pair Shortest Path, 0/1 Knapsack, Travelling Salesman
Problem, Coin Changing Problem and many more such algorithms.

Moreover, this chapter introduces NP-Hard & NP-Complete problems.

All Pair Shortest Path Algorithm
Some features of the All Pair Shortest Path algorithm are as follows:

The Algorithm is used to find the all pairs shortest path problems from a
given weighted graph.
This algorithm will generate a matrix that represents the shortest path
between any node and every other node in the network.
A weighted graph will be given to us, and looking at the graph, we must
build a matrix of all the paths and its costs.
Each step will be explained in detail in the following example solved.

Example 1
Refer to Figure 5.1 for this example:

Figure 5.1: APSP example

Now, we will keep the first column and first row same for the new matrix we
will be building, that is, A1. Refer to the following matrix in Figure 5.2:

Figure 5.2: Matrix

We will now fill other rows and columns by comparing the shortest distances
between the two points.
We will be looking at matrix A0.
Diagonal elements will always be 0.
We are using 1 as an intermediate branch, as we are calculating A1.
A0[2,3] = ∞
A0[2,1] + A0[1,3] = 3 + 6 = 9
A0[2,3] A0[2,1] + A0[1,3]
A0[2,4] = ∞ > A0[2,1] + A0[1,4] = 3 + 3 = 6
A0[2,5] = ∞ A0[2,1] + A0[1,5] = 3 + ∞ = ∞
A0[3,2] = 0 A0[3,1] + A0[1,2] = ∞ + ∞ = ∞
A0[3,4] = 2 < A0[3,1] + A0[1,4] = ∞ + 3 = ∞
A0[3,5] = ∞ A0[3,1] + A0[1,5] = ∞ + ∞ = ∞
A0[4,2] = 1 < A0[4,1] + A0[1,2] = ∞ + ∞ = ∞
A0[4,3] = 1 < A0[4,1] + A0[1,3] = ∞ + ∞ = ∞
A0[4,5] = ∞ A0[4,1] + A0[1,5] = ∞ + ∞ = ∞
A0[5,2] = 4 < A0[5,1] + A0[1,2] = ∞ + ∞ = ∞

A0[5,3] = ∞ A0[5,1] + A0[1,3] = ∞ + ∞ = ∞
A0[5,4] = 2 < A0[5,1] + A0[1,4] = ∞ + ∞ = ∞
Now, we will fill the preceding values in the A1 matrix, as shown in Figure
5.3:

Figure 5.3: Matrix

Now, we will keep the second row and second column of A1 the same for the
new matrix we will build, that is, A2.
We will also fill other rows and columns by comparing the shortest distances
between two points.
We will be looking at matrix A1.
Diagonal elements will always be 0. We are using 2 as an intermediate
branch as we are calculating A2.
A1[1,3] = 6 < A1[1,2] + A1[2,3] = ∞ + 9 = ∞
A1[1,4] = 3 < A1[1,2] + A1[2,4] = ∞ + 3 = ∞
A1[1,5] = ∞ A1[1,2] + A1[2,5] = ∞ + ∞ = ∞
A1[3,1] = ∞ A1[3,2] + A1[2,1] = ∞ + 3 = ∞
A1[3,4] = 2 < A1[3,2] + A1[2,4] = ∞ + 6 = ∞
A1[3,5] = ∞ A1[3,2] + A1[2,5] = ∞ + ∞ = ∞

A1[4,1] = ∞ > A1[4,2] + A1[2,1] = 1 + 3 = 4
A1[4,3] = 1 < A1[4,2] + A1[2,3] = 1 + 9 = 10
A1[4,5] = ∞ A1[4,2] + A1[2,5] = 1 + ∞ = ∞
A1[5,1] = ∞ > A1[5,2] + A1[2,1] = 4 + 3 = 7
A1[5,3] = ∞ > A1[5,2] + A1[2,3] = 4 + 9 = 13
A1[5,4] = 2 < A[5,2] + A1[2,4] = 4 + 6 = 10
Now, we will fill the preceding values in A2 matrix, as shown in Figure 5.4:

Figure 5.4: Matrix

Now, we will keep the third row and third column of A2 the same for the new
matrix we will build, that is, A3.
We will now fill other rows and columns by comparing the shortest distances
between two points.
We will be looking at matrix A2.
Diagonal elements will always be 0.
We are using 3 as intermediate branch as we are calculating A3.
A2[1,2] = ∞ A2[1,3] + A2[3,1] = 6 + ∞ = ∞
A2[1,4] = 3 < A2[1,3] + A2[3,4] = 6 + 2 = 8

A2[1,5] = ∞ A2[1,3] + A2[3,5] = 6 + ∞ = ∞
A2[2,1] = 3 < A2[2,3] + A2[3,1] = 9 + ∞ = ∞
A2[2,4] = 6 < A2[2,3] + A2[3,4] = 9 + 2 = 11
A2[2,5] = ∞ A2[2,3] + A2[3,5] = 9 + ∞ = ∞
A2[4,1] = 4 A2[4,3] + A2[3,1] = 1 + ∞ = ∞
A2[4,2] = 1 < A2[4,3] + A2[3,2] = 1 + ∞ = ∞
A2[4,5] = ∞ A2[4,3] + A2[3,5] = 1 + ∞ = ∞
A2[5,1] = 7 < A2[5,3] + A2[3,1] = 13 + ∞ = ∞
A2[5,2] = 4 > A2[5,3] + A2[3,2] = 13 + ∞ = ∞
A2[5,4] = 2 < A2[5,3] + A2[3,4] = 13 + 2 = 15
Now, we will fill the preceding values in A3 matrix, as shown in Figure 5.5:

Figure 5.5: Matrix

Now, we will keep the fourth row and fourth column of A3 the same, for the
new matrix we will be building, that is, A4.
We will now fill other rows and columns by comparing the shortest distances
between two points.
We will be looking at matrix A3.
Diagonal elements will always be 0.

We are using 4 as intermediate branch as we are calculating A4.
A3[1,2] = ∞ > A3[1,4] + A3[4,2] = 3 + 1 = 4
A3[1,3] = 6 > A3[1,4] + A3[4,3] = 3 + 1 = 4
A3[1,5] = ∞ A3[1,4] + A3[4,5] = 3 + ∞ = ∞
A3[2,1] = 3 < A3[2,4] + A3[4,1] = 6 + 4 = 10
A3[2,3] = 9 > A3[2,4] + A3[4,3] = 6 + 1 = 7
A3[2,5] = ∞ A3[2,4] + A3[4,5] = 6 + ∞ = ∞
A3[3,1] = ∞ > A3[3,4] + A3[4,1] = 2 + 4 = 6
A3[3,2] = ∞ > A3[3,4] + A3[4,2] = 3 + 1 = 4
A3[3,5] = ∞ A3[3,4] + A3[4,5] = 2 + ∞ = ∞
A3[5,1] = 7 > A3[5,4] + A3[4,1] = 2 + 4 = 6
A3[5,2] = 4 > A3[5,4] + A3[4,2] = 2 + 1 = 3
A3[5,3] = 13 > A3[5,4] + A3[4,3] = 2 + 1 = 3
Now, we will fill the preceding values in A4 matrix, as shown in Figure 5.6:

Figure 5.6: Matrix

Now, we will keep the fifth row and fifth column of A4 the same for the new
matrix that we will build, that is, A5.

