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Preface

Nanoscience has been an active research field over the past several decades, triggered

by the rising interest in exploring new science and technologies with materials at the

nanoscale. Artificial intelligence (AI) has led to revolutionary development in many

applications such as communication, computer vision, and speech/image recognition.

Bridging the link between nanoscience and AI can provide a new generation of technol-

ogies that will have large impacts on our society. Some of the AI tools are being

implemented by researchers to advance nanoscience and nanotechnology through

AI-enhanced design, manufacturing, measurements, and applications of nanomaterials

and nanodevices. Meanwhile, nanotechnology provides enormous data sets and new

hardware platforms to advance the training of Al models and the implementation of

AI algorithms.

With great contributions from some of the top researchers working in the interdis-

ciplinary field, Intelligent Nanotechnology: Merging Nanoscience and Artificial Intelligence

provides an overview of the advances in science and technology made possible by the

convergence of nanoscience and AI. Section 1 focuses on AI-enhanced design, charac-

terization and manufacturing of nanomaterials, and the use of AI to improve important

material properties, with an emphasis on mechanical, photonic, phononic, electronic,

and magnetic properties. The use of AI in the acquisition and analysis of data in exper-

iments is explored as well. Section 2 includes chapters on AI technologies that have been

enhanced through nanotechnology platforms. For example, memristors, neuromorphic

computing, and artificial neural networks are included. Finally, Section 3 reviews the

advances in applications enabled by the merging of nanotechnology and artificial

intelligence, including examples from biomedicine, chemistry, anticounterfeiting, and

automated research. We hope that this book will provide a bridge to further collabora-

tions among researchers from different fields.

Yuebing Zheng

Zilong Wu
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CHAPTER 1

Inverse design meets nanophotonics:
From computational optimization to
artificial neural network
Jaebum Noha,*, Trevon Badloea,*, Chihun Leea,*, Jooyeong Yuna,*, Sunae Soa,b,*,
and Junsuk Rhoa,c
aDepartment of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang,
Republic of Korea
bGraduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang,
Republic of Korea
cDepartment of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea

1. Computational inverse design

The methods for discovering optimized designs for photonic platforms using computa-

tional algorithms broadly fall into one of two categories, namely, gradient-based or

evolutionary-based algorithms. Indeed, neural networks are trained using gradients

and backpropagation, so are fundamentally related in this way. However, a key difference

occurs in the fact that traditional computation inverse design methods are generally

defined by a specific objective function to be optimized. This could be any required opti-

cal property, for example, a resonance at a specific wavelength or maximizing the broad-

band efficiency of a device. The design space can be as free or as limited as the researcher

requires, which could be directly related to the fabrication constraints of certain materials

or techniques. In this section, we will focus on the application of computational optimi-

zation without the integration of neural networks as an introduction to computational

methods. We will describe the overall goals and methodologies of gradient and

evolutionary-based algorithms and provide examples of recent results that showcase

the power of numerical optimization techniques in the design of nanophotonic devices.

A simple visual description of each method is provided in Fig. 1.

1.1 Gradient-based
Gradient-based optimization techniques rely on the computation of the local gradient of

the objective function in relation to the designated design parameters. This gradient then

guides the optimization algorithm in a certain direction toward a minimum (or maxi-

mum) for the objective function. A problem arises in that there is no guarantee that this

local point of inflection in the gradients of the objective function is the global minimum,

3
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which is, in general, what we wish to uncover to produce the most optimized design. If

the objective function is convex, however, all local minima are also global minima,

meaning that globally optimized solutions can be found. As described in Fig. 1A, after

the gradient has been calculated at a specific location, the optimization algorithm takes

a step in that direction. We need to determine how big of a step to take in the given

direction, and how frequently to measure the gradient. The size of the step is an impor-

tant factor, as too large of a step could lead to overshooting the minimum, while the fre-

quency of measuring the gradient is determined by computational limitations. Of course,

ideally, we would like to know the gradient at every point with infinitesimally small steps

in order to uncover the optimum global solution, but this of obviously unrealistic in prac-

tice. Another important factor in gradient-based optimization methods is the starting

guess in the parameter space. Due to these limitations, it is common to do multiple runs

Fig. 1 Visual representations of numerical optimization methods. (A) Gradient descent method. The
blue (gray in the print version) and red (dark gray in the print version) arrows represent optimization
paths from different starting points, leading to different local minima. (B) Genetic algorithm. The
population is made up of N unique solutions to the problem, here with six different parameters.
After each has been given a score and ranked in terms of the fitness function, the best solutions
are used to perform crossover, where the genes of two-parent solutions are spliced together to
create a new child solution. With a specified random chance, some solutions also undergo
mutation to create new solutions. This allows for the optimization to have some chance of
escaping local minima. (C) Particle swarm. Three particles (orange circles (gray in the print version))
with a certain position and momentum explore the parameter space independently and are
updated based on their local information as well as the information of the population as a whole,
to hopefully end in the global minimum, i.e., the optimal solution to the problem. (For
interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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with different starting points and step sizes, increasing the computational load. In an

attempt to lighten the computational load on calculating the gradients of the objective

function of high-dimensional parameter’s spaces, the adjoint method has been intro-

duced. This allows the gradients to be calculated using only a singular additional adjoint

simulation, significantly reducing the computational load [1,2].

1.1.1 Adjoint optimization
Since the goal of optimization is to find the parameters in the design space that maximizes

the achievable performance of the given objective, the traditional method of designing

individual structures and arranging them in periodic arrays is unnecessary. In addition, by

treating the device as a whole, with the only constraint being on the final output objec-

tive, issues such as coupling and interactions between neighboring structures are eradi-

cated. This can allow adjoint optimization to find structures and layouts that avoid

suboptimal designs. There have been various applications of adjoint optimization in

the field of nanophotonics for designing large-scale and multilayered devices for appli-

cations such as waveguides [3–5] and grating couplers [6,7]. Some of the recent demon-

strations will be introduced and the results of the devices designed using adjoint

optimization will be discussed in this section.

Adjoint optimization allows for only one additional simulation in order to calculate

the gradients of the objective function with regard to the design parameters. This allows

for numerous structures to be optimized in a single pass. Using this framework, Backer

numerically designed a double metalens system, holographic element, and an all-optical

neural network, proving the versatility and robustness of adjoint optimization (Fig. 2A

and B) [8]. Using a square TiO2 nanostructure on the glass library, all of the aforemen-

tioned applications were realized. The achromatic, polarization-independent, doublet

metalens was designed with an aperture of 800μm and a back focal length of 2mm. It

showed a bandwidth of 160nm across the visible spectrum. To confine the design param-

eter space to ensure that the nanostructures can be realistically fabricated, limits of the

minimum and maximum size of the nanostructures were enforced. If the optimization

gradient specified an unrealistic structure that is outside of the designated limits, then

it was truncated to the limit. Full-wave 3D simulations with FDTD are computationally

expensive, so all the propagations in both the forward and adjoint simulations were car-

ried out in a 2D cross section of the total metalens to produce a library of results, and

Fourier optics was used to propagate the resulting waves to the far field. Since the concept

of the adjoint method is similar to backpropagation methods used in conventional

machine learning algorithms, the system can also produce optical neural networks. Using

an array of 10 detectors, it was shown that an adjoint optimized metasurface can success-

fully classify images of numbers with an accuracy of 84%. Unfortunately, these results

were purely numerical; however, the power that adjoint optimization can bring to mul-

tiple tasks with large parameter spaces was clearly proven.

5Inverse design meets nanophotonics



In another demonstration of the adjoint optimization technique, the design spaces of

metasurfaces have been increased from their general two-dimensional limitations, into

2.5D devices [9]. A 2.5D metalens that focuses different wavelengths of light at different

focal points was designed and fabricated. By including the layers of metasurfaces into the

design, the complexity is increased dramatically, as interactions between neighboring

nanostructures in the same plane are also joined by interactions with the layers above

and below. This could be an extremely arduous design to optimize for a researcher to

optimize by hand; however, despite the increased degrees of freedom and complexity

of the design space, utilization of the adjoint optimization technique produced devices

with considerably higher efficiencies than those designed using conventional methods.

Fig. 2 Examples of nanophotonic devices designed using the adjoint method. (A) Inverse design of an
achromatic doublet metalens. (i) Schematic of the design. (ii) The widths of the structures that make up
the metalens. (iii) Phase profile across metasurface apertures at λ¼640nm. (iv) Cross section of focal
plane intensity at all designedwavelengths. (v) The optical efficiency of themetalens. (B) Optical neural
network for handwritten digit classification. (i) Schematic of the design. (ii) Simulated test inputs and
outputs of the optimized design. (iii) Confusion matrix for the MNIST dataset. (iv) The optimized
metasurface designs. (C) A multiwavelength metalens design. (i) Schematic representation of the
forward, (ii) the adjoint simulations in the adjoint optimization technique, and (iii) color maps of
the surface electric current densities used as excitation sources in the adjoint simulations. Panels
A and B are adapted with permission from Mansouree, M., et al., Multifunctional 2.5D metastructures
enabled by adjoint optimization. Optica 7 (2020) 77–84, copyright 2020 Optical Society of America.
Panel C is adapted with permission from Backer, A.S., Computational inverse design for cascaded
systems of metasurface optics. Opt. Express 27 (2019) 30308–30331, copyright 2019 Optical Society of
America.
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An FDTD solver was used to simulate the electric fields of plane waves of the desired

wavelengths incident on the metasurface and the corresponding adjoint simulations,

which are defined as the same structure illuminated by sources that are equal to the com-

plex conjugate of the desired output fields (Fig. 2C). This can be understood as propa-

gating the desired output fields back toward the metasurface. Through the calculated

gradients, the dimensions of nanoposts were manipulated to find the optimized param-

eters. This was proved for both two and three layers of metasurfaces, with focusing effi-

ciencies of over 50%. As the fabrication process of multilayer metasurfaces is much more

involved, the performance increase must be worthwhile in practice. Here, the increase of

focusing efficiency from 35% to 48%, to 60% for the single, bilayer, and trilayer meta-

surfaces proved the added complexity of fabrication is indeed worth the extra effort in

order to produce optimized devices.

Expansions of adjoint optimization include using improved update rules [10,11],

automatic differentiation [12], and extension into the nonlinear regime [13]. Limitations

of adjoint optimization come from the discretization of the structure and the meshing

accuracy of the full-wave simulations. Higher accuracy comes with a higher computa-

tional cost for both the forward and adjoint simulations. Although this optimization

technique does indeed simultaneously optimize the whole device at each update step,

full-wave simulations of large-scale devices require servers or clusters with large enough

memory, or other simulation tricks must be utilized, such as making use of symmetry or

simulating a 2D cross section.

1.1.2 Topology optimization
Topology optimization (TO) has recently been introduced to the field of nanophotonics,

after being widely used in numerous fields for the design of physical systems and mechan-

ical structures [14,15]. It is defined by the allocation of material either existing or not at

specific points in a defined area, in order to satisfy an objective function. This means that

each grid point is a design parameter, leading to the geometry being optimized in a pixel-

like fashion. Again, in order to update the design over each iteration, a gradient needs to

be calculated in relation to the parameter space, so TO is often coupled with the com-

putationally efficient adjoint method, as described in the previous section. TOwas intro-

duced to the field of nanophotonics to design low-loss waveguide bends [16] and is now a

staple method for the optimization of a magnitude of different nanophotonic devices

[17]. See Ref. [18] for an in-depth review and description of the fundamentals and pro-

cedures of the optimization method, and Ref. [19] for a recent tutorial that includes FEM

model examples.

Using TO,Ref. [20] designed reconfigurable metalenses that focus light at wavelengths

that are an order of magnitude apart, and also an active metalens that shifts their focal length

depending on the state of an active material. This was achieved using a 10-layer, multi-

height TO method that has around 10 [4] degrees of freedom (Fig. 3A). By modeling

7Inverse design meets nanophotonics



the problem in an axisymmetric domain using Maxwell’s equations with a time-harmonic

behavior, the full 3D equations were replaced with their simpler 2D counterparts. This

allows the computational complexity to be reduced at the sacrifice of restricting the

geometric freedom of the device. To further simplify the procedure, far-field transforma-

tions were applied rather than simulating the entire spatial domain between the lens and the

focal point. The figure of merit was defined as the intensity of the electric field at the focal

point, and the gradients were calculated using adjoint sensitivity analysis [21]. As an

experimental validation of the technique, a single-layer metalens made up of variable

heights was fabricated. The final design focused light with a wavelength of 1550nm with

a numerical aperture of 0.4 with an absolute power transmission of around 93%. Although

this work shows the promise of TO, in reality, the fabrication of a 10-layer metasurface

with variable heights is a great challenge, but one that could become a reality with

improved nanofabrication methods such as 2.5D lithography or multi-photon

polymerization.

Other work has shown that TO can be used to tailor the phase front of the light at

will. In particular, using freeform optimization, Sell et al., proved numerically and exper-

imentally that the optimization of a device for multiple wavelengths at the same time is

possible [22] (Fig. 3B). In principle, the technique can be scaled to a large number of

wavelengths at the cost of added computational effort. Using silicon, a beam steering

device capable of steering N wavelengths into N unique diffraction orders, with an effi-

ciency that scales as 1/N0.5 was designed. The optimization is carried out over the whole

periodicity of the metasurface, meaning that the space that is being optimized is much

larger than the wavelength it is being designed for. This is in stark contrast to the con-

ventional method of designing subwavelength nanoantennas to build the total surface.

This also allows the freedom of the structures to be of any shape that is required, without

any constraint on local periodicities. This freedom in design space allows for curves and

interconnected geometries that produce optical coupling and resonances that would oth-

erwise be nearly impossible to design. One limitation of this work was the use of rigorous

coupled-wave analysis (RCWA) solver for the simulations, as it requires the structures to

be periodic. This could easily be overcome through the use of other methods of solving

Maxwell’s equations that do not rely on periodic boundary conditions [23]. Examples of

multiwavelength and large-angle aberration-free metalenses have also been demonstrated

using TO [24].

TO is able to uncover designs for optical properties that are very rare to find in nature.

In particular, Shi et al. produced single-layered optical elements that show a considerable

birefringence for different polarizations of incident light [25] (Fig. 3C). Using TO allows

the device to have arbitrary geometries, which allow the degrees of freedom to be as big as

the resolution of the individual pixels to be optimized. Elliptical birefringence is achieved

in a single planar device by exploiting the incident angle of the light to break the sym-

metry of the structure.

8 Intelligent nanotechnology



Fig. 3 Examples of nanophotonic devices designed using topology optimization. (A) Normalized electric field in the x–z plane through the center
of the metalens for (i) ¼ 1μm and (ii) ¼ 10μm. (iii) The power in the z-direction through the focal plane normalized to the maximum of the Airy
disc for ¼ 1μm and (iv) ¼10μm. (v) A 3D illustration of the 10-layer metalens design. (vi) Cross section of single-layer reference design.
(B) Experimental characterization of the broadband blazed metagrating. (i) Scanning electron microscopy image of the blazed metagrating
operating between 1000 and 1300nm for TM-polarized normally incident waves. (ii) Plot of the theoretical and experimental efficiencies vs
wavelength for the device. (C) (i) Schematic of the optimized unit structure. (ii) SEM image of a fabricated sample. Scale bar, 1μm. (iii) The
arrows represent the angle-dependent eigen-polarization states of the device. Different colors correspond to different angles of incidence. As
the angle of incidence varies, the device can be continuously tuned between linear and elliptical birefringence. (iv) Angle-dependent
polarization generation. For a fixed incident polarization, the output polarization state changes continuously from right circular polarization
through horizontal linear polarization to 45 degree linear polarization for varying angles of incidence. Panel A is adapted with permission
from Christiansen, R.E., et al., Fullwave maxwell inverse design of axisymmetric, tunable, and multi-scale multi-wavelength metalenses. Opt.
Express. 28 (2020) 33854–33868, copyright 2020 Optical Society of America. Panel B is adapted with permission from Sell, D., Yang, J., Doshay, S.,
Fan, J.A., Periodic dielectric metasurfaces with high-efficiency, multiwavelength functionalities. Adv. Opt. Mater. 5 (2017) 1700645, copyright 2017
John Wiley and Sons. Panel C is adapted with permission from Shi, Z., et al., Continuous angle-tunable birefringence with freeform metasurfaces
for arbitrary polarization conversion. Sci. Adv. 6 (2020) eaba3367, copyright 2020 CC BY-NC.



Contrary to intuition, it has been shown that random initial geometries produce bet-

ter results than using existing nanophotonic designs as the starting point [26]. TO usually

has no constraints on the constituent parts of the final design, which could possibly lead to

unrealistic designs. For example, if there are voids or floating elements, this may produce

an output that maximizes the objective function, but it would be impossible to realize

experimentally. Therefore, consideration of fabrication feasibility has also become a

key point of improving devices designed using TO [27].

1.2 Evolutionary algorithms
In contrast to gradient-based optimization methods, evolutionary algorithms take inspi-

ration from nature to reach designs that meet a certain design objective. The most well-

known and often used examples of evolutionary algorithms are the genetic algorithm

(GA) and particle swarm optimization (PSO). Both are known as metaheuristic

approaches, meaning that they are able to find a reasonable solution to an optimization

problem with limited information or computational cost. Although there is limited

mathematical evidence that evolutionary algorithms converge to global optima, they

do often reach extremely good results [28,29].

1.2.1 Genetic algorithm
The GA is inspired by Charles Darwin’s theory of natural evolution, by focusing on the

selection, mutation, and crossover of a population of solutions. A visual representation is

shown in Fig. 1B. The optimization relies on the knowledge of good solutions within

the population, in order to reach better solutions, while also keeping an amount of ran-

dommutation to allow for new solutions outside of the current direction to be accessible.

The GA starts with a population of possible solutions, in nanophotonic design, this could

be a set of geometric parameters for each individual. Following the lead of natural selec-

tion, the parameters are called genes, while a set of genes that form the solution for one

individual is known as a chromosome. Each solution is then ranked in terms of its per-

formance, with higher scores having a higher chance of being selected for the next iteration

or generation.Crossover is another important part of the GA, whereby the genes of parent

solutions are mixed together to form new solutions. This allows new child solutions to be

formed from high-performance solutions, which should result in new, better solutions.

Mutation relates to some genes being changed at random, allowing for a measure of diver-

sity in the population, and avoiding premature convergence to a possible suboptimal

solution. The important parameters of the GA are the population size, informative fitness

function, and the amount of mutation and crossover. The population size is usually lim-

ited by the available computational resources, so it needs to be chosen to appropriately

find a good solution in a reasonable amount of time. This simple yet intuitive technique

has been applied to the field of nanophotonics with great success to design waveguides

and photonic crystals [30], and some examples [31] will be discussed here.
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In Ref. [32] the GA was utilized with some modifications in order to design phase-

controlled metasurfaces. In this work, the concept of the crossover was omitted

completely, in its place only mutation ensued. In order to reach an optimal solution,

the amount of mutation was controlled to be smaller and smaller as the iterations were

concluded. An elaborate fitness function was produced to create the exact desired

response for the final solution. Furthermore, physical constraints were included to ensure

that unphysical results were eradicated during the optimization process. This kind of

supervision of the mutation is essential to keep the results in the desired domain. In

another work, strong chiral dichroism in a plasmonic metasurface was demonstrated,

using a micro-genetic algorithm [33]. The key feature of this adaptation is that instead

of having mutation, there is a complete repopulation of the worst-performing solutions

with completely new random solutions for faster convergence. Since the GA has no

bounds in terms of the number of parameters that it can optimize in a single iteration,

it owes well to freeform designs where the surface is discretized into individual pixels

that can be chosen to include or exclude material, similar to the TO method [34].

But since no gradients are needed, there is no limitation on the fitness function to

be differentiable. Here, the surface was discretized into a binary pattern as shown in

Fig. 4A. Circular dichroism of 0.63 and 0.60 was reported for fabricated samples. The

GA has also been used to choose the photonic elements from a library in order to produce

the desired response [35]. The design of the individual structures was done by hand, but

the phase profile was achieved using the optimization power of the GA. Using an adap-

tive GA allows for the problem to be split into subproblems that are solved in sequence, to

reach the final solution [36]. The authors note that the large number of solutions that are

produced with results that are close to the designed fitness function could also be

employed later in data hungry methods such as a deep learning models. In a final example

of using the GA to optimize the performance of nanophotonic applications, it was used to

design perfect absorbers and color filters for single nanostructures and unit cells with mul-

tiple nanostructures (Fig. 4B) [37]. This study showed the limitations that single nano-

particles have when trying to optimize a solution with limited degrees of freedom. The

colors achieved after increasing the unit cell to include multiple structures were greatly

improved, as were the broadband absorption properties. For all of the examples presented

here, it is interesting for researchers to delve into the underlying physics of the optimized

solution to understand why certain designs are better than others, which in turn, helps

researchers to uncover new ideas that can be applied successfully in new applications.

1.2.2 Particle swarm optimization
Particle swarm optimization gets its influence from the movement of birds and schools of

fish. Each solution is treated as a particle that has a position and a momentum that is

updated at each iteration. The update depends on the particular solution’s local optimum,

as well as the optima of the whole population as a whole, as demonstrated in Fig. 1C [38].
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Fig. 4 Examples of nanophotonic devices designed using genetic algorithms. (A) (i) Schematic of the binary pattern for the chiral plasmonic
metasurface. (ii) Top view of the pattern. (iii) SEM image of the fabricated chiral metasurface. (iv) Experimental and simulated absorption
spectra under LCP and RCP at normal incidence. (v) Normalized electric field distributions at the resonant wavelength of 1.62μm under LCP
and RCP incidence. (B) (i) The distance between the target and designed color generated in the CIE diagram as a function of generations.
Red circles (dark gray in the print version) represent the single-unit cell, green diamonds (gray in the print version) represent the unit cell
with multiple nanostructures. (ii) Comparison of reflection spectra between the optimized samples of single (green (gray in the print
version)) and extended (red (dark gray in the print version)) unit cells. (iii) Comparison of the generated colors and corresponding
configurations. (iv) The generated colors on the CIE diagram. Circles denote the single nanostructure and stars represent the multiple
nanoparticles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Panel A is adapted with permission from Li, Z., Rosenmann, D., Czaplewski, D.A., Yang, X., Gao, J. Strong circular dichroism in chiral plasmonic
metasurfaces optimized by micro-genetic algorithm. Opt. Express 27 (2019) 28313–28323, copyright 2019 Optical Society of America. Panel B is
adapted with permission from Liu, C., Maier, S.A., Li, G., Genetic-algorithm-aided meta-atom multiplication for improved absorption and
coloration in nanophotonics. ACS Photonics 7 (2020) 1716–1722, copyright 2020 American Chemical Society.



The updates are governed by a learning rate that determines howmuch the velocity of the

particle is changed at each update. This, along with the number of particles provides the

most important parameters that need to be optimized for each problem and considered

with regard to the available computing power.

In one example of using PSO for nanophotonic applications, Ref. [39] produced a

freestanding metasurface of silicon for high-performance beam steering (Fig. 5A).

A particle swarm algorithm was coupled with a full-wave simulation through the FDTD

method. After optimization, both the forward transmissions were greatly increased, and

the power of the deflected beam in the desired direction was improved dramatically.

However, it was noted that the combination of 3D simulations is a huge bottleneck

in this type of technique, as the total time needed for a single optimization was around

850h. In another work using the PSO method, a silicon nitride Y-junction was devel-

oped with the goal of converting linearly polarized light into its opposite polarization

(Fig. 5B) [40]. Conversion efficiencies of over 97% for both polarizations were reported

and confirmed with numerical simulations. Many other examples have also been dem-

onstrated, such as waveguides [41], and pixelated surfaces [42] with multiple objective

functions [43].

Fig. 5 Examples of nanophotonic devices designed using particle swarm. (A) (i) Schematic of a
freestanding silicon nanohole array metasurface acting as a beam deflector with a deflection angle θ.
(ii) Top-down view of the silicon nanohole array beam deflector metasurface constructed using
repeating supercells. (B) Conversion efficiency as a function of the length L for the designed mode-
conversion section and the adiabatic taper structure. Panel A is adapted with permission from Ong, J.R.,
Chu, H.S., Chen, V.H., Zhu, A.Y., Genevet, P. Freestanding dielectric nanohole array metasurface for
mid-infrared wavelength applications. Opt. Lett. 42 (2017) 2639–2642, copyright 2017 Optical Society of
America. Panel B is adapted with permission from Zhang, B., et al., Particle swarm optimized polarization
beam splitter using metasurface-assisted silicon nitride Y-junction for mid-infrared wavelengths. Opt.
Commun. 451 (2019) 186–191, copyright 2019 Elsevier.
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2. Deep learning-based inverse design

Despite the achievements of computational optimization methods, as the design com-

plexity increases, new challenges to inverse design arise. Specifically, solving highly com-

plex problems may require numerous iterations to approach the optimum solution. In

parallel, the sudden rise of artificial intelligence (AI), in particular machine learning

(ML), over the past decade has had profound impacts on various fields of science. DL,

powered by neural networks, has risen as one of the most widely used machine learning

architectures [44]. The combination of the nanophotonics inverse design and DL is a

notable approach that can solve the challenging problems of inverse design in nanopho-

tonic based on data-driven ways.

Neural networks computationally model how learning happens in the neurons of the

brain. As neurons in biological brains are connected in a complex manner with the

strength of the connections being determined by certain external stimuli, the neurons

computationally imitate this function. The simplest network, known as a perceptron,

consists of several input neurons and one output neuron. Every adjacent neurons are con-

nected by weight. Each node in the previous layer is multiplied by the weight and

summed as one value. Next, by comparing the output of network and the output of

actual data, the weights are adjusted in a direction to reduce this distance. The distance

function between the perdition value of the network and the actual true value is named

the cost function, and the method of updating the weights based on differentiating is

named backpropagation. The detailed mathematical methods of forwarding and back-

propagation are shown in Ref. [45]. As the connections are linear, only simple problems

can be solved. Through the introduction of a non-linear activation function, which

decides whether a neuron is activated or not by calculating the weighted sum of previous

neurons, it becomes possible to learn nonlinear relationships.

To solve increasingly more complex problems, deep and wide multilayer perceptrons

(MLPs) were introduced, known as DL. The adjective “deep” in DL refers to the use of

multiple layers and nodes. In general, the more deep structure, the more complex rela-

tionships can be carried. Dramatic improvements in DL algorithms have been realized in

recent years by overcoming chronic limitations such as vanishing gradients [46] and over-

fitting [47]. Along with the growth of accessible big data and advancements in computing

power, ML has emerged as an extremely useful tool in various fields of computer science,

including language processing [48], computer vision [44], image generation [49], and

speech recognition [50]. There have also been attempts to combine DL with other dis-

ciplines, including manufacturing [51], microscopy [52], and nanophotonics [53–58].
DL models effectively learn to approximate the complex nonlinear relationships

between input and output data, even without an analytic physical model. Most applica-

tions of DL in nanophotonics relate the design parameters of the nanostructures, such as

the material, spatial location, and geometry with their optical responses such as the phase,
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transmittance, or scattering power. Predicting the optical properties from the design

parameters is known as forward modeling, which is generally calculated through com-

putationally expensive full-wave simulations based on Maxwell’s equations. After a

model has been well trained, it learns to approximate these equations and can achieve

extremely fast calculation times with considerable accuracy. On the other hand, inverse

design has also been proven in nanophotonics using DL, by acquiring the geometric

parameters that produce the desired optical properties. For inverse design using analytic

or numerical methods, a compromise might be made between high-design feasibility and

high spectral complexity; however, using DL can act as a bridge between the two, as

shown in Fig. 6A [55]. In this section, we report the recent progress in DL-based inverse

design in nanophotonics. The DLmodels used for inverse design can be divided into two

types, deterministic and generative. The former always produces the same output for a

given input, while the latter generates an output based on a probabilistic model which can

open the possibility to design beyond the intuition of the researcher. In this section, we

focus on the methodology of deterministic models and present the latest research. We

then introduce examples of generative models such as autoencoders and generative

adversarial networks for nanophotonic inverse design.

2.1 Deterministic neural network-based inverse design
Deterministic model is a neural network that does not contain randomness, once it has

been trained, it acts as a function which produces the output for the given input. Rep-

resentative deterministic neural networks areMLP, convolution neural network (CNN),

and recurrent neural network (RNN). Each network has a specialized data type based on

its structure and algorithms. For example, CNN is used to analyze images, and RNN is

mainly used to analyze time-series data. In this way, researchers select the best network

that can properly describe the given paired data. Before solving the inverse design prob-

lem, researchers evaluate whether the network can simulateMaxwell’s equation properly

through a forward model. In this section, we report the latest examples of forward and

inverse models using MLPs and CNNs in nanophotonics.

2.1.1 Multilayer perceptron
MLPs consist of fully connected layers where every node of each adjacent layer is con-

nected. It is themost basic architecture of artificial neural network (ANN). InRef. [59], it

was demonstrated that MLPs can be used to predict the scattering spectra of multilayered

nanoparticles with variable thicknesses [60]. The relationship between the particle design

and the scattering spectrumwas sufficiently trained using a simple shallow network with a

dataset of 50,000 samples. This research showed that well-trained MLPs can be indeed

utilized as an approximator of Maxwell’s equations to a reasonable accuracy with an

increase in the speed, compared to conventional analytic simulations.
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Fig. 6 Advantages of deep learning in photonics and photonic designs by deterministic neural
networks. (A) Computational tools generally decrease the design feasibility as the optical response
becomes more complex. Inverse design methods through deep learning can overcome this gap.
(B) Two-phase network finds and verifies the inverse design from spectrum and material
information to desired design parameters. The inverse network merged the expanded features of
spectrum and material properties to consider corresponding geometry. After that, the direct
network is also trained to improve the accuracy of the inverse network. (C) (i) The structure of
tandem network which connects the inverse network and forward network sequentially. R denotes
the optical response and D indicates the design parameters. To train the tandem network, a pre-
trained forward network is necessary. (ii) The results of test data for the tandem network method.
(D) 2D photonic crystal optimization by CNN. (i) The schematic of neural network which can learn
between air hole displacement and Q factors. (ii) The heterostructure of 2D photonic crystal
nanocavity. Circle denotes the air hole (110nm radius) and vector arrows indicate the
displacements of air holes. The Q factor before improved from 3.8�108 (left) and 1.58�109 (right)
by deep learning optimization. The estimated MSEs are 2.64�10–3 (left) and 1.10�10–4 (right).
Panels A and B are adapted with permission from Malkiel, I., et al., Plasmonic nanostructure design
and characterization via deep learning. Light: Sci. Appl. 7 (2018) 60, copyright 2018 CC BY 4.0. Panel
C is adapted with permission from Liu, D., Tan, Y., Khoram, E., Yu, Z., Training deep neural networks
for the inverse design of nanophotonic structures. ACS Photonics 5 (2018) 1365–1369, ACS. Panel D is
adapted with permission from Asano, T., Noda, S., Optimization of photonic crystal nanocavities based
on deep learning. Opt. Express 26 (2018) 32704–32717, copyright 2018 CC BY 4.0.
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Beyond forward modeling, MLPs were applied to inverse design. In Ref. [61], an

inverse design method using a deep and wide was developed. The input was set to three

types of series data consisting of 43 sampling points and the output to eight design features

of an H-shaped antenna, including the existence of a leg, the angle of the structure, and

the lengths of each part (Fig. 6B). With 15,000 simulated samples, the trained network

was able to successfully design structures to satisfy the desired spectrum, which were ver-

ified using full-wave simulations.

Although MLPs have been shown to produce suitable candidate designs, without

proper restrictions, the inverse design may be difficult to realize experimentally due to

features that are too small or large, or have an unrealistically high aspect ratio [62]. This

can be overcome by including extra constraints into the MLP cost function [63]. Before

proceeding the inverse design, reasonable geometry design parameters were specified.

After that, the cost function includes not only the difference between the prediction

value and the true value, but also the difference between the recommended geometric

parameters and pre-set geometric parameters. Through this cost function with geomet-

rical constraint, it was possible to suggest an optimal design which was not too different

from the pre-set geometry. The geometry vector includes the thickness, radius, and gap

between the meta-atoms. As a result, the trained network was able to quickly recom-

mend physically feasible meta-atoms that produce the required optical properties.

A fundamental issue of inverse design using DL occurs from the non-uniqueness of

solutions; whereby various structures can produce the same optical properties. This hin-

ders the training of the model as different solutions are given for the same inputs. In Refs.

[64, 65], tandem networks were introduced. This works by combining a pre-trained for-

ward modeling network with an inverse network to overcome the one-to-many prob-

lem [64,65]. As shown in Fig. 6C, the inverse network is sequentially connected to the

pre-trained forward model. To train the inverse model, the inverse model error is com-

bined with the error between the forward network result and the original target response.

To find the proper multilayer film which can satisfy the desired transmission spectrum,

the thicknesses of 20 layers were used as the design parameters, and 200 transmission spec-

tral points were used as the optical properties [66]. Themodel was able to produce inverse

designs that closely match the desired spectra, demonstrating that tandem networks can

overcome the problem of non-uniqueness for inverse design in nanophotonics.

In parallel, researchers demonstrated that MLPs can be used to solve inverse design

problems of various applications including integrated nanophotonic devices [67], color

generation [68,69], photonic power splitters [70], absorbers [71], and core-shell particles

[59,72]. In Ref. [72], an inverse design model was developed which considers both the

thickness and material of core-shell nanoparticles using tandem networks. This result also

demonstrates that DN-based methods can handle the multifunctional design by simply

considering multi-design parameters (e.g., length, thickness, and material types) and
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responses (e.g., amplitude, phase, and polarization) which is hard to achieve with purely

guided by physical intuition.

2.1.2 Convolutional neural networks
Early studies expressed the design of nanostructures using several design features such as

height, width, length, and angle. While this reduces the number of input features and

promotes training, there is also a limitation that the results that inverse designs are

restricted within the defined format. Therefore, to break these restrictions, the design

can be considered as an image. The introduction of CNN can effectively consider spatial

and temporal data [73]. Moreover, by sharing the weight with the filter, it can achieve

better performance with fewer weights than MLPs. More specifically, the convolution

layers, which calculate the convolution values of images and filters, were used to extract

the key features. General conventional image filters have pre-defined values depending

on their specific goals such as edge detection blurring, and denoising, but the filters in

CNN do not have a specific form and it updates itself from the random state to reduce

the errors of the cost function. With these trainable filters, it extracts the critical features

from raw image data and uses it as an input for the following fully connected layers. This

makes CNNs useful to analyze image data of nanophotonic structures or optical

responses.

The combined CNN-based forwardmodel and computational optimizationmethods

were conducted to reduce the simulation time. In Ref. [74], polarization-insensitive plas-

monic metasurface with 90% absorption was developed by combining GA and CNN.

Another application is an example of maximizing the Q factor of photonic crystal

[75]. To solve this Q factor maximize problem, more than 1000,000 simulations were

needed. However, by replacing the simulation with a pre-trained CNN forward model,

only 1000 simulations were conducted for gathering the training data (Fig. 6D).

There were also attempts to inverse design directly by using spectrums as input, and

design parameters as output [76]. To optimize the plasmonic metasurface, 25,000 samples

were used to describe the relationship between 300 spectral points and six design param-

eters. Particularly, this study also compares the effects of DL algorithms by changing net-

work structures (MLP or CNN), and normalizationmethods (batch normalization is used

or not). As a result, CNN-based model can recommend the proper geometry which sat-

isfies the user suggested target absorption spectrum. It also demonstrates that the CNN

with batch normalization has superior performance compared to the MLP-based model.

Finding the proper thin-multilayer-film metamaterial’s thickness, which represents

the desired spectral response, an inverse CNNmodel was applied [77]. This research used

multiple spectra including reflectance and transmittance at various angles as input and the

thickness of the film as output. To describe the relationship between input and output,

CNN was developed with 200,000 samples. Moreover, by comparing CNN and com-

putational optimization methods such as the least square method and GA, this study
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demonstrated that CNN has advantages in terms of consuming time as the complexity of

the problem increases (the number of film layers increases).

2.2 Generative neural network-based inverse design
Beyond determining the output from the trained network, generative models probabi-

listically create output from randomly generated noise. Moreover, generative networks

can manage the one-to-many mapping problem without design parameter regularization

or tandem networks. Here, we introduce the inverse design of nanophotonic structures

using generative networks including autoencoders (AE) and generative adversarial net-

works (GAN).

2.2.1 Autoencoders
AEs are a type of neural network that is trained in an unsupervised manner, meaning that

there is no requirement for prelabeled data. Generally, AEs are used to compress high-

dimensional data into a lower dimensional space, known as the latent space. The latent

variables are expected to contain only relevant and important features and neglect any

extraneous information. As the word “latent” implies, it is not something that is explicitly

observable but “hidden” and has to be implicitly learned through the framework of deep

learning. A latent space is simply a probabilistic distribution of these latent variables. The

notion of “space” can be understood as the configuration of such transformed data dis-

tribution. Conceptually, the closer the two data points in the data space are, the more

likely they are to be considered similar. Under the name of “representative learning”

in the data science field, studies on such latent spaces and ways to control and interpret

them have gained a substantial understanding [78–81]. In addition, other constructive

dimensionality reduction methods have also been highlighted in parallel [82,83]. Also

in the field of nanophotonic design, attempts to construct a latent space into a desired

distribution [84] or ways to effectively reduce the dimension of parameter space

[85–88] have been explored.

AEs consist of an encoder, which compresses the input features, and a decoder, which

recovers the original data from the latent space. Generally, AEs are made up of symmetric

neural networks. The cost function is calculated as the difference between the restored

output and the original input. The weights and biases of the connections in the network

are adjusted to reduce the cost function. The latent variables of the AE were then used as

the output of the network with the design parameters as the input. New designs can be

generated by changing the latent variables uncovered by the AE, but in practice, there is

low feasibility of the design as there are no bounds. Variational autoencoders (VAE) can

overcome this low feasibility problem by introducing probabilistic perturbations [89].

Unlike AEs, the latent variables for VAEs consist of mean and standard deviation for each

feature that can allow generating high-feasibility designs that follow the same distribution

of the input data. In Ref. [90], three networks, such as a prediction model, a recognition
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model, and a generation model, were used to solve the one-to-manymapping issues. The

prediction model uses a one-to-one deterministic network to map the geometry to opti-

cal spectra and the recognition model encodes the spectra to latent variables as shown in

Fig. 7A. The generation model uses both the optical spectra and latent variables to rec-

ommend designs that satisfy the required optical response. As a result, an on-demand

Fig. 7 Photonics designs by generative neural networks. (A) VAE-based meta-atom inverse design.
(i) The framework of inverse generation and forward prediction with encoder and decoder. (ii) The
architecture of deep generative model which consists of the prediction model, recognition model,
and generation model. It can generate the geometry from desired reflection spectra. (iii) The
verification result of on-demand inverse design. It contains various resonance cases including
single resonance (left), only one resonance (middle), and dual resonances (right). The topmost
figure indicates the required spectra and the rest two plots are inverse design generator results.
(B) cDCGAN-based nanophotonic antennae design. (i) Schematic of the cDCGAN which consists of
generative network and discriminate network. (ii) The inverse design model suggested geometry
and its verification. Red dot lines (dark gray in the print version) show the prediction responses of
the suggested probability distribution function (PDF) and black solid lines indicate the input
spectra. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.) Panel A is adapted with permission from Ma, W., Cheng, F., Xu, Y.,
Wen, Q., Liu, Y., Probabilistic representation and inverse design of metamaterials based on a deep
generative model with semi-supervised learning strategy. Adv. Mater. 31 (2019) 1901111, copyright
2019 John Wiley and Sons. Panel B is adapted with permission from So, S., Rho, J., Designing
nanophotonic structures using conditional deep convolutional generative adversarial networks.
Nanophotonics 8 (2019) 1255–1261, copyright 2019 CC BY 4.0.
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inverse design from the desired reflection response was achieved. However, for gener-

ative models based on VAEs, the generated images can be blurry as the distribution of the

training data is described with probabilistic functions. For example, even if there is only a

small error in the standard deviation of the trained VAE, it can deviate a lot from the sharp

distribution of real data [91]. Therefore, to obtain sharp generated images, another

approach is needed.

2.2.2 Generative adversarial networks
GANs, originally designed by Ian Goodfellow in 2014, are powerful generative models

which consist of two neural networks, a generator, and a discriminator that contest each

other as zero-sum game [92,93]. Firstly, the generator creates candidates from random

noise to deceive the discriminator. The discriminator then tries to distinguish “real”

results from the “fake” samples made by the generator. As a result, after the iterative

and adversarial training of the two networks, GANs can generate samples that are indis-

tinguishable from the original data. Though the original purpose of GANs is also unsu-

pervised learning, it also has been proven that they can be trained in a semi-supervised

[94] or fully supervised manner [95]. GANs also produce sharper images compared to

VAEs [96]. In nanophotonic inverse design, supervised learning of GANs is generally

applied to produce designs that satisfy a specific condition, i.e., a desired optical response.

These GANs are known as conditional GANs (cGAN).

An example of using GANs in nanophotonics was conducted using three models: a

generator, a simulator, and a discriminator [97]. The primary goal is to train the generator

to inversely design structures that achieve the required target spectra. For this, the gen-

erator accepts a target response to create a pattern which becomes the input of the pre-

trained simulator. Next, the simulator evaluates the design. And then, the discriminator

calculates the distance between the geometry of the generator. At that time, both of gen-

erator and discriminator used the response data to impose conditions. This guides the

generator to produce similar patterns to the input geometric data. As a result, with

the 8000 samples, GAN generated the geometry which can satisfy the randomly gener-

ated transmittance spectra. It also means that GAN demonstrated the possibility for high

feasibility on-demand design even with large degrees of freedom. By utilizing convolu-

tion layers in GANs, a conditional deep convolutional generative adversarial network

(cDCGAN) can improve their performance for image data [98]. This was applied to gen-

erate nanophotonic antennae that are not limited by predefined parameters. Both the

generator and discriminator used a deep convolution network to increase the efficiency

of pattern and probability distribution (Fig. 7B). cDCGAN proved that neural network-

based inverse design methods can produce various and different designs which have a

similar response (many to one) with high-fabrication feasibility from extremely large

degrees of freedom of design (264�64) [99].
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3. Deep learning merged with computational optimization

Themajor contribution of ANNs is to serve as effective function approximators, which is

a powerful tool in modeling the complicated relationships in data. When a well-trained

network is appropriately placed into the inverse design pipeline, the process can be accel-

erated and designs with enhanced performance have been uncovered. Indeed, deep

learning aided inverse design is an intricate process, as it requires the careful formulation

of the loss function, preparation of the data, and selection of an appropriate model with

the correct hyperparameters. Recently, a wide variety of hybridized frameworks cou-

pling computational optimization methods with generative models such as GANs or dif-

ferent types of AEs have been actively introduced [84,100–102][103]. One approach is to

train generative neural networks on sets of pre-optimized designs made by computational

optimization methods. This affects the training efficiency of the model as the network

exclusively learns from high-performance designs. Another intuitive method is to refine

the output of a generative neural network with an iterative optimization technique, most

commonly TO. While the two aforementioned schemes combine DL and computation

optimization as a separate process, it is also possible to incorporate gradient-based opti-

mization directly inside the network or to have a generative network construct a latent

space and then have other computational optimization techniques to search within that

space to produce an inverse design with the desired optical properties. In this section, we

will describe some of these hybridized inverse design methods, especially those combined

with generative neural networks that have shown notable advancements in terms of per-

formance and efficiency. In addition, the pros and cons of each method will be discussed

in detail.

3.1 Generative neural networks combined with topology optimization
In the early stages of adopting generative neural networks in nanophotonic inverse

design, research was mostly focused on the functionality of the network to effectively

encode the implicit topological geometries and decode on-demand input values into

device designs [97] to systematically reduce the human intuition-driven procedure.

While various new structures were uncovered within such frameworks, it is difficult

to reach the goal of finding near-optimal performance designs of a specific objective.

On the other hand, in the hybridized approach, the networks are trained only using

high-quality data obtained through other optimization methods. This optimized training

data helps the network to focus on learning geometric features of high-performance

designs rather than spending resources on exploring other parts of the design space which

are far from optimal.

A number of examples of designing free-form metagratings have been demonstrated.

In Ref. [102], a framework using a cGANwas effectively trained on topology-optimized

metagratings, enabling the rapid production of high-efficiency electromagnetic wave
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deflection devices. The generator takes the operating wavelength and diffraction angle

along with a random noise vector as inputs to produce 2D cross-sectional designs of

the devices, while the discriminator decides if samples are “real” or “fake.” The network

was able to capture and generalize the topological features and efficiently generate devices

operating over a continuous range of wavelengths and diffraction angles. This generated

family of devices was further pushed toward its performance limit by applying TO once

more (Fig. 8A). Application of TO on the output of the network not only refines its per-

formance but also carries the aspect of providing additional data for GAN training, there-

fore, feeding the network with even higher quality data.

This method was developed further by progressively adding network layers and data

during training [103]. Specifically, the network learned spatially coarse features from the

low-resolution training set in its initial iterations and as additional neural layers were pro-

gressively added, it focused on the fine, detailed features from the augmented high-

resolution training set. Additional high-performance network-generated devices were

added to the training set over the course of multiple training cycles while removing rel-

atively low-performance training data. The improved results can be found in Fig.

8B. This scheme of augmenting and refining the training set shares the same strategy

of pushing up the performance level while still maintaining its ability to produce a diverse

distribution of devices.

The provision of a pre-optimized initial dataset by TO and other methods has a fair

amount of impact on the learning efficiency of the network. However, the requirement

of multiple TO iterations in these setups remains the major computational bottleneck. To

overcome this problem, ways to effectively generate initial training sets and frameworks

that avoid the need for computationally heavy post-processing are required. In Ref.

[104], a dataless training framework that directly integrates TO inside the conditional

GAN pipeline was demonstrated. As described in Fig. 8C, in a showcase of designing

silicon nano-ridge metasurface, the framework utilized an RCWA solver as the discrim-

inator and utilized the adjoint variable method to calculate the gradients. By doing so, the

network is able to calculate physics-driven gradients and directly incorporate them into

the loss function. This method was shown to be capable of globally surveying the design

space as the networkmaps the latent vector onto the original, full-dimension design space

in a training course of sampling and shifting. Unlike previous models which are highly

training-set dependent as they operate in a training scheme to fit the given data distribu-

tion, cumulative sampling of the network shifts and refines the distribution toward favor-

able distribution, continuously pushing it up to a globally optimal point. The proposed

method was found to create designs with higher diffraction efficiencies with less compu-

tational cost compared to those created by conventional adjoint-based TO through

statistical analysis. Further advancements such as solving problems with constraint

re-parameterization [105] and multi-objective tasks [106] have been undertaken as sub-

sequent research to demonstrate the power of this inverse design method.
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Fig. 8 Examples of nanophotonic device designed using generative neural network combined with topology optimization. (A) Efficiency histogram
comparing randomly generated patterns and GAN-generated patterns and the refined patterns. (B) Plot of the highest efficiency devices at each
wavelength-deflection angle pair for device designed using gradient-based topology optimization (top left), GAN (top right), and progressively
growing GAN (bottom left). Bottom right is the average generated device efficiency as a function of training iteration. (C) Efficiency histogram
comparing topology optimized patterns (blue) and conditional GAN generated patterns (red). Panel A is adapted with permission from Jiang, J.,
et al., Free-form diffractive metagrating design based on generative adversarial networks. ACS Nano 13 (2019) 8872–8878, copyright 2019 American
Chemical Society. Panel B is adapted with permission from Wen, F., Jiang, J., Fan, J.A., Robust freeform metasurface design based on progressively
growing generative networks. ACS Photonics 7 (2020) 2098–2104, copyright 2020 American Chemical Society. Panel C is adapted with permission
from Jiang, J., Fan, J.A., Global optimization of dielectric metasurfaces using a physics-driven neural network. Nano Lett. 19 (2019) 5366–5372,
copyright 2019 American Chemical Society.



3.2 Generative neural networks combined with metaheuristic
optimization
Along with the development of generative models, the capability of neural networks to

compress high-dimensional data into a low-dimensional latent space has been shown. If

the latent space is well defined and captures the key features of the design parameters,

performing computational optimization methods on this compressed space can be more

efficient than performing on the original design space. Further, it is possible to perform

global optimization on the latent space using various metaheuristic methods [107–109].
One example of this approach is to use an adversarial autoencoder (AAE). AAE is a

combination of AE and GAN and is composed of three networks: an encoder, a decoder,

and a discriminator [79]. The discriminator is responsible for performing adversarial

learning. Unlike previously introduced VAE, where the latent space is set to be a standard

normal distribution, the discriminator of an AAE is able to force the latent space into a

user-defined distribution, resulting in the construction of a more compact, continuous

latent space. The advantage of a continuous hyper-parametric space is that the interpo-

lation of data points, which is necessary for the physical interpretation or the implemen-

tation of computational optimization methods, can be done with ease. A method of

controlling and shaping the latent space using AAE was demonstrated to inversely design

a high-efficiency metasurface-based thermal emitter [84] (Fig. 9A). The final output

devices of this AAE generation with an extra level of TO refinement (AAE+TO)

method showed excellent performance of thermal efficiency up to 98%, whereas only

a maximum of 92% efficiency device was retrieved via direct TO. In a successive study

on the same task, a realization of global optimization was achieved through a differential

evolutionary (DE) algorithm [101]. DE, a population-based metaheuristic algorithm,

uses multiple agents to search the solution space and evolutionally converge to a global

solution [110]. Sets of corresponding efficiencies of the compressed design space vectors

were used to update the position of the agents. The combination of a conditional AAE

(c-AAE) and DE algorithm was able to greatly accelerate the design process to be almost

2.2 times faster than AAE+TO to produce designs with comparable performance. The

authors took a step further to enhance the device efficiency by latent space regularization,

performing a class labeling of high and low efficiency of devices (Fig. 9B). Over the

course of training, the design distribution was clustered into two levels. Devices that were

optimized by conducting DE only on the high-efficiency designs showed better perfor-

mance than the un-regularized case. This example clearly shows the convenience that can

be brought by a proper representation of the design space, implying a further possibility of

other global optimizers or any kind of regularization method to be implemented.

Expanded demonstrations of these include the adoption of a support vector machine

(SVM), a classifying algorithm in machine learning, to perform additional analysis on

the AE retrieved geometry manifold [111] and a merged framework using SVM with

the PSO method to output a metasurface structure of the desired property [112].
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Fig. 9 Examples of nanophotonic device designed using generative neural network combined with metaheuristic searching methods. (A) The
training schematic of AAE network model. The latent space is formed as a user-defined distribution by a discriminator. (B) (i) Evolution of
regularized compressed design space during training. (ii) Comparison of spectral emissivity of the best design achieved by c-AAE, c-AAE
+DE, and c-AAE+DE with regularized compressed design space (c-AEE+rDE) method (left). The violin plot of three design sets generated by
c-AAE, c-AAE+DE, and c-AAE+rDE (right). (C) Fabricated, measured, and simulated results of polarization conversion by optimized
metamolecules. Panel A is reprinted with permission from Kudyshev, Z.A., Kildishev, A.V., Shalaev, V.M., Boltasseva, A., Machine-learning-assisted
metasurface design for high-efficiency thermal emitter optimization. Appl. Phys. Rev. 7 (2020) 021407, copyright 2020 American Institute of
Physics. Panel B is adapted with permission from Kudyshev, Z.A., Kildishev, A.V., Shalaev, V.M., Boltasseva, A. Machine learning-assisted global
optimization of photonic devices. Nanophotonics 10 (2020) 371–383, copyright 2020 CC BY 4.0. Panel C is reprinted with permission from Liu, Z.,
et al., Compounding meta-atoms into metamolecules with hybrid artificial intelligence techniques. Adv. Mater. 32 (2020) 1904790, copyright 2019
Wiley.



Other research has shown that metaheuristic methods can be well coupled with

other generative neural networks and their hyper-parametric space. A concrete exam-

ple of integrating an evolutionary algorithm-based searching method on a latent space

was shown in a task of optimizing metamolecules in Ref. [113]. Metamolecules, a

term for a unit set of multiple, differently shaped meta-atoms, possess features such

as anomalous deflection which identical meta-atom consisting material cannot have.

The goal of the work was to efficiently optimize the metamolecule configuration for

arbitrary manipulation of the polarization and wavefront of light. In this framework, a

generative network that is able to decode the high-quality 2D patterns from a latent

variable in a pixel-by-pixel manner and an evolutionary algorithm were combined to

globally search within the latent space. The algorithm performs selection, reproduc-

tion, and mutation in a round robin fashion for all species with defined fitness scores.

The species are the latent vectors of meta-atoms and the fitness score is calculated

based on the polarization state of the design, its ellipticity, and phase and intensity

information of the produced electric field. Two cases of polarization conversion of

two meta-atom metamolecules and metasurfaces with gradient phase distributions

were demonstrated. As shown in Fig. 9C, the simulated and experimentally measured

data were in excellent agreement, proving the efficacy of the proposed design

framework.

Because the inverse design of nanophotonic devices is generally a highly compli-

cated non-convex problem, performing gradient-based optimization method right

from the start is not always the best policy as it is easy to get stuck at a local optimal

point. To guarantee a globally optimal solution, therefore, global searches must be

conducted. However, it is almost impossible to probe every point in the original

design space. The methods introduced so far aim to reduce the high-dimensional para-

metric space into an appropriate hyper-parametric space, which is much more man-

ageable. Numerous examples have shown these integrated approaches using

generative neural networks and metaheuristic examples are capable of pushing up

the performance level of the designs with considerable efficacy. Improvements could

be made to the compressed design space representation and the effective searching

techniques to provide a promising step toward the inverse design of globally optimized

devices.
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CHAPTER 2

Machine learning for solid mechanics
Charles Yang, Zhizhou Zhang, and Grace X. Gu
Mechanical Engineering, University of California, Berkeley, Berkeley, CA, United States

1. Introduction

Solid mechanics, as a branch of continuum mechanics, is the study of the deformation or

motion of solids under external applied loadings including forces, displacements, temper-

ature changes, or other agents. Solid mechanics allows engineers to mathematically

describe the physical behavior of solid materials and builds the foundation for material

design and diagnosis [1]. There are two basic components needed to model the mechan-

ics of a solid material: First, the fundamental physical laws that all continuums (including

fluids) must obey, for example, the balance of linear momentum. Second, a constitutive

equation that describes the materials’ response to the external loadings, for example, a

stress–strain relationship. In most cases, the constitutive relationship is either measured

from experiments or derived from first principles (sometimes a combination of the

two), which is then combined with the physical laws to form a set of complete governing

equations. Countless governing equations have been developed in the past hundreds of

years to tackle different application scenarios. Many classical theories are based upon

many assumptions and simplifications so that the results can be calculated easily, for exam-

ple, composite beam theory, Hertz contact theory, and Euler’s critical load formula [2,3].

However, these classical theories are only applicable in very limited situations, making

them insufficient for more complicated applications. Instead, more generalized govern-

ing equations for complex 3D geometries under various boundary conditions need to be

solved. To approach complex problems in modern industry, various numerical methods

have been developed among which the finite element method (FEM) is the most widely

used for solid mechanics problems [4–8]. The finite element method basically discretizes

the space into small elements where the solution of each element is approximated by a

base function and a finite number of degrees of freedom. The approximation is realized

by minimizing the associate error from the variational form of the governing equations.

However, numerical methods including FEM have two major drawbacks: First, the

computational cost scales drastically with the number of elements/nodes especially in

3D geometries. Second, complex numerical systems may lack available gradient or sen-

sitivity information which are extremely important for material or structural design

problems.
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Recently, artificial intelligence (AI), or more specifically machine learning (ML)

methods, which are empirical, data-driven models, have risen to prominence as a prom-

ising method of simulating and solving physical engineering problems. This meteoric rise

of ML in scientific domains is inspired by the success such methods have shown in a vari-

ety of other applications, such as image recognition, the challenging board game Go, and

natural language understanding [9–14]. A specific family of machine learning models

called neural networks is responsible for much of the recent success in applications that

were previously believed to be decades away for algorithms to solve.

Already, ML is being applied and implemented in a variety of scientific domains,

across a variety of disciplines. Such methods are proposed to accelerate density functional

theory (DFT) calculations of molecular properties, model using molecular dynamics

(MD), predict the state of health of batteries, and understand protein folding [14–18].
ML methods are also being applied to sift through the incredibly large amounts of data

generated by astronomical observatories to find new planets [19]. Physicists are even

using deep learning to search for new exotic particles in the debris left behind by powerful

particle colliders [20]. While extensive research and studies have been conducted con-

cerning the application of ML to different scientific disciplines that consider natural phe-

nomena at a variety of length scales, this contribution will provide an overview of the

recent research progress of ML on solid structural and materials (such as advanced com-

posites) engineering. Computationally, solidmaterial and structural design problems have

mostly been approached through FEM as discussed above. FEM is of particular interest

due to its widescale industrial application in a variety of engineering fields that are of sig-

nificant industrial importance such as the design analysis and assessment of wind turbine

blades, airplane wings, and automotive truck chassis [21–23]. As with other important

fields of science like chemistry and physics, ML holds the potential to fundamentally

reshape the toolkit scientists and engineers use to solve complex design problems and

change the way we approach numerical simulations.

In this chapter, several segmented case studies of different ML techniques in a variety

of applications are covered, including binary composites, auxetic metamaterials, and gra-

phene configurations. Finally, we will discuss the future opportunities of ML applied to

solid mechanics, as well as important considerations as the field matures.

2. Case studies

In order to conceptually organize AI research for solid mechanics, we group work into

two types of modeling approaches: forward and inverse designs. Forward design maps the

material structure to properties; this functional mapping matches the direction that FEM

models use; hence they are referred to as modeling the “forward” direction. Data-driven

models applied in this direction are also referred to as surrogate models, as they act as

surrogates for existing numerical models. Inverse design is more closely related to what
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engineers do, which is to map a set of desired properties to the final material structure or

design. This approach is much more challenging because such mappings are usually not

1-to-1 and due to the lack of prior knowledge for the property to structure relationships.

In addition to providing examples from both of these modeling paradigms in this section,

an overview of two advancedMLmodel classes is provided: physics-informed neural net-

works and graph neural networks.

2.1 Surrogate modeling for materials
Finite element method has often been used to solve real-life solid mechanics problems.

However, FEM is often computationally intensive and unscalable for problems with large

design spaces. One solution to this design problem is to use a surrogate model, one that

can stand-in for FEM with relatively similar accuracy but is much faster. This solution

framework is very common due to the relatively simple model-building process. The

standard procedure for surrogate modeling is outlined in Fig. 1: data preprocessing,

Fig. 1 In a standard surrogate modeling pipeline, the data are first preprocessed. Then a model is
trained on the data; the trained model is used to make predictions, which are then analyzed to
determine the model’s performance. Figure adapted from Yang, C., Kim, Y., Ryu, S., Gu, G.X.,
Prediction of composite microstructure stress-strain curves using convolutional neural networks. Mater.
Des. 189 (2020) 108509.
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model training, model prediction, and error analysis. In this section, we provide a ret-

rospective of how to approach problem setup and exploration when using ML models.

Several applications of ML methods to different design scenarios are also covered.

2.1.1 Case study: Prediction of material properties of binary composites
This section provides a case study of how to progressively tackle a fundamental problem

in solid mechanics with machine learning. ML is a new tool in the engineering toolkit—

we hope this walkthrough of how to set up problems will provide insight into how to

successfully frame problems in a way that allows us to leverage AI capabilities.

Predicting material properties is a difficult problem that is becoming increasingly

important as material design spaces are exploding in complexity. For instance, composite

materials are one class of materials that have combinatorically large design spaces, but,

with the right design, can possess desirable mechanical properties, such as low density

and high mechanical toughness. As a result, they have already demonstrated significant

promise in helping reduce carbon emissions in a variety of automotive and aerospace

applications. Developing an ML surrogate model might help accelerate our ability to

search the vast design space efficiently.

In our problem setup, we seek to identify binary composite designs with a desirable

combination of mechanical properties. We begin with a simple binary composite plate as

the design space, since it is a both a general problem setup with a large design space, but

simple enough to serve as a versatile testbed for the possibilities, ML offers to improve our

modeling capabilities. Rather than directly trying to predict property values, research has

shown that convolutional neural networks (CNN)can be used to rank the relative rank-

ing between different composite designs [24]. A surrogate model, a convolutional neural

network in this case, is trained to predict the properties of composites drawn from a large

design space and demonstrates superior design discovery. The CNN is also compared to

both a baseline of a linear model and the FEM model itself; feature importance from the

CNN is also used to interpret the result. Having demonstrated the ability to relatively

rank composite material properties, CNN can also be used to predict the actual mechan-

ical properties of binary composites [25]. Again, the CNN outperforms a linear model, as

well as a random forest in most cases, and demonstrates significant speed up as a surrogate

model. In addition, more advanced gradient-based feature visualization is used to better

discern what the CNN is learning and to develop more advanced architectures that can

take advantage of modulus values when calculating strength and toughness, since mod-

ulus is easier to calculate with FEM. Finally, having demonstrated the ability of a CNN to

predict modulus, strength, and toughness, the entire stress–strain curve of binary com-

posites is predicted with a CNN. A linear decomposition of the stress–strain curve is also
used to improve model training and is visualized for interpretability [26].
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Here, we would like to highlight several important rules of thumb to consider

when applying ML to material’s problems. The most important lesson is to start sim-

ple: ML is a fairly advanced and novel framework that is not guaranteed to succeed on

all problems—identifying the base case will help build confidence and experience, as

well as provide a sanity check. It is also helpful to frame problems in such a way

that already existing ML models can be easily applied and transferred. In the case

of binary composites, their design parameterizations, i.e., binary matrices, are very

similar to images, and as a result, we can easily apply standard computer vision models

to the problem. However, adaptation may also be required: for instance, a

“two-headed” neural network was developed because of our domain knowledge

about the relative ease with which modulus values can be obtained and their corre-

lation to other mechanical properties. It is also important to set up baselines with the

original, or “oracle” model, which is usually FEM, as well as with simpler models, to

ensure that unnecessary complexity is not being built in. And finally, interpretability is

an important component of building surrogate models, particularly when there exists

physical understanding of and intuition for the system being modeled. While not all

models are equally interpretable, being able to understand what the model is learning

is useful for incorporating prior knowledge and to ensure the model is not picking up

spurious correlations.

2.1.2 Examples of surrogate models
As surrogate modeling, which essentially attempts to serve as an application-specific

drop-in for FEM, is fairly straightforward, this problem-solving framework has seen

many different applications, particularly for material’s design with unique properties.

For instance, auxetic metamaterials are structures that have negative Poisson’s ratio

that expand under tension. In Wilt et al., the authors develop a neural network to

identify honeycomb lattices that display auxetic properties [27]. Zhang et al. used

convolutional neural networks to predict deformation of smart composite materials

[28]. Kim et al. also used CNN’s to design adhesive pillar interfaces and use a genetic

algorithm to iteratively search for the optimal design, enabled by the much faster deep

learning surrogate model [29]. Machine learning can also be used to accelerate the

design and understanding of more traditional applications as well. For instance,

Nie et al. used convolutional neural networks that are also used to predict stress fields

in cantilevered structures [30]. Many of these surrogate models define a set of design

parameters and use deep learning methods to learn the underlying mechanics by train-

ing on a large corpus of simulated training data. However, oftentimes, scientists and

engineers are striving to optimize for a set of material parameters. In these circum-

stances, surrogate models can often be paired with an optimizer, either gradient-based

or evolutionary-based.
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2.2 Inverse material design
Material structure design has long been a popular topic amongmechanical/material engi-

neers in both industry and research fields. Typically, evaluating the performance of a

material design is considered a forward problem, and searching for a material design that

best matches a user-defined objective is considered an inverse problem. And a good for-

ward problem solver is always required for any attempt at the inverse problem. As dis-

cussed in the introduction, numerical methods have been widely used as a forward

problem solver to simulate/predict material properties. In this section, we expand on

howML techniques are built upon numerical simulations to design and optimize material

properties.

