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Preface

Years of teaching R to undergraduates has struck me with the realization that even
if students are well equipped with a lot of skills in R, they may find it difficult to
pick out the proper tools when they need them. Conversely, if they conduct research
without learning R, they may have no idea what R can achieve for them.

This book is neither a book for the R language, nor for statistics, nor for data
science, nor for public health. It is a mixture of them. In this book, I would like
to demonstrate how to apply R language to processing data in public health with
practical examples. Thus, the preferable usage of this book is a textbook for teaching
or learning R language or data science in public health, although it can also be used
across disciplines.

Data are a set of values of numerical or categorical variables about one or more
persons or objects. In scientific research, we process a lot of data before extending our
knowledge and making decisions. In Xi’an Jiaotong-Liverpool University (XJTLU,
Suzhou, China), undergraduate programs are carried out for data analysis in multiple
disciplines. Most of the contents of this book originated from the undergraduate
module DPH206 Methods for Analyzing Public Health IV: Working in the Field:
Data. TheRoman number IV indicates that thismodule is a componentwithin a series
for the students who are major in public health. Prerequisites for this module include
basic knowledge in Epidemiology, Biostatistics, and Qualitative and Quantitative
Research Methods. This book, however, gives examples as simple as possible so that
the prerequisites are helpful rather than a must.

Public health is an important and ever-evolving field that requires the collection,
analysis, and interpretation of data to inform decisions and policies that impact the
health of individuals and communities. The ability to work effectively with data is
therefore a crucial skill for any public health practitioner. As a result of the teaching
and learning experience ofDPH206, this book provides a practical way of conducting
and analyzing research data. Students learn principles of working with data through
the entire workflow from planning to presenting. For the convenience of the readers,
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the R code and demonstration datasets in this book are available in theGitHub reposi-
tory pzhaonet/dph206.1 Readers are suggested to download the files in “inst/extdata/”
and save them in a local folder “data/”, which will be the default path to the data
files in the demonstrations in this book. As a result of reading this book, readers
will not only gain a solid understanding of the R language and its applications in
public health but will also develop the skills necessary to work with data in a rigorous
and reproducible manner. I hope that this book will serve as a valuable resource for
students and practitioners alike and will inspire readers to continue exploring the
rich intersection between data analysis and public health.

It could have been impossible to write this book without the collaboration with
my students. I appreciate the contribution from the students during the years of
my teaching, especially Hongran Ding, Xinwen Hu, Chenwenyu Li, Guiyu Liang,
Longsheng Liu, Shiyu Ma, Jing Wang, and Shiqiang Wu.

Suzhou, China
December 2022

Peng Zhao

1 https://github.com/pzhaonet/dph206.

https://github.com/pzhaonet/dph206
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Chapter 1
Preparing Tools

1.1 Chapter Highlights

• Set up the R environment with useful packages for working with data in public
health,

• The fundamental R operations, including assigning values, writing comments,
using functions, loading packages and datasets, and

• Find help in the built-in documents and online resources.

1.2 Tools

Data, which serve as a link between the problem and the solution, describe what is
known about the issue and place it in context. A handy tool for working with data
plays a key role in program evaluation and inference in public health. Therefore,
we must choose a data processing tool before doing anything with data. This stage
might be incorporated into the data planning process instead, as tool selection is an
element of the study design (see Chap.2). If we chose it before establishing a plan,
however, the tool may play an essential part in the planning process as well.

Data work can be done traditionally in a pen-and-paper mode. Statistical hypoth-
esis testing, for example, might be performed using simple calculation with the
assistance of look-up tables. Thanks to the rapid development of modern computer
science and technology, it is now possible to select a preferred tool from among a
large number of software packages. Microsoft Excel and comparable tools, such as
LibreOffice Calc, are frequently used to manage spreadsheet data. In the field of
public health, professional data analysis tools such as SPSS, Epi Info, and NVivo are
particularly popular with graphic user interfaces (GUI). Aside from GUI-dominated
software, programming languages such as MATLAB, Python, and R offer more
powerful and versatile alternatives.

© Xi’an Jiaotong University Press 2023
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This book focuses on R because of the extensive ecosystem of R packages and
friendly community for wide support. The open-source project RStudio offers an
enhanced integrated development interface (IDE) to R user, which simplifies the
usage of R. When students’ work is required to be reproducible, R Markdown is the
preferred writing tool.

The R language (R Core Team 2022) was created as a software package for sta-
tistical analysis and has now evolved into an all-in-one data science solution. R was
created by Ross Ihaka and Robert Gentleman in the Department of Statistics, Uni-
versity of Auckland, New Zealand, and has been maintained by a group (the R Core
Team) since 1997. The majority of the team members are statisticians from universi-
ties such as Oxford University, Washington University, Wisconsin University, Iowa
University, and others. Aside from that, many contributors from all over the world
work on R by writing scripts, debugging applications, and writing documentation.
R is free and open-source, and it is backed by a big community, unlike many other
data tools.

R is based on the S programming language and Scheme, so it looks and works
like S. R is an explanatory programming language. The commands in R are written
as functions, and users can also invoke the programmes written in C, C++, or FOR-
TRAN. R’s data structure lends itself well to data science. R can handle all types
of numerical and categorical data. Vector, matrix, data frame, list, array, factor, time
series, and other data types are among them. In terms of the algorithm, R gives a
wealth of functions for data tools that are simple to use. We may also create our own
algorithms using the R rules.

R’s official webpage provides a comprehensive introduction to the language, as
well as seven handbooks that can be also found in the R installation path on our com-
puters. In the appendix of the R-intro manual, there is a demonstration for beginners.
Other handbooks among the seven are more suited to programmers than to begin-
ners. Aside from the official R website, a number of learning materials are either
accessible online for free or available in published hardcopies, written in English
and other languages, such as R for Beginners (Paradis 2005). Although it is a bit
out of date, A Beginner’s Guide to R (Zuur et al. 2009) is still a most friendly book
for beginners.1 R for Data Science (Wickham and Grolemund 2016), a complete
guide for the tidyverse community in R, is a modern comprehensive one. The R
community contributes additional learning materials on the open forums and video
channels.

We presume that the readers of this book have a fundamental understanding of R.
That is, readers should be familiar with the basics of R, such as variable assignment,
vectors, lists, data frames, and functions. Therefore, the purpose of this chapter is to
provide the readers a rapid review of R in order to keep them on track.

1 All theR codes in this book could be downloaded fromhttps://highstat.com/index.php/a-beginner-
s-guide-to-r. The book has been translated into other languages, including Chinese.

https://highstat.com/index.php/a-beginner-s-guide-to-r
https://highstat.com/index.php/a-beginner-s-guide-to-r
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1.3 Set Up R

1.3.1 R

We could download the installation package of R, either for Microsoft Windows,
macOS, or Linux, from any mirror site of the Comprehensive R Archive Network
(CRAN), where we could find Download and Install R. Choose the proper
link for our operation system.

• Windows users could click Download R for Windows and click base.
In the new window, click Download R-\ *.\ *.\ * for Windows, where
*.*.* indicates the version, such as 4.2.2. After the download is complete,
run the installation file. There are various options throughout the installation pro-
cess, and we may just use the default settings.

• Linux users could click Download R for Linux (Debian, Fedora/
Redhat, Ubuntu), and then choose the proper link for RedHat, Ubuntu, etc.
We could either install R from the binary package or from the source code. The
latter might require us to solve the dependencies.

• Mac users could click Download R for macOS and choose the R-*.*.*.
pkg file for installation.

We have to keep in mind that R is in development. Usually, a new version of R is
released on a seasonal basis. It is recommended to update R to the newest version.

1.3.2 RStudio

R comes with a minimal GUI by default. Although it works great, we recommend
using the RStudio IDE to make R more user-friendly, especially for beginners. The
RStudio IDE is open-source and cross-platform. We could just download the instal-
lation package from RStudio’s official website and run it with the default settings.

After the installation of R and RStudio IDE, We can begin working with data. It
is suggested to create an R project as the start. The steps are as follows:

1. Start RStudio IDE from the program list on our computer.
2. Click in the menu bar File - New Project - New Directory -

New project.
3. Fill in the blanks with the project name as the new directory name and the path

for saving the project.
4. Click the button Create Project.
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Fig. 1.1 The RStudio IDE with four panes

The new directory with supportive project files are created and the RStudio IDE
interface is switched to the new project. We could find a *.Rproj file in the direc-
tory, where * is the project name.

Now we click in the menu bar File - New File - R Script, or press
the hot key ctrl + shift + n, to create a script file. The RStudio IDE with
four panes looks like Fig. 1.1.

The four panes are identified with 1–4 in an anti-clockwise order, and a hot key
ctrl+shift+pane_ID (e.g. ctrl+shift+1) can zoom in or zoom out one
of them. By default, Pane 1 is the source pane, which serves as the working desk
where we write the R code. The R code is a sequence of programming statements
that can be saved (File - Save or ctrl+s) and edited as a script file. We can
write something like 1 + 2, and click the Run button at the top bar of Pane 1 or
press the hot key ctrl+enter. As a result, the command where the cursor stays
is sent to and evaluated in Pane 2, which is called the console pane. We can also
use Pane 2 for performing quick calculations that we do not have to save for future
use. Pane 3 shows the file directories, plots, packages, and help documents. Pane
4 is mainly used for viewing the objects in the environment and command history.
The layout of these four panes can be customized in the menu Tools - Global
Options - Pane Layout.
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We recommend just double-clicking the *.Rproj file to launch R and the RStu-
dio IDE every time. The benefit is that the working directory is straightforward to
manage. Traditionally, R users had to use the getwd() and setwd() functions to
get and set the working directory, respectively. Beginners often overlooked this and
became confused while importing or exporting files. Although these two functions
are still mentioned in many R manuals, we nowadays seldom use them any more,
because (1) the *.Rproj file simplifies the usage of working directory, and (2)
changing the working directory while processing data is not a smart idea unless you
have to. Therefore, it is recommended to groupR scripts and products into R projects,
keep relevant files in the project folder, and always start with the *.Rproj file.

The RStudio IDE provides a number of hot keys for accelerating the operation.
The hot key alt+shift+k evokes a quick reference for keyboard shortcuts.

1.4 Programming Basics

Programming basics in R includes arithmetic and logical operations, assigning val-
ues, data types, using functions, etc. Here we show the most fundamental operations
in the following simple example:

radius <- c(1, 2, 3, 4, 5) # assign values
area <- pi * x ˆ 2 # pi is a built-in constant
plot(x = radius, y = area) # draw a figure

Explanations:

• This example calculates the areas of circles and visualize the relationship between
the radius and the area.

• There are three lines in this example. Each line is a complete operation. Line 1
assigns a series of the values to an object called radius. Line 2 calculates the
areas of circles with the radius, and assigns the results to an object called area.
Line 3 draws a scatter plot of area as y and radius as x.

• The assignment operation is performed by an arrow (<-). We could use = instead,
which is nothing different for the assignment operation.

• c() is a command or, more precisely, a function that combines multiple values in
the parenthesis into one vector. The values are separated with commas, as required
by c(). A function is a set of statements organized together to accomplish a
specific task. All the R operations are performed or based on functions. Line 3
shows another function plot(), in which the objects radius and area are
passed to the arguments x and y. Functions are a key feature in R.

• The text led by a hash (#) is a comment, which is ignored by R when executing
the code. Comments can be any text, but usually they are used to explain the code
and make it more readable to users.
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These explanations may help you go through this book. R beginners could read
the reference books we recommend for step-by-step learning, while it is also a good
practice to learn straightforward from the scripts written by others.

1.5 R Packages

An R package refers to the fundamental unit of sharable codes, data, documentation
and tests (Wickham 2015). R packages considerably enhance R’s ability to workwith
data. The default installation of R automatically includes the base, stats, graphics,
grDevices, and datasets packages, which provides many statistical models (e.g. lin-
ear and generalized linearmodels, non-linear simulationmodels, time series analysis,
hypothesis tests), supports for graphics, and demonstration datasets. Other add-on
packages must be installed manually when they are needed.

There are around 20,000 R add-on packages available on CRAN so far, and even
more on Bioconductor, R-Forge, Omegahat, and GitHub for obtaining and sharing
useful tools in R. CRAN provides a webpage of task views2 as a guideline for finding
packages in a given topic, where we could find helpful packages in the categories
Epidemiology and Survival for public health. Most of the R packages are under 1
MB in size. R packages implement a large number of new statistical theories and
methods as soon as they are produced, which makes R the industry leader in statistics
and data science.

1.5.1 Installation

Anadd-on package has to be installedwhenweuse it for the first time. The installation
of R packages fromCRAN is performed via the install_packages() function.
For example, we could install the remotes package (Csárdi et al. 2021) like this:

install.packages('remotes')

The remotes package can install add-on packages from remote repositories rather
than CRAN, which we will demonstrate in subsequent sections.

Multiple packages could be installed in one command. Let’s install the Epi pack-
age (Carstensen and Plummer 2022) for research in Epidemiology, as well as the
data.table (Dowle and Srinivasan, 2022) and the tidyverse packages (Wickham
2022) for data science:

install.packages(c('Epi', 'data.table', 'tidyverse'))

Every time when a new R session is started, we must load the add-on package
into R before using it. There are often two ways of loading an add-on package. The

2 https://cran.r-project.org/web/views/.

https://cran.r-project.org/web/views/
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first is the library() function or the require() function, which loads all the
functions of a given package. Let’s load the remotes package:

library(remotes)

Now we can use any function provided by the remotes package. For example,
remotes provides a function install_github(), which allows installing R
packages on GitHub. Let’s install the rosr package (Zhao 2021) in the GitHub
repository pzhaonet/rosr, which provides a data management strategy (see
Chap.10):

install_github('pzhaonet/rosr')

The second way of loading the add-on package is the syntax package_name:
:function_name(), which only loads one single function of a package. The
previous task can also be performed as:

remotes::install_github('pzhaonet/rosr')

This book uses many R packages for working with data in public health. We do
not go over the installation and loading procedure again in the subsequent sections,
but you should be aware of how to perform it. We will clarify a package on GitHub
like Github: package_repository. If no clarification is given, it means that
the package is available on CRAN.

1.5.2 Packages in Public Health

Although public health is not a topic listed in the CRAN task views, numerous R
packages are often used in this field, and they are included in other general topics
such as Databases, ClinicalTrials, Epidemiology, ExperimentalDesign, Multivari-
ate, SocialSciences, Survival, etc. Beginners might take a quick glance at these pages
to get a sense of what they can do. Here we list several commonly used packages in
public health as follows.

• Epi (Carstensen and Plummer 2022) provides statistical analysis in epidemiol-
ogy. Specifically, it offers a set of functions tailored towards demographic and
epidemiological analysis in the Lexis diagram, i.e. register and cohort follow-up
data, in particular representation, manipulation and simulation of multistate data.
This package also contains functions for Age-Period-Cohort and Lee-Carter mod-
eling, as well as a function for interval censored data. Additionally, it offers several
useful features for data tabulation and visualization, and ships a diverse range of
epidemiological datasets.

• EpiModel (Jenness et al. 2022) employs mathematical modeling techniques to
simulate the dynamics of infectious diseases. Specifically, it enables the simula-
tion of diverse models, including deterministic compartmental models, stochas-
tic individual-contact models, and stochastic network models. These modeling
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approaches allow for a comprehensive understanding of infectious disease dynam-
ics, and their simulation can facilitate the development of effective intervention
strategies to mitigate disease spread.

• epibasix (Rotondi 2018) provides elementary epidemiological functions for epi-
demiology and biostatistics.

• epiDisplay (Chongsuvivatwong 2022) explores epidemiological data and presents
results.

• epiR (Stevenson et al. 2022) provides analysis tools for epidemiological and
surveillance data. It includes functions for calculating sample sizes for cross-
sectional, case-control, and cohort studies as well as functions for directly and
indirectly adjusting measures of disease frequency, quantifying measures of asso-
ciation using one or more strata of count data presented in a contingency table,
computing confidence intervals around incidence risk and incidence rate estimates,
and adjustingmeasures of disease frequency. It offers surveillance tools to estimate
surveillance system sensitivity, estimate the proper sample size for 1- and 2-stage
representative freedom surveys, and facilitate scenario tree modeling analyses.

• epitools (Aragon 2020) provides tools, including methods for two-way and multi-
way contingency tables, for training and practicing epidemiologists.

• nCov2019 (Yu and Wu 2021) provides the real world COVID-19 outbreak data,
which could be served as the learning materials for public health students and
decision evidences for policy makers.

• pubh (Athens 2022) provides a variety of functions to describe and analyze epi-
demiological public health data and biostatistics science in a user-friendly way.

• survival (Therneau 2022) contains the essential survival analysis procedures,
including definition of Surv objects, Kaplan-Meier and Aalen-Johansen (multi-
state) curves, Cox models, and parametric accelerated failure time models.

• survey (Lumley 2021) analyzes complex survey samples, calculates summary
statistics, and performs two-sample tests, rank tests, generalised linear models,
cumulative link models, Cox models, loglinear models, and general maximum
pseudolikelihood estimation for multistage stratified, cluster-sampled, unequally
weighted survey samples. A variety of tools for variances by Taylor series lineari-
sation or replicate weights, post-stratification, calibration, and raking, two-phase
subsampling designs, and so on, are available as well.

• surveillance (Hoehle et al. 2022) provides statistical approaches for the modeling
of continuous-time point processes of epidemic phenomena as well as for the
monitoring and monitoring of time series of counts, proportions, and categorical
data.

• SPARSEMODr (Mihaljevic 2022) uses stochastic disease models that are spa-
tially explicit and have adjustable time windows to show how parameter values
change when an outbreak occurs.

• WHO (Persson 2019) provides programmatic access to the World Health Organi-
zation API.

Some of these packages (e.g. Epi, epiR) contain extensive capabilities for data
analysis in public health,while others focus on specific tasks (e.g.nCov2019,WHO).
Almost all of them provide some demonstration datasets with examples that may be
utilised to practise and learn R.
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An appropriate citation is typically required when using an R package in publi-
cations. The citation() function provides the bibliographic information of the
package. The returned text are usually given in two different formats. When there is
only one reference, it returns the reference ready for general use in publications and
a bibliographic entry in the BIBTEX format:

citation('pubh')

##
## To cite package ’pubh’ in publications use:
##
## Athens J (2022). _pubh: A Toolbox for Public Health and
## Epidemiology_. R package version 1.2.7,
## <https://CRAN.R-project.org/package=pubh>.
##
## A BibTeX entry for LaTeX users is
##
## @Manual{,
## title = {pubh: A Toolbox for Public Health and Epidemiology},
## author = {Josie Athens},
## year = {2022},
## note = {R package version 1.2.7},
## url = {https://CRAN.R-project.org/package=pubh},
## }

The BIBTEX entry could either be integrated into the R Markdown tools for aca-
demic writing (see Chap.9), or be imported to any reference management software,
such as EndNote and Zotero.

When there are multiple references, it returns a list of the references. For example,
the citations for the Epi package:

citation('Epi')

##
## To cite Epi in publications use:
##
## Bendix Carstensen, Martyn Plummer, Esa Laara, Michael Hills (2022).
## Epi: A Package for Statistical Analysis in Epidemiology. R package
## version 2.47. URL \url{https://CRAN.R-project.org/package=Epi}
##
## If you use Lexis objects/diagrams, please also cite:
##
## Martyn Plummer, Bendix Carstensen (2011). Lexis: An R Class for
## Epidemiological Studies with Long-Term Follow-Up. Journal of
## Statistical Software, 38(5), 1-12. URL
## \url{https://www.jstatsoft.org/v38/i05/.}
##
## For use of Lexis objects in multi-state models, please also cite:
##
## Bendix Carstensen, Martyn Plummer (2011). Using Lexis Objects for
## Multi-State Models in R. Journal of Statistical Software, 38(6),
## 1-18. URL \url{https://www.jstatsoft.org/v38/i06/.}
##
## To see these entries in BibTeX format, use ’print(<citation>,
## bibtex=TRUE)’, ’toBibtex(.)’, or set
## ’options(citation.bibtex.max=999)’.

includes multiple recommendations for citing the resources about the package itself,
the utilization of Lexis objects/diagrams, and, more specifically, the use of Lexis
objects in multi-state models. These bibliographic entries could be exported as
BIBTEX format with the boBibtex() function:

toBibtex(citation('Epi'))

## @Manual{,
## title = {{Epi}: A Package for Statistical Analysis in Epidemiology},
## author = {Bendix Carstensen and Martyn Plummer and Esa Laara and Michael Hills},
## year = {2022},
## note = {R package version 2.47},
## url = {https://CRAN.R-project.org/package=Epi},
## }
##
## @Article{,
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## title = {{Lexis}: An {R} Class for Epidemiological Studies with Long-Term Follow-Up},
## author = {Martyn Plummer and Bendix Carstensen},
## journal = {Journal of Statistical Software},
## year = {2011},
## volume = {38},
## number = {5},
## pages = {1--12},
## url = {https://www.jstatsoft.org/v38/i05/},
## }
##
## @Article{,
## title = {Using {Lexis} Objects for Multi-State Models in {R}},
## author = {Bendix Carstensen and Martyn Plummer},
## journal = {Journal of Statistical Software},
## year = {2011},
## volume = {38},
## number = {6},
## pages = {1--18},
## url = {https://www.jstatsoft.org/v38/i06/},
## }

The print() function returns both of the reference text and the BIBTEX entries:

print(citation('Epi'), bibtex = TRUE)

If we would like to know how popular a package is, the cranlogs::cran_
downloads() function gives the daily download times of a package within a given
period:

epi_downloads <- cranlogs::cran_downloads('Epi')
epi_downloads

## date count package
## 1 2022-12-11 173 Epi

It shows that the Epi package was download 173 times from CRAN on 2022–12-
11.

The following code plots the daily downloads of the previously listed packages
in the recent one year (see Fig. 1.2):

library(ggplot2)
library(dplyr)
cranlogs_cum <- function(x) {
cranlogs::cran_downloads(
x,
from = Sys.Date() - 365,
to = Sys.Date()) |>
transform(CumDownload = cumsum(count))

}
c('Epi', 'EpiModel', 'epibasix', 'epiDisplay', 'epiR',
'epitools', 'nCov2019', 'pubh', 'survival', 'survey',
'surveillance', 'SPARSEMODr', 'WHO') |>
lapply(cranlogs_cum) |>
bind_rows() |>
ggplot() +
geom_line(aes(date, CumDownload)) +
theme(axis.text.x = element_text(angle = 90)) +
scale_y_continuous(labels = function(x) format(x,
scientific = TRUE)) +
facet_wrap(~package, scales = 'free_y')

As the most popular one among these packages, survival gains more than 1.5 mil-
lion downloads, followed by survey (> 800 thousands) and epiR (>150 thousands).
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Fig. 1.2 Cumulative downloads of R packages on CRAN in the recent year

1.5.3 Datasets in Packages

The data() function can list the datasets of the packages that have been loaded:

data()

or the datasets of a given package. For example, the Epi package ships more than
30 datasets in epidemiology, such as birth data in Denmark, diet and heart data,
thorotrast study data, etc. The data() function lists all the available datasets in a
given installed package:

data(package = 'Epi')

The list of the shipped dataset is displayed in the top-left pane (Pane 1) of the
RStudio IDE.

More frequently, we use this function for loading a dataset shipped by a certain
package. For example, we can load the dataset diet in the Epi package into the R
session:

data(diet, package = 'Epi')
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With the help() function, we can find the meta data for a dataset, including
the introduction to the dataset, the formats and units, as well as the data source. The
following code shows how to find themeta data of the dataset diet in theEpi package:

help(diet, package = "Epi")

The default packages and their datasets are loaded automatically when R starts
up. As a result, we can utilize any function or dataset in them without having to
manually load them.

After the dataset is loaded, it is ready for use. Let’s print the first 6 rows of diet:

head(diet) # print the first 6 rows

## id doe dox dob y fail job month
## 1 102 1976-01-17 1986-12-02 1939-03-02 10.8747433 0 Driver 1
## 2 59 1973-07-16 1982-07-05 1912-07-05 8.9691992 0 Driver 7
## 3 126 1970-03-17 1984-03-20 1919-12-24 14.0095825 13 Conductor 3
## 4 16 1969-05-16 1969-12-31 1906-09-17 0.6269678 3 Driver 5
## 5 247 1968-03-16 1979-06-25 1918-07-10 11.2744695 13 Bank worker 3
## 6 272 1969-03-16 1973-12-13 1920-03-06 4.7446954 3 Bank worker 3
## energy height weight fat fibre energy.grp chd
## 1 22.8601 181.610 88.17984 9.168 1.4000000 <=2750 KCals 0
## 2 23.8841 165.989 58.74120 9.651 0.9350001 <=2750 KCals 0
## 3 24.9537 152.400 49.89600 11.249 1.2480000 <=2750 KCals 1
## 4 22.2383 171.196 89.40456 7.578 1.5570000 <=2750 KCals 1
## 5 18.5402 177.800 97.07040 9.147 0.9910000 <=2750 KCals 1
## 6 20.3073 175.260 61.00920 8.536 0.7650000 <=2750 KCals 1

The list of the shipped dataset can also be assigned to an object for future use. For
example,

ls_data <- data(package = c('Epi', 'pubh', 'NHANES', 'survey', 'boot'))

The names and brief descriptions of the datasets can be found in the matrix called
results in ls_data, which we could view with the View() function.

View(ls_data$results)

From the third column of this matrix we can get all the dataset names:

ls_data$results[, 3]

## [1] "B.dk" "BrCa"
## [3] "DMconv" "DMepi"
## [5] "DMlate" "DMrand"
## [7] "M.dk" "N.dk"
## [9] "S.typh" "Y.dk"
## [11] "bdendo" "bdendo11"
## [13] "births" "blcaIT"
## [15] "brv" "diet"
## [17] "ewrates" "gmortDK"
## [19] "hivDK" "lep"
## [21] "lungDK" "mortDK"
## [23] "nickel" "occup"
## [25] "pr" "st2alb"
## [27] "st2clin" "steno2"
## [29] "testisDK" "thoro"
## [31] "Bernard" "Brenner"
## [33] "Fentress" "Hodgkin"
## [35] "Kirkwood" "Macmahon"
## [37] "Oncho" "Roberts"
## [39] "Rothman" "Sandler"
## [41] "Sharples" "Thall"
## [43] "Tuzson" "Vanderpump"
## [45] "NHANES" "NHANESraw"
## [47] "apiclus1 (api)" "apiclus2 (api)"
## [49] "apipop (api)" "apisrs (api)"
## [51] "apistrat (api)" "crowd"
## [53] "election" "election_insample (election)"
## [55] "election_jointHR (election)" "election_jointprob (election)"
## [57] "election_pps (election)" "fpc"
## [59] "hospital" "mu284"
## [61] "nhanes" "scd"
## [63] "yrbs" "acme"
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Table 1.1 Datasets used in
this book

Package Dataset Description

Boot melanoma Survival from
Malignant Melanoma

Epi diet Diet and heart data

Epi DMepi Epidemiological rates
for diabetes in
Denmark 1996–2015

NHANES NHANES Body Shape and
related measurements
from the US National
Health and Nutrition
Examination Survey
(NHANES) with
adjusted weighting

pubh Oncho Onchocerciasis in
Sierra Leone

survey api Student performance
in California schools

## [65] "aids" "aircondit"
## [67] "aircondit7" "amis"
## [69] "aml" "beaver"
## [71] "bigcity" "brambles"
## [73] "breslow" "calcium"
## [75] "cane" "capability"
## [77] "catsM" "cav"
## [79] "cd4" "cd4.nested"
## [81] "channing" "city"
## [83] "claridge" "cloth"
## [85] "co.transfer" "coal"
## [87] "darwin" "dogs"
## [89] "downs.bc" "ducks"
## [91] "fir" "frets"
## [93] "grav" "gravity"
## [95] "hirose" "islay"
## [97] "manaus" "melanoma"
## [99] "motor" "neuro"
## [101] "nitrofen" "nodal"
## [103] "nuclear" "paulsen"
## [105] "poisons" "polar"
## [107] "remission" "salinity"
## [109] "survival" "tau"
## [111] "tuna" "urine"
## [113] "wool"

Table1.1 list the datasets which are used as examples in this book. The original
goal of shipping data in R packages is to demonstrate how to use R functions. This
philosophy may be extended to organizing and sharing data: We could store our own
data in self-developed packages and load them and check their documentations with
the R help system (see Chap.10).
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1.6 R Help

1.6.1 Built-in Documents

R provides a comprehensive and user-friendly help system for R packages and func-
tions, which is a valuable resource for R users. We could see the help document for
a package with the help() function:

help(package = "Epi")

which shows an overview with a brief description that the package Epi is used for
Statistical Analysis in Epidemiology, links to the DESCRIPTION file, User guides,
package vignettes and other documentation, and a list of functions in it.

Aside from providing an overview of a package, thehelp() function ismore fre-
quently used for checking the help document of a function or a dataset with the syntax
of help("function_name") and help("dataset_name"), respectively.

help("install_github", package = "remotes")
help(DMepi, package = 'Epi')

The Help tab in the bottom-right pane (Pane 3) of RStudio displays the help
document, including Description, Usage, Examples, and returned Value
for functions and Format for datasets. The examples are the most helpful: all we
have to do is copy and paste them into the console, and the results will be reproduced.

If the packages have been already loaded by library(), then we can skip
the argument package in the help() function, or use ? as a more convenient
approach:

library(remotes)
help("install_github")
?install_github

library(Epi)
help(DMepi)
?DMepi

The RStudio IDE provides a shortcut for opening the help document: put the
cursor anywhere within a function name in the topleft or the bottomleft pane, then
press F1 on the keyboard.

If we do not exactly know the function name, we can search all the help docu-
ments with some keywords by using the help.search() function or ??. Suppose
we forget the name of the R function for ANOVA. We could search the keywords
“analysis of variance”:

help.search("analysis of variance")
# or
??"analysis of variance"

We can find all the relevant functions about analysis of variance, including the
function aov(). We may then utilise the methods introduced previously to learn
more about them.
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The help.start()function launches a webpage where you may browse man-
uals, references, and other resources. If we still can’t locate what we’re looking for,
the best option is to use search engines or go to online forums like StackOverflow,
where most beginner-level inquiries have previously been addressed.

1.6.2 Examples and Demonstrations

Most of R functions provide reproducible examples, while some package provide
friendly demonstrations, to help users understand or learn directly how to use the
functions or packages.

Examples can be evoked by the example() function. For instance, we could
see how to use the stat.table() function of the Epi package:

example(stat.table, package = 'Epi')

Example code is sent to the console, where we can see the R commands are
executed line by line and the results are displayed as well. The main argument of
example() is the function name and the package name. If the package has been
already loaded, then the argument package could be skipped.

The demo() function evokes the demonstrations, which are usually large groups
and combinations for multiple functions that show the feature of a package. The
usage of demo() is similar to the data() function. It shows the demonstrations
provided by the packages loaded to the environment, when we leave the arguments
as blank:

demo()

The list of the demos is displayed in the top-left pane (Pane 1) of the RStudio
IDE.

The demo() function can show available demonstrations in one or more pack-
ages. For example, the following code returns the demonstrations provided by epiDis-
play and surveillance.

demo(package = c('epiDisplay', 'surveillance'))

The surveillance package, for example, provides a demo named “biosurvbook,”
which is characterised as “Code from the book chapter on Danish mortality moni-
toring (Hoehle and Mazick, 2010).” We could use demo() to run this demo:

demo(biosurvbook, package = 'surveillance')

Follow the instruction shown in the console, and we see the commands with
returned results and graphs, where we could learn how to use surveillance.

Wecould list all the available demonstrations inRwith thehelpof the.packages
(all.available = TRUE) functionwhich returns the names of all the installed
R packages:

demo(package = .packages(all.available = TRUE))



16 1 Preparing Tools

1.6.3 Asking Questions

Sometimes we are unlucky to find out that none of the approaches introduced in
the previous sections is helpful and have to turn to colleagues, acquaintances, or a
Q&A community for help. A face-to-face question is not difficult to ask, because
our listeners communicate with us instantly and interactively, and we get immediate
response and can rephrase our trouble till our listeners understand it. However, it
is different to ask a question on the internet or to someone far away. We won’t get
immediate feedback. It takes time for an answer to appear.

Suppose we send an email to friends or post a question on a forum for help. In the
first round, the readers will ask us what we exactly mean if our question is not clear
enough. If we still don’t ask the question properly in the second round, the readers
probably loses patience and our question is never answered. We could attempt for
a third round, but in most circumstances in the real world, no one listens any more.
Some questions stay unanswered on forums for years without a single reply, and the
person who asked them still has no idea why.

The golder rule of asking a question is simple: make yourself understandable to
the audience. Your goal is to eliminate troubles rather than create more. Those who
wish to assist you have time for you, but not much. Be kind to them. We suggest
three simple rules (abbreviated as TES) for asking questions.

1. Express a clear Title (T)

A good title for the email or the post is what expresses the question in one sentence
so as to save the reader’s time. The readers may not even need to open the post if
you craft a decent title, from which they understand what you’re talking about. “A
question,” “Help,” or “I don’t understand this” are all awful titles. There is no valuable
information in these titles. An appropriate title could be “Failed when replacing
missing values with NA”, or “the Epi package cannot be installed.”

2. Provide a minimal reproducible Example (E).

If you are having trouble with running R code, please give a minimal reproducible
example (MRE). The term “reproducible” means that the readers may copy and
paste your scripts into their console and experience the identical issues you did.
Don’t expect your audience to be experts in all topics, even if they are advanced R
users. They have to, in most situations, test the R code. It takes time if your example
is so incomplete that they have to infer what youmean. They are ANSWERING your
questions rather than GUESSING them. Don’t challenge their patience.

The term “minimal” means that your example should be as simple as possible. If
your problem can be reproduced with a two-column data frame, don’t use a three-
column one. It absolutely helps others focus on your real issue.
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Making aMRE is difficult for R beginners, but it is worthwhile. It aids in organiz-
ing your thoughts as well as brain training. If you overlook it and give a bad example,
you’ll end up wasting more time with your audience later. You will eventually lose
those who are supposed to help you.

Sometimes you have to provide data in a MRE. You may either upload your data
to a server (such as GitHub) and offer a link, or you can show the data using the
dput() function. Another useful function is reprex::reprex(). Read its help
document for details.

3. Provide your Session information (S)

Your MRE may not be able to reproduce your problem on other people’s computers,
most likely due to differences in your environment, such as R version, package
version, operating system, and so on. It is a good practice to provide the session
details.