We will also fill other rows and columns by comparing the shortest distances
between the two points.
We will be looking at matrix A4.
Diagonal elements will always be 0.
We are using 5 as intermediate branchm as we are calculating A5.
A4[1,2] = 4 < A4[1,5] + A4[5,2] = ∞ + 3 = 4
A4[1,3] = 4 < A4[1,5] + A4[5,3] = ∞ + 3 = ∞
A4[1,4] = 3 < A4[1,5] + A4[5,4] = ∞ + 2 = ∞
A4[2,1] = 3 < A4[2,5] + A4[5,1] = ∞ + 6 = ∞
A4[2,3] = 7 < A4[2,5] + A4[5,3] = ∞ + 3 = ∞
A4[2,4] = 6 < A4[2,5] + A4[5,4] = ∞ + 2 = ∞
A4[3,1] = 6 > A4[3,5] + A4[5,1] = ∞ + 6 = ∞
A4[3,2] = 3 > A4[3,5] + A4[5,2] = ∞ + 3 = ∞
A4[3,4] = 2 < A4[3,5] + A4[5,4] = ∞ + 2 = ∞
A4[4,1] = 4 > A4[4,5] + A4[5,1] = ∞ + 6 = ∞
A4[4,2] = 1 > A4[4,5] + A4[5,2] = ∞ + 3 = ∞
A4[4,3] = 1 > A4[4,5] + A4[5,3] = ∞ + 2 = ∞
Now, we will fill the preceding values in A5 matrix, as shown in Figure 5.7:

Figure 5.7: Matrix

Thus, the shortest distance between all the pairs is obtained.

0/1 Knapsack Problem
Let us consider an algorithm.

Algorithm
int w, k;

for (w=0; w <= W; w++)

B[w] = 0

for (k=0; k<n; k++)

{

for (w = W; w>= w[k]; w--)

{

if (B[w – w[k]] + v[k] > B[w])

B[w] = B[w – w[k]] + v[k]

}

}

Example 2
Weights: 2 3 3 4 6
Values: 1 2 5 9 4

Knapsack Capacity (W) = 10
Refer to Table 5.1:

Table 5.1: Binary Knapsack example

Example 3
W=10
Refer to the following Table 5.2:

Table 5.2: Binary Knapsack example

Solution:
Refer to the following Table 5.3:

Table 5.3: Binary Knapsack example

Example 4
Here we have a selection of n=4 items, and capacity of knapsack M=8. Refer
to Table 5.4:

Table 5.4: Binary Knapsack example

Refer to Table 5.5:

Table 5.5: Binary Knapsack example

Traveling Salesman Problem
The Traveling Salesman Problem (TSP) is a great dynamic programming

algorithm, and its objective is based on optimization. TSP is the method to
easily represent the location of all the nodes as a graph structure.
For example, consider a group of cities and the distance between each pair of
cities. The aim is to find the minimum distance of route that includes all the
city only once and returns to the first city.

Example 5
Refer to Figure 5.8:

Figure 5.8: TSP Example

Refer to Table 5.6:

1 2 3 4

1 0 10 15 20

2 5 0 9 10

3 6 13 0 12

4 8 8 9 0

Table 5.6: TSP example

Refer to the following Figure 5.9:

Figure 5.9: TSP Example

g(i,s) = min{Cik + g(k,s-{k})}
g(1,{2,3,4}) = min{C1k + g(k,{2,3,4}-{k}}

g(2,1) = 5
g(3,1) = 6
g(4,1) = 8

g(2,{3}) =15
g(2,{4}) =18

g(3,{2}) =18
g(3,{4}) =20
g(4,{2}) =13
g(4,{3}) =15
g(2,{3,4}) =25
g(3,{2,4}) =25
g(4,{2,3}) =23

g(1,{2,3,4}) = min{C12 + g(2,{,3,4}), C13 + g(3,{2,4}), C14 + g(4,{2,3})}
 = min{35,40,43}
 = 35

Sequence = 1 → 2 → 4 → 3 → 1

Example 6
Refer to Figure 5.10:

Figure 5.10: TSP example

Refer to Table 5.7:

Table 5.7: TSP example

g(i,s) = min{Cik + g(k,s-{k})}

g(A,{B,C,D,E}) = min{C1k + g(k,{B,C,D,E}-{k}}

g(B,A) = 12
g(C,A) = 10
g(D,A) = 19
g(E,A) = 8

g(B,{C}) = 3+10=13
g(B,{D}) =7+19=26
g(B,{E}) =2+8=10
g(C,{B}) =3+12=15
g(C,{D}) =6+19=25
g(C,{E}) =20+8=28
g(D,{B}) =7+12=19
g(D,{C}) =6+10=16
g(D,{E}) =4+8=12
g(E,{B}) =2+12=14
g(E,{C}) =20+10=30
g(E,{D}) =4+19=23

g(B,{C,D}) =7+16=23
g(B,{D,E}) =7+12=19
g(B,{C,E}) =3+28=31
g(C,{B,D}) =6+19=25
g(C,{D,E}) =6+12=18
g(C,{B,E}) =3+10=13
g(D,{B,C}) =7+13=20
g(D,{C,E}) =6+28=34
g(D,{B,E}) =7+10=17
g(E,{B,C}) =2+13=15
g(E,{C,D}) =20+16=36

g(E,{B,D}) =2+19=21

g(B,{C,D,E }) =3+18=21
g(C,{B,D,E}) =6+17=23
g(D,{B,C,E}) =6+13=19
g(E,{B,C,D}) =4+20=24
g(A,{B,C,D,E}) =min{21,23,19,24}+19

 =19+19
 =38

Sequence = A → E → B → C → D → A

Coin Changing problem
The Coin Changing Problem helps find the minimum number of ways of
making changes, using a given set of coins for the amount.
Follow the given steps:

With each coin, we can wither include the coin in the table, or exclude
it.
We have to first check the value of the coin. If the coin value is less
than or equal to the required amount, then we go for the following cases
to include or exclude the value.

Include: Subtract the value of amount by value of coin and include
it in the sub problem solution (amount-v[i]).
Exclude: Do not consider that the coin and solution will be the
same amount.

If the coin value is greater than the required amount, then exclude the
value.

Example 7
Consider Total Amount = 5
Coins = {1, 2, 3}
Refer to Table 5.8:

Table 5.8: Coin Changing Problem example

Example 8
Amount = 10
Coins = {2, 5, 3, 6}
Refer to Table 5.9:

Table 5.9: Coin Changing Problem example

Minimum number of ways = 4

Matrix Chain Multiplication
The major features of Matrix Chain multiplication are as follows:

Dynamic programming can be used to solve matrix chain
multiplication.
The objective here is to locate the most effective approach to duplicate
these matrices.
Choosing the order of the matrix multiplications involved is the
challenge and doing the multiplications is not the problem.
Multiplication of matrices is associative, meaning that no matter how

we solve it, the outcome will always be the same.
The prerequisite for multiplying two matrices is that the first matrix’s
number of columns should match the second matrix’s number of rows,
that is, a*b b*c.
When you multiply two matrices, the dimension of resultant matrix will
be a*c.
In matrix chain multiplication, the number of matrices as well as their
dimensions will be given. They will be arranged such that they can be
multiplied.
We must take a pair at a time, and so your problem is to recognize
which pair we should select such that the total cost of multiplying them
is minimized.
The problem is to know how to multiply them, meaning how we should
parenthesize them.
We try all possibilities and pick the best one.
Dynamic programming uses tabulation.