Classical material design requires iteratively solving and updating some design candi-

dates (Fig. 2). In most cases, numerical simulations serve as the forward solver to evaluate

the current candidate performance. And the updating methods are generally categorized

into two big families: gradient-based and gradient-free. For instance, Hamel et al. used

the genetic algorithm (a well-known gradient-free method) to optimize a smart compos-

ite beam for a target deformation [31]. Such methods are easy to implement, but often

face challenges under large input space dimensions. On the other hand, gradient-based

methods tend to be more robust and efficient in general applications. Gaynor et al. opti-

mized a multi-material compliant inverter using the Solid Isotropic Material with Penal-

ization (SIMP) method [32]. The SIMP method basically interpolates the discrete

properties among candidate base materials through a smooth function, which offers gra-

dient information to guide the change of material distribution. However, depending on

the design features and objective, gradient information is not always available from the

numerical solutions of a set of PDEs. Therefore, researchers applied ML techniques to

generate gradients to help optimize material designs.

As introduced in the previous section, researchers have been training surrogate ML

models to replace the role of numerical simulations to forward predict material

Problem
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Toughness, Energy absorption,
Weight, Deformation
for example:

Composite material distribution
for example:

Design 0 Design 1
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The set of  all
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Fig. 2 A schematic showing two different material design approaches. Route 1 represents the classical
iterative optimization, while route 2 illustrates a generative ML model that directly produces design
candidates as its output.
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properties. Any gradient-free design optimization techniques implemented on numerical

simulators would also be applicable on ML surrogate models. And it turns out that many

of these ML models (e.g., linear regression, neural networks) are differentiable, meaning

that the model not only predicts a single design point, but also provides information about

the local neighborhood in the design feature space. This feature allows the application of

gradient-based optimization techniques, for example, gradient descent, newton’s

method, etc. Researchers have developed a material design framework using gradient-

based optimization on an actively trained neural network [33]. The similar approach

is extended to other numerical scenarios [34]. In most cases, neural networks are pref-

erable than linear models in model-based optimization tasks for their ability to fit the

details of a complex response function. One thing to note is that when optimization

is conducted on ML surrogate models rather than a numerical simulator, each iteration

can be significantly accelerated with its performance becomes relatively inferior, since the

material property prediction is an approximation instead of being exact. As a tradeoff,

major computational cost would instead lie in the model training phase where ground

truth data are generated from simulations.

Researchers have also investigated a second route: using generativeMLmodels to pro-

duce design candidates in one shot (Fig. 2). Different from surrogate models, generative

ML models directly solve the inverse problem by taking a target material property as

the input and outputting the candidate designs.However, a specific set of designobjectives

may correspond tomultiple potential design solutions. Therefore, such generativemodels

typicallymap a standard uniform distribution to the distribution of potential designs (more

details can be found inRef. [35]). This technique has been successfully used for generating

artificial images that are almost indistinguishable from real ones [36]. Learning from these

experiences in computer vision research, Mao et al. added a scoring system to the gener-

ative adversarial network which can then generate material designs with better expected

properties [37]. Kyle et al. adopted a similar approach to generate porous graphene con-

figurations based on desired energy levels [38]. Despite these successful applications, gen-

erative ML models are still in their infancy in terms of material designing, with plenty of

room for improving the accuracy and training efficiency.

2.3 Physics-informed neural network
In previous sections, we have discussed various ML techniques to understand and design

composite materials based on ground truth data generated from numerical simulations or

experiments. Despite the essentiality of ground truth data for ML models, it is sometimes

too expensive or even impossible to obtain data in real-life problems. To overcome this

data shortage issue, researchers have been trying to explore different forms of prior

knowledge that neural networks can learn from. And it turns out that in many engineer-

ing problems, there are perfect candidates serving as the prior knowledge: physics laws.
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In this section, we will introduce the fundamentals of physics-informed neural networks

and how they are utilized to solve material-related problems.

Most neural networks fedwith ground truth data use a quadratic loss function so that the

optimizer minimizes the distance between the predicted outputs and the true labels. Now

suppose we want to train a neural network to represent the solution to the following equa-

tion: ut+uux¼0, where u is a function of t and x (assuming an analytical solution cannot be

found). A straightforward approach is to first sample a certain amount of data tuples (t, x, u)

by numerically solving the equation. Then train the neural networkwith these ground truth

data points as shown in Fig. 3. However, Raissi et al. introduced the physics-informed neu-

ral network which directly penalizes the residual of the governing equation [39]. In the case

of our sample problem, the expression of the loss function would be but + bubuxð Þ2, where bu
represents the prediction from the neural network. By minimizing this loss function, the

neural network is forced to make predictions that obey the governing equation. This

method also has an elegant implementation since any partial derivatives in the governing

equation can be easily computed through backpropagating the neural network.

Physics-informed neural networks have been very successful in fast visualization of

flow profiles where direct measurements or numerical calculations may not be possible

[40]. Unfortunately, this approach is not generally applicable since many problems are

not governed by clear equations. However, many of the material learning and design

problems do involve well-defined mechanics that can serve as prior physics knowledge.

For example, Zhang et al. trained a neural network to predict the deformation field of a

digital composite sheet [41]. Instead of generating ground truth labels from finite element

simulations, the loss function was set to be the elastic energy over the entire material
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Fig. 3 A schematic comparing the workflow of a typical supervised learning approach which learns
from ground truth data, and the physics-informed approach which learns from governing
equations. Figure adapted from Z. Zhang, G. Gu, Physics-informed deep learning for digital materials.
Theor. Appl. Mech. Lett. 11 (2021) 100220.
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domain: min 1
2

R
εTð Þ E½ � εð ÞdΩ where E stands for the material elasticity tensor and ε

denotes the strain, which is known to be minimized under the static equilibrium state.

Chen et al. applied the physics-informed neural network to elastography where material

elastic properties are predicted from ameasured strain distribution. This neural network is

directly supervised by the linear elastic material constitutive law [42]. In most of the lit-

erature, the authors report comparable accuracy between supervised neural networks and

physics-informed neural networks.

Despite the growing popularity of the physics-informed neural network, there has

been limited attention in estimating the total computational cost. It is clear that making

a prediction using a neural network is much faster than solving differential equations.

This fast response also manifests when the model serves to produce gradient information.

Nevertheless, the training cost of neural networks should never be ignored. Unlike typ-

ical supervised models whose training cost is dominated by the data collection process

(e.g., simulation time of all data points), physics-informed neural networks have their cost

concentrated at the model parameter optimization process since each backpropagation

step starts from a physics loss that is much more complex than a quadratic loss. Zhang

et al. briefly discussed the scaling relationship between the system size and a single-

training epoch computation cost [41]. However, it remains an open research question

to exactly bound the cost of physics loss due to the selection of hyperparameters and sto-

chasticity of neural network training.

2.4 Graph neural networks
Identifying the right model architecture for different data formats is one large challenge in

modeling, particularly for unstructured data types. Recently, graph neural networks are a

novel type of neural network architecture that can be applied to graph-like inputs. The

most common graph neural network is based on message passing between nodes: each

node takes in a message, i.e., a vector or matrix, from all adjacent nodes and computes

an update to the latent feature vector associated with each node using a composition of a

simple mathematical function. Multiple rounds of message passing are done; at the end, a

readout function computes the label of the graph, given the feature vector of all the

nodes. To see examples of different mathematical formulations of the message passing

and readout steps, see Ref. [43]. The message passing framework for graph neural net-

works is visualized in Fig. 4.

Graph neural networks have already seen great success in scientific fields that deal with

complex structures, such as modeling quantum properties of molecules [43], discovering

new antibiotics “A Deep Learning Approach to Antibiotic Discovery” [44], and under-

standing high-energy particle interactions in detectors [45]. In this section, several exam-

ples of how this advanced neural network architecture can be used for different modeling

situations in a generalized fashion are provided.
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In Seff et al., they release a large-scale dataset of sketched CAD designs and demon-

strate how graph neural networks can be used to aid the design process at different stages,

ranging from generative modeling, image to CAD conversion, and autoconstraining

[46]. Researchers at Autodesk also use graph neural networks for structural engineering

of buildings and demonstrate that GNN’s learn designs that use less material are more

cost-effective, and safer. When benchmarking their graph neural network against stan-

dard numerical optimizers and human designers, they demonstrate that their model out-

performs both, requiring significantly less compute or less time respectively, to achieve

superior results [47]. Pfaff et al. at Google’s DeepMind show that graph neural networks

can accurately learn a variety of mesh-based simulation tasks, ranging from aerodynamics,

structural mechanics, and cloth behavior [48].

Solid mechanics overall deal with a variety of numerical computations at different

levels of abstraction, ranging from the differential equations at the core of FEM to the

parameters that define a design. Graph neural networks, because of their ability to take

in less formally structured inputs, are a promising model type for being able to generalize

to a variety of FEM tasks, without being reliant on a specific set of design parameters.

3. Future opportunities and considerations

Solid mechanics is a well-poised field for AI adaption. It relies on robust, standardized

numerical software that is already broadly adopted and trusted in industry. However,

identifying optimal designs from these numerical models is challenging, often relying

on human intuition and expertise, which is not always ideal or scalable. In particular,

searching vast design spaces with numerically intensive FEM is a difficult task, yet a com-

mon theme. ML models, with their ability to learn from large-scale data efficiently, are a

Fig. 4 A figure indicating the training process for message-passing graph neural networks. Each node
in the graph receives a latent message vector from neighboring nodes and updates its own internal
feature vector by applying non-linear functions. After n epochs of message passing for each node, a
readout function specified by the user calculates the target material descriptor.
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promising tool to help solve this scalability problem. However, much of the progress in

building AI and ML models have been driven by the concerns of software-defined tech-

nology companies in social media and ad recommendations. While AI can help solve

important design problems in solid mechanics, we will need AI tools that are built for

the job. There are many ways to use AI techniques in novel ways specific to problems

in solid mechanics, many of which incorporate some element of domain or prior knowl-

edge. There are also many important constraints in solid mechanics and FEM which are

currently difficult to encode in MLmodels, such as manufacturing constraints and multi-

scale modeling. In order to build ML models capable of solving these domain-specific

problems, we need “bilingual” people—those with the ability to speak the language

of engineering and AI. Our hope is that this chapter will both provide a survey of the

progress made and an incentive for others to learn how to use AI in their methodology

and research.

In our experience, there are several important considerations when thinking about

how to encourage AI adoption. In addition to the importance of “bilingual” scientists

and engineers, we also need to consider the importance of compute and data, which

are the sustenance of ML models. Indeed, much of the progress in AI is a result of

open-sourced software (e.g., Pytorch, Tensorflow, Keras, and scikit-learn) and com-

monly agreed upon datasets (e.g., MNIST, CIFAR10, ImageNet) that acted as baselines

for the research community. These open-sourced software and datasets are a great learn-

ing tool that can be applied not only for solid mechanics problems but also for broader

engineering and science fields. AI has demonstrated itself to be a promising and potent

new tool in the engineer’s toolkit. But the work of adopting AI as a robust and accepted

tool is only just beginning; indeed, there are still many open opportunities for researchers

to help build a common set of software, data, and ML models tailored to the needs of the

solid mechanics community.

4. Conclusions

In this chapter, an overview of AI applications to solid mechanics is provided, an impor-

tant field of study with special relevance to our society’s infrastructure.We survey its suc-

cess in surrogate modeling and inverse design, as well as special advanced classes of ML

models such as physics-informed neural networks and graph neural networks. We also

consider the field as a whole and important considerations to think about when encour-

aging AI adoption. As outlined throughout this chapter, AI is a promising instrument for

revolutionizing the way we design buildings, materials, and transportation. Such tools

will be needed to confront a vastly exploding design space, driven by industrial advances

in manufacturing. And indeed, the environmental and ecological challenges facing our

society require the rapid, scalable development of designs that are sustainable and acces-

sible. This will require lightweight cars and airplanes, new energy technologies, andmore
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environmentally friendly building designs. AI is a potent tool to help mechanical engi-

neers and structural designers build a better future today.
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CHAPTER 3

Neural networks in phononics
Liu Chen-Xu and Yu Gui-Lan
Beijing Jiaotong University, School of Civil Engineering, Beijing, China

1. Introduction

Phononic crystals (PnCs) are periodic elastic composites and have broad application pros-

pects in controlling and manipulating elastic waves due to the existence of phononic

bandgaps. When elastic waves propagate in PnCs, a special dispersion relation or band

diagram is generated, where the frequency domains covered by dispersion curves are

called passbands and those uncovered are stopbands, namely bandgaps. Theoretically,

elastic waves within bandgaps will be suppressed when propagating in PnCs, and those

within passbands will spread without energy loss. If there are point defects or linear

defects in PnCs, the elastic waves within the bandgaps will be localized at or propagated

along the defects. Hence, PnCs can be used to block or control elastic waves.

The initial work concerning with PnCs can be traced back to 1971 when Narayana-

murti et al. discovered for the first time that a layered periodic structure can be used to

control the propagation of high-frequency waves [1], which was not known as PnCs at

that time. In the early 1990s, Sigalas and Economou verified that there are bandgaps for

elastic waves in a three-dimensional (3D) periodic structure [2] and two-dimensional

(2D) fluid–solid system [3]. The concept of PnCs was first put forward in 1993 by Kush-

waha et al. in the study of 2D solid periodic composites [4]. In 1995, Martinez Salar et al.

conducted an acoustic experiment on a statue standing in a park in Madrid, Spain, which

is a periodic structure called “FlowingMelody,” and found that waves at some frequency

ranges will experience attenuation when passing through the statue [5]. Vasseur et al.

proved the existence of bandgaps in 2D solid–solid PnCs by experiment and the theo-

retical analysis was carried out [6]. Although wave propagation can be effectively con-

trolled by tuning bandgaps of PnCs, however, the size of the structure must be very

large to obtain bandgaps in low-frequency region owing to the Bragg scattering mech-

anism. In 2000, Liu et al. proposed a new PnCs based on local resonance [7], and the

generation of its bandgaps is due to the resonance of scatterers, which is different from

that induced by Bragg scattering. The wavelength corresponding to the first bandgap fre-

quency is far greater than the size of the lattice, which marks another major breakthrough

in the study of PnCs. The locally resonant PnC is also called metamaterial or metastruc-

ture because of its superpower of small size to control large wavelength.
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The traditional methods for calculating PnCs include the transfer matrix method,

plane wave expansion method, finite element method, etc., and they will consume a

lot of time and computing resources. It is well known that structures and their charac-

teristics obey certain physical laws, which can be discovered and exploited. If there exists

an approach that can predict the characteristics of PnCs quickly, the discovery and design

of PnCs will be convenient. The key point is to find a method to simulate the physical

laws of PnCs and output rapidly their characteristics. With the development of deep

learning, artificial neural network (ANN) has entered the vision of many researchers.

It can simulate an arbitrarily complex relationship through the combination of many sim-

ple functions, which is a powerful simulation algorithm. ANN provides new possibilities

for PnCs exploration and design.

ANN is amethod for representation learning and can approximate an arbitrarymapping

relationship. Its appearance can be traced back to 1943, whenMcCulloch and Pitts [8] first

proposed an ANN calculationmodel based onmathematics and threshold logic algorithms.

In the late 1940s, Hebb created a typical unsupervised learning rule based on neuroplasti-

city, that is Hebb learning. In 1954, Farley and Clark [9] used a computer to simulate the

Hebb network for the first time. In 1958, Rosenblatt created a modal recognition algo-

rithm, which is a two-layer computer learning network realized by simple addition and

subtraction. In 1974, Werbos [10] proposed a back-propagation algorithm, which is a

key development in ANN and effectively solves the XOR problem. In 1982, Hopfield

[11] proposed a recurrent neural network, which is more conducive to processing serialized

data. In 1989, LeCun et al. [12] applied the back-propagation algorithm to a convolutional

neural network (CNN). In 2006, Hinton et al. [13] used greedy layer-by-layer pre-training

to effectively train a deep belief network. In 2012, the team led by Hinton won the cham-

pionship with the excellent image classification effect of AlexNet in the ImageNet com-

petition, and its recognition accuracy far exceeded the second place by 10 percentage

points, which caused an upsurge in ANN. In recent years, excellent neural networkmodels

have emerged one after another, such as GoogleNet [14], ResNet [15], DenseNet [16],

variational autoencoder [17], generative adversarial network [18], etc.

In 2019, Finol et al. used a CNN and a multilayer perceptron (MLP) to predict eigen-

values of 1D and 2D PnCs [19]. For 1D case, the CNN reaches 98% accuracy on the

testing set when trained with 20,000 sets of data, whereas the MLP only has 85% accu-

racy, which was trained with 100,000 sets of data. In the CNN, they used a matrix to

represent the distributions of materials in PnCs; for 1D PnCs, the input is a

2�50 matrix, where one column is elastic modulus with 50 elements and the other is

the corresponding mass density of them; for 2D PnCs, the input is a 3D matrix with

128�128�5 elements, where the five layers (each layer has 128�128 elements) rep-

resent elastic modulus, Poisson’s ratio, mass density, and two components of wave vec-

tors, respectively. In this research, they only studied the prediction of eigenvalues in the

dispersion curves of PnCs.
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The present authors compared the prediction accuracy of MLPs and radial basis func-

tion (RBF) neural networks for the dispersion curves of 1D PnCs [20]. Three cases are

considered, that is, one-parameter prediction, two-parameter prediction, and three-

parameter prediction. For one-parameter prediction, the input of neural networks is fill-

ing fraction, the training set has only 10 sets of data, and the two neural networks have

great performance on the prediction of dispersion curves. For two-parameter prediction,

shear modulus, and mass density are input into neural networks, and MLP has a better

result. For three-parameter prediction, filling fraction, shear modulus, and mass density

are taken as the input, and the prediction accuracy of MLP is better than that of the RBF

neural network. We also used MLP and autoencoder (AE) with a pretrained decoder to

design parameters of 1D PnCs [21]. The results illustrated that the AE has a better design

performance compared with MLP. The difference between the two neural networks is

that MLP is a supervised learning method, while AE is unsupervised. The MLP is to pre-

dict the designed 1D PnCs forwardly, and the AE is to search for a solution that satisfies

the target by the AE’s encoder according to the predicted values of AE’s pretrained

decoder.

Sadat and Wang discovered the properties of 2D PnCs with square lattice and cylin-

drical scatterer by machine learning approaches [22]. Three methods, linear regression,

MLP, and random forest, are compared. The input is the diameter of scatterer, the elastic

modulus and mass density of host and scatterer materials. The existence, center fre-

quency, and width of the bandgap are predicted, and they found that the optimal algo-

rithm among the three methods is random forest.

Li et al. proposed a deep learning model composed of a MLP and an AE to design

the topological configurations of 2D PnCs [23]. The configurations of 2D PnCs are

represented by 128�128 matrices, where there are two different numbers respec-

tively indicating host and scatterer materials. A vector, which contains passbands

and stopbands, has 1000 dimensions, where one value (0 or 1) determines whether

a small frequency range is passband or not. The AE is used to compress the matrix

representing the configuration of a PnC into a feature vector and restores it from

the feature vector. The MLP can predict a feature vector according to a given target,

and the feature vector is input into the AE’s decoder to obtain the final designed topo-

logical configuration.

It can be seen that the application of neural networks to PnCs has made some pro-

gress. In order to understand this technology easily, the forward prediction and

inverse design of 1D PnCs by neural networks will be introduced in this chapter.

Firstly, the transfer matrix method for calculating the dispersion curves and energy

transmission spectrums of 1D PnCs will be presented. Next, we will use neural net-

works to predict the dispersion curves and energy transmission spectrums of 1D PnCs.

Finally, two types of neural networks will be compared for the inverse design of

1D PnCs.
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2. One-dimensional phononic crystals and transfer matrix method

1D PnCs considered here are composed of two materials named as A and B, respectively.

They are distributed periodically along the x direction as shown in Fig. 1. The lattice con-

stant is equal to a, and the thicknesses of material A and material B are aA and aB, respec-

tively. Here, we consider the oblique incidence of SH wave with an angle θ, and the

materials are assumed linear and elastic. The governing equation can be expressed as

ρðx, zÞ ∂
2u x, z, tð Þ

∂t2
¼ μðx, zÞ ∂

2u x, z, tð Þ
∂x2

+
∂
2u x, z, tð Þ
∂z2

� �
, (1)

where u is displacement perpendicularly to the x–z plane; ρ is mass density, and μ is shear
modulus; t is time.

When a harmonic wave is considered, the displacement in 1D PnCs can be written as

u x, z, tð Þ ¼ U xð Þeikzz�iωt, (2)

where ω is angular frequency; kz is wave number along the z direction, which is constant

according to Snell’s law. Substituting Eq. (2) into Eq. (1), the displacements and the stres-

ses in material A and material B in the nth lattice are respectively written as

unj x, z, tð Þ ¼ eikzz�iωt Cnje
iα jx + Dnje

�iα jx
� �

, j ¼ A,B (3)

Fig. 1 One-dimensional phononic crystals where θ is incident angle.
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τnjxy x, z, tð Þ ¼ μ jα je
ikzz�iωt Cnje

iα jx �Dnje
�iα jx

� �
, j ¼ A, B (4)

where, when j is equal to A, x belongs to [(n � 1)a, (n � 1)a +aA], and when j is equal to

B, x belongs to [(n � 1)a +aA, na];Cnj andDnj indicate the amplitudes of transmitted and

reflected waves, respectively; α j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω=c j

� �2

� kzð Þ2
r

, where cj is wave velocity. For sim-

plicity, τxy
nj is denoted by τnj.

The displacement and stress at the interface between material A and material B are

continuous, thus we have

unA ¼ u n�1ð ÞB, x ¼ n� 1ð Þa (5)

τnA ¼ τ n�1ð ÞB, x ¼ n� 1ð Þa (6)

unA ¼ unB, x ¼ n� 1ð Þa + aA (7)

τnA ¼ τnB, x ¼ n� 1ð Þa + aA (8)

Therefore, the relationship between the amplitudes of incident and reflected waves in

the nth lattice and the (n � 1)th lattice can be obtained

Ψ nB ¼ TΨ n�1ð ÞB, (9)

where

Ψ nB ¼ CnB,DnB½ �T

T ¼ K2ð Þ�1
H2 H1ð Þ�1

K1

H1 ¼
1 1

μAαA �μAαA

	 


K1 ¼
eiαBa e�iαBa

μBαBe
iαBa �μBαBe

�iαBa

	 


H2 ¼
eiαAaA e�iαAaA

μAαAe
iαAaA �μAαAe

�iαAaA

	 


K2 ¼
eiαBaA e�iαBaA

μBαBe
iαBaA �μBαBe

�iαBaA

	 


Application of Floquet-Bloch boundary condition to the nth lattice yields

ΨnB ¼ eikaΨ n21ð ÞB, (10)

where k is a Bloch wave vector.

Thus, a standardmatrix eigenvalue problemcanbeobtained according toEqs. (9) and (10)
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T � eikaI
�� �� ¼ 0, (11)

where I is a 2�2 unit matrix. Eq. (11) can be rewritten as

cos kað Þ ¼ cosh αAaAð Þ cosh αBaBð Þ

+
1

2

αAρAc
2
A

αBρBc
2
B

+
αBρBc

2
B

αAρAc
2
A

� �
sinh αAaAð Þ sinh αBaBð Þ, (12)

The dispersion curves of 1D PnCs can be obtained by solving the above equation.

Assuming that waves are incident from a semi-infinite material A, passing through the

PnCs composed of material A and material B with m periods, and transmitted to a semi-

infinite material B, then according to Eq. (9), the relationship between the amplitudes of

incident and reflected waves in the mth lattice and the 0th lattice is as follows:

ψmB ¼ Tmψ0A, (13)

where m represents the number of periods of the PnCs, and Tm can be abbreviated as

follows:

Tm ¼
T 11 T 12

T 21 T 22

	 


Then, the amplitude of the transmitted wave, denoted by CmB, can be obtained

according to Eq. (13), which is expressed as

CmB ¼ 2e�αBma

μBαB
μAαA

T 11 � μBαBT 12 � 1
μAαA

T 21 + T 22

C0, (14)

whereC0 is the amplitude of the incident wave passing through the PnCs withm periods.

The energies of the incident wave and transmitted wave are, respectively,

Pin ¼
1

2
ρAcAω

2 C0j j2, (15)

Pout ¼
1

2
ρBcBω

2 CmBj j2, (16)

where cj is the velocity component of SH waves in the x direction in material j (j¼A, B).

In order to illustrate the attenuation performance of the PnCs, the logarithm of the

ratio of the transmitted wave energy to the incident wave energy is defined as the energy

transmission coefficient, namely

T ¼ ln
Pout

Pin

� �
, (17)

Then, the energy transmission spectrum of 1D PnCs can be obtained according to the

above equation.
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Assuming that a 1D PnC is composed of aluminum (μA¼28.7GPa and

ρA¼2730kg/m3) and epoxy (μB¼1.59GPa and ρB¼1180kg/m3), which are material

A and material B, respectively. The thicknesses of the two materials are both 0.05m, and

the incident angle of SHwaves, namely θ, is 0.5 rad. According to Eq. (12), the dispersion
curves can be obtained as shown in Fig. 2A. The energy transmission spectrum for m¼8

is calculated by Eq. (17) and shown in Fig. 2B where Ω¼ωa/(2πcA) is dimensionless

frequency.

3. Forward prediction of phononic crystals with neural networks

In this section, the dispersion curve and energy transmission spectrumpredictions of 1DPnCs

are discussed. The generation of datasets and the choice of neural networks are introduced in

details. Two simple neural networks,MLP andRBF neural networks, are adopted and com-

pared. Three prediction cases are considered, such as one-parameter, two-parameter, and

three-parameter predictions.

Fig. 2 Dispersion curves (A) and energy transmission spectrum (B).
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3.1 Predicting the dispersion curves of one-dimensional phononic
crystals
Dispersion curves of PnCs reveal the relationship of Bloch wave vectors and frequencies,

from which some physical characteristics of PnCs, such as bandgaps which are located at

none eigenvalue areas in dispersion curves, can be discovered and exploited. Hence, rapid

prediction of dispersion curves is helpful for researchers to study the properties of

structures.

3.1.1 Datasets for the prediction of dispersion curves
It is important for neural networks to establish suitable and reasonable datasets, which are

a prerequisite for getting a good result. Generally, datasets are randomly divided into a

training set, a validation set, and a testing set. Neural networks learn the inherent laws of

data though the training set. The validation set is used to assist in adjusting neural net-

works during training, which can be used to judge whether the networks is overfitting or

underfitting (overfitting means the performance of neural networks on the training set is

far better than that on the validation set; underfitting means the neural networks perform

very badly on both the training and validation sets). The testing set is responsible for eval-

uating the neural networks after being completed, which is never used during training

and adjusting. The three datasets perform their duties to ensure the accuracy and versa-

tility of neural networks.

From Eq. (12), one may notice that for SH waves, the dispersion curves of 1D PnCs

are mainly related to geometry size, shear modulus, and mass density, and it is known that

the shear modulus ratio (μ ¼ μB=μA), mass density ratio (ρ ¼ ρB=ρA), and filling fraction
(a ¼ aB=a) are the key physical and geometric parameters affecting the bandgaps of PnCs

[24]. Hence, these three parameters are considered when data are generated, and corre-

sponding dispersion curves are calculated by Eq. (12). Assuming that material A, lattice

constant, and incident angle are fixed, the shear modulus and mass density of material A is

set to be 20GPa and 3000kg/m3, respectively, the lattice constant is 1m, and the incident

angle is 0.5 rad. The geometric and physical parameters of material B are variables. For

one-parameter (filling fraction a), two-parameter (shear modulus ratio μ and mass density

ratio ρ), and three-parameter (a, μ, and ρ) changes, there are corresponding three groups
of datasets named as dataset A, dataset B, and dataset C, respectively. Dataset A includes

training set A (10 sets of data), validation set A (2 sets of data), and testing set A (2 sets of

data), where filling fraction varies from 0.3 to 0.75. Dataset B includes training set B (100

sets of data), validation set B (20 sets of data), and testing set B (20 sets of data), where

shear modulus ratio and mass density ratio vary from 0.005 to 0.095 and 0.1667 to

0.5667, respectively. Dataset C includes training set C (1000 sets of data), validation

set C (100 sets of data), and testing set C (100 sets of data), where filling fraction, shear

modulus ratio, and mass density ratio vary from 0.3 to 0.75, 0.005 to 0.095, and 0.1667 to
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0.5667, respectively. The first three bands in the dispersion curves are taken into account

and each band is represented by 101 discrete points. It is worth noting that geometric or/

and physical parameters of 1D PnCs are taken as the input of neural networks and dis-

persion curves are taken as the labels (labels are the true samples from datasets, which

correspond to the output of neural networks) and there is no intersection among these

training, validation, and testing sets.

3.1.2 Neural networks predicting dispersion curves
In this section, we introduce two types of neural networks, which are multilayer percep-

tron (MLP) and radial basis function (RBF) neural network. They are simple and easy for

application.

MLP is composed of many fully connected layers as shown in Fig. 3A. In each layer,

there are a lot of artificial neurons which are disconnected, and each neuron is connected

to all neurons in the previous and back layers. A neuron consists of a weight vector, a bias,

and an activation function, which is defined as

O ¼ f wx + bð Þ, (18)

where w is weight vector; b is bias; f is activation function; x is input data; O is output

value. A satisfied MLP can be obtained by adjusting weights and biases. It is general for

linear regression problems to take mean squared error function as the loss function of

MLP, whichmakes neural networks able to estimate posterior probabilities for finite sam-

ples with high accuracy [25,26]. Mean squared error function is written as

LMSE ¼ 1

M

XM
i¼1

y
ið Þ
L � y

ið Þ
O

� �2

, (19)

where yL
(i ) is the ith set of label; yO

(i ) is the output of neural networks corresponding to yL
(i );

andM is the number of data. Adam optimizer [27] is used to improve the gradient descent

Fig. 3 Multilayer perceptron (A) and radial basis function neural network (B).
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method, which is conducive to the convergence of neural networks. The activation

function in each layer is “Tanh” as follows

f tanh ¼
ep � e�p

ep + e�p , (20)

where p is the preactivated value.

RBF neural network can approximate arbitrary nonlinear functions. With good gen-

eralization ability, it is able to learn complicated laws in a system, and its learning effi-

ciency is remarkable. RBF neural network is composed of an input layer, a hidden

layer, and an output layer as shown in Fig. 3B. For the RBF neural network, there is

no weight connecting between the input layer and the hidden layer but the weight con-

necting between the output layer and the hidden layer. RBFs can calculate the distance or

similarity between the inputs and the centers of the hidden layer. The farther the distance

is or the lower the similarity is, the smaller the activation of a neuron is, and the less obvi-

ous its effect is. Take multivariate quadratic function as the radial basis function, which

can be written as

f RB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + δ x� cj j2

q
, (21)

where c is the center of the radial basis function, and δ is an adjustable parameter. K-means

algorithm is adopted to determine c which should obey the following condition:

arg min
S

XK
i¼1

X
x�Si

x� cij j2, (22)

where S¼{S1, S2, S3,…, SK} is the collection of all input sample data, where Si (i ¼1, 2,

3,…,K) is a subset of S, which is composed of one or more samples; and ci is the mean of

Si. Here, linear regression method is used to calculate the weights between the hidden

layer and the output layer. Compared to gradient descent method, linear regression

method saves the training time and its model is simpler. The weight calculated by linear

regression method is as follows:

w ¼ yTLyL
� ��1

yTLyO (23)

3.1.3 Choosing suitable neural networks
It is important to construct a reasonable and suitable neural network for data-driven

work. If the neural network is too simple, it has a weak simulation performance; if

too complicated, its learning ability may deteriorate and the calculation efforts will

increase. In addition, choosing suitable activation functions is necessary for different

problems, and adopting an appropriate algorithm to update the neural network param-

eters is conducive to speeding up the convergence of the network and avoiding falling

into a local optimum. A validation set can be used to preliminarily evaluate the
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performance of a neural network. Hence, judging whether the neural network is appro-

priate can refer to its performance on the validation set.

Firstly, in order to describe the accuracy of predicted dispersion curves by neural net-

works, Euclidean distance between the predicted dispersion curves and the label is

adopted, which is as follows:

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yL � yOj j2

q
, (24)

It should be noticed that the smaller the Euclidean distance is, the higher the predic-

tion accuracy is.

In this section, the architectures of the MLPs and RBF neural networks are discussed

for three cases in the validation sets, involving one-parameter, two-parameter, and three-

parameter changes, respectively. The optimal architectures are determined by comparing

the mean errors of corresponding validation sets. Here, the prediction error is represented

with the Euclidean distance (Eq. 24) between labels and predicted values.

For the one-parameter prediction, the following four architectures of the MLPs are

compared in validation set A:

MLP-1-1: 1–30–30–30–303
MLP-1-2: 1–30–30–30–30–303
MLP-1-3: 1–30–30–30–30–30–303
MLP-1-4: 1–30–30–30–30–30–30–303

For the two-parameter prediction, the following four architectures of theMLPs are com-

pared in validation set B:

MLP-2-1: 2–300–100–100–100–303
MLP-2-2: 2–300–100–100–100–100–303
MLP-2-3: 2–300–100–100–100–100–100–303
MLP-2-4: 2–300–100–100–100–100–100–100–303

For the three-parameter prediction, the following four architectures of the MLPs are

compared in validation set C:

MLP-3-1: 3–600–300–100–100–303
MLP-3-2: 3–600–300–100–100–100–303
MLP-3-3: 3–600–300–100–100–100–100–303
MLP-3-4: 3–600–300–100–100–100–100–100–303

Here “1,” “2,” or “3” is the dimension of the input layer, “303” is the dimension of the

output layer, and others are the number of the neurons in their corresponding hidden

layers. Fig. 4A shows the mean errors of the validation sets of theMLPs under three cases.

It can be seen that for the one-parameter prediction, the mean error of “MLP-1-3” is the

smallest, for the two-parameter prediction, “MLP-2-3” and “MLP-2-4” have a similar

accuracy, but “MLP-2-3” has less hidden layers than “MLP-2-4,” and for the three-

parameter prediction, “MLP-3-3” is the best choice.
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Similar to the comparison of MLPs, for the one-, two-, and three-parameter predic-

tions, the following 12 architectures of the RBF neural networks are, respectively, com-

pared in the validation sets:

RBF-1-1: 1–5–303
RBF-1-2: 1–10–303
RBF-1-3: 1–15–303
RBF-1-4: 1–20–303
RBF-2-1: 2–50–303
RBF-2-2: 2–100–303
RBF-2-3: 2–150–303
RBF-2-4: 2–200–303
RBF-3-1: 3–200–303
RBF-3-2: 3–400–303
RBF-3-3: 3–600–303
RBF-3-4: 3–800–303

Fig. 4 Comparisons of the mean errors in the validation sets for different multilayer perceptrons
(A) and radial basis function neural networks (B).
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Fig. 4B gives the mean errors of the validation sets of the RBF neural networks under

three cases. It can be seen that “RBF-1-3,” “RBF-2-3,” and “RBF-3-3” are the optimal

architectures for the first, second, and third cases, respectively.

It can be seen from the above comparisons that for MLP, too shallow hidden layers or

too few neurons will make prediction accuracy worse. If the hidden layers are too deep or

the number of neurons is too large, the performance of the MLPs in the validation sets

will become poor or the amount of calculation will increase without the improvement of

prediction accuracy. For RBF neural networks, too few neurons will lead to poor per-

formance, and too many neurons will greatly increase the amount of calculation without

improved results. Hence, it is very important to choose a properly constructed neural

network model.

3.1.4 Predicted dispersion curves in the testing sets
Dataset A is used to train, validate, and test the neural networks for the one-parameter

prediction, and it has 14 sets of data where 10 form training set A, 2 form validation set A,

and 2 form testing set A. According to above analysis in Section 3.1.3, “MLP-1-3” and

“RBF-1-3” are the optimal choices for one-parameter prediction. The predicted disper-

sion curves in testing set A by the two neural networks are shown in Fig. 5, where the

black solid lines are the true dispersion curves, namely label, the red triangle dots are the

predicted ones by the MLP, and the cyan dashed lines are those by the RBF neural net-

work. It can be seen that the predicted dispersion curves are in good agreement with the

labels. The mean prediction errors of the MLP and the RBF neural network are 0.02 and

0.01, respectively. The two neural networks exhibit good performances on predicting

the dispersion curves of 1D PnCs with different filling fractions, and the RBF neural net-

work is better.

Fig. 5 Predicted dispersion curves by the multilayer perceptron and radial basis function neural
network in testing set A.
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For the two-parameter prediction, the dispersion curves of 1D PnCs with different

shear modulus ratios and mass density ratios are predicted. Here, the architecture of the

MLP is “MLP-2-3,” and the architecture of the RBF neural network is “RBF-2-3.” Due

to the space limit, predicted dispersion curves by the two neural networks in testing set

B are not given, but the prediction errors are shown in Fig. 6A. It can be seen the pre-

diction errors by the MLP are all close to 0.025, but those by the RBF neural network

ranges from 0 to 0.17. Obviously, both the two neural networks present satisfied predic-

tions with high precision and their mean prediction errors are 0.03 and 0.02, respectively.

Although the RBF neural network has less mean error, the stability of its prediction per-

formance is not as good as that of the MLP as shown in Fig. 6A where there are two

prediction errors far greater than others.

Dataset C, which is composed of training set C, validation set C, and testing set C, is

used to train, validate, and test neural networks. For the three-parameter prediction, i.e.,

the prediction of the dispersion curves for different filling fractions, shear modulus ratios,

and mass density ratios, the architectures of the MLP and the RBF neural network are

“MLP-3-3” and “RBF-3-3,” respectively. In testing set C, the mean prediction errors

of the two neural networks are 0.06 and 0.09, respectively, and the distributions of predic-

tion errors are shown in Fig. 6B. It can be seen that the proportion of prediction errors less

than 0.08 by the MLP is more than that by the RBF neural network. Hence, the perfor-

mances of the two neural networks are still remarkable, and the MLP performs much

better.

From the above results, it can be seen that RBF neural network is good at solving

uncomplicated problems which have less data and simple rules, and it takes a very short

time (0.01 s for the one-parameter prediction and 1.03 s for the two-parameter predic-

tion) to complete learning without iteration because its parameters are calculated by a

matrix operation given in Eq. (23). For a complex problem, such as the three-parameter

prediction, MLP has greater advantages due to its powerful simulation and generalization

ability caused by multilayer and many neurons. In summary, RBF neural network is a

Fig. 6 Each prediction error in testing set B (A) and distributions of prediction errors in testing set C (B).
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good choice for a simple issue with small samples, andMLP is more suitable for a complex

issue with a big data.

3.2 Predicting the energy transmission spectrums of one-dimensional
phononic crystals
In the above section, we introduce the prediction of dispersion curves of 1D PnCs with

infinite periods. For a PnCwith finite periods, the energy loss from its input to output can

better illustrate the physical phenomena it possesses. In this section, the prediction of the

energy transmission spectrums of 1D PnC is presented in detail.

3.2.1 Datasets for the prediction of energy transmission spectrums
Energy transmission spectrum expresses the energy loss of the incident waves passing

through the 1D PnC with finite periods over frequency. Similar to those in

Section 3.1.1, changes in shear modulus ratio, mass density ratio, and filling fraction

are considered, and the corresponding three prediction cases are taken into account.

We assume that the number of basic units is 8, the periodic constant is 1m, the incident

angle is 0.5 rad, and material A is the same as that in Section 3.1.1. For one-parameter

prediction, filling fraction is considered as input, which varies from 0.3 to 0.75, and there

are training set D (10 sets of data), validation set D (2 sets of data), and testing set D (2 sets

of data) which are collectively referred to as dataset D. For two-parameter prediction,

shear modulus ratio and mass density ratio vary from 0.055 to 0.1 and 0.367 to 0.667,

respectively, and the dataset is called dataset E which includes training set E (100 sets

of data), validation set E (20 sets of data), and testing sets E (20 sets of data). For

three-parameter prediction, dataset F is generated, which is composed of training set

F (1000 sets of data), validation set F (100 sets of data), and testing set F (100 sets of data),

where filling fraction, shear modulus ratio, and mass density ration vary from 0.3 to 0.75,

0.055 to 0.1, and 0.367 to 0.667, respectively. Energy transmission spectrum from 0 to

3000Hz is termed as label and is represented by 100 discrete points, which can be

obtained according to Eq. (17).

3.2.2 Neural networks predicting energy transmission spectrums
The performances of MLP and RBF neural network are compared for the prediction of the

energy transmission spectrums.Here, the selectionprocessof the twoneural networks is omit-

ted, which is similar with that in Section 3.1.3. For the one-parameter prediction, the archi-

tectures of the MLP and the RBF neural network are “1–100–60–30–20–60–100” and

“1–15–100,” respectively, where the first number “1” is the dimension of the input layer,

the last number “100” is thedimensionof theoutput layer, andothers are thenumbers of neu-

rons in the corresponding hidden layers. For the two-parameter prediction, they are

“2–100–60–30–20–60–100” and “2–100–100,” respectively. For the three-parameter pre-

diction, the architectures of the MLP and the RBF neural network are

“3–300–100–80–80–80–80–60–60–60–60–100” and “3–1000–100,” respectively. It should
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benoticed that the activation functionsof theneurons in the last layersof the threeMLPs are all

“Elu” activation function and others are “Tanh” activation function. “Elu” activation func-

tion is expressed as

f elu ¼
p, p > 0

ε ep � 1ð Þ, p � 0

�
, (25)

where ε is an adjustable parameter. The training methods of the two types of neural net-

works are the same as those in Section 3.1.

3.2.3 Predicted energy transmission spectrums in the testing sets
For the one-parameter prediction, only 10 sets of data in training set D are used for the

learning of the neural networks. The predicted energy transmission spectrums in testing

set D by the MLP and the RBF neural network are shown in Fig. 7 [28], where the black

Fig. 7 Predicted energy transmission spectrums by multilayer perceptron and radial basis function
neural network.
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solid lines represent the true energy transmission spectrums, namely labels, the red dashed

lines represent the predicted results by the MLP, and the green dotted lines represent

those by the RBF neural network. Obviously, the predicted energy transmission spec-

trums are highly consistent with the labels, and the results by the two neural networks fit

the labels better in lower frequency zone, e.g., from 0 to 1000Hz. The prediction errors

of the two results by the MLP are 0.39 and 0.48, and those by the RBF neural network

are 0.36 and 0.47, which are calculated according to Eq. (24) in Section 3.1.3. The per-

formance of the two neural networks is very close. However, the training time of the

RBF neural network (0.3 s) is far less than that of the MLP (30.5 s).

Training set E is adopted to train the neural networks for the two-parameter predic-

tion. In testing set E, the mean and variance of prediction errors between the predicted

energy transmission spectrums by the MLP and labels are 0.13 and 0.0015, respectively,

those by the RBF neural network and labels are 0.17 and 0.0016, respectively. Obvi-

ously, the MLP is better than the RBF neural network in the two-parameter prediction.

One thousand sets of data in training set F are used to train the MLP and the RBF

neural network for the three-parameter prediction. The architectures of the two neural

networks are given in Section 3.2.2. The mean and variance of errors in testing set F for

theMLP are 0.2 and 0.0013, respectively, and those for the RBF neural network are 0.81

and 4.2972, respectively. It can be seen for the three-parameter prediction of energy

transmission spectrums, which is a more complex problem, the performance of the

MLP is far stronger than that of the RBF neural network.

To sum up, MLP is better than RBF neural network in general on the prediction of

energy transmission spectrums. For the one-parameter prediction which is a relatively

simple issue with a small data, the prediction performance of the two neural networks

is similar. However, as the difficulty of the problem increases, the advantages of MLP

become more and more obvious. Especially, MLP is far better than RBF neural network

in dealing with the three-parameter prediction problem. Hence, MLP is a better choice

than RBF neural network in the prediction of energy transmission spectrums.

4. Designing phononic crystals with neural networks

In the above section, the predictions of dispersion curves and energy transmission spec-

trums are introduced, both of which are forward problems. However, how to automat-

ically and rapidly get a structure meeting the expectations is more worthy of being

explored. In this section, the inverse design of 1D PnCs is discussed, and two types of

neural networks used to design structures are compared, which areMLP and autoencoder

(AE) with a pretrained decoder, respectively.

MLP can give results without iteration by learning the mapping relation from input to

label. It usually takes a very short time to complete an output, generally on the order of

milliseconds. For the design of 1D PnCs, the input is design targets and the label is
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geometric or/and physical parameters, namely design parameters. As we all know, a

design target usually corresponds to many different structures, which is a non-mapping

issue. Using MLP to simulate a law about 1D PnCs design seems inappropriate. Hence,

we may need a more complicated neural network to achieve the inverse design of 1D

PnCs better.

It is well known that the physical characteristics are determined for a given structure.

A simple neural network, like MLP, is able to learn well the relation from feature param-

eters of a PnC to its physical characteristics, which is discussed in Section 3. For realizing

the design of 1D PnCs, the physical law can be firstly captured by an MLP. And then, a

neural network is used to search the structure meeting the expectations according to the

feedback of the MLP which simulates the physical law of 1D PnCs. The constructed

model is an AE with a pretrained decoder. An AE is composed of an encoder and a

decoder connected by a code layer. Its aim is to make output close to input. The pre-

trained decoder in the AE is the MLP which learnt the physical law of 1D PnCs.

A targeted bandgap can be input into the AE, and the output is a predicted bandgap

which can be close to the targeted by adapting neural network parameters in the encoder

and code layer. Feature parameters of 1D PnCs are the outputs of the code layer, which

are a bridge between the encoder and the decoder. The feature parameters making the

predicted bandgaps by the decoder close to the targeted, which are given by the encoder,

can be taken as the designed results. Hence, the AE with a decoder which captures the

physical law is expected to implement the design of 1D PnCs well. The time required for

designing a PnC by an AE with a pretrained decoder varies from less than 1 s to several

seconds due to multiple updates of neural network parameters. Fig. 8 shows the archi-

tecture of the AE with a pretrained decoder.

Here, three design cases are discussed, and the lower and upper limits of bandgaps are

termed as design targets. The first case is to design filling fractions, the second is to design

shear modulus ratios and mass density ratios, and the third is to design the three param-

eters above simultaneously.

Fig. 8 Autoencoder with a pretrained decoder where the designed structure parameters are output in
the code layer.
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4.1 Datasets for the inverse design of phononic crystals
We take 10 values for each of these three parameters shown in Table 1. Then, 1000 of

PnCs with different parameters are obtained by iteratively traversing all combinations of

these values. Without loss of generality, we take a¼1m, μA¼20GPa, ρA¼3000kg/m3,

and θ is 0.5 rad. Then the dispersion curves of these PnCs can be calculated according to

Eq. (12), and their bandgaps can be determined. Here, the first two bandgaps are taken

into account. Hence, we get 1000 sets of data (training set G) for training MLP and AE’s

decoder. Each set of data consists of PnCs’ parameters and the lower and upper limits of

the corresponding bandgaps. The testing sets only contain design targets which are not in

training set G.

4.2 One-parameter design
The 10 sets of data in training set G where shear modulus ratio and mass density ratio are

0.055 and 0.3333, respectively, are used to train the neural networks for the one-

parameter design. The architecture of the MLP is “4–40–20–10–1” where the first num-

ber “4,” is the dimension of the input or target, the last number “1,” is the dimension of

the output or filling fraction, and others are the numbers of the neurons in the corre-

sponding hidden layers. The architecture of the AE with a pretrained decoder is

“4–20–20–10–1–20–20–10–4” where the first number “4” and the last number “4”

are respectively the input and output dimension, the middle number “1” is the number

of the neuron in the code layer, which outputs filling fraction, and the remaining num-

bers are the numbers of the neurons in the corresponding hidden layers. After the two

neural networks are trained, three sets of targeted bandgaps which are not appeared in

training set G are input into theMLP and the AE with a pretrained decoder, respectively,

and then the designed 1D PnCs with filling fractions which meet these three sets of tar-

geted bandgaps, can be obtained. To verify whether the first two bandgaps of the

designed PnCs by the two neural networks meet the requirements, the bandgaps of

the designed PnCs are calculated by Eq. (12). Fig. 9 shows the lower and upper limits

Table 1 Values of filling fraction, shear modulus ratio, and mass density ratio.

Filling fraction Shear modulus ratio Mass density ratio

0.30 0.005 0.1667

0.35 0.015 0.2000

0.40 0.025 0.2333

0.45 0.035 0.2667

0.50 0.045 0.3000

0.55 0.055 0.3333

0.60 0.065 0.3667

0.65 0.075 0.4000

0.70 0.085 0.4333

0.75 0.095 0.4667
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of their bandgaps and the targeted bandgaps as comparisons. The filling fractions designed

by the MLP and the AE with a pretrained decoder are 0.47798 and 0.48052 in Fig. 9A,

0.66283 and 0.66065 in Fig. 9B, and 0.71116 and 0.71001 in Fig. 9C, respectively. It can

be seen that the bandgaps of PnCs designed by the two neural networks are highly con-

sistent with the targets. Both the MLP and AE with a pretrained decoder exhibit good

performances in the one-parameter design.

4.3 Two-parameter design
Investigation on the two-parameter design concerning the shear modulus ratio and mass

density ratio is carried out. For a certain filling fraction which is set to be 0.5, 100 sets of

data in training set G is used to train the MLP and the decoder of the AE for the two-

parameter design. The architecture of the MLP is “4–100–50–20–2,” and the architec-

ture of the AE with a pretrained decoder is “4–60–30–20–2–100–50–20–4” where the

middle number “2” is the number of the neurons in the code layer which outputs shear

modulus ratio and mass density ratio. After the two neural networks are trained, 30 sets of

targeted bandgaps, which are not appeared in training set G, are input into the MLP and

the AE with a pretrained decoder, respectively, and the structure parameters constrained

Fig. 9 Comparisons of the targeted bandgaps and the bandgaps of designed structures for the one-
parameter design; in the abscissa, BG1-L and BG2-L refer to the lower limits of the first and second
bandgaps; BG1-U and BG2-U refers to the upper limits of the first and second bandgaps; the filling
fractions designed by the MLP and the AE with a pretrained decoder are 0.47798 and 0.48052,
respectively (A); the filling fractions designed by the MLP and the AE with a pretrained decoder are
0.66283 and 0.66065, respectively (B); the filling fractions designed by the MLP and the AE with a
pretrained decoder are 0.71116 and 0.71001, respectively (C).
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by the target bandgaps are finally obtained. Fig. 10 shows the correlation between the

targeted bandgaps and the bandgaps of the 30 designed PnCs by the MLP and the AE

with a pretrained decoder, respectively, and the correlation coefficients in Fig. 10A

and B are 0.9998 and 0.9999, respectively, whereΩT represents the lower or upper limit

of the targeted bandgap and ΩD represents the lower or upper limit of the bandgap of

designed 1D PnCs. It can be seen that the bandgaps of the designed PnCs by the two

neural networks are highly correlated with the targeted bandgaps. The results of the

two neural networks are excellent and stable in performance for the two-parameter

design.

4.4 Three-parameter design
For the three-parameter design, the architecture of the MLP is “4–100–50–30–3,” and

the architecture of the AE with a pretrained decoder is “4–60–40–30–3–
100–60–40–40–204” where “3” refers to the number of the neurons in the code layer.

Training set G is adopted to train the MLP and the decoder of the AE. The 300 sets of

targeted bandgaps, which are not in training set G, are input into the two neural networks

after being trained, and the structure parameters can be obtained. Fig. 11 shows the cor-

relation between the targeted bandgaps and the bandgaps of the 300 designed PnCs by the

MLP and AE with a pretrained decoder, respectively. Obviously, the bandgaps of the

PnCs designed by the AEwith a pretrained decoder are far closer to the targeted bandgaps

than those designed by the MLP. Besides, the correlation coefficients of the designed

results by theMLP and AEwith a pretrained decoder are 0.9986 and 0.9999, respectively.

Compared with the two-parameter design, the correlation between the designed results

Fig. 10 Correlation between the targeted bandgaps and the bandgaps of designed PnCs by the MLP
(A) and the AE with a pretrained decoder (B), respectively, for the two-parameter design.
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by the MLP and targets are significantly weakened, but that by the AE with a pretrained

decoder does not change. Hence, the AE with a pretrained decoder is far better than the

MLP for the three-parameter design.

5. Summary

Two types of neural networks, multilayer perceptron (MLP) and radial basic function

(RBF) neural network, are adopted to predict the dispersion curves and energy transmis-

sion spectrums of 1D PnCs in this chapter. Three conditions are taken into account,

including the one-parameter prediction, two-parameter prediction, and three-parameter

prediction. For the first two conditions which are relatively simple problems, MLP and

RBF neural networks have a similar prediction performance and the latter has a faster

training speed than the former. However, MLP has a clear advantage for a complex prob-

lem like the three-parameter prediction, and its accuracy is far higher than that of RBF

neural network. Hence, simple and fast RBF neural networks are good at solving uncom-

plicated problems, and MLPs perform better on a big data with a certain degree of

difficulty.

For design problems, MLP and AE with a pretrained decoder are used, where the

one-parameter design, two-parameter design, and three-parameter design are consid-

ered, respectively. MLP achieves the design of 1D PnCs by establishing a mapping rela-

tionship from targets to structure parameters, which solves the design problem from data

level. AE with a pretrained decoder firstly captures the physical laws of 1D PnCs by the

pretrained decoder and then the encoder in the AE can give the designed structure

Fig. 11 Correlation between the targeted bandgaps and the bandgaps of designed PnCs by the MLP
(A) and the AE with a pretrained decoder (B), respectively, for the three-parameter design.
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parameters by multiple iterations. The encoder of the AE plays the role of a scholar and

the pretrained decoder of the AE a law. The design process of the AE is like the scholar

(the encoder) searching the answer meeting the law (the pretrained decoder) based on a

specific target. For the one-parameter and two-parameter design problems, the mapping

relationships from targets to structure parameters are simple, and MLP can learn them well,

whichmakes the designed results as good as that of the AEwith a pretrained decoder. How-

ever, the three-parameter design problem is relatively complicated, leading to the complex

of themapping relationship from targets to structure parameters, and it is difficult forMLP to

accurately capture the inherent law of the data. The pretrained decoder of the AE can learn

well the physical law of calculating bandgaps according to given structure parameters, and

makes the AE better realize the design of 1D PnCs. In summary,MLP is suitable for a simple

design issue and the AE with a pretrained decoder for a complicated one.

The methods for the forward prediction and inverse design of 1D PnCs are also suit-

able for those of 2D or 3D PnCs. With a dataset containing the feature parameters of 2D

or 3D PnCs and the corresponding physical characteristics, neural networks can be

trained to realize some functions and help people to solve problems more easily and

rapidly.
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CHAPTER 4

Nanophotonic devices based on
optimization algorithms
Cuicui Lu, Hongyi Yuan, and Nianen Zhang
Beijing Institute of Technology, Beijing, China

1. Introduction

Nanophotonic devices, which take photons as information carriers, are the essential com-

ponents for photonic chips, and play a key role in optical computing, optical intercon-

nection, and optical networks. However, most of the traditional methods that rely on

human experience and physical inspiration for structural design and parameter optimi-

zation usually require many resources, and the performance of the designed device is lim-

ited. Several years ago, before 2016, we had to sweep each structure parameter related to a

wavelength demultiplexer device manually [1], even day after day, cycle after cycle.With

the development of computer computing capacity and algorithms, it is an exciting and

significant thing that we combine optimization algorithms and conventional numerical

methods to design nanophotonic devices. Compared with previous numerical methods,

optimization algorithms can help us to find the best pattern, improve efficiency, and save

time. The design of nanophotonic devices based on optimization algorithms can break

the restrictions of traditional methods and predict new configurations, which is universal

and efficient for different materials, different structures, different modes, different

wavelengths, etc.

In this chapter, we introduce the typical nanophotonic devices based on the optimi-

zation algorithms from physical concepts to their applications. The nanophotonic devices

based on the optimization algorithms will be illustrated in this chapter according to the

related reports and our research experiences, which can bring inspiration for the efficient

design of photonic devices. Here, the algorithms used to design nanophotonic structures

are divided into two main types, gradient-based and heuristic.

Gradient-based algorithms used in the nanophotonic design include topology opti-

mization, objective-first algorithm, and other gradient-based optimization algorithms.

There are three kinds of topology optimization methods often used in the nanophotonic

design, variable density method, level set method, and bi-directional evolutionary struc-

tural optimization (BESO). Gradient-based algorithms search for better solutions accord-

ing to the gradients of the current solution, which usually brings a great computation cost

in gradient calculation. To solve this difficulty, the adjoint method is introduced in
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gradient’s calculation. The algorithms mentioned above will be introduced one by one in

the first section.

Heuristic algorithms can be regarded as gradient-independent algorithms, which gen-

erate new solutions with different strategies based on randomness but not gradients infor-

mation. Heuristic algorithms can be further classified into two kinds, the individual-based

and the population-based. Individual-based heuristic algorithms include hill-climbing

algorithm, direct binary search (DBS) algorithm, simulated annealing algorithm

(SAA), and tabu search (TS). Population-based heuristic algorithms include genetic

algorithm (GA), differential evolution (DE) algorithm, particle swarm optimization

(PSO) algorithm, and ant colony algorithm (ACA). Actually, all these heuristic

algorithms can be understood from a broader view of the Monte-Carlo method, whose

underlying concept is to use randomness to solve problems that might be deterministic in

principle [2,3].

2. Gradient-based algorithms

Gradient-based algorithms usually have good optimization efficiency and performwell in

convergence. In recent years, in the design of nanophotonics, many optimization

schemes based on gradients have been reported [4], including topology optimization,

objective-first algorithm, and other gradient-based algorithms. Topology optimization

can be further divided into variable density method, level set method, and bi-directional

evolutionary structural optimization (BESO). The objective-first algorithm was proposed

to design and experimentally realize on-chip nanophotonic devices by J. Vuckovic’s group

in recent years and has been widely applied in nanophotonic devices. Other gradient-based

algorithms have various workflow but they are all based on the adjoint method, which is a

method used for derivative calculation. This section will introduce these algorithms and

their applications one by one. For each kind of algorithm, we will first give its main idea

of optimization and then give some typical examples achieved with this algorithm.

2.1 Topology optimization
Topology optimization was initially presented by Bendsøe and Kikuchi in their pioneer-

ing work in 1988 [5], which aimed to answer the question of how to distribute material in

a given area to obtain the best performance. After that, various schemes are proposed

and applied in mechanical engineering. With the development of design methods in

nanophotonics, different kinds of topology optimization are also introduced into this

field, which include variable density method, level set method, and BESO. Here, we will

concentrate on these three topology optimizationmethods including their main ideas and

nanophotonic applications in order.
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2.1.1 Variable density method
Introduction
Consider a planar binary structure composed of two kinds of materials. How can the

material distribution corresponding to the best performance be obtained? One direct idea

is dividing the design area into many finite elements with each element filled with one

material. We can define a distribution function χe to represent this binary structure:

χe ¼
0, if material 1 in element;

1, if material 2 in element:

�

The variable density method divides the design area into many finite elements. Each

finite element is one design variable, so the parameter space can be extremely enlarged as

long as the computation source can afford it. However, it is inconvenient to get the gra-

dients of the discrete value function. Bendsøe et al. proposed a solution to this difficulty:

interpolation and penalization [6].

First, introduce a continuous density ρe to connect the specific parameters of two

materials:

0 � ρe � 1,

and then add penalization on intermediate density to let the optimized object converge to

discrete structure, because the intermediate density has no practical meaning in physics.

For example, one simple and successful linear interpolation method can be defined as [7]:

Ae ¼ A1 + ρe A2 � A1ð Þ,
Be ¼ B1 + ρe B2 � B1ð Þ,

where A1, A2, B1, and B2 are the specific values of certain properties (e.g., the index) of

two materials (e.g., dielectric and air). During the optimization process, the continuous

variables can cause intermediate values in the design, which may bring challenges to fab-

rication. Therefore, it is necessary to give the algorithm a “taste” to prefer a structure with

only 0–1 values, which is achieved by adding penalization to intermediate values. One

common penalization scheme is solid isotropic material with penalization (SIMP) [6].

To ensure the optimization run, we also need to know the gradient of each variable in

the current structure, which is a process called sensitivity analysis.With a significant num-

ber of variables defined on finite elements, it is impossible to calculate the gradient of each

variable one by one. One commonly used method is the adjoint method [8]. The adjoint

method uses an adjoint system deduced from the forward system to help calculate the

gradients of each variable, which will be discussed in detail in Section 2.3. It should

be pointed out that the adjoint method can also be used in other optimization schemes,

including the level set method, objective-first method, and other gradient-based algo-

rithms. Fig. 1 shows the flow chart of the variable density method.
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Applications
Variable density methods have been used to optimize nanophotonic structures for years

and many works have been reported, including different kinds of nanophotonic devices

[9–17] and photonic crystals [18,19]. Below, these works will be introduced to help

readers understand the application of the variable density method in nanophotonic

design.

The simplest nanophotonic device could be photonic crystal waveguides and scatter-

ing loss usually occurs on the sharp corners, which limits its application in photonic crys-

tal circuits. To solve this problem, Jensen et al. applied variable density method to design

a 90 degree waveguide bend [9]. The optimization ideology is direct: select several unit

cells near the photonic crystal waveguide bends and maximize the transmission from the

input port to the output port. The same research group also designed photonic wave-

guides with 60 and 120 degrees bends based on their methods [10,11].

Waveguide can be used not only to guide light but also to slow light. This kind of

waveguide is called a slow light waveguide which can enhance the interaction of the

localized light modes. Wang et al. shows that this kind of waveguide can also be opti-

mized with density-based topology optimization [12]. By using their methods, the

authors demonstrated two waveguides facilitating slow light with group indexes of

ng¼25 and ng¼100 and bandwidths of Δω/ω¼2.3% and 0.3%, respectively. They also

designed a novel waveguide with two different constant group index waveguide

regions [12].

Apart from slow light waveguides, there is another kind of nanostructure used to

localize light, photonic crystal cavity, which can also be optimized by using variable

Fig. 1 Flow chart of variable density method.
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density method. One aim of designing a light cavity is to seek stronger light intensity in a

smaller volume, which is quantified using the figure of merit defined asQ/V, the ratio of

the quality factor to themode volume. By adopting density-based topology optimization,

Wang et al. increased theQ/V ratio by up to two orders of magnitude relative to standard

L1 cavities [13].