The function of session information inR issessionInfo(). Here is the session
information of the computer which is used for writing this book:

sessionInfo()

## R version 4.2.2 (2022-10-31 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19044)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_United Kingdom.utf8
## [2] LC_CTYPE=English_United Kingdom.utf8
## [3] LC_MONETARY=English_United Kingdom.utf8
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United Kingdom.utf8
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## loaded via a namespace (and not attached):
## [1] bookdown_0.30 digest_0.6.30 lifecycle_1.0.3 magrittr_2.0.3
## [5] evaluate_0.18 rlang_1.0.6 stringi_1.7.8 cli_3.4.1
## [9] rstudioapi_0.14 vctrs_0.5.1 rmarkdown_2.18 tools_4.2.2
## [13] stringr_1.5.0 glue_1.6.2 xfun_0.34 yaml_2.3.6
## [17] fastmap_1.1.0 compiler_4.2.2 htmltools_0.5.3 knitr_1.41

An advanced function, devtools::session_info(), gives more informa-
tion in a more friendly way:

devtools::session_info()

## - Session info ---------------------------------------
## setting value
## version R version 4.2.2 (2022-10-31 ucrt)
## os Windows 10 x64 (build 19044)
## system x86_64, mingw32
## ui RTerm
## language (EN)
## collate English_United Kingdom.utf8
## ctype English_United Kingdom.utf8
## tz Asia/Taipei
## date 2022-12-13
## pandoc 2.19.2 @ D:/R/RStudio/bin/quarto/bin/tools/ (via rmarkdown)
##
## - Packages -------------------------------------------
## package * version date (UTC) lib source
## bookdown 0.30 2022-11-09 [1] CRAN (R 4.2.2)
## cachem 1.0.6 2021-08-19 [1] CRAN (R 4.2.1)
## callr 3.7.3 2022-11-02 [1] CRAN (R 4.2.2)
## cli 3.4.1 2022-09-23 [1] CRAN (R 4.2.1)
## crayon 1.5.2 2022-09-29 [1] CRAN (R 4.2.1)
## devtools 2.4.5 2022-10-11 [1] CRAN (R 4.2.1)
## digest 0.6.30 2022-10-18 [1] CRAN (R 4.2.1)
## ellipsis 0.3.2 2021-04-29 [1] CRAN (R 4.2.1)
## evaluate 0.18 2022-11-07 [1] CRAN (R 4.2.2)
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## fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.2.1)
## fs 1.5.2 2021-12-08 [1] CRAN (R 4.2.1)
## glue 1.6.2 2022-02-24 [1] CRAN (R 4.2.1)
## htmltools 0.5.3 2022-07-18 [1] CRAN (R 4.2.1)
## htmlwidgets 1.5.4 2021-09-08 [1] CRAN (R 4.2.1)
## httpuv 1.6.6 2022-09-08 [1] CRAN (R 4.2.1)
## knitr 1.41 2022-11-18 [1] CRAN (R 4.2.2)
## later 1.3.0 2021-08-18 [1] CRAN (R 4.2.1)
## lifecycle 1.0.3 2022-10-07 [1] CRAN (R 4.2.1)
## magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.2.1)
## memoise 2.0.1 2021-11-26 [1] CRAN (R 4.2.1)
## mime 0.12 2021-09-28 [1] CRAN (R 4.2.0)
## miniUI 0.1.1.1 2018-05-18 [1] CRAN (R 4.2.1)
## pkgbuild 1.4.0 2022-11-27 [1] CRAN (R 4.2.2)
## pkgload 1.3.2 2022-11-16 [1] CRAN (R 4.2.2)
## prettyunits 1.1.1 2020-01-24 [1] CRAN (R 4.2.1)
## processx 3.8.0 2022-10-26 [1] CRAN (R 4.2.1)
## profvis 0.3.7 2020-11-02 [1] CRAN (R 4.2.1)
## promises 1.2.0.1 2021-02-11 [1] CRAN (R 4.2.1)
## ps 1.7.2 2022-10-26 [1] CRAN (R 4.2.1)
## purrr 0.3.5 2022-10-06 [1] CRAN (R 4.2.1)
## R6 2.5.1 2021-08-19 [1] CRAN (R 4.2.1)
## Rcpp 1.0.9 2022-07-08 [1] CRAN (R 4.2.1)
## remotes 2.4.2 2021-11-30 [1] CRAN (R 4.2.0)
## rlang 1.0.6 2022-09-24 [1] CRAN (R 4.2.1)
## rmarkdown 2.18 2022-11-09 [1] CRAN (R 4.2.2)
## rstudioapi 0.14 2022-08-22 [1] CRAN (R 4.2.1)
## sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.2.1)
## shiny 1.7.3 2022-10-25 [1] CRAN (R 4.2.1)
## stringi 1.7.8 2022-07-11 [1] CRAN (R 4.2.1)
## stringr 1.5.0 2022-12-02 [1] CRAN (R 4.2.2)
## urlchecker 1.0.1 2021-11-30 [1] CRAN (R 4.2.1)
## usethis 2.1.6 2022-05-25 [1] CRAN (R 4.2.1)
## vctrs 0.5.1 2022-11-16 [1] CRAN (R 4.2.2)
## xfun 0.34 2022-10-18 [1] CRAN (R 4.2.1)
## xtable 1.8-4 2019-04-21 [1] CRAN (R 4.2.1)
## yaml 2.3.6 2022-10-18 [1] CRAN (R 4.2.1)
##
## [1] D:/R/library
## [2] D:/R/R-4.2.2/library
##
## ------------------------------------------------------

Before you ask a question, remember the TES rules, which apply to both online
and face-to-face situations. Asking smart questions will make your life and the lives
of others much simpler and happier. It may be tough for beginners to come up with
a decent question at first. Continue to practise until you’ve figured out how to avoid
stupid questions. No book can cover everything about working with data, and one of
the best instructors for learning it is asking smart questions.

1.7 Base R, data.table, and tidyverse

Many human languages have dialects. So does R. Base R is the default dialect when
we open up R for the first time. Apart from base R, the most popular dialects are
data.table (Dowle and Srinivasan 2022) and tidyverse (Wickham 2022) for data
work. For a long time, base R was the only dialect available in R language. The
data.table and tidyverse packages, on the other hand, have been developed in recent
years. As all roads lead to Rome, these various approaches with quite different
features lead to the same goal in data work with R. Here we use a simple example to
show how they work.

For instance,wewould like to pick out the subjectswith themaximumdietary fibre
intake in each job group in thediet dataset, and addonemore columnasfibre/fat.
Let’s do this task with the base R functions. As there is no existing function in base
R that can do this job, we have to combine multiple steps by ourselves:
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# 1. Create the index for the subjects:
index <- 1:nrow(diet)
# 2. Create a new variable 'fibre-fat':
diet$fibre_fat <- paste0(diet$fibre, '/', diet$fat)
# 3. Find which is the maximum dietary fibre in take in each group:
tb <- tapply(diet$fibre, diet$job, which.max)
# 4. Find the row number of the maximum dietary fibre in take in each group:
rowi <- sapply(names(tb),

function(x) index[diet$job == x][tb[names(tb) == x]])
# 5. Display the result:
diet[rowi, c('job', 'fibre_fat')]

## job fibre_fat
## 257 Driver 4.595/16.658
## 298 Conductor 3.352/14.173
## 305 Bank worker 5.351/14.386

The comments in the code explain what each step does. More explanations are as
follows:

1. The index created in Step 1 is used for locating the target rows in Step 4.
2. The paste0() creates a new variable fibre-fat with our desired format.
3. The tapply() function applies the which.max() function to each category

of the qualitative variablefibre, and returns the location of themaximumvalue
in each group.

4. The sapply() function applies a self-defined function, which locates the cat-
egorical maximum value in the entire data frame, to each job.

The key step (Step 4) is to find the rows in which the grouped maximum dietary
fibre intake values are located. Alternative ways with base R functions might exist,
but they can hardly be much simpler. Here is another way:

# 1. Create a new variable 'fibre-fat':
diet$fibre_fat <- paste0(diet$fibre, '/', diet$fat)
# 2. Define a function for finding the maximum fat in 'job-fat'
find_max <- function(x)
x[which.max(data.frame(strsplit(x, '/'))[1, ])]

# 3. Apply the function 'find_max' to 'job-fat' grouped by 'job'
tb <- tapply(diet$fibre_fat, diet$job, find_max)
# 4 Display the result
data.frame(job = names(tb), fibre_fat = tb, row.names = NULL)

## job fibre_fat
## 1 Driver 4.595/16.658
## 2 Conductor 3.352/14.173
## 3 Bank worker 5.351/14.386
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In this demonstration, the combination of thewhich.max(),data.frame(),
and strsplit() makes up the self-defined function find_max(), which can
pick the maximum dietary fibre intake out of fibre-fat. The tapply() function
apply the find_max() function to each category of the qualitative variable job.
Finally, the data.frame() function organizes and prints the result in a friendly
way.

The data.table package provides another way:

# 1. Load the package:
library(data.table)
# 2. Converts diet from a data.frame into a data.table:
setDT(diet)
# 3. Do the task and display the result:
diet[,.SD[fibre == max(fibre, na.rm = TRUE),

.(fibre_fat = paste0(fibre, "/", fat))],
by = .(job)]

Compared to the base R method, the data.table method is much faster and more
ink-saving: the core code is only one line (Step 3). As long as the dataset is converted
into the proper format (data.table), we can use the syntax of the data.table package
for many complicated calculations in an easy way. Note that “data.table” is both
the package name as well as the specific class of the data defined by the package.
Two remarkable features of the data.table package are (1) processing data in the
data.table format and (2) using the dot . as the leading operator.

The tidyverse method, however, is totally different:

# 1. Load the packages:
library(tidyverse)
# 2. Specify the data frame:
diet %>%
# 3. Group the dataset with job:
group_by(job) %>%

# 4. Pick out the target rows:
filter(fibre == max(fibre, na.rm = TRUE)) %>%

# 5. Create the target columns:
transmute(job = job,

fibre_fat = paste0(fibre, '/', fat))

## # A tibble: 3 x 2
## # Groups: job [3]
## job fibre_fat
## <fct> <chr>
## 1 Driver 4.595/16.658
## 2 Conductor 3.352/14.173
## 3 Bank worker 5.351/14.386
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Tidyverse is technically a family of multiple R packages that share some com-
mon rules, and the tidyverse package is a “manager” for installing and loading the
core Tidyverse packages, which can be foundwith the tidyverse_packages()
function:

tidyverse::tidyverse_packages()

## [1] "broom" "cli" "crayon" "dbplyr"
## [5] "dplyr" "dtplyr" "forcats" "ggplot2"
## [9] "googledrive" "googlesheets4" "haven" "hms"
## [13] "httr" "jsonlite" "lubridate" "magrittr"
## [17] "modelr" "pillar" "purrr" "readr"
## [21] "readxl" "reprex" "rlang" "rstudioapi"
## [25] "rvest" "stringr" "tibble" "tidyr"
## [29] "xml2" "tidyverse"

When we run library(tidyverse), all these packages are loaded.
Tidyverse also has two remarkable features: (1) it is designed for processing data

frames, and (2) it uses the pipe operator %>% or |> very frequently, even sometimes
it might be unnecessary. The pipe operator passes the result returned by the current
function as an input to the function that comes next, which makes the data processing
procedure very fluent. In this book, we use the built-in pipe operator |> instead of
%>% wherever applicable.

All the three methods have their own pros and cons. The most traditional one
is base R, for which we could find learning material in almost every single book
about R. It is also the most flexible: we could (almost) complete any complicated
data work step by step with base R. Furthermore, the skills we learn in base R
are more transferable to other languages. However, we often have to think about
how to combine the base R functions into an integrated project. The data.table
package is much advanced and fast, but we have to be familiar with its syntax and
rules. Tidyverse is the most popular method nowadays. In most cases, we can find
tidyverse solutions to a question when we search the internet for help.

In this book, we use both the base R method and the tidyverse method for demon-
strations.

1.8 Exercises

1. RStudio IDE is not the only graphic user interface of using R. Find at least two
alternatives. What are their pros and cons?

2. In RStudio IDE, what is the hotkey for inserting a comment line as a section
label? What is a section label used for?

3. What arguments can be used in the function plot()? Give an example.
4. Install the epiR package. Answer the following questions:
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• How many times has epiR been downloaded from CRAN since it was available?
• Who are the authors of epiR? How do you cite it in a journal paper?
• What functions does epiR include? What are they used for?
• What datasets does epiR ship?
• What is the dataset epi.incin about? How many observations and variables are
contained in it?
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Chapter 2
Planning Data

2.1 Chapter Highlights

• Make sense of the importance of research design and data planning,
• Describe the basic process of making a plan for working with data,
• Conduct literature review with R packages, and
• Illustrate the data plan with mind maps and Gannt charts.

2.2 Research Design

Research design refers to the overall strategy to lead the research process by planning
processes from formulating research questions to accomplishing research goals. It
includes the determination of the study type, research questions, hypotheses, vari-
ables of interest, the time-line and location, resources and participants, methods of
processing, etc.

A research design centres on a research question, such as “what is the purpose of
the study?” or “what do you wish to estimate or predict?” The general steps in the
design process suggested by Guest and Namey (2015) is illustrated in Fig. 2.1. To
identify a question, start with a broad research subject and then focus it down to a
more particular issue. Next, perform a literature evaluation in order to identify the
research gap and formulate the research question. After the question is specified, it
is time to plan the research. The research method (qualitative, qualitative, or mixed-
method) should be chosen based on the research question. Then, details should be
taken into consideration, including sampling method, sample size, inclusion criteria,
research instruments, independent and dependent variables, data analysis method,
and so on.

© Xi’an Jiaotong University Press 2023
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Fig. 2.1 Basic steps in the project design process. Adapted from Guest and Namey (2015)
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2.3 Literature Review

2.3.1 Relevant R Packages

A research design begins with finding the research topic (see Fig. 2.1). This task is
achieved via literature review, which is an overview of previously published works
on a particular subject. It gives us a broad perspective of current knowledge and helps
us to spot relevant ideas, methodologies, and research gaps.

A literature review does more than list sources of publications; it analyses, syn-
thesizes, and critically evaluates them to provide a comprehensive picture of the
current state of knowledge on the topic. It is based on reference management, includ-
ing searching, recording, utilizing and, managing bibliographic citations. Many
databases, including Web of Science, Scopus, ScienceDirect, PubMed, and Google
Scholar, are available for searching for journals and papers with keywords in a certain
topic, and provide source libraries with rich bibliographic information. A number
of R packages support these reference libraries for literature reviews and reference
management, which is summarized in the following list:

• bibliometrix (Aria andCuccurullo 2022,GitHubmassimoaria/bibliometrix) imports
bibliographic data and performs bibliometric analysis such as co-citation, cou-
pling, scientific collaboration analysis and co-word analysis.

• fulltext (Chamberlain 2022, GitHub ropensci/fulltext) searches across and gets
full text for Open Access (OA) and closed journals.

• rbibutils (Boshnakov and Putman 2022, GitHub GeoBosh/rbibutils) reads and
writes BIBTEX files, and converts between bibliography formats, including ‘Bib-
tex’, ‘Biblatex’, ‘PubMed’, ‘Endnote’, and ‘Bibentry’.

• rcrossref (Chamberlain et al. 2022, GitHub ropensci/rcrossref) is a client for
various CrossRef APIs, including metadata search with their old and newer search
APIs. It gets citations in various formats (including ‘bibtex’, ‘citeproc-json’, ‘rdf-
xml’, etc.), converts DOIs to PMIDs, and vice versa. Additionally, it gets citations
for DOIs and links to full text of articles when available.

• RefManageR (McLean 2022, GitHub ropensci/RefManageR) imports and works
with bibliographic references.

• scholar (Yu, Keirstead, and Jefferis 2022, GitHub jkeirstead/scholar) analyzes
citation data from Google Scholar.

• wosr (Baker 2018, GitHub vt-arc/wosr) is a client to the Web of Science and
Incites APIs.

2.3.2 The bibliometrix Package

Comprehensive literature analysis can be conductedwith theR bibliometrix package
(Aria and Cuccurullo 2022), which is an analytical tool for quantitative research
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in scientometrics and bibliometrics. Although based on R, it provides a friendly
application (built with the R shiny package) to non-programmers for bibliometric
analysis and building data matrices for co-citation, coupling, scientific collaboration
analysis and co-word analysiswith statistical and graphical packages.Herewe briefly
introduce how to use it with a demonstration library

We can start the application with one command in R:

bibliometrix::biblioshiny()

This function evokes the computer’s default web browser, which displays a
webpage-based application. Amenu bar is shown at the to of the application interface
(Fig. 2.2), which provides access to almost all the functionality of bibliometrix. The
menu bar is followed by the title, the citation, the logo, the features, and the instruc-
tion of how to use this application from top to bottom. The workflow chart helps
understand the internal procedure of how the application works. At the bottom of the
page, an example gives a step-by-step instruction of how to conduct the bibliometric
analysis with a demonstration library file.

The analysis is conducted as follows:

1. Download the demonstration library file.
2. Click the Data - Import or Load files menu.
3. In the left sidebar, choose Import raw file(s) and Web of Science

(WoS/WoK) as the database.
4. Click the Browse button and choose the demonstration library. Then the upload

starts.
5. When the upload is completed, click the Start button. Then the bibliometric

analysis starts and all the analysis is conducted automatically.

A wide table is shown in the main panel. Each row in this table is a bibliographic
entry of a publication (e.g. an article or a book), and each column is a field of the
references, such as the Digital Object Identifier (DOI), authors (AU), author full
names (AF), cited references (CR), and so on. A complete list of the abbreviations
for the reference fields is available on the website of the Web of Science.1

The bibliometric analysis results, including the overview, themetadata focus anal-
ysis, and the knowledge focus analysis, are hidden in the tabs listed in the menu bar.
We could simply click the tabs and see the result tables and graphs. Figure2.3 shows
the available results in a logical structure.

The demonstration library was obtained from the search in Web of Science
Core Collection about all the articles published by the Journal of Informetrics from
2007 to 2017. Apart from Web of Science, the bibliometrix package can analyze
the searched results by the SCOPUS, PubMed, Digital Science Dimensions, and
Cochrane databases.

The bibliometric analysis provided by the bibliometrix package summarizes vast
amounts of bibliometric data and exhibits the state of the intellectual structure and
developing trends of a research topic or area. It is a helpful tool for the literature
review in the research design stage, especially when the scope of review is wide and
the reference library is too large for manual review.

1 https://images.webofknowledge.com/images/help/WOS/hs_wos_fieldtags.html.

https://images.webofknowledge.com/images/help/WOS/hs_wos_fieldtags.html
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Fig. 2.2 The homepage of the bibliometrix application
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Fig. 2.3 The structure of the bibliometrix application
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2.3.3 The scholar Package

When we are interested in a certain scientist, such as your supervisor or a co-
author, and want to have a whole picture of her/his research, the scholar package
(Yu,Keirstead, andGregory Jefferis 2022) could be a tool for obtaining and analyzing
citation data of a scholar who has a profile page on Google Scholar.

Before the analysis is conducted, we have to know the scientist’s Google Scholar
ID, which could be found in the URL of the scientist’s Google Scholar profile page.
For example, the URL of a scientist’s Google Scholar profile page is https://scholar.
google.com/citations?user=JoN88RAAAAAJ, indicating the ID is the string after
user= in the link, i.e. JoN88RAAAAAJ. Alternatively, the get_scholar_id()
function could retrieve the ID from the scientist’s name:

library(scholar)
gsid <- get_scholar_id(first_name = "marius", last_name = "wamsiedel")
gsid

## [1] "JoN88RAAAAAJ"

The scholar packagemainly contains functions for exploring the citation data of a
person, a journal, or a publication. For convenience, we create self-defined functions
that combine these functions into three groups:

# functions for a person
gs_person <- function(id){

list(citation = get_citation_history(id),
coauthor = get_coauthors(id),
n_article = get_num_articles(id),
n_journal = get_num_distinct_journals(id),
n_top = get_num_top_journals(id),
oldest = get_oldest_article(id),
profile = get_profile(id),
pub = get_publications(id))

}

# functions for a journal
gs_journal <- function(journal){

list(IF = get_impactfactor(journal),
rank = get_journalrank(journal))

}

# functions for a publication
gs_pub <- function(id, pubid){

list(cite = get_article_cite_history(id, pubid),
authors = get_complete_authors(id, pubid))

}

• gs_person() groups the person-centred functions, which can retrieve historical
citation data, the network of co-authors, the total publication number, the total
distinct journal number, the top journal number, the year of the oldest article, the
profile information, and the publication list for a scientist.

https://scholar.google.com/citations?user=JoN88RAAAAAJ
https://scholar.google.com/citations?user=JoN88RAAAAAJ
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• gs_journal() groups the journal-centred functions, which can retrieve the
cites, impact factor (IF), the Eigenfactor score, the rank, the ISSN, the publisher,
and so on, of a journal.

• gs_pub() groups the publication-centred functions, which can retrieve the his-
toric annual citations and the complete author list of a publication.

Each of these three functions returns a list. Let’s get the data for a person:

ls_person <- gs_person(gsid)

The publications are saved as a data frame in ls_person$pub:

names(ls_person$pub)

## [1] "title" "author" "journal" "number" "cites" "year" "cid"

## [8] "pubid"

Let’s get the data for the journal and the publication in the first row:

ls_journal <- gs_journal(ls_person$pub$journal[1])
ls_pub <- gs_pub(gsid, ls_person$pub$pubid[1])

These data could be used for further analysis. For example, the following code
plots the annual citations of the scientist, the top six journals with the most of the sci-
entist’s publications, the annual citations of the chosen publication, and the network
of the co-authors (Fig. 2.4).

library(ggplot2)
library(dplyr)
library(patchwork)

p_citation <-
ls_person$citation |>
ggplot(aes(year, cites)) + geom_bar(stat = 'identity')

p_pub <-
ls_pub$cite |>
ggplot(aes(year, cites)) +
geom_segment(aes(xend = year, yend = 0), size=1, color='darkgrey') +
geom_point(size=3, color='firebrick')

p_journal <- ls_person$pub |>
filter(journal != '') |>
group_by(journal) |>
summarise(n = length(journal)) |>
arrange(desc(n)) |>
mutate(journal = reorder(journal, n)) |>
head() |>
ggplot() +
geom_bar(aes(x = journal, y = n), stat = 'identity') +
coord_flip()

p_colab <-
plot_coauthors(ls_person$coauthor, size_labels = 3) +
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Fig. 2.4 Explore theGoogle Scholar data. aThe annual citations of a scientist.bThe top six journals
with the most of the scientist’s publications. The annual citations of the chosen publication. d The
network of the co-authors

labs(title = '')

(p_citation | p_journal) / (p_pub | p_colab) + plot_annotation(tag_levels = 'A')

Apart from the three groups of the functions, the scholar package provides other
functions for comparing the citation records and careers of multiple scholars, pre-
dicting the h-index for a scholar, retrieving a Google Scholar Page storing session
cookies, and so on.

2.4 Establish a Data Plan

2.4.1 Workflow

Among research design, a data plan, including data collection, interpretation, anal-
ysis, visualization, and discussion, has an important impact on the reliability of the
obtained results.Making a data plan enables researchers to focus on researchmethod-
ologies that are appropriate for the research topic and build their research for success.
According to data types, public health research can be roughly categorized as quan-
titative research and qualitative research. Typically, public health research focuses
on health determinants, with the findings being applied to policies and treatments to
address real-world health issues. An effective data plan is essential for ensuring the
evidence’s validity and dependability.
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However, the raw data created by all kinds of field work may be stored in a variety
of forms in most cases. Those data may not be used by researchers if they are not
summarised properly with the help of appropriate tools. As a result, the following
considerations are critical at the beginning and throughout the data planning process.

1. Data source. The first step in data planning is to understand the data source.
Due to the varied methodologies that are employed, the same data from different
health agencies may differ. For example, health care data come from medical
records department, outpatient clinics, private clinics and hospitals, pathology
laboratories, autopsy services, death certificates, health insurance, screening pro-
grammes, etc. From a management perspective, it is decisive to understand that
the relevance of data sources, data usage and distribution policies might vary
depending on who publishes the data, which can have a substantial impact on
potential data management strategies.

2. Data format. Raw data come from a variety of sources, and the data format must
be consistent before it can be processed for further analysis. Because it is vital
to present the data to the end users, data of various forms should be converted
into agreed ones. The decoding of the raw data’s original format, as well as the
correction of the data’s internal structure, are both part of this process.

3. Data update frequency. It is crucial to keep some sorts of data up to date.
Therefore, understanding the data refresh rate is very useful for designing user
interface updates. The “frequency” of interface update is not always equal to the
frequency of data update, but it can “adapt” to a lower update frequency based
on user requirements. The data format and update frequency are also influenced
by the data usage time. The more data there is, the longer it takes to get it and
show it on the interface, which has an impact on how the data is presented.

A data plan must be established within a research design. After a general search
plan is made, a detailed data plan could be established (Fig. 2.5). The first step is
clarify what are the resources to collect data, what are relevant data, and how to
collect them.We must decide how to sample data, who will collect the data, and how
the data are recorded and stored. If possible, we can even fake some dummy data for
practice just like a rehearsal before a stage performance, which might be useful and
helpful for a better data plan at a low cost.

As soon as the raw data are collected, we can prepare them for further work. The
raw data might be stored in a variety of formats, and proper skills for importing them
into the data processing tools (i.e. R environment in this book) would be required.
The real-world data are usually dirty, and the cleaning process is often necessary.

When the clean data is ready, we can move to the data exploration stage. In public
health, we use many statistics tools for describing and exploring data. Visualization
is often carried out simultaneously so as to display data summaries and analysis
results, find any trend, correlation or pattern. Data exploration is followed tightly by
modelling and evaluating data.

The final step of working with data is publishing them. Data are presented in a
variety of forms such as statements, tables, and graphs, following associated rules
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Fig. 2.5 Typical stages of
working with data

and conventions, and shared in posters, slides, journal papers, theses, etc. The entire
data workflow must be integrated in the framework of data management.

Planning data is the bridge to link a research question to the research objectives.
Therefore, the setup of a data plan should be systemic that can cover the whole
procedure of the research and start at the research question as the very early stage. A
good data plan is the foundation of every public health study, as it helps researchers
better understand how to gather and evaluate data in order to address research gaps on
a number of issues and discover the best solution to their research goal and concerns.
It can increase the efficacy of research data, and saves resource investment (money,
workforce, time, etc.). Most public health studies, in particular, are social science-
based and collect data over a lengthy period of time. The progress of the study may
be hampered if problems are detected and rectified during the project’s execution,
and data planning can expose a variety of issues at an early stage. Data planning can
also guarantee that the theoretical and conceptual framework is in line with the study
goal.

In general, planning data can be regarded as a foundation and framework estab-
lished to find solution to a specific scientific question. Data plans, which are based on
the study’s purpose andmethodology, give a strong framework for scientific research
and aid in the study’s efficiency.
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2.4.2 Mind Maps

A mind map is a diagram that displays a hierarchical structure and relationships
between elements of a larger whole. It normally has a central concept, with major
andminor ideas that branch out.As it simulates thewayof the humanbrain’s thinking,
it is very helpful for making a research design and a data plan. Figure2.1 is a mind
map demonstration.

Traditional mind maps may be drawn by hand using coloured pens and paper, but
modern information technology has made it more common and convenient to build
mind maps using desktop computer software or webware (e.g., FreeMind, XMind,
iMindMap, and MindMeister). The R mindr package (Zhao 2021) can generate
reproducible mind maps, which can either be saved in a form that is supported
by common mind map computer software, or be visualized interactively in web
browsers.

The following R code creates a mind map for the framework of processing data
with R suggested by Beaumont (2015).

library(mindr)
demo_txt <- c(

'# Data',
'## Creating',
'## Importing',
'### Files',
'### Via applications',
'## Saving/exporting',
'## R script files',
'# Manupulation',
'## Columns (variables)',
'## Rows (cases/subjects)',
'# R Environment',
'## Non-CRAN packages',
'## Workspaces',
'## Ojbects',
'## History',
'# Code development',
'## RStudio',
'## Notepad++'

)
mindmap_demo <- mm(from = demo_txt,

output_type = c('widget', 'mindmap'),
root = 'Processing data with R')

The argument from specifies the input text given inMarkdown syntax, i.e.# leads
a title of level 1, ## for level 2, ### for level 3, etc. (see Chap. 9). The argument
output_type here indicates that we would like a HTML widget ('widget')
and a mind map that can be opened with other mind map software ('mindmap').
The argument root specifies what is shown in the centre of the mind map (Fig. 2.6).

The output is a list containing two forms of mind maps. i.e. a widget (mindmap_
demo$widget) and a character vector (mindmap_demo$mindmap). Thewidget
can be displayed directly in the built-in Viewer in the bottom right pane of RStudio
IDE:
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Fig. 2.6 A HTML widget for a mind map created by the mindr package

mindmap_demo$widget

This widget is interactive: we could click the nodes to expand or hide branches,
or use the mouse to zoom it in or out. We can click in the Viewer menu Export -
Save as Web Page, and then an independent mind map file in .html is created,
which can be viewed with a web browser or embedded into a webpage. Alternatively,
it can also be saved as a HTML file via the htmlwidgets package:

htmlwidgets::saveWidget(mindmap_demo$widget, file = 'mindmap_demo.html')

By default, the widget is displayed in a colourful theme. The theme and the size of
the mind map can be customized. See the help document of mindr for more details.
R Markdown users can insert such an interactive mind map in their reproducible
research as well (see Chap. 9).

The character vector, which is included in mindmap_demo, could be exported
as a plain text file:

writeLines(mindmap_demo$mindmap, 'mindmap_demo.mm')

The exported .mm file could either be opened by FreeMind or imported to XMind,
and displayed and edited as an elegant mind map.

Although typing them inRcode is not difficult, amore convenientway is saving the
input text (demo_txt) in a plain text file,which canbe editedwithMarkdowneditors
(e.g. Typora,Mark Text, RStudio IDE) and imported into Rwith the readLines()
function.

The advantages of drawing mind maps with mindr are as follows:

1. The input plain text is software-independent, which means that you can edit it
with any text editor.

2. As the input text is in Markdown syntax, you can extend it further into a data
report with R Markdown.

3. Version control software can be used for tracking the change in the input file and
for collaborating with others.
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2.4.3 Gannt Charts

AGantt chart is often used for illustrating a project schedule, i.e. the time and duration
of activities in a data plan visually. It helps the creator not only have a overview of
the timeline, but also communicate with the collaborators and supervisors about the
milestones of the project.

R provides a few elegant ways to generate a Gantt chart. For example, the Dia-
grammeR package (Iannone 2022) provides a powerful function mermaid(),
which generates many types of HTML diagrams, including Gannt charts, with the
JavaScript library mermaid.js.

Suppose we have a data frame with a project schedule, which is created with the
tibble package (Müller and Wickham 2022):

x <- tibble::tribble(
~Start, ~End, ~Activity, ~Status,
"2021-01-01", "2021-03-31", "Research design", 'done',
"2021-04-01", "2021-09-30", "Lab preparation", 'done',
"2021-10-01", "2021-10-31", "Outdoor test", 'active',
"2021-11-01", "2023-01-31", "Collect data", 'crit, active',
"2021-05-01", "2022-04-30", "R package dev.", 'active',
"2023-02-01", "2023-08-31", "Analyze data", '',
"2023-06-01", "2024-01-01", "Manuscript", ''
)

Then we can create a Gannt chart (Fig. 2.7) after a little transformation of the data
frame:

library(DiagrammeR)
create_gannt_txt <- function(x){

paste(
paste0(x$Activity, ':',

x$Status, ifelse(x$Status == '', '', ', '),
1:nrow(x), ', ', x$Start, ',', x$End),

collapse = '\n')
}
gannt_txt <- paste('gantt',

'dateFormat YYYY-MM-DD',
'section Basic Tasks',
create_gannt_txt(x[1:4,]),
'section Products',
create_gannt_txt(x[5:7,]),
sep = '\n')

mermaid(gannt_txt)

Another option is using the ggplot2 package (Wickham et al. 2022) as follows.

library(ggplot2)
library(tidyr)
plot_gannt <- function(x){

acts <- x$Activity
gannt <- gather(x, "state", "date", 1:2) %>%
transform(

Activity=factor(Activity, acts[length(acts):1]),
date = as.Date(date)) %>%
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Fig. 2.7 A Gannt chart for a project generated with the DiagrammeR package

Manuscript

Analyze data

R package dev.

Collect data

Outdoor test

Lab preparation

Research design

1 2 3
Project Year

Fig. 2.8 A Gannt chart for a project generated with the ggplot2 package

ggplot(aes(date, Activity, color = Activity)) +
geom_line(size = 10) +
scale_x_date(

breaks = seq.Date(
as.Date(x$Start[1]),
as.Date(x$End[nrow(x)]), "quarter"),

minor_breaks = seq.Date(
as.Date(x$Start[1]),
as.Date(x$End[nrow(x)]), "month"),

labels=c(1, "", "", "", 2, "", "", "", 3, "", "", "", "")) +
theme(legend.position = "", axis.ticks = element_blank())+
labs(x = "Project Year", y = "")

gannt
}
plot_gannt(x)

It uses the tidyr package (Wickham and Girlich 2022) for transforming the table,
and the ggplot2 package for making a Gannt chart (Fig. 2.8).

Aside from DiagrammeR and ggplot2, alternative ways for plotting Gannt chars
are as follows.

• The plotrix package (Lemon et al. 2021) provides a function gantt.chart()
which can generate nice static Gannt chars as well.
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• The plan package (Kelley and Schmitt 2022) provides functions for planning and
describing projects andmonitoring the progress towards completions of individual
tasks within projects.

• The PlotPrjNetworks package (Muñoz 2015) provides a function
GanttChart().

• The plotly package (Sievert et al. 2022) can generate interactive HTML Gannt
charts.2

2.5 Exercises

1. College students are sometimes burdened bymental diseases. According to stud-
ies, college students prefer to seek help from mental health specialists, use cam-
pus psychological counselling facilities, and use mobile applications. However,
preferences and relevance levels for mental healthcare service qualities remain
uncertain. In developing countries, students’ utilization and preferences formen-
tal health treatments may differ from those in developed countries. Students’
choice of mental disease services is also influenced by regional economic level,
public and self-mental disease stigmas, and the characteristics of colleges.
Make a research design and data plan for answering the following question: what
attributes of mental healthcare services influence the a student’s decision to use
them?

• Search relevant publications, and use the bibliometrix package for a biblio-
metric analysis.

• Draw a mind map for the research design.
• Draw a Gannt chart for the data plan.

2. The fulltext package (Chamberlain 2022) is a tool for searching journal articles
and text-mining. It can search for and fetch articles, get links for full text articles,
extract text from articles, and download supplementary materials from papers.
Read the online manual3 of fulltext and do the following exercises:

• Search for the keyword COVID-19 across PLOS, Crossref, and arXiv preprint
server.

• Retrieve the abstracts of the ten returned articles from PLOS and read them.
• Download the full text of the ten returned articles from PLOS.
• Extracting the title and the keywords of the ten returned articles. What topics
do people study about COVID-19?

3. The mindmap package can extract the outline of a .pdf document and convert
it into a mind map. Find how to use this feature for grasping the main points of
journal articles of your interest.

2 https://plotly.com/r/gantt/.
3 https://books.ropensci.org/fulltext.

https://plotly.com/r/gantt/
https://books.ropensci.org/fulltext
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4. Plot Fig. 2.7 with the plotly package.What are the pros and cons of an interactive
Gannt chart?
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Chapter 3
Collecting Data

3.1 Chapter Highlights

• Make sense of the importance of data sampling strategy and recording methods in
research,

• Describe the characteristics (pros and cons) of different data sampling methods,
and

• Use the R language to apply those methods to research.

3.2 Sampling Data

We live in an age of information overload, and it is often difficult to collect data that
are useful for relevant study. Data come from a variety of sources, including original
data obtained from field studies and existing data sources. For example, public health
surveillance refers to “the ongoing, systematic collection, analysis, and interpretation
of health-related data essential to planning, implementation, and evaluation of public
health practice” (Gregg 2008), which provides data from continuous monitoring of
disease, or emerging health related issues. As a result, public health actions are
taken and the surveillance results reflect the effectiveness of those actions. During a
field investigation, public health researchers create surveys that may gather data in
a structured and systematic manner, and the survey results might be applied to the
entire population if a typical sample is chosen.

For health related purpose, data normally come from the following sources:

• Individual persons, for personal information,
• Health-care providers and facilities, such as physician offices, hospitals, outpatient
departments, emergency departments, inpatient settings, laboratories, etc., and

• Environmental conditions, such as the air quality, water quality, etc.

© Xi’an Jiaotong University Press 2023
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In special cases, data collected for non-health-related-purposes are also used to
illustrate health related issues, such as administrative actions, financial transactions,
etc.

Most of studies in public health are focused on a group of individuals. Because
it is impossible to gather data from every individual, a subset of the group is invited
to participate in the study. The sample refers to the selected subset, whereas the
population, or target population in specialised study, refers to the whole participants
to be examined. The phrase target population is frequently used to indicate the
aspects that suit a study’s aims (Guest and Namey 2015). Depending on the study
aims, the typical target population in public health research can be persons (e.g.,
patients, health specialists), objects (e.g., alcohol, drugs), and locations (e.g., clinics,
communities). For example, in a research about themental stress of nursesworking in
the clinics in St. Louis, all nursesworking in such clinicsmay be considered the target
population (Missouri Department of Health and Senior Services 2015). Why don’t
we simply choose all of these nurses? Choosing all elements of the target population
to include in the study is called census. It has the advantage of completely reflecting
all elements that fit the research objective, but it can be too time-consuming and
expensive. In the previous example, there were 16,581 registered nurses in St. Louis
in 2015, which would be very difficult to be all included in data collection.

When compared to a census, sampling costs less money, time, and manpower,
making it more practicable and common in research. However, sampling has a sig-
nificant drawback known as sampling error. When the selected sample does not
reflect the complete target population, a divergence between the sample statistic and
the population parameter arises. As a result, the sample findings cannot exactly rep-
resent those of the target population. In other words, it would be questionable to use
the findings from the sample to estimate the situation of its target population.

The sample must be cautiously selected in order to achieve valid results. Oth-
erwise, it is debatable whether the findings from the samples can be applied to the
general population. A well-known case was the US presidential election of 1936
between Alf Landon and Franklin Roosevelt. The famous magazine Literary Digest
conducted a poll with a sample size of around 2.4 million people about voting prefer-
ences, based on which they predicted that Landon would win but he failed. The failed
prediction resulted from their sampled individuals, who were chosen from telephone
subscribers and automobile owners, namely only wealthier people. Another example
was given by Kinsey 1948 and 1953, who interviewed more than 10,000 men and
women about their sexual behaviour and attitudes. This interview, however, did not
give each individual the same chance of being chosen. Therefore, the findings can
hardly be extrapolated to the population.

The following sections describe the two main types of sampling methods: prob-
ability sampling and non-probability sampling.
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a. Simple random sampling b. Systematic sampling

c. stratified sampling d. Cluster sampling

Fig. 3.1 Methods of probability sampling

3.2.1 Probability Sampling

Probability sampling selects individuals using random techniques, providing each
member of the target population a known chance of being included in the sample. The
major methods of probability sampling include simple random sampling, systematic
sampling, stratified sampling, and cluster sampling (Fig. 3.1).