Refer to the following Figure 5.11:

Figure 5.11: Matrix Chain Multiplication example

Example 9
M[1,4] Matrix Chain Multiplication for A1, A2 ,A3 ,A4 with P0 = 5, P1 = 4,

P2 = 6, P3 = 2, P4 = 7

Refer to the following Table 5.10:

A1 A2 A3 A4

5 × 4 4 × 6 6 × 2 2 × 7

Table 5.10: Matrix Chain Multiplication example

STEP 1:
m(1,1) = A1 = 0

m(2,2) = A2 = 0

m(3,3) = A3 = 0

m(4,4) = A4 = 0

STEP 2:
m(1,2) = A1 × A2

 = 5 × 4 × 4 × 6
 = 5 × 4 × 6
 = 120

STEP 3:
m(2,3) = A2 × A3

 = 4 × 6 × 6 × 2
 = 4 × 6 × 2
 = 48

STEP 4:
m(3,4) = A3 × A4

 = 6 × 2 × 2 × 7
 = 6 × 2 × 7
 = 84

STEP 5:
m(1,3) = min [A1 × A2 × A3]

 = (A1 × A2) × A3

 = [(A1 × A2) + A3] + [(A1 × A2) × A3]

 = [m(1,2) + m(3,3)] + [m(1,2) A3]

 = [(5 × 4 × 4 × 6) + 0] + [(5 × 4 × 4 × 6) × (6 × 2)]
[consider only bold elements because of m(1,3) that is, we will only take

elements of A1 and A3]

 = [(5 × 4 × 6) + 0] + [5 × 6 × 2]
 = 120 + 60
 = 180

ii. = A1 × (A2 × A3)

 = [A1 + (A2 × A3)] + [A1 × (A2 × A3)]

 = [m(1,1) + m(2,3)] + [A1 m(2,3)]

 = [0 + (4 × 6 × 6 × 2)] + [(5 × 4) × (4 × 6 × 6 × 2)]
[consider only bold elements because of m(1,3) that is, we will only take
elements of A1 and A3]

 = [(4 × 6 × 2) + 0] + [5 × 4 × 2]
 = 48 + 40
 = 88

Now, m(1,3) = min [A1 × A2 × A3] = min[180,88] = 88.

STEP 6:
m(2,4) = min [A2 × A3 × A4]

 = (A2 × A3) × A4

 = [(A2 × A3) + A4] + [(A2 × A3) × A4]

 = [m(2,3) + m(4,4)] + [m(2,3) A4]

 = [(4 × 6 × 6 × 2) + 0] + [(4 × 6 × 6 × 2) × (2 × 7)]
[consider only bold elements because of m(2,4) that is, we will only take
elements of A2 and A4]

 = [(4 × 6 × 2) + 0] + [4 × 2 × 7]
 = 48 + 56
 = 104

ii. = A2 × (A3 × A4)

 = [A2 + (A3 × A4)] + [A2 × (A3 × A4)]

 = [m(2,2) + m(3,4)] + [A2 m(3,4)]

 = [0 + (6 × 2 × 2 × 7)] + [(4 × 6) × (6 × 2 × 2 × 7)]
[consider only bold elements because of m(2,4) that is, we will only take
elements of A2 and A4]

 = [(6 × 2 × 7) + 0] + [4 × 6 × 7]
 = 84 + 168
 = 414

Now, m(2,3) = min [A2 × A3 × A4] = min[104,414] = 104

STEP 7:
m(1,4) = min [A1 × A2 × A3 × A4]

 = (A1 × A2 × A3) × A4

 = [(A1 × A2 × A3) + A4] + [(A1 × A2 × A3) × A4]

 = [m(1,3) + m(4,4)] + [(A1 × A2 × A3) × A4]

 = [(88) + 0] + [(5 × 4 * 4 × 6 * 6 × 2) × 2 × 7]
[consider only bold elements because of m(1,4) that is, we will only take
elements of A1 and A4]

 = [88] + [5 × 2 × 7]
 = 88 + 70
 = 158

ii. = A1 × (A2 × A3 × A4)

 = [A1 + (A2 × A3 × A4)] + [A1 × (A2 × A3 × A4)]

 = [m(1,1) + m(2,4)] + [A1 × (A2 × A3 × A4)]

 = [0 + (104)] + [(5 × 4 * 4 × 6 * 6 × 2)] × 2 × 7]
[consider only bold elements because of m(2,4) i.e we will only take elements
of A2 and A4]

 = [104] + [5 × 4 × 7]
 = 104 + 140
 = 244

iii. = (A1 × A2) × (A3 × A4)

 = [(A1 × A2) × (A3 × A4)] + [(A1 × A2) × (A3 × A4)]

 = [m(1,2) + m(3,4)] + [(A1 × A2) × (A3 × A4)]

 = [(5 × 4 × 4 × 6) + (6 × 2 × 2 × 7)] + [(5 × 4 * 4 × 6) × (6 × 2 * 2
× 7)]

[consider only bold elements because of m(1,4) i.e we will only take elements
of A2 and A4 and the common element between the two groups.]

 = [(5 × 4 × 6) + (6 × 2 × 7)] + [(5 × 6 × 7)]
 = 120 + 84 + 210
 = 414

Now, m(1,4) = min [A1 × A2 × A3 × A4] = min[158, 244, 414] = 158

Now, we fill the values in the tabular columns:

We have obtained values for the ‘m’ table.
For ‘s’ table, we will see what the first element of the equation by which
minimum value was obtained, was. We also have to consider the highest
element in the bracket.

Refer to Figure 5.12:

Figure 5.12: Matrix Chain Multiplication example

∴ Result = [A1 × (A2 × A3)] × A4 …. [By backtracking]

[We used the equation {A1 × (A2 × A3)} in {(A1 × A2 × A3) × A4}, in order
to obtain the minimum value, that is, 158 for m(1,4)].
Refer to the following Figure 5.13:

Figure 5.13: Matrix Chain Multiplication optimal result

Flow Shop scheduling
Flow Shop Scheduling problems are a collection of scheduling problems with
a workshop or a group shop. If there are several machines and there are a
number of jobs, then all of them must be executed by at least one system or
machine, that is, implementation of all jobs must be computed. Flow shop
scheduling is an exception to job scheduling, in which there are strict rules
that the function should be performed on all jobs. Some methods to solve
flow shop scheduling problems are Branch and Bound, Dynamic
Programming, Heuristicz algorithm and Meta-heuristics.

In a Flow Shop Scheduling, all jobs must be executed on a set of systems in
identical order. The aim is to identify the job sequence for optimization of
certain objective functions. Flow shop scheduling problems broadly exist in
the production of industries and mechanical developments.

Algorithm
Let us now go over the algorithm.
Algorithm Flow Shop Scheduling (P, Q)
Let us consider ‘P’ as an array to represent time of jobs, where each column
denotes time period on machine, Mi.
Let us consider ‘Q’ as a job queue.
Q = Φ

for j = 1 to n do

p = minimum machine time scanning in both columns

if p occurs in column 1 then

Add a Job j to the first empty slot of Q

else

Add a Job j to the last empty slot of Q

end

Remove processed job from consideration

end

return Q

Optimal Binary Search Tree
A tree in which the values are kept in the internal nodes is known as a Binary
Search Tree (BST). Null nodes make up the exterior nodes. All the nodes in
a binary search tree’s left subtree have values that are lower than the root
nodes. In accordance with this, every node in the right subtree has a value
that is larger than or equal to the root node.
An optimal binary search tree is a BST which consists of the minimum
possible cost of locating all nodes. Time complexity of BST is O(n), whereas
time complexity for Balanced-BST is O(log n). The time complexity for
Optimal Binary Search Tree can be improved by locating the most frequently
used value near to the root element.