Devices with more complicated functions can also be designed with density-based

topology optimization. Frandsen et al. designed a mode converter that can convert

the fundamental even mode into the higher order odd mode of a photonic crystal wave-

guide through dispersion engineering [14]. The optimization area includes the conver-

sion area around the center and the interface of the output waveguide. The footprint of

the mode convertor is only �6.3μm��3.6μm. Frellsen et al. designed a mode multi-

plexer that could achieve low loss and broad bandwidth at the same time [15]. The loss is

less than 1.2dB in a bandwidth of 100nm measured around 1570nm. The footprint of

this device is only 2.6μm�4.22μm. These two devices are both designed using a

density-based method combined with finite difference time domain (FDTD) method.

Works introduced above are limited to 2D devices. Density-based topology optimi-

zation can also be used for spatial light processing devices which have broad applications

in images and sensors. Camayd-Muñoz et al. designed a spatial wavelength-polarization

router using density-based topology optimization [16]. With their method, the designed

wavelength-polarization splitting element can separate light with different wavelength-

polarization information to different areas of the target plane. This designed structure is

freeform in three dimensions and has a small volume of 2μm3. In addition to linear

devices, density-based topology optimization can also be applied in nonlinear nanopho-

tonic devices. Elesin et al. proposed a 1D photonic switch that is based on Kerr effect of

nonlinearity [17]. The designed switch has no periodic structure but has a better perfor-

mance than normal simple designs in the literatures before this work.

In recent years, topological photonics has become an attractive research field because

of its novel physical phenomena. Traditional design methods of topological photonic

crystal are based on intuition combined with trial-and-error. Christiansen et al. presented

a scheme to design topological insulators with quantum spin Hall states using density-

based topology optimization [18]. They constructed an intersection with unit cells to

be optimized. Also, injected light from one port and optimized the transmission of

the other three different ports. In this way, the structure has a significant possibility to

converge to topological photonic crystal. Topological photonic crystal has been intro-

duced in nanophotonic devices design because of its robustness. Yuan et al. applied

density-based topology optimization in their scheme of topological wavelength router,

which could guide light with different wavelengths to different topological channels [19].

They realized an on-chip topological nanophotonic wavelength router using topology

optimization for the first time. The optimization results are shown in Fig. 2. The central

optimization area is only 2.30μm�3.78μm and can guide light with central wavelengths
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of 1520 and 1550nm to different topological channels, respectively. The structure is

shown in Fig. 2A. Purple color represents silicon and white color represents air. The nor-

malized transmission is shown in Fig. 2B. The signal-to-noise ratios of the two peaks are

11.20 and 15.76dB, respectively. Fig. 2C and D shows the simulated time–average
power flow distribution at 1520 and 1550nm near the central optimized area.

The variable density method has been applied in many areas in nanophotonic design,

which proves its generality. Variable density method regards each discrete element as a

design variable and is convenient to integrate with other calculation methods like FEM

and FDTD, which accelerates the design in nanophotonics.

2.1.2 Level set method
Introduction
Different from the variable density method, the level set method regards boundaries as

the optimization object. The traditional parameterized method deals with structure

boundary with coordinates of points on the boundary; however, this kind of method

is inconvenient in situations where there are boundary’s merging and splitting. How

to overcome this difficulty? Level set method answers this question with a level set

Fig. 2 Optimization results of on-chip topological nanophotonic wavelength router. (A) The designed
structure; (B) the simulated spectrum; and (C and D) the simulated time-average power flow
distributions at two target wavelengths.
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function which is an artificial function defined on the design domain with one dimension

higher than the actual structure. For example, if the design domain is a 2D area, the level

set function can be a 3D surface, as shown in Fig. 3 [20].

The level set function has different specific forms, but the main idea is the same and

clear: use a continuous function to represent the boundary implicitly. The general level

set function ϕ can be expressed as follows:

ϕ ¼ < 0 if in material 1

> 0 if in material 2:

�

The level set method does not deal with the structure boundary directly and the level

set function evolves according to the level set equation [21]:

ϕt + V
!
∙rϕ ¼ 0,

where ϕt is the derivative of ϕ to time t.V
!
is the velocity. Here, time and velocity are two

variables controlling the evolution of the level set function. Time is similar to step length,

which should be decided by testing according to a specific optimization problem. Veloc-

ity is related to gradients and should be deduced from sensitivity analysis. The sensitivity

analysis method commonly used by the level set method is the adjoint method. Fig. 4

shows the flow chart of the level set method.

Applications
Because of its flexible geometric shapes, level set method is broadly applied in nanopho-

tonic structure optimization problems, including photonic crystals and nanophotonic

devices. Kao et al. presented a work on maximizing the band gaps of two-dimensional

photonic crystals [22]. They used the level set method to describe the interface between

two materials with different dielectric constants. The interface is updated with general-

ized gradient ascent method. Their method shows that the band gap between two arbi-

trary adjacent bands can be enlarged. The optimized largest bandgap of GaAs in air is

0.4418 (ωa/2πc) for the transverse magnetic (TM) mode and 0.2104 (ωa/2πc) for the
transverse electric (TE) mode.

Level Set Function

φ=0

φ>0

φ<0

Fig. 3 Level set function representation of plane geometry.
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In addition to band gap optimization, level set method has also been introduced into

the configuration optimization of nanophotonic devices. Lalau-Keraly et al. combined

adjoint method with level set method to present an optimization scheme for electromag-

netic design [23]. As an example, a Y-splitter is designed using their method. Because the

adjoint method only needs two times of simulation to get the gradients of all variables,

the proposed method has an obvious advantage in optimization efficiency. In their work,

the authors also gave an interpretation of adjoint method from the perspective of physics.

Furthermore, level set method is adopted in other optimization schemes by adding

constraints on designed structures. Based on their previous works [24–26], Piggot

et al. added a level set method in their proposed objective-first method, to impose cur-

vature constraints on device boundaries [27]. Through their methods, they achieved

devices suitable for fabrication, including a three-channel power splitter, spatial mode

demultiplexer, wavelength demultiplexer, and directional coupler. All of the structures

consist of a fully etched 220-nm thick silicon (Si) layer with a silicon dioxide (SiO2) sub-

strate. In recent years, level set method has also been adopted in robust optimization of

nanophotonic devices. Lebbe et al. combined Hadamard’s boundary variation method

with level set method [28]. With their method, they designed different kinds of nano-

photonic devices including crossing device, mode convertor, power divider, and

duplexer, which shows their method’s generality. Moreover, they studied the robustness

of the optimized devices concerning physical perturbation and geometrical uncertainties.

Fig. 4 Flow chart of level set method.
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The level set method is suitable to handle complex boundary changes and is flexible to

be integrated with other optimization algorithms.With level set method, it is convenient

to add curvature limits to the optimized structure, which is beneficial to fabricate and

enrich the function.

2.1.3 Bi-directional evolutionary structural optimization
Introduction
There is another kind of topology optimization method, bi-directional evolutionary

structural optimization (BESO), which is developed from evolutionary structural opti-

mization (ESO) method. The main idea of ESO is removing inefficient material elements

slowly from the current structure, which dates back to the works of Xie and Steven in the

early 1990s [29]. However, as Huang et al. have pointed out [30], this strategy has a main

disadvantage that an element may be moved prematurely, leaving a “hole” which can be

nonoptimal to the final structure. To overcome this disadvantage, BESO was proposed

by Huang et al., which adds and removes elements at the same time during the evolution

process [31]. This method deals directly with finite elements and is convenient to inte-

grate with finite element analysis. Fig. 5 shows the flow chart of BESO.

Applications
The applications of BESOmainly concentrate on optimization of photonic crystals, such

as bandgap optimization [32,33], design of photonic crystals with negative refraction

[34], and inverse design of topological photonic crystals [35–38].
Maximizing the band gap is important in the design of photonic crystals. Meng et al.

developed a new algorithm based on BESO tomaximize the bandgap of photonic crystals

[32]. At each finite element, they use discrete intermediate values instead of 0–1 values to

Fig. 5 Flow chart of bi-directional evolutionary structural optimization.
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avoid extremely fine mesh. The variation of the design variable in each iteration is limited

to 0.1. Because the intermediate values will reduce the refractive index contrast between

materials, it is natural for the design to converge to a 0–1 structure. The authors show that

using their method, the bandgap between two arbitrary adjacent bands can be opened and

maximized. Furthermore, Chen et al. achieved complete bandgap optimization for TE

and TM modes with BESO [33]. The mechanism of negative refraction for photonic

crystals arises from the band structure of the periodic medium. Therefore, the design

of photonic crystals with negative refraction can be optimized from the perspective of

band engineering. With the definition of upper limit and lower limit for all-angle neg-

ative refraction (AANR) frequency range,Meng et al. used a modified objective function

to expand the frequency range [34]. The optimization results show that optimized struc-

tures have a larger AANR frequency range than the designs based on intuition.

Apart from traditional photonic crystals, BESO is also applied to the optimization of

topological photonic crystal (PC). In most recent years, Chen et al. developed an opti-

mization approach based on BESO to design topological photonic crystals with wide

bandgaps [35]. Their proposed method can construct doubly degenerate Dirac cones

of PCs at any wanted frequency. They then optimized the bandgap overlap of topolog-

ically trivial and nontrivial PCs to achieve topological PCs with broad bands. Further-

more, they use their optimization approach to design higher order photonic

topological insulators [36]. Their optimization results show that the designed structure

can support gapped edge states and robust corner states at the same time. The group index

of the proposed edge state is large. With the designed topological photonic crystal, they

demonstrate four-channel photonic routers for edge states and three-channel routers for

corner states. In addition, they show that their method can also design second-order

topological photonic crystals with C3-symmetry [37]. Most works on topological pho-

tonic crystals are for the TE mode or TM mode, and topological crystals simultaneously

supporting two modes are rare. Chen et al. used BESO-based optimization approach to

propose a structure which supports two kinds of modes [38]. They first used their opti-

mization to design a photonic crystal with a complete bandgap for both TE and TM

modes, and then used simple tight binding model to study the topological features of

the structure.

BESOmethod is simple in concept, and reported works show that it can be applied in

many areas in nanophotonic design, especially photonic crystal design. Structural design

with this method usually has novel properties.

2.2 Objective-first algorithm
2.2.1 Introduction
The objective-first algorithm was first proposed by Lu et al. in 2013 and has been applied

in many areas in nanophotonic design since then. Here, we first briefly introduce the

main idea of objective-first algorithm [39] and review its applications in nanophotonic

design.
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Typical optimization (e.g., minimization) problems can be expressed as follows:

decreaseð Þ f xð Þ
subject to g x, pð Þ ¼ 0,

where x is the field variable (e.g., electric field), p is the structure variable (e.g., the dis-

tribution of dielectric constant), f(x) is the design object, and g(x,p) is the governing equa-

tion of the system. f(x) can be any function that can describe the performance of the

device and g(x,p) is usually an electromagnetic wave equation in nanophotonic design.

Different from the traditional optimization idea above, the objective-first algorithm

expresses the optimization problem below:

decreaseð Þ g x, pð Þk k2

subject to f xð Þ ¼ 0,

where kg(x,p)k2 is called physics residual. From the expressions above, we can see that the

former optimization objective is set as a hard constraint which is always satisfied during

the optimization process. Meanwhile, the former governing equation is optimized to fit

the constraint. Because the objective is given higher priority than the governing equa-

tion, this algorithm is named as objective-first algorithm. This is a strategy to chase solu-

tions with high performance and high efficiency in convergence, at the expense of not

perfectly satisfying the governing equation.

2.2.2 Applications
In recent years, there have been many works based on objective-first algorithms, which

are primarily concentrated in on-chip nanophotonic devices, ranging from two-channel

and three-channel wavelength multiplexers [25,40], spectrometer [40], optical diode

[41], and metalens on an optical fiber tip [42].

One typical work is about an on-chip wavelength demultiplexer, proposed by Piggot

et al. [25]. The designed wavelength demultiplexer splits two channels with central

wavelength of 1300 and 1550nm light from the input waveguide to two different output

waveguides, respectively. The device has a low insertion loss (�2dB), low cross talk

(<�11dB), and wide bandwidths (>100nm). The pattern is freeform and the footprint

is only 2.8�2.8μm2. Fig. 6A and B is the top–down view and angled view of scanning

electron microscopy (SEM) images. The simulated and measured scattering parameters

(S-parameters) are shown in Fig. 6C and D. The design process can be divided into three

different stages. The first stage is the optimization stage allowing permittivity ε to change
continuously. In the second stage, the structure is converted into a binary level set pre-

sentation and optimized at two target wavelengths. The final stage is broadband optimi-

zation by specifying the device performance at 10 different wavelengths, with five

frequencies equally spaced about each central frequency.

81Nanophotonic devices based on optimization algorithms



Furthermore, Su et al. improved the objective-first algorithm used above and

designed a narrow-band three-channel wavelength demultiplexer [43]. The interval of

three channels (1500, 1540, and 1580nm) is only 40nm. The footprint of the device

is 24.75μm2. Hadibrata et al. also designed an eight-channel spectrometer working in

the near-infrared regime using an objective-first algorithm [40]. The spectral resolution

was 0.25nm, with a bandwidth of 30nm. The footprint of the device is 30�12.8μm2.

Apart from wavelength routers and spectrometers, an optical diode was also designed

with the objective-first algorithm. An optical diode is a two-port device that allows light

to propagate from the first port to the second port but prohibits propagation in the other

direction. Callewaert et al. proposed an on-chip broadband optical diode with small size

[41]. The silicon-based nanophotonic device is suitable for fabrication and integration.

The devices mentioned above are two-dimensional on-chip devices; however, the

objective-first algorithm can also be used on spatial light processing devices, such as meta-

lenses. Hadibrata et al. proposed a thin circular grating-like metalens which could trans-

form a parallel wavefront into a spherical wavefront at the near-infrared range [42]. The

designed structure was fabricated using a 3D printing method and measured. The focal

length is about 8μm and size of the focal spot is at the scale of 100nm.

Fig. 6 (A and B) Top–down view and angled view of SEM images; (C and D) simulated and measured
S-parameters of the designed final structure.
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The objective-first algorithm is an efficient algorithm, which searches for high-

performance solutions even at the expense of not fulfilling the governing equations. This

algorithm has been applied in the design of numerous nanophotonic devices and has been

proven to have good generality.

2.3 Other gradient-based algorithms
2.3.1 Introduction
With the development of algorithms, more and more optimization schemes in nanopho-

tonic design based on gradients have been developed. In this section, we will introduce

other algorithms based on gradient calculation but different from the ones introduced

above. Although these algorithms cannot be classified into algorithm types mentioned

directly, they still have a common feature, the calculation method of gradients.

Because of the large quantity of design variables in structure optimization, the tradi-

tional gradient calculation method using brute force is inefficient. The standard choice of

gradient calculation is the adjoint method or adjoint variable method [8]. Below, we

introduce the main idea of the adjoint method. Consider a system described below:

K xð Þu xð Þ ¼ P xð Þ: (1)

Here, x is the design variable vector and u(x) is the response (e.g., electromagnetic

field). K(x) and P(x) are the operators. We want to calculate the gradients of the follow-

ing target function:

F xð Þ ¼ G u xð Þ, xð Þ (2)

The calculation of gradients or sensitivity analysis computes the derivative of F(x):

DF

Dx
xð Þ ¼ DG

Du
u xð Þ, xð ÞDu

Dx
xð Þ + DG

Dx
u xð Þ, xð Þ (3)

The difficulty of calculating the expression above is that Du/Dx is implicitly defined

in Eq. (1). The adjoint method handles this difficulty by eliminating Du/Dx in Eq. (3).

This is achieved by introducing Lagrange multiplier λ to define the augmented function:

bF xð Þ ¼ G u xð Þ, xð Þ � λ∙ K xð Þu xð Þ � P xð Þð Þ (4)

Differentiation of the above provides the following:

DbF
Dxi

xð Þ ¼ ∂G

∂u
u xð Þ, xð Þ ∂u

∂xi
xð Þ + ∂G

∂xi
u xð Þ, xð Þ

�λ∙ DK

Dxi
xð Þu xð Þ + K xð Þ Du

Dxi
xð Þ � DP

Dxi
xð Þ

� �
(5)

Rearranging Eq. (5), we have
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DbF
Dxi

xð Þ ¼ ∂G

∂xi
u xð Þ, xð Þ � λ∙ DK

Dxi
xð Þu xð Þ � DP

Dxi
xð Þ

� �� �
+

Du

Dxi
xð Þ∙ ∂G

∂u
u xð Þ, xð Þ �KT xð Þλ

h i
, (6)

where ( )T denotes the transpose operator. Since λ is arbitrary, we can select an appro-

priate λ to let the coefficient of the (Du/Dxi)(x) term be zero. In this way, we can get the

derivatives from the first bracketed quantity in Eq. (6). We need to solve the following

adjoint problem

KT xð Þλ xð Þ ¼ ∂G

∂u
u xð Þ, xð Þ (7)

to get the adjoint response λ(x). Now, λ is expressed as a function of the design variable

vector and is no longer arbitrary. Once the λ(x) is determined from Eq. (7), we can sub-

stitute λ(x) into Eq. (6) to get derivative expression below:

DbF
Dxi

xð Þ ¼ ∂G

∂xi
u xð Þ, xð Þ � λ xð Þ∙ DK

Dxi
xð Þu xð Þ � DP

Dxi
xð Þ

� �� �
(8)

When comparing Eqs. (1) and (7), we see that these two equations have the same

structures. In many cases where the systems are symmetric, we have K5KT. Eq. (1)

is called forward problem and Eq. (7) is called adjoint problem. In the adjoint method,

each time we need to calculate the derivatives of the target function to the design variable

vector, we need to solve only two equations which are usually two times of simulation in

nanophotonic design. Compared to calculating derivatives to variables ono by one, the

advantage of the adjoint method’s efficiency is obvious because this method does not

consider the number of design variables. Adjoint method can also be understood from

the perspective of physics [23].

The adjoint method is widely used in many areas and is usually integrated with other

optimization frameworks, including previously introduced algorithms. Most gradient-

based optimization algorithms in nanophotonic design are gradient-based because the

design variable number is usually vast. Next, we will introduce some typical gradient-

based works in nanophotonic design, which are adjoint-based but are different from algo-

rithms introduced in the former sections. For simplicity, we use adjoint-based algorithms

to denote optimization schemes introduced below.

2.3.2 Applications
Adjoint-based algorithms have been used in various nanophotonic designs, such as linear

devices [44], nonlinear devices [45], active devices [46], and metasurfaces [47–52].
Sideris et al. presented an adjoint-based algorithm used to design linear nanophotonic

devices, which combined the adjoint method with the boundary integral equationmethod
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[44]. In their method, integral equation method is used to solve Maxwell equation prob-

lems, which is convenient for dealing with discrete boundaries. With this method, the

authors designed a nonadiabatic waveguide taper, a 1:2 power splitter and a perfectly ver-

tical incidence grating coupler.

A nonlinear device designed with an adjoint-based algorithm was first presented by

Fan’s group [45]. They first extended the adjoint method to a nonlinear system and then

applied it to Kerr effect nonlinearity. With this method, they designed an optical switch

which can guide light to different ports when the light is in linear region and nonlinear

region. The device is made of air and chalcogenide glass (Al2S3). In linear region, the

device has a power transmission of 81.8% and 5.9% to the linear output port and non-

linear port, respectively, while in nonlinear region, the transmission values become 6.1%

and 80.8%. Fan’s group also presented an adjoint-based algorithm for active nanopho-

tonic devices, which combined the adjoint method using multi-frequency

finite-difference frequency-domain method [46]. As a proof of principle, they designed

a nonmagnetic dynamic optical isolator, which reduced the length of the modulated

regions by a factor of two while achieving good performance in isolation ratio and

insertion loss.

Adjoint-based algorithms are also used in metagratings and metasurfaces. Fan’s group

designedmetagratings using adjoint-based topology optimization combined with the rig-

orous coupled-wave analysis (RCWA) solver [47]. With their methods, the designed

metagratings which have freeform patterns can deflect light to angles as large as 80 degree

with high efficiency. Using their proposed optimization method, Fan’s group also

achieved a large-area, high-numerical-aperture silicon metasurface lenses with focusing

efficiencies over 90% [48]. Further, they combined their adjoint-based topology optimi-

zation with generative neural network to achieve a new platform for global population

optimization of metasurfaces [49,50]. Mansouree et al. applied adjoint optimization to

2.5D metastructure design, which are stacked layers of interacting metasurface layers

[51]. They fabricated and measured their metastructures and found that the performance

of their design has significantly higher efficiencies than metasurfaces designed by a con-

ventional simplified approach. In addition, Mansouree et al. designed a large-scale

parametrized metasurface using an adjoint-based method [52]. The metasurface is made

of many parameterized meta-atoms and is easy to fabricate.

The adjoint method is highly efficient in derivative calculation and widely used in

many optimization schemes. The adjoint-based algorithms are still developing and more

and more works based on adjoint-based algorithms will be reported.

3. Heuristic algorithms

As introduced above, optimization algorithms are used to search for a “better” solution

through an iterative process. The key principle to generate a new solution, is what we

used to identify a certain algorithm and classify it. In contrast to gradient-based
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algorithms, heuristic algorithms, or gradient-independent algorithms, generate new solu-

tions following various strategies without mathematical analysis for gradient information.

Containing randomness or not, most of the heuristic algorithms are embedded within the

thoughts of Monte-Carlo method, with whose validity being promised by the law of

large numbers.

In the following sections, we will first introduce individual-based algorithms along

with their applications. Simple algorithms like hill-climbing algorithm and DBS algo-

rithm search the neighborhood the current solution, and update it when finding a better

one. Complicated algorithms like TS incorporate stochasticity and short-term memory

to jump out of local minimum and avoid cycling back.

Population-based algorithms resemble the analogy of parallel individual-based algo-

rithms, but information from the whole population also controls the searching direction.

Here, genetic algorithm, differential evolution algorithm, particle swarm algorithm, and

ant colony algorithm will be introduced in order.

3.1 Hill-climbing algorithm
3.1.1 Introduction
Hill-climbing algorithm is a locally optimized method that uses feedback information to

help generate solutions. The algorithm simulates the process of climbing a mountain, ran-

domly selects an initial location to climb the mountain, and moves to a higher direction

each time until it reaches the top of the mountain. As shown in Fig. 7A [4], it starts from

the current node and compares with the values of neighboring nodes. If the current node

is the best, then the current node is taken as the maximum value (the highest point of the

mountain); otherwise, the highest neighbor node is used to replace the current node in

order to achieve the purpose of mountain climbing. This iteration is repeated until it

reaches the highest point. The optimal solution in the adjacent space is selected as the

current solution each time until an optimal solution with relatively good performance

appears.

Fig. 7 (A) Flowchart of the hill-climbing algorithm and (B) an example of the target function in which
the difficulties of hill climbing are shown.
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The advantage of the hill-climbing algorithm is that it does not require a traversal

process to reach the highest point of the solution space; it selects nodes with higher values

through a heuristic method, which greatly improves efficiency. The process does not

need to memorize the previous steps, which makes it memory-saving when searching

for optimal solutions in large parameter space. However, the hill-climbing algorithm also

has several disadvantages. As is shown in Fig. 7B [4], when a node is higher than any of its

neighbors, but not the highest point of the whole function, this node will be regarded as

the optimal result, which makes us sometimes unable to get satisfactory results in the cal-

culation. In addition, this algorithm is easily limited by certain function shapes. When

encountering a “plateau” (the function value remains unchanged in a certain range) dur-

ing the searching process, the search direction cannot be determined, and will move ran-

domly, which reduces the efficiency.When encountering a “ridge” (the function is steep

near the maximum), it may oscillate repeatedly around the optimal solution, and the for-

ward speed will slow down.

3.1.2 Applications
The hill-climbing algorithm is a relatively basic algorithm that is easy to get started with.

Using a hill-climbing algorithm can further improve performance of an initial structure.

Lin et al. designed a one-dimensional photonic crystal split beam cavity based on the

deterministic method and hill-climbing algorithm [53]. The initial structure is a one-

dimensional photonic crystal, and the filling fractions are quadratically tapered. This

structure has been proved to be effective in a previous work [54]. The radius of the first

three holes in the center greatly affects the optical performance of the split beam cavity, so

the hill-climbing algorithm is used to fine-tune the radius of the three holes in the central

neighborhood to obtain a higher resonance mode quality factor. As a result, the quality

factor of the second-order TE mode is improved to 1.99�104.

The optimization of nanophotonic devices is often a complex problem. It is necessary

to find the optimal solution in the full parameter space, and the form of the objective

function is often complicated. Therefore, hill climbing may not be an excellent method

for designing nanophotonic devices with complicated functionalities. However, when

the initial structure has been proved to possess an effective function, using hill climbing

can further improve the performance of the device.

3.2 Direct binary search
3.2.1 Introduction
The following section describes the origin and main flow of DBS algorithm. Ref. [55]

presents an iterative binary search algorithm called direct binary search (DBS) algorithm

in the synthesis of digital holograms. The DBS algorithm in the synthesis of digital holo-

grams could manipulate the hologram transmittance directly to produce the best recon-

struction, which is illustrated in the flow chart of Fig. 8 [56].
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The main flow of DBS algorithm is as follows. The designed space of devices is dis-

cretized into grids called “pixels” first. Each pixel has two states: 0 or 1, corresponding to

two materials occupying the pixel. For an initial structure, randomly select a pixel and

switch its state, and then a figure-of-merit (FOM) is calculated. The FOM generally

refers to objective function. If the FOM is promoted, the perturbation is retained for

the pixel. If not, the perturbation is reversed. After the evaluation of FOM, algorithm

proceeds to the next pixel. An iteration contains traversing all pixels in a certain order.

The iteration continues until the FOM converges to a stable value. An upper bound on

the total number of iterations and a minimum change of FOM are defined to enforce

numerical converges [57–61]. For special samples, the DBS algorithm is slightly different,

but the overall steps are described above basically.

Judging from the descriptions above, it is obvious that DBS algorithm happens to be a

particular case of hill-climbing algorithm where the solution space is composed of binary

variables. In both algorithms, improved solutions are accepted and worse solutions are

refused. The neighbor nodes in a binary integer solution space can be defined like

DBS. By simply flipping every pixel in order, one canmake a traversal within all the neigh-

bor nodes.

3.2.2 Applications
The DBS algorithm is a relatively simple iterative search algorithm. With the develop-

ment of intelligent algorithms and nanophotonics, some scholars have introduced DBS

Fig. 8 Flow chart of direct binary search algorithm.
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algorithm into the design of nanophotonic devices. The algorithm provides an effective

approach to designing nanophotonic device, including the design of diffractive optics

[62,63], nanophotonics for light trapping [58], couplers [64], computational microscopy

[65], free-space polarizers [66], polarization beam splitter [57], the integrated cloak [67],

mode router [68,69], sharp adiabatic bends [70], and power splitters [71]. Several typical

devices designed by the DBS algorithm are introduced below.

Using DBS algorithm, Shen et al. have carried out rich works of nanophotonic

devices. They designed a free-space-to-waveguide coupler [64], polarization beam split-

ter [57], and integrated cloak [67], which are shown in Fig. 9. Fig. 9A shows a free-space

to multimode waveguide coupler and polarization splitter, where label a is the structure

diagram and labels b and c are simulated time-averaged intensity distribution for light

Fig. 9 Nanophotonic devices designed by direct binary search algorithm. (A) A free-space to
multimode waveguide coupler and polarization splitter; (B) a designed polarization beam splitter;
(C and D) the simulated steady-state intensity distributions for TE and TM polarized light; and (E
and F) demonstration of a nanophotonic cloak for micro-ring resonator.
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polarized alongX-axis and that polarized alongY-axis, respectively [64]. For the design of

polarization beam splitter, they used the concept of free-form metamaterials. By freely

optimizing the geometry of the metamaterial, devices can be highly functional and

occupy a small foot-print. Moreover, nanopatterning enables one to engineer the refrac-

tive index in space at a deep sub-wavelength scale. In this way, devices that achieve high-

efficiency mode conversion in an extremely small area become feasible. They also

designed a polarization beam splitter with a footprint of 2.4μm�2.4μm in the above

way, which is shown in Fig. 9B, and the simulated steady-state intensity distributions

for TE and TM polarized light at the design wavelength of 1550nm are shown in

Fig. 9C and D, respectively [57].

With the development of photonic integrated circuits, the integration density needs

to be improved. In addition to directly reducing the device size, one of the options is to

decrease the spacing between individual devices. The DBS algorithm is applied to design

the integrated cloak with a footprint of just a few micrometers to decrease this spacing

without considerably increasing crosstalk [67]. In most of the applications, light is

coupled into the resonator via a waveguide that is placed in close vicinity to the ring.

However, if another waveguide is placed close to the micro-ring, the two optical com-

ponents would work as a coupled system with functionality that is different from that of

either one working independently, as shown in Fig. 9E. Shen et al. designed a nanopho-

tonic cloak that allows a wave guide to be placed at a gap of only 300nm from the micro-

ring and essentially renders the waveguide invisible to the micro-ring. The structure dia-

gram of the device and the steady-state intensity distribution are shown in Fig. 9F.

Another option to increase integration density is to combine the function of multiple

devices into a single compact device. Liu et al. designed a mode-division multiplexing

circuit consisting of a multiplexer, a crossing, and a demultiplexer, where the DBS algo-

rithm was used to optimize the structure of nanohole distribution [69]. The distributions

of silicon and air pixels determined by DBS algorithms are suitable for fabrication. More-

over, Han et al. theoretically designed three 1�2 power splitters based on photonic

crystal-like metamaterial structure with the DBS algorithm [71]. These nanophotonic

devices can be effectively assembled into arbitrary direction, multichannel and ultracom-

pact power splitters to satisfy the different requirements.

For the design of nanophotonic devices, DBS algorithm is suitable for relatively smal-

ler parameter space and generates discrete structure, which is more favorable to the fab-

rication using traditional techniques like focused ion beam milling or electron beam

lithography. However, as the search space increases, the possibility of falling into local

optimal value will tend to increase.

3.3 Simulated annealing algorithm
3.3.1 Introduction
In this section, we introduce the simulated annealing algorithm (SAA) along with its

application in designing nanophotonic devices. By allowing worse solutions according
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to the Metropolis principle [72], this individual-based algorithm is armed with the ability

to jump out of local optima. Like most heuristic algorithms, the incorporation of certain

strategies also introduces parameters to be decided by experience, which we will discuss

later.

Consider a crystal with perfect translational symmetry. All the atoms are periodically

set in a certain spatial location, except for several defects and fluctuations. How does this

beautiful periodic structure form in natural world? We are not going to discuss statistic

physics here, but the following discussion would inevitably contain some basic physical

agreements. Consider a pot of fully boiled atoms, all of which together form a high

energy state of the system. When we cool down the temperature slowly enough, this

pot of atom soup will find enough time to adjust itself to lower energy state. If the tem-

perature no longer changes, the system should have the most stable state among all the

possible states, which happens to be a solid crystal. Thus, the formation of beautifully

periodic structure should be the result of a slow enough cooling process. More discussion

can be found in thermodynamics.

The SAA [73] was invented by mimicking the above-introduced process. Getting

back to the topic of heuristic algorithm,

min objective ¼ f xð Þ, x ¼ x1, x2, x3,…ð Þ
s:t:gi xð Þ ¼ 0, hi xð Þ � 0, i ¼ 1, 2,…

still the objective function and the constraints on the parameters to be optimized are

predefined.

The SAA is identified by Metropolis principle [72], which guides the algorithm to

converge and jump out of local minimum. In the frame of SAA, we introduce the tem-

perature, T, as a controlling parameter over the Metropolis principle.

In a certain iterative process, when we have evaluated the current solution, let us say,

f(xi), we can generate a new solution xi+1, by bringing stochastic disturbance into each

component of the current solution. If the newly generated solution has a better function

value, it should always be accepted, like the hill-climbing algorithm. If not, byMetropolis

principle, a worse solution will still be accepted with the probability

P ¼ e
�f xi+1ð Þ+f xið Þ

kT (9)

where k is the Boltzmann constant in a narrow sense, which can be set to 1 for conve-

nience. If not accepted, the new solution will be abandoned, and this iteration ends.

At the end of each iteration, the temperature shall be decreased by a certain ratio α,

Ti+1 ¼ αTi: (10)

In the whole optimization process, the temperature T slowly changes from a high

value at the beginning, to nearly zero in the end. From the Metropolis principle, we

could see that a high temperature allows relatively bad solutions, compared with the
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current one, while a low temperature means less tolerance over a worse solution. By

slowly cooling down the temperature, the system would finally converge at a “low

energy state,” refusing all the worse solutions.

If the parameter k is set to be 1, there is only one parameter, the temperature, T to be

decided by experience. IfT is set too high at the beginning, any worsen disturbance of the

current solution will be tolerated, resulting in invalid search and waste of time. On the

contrary, if T is set too low at the beginning, the algorithm will degenerate into a local

search, with only iteratively search for better solutions, losing its advantage from the

Metropolis principle. Another parameter that we shall not miss is the cooling rate, which

determines the whole running time of this optimization. To find a better solution, a small

cooling rate is always recommended, but it also requires more computational cost. The

flowchart of SAA is given in Fig. 10.

Fig. 10 Flow chart of simulated annealing algorithm.
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3.3.2 Applications
Even when artificial intelligence has been utilized in the simulation and inverse design of

nanophotonic devices [74,75], the SAA still works well by giving a general frame in

which designing arbitrary devices can be incorporated. For the last decade and even ear-

lier, the SAA has generated many works. We will go through a quick scan and give

detailed discussion on one example, hoping that the readers can find it helpful to learn

about this algorithm.

Photonic crystal with simple geometrical structure in primitive cell can be easily

incorporated into the framework of simulated annealing optimization, because one

can represent its structure with several variables, integral or continuous. Selective filters

were designed based on one-dimensional photonic crystal by the SAA [76]. Here, the

heuristic algorithm was employed together with mathematical analysis to generate a

global optimization algorithm, which reached far beyond what common heuristic algo-

rithms can achieve.

An all-dielectric compact magnetic resonator was designed based on the incorpora-

tion of disorder into an ordered photonic slab [77]. Natural materials rarely have strong

response to the magnetic field component of light, but man-made meta-materials are

more powerful to enhance this weak interaction. In this work, SAA was incorporated

into artificial intelligence to help amplify this response. Due to the simple and clear struc-

ture of the element, we can take it as a good example for readers to understand the whole

design procedure. The schematic of the element structure, optimization history, and rel-

evant simulation results is depicted in Fig. 11. A plane wave excitation is given and the

amplitude of normalized magnetic field Hz is strongly enhanced at a certain point, as

depicted in Fig. 11D. A strong magnetic light-mater interaction is thus attained.

To employ an optimization algorithm in the design procedure, the author first

declared an objective function,

F xð Þ ¼ max f ω1 xð Þ, f ω2 xð Þ,…, f ωn xð Þ½ � (11)

Here, the components of vector x are the coordinates of the 25 cylinders in the rect-

angular array. ω1, ω2, …, ωn are discrete frequencies within the selected frequency

range, and fωi (x) is the largest enhancement factor among all the spatial locations at

the frequency ωi. Clearly, these factors are functions to the structure parameter x.

FEM analysis was incorporated in the optimization for solution estimations.

SAA was then employed to maximize the objective function in formula (11). The

evolution history is depicted in Fig. 11B. The best value was found around the 50th iter-

ation. To be clear, the ordered photonic slab was firstly optimized to find a better struc-

ture and make it the initial structure of the second optimization where disorder was

introduced.
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Similar jobs including twisted light emitter [78] and microstrip patch antenna [79]

have also been reported by the employment of SAA. Its generality allows devices in arbi-

trary forms, only asking the structure to be fully depicted by finite parameters. Except for

directional utilization in inverse design, heuristic algorithms can produce training data for

neural network [75]. Other group-dependent algorithms, like genetic algorithms, will

come to a stage where most of the individuals share the similar structures, which contra-

dicts with purpose of providing training data with good diversity.

It is also not difficult to find out its defects as a heuristic algorithm, which are high

computation cost and experience-required hyperparameters, such as temperature and

the cooling rate. Moreover, it fits only problems where the dimension of solution space

is small, otherwise genetic algorithm shall be a better choice [80]. As introduced before,

the validity of heuristic algorithm is promised by the law of large numbers. This is a nat-

ural defect for an algorithm because it requires a large search scope to provide a valid

solution. Here for the SAA, one would find the output solution better if he/she sets a

relatively higher initial temperature and smaller cooling rate, which would also inevitably

bring more computation burden from more function evaluations.

Fig. 11 (A) Schematic of the element structure; (B) optimization history of simulated annealing
algorithm; (C) the spectra of the largest factor of the magnetic field profile; and (D) simulation
result of the normalized magnetic field jHz j.
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The utilization of Metropolis principle enables SAA to jump out of local optimum

and conducts a more global search in the solution space. By controlling the temperature

and cooling rate, convergence velocity can be easily tuned, which gives more freedom in

designing a complicated algorithm. The core idea of SAA, the Metropolis principle, can

be easily incorporated into most of the algorithms. It is reasonable to believe that when it

comes to the utilization of heuristic algorithm for an inverse design problem, the com-

bination of various mechanisms shall bring us more possibilities on broadening the

boundaries of nanophotonic devices.

3.4 Tabu search
3.4.1 Introduction
Tabu search (TS) is a kind of improved hill-climbing algorithm [81]. Hill-climbing algo-

rithm, as introduced above, chooses the best solution from the neighborhood structure

and terminates when running into a local minimum. TS enables tolerance over worse

solutions and incorporates short-term memory recording previously visited solutions,

to avoid cycling back.

In one iteration, TS evaluates all the solutions in the neighborhood structure and

chooses the best one. If the move to this best-value solution has been recorded in the

short-term memory, or tabu list, the algorithm turns to the second-best solution. After

each iteration, the tabu list containing recently visited moves will be updated. If the best

and second-best solutions are both recorded, the algorithm comes to a termination.

The definition of tabu list can be strict or not. For instance, if the variable v1 changes

from 0 to 1 in an iteration, a strict tabu list records (v1), preventing any change of variable

v1. Less strict tabu lists can be (v1, 1) or (v1, 0, 1). One could see that too strict a tabu list

forbids more solutions and faster termination, which means potential better solutions are

abandoned simultaneously. To avoid this side effect, aspiration criteria is combined with

the use of tabu list. If the best-value solution from the neighborhood is better than the

best one ever found, the algorithm always accepts it, ignoring the tabu list. The flow chart

of TS is given in Fig. 12 for a clear view. Even if the tabu list rejects the best option ω0

from neighborhood structure,ω0 can still be accepted by the aspiration criteria. Only ifω0

is rejected by both criteria, the algorithm turns to the second-best solution ω 0 0 and sees if
it is accepted.

Notice that any small perturbation on the current solution brings a new solution into

the neighborhood structure. In a solution space with too many design variables, the

neighborhood structure can be too large to travel through. By introducing the strategy

of randomness, the algorithm evaluates only part of the neighborhood structure. At the

price of missing potential good results, this strategy greatly improves the efficiency.

In short, a simple TS is the combination of tabu list and hill-climbing algorithm. The

strategy of abandoning recently visited solutions can be easily mixed up with other
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optimizations and worked well in the previously proposed works. For a more detailed

discussion, please refer to [81].

3.4.2 Applications
TS was used in the optimization of nanophotonic elements. Due to the preference on the

solution space, optimization problems of material allotment like design of photonic crys-

tals and meta-surface are better platforms for TS. We will introduce here the works done

by employing TS.

An optical beam shaping element was designed by utilizing a parallel TS algorithm

[82], which successfully generated comparable or better solutions compared to genetic

algorithm, while requiring less computational time and fewer adjustable parameters.

Here, the optimization problem greatly suits the TS because the structure of photonic

crystal can be easily denoted as a binary vector of 0 and 1.

Metasurfaces, thin films with nanoscale patterning offer highly directional optical

absorption and other charming functions. The combination of SAA and TS was applied

Fig. 12 Flow chart of tabu search.
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in the design of directional absorbing thin film [83]. Result of this technique proved effi-

cient compared to the naive brute force alternative. This is a good example where two

different strategies are incorporated together to work as a global random search optimi-

zation technique.

Gagnon et al. proposed a polarization filter based on integrated photonic element

[84]. Like the optical beam shaping element, utilization of TS greatly suits the SOI struc-

ture and lithography technology, because the holes in thin film do not require extreme

etching precision.

Ngo et al. developed a hybrid algorithm employing staged continuous tabu search

(SCTS) and quasi-Newton method (QNM). A fiber Bragg grating (FBG) was designed

by this algorithm [85]. In formal procedure, SCTS was supposed to find a good solution

as close to the target as possible, while the QNM was later applied to carry on a local

search to enhance the result from the first step.

Karim utilized direct tabu search (DTS) to design a triangular index-guiding photonic

crystal fiber (PCF) [86]. In this device, hole-to-hole distance, circular air-hole diameter,

solid-core diameter, ring number, and PCF length were all considered by DTS and all of

them together constitute the whole solution space. Three synthesized PCFs with differ-

ent parameters were provided with similar objective function. On this point, we could

learn that heuristic algorithms can hardly give the global optimum, but only some

local ones.

There are mainly two enhancements in TS compared to hill-climbing algorithm.

First, TS is given the power to jump out of local minimum by allowing a worse solution

to the current one. Second, the incorporation of short-term memory in TS helps avoid

inefficient cycling back to previously visited solutions. Other strategies like aspiration cri-

teria and probability-controlled searching direction also help improve this algorithm. To

be clear, not all the strategies mentioned above are necessary for every optimization.

Analysis and experiments should be taken before the final optimization.

3.5 Genetic algorithm
3.5.1 Introduction
In the following section, we will introduce the basic conceptions of genetic algorithm

(GA), including chromosome, selection, mutation, and crossover. To give a panorama

of GA, we will talk about some conclusions from the theory of survival of fittest, to meet

the consensus which admits the validity of this algorithm. Assume there is population of

certain kind of species, living in an environment where only the individuals with certain

genes can survive. With time passing, individuals with nonadaptive genes will be weeded

out, leaving the population with only adaptive individuals. However, the reproductive

process brings more offspring into this group. After a long time, all the individuals in this

group should share similar genes, with the same characters promising that they are not

being weeded out by the environment.
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The optimization scheme can be addressed in the following formula:

min objective ¼ f ωð Þ,ω ¼ x1, x2, x3,…ð Þ
s:t:gi ωð Þ ¼ 0, hi ωð Þ � 0, i ¼ 1, 2,…

where the objective function is the target of the designed device. When designing nano-

devices, it can be written as the function measuring the device’s performance. Take a

two-channel wavelength router for an example, the objective can be written as transmis-

sions at different channels. And the parameters ω5 (x1,x2,x3…) is what determines the

structure of a device, the so-called chromosome in GA.

As a population-based algorithm, every individual in this optimization plays a similar

role to the individual-based algorithm like SA and TS. In each iteration, after function

evaluations, individuals with worse performance should be abandoned with a certain

probability. This step is called selection, where only adaptive individuals can produce

offspring and spread their chromosomes.

The following step is a crossover, parents surviving the selection can exchange chro-

mosomes and produce offspring to keep the population size invariant. To give the algo-

rithm ability to jump out of local optimum, a step called mutation is incorporated. The

chromosome of a new offspring is mutated at a mutation probability. Taking a binary

integer chromosome for instance, the mutation operator swaps it from 0 to 1 or from

1 to 0. After all these steps, one iteration ends. The flow chart of GA is given in Fig.

13 to make it clear.

There are many hyperparameters to be decided by experience, the size of group, the

number of abandoned individuals, crossover probability, mutation probability, and so on.

Even so, the overall performance of GA is good enough to enable it to give near-global

optimum in most cases. It has great convergence and produces fairly good results.

However, because population-based heuristic algorithm mimics the lengthy evolution

process, it is obviously time-consuming and requires more function evaluations, com-

pared to individual-based heuristic algorithms, let alone the gradient-based ones.

During the past years, many variants of GA are presented, including real-coded GA,

multi-objective GA, parallel GA, chaotic GA, and hybrid GA [87]. One word should be

addressed, the refiner the method, the more specific the problem. For a new optimization

problem at hand, analysis is necessary before application of various complex methods.

3.5.2 Applications
GA is very general and suitable to optimize different complex problems arising from dif-

ferent fields including economics [88], politics [89], management [90], and engineering

[91]. In recent years, with the improvement of design methods for nanophotonic devices

and the development of computer science, GA was also introduced into the design of
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nanophotonics. Many works are reported, such as wavelength router [92], polarization

rotator [93], polarization router [94], reflectors [95], special flat lens [96], light scattering

[97], light absorption [98], high-resolution imaging [99], phase-controlled dielectric

meta-surfaces [100], and nondeterministic quasi-random nanophotonic structures

[101]. Below, some examples of GA’s application in nanophotonics are introduced.

One typical work in this field is provided by Lu’s group [92]. They have developed an

intelligent algorithm by combining GA and finite element method (FEM) together to

design an on-chip nanophotonic wavelength router, which is suitable for different struc-

tures, different materials, and different wavelength ranges. For example, one structure is

shown in Fig. 14A, where the blue holes are silver and the white area is filled with air.

The whole structure has a small footprint of 1.0μm�1.0μm. Fig. 14B shows the sim-

ulated transmission spectrum covering from 480 to 950nm. Fig. 14C and D is simulated

magnitude of the electric field at two transmission peaks in Fig. 14B. In their design

workflow, FEM is used to simulate wavelength router and to get transmission of each

port. The components of design parameter ω are set as position coordinates and side

lengths of the inner rectangles, which are encoded into chromosomes of the population.

Fig. 13 Flow chart of genetic algorithm.
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Following the previous discussion, and the objective function should be a function of

solution ω. But the concrete form of the objective function can be vital to the optimi-

zation result, and in most of the cases, is not easy to define.

In this work, the objective function is defined as harmonic mean of target transmission

subtracting squared mean of unwanted transmission

F ¼ Σi
N i �N 0ð Þ2

i

� �1
2

� J Σ j
1

S j

� ��1

, (12)

where Ni represents the transmission in unwanted wavelengths and Sj represents the

transmission in target wavelengths. By doing so, solutions need to promote all the signal

transmission while restrain all the noise transmission to get a high function value.

In a later work, Lu et al. further developed the intelligent algorithm to successfully

realize a polarization router as small as 970nm � 1240nm [94]. More detailed informa-

tion is given in Fig. 15, from which we can also see how the structure evolves during the

optimization. GA greatly decreased the size of the element while maintaining its perfor-

mance. Judging from these two works, the validity and generality of GA are obvious.

Fig. 14 (A) Sketch for the designed wavelength router; (B) simulated transmission spectrum; and (C
and D) the simulated magnitude of the electric field at 580 and 805nm, respectively.
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As one of the most used heuristic algorithms, GA is good at global search, especially

when given with certain parameters, like high mutation probability and a big number to

abandon low-adaptive individuals. However, we shall notice that, a high computational

cost must be the sacrifice of a global searching ability. When using heuristic algorithm,

make sure the optimization has reached a balance to avoid this conflict.

GA is of high efficiency when dealing with problems with limited design variables.

With the randomness in the generation of new individuals, GA can search solutions in a

broad solution space, which can provide a better performance of nanophotonic devices in

many cases. However, when the design variable number becomes extremely large, the

convergence performance of GA will be weakened.

3.6 Differential evolution algorithm
3.6.1 Introduction
The differential evolution (DE) algorithmwas proposed by Storn et al. in the 90s [102]. It

is a stochastic model that simulates biological evolution. Through repeated iterations,

those individuals that are adapted to the environment are preserved. However, compared

Fig. 15 (A) Sketch for the polarization router and (B) sketch for the optimization process.
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with other evolutionary algorithms, DE retains the global search strategy based on pop-

ulation, adopts real number coding, simple mutation operation based on difference and

one-to-one competitive survival strategy, which reduces the complexity of a genetic

operation.

Fig. 16 is the flow chart of the DE algorithm. The optimization process of the DE

algorithm is very similar to that of the genetic algorithm (GA), and its main working steps

include three operations: mutation, crossover, and selection. But the specific definitions

of these operations are different from GA. The main idea of the DE algorithm is to start

from a randomly generated initial group, use the difference vector of two individuals ran-

domly selected from the population as the source of the random change of the third indi-

vidual, and weight the difference vector according to certain rules. Summing with a third

individual creates a new individual. This operation is called mutation. Then, the mutant

individual is mixed with a predetermined target individual to generate a test individually,

and this process is called crossover. If the fitness value of the test individual is better than

the fitness value of the target individual, the test individual will replace the target indi-

vidual in the next generation, otherwise, the target individual will still be preserved, and

this operation is called selection. In the evolution process of each generation, each indi-

vidual vector is used as the target individual once, and the algorithm keeps good

Fig. 16 Flow chart of differential evolution algorithm.
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individuals and eliminates inferior individuals through continuous iterative calculation,

and guides the search process to approach the global optimal solution.

The difference between GA and DE is that GA controls the probability of the selected

offspring after the parent selection, crossover, andmutation according to the fitness value.

In the maximization problem, the probability of an individual with a large fitness value

being selected will be correspondingly larger. In the DE algorithm, the mutation vector is

generated by the parental difference vector, and crosses with the parental individual vec-

tor to generate a new individual vector, which is directly selected with the parental indi-

vidual. Obviously, the approximation effect of DE algorithm is more significant than that

of GA.

3.6.2 Applications
Roy et al. proposed DE algorithm for efficient allocation of wavelength converters in

wavelength divisionmultiplexed optical networks [103]. They exploited the search capa-

bility of the DE algorithm to achieve near-ideal performance using a minimum number

of wavelength converters at each node in wavelength division multiplexed optical net-

work. As the time complexity is concerned, the proposed algorithm performs better than

the previous approach for large-scale practical problems.

The DE algorithm is an efficient global optimization algorithm. The algorithm prin-

ciple is simple and the control parameters are only a few. The main parameters are only

the population size, the crossover probability, and the scaling factor. The algorithm has

been successful in many fields due to its ease of use, robustness, and strong global opti-

mization ability.

3.7 Particle swarm optimization algorithm
3.7.1 Introduction
Proposed by Kennedy and Eberhart [104], particle swarm optimization (PSO) is a simple

social model that mimics the real rules of the bird flock’s foraging. Unlike the previously

introduced simulated annealing algorithm and tabu search, PSO is a swarm algorithm,

with each particle in the swarm playing the same role of the individual algorithm. It

should be proper to take it as an analogy of parallel individual algorithms. In this analogy,

each particle in the swarm searches the feasible region based on its own memory and

experience from the whole swarm. In the following section, the basic PSO template will

be introduced, followed by several strategies to enhance the performance of PSO

algorithm.

As a population optimization, every individual in the swarm represents a single solu-

tion. The individuals are initiated with randomized velocity, which guides them to

update the solutions in each iteration, following formula (13):
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xn+1i 5xni + vniΔt (13)

The solution and velocity of particle i in the nth iteration are denoted as xi
n and vi

n,

respectively. Also, one should notice that the optimization procedure is discretized by

unit time stepΔt. The velocity of a particle is decided by its ownmemory and knowledge

from the whole swarm. It should be the linear combination of its previous velocity,

which comes from the effect of inertance, the direction pointing to the current best solu-

tion to the particle, and the current best solution to the whole swarm. To be concise, refer

to formula (14)

vn+1i ¼ ωvni +
c1r1 pi � xni

� �
Δt +

c2r2 png � xni

	 

Δt (14)

Here, the pi and pg
n are the current best solution found by the particle i so far and the

best solution found by the whole swarm in nth iteration, respectively.

Refer to the flow chart in Fig. 17 for a brief review.

Naturally, the birds flock should spread as much as possible to search throughout the

forest. Also, the distribution of the initial swarm may pose an effect on the result.

Fig. 17 Flow chart of particle swarm optimization algorithm.
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Research was carried out to check if special initial distribution could generate better solu-

tions. The conclusion shows that the initial distribution is not important to the overall

performance of PSO algorithm. A uniform random distribution is favored for conve-

nience, in accordance with intuition. Without external implementation, the algorithm

should keep running even when all the particles gather at the same point. A scientific

convergence criterion would help avoid unnecessary function evaluations when the

algorithm has found a solution good enough. A simple strategy can be predefining a max-

imum change in objective function.

Like all the other heuristic algorithms, there are some hyperparameters, c1, c2, and ω,
which are decided by experience in PSO algorithm. There are literatures proposing a

combination of c1¼2, c2¼2 which means equal confidence in individual experience

and collective experience. Other strategies containing a bias of either c1 or c2 are reason-

able for specific problem, but extreme parameters ignoring either of them are not recom-

mended. For the parameter ω, there used to be literature suggesting using 0.8<ω<1.4,

starting from a larger value and ending with smaller value. Largerω stands for more global

searching ability and vice versa.

In real engineering problems like inverse design, the solution space is constrained in

one way or another. For PSO algorithm, an exterior penalty function can be applied like

GA in the following formula (15):

ef xð Þ ¼ f xð Þ + α
Xm
i¼1

max 0, gi xð Þ½ �2 (15)

Here, the f(x) is the original objective function, α is a penalty parameter and gi(x) is the

violation of the ith constraint. By doing so, particles moving outside the feasible region

have worse objective value, and never attract other particles.

3.7.2 Applications
The simple structure of PSO allowed a great number of applications based on this algo-

rithm. We have discussed the trend of hybridizing different algorithms to form a com-

prehensive algorithm, and we can see this attempt to improve the performance of

algorithms in many works concerning PSO.

By introducing a nanocavity into photonic waveguide, M. Djavid et al. optimized the

radius of this nanocavity and thus proposed a notch filter based on PSO [105]. The com-

bination of PSO and photonic waveguide generated lots of works in the past, including

directional emission [106], slow light [107], and index sensor [108]. Due to its simple

structure, the solution space is small and easy to search through by PSO. More charming

works from this platform can be expected in the following years. Other creative struc-

tures are also adorable in bringing charming applications. Wang et al. proposed a 2�2

multimode interference coupler based on strongly guiding deep-etched InP waveguide
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[109]. Akhlaghi et al. designed a photonic crystal fiber Raman amplifier [110]. Antire-

sonant fibers with extremely low confinement loss were also designed by PSO, illustrat-

ing its generality [111]. An all-optical NOT gate was proposed by Lu et al. using a

QR-code-like structure [112]. The meta-surface supported work, a Fano resonance ele-

ment with high Q factor was proposed recently, with also relatively simple structure in

accordance with the requirement of PSO [113].

The validity of PSO has been examined by all these previous works. It does not

require continuity in problem definition, and easily generates near-global solutions.

However, as a heuristic algorithm, it requires more function evaluations and brings more

computational budget. Even parallel computing can help alleviate this problem, huge

computational cost is still not negligible.

3.8 Ant colony algorithm
3.8.1 Introduction
Ant colony algorithm (ACA) was first proposed by Italian scholars Dorigo et al. in the

1990s. In the process of studying ants foraging, they found that the behavior of a single

ant is relatively simple, but the ant colony can reflect some intelligent behavior. For

example, ant colonies can find the shortest path to food in different environments. Ants

release pheromone on the path they pass through. Ants in the ant colony have the ability

to perceive pheromone. They will walk along the path with higher concentration of

pheromone, and each passing ant will leave pheromone on the path. After a period of

time, the entire ant colony will follow the shortest path to reach the food.

Fig. 18 is the flow chart of the optimization process of ACA [114]. The basic ACA is

expressed as follows: at the initial moment, m ants are randomly placed, and the initial

amount of pheromone on each path is equal. At the moment t, the probability of the

kth ant moving from node i to node j is

pij ¼
τijηijX
ταijη

β
ij

where τij is the intensity of pheromone on the line of ij at time t; ηij is the heuristic factor
indicating the expected degree of ant moving from node i to node i, usually taking the

reciprocal of the distance between i and j. α and β represent the degree of relative impor-

tance of the pheromone and expectancy heuristic factors, respectively. After each ant tra-

verses once, the pheromone updated on each path is

τij ¼ 1� ρð Þτij + Δτij,

where ρ represents the loss level of the total amount of pheromone on the path and 1�ρ
represents the residual factor of the pheromone. Δτij represents the increment of the

pheromone on path ij after the completion of this iteration, which can be represented as
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Δτij ¼
1

Lk
, the kth ant gose by ij,

0, others,

8<
:

where Lk represents the length of the path traveled by the kth ant in this traversal.

3.8.2 Applications
Using ACA, Saouane et al. obtained the setting of the optimal inclination angle for the

photovoltaic collector through simulation and improved the efficiency of the collector

[114]. The optimum angle varies in 1 year, from a minimum of 0 degree in June to a

maximum of 59 degree in December and January. Guo et al. used ACAmethod for opti-

mizing the antireflection coating system [115]. They used ACA to optimize the antire-

flection coating system with broadband omnidirectional characteristics for silicon solar

cells incorporated with the solar spectrum.

Fig. 18 Flow chart of ant colony algorithm.

107Nanophotonic devices based on optimization algorithms



ACA adopts the mechanism of positive feedback, which makes the search process

continue to converge and finally approach the optimal solution. During the search pro-

cess, multiple individuals perform parallel computing at the same time, which greatly

improves the computing power and operating efficiency of the algorithm, and makes

it easier to find the global optimal solution.

4. Conclusion

In conclusion, the introduction of intelligent algorithms in nanophotonic devices has

accelerated the prosperity of nanophotonics field. Different intelligent algorithms have

different frameworks and workflows. These algorithms can be generally classified into

two kinds stated above, gradient-based and heuristic (gradient-independent), according

to whether they use gradient in optimization process.

Gradient-based algorithms calculate gradient information of the current solution to

find an iterative direction. Topology optimization is a general category in gradient-based

algorithms and includes variable density method, level set method, and BESO, which are

used to design nanophotonic structures in many cases. Variable density method can

extremely enlarge solution space. Level set method is convenient when dealing with

changeable boundaries. BESO is successfully applied in the design of various photonic

crystals. Different from topology optimization, objective-first algorithm seeks for a solu-

tion with high performance even in the expense of unfulfilling the governing equations.

Objective-first algorithm has been proven successful in designing various on-chip inte-

grated nanophotonic devices. To get the gradient information efficiently, adjoint method

is applied in most gradient-based algorithms, including the other gradient-based intelli-

gent algorithms. Adjoint method can calculate gradients with only two simulations no

matter how large the solution space is.

Heuristic algorithms are free of gradient information and they generate new solutions

based on various strategies, with whose validity being promised by Monte-Carlo

method. Heuristic algorithms can be further divided into individual-based and

population-based algorithms. Individual-based heuristic algorithms include hill-climbing

algorithm, DBS algorithm, SAA, and TS algorithm. Population-based heuristic algo-

rithms include GA, DE algorithm, PSO algorithm, and ACA. Except for hill-climbing

algorithm and DBS algorithm, most heuristic algorithms are all armed with the ability to

jump out of local minimum. They do not promise a global optimum, but they can pro-

vide a solution near global optimum within finite calculation steps. Heuristic algorithms

are suitable to solve problems with limited variable number and may become inefficient

when dealing with a problem with too many design variables. This chapter introduced

intelligent algorithms applied in nanophotonic design and gave examples of design using

these algorithms.

As for the utilization of intelligent algorithms, we believe during the designing process

of nanophotonic devices, multiple algorithms can be adopted simultaneously to provide
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efficient and optimal solutions, rather than just one algorithm. In addition, with the

development of the algorithms and computer power force, more and more intelligent

algorithms may be further developed and applied to various communities. When there

are too many algorithms to choose, the more frequently used and reported method may

be a better reference for similar problems. Sometimes, when facing complicated prob-

lems, we do not rely on one algorithm. The results obtained from one optimization algo-

rithm can be regarded as the initial structure or guess for the second optimization

algorithm, and a complicated problem can be divided into several optimization steps

by combing serval intelligent algorithms instead of only one algorithm. Whatever the

complexity of the problems, we believe, more intelligent algorithms can bring solutions.

As Philip W. Anderson says: More is different.
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1. Introduction

Research on active matter and its constituents—active particles—is concerned with

understanding complex self-organization processes that occur in living systems at all

length scales from individual bacteria to large organisms, robots, and societies. In most

of these systems, collective behavior with dynamic patterns emerges as a consequence

of energy uptake at the smallest scales. Active particles are the driving element of these

organizational processes and are connected by physical interactions with a large variety of

other different active and passive components. Already at the level of a single bacterium

or cell, living systems have developed the ability to sense environmental signals that

include, for example, chemical, mechanical, or thermal cues.

A single bacterium such as E. coli contains sensory arrays that couple chemoattractant

binding with the machinery of flagellar motion to enable a process known as chemotaxis.

Chemotaxis is the ability to swim up or down a chemical gradient without necessarily

being able to directly measure the gradient of a chemical species at each point [1–3].
The signals involved in the resulting run-and-tumble motion known for E. coli and

the signaling pathways explored pave the idea that mechanisms are already at work at

these length scales which follow the concepts of computational information storage

and processing. On larger length scales, such as for a human, such concepts are common

and help us to perform actions based on the different experiences we have made. The

variety of decisions we make is based on what we have learned. This adds a new quality

to a living system, which is the ability to learn and correlate signals with actions without a

physical change of the system itself. Living organisms as complex systems of active and

passive matter are, therefore, the blueprint for adaptive materials that can perceive envi-

ronmental influences, process this information, and respond with a dedicated reaction. As

such, it has inspired artificial intelligence, machine learning, and robotics, and many

modern approaches have their origins in our coarse-grained view of information proces-

sing in living systems. Machine learning is also stimulating biological research, as modern
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artificial intelligence tools are helping to unravel complex biological processes, including

predictions about the conformation of small components such as proteins [4] or the anal-

ysis of medical images [5], to name just two examples.

Machine learning (Fig. 1) has already become an important tool in the field of active

matter and soft matter physics within the last years [6,7]. Approaches with different

machine learning techniques, either supervised, semi-supervised, or unsupervised, have

been applied to study a variety of different aspects. Reservoir computing, for example,

has been employed to predict chaotic dynamics of fluids [8]. Statistical learning frame-

works have been applied to obtain the governing hydrodynamic equations for active par-

ticles from single particle trajectories [9,10]. Similarly, stochastic neighborhood

embedding (t-SNE) and k-means clustering as methods of unsupervised learning were

used to study how collective motion of bacteria in biofilms emerge from single bacterial
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properties [11]. Time series analysis for anomalous diffusion characterization has been

performed and compared in the AnDi challenge with various machine learning tech-

niques [11]. Image analysis is very important in the study of active matter, especially

in the case of complex shapes and inhomogeneous signal-to-noise ratio in imaging tech-

niques. Here, supervised convolutional neural networks are used not only for segmen-

tation, tracking, and classification of objects [12–15] but also for the generation of

artificial training data using actor-critic generative adversarial networks (GANs).

A special area of machine learning directly related to the human learning process is

reinforcement learning (RL), which is also the subject of the remainders of this chapter.

Reinforcement learning is neither supervised nor unsupervised but rather an exploratory

technique where an agent learns by interacting with the environment. In the field of

active matter and active particles, numerical and experimental researches have been car-

ried out either with a focus on learning a strategy or finding a path to navigate toward a

fixed goal. Reddy and coworkers used reinforcement learning to find a strategy to effi-

ciently use turbulent convective thermal winds by gliders [16]. The glider, e.g., a bird,

optimized its flight angles according to sensorimotoric cues such as the wind velocity,

torque on the wings, or temperature. Rewarding specific combinations of vertical veloc-

ity and acceleration were found to greatly enhance the gain of height of such a glider,

which paves the way for a direct transfer of these findings to aircraft technology [17].