3.2.1.1 Simple Random Sampling

Simple random sampling is a sampling strategy that ensures that everymember of the
target population has an equal and independent probability of being chosen. Here we
simulate and visualize the procedure of simple random sampling with an example.

First of all, define the target population. Suppose we are interested in a target
population composed of 4 females and 8 males, identified with 1 to 12. We create a
categorical object with 12 elements (1means female, and 2means male) ordered in
a random sequence.:

N <- 12

id <- 1:N

gender <- factor(sample(rep(c(1, 2), c(4, 8)), 12))

Step 2 is to identify or develop a sampling frame, i.e. a list of all the members
(N ) in the target population. We could make up a data frame:

x <- data.frame(id = id,

yi = 1,

gd = gender)

The column yi is meaningless and only for plotting, while gd indicates the
gender. Now we plot the population:

library(ggplot2)

p <- ggplot(x) +

geom_point(aes(id, yi, colour = gd, shape = gd), size = 6) +

labs(x = '', y = '') +
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scale_shape_manual(values = c(1, 16)) +

lims(y = c(0.5, 2.5)) +

theme_void() +

theme(panel.border = element_rect(fill = NA), legend.position = "none")

p

Before we visualize the sampling results, we create a self-defined function which
can add arrows into a graph at the given coordinates:

ggsample <- function(x, i) {

# x is the input data frame

# i is the index of the chosen individuals

geom_segment(aes(x = id, y = 2, xend = id, yend = 1.2),

data = x[i, ], size = 2, arrow = arrow())

}

Step 3 is to make a decision on the sample size (n). Here we assume the sample
size is 3 just for simplification.

n <- 3

The final step is to randomly select the sample using lottery method or random
number method:

i_sim <- sample(1:N, n)

p + ggsample(x, i_sim)

i_sim is the index of the chosen individuals, which are indicated with arrows in
the graph.

Simple random sampling is a typical sample approach in public health and an
excellent choice if a sampling frame is available. This is a simple and straightfor-
ward procedure. It is also feasible to assess the sampling error using this approach.
Furthermore, it is equitable since each member of the target population has an equal
and independent chance of being chosen. However, simple random sampling may be
expensive and time-consuming, especially for a large population. Furthermore, the
chosen sample may not be sufficiently representative. For example, if we repeat the
R code in Step 4 multiple times, it occasionally happens that no female is chosen,
or even no male is chosen. This problem could be solved by stratified sampling (see
Sect. 3.2.1.3).

3.2.1.2 Systematic Sampling

Systematic sampling is a sampling approach in which the initial element of the
sample is chosen at random, and then the other items are chosen at a defined and
periodic interval.We inherit the previous simple example and simulate the systematic
sampling as follows.

The first few steps are the same as the simple random sampling, including defining
the target population, identifying or developing a sampling frame, determining the
number of elements in the sampling frame and the sample size.

Then, the sampling interval could be calculated as i = N/n.
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i <- N %/% n

Next step is to randomly select a number (r ) from 1 through i .

r <- sample(1:i, 1)

The final step is to choose the r -th, r + i-th, r + 2i-th,… elements as the sample:

i_sys <- seq(r, r + i * (n - 1), i)

These steps could be combined into one self-defined function:

systematic_sampling <- function(N, n) {

i <- N %/% n

r <- sample(1:i, 1)

seq(r, r + i * (n - 1), i)

}

i_sys <- systematic_sampling(N, n)

p + ggsample(x, i_sim)

i_sys is the index of the chosen individuals, which are indicated with arrows in
the graph.

Systematic sampling spreads the selected observations over the target population,
which is more representative than simple random sampling. It is also simpler and
quicker to carry out. Nevertheless, systematic sampling might result in a biased
sample when there is a periodical pattern in the population and this pattern coincides
with the sampling interval (Guest and Namey 2015).

3.2.1.3 Stratified Sampling

Stratified sampling is a sampling approach in which the target population is first
separated into strata (i.e., mutually exclusive and homogenous groups), and then a
simple random sample based on a defined number or proportion is picked out from
each stratum. The strata are usually created based on the demographic data’s common
qualities.

We inherit the previous simple example and simulate the stratified sampling as
follows.

After defining the target population, we must identify the stratification variable(s)
and determine the number of strata. In this example, the gender is the stratification
variable and the number of strata is two.

Then, identify or develop a sampling frame and separate the sampling frame
into strata based on the stratification variable(s). As mentioned before, the gender is
labelled as 1 and 2 for separating the frame.

Finally, determine the sample size for each stratumand randomly select the sample
from each stratum. Suppose we select 30% of the observations in each stratum. The
dplyr package (Wickham et al. 2022) provides a function sample_frac() for
this step:
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library(dplyr)

x_str <- x |>

group_by(gd) |>

sample_frac(size = 0.3)

i_str <- x_str$id

p + ggsample(x, i_str)

Sometimes, we would like to take a stratified sample of a certain number of each
group. For example, we sample 2 observations from each gender group:

x_str <- x |>

group_by(gd) |>

sample_n(size = 2)

i_str <- x_str$id

Stratified sampling reduces sampling error and ensures the representation of sub-
groups. However, it is more complicated and time-consuming since it requires a
sampling frame with sufficient information.

3.2.1.4 Cluster Sampling

Cluster sampling is a sampling method that randomly selects naturally existing clus-
ters of items.

The first few steps are the same as the simple random sampling, including defining
the target population and the sample size. Instead of listing all the observations in a
frame, we only have to determine the number of clusters, and randomly select the
targeted number of clusters.

Based on the previous example, we suppose every neighboured n observations
are in one cluster, and we want to sample one cluster from all:

n_clu <- 1

sample_clu <- sample(1: (N / n), n_clu)

i_clu <- (n * (sample_clu - 1) + 1) : (n * sample_clu)

We could create a self-defined function for cluster sampling:

cluster_sampling <- function(N, n, n_clu) {

sample_clu <- sample(1: (N / n), n_clu)

c(sapply(sample_clu, function(sample_clu) (n * (sample_clu - 1) + 1) : (n * sample_clu)))

}

i_clu <- cluster_sampling(N, n, n_clu)

Now the sample could be visualized:

p + ggsample(x, i_clu)

The cluster sampling does not require a sampling frame and it is easy to admin-
istrate. However, when clusters are sufficiently different from one another, it might
result in more sampling error than simply random sampling.
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3.2.2 Non-probability Sampling

In non-probability sampling, no random process is used in the sampling process.
Each member in the target population does not necessarily have an equal probability
of being chosen in the sample. Non-probability sampling approaches mainly include
availability sampling, purposive sampling, quota sampling, and respondent-assisted
sampling. As they don’t need the assistance by a programming language, here we
only describe them briefly.

• The availability sampling approach chooses a sample depending on the availability
and convenience of the participants and researchers. It is the simplest method of
sampling, requiring the fewest resources in terms of time, money, and manpower.
All we have to do is define the target population, figure out how to recruit the sam-
ple, and determine the sample size. It does, however, have a number of significant
flaws. The most significant drawback is that researchers have limited control over
the sample characteristics. The individuals who are difficult to locate may also be
excluded from the research. All of these factors combine to make this the least
reliable sampling approach.

• The purposive sampling approach chooses a sample depending on how well it
fits the inclusion and exclusion criteria of the research. We must determine the
inclusion and exclusion criteria, followed by sampling, in addition to the standard
stages of identifying the target population and determining the sample size. It is
the most common non-probability sampling approach employed by researchers.
Using this strategy, researchers may select parts of the target population depending
on the study plan, without having to learn all about the target population.

• The quota sampling approach chooses a sample depending on how well it meets
the research’s inclusion and exclusion criteria from a created mutually exclusive
sub-group, based on a specified proportion. It might be compared to a combina-
tion of purposive sampling and stratified sampling. It allows for the inclusion of
large numbers of people from diverse parts of the target population in the sample.
However, more resources and up-to-date information about the target population
are required.

• The respondent-assisted sampling approach chooses a member from the popula-
tion with the assistance of a previously chosen member. We also have to define the
target population and identify the inclusion and exclusion criteria before recruiting
and selecting the initial individual from the population and collecting data. The
key step is to invite the chosen individual to choose referrals, which should be
continued until no new referrals come in. Using the respondent-assisted sampling,
the recruitment becomes easier, and the rare population can be included. Never-
theless, bias may be produced by the initial sample, as they are not likely to refer
those who they dislike.

Due to the lack of random processes, all non-probability sampling systems have
several similar drawbacks. The sample is chosen at the discretion of the researcher.
The sample may or may not be representative.
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3.3 Recording Data

Recording data means documenting data in a variety of forms, such as writing on
paper and audio/video recording, in order to preserve it for later use. There are dis-
tinctly different ways to record data for a study. For example, if we want to measure
the sleepless behaviour in college students, we could collect those data by observing
the students with our eyes, by using equipment to measure their sleeping time, by
surveying or interviewing them, or in other ways. As with most data recording tech-
niques, each method has pros and cons. Observations are straightforward but might
not always be quite practical. Equipment are precise and consistent but might be time
and cost consuming. Surveys with questionnaires can be quick and inexpensive but
need a careful and proper design. At present, using phone, computer, and internet to
record data has become increasingly common.

Data can be categorized in different aspects. Their types can be primary or sec-
ondary. The unit of data can be individual level on persons or houses, and community
level on groups of people. Froman aspect of data sources in public health, data include
demographic characteristics, geographic characteristics, socioeconomic character-
istics, health data, and environmental data. For more details, health data include
notifiable diseases, laborators specimens, vital records, sentinel surveillance, dis-
ease registries, periodic surveys, special studies, and administrative data systems.
Environmental data can be ambient air quality, toxic release inventory, ground water
sampling, drinking water databases, and meteorological records. Not all types of
data have to be recorded. Careful considerations must be carried out about the bud-
get constraints, time and labor, available technology, further updates, security, user-
friendliness, etc.

3.3.1 Surveys and Questionnaires

Surveys are a common way of collecting data in public health. A survey, including
interviews, questionnaires, and instruments or inventories, collects data of each indi-
vidual in a sample and attempts to estimate opinions, attitudes, and characteristics
of a population.

Questionnaire is a principle data recording method for a survey. A questionnaire
is a list of questions or forms to be completed. A well-structured questionnaire can
be used as a scientific instrument to obtain data from large numbers of participants
quickly. Nowadays, questionnaires can be classified as paper questionnaire, mail
questionnaire, and web-based questionnaire (Guest and Namey 2015). Paper ques-
tionnaire has higher validity and accuracy, while mail and web-based questionnaire
aremore convenient and flexible (e.g. SurveyMonkey,1 MikeCRM,2 qualtrics,3 Wen-

1 https://www.surveymonkey.com/.
2 http://mikecrm.com/.
3 https://livpsych.eu.qualtrics.com/.

https://www.surveymonkey.com/
http://mikecrm.com/
https://livpsych.eu.qualtrics.com/
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juanxing4). Furthermore, some key points need to be paid attention to when devel-
oping the survey questionnaire. Double-barreled questions should be avoided and a
combination of positive and negative worded items could be utilized (Rattray and
Jones 2007). Additionally, the validity and reliability of the questionnaire should
also be illustrated and tested.

A well-constructed questionnaire could provide data that can be easily organized
and tabulated for further analysis. Some specific survey platforms could export the
data into a form that could be imported inR. For instance, theSurveyMonkeyplatform
could export the data in a .csv file which could be input into R (see Chap. 4).

3.3.2 Desktop Questionnaire Platform

Epi Info is a comprehensive software package for electronic questionnaire design,
word-processing, database construction, data analysis, and visualization in public
health. It is developed by Centers for Disease Control and Prevention (CDC), US.
Epi info is open source and cross-platform forMicrosoftWindows,Android, and IOS,
as along with an online version OPenEpi. The data can be saved either in Microsoft
Access (.mdb) orMicrosoft SQL Server Database, which can then be easily imported
into R.

The interface of Epi Info for generating a questionnaire is shown in Fig. 3.2. A
task bar and a menu bar are displayed on the top of the window, where users can find
all the functions, such as creating or opening a project. The main part of the window
is divided into two panels aligned side by side. The left panel is the project explorer,
including the page names of the questionnaire, Fields you can drag to the pages, and
Templates which combine some fields for common uses. The right panel displays
the questionnaire pages as a demonstration.

Thedemonstrative questionnaire inFig. 3.2 startswith a titleParent SchoolAsthma
Pre-Intervention Survey. Sometimes, the title is followed by a motivation paragraph
which encourages participants to join and also clarifies the study aims. Themain body
of the questionnaire contains three sections, including the demographic information,
the medical information on Page 2, and the asthma symptoms information on Page
3. The layout of all the fields on the questionnaire is flexible for users. The pages can
be printed out directly with a satisfactory layout.

Once the data are recorded in Epi Info, we can do statistical calculations for the
sample, clean, transform, and analyze data, and visualize analytical result with tables
and charts either in Epi Info or in R.

4 https://www.wjx.cn/.

https://www.wjx.cn/
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Fig. 3.2 Create a questionnaire with Epi Info

3.3.3 Online Questionnaire Platform

SurveyMonkey is a popular online platform for generating, distributing, and summa-
rizing questionnaires. After signing up for free, you can start creating a questionnaire
either from a scratch or from a template. If you have the contacts of the subjects,
you can choose distributing your questionnaire to them; otherwise, you can pay for
targeted responses around the world.

The interface of creating questionnaire on SurveyMonkey is shown in Fig. 3.3.
Similarly to Epi Info, the side-by-side panels display the available components (left)
and the questionnaire page. As the questions are listed on webpages, you don’t have
to think much about the printed-out layout.

The survey results, including the summary data and the individual response data,
could be exported in Microsoft Excel (.xlsx), comma separated value (.csv), and
SPSS data (.sav). All these formats can be imported into R for further analysis.
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Fig. 3.3 Create a questionnaire with SurveyMonkey

3.3.4 Databases and Tables

After the data have been recorded, an important step is to organize the data in secure
database systems in place along with proper data management and quality control
procedures.

A database is an organized collection of information consisting of one or multiple
tables, which are usually linked to each other. A table is a rectangular structure
consisting of rows (also called records) and columns (called fields). For example, a
table of patients could have the fields of name, social security number or ID, gender,
date of birth, height, etc. Each row is for one patient.

A data dictionary or code book often accompanies a table. The code book defines
and names the fields, as well as states the attributes, formats, and permissible ranges
of the variables. The attributes clarify whether the variables are numeric, characteris-
tic, logical, date and time. Data coding standard are often used in public health, such
as diagnosis codes (ICD-10), medical procedures codes (CPT), national drug codes
(U.S. FDA), logical Observations Identifier Names and Codes (LONIC), System-
atized Nomenclature of Medicine (SNOMED), and Health Level 7 standard (HL-7).
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3.3.5 Using Secondary Data

Secondary data are those collected by someone else, such as other researchers, stud-
ies, and organizations. The general sources of secondary data are public records, per-
sonal documents, and physical evidence. The public records mainly contain journal
articles, official statements, magazines, publications of government or other author-
ity, etc. Sometimes, unpublished sources can also be applied, such as data collected
by teachers, professors, and private enterprises. Document review is a typical method
to record secondary data. A lot of information regarding public health is available
in the public domain. This information includes census data, health statistics, and
national survey results.We can use such data for describing public health information
and can ask questions regarding possible relationships among variables. As this kind
of study depends on these archived data, it is called archival research.

Using secondary data can save much time and money, and it provides possibility
for single or a group of researchers to access to data with greater scope and higher
quality. For example, census records provide data of entire population of a coun-
try. However, secondary data have drawbacks. As it is not us who collect the data
ourselves, we must figure out the methodology used to collect the data in details,
including whether the sampling procedures are involved and adequate, who and how
they collect the data, how the data are stored, and whether there is quality control.We
have to find answers to these questions before data exploration and analysis. As those
questionnaires designed by others may not be tailored for our research questions, we
must keep in mind that the data may not answer the questions for our own research,
and the data might be inaccurate or out of date. When using secondary data, we must
follow the guide or rules provided by the owner of the data. For instance, when we
submit our research proposal or clarify our motivation, we must provide the consent
forms or fulfil other requirements of the database.

3.4 Exercises

Youconduct a study aboutmental pressure in undergraduates in your college,which is
composed of 150 freshmen, 130 sophomores, 120 juniors, and 100 seniors. Describe
how to sample the data with probability sampling methods.
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Chapter 4
Importing and Exporting Data

4.1 Chapter Highlights

• Import and export common data files with appropriate R functions, and
• Obtain useful datasets from online sources via R packages.

4.2 Import Data Manually

Importing and exporting data can be regarded as the entrance and exit, respectively,
for the data work. These two steps connect our data work with the upstream and
downstream collaborators.

In most cases in public health, we deal with rectangular datasets (i.e., a table
composed with columns and rows, in which all columns have equal rows). Small
rectangular datasets can be imported into R by manually typing. Let’s use an dataset
from a cohort study with the demographic variable ‘gender’ as an exposure variable
and the ‘eating disorder’ as a response variable (see Table4.1).

It is a two-by-two contingency table, which you could simply import into R as a
data frame like this:

dtf_eating <- data.frame(

Outcome = c('Eating disorder', 'No eating disorder'),

Girls = c(100, 14900),

Boys = c(25, 9975))

Table 4.1 An example of small rectangular dataset

Outcome Girls Boys

Eating disorder 100 25

No eating disorder 14,900 9975

© Xi’an Jiaotong University Press 2023
P. Zhao, Working with Data in Public Health: A Practical Pathway with R,
https://doi.org/10.1007/978-981-99-0135-7_4
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The tibble package allows you to type it in a straightforward way:

dtf_eating <- tibble::tribble(

~Outcome, ~Girls, ~Boys,

'Eating discorder', 100, 25,

'No eating discorder', 14,900, 9975

)

Small non-rectangular datasets could be manually imported as vectors or lists.
For example, we have Sample 1 of the heights of three people, and Sample 2 of the
heights of four people. We could import them as two vectors by typing:

sample1 <- c(162, 173, 181)

sample2 <- c(155, 168, 172, 180)

or as one list by typing:

ls_sample <- list(sample1 = c(162, 173, 181),

sample2 = c(155, 168, 172, 180))

ls_sample

## $sample1
## [1] 162 173 181
##
## $sample2
## [1] 155 168 172 180

In most cases, non-rectangular datasets could be transformed into equivalent rect-
angular datasets:

dtf_sample <- data.frame(group = rep(c('sample1', 'sample2'), c(3, 4)),

value = c(162, 173, 181, 155, 168, 172, 180))

dtf_sample

## group value
## 1 sample1 162
## 2 sample1 173
## 3 sample1 181
## 4 sample2 155
## 5 sample2 168
## 6 sample2 172
## 7 sample2 180

Rectangular datasets are recommended in R, as many packages and functions
(especially the tidyverse family) support them very well.

Manually typing works fine for small datasets or for temporary use. Although it is
quite handy, it is tedious, time-consuming and error-prone, especially when dealing
with large data sets. No matter they are small or large, it is suggested to save the
datasets as local files and import them with the methods described in the subsequent
sections.
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4.3 Using RStudio Dialogues

Our data are often stored as files in local disks. Most of the data files in public health
are stored as plain text or Excel spreadsheets. Some of them are saved or exported
by SPSS, SAS, and Stata. R beginners, who are not familiar with the R functions,
could use RStudio IDE dialogues for importing these data files into R.

RStudio IDE provides three entrances for importing data files via dialogue boxes.
Figure4.1 shows a screenshot indicating how to do it. We could either (1) click in the
menu bar File - Import Dataset, or (2) click the button Import Dataset
in the top-right pane. Click the appropriate data source in the dialogue box that pops
up. Thenwe can browse in the computer and choose the target data file. Alternatively,
we could (3) find the target file in the bottom-right pane and click it, which opens
a dialogue box with two options for common dataset files: View File opens the
file in the same way as double click it in the default file browser, while Import
Dataset import it into R just like the entrances (1) and (2).

Figure4.2 shows the graphic interface for importing a data file in .xlsx. The dataset
is previewed in the upper panel as a data frame. The import options, shown in the
bottom panel, allow us to customize:

• Name, the name of the object, which the data will be assigned to,
• Sheet, where we could choose the sheet name (if there are multiple sheets in the
.xlsx file),

• Range, the range of the cells to be imported,
• Max Rows, the maximum row number to be imported,
• Skip, the number of the beginning rows that are skipped,
• NA, the strings representing missing values,
• First Rows as Names, whether use the first row as column names, and
• Open Data Viewer, whether view the data frame in the RStudio IDE Viewer
after importing.

The code of these actions is shown in the bottom-right box. The interfaces for
importing data files in other formats (such as .csv, SPSS, SAS, Stata) are slightly
different, depending on the formats.

Note that the entrance (3) cannot import a .txt file into R; it only opens it in a plain
text editor (Fig. 4.3 left), while the entrances (1) and (2) can import a .txt file into R
as a data frame (Fig. 4.3 right). We could customize:

• Name, the name of the object, which the data will be assigned to,
• Encoding, the encoding of the source file, usually UTF-8,
• Heading, the heading, i.e. whether to handle the first row as column names,
• Row names, whether to name the rows automatically, or with the first column,
or with number,

• Separator, the column separator, which could be white space, comma, semi-
colon, or tab,

• Decimal, the decimal separator, which couldeither be period or comma,
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Fig. 4.2 Costomize the settings of importing data into R via graphical dialogues in RStudio

Fig. 4.3 Open/import .txt files via graphical diologues in RStudio IDE

• Quote, the quoting character for characters, which could be " or ',
• Comment, the indicator with which the rows are not imported as data, including
#, !, %, @, /, or ~,

• na. strings, the strings representing missing values, and
• Strings as factors, whether to convert character vectors into factors.

RStudio dialogues can do most of the importing-data tasks in public health, and
this method is convenient and friendly to R beginners. However, it is limited to only
a few data formats with limited options. For instance, the options for importing .txt



62 4 Importing and Exporting Data

files are technically a subset of the arguments of the read.table() function.
Furthermore, the operations of selecting the options and customizing the import set-
tings are not reproducible. We would suggest that R beginners should learn the code
provided by the dialogue boxes, and use the functions introduced in the subsequent
sections whenever it is applicable.

4.4 Comma/Tab Separated Values

Rectangular spreadsheets are recommended to be saved and distributed in plain text
format, such as comma separated values format (.csv) or tab separated ones. These
files are software independent and widely supported by a variety of software pack-
ages. They are used for exchanging and converting data between various spreadsheet
programs for decades. In a .csv file, each line contains one record, ended with a line
break, and there is one or more fields separated by commas within the header and
each record. Note that each line must contain the same number of fields throughout
the file. The tab separated data files are an alternative to .csv, only except that tab
separated data files are often friendly to human’s eyes.

A .csv file can be imported and exported by the read.csv() function and the
write.csv() function, respectively, and tab separatedfiles by theread.delim()
function and write.table(sep = '\t') function (there is surprisingly no
function called write.delim() in base R packages), respectively. Technically,
read.csv() and read.delim() are two wrappers of read.table(), and
write.csv() is a wrapper of write.table(). Files with other delimiters can
be imported/exported via the general data importing/exporting functions
read.table()/write.table(), in which the argument sep is used to specify
the delimiter to separate data.

Questionnaires on the SurveyMonkey (see Sect. 3.3.3) can be exported as .csv
files. Here we use a demonstrative summary file sm-demo.csv. Open it with a text
editor or spreadsheet viewer. The first two rows act as meta data, which we should
skip when importing them:

dtf_csv <- read.csv('data/sm-demo.csv', skip = 2, header = FALSE)

# or

dtf_csv <- read.table('data/sm-demo.csv', skip = 2, header = FALSE, sep = ',')

We skip the first two rows because they are improper to serve as column names.
The data frame dtf_csv can be exported as a new .csv file:

write.csv(dtf_csv, 'data/sm-demo-new.csv', row.names = FALSE)

# or

write.table(dtf_csv, 'data/sm-demo-new.csv', row.names = FALSE, sep = ',')

The argument row.names is set as FALSE because they are redundant and we
do not need them.
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Some external packages can do the similar job in a better way. For example, the
readr package (Wickhamet al. 2022) provides the functionsread_csv()/write_
csv(), read_delim()/write.delim(), and read_table() (again, there
is surprisingly no function called write_table() in readr), which not only often
run faster (especially for large datasets) than base R functions but also provide other
interesting features such as progress bar. Importing data with readr is included in
the options of the RStudio dialogues as well. Alternatively, the data.table package
provides a pair of functions fread()/fwrite(), which uses multiple CPUs, if
any, to accelerate the speed, and can automatically detect the delimiter.

4.5 Default Formats in R

The default data formats in R are .rds and .rda/.RData, while .rda is just a short name
for .RData.

An .rds file stores one single object, which could be imported/exported with the
readRDS()/saveRDS() functions.

bf <- readRDS('data/bf.rds')

saveRDS(bf, 'data/bf2.rds')

The .rds file does not include the object name, thereforewe can assign the imported
data into an object with any name allowed.

An .rda/.RData file stores a workspace with one or multiple objects. It can be
imported/exported with a pair of functions load()/save(). For example, we
could check what objects we have in the current workspace:

ls()

[1] "bf" "dtf_csv" "dtf_eating" "dtf_sample" "ls_sample" "sample1" "sample2"

We could export any of these objects (e.g. bf,ls_sample, sample1) into an
.rda file:

save(bf, ls_sample, sample1, file = 'data/save.rda')

Theexporteddatafile contains amixture of a data frame (bf), a list (ls_sample),
and a vector (sample1), with their names. Now let’s quit R or RStudio, restart
it, and import the save.rda file either with the RStudio menu Session - Load
Workspace or with the load() function:

load('data/save.rda')

It does not need the assignment operation: The three objects are automatically
restored in the R environment. It is convenient, but we must be very careful with it.
If the object with the same name is already assigned, the previous value is lost when
loading the new one without an explicit message. For example:
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sample1 <- 1

load('data/save.rda')

Then the value 1 for sample1 is gone.
The save.image() function is a wrapper for saving everything in the

workspace:

save.image('save.rda')

The .rds and .rda/.RData data files can preserve the structure of the data in pro-
cessing them with R. They are often used locally as intermediate products, as they
might not be supported by other software. Anyway, they are the safest and stablest
formats for sharing the data with other R users.

4.6 Other Software Dependent Data Files

Software dependent data refer to the data formats originated in data-processing soft-
ware, such as .xlsx in Microsoft Excel and .sav in SPSS. The .rds/.rda/.RData files
are software dependent data as well, as they are generated by R. Other software
dependent data cannot be imported into R directly by using base R functions.

To import these types of data, one solution is converting them to software-
independent format (e.g. .csv) before importing them into R. Usually, the software
itself can perform the conversion with a click in its menu (often in File - Export or
Save as).

Alternatively, many R packages are available for different data formats. For exam-
ple, the package foreign (RCore Team2022) provides a series of function for import-
ing data stored by some versions of ‘Epi Info’ (read.epiinfo()), ‘Minitab’
(read.mtp()), ‘S’ (read.S()), ‘SAS’ (read.ssd() and read.xport()),
‘SPSS’ (read.spss()), ‘Stata’ (read.dta()), ‘Systat’ (read.systat()),
‘Weka’ (read.arff()), and ‘dBase’ (read.dbf()) files. Two other packages,
readxl (Wickham and Bryan 2022) and xlsx (Dragulescu and Arendt 2020), can
import Microsoft Excel spreadsheets (.xlsx).

Here we use the demonstrative exported files, i.e. sm-demo.xlsx by MicroSoft
Excel and sm-demo.sav by SPSS, from SurveyMonkey (see Sect. 3.3.3).

The read_xlsx() function in the readxl package and the read.xlsx()
function in the xlsx package can import the .xlsx file:

dtf_xlsx <- xlsx::read.xlsx("data/sm-demo.xlsx", sheetIndex = 1, header = FALSE, startRow = 3)

# or

dtf_xlsx <- readxl::read_xlsx("data/sm-demo.xlsx", col_names = FALSE, skip = 2)

Compared to readxl, xlsx can not only import .xlsx files into R, but also export
data into .xlsx files:

xlsx::write.xlsx(dtf_xlsx, 'data/sm-demo2.xlsx')
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The xlsx package, however, depends on Java. The right version of Java (32 bit or
64 bit) must be pre-installed before you can properly load xlsx.

The read.spss() function in the foreign package can import the .sav file:

dtf_spss <- foreign::read.spss('data/sm-demo.sav', to.data.frame = TRUE)

The Epi Info questionnaire data (see Sect. 3.3.2) are saved either in Microsoft
Access (.mdb) or SQL database. Here we give an example for the .mdb database.
The RODBC package (Ripley and Lapsley 2021) provides a series of function for
fetching data from .mdb database:

library(RODBC)

mymdb <- odbcConnectAccess2007("data/pptless.mdb")

sqlTables(mymdb)

dtf_mdb <- sqlFetch(mymdb, "pgcert1")

To our experience, if you do not know how to import a data file into R, you can
search the internet with the key words “R language import data” with your desired
format, and you will be able to find the solution.

4.7 Online Sources

We can download secondary data from online source with the help of R packages.
For example, the WHO package is an R client for the World Health Organization
(WHO) API. WHO provides access to the datasets from WHO. You can install it:

remotes::install_github("expersso/WHO")

There are two functions in WHO: get_codes() gets all codes and metadata
for WHO series:

library(WHO)

codes <- get_codes()

In the object codes there are 2808 datasets available with a label, a brief descrip-
tion, and a URL for each. If you want to import the datasetUnder-five mortality rate,
which is labeled as ‘MDG_0000000007’, then apply the get_data() function to
the label:

whod <- get_data("MDG_0000000007")

Another example is the package nCov2019, which can download the COVID-19
pandemic data.

remotes::install_github("GuangchuangYu/nCov2019")

library(nCov2019)

ncovr_data <- load_nCov2019()
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As each of these R package is developed by different authors, inconsistency in the
usage of these functions might exist, including the argument types of the functions
and the formats of the returned values. Thus, we have to read the help document
carefully before using them.

4.8 Data Shipped with R Packages

Some datasets are shipped with R packages, which means that those datasets are
installed into your computer simultaneously when you install the packages. They
can be used as demonstrations in teaching and learning. The function data() loads
them into R and the help() function displays the metadata. See Chap. 1 for the
details.

Some packages, however, ship some datasets in a folder named as extdata in
the installation path. For example, in the installation path of theMSG package (Xie
and Zhao 2021), we can see the shipped dataset files:

list.files(file.path(system.file(package = "MSG"), 'extdata'))

## [1] "AgriComp.R" "ChinaPop.R" "cities.txt" "graphnr.csv"
## [5] "HighFreq100.rda" "Napoleon.csv" "SongWords.rda" "stem-islands.txt"
## [9] "stem-poisson.txt" "troops.txt"

These data files could differ in formats, and we should use the importing
approaches described in the previous sections. The complete path of such a file
could either be located with the file browser or with the following functions:

file.path(system.file(package = "MSG"), 'extdata', 'covidcountries.rds')

## [1] "D:/R/library/MSG/extdata/covidcountries.rds"

We could develop our own R packages for shipping datasets. See Sect. 10.5.5.

4.9 Exercises

1. Apart from read.csv() and read.delim(), there are more wrappers for
read.table(), such as:
read.delim2()

read.csv2()

read.fwf()

Find out what each of them is used for, and what is the difference between them.
2. A demonstration dataset “sm-demo.csv” was downloaded from the SurveyMon-

key. Import it into R with the RStudio dialogue. There are two options: (1) From
Text (base), and (2) From Text (readr). What is the difference between them?
After importing it, export this dataset as .xlsx document.
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Table 4.2 Meta data for the births dataset

Names Description Unit

id Identity number for mother
and baby

bweight Birth weight of baby Grams

lowbw Indicator for birth weight less
than 2500 g

gestwks Gestation period Weeks

preterm Indicator for gestation period
less than 37 weeks

matage Maternal age Years

hyp Indicator for maternal
hypertension

sex Sex of baby: 1:Male, 2:Female

3. The births dataset from the Epi package contains data from 500 singleton births
in a London Hospital. See the details about it in the help document. Gener-
ate a data frame as the metadata like Table4.2 with a spreadsheet programme
(e.g. Excel or LibreOffice).

4. The China Health and Nutrition Survey (CHNS) is an ongoing international col-
laborative project for investigating how China’s social and economic transfor-
mations are influencing the population’s health and nutritional condition. This
project provides a website1 where we could obtain survey datasets with their
documents. Download a dataset of your interest. What format is it? Import it
into R.
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Chapter 5
Cleaning Data

5.1 Chapter Highlights

• Understand the necessity and importance of data cleaning,
• Describe the common steps for data cleaning, and
• Use the relevant R packages and functions for data cleaning in research.

5.2 Introduction

The major work with data is focused on summarizing, exploring, analyzing, and
modelling data under the assumption that the input data is clean, which means that
the data is error-free, in correct formats,with nomissing fields, andwith correct labels
and codes, or, briefly speaking, ready for further analysis. Unfortunately, this does
not happen in the real-world data we get in public health. Typically, we get a data
file with no headers, incorrect data types, incorrect category labels, and unknown
or unexpected character encoding. Even after we’ve resolved these concerns and
obtained theoretically valid data, there are still certain errors, such as a negative age,
a child who has a driver’s licence, or data that are missing.

Data cleaning, which converts raw data into consistent data that can be further
analyzed, is one of the most important processes in data work. The goal of data
cleaning is to increase the reliability of subsequent analysis and outcomes. While
data cleaning might not be the core of data work in public health, it shouldn’t be
disregarded because it has the power to make or break statistics.

Data cleaning in practice is often more time-consuming than data exploration and
analysis in public health. A list of recommended practices to keep in mind when
cleaning raw data will help us avoid missing any of the critical data cleaning phases
to the greatest extent feasible (Van der Loo and De Jonge 2018).
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In the subsequent sections, we demonstrate the common steps with R with a
small example. We’ll go over the data cleaning list step by step with a demo data
file data_cleaning_example1.txt, which includes three columns (age, body height,
gender) in a study.

myfile <- "data/data_cleaning_example1.txt"

5.3 File Information

Before getting our hands dirty with data cleaning, we must first know the dataset
well, from file sizes to data types. If applicable, a quick visual inspection would give
us a general impression about how the dataset looks like.

First of all, we use the file.info() function to see the size of the data file
before opening it:

file.info(myfile)

## size isdir mode mtime
## data/data_cleaning_example1.txt 85 FALSE 666 2022-04-01 15:49:45
## ctime atime exe
## data/data_cleaning_example1.txt 2022-04-03 17:49:58 2022-12-13 22:02:00 no

The output information gives us an impression about:

• size, the file size (85 bytes),
• isdir, whether it is a directory or not,
• mode, the file permissions (666 means all users can read and write the file1),
• mtime, the last modification time,
• ctim, the last status change time,
• atime, the last access time, and
• exe, the sort of executable.

Apart from file.info(), other functions, including file.size(), file.
mode()/ file.access(), and file.mtime(), can check the file size, per-
missions, and the last modification time, respectively. They help us understand the
details about the data file and make a decision for the next step: If the size is too large
(e.g., size in GB), it might be not applicable to open it with Excel. If the dataset was
shared by someone else long time ago while it has recently been modified (mtime),
it might be not the very file we intend to import.

1 The three digits indicate the file permission for the file owner, the owner’s group, and other users.
Each digit indicate the read (or r, which adds 4 to its total), the write (or w, which adds 2), and the
execute (or x, which adds 1 to its total) permission. As 6 = 4 + 2, it means the users have the read and
write permissions. More details refer to https://en.wikipedia.org/wiki/File-system_permissions.

https://en.wikipedia.org/wiki/File-system_permissions
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In most cases in public health, the contents in the data files could be visually
inspected before importing them. As the size of the demonstration file is small, we
could nowdouble click it with the file browser and open itwith the default programme
such as Excel for .xlsx files. We can alternatively use the function file.show()
to open it:

file.show(myfile)

As the demo file is a .txt file, it is opened with the default text file editor (while
a .csv file is often opened by Excel). We can see that there is no header (column
names) in the file, there are six rows, and the columns are separated with comma,
which determines how to import it into R (see Chap. 4): using read.csv(),
data.table::fread(), or readr::read_csv():

ex1 <- read.csv(myfile, header = FALSE)

5.4 Dimensions and Structure

After importing the data, we usuallywould like to see awhole picture of the dataset. It
is often performed by clicking the arrow before the object name ex1 in the top-right
Environment pane or with the str() function:

str(ex1)

## ’data.frame’: 6 obs. of 3 variables:
## $ V1: int 32 20 19 21 -9999 23
## $ V2: chr "5.8" "62feet" "5.6" "6.1" ...
## $ V3: chr " M" " M " " Female" " M" ...