Algorithm

Let us now go over the algorithm.
Algorithm Optimal Binary Search Tree (x, y, n)
Let us consider :
o[1…n+1, 0…n] as Optimal subtree,

p[1…n+1, 0…n] as Sum of probability,

root[1…n, 1…n] as To construct OBST.

for i = 1 to n + 1 do

o[i, i – 1] = yi – 1;

p[i, i – 1] = yi – 1;

end

for m = 1 to n do

for i = 1 to n – m + 1 do

j = i + m – 1 ;

o[i, j] = ∞ ;

p[i, j] = p[i, j – 1] + xj + yj;

for r = i to j do

t = o[i, r – 1] + o[r + 1, j] + p[i, j] ;

if t < o[i, j] then

o[i, j] = t ;

root[i, j] = r ;

end

end

end

end

return (o, root)

Example 10
Find the optimal Binary search tree for the below given input
keys= {10, 12}, frequency = {34, 50}
There can be following two possible BSTs:

Figure 5.14: Possible Binary Search Tree

The frequency of 10 and 12 are 34 and 50 respectively,

For tree 1, cost = 34*1 + 50*2 = 134
For tree 2, cost = 50*1 + 34*2 =118
Hence, the cost of tree 2 is minimal.

Example 11
Find the optimal binary tree for the given input
Input: keys= {5, 15, 25}, frequency = {30, 10, 55}
There can be following possible BSTs

Figure 5.15: Possible Binary Search Tree

For tree 1, cost = 30*1 + 10*2 + 55*3 = 215
For tree 2, cost = 10*1 + 30*2 + 55*3 = 235
For tree 3, cost = 55*1 + 10*2 + 30*3 = 165
For tree 4, cost = 30*1 + 55*2 + 10*3 = 170
For tree 5, cost = 55*1 + 30*2 + 10*3 = 145

Hence, the cost of tree 5 is minimal.

NP – HARD & NP – COMPLETE
NP (nondeterministic polynomial time) is a complexity class used to
classify decision problems in computational complexity theory. The group of
decision problems known as NP are those for which, cases of the problem
where the response is “yes”, contain proofs that can be checked in
polynomial time by a deterministic Turing machine.
A non-deterministic Turing machine may solve a collection of decision
problems in polynomial time, which is an analogous definition of NP. The
acronym NP, which stands for “nondeterministic polynomial time,” is
based on this notion. Because the algorithm based on the Turing machine has
two phases, the first of which consists of a non-deterministic guess about the
solution, and the second of which consists of a deterministic algorithm that
verifies whether the guess is a solution to the problem, these two definitions
are equivalent. Based on the fastest known methods, decision problems are
categorized into complexity classes (such as NP). Therefore, if faster
algorithms are developed, decision issues may be categorized differently.
A problem is in the class NPC if it is in NP. Even though a problem is not NP
itself, it is NP-Hard, if all NP problems can be reduced to it in polynomial
time. Refer to Figure 5.14:

Figure 5.16: Relationship

All problems in NP would be polynomial time solvable if any polynomial
time exists for any of these problems. These problems are referred to as NP-
Complete. Both theoretically and practically, NP-Completeness is an
important phenomenon.
If a language B meets the following two requirements:

B is in NP.
Every A in NP is polynomial time reducible to B.

Language B is referred to as NP-Hard if it meets the second property but not
necessarily the first. If there is some NP-Complete problem, then a search
problem B is informally said to be NP-Hard. It is impossible to solve the NP-
Hard problem in the P = NP polynomial time unit.

NP-COMPLETE problems
The NP-Complete problems listed as follows, have no known polynomial
time algorithm:

Determine whether a graph has a Hamiltonian cycle.
Determine whether a Boolean formula is satisfied, and so on.

NP-HARD problems
Following are NP-Hard problems:

The circuit – satisfiability problem
Set cover
Vertex cover
Traveling salesman problem

Conclusion
By breaking the problem down into smaller and smaller potential sub-
problems, the approach of dynamic programming is comparable to the
strategy of divide and conquer. Contrary to divide and conquer, these
subproblems cannot be resolved separately. Instead, solutions to these more
manageable sub-problems are retained and applied to subsequent or related
sub-problems. When we have difficulties that can be broken down into
smaller, related problems so that the solutions can be reused, we employ
dynamic programming. These algorithms are typically employed for
optimization. The dynamic algorithm will attempt to review the outcomes of
the previously solved sub-problems before solving the current sub-problem.
To find the best solution, the subproblems’ solutions are combined. Dynamic

algorithms are driven by a problem-wide optimization, in contrast to greedy
algorithms that focus on local optimization. The shortest path algorithm uses
the previous found data and finds the shortest path between the two pairs. 0/1
knapsack problem finds the optimal solution of the weights that leads to
maximum capacity. Traveling salesman problem algorithm’s main aim is to
find the minimum cost path between the source and destination. Coin
Changing Problem is to find the minimum number of ways of making
changes, using a given set of coins for the amount. In a Flow Shop
Scheduling, all jobs must be executed on a set of systems in identical order.
A BST with the lowest cost of finding every node is an ideal binary search
tree.

Key facts
Dynamic Programming: It is a method for solving difficult problems
by first decomposing them into a number of simpler subproblems,
solving each subproblem only once, and then storing the answers to
prevent having to perform the same calculations repeatedly.
All Pair Shortest Path Algorithm: It attempts to determine the shortest
route between every pair of vertices. As we need one spanning tree for
each vertex, storing all the paths can be highly memory expensive.
These are typically referred to as all pairs-shortest distance problems,
since they only seek to determine the distance between each node to
another.
0/1 Knapsack: The 0/1 knapsack problem means that the items are
either completely filling the knapsack, or no items are filled in the
knapsack. No fractional values are considered in this method.
Traveling salesman problem: Issues with travelling salesmen are
restricted to a salesman and a group of cities. Beginning in one city, the
salesman must travel to all of them before returning to that same city.
The difficulty with the situation is that the travelling salesman must
reduce the length of the trip.
Coin Changing Problem: If coin N is supplied, different coins are
included in the array. The objective is to modify N using the array’s
coins. Make a change so that a minimal number of coins are utilized.
Matrix Chain Multiplication: It is a Dynamic Programming technique

where the previous output serves as the following step’s input. Chain in
this case denotes that the column of one matrix equals the row of
another matrix.
Flow shop scheduling: A group of scheduling issues with a workshop
or group of shops, is referred to as Flowshop scheduling problem. If
there are several machines and numerous jobs, then each one of them
must be carried out by at least one system or machine.
Optimal Binary Search Tree: The idea of a binary search tree is
expanded upon in an optimal binary search tree. The frequency and key
value of a node’s key value determine the cost of finding that node in a
tree, which is a very important factor. Often, we want to lower the cost
of searching, and an optimum binary tree helps us do so.
NP – HARD & NP – COMPLETE: If a problem is in NP, it belongs
to the class NPC. A problem is NP-Hard even though it is not NP in and
of itself, if all NP problems can be reduced to it in polynomial time.
If there is any polynomial time for any of these problems, then all NP
problems would be solvable in polynomial time. These issues are
known as NP-Complete.