Colabrese et al. have applied RL to the study of optimal navigation of gravitactic swim-

mers in turbulent flows. Those swimmers attempt to rise in height without getting

trapped in the turbulent flow [18]. Durve et al. have employed multi-agent reinforce-

ment learning (MARL) to explore how agents learn to flock [19]. Here, two scenarios

have been considered. The first is learning from a teacher, while the second scenario con-

sidered agents without a teacher. In both cases, Vicsek like polar alignment of the active

particles was observed [20]. Tsang et al. have demonstrated how an object of N bodies

connected by extensible rods can learn to swim with the help of a Q-learning algorithm

[21]. RL was also used to study the efficient swimming of fish in the wake turbulence of

other fish in swarms [22].

Studies to navigate to specific fixed target location involve the work of Colabrese et al.

[23]. They employed a Q-learning algorithm to train smart inertial particles to get control

over their size (and inertia) to maneuver in a flow according to its local flow vorticity

toward a target region with negative vorticity. Such smart inertial particles were found

to outperform simple passive particles. Biferale et al. have studied the point-to-point nav-

igation in a snapshot of a turbulent flow with an actor-critic reinforcement learning algo-

rithm [24]. And also, more general computational studies have appeared that explore the

navigation of active particles, for example, in a Mexican hat potential energy landscape

[25]. Here, applying Q-learning algorithms the agents find the path taking the least time,

which is a path surrounding the potential energy barrier for large barrier heights. In the

case of smaller barriers, active particles may take a path straight across the potential energy

barrier, which is unstable under noise in a conventional theoretical description but
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becomes stable in the RL approach. Those studies may relate to the emergence of specific

search strategies, e.g., in the foraging of animals, which often show specific statistics, e.g.,

Levy walks, though those experimental results are still under debate. Hartl et al. have

combined genetic algorithms with reinforcement learning to find out about the evolu-

tion of chemotactic behaviors that are frequently observed for bacteria [26]. Bevan and

coworkers have equipped artificial swimmers (mainly Janus particle swimmers) with an

intelligent navigation scheme to help them conquer unknown territories [27]. In com-

putational studies, they provided artificial microswimmers with a series of sensory inputs

and actions to find strategies for swimming in an unfamiliar environment with obstacles

using a reinforced learning algorithm.

While most of the applications of machine learning to the study of active particles are still

computational in nature and have different goals, they share a vision that microscale synthetic

active particles with sensing and information processing capabilities based on simple physical

and chemical processes will be one of the next steps in artificial active matter research.

2. Synthetic active particles

Biological systems are not only endowed with a complex shape and a huge variety of

different active components that enable the conversion of local energy into mechanical

forces, but they also have complex chemical networks for processing environmental sig-

nals [28]. Synthetic active particles, which are of particular interest to this chapter, are

very primitive as compared to their biological counterparts [29]. They break the time

symmetry of the hydrodynamic equations at small length scales (small Reynolds numbers)

[30] by an asymmetric structure [31] or energy release [32] and a simple propulsionmech-

anism. In recent years, several strategies for self-propulsion of active particles have been

developed, but only a few a highlighted below. They are based on the conversion of dif-

ferent types of energy into a directed motion and rely on a balance of forces between the

active particle and the surrounding liquid. For example, active particles have been devel-

oped that move forward due to the change in a magnetic field that causes a (chiral) micro-

scopic structures to undulate [33] (Fig. 2A) or to rotate [34] (Fig. 2B). Chemically driven

microswimmers convert chemical energy into mechanical motion.

Most of them use the catalytic splitting of hydrogen peroxide to create an imbalance in

the concentration of the resulting chemical products on the surface, which drives osmotic

(or electro-osmotic) fluxes that propel the particle [31,39,42] (Fig. 2E and F) or even

nucleates gas bubbles that are ejected by a slightly conical tube [43]. Others use electro-

kinetic effects being the result of a catalytic reaction at different ends of bimetallic rods

[44,45] or even more complex structures for photoelectrochemical splitting [35] (Fig.

2C). The Quincke polarization [46] provides another way to easily convert passive par-

ticles into active ones, the so-called Quincke rollers, in which a torque is created on the

particle by an external electric field [47–49]. Other mechanisms involve temperature-

induced changes in the composition of critical mixtures surrounding a particle.
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Fig. 2 Active particles. Examples of different types of active particles. (A) Chain of magnetic beads
coupled by DNA strands to form a chain. The chain is connected to a red blood cell (gray in the
print version) (image below) and actuated by an external magnetic field [33]. (B) Chiral swimmer
coupled to a magnetic bead that is actuated by external magnetic fields to propel [34]. (C) TEM
image of brush-like TiO2 nanowires grown on a silicon nanowire with platinum nanoparticles at the
silicon nanowire [35]. (D) Shape changing elastomeric swimmer that is illuminated by structured
light to locally expand [36]. (E) Janus particle made of a polystyrene colloid (1μm diameter)
covered with a gold cap of 50nm thickness to propel, e.g., by self-thermophoresis [37] or
diffusiophoresis [38]. Gold can be replaced by a platinum capping to provide catalytic splitting of
hydrogen peroxide [31,39]. (F) Hematite cube embedded in a polymer particle. The hematite cube
enables photocatalytic splitting of hydrogen peroxide [40]. (G) Dye-loaded polymer particle
coupled to a thermo-responsive PNIPAM-co-MAA microgel particle that undergoes a volume phase
transition upon heating, modulating the propulsion [41]. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.) (A) Reprinted by
permission from Springer, Nature, R. Dreyfus, Microscopic artificial swimmers, Nature 437 (2005)
862–865, Copyright 2005. (B) Reprinted with permission from Nano Letters, A. Ghosh, P. Fischer,
Controlled propulsion of artificial magnetic nanostructured propellers, Nano Lett. 9 (2009) 2243–2245,
Copyright 2009 American Chemical Society. (C) Reprinted by permission from Springer Nature, B. Dai,
Programmable artificial phototactic microswimmer. Nat. Nanotechnol. 11 (2016) 1087–1092, Copyright
2016. (D) Reprinted by permission from Springer Nature, S. Palagi, Structured light enables biomimetic
swimming and versatile locomotion of photoresponsive soft microrobots. Nat. Mater. 15 (2016)
647–653, Copyright 2016. (F) Used with permission of Royal Society, Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences from J. Palacci, Light-activated self-
propelled colloids, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 372 (2014) 20130372, Copyright 2014,
permission conveyed through Copyright Clearance Center, Inc.
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Bringing such systemswith its temperature very close to a critical point requires only a tiny

amount of additional asymmetric heat release to cause a diffusiophoretic swimming

[38,50]. Similarly, the interfacial tension at liquid–liquid boundaries can be perturbed

by heat to yield strong Marangoni forces to drive swimmers [51]. A very general way

of propelling active particles is by self-thermophoresis [37].

Here, temperature gradients generated by optical heating of a metal cap on a polymer

or silica particle surface yield stresses in the liquid at the particle–liquid interface that

drives the particles with interfacial thermo-osmotic flows (Fig. 2E) [52,53]. While most

of the studies are carried out in water, thermophoresis provides a generic approach, since

it is observed in all kinds of liquid systems. Even responsive self-thermophoretic swim-

mers have been realized by attaching a thermo-responsive PNIPAMmicrogel particle to

a dye-loaded polystyrene colloid (Fig. 2G) [41]. All of those asymmetric microparticles

Fig. 3 Active particle trajectories. Trajectories of active particles (Janus particles) with a radius of
0.5μm. Each graph displays three trajectories, all starting at the origin in random directions with
increasing velocity from left to right.

Fig. 4 Symmetric synthetic microswimmers. (A) Schematics of a symmetric microswimmer that
consists of a polymer particle that is covered with 10-nm gold (gray in the print version)
nanoparticles [32]. Panel B shows an electron microscopy image of the swimmer with a close up in
(C) showing the individual gold nanoparticle (AuNP). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.) (B and C) Reprinted
with permission from ACS Nano, M. Fr€anzl, S. Muiños-Landin, V. Holubec, F. Cichos, Fully steerable
symmetric thermoplasmonic microswimmers, ACS Nano 15 (2021) 3434–3440, Copyright 2021
American Chemical Society.
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carry out a directed motion that reveals on long timescales an enhanced Brownian

motion (Fig. 3) as the particles still undergo an orientational diffusion or their propulsion

direction [29].

Symmetric active particles can be prepared by covering a polymer particle with tiny gold

nanoparticles homogeneously on its surface (Fig. 4) [32].While the structure is now symmet-

ric, the energy release canbemade asymmetric by illuminatingonly the edgeof the particle on

one side. In thisway, the particle propulsion direction becomes decoupled from the geometry

of the particle and the orientational diffusion is not playing a role for the dynamics of the active

particle anymore. This considerably enhances the ability to control active particles.

Besides these purely synthetic material systems, also biological building blocks are used

to exploit the catalytic action of enzymes [54,55] embedded in lipid vesicles [56]. Even bac-

teria themselves can be modified to propel under light illumination [57–59].

3. Control of active particles

Synthetic active particles move due to local energy absorption. They can respond to simple

environmental changes with changes in their propulsion speed or direction based on the

physicalmechanisms that drive the particles. For example, concentration gradients or inten-

sity variations can steer the particle, modulate its velocity, produce polarization, or even

cause the particle to rotate. Such behaviors can be considered a rudimentary form of che-

motaxis [60–62] or even a form to communicate [63]. However, themore complex decou-

pling of the physical mechanisms of perception and the physical mechanisms of locomotion

found in many living systems is not yet possible. Such separation in response requires more

complex processing of local information, which is not yet realized in simple artificial micro-

swimmers today. One approach to achieve such information processing and decision mak-

ingnevertheless is to couple the active particlewith an external feedback controlmechanism

[15,53,64–70]. This requires, on the one hand, an active particle that can be externally influ-
enced at the individual level and, on the other hand, a feedback control mechanism at the

interface between the microscopic observation and the response.

3.1 Light-controllable active particles
Acontrol of activeparticles is onone sidepossibleonaglobal scale,with each individual swim-

mer reacting on an external field, which is the same for all particles. In this way, the particle

propulsion speed may be controlled globally by switching it on/off or adjusting its value or

making it spatially inhomogeneouswith the help of speckle patterns [71]. Also, externalmag-

netic fields havebeenused to control the particle orientation and steer it in different directions.

Although the fields used could be inhomogeneous even on length scales smaller than the

microswimmers, individual control in this way is not possible and requires other approaches.

This more advanced control can be gained by illuminating individual particles sep-

arately to facilitate their propulsion. The illumination with light of a specific wavelength

can enable photochemical processes [40], control proton pumps in bacteria [57], induce

local phase separations by temperature [38], or just induce phoretic flows by temperature
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gradients [37,53,64]. All these light-controlled systems allow for a local control of swim-

mers by focusing light onto small regions or even individual swimmers. This light control

introduces a new concept into the study of microswimmers, namely the element of infor-

mation and information exchange [66,68]. The following sections deal with the exper-

imental implementation of the control of active particles in two dimensions.

3.2 Feedback control of active particles
Feedback control of microswimmers refers to the fact that one observes the state of the

swimmer (its position X, orientation Θ, and velocity V) at a time t in a microscopy setup

and responds to that bymodifying its state, e.g., its velocity or orientation. In this way, the

swimmers’ velocity becomes a function of all observables vi¼ f(X,Θ,V,…). There is a

growing number of experimental realizations, where feedback control of active particles

has been realized. In their pioneering work, Qian et al. have shown [64] how a feedback

control termed “Photon Nudging” can be used to steer a single Janus particle simply by

using an intermittent propulsion based on the relative orientation of the Janus particle

toward a target region. With photon nudging orientational diffusion can be harnessed

for the steering process and, as it turns out, smaller particles can bemore efficiently steered

due to their faster orientational diffusion. Bregulla et al. have further shown that active

particles can be localized with this method around a target location [53] and all details of

the navigation and localization of active particles can be understood based on a statistical

theory [72,73]. The technique gets in fact very valuable when studying the interactions of

swimmers with heat sources or even their fundamental physics in activity landscapes [65].

Feedback control requires, in the simplest case three parts, an input signal, processing

of that input signal to determine a kind of error signal, and a coupling of the input signal

back to the original system. In current state-of-the-art experiments on microswimmers,

the active particles are imaged in a microscopy setup with the help of a camera that is

interfaced to a computer (see Fig. 5). The images are analyzed by some image processing

procedures to yield the position and orientation of the particles, which then also allow to

determine the dynamic quantities like the velocity. A desired response is calculated by an

algorithm and executed by controlling the supply of energy to the individual particles at

certain positions. The latter is carried out by beam steering optics that involves either

spatial light modulators, digital mirror arrays, or acousto-optic modulators, where we

detail some information on these devices below.

3.2.1 Experimental realization of feedback control
The sections below describe some technical details for the individual beam steering

solutions.
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a) Beam Steering

Beam steering can be carried out with different devices. Frequently, this comprises either

an acousto-optic deflector, a spatial light modulator, or a digital mirror device, which all

have their specific advantages.

• Acousto-optic deflector: The AOD is a device driven with acoustic waves in crystals,

where the frequency of the acoustic wave (around 100MHz) creates an optical grating

deflecting the beam to different diffraction orders. By tuning the acoustic frequency,

one tunes the grating constant and thus the deflection. For 2D beam steering, one

needs two orthogonal deflectors, where deflection angles of several degrees are

achieved. Their advantage is a very fast response (microseconds). The disadvantage

is that for multiparticle control, the particles must be multiplexed meaning that only

one particle is active at a time.

• Spatial light modulator (SLM): An SLM is essentially a liquid crystal “display” allowing

to introduce controlled local phase shifts to the light wave to modify the intensity pat-

tern that is generated in an image plane. The phase pattern to be induced is commonly

generated by an iterative procedure (Gerchberg–Saxton [74]) or meanwhile even by

Fig. 5 Experimental setup. Typical setup to control the dynamics of single andmultiple active particles
by feedback control. The sketch depicts a dark-field microscopy setup illuminating the sample with
swimmers from the top with a darkfield condenser. The scattered light from the sample is imaged
to a CCD camera. The images are analyzed at video rate with the help of an image processing
software in a computer. The computer calculates a response to control the deflection of a laser
beam in the sample plane with an acousto-optic deflector (AOD).
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machine learning approaches [75]. This could be in complex cases time-consuming

and require a GPU if fast-pattern generation is required. It can easily create hundreds

of foci to control active particles individually. Using a GPU pattern generation within

several 10ms is possible. All foci are, contrary to the AOD, active at the same time, so

all particles will be propelled at the same time. The speed of the SLM is comparable to

typical frame rates (100Hz) of commonly used camera systems.

• Digital mirror device: A DMD contains an array of multistable mirrors. The light

power falling on the mirror surface is, therefore, split into power contributions of each

individual pixel that are spread across the image area in the focal plane of the objective

lens. As compared to an SLM, where all incident light power is mainly distributed

across the focal spots, the light of the pixels of the DMD in the off state is just lost.

Speed-wise, the DMD is comparable to an SLM.

b) Real-time image processing

In the simplest case, image processing requires determining the position and/or orien-

tation of all active particles in the sample. This can be done in various ways. Image pro-

cessing can be performed on special image processing cards, on graphics cards, or in the

simplest case, only by the CPU of the computer. Since hardware control is often carried

out with LabVIEW, NI Vision provides a powerful module for image processing using

centroid-based particle localization methods or more advanced techniques like Hough

transforms. Simple centroid-based particle detection can be carried out on timescales

below 10ms for an image size of 512 px�512 px, even for larger amounts of particles.

For example, thresholding an image of a single Janus particle (see Fig. 6) at least two dif-

ferent thresholds provides the location of the particle for the lowest threshold and the

location of the metal cap of the Janus particle for the high threshold. Using both positions,

Fig. 6 Image processing for Janus particles. Simple position and orientation determination for single
Janus particles. The darkfield microscopy image (middle) binarized by two different thresholds to
obtain the position (low-threshold intensity, left) and the in-plane orientation (high-threshold
intensity, right). First, the position is calculated. The high threshold image provides the position of
the metal cap and yields with the difference to the center, the orientation of the Janus particle.
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the in-plane orientation of the particle can be determined very quickly. Using in addition

the intensity of the particle, even the three-dimensional orientation of the particle can be

determined.

When images contain more complex objects and are heterogeneous in the object’s

intensity, more advanced techniques, e.g., involving deep learning [12,15] approaches,

are advantageous but may need optimization and the application of GPUs to match the

video rate of the experiment to carry out real-time feedback control. Fig. 7 shows a solution

reported in reference [15]. It uses a single-shot convolutional neural network based on the

YOLO architecture [76] to localize and classify objects in microscopy images at video rate

(100Hz). Therefore, individual objects may be addressed in different ways if required.

Currently, systems in use at the authors lab are capable of taking images at a framerate

of 100Hz. The YOLO-based tracking and classification solution is used with a custom-

made interface to a GPU for LabVIEW to comply with these available framerates (Fig. 8).

Methods like deep reinforcement learning with real-time experience replay can be

rather demanding in data storage, especially if the original images are used for experience

replay. Current applications as demonstrated in the sections below use the detour of first

analyzing images in real time. The processing of the image information provides the free-

dom to introduce in a less costly way any type of correlation of the input signal with the

output signal. For example, a correlation of the propulsion of the particle with the ori-

entation of the particle in the lab frame can be easily achieved. It is also possible to cor-

relate the propulsion velocity with the position in the lab frame. As the brain of the
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Fig. 7 Single-shot CNN for real-time image classification. Structure of the convolutional neural network
used for the localization and classification of objects in microscopy images in real time [15]. The
structure is based on the YOLO2 structure [77].
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particle is the computer, one may also give each particle a memory to carry out actions

based on past observations or future extrapolations. Therefore, one has to keep the iden-

tity of the particle over the experiment. Using a trajectory linking, one is able to provide a

long memory to each particle to introduce delays or forecasts [78]. There is immense

freedom in this choice, which makes active particle control a very powerful method

to study various processes.

4. Reinforcement learning

Learning is the way active systems develop models of causality about the elements they

find in their environment [79]. Such models can vary in complexity depending on how

active systems manage to obtain information about such environments. However, once

these models are stored, they can be used by active agents to trigger the desired behavior

in a given situation. The way active agents perceive and process such information is

important for a formal description and classification of the learning process performed

by a system. While it is possible to develop models of a system only by using information

that can be acquired directly through interactions with the environment, it is also possible

to develop knowledge only by processing data that have been acquired elsewhere and

represented in an optimal way for its transmission and processing. The first case is prob-

ably the most intuitive way to develop knowledge about how to approach a problem and

is the core idea of reinforcement learning.

Fig. 8 Localization and classification by a CNN. (A) Localization and classification of different shaped
particles in a synthetic microscopy image. The objects have different intensities. The grid indicates the
image segmentation into 13�13 grid cells as done by the YOLO2 network. Each grid cell delivers a set
of identified objects and its positions. (B) Extension of the YOLO2 CNN to detect the orientation of
objects in microscopy images. The picture shows the orientation detected for synthetic images of
Janus particles in darkfield microscopy [15].
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Reinforcement learning (RL) is a topic of machine learning based on a specific math-

ematical approach to process control, the Markov decision process (MDP). It has been

proposed for modeling decisions in various biological and artificial systems and is applied

to problems for different purposes such as robot manipulation, game control [80], natural

language processing, or energy management [81]. Inverse RL based on hidden Markov

models is also a widely studied topic. It is used to gain information about the rules it fol-

lows that trigger observable behavioral sequences. Applications of inverse RL are

found, e.g., in genomics and protein dynamics in biology as well as in speech or gesture

recognition and even music structure analysis.

To formalize a MDP and consequently define an RL framework, there are two essen-

tial elements: an agent and an environment including a target. These elements can each be

associated with observables that capture the information that needs to be correlated with

specific actions through an interaction with the environment. These are a set of actions a,

a set of states s, and a reward function r(s), respectively. The first describes what an agent

can do to gain experience from the environment in each state, while the second describes

how the environment is organized to quantify the variations that occur after the agent

performs an action (Fig. 9). The third is the signal, which essentially gives the agent

an intuition about how good or bad it was to perform an action in each state. This allows

the definition of a function called policy π(s) that provides the best action for each state.

A key feature of MDPs and RL is that they are designed to provide solutions even

under stochastic influences in the relationship state–action, typically quantified by a tran-
sition function T. This function models a family of probability distributions that charac-

terizes the outcome of any action in any state prior to the knowledge of the agent of

future events. If a system knows the transition function, it can estimate how good or

Fig. 9 Reinforcement learning loop. An agent being in a state swith a reward r(s) takes and action a to
explore the environment and a new state s 0 . The transition to the new state results in a reward r(s’). The
agent starts over with this reward and state taking the next action. This reinforcement learning loop is
repeated until an episode ends when arriving at a goal state or any other episode ending event occurs.
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bad the application of an action is in a state by analyzing the consequences of all possible

transitions and their probabilities. To formalize this, a value function U is defined as

U∗ sð Þ ¼ max
π

E
X∞
t¼0

γtr i

 !
:

Here, ∗ denotes the optimal value function, which maximizes the expected discounted

rewards as indicated by the max
π

E. The maximum is selected from all possible policies π.
The factor γ in this equation is the so-called discount factor. It modulates the importance

of future events in the process. In the above equation, the discount factor appears in such

a way that the rewards obtained in future steps are discounted geometrically, i.e., the best

reward is the immediate reward. Nevertheless, the way future rewards are discounted can

depend on the model of optimality considered. Three models of optimality can be used:

the finite horizon, infinite horizon, and average reward model. Here, we only consider

the infinite horizon situation where the geometric expression is used for the expected

value of the reward r. One can extend the expression of the optimal value by writing

the expected value of the reward using the transition function T(s,a, s0) to yield

U∗ sð Þ ¼ max
a

r s, að Þ + γ
X
s�S

T s, a, s0ð ÞU∗ s0ð Þ
" #

,

which is the Bellman equation, the foundation of dynamic programming. Thus, each

state s has an action a with a maximum value depending on the possible next states s0, the
probability of transitioning to this state T(s, a, s0), and the next states maximum value

U∗(s0). The max
a

in the equation reveals the nonlinearity of the problemwhose solution

is the policy function π. Once an RL algorithm has converged, it yields the optimal

policy

π∗ sð Þ ¼ argmax
a

r s, að Þ + γ
X
s�S

T s, a, s0ð ÞU∗ s0ð Þ
" #

for which the agent maximizes its total reward. Note that the transition function provides

the information on the transition from state s to s’ with the action a. In a real-world appli-

cation like the one described below for a single microswimmers, this function contains

the “physics” of the problem, i.e., it describes the transition probability given a certain

action.

The value function within a MDP can be also expressed as a matrix that stores the

value associated with an action a in each state s. This matrix is usually called Q-matrix

and is connected to the optimal value function by

U∗ sð Þ ¼ max
a

Q∗ s, að Þ:
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The Bellman equation, therefore, results in

Q∗ s, að Þ ¼ r s, að Þ + γ
X
s�S

T s, a, s0ð Þ max
a

Q∗ s0, a0ð Þ,

which is the basis for the so-called Q-learning. Whenever the transition function T(s,a,

s0) is known, the Q-learning learning is model-based and the optimal policy can be

obtained, for example, with the help of a value iteration procedure [79].When the model

or the detailed physics for the transitions is unknown, the temporal difference approach

has been revealed as a powerful tool for solving strategy search problems in real systems as

model-freeQ-learning. Here the agent does not need to know beforehand what the model

of the system is, and the information is propagated from the goal backwards with each

transition to a new state. There is also no need to wait until the end of a learning episode,

as the Q-matrix is updated during each transition, which makes Q-learning a more trac-

table implementation of temporal difference learning (TD-learning) for a real robot.

The optimal value function, Q-matrix and correspondingly also the optimal policy is

commonly obtained in an iterative procedure, where the tabular Q-matrix for a given

state and actionQ(s,a) is updated based on the value of the best action in the state s0 after
an action a has been taken. For Q-learning, this update rule is

Q sað Þ≔Q sað Þ + α r + γ max
a0

Q s0a0ð Þ �Q sað Þ
� �

:

The parameter α hereby denotes the learning rate, which defines the speed at which

updates are incorporated into the Q-matrix. Note that the Q-learning algorithm is con-

sidering all actions a0 of the following state s0 by using max
a0

Q s0, a0ð Þ and is, therefore,

called an off-policy method.

Another frequently used algorithm to learn the value function, which is called

SARSA for state–action–reward–state–action. The update scheme of the state–action func-

tion Q(s0, a0) is given by

Q s, að Þ≔Q s, að Þ + α r + γ Q s0, a0ð Þ �Q s, að Þð Þ:
The SARSA algorithm is, therefore, an on-policymethod.On-policymethods estimate

the value of a policy while using it for a control of the actions. In off-policy methods, the

policy is effectively split into a behavior policy to generate behavior that may be unrelated

to the policy that is estimated. In all the updated procedures, an element of randomness is

commonly introduced to favor exploration of the environment over exploitation. In this

element, called E-greedy method, a random action is selected with a probability E rather
than the action defined by the Q-matrix value.
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The first experimental demonstration of a microswimmer learning to navigate using

strategies of RL was shown by Muiños-Landin et al. using a Q-learning update algo-

rithm. The control of the experimental system and the detailed understanding of the

underlying physics in this study allowed a direct connection of the model-free learning

approach to a model-based numerical evaluation as briefly described below.

4.1 Reinforcement learning with a real microswimmer
Feedback control, as described above allows to correlate the dynamics of a microswim-

mer with all kinds of variables, such as position or orientation. While these rules are

static, i.e., predefined in the control program, machine learning as RL provides the ability

to have dynamic rules, which shape while exploring the environment with the swimmer.

The goal of incorporating a machine learning algorithm could be to learn a specific strat-

egy for navigating in an unknown environment [16-18,23,82–85] or explore what is

required to mimic a certain biological behavior like swarming [19]. The experiments

described below (and more extensively in Ref. [86]) refer to the simplest navigation

problem for reinforcement learning.

The swimmer explores a board of square cells (see Fig. 10), the gridworld, to reach a

goal state (green cell). While exploring this gridworld, the swimmer collects rewards. It

learns to find a spatially fixed target rather than a strategy how to navigate. Each cell

6 µm

6
µm

boundary states

goal state

A B

Fig. 10 Setup for reinforcement learning with single microswimmers. (A) The gridworld defined as
virtual overlay to the sample region consists of 25 central states (blue (gray in the print version),
reward r¼ �1) of size of 6μm�6μm with a goal state (green (dark gray in the print version),
reward r¼5) and boundary states (red (dark gray in the print version), reward r¼ �100). (B) The
symmetric microswimmers can carry out eight actions (a1…a8) by placing the laser at the
indicated position and heating the gold particles are the surface of the polymer particle (see
symmetric swimmer above). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.) From Science, Robotics, S. Muiños-Landin, A.
Fischer, V. Holubec, F. Cichos, Reinforcement learning with artificial microswimmers, Sci. Robot. 6
(2021) eabd9285. Reprinted with permission from AAAS.
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represents a state s the swimmer can occupy and in each state the swimmer is able to

choose between eight actions (a1…a8) as shown in Fig. 10B. The value of each transition

between a state s and s0 is denoted by the rewards that are taken to be just a function of the
state r(s). As the goal is to reach the green target cell, the reward for transitioning to this

goal state is positive, while all transitions between the blue cells are giving a slight negative

penalty. To reinforce in addition a confinement inside a certain region, additional

boundary states have been implemented, which carry a strongly negative penalty (red

cells in Fig. 10). Using this very general setup, Muiños-Landin et al. have used experi-

mental microswimmers in a real sample arena to learn to navigate a virtual gridworld [86].

The main difference to the standard gridworld problem is the fact that microswimmers

undergo Brownian motion; thus, their directed motion is noisy in position and orienta-

tion. This is especially important as the particles move within each state for some period

until they reach the state boundary to transition to the next state. This contrasts with the

common gridworld problem, where the execution of one action is causing a direct tran-

sition to a new state. A second difference is the discretization of the motion processes.

The motion and its consequences are observed at discrete instances of time, e.g., with

a camera snapshot.

The reinforcement learning loop (Fig. 11) in the experiment, thus, proceeds in the

following way:

1. Determine the state: Snapshot of the sample area is taken in themicroscopy system, e.-

g., a dark-field microscopy image is taken. The location of the swimmer is analyzed by

one of the above-mentioned methods and the state in which the swimmer resides is

determined.

2. Determine the action: The action is then determined from the Q-matrix by finding

the maximum value of the Q-matrix for the current state.

3. Make a transition: The action a is applied until the swimmer reaches a new state. This

is required as the microswimmer only moves a distance on the order of Δr�vΔt,
where Δt is the inverse frame rate. The action is, therefore, not instantaneous but

requires a certain amount of time.

4. Update the Q-matrix: Once a new state s0 is reached, the Q-matrix is updated with

the help of the reward according to the Q-learning update rule specified earlier.

Fig. 11 Experimental reinforcement learning loop. From Science Robotics, S. Muiños-Landin, A.
Fischer, V. Holubec, F. Cichos, Reinforcement learning with artificial microswimmers, Sci. Robot. 6
(2021) eabd9285. Reprinted with permission from AAAS.
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After these four steps, the RL loop starts again until the goal state or a boundary state is

reached. In this case, we end an episode of the RL and start with the swimmer at a new

random position in the gridworld.With the help of the Q-learning update algorithm, the

Q-matrix of the system develops from the completely randomly chosen entries and cor-

responding policy as displayed graphically in Fig. 12A to a well-structured matrix with a

converged policy in Fig. 12B. The convergence of the algorithm can be verified by the

sum of the Q-matrix entries over time, which converges. Also, the number of transitions

between states required to reach the goal state decreases with increasing learning progress

as revealed by the right graph in Fig. 12C.

This convergence is the consequence of the interaction of the swimmer with the local

environment (the rewards) that yields with each learning episode a better approximation

of the optimal policy to reach the target from any point in the gridworld. This evolution

of the policy is visible in the trajectories of the swimmer as shown in Fig. 13.

The experimental demonstration of RL with an active particle shows that learning in

a direct physical environment under the noisy conditions of Brownian particles and with

all the imperfections of the real sample is feasible, even if the learning processes is lasting

over several hours. The results do also indicate that new effects appear in real-world sce-

narios as compared to simulations, which emphasizes the so-called “reality gap” between

strategies obtained purely in a computer as compared to those in the experiment. The

microswimmer is subject to a specific noise that appears as a result of an unavoidable time

delay between sensing and action and Brownian motion. Such a delay refers to the finite

bandwidth of feedback loops and results in the considered experiment in an uncertainty

of its propulsion direction, even if the action is well defined. The consequence of this

uncertainty in the propulsion direction is an optimal speed of the particle that leads to

an optimal survival when swimming toward a goal area [86]. The noise in the system

thereby alters the strategy. Understanding this unexpected influence of noise and mea-

suring the transition function T(s,a, s0) finally also allows a modeling of the policy by the

model-based approaches discussed before.

The study presented by Muiños-Landin et al. also highlights the examples where

swimmers navigate around virtual obstacles (Fig. 14A) or share their information in a col-

lective learning process. Here a single Q-matrix is updated by two particles at the same

time, i.e., the two swimmers are sharing their information to yield an expected faster

learning (Fig. 14B).

4.2 Deep reinforcement learning with a single active particle
In the real world, state and action spaces are commonly continuous and high dimen-

sional. Q-learning is implemented by finding a low-dimensional representation (e.g.,

a set of discrete regions as in the gird world) of complex environments thereby bypassing

this curse of dimensionality. Although Q-learning is a robust strategy to navigate in this
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Fig. 12 Learning process. (A) Graphical representation of the Q-matrix and policy at the beginning of the learning process. The Q-matrix values in
each state are represented by the gray values as indicated in the sketch on the left. Brighter values correspond to higher Q-values. (B) Graphical
representation of the Q-matrix and the policy after the learning process. (C) Sum of all Q-matrix values during the learning process indicating that
the algorithm converges. The blue-shaded (dark gray in the print version) time period corresponds to 25 episodes. The graph on the right
demonstrates that the number of transitions required to reach the goal decreases with progressing learning. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.) From Science Robotics, S. Muiños-Landin, A.
Fischer, V. Holubec, F. Cichos, Reinforcement learning with artificial microswimmers, Sci. Robot. 6 (2021) eabd9285. Reprinted with permission
from AAAS.



region of square cells, the algorithm gets more resource hungry and fails to scale when

presented with a closer to the real-world representation of the environment. Simply a

denser grid or a finer set of actions restricts the agent from learning effectively,

let alone the possibility to handle continuous domains or the real-time pixel data. To deal

with such limitations, one then typically eludes from a table to represent the value func-

tion and instead approximates the same with an artificial neural network (ANN). ANNs

are popular for their implicit similarity to the human brain and are known to outperform

Fig. 13 Trajectory evolution. Evolution of the active particle trajectories during the learning process. At
the beginning of the process (left), the active particle motion is still determined by the random actions.
With progressing learning, the trajectories get straighter and finally only determined by the Brownian
motion of the microswimmers. The trajectories are taken after 1 episode, 100 episodes, 300 episodes,
and 600 episodes of learning. The dotted trajectories are additional trajectories to indicate the
variation of the trajectories at a specific times. From Science Robotics, S. Muiños-Landin, A. Fischer, V.
Holubec, F. Cichos, Reinforcement learning with artificial microswimmers, Sci. Robot. 6 (2021)
eabd9285. Reprinted with permission from AAAS.

Fig. 14 Reinforcement learning with virtual obstacles and multiple particles. (A) Policy learned by a
single active particle in a virtual gridworld overlayed to a real-world sample. The gridworld
contains a virtual obstacle (red (gray in the print version)) that is implemented with a high
negative reward (r¼ �100) and the goal state (green) next to the obstacle with (r¼5).
(B) Reinforcement learning with two active particles using the same Q-matrix. This “knowledge
sharing” leads naturally to a faster convergence of the learning process as displayed in the right
graph. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.) From Science S. Muiños-Landin, A. Fischer, V. Holubec, F. Cichos,
Reinforcement learning with artificial microswimmers, Sci. Robot. 6 (2021) eabd9285. Reprinted with
permission from AAAS.
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all existing algorithms at finding patterns in abstract multidimensional data. The paradigm

of deep reinforcement learning combines this ability of ANNs with reinforcement learn-

ing to produce exceptional results at solving complex decision-making tasks [80,87]. An

ANN of the type referred here can be thought of as a collection of artificial neurons, each

holding a number called their “activation.” Generally, they are arranged in a layer-by-

layer fashion, interconnected to their likes in the next layer by a series of weights (Wii)

and biases (Ci). The activation of a neuron in the successive layer is from the linear com-

bination of activations of the neurons in the previous layer followed by a non-linear acti-

vation function (Fig. 15). Once the weights and biases are optimized, the ANN can

potentially approximate abstract multidimensional mappings including the optimal

Q-value function for the navigation task at hand. This approach, where an ANN is used

to predict the Q-value of a state–action pair, is called deep Q-learning (DQL) [87].

Instead of discretizing the state space, which effectively adds noise and causes delayed

reinforcements within the learning process, DQL can handle representations of the state

of the microswimmer as a continuous vector. The action set, however, was kept discrete

as in the Q-learning approach but reduced to fewer movements: up, left, down, and

right. Since the authors’ experimental setup could image and act on the microswimmer

at a fast enough rate, actions can be considered to be quasi-continuous. The task at hand

Fig. 15 General scheme for the activation propagation in the ANN. The formulation of activations in
the successive layer are from the linear combinations of activations from the previous layer combined
with a non-linear activation function.
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for the microswimmer is to navigate to a small region at the center, starting from any

random point in the playing field. To approximate the optimal Q-value function, a mod-

est 3-layer ANN was chosen (Fig. 16). The network consisted of two nodes at its input

layer accepting the spatial coordinates of the microswimmer followed by a hidden layer of

100 nodes and finally an output layer with four nodes corresponding to each action, all

separated by a hyperbolic tangent activation function. The reward scheme was also rede-

signed. Each state was assigned a reward value that scaled with its distance to the goal

region located at the center of the confining boundary.

In the barebones DQL algorithm, the training begins with initializing the ANNwith

randomweights. At each time step, the agent, the microswimmer, undergoes a state tran-

sition by performing one of the allowed actions, receiving a reward as a consequence.

The preceding state is then fed into the network to predict Q-values corresponding

to each possible action. These Q-values are compared with target Q-values defined

Fig. 16 ANN architecture used in the DQL implementation. The ANN takes in the two-dimensional
position of the particle (x, y, state) and outputs Q-values corresponding to each possible
movement (action) of the microswimmer. In each iteration, the loss is calculated as the difference
between the current output values and the same predicted by the Bellman equation. The weights
and biases are then adjusted to minimize this loss by running a gradient descent step.
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by the Bellman equation where a loss is calculated [87]. The network parameters are then

adjusted tominimize this loss by running a gradient descent step. Calculating gradients for

all the parameters of the network is indeed possible and the process is called backpropa-

gation. These steps are repeated until the microswimmer reaches a terminal state, either

the goal region or outside the confining boundary, both of which mark the ending of an

“episode.” Ideally, over several episodes of training, the ANN converges toward an opti-

mal value function that maps the current state of the microswimmer to a set of four

Q-values that correspond to each of the allowed actions. The optimal policy is then

derived by choosing the action with the greatest Q-value at any given state. However,

like in most cases, a few more additions from the state of the art were required to ensure

stable training and convergence of our ANN. Since DQL estimates a Q-value function

instead of an explicit policy, the sequence of the inputs is irrelevant. This allows the agent

to learn not only from the consequences of its immediate action but also from previous

ones, just like in the case of biological counterparts. This technique termed experience

replay improves the training performance by feeding the ANNwith inputs sampled from

a batch of past experiences instead of just the immediate one, randomizing and reducing

correlations between the same [80]. On another note, using a less frequently updated

copy of the ANN to calculate the loss was also helpful in stabilizing the training [88].

In the authors’ experiment, the algorithm was implemented with Python which ran

within a custom LabVIEW program. The PyTorch library was used to create and train

the ANN, while LabVIEW took care of the hardware side of things. Optimal perfor-

mance was achieved at 300 episodes equaling about 3h of training. The microswimmer

was able to navigate to the target irrespective of where it started within the confining

boundary (Fig. 17). A closer look at the learned policy revealed reproducible differences

Fig. 17 Evolution of the trajectories during the DQL of a single microswimmer. The trajectories taken
by the microswimmer to reach the goal (green (dark gray in the print version)) region during
subsequent phases of the training. By episode 300, the microswimmer was able to navigate itself
directly to the goal region regardless of the location it began. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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compared to their initial simulations hinting toward true adaptive behavior. For example,

minor imperfections in the calibration of the steering mechanism produced an asymme-

try in the propulsion of the particle, for which the algorithm aptly compensated. More-

over, defects arising from the handling or storage of the microswimmers, irregularities in

their geometry, or hydrodynamic interactions of the particles with glass surfaces, all of

which collectively constitute a “reality gap,” can also create uncertainties in propulsion.

Although undesired, these inevitable imperfections served as an excellent showcase for

the potential of deep reinforcement learning in steering the active particles which

equipped them to adapt and overcome such challenges.

4.3 Multi-agent systems
In robotics, planning is important at a single-agent level but especially critical when it

comes to multiple agents. A single-agent approach is more focused on the modeling

of actions and transitions in order to enable the selection of an optimal sequence to com-

plete a task. But the complexity at the multi-agent level comes on the one hand from the

impact of one agent on another and its temporal dependency. On the other hand, the

potential simultaneous execution of actions by multiple agents makes it difficult to model

any transition of the system. These problems, and the fact that in many real cases there is a

remarkable influence of stochasticity or that the processes are only partially observable,

make it clear that planning at the multi-agent level is a problem that cannot be solved

unambiguously. However, through various simplifications or assumptions, a solution

becomes possible in real systems, and agents cooperate to solve problems. This section

gives some indication of how this happens in microscopic artificial multi-agent systems.

Since RL was presented as a success story for the single-agent case, we present here the

basic transfer from a single-agent situation to a multi-agent system (MAS). This will high-

light the difficulties in implementing a MAS based on RL.

4.3.1 Multi-agent reinforcement learning (MARL)
All concepts presented so far were introduced for reinforcement learning of a single

agent. When more than one agent is present in the environment and tries to maximize

the expected reward, the problem has to be redefined [19,89].

This redefinition can be done by considering stochastic game theory, which is a gen-

eralization of MDP. Consider the simplest case of a pair of symmetric swimmers navi-

gating in a grid world (see Fig. 18), with the set of actions as previously defined for a

single float. In this context, a so-called payoff matrix is defined for each of the particles,

which plays the role of a reward in a first step. The values of this matrix assign values to

each action performed by each particle, which depend on the actions that the other par-

ticles can perform. We analyze two main situations. The first is the so-called zero-sum

game. Here the interest of each particle is opposite, i.e., if the payoff matrix of each par-

ticle is (M1,M2) and the first particle’s reward is the other particle’s loss a single matrixM is
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sufficient to describe the two agents as we haveM1¼M andM2¼ �M. This situation is

also called the single matrix game. The second situation will be the general-sum game

where the sum of M1 and M2 is not zero. This situation is also called the bimatrix (or

multimatrix) game and will be considered in the following.

For the multimatrix game as shown in Fig. 18, a payoff matrix is defined byM1,M2 for

each particle. Each particle’s decision is then taken into account when considering what

might happen with each of the other particle’s possible decisions. This way both particles

will find out that there is an action aj that causes the payoff to become maximum what-

ever the action taken by the other particle is. This is the so-called Nash equilibrium. In a

Nash equilibrium, each agent agrees with his strategy choice, even in retrospect he would

make it the same way again. This Nash equilibrium is formalized as follows:

r1 a1, a2
� � � r1 a1, a2

� � 8a1�A1

r2 a1, a2
� � � r2 a1?, a

2
� � 8a2�A2,

where A1 and A2 are the set of actions of each particle and rk(a1, a2) is the corresponding

payoff value. However, such a definition for the Nash equilibrium is only valid for a pure

or deterministic system. For a systemwhere stochasticity plays a role, the definition of the

Nash equilibrium is as follows:

ρ1?M
1ρ2? � ρ1M1ρ2? 8ρ1�σ A1

� �
ρ1?M

2ρ2? � ρ1?M
1ρ2 8ρ1�σ A2

� �
,

where σ(Ai) is a set of probabilities over an action space Ak. For any ρk�σ(Ak), the sumX
a�Ak

ρk ¼ 1

Fig. 18 Multi-agent reinforcement learning. (A) Two active particles in the gridworld in an experiment.
(B) If agent 1 decides on action 1, the decision taken by agent 2 can lead to aminimumof its payoff.While
if it decides 2 whatever agent 2 makes it does not get the minimum. The same happens for agent 2.
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is the expected value of the payoff of the particle 1 under the situation where both par-

ticles adopt the mixed strategy ρ1, ρ2. This solution for the problem, the Nash equilib-

rium, defines the so-called the optimal strategy in the multi-agent problem.

ρ1M1ρ2 ¼
X
a1

X
a2

ρ1 a1
� �

r1 a1, a2
� �

ρ2 a2
� �

:

Now with this concept of Nash equilibrium and strategy in mind, we can define our

system as a 6-tuple.

hS,A1,A2, r1, r2,pi, where we find the set of states S, the set of actions Ak for the

particle k, the payoff pk for each case, and p the transition probability map. Note that

from now on, the concept of state is no longer the fact that a particle is placed in a cell.

Instead, the state is now the joint state of one particle being in a specific cell and the

other particle in any other possible cell. This will substantially increase the difficulty of

the calculations.

For simplicity, we can consider a situation where the active particles do not physically

interact. This is helpful because otherwise the transition function of the system is no lon-

ger stationary and theMDP cannot be applied. In our experimental system, this is satisfied

as long as we have a relatively small number of particles in the grid world. This means that

the probabilities p(s,a1,a2, s0) are constant in time. To formalize the set of equations

needed to derive the Bellman equation in analogy with what has been shown for the

single-agent case, the optimal value vk can be rewritten as

v1 s, π1, π2
� � ¼X∞

t¼0
γtE s, π1, π2, r1t
� �

v2 s, π1, π2
� � ¼X∞

t¼0
γtE s, π1, π2, r2t
� �

and from here the Q-learning algorithm can be reapplied. When implementing

Q-learning in an experimental MAS, the amount of information that needs to be man-

aged by the system must be carefully evaluated and the actual goals of the experiments

must be defined. How big is the environment and how big are the agents? How many

joint actions should be explored to build a model?What is the target of the system? These

are questions that might look naı̈ve, but in many cases, the MARL can be simplified ree-

valuating the idea behind the necessity of a stationary transition function.

Depending on the task that one assigns to a MAS, it might be better to establish some

rules in their behavior which constrains the system. In this way, the problem of modeling

becomes muchmore tractable given that many transitions do not need to be explored but

the transitions of the whole system try to achieve some goal. This is done by coordinating

the agents. In this way, specific planning is performed at a higher level to reduce the com-

plexity of the emergent solutions provided by the interacting agents. This is called a

multi-agent plan coordination problem. Such a procedure consists in partitioning the

global problem with its corresponding fronts in terms of constraints and differentiation.

138 Intelligent nanotechnology



An example of such an approach is shown in Fig. 19 with four microswimmers. On

the one hand, each individual swimmer exhibits an active motion, and on the other hand,

the swimmers form well-defined structures by defining virtual interactions [66]. Consid-

ering this, a distributed algorithm can be defined to now perform an active motion with

the “swimmer molecule” or swarm as shown in Fig. 19. In a first step of the algorithm,

the swimmers try to satisfy an “interaction condition” that creates the emergent struc-

tures, and in a second step, it takes care of the coordinated propulsion of each swimmer

(component of the swarm) that results in the motion of the swarmwith a given direction.

In such a scenario, the actions and the state of the swarm can be defined by the action

taken by each swimmer (same action for all swarm components) and the position of its

center of mass, respectively, and a classic reinforcement learning approach can be easily

deployed. This represents a significant reduction in the complexity of the simple navi-

gation problem for a swarm of swimmers, compared to defining a pure multi-agent con-

cept with a single strategy function instead of an optimal joint strategy. Such a framework

was also modified by replacing the target state of a classical gridworld by the position of a

passive particle in the environment. This results in an exploratory behavior of the swarm,

which tries to catch such a passive particle in the center of mass of the swarm (“haunting

mode” in Fig. 20). To this end, the distributed algorithm is divided into an additional

learning task. First, the swarm navigates through artificial interactions and active motion

to its position that traps the passive particle at its center of mass. Second, the distance

between the particles of the swarm is actively changed by the algorithm to trap the passive

particle in the center.

5. Future directions for MARL

An important factor that determines the complexity of the problem to solve is the level of

uncertainty not only in the transitions of the system after applying an action but also in the

t0 t3t1 t2

Fig. 19 Example of the navigation of a self-thermophoretic swimmer structure through a distributed
algorithm (four swimmers forming a tetramer). In a first step, virtual interactions drive the formation of
the swimmer structure. A second step produces the swarm navigation considering the same heating
point for each swimmer and the propulsion direction taken with the center of mass of the structure as
the reference point of the swarm.
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observations. A framework to tackle this problem is known as the partially observable

Markov Decision Process (POMDP). This is a generalization of the MPD approach

but with the agent getting just partial information about the state of the world that

includes also other agents. For that, the concept of belief is introduced as a probability

distribution extended to all the states in the world. This enables the possibility to solve

problems in a decentralized way.Meaning that the agents perform their own observations

but the whole system develops a global solution. Such an approach is widely developed

nowadays, and the systems based on it are known as decentralized partially observable

Markov decision processes (DEC-POMDP). This probabilistic approach could be mate-

rialized in real systems using Bayesian reinforcement learning. Such a development might

be particularly interesting for multi-agent systems especially when the collectivity shows

heterogeneities. For the micro-robotic systems based on swimmers, the uncertainty

regarding the robot position (states) is relatively low. However, if combined with another

type of agents, such as biological matter, the state of these new agents, in a heterogeneous

collectivity, would have certainly a significant uncertainty. Using MARL, the behavior

Fig. 20 Example of the coordinated haunting of a passive particle by a swarm of swimmers. In a first
step, the swarm navigates toward the passive particle (red circle (dark gray in the print version)) that
acts as a target. This mode is kept until a certain distance between target and the center of mass of the
swarm is achieved. Under such a condition, a second mode is activated where the distance between
the particles of the swarm is varied considering the dynamics of the passive particle in a way that the
target remains always in the surroundings of the center of mass of the swarm. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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of the MAS can be studied and information regarding all the agents can be extracted by

inverse learning strategies.

Another open field is the on-demand design of micro-robotic systems based on infor-

mation extracted from robot interaction with the environment. Depending on the appli-

cation, some requirements in terms of compatibility with the environment might

determine the optimality of the robot. For that RL strategies can be combined with gen-

erative approaches in an objective-reinforced generative adversarial way (ORGAN).

Here geometries and materials would play a key role in the design of micro-robotic sys-

tems to optimize their performance driving new research possibilities.
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[20] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Novel type of phase transition in a system of
self-driven particles, Phys. Rev. Lett. 75 (1995) 1226–1229.

[21] A.C.H. Tsang, P.W. Tong, S. Nallan, O.S. Pak, Self-learning how to swim at low Reynolds number,
Phys. Rev. Fluids 5 (2020), 074101.

[22] S. Verma, G. Novati, P. Koumoutsakos, Efficient collective swimming by harnessing vortices through
deep reinforcement learning, Proc. Natl. Acad. Sci. U. S. A. 115 (2018) 5849–5854.

[23] S. Colabrese, K. Gustavsson, A. Celani, L. Biferale, Smart inertial particles, Phys. Rev. Fluids 3 (2018),
084301.

[24] L. Biferale, F. Bonaccorso, M. Buzzicotti, P.C.D. Leoni, K. Gustavsson, Zermelo’s problem: optimal
point-to-point navigation in 2D turbulent flows using reinforcement learning, Chaos 29 (2019),
103138.

[25] E. Schneider, H. Stark, Optimal steering of a smart active particle, EPL Europhys. Lett. 127 (2019)
64003.

[26] B. Hartl, M. H€ubl, G. Kahl, A. Z€ottl, Microswimmers learning chemotaxis with genetic algorithms,
Proc. Natl. Acad. Sci. U. S. A. 118 (2021), e2019683118.

[27] Y. Yang, M.A. Bevan, B. Li, Efficient navigation of colloidal robots in an unknown environment via
deep reinforcement learning, Adv. Intell. Syst. 2 (2020) 1900106.

[28] G. Gompper, et al., The 2020 motile active matter roadmap, J. Phys. Condens. Matter 32 (2020),
193001.

[29] C. Bechinger, et al., Active particles in complex and crowded environments, Rev. Mod. Phys.
88 (2016), 045006.

[30] E.M. Purcell, Life at low Reynolds number, Am. J. Phys. 45 (1977) 3–11.
[31] J.R. Howse, et al., Self-motile colloidal particles: from directed propulsion to randomwalk, Phys. Rev.

Lett. 99 (2007), 048102.
[32] M. Fr€anzl, S. Muiños-Landin, V. Holubec, F. Cichos, Fully steerable symmetric thermoplasmonic

microswimmers, ACS Nano 15 (2021) 3434–3440.
[33] R. Dreyfus, et al., Microscopic artificial swimmers, Nature 437 (2005) 862–865.
[34] A. Ghosh, P. Fischer, Controlled propulsion of artificial magnetic nanostructured propellers, Nano

Lett. 9 (2009) 2243–2245.
[35] B. Dai, et al., Programmable artificial phototactic microswimmer, Nat. Nanotechnol. 11 (2016)

1087–1092.
[36] S. Palagi, et al., Structured light enables biomimetic swimming and versatile locomotion of photore-

sponsive soft microrobots, Nat. Mater. 15 (2016) 647–653.
[37] H.R. Jiang, N. Yoshinaga, M. Sano, Active motion of a Janus particle by self-thermophoresis in a defo-

cused laser beam, Phys. Rev. Lett. 105 (2010), 268302.
[38] I. Buttinoni, G. Volpe, F. K€ummel, G. Volpe, C. Bechinger, Active Brownian motion tunable by

light, J. Phys. Condens. Matter 24 (2012), 284129.
[39] A. Brown, W. Poon, Ionic effects in self-propelled Pt-coated Janus swimmers, Soft Matter 10 (2014)

4016–4027.
[40] J. Palacci, et al., Light-activated self-propelled colloids, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.

372 (2014) 20130372.
[41] L. Alvarez, et al., Reconfigurable artificial microswimmers with internal feedback, Nat. Commun.

12 (2021) 4762.
[42] T.C. Lee, et al., Self-propelling nanomotors in the presence of strong Brownian forces, Nano Lett.

14 (2014) 2407–2412.
[43] S. Sanchez, A.N. Ananth, V.M. Fomin, M. Viehrig, O.G. Schmidt, Superfast motion of catalytic

microjet engines at physiological temperature, J. Am. Chem. Soc. 133 (2011) 14860–14863.
[44] W.F. Paxton, et al., Catalytic nanomotors: autonomous movement of striped nanorods, J. Am. Chem.

Soc. 126 (2004) 13424–13431.
[45] W.F. Paxton, et al., Catalytically induced electrokinetics for motors and micropumps, J. Am. Chem.

Soc. 128 (2006) 14881–14888.
[46] G. Quincke, Ueber Rotationen im constanten electrischen Felde, Ann. Phys. Chem. 295 (1896)

417–486.

142 Intelligent nanotechnology

http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0105
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0105
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0110
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0110
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0115
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0115
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0120
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0120
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0125
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0125
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0125
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0130
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0130
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0135
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0135
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0135
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0135
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0140
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0140
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0145
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0145
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0150
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0150
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0155
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0160
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0160
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0165
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0165
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0165
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0170
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0175
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0175
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0180
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0180
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0185
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0185
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0190
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0190
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0195
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0195
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0195
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0200
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0200
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0205
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0205
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0210
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0210
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0215
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0215
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0220
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0220
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0225
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0225
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0230
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0230
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0235
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0235


[47] E. Han, L. Zhu, J.W. Shaevitz, H.A. Stone, Low-Reynolds-number, biflagellated Quincke swimmers
with multiple forms of motion, Proc. Natl. Acad. Sci. U. S. A. 118 (2021), e2022000118.

[48] A. Morin, N. Desreumaux, J.-B. Caussin, D. Bartolo, Distortion and destruction of colloidal flocks in
disordered environments, Nat. Phys. 13 (2017) 63–67.

[49] A. Bricard, J.B. Caussin, N. Desreumaux, O. Dauchot, D. Bartolo, Emergence of macroscopic directed
motion in populations of motile colloids, Nature 503 (2013) 95–98.

[50] F. Schmidt, et al., Microscopic engine powered by critical demixing, Phys. Rev. Lett. 120 (2018),
068004.

[51] K. Dietrich, N. Jaensson, I. Buttinoni, G. Volpe, L. Isa, Microscale Marangoni surfers, Phys. Rev. Lett.
125 (2020), 098001.

[52] A.P. Bregulla, A. W€urger, K. G€unther, M. Mertig, F. Cichos, Thermo-osmotic flow in thin films,
Phys. Rev. Lett. 116 (2016), 188303.

[53] A.P. Bregulla, H. Yang, F. Cichos, Stochastic localization of microswimmers by photon nudging, ACS
Nano 8 (2014) 6542–6550.

[54] X. Ma, et al., Enzyme-powered hollow mesoporous Janus nanomotors, Nano Lett. 15 (2015)
7043–7050.

[55] A. Joseph, C. Contini, D. Cecchin, S. Nyberg, L. Ruiz-Perez, J. Gaitzsch, G. Fullstone, X. Tian, J.
Azizi, J. Preston, G. Volpe, G. Battaglia, Chemotactic synthetic vesicles: design and applications in
blood-brain barrier crossing, Sci. Adv. 3 (8) (2017) e1700362, https://doi.org/10.1126/
sciadv.1700362.

[56] S. Song, et al., Engineering transient dynamics of artificial cells by stochastic distribution of enzymes,
Nat. Commun. 12 (2021) 6897.

[57] J.M. Walter, D. Greenfield, C. Bustamante, J. Liphardt, Light-powering Escherichia coli with proteor-
hodopsin, Proc. Natl. Acad. Sci. 104 (2007) 2408–2412.

[58] G. Frangipane, et al., Dynamic density shaping of photokinetic E. coli, eLife 7 (2018), e36608.
[59] J. Arlt, V.A. Martinez, A. Dawson, T. Pilizota, W.C.K. Poon, Painting with light-powered bacteria,

Nat. Commun. 9 (2018) 768.
[60] M.N. Popescu, W.E. Uspal, C. Bechinger, P. Fischer, Chemotaxis of active Janus nanoparticles, Nano

Lett. 18 (2018) 5345–5349.
[61] L. Baraban, S.M. Harazim, S. Sanchez, O.G. Schmidt, Chemotactic behavior of catalytic motors in

microfluidic channels, Angew. Chem. Int. Ed. Eng. 52 (2013) 5552–5556.
[62] C. Zhou, et al., Torque-driven orientation motion of chemotactic colloidal motors, Angew. Chem.

Int. Ed. 61 (2022), e202116013.
[63] D.P. Singh, et al., Interface-mediated spontaneous symmetry breaking and mutual communication

between drops containing chemically active particles, Nat. Commun. 11 (2020) 2210.
[64] B. Qian, D. Montiel, A. Bregulla, F. Cichos, H. Yang, Harnessing thermal fluctuations for purposeful

activities: the manipulation of single micro-swimmers by adaptive photon nudging, Chem. Sci. 4
(2013) 1420.

[65] N.A. S€oker, S. Auschra, V. Holubec, K. Kroy, F. Cichos, Active-particle polarization without align-
ment forces, arXiv (2020).

[66] U. Khadka, V. Holubec, H. Yang, F. Cichos, Active particles bound by information flows, Nat. Com-
mun. 9 (2018) 3864.

[67] T. B€auerle, R.C. L€offler, C. Bechinger, Formation of stable and responsive collective states in suspen-
sions of active colloids, Nat. Commun. 11 (2020) 2547.

[68] T. B€auerle, A. Fischer, T. Speck, C. Bechinger, Self-organization of active particles by quorum sensing
rules, Nat. Commun. 9 (2018) 3232.

[69] M.A. Fernandez-Rodriguez, et al., Feedback-controlled active brownian colloids with space-
dependent rotational dynamics, Nat. Commun. 11 (2020) 4223.

[70] T. Mano, J.-B. Delfau, J. Iwasawa, M. Sano, Optimal run-and-tumble-based transportation of a Janus
particle with active steering, Proc. Natl. Acad. Sci. 114 (2017) E2580–E2589.

[71] G. Volpe, S. Gigan, Brownian motion in a speckle light field: tunable anomalous diffusion and selective
optical manipulation, Sci. Rep. 4 (2014) 3936.

143Artificial intelligence (AI) enhanced nanomotors and active matter

http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0240
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0240
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0245
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0245
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0250
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0250
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0255
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0255
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0260
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0260
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0265
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0265
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0265
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0265
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0270
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0270
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0275
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0275
https://doi.org/10.1126/sciadv.1700362
https://doi.org/10.1126/sciadv.1700362
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0280
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0280
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0285
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0285
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0290
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0295
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0295
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0300
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0300
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0305
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0305
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0310
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0310
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0315
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0315
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0320
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0320
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0320
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0325
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0325
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0325
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0330
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0330
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0335
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0335
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0335
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0335
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0340
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0340
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0340
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0345
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0345
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0350
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0350
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0355
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0355


[72] M. Selmke, U. Khadka, A.P. Bregulla, F. Cichos, H. Yang, Theory for controlling individual self-
propelled micro-swimmers by photon nudging I: directed transport, Phys. Chem. Chem. Phys.
20 (2018) 10502–10520.

[73] M. Selmke, U. Khadka, A.P. Bregulla, F. Cichos, H. Yang, Theory for controlling individual self-
propelled micro-swimmers by photon nudging II: confinement, Phys. Chem. Chem. Phys.
20 (2018) 10521–10532.

[74] R., W. G., A practical algorithm for the determination of phase from image and diffraction plane pic-
tures, Optik 35 (1972) 237–246.

[75] M. Hossein Eybposh, N.W. Caira, M. Atisa, P. Chakravarthula, N.C. P�egard, DeepCGH: 3D
computer-generated holography using deep learning, Opt. Express 28 (2020) 26636–26650.

[76] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: unified, real-time object detec-
tion, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[77] R. Joseph, F. Ali, YOLO9000: Better, Faster, Stronger, arXiv, 2016.
[78] M. Mijalkov, A. McDaniel, J. Wehr, G. Volpe, Engineering sensorial delay to control phototaxis and

emergent collective behaviors, Phys. Rev. X 6 (2016) 1–16.
[79] R. Sutton, Introduction to Reinforcement Learning, second ed., 2018.
[80] V. Mnih, et al., Human-level control through deep reinforcement learning, Nature 518 (2015)

529–533.
[81] J. Degrave, et al., Magnetic control of tokamak plasmas through deep reinforcement learning, Nature

602 (2022) 414–419.
[82] K. Gustavsson, L. Biferale, A. Celani, S. Colabrese, Finding efficient swimming strategies in a three-

dimensional chaotic flow by reinforcement learning, Eur. Phys. J. E 40 (2017) 110.
[83] G. Beintema, A. Corbetta, L. Biferale, F. Toschi, Controlling Rayleigh–B�enard convection via rein-

forcement learning, J. Turbul. 21 (2020) 585–605.
[84] M. Buzzicotti, L. Biferale, F. Bonaccorso, P.C.D. Leoni, K. Gustavsson, Optimal control of point-to-

point navigation in turbulent time-dependent flows using reinforcement learning, arXiv (2021).
[85] F. Borra, L. Biferale, M. Cencini, A. Celani, Reinforcement learning for pursuit and evasion of micro-

swimmers at low Reynolds number, arXiv (2021).
[86] S. Muiños-Landin, A. Fischer, V. Holubec, F. Cichos, Reinforcement learning with artificial micro-

swimmers, Sci. Robot. 6 (2021), eabd9285.
[87] V. Mnih, et al., Playing atari with deep reinforcement learning, arXiv (2013).
[88] Z. Wang, et al., Dueling network architectures for deep reinforcement learning, arXiv (2015).
[89] L. Panait, S. Luke, Cooperative multi-agent learning: the state of the art, Auton. Agent. Multi-Agent

Syst. 11 (2005) 387–434.

144 Intelligent nanotechnology

http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0360
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0360
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0360
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0365
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0365
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0365
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0370
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0370
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0375
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0375
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0375
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0380
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0380
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0385
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0390
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0390
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0395
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0400
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0400
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0405
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0405
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0410
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0410
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0415
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0415
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0415
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0420
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0420
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0425
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0425
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0430
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0430
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0435
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0440
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0445
http://refhub.elsevier.com/B978-0-323-85796-3.00005-6/rf0445


CHAPTER 6

Applications of convolutional neural
networks for spectral analysis
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aSchool of Physics, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
bSilicon Photonics R&D Center, CUMEC, Chongqing, China

1. Introduction

Subwavelength optical metamaterials exhibit unique optical properties compared with a

conventional macroscopic optical medium, including a plasmonic structure that can sup-

port free electron oscillations on the metal surface [1], and dielectrics with a high refrac-

tive index that can realize complex Mie scattering and Bragg diffraction [2]. Among

them,metallic nanostructures can confine the electromagnetic field in the subwavelength

scale, which can realize high manipulation efficiency for both near-field distributions and

far-field spectra [3]. Low-loss dielectric photonic crystal materials show higher efficiency

in optical far-field manipulations and are widely used in metalens [4], optical holograms

[5], and metasurfaces [6]. With the development of nanofabrication technology and

increasing demand for integrated optoelectronic devices, efficient and rapid design flows

to assist researchers in studying and developing diversified light-field manipulation are

especially in need.