It shows the dimension (6 observations/rows of 3 variables/columns), the data
structure type (data frame), the column names (V1, V2, V3), and the data type of
each column (integer for V1 and character for V2 and V3). Note that if we import
the data with other functions than read.csv(), the str() function returns the
information in different formats. The function readr::read_csv() itself not
only imports the data, but also returns a message of the data structure, including the
dimension and the variable type of each column.

The dimension and the column names could alternatively obtained with the
dim() and the names() functions:

dim(ex1) # dimension

## [1] 6 3

names(ex1) # or colnames(ex1)
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## [1] "V1" "V2" "V3"

The str() function returns the first few values of each column as well. It won’t
hurt anyone if we double inspect the entire dataset either by printing the data in the
R console:

ex1

## V1 V2 V3
## 1 32 5.8 M
## 2 20 62feet M
## 3 19 5.6 Female
## 4 21 6.1 M
## 5 -9999 5.7 fem
## 6 23 5.6 Female

or double clicking the object name ex1 in the top-right pane of the RStudio IDE, or
running the View() function:

View(ex1)

In the data viewer, we could stroll the window horizontally or vertically, click a
column name for ordering, search with a certain keyword in the search bar, or filter
any row(s) with the Filter button. We can now see some structural flaws in the
dataset, including:

1. mislabelled variables (i.e. the columns are not named in the raw dataset and the
names V1, V2, and V3 are automatically named when the dataset is imported),

2. erroneous data type (i.e. the body height V2 should be numeric rather than
character), and

3. text inconsistencies (i.e. female is recorded in multiple forms).

The text inconsistencies might be not easy to detect, especially for large datasets.
The unique() function could show all the elements in an object with duplicated
ones removed:

unique(ex1$V3)

## [1] " M" " M " " Female" " fem"

For showing the unique elements in each column, we use sapply() or
lapply():

sapply(ex1, unique) # or lapply(ex1, unique)

## $V1
## [1] 32 20 19 21 -9999 23
##
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Fig. 5.1 Demonstration of visualizing unique values in each column of a data frame

## $V2
## [1] "5.8" "62feet" "5.6" "6.1" "5.7"
##
## $V3
## [1] " M" " M " " Female" " fem"

We can see that there are actually leading and trailing white spaces in the strings!
R treats " M" and " M " as two different strings. They can hardly be detected by eyes in
the data viewer or external software (such as Excel). As we often use categorical data
in public health, such text inconsistencies often exist, including leading and trailing
white spaces, double spaces between words, mixing with ‘l’ (the lower case of ‘L’)
and I (the upper case of ‘i’).

The pzhaonet/fecitr package (Zhao 2022) provides a function plot_summary
(), which draws a graph for each column individually (Fig. 5.1):

fecitr::plot_summary(ex1, if_quote = TRUE)

The variable names are shown as the titles for the sub-figures of Fig. 5.1. The
numeric column (V1) is visualized as a one-dimensional scatter plot, and character
columns (V2 and V3) are visualized as bar charts that show the frequency of each
unique string. The three structural flaws can all be seen in it.

5.5 Mislabelled Variables

Data analysis could be annoyed or even misled by mislabelled variables. The column
names are assigned as V1,V2, and V3 automatically when importing the dataset with
read.csv() as we set header = FALSE. We can rename them:

names(ex1) <- c("age", "height", "gender")

The dplyr package renames the columns in another way, which is sometimes
more explicit:

library(dplyr)
ex1 <- rename(ex1, age = V1, height = V2, gender = V3)
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Alternatively, the renaming step can be included in the importing step:

ex1 <- read.csv(myfile, col.names = c("age", "height", "gender"))

Section 10.5.3 introduces the sjlabelled::var_label() function
(Lüdecke 2022), which adds a label as attribute to the variable. We could use it
in this step as:

ex1 <- sjlabelled::var_labels(ex1,
age = "years",
height = "inches")

str(ex1)

## ’data.frame’: 6 obs. of 3 variables:
## $ age : int 32 20 19 21 -9999 23
## ..- attr(*, "label")= chr "years"
## $ height: chr "5.8" "62feet" "5.6" "6.1" ...
## ..- attr(*, "label")= chr "inches"
## $ gender: chr " M" " M " " Female" " M" ...

5.6 Incorrect Data Types

It is sometimes confusing when we talk about data types. In statistics, the term
data type usually refers to the classification of quantitative/numerical and qualita-
tive/categorical data. In R, data type is often mixed with data structure type (also
called object type), probably because of the similarity in their callings and some con-
fusing functions which return sometimes the data types and sometimes the object
types (we will talk about this later). The object type refers to the classification of
vector, matrix, array, data frame, list, and so on. A vector is a sequence of data ele-
ments of the same basic (also called atomic) data type (also called data class). The
atomic data type of a vector is very important because it defines what we could do
with the object. There are six atomic data types in R, including numeric, integer,
logical, character, complex, and raw, among which we often process the first three
ones, i.e.:

• numeric values (e.g., 1, 2.4, -6), with which we could do mathematical opera-
tions,

• logical values (e.g., TRUE, FALSE), with which we could do logical operations,
and

• character values (e.g.,'hello','data/data_cleaning_example1.txt',
'Female'), which we could split and concatenate. Character values are often
recorded as factors.

Vector is the simplest object type, and all other object types are built on vectors
in R. Briefly speaking,

• a matrix is similar to a vector (i.e., a sequence of data elements of the same basic
data type) but organized in row(s) and column(s),
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• an array is similar to a vector (i.e., a sequence of data elements of the same basic
data type) but organized in more than one dimensions,

• a data frame is one vector or a combination of multiple vectors with the same
length in the same or different data types, organized in row(s) and column(s), and

• a list is a wrapped combination of one or multiple objects in any types.

Thus, a matrix is a special case of an array, and a data frame is a special case of
a list.

Let’s get back to our demonstration. The object type and the data type of each
column in ex1 could be obtained separately with the following functions:

class(ex1) # object type

## [1] "data.frame"

class(ex1$age)

## [1] "integer"

The data type “integer” is a subset of “numeric”.
R provides a series of functions for logically checking the object types and

data types. For example, the functionsis.matrix(),is.array(),is.data.
frame(), and is.list() check if an object is a matrix, an array, a data frame,
and a list, respectively:

is.matrix(ex1)

## [1] FALSE

is.data.frame(ex1)

## [1] TRUE

is.list(ex1)

## [1] TRUE

and the functions is.numeric(), is.logical(), and is.character()
check if an atomic data type is numeric, logical, and character, respectively:

is.numeric(ex1$age)

## [1] TRUE
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is.character(ex1$age)

## [1] FALSE

Type is. in RStudio IDE and we can see a list of relevant functions.
A convenient and fast way for checking the data type of each column in a data

frame is:

sapply(ex1, class) #class of each column

## age height gender
## "integer" "character" "character"

R functions, when importing the data, are usually able to automatically classify
the variables into correct data types. The data types for age and gender are properly
classified, but the type of height is improper: It should be numeric, while it is incor-
rectly recognized as character (chr). The read.csv() sees a value 5.7* with a
redundant * and converts the whole column of age into characters.

Object and data types are usually corrected or converted with R functions
beginning with as.. Similarly to the names of the is. functions, the functions
as.matrix(), as.array(), as.data.frame(), and as.list() convert
an object to a matrix, an array, a data frame, or a list, which is explicitly indicated in
the function name:

as.matrix(ex1)

## age height gender
## [1,] " 32" "5.8" " M"
## [2,] " 20" "62feet" " M "
## [3,] " 19" "5.6" " Female"
## [4,] " 21" "6.1" " M"
## [5,] "-9999" "5.7" " fem"
## [6,] " 23" "5.6" " Female"

as.list(ex1)

## $age
## [1] 32 20 19 21 -9999 23
## attr(,"label")
## [1] "years"
##
## $height
## [1] "5.8" "62feet" "5.6" "6.1" "5.7" "5.6"
## attr(,"label")
## [1] "inches"
##
## $gender
## [1] " M" " M " " Female" " M" " fem" " Female"
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and the functions as.numeric(), as.character(), and as.logical()
convert the data type into numeric, character, or logical, respectively:

as.character(ex1$age)

## [1] "32" "20" "19" "21" "-9999" "23"

as.numeric(ex1$height)

## [1] 5.8 NA 5.6 6.1 5.7 5.6
## Warning message:
## NAs introduced by coercion

The warning indicates that the string 62feet cannot be converted into numeric
with the as.numeric() function. Instead, a simple way to remove non-numeric
characters before or after the number is the readr::parse_number() function:

ex1$height_cor <- ex1$height
ex1$height_cor <- readr::parse_number(ex1$height_cor)
class(ex1$height_cor)

## [1] "numeric"

The readr package provides a series of functions beginning with parse_ for
different objectives, which are self-explanatory in the function names:

• Parsing numeric values:

– parse_double()
– parse_integer()
– parse_number()

• Parsing logical values:

– parse_logical()

• Parsing character values:

– parse_character()
– parse_factor()

• Parsing temporal values:

– parse_date()
– parse_datetime()
– parse_time()

• Parsing automatically:

– parse_guess()

The type of gender in the demonstration data should be categorized as a fac-
tor, while the values are inconsistent. We will correct the data types after the text
inconsistency problem is solved.
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5.7 Text Inconsistencies

People often record one single thing in multiple ways, which computers do not
like for processing data. As categorical variables are often used in public health, text
inconsistencies in the rawdata are common,which causes problemswith downstream
data processing. We can see this inconsistency in the demonstrative dataset. The
variable gender is recorded as " M" and " M " for “male”, and " Female" and " fem "
for “female”. Both within-group inconsistency and between-group inconsistency
exist. The aim of this step in cleaning data is to use only “male” and “female” as
the values for gender.

For a small dataset, it is straightforward and fast if we simply correct them man-
ually:

ex1$gender_cor <- c('male', 'male', 'female', 'male', 'female', 'female')

But for a large dataset, it might be labour consuming and fallible. Thus, it is
suggested to use relevant functions.

As mentioned before, leading and trailing white spaces are very difficult to detect
by eyes. They can be removed with the argument strip.white = TRUE in
read.csv() when importing data.2 Alternatively, this job could be done with
the functions readr::parse_character(), or stringr::str_trim(),
or the trimws() function:

trimws(ex1$gender)

## [1] "M" "M" "Female" "M" "fem" "Female"

Most generally, the fundamental function for character replacement is gsub():

ex1$gender_cor <- gsub("(ˆ[[:space:]]+|[[:space:]]+$)", "", ex1$gender)
unique(ex1$gender_cor)

## [1] "M" "Female" "fem"

where [:space:] is a pre-defined character class that matches space characters.
+ means one or more continuous identical characters. ˆ and $ mean matching the
beginning and the end of the string, respectively.

The matching and replacement of characters in R is powerful and compli-
cated. Base R provides a series of functions to do this job, including grep(),
grepl(), agrep(), agrepl(), regexpr(), gregexpr(), regexec(),
and gregexec() for matching, sub() and gsub() for replacement. These func-
tions are able to do all the character correction jobs, while they might not be easy for

2 By default, thereadr::read_csv() anddata.table::fread() functions trim the lead-
ing and trailing spaces from each field before parsing it.
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beginners. The stringi (Gagolewski 2022) and stringr (Wickham 2022) packages
provide a series of wrapper functions for common use.

Nowwe have only three different values for gender: “M”, “fem”, and “Female”.
It is fine to replace them using the ifelse() function, as “M” stands for “male”
and all other values are “female”:

ifelse(ex1$gender_cor == "M",
"male",
"female")

## [1] "male" "male" "female" "male" "female" "female"

A more explicit way is using the switch() function:

sapply(ex1$gender_cor,
function(x)

switch(x,
"M" = "male",
"Female" = "female",
"fem" = "female")

)

## M M Female M fem Female
## "male" "male" "female" "male" "female" "female"

If there is a more complicated mapping, the function match()works better with
a lookup table:3

tbl_ref <- data.frame(
tibble::tribble(
~old, ~new,
'm', 'male',
'man', 'male',
'male', 'male',
'f', 'female',
'fem', 'female',
'woman','female',
'female','female'

)
)
ex1$gender_cor <- tbl_ref[match(tolower(ex1$gender_cor), tbl_ref$old), 'new']

The table tbl_ref contains all the possible mapping strings. Here we use the
tolower() function for converting the original characters into lower-case charac-
ters which can be found in the lookup table, and the match() function returns the
index of the target in the table.

When the text is consistent, we can convert the character variable, if it is used to
categorize the data, into a factor:

3 In practice, we could create this table in a spreadsheet program like Excel.
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ex1$gender_cor <- as.factor(ex1$gender_cor)
str(ex1)

## ’data.frame’: 6 obs. of 5 variables:
## $ age : int 32 20 19 21 -9999 23
## ..- attr(*, "label")= chr "years"
## $ height : chr "5.8" "62feet" "5.6" "6.1" ...
## ..- attr(*, "label")= chr "inches"
## $ gender : chr " M" " M " " Female" " M" ...
## $ height_cor: num 5.8 62 5.6 6.1 5.7 5.6
## $ gender_cor: Factor w/ 2 levels "female","male": 2 2 1 2 1 1

5.8 Anomalies

Anomalies in data can exist in two forms: incorrect or invalid values (i.e., values
that make no sense) and outliers (i.e., extremely skewed values that are either too
high or too low). Anomalies are different from text inconsistencies: inconsistent text
could be easily corrected, while anomalies could not. For example, we can infer that
the gender recorded as “fem” means “female” exclusively, while we cannot know
exactly what gender it is from a recoded value of “Z”. Therefore, we should detect
the anomalies first, and then decide what to do with them.

Incorrect or invalid values

In the demonstration dataset, the value -9999 is apparently invalid for the human
age. This might come from a missing value. We can either replace it with NA indi-
vidually:

ex1$age_cor <- ex1$age
ex1[ex1$age_cor == -9999, 'age_cor'] <- NA

or, more generally, set a range for meaningful values (e.g. from 0 to 150years for
human’s age) and exclude those beyond the range:

ex1[ex1$age_cor < 0 | ex1$age_cor > 150, 'age_cor'] <- NA

Unlike explicitly impossible values that should be marked undoubtedly, some
values might be inferred according to some supplemental knowledge. For example,
although it makes no sense as human’s body height, the value “62” might be 6.2
with a missing decimal point, according to the context. We must be careful about
these values if we replace “62” with “6.2” temporarily, and it must be kept in mind
in further analysis. A good practice is making a note for future reference. Here we
generate a new column for recording the note:

ex1$note <- NA
ex1[ex1$height_cor == 62, 'note'] <- 'add a decimal point'
ex1[ex1$height_cor == 62, 'height_cor'] <- 6.2
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Fig. 5.2 Check outliers with the box plot

Outliers

Outliers are the data points that differ considerably from other values. They do not
necessarilymean errors, but their existence could cause serious problems in statistical
analysis.

A common and universal method for detecting outliers in unimodal and sym-
metrically distributed data is the box plot (see Sect. 8.7): The upper threshold is
computed as the third quartile (Q3) plus the interquartile range (IQR) times a mul-
tiplier, i.e. Q3 + k · I QR and the lower threshold as the first quartile (Q1) minus
it, i.e. Q1 − k · I QR. Then the data beyond the range of these two thresholds are
labelled as outliers. In a box plot, the outliers are indicated as points outside of the
box. We could use the base R function boxplot() or the geom_boxplot()
function from the ggplot2 package:

library(ggplot2)
ex1 |>

ggplot() +
geom_boxplot(aes(age_cor))

The value “32” is marked as an outlier, which does not mean that this value is
so wrong that we must remove it. It only indicates that this value might be different
from other values and might have severe influence on further analysis (Fig. 5.2).

The function boxplot.stats() can numerically detect the box-plot-based
outliers:

ex_box <- boxplot.stats(ex1$age_cor)
ex_box

## $stats
## [1] 19 20 21 23 23
##
## $n
## [1] 5
##
## $conf
## [1] 18.88021 23.11979
##
## $out
## [1] 32

where the returned results include stats (the five values of the lower threshold, Q1,
the median, Q3 and the upper threshold), n (the number of non-outlier data points),
conf (the confidence interval, i.e. median±1.58I QR/

√
n), and out (the values of
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the outliers). We could generate a new column in the data frame ex1 for labelling
the outlier:

ex1$age_outlier <- 0
ex1$age_outlier[ex1$age_cor %in% ex_box$out] <- 1

The multiplier k is arbitrary, usually assigned as 1.5 by default in many functions.
They can be changed, depending on how relaxed we would like to detect the outliers.
We could enlarge the tolerance window for non-outlier values with a larger k:

boxplot(ex1$age_cor, range = 3)
ex1 |>

ggplot() +
geom_boxplot(aes(age_cor), coef = 3)

boxplot.stats(ex1$age_cor, coef = 3)

The outliers package (Komsta 2022) provides a series of functions for χ2-
test (chisq.out.test()) , Cochrant test (cochran.test()), Dixon test
(dixon.test()), and Grubbs test (grubbs.test()) for outliers. It also pro-
vides a handy function outlier() for finding the values far from the mean:

outliers::outlier(ex1$age_cor)

## [1] 32

Other packages, such as anomalize (Dancho and Vaughan 2020), extremevalues
(van der Loo 2020), and mvoutlier (Filzmoser and Gschwandtner 2021), as well
as other functions, such as car::outlierTest() (Fox et al. 2022), provide a
number of methods based on a variety of models (e.g. distance, dispersion, depth or
density based) for outlier detection in univariate and multivariate data, which can be
used for more complicated situations.

5.9 Missing Values

Missing values often take place due to skipped questions in questionnaires used in
public health (i.e., if one replies “yes” to a question, one can skip the some subsequent
question) rather than manual mistakes. If our dataset has such missing values, we
have to make a decision whether to preserve these observations for future work.

People or computer software often record missing data with impossible values
or labels as indicators. The indicators for missing values should be clarified in the
protocol during the data plan phase. The following indicators are commonly used
for missing values: 9999999 (either fewer or more 9s, negative or positive), NA,
N.A., Not Available, -, /, blank.
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Missing values are recorded as NA (not characters) in R. In a consistent way, many
functions allow users to decide how to treat missing values with a logical argument
na.rm, which determines whether NAs are removed before the function proceeds.
For instances, compare:

mean(ex1$age_cor)

## [1] NA

mean(ex1$age_cor, na.rm = TRUE)

## [1] 23

Here is an incomplete collection of the functions that support na.rm:

mean()
sd()
var()
sum()
colSums()
rowSums()
colMeans()
rowMeans()

Therefore, it is suggested to replace all the NA indicators in the raw data with NA
before further analysis.

Ifwe know the indicators in advance,we couldmark theNAvalueswhen importing
the data with the na.strings argument (suppose we use both “-9999” and
“N.A.” for NAs):

read.csv(myfile,
header = FALSE,
na.strings = c("-9999", "N.A."))

The function anyNA() finds whether at least one missing value exists:

anyNA(ex1)

## [1] TRUE

It can be used for finding which rows or columns contain NAs:

which(apply(ex1, 1, anyNA))

## [1] 1 3 4 5 6

which(apply(ex1, 2, anyNA))
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## age_cor note
## 6 7

The is.na() function returns logical values about whether an element is NA in
a vector, matrix, array, or a data frame:

is.na(ex1)

## age height gender height_cor gender_cor age_cor note age_outlier
## [1,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
## [2,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
## [4,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
## [5,] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
## [6,] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

We can check how many NAs in total in the dataset:

sum(is.na(ex1))

## [1] 6

For a large dataset, remove the rows that have NA values may be an appropriate
strategy. The na.omit() function can do this job:

ex2 <- na.omit(ex1)

However, we have to be mindful that vital information may be lost.
There are lots of R package available for dealing with missing data. The CRAN

Task View page collects a list of these package and introduces them in categories for
a variety of usages.4

5.10 Other Operations

The previous sections introduce common steps for data cleaning with a very small
demonstration dataset in public health. In fact, other operations might be necessary,
such as checking duplicated identifiers, converting date/time records, and transform-
ing character encoding (especially for the languages using multibyte characters such
as Chinese). Data cleaning is quite case specific, depending on what data we have in
a certain project and what the research objectives are. It is always recommended to
make a protocol for data cleaning during the planning stage and follow it throughout
the data workflow.

4 https://cran.r-project.org/web/views/MissingData.html.

https://cran.r-project.org/web/views/MissingData.html
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5.11 Exercises

1. TheR functionclass() returns the class of an object. There are two other func-
tions typeof() and mode() which do similar jobs. What are the differences
between them? Compare them with the following code:

lapply(ex1, class)
lapply(ex1, typeof)
lapply(ex1, mode)

2. The deducorrect package (van der Loo et al. 2015) is a collection of methods
for automated data cleaning. What kind of data cleaning work can it do? Give
examples and discuss its usage in your research.

3. A study is conducted to investigate the prevalence of certain mental health dis-
orders within the tech industry in 2016. The data set is available by the Open
Sourcing Mental Illness, Ltd.5 It contains 1433 observations and 63 variables
from questionnaires. Import it into R and carry out the data cleaning procedure.
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Chapter 6
Describing Data

6.1 Chapter Highlights

1. Describe numerical data with the measures of the centre, spread, and shape of
the distribution,

2. Describe categorical data with frequency tables,
3. Calculate statistics for grouped data with R functions, and
4. Illustrate the data descriptions in graphs.

6.2 Categorical Data

Data are often difficult for human brains to understand, especially when we would
like to know the whole picture of the data. Usually, we have to technically reduce
the raw data down to a short summary, so that we could make informed decisions
from them.

Categorical data or qualitative data are those that describe qualities or charac-
teristics, such as gender, preference, age group, and job. Categorical data are often
summarized for the count or (relative) frequency in contingency tables, also called
cross-tabulations, and the most widely used statistical technique for the analysis of
contingency tables is the χ2 test (see Sect. 7.3.3).

In this chapter we use the dataset diet shipped with the Epi package for demon-
strations:

data(diet, package = "Epi")

It contains 14 variables for 337 subjects, from dietary questionnaires in a cohort
study of the incidence of coronary heart disease (CHD). It is a mixture of numerical
and categorical data.

© Xi’an Jiaotong University Press 2023
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Table 6.1 Categorical variables in the diet dataset (the first 6 rows)

Fail Job Energy.grp chd

0 Driver <=2750 KCals 0

0 Driver <=2750 KCals 0

13 Conductor <=2750 KCals 1

3 Driver <=2750 KCals 1

13 Bank worker <=2750 KCals 1

3 Bank worker <=2750 KCals 1

We use the categorical variables fail (status on exit), job, energy.grp
(grouped high daily energy intake), and chd (CHD event) in the diet dataset as
an example (Table6.1):

6.2.1 Contingency Tables

The table() function calculates the frequency of one or multiple categorical vari-
ables:

tab1 <- table(diet$job) # one-way table
tab1

##
## Driver Conductor Bank worker
## 102 84 151

tab2 <- table(diet[, c('job', 'chd')]) # two-way table
tab2

## chd
## job 0 1
## Driver 90 12
## Conductor 70 14
## Bank worker 131 20

tab3 <- table(diet[, c('job', 'chd', 'energy.grp')]) # three-way table
tab3

## , , energy.grp = <=2750 KCals
##
## chd
## job 0 1
## Driver 40 8
## Conductor 31 8
## Bank worker 56 12
##
## , , energy.grp = >2750 KCals
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##
## chd
## job 0 1
## Driver 50 4
## Conductor 39 6
## Bank worker 75 8

and the prop.table() function converts the counts in a contingency table into
relative frequencies. We could choose whether to calculate the relative percentages
as the count divided by the entire sum, or the row sums (margin = 1), or the
column sums (margin = 2).

tabp2 <- prop.table(tab2)
tabp2

## chd
## job 0 1
## Driver 0.26706231 0.03560831
## Conductor 0.20771513 0.04154303
## Bank worker 0.38872404 0.05934718

tabp21 <- prop.table(tab2, margin = 1)
tabp21

## chd
## job 0 1
## Driver 0.8823529 0.1176471
## Conductor 0.8333333 0.1666667
## Bank worker 0.8675497 0.1324503

tabp22 <- prop.table(tab2, margin = 2)
tabp22

## chd
## job 0 1
## Driver 0.3092784 0.2608696
## Conductor 0.2405498 0.3043478
## Bank worker 0.4501718 0.4347826

Thepubh::cross_tbl() function generates a two-way contingency table for
both the frequency and the relative frequency with marginal sums (see Sect. 6.2.2),
such as Table6.2:

library(pubh)
diet[, c('job', 'chd')] |>

sjlabelled::var_labels(job = "Job", chd = "CHD") |>
cross_tbl(by = "chd") |>
theme_pubh()

We give the variables labels (see Chap. 5) which could be displayed in the output
table. The theme_pubh() function controls the style of the table.
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Table 6.2 A contingency table created by the cross_tbl() function

CHD CHD

Job 0, N = 291 1, N = 46 Overall, N = 337

Driver 90 (31%) 12 (26%) 102 (30%)

Conductor 70 (24%) 14 (30%) 84 (25%)

Bank worker 131 (45%) 20 (43%) 151 (45%)

You might find that the more variables are involved, the more difficult to display,
further analyze, and visualize the returned table. The ftable() function displays
the contingency tables in a “flat” way, i.e. a matrix whose rows and columns corre-
spond to unique combinations of the levels of the row and column variables, which
is friendly to human eyes and recommended as the layout of tables in publications:

ftable(tab3)

## energy.grp <=2750 KCals >2750 KCals
## job chd
## Driver 0 40 50
## 1 8 4
## Conductor 0 31 39
## 1 8 6
## Bank worker 0 56 75
## 1 12 8

Alternatively, a contingency table can be displayed in a long version as a data
frame for convenience (Table6.3):

dtf3 <- data.frame(tab3)

The long table is recommended for further analysis and visualization inR, asmany
packages (especially the tidyverse family) are designed for them. For example, the
dplyr::count() function works similarly to table() but returns a long table,
or data frame, by default:

library(dplyr)
dtf2 <- diet |>

count(job, chd)

Then the long table can be further used for calculating the relative frequency:

dtfp2 <- transform(dtf2, prop = prop.table(n))

A long table can be converted back to a contingency table with the xtab()
function. Let’s convert dtf2 back to tab2:

xtab2 <- xtabs(n ~ job + chd, dtf2)
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Table 6.3 A long table converted from a contigency table

Job chd Energy.grp Freq

Driver 0 <=2750 KCals 40

Conductor 0 <=2750 KCals 31

Bank worker 0 <=2750 KCals 56

Driver 1 <=2750 KCals 8

Conductor 1 <=2750 KCals 8

Bank worker 1 <=2750 KCals 12

Driver 0 >2750 KCals 50

Conductor 0 >2750 KCals 39

Bank worker 0 >2750 KCals 75

Driver 1 >2750 KCals 4

Conductor 1 >2750 KCals 6

Bank worker 1 >2750 KCals 8

The first argument in xtab() is a formula in the syntax of the column name for
the frequency against (~) the names of the categorical variables (separated by “+”) .
An abbreviated version is “n ~ .”, where “.” means all other columns except the
one before “~”.

This conversion could also be performed with the dplyr::pivot_wider()
function,1 which convert a long table into a wide one:

dtf2w <- pivot_wider(dtf2, names_from = chd, values_from = n)

The difference from xtab() is that pivot_wider() returns a data framewith
the categorical variable’s levels as the column names, while xtab() returns a table.

6.2.2 Marginal Statistics

Marginal statistics are those statistics which appear in the margins of a contin-
gency table. They describe the characteristics of each row and each column of the
table. In most cases in public health, tables with marginal statistics (mainly marginal
totals/means) could tell us the overall value for a specific level of some variables.

The marginal totals and means for rows and columns can be calculated with the
following functions:

rowSums(tab2)

## Driver Conductor Bank worker
## 102 84 151

1 The partner of pivot_wider() is pivot_long(), which converts wide tables into long
ones.
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rowMeans(tab2)

## Driver Conductor Bank worker
## 51.0 42.0 75.5

colSums(tab2)

## 0 1
## 291 46

colMeans(tab2)

## 0 1
## 97.00000 15.33333

If we calculate other statistics than the sums and the means for the rows and
columns, we could use the apply() function, which is a universal function for any
marginal statistics:

apply(tab2, MARGIN = 1, max) # maximum for each row

## Driver Conductor Bank worker
## 90 70 131

apply(tab2, MARGIN = 2, range) # range for each column

## chd
## 0 1
## [1,] 70 12
## [2,] 131 20

If we would like to display the marginal statistics in the contingency table, use
addmargins(), which by default calculates the row sums and column sums:

addmargins(tab2)

## chd
## job 0 1 Sum
## Driver 90 12 102
## Conductor 70 14 84
## Bank worker 131 20 151
## Sum 291 46 337

It also supports other marginal statistics if using other functions:
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addmargins(tab2, FUN = max)

## Margins computed over dimensions
## in the following order:
## 1: job
## 2: chd

## chd
## job 0 1 max
## Driver 90 12 90
## Conductor 70 14 70
## Bank worker 131 20 131
## max 131 20 131

TheEpi package provides a function stat.table(), which serves as an exten-
sion of table() (and tapply(), see Sect. 6.4). It can generate contingency tables
with marginal statistics and nice headers:

library(Epi)
stat.table(list(job, energy.grp), data = diet, margins = TRUE)

## --------------------------------------
## -------energy.grp--------
## job <=2750 >2750 Total
## KCals KCals
## --------------------------------------
## Driver 48 54 102
## Conductor 39 45 84
## Bank worker 68 83 151
##
## Total 155 182 337
## --------------------------------------

6.3 Numerical Data

Numerical data or quantitative data are the data that can be quantified in numerical
values, such as age, height, weight, and temperature. Numerical data can be summa-
rized with a limited number of values which indicate what a typical value is, how
broad the data spread, and some further information.

Here we pick out the numeric variables y (number of years at risk), energy
(total energy intake, in kCal per day/100), height (in cm ), weight (kg), fat (at
intake, in 10g/day), and fibre (dietary fibre intake, 10g/day) as a numerical subset
of diet.

In R, the summary() function is the most convenient and straightforward way
for summarizing data:
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dietn <- diet[, c('y', 'energy', 'height', 'weight', 'fat', 'fibre')]
summary(dietn)

## y energy height weight
## Min. : 0.2875 Min. :17.48 Min. :152.4 Min. : 46.72
## 1st Qu.:10.7762 1st Qu.:25.37 1st Qu.:168.9 1st Qu.: 64.64
## Median :15.4606 Median :28.03 Median :173.0 Median : 72.80
## Mean :13.6607 Mean :28.29 Mean :173.4 Mean : 72.54
## 3rd Qu.:17.0431 3rd Qu.:31.10 3rd Qu.:177.8 3rd Qu.: 79.83
## Max. :20.0411 Max. :43.96 Max. :190.5 Max. :106.14
## NA’s :5 NA’s :4
## fat fibre
## Min. : 7.26 Min. :0.605
## 1st Qu.:11.12 1st Qu.:1.359
## Median :12.59 Median :1.673
## Mean :12.75 Mean :1.719
## 3rd Qu.:14.01 3rd Qu.:1.935
## Max. :21.63 Max. :5.351
## NA’s :4

The outputs include Min. (minimum), 1st Qu. (the first quartile), Median,
Mean (the arithmetic mean), 3rd Qu. (the third quartile), Max. (the maximum),
and the number of NAs.

6.3.1 Central Tendency

The mean and the median are typical values for the measures of the central tendency.
If we would like to use only one value to summarize the data, the mean or the median
might be the best choice.

Three types of means are often used in mathematics, namely the arithmetic mean
(i.e. the sumdivided by the count,μ = �xi/n), the harmonicmean (i.e. the reciprocal
of the arithmetic mean of the reciprocal of each given value, H = n/� 1

xi
), and the

geometric mean (i.e. the n-th root of the product of all, G = n
√

�xi ). By default, we
mean the arithmetic mean when we talk about the mean in public health. We can
calculate the arithmetic mean of a variable, e.g. the height in the diet dataset, with
the mean() function:

mean(dietn$height, na.rm = TRUE)

## [1] 173.3579

Outliers could have unfair influence on the arithmetic mean. A method for elim-
inating the influence of outliers is using the trimmed mean (also called a truncated
mean),which removes a fraction (0–0.5) fromeach endof the observations before cal-
culating the arithmetic mean. This can be done with the trim argument in mean():
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mean(dietn$height, trim = 0.1, na.rm = TRUE)

## [1] 173.4288

There are no build-in function in R for calculating the harmonic mean or the
geometricmean. For calculating the harmonicmean, we simply follow the definition:

n <- sum(!is.na(dietn$height))
n / sum(1/dietn$height, na.rm = TRUE)

## [1] 173.1196

# or
1 / mean(1/dietn$height, na.rm = TRUE)

## [1] 173.1196

For calculating the geometric mean, we could use the prod() function to get
the product of multiple values, according the definition of G:

x <- 1:10
prod(x) ˆ (1 / 10)

## [1] 4.528729

However, sometime it causes problems when the product of the numbers exceeds
the computer’s capacity:

prod(dietn$height, na.rm = TRUE) ˆ (1/n)

## [1] Inf

Alternatively, we can calculate it like this:

exp(mean(log(dietn$height), na.rm = TRUE))

## [1] 173.2391

The median, also called Q2 and P50, is the middle value of an ordered set. If n is
odd, the median is the (n + 1)/2 -th largest observation; If n is even, the median is
the mean of the n/2 -th and the (n + 1)/2 -th largest observations. R provides the
median() function to do this job:
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median(dietn$height, na.rm = TRUE)

## [1] 172.9994

The mean is the best way to estimate a subject of a population, while the median
is the safest. However, both are insufficient and unsatisfactory for the whole picture
of the data because of the lack of the variance or the spread.

6.3.2 Spread

The generic measure of the spread of the data is the maximum and the minimum:

max(dietn$height, na.rm = TRUE)

## [1] 190.5

min(dietn$height, na.rm = TRUE)

## [1] 152.4

The range() function gives both:

range(dietn$height, na.rm = TRUE)

## [1] 152.4 190.5

However, the term range actually means the difference between the maximum
and the minimum:

max(dietn$height, na.rm = TRUE) - min(dietn$height, na.rm = TRUE)

## [1] 38.1

# or
diff(range(dietn$height, na.rm = TRUE))

## [1] 38.1

Although the range can be used for all kind of numerical variables, it only informs
us the upper and lower limits of the data. A more informative measure of the spread
is the variance (σ 2 = �(xi−μ)2

N for a population, and s2 = �(xi−x̄)2

n−1 for a sample) and
the standard deviation (σ , s).
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var(dietn$height, na.rm = TRUE)

## [1] 41.09623

sd(dietn$height, na.rm = TRUE)

## [1] 6.410634

The coefficient of variation is defined as cv = σ/μ for a population and cv = s/x̄
for a sample, which measures the relative spread of the data.

The variance and standard deviation are paired with the mean. If the data follow
the normal distribution, we can easily estimate in mind how many values are located
around a certain distance from the mean (e.g. the 68-95-99.7 law2).

If the data do not follow normal distribution, the percentiles or the quartiles, paired
with the median, make more sense for describing the spread. The p-th percentile is
the value Pp such that p% of the sample points are less than or equal to Pp. For
example, the 10th percentile of the height data (P10) is:

quantile(dietn$height, probs = 0.10, na.rm = TRUE)

## 10%
## 165.1

which means 10% of the height values are less than or equal to 165.1cm.
Based on Pp, three quartiles are defined as Q1 = P25, Q2 = P50 = median, Q3 =

P75:

quantile(dietn$height, probs = c(0.25, 0.5, 0.75), na.rm = TRUE)

## 25% 50% 75%
## 168.9100 172.9994 177.8000

and the interquartile range is defined as IQR = Q3 − Q1:

IQR(dietn$height, na.rm = TRUE)

## [1] 8.89

which means that 50% of the data are distributed around the median within 8.89cm.
R provides a function fivenum(), which is a wrapper of quantile(probs

= seq(0, 1, 0.25)) and returns the minimum, the three quartiles, and the
maximum, in a fast way:

2 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations from the
mean in a normal distribution, respectively.
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Fig. 6.1 Distribution of the numerical variables in the diet dataset

fivenum(dietn$height, na.rm = TRUE)

## [1] 152.4000 168.9100 172.9994 177.8000 190.5000

6.3.3 Distribution Shape

The shape of the numerical data means how the distribution or pattern looks like.
Usually the shape can be described in three aspects, i.e. the mode, the skewness,
and the kurtosis. The shape is a very helpful assistance in choosing proper statistics,
including the measures of centres and spreads, for describing data.