Questions
1. Explain Flow Shop Scheduling technique. [MU DEC’18 (5 MARKS)]
2. Apply All Pair Shortest Path on the following graph: [MU DEC’18 (10

MARKS)]

3. Given a chain of four matrices A1, A2, A3, A4 with P0 = 5, P1 = 4, P2 =
6, P3 = 2, P4 = 7. Find m[1,4] using matrix chain multiplication. [MU
DEC’18 (10 MARKS)]

4. Compare Greedy and Dynamic programming approaches for an

algorithm design. Explain how both can be used to solve knapsack
problems. [MU DEC’18 (10 MARKS)]

5. Differentiate between greedy methods and dynamic programming?
[MU MAY’19 (5 MARKS)] [MU DEC’19 (5 MARKS)]

6. A traveler needs to visit all the cities from a list (figure) where distances
between all the cities are known and each city should be visited just
once. What is the shortest possible route that he visits each city exactly
once and returns to the origin city? [MU MAY’19 (10 MARKS)]

7. What is an Optimal Binary Search Tree? Explain with the help of an
example. [MU MAY’19 (10 MARKS)]

8. Explain Coin Chaining Problem. [MU DEC’19 (5 MARKS)]
9. Explain Flow shop Scheduling Technique. [MU DEC’19 (5 MARKS)]

10. Explain Traveling Salesman Problem with an example. [MU DEC’19
(10 MARKS)]

11. Explain the knapsack problem with an example. [MU DEC’19 (10
MARKS)]

12. Write a short note on Optimal Binary Search Tree. [MU DEC’19 (5
MARKS)]

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:
https://discord.bpbonline.com

https://discord.bpbonline.com

CHAPTER 6
String Matching

Introduction
String matching operation is one of the basic parts in many text processing
applications. The main aim of string-matching algorithm is to find the pattern
P from the given text T. Mostly, the length of the pattern P is much smaller
than the length of the text T, that is, P << T. String matching problem is
defined as “given some text or some string T[1….n] of size n, find all
occurrences of pattern P[1….m] of size.
There are a few algorithms such as naïve string-matching algorithms,
Knuth–Morris–Pratt(KMP) Algorithm, Rabin-Karp algorithm, and so on,
which will be discussed with problems clearly.

Structure
In this chapter, we will discuss the following topics:

The Naïve String-Matching Algorithm
Rabin Karp Algorithm
The Knuth-Morris-Pratt Algorithm
Longest Common Subsequence
Genetic Algorithms

Objectives
By the end of this chapter, the reader will learn about various string-matching
algorithms with suitable examples. Readers will also learn about genetic
algorithms.

The Naïve String-Matching Algorithm

In this algorithm, it first compares the first character of pattern with
searchable text. If a match is not found, pointers of both the strings are
moved forward. If a match is found, the pointer of text is incremented and the
pointer of pattern is reset. This process is repeated till the end of the text.
Naïve approach never requires any preprocessing. It starts directly comparing
the pattern P and text T, character by character. After each comparison, the
pointer shifts the pattern string one position to the right.

Example 1
Perform pattern matching using the naïve algorithm.
String: a b c d a d c a b c d f
Pattern: a b c d f
Solution: ti and pj are indices of text and pattern respectively.

Step 1: T[1] =P[1], ti ++, pj++

Refer to Figure 6.1:

Figure 6.1: T[1] compared with P[1]

Step 2: T[2]=p[2], ti ++, pj++

Refer to Figure 6.2:

Figure 6.2: T[2] compared with P[1]

Step 3: T[3]= P[3], ti ++, pj++

Refer to Figure 6.3:

Figure 6.3: T[3] compared with P[3]

Step 4: T[4]= P[4], ti ++, pj++

Refer to Figure 6.4:

Figure 6.4: T[4] compared with P[4]

Step 5: T[5] ≠ P[5], ti ++, pj=1

Refer to Figure 6.5:

Figure 6.5: T[5] compared with P[5]

Step 6: T[2] ≠ P[1], ti ++

Refer to Figure 6.6:

Figure 6.6: T[2] compared with P[1]

Step 7: T[3] ≠ P[1], ti ++

Refer to Figure 6.7:

Figure 6.7: T[3] compared with P[1]

Step 8: T[4] ≠ P[1], ti ++

Refer to Figure 6.8:

Figure 6.8: T[4] compared with P[1]

Step 9: T[5] = P[1], ti ++, pj++

Refer to Figure 6.9:

Figure 6.9: T[5] compared with P[1]

Step 10: T[6] ≠ P[2], ti ++

Refer to Figure 6.10:

Figure 6.10: T[6] compared with P[2]

Step 11: T[6] ≠ P[1], ti ++

Refer to Figure 6.11:

Figure 6.11: T[6] compared with P[1]

Step 12: T[7]≠ P[1], ti ++

Refer to Figure 6.12:

Figure 6.12: T[7] compared with P[1]

Step 13: T[8] =P[1], ti ++, pj++

Refer to Figure 6.13:

Figure 6.13: T[8] compared with P[1]

Step 14: T[9]=P[2], ti ++, pj++

Refer to Figure 6.14:

Figure 6.14: T[9] compared with P[2]

Step 15: T[10]=P[3], ti ++, pj++

Refer to Figure 6.15:

Figure 6.15: T[10] compared with P[4]

Step 16: T[11]=P[4], ti ++, pj++

Refer to Figure 6.16:

Figure 6.16: T[4] compared with P[4]

Step 17: T[12]=P[5], ti ++, pj++

Refer to Figure 6.17:

Figure 6.17: T[12] compared with P[5]

Thus, the string is matched.

Algorithm for Naïve bayes string matching
The algorithm for Naïve bays string matching is as follows:
NAÏVE_STRING_MATCH(T,P)

for i=0 to i=n-m do

if P[1…m] == T[i+1…i+m]then

print “Match found”

end

end

The best case of is O(n) and the worst case is O(m*(n-m+1)).

Rabin Karp Algorithm
One of the string-matching algorithms is the Rabin-Karp algorithm.
However, instead of matching every element of the string, it uses numbers,
that is, the hash value to match the string. If the hash value is matched, then
only it matches each character of that string, one by one. Hence, because of
these methods, it is one of the most efficient methods of string matching,
having the time complexity of O(n-m+1), but for worst case, it is O(mn).
Suppose, A represents values of the pattern A[1…..m] of length m, and T be
the values of the substring.
The Rabin Karp algorithm first calculates the hash value of A and T. If the
hash value is the same, that is, hash(A)=hash(T), then we match that part of
the string like the naive algorithm.
On hash match, actual characters of both strings are compared using brute
force approach. If pattern is found, then it is called hit else spurious hit.