As a rapidly developing discipline in recent years, neural networks (NNs) have been

promoted and applied in various research and application fields, including the detection

of the geological data models [7], prediction of earthquake risks [8], derivation of

element periodic law through compound structure formula [9], and reading of nuclear

magnetic resonance imaging for malignant tumor assessment [10]. Those algorithms can

recognize the hidden rules and patterns in huge amounts of data, analyze and predict

mapping from feature variables to the corresponding objective functions, and optimize

functions.

According to the calculation flow of the NNs, there are various architectures that are

designed for specific machine learning tasks, including fully connected neural networks

(FCNNs), recurrent neural networks (RNNs), graph neural networks (GNNs), and con-

volutional neural networks (CNNs) [11]. Among them, CNNs only involve adjacent

elements in each layer calculation, so the trainable parameters of this method are far less

than those of FCNNs with the same number of elements [12]; this can avoid overfitting
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and increase training efficiency. In addition, CNN input is mostly in a matrix format and

the geometric features of the input patterns are recognized by kernels, which makes it

more suitable for edge detection and clustering information between pixels.

In research on optical metamaterials, the matrix-type input makes CNNparameterize

the structural design from a larger parameter space, which increases the scalability of the

model. In addition, for the spectra analysis target, CNN can output both the vector and

matrix, which makes it possible to integrate more complex optical responses such as

angular distribution, time response, and near-field distribution. From the data-driven

perspective, CNNs can help researchers find the potential relationship between a large

number of samples as well as construct the mapping features or clustering rules between

complex material designs and spectral responses. Moreover, CNNs can also be utilized as

generative models to design metamaterials in vast parameter space [13], realize the spectra

control of various dimensions and multiple targets, and then directly contribute to the

development of high-performance optical materials and devices.

2. Fundamentals of CNNs for photonics

There are five steps for CNN-assisted metamaterial analysis: parameterizing nanostruc-

tures into network inputs, building an appropriate network architecture, providing effec-

tive training datasets, training the network, and quantifying the prediction accuracy of the

model.

2.1 Parameterization strategies
For FCNNs and other conventional prediction models, the structural design is param-

eterized into a vector (1,n) according to the specific pattern type, and each number in

the vector can represent the structural or material properties such as length, width, height,

azimuth, refractive index, etc. However, due to the need to define the design type in

advance, the free degree of structural design is limited. Compared with FCNNs, the

design diversity can be greatly expanded by CNNs because the CNN input is a matrix

with the shape of (C,n,n), where C is the channel and (n,n) is the size of the input pixels.

Before feeding designs into models, the structure should be parameterized into a spe-

cific matrix, where the row and column position of each element in the matrix corre-

sponds to the spatial position in the structural design. For example, for a

1000nm�1000nm designing space, represented by a (100,100) sized matrix, the corre-

sponding spatial range of each pixel is 10nm�10nm. The size of the structure matrix

determines the accuracy of the parameterized model. Higher accuracy can achieve a

more precise design of nanostructures, but it also increases the complexity of the

CNN model. In addition, it is necessary to match the parametric accuracy, numerical

simulation accuracy, and fabrication accuracy. At present, a large number of training

datasets are provided by numerical simulations. When the simulation accuracy is lower
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than the parametric accuracy, the discrete element of simulation cannot distinguish the

tiny difference of input structure. Under this condition, different structural parameters

may be mapped to the same spectrum, which can lead to a large amount of unnecessary

resource consumption for network training. On the contrary, if the simulation accuracy

is much higher than the parameterization accuracy, generating training data can be

time-consuming, and the risk of overfitting may be increased.

In the parameterization process, the physical meaning of each pixel can be specifically

designed according to the characteristics of the considered system. A well-applied

method is to describe the single layer of structures with a binary matrix (0/1), where

“1” represents locations existing in the structure and “0” represents locations with air,

shown as Fig. 1A. This parametric method shows advantages for its simplicity. No addi-

tional normalization processing should be applied for network training, and a one-step

lithography or electron beam exposure is sufficient for structure fabrication.

Fig. 1 Several parameterization methods for metamaterial design. (A) Binary matrix for a single-layer
structure. (B) Matrix with continuous values for a convex surface; the value of each pixel represents the
height of the surface at the corresponding location. (C) Three-dimensional matrix for an arbitrary
structure; the value of voxel Ω is binary. (D) Parameterization with the matrix of which the value is
permittivity.
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The disadvantages are also obvious, as this method has less information and gives up the

structural features that can be carried by pixel values between 0 and 1. Also, because the

intermediate value is not defined, NN needs a long training epoch to make the output

value be distributed at both ends of 0/1 as much as possible rather than an undefined gray

region.

If continuous pixel intensity is introduced and the pixel value is defined as the height

information, the design of any convex surface can be described (Fig. 1B).When applying

this method, the continuity between adjacent pixels should be predefined to avoid the

rough surface that cannot be experimentally fabricated.

At the same time, this method can only define the height information once at a coor-

dinate position, so the defined structure is limited as a convex surface. To define non-

convex structures, the channel of the input matrix can be used to parameterize the

structure by voxel, the channel index corresponds to the height in the z-direction of

the structure, and the definition of each lattice point in the three-dimensional (3D) space

can be realized. Shown in Fig. 1C, in each spatial (XYZ) location of the voxel, the value

of Ω¼1 or 0 corresponds to the volume with or without the structure.

When the pixel value is defined as the material property itself rather than the structural

design, such as the refractive index or permittivity of the material in different spatial posi-

tions, a higher degree of design freedom can be generated in the single-layer material

design (Fig. 1D). But at the same time, the defined refractive index must exist in the real

world, and the pixel value should be stable in a certain region to meet the requirements of

fabrication.

2.2 Mathematical operations
A CNN can predict the mapping between the metamaterial design to the spectral

response or electromagnetic field distribution in nanophotonics. Its core mathematical

operations include convolution, pooling, and nonlinear activation [14]. Generally speak-

ing, the output of spectral response is a vector while the output of electromagnetic field

distribution is a matrix. Therefore, based on the core mathematical operation, specific

network structures should be built to meet the needs of different optical response

analyses.

In the convolution process of CNN, the parameters that determine the range of pixels

involved in each layer of computation are called the kernel. The simplest kernel is a

matrix, and the value contained in the matrix is the trainable weight of the CNN.

The process of fitting is realized by adjusting the weight information. In each calculation,

the kernel multiplies points corresponding to coordinates with the part with the same

number of rows and columns in the input matrix and outputs several matrices with

the same number of rows and columns. During the calculation, the number of weights
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formed between pixels is determined by the kernel size, so the total parameters are effec-

tively reduced, which can reduce the complexity of the model and prevent overfitting of

the model. The mathematical expression of the convolutional kernel is as follows:

V x, yð Þ ¼ I � Kð Þ x, yð Þ ¼
X
m

X
n

I x + m, y + nð ÞK m, nð Þ (1)

While the corresponding manipulation methods are as demonstrated below.

Shown in Fig. 2, the calculation range of the convolutional kernel is (2,2). In each

time, four pixel-wise products are performed between the kernel matrix and the influ-

enced region of the input matrix, and the sum of the products is output. For example,

applying
w x

y z

� �
on the part of the input

a b

w f

� �
, the output¼aw+bx+ ey+ fz. For

the other parts of the input matrix, the convolutional kernel shares the same weight

parameters, and the whole input matrix is calculated by sliding the kernel position.

Another important characteristic of a CNN is the attribute of weight sharing. For the

same kernel, similar features at any location of the whole input matrix can be recognized,

and the variables in the input matrix will no longer be regarded as independent numbers.

Instead, trainable parameters are combined by the kernel size and the definition of sliding

mode; this method can effectively increase the recognition ability of the algorithm for

multiscale features in the matrix.

Max-pooling is a method to simplify the operation of input data by using the max-

imum (most sensitive region) feature points in the input region (an n�mmatrix). Pool-

ing itself does not store any weight information, and one of the core objectives is to

provide spatial variation. By this method, a CNN can identify an object even if its

Fig. 2 Demonstration of the kernel method. A kernel with the size of (2,2) is applied in the input with
the size of (4,3).
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appearance changes in some way. Moreover, pooling can extract data input with a large

amount of information into less data output, which realizes a dimension reduction. The

demonstration of the max-pooling calculation is as follows:

Applying max-pooling with the size of (2,2) on a (4,4) feature map, an output with

the size of (2,2) can be acquired while the number of channels is unchanged (Fig. 3).

When running spectra analysis with a CNN, the structural matrix is mapped into an

increasing number of channels to load geometric features. Meanwhile, max-pooling

manipulation is applied to decrease the complexity of the output while maintaining

the spectra information. Because of the existence of max-pooling, the perceptual field

of the convolutional kernel can be varied according to the depth of the layer, which

enables feature recognition for different scales of nanostructures.

The nonlinear activation function is the core to realizing complex regression and clas-

sification for an NN. When feeding data into a network unit, a linear transformation is

first achieved by the production between the weight matrix and the input vector. Then, a

nonlinear activation is applied before feeding into the next layer. Themost common acti-

vation functions include rectified linear unit (ReLU), sigmoid, and tanh. ReLU is com-

prised of two segments of linear activation, which gives it high computational efficiency

and fast training speed and makes it suitable for the hidden layers in most of the spectra

analysis tasks. Furthermore, the kinds of activation functions used often need to be care-

fully selected according to specific computing tasks, especially in the output layer of the

neural network. Because the data calculated by nonlinear functions directly obtains spec-

tral data, it is necessary to consider that the specific output domain of the activation func-

tion needs to match the range of spectral response.

According to the above response curve in Fig. 4, the value range of ReLU is (0,∞),

the value range of sigmoid is (0,1), and the value range of tanh is (�1, +1). There is no
saturation in the ReLU function range, which may make the output exceed the upper

limit of the spectral value, so it is not suitable for the network to predict the transmittance

or reflectivity. In contrast, sigmoid activation and tanh can be saturated to (0,1), and

(�1.1), respectively, which makes them more suitable to represent normalized data

and the direction of energy flow through a certain observation surface.

Fig. 3 Max-pooling manipulation. Demonstration of max-pooling manipulation with the size of (2,2)
applied on a (4,4) feature map.
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2.3 Sampling and training
The training data for CNN is comprised of a structure matrix and corresponding spectra

responses, which can be either vector or matrix. Corresponding spectra responses can be

acquired by experimental measurements or numerical simulations such as the finite

difference-time domain (FDTD) or the finite element analysis (FEA) method.

The designing structures are generated by random algorithms and the samples should

meet the requirements of diversity and effectiveness. Diversity means that different kinds

of designs can be provided to simultaneously predict a rectangle, circle, polygon, triangle,

or other complex structure. The above structures need to be described by different

parameter vectors in FCNNs, but they can all be pixelized by structure matrix, so dif-

ferent structure types for CNNs can belong to the same training dataset simultaneously.

At the same time, the inductive learning of boundary and pattern information can support

multistep sampling. Combined with different types of structural characteristics, the

model can automatically generate training data that do not exist in the initial dataset

to realize automatic sampling. The training data can also be obtained by image processing

or a combination of multiple types of parametric structures, such as erosion, dilation,

tailoring, intersection, union, etc.

By importing the patterns in Fig. 5A into the structural arrays with the period of

200nm�200nm, where the black area is defined as a single layer of 60nm gold and

the source is defined as the normal incidence of vertically polarized light, the correspond-

ing spectra responses can be calculated by FDTD; the obtained transmission spectra are

shown in Fig. 5B.

For the same original structure, the transmittance of after erosion increases because of

smaller structural size, on the contrary, dilation leads to the decreases of transmission, but

the transmission valley near the 600nm wavelength does not shift significantly due to the

small change of the length in the Y direction. While the change of tailoring and inter-

section to the structural design results in the decrease of both duty ratio and geometric

length in the Y direction, so the transmission valley blue-shifts and the transmission

Fig. 4 Activation functions. Responses of ReLU, sigmoid, and tanh activation functions.
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increases greatly. Because the union pattern covers almost the whole structure period, it

presents two transmission valleys at 680 and 800nm, and the average transmittance is less

than 0.4. When fine-tuning the spectrum within a limited range of parameters is needed,

erosion and diffusion can be applied to find the local optimal region. However, if the

training set should be expanded to increase variation, the other methods can be utilized

to jump out of the local optimum.

The effectiveness of training data is determined by the data characteristics of the train-

ing set and test set. The goal of NN training is to use a gradient descent algorithm and

backpropagation to adjust the weight and minimize the training loss. Therefore, the

trained NN calculation results of training data are usually better than those of validation

data and testing data. The closer the data distribution of testing data is to training data, the

higher the prediction accuracy. In NN sampling and training, it is necessary to consider

the consistency of distribution of the training set and the test set to ensure the effective-

ness of samples. If the samples and spectral characteristics are so rare that the correspond-

ing proportion in the training data is less than 5%, it can be difficult for the NN to learn

the optical properties of the target in the nonequilibrium dataset. In a worst-case scenario,

the minority data with less than 5% of the samples could be recognized as noise, resulting

in poor performance in the prediction of the optical response of the target.

Fig. 5 Demonstration of image processing methods for sample generation. (A) Generating new
training samples with erosion, dilation, tailoring, intersection, and union manipulations.
(B) Corresponding transmission spectra.
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In some nanostructured systems, the tendency of spectral response changes sharply,

which interferes with the fitting procedure. An example is the composite structure com-

posed of two Au bars shown in Fig. 6A, of which the corresponding x-position is defined

as x1 and x2. Changing x2 will cause the continuous change of the transmission spectrum

(Fig. 6B and C).When x2 is less than 0.08μm, the composite structure is a single structure

with the long axis increasing gradually, and a stable dipole oscillation mode is formed on

the metal surface. With the increase of x2, the resonance wavelength increases gradually

and has good continuity. However, when x>0.08μm, the long rod will be divided into

two rods with a length of 0.2μm. At this time, the original single dipole mode disappears

and a strong gap mode is formed between the two rods, thus the spectra can be strongly

changed. From the physical point of view, these discontinuous spectral changes can be

explained, but for the input of NN, the instability of spectral output in different inde-

pendent variable parameter spaces increases the difficulty of model training.

Additionally, the sharpness of spectral peaks (∂T/∂(λ)) at different wavelengths can
also be sensitive, as shown in Fig. 6D. ∂T/∂(λ) at the wavelength of 600nm is much

higher than that at other wavelengths, so the activation of different neuron needs should

Fig. 6 Example of spectral property sensitivity changing with parameters. (A) Demonstration of two
metal rods with changing x-position of the second bar. (B) Mapping of the transmission spectra (T) as
the function of x. (C, D) The mapping of ∂T/∂x and ∂T/∂λ as the function of x and λ.
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bemore flexible, whichmay lead to unnecessary overfitting. All the above situations need

to be fully considered beforeNN training to build customized CNNmodels according to

the spectral characteristics of specific models and to achieve a balance between overfitting

and underfitting.

To further improve the prediction accuracy of the test set, the direct solution is to

sample near the designs with poor prediction performance and provide more structures

for NN training, which also increases the calculation cost of training data. Thus, an

optional method called data enhancement can be used. For the array structure, changing

the structure position in the period does not influence the corresponding optical

responses, so several structural matrices can be mapped to the same spectrum as the train-

ing set without additional simulations. Under the incident of unpolarized light, rotating

the structure itself does not produce the change of spectral response, either. Moreover,

when the incident light is circularly polarized, the optical response of left-handed circu-

larly polarized light to the nanostructure is consistent with that of right-handed circularly

polarized light to its mirror isomer. Because these data enhancement methods make use

of the spatial symmetry of specific models, even the parameters of multiple input matrices

are different, but the corresponding spectra can be inferred without additional numerical

simulation.

3. Predictive models for spectra calculation

The input data of a CNN is matrices, which makes it widely used to process image infor-

mation. In recent years, CNNs have been used to predict the optical response, whichmay

be the Q-factor of photonic crystal [15]; the topological edge state of photonic crystal

[16]; or the spectral shape design of nanostructures, such as reflection [17], transmission,

or absorption spectrum [18]. This kind of CNN module that can predict the spectrum

from the matrix plays an important role in the realization of generative adversarial net-

works (GAN) and other algorithmic networks. In the field of nanophotonics, CNN

models have been widely used to map the images of nanostructures with their optical

responses.

3.1 Fundamental spectra analysis
The steps in using CNNs to predict spectra generally include building an algorithm, cal-

culating the dataset, network training, testing the prediction results, and experimental

verification. As a data-driven algorithm, it needs enough data to achieve the best predic-

tion level through training. The construction of the dataset is often completed by numer-

ical simulation. However, the construction of numerical simulation often requires a lot of

computing time and resources, so once the CNN used to predict the spectrum is well

trained, it can greatly save the time and computing resources needed to obtain the spec-

trum of the new structure.
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An algorithm network is proposed to predict the absorption curve of the plasmon

structure, and it is composed of a CNN and a recurrent neural network (RNN) in series

[19]. As shown in Fig. 7A, the CNN extracts the hidden geometric features from the

nanostructure when its image passes through the convolution layer, pooling layer, and

fully connected layer. Input to the RNN, the optical absorption curve of the plasmon

nanostructure is obtained from geometric information through a gated recurrent unit

of the RNN. The CNN module consists of 11 convolution layers, a maximum pooling

layer, a leaky ReLU as the activation function, and also a residual network from which

better results are available after a short cut where the gradient can directly enter deeper

layers. Because the RNN needs a special data input format, a time-distributed layer is

used to connect the CNN and RNN. This layer, which is a coding technology, can

transform the output data of the CNN module into the input data of the RNN. After

that, the data are input to a gated recurrent unit layer and then go through a flattening

layer that converts the RNN output into the fully connected layer input. After passing

through the flattening layer, the data are input into a fully connected layer with 3000

nodes, followed by a fully connected layer with 1000 nodes, which corresponds to a

thousand frequency points of the spectrum.

A CNN algorithm based on a generative adversarial model is proposed to predict the

metasurface transmission spectrum [20]. As shown in Fig. 7B, the algorithm framework

consists of three modules: the generator, critical, and simulator. The function of the sim-

ulator module is to predict the transmission spectrum from the structure picture. In the

whole training process of GAN, the simulator is a pretrained overfitted CNN module.

The simulator consists of four convolution layers followed by a fully connected layer.

The input data are the binary 64�64 single-channel matrix of the structure image. After

four convolution layers, the data structure becomes 64�64 of 64 channels, 32�32 of

64 channels, 16�16 of 128 channels, and 8�8 of 256 channels successively. After a tran-

sition layer, the data structure becomes a vector with 4608 components, and then after

two fully connected layers, the vector component decreases to 256 and 128 in turn.

Finally, the vector with 128 components is the discretized transmission spectrum.

The critical module calculates the distance between the distribution of the structure

image designed by the generator according to the input spectrum as well as the noise and

the distribution of the prepared geometry-image dataset. In addition to the output of the

simulator module, the distance calculated by the critical module is also introduced into

the loss function to change the weight of the generator module. By reducing this dis-

tance, the critical module is used to guide the picture generation of the generator module.

The images generated by the generator will be similar to the predefined geometry dataset.

A computational platform based on Bayesian optimization for obtaining the circular

dichroism (CD) of the reflection spectra from gold nanostructures using CNN is pro-

posed [21]. The metal structure is transformed into a 40�40 matrix, and the array of

matrix elements represents the array of the pixel gold nanostructure on the substrate.
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Fig. 7 CNN network architecture for predicting nanostructure spectra. (A) The neural network architecture for predicting the absorption
spectrum of nanostructures based on CNN and RNN. (B) Deep CNN architecture for predicting the transmission spectrum of nanostructures
based on GAN. (C) The neural network architecture for mapping the structure matrix with the optical response. The optical response of the
left part is the far-field reflection spectrum, and the optical response of the right part is the near-field electric field distribution. (From 2018
American Chemical Society, 2019 American Physical Society.)



The two neural networks transform the matrix into the far-field reflection spectrum (left

side of Fig. 7C) and the near-field electric field distribution (right side of Fig. 7C).

The CNN architecture for predicting the far-field reflectance spectra is shown on the

left side of Fig. 7C. The hidden features of matrices are extracted through six convolution

layers and three max-pooling layers. The structure of the single data will be changed from

40�40 of the single channel to 5�5 of the 512 channel. Every two convolution layers

are connected with a max-pooling layer and they constitute a group. The numbers of

convolution layer output channels of the three groups are 128, 256, and 512, respectively.

The convolution layer output matrix sizes are 40, 20, and 10. The maximum pooling

layer channel numbers are the same as the convolution layer output channel numbers.

For these three groups, the output matrix sizes are 20, 10, and 5 successively and the

parameter volumes are 526,720, 2,622,208, and 10,487,296. After the flattening layer

that connects the CNN with a fully connected layer, the data become a 12,800-

component vector. After three fully connected layers, the data will become a

60-component vector to establish the relationship between the features and the spec-

trum. Finally, the image is transformed into the far-field reflection spectrum. The right

side of Fig. 7C shows a CNN architecture for predicting the near-field electric field dis-

tribution. The deeper the CNN layer, the smaller the size of the matrix and the greater

number of data channels. In the downsampling process of CNN prediction, different

convolution layers extract different structural information. The first convolution layer

extracts the structural information of lines and angles, and the later convolution layer

extracts the structural information for designing the electromagnetic mode distribution.

In the upsampling of predicting the near-field electric field distribution, the deeper con-

volution layer extracts more information, including the distribution of electromagnetic

modes and the details of reconstructing the near-field distribution.

In addition to building the neural network algorithm, we also need to obtain the data-

set to train, validate, and test the algorithm. In nanophotonics, datasets usually consist of

device geometry and its corresponding optical response. For a CNN, the geometric

structure of the device is generally a single-channel or multichannel matrix, which is usu-

ally a picture carried by pixels. The optical response of a large number of structures is

often obtained by solvingMaxwell’s equations, given the light source, geometry, material

properties, and boundary conditions. For nanostructure arrays, the unit structure is often

simulated numerically.

As shown in Fig. 8A, in the work of combining a Bayesian optimized CNN to obtain

a high CD structure, the nanostructure is gold with a period of 400nm and a height of

40nm on an SiO2 substrate. Under the silica layer is the silicon layer, and the gold struc-

ture is composed of cubic pixels with a side length of 10nm. The 40�40-pixel matrix is a

discrete unit matrix. If the value of the matrix element is 1, there is the structure in the

corresponding position. If the value of the matrix element is 0, there is no structure.

FDTD is used to construct the dataset and 104 samples constitute the database.
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The optical response includes two parts, near-field electric field distribution and far-field

reflection spectrum. In predicting the CD value, fix a working frequency to optimize the

CD value. The fixed working frequencies are 650nm, 700nm, 750nm, and 800nm.

Bayesian optimization is used to train the neural network, which selects samples from

the dataset and inputs them into the neural network for training according to the output

results of the current neural network. After many epochs, it completes the training of the

neural network. Bayesian optimization in this work is an optimization method to com-

plete neural network training by guiding training samples. This method makes the train-

ing easier, reduces the possibility of overfitting, and makes it easier to extract features

from the structure.

As shown in Fig. 8B, in the work with a generative neural network to predict the

transmission spectrum, many gold structures with a period of 340nm and a height of

50nm on the glass substrate form a metasurface. The operation frequency region is

Fig. 8 Demonstration of the parameterization method and the corresponding dataset. (A) The Au
nanostructures on the SiO2 substrate are transformed into a 40�40 binary matrix as the structural
data. (B) The schematic of metal nanostructures on the substrate is on the left, w is the period of
the structure array, and the definition of the XY direction is shown in the figure. The transmission
spectrum of the structure is on the right. The solid line is the data obtained by FEM
electromagnetic simulation, the dot is the structure obtained by the simulator module, and the two
subscripts are the linear polarization direction of the incident light and the probe light,
correspondingly. (C) Six structures in the randomly generated dataset and the simulated
absorption curves. (From 2018 American Chemical Society, 2019 American Physical Society.)
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170–600THz, and 32 frequency points are sampled. According to the polarization direc-

tion of the incident light and the probe light, four transmission curves can be obtained.

The first subscript of the transmission curve represents the polarization direction of the

incident light, and the second represents the probe light. The solid line in the figure is the

result of the FEM electromagnetic solver, and the dot is the result of a simulation neural

network.

In the work of combining CNN and RNN to predict the absorption spectrum (Fig.

8C), the structure is silver with a height of 50nm on the glass substrate. The period of the

structural array is 500nm, and the geometric structure of silver is constant along the direc-

tion perpendicular to the substrate. Therefore, a (100,100) pixel array can be used as a

picture to characterize the unit structure. The operation wavelength region ranges from

800 to 1700nm, which is sampled by 1000 frequency points. Compared with the visible

light band, gold in the infrared band has a higher refractive index and a lower loss. FDTD

is used to calculate the absorption curve of the structure. After retaining certain geometric

features, such as triangles, split-ring resonators, circles, or triangles, pixel arrays are ran-

domly generated to form the structure, and 105 simulations constitute the dataset.

When training the neural network with a dataset, several things should be noticed.

The network requires that the data distribution of the training set, validation set, and

test set should be the same or similar to obtain a neural network with high prediction

accuracy. The neural network is a data-driven algorithm, and enough data is the pre-

mise of the CNN algorithm. In the work of combining CNN and RNN to predict the

absorption spectrum, the neural network prediction results of the sample in Fig. 9A are

in good agreement with the numerical simulation results. One of the important reasons

is that the number of samples in the dataset is large enough to reach 105. If the data are

not enough, data enhancement, migration learning, or topology optimization of gen-

erative models should be used to make up for the shortage of the dataset. Fig. 9B depicts

a sample in the dataset used for the prediction of the transmission spectrum by the gen-

erative neural network. If the number of samples in the dataset is not enough, the neural

network can generate more samples to meet the needs. When the nanostructure array

has spatial translational symmetry or the optical response difference between adjacent

unit structures is small enough, the boundary conditions around the nanostructure are

usually chosen to be periodic. The dataset derived from periodic boundary conditions is

only suitable for periodic structure arrays or spatial gradual varying arrays, and the appli-

cation range of training data is limited by the nature of the nano design platform. In the

dataset, more samples should be collected in the area where the optical response

changes sharply with the structural parameters, and fewer samples should be collected

in the area where the optical response changes slowly. Because the intensive sampling in

the sharply changing area can improve the learning accuracy in this area, the sparse sam-

pling in the slowly changing area can save computing resources and prevent overfitting.

In addition, the selection of training datasets should meet the needs of practical
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Fig. 9 (A) From top to bottom, there are five structure samples marked by five colors, the CD value of the far-field reflection spectrum, the
cathodoluminescence (CL) experimental results of the left-handed circularly polarization component and the BoNet prediction structure,
and the CL experimental results of the right-handed circularly polarization component and the BoNet prediction structure, correspondingly.
(B) A randomly generated structure, the picture on the left is the structure picture and the absorption curve is on the right. The orange
dotted line is the result of deep learning prediction, and the blue solid line is the result of numerical simulation. (C) A sample in the dataset,
the inserted small image is the structure image, and the curve is the transmission spectrum of different linearly polarized incidents and
transmission light. (From 2018 American Chemical Society, 2019 American Physical Society.)



problems. For example, in the automatic driving system based on artificial intelligence,

the probability of complex road conditions that may lead to accidents during the oper-

ation of products may not be high, but the training dataset should increase this situation

to improve the ability of the system to cope with dangerous and complex road condi-

tions. After sufficient epochs of training of the verification set and training set, the

prediction ability of the neural network needs a test dataset or experimental results

to verify. As shown in Fig. 9C, in the work that obtains high CD structures by

CNN combined with Bayesian optimization, after the CNN successfully finds the

structure with high CD, experiments are carried out to verify the algorithm platform,

and good experimental results are obtained.

3.2 Ultrafast spectroscopy signal analysis
Besides the mapping between the structure matrix and the spectral curve, the CNN can

be applied in new physical fields by adding a new physical quantity. The curve of light

intensity with frequency can be discretized into vectors, and the two-dimensional matrix

of the time-frequency domain can be obtained after adding the time dimension [22]. The

frequency-resolved optical gating (FROG) trace, which represents the ultrafast pulse

structure in the time and frequency domain, is a picture of intensity distribution with

time and frequency on the longitudinal axis. As shown in Fig. 10A, the CNN can

map the FROG trace with the pulse spectrum curve, so the CNN can overcome the

problem of ultrafast pulse characterization.

A computing platform for mapping the second harmonic generation (SHG) FROG

trace of an ultrafast pulse with the curve of absolute field and phase change with time by

CNN is proposed. DeepFROG, the neural network algorithm platform in this work,

consists of two modules, FROG net and CNN, and realizes a supervised learning net-

work (Fig. 10B) and an unsupervised learning network (Fig. 10C). The loss function of

the total network is obtained by adding the loss functions of the supervised learning mod-

ule (the former term) and the unsupervised learning module (the latter term), and the

proportion of them in the total loss function is controlled by λ.
The function of the FROG net is to obtain the FROG trace according to the pulse

spectrum curve, which is defined as follows:

w∗ ¼ argmin
w

loss I ,Eð Þf g

¼ argmin
w

CNN I ;wð Þ � Ek k1
+ λ FROGNet CNN I ;wð Þð Þ � Ik k1

( )
(2)

As a pretrained network, the FROG net does not adjust the weight in the process of

obtaining the dataset and keeps the internal structure and parameters constant. There are
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Fig. 10 (A) The FROG net is transformed into a pulse after CNN and other neural networks. (B) Supervised learning network architecture, in which
WGN is Gaussian white noise. (C) Unsupervised learning network architecture. (D) Schematic of the experimental device to get the FROG net.
(E) A sample in the dataset was calculated by numerical simulation, including pulse and FROG net. (F) The figures on the left side from top
to bottom are the result of experimental measurement of the FROG trace, the result of the numerical simulation of PCGPA and
ptychography, and the prediction of the FROG trace by DeepFROG. The figures on the right side from top to bottom are the standard FROG
net, the pulse reconstructed by PCGPA and ptychography, and the pulse reconstructed by DeepFROG, in which the black dotted line is the
original reference pulse. The number calibrated is the error between the reconstructed result and the standard sample. (From 2018 Optical
Society of America.)



60K samples for training and 10K samples for testing in the dataset generated by FROG

net. Because the algorithm of FROG trace involves linear transformation such as Fourier

transform, the fully connected layer is used to complete the function. To obtain the

FROG trace, the pulse eE ωð Þ ¼ ffiffiffiffiffiffiffiffiffiffi
S ωð Þp

eiϕ ωð Þ is generated first, in which S(ω) is Gaussian
white noise and ϕ(ω) is the randomly generated phase vector with the high-frequency

component filtered out. To avoid the multiple solutions problem that one FROG trace

corresponds to multiple pulses, the E(t) obtained by Fourier transform is mapped to its

corresponding pulse EAR(t) through specific corresponding rules while the original pulse

is its corresponding ordinary solution. This allows the FROG trace to be obtained from

the pulse. This step is the ambiguity removal shown in Fig. 10B.

In the CNN module, after the data samples pass through the convolution layer and

the fully connected layer, the FROG trace as a matrix is transformed into a one-

dimensional vector, namely the discrete pulse spectrum curve. To predict the pulse, three

different CNN schemes were tried, and the best one was selected. The final algorithm

module is based on the densely connected continuous network, that is, a short cut is

introduced between each convolution layer and the deeper convolution layer, which

makes the nonadjacent convolution layers fully connected so that the gradient informa-

tion can be transferred directly to the deeper convolution layer. This leads to better

results. Fig. 10D is the experimental device for measuring the FROG trace and Fig.

10E is one numerical simulation sample from the dataset.

After CNN training, the test and experimental verification are carried out. Fig. 10F

shows the test details for a sample at a low signal-to-noise ratio (SNR). The left top figure

is the experimental measurement of the FROG trace. The left middle two are the results

of two mature numerical simulation methods of computing FROG trace, which are the

principal component general projections algorithm (PCGPA) and ptychography, and the

errors with the standard data are 0.61 and 0.59, respectively. The left bottom figure is the

FROG trace predicted by CNN in DeepFROG, and the error with the standard data is

0.22. The top right figure is the original reference FROG trace. The right middle two

figures are the pulse curves reconstructed by PCGPAwith the error of 0.49 from standard

data, and by ptychography with the error of 0.45 from the standard data. The right bot-

tom figure is the pulse curve reconstructed by DeepFROG, and the error with the stan-

dard data is 0.21. The dotted lines in the last three graphs are the original reference pulse

curves. Therefore, compared with PCGPA and ptychography, the reconstructed pulse

curve and the FROG trace are more accurate. The number in the reconstruction result

graph is the error with the reference pulse. This work realized the FROG net platform

from supervised learning to unsupervised learning, which is used to predict the pulse from

the FROG trace and still has a good performance in the lower SNR.
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4. Generative models for spectra design

How to predict a credible spectrum of structure using a CNN is explained in Section 3. In

this section, a more practical application problem is discussed—spectral reverse design,

To solve this reverse structure design problem with CNN, we first explain upsampling

and unpooling, two important kinds of mapping relationships between the spectral vec-

tor and the structure matrix. We then discuss the principle of generative adversarial net-

works (GANs) and their variant called progressive growing of GANs (PGGANs) as well

as two practical applications. Another important branch of the generation model as auto-

encoders will be discussed in the next section.

4.1 Generative CNNs
Generally, a spectrum usually can be described by a vector, but a structure is often param-

eterized by a matrix. For example, to design a transmission spectrum of a 400nm periodic

structure, if the design precision is 5nm, the structure can be parameterized by an (81,81)

sized 0–1 binary matrix (0 means no structure, 1 means a structure exists). The spectral

bandwidth is 450 to 750nm, with a 5nm interval, which corresponds to a (1,61) spectral

vector. Convolution layers are especially suitable for feature extraction of input matrix,

while pooling operation is effective in reducing feature dimensionality, shown as the left

part of Fig. 11A, the geometric patterns of structure matrix can be extracted into spectra

vectors. While in the right part, through the deconvolution layers and unpooling oper-

ation, the spectra can link to a structure matrix. As shown in Fig. 11B [23], deconvolution

is the inverse process of convolution, which can be also named as transposed convolution.

The weights of deconvolution layers can be trained automatically. By combining decon-

volution layers with unpooling operation, we can gradually increase the feature map

dimension until the output size matches the input structure matrix.

Unpooling is often used in a CNN to represent the inverse operation of max-pooling.

Its operation process is shown in Fig. 11C. During the unpooling process, the maximum

location information is retained in the max-pooling process. Then in the unpooling pro-

cess, the position information can be utilized to fill the feature map. However, upsam-

pling is different. In this method, the location information of max-pooling is not used,

but the content is copied and populated directly into the feature map.

For the problem of structural inverse design, the prediction and generation of an 0–1
parameterized structure matrix are equivalent to many algorithms in the field of com-

puter vision for black/white or grayscale image processing. There are two important

branches, autoencoders (AE) and GANs, that are well suited to migrate into the field

of structural reverse design. Because the AE is a kind of semisupervised learning or

unsupervised learning using artificial neural networks, it is particularly suitable for
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Fig. 11 (A) Deep convolution and deconvolution neural network architecture. In the right part, spectral vectors are expanded into structural
images through deconvolution and unpooling operations. (B) Schematic diagram of deconvolution and unpooling. (C) Schematic diagram
of unpooling and upsampling.



characterizing the input information and can be migrated to the structural design in the

latent space [24,25].

GANs combine generators with discriminators, and learn from real data to gradually

produce fake data within the same distribution. Demonstrations of a generator and dis-

criminator are shown in Fig. 12A. The training GAN needs to reciprocate between the

generator and discriminator, where the generator randomly creates a structure and the

Fig. 12 Generating adversarial network (GAN). (A) Sketch of GAN training process. (B) Sketch of
generator and discriminant in one epoch. (C) Sketch of CGAN. (D) Sketch of PGGAN training process.
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discriminator needs to judge whether the structure is real or fake. If the discriminator

judges correctly, the generator needs to evolve through learning from a sample distribu-

tion, and strives to generate a better structure to deceive the discriminator in the next

generation. Generator and discriminator are competitive relationships, shown as Fig.

12B. The generator generates fake handwritten numbers from random noise while dis-

criminator needs to judge this number is real or fake according to the real handwritten

numbers distribution. A more popular explanation of the generator can be understood as

counterfeiting, while discriminator can be understood as money detectors. Because of the

existence of money detector, the generator needs to constantly improve the level of

manufacturing counterfeit money, and counterfeit detector also enhances the ability

to identify genuine and counterfeit banknotes, after several rounds of competition, coun-

terfeit money that deceives ordinary people can be made.

The training process of a typical GAN can be referred to as follows:

(1) Create a dataset Pdata(x), where x represents a sample corresponding to structure

and its spectral response, which can be obtained by numerical simulations.

(2) Initialization parameters for generator θG and discriminator θD.
(3) Select samples {x1,x2,x3⋯xm} acquired from Pdata(x), and m is the batch size,

which needs to be selected according to the situation and can generally be set as

32 or 64.

(4) Generate a noise vector {z1,z2,z3⋯zm} sample from a distribution, such as Gauss-

ian or normal distribution.

(5) Taking noise vector z in Step 4 as the input, get generated data through the gen-

erator bx1, bx2, bx3⋯bxm� �
, bxi ¼ G zið Þ.

(6) Update θD for the discriminator D to maximize bV.
Max V̂¼ 1

m

Xm
i¼1

logD xi
� �

+
1

m

Xm
i¼1

log 1�D x̂ið Þð Þ
 !

(3)

θD θD + εrbV θDð Þ (4)

In this function, the discriminatorD is a binary classifier hoping tomaximize the

distance between the real distribution and the fake distribution acquired from the

generator. Maximizing bV is to forceD(xi) to approach 1 whileD bxi� � approaches 0.
ε is a hyperparameter that can be adjusted according to the actual design problem

and can be set as 0.001 in general.

(7) Cycle Steps 3–6 to train discriminator D, which can be updated several times to

achieve a better optimization effect.

(8) Sample noise is extracted from a distribution with m vectors {z1,z2,z3⋯zm}. The

noise vector z here needs to satisfy the same distribution in Step 5.
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(9) Update θG for the generator to minimize bV.
(10) Repeat Steps 3–9 until the generator achieves a good result.

In the spectral structure design, finding the structure design consistent with the target

spectral response quickly and stably through the NN is expected. This structure design

algorithm can be completed by CGAN [26], as shown in Fig. 12C. In addition to the

noise vector, CGAN inputs the required spectral data into the generator as a condition,

so that the generated structure can satisfy the expected spectral response. It is a challenging

task to directly use GAN to generate a high-definition structure because the training pro-

cess has poor stability. To solve this problem, a GANs variant-PGGAN—has been devel-

oped [27]. As shown in Fig. 12D, PGGAN divides the learning process into several

periods to gradually improve the resolution. For example, expecting to design a periodic

structure of 1μm�1μmwith a 5nm interval number of pixels of structure can be param-

eterized as 201�201. PGGAN can be used to gradually generate the structure matrix

11�11 with a 100nm interval. Then it transitions to 51�51, 101�101, and finally

arrives at 201�201, which can effectively improve the stability in NN training. Detailed

examples of CGAN and PGGAN applications are discussed in Section 4.2.

4.2 Applications of GCNN
In this section, two typical examples of GCNN are introduced to show how to use CGAN

and PGGAN to realize the spectral structure design. The optical metasurface can be

designed to customize the transmittance and phase for any wavelength by careful structure

design. Many important applications have been realized, such as a perfect absorber, super-

resolution imaging, beam manipulation, and nonlinear optical devices. In traditional struc-

tural design, finite element modeling (FEM) or finite-difference time-domain (FDTD)

methods are often used to calculate the structure spectrum, and then optimization algo-

rithms are used to find a better structure design. These methods require a large number

of computational resources, and parametric scan methods limit the optimization freedom.

Using DNNs can greatly open the freedom degree of reverse design and generate a struc-

tural matrix rather than settled parameters of the structure [28,29].

As shown in Fig. 13, a gold metasurface with a thickness of 50nm and a period of

340nm on a glass substrate is constructed by a CGAN algorithm to generate nanostruc-

tures with specific spectra, such as the four spectra of different polarization incidence

and different polarization emission shown in the figure. The DNN is used to predict the

spectrum from the structure and generates the structure from the spectrum [20]. The

CGAN architecture of the structure design task is shown in Fig. 13B. The network can

be divided into three parts: the simulator (S), generator (G), and discriminator (D). The

basic principle of CGAN is described in Section 4.1. G generates specific structures

through data noise and corresponding spectral conditions. D determines whether

the generated structures are real or fake by designing the geometric distribution of
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the structure in advance, forcing the structure generated by the generator to be like the

structural dataset such as purposely generating an ellipse, rectangle, or cross structure.

The simulator needs to be executed by the NN corresponding to the pretrained struc-

ture spectrum, which can be set up by referring to the third section of this chapter. By

adding the simulator to the corresponding loss function, the structure generated by the

generator can be forced to have the same response spectrum corresponding to the input

Fig. 13 Spectral design of the metasurface using CGAN. (A) The structure-spectral correspondence of
the metasurface; the forward process is the spectrum simulation and the backward process is the
reverse design replaced by the deep neural network. (B) The network architecture based on CGAN
optical structure design. (From 2018 American Chemical Society.)
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conditions. During the output of the structure, Gaussian filters can be added to the last

layer of the NN to smooth the generated structure to make the generated structure

more convenient for experiments.

The discriminator is important for structure generation. As shown in Fig. 14A,

under the guidance of adding a cross-shaped structure information to the discriminator,

the generated structure can be gradually changed into a cross-shaped structure. How-

ever, after the discriminator is removed, the interpretability for the generated structure

is lost. The generator can find multiple structures for the same spectrum, which makes it

difficult for the generator to choose which structure is better. Both the simulator and

the discriminator have a certain forward guidance effect to ensure that the generated

structures maintain high design freedom and can be easily fabricated in the experiment.

The most ideal input for the discriminator should be defined by the dataset, including

various easily fabricated structures. However, this dataset is difficult to find, so it is often

guided by a prior specific geometric structure such as a cross, ellipse, etc. The perfor-

mance of the network is shown in Fig. 14B–E. Fig. 14B shows the spectrum of the

particular number 5 with handwritten numbers as the data input. In the generator pro-

cess, as shown in Fig. 14C, number 5 is excluded from the dataset. The generated struc-

ture is number 3, which has a spectrum that is in good agreement with the target

spectrum. When researchers need to designa structure with the target spectral, for

example, a gaussian spectrum in Fig. 14D. Even there is no satisfying structure in

the training data, GAN can still extract rules from the bidirectional mapping relation-

ship between structure and spectrum and generate a structure which can roughly satisfy

the target spectrum in Fig. 14E.

The following part is a practical application of a PGGAN. The PGGAN has better

training stability than GAN, which is especially suitable for the design of structures with

large pixel matrices. As shown in Fig. 15A, a metagrating structure is expected to emit

light at a specific angle under the condition of incident light with a specific wavelength.

We use a glass substrate and the dielectric material Si to parameterize the structure by an

0–1 matrix, where 1 represents silicon and 0 represents air. Fig. 15B shows the PGGAN

train cycles, firstly, using the topology optimization method get structures in different

wavelength and different diffraction Angle to prepare the training data set, and then

through the DNN training, after the generator generated structures, using electromag-

netic field simulation software calculate its optical response, and then select efficient super

grating structure imported into the training set for data update, cycled several times to get

the final structure generation [30].

The framework and training cycles of the PGGAN network are shown in Fig.

16A–C. In the initial cycle, the wavelength, diffraction angle, and random noise are

fed into the network, and then it is expected to obtain an 8�16 pixel structure matrix
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Fig. 14 Display of results of CGAN metasurface structure design. (A) Influence of discriminator in
structure generation. (B, C) Handwritten number dataset as a preinput for the discriminator; the
corresponding structure generated by the generator. (D, E) Artificial designed Gaussian input
spectrum; generator generated with the corresponding structure design. (From 2018 American
Chemical Society.)
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with a large interval. The initial structure is generated through deconvolution and the

self-attention layer, and then the discriminator is used for recognition, performing a clas-

sical GAN training process. The computation rules for a self-attention layer are shown in

Fig. 16D. Structures are transformed into vectors and then extracted from the feature

map. The attention layer is an essential supplement to the convolution layer for extracting

global structural information. Then, we use electromagnetic field simulation to obtain

the optical response for the generated structures of each generation. Better structures

are selected to update the dataset. More detailed structural design can be gradually

obtained through cyclic iteration. The generator in PGGAN combines deconvolution

and upsampling to generate structures. The upsampling process is directly filled for

the structure, which is the same as the structures in the last cycle, and the deconvolution

process tends to generate more elaborate structures as a new cycle of the training process

of GAN. Alpha increases gradually to decrease the upsampling proportion, making the

structures update with high stability. Thus, the structure design from the relatively rough

structure can be smoothly transferred to the elaborate structure design. Similarly, the

same improvements are the same for the discriminator to accommodate the training pro-

cess of PGAGN. The final efficiency of the structures generated by PGAGN is shown in

Fig. 16E. Compared with GAN, PGAGN shows great stability for structure optimization

with the increase of training cycles.

Fig. 15 (A) Diffraction metagrating composed of Si/SiO2; a 3D schematic diagram, and its top and side
views. (B) PGGAN network framework and training process. (From © 2020 American Chemical Society.)
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5. Dimensionality reduction models for optical property extraction

For the models in Chapter 2, the training data include the nanostructure matrix, and the

output is the spectral response obtained by experiments or numerical simulations. These

methods belong to supervised learning. It can utilize the relationship between specific

structure symmetry and spectra for data expansion, or apply other machine learning algo-

rithms for efficient sampling. In general, the above models still need to provide a large

amount of training data to achieve high-precision prediction, and it is easy to produce

overfitting or underfitting problems in complex coupling systems. Another strategy is

Fig. 16 The training cycle and results of the PGGAN network. (A) Schematic diagram of a single cycle of
network training, and the resolution of the generator and discriminator gradually increases. (B, C)
Training processes of the generator and discriminator. (D) Principle for the self-attention layer.
(E) Efficiency display of a PGGAN-generated structure. (F) Average efficiency comparison between
PGAGN and GAN. (From © 2020 American Chemical Society.)
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not to solve the mapping relationship between the structure and spectral response, but to

find the patterned relationship or clustering features between variables, which is called

unsupervised learning. To realize unsupervised feature recognition of nanostructures,

a CNN can be used to build dimensionality reduction models to compress the sparse fea-

tures from high-dimensional space into low-dimensional space [31]. Through the

dimensionality reduction methods, a CNN can not only realize spectral prediction

and reverse design, but also realize spectral pattern recognition and other tasks of assisting

researchers in physical analysis.

5.1 Unsupervised learning with dimensionality reduction models
The sample distribution can be very sparse in high-dimensional variable space, thus the

distance between individuals is long and the variation characteristics of parameters are dis-

continuous; this is not conducive to recognizing patterns from the original feature space.

By using the dimensionality reduction method, a large number of sparse features can be

compressed while retaining original feature information as much as possible [32]. Before

CNNs were widely used, dimensionality reduction methods based on projection, mani-

fold learning, principal component analysis (PCA) [33], and supervised learning-based lin-

ear discriminant analysis (LDA) were used [34]. These have shown application value in

some spectroscopic analysis tasks. Among them, traditional unsupervised dimensionality

reduction algorithms such as the PCA are used to find the low-dimensional hyperplane

with minimal projection distances of the dataset in the original space and then to find

the sample correspondence after dimensionality reduction in the projection space. This

algorithm can maximize the difference of training data, which is also the variance, and

retain the first nth PC according to the requirements of the algorithm for dimension reten-

tion and the choice of compression accuracy.However, PCA can only process parameters

in vector format, which is not compatible with complex structures defined by the matrix.

As discussed in Chapter 2, a CNN can manipulate the number of output features by

max-pooling layers and controlling the number of channels, and the feature relationship

between adjacent pixels is stored in the convolutional kernels. Therefore, by building a

CNN with the appropriate number of max-pooling layers and convolutional layers, the

dimension of data features with the matrix structure can be gradually reduced and

mapped into a low-dimensional space called latent space, which realizes a dimensionality

reduction model. Because the training purpose of this kind of NN is to minimize the

difference between output and input, these models are also called autoencoders.

A basic convolutional autoencoder includes an encoder with max-pooling layers and

a decoder with upsampling layers, which are designed for suppressing original features

into lower dimensions and reconstructing original features from suppressed space, respec-

tively. It should be noted that these functions are often realized by several blocks of hid-

den layers that consist of several convolutional layers and one layer of a max-pooling layer

or upsampling layer.
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As shown in Fig. 17A, the input data with the feature size of (128,128) can be com-

pressed into the size of (64,64) by the first block of hidden layers (Hidden1), and the sup-

pressed feature map with a size of (32,32) can be finally obtained at the bottleneck of the

network (Hidden2), which is only 1/16 of the input feature size. Finally, by stacking

additional hidden layers or jointing with FCNN, the feature space dimension can be

compressed to even one dimension. Generally speaking, the higher the feature dimension

of bottleneck reserves, the lower the possibility of information loss.

As shown in Fig. 17B, autoencoders can be used as noise attenuators by intentionally

introduce Gaussian noise into some feature dimensions of inputs to get x0, where the

expected value of noise is 0 and brings no bias to the model [35]. Meanwhile, the original

data xwithout noise is maintained as the training target to realize the minimum of Lossx
0.

This method forces the autoencoder to ignore the noise in x0 and extract the most impor-

tant features as well as robust representations from the input data. In addition, dropout

can also be added to randomly disable some neurons at the cost of decreasing the fitting

ability of the model to reduce the possibility of NN overfitting or learning distracting

noise.

Fig. 17 (A) Demonstration of a typical convolutional autoencoder. (B) Introducing Gaussian noise or
the dropout method to realize a denoising autoencoder. (C-E) A layer-by-layer training method for
autoencoders.
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In practice, convolutional autoencoders often consist of more than 20 convolutional

layers with the number of trainable parameters in the order of millions or even tens of

millions. Those models may perform better but can also be hard to train because gradient

explosion or gradient disappearance tends to appear in deep models. Therefore, in train-

ing, a layer-by-layer trainingmethod can be adopted. In this method, each training round

only influences one hidden block (Hidden1, as shown in Fig. 17C). After the training

process of Hidden1, both the input layer and output layer are discarded while the input

layer of the next layer is replaced by Hidden1. By repeating the circulation, complex

models with dozens of layers can be trained from shallow to deep (Fig. 17D and E). After

circulation, all the hidden layer structures and parameters are extracted as the initialization

parameters of the deep autoencoder and the final weights can be acquired with a few

rounds of fine-tuning.

Apart from dimensionality reduction, convolutional autoencoders can also be

extended to implement generative models and realize the structural design (similar to

Chapter 4). Among them, a variational autoencoder (VAE) is a well-performed gener-

ative network architecture based on the variational Bayes (VB) method.

Different from conventional autoencoder models, VAE suppresses the original fea-

tures into data distributions in latent space rather than a specific variable, which realizes

a continuous and smooth expression of the latent space and shows exceptional potential

for generating new designs [24]. For an original dataset X¼{xi}i¼1
N , of which each sam-

ple is randomly generated and the parameters are independent variables, the target of the

autoencoder is suppressing features into low-dimensional latent space and reconstructing

the generative dataset X 0 ¼{xi
0}i¼1
N . When analyzing the suppression process from the

perspective of Bayesian statistics, the encoder is a posterior distribution inference of latent

variable z given the condition of original sample x:

q∅ zjxð Þ (5)

Then, the conditional distribution of the corresponding decoder model is:

Pθ zð ÞPθ x0jzð Þ (6)

Given the input data of x, the output of VAE should be the posterior distribution of

Pzx. Generally speaking, it is hard to calculate Pzx directly, thus an alternative distribu-

tion of q(z jx) fitted by NN is applied to approach Pzx. To describe the similarity

between the two distributions, the Kullback-Leibler divergence (DKL) is introduced

for quantification:

minDKL q zj xð Þkp zj xð Þð Þ (7)
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Considering the normalization of probability distribution:X
z

q zjxð Þ ¼ 1 (8)

The logarithmic form of the function is introduced as:

L ¼ log p xð Þð Þ (9)

¼
X
z

q zjxð Þ log p z, xð Þ
p zjxð Þ

� �
(10)

¼
X
z

q zjxð Þ log p z, xð Þ
q zjxð Þ

q zjxð Þ
p zjxð Þ

� �
(11)

¼
X
z

q zjxð Þ log p z, xð Þ
q zjxð Þ

� �
+
X
z

q zjxð Þ log q zjxð Þ
p zjxð Þ
� �

(12)

¼LV +DKL q zj xð Þkp zj xð Þð Þ (13)

Because DKL(q(z jx)kp(z jx))�0, and the distribution of p(x) can be deduced, L

should be a constant, thus the target of minimizingDKL can be converted to maximizing

LV, which is to minimize: X
z

q zjxð Þ log p z, xð Þ
q zjxð Þ

� �
(14)

¼�DKL q zj xð Þkp zð Þð Þ+E
q zj xð Þ log p xj zð Þð Þð Þ (15)

Because q(z jx) can always be approached byNN as an encoder, and suppose the prior

z as Gaussian distribution, the original target can be replaced by minimizingDKL(q(z jx)k
p(z)). In the training process of NN, the latent space is constrained as a multivariate

Gaussian distribution (Fig. 18), where a pair of features are defined as the expected values

and variances. Apart from reconstruction performance, the minimal distance between

latent space distribution and multivariate Gaussian distribution min DKL(q(z jx)kp(z))
is also considered in the VAE. Compared with conventional autoencoders, the recon-

struction performance of VAE may be worse. However, because the latent space of

VAE is a distribution rather than specific numbers, which makes sampling additional

individuals possible, the generative performance of VAE is better.

5.2 Applications of dimensionality reduction models
In previous cases of CNNused in nanophotonics research and structural design, almost all

training procedures were performed by the supervised learning method, which requires a
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high training set size and sampling quality. Therefore, researchers introduced VAE to

reduce the dimensionality of feature space, compress structural features by unsupervised

learning, and combine with supervised learning supported by a minority of structures

with calculated spectra [25]. This method is called semisuperself-supervised learning

and realizes both training accuracy and training efficiency.

As shown in Fig. 19A, the input designs consist of several geometries, including arc,

bowtie, cross, split ring, H-shape, rectangle, L-shape, and ellipse [36]. Those structures as

the unit cell of periodic arrays (period¼2μm�2μm) are parameterized into a matrix

with the size of (64,64). For each geometry type, 2000 simulations are performed and

the total dataset is comprised of 16,000 labeled structures. Under a normal incidence

of unpolarized light, the properties of reflective polarization conversion are acquired

as three spectra: Rxx, Rxy, and Ryy (x-polarization in and x-polarization out,

x-polarization in and y-polarization out, y-polarization in and y-polarization out). Under

the definition of 1Hz-step and a frequency range of 40–100THz, the total optical prop-

erties are parameterized as three vectors with a length of 61.

To compress the features of structural designs, the (64,64) sized matrix is input into

the encoder first. Different from a conventional VAE, the bottom neck of the neural net-

work is comprised of both 20-dimensional latent distributions and 3�61-dimensional

predicted spectra. Therefore, given an input design, the neural network can compress

the structural features and predict the spectrum at the same time. This architecture leads

to three training losses: LossK-L, LossSpectra, and LossRecon. LossK-L defines the K-L diver-

gence between latent space distribution and the prior Gaussian distribution. LossSpectra
defines the prediction accuracy of the spectra. LossRecon defines the difference between

Fig. 18 Demonstration of a variational autoencoder: Features in Hidden2 are mapped into a latent
space defined by Gaussian distributions.
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Fig. 19 (A) An architecture of VAE to realize spectra calculation and reverse design. (B) Distribution of different types of structures in the latent
space of a conventional VAE. (C) Distribution of different types of structures in the latent space acquired by self-learning. (D) The compressed
features of nanospheres in a 3D PC space of PC1, PC2, PC3, and PC4. (E) The distribution of a vector field in the PC space. (F) Spectra of themean of
the initial data, and the first two dominant eigenvectors (PC1 and PC2) of the covariancematrix. (G) Plot of the PC1 coefficient with the function of
nanosphere diameters.



the input and the output, namely the reconstruction performance of the autoencoder.

According to the choice of training losses, both supervised and unsupervised learning

are used in this method.

During the loading procedure of network training, both labeled and unlabeled sam-

ples are generated with the same probability, which leads to no differences for encoders

because they can still output latent distributions and predicted spectra. The bottom neck

as the input of the decoder is slightly different. For labeled data with spectra acquired by

numerical simulations, the ground truth spectra are chosen as input to ensure the gen-

eration performance. For unlabeled data without any simulated spectra, the encoder-

predicted spectra are input as pseudolabels, which can decrease the cost of simulation cal-

culation. By integrating unlabeled data as the training set, self-supervised learning is

achieved, which realizes the balance between training accuracy and sampling cost. When

executing the gradient descent algorithm, the LossSpectra is only contributed by labeled

samples because there is no ground truth for unlabeled samples. However, unlabeled data

contribute both LossRecon and LossK-L by combining the total training loss as:

Losstotal¼ LossK�L + LossRecon + α ∗LossSpectra (16)

The shared network weights are tuned simultaneously to minimize all three kinds of

loss; the prediction accuracy can be improved by even unlabeled data. Moreover, the

features of structures suppressed from (64,64) into 20-dimensional latent space exhibit

exceptional information. A neighbor embedding algorithm is performed to further

reduce the dimensions of latent space into two for visualization without changing the

raw 20-dimensional data structure (Fig. 19B and C). When suppressing features with

conventional VAE, samples in the latent space, as shown in Fig. 19B, form clusters

according to their specific geometry, which shows the ability of networks to extract

structural information with an unsupervised method. Meanwhile, when unlabeled pseu-

dosamples are integrated, clusters are better dispersed, as shown in Fig. 19C. In the clas-

sification problem, this means a smaller misclassification rate. Therefore, by combining

the geometric features of major unlabeled samples with the spectra of minor labeled sam-

ples, a balance between sampling cost and model performance can be achieved. This can

also provide new ideas for interpretation of the specific electromagnetic mode and pro-

mote data-driven spectra analysis.

Although there is little work on spectral research using the CNN dimension reduc-

tion model, the unsupervised learning method between nanosphere properties and spec-

tral response characteristics using neural networks or other machine learning algorithms

has been discussed [37].When analyzing a database comprised of 25 spectra of gold nano-

spheres with diameters from 2 to 50nm, PCA is employed. By detecting subspaces that

contain vectors with the largest variances, a set of orthogonal eigenvectors is defined as

PCs, and original samples can be expressed by the linear combination of PCs. As shown in

Fig. 19D, when parameters of nanospheres are suppressed in a 3D subspace, PC
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coefficients exhibit a parabola shape. Under the illumination of light, Fano resonances

from the scattering component and Poynting vector bifurcations are often accompanied.

When analyzing the spectra plot in the subspace, a homoclinic orbit with a fixed saddle

point is exhibited in Fig. 19E, which indicates the existence of chaotic strange attractors.

By representing mean absorbance and spectra with eigenvectors, an asymmetric Fano line

shape is observed in the PC2 vector space (Fig. 19F), which indicates that the dimension-

ality reduction model can extract the Fano resonances of plasmons according to the spec-

tral information. By extracting the PC1 of spectral clustering data, the nonlinear

relationship between the PC1 and nanosphere diameters can be observed, as shown in

Fig. 19G, which is consistent with the theoretical calculation results of Mie scattering.

In addition to analyzing the spectral properties of structures using unsupervised clus-

tering, the dimensionality reduction algorithm can also be used to optimize the design of

nanostructures by reducing the degree of freedom. Under this condition, the space spar-

sity and average distance between samples are decreased while clustering patterns

between specific parameter collection and corresponding spectra responses can be

extracted, which can improve the performance of optimization methods as gradient

descent.

In most optimizationmissions, only a minority of samples are of targeted optical prop-

erties. Samples initialized by a fully randomized method cannot exhibit optical properties

with important features or clustering effects. Thus, the training samples for unsupervised

learning can be acquired by optimization methods directly in the original design space

[38]. Under this condition, samples are exhibited as continuously moving points with

optimization generation growth (Fig. 20A) because in most of the gradient-dependent

optimization methods, new samples are mutated from better individuals in the previous

generation, which makes the changes continuous. Under resetting optimizations with a

random initial condition, multiple corresponding paths can be formed in the original

design space. The color of the sample changes from blue to red, which means the

enhancement of the optical responses. As noted in Fig. 20A, there is only one global max-

imum in the parameter space. Under this condition, all optimization paths are promised

to reach the same location. However, in real situations, there can be quantities of local

maxima and saddle points in the high-dimensional space, thus the optimization paths can

lead to different locations.

Projections of original samples in the subspace (Fig. 20B) can be obtained after per-

forming the dimensionality reduction method. By calculating the exhaustive mapping

between suppressed parameters and targeted optical responses, it can be proved that

the continuity and derivability are maintained in the subspace (Fig. 20C). Thus, the

gradient-dependent optimization algorithms can also be applied in the subspace; by accu-

mulating gradient information in fewer dimensions, the efficiency can be increased.

The above-mentioned conception is performed in a silicon-on-insulator platform to

realize the maximized coupling efficiency by choosing specific parameters of the grating
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Fig. 20 (A) The initial design collection (acquired by several random restart optimizations) in original high-dimensional parameter space.
(B) Demonstration of dimensionality reduction that represents designs in the lower-dimensional subspace (hyperplane defined by V1 and
V2). (C) Exhaustively mapped subspace that exhibits a continuum of the designs and the corresponding spectra performance. (D) Schematic
view of the grating coupler platform. (E) Mapping between coupling efficiency and extracted 2PCs acquired from original five-dimensional
parameters. (F) Mapping between simulated coupling efficiency and latent parameters in Γ-Π and X-Π hyperplanes. Dashed white lines are
the intersections between Γ-Π and X-Π hyperplanes and orthogonal 2PCs hyperplanes. (From Springer Nature.)



coupler structure [39]. More specifically, the grating coupler structure is a periodic one-

dimensional waveguide (period¼Λ) that consists of a 220nm-height pillar and an

L-shaped stripe with two top surfaces at 110 and 220nm. Considering the length and loca-

tion of the pillar and the etch-section of the L-shaped stripe, the number of design param-

eters is chosen as five (L1–L5 in Fig. 20D). TE-polarized light with a 1550nm wavelength

from a single-mode optical fiber vertically incident on the structure should realize themax-

imum coupling efficiency η while constraining the back-reflection r for less than �15dB.
To train the machine learning model for dimensionality reduction, particle swarm

optimizations are performed to produce samples with higher η. For each satisfied sample,

1000 generations are needed on average. Fed by sufficient samples, the trained PCA

model can decrease the original five-dimensional design parameters into 2PCs while

maintaining the representing accuracy. By plotting the mapping between 2PCs and cor-

responding coupling efficiency, as shown in Fig. 20E (for samples with η>0.7 only), a

variety of designs with η >0.74 (region surrounded by a black solid line) can be discov-

ered in the subspace; this is usually hard to notice in the high-dimensional original space.