The mode
The mode indicates how many centres the data points gather around. Usually
we can see it as the peak number in a histogram for one-dimensional numeric
data. Figure6.1 visualizes the demonstration dataset in histograms, where energy,
height, weight, fat, and fibre show a uni-modal (single peak) shape, while
y shows a multi-modal (more than one peaks) shape. The means (red lines and num-
bers) well represent the centre of the uni-modal data, but poorly provide sufficient
information for multi-modal data.
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The skewness
The skewness describes the asymmetry of the shape. The two sides of a symmetrical
distribution aremirror images of each other, and the skewness reflects the tendency of
the data to be more frequent around the right or left ends of the x-axis. It is calculated
as3:

b1 = n

(n − 1)(n − 2)

n∑

i=1

(
xi − x̄

s
)3

Thee1071::skewness() function (Meyer et al. 2022) can calculate the skew-
ness of a vector, and the psych::skew() function (Revelle 2022) can calculate
the skewness for each variable in a data frame or a matrix:

e1071::skewness(dietn$height, na.rm = TRUE)

## [1] -0.1457102

psych::skew(dietn)

## [1] -0.9003218 0.4410730 -0.1457102 0.1349350 0.6222846 1.6854345

# or
apply(dietn, MARGIN = 2, e1071::skewness, na.rm = TRUE)

## y energy height weight fat fibre
## -0.9003218 0.4410730 -0.1457102 0.1349350 0.6222846 1.6854345

The normal distribution has a perfect symmetric shape with a skewness of 0. A
negative skewness (y) stands for negatively skewed data (i.e. the tail on the left side
of the histogram is longer than the right), where the mean is smaller than the median;
skewness around 0 (height and weight) for symmetrical data, where the mean
is (nearly) the same as the median; and positive (energy, fat, and fibre) for
positively skewed data (i.e. skewed to the right), where the mean is greater than the
median. For skewed data, the median may be a more appropriate measure of central
tendency than the mean.

The kurtosis
The kurtosis describes the flatness or sharpness of a peak compared to the normal
distribution. It is calculated as

3 Different definition and formulas exist for calculating the skewness and kurtosis. Here we use the
same ones as in MINITAB and BMDP. See the help documents of e1071::skewness() and
e1071::kurtosis() for more details.
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b2 = n(n + 1)

(n − 1)(n − 2)(n − 3)

n∑

i=1

[
xi − x̄

s

]4

− 3(n − 1)2

(n − 2)(n − 3)

which can be conducted with e1071::kurtosis() or psych::kurtosi
():

e1071::kurtosis(dietn$height, na.rm = TRUE)

## [1] 0.0467094

psych::kurtosi(dietn)

## y energy height weight fat fibre
## 0.0128214 0.4859871 0.0467094 -0.1381723 0.7395585 6.8383764

The normal distribution has a kurtosis of 0, which is called a Mesokurtic shape.
A negative kurtosis stands for a flatter peak (a Platykurtic shape), and positive for a
shaper one (a Leptokurtic shape) than the normal distribution.

6.3.4 Extended Summaries

The psych package gives a more powerful summary function describe(), which
produces the most frequently requested statistics in public health, especially in psy-
chometric and psychology studies (Table6.4):

library(psych)
dtf_desc <- describe(diet, quant = c(0.25, 0.75), IQR = TRUE)

The returned result is a data frame with the rows as all the variables in the data
set and columns as the statistics, including the number of valid cases (n), the mean,
the standard deviation (sd), the median, the trimmed mean with trim defaulting
to 0.1 (trimmed), the median absolute deviation (mad), the minimum (min), the
maximum (max), the range, the skewness (skew), the kurtosis, the standard error
(se), IQR, Q1 (Q0.25), and Q3 (Q0.75). The quantiles and IQR are not calcu-
lated by default, therefore we have to use the argument quant and IQR to activate
them. Compared to the built-in summary() function, describe() organizes
more descriptions for the data in a data frame which is friendly both to the users and
to the computers for further use. It can also do the grouped summary (see Sect. 6.4):

dtf_des1 <- describe(diet ~ job)
dtf_des2 <- describe(diet ~ job + fail)

The returned result is a list, containing multiple data frames, each of which is a
descriptive data frame for a group.
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The pastecs package (Grosjean and Ibanez 2018) provides a function
stat.desc() for descriptive statistics on a data frame or time series:

dtf_pastecs <- pastecs::stat.desc(diet, norm = TRUE)

The returned result is a data frame with the rows as statistics and the columns
as all the variables in the data set. The statistics include the number of valid values
(nbr.val), null values (nbr.null), andmissing values (nbr.na), the minimum
(min), the maximum (max), the range, the sum, the median, the mean, the standard
error on the mean (SE.mean), the confidence interval of the mean at the p level
(CI.mean.0.95), the variance (var), the standard deviation (std.dev), the
variation coefficient (i.e. the standard deviation divided by the mean, coef.var),
the skewness and its significant criterium (skew.2SE), the kurtosis and its sig-
nificant criterium (kurt.2SE), the statistic of a Shapiro-Wilk test of normality
(normtest.W) and its associated probability (normtest.p).

6.4 Grouped Summary

Numerical data in public health are often classified into groups according to the
categorical variables. For example, in previous sections, we summarize all the values
of height in the diet dataset with typical values such as the mean and the standard
deviation, but we often need the centre and the spread of the height for each class of
the gender, age group, or job.

The built-in function in R for group summary is tapply() (table apply). Here
we calculate the mean height for each job:

tapply(diet$height, diet$job, mean, na.rm = TRUE)

## Driver Conductor Bank worker
## 172.2177 169.3553 176.4090

or the mean height for each job and energy group:

tapply(diet$height, list(diet$job, diet$energy.grp), mean, na.rm = TRUE)

## <=2750 KCals >2750 KCals
## Driver 172.1469 172.2807
## Conductor 168.2216 170.3601
## Bank worker 175.7561 176.9125

A limitation of tapply() is that only one statistics could be calculated, i.e. the
mean in the previous example. The Epi::stat.table() function can do the
group summary for multiple statistics. The following code calculates the means and
standard deviations of the height, grouped by the job and energy group with marginal
values:
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stat.table(list(job, energy.grp),
contents = list(mean(height, na.rm = TRUE),

sd(height, na.rm = TRUE)),
data = diet, margins = TRUE)

## --------------------------------------
## -------energy.grp--------
## job <=2750 >2750 Total
## KCals KCals
## --------------------------------------
## Driver 172.15 172.28 172.22
## 5.14 5.36 5.23
##
## Conductor 168.22 170.36 169.36
## 5.34 4.59 5.04
##
## Bank worker 175.76 176.91 176.41
## 7.43 5.41 6.37
##
##
## Total 172.66 173.94 173.36
## 6.93 5.90 6.41
## --------------------------------------

It supports most of the common functions for statistics, including count(),
mean(), weighted.mean(), sum(), quantile(), median(), IQR(),
max(), min(), ratio(), percent(), and sd(). If we would like to get more
statistics, the dplyr packagemight be themost powerful waywith thegroup_by()
and summarise() functions for group summary.

diet |>
group_by(job, energy.grp) |>
summarise(mean = mean(height, na.rm = TRUE),

sd = sd(height, na.rm = TRUE),
median = median(height, na.rm = TRUE))

## # A tibble: 6 x 5
## # Groups: job [3]
## job energy.grp mean sd median
## <fct> <fct> <dbl> <dbl> <dbl>
## 1 Driver <=2750 KCals 172. 5.14 173.
## 2 Driver >2750 KCals 172. 5.36 173.
## 3 Conductor <=2750 KCals 168. 5.34 169.
## 4 Conductor >2750 KCals 170. 4.59 171.
## 5 Bank worker <=2750 KCals 176. 7.43 177.
## 6 Bank worker >2750 KCals 177. 5.41 178.

The marginal relative frequency calculation of dtf2 can then be calculated as:

dtf2td1 <- dtf2 |>
group_by(chd) |>
mutate(prop = prop.table(n))
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dtf2td2 <- dtf2 |>
group_by(job) |>
mutate(prop = prop.table(n))

6.5 Visualization

The functionswe have introduced previously summarize the data into numbers and/or
organize them into tables. The numbers give us an abstract overview of a data set, but
might be not easy to draw a whole picture. It would be a good practice to visualize
the dataset in graphs.

R provides numerous functions and packages for data visualization (see Chap.8).
Here we introduce a wrapper function plot_summary() from the fecitr package
(GitHub: pzhaonet/fecitr), which can visualize the summary report of a data frame.
We pick out two numeric variables and two categorical ones in diet for demonstration
(Fig. 6.2):

library(fecitr)
diet[, c('height', 'weight', 'job', 'energy.grp')] |>

plot_summary(if_box = TRUE)

By default, it plots the raw data of each numeric variable in a dot chart (with the
horizontal axis as the value and the vertical axis as the index), and the values of each
categorical variable in a bar chart (with the horizontal axis as the frequency and the
vertical axis as the levels). We set the argument if_box = TRUE so as to draw a
box plot of the distribution for each numerical variable with the minimum, Q1, the
median, Q3, and the maximum aligned from bottom-left to top-right, as well as the
mean at the top.

Theplot_summary() canplot the histogramsof thenumeric data insteadof the
dot chart. Other arguments, including showing the curve of the normal distribution
(if_normline) and showing the sample size and skewness (if_skewness),
allow us see more descriptions of the dataset (Fig. 6.3). More information about data
visualization is described in Chap.8.

diet[, c('height', 'weight')] |>
plot_summary(base = 'hist', if_box = TRUE,

if_normline = TRUE, if_skewness = TRUE)
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6.6 Exercise

1. Body mass index (BMI) is a person’s weight in kilograms divided by the square
of height in meters. BMI is an inexpensive and easy screening method for
weight category—underweight, healthy weight, overweight, and obesity. For
adults 20years old and older, BMI is interpreted using standard weight status
categories (see Table6.5). These categories are the same for men and women of
all body types and ages.
Convert the height data in the diet data of the Epi package into BMI and make
a contingency table (with marginal sums) with it.

2. The births dataset from the Epi package is introduced in Chap.4.

• Generate a contingency table for the count of the sex and the maternal hyper-
tension, with marginal sums.

• Calculate the mean birth weight by gender.
• Calculate the means and the standard deviations of birth weight by the com-
bination of gender and maternal hypertension group with marginal statistics.

3. A case-control study of (o)esophageal cancer in a department of France provided
a dataset esoph, which is available as a data frame in the built-in R installation.
It contains the frequency of the subjects in the case group (ncases) and in
the control group (ncontrols) for the grouped age, alcohol consumption, and
tobacco consumption. It is a long table. Convert it into a contingency table in a
wide version.

4. The dataset melanoma, shipped by the boot package (Canty and Ripley 2021),
came from a study on patients with malignant melanoma in Denmark. 205
patients had their tumour removed by surgery during the period 1962–1977
and were followed until the end of 1977. Seven variables for each patient were
recorded, including the survival time (time, in days) since the operation, the
patient’s status (status) at the end of the study, the patient’s sex (sex), the
patient’s age at the time of the operation (age), the year of operation (year),
the tumour thickness (thickness, in mm), and the existence of ulceration
(ulcer). Describe the numerical variables and the categorical variables in the
dataset.

Table 6.5 Classification of adult’s weight based on BMI

BMI Weight status

Below 18.5 Underweight

18.5–24.9 Healthy weight

25.0–29.9 Overweight

30.0 and Above Obesity
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5. The pubh package provides a function estat(), which calculates descriptives
of numerical variables. Read the help document and use it for describing the
datasets demonstrated in this Chapter.
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Chapter 7
Analyzing Data

7.1 Chapter Highlights

• Understand the probability distributions and illustrate them with R functions,
• Use hypothesis test functions in public health research, and
• Apply common regression models used in public health research.

7.2 Probability Distribution Functions in R

In the process of analyzing data, we infer conclusions for the population from the
data of the sample with inferential statistical tools. Inferential statistics stands on the
shoulder of probability distributions. The normal distribution, χ2 distribution, and
Student’s t distribution are the most commonly used distributions.

Every distribution that R handles has four functions beginning with a root name
(Table7.1). The root name is prefixed by one of the letters:

• d for “density”, the probability density function (PDF).
• p for “probability”, the cumulative distribution function (CDF).
• q for “quantile”, the inverse of CDF.
• r for “random”, a random variable having the specified distribution.

The relationships of these four functions are illustrated in Fig. 7.1, showing the stan-
dard normal distribution as an example. As the root name for the normal distribution
is norm, the dnorm() function (Fig. 7.1a) gives the probability density function of
x1 = 1 in a normal distribution:
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Table 7.1 Root names of the distribution functions in R
Distribution Root name PDF CDF Quantile

function
Random
function

Beta beta dbeta pbeta qbeta rbeta

Binomial binom dbinom pbinom qbinom rbinom

Cauchy cauchy dcauchy pcauchy qcauchy rcauchy

Chi-square chisq dchisq pchisq qchisq rchisq

Exponential exp dexp pexp qexp rexp

F f df pf qf rf

Gamma gamma dgamma pgamma qgamma rgamma

Geometric geom dgeom pgeom qgeom rgeom

Hypergeometric hyper dhyper phyper qhyper rhyper

Logistic logis dlogis plogis qlogis rlogis

Log normal lnorm dlnorm plnorm qlnorm rlnorm

Negative binomial nbinom dnbinom pnbinom qnbinom rnbinom

Normal norm dnorm pnorm qnorm rnorm

Poisson pois dpois ppois qpois rpois

Student t t dt pt qt rt

Studentized range tukey dtukey ptukey qtukey rtukey

Uniform unif dunif punif qunif runif

Weibull weibull dweibull pweibull qweibull rweibull

Wilcoxon rank
sum statistic

wilcox dwilcox pwilcox qwilcox rwilcox

Wilcoxon signed
rank statistic

signrank dsignrank psignrank qsignrank rsignrank

x1 <- 1

d1 <- dnorm(x = x1, mean = 0, sd = 1)

d1

## [1] 0.2419707

Thepnorm() function (Fig. 7.1b) gives the cumulative probability densitywithin
the range of < x1 in a normal distribution:

p1 <- pnorm(q = x1, mean = 0, sd = 1)

p1

## [1] 0.8413447

which equals to the integral of the PDF (i.e. the shaded area in Fig. 7.1a):

integrate(dnorm, -Inf, x1)

## 0.8413448 with absolute error < 1.5e-05
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Fig. 7.1 The relationships of the four probability functions for standard normal distribution

For a given cumulative probability,we could use theqnorm() function (Fig. 7.1c)
to calculate x1:

qnorm(p1, mean = 0, sd = 1)

## [1] 1

The rnorm() function generates random values in a normal distribution:

rnorm(n = 1,mean = 0, sd = 1)

## [1] 1.022202

which could be visualized in a histogram (Fig. 7.1d) that follows the PDF.
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7.3 Hypothesis Tests

7.3.1 R Functions and Common Steps

A hypothesis is a statement about a property of a population, and a hypothesis test
is the procedure to test the statement. In public health, we often use parametric tests
(including z-test, t-test, F-test, and χ2-test) and non-parametric tests (including the
Mann-Whitney U-test, Wilcoxon signed-ranks test, Kruskai-Wallis test, and Fried-
man test) for a variety of research purposes. The usage of these tests and the relative
R functions are listed in Table7.2.

The general procedure of hypothesis test with R functions usually consists of three
main steps (Triola et al. 2019).

Table 7.2 R functions for hypothesis tests

Hypothesis test Usage R function

z-test Parametric test for one or two
population means when the
population standard deviation
is known

TeachingDemos::z.test()

Student’s t-test Parametric test for one or two
population means when the
population standard deviation
is unknown

t.test()

F-test Parametric test for two
population variances

var.test()

χ2-test Parametric test for the
observed and expected
frequency

chisq.test()

ANOVA Parametric test for two or more
population means

aov()

Mann-Whitney U-test Non-parametric test for two
population medians based on
two independent samples

wilcox.test()

Wilcoxon signed-ranks test Non-parametric test for two
population medians based on
paired samples

wilcox.test()

Kruskai-Wallis test Non-parametric test for
multiple population medians
based on independent samples

kruskal.test()

Friedman test Non-parametric test for
multiple population medians
based on matched samples

friedman.test()
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Step 1. Construct the hypotheses and determine the significance level. A hypothesis
test starts with a null hypothesis (H0) and an alternative hypothesis (H1 or HA). H0,
usually consisting of equality (i.e. ≤, ≥, =), is set up for the express purpose of
being discredited, while H1, the complement of H0, is a statement of what we would
like to prove is true. There are two types of hypothesis test, namely one-sided/tailed
or two-sided/tailed test. A one-sided test means the rejection region is in the right
or the left tail of the probability density distribution curve (i.e. H1: the population
parameter is either greater or less than a certain value), while a two-sided test means
the rejection region is in both of the right and the left tails (i.e. H1: the population
parameter is not equal to a certain value). The hypothesis type could be clarified with
the common argument alternativewith a possible value of “two.sided”, “less”,
and “greater”, of the R functions listed in Table7.2.

The significance level (α) of the test is another thing to be determined in this step.
The significance level is the maximum allowable probability of Type I error, i.e. the
probability of rejecting H0 when H0 is true. It could be declared with the argument
conf.level (1− α) in the R functions. In public health,α = 0.05 (conf.level
= 0.95) is a common choice, but researchers can specify α values according to dif-
ferent research purposes.

Step 2. Choose the test statistic and calculate its value and the p-value. As long as we
find the suitable hypothesis test according to the research objectives (see Table7.2),
we could apply the chosen R function to the data, which returns the value of the test
statistic (usually listed as the first value in the output report) and the p-value, which
is the probability of obtaining the value of the test statistics that is at least as extreme
as the statistics getting from the sample data based on the assumption that H0 is true.

Step 3. Interpret the report and make a decision.
The returned report by R functions is usually friendly to interpret, as both of the
p-value and H1 are explicitly stated. We usually use the p-value to decide whether
to reject H0 or not. If the p-value is less than α, then we reject H0, otherwise we do
not.

The subsequent sections explains the details of the reports by the hypothesis
functions.

7.3.2 Student’s t-Test

Student’s t-test is mainly used for a small sample size (n < 30) to test the mean of
a population with normal distributions when the population standard deviation σ is
unknown. The t-test can be categorized into one-sample t-test and two-sample t-test,
the latter of which includes paired test and unpaired test. For unpaired t-test, the
calculation for equal variances is different from that for unequal variances.
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The usage of the R function t.test() for one-sample test is simple:

t.test(x, alternative, mu, conf.level)

where x is the sample data, alternative is H1 ( alternative = "two.
sided" for two-sided test, alternative = "greater" and alternative =
"less" for one-sided test), mu is the mean for testing, and conf.level is the
confidence level. For example, we test whether the mean weight of the energy group
≤ 2750 KCals is less than 75kg at α = 0.1 with the following code:

x <- diet$weight[as.numeric(diet$energy.grp) == 1]

t.test(x, alternative = 'less', mu = 75, conf.level = 0.9)

Thet.test() function can be usedwith two equivalentmethods for two-sample
test.

Method 1 uses the sample data values organized in one vector for Sample 1 (x)
and another vector for Sample 2 (y):

t.test(x, y, alternative, conf.level, var.equal, ...)

where var.equal determines whether the variances of the two populations are
equal.

Method 2 uses the sample data values for both samples organized in one vector,
and a categorical vector with the same length for distinguishing the two samples:

t.test(sample_data ~ category, alternative, conf.level, var.equal, ...)

For example, we test whether the mean weights of two the energy groups are
equal at α = 0.05, assuming the variances are not equal:

# method 1

y <- diet$weight[as.numeric(diet$energy.grp) == 2]

t.test(x, y, alternative = 't', var.equal = FALSE)

# method 2

t.test(diet$weight ~ diet$energy.grp, alternative = 't', var.equal = FALSE)

Method 2 is recommended, as the categories are explicitly stated in the report,
which is easier for the readers to understand.

When paired = TRUE, the paired t-test is performed, and them the argument
mu is the difference between the two means for paired samples.

7.3.3 χ2-Test

The χ2-test, based on the χ2 distribution, is used to test the divergence between the
expected and observed frequencies. It can be mainly categorized into one-category
test and two-category test. The R function for χ2-test is chisq.test().

One-category χ2-test examines whether the frequency distribution follows a cer-
tain theory. The usage of chisq.test() is for one-category χ2-test is:
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chisq.test(x, p, ...)

where x is a numeric vector, and p is the theoretical probability.
For example, Mendelian inheritance predicts that the ratio of red to white to pink

flowered plants should be 1:1:2 after cross-pollination of white and read sweet peas,
and a biologist’s experiment shows the number of red-, white- and pink-flowered
plants were 90, 101, and 192. We could perform the one-category χ2-test as follows:

chisq.test(x = c(90, 101, 192), p = c(0.25, 0.25, 0.5))

The two-category test can be performed by chisq.test()with two equivalent
methods.

Method 1 uses the sample data values organized in a contingency table. Let’s use
the diet dataset for testing whether the occurrence of coronary heart disease (CHD)
is associated with the job. We could first make a contingency table, and then use
chisq.test():

tbl <- table(diet[, c('job', 'chd')])

chisq.test(tbl)

Method 2 uses the sample data directly as the input rather than the contingency
table:

chisq.test(x = diet$job, y = diet$chd)

In public health, we often deal with 2 × 2 contingency tables, and an argument
correct could be used for the Yates’ correction. Here we use the dataset Oncho
shipped by pubh as an example. This dataset, containing 1302 rows and 7 variables,
came from a study of onchocerciasis in Sierra Leone. The subjects’ living areas of
“Savannah” or “Rainforest” (the column area) and their status of “Infected” or
“Not-infected” (the column mf) were recorded. Thus, the frequency table for and
living areas and the infection statuses is a 2 × 2 contingency table, and the Yates’
correction should be applied:

library(pubh)

data(Oncho)

chisq.test(x = Oncho$area, y = Oncho$mf, correct = TRUE)

##

## Pearson’s Chi-squared test with Yates’ continuity correction

##

## data: Oncho$area and Oncho$mf

## X-squared = 56.275, df = 1, p-value = 6.301e-14

Alternatively, the pubh package provides a convenient function
contingency() for χ2-test for a 2 × 2 contingency table:

contingency(mf ~ area, data = Oncho)
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## Outcome

## Predictor Infected Not-infected

## Rainforest 541 213

## Savannah 281 267

##

## Outcome + Outcome - Total Inc risk * Odds

## Exposed + 541 213 754 71.8 2.54

## Exposed - 281 267 548 51.3 1.05

## Total 822 480 1302 63.1 1.71

##

## Point estimates and 95% CIs:

## -------------------------------------------------------------------

## Inc risk ratio 1.40 (1.27, 1.54)

## Odds ratio 2.41 (1.92, 3.04)

## Attrib risk in the exposed * 20.47 (15.20, 25.75)

## Attrib fraction in the exposed (%) 28.53 (21.56, 34.89)

## Attrib risk in the population * 11.86 (6.92, 16.79)

## Attrib fraction in the population (%) 18.78 (13.59, 23.65)

## -------------------------------------------------------------------

## Uncorrected chi2 test that OR = 1: chi2(1) = 57.151 Pr>chi2 = <0.001

## Fisher exact test that OR = 1: Pr>chi2 = <0.001

## Wald confidence limits

## CI: confidence interval

## * Outcomes per 100 population units

##

##

## Pearson’s Chi-squared test with Yates’ continuity correction

##

## data: dat

## X-squared = 56.275, df = 1, p-value = 6.301e-14

The result shows the contingency table first, followed by the measures of associ-
ation and then the χ2-test result.

7.3.4 Analysis of Variance (ANOVA)

ANOVA is one of the most widely used statistical techniques in public health.
ANOVA partitions the total variation in a data set into two or more components, and
ascertains the contributions of each of these sources to the total variation.ANOVAcan
be mainly categorized into one-way and two-way. The one-way ANOVA examines
three or more population means via analyzing the sample means, and the two-way
ANOVA is usually conducted to examine separate or combined effects of two cate-
gorical independent variables, which is called factors, on the continuous dependent
variable.

ANOVA is performed with the aov() function. If we are lucky, the dataset is
organized a long table, i.e. a table with the numerical variable in one column and the
categorical variable in another. The diet dataset is an example. Then aov() could
be used directly like this:

summary(aov(weight ~ job, diet))

## Df Sum Sq Mean Sq F value Pr(>F)

## job 2 5964 2982.1 30.18 9.19e-13 ***
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## Residuals 330 32608 98.8

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

## 4 observations deleted due to missingness

However, the dataset is not organized in a long version in many occasions. For
example, the following dataset, which is a wide table, shows a certain numerical
variable for three treatments:
dtf_wide <- data.frame(Treatment1 = c(9, 9, 10),

Treatment2 = c(12, 12, 13),

Treatment3 = c(12, 13, 14))

Before usingaov() for testing if the three populationmeans are equal, the dataset
must be converted into a long table, which could be performed with the stack()
function1:
dtf_long <- stack(dtf_wide)

myaov <- aov(values ~ ind, data = dtf_long)

The returned result of aov() is usually rearranged by summary() so as to
display the p-value:

summary(myaov)

7.4 Regressions

7.4.1 Common Regression Models

Regression is a statistical tool that examines the strength and character of the rela-
tionship between two ormore variables of interest in amathematical way. Regression
analysis allows us to determine whether a factor matters, or which factors matter the
most and which factors can be ignored, and how they have influence on each other.

In a regression analysis, the main variable that we attempt to understand or predict
is called the dependent variable (usually denoted by Y ), while one or a series of
other variables that we hypothesize have influence on the dependent variable are
called independent variables (usually denoted by X ). An example is the study on
the effect of the level of cigarette consumption (or more factors) on the lung cancer
rate. The lung cancer rate is the dependent variable Y , and the level of cigarette
consumption is the independent variable X . The purpose of a regression analysis
is to find how the dependent variable is influenced by the independent variable(s),
based on a comprehensive dataset to work with. Here we introduce some common
used regression models in public health, including the linear regression model, the
logistic regression model, and the Cox regression model.

1 The partner function unstack() converts a long table to a wide one. Section 6.2.1 mentions
other ways for this conversion.
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7.4.2 Linear Regression Model

The linear regression model includes the simple linear regression (SLR) model and
the multiple linear regression (MLR) model. The SLR model demonstrates the cor-
relation between the dependent and independent variables. It can also estimate the
value of the dependent variable at the certain value of the independent variable. An
example is to investigate the relationship between people’s age and bone density. The
MLR model uses several independent variables to predict the outcome of a depen-
dent variable. An example is to investigate how sex, exercise, and air pollution level
could affect people’s life expectancy.

In the term simple linear regression model, the word simple means there is only
one predictor, while linear means the relationship of Y on X is represented by a
straight line. The form of the SLR model can be expressed as:

Y = α + βX + ε

where α is the intercept, β is the slope, and ε is the error term.
For example, we carry out a SLR analysis on the influence of the age on the

average systolic blood pressure (BPSysAve) based on the NHANES dataset shipped
by theNHANES package (Pruim 2015).We randomly pick out 60 observations from
the dataset for a convenient demonstration.

data(NHANES, package = 'NHANES')

dtf <- NHANES[NHANES$Age > 17, c('Age', 'BPSysAve', 'Gender')]

dtf_sub <- dtf[sample(1:nrow(dtf), 60), ]

In R, linear regression models can be performed with the lm() (short for linear
model) function.

lm_ba <- lm(BPSysAve ~ Age, data = dtf_sub)

Although the regressed coefficients (i.e. the intercept and the slope) can be
viewed by printing lm_ba, more regression information can be extracted with the
summary() function:

summary(lm_ba)

##

## Call:

## lm(formula = BPSysAve ˜ Age, data = dtf_sub)

##

## Residuals:

## Min 1Q Median 3Q Max

## -21.667 -9.815 -0.652 10.168 41.612

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 102.3386 5.1322 19.94 < 2e-16 ***

## Age 0.4385 0.1105 3.97 0.000221 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##
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## Residual standard error: 14.25 on 52 degrees of freedom

## (6 observations deleted due to missingness)

## Multiple R-squared: 0.2326, Adjusted R-squared: 0.2179

## F-statistic: 15.76 on 1 and 52 DF, p-value: 0.0002214

The output is separated into four parts:

1. The first part is the formula, indicating the regression model (lm), the depen-
dent variable (BPSysAve), the independent variable (Age), and the data source
(dtf_sub).

2. The second part is the residuals, displayed as the five numbers of the distribution.
The residual is the difference between the observation and the regressed value.
Smaller residuals mean better regression.

3. The third part is the fitted coefficients, including the estimated intercept and
slope with their standard errors, the t-test statistics, the p-value (Pr(>|t|)),
and the significant level (explained at the foot of the table). Three stars (***) here
means that the test result is significant atα = 0.001,which is explained in the line
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’
0.1 ‘ ’ 1.

4. The fourth part is overall fit information, including the residual standard error, R2

(the percentage of the variability in the data that is accounted fo by the model),
the F-test statistics with the p-value.

An scientific manuscript sometimes has to report the confidence intervals for the
intercept and the slope, which could be obtained with the confint() function:

confint(lm_ba, level = 0.95)

## 2.5 % 97.5 %

## (Intercept) 92.0400121 112.6371226

## Age 0.2168953 0.6601752

Alternatively, the pubh::glm_coef() function gives a more friendly table for
the intercept and the slope with the standard errors and p-values (Table7.3):

dtf_glm <- pubh::glm_coef(lm_ba, alpha = 0.05, type = 'ext')

Apart from the SLR model, glm_coef() supports the output of MLR model,
generalised linear model (such as the logistic regressionmodel), and the Cox Regres-
sion Model as well as some other models.

Table 7.3 Summary of a linear regression model. Generated by the pubh::glm_coef() func-
tion

Parameter Coefficient Std. Error Lower CI Upper CI Pr(>|t|)

(Intercept) 102.34 5.13 92.04 112.64 < 0.001

Age 0.44 0.11 0.22 0.66 < 0.001
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Table 7.4 Summary for the confidence interval of the coefficient of determination for a linear
regression model. Generated by the psychometric::CI.Rsqlm() function

Rsq SErsq LCL UCL

0.232626 0.0944306 0.0475454 0.4177067

Table 7.5 Prediction with the confidence interval for a linear regression model

Age BPSysAve ymin ymax

20 111.1093 104.6921 117.5264

30 115.4946 110.6493 120.3399

40 119.8800 115.9304 123.8295

50 124.2653 120.0766 128.4541

60 128.6507 123.2361 134.0652

70 133.0360 125.9007 140.1714

The confidence interval of R2 can be obtained with the psychometric::CI.
Rsqlm() function (Fletcher 2022):

dtf_ci <- psychometric::CI.Rsqlm(lm_ba)

The obtained linear regression model could be used to predict the value of the
dependent variable for a given value of the independent variable. The jtools::
make_predictions() function (Long 2022) can do this job and gives the mean
predictions and the 95% confidence intervals in an easy way (Tables7.4 and 7.5):

dtf_pred <- jtools::make_predictions(lm_ba, new_data = data.frame(Age = 2:7 * 10))

The relationship of the dependent variable and the independent variable is often
visualized in a scatter plot with the SLR model as a fitted straight line (sometimes
with confidence intervals). The ggplot2 package can do this job smoothly (Fig. 7.2):

library(ggplot2)

ggplot(dtf_sub, aes(Age, BPSysAve)) + geom_point() + geom_smooth(method = 'lm')

The UsingR::simple.lm() function (Verzani 2022) can visualize the diag-
nostics of themodelwith the confidence and prediction intervals, the residuals against
the fitted values, the distribution of the residuals, and the Quantile-Quantile (QQ)
plot for the residuals (Fig. 7.3):

dtf_naomit <- na.omit(dtf_sub)

UsingR::simple.lm(dtf_naomit$Age, dtf_naomit$BPSysAve, show.ci = TRUE, show.residuals = TRUE)

Set the argument show.residuals = FALSE and we will get only the first
sub-figure,which should be sufficient for reporting the simple linear regressionoutput
in most times.
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Fig. 7.2 Visualization of a simple linear regression model with a scatterplot and a fitted line

In the previous demonstration, we studied the effect of the age on the average
systolic blood pressure. However, the age is not the only influential variable on the
average systolic blood pressure. If we classify the dataset according to the gender,
we can see that the fitted line for female has a visually different intercept and slope
from that for the male, which indicates an interaction between the average systolic
blood pressure and the gender. In other words, the independent variable has different
impacts on the dependent variable across the levels of the categorical variable. For
such cases, we could use the multiple linear regression (MLR) model.

The form of the MLR can be express as:

Y = α + β1X1 + β2X2 + β3X3 + ... + βt Xt + ε

We assume that the average systolic blood pressure is dependent on both the gender
and the age in a MLR:

P = α + βA A + βGG + ε

where P is the expected average systolic blood pressure and A is the age. We can
use the lm() function for estimating the parameters (Table7.6):

lm_bag <- lm(BPSysAve ~ Age + Gender, data = dtf)

summary(lm_bag)
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Fig. 7.3 Visualization of the diagnostics of a simple linear regression model

##

## Call:

## lm(formula = BPSysAve ˜ Age + Gender, data = dtf)

##

## Residuals:

## Min 1Q Median 3Q Max

## -55.310 -9.216 -1.090 8.234 103.941

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 99.31118 0.55162 180.04 <2e-16 ***

## Age 0.41360 0.01039 39.82 <2e-16 ***

## Gendermale 4.56528 0.36201 12.61 <2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 15.35 on 7202 degrees of freedom

## (276 observations deleted due to missingness)

## Multiple R-squared: 0.1911, Adjusted R-squared: 0.1909

## F-statistic: 850.9 on 2 and 7202 DF, p-value: < 2.2e-16
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Table 7.6 A look-up table showing the levels of a factor

Level Value

Female 0

Male 1

The output format is similar to the previous example of the SLR regression, only
except for two additional rows, beginning with Gendermale, in the part for the
coefficients. Thus, the parametrized equation is:

P = 99.3 + 0.414 · A + 4.56 · G

where G is the gender (1 for male and 0 for female). It is a little bit tricky in R to
make clear of the value of a categorical variable. By default, the levels of the factor
are ordered alphabetically. Thus, female and male are labelled as Level 1 and
Level 2, which can be converted into integers:

as.integer(factor(levels(dtf$Gender)))

## [1] 1 2

We can create a small table as a dictionary showing the numericallymatched value
of each gender:

dtf_dict <- data.frame(level = levels(dtf$Gender),

value = as.integer(factor(levels(dtf$Gender))) - 1)

In the this model, we do not take into account the interaction of the independent
variables, i.e. the slope of the dependent variable against one independent variable
does not change with the other dependent variable, which might be improper. For
such a case, the MLR model can take the categorical variable with the interaction,
i.e. the gender in this example, which is indicated with an asterisk (*) rather than a
plus in the formula:

lm_bagi <- lm(BPSysAve ~ Age * Gender, data = dtf)

summary(lm_bagi)

##

## Call:

## lm(formula = BPSysAve ˜ Age * Gender, data = dtf)

##

## Residuals:

## Min 1Q Median 3Q Max

## -51.731 -9.298 -1.030 8.112 102.977

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 93.57319 0.71146 131.52 <2e-16 ***

## Age 0.53544 0.01413 37.90 <2e-16 ***
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## Gendermale 16.53181 1.01714 16.25 <2e-16 ***

## Age:Gendermale -0.25878 0.02059 -12.57 <2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 15.18 on 7201 degrees of freedom

## (276 observations deleted due to missingness)

## Multiple R-squared: 0.2085, Adjusted R-squared: 0.2082

## F-statistic: 632.3 on 3 and 7201 DF, p-value: < 2.2e-16

These two rows, beginning with Gendermale and Age:Gendermale in the
part for the coefficients, show the impact of the gender on the relationship between
the average systolic blood pressure and the age. For the female, the average systolic
blood pressure can be estimated as:

Pf emale = 93.6 + 0.535 · A f emale

For the gender of male, the equation is:

Pmale = (93.6 + 16.5) + (0.535 − 0.259) · Amale

We can combine these two equations into one as:

P = 93.6 + 0.535 · A + 16.5 · G − 0.259 · A · G

The confint(), psychometric::CI.Rsqlm(), and jtools::
make_predictions() functions can be applied to themultiple regressionmodel
as well to obtain the confidence intervals for the regressed intercept, the slope, R2,
and the predictions. Note that the linear regression model gives two R2: multiple R2

and adjusted R2. For interpreting the MLR model, we should use the adjusted R2,
which has been corrected with taking into account the influence of adding indepen-
dent variables.

7.4.3 Logistic Regression Model

The logistic regression model is a type of the generalized linear model (GLM),
which is an extension to the linear regression model and allows the dependent vari-
ables to be binary or dichotomous. It is widely used in public health, especially in
epidemiological studies. An example is to investigate the relationship between the
age, sex and whether the people have hearing loss or not. The logistic regression
model is well suited for the screening of risk factors in epidemiology. As public
health research often requires categorical variables, such as infected and uninfected,
survival and death, which violate the assumptions of linear regressionmodels. There-
fore, the logistic regression model can provide more meaningful results for public
health research. Logistic regression models can be categorized into unconditional
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logistic regression and conditional logistic regression. Both assume that the data
obeys Bernoulli distribution (either positive or negative, with the probability sum
of 1). For example, in a study on the individual’s odds of getting lung cancer, the
independent variable is smoking years (continuous), while the dependent variable is
the lung caner status (yes/no, binary).