Example 2
Compute the pattern matching using Rabin Karp algorithm for the given data:
Text= CCACCAAEDBA
Pattern= DBA
Solution

Let A=1; B=2; C=3; D=4; E=5; F=6; G=7; H=8; I=9; J=10
Step 1: Calculates the hash value of the pattern

Hash code h(P)=value (D)+value (B)+value (A)=4+2+1 = 7

Step 2: Calculate the hash value of the substring
CCA = 3+3+1 = 7 = h(p) (however the string does not match)

CAC = 3+1 +3 = 7 = h(p) (however the string does not match)
ACC = 1 +3+3 = 7 = h(p) (however the string does not match)
CCA = 3+3+1 = 7 = h(p) (however the string does not match)
CAA = 3+1+1 = 5 ≠ h(p)

Here, as we can see that most of the hash value of the substring gives the
same hash code of the pattern, such a situation is called a spurious hit. To
overcome such situation, we use another method;
Step 1: Pattern = DBA = 4*102 + 2*101 + 1*100

= 400 + 20 + 1 = 421 = h(p)
Step 2:
CCA = 3*102 + 3*101 + 1*100 = 300 + 30 + 1 = 331 ≠ h(p)

CAC = 3*102 + 1*101 + 3*100 = 300 + 10 + 3 = 313 ≠ h(p)
ACC = 1*102 + 3*101 + 3*100 = 100 + 30 + 3 = 133 ≠ h(p)
CCA = 3*102 + 3*101 + 1*100 = 300 + 30 + 1 = 331 ≠ h(p)
CAA = 3*102 + 1*101 + 1*100 = 300 + 10 + 1 = 311 ≠ h(p)
AAE = 1*102 + 1*101 + 5*100 = 100 + 10 + 5 = 115 ≠ h(p)
AED = 1*102 + 5*101 + 4*100 = 100 + 50 + 4 = 154 ≠ h(p)
EDB = 5*102 + 4*101 + 2*100 = 500 + 40 + 2 = 542 ≠ h(p)
DBA = 4*102 + 2*101 + 1*100 = 400 + 20 + 1 = 421 = h(p)

Hence, the match is found.

Example 3
Compute the pattern matching using RabinKarp algorithm for the given data:
Text= DABCADADDIT

Pattern= ADD
Solution:
Let A=1;B=2;C=3;D=4;E=5;F=6;G=7;H=8;I=9;J=10
Step 1: Calculate the hash value of the pattern:

h(p) = ADD = 1*102 + 4*101 + 4*100

= 100 + 40 + 4 = 144
Step 2: Calculate the hash value of the substrings.

DAB = 4*102 + 1*101 + 2*100 = 400 + 10 + 2 = 412 ≠ h(p)
ABC = 1*102 + 2*101 + 3*100 = 100 + 20 + 3 = 123 ≠ h(p)
BCA = 2*102 + 3*101 + 1*100 = 200 + 30 + 1 = 231 ≠ h(p)
CAD = 3*102 + 1*101 + 4*100 = 300 + 10 + 4 = 314 ≠ h(p)
ADA = 1*102 + 4*101 + 1*100 = 100 + 40 + 1 = 141 ≠ h(p)
DAD = 4*102 + 1*101 + 4*100 = 400 + 10 + 4 = 414 ≠ h(p)
ADD = 1*102 + 4*101 + 4*100 = 100 + 40 + 4 = 144 = h(p)

Hence, the match is found.
Hence, in this way, we can easily find the matching pattern from the whole
complete string easily.

The Knuth-Morris-Pratt Algorithm
The Knutt-Morris-Pratt algorithm is also called as KMP algorithm. This is
the first linear time algorithm for string matching. The main task of these
algorithms is to find out whether the given pattern is existing inside the string
or not. However, if it is there, then find out its index.
The fundamental tenet of the KMP method is that it avoids back trashing,
unlike the naive bayes technique, if the initial portion of the string appears
elsewhere in the string. O(m+n) is the time complexity of the KMP
algorithm. In the worst case, KMP algorithm examines all the characters of
the input pattern and text exactly once. This improvement is achieved by
using the auxiliary function π or also known as LPS table.
The acronym LPS stands for Longest Proper Prefix, which is also suffix.
A proper prefix is one that does not contain the entire string. For example,

prefixes of “ABC” are “”, “A”, “AB” and “ABC”. Proper prefixes are “”,
“A” and “AB”. Suffixes of the string are “”, “C”, “BC” and “ABC”.

Example 4
Let us assume the pattern be P1 = ABCDABEABF.

Then the LPS table for the pattern P1 would be as the following Table 6.1:

Table 6.1: LPS table

Since, till index [1,2,3,4] any of the character does not repeat itself, the LPS
value is given as 0.However, at index [5] the character A is repeated and
hence, it is given the value equal to the index of the first A, that is, 1 similarly
character B at position [6] is given value as 2 and so on.
Hence, in this way we can calculate the LPS table or π table.

Example 5
Compute the π table for the following AABCADAABE
Solution:
Refer to the following Table 6.2:

Table 6.2: LPS table

Example 6
Check the pattern = ABABD in the text = ABABCABABD using the KMP
algorithm.
Solution:
Step 1: Draw the LPS table for the pattern.

Refer to the following Table 6.3:

Table 6.3: Pattern Table

Step 2: Initialize “ i ” and “ j ”
Refer to the following Table 6.4:

Table 6.4: Initialize i and j

Step 3: now, a[i] == a[j+1] ;i++ ; j++
Refer to Table 6.5:

Table 6.5: Compare a[i] with a[j+1]

Step 4:a[i] == a[j+1] ;i++ ; j++
Refer to Table 6.6:

Table 6.6: Compare a[i] with a[j+1]

Step 5: a[i] == a[j+1] ;i++ ; j++
Refer to Table 6.7:

Table 6.7: Compare a[i] with a[j+1]

Step 6:a[i] == a[j+1] ;i++ ; j++
Refer to Table 6.8:

Table 6.8: Compare a[i] with a[j+1]

Step 7: a[i] ≠ a[j+1] ; move j to index pointed by the position j is now present

that is, move j to index 2.
Refer to Table 6.9:

Table 6.9: Compare a[i] with a[j+1]

Step 8: a[i] ≠ a[j+1] ; move j to index pointed by the position j is now present
that is move j to index 0.
Refer to Table 6.10:

Table 6.10: Compare a[i] with a[j+1]

Step 9:a[i] ≠ a[j+1] ;but j is already at a[0] therefore increment i.
Refer to Table 6.11:

Table 6.11: Compare a[i] with a[j+1]

Step 10: a[i] == a[j+1] ;i++ ; j++
Refer to Table 6.12:

Table 6.12: Compare a[i] with a[j+1]

Step 11: a[i] == a[j+1] ;i++ ; j++
Refer to Table 6.13:

Table 6.13: Compare a[i] with a[j+1]

Step 12:a[i] == a[j+1] ;i++ ; j++

Refer to Table 6.14:

Table 6.14: Compare a[i] with a[j+1]

Step 13:a[i] == a[j+1] ;i++ ; j++
Refer to Table 6.15:

Table 6.15: Compare a[i] with a[j+1]

Step 14: a[i] == a[j+1] ;i++ ; j++
Refer to Table 6.16:

Table 6.16: Compare a[i] with a[j+1]

Hence, in this way we can match the string using KMP algorithm.

Longest Common Subsequence (LCS)
LCS problems consist of two sequences of which, we need to find out the
common longest subsequent present among them.
Though dynamic programming method in LCS follows a bottom-up
approach, the matrix table gets filled from top-bottom. It is an approach
followed to solve the problem. In the matrix table, rows are equal to the
number of alphabets present in String 1 and columns are equal to the number
of alphabets in String 2. To start with the algorithm, let us initialize the first
row and first column of the matrix (that is, index 0 of the matrix) values as
zero. Next, compare between the elements of string 1 and the elements of
string 2.If there is a match, then add value 1 with the value of the previous
diagonal element. If no match exists, then consider the maximum value out of
either previous row element or column element. The process continues till all
the columns and rows are filled. To find the longest common subsequence,
start tracing back from the longest value towards diagonal element and thus
the results are obtained. The time complexity of LCS using dynamic
programming approach is defined as O(m x n), where ‘m’ denotes number of
alphabets present in String 1, and ‘n’ denotes as number of alphabets in
String 2.
Let us consider an example for better understanding.