To prove that 2PCs are sufficient for design representation, additional two-dimensional

hyperplanes of Γ-Π and X-Π orthogonal to the PC plane are chosen and shown as black

dashed lines in Fig. 20E. When projecting samples with high coupling efficiency into

those hyperplanes, a thin stripe distribution with only a slight curve is observed (Fig.

20F), which exhibits the two-dimensional characteristics of the subspace.

6. Perspectives and outlooks

CNN and its various derivative architectures have been implemented for wide spectra

analysis applications, including reflection/transmission spectra analysis, time response

ultrafast spectra characterization, optical reverse design, property clustering analysis,

and mode analysis. Those methods show the potential of data-driven research in the field

of nanophotonics. With the development of nanofabrication techniques, advanced

machine learning algorithms, and calculation resources, CNNs can deepen the physical

understanding of light-matter interactions and make better preparation for the develop-

ment of practical photonic devices. The future development direction of the discipline

includes the following points:

(1) To learn more optical responses beyond far-field spectra. Because the output of a

CNN can also be a matrix, CNNs can also be applied to directly calculate the

near-field distributions. Combining with optimization algorithms, strong energy

concentration, and an electromagnetic hot spot can be supported. Selective activa-

tions of those phenomena can be further realized by tuning the polarization site, inci-

dent angle, and wavelength, which can be used in applications such as efficient solar

cells, photocatalysis, hot electron injection, and surface-enhanced Raman

spectroscopy.
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(2) Better exploitation of parameterization space. The parameterization method so far

represents structures with only a single layer into a 0/1 binary matrix, which is

far from fully utilizing the parameterization ability of the model. By using contin-

uous pixel value, introducing voxels, or material property defined pixels as discussed

in Chapter 2, it can be easier to find a better optical response in larger parameter

space. Meanwhile, fabrication techniques as well as NN architectures should be

improved to match the whole designing-fabrication workflow.

(3) To establish a standard light-matter interaction database. There is still a lack of stan-

dard datasets for the interdisciplinary study of CNN-assisted spectra analysis, and

these are crucial for the quantitative assessment of sampling efficiency, prediction

accuracy, and generalization ability. Therefore, a standard and comprehensive data-

base that maps from multiple design parameters to various light field properties

should be developed, and the research and design process should be gradually stan-

dardized to lay the foundation for future industrial applications.

(4) To quantify the experimental feasibility in the model for real-world applications. At

present, the majority of CNNmodels for spectra analysis or manipulation have only

been proved by numerical simulations while many arbitrary patterns designed by the

model may consist of complex components that cannot be fabricated. Thus, it is nec-

essary to consider the requirements of fabrication technology comprehensively and

integrate the influences of fabrication error and spectral error as quantitative indica-

tors into the workflow.
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CHAPTER 7

Nanoscale electronic synapses
for neuromorphic computing
Zhongwei Xu and Fushan Li
Institute of Optoelectronic Technology, Fuzhou University, Fuzhou, China

1. Introduction

It is a long-term pursuit of scientists to realize an electronic device that is efficient in space

and energy that can flexibly run various complex calculations and is easy to expand and

integrate [1,2]. As proposed by Intel founder Gordon Moore in 1965 in his famous

Moore’s law, at the same cost, the computing power and transistor density of new pro-

cessors will double about every 24months [3]. John von Neumann designed an architec-

ture for an electronic computer that has achieved great success in the era of Moore’s Law.

At present, almost all our computers and electronic devices for entertainment, leisure,

and work are all realized with this architecture. However, this law is nearing its end

as the semiconductor industry has gradually entered the “king is dying” phase [4].

The reason is the extremely high cost (energy consumption, speed loss) of data move-

ment between memory and processor. With the increasing density of transistors, the bot-

tleneck of data transmission and distribution will become insurmountable, ultimately

limiting the computing power. This is usually called the von Neumann bottleneck [5],

and is shown in Fig. 1A.

The synapse comes from the human brain, which is the most advanced computing

system to date after thousands of years of evolution [6]. With the improvement of elec-

tronic technology and the self-knowledge of our brains, it has been shown that the reason

for learning and memory is the connection between each nerve [7]. In the human brain,

there are about 1011 neurons, which are the basis of thinking, memory, and emotional

changes. These neurons are tightly connected to each other with a synapse; each neuron

consists of an axon and multiple dendrites. Dendrites collect and transmit signals to neu-

rons, and axons conduct neuronal signals to the next neuron. The strength of this con-

nection (synaptic weights) changes with neural activity, as shown in Fig. 1B. Researchers

use a variety of models to interpret neurobehavior and apply the research results to the

machine learning task [8–12]. From the single-layer neural network to the multilayer

neural network [13], many algorithms such as artificial intelligence and deep learning

have shown great potential in many scenarios. These technologies are widely used today

for face recognition, optimal decision-making, data mining, etc. Although these
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technologies are similar to the way the brain works, they are actually built on software,

and they are all applied on the basis of the von Neumann machine. Eventually it is dif-

ficult to avoid the barrier of the hardware architecture (Fig. 1A).

An electronic synapse is considered a solution to the above problems. Using custom

calculation elements to simulate neurobiology shows excellent results in terms of

Fig. 1 (A) The current computer architecture acts as a neuron (CPU) and a synapse (memory). Under
the increasing performance of the CPU, the data exchange between memory and CPU increases
greatly, resulting in a decrease in efficiency and high energy consumption. When simulating a
highly interconnected network that cannot run on a single processor, it will result in CPU loss.
(B) Human brain and a synapse. A large number of synapses achieve complex functions and are
the basis of mental activity. (C) Conceptual blueprint of an architecture that, like the brain, tightly
integrates memory, computation, and communication in distributed modules that operate in
parallel and communicate via an event-driven network. (D) The race toward future computing
solutions. Developments in electronic synapse technology may provide an alternative path that
enables hybrid memory logic integration, bio-inspired computing, and efficient reconfigurable
in-memory computing systems.
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calculation amount and energy consumption, with examples including the IBM True-

North chip [14], the Intel Loihi chip [15] and SpiNNaker [16]. More and more devices

have been developed while various materials and mechanisms have been adopted to real-

ize neuromorphic devices. Electronic synapses usually have a two-terminal or three-

terminal architecture, and their internal electronic properties can change with the outside

world. When external stimuli are applied (electrical, optical, or even mechanical stimuli,

etc.), the material properties are reconfigured (resistance, conductance, transmittance,

etc.) andmemorized. This function can be used to store or process data directly. At present,

artificial synapses represented bymemristors can bemanufactured in the nanoscale [17], and

can maintain extremely long storage states [18], subnanosecond switching speed [19],

extremely high durability [20], and very low energy consumption [21]. A large portion

of the neuromorphic devices have evolved from traditional storage devices [22] such as static

random access memory (SRAM), magnetic RAM (MRAM), ferroelectric RAM

(FeRAM), and resistive RAM (ReRAM).

The combination of memristors and neuromorphic engineering shows unprece-

dented potential in practical applications [23]. The integrated artificial neural network

has a low thermal budget on the processor through a very high-density local intercon-

nect. It eliminates off-chip communication between the memory and the processor, as

shown in Fig. 1C [4]. Neuromorphic computing can implement large-scale spiking neu-

ral networks that are efficient, scalable, and flexible within today’s technologies. There is

also a great chance to solve problems (as shown in Fig. 1D) such as the increase in cal-

culation demand, the approach of physical limits, etc. [24]. The implementation of neu-

romorphic engineering on the hardware level can be realized by lots of artificial

electronic synapses [25–27]. In this work, we will review the progress of electronic syn-

apse research and give a detailed introduction to its application in integrated neuro-

morphic engineering.

2. Realization of artificial synapses

2.1 Ion migration
Ion migration is considered to be one of the main mechanisms for realizing artificial syn-

apses, and it has been intensively studied recently. The types of migration generally

include cations and anions, which come from electrodes and interlayer materials, respec-

tively. In addition, electrolytes can also induce the device performance change.

2.1.1 Cation migration
The internal characteristics of the device (such as resistance and conductance) could

change due to the movement of cations under the stimulation of the outside

world. Devices based on cation migration usually use a sandwich structure such as a

metal/semiconductor material/metal structure, where the anode uses active metals
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generally such as silver and copper while the semiconductor uses a cation-rich material

(the electrode can be an inactive metal at this time). It must be ensured that cations can

undergo redox reactions in the medium [28]. The device is exposed to external stimuli,

such as bias voltage, and the overall conductivity of the device shows a significant change.

The change is related to external stimulus intensity, frequency, and other factors.

A typical example is the research conducted by Jo and his team in 2010 [29], as shown

in Fig. 2. The study constructed a composite film of silicon and silver with a properly

designed Ag/Si mixture ratio gradient. Under the effect of external voltage bias, silver

ions diffuse in the direction of the electric field, the silver-rich region expands, and

the overall conductivity of the device rises, gradually changing from the high resistance

state (HRS) to the low resistance state (LRS). Reverse voltage bias can also be applied to

recover from any process state to HRS. The change in conductivity also depends on the

frequency and width of the pulse, realizing some functions of the biological nerves such as

long-term potentiation and depression (LTP), short-term potentiation and depression

(STP), and spiking-time dependent plasticity (STDP). There are some reports of similar

mechanisms such as Ag/polyurethane [30], Ag/TiO2 [31], and Cu/SiO2 [32]. However,

the uniform migration of metal ions in the medium has not been strongly proven (the

diffusion of silver-rich and silver-poor regions).

This type of diffusion is often referred to as “electrochemical metallization (ECM)

cells” [33]. In this case, the voltage applied to the anode promotes the oxidation of the

metal, providing the migrated metal cation (in order to maintain electrical neutrality,

other places of the device may also participate in the reaction [33]). The movement

of metal ions in the medium causes the resistance change. However, the specificity

of the internal environment (for example, electrodes are irregular in microscopic

appearance, electric field nonuniformity, etc.) results in the formation of atomic-level

metal ion channels connecting the cathode and anode (conductive filament, CF) [34].

Because the distance between the electrodes is very small, it can bring a large electric

field, which ensures that the metal ions are oxidized and integrated into the semicon-

ductor layer to finally form a conductive filament. The growth and rupture of metal

channels lead to nonuniform resistance changes inside the device, showing the overall

state of change of the device [35,36]. For example, silver ions can stably replace the

position of titanium under the electric field to form a CF. [37] As shown in Fig.

2D, we can clearly see that the CF composed of the Ag element connects the two elec-

trodes [31]. However, this is a redox reaction. As shown in Fig. 2E [33], the metal of

the anode is continuously oxidized into cations and released into the medium; the cor-

responding cathode surface undergoes a reduction reaction to turn the free cations into

metals. This process remains electrically neutral. There are also many studies showing

the growth of metal filaments at the cathode [31,38]. For example, from the research of

Guo (Fig. 2F), it can be seen that the silver produced from the cathode is rapidly

expanding [39].
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Fig. 2 (A) Schematic of the concept of using memristors as synapses between neurons. The insets
show the schematics of the two-terminal device geometry and the layered structure. (B) Measured
(blue lines (dark gray in print version)) and calculated (orange lines (gray in print version)) I–V
characteristics. (C) The current and voltage data vs time for the device. (D) HRTEM and EDS results
show that there are clear conductive filaments at protrusion-like regions formed connecting the
top electrode and the bottom electrode. (E) Sketch of the steps of the set and reset operations of
an electrochemical metallization memory cell. (F) SEM images showing the Ag dendrite growth
after applying 1V for about 1, 2, and 4s, and the corresponding I–V curve, respectively.
(G) Observation of conducting filament dynamics in SiO2-based resistive memories. It shows the
device set and reset of two widths and the working schematic of the device. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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In fact, the CF formed by the migration of metal ions may display different shapes due

to different materials, different interfaces, different electric fields, and different frequen-

cies [40]. Therefore, electronic synapses can have time- and drive-dependence plasticity,

such as STDP. Similarly, there are also reports that some special structures and materials

could be used to control the CF in order to realize the stability of the device, such as a

nanogrid [41], graphene barrier [42,43], etc.

Similarly, after forming the conductive filament, as long as the reverse voltage is

applied, the conductive filament is broken and the conductivity returns to the original

state [44]. For example, under the action of reverse voltage, the metal grown on the

Pt cathode breaks and dissolves into balls, then the original device state is restored

(Fig. 2G) [40]. Actually, the CF will naturally break even if it is not stimulated at all,

or form a small agglomeration to reduce the interface energy [45]. Therefore, short-term

plasticity (STP) and long-term plasticity (LTP) of the neuromorphic calculation become

feasible.

2.1.2 Anion migration
In this case, anion migration serves as the dominant operating mechanism for the elec-

tronic synapses: under the stimulation of the bias voltage, the conducting characteristics

of the active layer gradually change. In general, a CF is formed between the two elec-

trodes of the device. This channel is generated by the increase in vacancy concentration,

such as oxygen vacancy after the application of an external electric field [46]. The specific

process is shown in Fig. 3A [47]:

1) Under the stimulation of a high electric field, dielectric soft-breakdown occurs and

oxygen ions drift to the anode interface. If the anode material is easy to oxidize, it is

possible to form an interface oxide layer (oxygen ions are discharged as neutral non-

lattice oxygen) to store oxygen ions [46]. The CF is formed by oxygen vacancy, the

resistance drops significantly, and the device changes to LRS.

2) When the recovery bias is applied, the oxygen ion returns to its original region, and

the device returns to the HRS, but does not return to the original state. This is

because the as-generated CFs cannot be completely oxidized. The remaining CF

fragments are often called “virtual electrodes” and can promote the formation of con-

ductive filaments in the future [47].

These processes, including the formation of conductive filaments (Fig. 3B), rupture (Fig.

3C), and fragments (Fig. 3D) have been fully proven by Chen et al. [48] Similar results

have been reported as well [49–51]. It is worth noting that there are two different modes

in this process: unipolar switching modes represented by Pt/NiO/Pt [52], Pt/ZnO/Pt

[53], and Pt/Al2O3/Pt [54] as well as bipolar switching modes represented by Pt/

NiO/SrRuO3 [55] and TiN/ZnO/Pt [56]. The unipolar switch mode can realize the

electrical state change through the voltage of any polarity. If such a unipolar device

can work symmetrically, we can call it a nonpolar device. Bipolar switching mode is
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when the device changes depending on the polarity of the applied voltage. In bipolar

switching mode, the oxidized interface may have a stronger barrier to limit the diffusion

of oxygen ions, and the reset of oxygen ions requires the help of a reverse electric

field [57].

However, the conductionmechanism for the device is rather complicated. According

to Lim and Yu [58], the conduction mechanism in this sandwiched structure can be

Fig. 3 (A) Schematic of the switching process in the simple binary metal-oxide RRAM. (B) The
formation process of conductive filaments was shown by TEM. Ruptured (C) and fragments (D).
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divided into nine types: (1) Schottky emission; (2) Flower-Nordheim tunneling; (3)

direct tunneling; (4) Poole-Frenkel emission; (5) space-charge-limited conduction; (6)

ionic conduction; (7) Ohmic conduction; (8) hopping conduction; and (9) trap-assisted

tunneling. In actual devices, multiple mechanisms might take effect simultaneously, and

further investigation on the electrical characteristics needs to be carried out to distinguish

the dominant mechanism (Table 1).

Although research on such conductive filaments is extensive, the randomness of CF

growth cannot be ruled out. Therefore, research on device uniformity has also been a hot

topic in recent years, especially for devices with nonconductive filaments [59,60]. The

realization of such a method is usually based on a redox reaction, which only occurs

at the interface of the layers. The redox reaction causes the change of interface thickness

or position as well as the electrical properties of the device. For example, a PCMO/TiN

device forms an intermediate layer of TiOxNy gradually after 20 stimuli (Fig. 4C) as an

electronic barrier to limit the current [60].When a reverse bias is applied, the thickness of

the intermediate layer will decrease, thereby achieving the conversion of HRS to LRS.

This method eliminates the uncertainty of conductive filaments and ensures good device-

to-device and cycle-to-cycle uniformity.

2.1.3 Electrolyte-gated transistor
Three-terminal transistors with an inducing electrolyte have also been adopted to achieve

the synapse effect. As shown in Fig. 5A [61], the transistor has a high similarity to bio-

logical tissue. There are roughly two types of ion transport in transistor devices, ion

induction and ion implantation. The gate voltage can drive the ions in the electrolyte

to the channel interface (ion induction) or even to the inside of the channel material

(ion implantation), resulting in a change in channel conductivity. Usually, transistors

use the electric double layer (EDL) [62] method to achieve electronic synapses. EDL

devices are controlled by thin film capacitors. The applied gate voltage can cause the

movement of ions, which gather on the surface of the channel. In order to maintain elec-

trical neutrality, induced charges are also generated inside the channel, forming an ultra-

thin capacitor [62,63]. Channel characteristics can be controlled by the intensity and

frequency of the gate pulse. The main feature of the device is that the driving voltage

is very low, which is due to the strong electric field between the ultrathin capacitors

(between the ion layer and the channel) [64]. The leakage current could only appear

between the resistive material (postsynapse) and the control terminal (presynapse), so this

device will be very energy-efficient. It has been reported that the device works at 0.3V

and has very low energy consumption [65]. It could be combined with traditional tran-

sistor technology so it is easier to integrate. Because the ions are gathered by the external

electric field, they will flow back when the external electric field is removed, and the

device returns to the original state. The aggregation and dissipation of ions would affect

the conductivity of the device directly. Various materials such as indium oxides [66–69],
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phosphorosilicate glass [69–71], organic materials [72], etc., have been used in the

devices, and there have been reports of the use of two-dimensional materials and ionic

gels [73,74].

On the other hand, under the action of the electrolyte in the electric field, ions enter

the channel material and chemically react, which is generally called electrochemical dop-

ing [75]. It can also drive ions into the target material to change the energy band structure

of the channel material, thereby changing the conductivity of the channel material,

which is called ion intercalation. However, ion penetration and doping cannot be spon-

taneously restored. Devices based on electrochemical doping generally use a combination

of oxides and ionic liquids [61,76]. It is worth noting that the above devices can only

Fig. 4 (A) Schematic of the possible electron conduction paths through an MIM stack. (1) Schottky
emission: thermally activated electrons injected over the barrier into the conduction band. (2)
Fowler Nordheim (F–N) tunneling: electrons tunnel from the cathode into the conduction band;
this usually occurs at a high field. (3) Direct tunneling: the electron tunnels from the cathode to
the anode directly; this usually occurs when the oxide is thin enough. If the oxide has a substantial
number of traps (e.g., oxygen vacancies), trap-assisted tunneling contributes to additional
conduction, including the following steps: (4) tunneling from cathode to traps; (5) emission from
trap to conduction band, which is essentially the Poole Frenkel emission; (6) F N-like tunneling
from the trap to the conduction band; (7) trap to trap hopping or tunneling, maybe in the form of
Mott hopping when the electrons are in the localized states or maybe in the form of metallic
conduction when the electrons are in the extended states depending on the overlap of the
electron wave function; and (8) tunneling from traps to the anode. (B) In situ TEM resistance
switching to HRS at a voltage pulse mode. The thickness of the a-TiOxNy layer is marked by red
arrows. (C) Change in thickness of the a-TiOxNy layer (red (gray in the print version)) and the
electric field across the a-TiOxNy layer (black) with the voltage pulse. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5 (A) Schematic illustration of a biological synapse. The plasticity between a pair of pre- and postneurons is modulated by the action
potential or spikes from the preneuron. (B) Illustration of energy band diagrams after pulse and detrapping shows the band bending after
the stimulus, changing the electrical conductivity of the device. (C) Structure of the h-BN/WSe2 synaptic device and the X-TEM image of the
WSe2/WCL/h-BN structure, and the high-resolution images corresponding to the WSe2/WCL and WCL/h-BN interfaces. (D) Schematic of the
working mechanism of the e-synapses, which have the mechanism of trapping-detrapping. (E) Switching behaviors under a sequence of
positive pulses. The positive pulse can decrease the conductance G of the e-synapse, resulting in synaptic depression (left). Conductance
variation ΔG as a function of the initial conductance (right). (F) I–V curves of the electroforming, reset, and set processes as well as the
fitting results.



work below a specific frequency. A capacitor can be formed between the two electrodes.

When the frequency of the electric field is relatively low, the influence of capacitance will

be reduced, and the role of the electrolyte will become dominant [61].

2.2 Electronic migration
Generally, such a device mainly includes electron migration induced by the external field

and photogenerated carrier migration. Electronic migration is known for its high oper-

ating stability and integration. We will be discussing pure electronic devices and some

photonic devices below.

2.2.1 Electron migration by external field
Electron migration is compatible with current semiconductor technology, and electron

migration devices are more stable and faster than the above ion-dependent devices. Elec-

tron migration devices require electron-trapping materials, and can be realized in the

form of transistors or two-terminal devices. In a transistor, when an electric field is

applied to the gate, electrons will be trapped in the dielectric layer. As shown in Fig.

5B, the dielectric layer is negatively charged and is accompanied by electrical control

of the channel [77]; electron accumulation causes the band to bend. But this control

is changeable in different material systems, and it will quickly be detrapped in somemate-

rial systems. When the gate is given a reverse electric field, the trapped charge is released

and the entire device returns to its original state. Using this process can realize the various

functions of electronic synapse. New materials have also been used in these devices, such

as the application of two-dimensional WSe2 [78], carbon nanotubes, HfO2 [75], etc.

There are also some examples of carefully designed structures to achieve multilayer

charge trapping [79]. As shown in Fig. 5C, the device can capture multiple states of

charge while achieving STP and LTP.

In case of two-terminal structures, the working mechanism is also based on charge

trapping and detrapping by using special materials such as graphene, quantum dots,

and gold nanoparticles [80,81]. As shown in Fig. 5D, it is proposed that the nanomaterial

doped inside the medium can automatically trap electrons. In the initial state, a large

number of traps in the material seriously affect carrier transport, resulting in a high resis-

tance state of the device. When these traps are filled, the device can transition to a low

resistance state under the applied bias voltage. However, the entrapment of too many

electrons in a material may cause a decrease in conductivity (repulsion), as shown in

Fig. 5E. Research suggests that the change in conductivity is due to the trap-controlled

space charge limited conduction (SCLC) mechanism and the Ohmic conduction mech-

anism [82]. The material using this mechanism has a multilayer trap structure, and the

trap–detrap process is voltage-dependent. The voltage gradually increases, and the trap

filling range gradually expands. When the voltage or the number of pulses reaches the

threshold and the trap is filled, the current will suddenly change, [82] as shown in
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Fig. 5F. Other materials such as POx [83], MoS2 [84], CuPc [85], etc., have been used for

electron migration devices. In addition, quantum dot materials [86] such as graphene

quantum dots, graphene oxide quantum dots [87], and hybrid quantum dot systems have

been developed to achieve complex neurobehavior [88].

2.2.2 Photogenerated carrier migration
Neuromorphic photonic devices are developed from traditional devices, and their appli-

cations have been fully demonstrated [89,90]. This kind of device can be roughly divided

into photogenerated carrier devices, photosensitive material devices (such as phase

change materials) and optical resonant cavities. As shown in Fig. 6A [91], a photogen-

erated carrier migration device generates time-dependent carriers by light to change

the conductivity of the device. Photogenerated carriers must be stored inside the device

before they can change the electrical characteristics of the device. Impurities can provide

traps, and the presence of oxygen vacancies, interface defects, and impurity doping can

provide traps for carrier storage. When light with an appropriate wavelength is irradiated

on the device, the active layer absorbs photons and generates electron and hole pairs. Due

to the concentration gradient or the presence of an electric field, the carriers diffuse and

fill the traps in the device gradually. This process gradually changes the overall conduc-

tivity of the device.When reverse stimulation is applied, carriers are released or detrapped

after a period of time, and the device can return to its original state gradually.

Oxide materials with high light absorption efficiency, such as ZnO [92], SiO2 [93],

Al2O3 [94], etc., have been investigated for application in optoelectronic synapses. Var-

ious heterojunctions such as In2O3/ZnO [95], ion liquid-PVP dielectric/ZnO interfaces

[96], indium zinc oxide (IZO) [97], graphene/diamond interfaces [98], etc., were also

adopted to realize optoelectronic synapses. Under light stimulation, the generated elec-

trons and holes will accumulate on both sides of the heterojunction and get trapped,

resulting in conductivity changes. There are also examples of realizing the memory effect

through photons [99]: holes generated in theMgO layer were injected into the ZnO thin

film and gave electroluminescence. Moreover, ultraviolet (UV) irradiation can promote

CF growth [100].

Due to the stimulation of photons, phase change in a certain material occurs gradually,

and its conductivity changes accordingly. This change can also be applied to electronic

synapses. The phase change caused by light is mainly based on the crystallization rate and

light absorption of the material. A typical phase change material is Ge2Sb2Te5 (GST).

Previous GST-based studies have demonstrated its potential to be applied in neural net-

works and have demonstrated time-dependent plasticity [101,102]. As shown in Fig. 6C,

the light passes through the waveguide and generates heat, causing the GST to undergo a

phase transition. However, this phase change-based waveguide neural device will face

some challenges in integration. For example, the device size is too large to integrate.With

the development of photon computing, there are also studies on the use of optical

200 Intelligent nanotechnology



Fig. 6 (A) Schematic illustration of the mimicking of a biological synapse. The drain current (the
postsynaptic current) of the phototransistor is recorded in response to the laser pulse train (the
presynaptic spikes). The interval of the laser pulse train is random for mimicking the generation of
transmitters. (B) The resistive switching mechanism of the Ag/ZnOrods/FTO device. More oxygen
vacancies are formed, which leads to the formation of multiple conductive filaments. (C) Operation
principle of the all-optical on-chip memory device. Information is stored in the phase state of the
GST section on top of the nanophotonic waveguide. Both reading and writing of the memory can
be performed with ultrashort optical pulses because the guided light interacts with the GST via its
evanescent field. In the readout, data are encoded in the amount of optical transmission through
(along) the waveguide because the two crystallographic states of the GST exhibit a high contrast in
optical absorption.



amplifiers to achieve artificial synapses [101,102]. Because this is a photonic device [103],

it has extremely high operation speed and efficiency [104,105]. However, it still needs

further investigation for integrated applications.

2.3 Phase transition
Devices based on phase change have achieved great success in data storage, such as digital

optical disks and traditional nonvolatile memory [106]. As shown in Fig. 7A [107], the

conductivity of the phase change device is changed through crystallization and amorphi-

zation, showing a lower resistance (LRS) in the crystalline state while showing a higher

resistance (HRS) in the amorphous state. The crystallization process is usually divided

into two categories: growth-dominated crystallization represented by Ge2Sb2Te5
(GST) that has been discussed above, and nucleation-dominated crystallization repre-

sented by AgInSbTe (AIST). The nucleation-dominated process incubates in the amor-

phous area and continues to grow until the amorphous area is completely converted to

polycrystalline. Growth-dominated crystallization is carried out at the interface of the

crystal and amorphous area, and finally the amorphous area transforms into polycrystal-

line and further into single crystal [108]. However, such a change requires external heat;

crystallization occurs when the temperature reaches 500–900K. When the temperature

continues to rise, the crystals will melt. Therefore, the device changes from HRS to LRS

when wide and low-frequency voltage pulses are applied to the device; short and high-

frequency pulses can change the device from LRS to HRS (the molten amorphous area

will quickly cool and affect the device conductivity) [109].

Current research focuses on the switching speed and the energy consumption of the

devices based on phase change materials. Traditional materials such as GST [110] and

AIST [111] as well as new materials such as Ti–Te bonds [112] and Sc–Te bonds

[113] have achieved breakthroughs in crystallization speed. It has been reported that

ScSbTe (SST) [113], GeSbTe, [114] and TiSbTe [115] can form a fast switching state

of crystals in less than 500 fs. On the other hand, the SiSbTe alloy [116], GeSb alloy

[117], GeTe alloy [118], etc., can be used to reduce energy consumption. In 2010,

Duygu Kuzum et al. demonstrated the typical neuroengineering application of the phase

change materials [119]. Fig. 7B–D shows the diagram of the array of synaptic devices and

the transmission electronic microscopy (TEM) image of the phase change layer. The

device can also implement neural device functions such as LTP, STP, and STDP.

2.4 Ferroelectric
A typical ferroelectric device uses a ferroelectric material and two electrodes to form a

sandwich structure. Applying an electric field to the electrode changes the polarity of

the ferroelectric material [120,121], which can significantly change the conductivity

of the device to achieve the switching of the two conducting states. For example, in
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the work of Boyn et al. [122], the device resistance changes with the proportion of polar-

ization orientation. It has been indicated that the device has the function of STDP (see

Fig. 8B). For practical application in artificial synapses, a thick active layer and low elec-

trical conductivity have become a bottleneck for ferroelectric materials. Therefore,

research has been conducted to achieve an ultrathin ferroelectric layer [123] such as a

ferroelectric tunnel junction [124]. In order to achieve high device stability, new

Fig. 7 (A) Experimental I–V curves for the crystalline and amorphous chalcogenide. (B) Illustration and
characteristics of bio-inspired electronic synapses. The cross-sections of depressed (mushroom-
shaped amorphous region shown in red (dark gray in the print version)) and potentiated synapses
are shown in the schematic. (C) Cross-section TEM images of electronic synapses made of GST are
shown. In transition from a set state to a reset state, the volume of the amorphous region at the
top of the bottom electrode grows; when it fully covers the bottom electrode, the fully reset state
is reached. The inset of the fully reset state shows a diffraction pattern for the mushroom-shaped
amorphous region. The diffraction pattern away from the bottom electrode shows that the GST is
polycrystalline. (D) Synaptic weight change as a function of a number of applied pre/postspike
pairs is shown for different pre/postspike timings. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 8 (A) Multiple hysteresis loops of a ferroelectric memristor showing a clear dependence of
resistance switching with the maximum pulse amplitudes. (B) Measurements of STDP in the
ferroelectric memristor. (C) Vertical spin valve: a magnetic tunnel junction consists of two
ferromagnets, the free layer (FL) and the pinned layer (PL), separated by a tunneling oxide barrier.
The magnetization dynamics evolve under the influence of the damping torque, precession torque,
and spin torque due to an input spin current, IS. (D) Typical resistance versus voltage cycles
characteristic of a magnetic memristor. (E) Side view: Schematic of our MgO-based magnetic tunnel
junction with the domain wall in the FeB free layer. Δ is the width of the domain wall. Top view:
Scanning electron microscope image of the sample, with a black dashed line to emphasize its contour.
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materials such as BaTiO3 [125], Hf0.5Zr0.5O2 [126], etc., have been adopted as the active

layer for ferroelectric devices.

2.5 Magnetic
Unlike ferroelectric devices, spin transfer torque-based devices have two ferromagnetic

layers separated by a paraelectric insulating layer (as shown in Fig. 8C [127]). The con-

ductivity of the device depends on the magnetization directions of these two ferromag-

netic layers. For example, the device contains a thick ferromagnetic layer whose

polarization direction is relatively fixed, called the pinned layer, and a thin ferromagnetic

layer whose polarization direction is controlled by external stimuli, called the free layer.

When the current is injected into the free layer and the relative polarization changes in

the opposite direction, the conductivity can be adjusted. This three-layer structure is

known as a magnetic tunnel junction (MTJ) [128–130].
In an MTJ device, adding appropriate integrating domain walls to the free layer can

achieve multiple resistance states, as shown in Fig. 8D and E. For example, the processing

system established by Lequeux et al. based on similar devices can realize cognitive func-

tions [131]. In comparison with devices based on other mechanisms, the use of magnetic

force to control the movement of electrons is very stable, and the durability is almost

perfect because the device does not involve the movement of atoms [132].

3. Realization of neuromorphic engineering

3.1 Synaptic plasticity
One of the basic functions of an electronic synapse is neuroplasticity [133]. Based on the

function of biological nerves, it is roughly divided into the following categories: long-

term potentiation and depression (LTP/LTD), short-term potentiation and depression

(STP/STD), spiking-time dependent plasticity (STDP), and other plasticity.

3.1.1 Long-term potentiation and depression (LTP/LTD)
In organisms, neurons can achieve long-term changes by regulating the output of neu-

rotransmitters or controlling the number of receptors (such as α-amino-3-hydroxy-5-

methyl-4-isoxazole-propionicaci, AMPAR) [133]. This behavior is referred to as

LTP/LTD. Now, electronic devices are able to achieve similar functions, which means

that they can maintain a state for a period of time after stimulation. This long-term plas-

ticity is often thought to be related to biological learning behavior and is also of great

significance in contemporary neural computing. This plasticity is widespread inmost arti-

ficial synaptic devices. For example, the devices with conductive filaments form a stable

conductive channel, which can exist for a long time, and the device works in a low resis-

tance state. Due to the different materials and mechanisms, the LTP/LTD process may

exhibit different electrical characteristics. Generally, the current–voltage (I–V) curve is
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nonlinear for the devices using CFs. The reason for this may be that the formation of CFs

is not a uniform process, and the conductivity will suddenly increase when the CFs are

completed. This would lead to the nonuniformity of the electronic synapse arrays that

consist of a large number of artificially protruding devices.

3.1.2 Short-term potentiation and depression (STP/STD)
Biological synapses can increase or decrease neurotransmitters/bioelectrical signals to

achieve short-term enhancement or inhibition of neural links. This short-term plasticity

has a limited duration and eventually returns to its original state. It is considered to be

related to the spatiotemporal state information of the organism, and is also of great impor-

tance to expand the current computing function [134]. Short-term plasticity is ubiquitous

in electronic synaptic devices. The device is in an unstable state and recovers by itself to

restore the memory state by the dissolution of CFs, the dissipation of bound electrons,

etc. The plasticity may be reflected in conductivity in a short time, and is significant in

neural computing. However, nonlinear changes and device instability are challenges for

practical applications.

Table 1 Expression and field/temperature dependency of the typical conduction mechanism in the
dielectric film.

Device structure Current density expression Electric field dependency

Schottky emission
JSE ¼ 4πqm∗kT 2

h3
exp

�q ΦB�
ffiffiffiffiffiffiffiffiffiffiffi
qE=4πε

p� �
kT

� �
JSE∝T 2 exp A

ffiffiffi
E

p
T

� B
� �

Flower-Nordheim

tunneling
JFN ¼ q2

8πhϕB
E2 �8π

ffiffiffiffiffiffiffi
2qm∗

p
3hE

ϕB
3=2

	 

JFN∝E2 exp �A

E

� �
Direct tunneling JDT � exp

�8π
ffiffiffiffi
2q

p
3h

m∗ΦB

� �1
2κ � tox,eq

� �
JDT∝exp(�A � tox, eq)

Poole-Frenkel emission
JPF ¼ qμNcE exp

�q ΦT�
ffiffiffiffiffiffiffiffiffi
qE=πε

p� �
kT

	 

JPF∝ exp A

ffiffiffi
E

p
T

� B
� �

Space-charge-limited

conduction (SCLC)
JSCLC ¼ 9

8
εiμθ V 2

d3
JSCLC∝E2

Ionic conduction J ionic∝
E
T
exp �ΔG 6¼

kT

� �
J ionic∝

E
T
exp �A

T

� �
Ohmic conduction Johmic ¼ σE ¼ qμNcE exp

� Ec�EFð Þ
kT

� �
Johmic∝E � exp �A

T

� �
Nearest neighbor

hopping
JNNH ¼ σ0 exp

�T0

T

� � � E JNNH∝E � exp �A
T

� �
Variable-range hopping JVRH ¼ σ0 exp

�T0

T

� �1=4 � E JVRH∝E � exp �A
T

� �1
4

Trap-assisted tunneling

(TAT) JTAT ¼ A exp
�8π

ffiffiffiffiffiffiffi
2qm∗

p
3hE

ϕT

3
2

	 

JTAT ¼ exp �A

E

� �

206 Intelligent nanotechnology



3.1.3 Spiking-time dependent plasticity (STDP)
Another common biological synaptic behavior is spike timing dependent plasticity

(STDP). However, it have been shown that STDP behavior varies among organisms,

and it has manymanifestations [85]. In artificial synapses, the weight of synapses is affected

by the interval time between two pulses. In fact, in many studies, this plasticity may be a

combination of long-term plasticity and short-term plasticity, which is regarded as a Heb-

bian synaptic plasticity [83]. Hebb’s rule or cell assembly theory believes that the contin-

uation and repetition of reflex activity will lead to the improvement of neuron stability:

when the axon of neuron A is very close to neuron B and participates in the repeated and

continuous excitation of B, these two neurons or one of them will undergo growth pro-

cesses or metabolic changes. As a result, A is one of the cells that can excite B, and its

efficacy is enhanced. Li et al. [135] fitted the process of STPD with the following

equation:

Δω ¼ A+e
� Δtj jτ+

A�e� Δtj jτ�

(
(1)

where A� and τ� represent the scaling factor and the time constant of the function,

respectively. Many studies have been conducted to investigate the STDP process in con-

junction with the unique properties of the material, for example through pulse width

[29]. The behavior of artificial synapse STDP is classified as asymmetric STDP, symmet-

ric STDP, anti-STDP, and triplet STDP [85]. For example, as shown in Fig. 9A [136],

with the time interval as the x-axis and the enhancement as the y-axis, the curve is sym-

metric about the center or the y-axis, which is considered to be a symmetric STDP, while

the opposite is an asymmetric STDP (see Fig. 8B). When suppression occurs, this is

known as anti-STDP (see Fig. 9B [29]). In addition, when there are three stimuli, it

can be called triplet STDP [137,138]. This plasticity can reflect the inevitable interaction

of pulse pairs in a sequence through short-term suppression effects.

3.1.4 Other plasticity
There are other plasticities such as metaplasticity [139], spiking-rate dependent plasticity

(SRDP) [140], etc., that have been reported so far. Metaplasticity cannot shape the state

of synapses, but it can change the plasticity of synapses, which can be called plasticity of

plasticity. This phenomenon has been proved in various experiments, and the reaction

speed and intensity of synapses can be adjusted by previous stimulations [50,141].

Although there are many articles demonstrating this plasticity, investigations of the

potential applications of this kind of plasticity need to be conducted [141,142]. SRDP

[140] is the dependence of presynaptic stimulation frequency on postsynaptic neuron.

This kind of plasticity is similar to STDP: when the frequency of the stimulus signal meets

the frequency response of the material, the output signal increases, and vice versa

[137,138].
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Fig. 9 (A) STDP behavior measured in a TiN/SiO2-1nm/TaOx/Pt device; the inset shows the applied
spikes to the presynaptic and postsynaptic terminals. (B) The measured change of the memristor
synaptic weight vs the relative timing of the neuron spikes. (C) Schematic of the biological
neuromorphic system (inside) and the artificial neuromorphic system (outside).
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3.2 Integration and cognitive functions
The aforementioned synaptic devices use various mechanisms and can mimic biological

nerve activity. Nonetheless, these devices are still different from the real biological ner-

vous system. If they cannot be integrated like biological systems, it will be difficult to

achieve a significant improvement in computation and energy efficiency. At present, tra-

ditional susceptors, effectors, and processors are based on microelectromechanism system

(MEMS) technology. Therefore, the integration of basic synaptic devices into compo-

nents with realistic neural engineering has also been the focus of recent studies.

As shown in Fig. 9C [143], the nervous system in bionic engineering should have

receptors, effectors, and processing systems. The sensor receives the information and

sends the information to the processing system through the sensory nerve. The processing

system (central nervous system) receives the signal and generates a response signal to the

outside world. The response signal is transmitted to the effector through the action nerve

and finally realizes the processing of the external information.

There have been some studies using artificial synapses on the central nervous system to

deal with simple tasks or as computational units. The Intel Loihi chip [144] and the IBM

TrueNorth [145] chip use thousands of cores and millions of synaptic originals with

extremely energy-saving properties and a small size to identify different dangerous mate-

rials, detect weapons and explosives, and find drugs and carbon monoxide [146]. The

receptors are used to feel the external environment as well as to detect external move-

ment, stimulation, deformation, and pain. It will be very important if a robot has external

cognitive ability. For example, an artificial perception alarm system based on the migra-

tion of silver ions and the connection of receptors and processing systems has shown the

possibility of integrating this pain-sensing device into a robot or tissue [147]. Neural engi-

neering devices based on optical sensors have also received extensive attention. Such

devices are generally based on the detection of photons, capturing photons, and convert-

ing them into electrical signals. This device realizes the characteristics of optical graphics

memory, which may promote optical communication and optical computing.

3.2.1 Computing with synapses
There have beenmany studies combining the functions of the central nervous system and

mathematical calculations, and various calculation methods have been proposed. Here,

we divide the algorithms applied to synaptic devices into supervised learning, unsuper-

vised learning, and reinforcement learning according to the training data with or without

labels.

Supervised learning is a method of machine learning, the purpose of which is to learn

the features in training data and build a learning model [148,149]. By mapping the syn-

aptic weights to the crossbar array, the analog vector of voltage is obtained by conduc-

tivity matrix multiplication, as shown in Fig. 10D and E. The advantage of using an
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Fig. 10 (A) Schematic of a single layer neural network (perceptron). (B) Schematic of a multilayer neural network (deep learning). (C) diagram of a
multilayer neural network (feature learning). (D) Input face training data (one of them). (E) Neural network mapping and hardware foundation.
(F) Evolution of the centroid locations during online training with the unlabeled 3D IRIS dataset. (G) Clustering results using the memristor-based
network after training. (H) Results from K-means analysis obtained from software. Inset: Comparison of results obtained from software- and
memristor-based methods for the three types of flowers, with reference to the ground truth.



artificial synapse array is that it can speed up the core operation of the vector matrix and

the efficient parallel operation, which is the most important and intensive part of most

neuromorphic calculations [150]. For example, Yao used 1000 one-transistor-one-

resistive memory (1T1R) cross matrices to realize face classification [151].

Reinforcement learning is a field in machine learning that emphasizes how to act

based on the environment to maximize the expected benefits [152]. The inspiration

comes from the behaviorist theory in psychology: how creatures, under the stimulus

of rewards or punishments given by the environment, form expectations of the stimuli

and produce habitual behaviors that can get the most benefit. The key is to use the arti-

ficial synapses of the array to realize the construction of the parameter Q. For example,

the work of Zhongrui Wang [153] used memristors to form a 1T1R network and real-

ized a hybrid analog-digital platform. It can acquire knowledge and solve problems with-

out human input or supervision, obtain theQ value from the state, and solve complicated

tasks.

Unsupervised learning is another kind of machine learning method. Given no pre-

viously labeled training examples, it can automatically classify or cluster the input data

[154]. The main applications of unsupervised learning include cluster analysis, association

rule, and dimensionality reduction. It is an alternative to previous strategies such as super-

vised learning and reinforcement learning. This learning method can also be mapped to

the artificial synapses array. For example, K-means clustering (dividing n points into k

clusters), which is often used in data mining, can be implemented using artificial neural

networks. Jeong et al. [155] built a system that can greatly accelerate the speed of neural

computing, implement the K-means clustering algorithm through online learning, and

produce a high classification accuracy (93.3%) for the standard IRIS dataset.

3.2.2 Artificial neuromorphic devices
Artificial neuromorphic systems have also received intensive attention. For example,

Seunghwan Seo et al. [79] developed an artificial optic-neural synapse by integrating

optical sensors and neural networks. By converting external light information into elec-

trical signals (Fig. 11B), it can simulate the function of identifying colors and graphics in

biological vision. As shown in Fig. 11A, the author constructed visual sensors and arti-

ficial synapses to imitate human vision. They further demonstrated the identification of

numbers. Shuai Chen et al. [156] designed an array device that has a memory of the stim-

uli it has received, similar to human visual remnants, as shown in Fig. 11D.

In addition to vision sense, tactile sense is another common bionic application that has

been widely studied. As shown in Fig. 11C, the artificial sensor neural device invented by

Wan et al. [156] combines a pressure sensor and ion gel to realize tactile recognition in

time and space. Fig. 11E shows how multiple tactile sensors work together in artificial

nerve cells. The device used electrical signals as feedback. Kim et al. realized the biolog-

ical circuit of the sensor to obtain tactile information and finally transmit it to the effector

[157], as shown in Fig. 11F. The sensor array can obtain exquisite pressure information,
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Fig. 11 (A) Schematic of the human optic nerve system, the h-BN/WSe2 synaptic device integrated with the h-BN/WSe2 photodetector, and the
simplified electrical circuit for the ONS device. (B) Activation values of each output neuron in cases of a single-colored number (blue 4 (dark gray in
the print version)) and a color-mixed number (red/green-mixed 4 (gray in the print version)) after the 600th training epoch. (C) Diagram illustrating
the configuration of the NeuTap neuron with two pressure sensors. (D) The array of synaptic devices has a memory effect on graphics, for
example, The shape of a butterfly can be remembered for a long time, and can retrospective memory. (E) Two NeuTaps working separately
and working together (left); two NeuTap interactive operations (right). (F) An artificial afferent nerve made of pressure sensors, an organic
ring oscillator, and a synaptic transistor. (G) Hybrid reflex arc made of an artificial afferent nerve and a biological efferent nerve.
Postsynaptic currents are amplified to stimulate biological efferent nerves and muscles to initiate movement. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)



such as the movement of objects, and connect the artificial afferent nerve to construct a

hybrid bioelectronic reflex arc to actuate muscles, as shown in Fig. 11G.

4. Summary

Neuromorphic engineering based on electronic synapses has shown remarkable achieve-

ments. Synaptic devices with different operating mechanisms are booming: mature tra-

ditional devices have already been commercialized while devices based on new materials

and innovative structures are being developed rapidly. At the same time, the application

of electronic synapses still requires further exploration. Synapse devices in computing

need high precision, linear feedback, high uniformity, high switching speed, and high

stability. Furthermore, a new type of circuit design is required to be compatible with this

new generation of processing and storage systems, and new algorithms need to be devel-

oped for this system to improve the computing capability. So far, there are no computers

that use electronic synapses practically. Despite the flourishing of electronic synaptic

devices, much application research is still needed to demonstrate the potential of elec-

tronic synapses in the field of neuromorphic computing.
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CHAPTER 8

Nanowire memristor as artificial
synapse in random networks
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bApplied Science and Technology Department (DISAT), Politecnico di Torino, Torino, Italy

1. Introduction

The rapid development of information and communication technologies and the rising

of artificial intelligence (AI) is currently challenging the state-of-art of nanoelectronics

with the end of the Moore’s law in sight. In this framework, there is an ever-growing

interest in new electronic devices and architectures for the hardware implementation

of computing paradigms beyond von Neumann. Among emerging technologies, mem-

ristive devices represent one of the candidates for next-generation electronics [1–3]. The
experimental realization of a “memristor” (memory + resistor), theorized by L. Chua in

1971 as a fourth fundament circuit element [4], has been reported in 2008 where the

theoretical concept of memristor was associated to resistive switching phenomena by

Strukov et al. [5]. Memristive devices are two-terminal capacitor-like devices where

an active material (typically an insulating metal-oxide) is sandwiched in between two

metal electrodes [6–9]. In these devices, the reconfiguration of the active material upon

electrical stimulation results in a dependence of the internal resistance state on the history

of applied voltage and current. In this framework, the change in the physical parameters

of the device and their dynamics can be exploited to both store and process information.

For this reason, they represents a potential breakthrough in the areas of on-chip memory

and storage, in-memory computing and for the hardware realization of biologically

inspired computing architectures [2,10–16].
In this framework, memristive devices based on nanowires (NWs) have attracted a

growing interest as the building blocks for a memristive-based nanoelectronics

[17–20]. In particular, single NWs have been considered good platforms for the inves-

tigation of physicochemical phenomena underlying resistive switching events and for

neuromorphic-type of data processing by emulating typical features of biological synap-

ses. Furthermore, NW networks can be exploited for the realization of brain-inspired

architectures for the implementation of unconventional type of computing paradigms.

In this chapter, we report on memristive devices and nanoarchitectures based on

NWs. In the first section, fundamentals of NW memristive devices are discussed from
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the NW synthesis to device fabrication strategies. Also, resistive switching mechanisms

including electrochemical metallization mechanism (ECM) and valence change mecha-

nism (VCM) are discussed, showing that single NW devices represents good platform for

the investigation of physicochemical mechanisms underlaying these switching effects. In

the second section, neuromorphic functionalities of single-NW-based devices are dis-

cussed, showing that these devices can emulate typical features of biological synapses.

In the third section, nanoarchitectures based on NW networks are presented by discuss-

ing emergent synaptic plasticity effects, criticality, and avalanches effects toward the

implementation of unconventional computing paradigms.

2. Fundaments of NW-based memristive devices

In this section, the synthesis of NWs as well as the fabrication of NW-based memristive

devices is briefly reported by discussing different device fabrication strategies. Also, phys-

ical mechanisms of switching are discussed, with a focus on electrochemical metallization

switching mechanism (ECM) and valence change switching mechanism (VCM)

observed in single NWs.

2.1 NW synthesis
The synthesis methods of metal-oxide andmetallic NWs can be divided in top-down and

bottom-up approaches. The taxonomy of NW growth methods is reported in the sche-

matization of Fig. 1. For a detailed description of the synthesis methods, refer to several

previous review articles [21–24]. In general, top-down approaches require lithographic

Fig. 1 Taxonomy of NW growth methods.

220 Intelligent nanotechnology



techniques such as electron beam lithography (EBL), optical lithography, X-ray lithog-

raphy, ion beammilling or nanoimprinting and deposition of materials to define the NW

geometry. Instead, bottom-up approaches are based on chemical synthesis or on the

assembly of molecular building blocks. The bottom-up approach is much more interest-

ing due to the possibility of fine control of NW dimensions, purity, and doping level at

low costs. Bottom-up synthesis of NWs includes vapor-phase and solution-phase growth

methods. The vapor-phase growth refers to synthesis that can be performed in vacuum

chamber or in atmospheric pressure under controlled gas flow and temperature. Instead,

the solution-phase synthesis, that have the advantage that can be performed usually at low

temperature, can be template-assisted as in the case of electrochemical anodization, elec-

trophoretic deposition, and colloidal filling or template-free as in the case of hydrother-

mal growth, electrospinning, and polyol synthesis.

2.2 Fabrication strategies of NW-based memristive devices
Memristive devices are realized by sandwiching an insulator layer (also termed as active

material) in between two metal electrodes to form a metal-insulator-metal (MIM) struc-

ture as schematized in Fig. 2A [5]. In this framework, different device geometries such as

the common bottom electrode structure and cross-point devices have been reported to

study resistive switching devices (refer to Ref. [25]). Also, memristive devices organized

in large-scale crossbar array architectures have been exploited for the implementation of

efficient in-memory and brain-inspired computing paradigms directly exploiting physical

laws [10]. In case of NWs, different strategies can be adopted for the realization of

NW-based resistive switching devices. In case of single NWmemristive devices, the sin-

gle nanostructure (acting as the active material for switching) is usually contacted by

means of metal electrodes in a planar structure as schematized in Fig. 2B. A different strat-

egy consists instead in contacting a NW array, where metal electrodes contacts multiple

NWs in parallel as schematized in Fig. 2B. Despite the ease of this fabrication process

(usually the bottom electrode is realized by directly contacting the growth substrate),

the multiple NWs in parallel make difficult to unveil the localization of the switching

mechanism. As an alternative, memristive devices can be realized by considering NW

networks as schematized in Fig. 2D. While single-NW-based devices represents suitable

model systems for localizing and investigating physicochemical phenomena underlaying

memristive functionalities as discussed in following Sections 4 and 5, NW networks can

be exploited for the realization of memristive architectures for the implementation of

unconventional type of computing paradigms as discussed in Section 4.

2.3 ECM mechanism
The memristive behavior based on electrochemical metallization switching mechanism

rely on the electrochemical dissolution and subsequent deposition of metal atoms from an
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active metal electrode under the action of an applied electric field to form a conductive

filament bridging the two electrodes [26,27]. In this case, the memristive cell is realized

by sandwiching an active material in between an electrochemical active metal electrode

(usually Ag or Cu) and an inert electrode. The ECM switching mechanism described in

the following is schematized in Fig. 3A. Initially, the memristive cell is in a high resistance

state (HRS) due to the insulating nature of the switching material. When a positive volt-

age is applied to the active electrode (represented in blue in Fig. 3A), anodic dissolution of

metal atoms occurs according to the reaction:

M ! Mn+ + ne�

Then, drift of metal ions occurs across the insulating layer toward the counter elec-

trode under the action of the applied electric field. Then, reduction and deposition of

metal ions occur at the inert counter electrode according to the reaction:

Mn+ + ne� ! M

Fig. 2 Schematization of NW-based memristive device fabrication strategies. (A) Conventional
memristive devices where an active material is sandwiched in between two metal electrodes.
Memristive devices based on (B) Single NWs, (C) NW arrays, and (D) NW networks. (Adapted with
permission from G. Milano, S. Porro, I. Valov, C. Ricciardi, Adv. Electron. Mater. 5 (2019) 1800909.
Copyright 2019, Wiley-VCH.)
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The electrocrystallization and deposition of these metal ions are responsible for the

formation of a metallic filament bridging the two electrodes, changing the device resis-

tance to a low resistance state (LRS). This causes a current jump in the I-V plane during

the SET transition. Note that during SET, a current compliance is usually externally

imposed to the device to prevent a full breakdown of the cell. The change of resistance

is reversible, since the initial HRS can be restored when an opposite polarity is applied to

the active electrode, causing a so-called RESET process. This mechanism results in a

bipolar switching mechanism with the typical pinched hysteresis loop in the I-V plane.

It is worth noticing that, before SET/RESET operations, the device usually undergoes

an electroforming process to initially establish the conductive filament.

An example of an ECM cell based on a single NW is reported in Fig. 3B, where a

single crystalline ZnO NWs is contacted by an Ag and a Pt electrode [28]. In the pristine

Fig. 3 Electrochemical metallization switching mechanism (ECM) in single NWs. (A) Schematic
representation of the working principle of an ECM cell, where the bipolar switching mechanism that
relies on the formation and rupture of a conductive filament bridging the two electrodes results in the
pinched hysteresis loop in the I-V plane. The electrochemically active electrode metal is represented in
blue. (B) SEM image of an ECM cell based on single NWs, where a single ZnO NW is contacted by an
electrochemical active Ag electrode and an inert Pt electrode. (C) Bipolar resistive switching
characteristics of Ag/ZnO NW/Pt devices with multilevel storage capability obtained by modulating the
compliance current (CC) externally imposed to the device. (D) SEM image after resistive switching,
showing the presence of Ag nanoclusters along the ZnO NW surface. (E) TEM image of a NW cross-
section obtained by cutting the NW in the electrode spacing after resistive switching and corresponding
(F) Zno and (G) Ag EDS maps. (Panels B–G adapted from G. Milano, M. Luebben, Z. Ma, R. Dunin-
Borkowski, L. Boarino, C.F. Pirri, R. Waser, C. Ricciardi, I. Valov, Nat. Commun. 9 (2018) 5151 under the terms
of Creative Commons Attribution 4.0 License.)
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state, the electron flow in these devices is regulated by the ZnO NW resistance in com-

bination with two back-to-back Schottky diodes created at the metal-semiconductor

interface [29]. When electrical stimulated, the single-NW-based resistive switching

device is characterized by an analog resistive switching behavior, where the LRS of

the device can be tuned depending on the externally imposed compliance current as

reported in Fig. 3C. This analog behavior can be exploited for multilevel storage. More

importantly, the device represents a suitable model system for localizing the switching

mechanism. Indeed, while the conductive filament is usually buried in the sandwich

structure of conventional devices based on thin films, in this case, the conductive path

composed of Ag nanoclusters is highly localized on the crystalline surface of the ZnO

NW as can be observed in Fig. 3D–G by means of SEM and TEM analyses. The high

localization of the conductive filament is here related to the higher mobility of Ag ions

on the surface compared to the bulk and to the absence of spatial constrictions. Also,

these devices can be exploited as model systems for the comprehension of the effect of

competing redox processes (such as the effect of humidity) that influence not only the

electronic conduction mechanism [30] but also memristive device functionalities [31].

Note also that resistive switching phenomena based on the migration of Ag ions was

observed by considering Na, Ga, and Sb-doped single ZnO NWs [32,33]. Similarly,

ECM mechanism in single-crystalline ZnO NWs was reported by considering a Cu

active electrode, resulting in the formation of a Cu-based conductive filament

[34–36]. The migration of Cu ions from the metal electrode was reported also in

NW arrays, where ZnO NWs coated by a polyacrylic acid was reported to exhibit mul-

tiple resistance states, thanks to changes in surface states induced by redox reactions at

NW surfaces [37].

2.4 VCM mechanism
The valence change mechanism (VCM) is related to the migration of oxygen-related

ionic defects in metal-oxide insulator matrices [38]. The VCM switching mechanism

described in the following is schematized in Fig. 4A. A positive voltage is applied to a

metal electrode results in the creation of an abundance of oxygen vacancies according

to the exchange reaction:

OO.VO
�� + 2e0 + 1

2
O2 gð Þ

where, according to the Kr€oger-Vink notation, OO are oxygen ions in regular lattice sites

while VO
�� are oxygen vacancies. The oxygen vacancy defects migrate under the action

of the applied electric field forming a conductive filament of reduced metal-oxide phase

in correspondence of the SET process, turning the device to a low resistance state (LRS).

Similarly, to ECM cells, also in this case an externally applied compliance, current is usu-

ally exploited to avoid a hard breakdown of the device during the SET operation. The

initial high resistance state (HRS) can be then restored by applying an opposite polarity
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that induces a migration in the opposite direction of oxygen vacancies inducing a RESET

process.

An example of a VCM memristive cell based on single NWs is reported in Fig. 4B,

where a single NiO nanowire is contacted by means of Au/Ti electrodes [39]. In this

case, the switching from the HRS to a LRS was reported to be induced by applying

the same polarity to the electrodes (unipolar switching mechanism) and was suggested

to be related to the NW microstructure with the presence of grain boundaries along

the NW and/or Ni defects. Similarly, to ECM cells, NWs have been reported to be suit-

able model systems for the investigation of the VCM switching mechanism. Indeed, the

high localization of the switching events allows direct in situ analysis of morphological

changes and local chemical composition during resistive switching [40,41]. In this frame-

work, the peculiar planar structure of VCM single NW cells have been exploited for

investigating the intrinsic mechanism of switching including (i) the influence of chemical

reaction with surroundings by means of atmosphere controlled measurements, (ii) the

identification of the carrier type of the conductive filament thanks to field effect measure-

ments and (iii) the analysis of switching location through multiprobe measurements

[42,43]. Also, note that a VCM type of resistive switching was observed also in case

of memristive devices based on NW arrays, where in case of ZnO NWs the switching

was reported to be located in a ZnO thin layer in between the growth substrate acting as a

bottom electrode and vertically aligned NWs [44,45]. It is worth noticing also that, by

taking into advantage of the high surface-to-volume ratio of NWs, the switching mech-

anism of both single NWs and NW arrays has been reported to be modified and/or

enhanced by specific surface treatments/functionalization [46–49] and by light stimula-

tion [50,51].

Fig. 4 Valence change switching mechanism (VCM) in single NWs. (A) Schematic representation of the
working principle of an VCM cell, where the switching mechanism that relies on the migration of
oxygen-related ionic defects in metal-oxide insulator matrices results in the pinched hysteresis
loop in the I-V plane. (B) SEM image of a VCM cell based on single NWs, where a single NiO NW
was contacted by Au/Ti electrodes and (C) its resistive switching behavior (SET process in red,
RESET in black). (Panels B and C adapted from S.I. Kim, J.H. Lee, Y.W. Chang, S.S. Hwang, K.-H. Yoo,
Appl. Phys. Lett. 93 (2008) 033503. Copyright 2008, American Institute of Physics.)
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3. Single nanowire memristor as artificial synapse

The physical mechanism of switching described in previous Sections 2.3 and 2.4 can be

exploited for the realization of artificial synapses for neuromorphic systems by taking into

advantage of the analog behavior of memristive devices [52–55]. The synaptic function-
alities shown to be emulated in memristive devices include potentiation and depression,

long-term and short-term plasticity (STP and LTP), spike rate-dependent plasticity

(SRDP), and spike time-dependent plasticity (STDP) [55].

Thanks to the possibility of programming the device in a wide range of resistance

states in an analog fashion, single TiOx NW devices have been exploited for the emu-

lation of synaptic plasticity processes such as STDP and Hebb’s rule [56]. In this case, the

synaptic weight (i.e., the capacity of a synapse to transmit a signal) is emulated by the

single NW device conductance that was modulated by means of voltage pulses applied

to presynaptic and postsynaptic metal electrodes. Similar devices have been shown to be

programmable with heterogeneous stimuli since the conductance can be modulated not

only by electrical stimuli but also through optical pulses, allowing the implementation of

associative memory effects as reported by O’Kelly et al. [57].

By exploiting ECM type of switching, single ZnO NWs have been considered for

mimicking STP effects typical of biological synapses [28,58]. In biological synapses,

STP effects are regulated by Ca2+ dynamics that can be emulated by exploiting Ag+

dynamics on the crystalline NW surface, as depicted in Fig. 5A and B. In brief, when

electrical stimuli reach the presynaptic terminal of a biological synapse lead the opening

of voltage-dependent Ca2+ channels leading to an influx of Ca2+ ions inside the neuron

terminal. This causes an enhanced synaptic transmission as a consequence of the release of

neurotransmitters in the synaptic cleft. Subsequently, after the end of the stimulus, the

basal intracellular concentration is restored by extrusion of Ca2+ ions. In the single

NW artificial synapse, an electrical stimulation leads to the migration of Ag+ ions along

the NW surface that, under proper stimulation conditions, is responsible for a gradual

increase of the device conductivity (synaptic weight) as a consequence of the progressive

formation, rearrangement, and reinforcement of the conductive filament bridging the

electrodes. The extrusion process after the end of stimulation is instead emulated by

the spontaneous dissolution over time of the previously formed Ag conductive filament

due to interfacial energy minimization effects and electromotive forces. The gradual

enhancement of the NW-based device conductance under stimulation and subsequent

spontaneous relaxation to the ground state is reported in Fig. 5C, where the time constant

of relaxation is observed to be �23ms. Ionic dynamics in these devices can be exploited

for the emulation of Paired Pulse Facilitation (PPF), a feature of STP in biological syn-

apses related to the progressive enhancement of the synaptic transmission under tempo-

rally correlated stimuli. The emulation of PPF in single NWs is reported in Fig. 5D,

where the device conductance (current) can be observed to gradually increase over

pulses. Due to the interplay between conductive path formation and spontaneous relax-

ation, the percentage of the conductance change (Δw) can be increased by reducing the
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Fig. 5 Single NW-based memristive device as artificial synapse. Analogy between (A) a biological
synapse and (B) an artificial synapse by exploiting similarities in between Ca2+ dynamics and Ag+

dynamics. (C) Short-term plasticity effect in a single ZnO NW device, where electrical stimulation
results in a gradual increase of device conductivity (current), while a spontaneous relaxation to the
ground state occurs after stimulation (detail of relaxation as inset). (D) PPF in a single ZnO NW
memristive device and (E) the dependence on the change of conductivity (Δw) on the time in
between pulses. (F) Dependence of PPF on the pulse frequency. PPF occurs when the device is
stimulated with temporally correlated stimuli (high-pulse frequencies), with subsequent
spontaneous relaxation to the ground state when the stimulation frequency is reduced. (All panels
adapted from G. Milano, M. Luebben, Z. Ma, R. Dunin-Borkowski, L. Boarino, C. F. Pirri, R. Waser, C.
Ricciardi, I. Valov, Nat. Commun. 9 (2018) 5151 under the terms of Creative Commons Attribution 4.0
License.)
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time in between pulses (twait), as reported in Fig. 5E. In this framework, note that only

highly temporally correlated pulses (high-pulse frequencies) lead to PPF, since the stim-

ulation with low-pulse frequencies results in negligible variation of device conductivity as

reported in Fig. 5F. Here, the device spontaneously relaxes back to the ground state when

the pulse frequency is reduced after inducing PPF with high-frequency voltage pulses.