The form of the logistic regression model can be express as:

logit(π) = log

(
π

1 − π

)
= β0 + β1X1 + β2X2 + β3X3 + ... + βt Xt

where π is the probability that an event occurs, and
π

1 − π
is then the odds ratio. If

there is only one independent variable, it is called a simple logistic regression model.
If there are multiple independent variables, it is called a multiple logistic regression
model.

Here we use the melanoma dataset from the boot package for demonstration of
how to apply the logistic model. This dataset is introduced in Chap. 6.

data(melanoma, package = "boot")

For demonstrating the simple logistic regression model, we assume that the thick-
ness of the tumour is the only independent variable and the patient’s status is the
dependent variable. For simplicity, we select the patients with the status “3”, which
indicates that they died from causes unrelated to their melanoma.

melanoma2 <- melanoma[melanoma$status != 3, c('status', "thickness")]

melanoma2$status[melanoma2$status == 2] <- 0

Then the logistic regression model is performed with the glm() function:

glm_st <- glm(status~thickness, data = melanoma2, family = "binomial")

summary(glm_st)

##

## Call:

## glm(formula = status ˜ thickness, family = "binomial", data = melanoma2)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.8844 -0.7485 -0.6729 1.2162 1.8588

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -1.61134 0.25496 -6.320 2.62e-10 ***

## thickness 0.24853 0.06354 3.911 9.18e-05 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 232.84 on 190 degrees of freedom

## Residual deviance: 213.45 on 189 degrees of freedom

## AIC: 217.45

##

## Number of Fisher Scoring iterations: 4
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Fig. 7.4 Visualization of a logistic regression model

The confidence intervals for the estimated slope and intercept along with the odds
rations can be obtained:

confint(glm_st)

## 2.5 % 97.5 %

## (Intercept) -2.1348608 -1.1315007

## thickness 0.1319243 0.3825038

exp(confint(glm_st))

## 2.5 % 97.5 %

## (Intercept) 0.118261 0.3225488

## thickness 1.141022 1.4659504

The fitted curve can be visualized either with the basic R functions:

plot(melanoma2$thickness, melanoma2$status)

curve(predict(glm_st, data.frame(thickness = x), type = 'response'), add = TRUE)

or with the ggolot2 functions (Fig. 7.4):

ggplot(melanoma2, aes(thickness, status)) +

geom_point() +

geom_smooth(method = "glm", method.args = list(family = "binomial"))

For demonstrating the multiple logistic regression model, we assume that the
thickness of the tumour and the existence of the ulceration are the independent
variables.
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melanoma3 <- melanoma[melanoma$status != 3, c('status', "thickness", "ulcer")]

melanoma3$status[melanoma3$status == 2] <- 0

Now we apply the glm() function with multiple independent variables:

glm_stu <- glm(status~thickness + ulcer, data = melanoma3, family = "binomial")

summary(glm_stu)

##

## Call:

## glm(formula = status ˜ thickness + ulcer, family = "binomial",

## data = melanoma3)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.7332 -0.6453 -0.5229 1.0787 2.0725

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -2.07388 0.31013 -6.687 2.28e-11 ***

## thickness 0.15782 0.06313 2.500 0.012425 *

## ulcer 1.39220 0.37229 3.740 0.000184 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 232.84 on 190 degrees of freedom

## Residual deviance: 198.98 on 188 degrees of freedom

## AIC: 204.98

##

## Number of Fisher Scoring iterations: 4

From the results of the logistic analysis we can see that the patient’s status was
significant for both the tumour thickness and the existence of ulceration. The confi-
dence intervals for the estimated slope and intercept along with the odds rations can
be obtained in the same way as shown previously.

7.4.4 Cox Regression Model

The Cox regression model or the proportional hazards model is used to predict
the probability of the event of interest that occurs at a given time. An example is
to estimate the probability of patients with gastric cancer who will die within a
year. The Cox regression model is usually used in survival analysis in public health,
especially in the epidemiology. Survival analysis aims at evaluating the difference in
survival probabilities between two or more circumstances (Parodi et al. 2008). For
instance, survival analysis could be applied to assess the influence of various risk
factors, such as pollutants, genetic factors and so on, on exposed groups compared
with unexposed ones. The outcome of interest in survival analysis is the event, which
could be deaths, recurrence of specific diseases, and so on. The data that measure the
time for the event is called event time. For example, the cancer event data could be the
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time from surgery to death. It is critical to clearly state the event, the event time, and
when the period of observation starts and finishes. Additionally, what makes survival
analysis be significantly different from other analysis is the fact called censoring,
which means only some individuals experienced the event due to some reasons, so
other individuals’ survival times are unknown (Clark et al. 2003).

Survival data could be described and modelled by survival probability and hazard
probability. The survival probability could be denoted by S(t), which means the
probability that an individual survives from the original observation time to the
specific future time t (S(t) = Pr(T > t), where T is the observation time period).
In particular, the survival probability is 1 when t = 0, i.e. S(t0) = 1.

The hazard probability could be denoted by h(t) or λ(t), whichmeasures the prob-
ability that the event of an individual occurs at the specific time t during the obser-
vation period. Generally speaking, the survival probability illustrates the cumulative
non-occurrence while the hazard probability reflects the incident event rate.

The Cox regression model is a semi-parametric model that could quantify the
effect size of one or multiple variables, expressed as (Bogaerts and Lesaffre 2018):

h(t |Xi ) = h0(t) exp(β1Xi1 + · · · + βp Xip)

where β1, β2, ...βm are the partial regression coefficients of the independent variable,
and h0(t) is the underlying baseline hazard rate when Xi = 0. The hazard rate is the
instantaneous probability density of death at the current time point t for individuals
who have survived time t , further indicating the estimated hazard.

The hazard ratio (HR) is the measure of the relative survival experience in two
groups, and could be calculated by Clark et al. (2003):

HR = O1/E1

O2/E2

HR > 1 means the variable is the risk factor, HR = 1 means the variable has no
effect, and HR < 1 means the variable is the protective factor.

The survival package (Therneau 2022) is a useful tool to carry out the survival
analysis and the Cox regression. Basically, survival could create survival objects,
estimate the survival probability and time, compare the survival time between various
groups, and assess the effect of some factors on the survival probability based on
the Cox regression model. The Cox regression model could be developed via the
coxph() and cox.zph() functions.

Here we use a dataset called lung from the survival package as an example. The
dataset came from a study about the patients with advanced lung cancer from the
North Central Cancer Treatment Group. The variables time, status, and sex
indicate the survival time in days, the censoring status (1 = censored, 2 = dead), and
the sex (male = 1, female = 2).
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The coxph() function analyzes the effect of the factor of interest on samples’
survival probability based on the Cox regression model.

library(survival)

coxph(Surv(time, status) ~ target variable, data = data set)

For example:

coxph(Surv(time, status) ~ sex, data = lung)

## Call:

## coxph(formula = Surv(time, status) ˜ sex, data = lung)

##

## coef exp(coef) se(coef) z p

## sex -0.5310 0.5880 0.1672 -3.176 0.00149

##

## Likelihood ratio test=10.63 on 1 df, p=0.001111

## n= 228, number of events= 165

The coef column shows the coefficient of ‘sex’ which is −0.5310. It implies the
survival probability of females is higher than males. Additionally, exp(coef) =
0.5880 indicates that the risk of death for females decreases by 41.20% (1–58.80%)
compared to males. The p-value 0.00149 also shows the statistical significance.

The cox.zph() function tests the fitness of the Cox regression model.

cox.zph (coxph(formula, data=data set))

The formula uses the Surv statement. For example:

cox.zph(coxph(Surv(time, status) ~ sex, data = lung))

## chisq df p

## sex 2.86 1 0.091

## GLOBAL 2.86 1 0.091

The result indicates that the p-value of sex is 0.091, which has no statistical
significance. Thus, it implies ‘sex’ meets the assumption of proportional hazards.

7.5 Exercises

The dataset S.typh shipped by the Epi package comes from a study on a Salmonella
Typhimurium outbreak, which took place in a county in Denmark, 1996. Telephone
interviews were carried out in the participants about their food intake during the last
twoweeks.Weassume that the food types have effect on theSalmonellaTyphinurium.
Conduct an unconditional logistic regression.
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Chapter 8
Visualizing Data

8.1 Chapter Highlights

• Make sense of the role that data visualization plays in academic research,
• Choose appropriate graphics for visualizing categorical and numerical data, and
• Generate common graphics, including pie charts, bar chats, doc chats, strip charts,
histograms, box and violin plots, and scatterplots, with R functions.

8.2 Introduction

Data visualization refers to the representation of data in a pictorial or graphical
format. In most cases, human brains are unable to process a dataset as efficiently as
a picture which contains the same information. As it is said that a picture is worth a
thousand words, good data visualizations may represent information that is difficult
to describe in words.

Data visualization is important because it has a lot of advantages. Visualizing vast
volumes of complicated data with charts or graphs is easier than going over spread-
sheets or statements. When compared to words, graphs focus readers’ attention to
the most important messages. Data visualization can translate complex data linkages
and data-driven insights into an easy-to-understand format. With the assistance of
data visualization, researchers can better discover and explain patterns, trends, and
relationships. The modern computer techniques allow interactive visualization for
data, with which we can drill down into charts and graphs for more details by chang-
ing what data we see and how it’s processed. In public health, data visualisation is
used in teaching and learning, presentations, dissertations, journal publications, and
project applications.

Academic graphs are the visual representation of experimental and theoretical
data that provide evidence for supporting a paper’s findings. They play an essential
role in academic publications, where the experimental results are usually the focus of
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the study.Many academic journals provide guidelines for graphics in the submission.
As universal requirements, the graphs should:

• fulfil the specifications of the journal in terms of format and resolution (including
but not limited to the colour, size, resolution, font and size of labels in the graphs),

• clearly express the information in the data,
• completely reflect the relevant information of the data, and
• be simple and aesthetically appealing to the readers.

Academicgraphs canbe roughly classified as black-and-white graphs and coloured
graphs. In black-and-white charts, data are often presented with shapes or filled tex-
tures. Many traditional journals do not accept coloured graphs not only for reducing
printing costs, but also for being portable in different media. Online publications
often use coloured graphics, which are more aesthetically pleasing, and the colours
tend to enrich the expression of the data.Wemust keep it inmind that abusing colours
might be problematic for some readers, especially for colour-blind people.

8.3 Plotting Systems in R

R supports a variety of plotting systems for data visualization, and each system is
able to generate a variety of types of graphics. The base R plotting system is a set
of traditional tools for plotting graphics. In recently years, many more advanced R
packages, such as the ggplot2 and plotly packages, have been developed for plotting
elegant and modern graphs, which are very powerful and helpful in public health
studies. With these systems, we can visualize the data in all kinds of graphics for
different usages in public health.

8.3.1 Base R

Base R functions are a conventional way for data visualization for decades. In Chap.
6, we demonstrate using the fecitr::plot_summary() function for a pre-
liminary visualization of the diet dataset. This function integrates base R plotting
functions of scatterplots, box plots, bar charts, histograms, and density curves, for
one dimensional data.

The baseRplotting functions are categorized as high-level functions and low-level
ones (Table 8.1). The high-level functions work alone and establish the coordinate
systems as well as decide the graphic type and the major plotting elements. The
low-level functions cannot work alone. They are used to add elements to the existing
graphics generated by the high-level functions. We can see some examples which
show how they work:

demo(graphics)

demo(persp)

demo(image)
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Table 8.1 Common base R plotting functions

Function Description

barplot() Generate a bar chart

boxplot() Generate a box plot (also called box-and-whisker plot)

contour() Generate a contour plot

coplot() Generate a conditional plot

curve() Generate a curve corresponding to a function

dotchart() Generate a Cleveland dot plot

hist() Generate a histogram

image() Generate a grid of colored or gray-scale rectangles with colors
corresponding to the values

matplot() Wrapper of plot() for plotting columns of one matrix against columns
of another

pairs() Generate a matrix of scatterplots

persp() Generate a perspective plot of a surface

pie() Generate a pie chart

plot() Generic plotting function, depending on the object’s class

stripchart() Generate a one dimensional scatter plot

stars() Generate a star plot or segment diagram of a multivariate data set

symbols() Generate a plot with symbols (circles, squares, rectangles, stars,
thermometers, and boxplots) representing data values

ts.plot() Plot multiple Time Series

abline() Add straight lines to a graph

arrows() Add arrows to a graph

axis() Add an axis to a graph

box() Add a surrounding box to a graph

legend() Add legends to a graph

lines() Add connected line segments to a graph

mtext() Add text to the margins of a graph

points() Add points to a graph

polygon() Add polygons to a graph

rect() Add a rectangle to a graph

rug() Add short lines representing data values to a graph

segments() Add line segments to a graph

text() Add text to a graph

8.3.2 ggplot2

The ggplot2 package, unlike the base R plotting functions, visualizes data by lay-
ers, separating data-related plots from data-independent plots in the plotting process,
making the plotting method more flexible and the resulting graph more aesthetically
pleasing. The dataset usually has to be prepared as a data frame before being visual-
ized with ggplot2. The plotting procedure often starts with the function ggplot()
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as the initialization, followed by layers with + as a connector between them. The
layers could either add elements above the previous layer or customize the settings
of the graphic (Table 8.2). The following code is a minimal example for generating
a scatterplot for the diet dataset in the Epi package:

data(diet, package = "Epi")

library(ggplot2)

ggplot(diet) + # initialization

geom_point(aes(height, weight)) + # add scatter points

theme_bw() # set the theme

Some examples of ggplot2 can be shown as:

example(qplot)

Lots of R packages, based on ggplot2, have been developed for creating many
kinds of graphs. For example, the ggpairs() function in the GGally package
(Schloerke et al. 2021) is recommended for visualizing the relationships of paired
variables. It integrates bar plots for one dimensional qualitative data, distribution
density curves for one dimensional quantitative data, histograms and box plots for
quantitative data grouped by the qualitative variable (if any), and scatterplots for
each pair of quantitative variables in the data set. Here is an example using the diet
dataset in the Epi package (Fig. 8.1):

library(GGally)

p1 <- diet[, c('height', 'weight', 'fat', 'fibre', 'chd')] |>

transform(chd = factor(chd)) |>

ggpairs(aes(colour = chd, alpha = 0.1)) +

theme_bw()

p1

8.3.3 plotly

Data visualization is often limited by spatial limitations of charts, but interactive
graphs allow the viewer to zoom in on areas of interest and hover over information,
which means that a wealth of details can be retained in interactive graphs. The
WHO COVID-19 Dashboard1 is a good example, which allows the viewer to hover
over a country/area to obtain information about that area (including confirmed case
and mortality). The plotly package can generate a variety of elegant interactive
graphs, which could be embed in webpages and interact with local or online users.
Furthermore, interactive graphs attract readers attention to the graphs, and ensures
the clarity of the graphs. It provides two universal functions, i.e. plot_ly() for
directly plotting graphs, and ggplotly() for converting a ggplot2 graphic into a
plotly one:

library(plotly)

ggplotly(p1)

1 https://covid19.who.int/.

https://covid19.who.int/
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Fig. 8.1 Visualization of the diet dataset with a pair plot generated by the GGally package

We can see more demonstrations of these plotting methods with:

library(plotly)

demo('sf-plotly-3D-globe')

8.3.4 Other Systems

The lattice package (Sarkar 2021) is a traditional plotting system based on the grid
package. It features the ability of plotting graphs grouped by categorical variables.
For example, we can draw box plots of the fat intake (numerical) for each gender
(categorical) and CHD event (categorical) with the bwplot() function (Fig. 8.2) .
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Table 8.2 Common ggplot2 plotting functions

Function Description

geom_abline(), geom_hline(),
geom_vline()

Straight lines

geom_area(), geom_ribbon() Area and ribbon plot

geom_bar() Bar chart

geom_histogram(), geom_freqpoly(),
geom_bin2d(), geom_hex()

1D/2D histogram or frequency polygons

geom_boxplot() Box plot

geom_contour() Contour plot

geom_crossbar(), geom_errorbar(),
geom_errorbarh(),
geom_linerange(),geom_pointrange()

Data value with intervals

geom_density(), geom_density2d() Distribution density curve/surface

geom_line(), geom_path() Line chart

geom_point() Scatterplot

geom_polygon(), geom_rect(),
geom_tile()

Polygons/rectangles

geom_rug() Rugs

geom_segment(), geom_curve() Line segments and curves

geom_smooth(), geom_quantile() Fitted lines

geom_text() Text

library(lattice)

bwplot(job ~ fat | factor(chd), data = diet)

The lattice package provides a series of conditional functions for plotting scat-
terplots (xyplot()), dot charts (dotplot()), bar charts (barchart()), and
strip charts (stripplot()), and histograms(histogram()).

The dygraphs package (Vanderkam et al. 2018) is an R interface to the dygraphs
JavaScript library, which generates interactive visualization time series data.We give
an example in Sect. 8.8.4.

The rgl package (Adler and Murdoch 2022) provides a series of functions for
plotting 3Dgraphs, such as scatterplots, line charts, and perspective plots of a surface.
These graphs are interactive: we could zoom in and out, rotate, and move them with
themouse.They are sometimes very helpfulwhen exploringdata.Wegive an example
in Sect. 8.8.3.

In the subsequent sections, we focus on the features of common graphics and how
to plot them with the base R functions as well as the ggplot2 and plotly packages.
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Fig. 8.2 A box plot
generated by the lattice
package
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8.4 Pie Charts

Pie charts are often used for displaying the counts or relative frequency (percentage)
of qualitative variables. A pie chart is a circle divided into sections that represent
parts of a whole as slices of a pie. It can be regarded as the graphical form of a
one-way frequency table.

We use the frequency table tab1 generated in Chap. 6 for demonstration. The
base R function pie() generates a pie chart for the (relative) frequency of each
status:

tab1 <- sort(tab1, decreasing = TRUE)

pie_label <- paste0(names(tab1), ': ', tab1,

' (', round(prop.table(tab1) * 100), '%)')

pie(tab1, labels = pie_label, density = 6, angle = 120 * 1:3)

Wegenerate the labels for the pie chart before using the pie() function, in which
we set the density and the angles of the shading lines for the three slices (Fig. 8.3a).
Other arguments allow customizing the filling colours, the radius of the pie, the
edges, the border, and so on.

The ggplot2 package does not originally support pie charts. Therefore, we
have to create a bar plot first and change it to a pie chart with the function

Bank worker: 151 (45%)

Driver: 102 (30%)
Conductor: 84 (25%)

a

102

84

151

Job Bank worker Conductor Driver

b

Fig. 8.3 Pie charts of the status in the melanoma dataset
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coord_polar() and remove the axes as well as other redundant elements with
the function theme_void():

dtf1 <- data.frame(n = c(tab1), Job = names(tab1))

library(ggplot2)

ggplot(dtf1, aes(x = "", y = n, fill = Job))+

geom_bar(stat = "identity", width = 1) +

coord_polar(theta = 'y', start = 0) +

theme_void()

which seems lengthy. Instead, the ggpubr::ggpie() function (Kassambara
2022) generates the pie chart in a simple way (Fig. 8.3b):

library(ggpubr)

ggpie(dtf1, "n", fill = "Job")

The plotly package generates interactive pie charts with the plot_ly() func-
tion:

library(plotly)

plot_ly(data.frame(tab1), labels = ~Var1, values = ~Freq, type = 'pie')

We can see the level of the status, the count, and the relative frequency if the
cursor is placed over the pie chart. Many interactive buttons are displayed on the top
of the graph, which allow us to zoom in and out of specific areas by clicking on them.
Also, by clicking on the legend on the right side, we can make the image display
only the data of the individual category.

Pie charts could be plotted in 3D form with the plotrix::pie3D() function:

library(plotrix)

pie3D(tab1, labels = pie_label, explode = 0.1)

Pie chartsworkwell for the qualitative datawith only a few levels. It is often argued
that pie charts are a bad idea for data visualization as humans are not so sensitive to
angles/areas as to positions. Three dimensional pie charts are even worse. Especially
when we have many groups, a pie chart could be a disaster, as the readers could be
confused in distinguishing them and feeling hard to get the differences in the sizes
of the pie slices. However, pie charts are still often seen not only in public health but
also in other research areas. Bar plots are often a better alternative than pie charts for
displaying the same information.

8.5 Bar Charts

8.5.1 For One-Way Frequency Tables

Bar charts are used to compare values across a few categories. They usually serve as
the graphical form of one-way or two-way frequency tables.

Bar charts can be generated with the base R function barplot(), or the ggplot2
function geom_bar(), or the plotly method:
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barplot(tab1, horiz = TRUE, las = 1)

dtf1 |>

mutate(Job = reorder(Job, -n)) |>

ggplot() +

geom_bar(aes(x = Job, y = n), stat = 'identity') +

coord_flip()

plot_ly(x = dtf1$n, y = dtf1$Job, type = "bar", orientation = 'h')

The bars are placed horizontally (via the argument horiz of barplot(),
orientation of plot_ly(), and the function coord_flip() for ggplot2)
for both the aesthetic and economic purposes: vertical bars might be too wide and
would occupy toomuch space in the height, and the labels for the categorical variable
might be too long to be shown at the horizontal axis, as there are only three bars in
Fig. 8.4. Compared to the pie charts, it is easier to identify the difference in the
lengths of bars.

The geom_bar() function accepts the data frame with the tabulated data as
input (which is a more common way to use it), thus no statistic transformation
is performed (stat = 'identity'). Alternatively, it can merge the tabulation
calculation with the plotting in one step:

ggplot(diet) + geom_bar(aes(job))

8.5.2 For Two-Way Contingency Tables

Bar charts are more often used for visualizing two-way contingency tables. The
plotting functions are the same as for the one-way contingency tables, but with more
customization:

barplot(tab2, xlab = 'CHD',

density = 6, angle = 120 * 1:3, beside = TRUE, col = 1,

legend.text = TRUE, args.legend = list(

x = 8, y = 100,

legend = dimnames(tab2)$job,

bty = 'n',

density = 15, angle = 120 * 1:3))

ggplot(diet) +

geom_bar(aes(chd, fill = job), position = 'dodge')

plot_ly(dtf2, x = ~chd, y = ~n, color = ~job, type = "bar")
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Fig. 8.4 Bar charts for a one-way frequency table
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Fig. 8.5 Bar charts for a two-way contingency table

The figures plotted by the base R function and ggplot2 are shown in Fig. 8.5. As
there are two categorical variables, we have to use textures or colours to fill the bars
for distinguishing them. In barplot(), the input data is a pre-calculated matrix
with the frequency (tab2), while the arguments density, angle, and col deter-
mine how the filling textures look like, and legend.text and args.legend
determine how the legend looks like. In the ggplot2 functions, the input data is a data
frame with the raw data (diet), and the argument fill determines filling the bars
with colours according to job. In plot_ly(), the input data is a pre-calculated
data frame with the categorical variable’s levels and frequency (dtf2), and color
works the same way as fill in geom_bar().

The bars are placed side by side, as we set beside = TRUE and position
= 'dodge'. If we want to highlight the marginal sums of a categorical variable,
we could use stacked bars by using their default values (simply remove them from
the function). The plotly package, however, plots side-by-side bars by default, and
we have to use the layout() function for changing the bar mode as 'stack':

barplot(tab2, xlab = 'CHD')

ggplot(diet) + geom_bar(aes(chd, fill = job))

plot_ly(dtf2, x = ~chd, y = ~n, color = ~job, type = "bar") |>

layout(barmode = 'stack')

8.5.3 For Multiple-Way Tables

Three- or four-way tables can be visualized in grouped bar plots, which can be
generatedwith thefacet_wrap()or thefacet_grid() function in the ggplot2



8.5 Bar Charts 141

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

:

<
−

4
−

4:
−

2
−

2:
0

0:
2

2:
4

>
4

job

ch
d

Driver Conductor Bank worker

0
1

<=2750 KCals >2750 KCals <=2750 KCals >2750 KCals <=2750 KCals >2750 KCals

Fig. 8.6 A mosaic plot for visualizing multiple-way table

package. Here we display the count in the combination of the categorical variables
chd, job, and energy.grp:

ggplot(diet) +

geom_bar(aes(chd, fill = job)) +

facet_grid( ~ energy.grp) # or facet_wrap( ~ energy.grp)

The more dimensions, the more difficult for readers to understand. If there are
more than four categorical variables, bar plots might be very confusing, and a mosaic
plot may be a better choice:

mosaicplot(tab3, shade = TRUE)

The mosaic plot draws a rectangle for each frequency in the table and arranges all
the rectangles in a hierarchical way (Fig. 8.6). The size of the rectangles represents
the frequency, and the height and width represent the proportions. Figure 8.6 can be,
at the first sight, divided into three columns (i.e. Driver, Conductor, and Bank
worker), and theirwidths indicate that Bank worker>Driver>Conductor.
Within each column there are two rows, i.e. the upper one is the frequency of chd
= 0 and the lower one chd = 1. Comparing the heights of the rows, we can see that
the frequency of ch = 0 is larger than that of ch = 1 in every job. Within the rows
in every job, we can compare the frequency between the energy groups according
to the rectangle widths. For example, within the second row (ch = 1) of the first
column (job = Driver), the width of the rectangle of <=2750KCals is larger
than that of >2750KCals, indicating the frequency of the former energy groups
is greater than that of the latter. Apart from the comparison of the frequencies, the
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mosaic plot indicates the residuals of the fitting models (Pearson’s χ2 by default): a
dashed border indicates a negative residual, while a solid one does a positive. The
colours in the legend shows the range of the residuals.

8.6 Dot Charts and Strip Charts

Dot charts and strip charts are often used for displaying raw quantitative data in
one dimension. In a dot chart, each value of the data, from the first observation to
the last, is represented by a dot, mapped to one axis. A strip chart, also called a
one-dimensional scatterplot, also displays each value of the data as a dot, but orders
them by the magnitude. Here we draw a dot chart with the dotchart() function
and two strip charts with the stripchart() function, all for the tumour thickness
data of the melanoma dataset in the boot package.

# Define a colour and a label for plotting

thecol <- rgb(0, 0, 0, alpha = 0.5)

thexlab <- 'Tumour thickness (mm)'

dotchart(melanoma$thickness, pch = 15, xaxt = 'n', lcolor = "white")

stripchart(melanoma$thickness, col = thecol, pch = 15, xaxt = 'n')

stripchart(melanoma$thickness, col = thecol, pch = 15, xlab = thexlab, method = "stack")

Figure 8.7a displays the rawdatawithout any transformation. Figure 8.7b prints all
the values at the position mapped to the horizontal axis in one strip, even when some
of them are overlapped.We set the transparency of the doc colour as alpha = 0.2

a

b

0 5 10 15

c

Tumour thickness (mm)

Fig. 8.7 Strip Chart for the tumour thickness data
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so as to display the points hidden behind other ones: the darker, themore duplicated or
adjacent values.Moreover, we add rugs (i.e. the small vertical lines) on the horizontal
axis, each of which indicates a value, so that we could see the overlapping. Figure
8.7c sets the strip chart in the stack mode for displaying overlapped dots, as the
duplicated values are shown as stacked dots, while the darker colour indicates only
the adjacent dots.

8.7 Histograms, Box Plots, and Violin Charts

Histograms, box plots, and violin charts are used for visualizing the distribution
of a numeric variable. Here we visualize the tumour thickness data in a histogram
(Fig. 8.8a).

# base R:

hist(melanoma$thickness)

# ggplot2:

ggplot(melanoma) +

geom_histogram(aes(x = thickness)) +

theme_bw()

# plotly:

plot_ly(x = ~melanoma$thickness, type = "histogram")

The histogram is a special formof “bar chart”, where the horizontal axis represents
the ranges of the variable of interest while the vertical axis represents frequencies.
The bars in the histogram indicate the counts of the values that fall in a certain range.
There is usually no space between the bars. The ranges of values are called classes
or bins. In principle, the histogram converts the numeric variable into a categorical
one in bins, counts the frequency of the observations in each bin and display them in
bars. The choice of the bins depends on our purpose. The more bins we choose, the
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Fig. 8.8 A histogram and a violin plot
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more details that can be seen, but the more chance that we might miss the pattern of
the data. The Sturges’ rule recommends the bin number (nclass) as:

nclass = 1+ log10 N

log10 2
= 1+ log2 N

where N is the number of the records. Other algorithms, such as the Scott’s rule
and the Freedman-Diaconis’ rule, are applicable as well:

nclass.Sturges(melanoma$thickness)

## [1] 9

nclass.scott(melanoma$thickness)

## [1] 10

nclass.FD(melanoma$thickness)

## [1] 20

Box plots (also called box-and-whisker plots) and violin charts are more infor-
mative tool for visualizing the distribution of one dimensional numerical data. The
following code generates box plots and violin charts for the tumour thickness data:

# Box plot

## base R:

boxplot(melanoma$thickness, horizontal = TRUE)

points(mean(melanoma$thickness), 1, pch = 4)

## ggplot2:

ggplot(melanoma) +

geom_boxplot(aes(thickness)) +

geom_point(aes(x = mean(thickness), y = 0), pch = 4) +

theme_bw()

## plotly:

plot_ly(x = ~melanoma$thickness, type = "box", boxmean = TRUE)

# Violin chart

## base R:

library(vioplot)

vioplot(melanoma$thickness, horizontal = TRUE)

points(mean(melanoma$thickness), 1, pch = 4, col = "white")

## ggplot2:

ggplot(melanoma, aes(x = thickness, y = 0)) +

geom_violin(fill = 'grey') +

geom_boxplot(width = 0.1) +

geom_point(aes(x = mean(thickness), y = 0), pch = 4)

## plotly:

plot_ly(x = ~thickness, type = "violin", data = melanoma,

box = list(visible = TRUE), meanline = list(visible = TRUE))
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The box plot shows the numerical data through their quartiles, with lines extending
from the boxes (whiskers) indicating variability outside the lower and upper quartiles
(Q1 and Q3, see Sect. 6.3). The thick line or the dot in the middle indicates the
median, the box indicates the P25/Q1 and P75/Q3, and the extended lines indicate
1.5 (by default) times IQR. We add a cross or a short dash line for the mean in order
to indicate the skewness.

The violin plot is a combination of the box plot and a density plot that is mirrored
and placed on each side to show the distribution shape of the data (Fig. 8.8b). The
vioplot::vioplot() function (Adler and Kelly 2021) displays the box by
default, while the ggplot2 and plotly methods do not: we have to additionally use
the geom_boxplot() function and the box argument, respectively.

Public health science often deals with many kind of qualitative data, and the
real-world data are often mixtures of qualitative and quantitative data. Although
histograms, box plots, and violin charts can be a single box/violin for detecting
outliers and display heterogeneity of distribution for one numerical variable, we
often compare the distributions of one numerical variable grouped by one categorical
variable, which actually results in the visualization of the mixture of qualitative and
quantitative data with multiple histograms/boxes/violins.

mean_th <- data.frame(sex = c(0, 1),

mean = tapply(melanoma$thickness, melanoma$sex, mean))

# Box plot

## base R:

boxplot(melanoma$thickness ~ melanoma$sex, horizontal = TRUE)

points(mean_th$mean, 1:2, pch = 4)

## ggplot2:

ggplot(melanoma, aes(x = sex, y = thickness, group = sex)) +

geom_boxplot() +

stat_summary(fun = "mean", geom = "point", shape = 4) +

coord_flip() +

theme_bw()

## plotly:

plot_ly(x = ~melanoma$thickness, y = ~melanoma$sex, orientation = 'h',

type = "box", boxmean = TRUE)

# Violin chart

## base R:

library(vioplot)

vioplot(thickness ~ sex, horizontal = TRUE, data = melanoma)

points(mean_th$mean, 1:2, pch = 4, col = "white")

## ggplot2:

ggplot(melanoma, aes(x = sex, y = thickness, group = sex)) +

geom_violin(fill = 'grey') +

geom_boxplot(width = 0.1) +

stat_summary(fun = "mean", geom = "point", shape = 4) +

coord_flip() +

theme_bw()

## plotly:

plot_ly(x = ~thickness, y = ~sex, type = "violin", data = melanoma,

orientation = 'h',

box = list(visible = TRUE), meanline = list(visible = TRUE))
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8.8 Scatterplots

8.8.1 For Two Variables

Scatterplots, also called x-y plots, explore the relationship between quantitative vari-
ables. They are the most popular graphic for visualizing two numerical variables.
We use the weight and height data in the diet dataset as an example.

data(diet, package = 'Epi')

dietlm <- lm(weight~height, data = diet)

# base R:

plot(diet$height, diet$weight,

xlab = 'Height (cm)', ylab = 'Weight (kg)', las = 1, pch = 16)

abline(dietlm)

# ggplot2

ggplot(diet, aes(height, weight)) +

geom_point() +

geom_smooth(method = 'lm') +

labs(x = 'Height(cm)', y = 'Weight (km)') +

theme_bw()

# plotly

diet1 <- na.omit(diet[, c('height', 'weight')])

diet1lm <- lm(weight~height, data = diet1)

plot_ly(diet1, x = ~height) |>

add_markers(x = ~height, y = ~weight) |>

add_lines(x = ~height, y = fitted(diet1lm))

The base R function plot() is a simple and fast way for generating a scatterplot.
Whenwe apply regressionmodels to the dataset, fitted curves are often drawn through
the data points in scatterplots (Chap. 7), and the abline() function adds a linear
fitted line to it (Fig. 8.9a). The ggplot2 package uses the geom_point() function
for generating the scatterplot and geom_smooth() for the fitted line with the
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Fig. 8.9 Scatterplots for the body weight against the body height of the diet dataset
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confidence interval (se, Fig. 8.9b). The plotly package generates the scatterplot
simplywith plot_ly(diet, x = ~height, y = ~weight), but it seems
a little complicated for the fitted line: we have to remove the NA values first, and use
add_markers() and add_lines() for adding the traces of the scatter points
and the fitted line. The advantage of plotly for scatterplots is that we could see the
observed value and the fitted value for a certain x value as long as we put the cursor
over it, which is very helpful for checking the details of the regression.

When the dataset is large and many data points are too close to each other, scatter-
plots may encounter a problem of overlapping points we cannot visually distinguish.
R has multiple solutions for this problem. Here we use the NHANES dataset shipped
by theNHANES package as an example. The influence of the age on the average sys-
tolic blood pressure can be visualized as a scatterplot with the age as the independent
variable x and the average systolic blood pressure as the dependent variable y:

data(NHANES, package = 'NHANES')

plot(NHANES$Age, NHANES$BPSysAve, pch = 16, col = rgb(0, 0, 0, alpha = 0.2))

rug(NHANES$Age, side = 3, col = rgb(1, 0, 0, alpha = 0.2))

rug(NHANES$BPSysAve, side = 4, col = rgb(1, 0, 0, alpha = 0.2))

The scatterplot is shown in Fig. 8.10a. We use the rgb() function for setting
the transparency of the colour as alpha = 0.2 just like Fig. 8.7b and c, so that
dark areas indicate the overlaps of data points. Moreover, the rug() function adds
a short red line for each value of the two variables, indicating the overlaps along the
two dimensions.

The ggplot2 package can directly set the transparency of the data points with
the argument alpha, and it provides a method for a better visualization of the
overlapped data points with the geom_bin2d() function:

ggplot(NHANES, aes(Age, BPSysAve)) +

geom_point(alpha = 0.2, shape = 15) +

theme_bw()

ggplot(NHANES, aes(Age, BPSysAve)) +

geom_bin2d() +

theme_bw()

which generates a heatmap as Fig. 8.10b. It can be interpreted as two-dimensional
histograms, i.e. the data are binned with both x and y into grids, and the colours
of the grids indicate the frequency of the observations in each bin. The function
geom_bin2d() can be replaced with geom_hex(), which bins the data into
regular hexagons rather than squares.



148 8 Visualizing Data

10
0

15
0

20
0

0 20 40 60 80

Age

B
P

S
ys

A
ve

a

100

150

200

20 40 60 80
Age

B
P

S
ys

A
ve

25

50

75

100
count

b

Fig. 8.10 A scatterplot and a two-dimensional histogram

Similarly, plotly generates such a two-dimensional histogram with add_
histogram2d():

plot_ly(x = NHANES$Age, y = NHANES$BPSysAve) |> add_histogram2d()

As the graph is interactive, we can see the the age, the average systolic blood
pressure, and the data point frequency within a grid as long as we put the cursor
over it.