Example 7
Find the LCS of the strings given as follows:
String 1: stone
String 2: longest
Solution:
Refer to Table 6.17:

Table 6.17: LCS table

Therefore, LCS = one

Example 8
Find LCS of the strings given as follows:
String 1: mlnom
String 2: mnom
Refer to Table 6.18:

Table 6.18: LCS table

Therefore, LCS = mnom

Genetic Algorithms
Most evolutionary algorithms are adaptive heuristic search algorithms,
known as Genetic Algorithms (GA). It is predicated on the concepts of

natural selection and genetics. They are frequently employed to produce
excellent solutions for optimization and search-related issues.
Genetic algorithms are nothing but the natural selection of the species which
can survive and adapt to the changing environment and could reproduce and
go to the next generation. In other words, it can be termed as “survival of the
fittest” among individuals of the consecutive generations, of the problem to
be solved.
The following analogy serves as the foundation for genetic algorithms:

1. Population members fight for resources and mates.
2. The successful (fittest) individuals then mate to have more children,

than other individuals.
3. Genes from the “fittest” parent spread throughout the generation, which

means that occasionally parents produce offspring who are superior to
both parents.

4. As a result, each next generation becomes more environment-friendly.

Search Space
The population of the individual is preserved in the search space. Each person
will be represented by a vector of components with a finite length. These
elements will resemble genes in certain ways. As a result, different or various
genes make up each chromosome. Refer to Figure 6.18:

Figure 6.18: Genetic Algorithm

Fitness score
Each person receives a fitness score that indicates how well-equipped they

are, to compete in the changing environment. The GAs maintains the
population, along with the fitness score of each individual. The individual
having higher fitness score than others will be given more chance to
reproduce, as compared to others. The candidate with the highest fitness
score is chosen because they can unite with their mate and combine their
chromosomes to make superior children. Since the population is static, space
must be made for newcomers. As a result, some people pass away and are
replaced by newcomers, eventually giving rise to a new generation, once the
previous population had all its chances to mate. Better genes were passed
down from members of the previous generation to each subsequent
generation. As a result, younger generations always have more effective
“partial solutions” than earlier ones. The population has converged once the
progeny produced show no discernible difference from progeny from earlier
populations. It is said that the algorithm has “converged” on a set of possible
solutions to the issue.

Operators of genetic algorithms
Let us now see the different operators of genetic algorithms:

Selection Operator: The goal is to favor the individual who scored
higher on the fitness scale, allowing them to procreate and pass on their
genes to the following generation.
Crossover Operator: This is the union of the chosen operators. By
using a selection operator, two operators are picked, and the crossover
sites are then determined at random. Then, the genes are switched,
producing an entirely new individual.
Figure 6.19 Features the Crossover operation:

Figure 6.19: Crossover operation

Mutation Operator: The goal is to maintain genetic diversity by
randomly introducing genes into offspring. By doing so, early
convergence can be avoided, as shown in the following Figure 6.20:

Figure 6.20: Mutation

Conclusion
From the preceding algorithms, we can say that the Rabin-Karp algorithm
and KMP algorithm are the effective ones as compared to others, when the
patterns are small, and the alphabets are small. The naïve algorithm is the
solution with the slowest execution time.

Key Facts
The string-matching algorithms are used for finding the occurrence of a
pattern string within a larger text string. These algorithms can be used
for a variety of applications, including text processing, data
compression, and pattern recognition.
The naive string-matching algorithm is a simple algorithm that has a
time complexity of O(n * m). It is suitable for small to medium-sized
strings, but it can be slow for larger strings.
The Rabin-Karp algorithm is an improvement over the naive string-
matching algorithm. The Rabin-Karp algorithm is a useful tool for text
processing, data compression, and pattern recognition. It has a time
complexity of O(n + m).
The Knuth-Morris-Pratt (KMP) algorithm is an improvement over
the naive string-matching algorithm and the Rabin-Karp algorithm. It
has a time complexity of O(n + m) and is more efficient for large
strings.
The Longest Common Subsequence (LCS) is a problem in computer

science and operations research, that involves finding the longest
subsequence that is common to two or more strings. It is an example of
a problem that can be solved using optimization techniques, which are
used to find the best solution to a problem given a set of constraints.
Genetic algorithms are a type of optimization algorithm that is inspired
by the process of natural evolution. Genetic algorithms are used in a
variety of applications, including optimization, machine learning, and
artificial intelligence. They are a useful tool for finding good solutions
to difficult problems and are often used as a last resort when other
algorithms are not effective.

Questions
1. Write a short note on Rabin Karp Algorithm [MU DEC’18(10

MARKS)]
2. Explain Rabin Karp Algorithm in detail [MU DEC’19(10 MARKS)]

[MU MAY’19(10 MARKS)]
3. write short note on Knuth-Morris-Pratt Algorithm [MU DEC’18(10

MARKS)] [MU MAY’19(5 MARKS)]
4. What is the longest common subsequence problem? Find LCS for the

following string:[MU DEC’18(10 MARKS)][MU DEC’19(10
MARKS)]
String x = ACBAED
String y = ABCABE

5. What is the longest common subsequence problem? Find LCS for the
following string: [MU MAY’19(5 MARKS)]
String X = ABCDGH
String Y = AEDFHR

6. Explain Genetic Algorithm[MU DEC’19(10 MARKS)]
7. Write short note on Genetic Algorithm [MU MAY’19(5 MARKS)]

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com

Index

Symbols
0/1 Knapsack problem 117, 125

examples 126, 127
2-3 Tree operation 39

element, inserting 41-43
element, searching 40, 41

3 order B-tree 39

A
advanced data structures 29
All Pairs Shortest Path (APSP) algorithm 117, 119

example 120-125
analysis of algorithms 1-3

need for 3
asymptotic notations 3

Big O notation 4
examples 5-8
features 5
Omega Ώ notation 5
Theta Θ notation 3, 4

AVL Tree 29
LL rotation 29-31
LR rotation 29-32
RL rotation 30, 32
RR rotation 29, 30

B
Big O notation 4
Binary Search 67, 69, 70

algorithm 70
analysis of algorithm 72
examples 71, 72

Binary Search Tree (BST) 30, 141
B-tree 58

constructing 59
example 58
splitting 59-64

C
Coin Changing Problem 118, 132

example 133
compressed tries 51
Container Loading Problem 112

algorithm 112
example 112, 113

crossover operator 170

D
data structures 29
divide and conquer technique 67-69
dynamic algorithms 117-119