4. Nanowire random networks as artificial neural networks

Memristive devices realized with a top-down approach and organized in large crossbar

arrays have been exploited for the realization of artificial neural networks (ANNs) able to

implement supervised and unsupervised learning paradigms [10]. However, the topology

and adaptability of these grid-like crossbar architectures, where implementation of learn-

ing schemes requires the addressing of single network elements, strongly differ from bio-

logical neural networks. Indeed, in biological neural networks, an emergent behavior

arises from complexity and is intrinsically related to the interplay between structure

and function, both governed by the principle of self-organization [59]. Indeed, human

cognitive functions that allow us to receive, store, transform, and process information we

receive from external stimuli rely on the human brain complex network where an emer-

gent behavior arises from the interaction of 1011 neurons connected by means of 1014

synapses [59]. In this scenario, biologically plausible artificial neural networks based on

self-organized NW networks have been proposed as a platforms for neuromorphic type

of data processing and bio-inspired computing.

The realization of ANNs based on self-organized NWs is in agreement with the con-

cept of “nanoarchitectonics” as a new paradigm of materials science and technology at the

nanoscale, as conceived by M. Aono and K. Ariga where [60]:

i. nanomaterials and nanosystems are realized by organizing nanoscale structures

(nanoparts) even with some unavoidable unreliability;

ii. main players are not the individual nanoparts but their interactions, which cause a

new functionality to emerge; and

iii. unexpected emergent functionalities can result from assembling or organizing a

huge number of nanoparts.

In the following, the realization of neuromorphic architectures based on self-organizing

NWs is discussed by analyzing the NW network topology and the emergent behavior

arising from complexity, discussing how these nanoarchitectures can be exploited for

the emulation of synaptic plasticity effects typical of biological neuronal circuits and

for the implementation of unconventional computing paradigms.

4.1 Nanowire network topology
With the aim of emulating biological neuronal circuits (Fig. 6A) where the principle of

self-organization governs both structure and functions, metallic NWnetworks have been
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Fig. 6 See legend on next page
(Continued)
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created by exploiting self-assembling techniques. NW random networks can be fabri-

cated by means of a drop-casting techniques through the dispersion of metallic core-

insulating shell NWs in solution on a substrate [61,62], obtaining highly interconnected

NW networks of metal-insulator-metal junctions as shown in Fig. 6B and C. In this case,

the NW density of the network can be controlled by appropriately tuning the NW con-

centration in the drop-casted solution. Importantly, this represents a simple and low-cost

fabrication technique that does not require cleanroom facilities and nanolithography.

Alternatively, NW networks can be fabricated by combination of top-down standard

CMOS photolithography with bottom-up self-assembly through electroless deposition

to realize complex networks as shown in Fig. 1D [63–65]. In this case, self-assembly of Ag

NW structures proceeds from copper seeds that have to be priorly patterned. In this case,

a subsequent sulfurization process with a carrier gas have to be exploited for the realiza-

tion of Ag-Ag2S-Ag metal-insulator-metal junctions. Acting as a complex network of

atomic switches, this kind of network is usually referred as “Atomic Switch Networks.”

The NW network can be considered as a complex system where the topology can be

analyzed through the graph theory approach. In their work, A. Loeffer et al. [66]

simulated the self-assembling of NWs by randomly placing 1D objects within a 2D plane.

The system connectivity was mapped onto a graph adjacent matrix where nodes

correspond to NWs, while edges corresponds to NW junctions. Then, they applied

cartographic approaches to compare neuromorphic NW network structural topology

with random Watt-Strogatz (WS) networks, grid-like Watt-Strogatz networks, and

Fig. 6, cont’d Nanowire network topology. (A) Biological neural network (primary mouse
hippocampal neurons) where a multitude of synaptic contacts (bright fluorescent boutons at the
contact points) provide high connectivity in between neurons and (B) SEM image of a biologically
inspired NW network realized by drop-casting Ag NWs on an insulating substrate (scale bar,
500nm). (C) Optical image of a nanowire networks after drop-cast deposition (scale bar, 100μm).
(D) Atomic switch network of highly interconnected Ag nanowires realized by self-assembling
through electroless deposition. (E) Watts and Strogatz cartographic plane showing the relation
between the global clustering coefficient and global mean path length of NW networks. Large dots
represents 39 NW networks of different parameters, where colors represents the network size
(number of NWs). Small dots are Watts-Strogatz networks, rewired from completely random (β¼1)
to grid-like (β¼0) where β values decrease from bottom to top. The large yellow square represents
the C. elegans network, while the large pink triangle represents a 500-node fully connected ANN.
((A) and (B) Adapted from G. Milano, G. Pedretti, M. Fretto, L. Boarino, F. Benfenati, D. Ielmini, I.
Valov, C. Ricciardi, Adv. Intell. Syst. 2 (2020) 2000096 under the terms of Creative Commons Attribution
4.0 License. (C) Adapted from A. Diaz-Alvarez, R. Higuchi, P. Sanz-Leon, I. Marcus, Y. Shingaya, A.Z.
Stieg, J.K. Gimzewski, Z. Kuncic, T. Nakayama, Sci. Rep. 9 (2019) 14920 under the terms of Commons
Attribution 4.0 License. (D) Adapted from H.O. Sillin, R. Aguilera, H.-H. Shieh, A.V. Avizienis, M.
Aono, A.Z. Stieg, J.K. Gimzewski, Nanotechnology 24 (2013) 384004, Copyright 2013, IOP Publishing.
(E) Adapted from A. Loeffler, R. Zhu, J. Hochstetter, M. Li, K. Fu, A. Diaz-Alvarez, T. Nakayama, J.M.
Shine, Z. Kuncic, Front. Neurosci. 14 (2020) https://doi.org/10.3389/fnins.2020.00184 under the terms of
Creative Commons Attribution 4.0 License.)
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the C. elegans biological system. This comparison was performed by considering graph

metrics such as the mean path length and the clustering coefficient, as reported in

Fig. 6E. While the path length measures the average number of edges along the shortest

paths for all possible pairs of network nodes, the clustering coefficient measures how

much nodes in a graph tend to cluster together. NW networks are characterized by

higher clustering and longer mean path length than WS random networks while they

are less clustered and characterized by shorter path lengths than grid-like WS networks.

Large NW networks have similar mean path length respect to the C. elegans but higher

clustering. More importantly, NW networks possess relatively low path length and high

clustering, falling in the “small-world” category similarly to biological neural networks.

In this case, the majority of edges are involved in forming small and densely connected

clusters whereas the remaining edges are involved in maintaining connections between

these clusters. Empirical evidences support the argument that the “small world” archi-

tecture contributes to the robustness and efficiency of information transfer in complex

networks, including our brain [67,68].

4.2 Memristive behavior of single network elements
The neuromorphic emergent behavior of the NW networks relies on the memristive

mechanisms occurring in NW network elements. Indeed, the change of conductance

in single memristive elements is responsible for redistribution of current/voltage across

the network giving rise to collective phenomena. In this framework, the neuromorphic

emergent behavior of the network has been reported to be related to resistive switching

events occurring in single NW junctions (“reweighting” effect) and single NWs

(“rewiring” effect), as discussed in the following.

4.2.1 “Reweighting” effect in single NW junctions
The reweighting effect relies on the change of conductivity of NW junctions when a

voltage difference is present across intersecting NWs. This mechanism can be investi-

gated by considering single NW junction devices as reported in Fig. 7A [61]. Depending

on the NW core and shell materials, this memristive behavior at the nanowire intersec-

tion can be ascribed to VCM or ECM resistive switching mechanisms. Cross-point junc-

tions realized with intersecting NWs with an electrochemically inert metal core and

surrounded by a metal-oxide layer exhibit a resistive switching mechanism that is related

to the migration of oxygen-related species in the metal-oxide insulating layer to form a

substochiometric conductive pathway connecting the metallic cores according to the

VCM mechanism. This type of switching mechanism related to the formation/rupture

of an oxygen-related conductive filament was reported in case of cross-point junctions of

Ni-NiO core-shell NWs [69–71]. In case of NWs with an electrochemically active core,

the switching mechanism occurs according to the ECM mechanism. In this case, a volt-

age difference in between metallic cores of intersecting NWs is responsible for the
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Fig. 7 Memristive behavior of NW network elements. (A) Single Ag NW cross-point junction device (SEM image, scale bar of 10 μm) and (B) schematic
representation of the memristive mechanism of reweighting at the intersection in between NWs. (C) Pristine state of different single NW junction
devices where the mechanical stochasticity of the contact is responsible for the high resistance variability and (D) resistive switching behavior
under voltage sweep stimulation. (E) Single NW device (SEM image, scale bar of 10μm) and (F) schematic representation of the memristive
mechanism of rewiring in the NW gap after breakdown. (G) Breakdown of a single NW device showing a drop in current due to the creation of a
nanogap (SEM image of a created nanogap as inset, scale 100 nm) and (H) resistive switching behavior of the breakdown-induced nanogap in a
single NW. (All panels adapted from G. Milano, G. Pedretti, M. Fretto, L. Boarino, F. Benfenati, D. Ielmini, I. Valov, C. Ricciardi, Adv. Intell. Syst. 2 (2020)
2000096 under the terms of Creative Commons Attribution 4.0 License.)



dissolution of the metallic core to form metal ions that starts to migrate across the insu-

lating shell layer at the NW junction to form a metallic conductive filament bridging the

cores of intersecting NWs, as schematized in Fig. 7B in case of Ag NWs surrounded by a

PVP shell layer. The formation/rupture of this metallic filament under electrical stimu-

lation is responsible for the memristive behavior of these cross-point junctions. An

important aspect is that experimental results on Ag NWs revealed that cross-point junc-

tion devices exhibit a wide range of pristine state resistances as a consequence of the

mechanical stochasticity of the contact in between NWs, as reported in Fig. 7C [61].

However, these cross-point devices show resistive switching characteristics as reported

in Fig. 7D [61]. By considering similar Ag NW junctions, Manning et al. [72] showed

that the conductivity of NW junctions can be programmed to different conductance

states depending on the imposed compliance current, showing the analog behavior of

these cross-point devices. It is also important to remark that the symmetric structure

of the junction results in the possibility of forming a conductive filament by applying both

voltage polarities to inner cores of intersecting NWs [61].

4.2.2 “Rewiring” effects in single NWs
The rewiring effect rely on the rupture and rewiring that can occur in single NWs com-

posing the network under electrical stimulation. This mechanism can be observed by

considering single NW devices as reported in Fig. 7E [61]. The electrically induced rup-

ture of NWs is related to Joule heating and electromigration-driven electrical breakdown

events that are responsible for the creation of a needle-like nanogap. Then, rewiring can

occur by regenerating the electrical connection through electromigration phenomena

involving the formation of a conductive pathways across the nanogap. The rupture/

rewiring phenomena is schematized in Fig. 7F in case of Ag NWs surrounded by a

PVP shell layer. The corresponding electrical breakdown characteristic is reported in

Fig. 7G where it is possible to observe a sudden drop of current related to the creation

of a nanogap across a single Ag NW. After the nanogap formation, resistive switching

behavior related to electrically induced rupture/rewiring of the nanogap can be observed

as reported in Fig. 7H [61].

4.3 Emergent dynamics
Reweighting and rewiring effects related to resistive switching occurring in single NW

junctions and single NWs at the nanoscale and the mutual interaction in between these

memristive elements give rise to an emergent behavior of the network at the mascroscale.

Indeed, when a voltage difference is applied to any two connected areas of the network,

the current is distributed according to the Kirchhoff’s laws and is regulated by the con-

ductivity of each memristive element of the network. Changes in the conductivity of

memristive elements upon electrical stimulation are responsible for a redistribution

of current and voltage across other network elements with a consequent cascade of
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conductance changes of connected memristive elements. These cascade effects are

responsible for the emergence of a nonlinear memristive response of the network, as

shown in Fig. 8A that reports the memristive hysteretic loop in the I-V plane under elec-

trical stimulation in between two areas of an Ag NW network [61].

The emergent memristive dynamics of the networks are related to an avalanche of

conductance changes in network elements that are responsible of spatially correlated

structures of network activity. A direct experimental visualization of the emergence of

a conductive pathway in Ag NW networks under electrical stimulation was performed

byManning et al. [72] bymeans of passive voltage contrast. By using this technique, NWs

that are participating to the conductive pathway appear to be darker than NWs that are

less relevant for the network conductivity. As can be observed from Fig. 8, unperturbed

NWs (not electrically stimulated) do not show significant contrast in between NWs.

However, by stimulating the network with a current compliance of 50nA, it is possible

to observe the emergence of a conductive pathway composed of darker NWs that bridge

the two electrodes. This conductive pathway results to be reinforced by increasing the

flowing current. As discussed by Manning et al. [72], electrical stimulation of random

networks is responsible for the establishment of “winner-takes-all” conductive pathways

that represent the lowest possible energy connectivity pathway across the network. In this

case, the memory state is encoded in specific connectivity pathways similarly to biological

systems. It is important to remark that in the limit of sufficiently low input currents

(before the establishment of the “winner-takes-all” regime), O’Callaghan et al. [73]

reported that the system behaves as a leakage capacitive network where NW junctions

behave like capacitors.

Direct visualization of the formation of a conductive pathway by means of the lock-in

thermography technique was reported also by Q. Li et al. [74] in case of Ag NWs dec-

orated with TiO2 nanoparticles. In this case, the square-wave-modulated input voltage

used to stimulate the networkwas also used as a reference for synchronization with the IR

camera to provide lock-in operation of the system. Fig. 8C reports the optical image of

the device (topography), the corresponding lock-in amplitude, and the phase images that

were acquired simultaneously. As can be observed from the lock-in amplitude image, a

trace can be observed in between stimulating electrodes as a consequence of the IR radi-

ation of NWs and NW junctions due to Joule heating effects that occur mainly in cor-

respondence of the main current pathway. The phase image allows to distinguish in

between different processes contributing to the thermal image. Indeed, radiation emis-

sion related to direct power dissipation due to Joule heating is responsible for a radiation

that is in phase with the current, while a delay in the emission is expected in case of dif-

fusive processes. As can be observed, a nearly zero phase region can be observed in cor-

respondence of the main trace observed by lock-in amplitude, meaning that radiation is

here emitted locally and directly within the current transmission pathway.
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Fig. 8 Emergent dynamics of NWnetworks. (A) Emergentmemristive behavior of an AgNWnetwork in
two-terminal configuration (as schematized in the inset) under voltage sweep stimulation. (B) Direct
visualization of the conductive pathway across an Ag NW network by passive voltage contrast SEM
images. Images were acquired on the same network that was stimulated by means of I-V sweeps
with different limiting current compliances in between the two metal contacts. (C) Direct
visualization of the conductive pathway during electrical stimulation by means of lock-in
thermography in Ag-TiO2 core-shell NW networks. (D) Visualization of conductive pathways and
local stimulation of an Ag NW network through C-AFM. Current maps are the results of applying
voltage pulses in between selected regions marked 1–5 in the topographic map and an electrode
located at the top of the image. ((A) Adapted from G. Milano, G. Pedretti, M. Fretto, L. Boarino, F.
Benfenati, D. Ielmini, I. Valov, C. Ricciardi, Adv. Intell. Syst. 2 (2020) 2000096 under the terms of
Creative Commons Attribution 4.0 License; (B) Adapted from H.G. Manning, F. Niosi, C.G. da Rocha, A.T.
Bellew, C. O’Callaghan, S. Biswas, P.F. Flowers, B.J. Wiley, J.D. Holmes, M.S. Ferreira, J.J. Boland, Nat.
Commun. 9 (2018) 3219 under the terms of Creative Commons Attribution 4.0 License; (C) Adapted
with permission from Q. Li, A. Diaz-Alvarez, R. Iguchi, J. Hochstetter, A. Loeffler, R. Zhu, Y. Shingaya, Z.
Kuncic, K. Uchida, T. Nakayama, Adv. Funct. Mater. 30 (2020) 2003679. Copyright 2020, Wiley-VCH;
(D) Adapted with permission from P.N. Nirmalraj, A.T. Bellew, A.P. Bell, J.A. Fairfield, E.K. McCarthy, C.
O’Kelly, L.F.C. Pereira, S. Sorel, D. Morosan, J.N. Coleman, M.S. Ferreira, J.J. Boland, Nano Lett. 12 (2012)
5966. Copyright 2012, American Chemical Society.)
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The emergent behavior of the network can be explored also bymanipulating the con-

nectivity at the nanoscale by means of conducting atomic force microscopy (C-AFM) as

reported by Nirmalraj et al. [75]. For this purpose, authors employed a metal-coated

AFM probe as a mobile nanoscale electrical contact to acquire simultaneously topo-

graphic and conductance maps, with the possibility also to locally stimulate the NW net-

work. As reported in Fig. 8D, it is possible to observe changes in the network

conductance map after electrical stimulation of five different selected regions indicated

in the topographic map as a consequence of the local activation of conductive pathways

after stimulation. Additional experimental techniques that can be explored for spatial

mapping variations of conductivity under electrical stimulation include electrical resis-

tance tomography (ERT) [76,77].

It is worth noticing also that the dynamics of these networks can be theoretically

explored through information-theoretic metrics such as the transfer entropy (TE) and

the active information storage (AIS) that allow to investigate the dynamical information

flow across the network abstracted as a graph [78].

4.4 Synaptic plasticity in NW networks
The emergent adaptive behavior of memristive nanowire networks under external stim-

ulation has been exploited for the emulation of plasticity effects typical of biological sys-

tems including short-term and long-term synaptic plasticity, structural plasticity, and

homosynaptic/heterosynaptic plasticity as discussed in the following.

4.4.1 Short-term and long-term synaptic plasticity
Short-term synaptic plasticity (STP) has been reported to be emulated in Ag NW net-

works by exploiting the volatile behavior of the conductive path due to the spontaneous

dissolution of Ag conductive filaments previously formed in memristive elements of the

network [61,62]. In this framework, the short-term dynamics were observed by applying

a voltage pulse stimulation to the network and subsequently recording the time trace of

network conductance over time. As can be observed from Fig. 9A, the stimulation with a

voltage pulse in between two pads (that emulate presynaptic and postsynaptic neuron

terminals) is responsible for a gradual increase of the network conductance (facilitation).

After stimulation, the synaptic weight gradually relaxes back to the initial ground state

exhibiting a volatile behavior. These short-term plasticity dynamics can be controlled

by modulating the stimulation amplitude, since a higher voltage pulse amplitude is

responsible for a more intense network potentiation and longer relaxation over time.

These short-term plasticity dynamics related to the formation and progressive dissolution

of a conductive pathway in between two network electrodes can be exploited for the

emulation of synaptic functionalities such as paired-pulse facilitation (PPF). As reported

in Fig. 8B, network stimulation by means of voltage pulses applied within short time

intervals leads to a gradual enhancement of the network conductivity as a function of

the number of pulses while, after stimulation, the network spontaneously relaxes back
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Fig. 9 Synaptic plasticity effects in NW networks. (A) Short-term synaptic plasticity effect of Ag NW networks measured in two-terminal configuration
showing a gradual increase in conductance (synaptic facilitation) after voltage pulse stimulation and subsequent conductance relaxation. A higher
facilitation was observed by stimulating the network with voltage pulses with higher amplitude. (B) Paired-pulse facilitation (PPF) in Ag NW
networks (left panel) and subsequent spontaneous relaxation (right panel). The inset shows the change in the synaptic weight (Δw) after 100
pulses as a function of the applied pulse amplitude. (C) Multiterminal configuration of an Ag NW network where electrodes represent neuron
terminals, (D) corresponding biological representation of the device where synaptic interactions lead to heterosynaptic plasticity effects with
synaptic changes also in nondirectly stimulated synapses and (E) correlation maps of resistance variation (ΔR) in synaptic pathways after
stimulation of synaptic pathway I–II (highlighted in blue) experimentally showing heterosynaptic plasticity effects. The resistance variation was
calculated as ΔR¼�(Rpost_stimulus�Rpre_stimulus), thus the variation of ΔR has to be intended as a decrease of the resistance of the synaptic
pathway after stimulation. (All panels adapted from G. Milano, G. Pedretti, M. Fretto, L. Boarino, F. Benfenati, D. Ielmini, I. Valov, C. Ricciardi, Adv. Intell.
Syst. 2 (2020) 2000096 under the terms of Creative Commons Attribution 4.0 License.)



to its initial ground state. The synaptic weight change (Δw) after PPF and subsequent

relaxation time can be modulated by properly tuning the voltage pulse amplitude. Also,

it was demonstrated that networks can preserve information from previously stimulated

pathways through increased local junction connectivity, reshaping and altering the for-

mation of other conductive pathways when the network is subsequently stimulated in

different locations [74]. This leads to an interaction of short-term and long-lasting effects

(long-term synaptic plasticity) [74].

4.4.2 Structural plasticity
In addition to weight plasticity that rely on the weight change of connections in between

already existing connections of the neural network, the connectivity of the system can be

altered by means of the formation and elimination of new connections. This form of plas-

ticity that includes synapse formation/elimination is referred as wiring or structural plas-

ticity, a plasticity effect that can affect encoding of learned information in biological

systems [54,79]. This synaptic behavior can be emulated in NW networks by exploiting

the rewiring effect occurring in single NWs as previously discussed. While reweighting

effects occurring in NW junctions are responsible for a change of the synaptic connec-

tivity of network junction, the rewiring effect can be exploited for the elimination/for-

mation of new connections thus emulating wiring plasticity as demonstrated in case of Ag

NWs [61]. It is important to remark that this type of plasticity it is hardly implementable

in conventional memristive architectures realized with a top-down approach that is char-

acterized by fixed connections.

4.4.3 Homosynaptic and heterosynaptic plasticity
While homosynaptic plasticity is input-specific and depends on the direct stimulation of

neuron terminals of a specific synapse, when a direct stimulation of a synapse leads to the

variation of the synaptic strength also in other nondirectly stimulated synapses, it is

referred as heterosynaptic plasticity. In biological systems, this form of plasticity has been

reported to contribute to the homeostasis and stability of the network [80]. By exploiting

the functional connectivity of the system, heterosynaptic plasticity was demonstrated in

NWnetworks in multiterminal configuration [61] as depicted in Fig. 9C, where each pad

represents a neuron terminal. The corresponding biological representation of the system

is reported in Fig. 9D, where the connection in between any pair of neuron terminal pads

represents a synaptic pathway. In this configuration, the intrinsic heterosynaptic plasticity

is related to the collective response of the network to external stimulation. As an example,

Fig. 9E shows the correlation map of resistance variations (ΔR) (that represents the
change of the synaptic connection) across the network after direct stimulation of neuron

terminal pads I and II (synapse I–II) of the network reported in Fig. 9A. As can be

observed, the direct potentiation of synapse I–II results not only in a variation of the syn-
aptic strength of synapse I–II but also of other nonstimulated synapses. More in details,
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larger changes were observed in synaptic pathways directly connected to directly stim-

ulated terminals I and II (synapse I–III, I–IV, I–V, II–III, II–IV, II–V) while the strength
of spatially distant synaptic pathways (synapse III–IV, III–V, IV–V) remained almost

unaltered. This shows that the resistance of synaptic pathways results to be poorly influ-

enced by peripheral changes in the network connectivity, showing a dependence of het-

erosynaptic behavior on the spatial location of the primary plasticity effect.

4.5 Criticality and avalanches effects
The human brain complex network has been proposed to operate at a self-organized crit-

ical point to optimize the information transfer, information processing, and memory

[81,82]. At the critical point, complex networks of coupled nonlinear elements are char-

acterized by scale-invariant avalanches effects where each event is likely to trigger sub-

sequent events as reported in a wide range of physical systems from magnetization to

earthquakes [83]. Near criticality, complex networks embracing complexity in the net-

work dynamics have been argued to maximize their computational performance [84].

Emergent criticality was reported by A. Stieg et al. [85] in Ag-NW-based atomic

switch networks by observing the current response of the complex nanonetwork under

voltage pulse stimulation. In particular, the current response was observed to fluctuate

through a wide range of metastable conductance states that were associated to distinct

and discrete network configurations. These discrete configurations were classified by

considering the residence time of given resistance states (where considered metastable

all the conductance states with persistence time that exceeds the measurement band-

width). The observed fluctuations of conductivity under stimulation can be attributed

to internal network dynamics. The probability of state duration and its likelihood have

been reported to be related by a power law distribution. Together with the observation of

a spatially distributed network activity, the temporal correlation of metastable states with

power law scaling for probability has been reported as fingerprints of critical dynamics of

the system. Pike et al. [86], in case of self-organized nanoparticle networks, reported that

criticality emerges in a parameter range where the network self-tunes to a state with an

optimal number of pathways through the network. In this framework,Mallison et al. [87]

reported that, in nanoparticle networks, sizes and durations of avalanches of switching

events are power law distributed with power law exponents in accordance with criticality

when fabricated at a percolating phase transition. All these works suggest that signals in

self-organized networks, if appropriately fabricated, are qualitatively and quantitatively in

accordance with signals measured in the cortex. In view of the implementation of com-

puting paradigms, it is worth noticing that Hochstetter et al. [88] reported in case of NW

networks that NW junctions switch collectively as avalanches and networks can be tuned

between ordered and chaotic dynamical regimes, where the edge-of-chaos regime was

observed to optimize information processing.
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5. Computing with nanowire random networks

Traditional computing architectures based on the von Neumann paradigm are at the base

of modern processors, where the computing capability has been largely increased during

last years by developing architectures with multiple cores and large memory caches. Also,

computing efficiency have been increased by reducing the memory access times and by

parallelizing computations. However, advances in computing capabilities continually

require device scaling, where the reduction in size is also related to the improvement

of costs and power consumption. In this framework, a huge amount of resources have

been invested in sustaining the scaling trend of transistors to sustain the ever-growing

demand of electronics and computing capabilities. However, increasing costs and inher-

ent fundamental physical limits represents nowadays a challenge for further scaling of the

transistor technology, making difficult to fulfill the Moore’s prediction of doubling the

number of transistor every 2years [89]. In this context, new computing paradigms and

new electronic devices are demanded to fulfill the ever-growing computing demand.

Among emerging computing paradigms, bioinspired computing aims to realize intel-

ligent systems able to emulate the efficiency and efficacy of the human brain. In this sce-

nario, nanowire-based nanoarchitectures have attracted growing attention as a platform

for the implementation unconventional computing paradigms such as reservoir comput-

ing. Differently from conventional computing architecture that suffers the so-called

“von-Neumann” bottleneck associated to the high costs of data movement between

the memory and the processing unit (Fig. 10A), complex nanowire networks have been

proposed as promising platforms for simultaneous processing of multiple inputs where the

output of the system can be then analyzed by a readout function (Fig. 10B). The concept

of computing in a classical computing architecture and in a complex network reservoir

are depicted in Fig. 10C and D, respectively. While in classical computing calculation

proceed sequentially, complex networks of interacting nano objects can combine and

process simultaneously various inputs to generate a new state of the system through a

complex transformation in accordance with the principle of “reservoir computing.”

Reservoir computing represents a unified computational framework derived from

Recurrent Neural Network (RNN) models such as liquid state machines (LSMs) [90]

and echo state networks (ESNs) [91]. Among Artificial Neural Networks (ANNs), while

Feedforward Neural Networks (FNNs) are mainly exploited for static (nontemporal)

data processing, RNNs can be exploited for dynamic (temporal) data processing by

exploiting their recurrent connectivity with feedback connections. A reservoir comput-

ing system can be divided in two unit sections, the first called “reservoir” and the second

named “readout.” [92] In the reservoir, temporal input signals are transformed into spa-

tiotemporal patterns in a new space that represents a nonlinear transformation of the

input. This projection of the temporal input signal is related to the dynamical evolution

of the reservoir state. Then, reservoir states are analyzed by the readout that is exploited to

generate the desired output of the system. Importantly, only the weights of the readout
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have to be trained while no training is required for weights of the recurrent connections

within the reservoir. For this reason, the main advantage of reservoir computing systems

is related to the significant reduction of the computational cost of learning [92,93].

Besides low training cost and fast learning, another advantage is represented by the high

versatility of these system. Indeed, since training occurs only at the readout, the same

Fig. 10 Comparison of computation in a classical computing architecture and in a complex network
reservoir. (A) In the conventional computation, data should be passed forward and backward in
between memory and processing units. This architecture intrinsically suffers from the so-called von
Neumann bottleneck. (B) Computation in a complex network reservoir where simultaneous inputs
are processed into a higher dimensional space that is then analyzed by means of a readout
function that perform classification. (C) Schematization of the conventional computing paradigm.
Here, calculation proceed sequentially, and each new input (blue figure) is delivered to memory
(green figure). Due to outdated instructions, earlier processes are unable to produce the desired
output and are inactive in the von Neumann bottleneck (red figures). Only when new instructions
arrive from memory, calculations can proceed toward the output (green figure on third floor).
(D) Schematization of computing in a complex network reservoir. Here, various inputs are
combined simultaneously to fill the waiting elevator. Due to mutual interactions, these inputs
undergo a complex transformation to generate a new state of the system when arrived at the
third floor (output). (Adapted with permission from A.Z. Stieg, A.V. Avizienis, H.O. Sillin, C. Martin-
Olmos, M. Aono, J.K. Gimzewski, Adv. Mater. 24 (2012) 286. Copyright 2020, Wiley-VCH.)
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reservoir can be in principle exploited for solving different tasks because of no interfer-

ence occurs among tasks during training [93].

Besides nonlinear dynamics, the main characteristic required for the reservoir unit is

the so-called echo-state property. This property refers the requirement of the reservoir

state to be expressed as a function of the previous input sequence only [93].

Acting as a physical reservoir, self-organized nanowire networks have been proposed

as dynamical systems for a physical implementation of reservoir computing taking into

advantage of the possibility of processing multiple spatiotemporal inputs in form of elec-

trical stimuli [61]. Here, the reservoir state is represented by the collective state of the

NW network elements. The high nonlinear dynamics of the reservoir can be provided

by the memristive response of the network to input stimuli, as previously discussed in

Section 4.3. Also, the short-term synaptic plasticity effects discussed in Section 4.4

can be exploited to meet the requirements of echo-state property, allowing the reservoir

state to depend mainly on recent-past inputs. A schematization of implementation of res-

ervoir computing in NW networks acting as physical reservoir is reported in Fig. 11.

In this context, Sillin et al. [64] demonstrated that an atomic switch network based on

NWs can be exploited as a pattern generating kernel in reservoir computing, where the

network response can be optimized by adjusting the network connectivity and input

gain. Following these principles, simulations have shown that reservoir computing

implemented in NW networks can be exploited for solving computing tasks including

pattern recognition and time series prediction [94,95]. In the framework of reservoir

computing, the computing capability was shown to be intrinsically related to the NW

topology. Indeed, simulations by Loeffer et al. [96] show that, while random networks

Fig. 11 Basic principle of the implementation of reservoir computing in NW networks acting as
physical reservoirs. The physical reservoir maps an input u(t) in form of pulse streams applied to
the NW network to a feature space x(t) that can be then analyzed by a readout function to obtain
the desired output y(t). In this computing paradigm, only the readout function needs to be trained.
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achieve higher performances on independent tasks, highly modular NW networks

achieve best performances in case of simultaneous tasks (multitasking capability).

Diaz-Alvarez et al. [97] showed also that NW networks can be exploited for the real-

ization of a neuromorphic device for supervised learning through associative memory, as

shown in a NW network-based multiterminal device. Here, training was performed by

taking into advantage of the network memory of preferred conductive pathways in

between stimulated electrodes. During following testing, it was shown that the network

can correctly retrieve the stored patterns even by testing with incomplete or faulty input

patterns thanks to the ability of the network to group correlated input information as

shared conductive pathways across the network.

Finally, a fully memristive architecture based on self-organizedNWnetworks in mul-

titerminal configuration coupled with ReRAM devices was demonstrated for in materia

implementation of reservoir computing for recognition of spatiotemporal patterns and

time-series prediction [98], paving the way for the realization of neuromorphic system

that combines different hardware technologies.

6. Conclusions

In summary, the current status of memristive devices based on NWs has been discussed

from the fundamentals to the realization of NW-based nanoarchitectures for the imple-

mentation of unconventional computing paradigms. The NW synthesis has been dis-

cussed together with different strategies adopted for the realization of NW-based

memristive devices. While single NW devices represent suitable platforms for the inves-

tigation of the physical mechanism of switching thanks to the high localization of the

switching events and can find application as artificial synapses, NW networks represent

low-cost nanoarchitectures where emerging functionalities that arise from the interaction

of a multitude of NWs and their junctions can be exploited for the implementation of

computing paradigms. Future challenges are represented by tailoring NWmaterial prop-

erties to meet the desired memristive functionalities and by integrating NW-based

nanoarchitectures with conventional electronics toward the realization of intelligent

systems.
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CHAPTER 9

Artificial intelligence accelerator using
photonic computing
Xing Lin, Sheng Gao, Yi Gao, and Zhengyang Duan
Department of Electronic Engineering, Tsinghua University, Beijing, China

1. Introduction

Artificial neural networks (ANNs), a vital form of artificial intelligence inspired by the

signal processing in animal brains, have radically facilitated rapid progress in a multitude

of realms in our society, including finance, telecom, medical industry, etc., owing to its

high computing capability in processing the large-scale data. However, as the footprint of

electronic transistors is approaching its physical limit and the efficacy of Moore’s law is

gradually waning, augmentation in the performance of traditional electronic computing

hardware has been unable to meet the exponential ever-growing computing demands of

state-of-the-art ANNs. Therefore, pursuing a new generation of advanced computing

technology that can circumvent electronic bottlenecks has attracted a significant amount

of attention. Photonic computing, using photons instead of electrons as the information

carrier and computing medium, has showcased its potential for building the next-

generation advanced intelligent processor due to its remarkable advantages of ultrafast

computing speed, high computing parallelism, low energy consumption, and high com-

patibility with the existing mainstream electronic computing architectures.

However, achieving practical applications of photonic intelligent computing

systems, e.g. photonic or optical neural networks [1–8], still confronts the following chal-
lenges: (i) Limited computing scale. The number of optical parameters in most existing

integrated photonic computing systems is limited to several hundred, which is far left

behind the parameters in its electronic neural network counterparts. (ii) Simplicity of

the model. The model complexity of existing optical neural networks is relatively simple,

and the model performance is far from that of electronic artificial neural networks.

(iii) Difficulty in implementing optical nonlinearity. The strong nonlinear neuron activa-

tion function inweak light thatmeets the high-speed optical information processing is dif-

ficult to realize all-optically. (iv) Limited system programmability and reconfigurability.

Programming the photonic computing system parameters typically depends on complex

optical effects, such as laser reading andwriting, thermo-optical effect, etc. But it is difficult

to high-speed program large-scale parameters accurately in practical applications. Besides,

most of the existing photonic intelligence processors cannot be reconfigured for different
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types of neural network architectures, resulting in an inability of the processor to perform

diverse functions for different applications. (v) Difficulty of system error correction. The

system error is positively correlatedwith the system complexity. Therefore, efficient error

correction algorithms are indispensable for the optical computing of practical problems.

But the high-accurate universal error correction algorithm is still lacking so far.

(vi) Optical data memory. The data conversions between the optical and electronic

domains inherently limit theoptical data processing speedandenergy efficiency.Theexist-

ing optical datamemory technologies still confront the difficulty of simultaneously achiev-

ing high integration density, high write and read-out speed, and high energy efficiency.

In this chapter, we summarize the recent research advances in photonic computing

for addressing these challenges, following the bottom-up construction of artificial neural

network architectures. The related research works are organized into five parts, including

the optical weighted interconnections, optical neuron activation functions, optoelec-

tronic devices and AI systems, designing optical neural network architectures, and

in-situ optical backpropagation training methods. We also discuss the technical develop-

ing tendency and outlook on the future application areas of photonic computing-based

AI systems.

2. Optical weighted interconnections

The artificial neural networks involve the fan-in and fan-out of massively parallel signals,

which makes it inefficient for electronic computing and impractical for using the elec-

tronic metal wire to implement the massive interconnections between layers of neurons.

With the breakthrough of corresponding technology in recent years, photonic comput-

ing has shown its huge advantages of large-scale parallel computing and extremely low

power consumption, which is very suitable for the ultra-high-performance physical real-

ization of neural networks. Moreover, the attenuation and heating of the optical signal

transmitted in the waveguide are lower, and there is no inductance and skin effect. By

using light wave propagation to implement weighted interconnection and independently

control each connection and weight, photonic computing can support massively parallel,

reconfigurable, and high-speed connections between distributed photonic processing

elements. The basic principles of existing photonic matrix operations for implementing

neuron interconnections include interference, resonance, phase change,and diffraction.

The research work on optical weighted interconnections can be divided into two cate-

gories as follows, i.e., the free-space and integrated implementations.

2.1 Free-space optical weighted interconnection
Diffraction is the fundamental property of light waves, which can be utilized to construct

diffractive interconnections to execute optical operations. The basic computing unit of

the photonic neural network and all-optical weighted interconnection constructed based

on the diffraction principle is a phase modulator at the optical wavelength scale or the
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subwavelength metasurface structure scale. Based on the Huygens-Fresnel principle, an

energy-efficient phased array with multi-layer diffraction modulation can be established,

which realizes the controllable modulation of diffractive optical field propagation and

wavefront spherical sub-wave point wave source [1]. The all-optical diffractive deep

Fig. 1 Optical weighted interconnections. (A) The all-optical diffractive neural network uses the optical
diffractive phenomenon and the transmission or reflection coefficient of the diffractive layer to realize
weighted interconnection. (B) Schematic illustration of the experimental implementation of linear and
nonlinear operations of optical neurons. Linear operation is achieved by combining programmable
SLMs and Fourier lenses. (C) In the photonic-integrated circuit, the most basic block 2�2 analog
optical gate in MZI realizes weighted interconnections. (D) The broadcast-and-weight protocol uses
the MRR weight bank to achieve tunable spectral filtering for WDM signals. (E) Schematic diagram
of the structure of MRR in an add-drop configuration. (F) The nonvolatile PCM unit is used to store
the analog value of the convolution kernel in-situ and achieve optical in-memory computing.
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neural network (D2NN) uses multiple diffractive layers to achieve the controllable light-

matter interactions during the light wave propagation, where each point on the diffrac-

tive layer can be regarded as an artificial neuron. The complex transmissive or reflective

coefficient on the layer’s surface modulates the received wave and connects to the fol-

lowing layer through optical diffraction (as shown in Fig. 1A).

Based onHuygens’ theorem, each neuron on the diffractive layer generates a spherical

secondary wave after receiving the incident wave. The amplitude and phase of the sec-

ondary waves are modulated by the neuron’s complex transmission or reflection coeffi-

cient (which can be regarded as a multiplicative bias term). And then, it is connected to

each neuron in the next layer through optical diffraction (which can be regarded as a

weighted item), and the neuron sums the waves in all diffractive directions. According

to the Rayleigh-Sommerfeld diffraction formula:

U P0ð Þ ¼ 1

jλ

ðð
Σ
U P1ð Þ e

jkr

r
cos θds,

whereU(P1) is the complex field of the secondary wave at P1; P0 is any point in space; r is

the distance between P0 and P1 θ is the angle between the unit wave surface normal and

P0P1 direction. Therefore, we can design

h P1P0ð Þ ¼ 1

jλ
ejkr

r
cos θ,

where the physical meaning of h(P1,P0) is the diffractive weight at P0 of the secondary

wave generated by the unit area ds at P1, which is also called the impulse response. There-

fore, we can consider that the optical mode of the secondary wave generated by the neu-

rons in each layer of D2NN in the free-space diffraction is as follows:

wl
i x, y, zð Þ ¼ z� zið Þ=r2 1

2πr
+

1

jλ

� �
exp

j2πr
λ

� �
,

where l represents the l-th layer of thenetwork; i represents the i-thneuronof the l-th layer;

the position coordinates are (xi,yi,zi) and (x,y,z) are the coordinates of the next layer neu-

rons.Therefore,wi
l(x,y,z) represents the diffractiveweight between twoneurons. In addi-

tion, the amplitude and phase of the secondary wave are modulated by the complex

transmission or reflection coefficient ti
l on the surface of the neuron,which can be regarded

as themultiplicative bias term of the neural network. From the above, we can get the out-

put wave from the i-th neuron of the l-th layer to any neuron of the l+1-th layer:

nli x, y, zð Þ ¼ wl
i x, y, zð Þ � tli xi, yi, zið Þ �

X
k

nl�1
i xi, yi, zið Þ ¼ wl

i x, y, zð Þ � Aj j � e jΔθ,

where
P

kni
l�1(xi,yi,zi) is the input wave of the neuron; jA j corresponds to the amplitude

of the secondary wave generated by the neuron; and Δθ corresponds to the phase of the

secondary wave. These coherent secondary waves propagate from layer to layer and
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interfere with each other to form a complex optical field at the front end of neurons in the

next layer. In this way, optical weighted interconnection in free space is realized. But

D2NN can only realize the fully connected weighted interconnections, and the diffrac-

tive weights cannot be adjusted after the fabrication.

In addition to the optical realization of the fully connected layer discussed above, the

convolutional layer can also be implemented by Fourier optics. Miscuglio et al. [2] pro-

posed an amplitude-only (AO) Fourier convolutional layer based on the Fourier optics 4f

system and high-resolution digital micromirror device (DMD), which can perform clas-

sification tasks on two-megapixel images at a refresh rate of 10kHz. The DMD and the 4f

system together implement the optical weighted interconnection. A reconfigurable all-

optical neural network is proposed to realize both linear and nonlinear optical computing

operations [3]. In this optical design (shown in Fig. 1B), the programmable linear oper-

ation is implemented based on the spatial light modulation (SLM) and Fourier lens, while

the nonlinear operation is implemented based on the cold atom system with electromag-

netically induced transparency (EIT) effect.

2.2 Integrated optical weighted interconnection
With the gradualmaturity of silicon-photonic-integrated circuits (PIC), it is possible touse

integrated photonic devices to realize on-chip optical weighted interconnection. The

basic computing unit to realize all-optical weighted interconnection based on the inter-

ference principle is the on-chip integrated Mach-Zehnder Interferometer (MZI). As

shown in Fig. 1C, eachMZI controls the power distribution and phase delay of the optical

field through awaveguide beam splitter and a phase shifter, causing the optical fields in the

strip waveguide to interferewith each other, and the photonicmatrix operation is realized

by cascading MZI mesh [4]. The basic computing unit to realize the all-optical weighted

interconnection based on the resonance principle is the Micro-ring Resonator (MRR,

shown in Fig. 1E), which combines the wavelength division multiplexing technology

to encode the input signal and construct the neuron MRRweight bank. By configuring

the resonance state of the MRR and broadcasting the wavelength division multiplexed

signal tomodulate the optical field intensity, the networkweight adjustment andweighted

interconnection are realized.Tait et al. [5] proposed a broadcast-and-weight protocol as

shown in Fig. 1D. The broadcast-and-weight protocol consists of a set of neurons sharing

the same input WDM signal, each with an MRR weight bank at the front end.

The basic computing unit to realize all-optical weighted interconnection based on the

phase change principle is the Structured Phase Change Material (S-PCM). Phase-change

materials can be optically written to switch between crystalline and amorphous states,

thereby modulating the intensity of the optical field. Because PCM has high optical con-

trast and long-term stability, it is often used in rewritable optical disk memory technology

[6]. Many recent works combine PCM with PIC to realize in-memory optical comput-

ing, which can bring many advantages, such as high bandwidth, wavelength division

multiplexing, and low cross talk. Feldman et al. [7] demonstrated a wafer-level-integrated
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photonic tensor core to complete parallel convolution processing, which is capable of

operating at the computing speed of 1012 MAC operations per second. The integrated

photonic tensor core uses PCM to store the convolution kernel matrix on-chip and

implements the parallelizing convolution operations by combining the on-chip fre-

quency comb and WDM technology (shown in Fig. 1F). Compared with the

thermo-optic or electro-optic effects used in MZIs or MRRs, PCM can achieve the

nonvolatile storage and programming of weight and does not require the energy source

to maintain the weighted interconnections.

The basic computing unit on-chip interferometers, micro-ring resonators, and struc-

tured phase change materials that the above three types of principles rely on need to

occupy a space of tens to hundreds of micrometers in size, resulting in the low integration

of computing units, limiting the scalability of the scale of on-chip photonic matrix oper-

ation, and is difficult to apply to the weighted interconnection between large-scale pho-

tonic neurons. Since the size of the diffractive phase modulator can be reduced to

wavelength and sub-wavelength scales, it can be applied to the diffractive weighted inter-

connection of large-scale photonic neurons. However, the current diffractive photonic

neural network is mainly based on the spatial light calculation realized by free-space light

diffraction. Although some research work has begun to explore its on-chip integration

[43], high-integration on-chip diffractive optical field propagation and wavefront mod-

ulation accurate models have not yet been established, and it is difficult to apply to high-

precision all-optical weighted interconnects and diffractive photonic neural network

chips design. Therefore, it is necessary to establish a set of high-precision chip design the-

ories and methods for on-chip diffractive photonic computing.

3. Optical neuron activation functions

Since a wide range of problems in the real world can fundamentally come down to solve

all kinds of mathematical relations, artificial neural networks should ideally be able to

generalize to fit arbitrary mathematical functions. However, it is impossible to approx-

imate arbitrary mathematical functions by merely exploiting optical weighted intercon-

nection, as it can merely perform linearity. Therefore, optical neuron activation

functions, which can provide nonlinearity, are introduced into optical neural networks

for large-scale AI computations at high complexity. Researchers have realized optical

neuron activation functions on the basis of different optical effects, including photore-

fractive effect, saturable absorption, optical Kerr effect, structural phase transition, optical

resonance, photoelectronic effect, etc.

3.1 Photorefractive effect
The photorefractive effect originates in the variance among spatial optical intensity, which

induces the photoionization in space and hence generates large amounts of free charge car-

riers, changing thedistributionof the local electric field.As a result, the refractive indexof the
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medium is altered with respect to the electric field, leading to an ultimate nonlinear phase

modulation to the incident light.Forexample,SBN:60,akindof ferroelectriccrystal, is capa-

ble of performing nonlinearity based on the photorefractive effect. The nonlinear relation

between phase transition Δn and illumination intensity I can be described as follows:

Δn ¼ kEapp Ih i
1 + Ih i ,

where hIi is the fluctuation of illumination intensity against a spatially uniform distributed

background intensity hI0i; Eapp is the electric field along c axis; and к is a constant relevant
to the electro-optic coefficient.

Based on the nonlinearity property of SBN:60,Yan et al. [8] conducted their research on

Fourier-space diffractive deep neural network (F-D2NN), where SBN:60 was placed as

nonlinear layers in the shape of a ferroelectric thin film (Fig. 2A). To create sufficient non-

linearity for phase modulation, Yan et al. [8] set the thickness of SBN:60 to be 1mm and

adjusted the voltage on it to be 972V,making the relation between phase and intensity to be

ΔΦ ¼ π Ih i
1 + Ih i ,

where phase variation ranges from 0 to π. Owing to the nonlinearity performed by

SBN:60, the classification accuracy of F-D2NN based on the MNIST dataset increases

significantly, reflecting an augmentation of its capability in high-level representations for

target scenes.

In retrospect, the advantage of the photorefractive effect is its low requirement for the

intensity of the input beam. The minimal illumination for the operation of SBN:60 is

merely at the scale of �0.1mW/mm2. However, the response time of SBN:60 is highly

relevant to the intensity of illumination, and there is a certain amount of energy con-

sumption owing to absorption, reflection, and dark current of SBN:60.

3.2 Saturable absorption
Saturable absorption denotes the phenomenon where the absorption of photons of a

medium (e.g., graphene) began to decline as the intensity of the input signal exceeded

a specific threshold, hence producing nonlinearity. The nonlinearity of saturable absorp-

tion is realized by Guo et al. [9], who deployed a strong pump in an atomic vapor. Based

on the phenomenon of saturable absorption, the pump output is in a nonlinear relation

with its input, formulated as follows (see Fig. 2B):

EP,out ¼ g EP,inð Þ ¼ exp � α0=2
1 + E2

P,in

 !
EP,in,

where α0 indicates resonant optical depth. The saturable absorption based on graphene is
now implemented in a wide range of photonic devices owing to the high gain property of

graphene.
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Fig. 2 Optical neural activation functions. (A) The nonlinear response of SBN:60 Ferroelectric thin film
used in the diffractive deep neural networks. (B) Saturable absorption nonlinear effect under different
resonant optical depths. (C) ReLu function obtained by structural phase transition effect. (D) The
paradigm for implementing electro-optical activation function. (E) The nonlinear microring
modulator based on the optical resonance effect.



3.3 Optical Kerr effect
TheopticalKerreffect phenomenonoccurs as the intense input signal exerts differentextents

of changes between the refractive index of horizontal polarized direction and perpendicular

polarized direction. It causes a variation of refractive indexΔn, which is proportional to the
intensity of illumination in themedium.Therefore, a nonlinear relation between the refrac-

tive indexof themediumn and input illumination I is generated.Basedona theoretical prove

given by Sui et al. [10], the optical Kerr effect can be described as follows:

n ¼ n0 + n2I ,

where n indicates current refractive index under an illumination intensity I; n0 represents

original refractive index of the medium; and n2is a nonlinear coefficient.

Application of the nonlinearity based on the Kerr effect in artificial neural networks

was proposed by Skinner et al. [11], who managed to perform both linear operation

(weighted connections) and nonlinear activation function simultaneously in thin layers

of materials. Based on the optical Kerr effect, the approach increases the processing speed

of the network drastically. In addition, the simple physical construction of the network

also guarantees its mass production potentiality in the future.

3.4 Structural phase transition
Structural phase transition denotes an exceptional property of phase change material

(PCM), whose extent of light absorption is disparate between its two states: amorphous

state and crystalline state. In the amorphous state, a large amount of light can be trans-

mitted through the PCM cell; in the crystalline state, the PCM cell absorbs most of the

light passing through it. Based on such property, Feldmann et al. [12] coupled PCMwith

an optical ring resonator to perform nonlinearity, as shown in Fig. 2C. Since the differ-

ence in the energy of pulses can drive PCM to different extent of amorphous state, the

actual state condition of the PCM is a combination of amorphous and crystalline states.

Owing to a disproportional absorption of light between these two phases, the light trans-

mitted through PCM is therefore in a nonlinear relation with the input illumination.

In addition, by fixing the input signal at a specific wavelength, the input signal

becomes in resonance with the ring resonator, and a sharp contrast between the maxi-

mum and minimum output of the activation function is hence realized. For example,

when the input signal has a resonance wavelength of 1553.4nm with an intensity below

430pJ, the light transmitted through the ring resonator is zero. When the input intensity

transcends that threshold, the output intensity increases significantly. Therefore, a non-

linear activation function assuming the shape of ReLu is created, with a sharp contrast of

9dB between its maximum and minimum output. In fact, the proposed device has

extraordinarily low energy consumption, marking a big step forward in optical

nonlinearity.
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3.5 Optical resonance
The principle of nonlinearity based on optical resonance is to take advantage of the res-

onance dip produced by microring (MRR). The resonance dip is formulated as the light

transmitted through the microring (MRR) modulator decreases significantly when the

input wavelength is in resonance withMRR, shaping a nonlinear function between out-

put transmission of MRR and input wavelength. In addition, since current biasing

applied onMRR can affect its spectra of resonance dip, a reconfigurable activation func-

tion can hence be realized.

Based on this phenomenon, an electro-optic architecture was proposed by George

et al. [13] (as shown in Fig. 2D) and instantiated by Tait et al. [14] (as shown in Fig.

2E). In their architecture, input is weighted by rings from a WDM. Then, photodiodes

convert illumination into photocurrents, which is the reflection of the summed inputs.

After that, the photocurrents are biased with the modulator current Ib, which can affect

the depth and quality of the MRRmodulator resonance peak. Simultaneously, the pho-

tocurrents are also biased with a heater current Ih, which is capable of shifting the absolute

wavelength with an efficiency of 0.24nm/mW. Finally, these three currents altogether

drive an electro-optic modulator (MRR), performing nonlinearity on a brand-new CW

laser as an output. In this way, the output and input are decoupled in the process of con-

version between illumination and photocurrents. In particular, the shape of the activation

function produced by the MRR modulator can be reconfigured by adjusting the heater

current bias Ih, which changes the resonance frequency of MRR. As a result, sigmoid can

be realized by biasing the current bias Ih at the maximum slope point; ReLu can be

obtained by biasing the current bias Ih slightly off resonance, namely, either below or

above the wavelength.

3.6 Photoelectronic effect
The principle of nonlinearity based on electro-optic is to convert a portion of the input

optical signal into electric currents, which thence intensity-modulate the original optical

signal by shifting its phase. Based on this idea, Williamson et al. [15] proposed an electro-

optic-based nonlinear activation function method with a significant performance in both

multiinput exclusive-OR (XOR) logic function and MNIST dataset for classifying

handwritten numbers. In their architecture, as shown in Fig. 2F, the input light with

a total power of jz j2 firstly enters into a directional coupler, where a portion of illumi-

nation α jz j2 was sent into photodiodes (PD). The optical signal is then transferred into an

electrical current Ipd¼Rα jz j2, where R is the responsivity of a photodetector. And after

transmitting through an amplifier gain G with a nonlinear transform function H(�) and a

static bias voltage Vb, a phase shift
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where ϕb ¼ π Vb

V π
. In the light of this, a reconfigurable activation function based on

electro-optic conversion can be physically realized by setting different voltage Vb.

In summary, the ideal realization of neuron activation functions in optical domain

holds great fortes in two aspects: ultrafast speed and approximately free consumption

of energy. Activation functions can be instantaneously performed as the illumination

transmitted from the nonlinearity devices at the speed of light, and no power supply

is required for the sustainability of optical nonlinearity devices. However, the incident

light is required to be highly intense in many cases (including optical Kerr effect) at pre-

sent stage. To respond to this challenge, a plentiful of new optical materials and mech-

anisms are emerging to overcome the difficulty of realizing all-optical strong activation

functions in low light condition for high-speed information processing, thence acceler-

ating the advent of photonic computing processor in the near future.

4. Designing photonic neural network architectures

With the development of on-chip photonic devices and components, the architecture of

photonic neural networks has become more and more complex, resulting in a substantial

increase in performance. The photonic neural network can directly convert the paradigm

of the electronic neural network to achieve photonic fully connected neural networks,

photonic convolutional neural networks, and photonic recurrent neural networks. In

view of the unique characteristics of photonics and optics, some brand-new network

architectures such as photonic reservoir neural networks and photonic spiking neural

networks can be implemented. Based on various photonic neural networks, computing

257Artificial intelligence accelerator using photonic computing



tasks including image recognition, audio classification, and video recognition have been

efficiently implemented.

4.1 Photonic fully connected neural networks
Free space optics provides a medium for massively parallel free-space interconnections

and data information processing at the speed of light. The physical diffractive layer pro-

vides a method for storing and realizing the weight matrix. All-optical diffractive deep

neural network (D2NN) in terahertz spectrum (0.4THz) has been shown to be able to

conduct classification tasks at the speed of light, which is composed of multiple

3D-printed diffractive layers [1]. By designing the architecture of the 3D-printed layer

(shown in Fig. 3A), the functions of image classification and imaging lens can be imple-

mented, respectively. Yan et al. [8] proposed a Fourier-space diffractive deep neural

network (F-D2NN), which possesses extremely compact diffractive layers and intro-

duces nonlinear films, and finally demonstrated that its performance is superior to

D2NN on object classification and visual saliency detection tasks. However, the afore-

mentioned 3D-printed diffractive layers cannot be reconfigured, thus limiting their

applications.

The advancement of on-chip optical devices and components has led to substantial

progress in the research of photonic-integrated circuits (PIC). Shen et al. [16] proposed

a programmable integrated optical neural network consisting of 56 MZI cascaded arrays,

which can perform vowel recognition tasks at the speed of light (shown in Fig. 3B). This

ONN has two layers, and each layer contains two optical interference units (OIU) to

realize arbitrary optical matrix multiplication. The programmable ONN architecture

can passively and optically perform calculations, which is theoretically two orders of mag-

nitude faster than electronic neural networks. However, it is necessary to further explore

the large-scale integrated optical interconnection with high integration density photonic

computing unit. Besides, the nonlinear activation function plays an important role in

ONN, so an electro-optic hardware platform is designed for OIU to realize the

optical-to-optical nonlinear activation function [15].

Compared with 2D integration, the 3D integration with a volumetric nanopho-

tonic neural medium (NNM) has a higher degree of freedom to implement the fully

connected neuron interconnections [17]. NNM is composed of a host material con-

taining a large number of inclusions, where the host material is silicon dioxide, and

the inclusions can be any material with a reflection index different from that of the host

material. Although the proposed NNM neural network can only achieve 79% hand-

written digit recognition accuracy due to the limited computational scale, it has the

advantages of ultra-high computing density, stronger expression capability, and no gra-

dient disappearance.
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Fig. 3 Photonic neural network architectures. (A) D2NN is composed of five 3D printed physical
diffractive layers, which can be used for the classification of handwritten digits and fashion
products. (B) Optical micrograph illustration of the photonic-integrated circuit OIU. (C) System
architecture of the reconfigurable amplitude-only optoelectronic convolution processor.
(D) Optoelectronic implemented DPU and constructed a recurrent neural network. (E) Photonic
convolutional accelerator based on the optical microcomb and optoelectronic devices. (F) The
schematic for implementing convolution operations based on OCDC. (G) Schematic diagram of the
optical reservoir neural network. (H) Scaling architecture for all-optical on-chip spiking neural network.



4.2 Photonic convolutional neural networks
In electronic neural networks, the convolutional layer consumes the majority of com-

puting resources and causes significant computational latency. Photonic convolutional

neural networks implement the convolution operations optically that can improve the

computational efficiency of CNN. Miscuglio et al. [2] proposed a reconfigurable

amplitude-only (AO) optoelectronic convolution processor (see Fig. 3C) that uses a

reprogrammable high-resolution DMD to perform classification tasks with a large

two-megapixel matrix at a rate of 10kHz. An efficient neural vision system has also been

proposed, which can realize the energy-free convolutional operation at the optical front

end by encoding the imaging aperture, which is suitable for incoherent light processing in

natural scenes [18]. Through experimental verification of the neural vision system, char-

acter and gesture recognition tasks can be achieved optically with extremely low lantency

and close to state-of-the-art classification accuracy performance. Another study [19]

showed that the energy consumption and latency of the hybrid photonic-electronic

architectures outperformed conventional electronic platforms for large-sized input

images and convolution kernels.

In addition to utilizing the optical 4f system to implement the optical convolutional

layer, PCM-based optical in-memory computing also possesses the capability to effi-

ciently conduct parallel convolutional processing. Based on the on-chip optical fre-

quency comb and nonvolatile PCM memory array, an integrated photonic tensor

core that can implement parallel photonic in-memory convolution computing is pro-

posed [7]. The photonic tensor core utilizes WDM technology to achieve high-

computational bandwidth and can process multiple image patches or even complete

images in a single time step. A phase-change metasurface mode converter (PMMC) based

on the PCM (Ge2Sb2Te5) is proposed [20], which can achieve up to 64 levels of phase

change mode contrast corresponding to a 6-bit weight precision. By building a 2�2

PMMC array, programmable convolution kernels can be implemented and successfully

applied to edge detection and pattern recognition tasks.

Different from the PCM in-memory computing, a scalable and reconfigurable pho-

tonic convolutional accelerator is proposed which utilizes integrated microcombs,

electro-optic modulators, and single-mode fibers to achieve simultaneous time, wave-

length, and space multiplexing [21]. The photonic convolutional accelerator (shown

in Fig. 3E) can process 250,000-pixel input images, with a computing speed of up to

11 TOPS, and successfully implemented the task of classifying handwritten digits. More-

over, this paradigm is universal and fully compatible with other electronic or photonic

interfaces. A silicon-based optical coherent dot-product chip (OCDC) is proposed [22],

which can performmatrix multiplication and convolutional operations in the real-valued

optical domain based on push-pull modulation. Based on OCDC (shown in Fig. 3F), a

single-layer fully connected layer and a convolutional layer can be implemented, and a
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cutting-edge neural network AUTOMAP is further constructed. In the above-

mentioned optical CNN, input data patching is a necessary process. An optical patching

scheme based on WDM and optical delay lines is proposed [23], which can effectively

reduce the scale of the input modulator array.

There are many other methods to implement photonic convolutional neural net-

works, such as based on 2D or 3D waveguide architecture design. A new all-optical

on-chip CNN is proposed [24], based on cascaded Y-waveguides with side-coupled

silicon waveguide segments, which can implement transcendental equation solvers

and a variety of mathematical operations. Different from the traditional implementa-

tion of 2D photonic neural networks using photolithography, Moughames et al. [25]

proposed a 3D photonic waveguide architecture based on fractal topology, which can

achieve an extremely large number of inputs and outputs in a very small footprint

interconnection.

4.3 Photonic recurrent neural networks
Recurrent neural networks possess recurrently connected hidden layers and nodes.

These nodes extract and store the information of inputs from previous time instances

and pass it to the next time step, so it is suitable for processing temporal/sequential data.

Zhou et al. [26] proposed a reconfigurable diffractive processing unit (DPU), which

can construct various complex optoelectronic neural networks, and use in-situ adaptive

training to circumvent accumulated system errors, and finally achieve experimental

performance that exceeds the cutting-edge electronic computing platforms. As an

optoelectronic neuromorphic processor with large-scale diffractive neurons, DPU is

composed of an input layer, the diffractive interconnection, and an output layer (shown

in Fig. 3D). By controlling and buffering massive parallel optoelectronic data streams,

DPU can construct a large-scale diffraction recurrent neural network (D-RNN).

Through large-scale neuromorphic optoelectronic computing, DPU achieves eight

times higher calculation speed than Tesla V100 GPU and more than an order of mag-

nitude system energy efficiency.

The optical reservoir neural network is a special recurrent neural network that can

be applied to wireless channel equalization, spoken digital recognition [27], and pre-

diction of the future evolution of chaotic time series. In the optical reservoir neural

network, all weights of input nodes and recurrent nodes are randomly distributed,

and specific machine learning tasks are implemented by training the weights of

output nodes. Therefore, it has the advantages of easy training and smaller training data-

sets. A typical discrete-time optical reservoir neural network includes N internal vari-

ables xi�0…N�1, and the evolution of the discrete-time at the next moment can be

expressed as
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xi n + 1ð Þ ¼ f NL

XN�1

j¼0

Wijx j nð Þ +
XK�1

j¼0

Biju j nð Þ
 !