Researches in public health often deal with survey data. Ordinary scatterplots
can be misleading for survey data, as observations in survey samples may represent
different numbers of units in the population. The survey package provides a wrap-
per function svyplot(), which produces scatterplots adjusted in various ways for
sampling weights. Here we use the dataset apistrat from this package as a demon-
stration. This dataset contains the Academic Performance Index in 2000 (api00)
and 1999 (api99), computed for all California schools. The column name stype
is short for school type (Elementary/Middle/High School), pw for sampling weights,
and fpc for finite population corrections to variance:

library(survey)

data(api)

dstrat <- svydesign(id = ~ 1, strata = ~ stype, weights = ~ pw, data = apistrat, fpc = ~ fpc)

svyplot(api00 ~ api99, design = dstrat, style = "bubble")

This dataset is first converted to an object of class survey.design, defined
by the survey package, and then be visualized with the svyplot() function in the
bubble style.
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8.8.2 For Pairwise Variables

If we have more than two numerical variables, we could generate scatterplots for
every pair of them (although it does not necessarily make sense). R provides a fast
way to do this job. Here we use dietn, the numerical subset of diet we use in Chap. 6,
for demonstration.

All of the base R, ggplot2, and plotly methods can generate an n × n scatterplot
matrix for a numerical data frame, where n is the number of columns:

# base R:

pairs(dietn)

## or

plot(dietn)

# ggplot2:

library(GGally)

ggpairs(dietn)

# plotly:

ggplotly(ggpairs(dietn))

The base R function pairs() generates a matrix with the column names in the
diagonal by default. Each column name indicates the meaning of the horizontal axis
and the vertical axis of the sub figures that are in the same column or row, respectively.
The plot() function does the same job when the input is a data frame. There are
around 20 arguments for customizing pairs(). The following code defines three
panel functions, which are assigned to the relevant arguments in pairs(). They put
histograms on the diagonal panel, the absolute values of the correlation coefficients
on the upper panel, and add linear fitted lines to the scatterplots on the lower panel
(Fig. 8.11):

## add histograms on the diagonal

panel.hist <- function(x){

usr <- par("usr"); on.exit(par(usr))

par(usr = c(usr[1:2], 0, 1.5))

h <- hist(x, plot = FALSE)

breaks <- h$breaks

nB <- length(breaks)

y <- h$counts

y <- y/max(y)

rect(breaks[-nB], 0, breaks[-1], y, col = "grey")

}

## put the absolute values of the correlation coefficients on the upper panels,

panel.cor <- function(x, y, digits = 2, prefix = "", cex.cor){

usr <- par("usr"); on.exit(par(usr))

par(usr = c(0, 1, 0, 1))

r <- abs(cor(x, y, use = 'complete.obs'))

txt <- format(c(r, 0.123456789), digits = digits)[1]

txt <- paste0(prefix, txt)

if(missing(cex.cor)) cex.cor <- 0.8/strwidth(txt)

text(0.5, 0.5, txt, cex = cex.cor * r)

}

## add linear regression lines

panel.reg <- function(x, y) {

points(x, y, col = 'grey', pch = 16)

abline(lm(y~x), col = 'red')
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}

pairs(dietn,

diag.panel = panel.hist,

upper.panel = panel.cor,

lower.panel = panel.reg)

The ggplot2 package itself does not provide a function for scatterplot matrix,
while the GGallay package, based on ggplot2, provides the ggpairs() function
for this purpose. By default, the diagonal panel displays a distribution density curve
for each numerical variable, a scatterplot for every pair of two numerical variables in
the lower panel, and the correlation coefficients with the significant level indicated
by the asterisks (*). We could add linear fitted lines to the scatterplots:
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my_fn <- function(data, mapping){

ggplot(data = data, mapping = mapping) +

geom_point() +

geom_smooth(method='lm')

}

ggpairs(dietn, lower = list(continuous = my_fn))

The plotly package, as far as we know, cannot directly generate scatter matrices.
Fortunately, it provides a universal function ggplotly(), which can convert a
ggplot2 graph in to a plotly one.

ggplotly(ggpairs(dietn))

8.8.3 For Multiple Variables

It is possible and sometimes attractive to visualize more than two dimensions of the
data in one figure. Three dimensional plots can be produced with the rgl package.
Here we plot a 3D image for three numerical variables in the subset of the NHANES
data with the plot3d() function.

library(rgl)

plot3d(diet$height, diet$weight, diet$fat)

Then a window with an interactive 3D image pops up, where we can drag, rotate,
and zoom it in a flexible way.

We have to be very careful about plotting 3D graphs, because more dimensions
could confuse the reader’ mind. 3D graphs are not recommended in publications, as
most of the publications are presented in two-dimensional media, and human brains
are not good at reading them. Instead, it is a common way to map the third variable as
other elements, such as gradient colours, sizes, or shapes of the plotting characters. In
fact, Fig. 8.10b is a three-dimensional image, with the coordinates {x, y} indicating
the age and the average systolic blood pressure, respectively, and the colour indicating
the observation counts. We can draw a scatterplot for the weight against the height
of the diet dataset, and use colours (Fig. 8.12a) or the sizes (Fig. 8.12b) for the fat:

diet_sub <- diet[sample(1:nrow(diet), 30), ]

ggplot(diet_sub) +

geom_point(aes(x = weight, y = height, colour = fat))

ggplot(diet_sub) +

geom_point(aes(x = weight, y = height, size = fat), shape = 1)

Note that the continuous variable is automatically converted into categorical inter-
vals when mapping it to the point size.

Conditional plot is another way for visualizing three dimensional quantitative
data by grouping the two-dimensional scatterplots according to the third variable
in multiple conditions. Here we draw a conditional plot for the weight against the
height in the conditions of the fat (Fig. 8.13):
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Fig. 8.12 Mapping the third variable as gradient colours and sizes in a scatterplot
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Fig. 8.13 A conditional plot for the diet dataset

coplot(weight ~ height | fat, data = diet, pch = 16)

##

## Missing rows: 28, 71, 73, 112, 282

The coplot() function separate the graph into multiple sub-figures of scatter-
plots, based on the range of the fat. Note that there are overlaps of the conditioning
variables, because the default value for the argument overlap is 0.5.

If we have four or more numerical variables to visualize in one graph, the sym-
bol plot is a solution. The symbols() function allows drawing up to six symbols,
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including circles, squares, rectangles, stars, thermometers, and box plots, at a speci-
fied set of x and y coordinates. Specific aspects of the symbols, such as relative size,
can be customized by the numerical variables we would like to visualize apart from
x and y. Here is an example adapted from the MSG package, which ships a dataset
with the population, the growth rate, the urbanization level, the life expectancy, and
the well-educated population of each of the provinces from the China population
statistics in 2005. Firstly, we load the data, convert the Chinese characters in the data
into English, and rescale some columns for better visualization.

library(MSG)

source(system.file("extdata", "ChinaPop.R", package = "MSG"), encoding = "UTF-8")

library(pinyin)

dimnames(ChinaPop)[[1]] <- toupper(

py(dimnames(ChinaPop)[[1]], sep = '',

dic = pydic(method = 'toneless', dic = 'pinyin2')

)

)

dimnames(ChinaPop)[[2]] <- c('Growth rate', 'Population', 'Urbanization level',

'Life expectancy', 'Well-educated population')

ChinaPop[, 5] <- ChinaPop[, 5]/1000

ChinaPop[, 1:2] <- apply(ChinaPop[, 1:2], 2, function(x)

20 * (x - min(x)) / (max(x) - min(x)) + 5)

If you are a MS Windows OS user, you might have to convert your locale into
Chinese for supporting the input of Chinese characterswith the following code before
loading the data:

Sys.setlocale('LC_CTYPE', 'Chinese')

We then use the symbols() function for plotting a scatterplot of the well-
educated population against the average life expectancy (Fig. 8.14). Instead of dots,
each province is represented as a thermometer-like symbol, with the width repre-
senting the growth rate, the height the population, and the proportion of the height
the urbanization level. Thus, five numerical variables are visualized in one graph.

symbols(ChinaPop[, 4], ChinaPop[, 5],

thermometers = ChinaPop[, 1:3], fg = "gray40",

inches = 0.5, las = 1,

xlab = "Average Life Expectancy (years)",

ylab = "Well-educated population (thousand)"

)

library(KernSmooth)

est <- bkde2D(ChinaPop[, 4:5], apply(ChinaPop[, 4:5], 2, dpik))

contour(est$x1, est$x2, est$fhat, add = TRUE, lty = "12")

for (i in 1:nrow(ChinaPop)) {

text(ChinaPop[i, 4], ChinaPop[i, 5], rownames(ChinaPop)[i],

cex = 0.75, adj = attr(ChinaPop, "adj")[i, ], col = 'red',

)

}

rug(ChinaPop[, 4], 0.02, side = 3, col = "blue")

rug(ChinaPop[, 5], 0.02, side = 4, col = "blue")
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boxplot(ChinaPop[, 4],

horizontal = TRUE, pars = list(

boxwex = 7,

staplewex = 0.8, outwex = 0.8

), at = -6, add = TRUE, notch = TRUE, col = "skyblue",

xaxt = "n"

)

boxplot(ChinaPop[, 5],

at = 63, pars = list(

boxwex = 1.4,

staplewex = 0.8, outwex = 0.8

), add = TRUE, notch = TRUE, col = "skyblue",

yaxt = "n"

)

Furthermore, we add more elements into the graph, including a contour for
the binned Kernel density estimate (contour()), the labels for each symbol
(text()), the rugs (rug()) and box plots (boxplot()) of the well-educated
population and the average life expectancy.
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Fig. 8.14 Visualization of multiple variables in one graph. Adapted from Xie and Zhao (2021)
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8.8.4 Line Charts and Area Charts

As a variant of the scatterplots, line charts are often used to show the trend of a
variable over time. Line charts are often useful when the dataset is a time series.
Here we use the COVID-19 pandemic data from the nCov2019 package (Yu andWu
2021):

library(nCov2019)

data_covid <- query()

dtf_covid <- data_covid$historical$table

dtf_usa <- dtf_covid[dtf_covid$country == 'USA', ]

# base R:

plot(dtf_usa$date, dtf_usa$deaths, type = 'l')

# ggplot2:

ggplot(dtf_usa) +

geom_line(aes(x = date, y = deaths)) +

theme_bw()

# plotly:

plot_ly(dtf_usa, x = ~date, y = ~deaths, type = 'scatter', mode = 'lines')

The line chart shows the trend in the number of deaths over time for USA.
Another variant of scatterplot, called area plot, can also visualize the time series

in a more impressive way:

# base R:

plot(dtf_usa$date, dtf_usa$deaths, type = 'n')

polygon(c(dtf_usa$date, dtf_usa$date[nrow(dtf_usa)]),

c(dtf_usa$deaths, 0), border = NA, col = 'grey')

# ggplot2:

ggplot(dtf_usa) +

geom_area(aes(x = date, y = deaths), fill = 'grey')

# plotly:

plot_ly(dtf_usa, x = ~date, y = ~deaths,

mode = 'lines', fill = 'tozeroy')

Especially, when we have one more variable which is categorical, we can either
stack them in multiple shaded colours in an area plot or plot individual lines in
multiple colours in a line chart. The following code gives an example, which plots a
line chart (Fig. 8.15a) and an area chart (Fig. 8.15b) for the death cases of COVID-19
in three countries in North America.

dtf_na <- dtf_covid[dtf_covid$country %in% c('USA', 'Canada', 'Mexico'), ]

ggplot(dtf_na) +

geom_line(aes(x = date, y = deaths, colour = country))

ggplot(dtf_na) +

geom_area(aes(x = date, y = deaths, fill = country))

If we would like to display the relative proportions rather than the absolute
number of the cases, we can set the argument position = "fill" in the
geom_area() function.

Interactive visualization for such time series data could be performed with the
dygraphs package:
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Fig. 8.15 A line chart and an area plot for the COVID-19 confirmed cases in North America

dtf_wide <- dtf_na[, c('date', 'country', 'cases')] |>

tidyr::pivot_wider(names_from = country, values_from = cases)

xts::xts(dtf_wide[, -1], order.by = dtf_wide$date) |>

dygraphs::dygraph()

In this example, we have to convert the data frame into a wide version, and then
into an extensible time-series (xts) object as the input of the dygraph() function.
In the interactive graph, we could zoom in and out, and the number of the cases for
each country appears at the top of the graph.

8.9 Export Graphs

The static graphs produced by the base R functions and ggplot2 are displayed in the
Plots tab in the bottom-right pane (Pane 2) of Rstudio IDE. It could be exported via
clicking the Export button in the tool bar of the pane and then “Save as Image” for
png, jpeg, tiff, metafile, svg, and eps formats, or “Save as PDF” for pdf format. The
interactive graphs generated by plotly and dygraph are displayed in the Viewer tab.
Click Export and it could be saved as a static image files or a web page file.

Instead of clicking the buttons, we often export the graphics with code. The
graphics plotted by the base R functions are exported with a graphics device func-
tion, including pdf(), png(), jpeg(), tiff(), and so on, paired with the
dev.off() function:

pdf('diet-fat-hist.pdf')

hist(diet$fat)

dev.off()

The ggplot2 graphics can be exported by the ggsave() function:
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p1 <- ggplot(diet) + geom_histogram(aes(fat))

ggsave('diet-fat-hist-gg.pdf', p1)

The interactive graphics produced by plotly and dygraph can be exported by the
htmlwidgets::saveWidget() function:

g1 <- ggplotly(p1)

htmlwidgets::saveWidget(g1, 'diet-fat-hist-plotly.html')

8.10 Exercises

1. Download the COVID-19 pandemic data from the nCov2019 package.

• Make a scatterplot with the global confirmed cases as x, and the deaths as y.
Change the points as closed circles in blue. Add a linear regression line in
gray.

• Make a pie chart showing the confirmed cases for the Top Five countries.
• Make a bar chart for the confirmed cases and deaths side-by-side for each Top
Five country. Add a red horizontal line for the mean of them.

• Make a boxplot for the confirmed cases, suspected cases and deaths for the
Top Five countries. Add the means as blue points to the boxplot. Change the
colors of the boxes.

• Combine these figures into one figure. Save it as a .pdf file.

2. Use the ggplot2 package or the plotly package to present the Hodgkin data in
the pubh package.

• Load the Hodgkin data set. What does each column mean?
• Plot a scatterplot of CD4 against CD8 with ggplot2. Add a smooth line.
• Use different colors to distinguish the Hodgkin Group and non-Hodgkin
Group. Add smooth lines to each group.

• Usemultiple facets to distinguish theHodgkinGroupandnon-HodgkinGroup.
Add smooth lines to each group.

• Plot the previous graphs with the plotly package.
• Make a bar plot for the count of Hodgkin and non-Hodgkin cases.
• Make a box plot for CD4 and CD8 values of the whole data set.
• Make a box plot for CD4 and CD8 values of Hodgkin and non-Hodgkin cases.
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Chapter 9
Presenting Data

9.1 Chapter Highlights

• Understand the channels and basic principles of presenting data,
• Set up the R Markdown environment, and
• Present data via multiple forms with the integration of R Markdown in various
academic occasions.

9.2 Channels

One of the most important objectives of science research is that the research ques-
tions, methods, and results can be understood and reproduced by other researchers or
people who are interested in the research area. Thus, presenting research outcomes
with related data evidence is the foundation of the development of the study’s influ-
ence and exchange of different peers’ opinions. There are three major channels for
presenting data to the community or the world: presenting them in journal papers,
talks, and posters (Table9.1). Other channels, such as dissertations, academic mails,
newspapers, blogs, books, etc., might not take place as often for everyone in public
health science, although they are important as well.

Each channel of presenting data has its features. Journal papers aims at peers and
readers who work in related disciplines. They are more specialized than posters and
slides, which often aim at a wider audience. In terms of degree of formality, journal
papers are the most formal, while posters are the least formal ones. Journal papers
are often presented with long text to analyze and discuss the data, so the accuracy of
the data is particularly important. Slides are often presented in talks, which require a
clear and aesthetically pleasant presentation of the data. Posters are often displayed
in a fixed location and are flexible for the audience to choose, thus a good structure
in organizing the results and an elegant visual design would help presenting data.
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Table 9.1 Three main channels of presenting data

Channels Description Advantages Limitation

Talks Presenting data orally,
usually with slides

Vivid with animations
and universal in
various occasions

Time limit. Electronic
devices based.
Dependence on the
presenter’s
improvisation

Journal papers Presenting data with a
completed study and
published it in a
academic journal

Professional, detailed,
strict, and structured

Requirement changes
over publishers. Less
interaction with
readers

Posters Presenting data with a
designed poster and
discuss it with other
people

Convenient, instant
with interaction

Space limit.
Dependence on the
presenter’s
explanation

9.3 General Principles

First of all, the objective of presenting data is to deliver the core results of a study.
Only express the relevant data that the researcher most wishes to convey. Do not
complicate it. Toomuch information often prevents the readers from getting a precise
idea of the research focus.

Express general ideas first, and then go further to show specific points. For exam-
ple, start with a description of the study participants to give the reader an idea of
how representative and applicable the study is. Then proceed to the presentation and
analysis of key findings. It is essential that the data presentation corresponds to the
research question and answers the research question. The past tense is usually used
when describing the data. Choose the most appropriate format for presenting the
data, and avoid duplication of information and multiple repetitions of formats where
possible.

For presenting data, three key points of principles are emphasized:

1. Precise: Presenting data should only include the data that are planned to be shown
for readers or audiences so as to deliver the information without addressing the
data or information that is not relevant for the presentation.

2. Detailed: Presenting data should address the related context andmethods applied
into the data with clear instructions of the presentation forms which help readers
or audience understand the information delivered.

3. Proper-formed: The methods should be correctly applied for presenting data so
as to show different characters of data to readers or audiences. For instance,
statements and tables are more suitable for presenting qualitative data’s details,
while graphs are more suitable for quantitative data.

It makes a lot of sense to present our data in a manner that the peers could
understand well. If the data are presented to the general public, the presentation may
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have to be adapted to the audience, but the principles must be preserved. Generally,
presenting data should be based on and serve the view of readers and audiences to
provide and generate the understanding which is consistent with the presenters.

9.4 R Markdown

9.4.1 Set Up R Markdown

As a presenting tool, R Markdown is a framework for writing reproducible and
dynamic documents for data science. Reproducible research refers to scientific prod-
ucts, such as reports, papers, theses, etc., along with the laboratory notebooks and
full computational environment, which new work can be produced based on. As a
document format, R Markdown was first introduced in 2012 in the knitr package
(Xie 2022a), which allows embedding code chunks in Markdown documents. The
R Markdown community has been developing rapidly in the past decade. With R
Markdown, we could nowadays present data in all kinds of common documents,
including journal papers, dissertations, slides, posters, websites, etc., in a flexible
way.

R Markdown is built on the shoulder of Markdown, which is a markup language
that defines a set of writing rules. Markdown supports a variety of components. For
example, a single hash (#) or multiple hashes lead the chapter or section title in the
level determined by the number of hashes, and a pair of dollar ($$) inserts an inline
maths expression. Markdown is popular on many online forums, such as GitHub,
Stack Overflow, and the Capital of Statistics (a Chinese forum for statistics), for
asking and answer questions, discussions, and writing documents.

R Markdown extends the usage of Markdown by integrating R into Markdown.
The R Markdown syntax is shown in Table9.2. Technically, R Markdown is com-
posed of a series of packages in R and external tools. For setting up the RMarkdown
environment, the R packages knitr (Xie 2022a), rmarkdown (Allaire et al. 2022),
and tinytex (Xie 2022b), are required as fundamental packages. The knitr pack-
age executes the codes in the R Markdown document (.Rmd) and converts it into
a Markdown document (.md), which is then converted to the desired final output
document by Pandoc, a program which could either be installed independently or
shippedwith RStudio IDE. The entire process is wrapped in the R rmarkdown pack-
age. If the output document is .pdf, Pandoc requires a LATEXdistribution, which
could be installed and managed by the R tinytex package. As beginners, we do not
have to understand every single step in the process. We only have to install some R
packages, and write the data presentation document in a .Rmd document, and click
one button or a hot key, and Tah-dah! A nice product is there.

The installation of the knitr, rmarkdown, and tinytex packages can be found in
Chapter 1.Note that tinytex is rather anRpackage formanaging theLATEXinstallation
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Table 9.2 Basic markdown syntax

You type You get

*italic* Italic

**bold** Bold
$E = mcˆ2$ Equations: E = mc2

[link](https://...) Link

![](image) Insert an image

# Chapter 1 Headings

1. list... Numbered list

- list... Unnumbered list

(ref:fig1) The caption fig.cap =
"(ref:fig1)"

formatted figure caption

\ @ref(fig:fig1) Cross reference for figures/tables

\ #eq:mc2) \ @ref(eq:mc2) Cross reference for equations

[@R-rmarkdown] Citation

than a LATEXdistribution. The tinytex package can install TinyTeX, which is a
lightweight version of LATEX:

tinytex::install_tinytex()

It takes seconds to minutes to complete the installation, which depends on the
network speed and the computer performance.

After the R Markdown environment is set up, we could create a new simple
R Markdown document in RStudio from the menu File -> New File -> R
Markdown. In the dialogue windowwhich pops out, choose Document on the left,
and fill in the blanks on the right with the title and the author (which we could change
later) of the document. Click the desired output format (which we could also change
later), andwe get the .Rmddocument. Click theKnit button on the top bar of the top-
left panel, or press the hot key ctrl+shift+k. If the .Rmd document is compiled
and the output document is displayed, it means the R Markdown environment has
been successfully set up. Otherwise, search the internet for the solutions to any
installation problem.

9.4.2 Structure of an R Markdown Document

A common .Rmd document is composed of two parts, i.e. a header and a body. For
presenting data, the body is the main work space, where we write the statements as
well as display tables and graphs. Other information is written in the header.
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9.4.2.1 Header

The header contains one or multiple fields, including the title, the author(s), and other
metadata, which are written in the syntax of YAML surrounded by a pair of three
dashes ---. A minimal YAML header with one single field output looks like:

---
output: pdf_document
---

Then the output document is a .pdf file. What YAML fields are supported
depends on the R Markdown template. The default template supports the title, the
author, and the date, as typical fields:

---
title: "The title of the document"
author: "Wukong Sun"
date: 2022-02-02
output: pdf_document
---

Then they will appear in the title of the output .pdf document.
Many R packages provide R Markdown templates which support more YAML

fields. The usage of the YAML syntax is beyond the scope of this book. Inmost cases,
we do not have to care much about it but only have to replace the metadata with our
own. For instance, the rticles package (Allaire et al. 2022) provides R Markdown
templates for 40 journals or formats:

rticles::journals()

## [1] "acm" "acs" "aea" "agu"

## [5] "ajs" "amq" "ams" "arxiv"

## [9] "asa" "bioinformatics" "biometrics" "copernicus"

## [13] "ctex" "elsevier" "frontiers" "glossa"

## [17] "ieee" "ims" "informs" "iop"

## [21] "isba" "jasa" "jedm" "joss"

## [25] "jss" "lipics" "lncs" "mdpi"

## [29] "mnras" "oup_v0" "oup_v1" "peerj"

## [33] "pihph" "plos" "pnas" "rjournal"

## [37] "rsos" "rss" "sage" "sim"

## [41] "springer" "tf" "trb" "wellcomeor"

Supposewe are going to submit amanuscript to theElsevier journalPublic Health,
we can, after the installation of the rticles package, create an Rmd document in
RStudio from the menu File -> New File -> R Markdown and choose
From Template on the left of the dialogue window and Elsevier Journal
Article on the right. In the new R Markdown document, we can see the header
like:
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title: Short Paper
author:
- name: Alice Anonymous

email: alice@example.com
affiliation: Some Institute of Technology
footnote: 1

- name: Bob Security
email: bob@example.com
affiliation: Another University

- name: Cat Memes
email: cat@example.com
affiliation: Another University
footnote: 2

- name: Derek Zoolander
email: derek@example.com
affiliation: Some Institute of Technology
footnote: 2

address:
- code: Some Institute of Technology

address: Department, Street, City, State, Zip
- code: Another University

address: Department, Street, City, State, Zip
footnote:
- code: 1

text: "Corresponding Author"
- code: 2

text: "Equal contribution"
abstract: |
This is the abstract.

It consists of two paragraphs.

journal: "Public Health"
date: "2022-12-13"
bibliography: mybibfile.bib
#linenumbers: true
#numbersections: true
csl: elsevier-harvard.csl
output: rticles::elsevier_article
---

Besides the typical fields of title, name, date, and output, this template
supports more, including address and footnote with sub-fields, abstract,
journal,bibliography,linenumber,numbersections,cls, andname,
email, affiliation, as well footnote as sub-fields in author, which
are tailored for an Elsevier journal article. The field journal: "An awesome
journal" is replaced with journal: "Public Health". The value of the
output field is assigned as rticles::elsevier_article, according to
which the knitr package will compile this Rmd document on the basis of the Else-
vier article template in the rticles package. When this document is knitted into a .pdf
document, a LATEXfile (.tex) with supportive documents is created simultaneously,
which is ready for the submission to the journal.
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Many R packages provide user-friendly R Markdown templates which create a
variety of documents for presenting data. Here is a list of some interesting packages,
including the rticles package introduced previously:

• For data reports and manuscripts:

– distill (Dervieux et al. 2022): Scientific and technical writing, native to the web.
– pinp (Eddelbuettel and Balamuta 2020): Create articles in PNAS (Proceedings of
the National Academy of Sciences of the United States of America)-alike style.

– prettydoc (Qiu 2021): Creating tiny yet beautiful documents and vignettes with
various themes and syntax highlight styles in .html.

– rmdformats (Barnier 2022): Templates for creating .html documents with some
extra features such as automatic table of contents, lightboxed figures, dynamic
crosstab helper.

– rmdTemplates (Rodriguez-Sanchez 2020): Templates for scientific manuscripts
and reviews with support for citations and different bibliography styles. It also
clues functions to embed data and Rmarkdown source files within HTML files.

– rticles (Allaire et al. 2022): Templates for authoring journal articles and conference
submissions.

– tint (Eddelbuettel and Gilligan 2022) and tufte (Xie and Allaire 2022): Create
.pdf and .html documents in ‘Tufte’ style.

• For slides:

– binb (Eddelbuettel et al. 2020): Create slides in .pdf based on LATEXBeamer.
– rmdshower (Makeev et al. 2018): Create slides in .html for ‘shower’ presenta-
tions.

– xaringan (Xie 2022c): Create .html slides based on the JavaScript library
‘remark.js’ .

• For posters:

– drposter (Bucior 2020): Generate posters in .html, inspired by ‘reveal.js’ pre-
sentations.

– pagedown (Xie et al. 2022): Generate posters in .html.

• For books and dissertations:

– bookdownplus (Zhao 2020): Templates for books or dissertations in .pdf based
on the bookdown package.

– pagedown: Creates paginated books or dissertations in .html.
– thesisdown (Ismay and Solomon 2022): Thesis template based on the bookdown
package.

– tint and tufte: Create books in .pdf in ‘Tufte’ style.

Note that some packages appear multiple times in the list, because they provide
templates for different channels of presenting data, and some of their rarely-used
features are not listed. For example, the pagedown package provides R Markdown
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templates not only for posters, books, and dissertations, but also for data reports,
letters, resumes, and even business cards. Besides, other packages might also be
of interest. For example, the linl package (Eddelbuettel and Wolen 2019) creates
letters in .pdf based on LATEX‘letter’ class. The blogdown package (Xie et al.
2022) can easily build websites and create blogs in R Markdown. The uiucthemes
package (Balamuta 2020) provides a set of customized templates for documents and
presentations with the colour scheme and identity standards of University of Illinois
at Urbana-Champaign (UIUC). The websiteR Markdown Gallery exhibits how these
output documents look like in portfolios with helpful information for each package1.

The template for the .Rmd document is automatically assigned in the output
field in the YAML header when it is created. Multiple templates are allowed, so that
the same Rmd document can be compiled into different outputs. An example is as
follows:

output:
bookdown::pdf_book: default
bookdown::word_document2: default
bookdown::html_document2:

toc: TRUE
number_sections: FALSE
code_folding: "hide"

It shows that this Rmd document can be compiled into three outputs: a.pdf book
with the default settings (pdf_book: default), a Microsoft Word .docx doc-
ument with the default settings (word_document2: default), and a .html
document with the customized settings (html_document2), all of which are
dependent on the the bookdown package (bookdown). The customized settings
of the .html document include the table of contents (toc: TRUE), section num-
bers (number_sections: FALSE), and folding the code (code_folding:
"hide"). Again, we do not have to master everything about the YAML header, but
only have to fill in the fields with our own information.

9.4.2.2 Body

The basic Markdown syntax could be used in the body. Here we focus on presenting
data with inline R code in statements, tables, and graphs, which are described in
subsequent sections. The usage of other R Markdown syntax is out of the scope of
this book, but we would like to mention that a convenient visual editor has been
available in RStudio IDE since version 1.4 for writing Rmd documents2. Here we
list some supportive packages for writing an .Rmd document:

1 https://rmarkdown.rstudio.com/gallery.html.
2 https://rstudio.github.io/visual-markdown-editing/.

https://rmarkdown.rstudio.com/gallery.html
https://rstudio.github.io/visual-markdown-editing/
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• caseconverter (Yazici 2022, GitHub strboul/caseconverter): Convert text cases to
lower, upper, snake, camel cases

• citr (Aust 2019, GitHub crsh/citr): Search a BibTeX-file and insert formatted
Markdown citations

• remedy (Fay et al. 2018): RStudio addins to simplify Markdown writing
• splitChunk (Olsen 2017, GitHub LudvigOlsen/splitChunk): Split code chunk in
R Markdown

• strcode (Walthert 2022, GitHub lorenzwalthert/strcode): Insert code block sepa-
rators and section titles

• uniscape (Korpela 2022, GitHubmvkorpel/uniscape): Convert non-ASCII strings
to a portable format

• wordcountaddin (Marwick 2022): Count non-code words in Rmd documents
• wrapRmd (Mahr 2022, GitHub tjmahr/WrapRmd): Wrap selected R Markdown
text but don’t insert lines breaks into inline R code

9.5 Presenting Data via Statements

Statement is the most common way of presenting data. Comparing with table and
graph, statement is the most suitable to describe simple observations and the results
of statistical analyses. When the data we are presenting don’t need special emphasis,
or when showing data in a table would make it a very small table, statement is a
better choice.

In an .Rmd document, inline R code is a handy tool for presenting data via state-
ments. Inline R code is written as a piece of R code which is led by “r”, surrounded
by a pair of back sticks (“``”), and embedded in a literal sentence. The inline R
code will be replaced by the returned value when the .Rmd document is knitted into
the desired output document.

In the subsequent sections, we give some recommendations with examples about
how to present summaries, hypothesis tests, and regression models with inline R
code in statements.

9.5.1 Summaries

When we present a summary of numerical data, we often describe the measure of
the center, spread, and the sample size or the degree of the freedom. Section6.3
summarizes the diet data. We could write the summary in the .Rmd document like
this:
The mean height was ‘r mean(diet$height, na.rm = TRUE)‘

cm (sd = ‘r sd(diet$height, na.rm = TRUE)‘,
n = ‘r sum(!is.na(diet$height))‘).
which will be compiled into:

The mean height was 173.3579072 cm (sd = 6.4106339, n = 332).
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The inlineRcode‘r mean(diet$height, na.rm = TRUE)‘ is replaced
by its returned value 173.3579072. So are the other two pieces of R code. The advan-
tage of using the inline R code is that the integration of the data in the statement
is reproducible: we can see exactly where these numbers come from. Any mistakes
could be traced back. If we type them manually or copy and paste them from some-
where else, mistakes might occur and it is hard to track them.

The inline R code is, however, not friendly to read in this example. There are at
least two annoying problems: (1) the inline code is too long, and (2) the returned
values have too many digits. Fortunately, we have the flexibility to improve it. For
example, we can save these values as objects before embed them in the statements.
It is a good practice to organize them in a list:

z <- list(h_mean = round(mean(diet$height, na.rm = TRUE)),
h_sd = round(sd(diet$height, na.rm = TRUE)),
h_n = sum(!is.na(diet$height)))

Then the statement can be written literally as:
The mean height was ‘r z$h_mean‘ cm (sd = ‘r z$h_sd‘,

n = ‘r z$h_n‘).
which will be knitted into the same text as before.

9.5.2 Hypothesis Tests

Hypothesis test results are often reported in journal papers with the key information,
usually including:

• The test statistic (e.g. the t value in a t-test, the F valued in ANOVA),
• The sample size (n) or the degree of freedom (d. f.),
• The significance (i.e. the p-value), and
• The critical values of the test statistic (sometimes).

Here we give some examples of reporting hypothesis tests in statements with the
insertion of R code in a .Rmd document.

Suppose we have a sample of the body height with 10 random subjects, and we
would like to use the t-test to find whether the sample comes from a population with
the mean body height of 170cm. The sample data set is has follows:

x <- c(176.8, 181.4, 168.7, 187.8, 167.6, 180.3, 172.5,
165.4, 175.9, 165.9)
mu <- 170
xt <- t.test(x, mu = mu)

Most, if not all, of the hypothesis test functions in R return a list, such as
t.test() for the Student’s t-test,var.test() for the F-test,wilcox.test()
for theWilcoxon test,chisq.test() for theχ2 test, and aov() for ANOVA. The
returned list contains the key information of the test.We could extract and re-organize
it in a new list for future use. For example:
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z1 <- list(n = length(x), # sample size
m = round(xt$estimate, 1), # sample mean
s = round(sd(x), 1 ), # sample standard deviation
ci = round(xt$conf.int, 1), # confidence interval
t = round(xt$statistic, 3), # t score
df = xt$parameter, # degree of freedom
p = round(xt$p.value, 3)) # p-value

Thus, the statement for the t-test can be written literally as:
A sample of ‘r z1$n‘ random subjects shows a mean of ‘r

z1$m‘ cm ($sd = ‘r z1$s‘$ cm, 95% CI ‘r z1$ci[1]‘ to
‘r z1$ci [2]‘ cm). A comparison was made between the
sample mean and the previous study which possesses a
population mean of ‘r mu‘ cm. A single sample $t$ test
was performed($t = ‘r z1$t‘$,$df = ‘r z1$df‘$, $p$-value
= ‘r z1$p‘) leading to the conclusion that the sample
comes from the same population.

in a .Rmd document, which is compiled into:

A sample of 10 random subjects shows a mean of 174.2 cm (sd = 7.5 cm, 95% CI 168.9 to
179.6 cm). A comparison was made between the sample mean and the previous study which
possesses a population mean of 170 cm. A single sample t test was performed (t = 1.783,
d f = 9, p-value = 0.108) leading to the conclusion that the sample comes from the same
population.

in the output document.
Similarly, the result of an unpaired sample t-test could be reported like:
We randomly allocated ‘r z2$n‘ subjects to either

receive treatment with a particular bronchodilater
(mean = ‘r z2$m1‘, $sd = ‘r z2$s1‘$)or receive a
placebo(mean = ‘r z2$m2‘, $sd = ‘r z2$s2‘$).An F
test($F = ‘r z2$F‘$, $p$-value = ‘r z2$Fp‘)indicated
that both samples did not have significantly different
variances. A two sample independent t test produced a
statistically significant result at α = 0.05 ($t =
‘r z2$p‘$ $df = ‘r z2$df‘$ , $p$-value = ‘r z2$p‘)
leading to the conclusion that the two samples did not
come from the sample population.

as long as we prepare the t-test result in a list z2 in advance.

9.5.3 Regressions

R generates extensive outputs for SLR models (see Section 7.4), of which some
results are actually redundant and can be ignored, because the lm() function deals
with MLR models as well, and the SLR models are treated as a special case. For
instance, the SLR model gives the following output:



170 9 Presenting Data

summary(lm_ba)

##

## Call:

## lm(formula = BPSysAve ˜ Age, data = dtf_sub)

##

## Residuals:

## Min 1Q Median 3Q Max

## -21.667 -9.815 -0.652 10.168 41.612

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 102.3386 5.1322 19.94 < 2e-16 ***

## Age 0.4385 0.1105 3.97 0.000221 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 14.25 on 52 degrees of freedom

## (6 observations deleted due to missingness)

## Multiple R-squared: 0.2326, Adjusted R-squared: 0.2179

## F-statistic: 15.76 on 1 and 52 DF, p-value: 0.0002214

Not all the output information has to be presented for the SLR model. The t-test
for the slope has the same meaning here as the F-test, which is indicated in the
identical p-values (2.21× 10−4), and the equality of the F value (15.764) and the
square of t-value (3.97). The adjusted R2 is only used for the MLR models. It is
usually sufficient to only present the t-test for the significance of the regression, the
estimates of the slope and the intercept, and R2 for how well the model fits the data.