E
element

inserting, in 2-3 tree 41-43
searching, in 2-3 tree 40, 41

F
Flow Shop scheduling 118, 139, 140

algorithm 140

G
Genetic Algorithms (GA) 168

fitness score 169
operators 170
search space 169

greedy algorithm 89

H
heap 52

maximum heap 52

minimum heap 52
ReHeap-down 54
ReHeap-up 53

heap sort
algorithm 54
example 56-58

Huffman algorithm 33
examples 33-39

J
Job Sequencing Problem 93

algorithm 93-95

K
Knapsack problem 89, 90

0/1 (Binary) Knapsack 91
example 91-93
fractional Knapsack 91

Knuth–Morris–Pratt (KMP) algorithm 149, 159, 160
examples 160-166

Kruskal’s algorithm 96
example 96-99

L
Longest Common Subsequence (LCS) 166

examples 167, 168
LPS table 160

M
Master theorem 20, 21

example 21, 22
Matrix Chain multiplication 118

example 135-139
features 134

max heap 52
Max Min problem 67, 73

algorithm 74
analysis of algorithm 75
divide and conquer approach 73

Naive method 73
Mean Retrieval Time (MRT) 102
merge sort 68, 75

algorithm 76
analysis 78, 79

min heap 52, 53
Minimum Cost Spanning Tree 95, 96

Kruskal’s algorithm 96
Prim’s algorithm 99

Minimum Spanning Tree (MST) 89
mutation operator 170

N
Naïve String-Matching algorithm 150

algorithm 156
examples 150-156

NP-Complete problems 145
NP-Hard problems 145
NP (nondeterministic polynomial time) 144

O
Omega Ώ notation 5
operators, Genetic Algorithms (GA)

crossover operator 170
mutation operator 170
selection operator 170

optimal Binary Search Tree (BST) 118, 141
algorithm 141
examples 142, 143

optimal merge pattern 105
algorithm 106
examples 105-109

Optimal Storage, on multiple tapes
example 104

Optimal Storage, on single tapes
examples 102, 103

Optimal Storage, on tapes 102

P
partial solutions 169

Pivot 79
Prim’s algorithm

example 99-101

Q
Quick sort 68, 79

algorithm 79
analysis of algorithm 81
examples 81-83

R
Rabin-Karp algorithm 157

examples 157-159
recurrence 17
recurrence methods 18

Master theorem 20
recursive tree method 22
Substitution method 18

recursion tree 22
recursion tree method

example 22, 23
red-black tree 43, 44

examples 44-50
ReHeap-down 54
ReHeap-up 53

S
selection operator 170
set cover problem 110

algorithm 110
example 110, 111

standard tries 51
Strassen algorithm 68
Strassen’s matrix multiplication 83

analysis of algorithm 86
examples 84

String matching operation 149
substitution method 18

example 18-20
suffix tries

features 51

T
Theta Θ notation 3, 4
time complexity 9, 10

calculating 11
examples 11-14
general rules 14-17
rate of growth of algorithm, calculating 11

Travelling Salesman Problem (TSP) 117, 128
example 128-130

tries 51
compressed tries 51
standard tries 51
suffix tries 51

	Cover Page
	Title Page
	Copyright Page
	Dedication Page
	About the Authors
	About the Reviewers
	Acknowledgements
	Preface
	Errata
	Table of Contents
	1. Analysis of Algorithm
	Introduction
	Structure
	Objectives
	Analysis of algorithm
	What is analysis of algorithms?
	Why to analyze algorithms?

	Asymptotic notations
	Θ Notation
	Big O Notation
	Ω (Omega) Notation
	Example 1
	Example 2
	Example 3
	Example 4

	Time complexity
	Calculating the time complexity
	Calculating the rate of growth of an algorithm with respect to the input
	Example 5
	Example 6
	Example 7

	General rules for time complexity analysis
	Rule 1: Remove all lower order expressions & drop the constant multiplier
	Example 8
	Example 9
	Example 10

	Rule 2: The running time of an algorithm is equal to the summation of running time of all the fragments of the algorithm.
	Example 11

	Rule 3: In case of conditional statements; consider the complexity of the condition which is the worst case.
	Example 12

	Recurrences
	Substitution method
	Example 13

	Master theorem
	Example 14

	Recursive Tree Method
	Example 15

	Conclusion
	Key facts
	Questions

	2. Advanced Data Structures
	Introduction
	Structure
	Objectives
	Advanced data structures
	AVL Tree
	RR Rotation
	LL Rotation
	LR Rotation
	RL rotation

	Huffman algorithm
	Example 1
	Example 2

	2-3 Tree operation
	Searching an element in 2-3 tree
	Search an element in 2-3 Tree:

	Inserting an element in a 2-3 Tree:
	Red-Black Trees
	Example 3
	Example 4

	Tries
	Types of tries
	Standard tries
	Compressed tries
	Suffix tries

	Heap Sort
	Types of heaps
	Maximum Heap
	Minimum heap
	ReHeap-Up
	ReHeap-Down

	Algorithm for heap sort
	Example 5

	B Trees
	Constructing a B-Tree

	Conclusion
	Key facts
	Questions

	3. Divide and Conquer
	Introduction
	Structure
	Objectives
	Divide and conquer
	Binary search
	Algorithm
	Example 1
	Example 2

	Analysis of Algorithm

	Finding the minimum and maximum
	Naive method
	Divide and conquer approach
	Algorithm
	Analysis of Algorithm

	Merge Sort
	Algorithm
	Analysis of Merge Sort

	Quick Sort
	Algorithm
	Analysis of algorithm
	Best case
	Worst case

	Strassen’s matrix multiplication
	Example 3
	Analysis of algorithm

	Conclusion
	Key facts
	Questions

	4. Greedy Algorithms
	Introduction
	Structure
	Objectives
	Knapsack problem
	Example 1
	Example 2
	Example 3

	Job Sequencing with deadlines
	Algorithm
	Example 4

	Minimum Cost Spanning Tree
	Kruskal’s algorithm
	Algorithm
	Example 5

	Prim’s algorithm
	Algorithm
	Example 6

	Optimal Storage on Tapes
	Optimal storage on single tapes
	Example 7
	Example 8

	Optimal Storage on Multiple Tapes
	Example 9

	Optimal Merge Pattern
	Example 10
	Algorithm Tree (n)
	Example 11
	Example 12

	Subset cover problem
	Algorithm of set cover problem
	Example 13

	Container Loading Problem
	Algorithm of Container Loading Problem
	Example 14

	Conclusion
	Key facts
	Questions

	5. Dynamic Algorithms and NP-Hard and NP-Complete
	Introduction
	Structure
	Objectives
	Dynamic algorithms
	All Pair Shortest Path Algorithm
	Example 1

	0/1 Knapsack Problem
	Algorithm
	Example 2
	Example 3
	Example 4

	Traveling Salesman Problem
	Example 5
	Example 6

	Coin Changing problem
	Example 7
	Example 8

	Matrix Chain Multiplication
	Example 9

	Flow Shop scheduling
	Algorithm

	Optimal Binary Search Tree
	Algorithm
	Example 10
	Example 11

	NP – HARD & NP – COMPLETE
	NP-COMPLETE problems
	NP-HARD problems

	Conclusion
	Key facts
	Questions

	6. String Matching
	Introduction
	Structure
	Objectives
	The Naïve String-Matching Algorithm
	Example 1
	Algorithm for Naïve bayes string matching

	Rabin Karp Algorithm
	Example 2
	Example 3

	The Knuth-Morris-Pratt Algorithm
	Example 4
	Example 5
	Example 6

	Longest Common Subsequence (LCS)
	Example 7
	Example 8

	Genetic Algorithms
	Search Space
	Fitness score
	Operators of genetic algorithms

	Conclusion
	Key Facts
	Questions

	Index