After deciding what information to be presented, nowwemust find how to extract
them and embed them into the statement. The results of the regression model can be
assigned to an object as a list:

lm_bas <- summary(lm_ba)

str(lm_bas)

## List of 12

## $ call : language lm(formula = BPSysAve ˜ Age, data = dtf_sub)

## $ terms :Classes ’terms’, ’formula’ language BPSysAve ˜ Age

## .. ..- attr(*, "variables")= language list(BPSysAve, Age)

## .. ..- attr(*, "factors")= int [1:2, 1] 0 1

## .. .. ..- attr(*, "dimnames")=List of 2

## .. .. .. ..$ : chr [1:2] "BPSysAve" "Age"

## .. .. .. ..$ : chr "Age"

## .. ..- attr(*, "term.labels")= chr "Age"

## .. ..- attr(*, "order")= int 1

## .. ..- attr(*, "intercept")= int 1

## .. ..- attr(*, "response")= int 1

## .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>

## .. ..- attr(*, "predvars")= language list(BPSysAve, Age)

## .. ..- attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric"

## .. .. ..- attr(*, "names")= chr [1:2] "BPSysAve" "Age"

## $ residuals : Named num [1:54] -15.897 0.452 9.575 17.579 -14.372 ...

## ..- attr(*, "names")= chr [1:54] "1" "2" "3" "4" ...

## $ coefficients : num [1:2, 1:4] 102.339 0.439 5.132 0.11 19.94 ...

## ..- attr(*, "dimnames")=List of 2

## .. ..$ : chr [1:2] "(Intercept)" "Age"
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## .. ..$ : chr [1:4] "Estimate" "Std. Error" "t value" "Pr(>|t|)"

## $ aliased : Named logi [1:2] FALSE FALSE

## ..- attr(*, "names")= chr [1:2] "(Intercept)" "Age"

## $ sigma : num 14.3

## $ df : int [1:3] 2 52 2

## $ r.squared : num 0.233

## $ adj.r.squared: num 0.218

## $ fstatistic : Named num [1:3] 15.8 1 52

## ..- attr(*, "names")= chr [1:3] "value" "numdf" "dendf"

## $ cov.unscaled : num [1:2, 1:2] 0.12963 -0.00258 -0.00258 0.00006

## ..- attr(*, "dimnames")=List of 2

## .. ..$ : chr [1:2] "(Intercept)" "Age"

## .. ..$ : chr [1:2] "(Intercept)" "Age"

## $ na.action : ’omit’ Named int [1:6] 14 17 21 27 28 59

## ..- attr(*, "names")= chr [1:6] "14" "17" "21" "27" ...

## - attr(*, "class")= chr "summary.lm"

The structure of the object lm_bas shows that it is a lists with 12 elements (List
of 12). The names of the list elements are shown after $. For example, we could
find the R2 in $ r.squared, where we could extract it as:

z$lm_r2 <- round(lm_bas$r.squared, 3)

We can extract the p-value, the F-value, the t-value, and other information in a
similar way:

z$lm_p <- round(lm_bas$coefficients[2, 4], 6)
z$lm_f <- round(lm_bas$fstatistic[1], 3)
z$lm_t <- round(lm_bas$coefficients[2, 3], 2)
z$lm_n <- length(lm_bas$residuals)
z$lm_df <- lm_bas$df[1:2]
z$lm_b0 <- round(lm_bas$coefficients[1, 1])
z$lm_b1 <- signif(lm_bas$coefficients[2, 1], digits = 3)

Thus, the SLR model result could be presented in a statement like:

We obtained ‘r z$lm_n‘ subjects with the aim to produce a regression model predicting
the the average systolic blood pressure given the age. The regression equation
indicates that only ‘r z$lm_r2 * 100‘ % of the variability in the average systolic
blood pressure can be accounted for by variation in the age (Slope: ‘r z$lm_b0‘,
Intercept: ‘r z$lm_b1‘, $F_2, 52 = ‘r z$lm_f‘$, $p = ‘r z$lm_p‘$,
$Rˆ2 = ‘r z$lm_r2‘$).

which will be knitted into:

Weobtained 54 subjectswith the aim to produce a regressionmodel predicting the the average
systolic blood pressure given the age. The regression equation indicates that only 23.3% of
the variability in the average systolic blood pressure can be accounted for by variation in the
age (Slope: 102, Intercept: 0.439, F2,52 = 15.764, p = 2.21× 10−4, R2 = 0.233).

The subscripts in F2,52 indicate the F-testwith numeratord. f. = 2 and the denom-
inator d. f. = 52.

The R package equatiomatic (Anderson et al. 2022) provides a more straightfor-
ward and convenient way for inserting a regressed model as a maths expression in
.Rmd. For example, we could write the following chunk:
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```r
equatiomatic::extract_eq(lm_ba, use_coefs = TRUE)
```

and we get in the output document an equation with the fitted coefficients:

̂BPSysAve = 102.34+ 0.44(Age) (9.1)

This method could be used for other regression models as well, such as stats::
glm(), MASS::polr(), and forecast::Arima().

9.6 Presenting Data via Tables

Tables, consisting of rows and columns, are often used to compare variables and
organize data in a structured way. When the data are too much to be presented in
statements, tables might be more preferred. For example, either a statement (prefer-
ably) or a simple table can present a one-way ANOVA table, while a table might be
the only way for presenting multiple-way ANOVA results.

Tables are especially useful for presenting multiple dimensional results, which
are challenging to be described in statements. The key principle of choosing a table
is that the table makes it easy for the readers to understand the data. Thus, tables are
often used to show precise values or specific data in a small space, to compare data
values across shared characteristics, and to show the presence or absence of specific
characteristics.

As a basic rule for tables in journal papers, data reports, and dissertations, every
table is identified by a number and a caption. This rule does not have to be inherited
in slides and posters. In public health science, observations in experimental groups
or treatments are placed by rows, and statistics are placed by columns. Units of
measurements must be clearly clarified, usually in the header (column names).

Here are some tips on constructing effective tables:

1. The caption should clearly describe what the table is about.
2. The headermust be carefully designed. Itmust be descriptive and clearly indicate

the nature of the data.
3. The information displayed in the table should be independent from the para-

graphs. The readers could understand the table even without reading the entire
paper.

4. Table footnotes could offer additional information.
5. A clean layout with sufficient spacing between columns and rows and legible

fonts could help readers.
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Table 9.3 Summary of the NHANES dataset

Variable Mean Standard deviation Sample size

Age 37 22 10,000

Height 162 20 9647

Weight 71.0 29.1 9922

BPSysAve 118 17 8551

In an .Rmd document, a table can be manually created with the basic Markdown
syntax:

| Variable | Mean | Standard deviation | Sample Size |
|----------|------|--------------------|-------------|
| Age | 37 | 22 | 10000 |
| Height | 162 | 20 | 9647 |
| Weight | 71.0 | 29.1 | 9922 |
| BPSysAve | 118 | 17 | 8551 |

: (\#tab:summary1) Summary of the NHANES dataset

It is knitted into Table9.3. The last line beginning with : (#tab:summary1)
gives the caption Summary of the NHANES dataset and assigns an auto-
matic number as well as a unique label ((\ #tab:summary1)) to this table.

More frequently, we use the knitr::kable() function for presenting a table
in a .Rmd document, as long as the table has been prepared as a matrix or a data
frame. For example, Table9.3 can also be created with the code chunk:

```r summary1
library(tibble)
dtf_summary1 <- tribble(
~ Variable, ~ Mean, ~ `Standard deviation`, ~ `Sample Size`,
'Age' , 37 , 22 , 10000 ,
'Height' , 162 , 20 , 9647 ,
'Weight' , 71.0 , 29.1 , 9922 ,
'BPSysAve' , 118 , 17 , 8551 ,

)
knitr::kable(dtf_summary1, format = 'latex', caption =
'Summary of the NHANES dataset')
```

In this example, the table label is given in the chunk option {r summary1}, and
the table caption is specified as an argument of the knitr::kable() function.

Some functions create ready-for-print tables directly. For example, the psych::
describe() function creates a summary table, and we could insert it into the Rmd
document like this:

```r summary2
dtf_NHANES<- psych::describe(NHANES[, c('Age', 'Height', 'Weight', 'BPSysAve')])
knitr::kable(dtf_NHANES[, 1:5],

format = 'latex',
caption = 'Summary for NHANES dataset by the psych package.')

```
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Even if the table has to be createdmanually, we could firstlymake it in spreadsheet
software (e.g.Microsoft Excel, LibreOffice) and then import it into R as a data frame.

A list of useful R package for tables in Rmd documents is as follows:

• beautifyR (Weigand 2020, GitHub mwip/beautifyR): RStudio addin for format-
ting R Markdown tables and comments

• flextable (Gohel and Skintzos 2022): Easily create tables for reporting and publi-
cations

• gt (Iannone et al. 2022): Easily generate information-rich, publication-quality
tables from R

• inserttable (Busetto 2022, GitHub lbusett/insert_table): RStudio add-in facilitat-
ing insertion of nicely formatted tables in R markdown documents or plain R
scripts.

• kableExtra (Zhu 2021): Construct complex tables with ‘kable’ and pipe syntax
• stargazer (Hlavac 2022):Well-formatted regression and summary statistics tables

For example, the stargazer::stargazer() creates a well organized table
for the linear regression result:

stargazer::stargazer(lm_ba,
header = FALSE,
label = 'summary3',
title = 'Summary of the linear regression.')

A table can deliver more information than a statement with the same space. Some-
times need an additional paragraph to describe the context and content of the table
as well as the methods applied on data to produce the table.

9.7 Presenting Data via Graphs

Graphs are a common way of presenting data in science. A graph can express a lot
of information in limited space. In many cases, a reader’s brief view on the graphs
determines whether to complete the reading. Compared with statements and tables,
graphs are often used to summarize large data sets, to present a visual explanation
of events or features, and to show trends, patterns or relationships when the general
pattern is more important than exact values. Using graphs to visualize large amounts
of complex data is easier than poring over spreadsheets or reports. Nowadays, inter-
active graphs allow us to take the concept a step further by using technology to drill
down into charts and graphs for more details, interactively changing what data we
see and how it’s processed.

Like a table, a graph is also identifiedwith a number and a caption in journal papers,
data reports, and dissertations, because they are cross-referred in the statements.
Although the graph number and caption are not mandatory in slides and posters,
they would be helpful in explaining them in the talks. A graph caption contains not
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only a title, but also the explanations of the elements in the graph. For example, if
there are sub-figures, each figure should be labelled with a letter, which should be
clarified in the caption. If there aremultiple colours, line types, or plotting characters,
they should be explained in the caption unless they are self-explanatory. Most of the
graphs in Chap.8 follow these rules.

Here are some tips for presenting data via graphs:

• It is crucial to choose an appropriate graph type. Considerwhat kind of information
we want to show to the readers before starting making a graph. Is it a comparison
of categories between data, or is there a certain data relationship, or do you want
to see the distribution of data, or is the data distributed over time, space, and
geographical information? When the answer is clear, it becomes easy to choose a
graph type.

• Give sufficient information in the caption, legends, and axis labels. The axes in a
graph must be labelled with the variable names or meanings and the units, if any.
All the texts in the graph must be readable. Avoid obscure abbreviations.

• All the parts of the graph must be legible and clear. Never use a distracting back-
ground. Use appropriate colours. Principles and methods for choosing colours
involve a lot of knowledge in art and design, which is out of the scope of this book,
but some ideas are introduced in Chapter 8.

• Do not blindly pursue unnecessarily complex graphs, which might break the orig-
inal aim for presenting data. For example, beginners may think that 3D graphs are
more trendy than 2D ones. There are times when a simple table may present data
more clearly and accurately than an eye-catching graph.

• Reduce redundant information and highlight the key points. Redundant informa-
tion results in losing the focus and disturbing the readers’ mind in reflecting the
key points.

R Markdown supports three major methods for presenting data in graphs.
When there is an existing image file, we can insert it using the basic Markdown

syntax. Suppose we have an image file named img1.png located in the image/
folder in the project path. The following Markdown syntax can insert the image:

![](image/img1.png)

This method is straightforward. However, we can hardly control the appearance,
e.g. the size, the alignment, and the location, of the image.

The second method is the knitr::include_graphics() function, which
provides sufficient setting for controlling the appearance:

```{r img1, out.width='60%', fig.cap='Image 1.', fig.align='center'}
knitr::include_graphics('image/img1.png')
```

The chunk options determines the label (img1), the width ('60%' means 60%
of the page width), the caption (Image 1.), and the alignment ('center') of
the figure. Multiple images could be inserted side by side if we customize the
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out.width and results. The following chunk inserts four images with the
same width:

```{r img4, out.width='25%', results='hold', fig.cap='Windrose.', fig.align='center'}
knitr::include_graphics(c('img1.png', 'img2.png', 'img3.png', 'img4.png'))
```

When the image is a hyperlink, knitr::include_graphics('url_of_
the_image') works fine for the .html output. If the output is .pdf, it does not
work. In such a case,wecanuse thebookdownplus::include_image('url_
of_the_image') function, which firstly downloads the remote image to the local
disk and then inserts it into the output document.

These twomethods, i.e. the basicMarkdownmethodand theknitr::include_
graphics() function, are only applicable for existing image files. We can, of
course, plot graphs and save them as image files by R commands before inserting
them, but more conveniently, we can directly run them in the code chunk within the
.Rmd document, and they will be knitted as graphs which are inserted in the output
document.

For example, we could write in R Markdown:

```r
plot(women)
```

and a graph is automatically inserted into the output document. The chunk options
can be utilized as well as the previous examples.

In publications, we often have to combine multiple plots into one, either to better
express our ideas, or to save space. Figure8.15 shows an example. It is a graph
including two sub-figures, which are labelled as A and B. The three colours of the
filled areas and the lines indicate three countries. Thus, we insert it into this book by
using the following code chunk:

```{r, fig.cap='Line chart and area plot.'}
p1 + p2 + plot_annotation(tag_levels = 'A')
```

Here we use the + operator, supported by the patchwork package (Pedersen
2022), for placing two ggplot2 graphs side by side horizontally. This package also
provides the function plot_annotation(), which adds labels to the sub-figures
automatically. Note that patchwork only works for graphs created by ggplot2. Other
packages, such asRmisc (Hope 2022), ggpubr (Kassambara 2022), cowplot (Wilke
2020), grid, and gridExtra (Auguie 2017), also provide solutions for combining
multiple ggplot2 graphs and fulfil the complicated requirements of graph layouts.

The graphs plotted with base R functions should use other functions for com-
bining sub-figures with labels. The most often used function is par(mfrow) or
par(mfcol) for a simple layout, which displays grids in an equal size, and
layout() for complicated one, which displays grids in customized sizes. Here
are two examples:
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# Organize 6 figures with par()
par(mfrow = c(2, 3)) # 2 rows, 3 columns
hist(women$height)
boxplot(women$height)
plot(women$height, women$weight)
plot(0, type = 'n', axes = FALSE, xlab = '', ylab = '')
barplot(VADeaths)
pie(VADeaths[, 1])

# Organize 6 figures with layout()
layout(matrix(1:6, nrow = 2), widths = c(3, 2, 1))
hist(women$height)
boxplot(women$height)
plot(women$height, women$weight)
plot(0, type = 'n', axes = FALSE, xlab = '', ylab = '')
barplot(VADeaths)
pie(VADeaths[, 1])

9.8 Integration of Statements, Tables, and Graphs

Statements, tables, and graphs are often mixed and integrated into each other in data
reports, journal papers, and dissertations, so that they could complement each other
and present data in a thorough way.

Cross-reference is the most common way of integrating tables and graphs into
statements. In a .Rmddocument, if a graph or a table is produced by a code chunkwith
the ID fig-id or tab-id, then we could use the syntax \ @ref(fig:fig-id)
or \ @ref(tab:tab-id) for inserting the cross-reference into a statement, from
where the readers not only know the values of the statistics, but also visually see the
data in the referred graph or table.

For example, in Sect. 6.3 we summarizes the diet data. We could write:

```r fig-summary, fig.height=6, fig.cap=’Visualization of the raw diet data.’
data(diet, package = "Epi")
diet[, c('height', 'weight', 'job', 'energy.grp')] |>
fecitr::plot_summary(if_box = TRUE)

```

The mean height was 173.4 cm (sd = 6.4 cm, n = 332, Figure \@ref(fig:fig-summary)).

where fig-summary is the chunk ID. In the output document, \ @ref(fig:
fig-summary) is automatically replaced with the correct figure number, such as.

The mean height was 173.4 cm (sd = 6.4 cm, n = 332, Figure 1).

Occasionally, we have to insert a statement, usually as a footnote, into a table or
a graph apart from the caption, or combine a table with a graph. This task could be
accomplished by the grid and gridExtra packages. The following chunk in Rmd
could display a table beside a graph with additional statements at the top and the
bottom (Fig. 9.1).
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Fig. 9.1 Display statements, a table, and a graph together

library(gridExtra)
library(grid)
grid.arrange(
tableGrob(women),
ggplot(women) + geom_point(aes(height, weight)),
ncol = 2,
widths = c(1.5, 1),
top = "Title of the page",
bottom = textGrob(

"this footnote is right-justified",
gp = gpar(fontface = 3, fontsize = 9),
hjust = 1,
x = 1))
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Chapter 10
Managing Data

10.1 Chapter Highlights

• Illustrate the basic flow and key elements of data management,
• Make sense of the importance and the means of recording metadata, and
• Utilize R packages for project management.

10.2 Introduction

Managing data is the process of organizing, managing and utilizing data at an optimal
way to complete a project within the required scope, time and costs (Basu 2016). It is
an integral component of a research or any other project, which is carried out during
the whole life cycle of the data from planning, collection, analysis, dissemination,
and depositing.

Managing data in an appropriate and timely way is significantly crucial for public
health researches and related work. It enables our colleagues, sponsors, or some-
times the publishers to understand our research findings and values. For instance, it
is common that public health researchers might have some funding and need the col-
laboration of people from various fields, such as epidemiologists, health economists,
and health policy-makers. Consequently, the researchers need to demonstrate stage
results and achievements for other people, and a project with a logical structure as
well as efficient and secure access is required. Managing data also helps to ensure
the safety and security of the data and increase the data processing efficiency. For
example, some qualitative studies may include interviews involving sensitive topics
that need to ensure confidentiality. We often get datasets that are collected and saved
in various formats during different programs and periods by different people. Some
variables are labelled with abbreviations or cryptic codes without documentations,
which nobody can understand after a long time. Moreover, some research projects
might last for several years, such as the cohort study needing a long follow-up period.
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Thus, data categorized and documented well could reducemistakes and improve effi-
ciency during the follow-up studies. A good data management, especially in a public
health research project, enables researchers to precisely achieve the research objec-
tives, control the process and quality of the researchwith the limited financial, human
and other various types of resources.

Managing data plays a key role throughout the project stages, including the project
development, implementation, and closeout (Basu 2016). The project development
refers to the stage that conducts some preparation and planning for the whole project,
which often contains drafting data management plans. During the project implemen-
tation stage, the efforts should be put into improving the communication efficiency,
controlling the data quality, and implementing the data management plan, as well as
managing crisis that might occur. Finally, when the project comes into the closeout
stage, all the data should be stored or disseminated.

10.3 Data Management Framework

A clear logical framework is a tool to improve the data management and ensure the
project implementation. It breaks down the blue picture of the project into step-by-
step practical action plans. Basically, the logical framework includes the input data
as well as the metadata, the processing code, the output documents, the means to
obtain the required resources, the assumption of the project.

R packages are available for helping managing data and projects in a logical way,
such as ProjectTemplate (Auguie 2017), makeProject (Silverman 2012), rrtools
(Marwick 2019), and workflowr (Blischak et al. 2021). The packages devtools
(Wickham et al. 2022b) and usethis (Wickham et al. 2022a) suggest using the R
package structure for organizing projects. In this chapter we introduce two packages:
prodigenr (Johnston 2022) and rosr (Zhao 2021).

10.3.1 The prodigenr Package

The prodigenr package is named as an abbreviation of the Project directory
generator. We could create a prodigenr project either from the RStudio menu
RStudio - File - New Project - New Directory - Scienti-
fic Analysis Project using prodigenr or with the command:

prodigenr::setup_project("dph")

Then a structured directory dph/ is created. The sub-directories and files in it
could be viewed either by the file browser or by the R package data.tree (Glur 2020):
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mydir <- list.files('dph', full.names = TRUE, recursive = TRUE)
mytree <- data.tree::as.Node(data.frame(pathString = mydir))
print(mytree)

1 dph

2 ¦--data-raw

3 ¦ |--README.md

4 ¦--data

5 ¦ |--README.md

6 ¦--DESCRIPTION

7 ¦--doc

8 ¦ |--README.md

9 ¦--dph.Rproj

10 ¦--R

11 ¦ |--README.md

12 ¦--README.md

13 |--TODO.md

A recommended work flow of prodigenr is as follows:

1. Write up the analysis and associated written explanations of the results in the
abstract, poster, slides, or manuscript .Rmd files in the doc/ folder.

2. Convert any piece of code which we use more than once or is fairly complex
into a function. Put this new function into a file (or a functions.R file) in the
R/ directory. Load that function using devtools::load_all() (hotkey:
ctrl+shift+l).

3. Fetch and wrangle the data in the R/fetch_data.R. Access the data using
the devtools::load_all() function.

4. Create more .Rmd files in the doc/ folder to add analyses that will supplement
the main document or that are exploratory.

5. Knit the .Rmd files in doc/. Now we have our final abstract, poster, slides, or
manuscript to use for our research.

10.3.2 The rosr Package

The rosr package is named as the abbreviation of Create Reproducible Research
Projects. It is an R package for creating reproducible academic project with inte-
grated various academic elements, including data, bibliography, codes, images,
manuscripts, dissertations, slides and so on. These elements are well connected so
that they can be easily synchronized and updated. Users don’t have to repeat copying
and pasting their results and figures from time to time. It will be easy for the scientific
researchers to use, even if they are R beginners, or even non-R-users.



184 10 Managing Data

A rosr project could be created either via the RStudio tool bar Addins -
Create a rosr project or the command:

rosr::create_rosr('dph2')

Then a structured directory dph2/ is created with demonstrative files including
some Rmd documents. The sub-directories and files look like:

1 dph2

2 |---dph2.Rproj

3 |--bib

4 | °--rosr.bib

5 |--data

6 | °--rosr.csv

7 |--equation

8 | °--rosr-eq.Rmd

9 |--manuscript

10 | °--copernicus

...

17 |--poster

18 | °--drposter

...

43 |--R

44 | °--rosr.R

45 |--rpkg

...

51 °--slide

52 °--xaringan

Bydefault, the demonstrationRmddocuments are only created rather than knitted.
If we want to see the output demonstrative journal manuscript, slides, etc., we could
set the argument if_render = TRUE:

rosr::create_rosr('dph2', if_render = TRUE)

It might take some minutes to finish rendering the documents if it is the first time
you use the package.

A recommended work flow of rosr is as follows:

1. Prepare data in the data/ folder. Create meta data.
2. Write R scripts in the R/ folder.
3. Prepare reference libraries in the bib/ folder.
4. Prepare equations in the equation/ folder.
5. Prepare external images in the image/ folder.
6. Use these materials in the manuscript in the manuscript/ folder.
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10.4 Raw Data

During the project development stage, only the data planning is needed. A data
management plan basically includes what to do with the data to achieve the aims
better. The plan’s components include the type and form of the data people plan to
collect, the file formats that are convenient for the data analysis, and the size of the
data, which all have been discussed in the previous chapters. Additionally, project
and data documentation, which are also called metadata, write down all the above
explanatory information in texts and are also critical in the data management plan.
The project documentation describes the whole project and data set, while the data
documentation is the detailed explanation of the data set. Both documentations make
the data have context and be meaningful all the time.

10.5 Metadata

10.5.1 Introduction

Metadata are the data that describe other data. R provides good examples for showing
the metadata for built-in datasets. For example, we use the help() function to view
the metadata for the Vanderpump dataset shipped by the pubh package:

help(Vanderpump, package = 'pubh')

The page for the metadata is displayed with multiple sections in the help tab,
including:

• Title, which briefly describes what data set it is (“Smoking andmortality inWhick-
ham, England”);

• Description, which describes the dataset in a statement;
• Usage, which shows how to load it in R;
• Format, which describes in detail the meaning, the unit, and the factor levels of
each column;

• Source, which lists the references from which the dataset comes, and
• Examples, which demonstrates how to use this dataset in R.

In the subsequent sections, we demonstrate a variety ways of documentating
metadata with R. Here we prepare the dataset for example. We can download a data
frame of life expectancy at birth with the WHO package.

LEB <- WHO::get_data("WHOSIS_000001")

For simplicity,we removeunnecessary columns and convert the character columns
into factors:
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LEB <- as.data.frame(unclass(LEB[, -c(5, 6)]),
stringsAsFactors = TRUE)

10.5.2 Metadata in Variable Names

The simplest way for savingmetadata is including them in the variables. For example,
the original column names of ‘LEB’ are:

names(LEB)

## [1] "region" "year" "country"
## [4] "sex" "value" "worldbankincomegroup"

The column value, which is not clear to the users, needs more explanation.
Thus, this column could be renamed as:

LEB2 <- LEB
names(LEB2)[5] <- 'Life expectancy (years)'

The new data frame LEB2 could be exported either as a .csv file or a .xlsx file,
in which the metadata are shipped in the column names. This method is easy and
straightforward, but the usage is very limited. When there is more information in
the metadata, the variable names could be too long for further data analysis and
visualization.

10.5.3 Metadata in Labels

Metadata could be saved in a variable label, which serves as an alias of variable
name. The sjlabelled package provides a function var_label(), which adds a
label as attribute (named “label”) to the variable. For example, we could add a label
“Life expectancy (years)” to the variable value:

require(sjlabelled)
LEB3 <- var_labels(LEB,

value = "Life expectancy (years)")
str(LEB3$value)

## num [1:2329] 82.8 54.6 55.4 55 46.8 52.1 49.3 74.2 78.3 76.2 ...
## - attr(*, "label")= chr "Life expectancy (years)"
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get_label(LEB3)

## region year country
## "" "" ""
## sex value worldbankincomegroup
## "" "Life expectancy (years)" ""

LEB3could be exported as a.rdaor.rdsfile, inwhich themetadata are shipped
as column labels. The labels could contain a long plain string as the metadata, and
the labels do not affect the usage of the column names. It is very convenient for R
users. The limitation is that .rda and .rds files are only supported by R; if we
share them with non-R users, it might a problem for them to reuse the data.

10.5.4 Metadata in Headers or Independent Files

A common way for recording metadata is saving them in the header of a plain text
file which includes the data. For example, we could save LEB as a plain text file:

write.csv(LEB, 'LEB.csv', row.names = FALSE, quote = FALSE)

Then, open LEB.csv in a text editor (e.g. NotePad in Windows OS), and insert
the metadata at the beginning of the file:

The numbers of deaths estimated from life table
and population by age groups are aggregated by
relevant region in order to compute regional life tables.
Variables:
value: Value of the life expectancy at birth, in years.
Other variables are self-explanary.
Data source: \url{https://www.who.int/data/gho/indicator-metadata-registry/imr-
details/65}

region,year,country,sex,value,worldbankincomegroup
Americas,1920,Canada,Both sexes,82.8,NA
Eastern Mediterranean,2000,Afghanistan,Male,54.6,NA
Eastern Mediterranean,2000,Afghanistan,Female,55.4,NA

Now LEB.csv ships both the data and the metadata. As plain text files can be
opened with any text editor, and this method is not limited to R users.

R users can import this .csv file with skipping the metadata in the first six lines:

read.csv('LEB.csv', skip = 6)

Alternatively, the metadata can be saved independently in another document,
which must always be shipped with the data file.
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10.5.5 Metadata in R Packages

Datasets shipped in packages are friendly to R users. Thus, we could develop an R
package that ships our own datasets (see Wickham 2015). Here we give an example
showing how to do it in an R package.

AnewRpackage canbe created from theRStudiomenuFile - New Project
- New Directory - R Package. Fill in the blanks with the package name
phdata and the path D:/temp and confirm creating it. A project with the package
name phdata is opened with a demonstration hello.R file. The subsequent work
is performed in this project.

Firstly, we save the dataset as R built-in data format in the folder data/:

save(LEB, file = 'data/LEB.rda')

Then, delete everything in hello.R, and type metadata into it. A minimal tem-
plate looks like:

#' Title
#'
#' Short description.
#'
#' @format
#'
#' \describe{
#' \item{item name}{explanation}
#' \item{item name}{explanation}
#' }
#' @source \url{}
"dataset_name"

Let’s fill in the fields with the metadata of LEB. The format can be found via:

class(LEB)

## [1] "data.frame"

dim(LEB)

## [1] 2329 6

It is a data framewith 2329 rows and 6 variables. The description for each variable
could be found via:
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str(LEB)

## ’data.frame’: 2329 obs. of 6 variables:

## $ region : Factor w/ 7 levels "Africa","Americas",..: 2 3 3 3 1 1 1 4 4 4 ...

## $ year : num 1920 2000 2000 2000 2000 2000 2000 2010 2010 2010 ...

## $ country : Factor w/ 183 levels "Afghanistan",..: 31 1 1 1 4 4 4 2 2 2 ...

## $ sex : Factor w/ 3 levels "Both sexes","Female",..: 1 3 2 1 3 2 1 3 2 1 ...

## $ value : num 82.8 54.6 55.4 55 46.8 52.1 49.3 74.2 78.3 76.2 ...

## $ worldbankincomegroup: Factor w/ 5 levels "Global","High-income",..: NA NA NA NA NA NA NA NA NA NA ...

The variables year and value are numerical and other ones are categorical.
The levels of a factor can be obtained either by the levels() function or the
unique() function. It might be boring to fill in the \ item{}{}with these pieces
of information. Here we create two self-defined functions to simplify this step:

roxygen_colname <- function(x) {
y <- paste0("#' \\item{", names(x), "}{}")
writeLines(y, 'clipboard')

}
roxygen_fct <- function(x){
y <- paste("factor with", nlevels(x), "levels:",

paste(levels(x), collapse = ', '))
writeLines(y, 'clipboard')

}

Theroxygen_colname() functiongenerates a character vector of all the items
with the variable names in the description and writes the vector into the clipboard:

roxygen_colname(LEB)

The following text is now in the clipboard:

#' \item{region}{}
#' \item{year}{}
#' \item{country}{}
#' \item{sex}{}
#' \item{value}{}
#' \item{worldbankincomegroup}{}

Then simply paste it into the \ describe{} field of hello.R.
The roxygen_fct() function creates a description for a factor. For example,

roxygen_fct(LEB$sex) generates the following text in the clipboard:

factor with 3 levels: Both sexes, Female, Male

which can be simply pasted into the field \ item{sex}{} as \ item{sex}
{factor with 3 levels: Both sexes, Female, Male}. The des-
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criptions for all the categorical variables can be generated in the similar way. Those
for the numerical variables must be filled manually.

Finally, hello.R looks like this:

#' Life expectancy at birth

#'

#' The numbers of deaths estimated from life table and population by age groups are aggregated by relevant region in order to compute regional life tables.

#'

#' @format A data frame with 2329 rows and 6 variables:

#'

#' \describe{

#' \item{region}{Region name, factor with 7 levels: "Africa", "Americas", "Eastern Mediterranean", "Europe", "Global", "South-East Asia", "Western Pacific".}

#' \item{year}{Year.}

#' \item{country}{Country name, factor with 183 levels of the county names in the world.}

#' \item{sex}{Sex, factor with 3 levels: "Both sexes", "Female", "Male".}

#' \item{value}{Value of the life expectancy at birth, in years.}

#' \item{worldbankincomegroup}{World Bank income group, factor with 5 levels: Global, High-income, Low-income, Lower-middle-income, Upper-middle-income}

#' }

#' @source \url{https://www.who.int/data/gho/indicator-metadata-registry/imr-details/65}

"LEB"

Save the change, and document the package with:

devtools::document()

The package is completed.
Now the folder of the package project D:/temp/phdata can now be shared

and reused. The functiondevtools::load_all() can load the packagewithout
installation, the data() function can load the datasets in the package, and the
help() function can display the metadata in a friendly way:

devtools::load_all('D:/temp/phdata')
data(LEB)
help(LEB)

10.6 Scripts

The R commands for working with data are saved in R script files. An R script file,
with the extension name of .r or .R, contains a set of R commands in one single
file. As it is technically a plain text file, it could be viewed and edited with any plain
text editor, such as NotePad in Windows OS. Thus, an R script file is cross platform
and software-independent: we even can read it without installing R. Not only can it
process our data, but also does it tell us how to process the data, if only there are
sufficient comments in it.

10.7 Version Control

Multiple versions of data often exist in the process of research. Although a good
practice is suggested to preserve the raw data in the original format, it is not surprising
that we accidentally change them due to carelessness or the unawareness of their
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importance, especially for junior researchers. When cleaning and analyzing data, we
create step-by-step intermediate data files and update them from time to time. More
usually, multiple versions of the documents for presenting data are produced during
the collaboration with the co-authors, mainly the supervisors or the supervisees and
reviewers.

The idea of version control came from software development, where tracking and
managing changes to software code is very necessary. Version control software tools
have nowadays extended their usage from programming to academic data manage-
ment and scientific writing. For R users, version control helps researchers manage
the changes in data, R scripts, LATEXequations, reference libraries, and manuscripts
not only in individual work but also in collaboration. The version control tool, con-
sisting of RStudio IDE and Git, can keep track of every modification to each link in
the chain of data work in a special kind of database. Just like a time machine, version
control could turn back the clock, compare earlier versions of the documents, and, if
necessary, recover them to a desired version, which is extremely useful for avoiding
catastrophic mistakes. Furthermore, version control provides a smart way for merg-
ing collaborated work from multiple contributors, such as collaborative writing of a
manuscript.

The open-source version control program Git could be downloaded from the Git
website1. It is cross-platform and available for Windows, macOS, and Linux/Unix.
After the installation of Git, follow these steps (Fig. 10.1):

1. Open RStudio IDE.
2. Find in the menu bar Tools - Global Options - Git/SVN.
3. ClickEnable version control interface for RStudio pro-

jects.
4. Find the path to the Git executable file by clicking the Browse button.
5. You may be required to restart RStudio IDE before it is ready for use.
6. Find in theRStudiomenubar Tools - Project Options - Git/SVN.
7. Choose Git in the Version control system.
8. Click Yes for initializing a new git repository for this project.
9. Confirm restarting RStudio IDE.

When we see a new tab named Git in the top-right pane (Pane 4), it means the
version control tool is ready for use.We could see all the files in theworking directory
now listed in Pane 4, with two question marks before each file name (Fig. 10.2left).
Choose the one(s) (death_rate.txt in this example) for which we want to track
the version, and the question marks turn into A (which means added) with a different
background colour. Click the Commit button.

A window for committing pops up. We can see the change of the file(s) with
a light-green background in the lower panel. Now we write some text, like “Git
starts”, in the top-right Commit message panel, and click the button Commit
(Fig. 10.2right). The current version of the chosen file(s) are saved as a ring in the
history chain.

1 https://git-scm.com/downloads.

https://git-scm.com/downloads


192 10 Managing Data

Fig. 10.1 Set up Git in RStudio IDE. Left: The window for enabling Git for RStudio IDE. Right:
The window for initialzing Git for a RStudio project

Fig. 10.2 Commit an R project with Git. Left: Selece the file with changes for commit. Right:
Check the change in a file and commit it

Let’s modify the “death_rate.txt” file with an inserted line, and save it. A label
M appears before the file name “death_rate.txt”, indicating that this file has been
modified. Repeat the previous procedure, and the modified version is saved as a new
ring in the version chain. We could see the entire version chain of a certain file in the
History tab, and see the details in the difference between every two neighboured
rings/versions.

One of the greatest advantages of the version control is that we could roll back to
any tracked version, which is extremely useful in scientific research. There are two
situations of rolling back.

1. If the current version of the document is saved but not committed (i.e. the modi-
fied version has not been saved in the version history yet), we see it with a label
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M in the file list in the Git panel. Right click the file name, and click Revert
in the popped-up menu. Then the document rolls back to the latest version saved
in the version chain (Caution! The modification is gone.)

2. If the current version is committed, click the terminal tab in bottom-left pane
(Pane 2) shown in Fig. 10.2 (left), and run the following code:

git reset --hard HEAD˜1

Then the document rolls back to the previous version saved in the version chain
(Caution! The latest version is gone.)

The previous description of the usage of Git only demonstrates the very funda-
mental usage of Git, which is just a tip of the Git iceberg. We could use online Git
service such as GitHub for hosting our projects and inviting colleagues for collab-
oration with a more comprehensive version control, which is beyond the scope of
this book. Note that the version control tool is friendly and not limited to plain text
documents. Anyway, if we manage data, programming scripts, equations, literature
libraries, manuscripts, and presentation documents in plain text format such as R
Markdown (Chap.9), Git could display each step in the version history in a visual
way.

10.8 Exercises

The COVID19 package is an interface for downloading the COVID-19 data from
https://covid19datahub.io. We could get the daily summary of COVID-19 cases,
deaths, recovered, tests, vaccinations, hospitalizations, policy measures, mobility
data, geospatial identifiers, and so on, for >230 countries, >760 regions, and >12,000
administrative divisions of lower level.

• Download the dataset with the package default settings.
• Insert the metadata as labels of the columns by using the sjlabelled package, and
export it as the R default format.

• Create an R package, which ships the dataset with a complete documentation.
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