,

where fNL is a nonlinear function; Wij is the reservoir adjacency matrix; Bij is the input

mask; and uj(n) is the input time series. The dynamics of the reservoir are determined by

Wij and Bij, and both matrices are independent of time and taken from a random distri-

bution with zero means. The output node of the reservoir neural network is obtained by

the linear combination of internal variables:

yl nð Þ ¼
XN�1

j¼0

Wout
lj x j nð Þ,

whereWlj
out is the trainable output weight. An optoelectronic reservoir neural network is

proposed in [28], which can accommodate up to 16,384 reservoir nodes and efficiently

realize human action recognition in video processing tasks. The experimental setup of the

reservoir neural network is composed of free-space optical components and an electronic

computer (shown in Fig. 3G). Compared with the electronic neural network, the opto-

electronic reservoir neural network possesses obvious characteristics of shorter training

time and comparable classification performance.

4.4 Photonic spiking neural networks
The development of artificial intelligence is limited by the traditional memory-

computing separated computing architecture. But neuromorphic computing methods

effectively overcome these limitations by emulating brain-like neurons and synapses

in hardware, such as photonic spiking neural networks. Feldmann et al. [12] proposed

an integrated all-optical spiking neural network, which is based on the fundamental

phase-change all-optical neurons implemented through PCM and WDM technology,

and demonstrated the ability to perform supervised and unsupervised learning. The

phase-change all-optical neuron is composed of a ring resonator integrated with the non-

volatile PCM. All-optical spiking neural networks are composed of basic phase-change

all-optical neurons, which are scalable and reconfigurable, enabling more complex deep

learning tasks. The envisioned spiking neural network contains an input layer, an output

layer, and multiple hidden layers (as shown in Fig. 3H).

In summary, there are many types of photonic neural network architectures that have

been implemented and existing differences in implementation methods, neuron models,

trainingmethods, andnetwork architectures. Since the scale of photonic integration is lim-

ited, and the construction of on-chip intelligent photonic computing processor for opto-

electronic fusion is limited by a large number of optical-electro and electro-optical

conversion devices, so the existing photonic neural network architecture is simple, and
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it is difficult to apply to intelligent photonic computing tasks of complex scenes andobjects.

Advancedon-chip photonic neural network architectures supporting large-scale photonic

integration need to be explored for more complex intelligent photonic computing tasks.

5. Optoelectronic devices and AI systems

The pursuit of all-optical AI chips and systems is impeded by a lack of fundamental

on-chip optical devices, including assemblers, compilers, logic gates, analog-digital-

analog (ADA) converters, on-chip light generators, and memory, which are widely used

in electronic processors. In response to this challenge, a plentiful of research regarding the

physical realizations of these optical devices are carried out. However, given that these

photonic devices are still functionally scattered and unable to merge into an end-to-end

computing system, the state-the-of-art photonic AI system still needs to take advantage of

electronic devices. Therefore, in this chapter, we will discuss optoelectronic devices and

AI systems in four major aspects: on-chip light sources, photonic memory, photonic

modulator, and optoelectronic AI accelerator systems.

5.1 On-chip light source
The inability to generate light by silicon gives rise to two major approaches to getting

light onto silicon chips: (i) using an external optic fiber (off-chip method); (ii) using a

non-silicon die (on-chip method). However, the off-chip method loses its allure owing

to its relatively high package expense and large coupling losses. On the other hand,

on-chip methods, with their tremendous potentiality in obtaining higher integration

density, emerge as the most popular research orientation at present.

The method of searching for opportune non-silicon material for on-chip applications

was proposed by Zhou et al. [29], indicating four criteria: (i) emission wavelength of 1310

or 1550nm for fiber connection; (ii) laser under electrical pumping for compact size;

(iii) high power efficiency for limited energy cost; and (iv) integration of silicon-based

on CMOS for mass manufacturing. Under these criteria, III–V material emerges as

the most popular material in realizing the on-chip method currently. However, the inte-

gration of III–V material onto silicon chip is partly impeded by its mismatch with silicon

in terms of the crystal lattice and thermal expansion coefficients. To address this issue,

three major integration approaches are meticulously studied: heterogeneous integration,

hybrid integration, and heteroepitaxial growth.

Heterogeneous integration refers to the bonding between a patterned III–V die onto

patterned silicon circuits, enabling the light generated in the epitaxial layers of III–V to

vertically couple into silicon circuits by evanescent coupling. The advantage of hetero-

geneous integration, which is its essential superiority over hybrid integration, is its low

requirements for precision positioning, as all structures are lithographically aligned for

wafer-scale processing. However, the convenience in precision positioning of
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heterogeneous integration is tempered by its spontaneous inability to pretest each light

source before integration, indicating a radical increase in the requirements for the yield of

the light source.

Hybrid integration denotes integrating individual laser diodes one at a time on silicon

substrates enabling a pretest of laser diodes before integration. However, this operation

requires meticulous alignment for each laser diode, consuming a considerable amount of

time and assembly cost. Fortunately, this drawback is ameliorated by Rodlin et al. [30] in

their groundbreaking research (as shown in Fig. 4B), where a three-dimensional (3D)

photonic wire bonds (PWB) with an ability to allow for adaptions to exact positions

was implemented to eliminate the demand of precision alignment. The laser sources

in their research are placed side by side with the silicon platform, and the coupling losses

hence plummet to merely 0.4dB, making photonic wire bonding a general approach for

photonic multichip assemblies based on hybrid integration.

Heteroepitaxial growth is the epitaxial growth of a deposit on a substrate of different

materials, which requires some degree of mobility of the atoms and nuclei on the surface.

However, the epitaxial growth of III–V material on silicon is constrained by a phenom-

enon called high-density threading dislocations (TDs), which is a ramification of the dis-

parity in thermal expansion coefficients between silicon and III–Vmaterial. Traditionally,

the effective technique for eradicating TDs is called epitaxial lateral overgrowth (ELOG),

where a buffer layer with adequate thermal expansion coefficient and lattice constant is

deposited between silicon and III–V material, enabling a defect-free top surface layer to

be formed. In fact, high-quality quantum wells (QW) grown on ELOG InP can obtain

a light emission intensity that is comparable to those grown on a planar InP. On the other

hand, a new approach to constraining TDs, the quantum dots (QD) technology, has sur-

passed the QW technique in the last few years. The advantages of QDs are major three

aspects: (i) limited threshold current density (Jth); (ii) low-temperature susceptibility;

and (iii) tolerance against defects owing to discrete distribution (as shown in Fig. 4C).

For example, Chen et al. [31] proposed an InAs/GaAs QD laser with a threshold density

of merely 62.5A/cm2 and can operate efficiently at a temperature up to 120°C.

5.2 Photonic memory
In the process of photonic computing, the preservation of a large quantity of intermediate

arithmetical results for subsequent computations necessitates high-speed memory for

storage. Therefore, photonic memory with fast access times, increased bandwidth, and

scaled footprint are pressing in recent years. Naturally, the most likely approach for real-

izing photonic memories is to replicate the mechanism of its electronic memory coun-

terparts, which are widely used in the existing processors. However, the inherent nature

of photons and their neutral charge property hampers their potentiality of emulating elec-

tronic memory based on the capacitor. To circumvent this problem, researchers

exploited optical bistability to realize both optical volatile and nonvolatile memory.
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Fig. 4 Optoelectronic devices and AI systems. (A) The architecture of a photonic computing-based
electro-photonic system for accelerating AI computations. (B) 3D photonic wire bonds (PWB) are
applied in hybrid integration. (C) Quantum dots (QD) applied in minimizing TDs in heteroepitaxial
growth. (D) Master-slave layout in photonic SRAM memory. (E) An SOA-MZI photonic SRAM
memory based on master-slave layout. (F) Injection locking layout in photonic SRAM memory.
(G) A VCSEL photonic SRAM memory based on injection locking layout. (H) Phase transition
material (PCM) layout in photonic nonvolatile memory. (I) A nonvolatile all-optical multibit memory
based on a type of PCM material, i.e., GST.



Optical volatile memory can be realized through two major disability layouts:

(a) master-slave layout and (b) injection locking layout, as put forward by Alexoudi

et al. [32]. Master-slave layout comprises two active cavities, as shown in Fig. 4D, where

bistability is realized by storing light of two different wavelengths in the respective cavity

to represent two distinctive states: 0 and 1. The transition of states can be realized by

externally injecting an opportune amount of beam into the “master” to suppress its oper-

ation, waiting for the quantity of light in the “slave” to increase, hence interchanging the

previous status of two cavities. For example, Pitris et al. [33] proposed a semiconductor

optical amplifier (SOA)-based bistable photonic memory, whose binary states are repre-

sented by two continuous-wave (CW) input signals. The advantage of SOA layouts is

their theoretically operating speed of 40Gb/s. However, the energy consumption of state

transition (�3pJ, �0.5pJ) and current biasing (�120 and �180pJ) are of large quantity,

and the footprint of SOA is at a tremendous size of 6�2mm2.

Injection locking layout, on theotherhand, represents opticalmemorybistability based

on free-running mode (unlocked) and injection-controlled mode (locked), as shown in

Fig. 4E. The general principle of injection locking is to force certain characteristics (wave-

length, polarization state) of the original laser to follow the corresponding characteristics of

the externally injected optical signal. For example, injection locking based on polarization

can be realized through vertical-cavity surface-emitting lasers (VCSELs), as shown in Fig.

4F. The externally injected signal comprises two choices of polarized direction: vertical or

orthogonal, and thepolarizeddirectionof theoriginal signal is derived frombeing in accor-

dancewith that of the injected signal. Therefore, bistability can be obtained by controlling

the polarized direction of the injected signal. The advantages of theVCSEL-based injected

locking layout are: (i) high operating speed up to 40Gb/s and (ii) low energy consumption

of 105 fJ. However, the footprint of VCSEL is of �36μm.

As for nonvolatile photonic memory, phase change material (PCMs) can indicate two

distinct states by its inherent binary phase (as shown in Fig. 4G): crystalline state and

amorphous state. The transition between the binary states can be subnanosecond with

a slight amount of energy consumption. Given that the amorphous state and crystalline

state absorb light transmitted through them to different extents, information written in

the PCM in the form of crystalline or amorphous state can be encoded into the light beam

instantly by simply propagating the light through the PCM. In fact, a nonvolatile PCM

memory based on Ge2Sb2Te5 (GST) was realized by Rı́os et al. [34] with a capacity of 5

bits storage within an area of merely 4�1.3 μm2, and operates at a frequency of 1GHz

powered by merely 13.4pJ, as shown in Fig. 4H.

5.3 Optoelectronic modulator
In the process of transmitting, transferring, and receiving optical signals, an optical mod-

ulator plays an indispensable role in encoding information onto the amplitude or phase of
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the beam, and there are a plethora of approaches for modulating incident light, including

spatial light modulation (SLM) and Mach-Zehnder modulator (MZI). Bueno et al. [35]

designed a large-scale recurrent neural network consisting of up to 2025 diffractively

coupled photonic nodes. The modulator of this model is realized through a spatial light

modulator (SLM) and a digital micromirror device (DMD), which denotes the binary

states and creates a spatially modulated image of the state in SLM, respectively. The out-

put of the model is hence calculated via superimposing the modulated intensities. In the

light of this, the fully parallel, passive weight layout of the network maximizes energy

efficiency and bandwidth, realizing its outstanding performance and potential widespread

applications. Shen et al. [16] experimentally put forward a programmable nanophotonic

processor with a cascaded array of 56 programmable Mach-Zehnder interferometers

(MZI) on a silicon-photonic-integrated circuit. The modulator of this architecture is

supported by waveguides and directional couplers with phase shifters acting as a unitary

transformer. In fact, the weight matrix can be further transformed by the singular value

decomposition method, where M¼UΣV, among which unitary matrices U and V are

implemented experimentally by MZIs and diagonal matrix Σ is implemented by Mach-

Zehnder modulator (MZM). The performance of the proposed processor was tested on a

vowel recognition problem with an accuracy comparable to the conventional 64-bit

computer using a fully convolutional neural network (CNN) algorithm.

5.4 Optoelectronic AI systems
To merge all these devices into an organic intelligent processor, Demirkiran et al. [36]

proposed a remarkable optoelectronic AI accelerator (as shown in Fig. 4A), with out-

standing performance in all metrics regarding throughput, power efficiency, and

power-area efficiency, marking the tremendous potential of photonics in accelerating

AI networks in the future.

Within their architecture, all electrical devices are constructed around an analog pho-

tonic core, which is specialized in performing general matrix-matrix multiplication

(GEMM), as GEMM constitutes over 90% of a total number of floating-point operations

during the AI computation. As for the left 10% non-GEMM operations, a traditional

digital electronic ASIC is applied. With the ultrafast processing speed of the photonic

core, the accelerator was tested on ResNet-50, BERT-large, and RNN-T networks

with a better power efficiency of 6.35�, 4.27�, and 10.96�, better power-area effi-

ciency of 5.85�, 3.92�, and 10.08� than systolic arrays, circumventing the power wall

that impedes electronic accelerators from higher performances currently.

In summary, the state-of-the-art optoelectronic AI accelerators have exhibited much

more outstanding performance than their electrical counterparts inmetrics including power

efficiency and power-area efficiency, which proves the tremendous performance of pho-

tonic computing. However, the realization of an all-optical AI accelerator is still restricted
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by a lack of cornerstones, including optical memory and an on-chip light generator. Fortu-

nately, amultitudeof researchhasproposed several applicablemethods for these fundamental

devices, propelling the progress of realizing all-optical AI accelerators in the future.

6. In-situ optical backpropagation training methods

Traditional deep learning relies on a large amount of labeled data and computing

resources for network training, uses the backpropagation algorithm to update the net-

work weights, and finally obtains a network architecture that can complete advanced

machine learning tasks. To date, the training process of most ONNs has also been per-

formed entirely digitally on a computer, and the optimized parameters are then used to

deploy the optical device. Such an in-silico training method requires accurate simulation

of wave-matter interactions, so it has high-computational complexity and long training

time and does not take full advantage of photonic computing. In addition, due to various

imperfect factors of the optical system, the deviation of the pretraining model and the

actual calculation error are accumulated layer by layer. In contrast, the in-situ optical

backpropagation training method of ONNs can physically implement the training pro-

cess directly in the optical system, thereby greatly improving the time and energy effi-

ciency of network training. More importantly, in-situ training can reduce the impact

of different error sources on the performance of the pre-trained network in the exper-

imental implementation. A variety of optical in-situ training methods have been success-

fully implemented. A brute force in-situ training method for MZI-integrated circuits is

proposed [16]. Reinforcement learning can also be used for in-situ training of photonic

recurrent neural networks [35]. Research hotspots in recent years have mainly focused on

the in-situ optical backpropagation training method based on gradient descent, which

can significantly improve the performance of ONNs in machine learning tasks [37]. It

is mainly divided into two categories: gradient calculation based on optical backpropaga-

tion and gradient calculation based on electronic backpropagation.

6.1 Gradient calculation based on optical backpropagation
Since the gradient calculation in the backpropagation algorithm is a computationally

expensive process, many scholars have studied how to utilize the parallelism and energy

efficiency of optical computing to achieve in-situ gradient calculation in optical neural

networks. An in-situ optical backpropagation training method for diffractive optical neu-

ral networks is proposed [38]. Based on the principle of optical reciprocity and phase con-

junction, the weight gradient of the diffractive layer can be calculated fully optically. The

diffractive ONN architecture is implemented by the cascaded SLM (shown in Fig. 5A),
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Fig. 5 In-situ optical training methods. (A) The in-situ optical training process of diffractive ONN is
realized by cascading SLM. (B) Scheme for the direct feedback alignment algorithm. (C) Schematic
diagram of the MZI phase shifter gradient experimental measurement based on the adjoint
variable method. (D) Flowchart of the proposed adaptive training method based on hierarchical
in-situ training. (E) Physics-aware training implemented by hybrid physical-digital structure.
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which can update the diffractive weights in real-time. The in-situ backpropagation train-

ing method includes four steps: forward propagation, loss calculation, backward propa-

gation, and gradient update. Let L(O,T) represent the loss function of ONN, which

measures the difference between the network output O and the ground truth label T,

then the gradient of the loss function relative to the diffractive weight ϕk of the k-th layer

can be expressed as:

∂L

∂ϕk

¼ 2Re j
Y1
i¼k

MiW i

 !
U0

 !
⊙

Y1
i¼k + 1

WT
i Mi

 !
WT

N+1E

 !( )T

¼ 2Re jP
f
k⊙Pb

k

n oT

,

where Mk¼diag(ejϕk) is the diffractive modulation coefficient controlled by SLM; Wk is

the diffractive propagationmatrix; andU0 is the optical field at the input layer. Therefore,

Pk
f ¼ (

Q
i¼k
1 MiWi)U0 represents the output optical field at the k-th layer by forwarding

propagation. According to the optical reciprocity, Wk
Trepresents the diffractive

propagation matrix from the k-th layer to (k�1)-th by backward propagation. E is

the error optical field obtained by the network output and ground truth. Therefore,

Pk
b¼ (

Q
i¼k+1
N Wi

TMi)WN+1
T E represents the error optical filed of the k-th layer by back-

ward propagation. By measuring Pk
f and Pk

b, the gradient of the loss function can be cal-

culated exactly and fully optically. The proposed in-situ optical backpropagation training

method is not only superior to electronic training in training speed and computational

energy efficiency but also can adapt to diffractive layer misalignment and other system

imperfections, indicating the realization of large-scale reconfigurable diffractive ONN.

Different from the diffractiveONN, the on-chip integratedONN implemented by the

cascadedMZIs array requires calculating the gradient of eachphase shifter toupdatenetwork

parameters. An optical backpropagation gradient calculation method based on the adjoint

variable method (AVM) is proposed [39], which can perform efficient in-situ training of

the ONN implemented by the MZI mesh. The key to the AVM method is to update

theweightofeachphase shifter,whichcanbe implementedby in-situ intensitymeasurement

of the forward propagation optical field and error backpropagation adjoint optical field

(shown in Fig. 5C). Compared with the brute force search method, this training method

has better parallelism and scalability.

Optical backpropagation gradient computation can take full advantage of photonic

computation, but it is difficult to establish optical field backpropagation for photonic

neural network architectures, and the accuracy of gradient computation is limited.

The fusion of optical forward-propagation and electronic backpropagation gradient

computation can improve its programmability and computational accuracy.

6.2 Gradient calculation based on electronic backpropagation
A promising in situ training approch is to combine experimental optical system measure-

ments with computer-simulated training to achieve higher model inference accuracy.
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Zhou et al. developed an adaptive training method that iteratively fine-tuned the model

after in-silico pretraining to avoid system errors and achieved experimental accuracy that

closes to the state-of-the-art electronic neural networks [26]. As shown in Fig. 5D, the

adaptive training method first performs in-silico training on a computer to obtain a pre-

trained model, then uses the in-situ experimental measurement output of each layer of

ONN as the input of the next layer, and retrains the parameters of all subsequent layers on

the computer. Compared with the above-mentioned in-situ optical backpropagation

training method, this adaptive training method can effectively solve the model deviation

caused by different error sources and improve the robustness and generalization of the

optoelectronic neural network system.

Physical neural network (PNN) refers to the hierarchical physical computing archi-

tectures that can be trained. Wright et al. proposed a physics-aware training (PAT)

method based on in situ forwarding propagation of PNN using the experimental system

and in-silico backpropagation with gradient calculation using computer [40]. The pro-

posed PAT approach is verified by performing image classification on three different

physical systems. One of the physical systems is the ultrafast optical second harmonic gen-

eration (SHG), which is based on quadratic nonlinear optical media. An ultrafast non-

linear ONN can be realized by reusing multiple SHGs, and the classification result

can be obtained bymeasuring the largest spectrum bin. The implemented PAT is a hybrid

physical-digital architecture, as shown in Fig. 5E. PAT takes advantage of the in situ mea-

sured system outputs during the neural network training so that the trained model is resil-

ient to noise and system imperfections.

As an alternative to the classic backpropagation training algorithm, the direct feedback

alignment (DFA) algorithm can effectively perform supervised training of conventional

deep neural networks [41]. Different from the backpropagation algorithm, DFA uses a

fixed random feedback connection to directly propagate network errors from the output

layer to each hidden layer, which can realize the gradient update of multiple hidden layers

at the same time (shown in Fig. 5B). Using DFA to calculate the gradient of each hidden

layer can be expressed as

δk ¼ Bke⊙ g0 ak
� �

,

where e is the gradient of the error loss function; Bk is a fixed randomweight matrix of the

k-th hidden layer; g0(�) is the derivative of the activation function; and ak is the weighted

input signals of the k-th hidde layer. Then the weight of each hidden layer can be updated

iteratively by using the calculated gradient δk. Filipovich et al. proposed a CMOS-

compatible silicon photonic architecture that can perform in-situ DFA training of ONNs

in parallel and efficiently [42]. According to theoretical analysis, the computing speed is as

high as 24 TOPS, and the energy consumption per MAC operation is less than 1pJ. And

through experimental demonstration, it is verified that the performance of in-situ DFA

training can be comparable to the backpropagation algorithm on the task of handwritten

digit classification. The implemented optoelectronic architecture can perform ultrafast
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neural network in-situ DFA training, demonstrating the great potential of photons in

artificial intelligence applications.

In summary, although the all-optical backpropagation gradient calculation can fully

utilize the parallelism, extremely lowenergy loss, and time cost of optical computing, there

is still a problem that the system is too complicated in actual implementation. Therefore,

the compromise method is to use the physical ONN to achieve in-situ forward propaga-

tion and somematrix-vectormultiplication operations, and the gradient calculation is dig-

itally implemented in a compatible electronic CMOS processor. In this way, the

advantages of photonic computing and electronic computing can be complemented,

and the prediction accuracy and system robustness of ONN can be greatly improved.

7. Discussion and outlook

With the growth of electronic computing encountering a bottleneck and cannotmeet the

needs of large-scale artificial intelligence tasks, photonic computing has become the main

driving force for thedevelopmentof thenext generationof technologydue to its extremely

highparallelism andenergy efficiency.Thebasic operationofweighted interconnectionof

neural networks can be efficiently implemented with free-space optical systems and

photonic-integrated circuits: (1) In a free-space system, the weighted interconnection

between large-scale neurons can be achieved through 3Dprinting diffractive layers,where

the programmable SLM andDMD can also be used to achieve phase and amplitude mod-

ulation. (2) In photonic-integrated circuits, light can be modulated through cascading

MZI and MRR array as well as PCM to realize photonic in-memory computing. The

physical realization of the ideal all-optical neuron activation function has two significant

advantages: ultrafast processing speed and almost free device energy consumption. At pre-

sent, optical nonlinearity has been achieved based on a variety of optical effects, including

photorefractive effect, saturable absorption, optical Kerr effect, structural phase change,

optical resonance, optoelectronics, etc. The development of basic optoelectronic devices

is the cornerstone of implementing an efficient optoelectronic computing platform. At

present, photonic I/Othat emits light on a chip ismainly realized through three integration

methods: heterogeneous integration, hybrid integration, and heteroepitaxial growth;

photonic memory is mainly based on bistable SRAM implemented by the state layout

and nonvolatile memory based on PCM. In view of the performance degradation of

the existingONN system due to its imperfection, a variety of in-situ optical backpropaga-

tion training methods have been proposed, which are divided into optical gradient calcu-

lation and digital gradient calculation. There are many types of ONN architectures,

including photonic fully connected networks, photonic convolutional neural networks,

photonic recurrent neural networks, and photonic spiking neural networks.

Free-space and integrated optoelectronic AI accelerators have demonstrated perfor-

mance comparable to traditional electronic neural networks in a variety of machine learn-

ing tasks. Including image classification, visual saliency detection, high-speed video
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image classification, voice classification, optical character, gesture recognition, edge

detection, image reconstruction, and other artificial intelligence tasks. The latest research

[26] shows that the optoelectronic AI accelerator can achieve up to 99.0% classification

accuracy on the MNIST classification task and 90.2% accuracy on the Fashion-MNIST

dataset, which is comparable to the classification performance of the electronic neural

network LeNet-5. On the Weizmann and KTH human action datasets, the optoelec-

tronic AI accelerator can achieve up to 100% and 96.3% human action recognition accu-

racy, which surpasses theadvanced electronic computing approaches. Moreover, as the

most advanced computing processor, the optoelectronic AI accelerator has overwhelm-

ing performance than electronic components in terms of power efficiency and comput-

ing speed, thus verifying the huge potential of using photons as a computing medium in

the next generation of global processors.

We expect that the final intelligent photonic integrated circuits can realize real-time

processing of massive information carried by light, which will greatly promote its appli-

cation in terminal computing, edge computing, and data center, accelerating the devel-

opment of autonomous driving and robotics. Among them, the miniaturized free-space

intelligent optoelectronic computing system can be applied to free-space optical commu-

nication. It can also be integrated with the visual imaging system to realize real-time pro-

cessing of visual information, including high-dimensional spectral visual information and

light-field visual information. At the same time, the integrated optoelectronic intelligent

computing system can also be integrated with optical fiber communication to realize the

efficient processing of large-scale optical information, which can be applied to the fields

of wireless communication, cloud computing, and data center, thus leading to the trans-

formation of the new generation of intelligent industry and information technology.
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1. Introduction

1.1 High-throughput analysis of nanomaterial microscopy data
The morphology of nanomaterials plays important roles in determining their macro-

scopic properties and functions. While traditional characterization techniques such as

small-angle X-ray scattering probes the ensemble-averaged material feature length scale

[1], they fail to provide information on structural heterogeneity. The real-space imaging

techniques including scanning/transmission electron microscopy (S/TEM), scanning

electron microscopy (SEM), and atomic force microscopy (AFM) can directly visualize

the nanomaterial structures, providing the most intuitive information. However, real-

space images focus on a local area instead of characterizing the whole sample, and thus

usually work as a qualitative and supplementary technique in nanomaterial research. To

comprehensively characterize the whole sample, one should take multiple microscope

images from different locations and extract the information of interest in a quantitative

and efficient way. The recently developed real-time imaging techniques, for example,

liquid-phase TEM (LP-TEM), enable the ability to study nanomorphology change over-

time [2,3] and nanoparticle diffusion and self-assembly [4,5]. Such technique generates

videos, or stacks of images, which usually contains hundreds of frames and thus also

requires efficient methods to locate and extract the features. Unlike the spectroscopy

data, a real-space image is high dimensional, and the features inside are variant to trans-

lation, rotation, and scaling, which makes it inapplicable to treat images as a feature vec-

tor, retrieving information from fixed positions or fitting them into simple statistical

algorithms. The quantitative analysis of nanomaterial microscope images usually starts

from feature recognition, either by hand annotation or image processing algorithms

(e.g., filtering and thresholding). While hand annotation by expert researchers is believed

to be accurate, it only works on a small volume of data due to its low efficiency. On the

other hand, most conventional image processing algorithms are less “smart,” which

struggles to find various features of interest buried under the complicated contrast profile
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and inevitable noises in the images. Machine learning (ML) is a fast-developing area in

computer science in the past decade and a lot of ML models are proven to be capable for

classification, feature detection, segmentation, and trajectory tracking of real-life pictures.

Efforts have also been put into applying, adapting, and designingMLmodels for scientific

image data and show excellent performance in analyzing biomedical and optical micro-

scope images. In this chapter, the recent progresses on ML applications in processing and

analyzing microscopy data of nanomaterials will be reviewed with a wide range of dif-

ferent imaging techniques, data type (images, videos, and tomographs), and ML models

covered.

1.2 Machine learning models relevant to microscopy data analysis
A rough classification of ML models includes supervised and unsupervised learning, gen-

erative learning, and reinforcement learning (RL). The major difference between super-

vised and unsupervised learning is the requirement of training dataset. Training dataset is

a set of exampled input and output pairs, based on which the MLmodels can optimize its

weights in order to make predictions on new inputs. Supervised learning has its wide

applications in image processing and analysis, including image denoising [6], deconvolu-

tion, segmentation, object detection, classification, and tomography reconstructions,

which will be mostly covered in this section. The unsupervised learning exploits the

inner distribution of the existing data itself to make the predictions on its clustering

behaviors, and thus does not require additional training dataset. In material characteriza-

tion, the unsupervised learning can automatically sort or group morphologies [7], lattices

structures [8], spectra [9], and diffraction patterns [10–12]. Unlike the supervised and

unsupervised learning (also regarded as predictive learning), the generative learning gen-

erates previously nonexisting data which captures the important features and visually

resembles the existing dataset. Such learning techniques can potentially help in designing

novel material structure with certain functions [13,14], predicting material morphology

which accelerates physical property investigation [15], fabricating training datasets for

supervised learning [16], and helping the tomography reconstruction [17]. Lastly, RL

trains a decision maker—the agent to interact with the environment. RL algorithms

are particularly good at interactive operations with information feedback, for examples,

optimizing a chemical reaction [18], nanofabrication [19], controlled self-assembly [20],

and navigation of self-propelled particles [21].

As we previously mentioned, images, if viewed as feature vectors, have very high

dimensionality, strong spatial correlations, and are translational, rotational, and scaling

variant. Those properties also cause difficulty in conventional ML techniques, for exam-

ple, a fully connected neural network with the same size as the image can simply has too

many neurons with high computational cost. As a result, the convolutional neural net-

works (CNNs) are usually chosen for processing image data in ML. During convolution,
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small matrices with few weights, also known as kernel, slide through the input image to

give the output to the next layer. The convolution can provide certain degrees of trans-

lational equivariance and save a lot of computational cost as compared to fully connected

neural networks. Meanwhile, the pooling layers can also enable the CNNs to detect fea-

tures at different length scales. CNNmodels such as LeNet [22], AlexNet [23], VGGNet

[24], and ResNet [25], are designed for image classification, which means given an image

input, the model will label the image with one or more logical or categorical labels.

CNNs with symmetric encoder-decoder architectures such as fully convolutional net-

work (FCN) [26] and U-Net [27] can make pixelwise prediction in an image-to-image

manner, which is capable for noise reduction and semantic segmentation of one or more

species. The limitation of semantic segmentation exists, in particular, in nanomaterials

detections. Since the semantic segmentation directly labels the meaning of each pixel,

it needs to be accompanied by postprocessing algorithms to identify the individual par-

ticles, which can be challenging with particles touching, overlaying, and aggregating with

each other. Other CNNs can directly detect the objects by proposing and regressing the

bounding boxes of the objects of interests in an image, examples of those CNNs can be

region-based convolutional neural networks (R-CNN) [28], Fast R-CNN [29], Faster

R-CNN [30], YOLO [31], and RetinaNet [32]. Such models localize the bounding

boxes of objects without specifying their orientations and contours, which is

segmentation-free but less applicable when researchers are interested in characterizing

the morphology of nanomaterials. Combining semantic segmentation and object detec-

tion gives rise to more complicated models such as Mask R-CNN [33] which simulta-

neously gives the objects and their contours known as instance segmentation. Some

aforementioned CNN architectures such as ResNet [34] and U-Net [35] can also be

implemented in 3D to help the video recognition and tomography segmentation. Fully

exploiting the temporal information from microscopy videos requires corelating the

neighboring frames. Recurrent neural networks for example long short-term memory

(LSTM) can selectively “memorize” or “forget” the information appears in the previous

frames to deal with an entire sequence of data and has its application in particle trajectory

classification [36] and object tracking [37].

Benefited from the real-space imaging capability of microscopies, a copious amount

of individual microscopic object samples can be collected to understand the heterogene-

ity of nanomaterials with unknown morphologies. Then unsupervised ML models such

as k-means, Gaussian mixture model (GMM), and density-based spatial clustering of

applications with noise (DBSCAN) can classify them into groups, averaging and simpli-

fying the morphologies with high similarity while highlighting heterogeneity across the

whole sample [7,38,39]. Both k-means and GMM attempt to assign each data point (each

sample) to a cluster center in the feature space. K-means minimizes the distance between

all samples and its cluster center while GMM maximizes the likelihood of the samples

belonging to its cluster center by assuming the overall datapoint distribution is a mixture
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of several multivariant Gaussian distributions. DBSCAN is a density-based clustering

algorithm to group the datapoints in high density regions together and regard the

low-density regions as noises. Comparing with the k-means and GMM, DBSCAN does

not require one to specify the number of clusters and is more applicable to distributions

with arbitrary shapes. The inputs of such unsupervised ML techniques are usually certain

feature descriptors (e.g., particle diameter, aspect ratio, or projection area) extracted from

the microscopic characterizations. Since ML techniques always rely on a huge amount of

data, collecting the shape descriptors from the raw microscopy images by automated and

high-throughput algorithms are beneficial comparing with manual measurement. In

some studies, the spectrum, diffraction pattern, or shape contours can also be directly used

as the input of the unsupervised classification algorithms. One complication here is, dif-

ferent from the short feature vectors made up of few scalar descriptor values, those data

type usually have high dimensionality (>10) and, due to the well-known “curse of

dimensionality” [40,41], are hard to be classified. To solve this issue, dimension reduction

techniques (which are also considered as unsupervised learnings) are applied prior to the

classification. Commonly, top 2 or 3 dimensions after the reduction are either directly

visualized to show the sample distribution or serve the as the input of the unsupervised

classifications. Such dimension reduction algorithms include principal component anal-

ysis (PCA) [42], t-distributed stochastic neighbor embedding (t-SNE) [43], and uniform

manifold approximation and projection (UMAP) [44].

Variational autoencoder (VAE) [45] and generative adversarial networks (GAN) [46]

with its variations are two common models in the generative ML. The GAN consists of a

generator network and a discriminator network. The generator network takes randomly

initialized input vectors to make up images, while the discriminator network judges

whether the images are synthesized by the generator or real images in the training set.

In this special training process, the generator will be optimized to “fool” the discrimina-

tor and discriminator network will be trained to be smarter to detect the fake images.

Eventually, with this adversarial training process, the generator can learn to synthesize

previously nonexisting images that visually resemble the images in training set.

1.3 Training datasets in supervised learning of nanomaterial
microscopy images
For supervised ML models, before making any reasonable predictions, they have to be

trained on a labeled training dataset that covers the features one wants to predict, and

the volume of the training dataset usually needs to be relatively large (at least hundreds

of images) to cover a whole range of sample variations. Although training datasets of

common life object photos and biomedical images with corresponding labels are widely

accessible to the ML community [47–49], given the vast and fast-expanding ranges of

different nanomaterials, it is still difficult to train models that are widely applicable to

one’s arbitrary and customized experimental images [50]. While manually labeling an
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experimental image library is a conventional approach of crafting the training dataset,

paradox exists in the meaning of such supervisedML in image analysis. Manually labeling

a large number of images of specific materials compromises the efficiency, which is the

initial reason of applying ML methods.

To fully exploit the efficiency of manual annotation, training image augmentation can

be applied to expand the size of training datasets [51,52]. The augmentation allows one to

sample and manually label a relatively small portion of the experimental images that are

going to be predicted. Then random combinations of transformations including transla-

tion, rotation, shearing, zooming, flipping, brightness change, and so on are applied to

both experimental images and the corresponding labels (if the labels are also images) to

give previously nonexisting but reasonable training samples. The augmented training set

increases the sample volume and variations by mimicking the random orientation, shape

variation, magnification and brightness, contrast fluctuations that happen in the real

microscopy imaging process, and consequently makes model robust against them.

Another efficient way of generating the training set is through image simulation. By con-

sidering the contrast formation mechanism and sample randomness in the real micro-

scopic images, image simulation algorithms produce training images that visually

resemble the experimental images, which, in principle, can provide training datasets with

unlimited sizes. Such simulation-based training has been applied to train neural networks

that identify atoms and nanoparticles from scanning transmission electron microscopy

(STEM) [53,54], TEM [55], and helium ion microscopy (HIM) [56] images. Good sim-

ulations reproduce the material pattern and contrast profile under the experimental con-

dition while leaving randomness on the contours, orientations, positions, and other

information needs to be extracted. Otherwise, if the simulation does not resemble the

experimental images, the prediction performance would be limited when it comes to

predicting the real images regardless how high is the accuracy on training dataset.

2. ML in 2D microscopy image analysis

2.1 Classification and regression of nanomaterial microscopy images
One of the relatively simple tasks in 2D image analysis is classification, whichmeans given

an image input, one interests in assigning the image with one or more logical or categor-

ical labels. Through CNNs, a collection of microscopic images of nanomaterials can be

automatically classified into subcategories with similar features in a high-throughput

manner. To give an example, Luo et al. [57] combine the supervised CNN with unsu-

pervised embedding algorithms to classify the TEM images of carbon nanostructures into

several predefined morphologies (Fig. 1A), which can potentially provide information to

help the risk assessment for the exposure to these carbon materials. In this work, the

authors innovatively extract and cluster hypercolumns from layers in a VGG-16 model

representing information at various length scales and compare their results with the
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Fig. 1 Studies of using ML in image classification. (A) A schematic of the carbon nanostructure’s image classification workflow. (B) Carbon
nanostructure’s image classification models: blue arrows indicate the conventional VGG-16 model classification; red arrows indicate the
hypercolumn model. In the hypercolumn model, images were imported to the pretrained CNN architecture and followed by the
hypercolumn feature extraction. A k-means library was then used as a visual feature dictionary and introduced to a vector of locally
aggregated descriptor encoder to compute the residuals. Finally, the classifier was trained with a boosting cycle to make predictions.
(C) A schematic showing the CNN-based SPM probe quality evaluating workflow and example training images of double tip and sharp tip.
((B) Adapted from Q. Luo, E.A. Holm, C. Wang, A transfer learning approach for improved classification of carbon nanomaterials from TEM images,
Nanoscale Adv. 3 (2021) 206–13, https://doi.org/10.1039/D0NA00634C with permission from The Royal Society of Chemistry. (C) Adapted with
permission from M. Rashidi, R.A. Wolkow, Autonomous scanning probe microscopy in situ tip conditioning through machine learning, ACS Nano
12 (2018) 5185–9, https://doi.org/10.1021/acsnano.8b02208. Copyright 2018 American Chemical Society.)

https://doi.org/10.1039/D0NA00634C
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performance of the original VGG-16 model (Fig. 1B). Their novel model yields 90.9%

and 84.5% accuracies on 4- and 8-class classifications, respectively, which is higher than

the conventional CNN model. Meanwhile, the authors also found that by applying data

augmentation to the minority classes, the prediction accuracies in all categories can be

improved and the accuracy variations among different classes can be reduced. This is

because with the training data imbalance, the model will be less penalized from misclas-

sifying the minority groups, and by rebalancing the training data classes by data augmen-

tation, this issue can be solved. Such image classification tasks can also be exploited by

being integrated in other processes. Rashidi et al. [58] utilize CNN to help the sharp

tip restoration in scanning probe microscopy (SPM)-based nanofabrication. Trained

on SPM images of manually labeled, isolated silicon dangling bonds, the CNN can keep

making binary classifications on whether the SPM tip is sharp or doubled in the tip con-

ditioning process until a sharp tip is detected (Fig. 1C). This method can serve as a module

and automate the atomic-scale nanofabrication as well as be applied to other material

systems and nanoscale imaging techniques.

Other than predicting logical or categorical values out from the image input, CNNs

are also able to regress numerical values given the proper choice of the loss function. For

example, Hu et al. [59] train model to predict the 3D orientations of the shape-

anisotropic gold nanostars. The nanostars have low structural symmetry and thus exhibit

different patterns at different 3D orientations under the differential interference contrast

(DIC) microscopy. With taking the multispectral DIC patterns of nanostars at three

wavelengths, their trained neural network can predict the in-plane and out-plane angles

(φ and θ) of the nanostars with average prediction errors below 20°. Their results dem-

onstrate the application of CNNs in fast and automated orientation tracking for studying

3D rotational dynamics of nanoparticles.

2.2 Segmentation of nanomaterial microscopy images
More quantitative analysis of nanomaterials such as the synthesis yield analysis, lattice

structure characterization, nanomorphology extraction, and studies on nanoparticle dif-

fusion and self-assembly requires one to quantitatively exploit the spatial information

from microscopy images. The conventional approach of such studies usually starts from

the semantic segmentation, which means to cut the microscopy image into several

domains or areas with different meanings, for examples, different atoms, elements, lattice

structures, nanoparticles, and the background. Then in the following analysis, the loca-

tions, contours, as well as particle counts can be easily extracted from the area boundaries.

Non-MLmethods typically employ thresholding, where the segmentation is achieved by

setting intensity thresholds and assigning certain meanings to pixels within the threshold

range. Although efforts in preprocessing including denoising, contrast enhancements,

and creating sliding windows to implement the threshold locally can help the
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performance, incorrect segmentations can often be obtained from thresholding methods

because of the existence of high noise, blurriness, complicated material contrast profile,

and unwanted impurity species.

In 2014 and 2015, the invention of FCN [26] and U-Net [27] has revolutionized the

semantic segmentation process. Given an image as the input, such CNN models can

make pixelwise prediction on the probability of each pixel in the original image belong-

ing to different species (e.g., in the simplest case, foreground objects vs the background).

This is benefitted from their special encoder-decoder architectures, where the encoder

part allows the detection of features on multiple length scales and the decoder recon-

structs the information back in the original spatial domain, and meanwhile, the direct

connection between the layers in encoder and decoder can help to recover the full spatial

resolution in the output [60]. Unlike the conventional threshold-based segmentation, the

FCN and U-Net not only consider the absolute intensity values in the image during the

prediction, but also their relative differences, their surrounding environments, and the

model’s previous experiences. These factors combined exactly mimic the decision-

making process that happens in the minds of human experts during their manual image

segmentation.

With U-Net first demonstrates its application in the segmentation of optical micros-

copy images of cells, CNNs with similar architectures have soon been widely applied to

the microscopy-based nanomaterial characterizations. Ziatdinov et al. [53] train FCNs to

predict the atomic positions as well as the dopants and defects in the STEM images of 2D

lattices of graphene and MoSe2 (Fig. 2A and B). In their study, several interesting phe-

nomena have been observed. The models trained on graphene lattice can predict the

atomic positions in the MoSe2 lattice as well. The similar lattice structures and drastically

different atomic compositions in those two materials indicate that the FCN has the

potential to learn from the lattice structures instead of the exact intensity profile of indi-

vidual atoms. Another important finding is that by being trained on simulated STEM

images of lattices with single vacancies only, the model can spot more complicated vacan-

cies associated with more than one missing atoms. Such observations validate the gener-

alizability of the training process and the versatility of the trained models—one does not

have to explicitly include every possible physical scenario during the training data selec-

tion or simulation, and the CNNmodels have the ability to learn the general features and

extrapolate its knowledge into more complicated situations. In this and the following

works from Ziatdinov and co-workers [51,54], with the atomic positions accurately pre-

dicted by the CNNs from the STEM images of 2D materials such as graphene, MoSe2,

and WS2, their dopant- and vacancy-related defect structures as well as their transforma-

tions over time can be captured and well correlated to the materials functionalities.

CNNmodels with similar architectures also help the segmentation of nanoscale mate-

rials in various microscopies. For example, U-Net trained on the simulated TEM images

is proven to make accurate nanoparticle segmentation on LP-TEM videos with low
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Fig. 2 Studies using ML in semantic segmentation. (A) Schematic architecture of an FCN that has an encoder-decoder type of structure. The final
softmax layer outputs a pixelwise classification for atomic species and/or defects from STEM images. (B) Illustration of how atomic positions are
obtained from the raw STEM image of graphene using FCN and Laplacian of Gaussian blob detection method. The FCN maps and atomic positions
are overlaid on the experimental images. (C) HIM nanoparticle images and corresponding labels synthesized by render software are used to train a
U-Net model for automated particle segmentation and subsequent quantitative, statistical assessment. After training, themodel which predicts the
most accurate segmentation on a real validation image is selected for further processing. (D) In the few-shot learning model, the raw STEM image is
broken into several smaller chips and a few user-defined chips are used to represent desired segmentation classes in the support set. Each chip then
acts as a query and is compared against the support set and get categorized, yielding the segmented image. Scale bar: 5nm. ((B) Adapted with
permission from M. Ziatdinov, O. Dyck, A. Maksov, X. Li, X. Sang, K. Xiao, et al., Deep learning of atomically resolved scanning transmission electron
microscopy images: chemical identification and tracking local transformations, ACS Nano 11 (2017) 12742–52, https://doi.org/10.1021/acsnano.
7b07504. Copyright 2017 American Chemical Society. (C) Adapted with permission from L. Mill, D. Wolff, N. Gerrits, P. Philipp, L. Kling, F. Vollnhals,
et al., Synthetic image rendering solves annotation problem in deep learning nanoparticle segmentation, Small Methods 5 (2021) 2100223, https://
doi.org/10.1002/smtd.202100223. (D) Adapted with permission from S. Akers, E. Kautz, A. Trevino-Gavito, M. Olszta, B.E. Matthews, L. Wang, et al.,
Rapid and flexible segmentation of electron microscopy data using few-shot machine learning, Npj Comput. Mater. 7 (2021) 1–9, https://doi.org/10.
1038/s41524-021-00652-z.)
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signal-to-noise ratio and fluctuating feature intensities. Combined with the temporal

information obtained from the video, the high-quality segmentation further helps the

individualization and trajectory tracking of single nanoparticles, which finally leads to

the revelation of the nanoparticle diffusion, self-assembly, and morphological transfor-

mation in their native, liquid environment [55]. Similarly, Mill et al. [56] train U-Net

to segment SiO2 and TiO2 nanoparticles in HIM images (Fig. 2C). Their proposed ren-

dering software-based synthetic data generation pipeline allows the trained model to seg-

ment partially obscured nanoparticles with accuracies comparable to human experts.

Such integration of semiautomated training dataset generation and ML prediction

requires less human input and thus makes the shape characterization of nanoparticles

more efficient, which can potentially benefit the nano-toxicology or nano-medicine

studies. Ziatdinov and co-workers [61,62] have also applied similar CNNmodels to seg-

ment the protein nanoparticles and nanofibers from AFM and SEM images. The loca-

tions and orientations extracted from the segmentation maps predicted by the models

not only enable the study of protein self-assembly behavior, but also indicate that the

CNN-based image segmentation can be robustly applied to both inorganic and organic

nanomaterials imaged by a wide range of different microscopes.

Other than the image-to-image neural networks such as FCN and U-Net mentioned

above, efforts in other types of MLs have also been spent to help the nanomaterial seg-

mentation challenge. One example is that Lee et al. [39] implement a genetic algorithm

to optimize the operation sequences and parameters selection during the conventional

TEM image segmentation workflow. Such parameters include the pretreatment order,

filter kernel size, edge detection, and so on. Although having potentials in making excel-

lent segmentations, those parameters combined together can form into a high dimen-

sional space which is difficult for human researchers to optimize. On the other hand,

the genetic algorithm based on the natural selection process in species evolution, once

trained on example images, can efficiently find the best combinations of the parameters

that give good segmentation results. Their final model is able to efficiently and accurately

extract the morphological properties from gold nanorods that densely pack under TEM.

The applications of such model can be found in synthesis characterization and the eval-

uation and construction of nanoparticle big data. Akers et al. [50] develop a few-shot

learning model to differentiate the phases, defects, and microstructural features in the

STEM images of metal oxide heterostructures, thin films, and nanoparticles (Fig. 2D).

In this study, one high-resolution STEM image is first divided into grids of subimages.

Then a few subimages from each class of different semantic meanings are picked up and

manually labeled as the “supporting set,” while the rest majority of the subimages remains

undistributed. Next, all subimages are embedded by a neural network (ResNet101 in this

case) to give the transformed representations of the subimages in a different feature space

and the distances between the unlabeled subimages and the center of each support set will

be calculated and compared to give the labels for those unlabeled subimages. Finally, all
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classified subimages are stitched together to give the semantic segmentation map of the

original high-resolution image. Comparing with the image-to-image CNN models

mentioned previously, the few-shot learning requires much smaller training (support) sets

that usually range from one to a few images per class, and consequently can be applied

more rapidly and flexibly to new materials and new classification tasks.

2.3 Object detection of nanomaterial microscopy images
The models and methods mentioned above are dedicated to achieving the semantic seg-

mentation task in the microscopy images. However, the semantic segmentation is not

always sufficient for detecting the individual nanomaterials such as nanoparticles, poly-

mer micelles, or cells. When the particles closely touch each other, partially obscure each

other in SEM view, or overlay with each other in TEMprojection, the semantic segmen-

tation, which simply classifies each pixel, tends to fuse the nanoparticles together instead

of detecting each nanoparticle as an instance. In some scenarios such as the yield analysis

in nanoparticle synthesis, people only care about the prediction precision, which is

defined as among the nanoparticle retrieved by the algorithm, the number of nanopar-

ticles that are correctly predicted; false-positive detections like nanoparticle dimers or

aggregations can be easily filtered out by their abnormal shape or larger size [7]. To

the contrast, in other scenarios, e.g., nanoparticle self-assembly study [5,63], the false-

negative (missed) detections also matter because they might bring unphysical vacancies

in the self-assembly structures. As a result, a good algorithm should not only be respon-

sible for capturing correct particles, but also not miss any particles. Postprocessing algo-

rithms including the watershed transformation [64], ultimate erosion for convex sets [65],

and bounded erosion-fast radial symmetry [66] can be applied after the segmentation to

force the connected nanoparticle apart. However, they only exploit the geometrical

information along the segmented boundaries without referring to the intensity profiles

in the original image, and usually work better for convex shapes with partial and simple

overlaying, while the concave polygons and complex overlaying can frequently exist in

the metal or metal oxide nanoparticle self-assemblies.

There are ML models capable for object detection as well, which usually means to

directly locate and draw the bounding box for each instance of the object in an image.

Although not necessarily giving the contours of objects as in the pixelwise classification

case, object detection models can naturally capture the individual nanoparticles from the

raw image, without involving any postprocessing steps to force the connected particles

separated. The region-based CNNs (e.g., R-CNN, Fast R-CNN, Faster R-CNN,

YOLO, and RetinaNet) are designed for such object detections in real-life photos

and can be applied to the microscopy images analysis as well. Taking the more advanced

Faster R-CNN as an example, firstly, a region proposal network (RPN) is responsible for

proposing potential region-of-interests (ROIs) where the objects roughly lie in, and then
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proposal bounding boxes will be generated around the ROIs. In the next step, the pro-

posed bounding boxes will be input into the classifier and regressor network which

judges the exact class of each bounding box and refine their positions to precisely inscribe

the detected objects, respectively. Shen et al. [67] employ the Faster R-CNN to locate

defect clusters in irradiated steels (Fig. 3A). Trained on manually labeled and augmented

experimental STEM images of FeCrAl alloys, their faster R-CNNmodel can localize and

distinguish dislocation loops with four different types of morphology.With the detection

accuracy within the uncertainty of human researchers, this model is also more efficient,

reproducible, and scalable, which can potentially replace the human efforts in future

STEM image analysis. Li et al. [52] utilize a similar Faster R-CNN to detect and differ-

entiate the supramolecular assembly structures with opposite handedness made up from

star-shaped hexadimethylphenylbenzene and fluorine-substituted hexadimethylphenyl-

benzene molecules imaged by scanning tunneling microscopy (STM) (Fig. 3B). Besides

their high recognition rate over 90% and their training data augmented from one single-

labeled image, several interesting conclusions are drawn from their observations: (1) The

model trained on high-resolution STM images remains robust when tested against low-

resolution images. (2) The model has good performance despite the difference in the spa-

tial arrangements of the objects in training dataset and testing dataset. (3) High-quality

training data with more obvious difference between the L- and R-handed species leads

to better performance while training data with little distinction between species leads to

low performance. Their application of object detection on STM has the potential in

accelerating the routine tasks in image analysis, material database development, and

advanced materials discovery. In other’s studies, object detection CNNs have also been

used for single particle picking in cryo-EM reconstruction [68,69].

Although capable of detecting instances, the object detection methods discussed

above can only locate the object bounding boxes without delineating their contours,

which is insufficient to characterize nanomorphology, centroid coordinate, and nanopar-

ticle orientation. Adding another pixelwise classification CNN after the proposed

bounding boxes in the region-based neural networks can equip themodel with the ability

of “instance segmentation” and this gives rise to the mask R-CNN model. In instance

segmentation, a mask delineating the object boundary will be generated for every

detected instance, instead of for the whole image in semantic segmentation, which

can achieve the shape and orientation characterization for overlaying and aggregated

nanoparticles. Such model and its variant have been used in the nanoparticle size char-

acterization from TEM and SEM images [70–73] with good performance in separating

overlaying nanoparticle (Fig. 3C), and also bears potential in analyzing dynamic processes

such as nanoparticle diffusion and self-assembly from the electron microscopy video data.

However, mask R-CNN has a complicated thus computationally expensive architecture

and can still suffer from missing detections during the nonmaximum suppression (NMS)

step when the overlaying area between adject bounding boxes is large [74]. To solve these
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Fig. 3 Studies using ML in object detection and instance segmentation. (A) Schematic of the flow chart of Faster R-CNN-based automated defect
detection from STEM images of irradiated ferritic steels. Input micrograph images first go through the Faster R-CNN detector to identify the loop
locations and bounding boxes. Then for each identified bounding box, geometry fitting algorithms are called to determine the defect shape and size.
(B) Flow diagram illustrating the automated chiral molecule detection and identification from original SPM images. First, the experimental STM
images are obtained. Then image quality is rated by a t-SNE unsupervised learning method. The data with the desired quality are augmented to
generate a training dataset for the core prediction model. Afterward, an optional conditional random field filter-based domain knowledge
incorporation module can be utilized to enhance performance for nonideal STM images. Lastly, the trained model is utilized for the image
inference tasks for automated pattern analysis of the SPM images. (C) Comparison of nanorod TEM image segmentation results obtained by
semantic segmentation (U-Net and SegNet) and instance segmentation (Mask R-CNN and improved Mask R-CNN). The improved Mask R-CNN
can have better performance on weak-edge nanoparticles and adhesion nanoparticles. (D) Segmentation errors of merging cells in semantic
segmentation methods and suppression of valid cell instances in bounding-box detection methods. On the other hand, StarDist method
predicts object probabilities and star-convex polygons parameterized by the radial distances with U-Net and then selects the final instances via
NMS, which gives better segmentation results. ((A) Adapted from M. Shen, G. Li, D. Wu, Y. Liu, J.R.C. Greaves, W. Hao, et al., Multi defect detection
and analysis of electron microscopy images with deep learning, Comput. Mater. Sci. 199 (2021) 110576, https://doi.org/10.1016/j.commatsci.2021.
110576 with permission from Elsevier. (B) Adapted with permission from J. Li, M. Telychko, J. Yin, Y. Zhu, G. Li, S. Song, et al., Machine vision
automated chiral molecule detection and classification in molecular imaging, J. Am. Chem. Soc. 143 (2021) 10177–88, https://doi.org/10.1021/jacs.
1c03091. Copyright 2021 American Chemical Society. (C) Adapted with permission from F. Zhang, D. Zhao, Z. Xiao, J. Wu, L. Geng, W. Wang, et al.,
Rodlike nanoparticle parameter measurement method based on improved mask R-CNN segmentation, SIViP 15 (2021) 579–87, https://doi.org/10.
1007/s11760-020-01779-0. Copyright 2020 Springer Nature. (D) Adapted with permission from U. Schmidt, M. Weigert, C. Broaddus, G. Myers, Cell
detection with star-convex polygons, in: A.F. Frangi, J.A. Schnabel, C. Davatzikos, C. Alberola-López, G. Fichtinger (Eds.), Med. Image Comput. Comput.
Assist. Interv. – MICCAI 2018, Springer International Publishing, Cham, 2018, pp. 265–73, https://doi.org/10.1007/978-3-030-00934-2_30. Copyright
2018 Springer Nature.)
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problems, the instance segmentation can also be achieved by bounding-box-free and

light-weight algorithms such as StarDist [74]. Different from the bounding-box-

proposals in the region-based CNNs, the StarDist directly regresses the pixel-to-

boundary distance for every pixel inside the object at different radial directions (Fig.

3D). Meanwhile, another regression will be conducted to find the pixels near the objects’

center. Next, particle boundaries will be reconstructed and proposed by those radial dis-

tances measured at pixels near the objects’ center. In the last step, anNMS can remove the

duplicated particle boundaries to give the final instance segmentation results. Such

proposal-free algorithms have been tested and applied to cell segmentation in optical

microscopy images [74,75], object detection in real-life photos [76], as well as nanopar-

ticle characterization in TEM and SEM images [77,78].

3. ML in 3D tomography reconstruction and segmentation

The 3D morphology as well as the 3D element distribution of nanomaterials can be

revealed by tomography techniques such as electron tomography with TEM, high-angle

annular dark-field imaging (HAADF)-STEM, and STEM-energy-dispersive X-ray

(EDX). 3D morphologies such as convexly shaped nanoparticles and polymeric mem-

branes with rich inner voids can be critical for their optical [79], catalytic [80], and per-

meation [81] properties and could not be sufficiently characterized by simple 2D

projections. In such tomography techniques, the sample will be tilted by rotating the

sample holder and 2D projections will be collected as a function of tilting angles. Then

those projections, which are also known as sinograms, undergo reconstruction algorithms

to give the volumetric image representing the 3D geometry of the sample material.While

the simplest analytic reconstruction algorithms (Fig. 4A) such as filtered-back projection

(FBP) directly inverse the projection process to backout the original geometry, they are

usually prone to the artifacts presented in the experimental image acquisition. For exam-

ple, the tilting range of sample holder in electron microscopies is usually limited to�60°
or�70°, which is narrower than the ideal tilting range of�90° to collect all information.

The limited tilting angle can result in missing sinograms and causes feature elongation in

the final reconstruction, which is also regarded as the “missing wedge” effect and can

potentially lead to serious misinterpretations [82]. On the other hand, to avoid the beam

damage introduced to the fragile samples such as polymer membranes [81] or samples

under EDX tomography with high-dose rate, the total number of tilting series is often

limited and thus causes sparsely sampled sinograms [83], which leads to reconstruction at

low resolution. Moreover, the signal-to-noise ratio (SNR) in EDX tomography can be

very low due to the low probability of X-ray generation and low efficiency of their detec-

tion [84], which also impact the reconstruction quality. To address those issues, more

advanced iterative reconstructions (Fig. 4A) such as simultaneous iterative reconstruction

technique [85], model-based iterative reconstruction, and discrete algebraic
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Fig. 4 Application of ML in tomography reconstruction. (A) Three types of tomographic reconstruction methods. In direct or analytic
reconstruction, a mathematical inverse of the forward transform is used to compute images from sensor data. In iterative reconstruction,
the current image estimate is iteratively updated such that its forward transform gradually approaches the sensor data. In deep
tomographic reconstruction, the inversion does not need to rely on any explicit transform model but is learnt from representative big data.
(B) A schematic showing using U-Net for elemental map denoising to address the problem of very high acquisition time and electron dose
requirements for EDX tomography of nanoparticles. (C) The training pipeline of the IRDM model to predict information recovered and
de-artifacted tomogram from FBP reconstructions. (D) A schematic showing AUTOMAP model for sensor data to reconstruction image
domain transformation. The model is implemented with a deep neural network architecture composed of fully connected layers (FC1 to
FC3), followed by convolutional layers (C1 and C2) that form a convolutional autoencoder. ((A) Adapted with permission from G. Wang, J.C.
Ye, B. De Man, Deep learning for tomographic image reconstruction, Nat. Mach. Intell. 2 (2020) 737–48, https://doi.org/10.1038/s42256-020-
00273-z. Copyright 2020 Springer Nature. (B) Adapted from A. Skorikov, W. Heyvaert, W. Albecht, D.M. Pelt, S. Bals, Deep learning-based denoising
for improved dose efficiency in EDX tomography of nanoparticles, Nanoscale 13 (2021) 12242–9, https://doi.org/10.1039/D1NR03232A with
permission from The Royal Society of Chemistry. (C) Adapted with permission from C. Wang, G. Ding, Y. Liu, H.L. Xin, 0.7 Å resolution electron
tomography enabled by deep-learning-aided information recovery, Adv. Intell. Syst. 2 (2020) 2000152, https://doi.org/10.1002/aisy.202000152.
(D) Adapted with permission from B. Zhu, J.Z. Liu, S.F. Cauley, B.R. Rosen, M.S. Rosen, Image reconstruction by domain-transform manifold
learning, Nature 555 (2018) 487–92, https://doi.org/10.1038/nature25988. Copyright 2018 Springer Nature.)
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reconstruction technique [86] are proposed to compare the reconstructions with the

experimental observations iteratively until the error vanishes and the solution converges

[87].While having enhanced performance comparing to the analytic algorithms, iterative

reconstructions can potentially suffer from the feature smoothing and high computation

costs [88]. Recently, other than analytic and iterative reconstruction, an increasing num-

ber of research shows that ML algorithms (Fig. 4A) can effectively help the tomography

reconstruction in various applications from X-ray computed tomography (CT), mag-

netic resonance imaging (MRI), and ultrasound in biomedical imaging to optical,

X-ray, and electron tomography in material science [83,87,89].

Considering the transformation of the experimentally taken 2D sinograms to 3D vol-

umetric image in x, y, z coordinates, the ML contribution in tomography reconstruction

can be categorized as: (1) preprocessing of sinograms, (2) postprocessing of simply recon-

structed tomograms, and (3) end-to-end reconstruction directly from sinogram to tomo-

gram. To give an example of sinogram preprocessing, Yang et al. [89] train CNN with

encoder-decoder architecture to enhance the SNR of the sinograms taken by transmis-

sion X-ray microscopy (TXM) at short exposure time. The CNN is trained on the X-ray

projection series pairs taken at long and short exposure time and canmap the noisy images

to high-quality images which reduces the X-ray dose during imaging and prevents the

sample from beam-induced damages. Their validation of the model on both synthetic

datasets and real TXM measurements of mouse brain structures demonstrates the signal

enhancement by at least a factor of 10 and the recovery of more structural information. In

other studies [84], it has been shown that advantage exists in such sinogram preprocessing

methods comparing to the reconstruction postprocessing because the noise in experi-

mental sinograms can already lead to artifacts during the reconstruction and consequently

leaves input corrupted for postprocessing. As a result, in this study, the simulated EDX

tilting projections of various-shaped nanoparticles with randomizable geometric param-

eters and artificial noises are used to train a U-Net for elemental map denoising before the

tomography reconstruction (Fig. 4B). While the trained U-Net shows better denoising

performance than classical denoising approaches both quantitively and qualitatively on

simulated EDX images, applying the denoised sinograms to reconstruct the experimen-

tally obtained tilting projections yields adequate representation of the nanoparticle’s

shape and elemental distribution. Their application of U-Net in increasing the sinogram

SNRhas the potential to allow for reductions in EDX acquisition time and electron dose,

which benefits the studies of beam-sensitive materials at high throughput. Meanwhile, in

the work by Han et al. [83], with concerns on the fidelity of imaging procedure modeling

in STEM-EDX tomography data simulation, an unsupervised ML workflow is proposed

to bypass the lack of training data. In this workflow, a conventional reconstruction algo-

rithm is first used to build a low-resolution reconstruction from the noisy and sparse sino-

grams obtained experimentally. Then in the next step, a neural work is used to generate

high-resolution sinograms from the noisy reconstruction, filling the missing and under
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sampled tilting angles. In their training process, by imposing the consistency between the

original and enhanced sinograms, only the experimental sinogram but no matching

ground truth is needed. Finally, the sinograms recovered by the neural network can

be reconstructed by simple algorithms such as FBP to give the high-resolution tomo-

grams. By using the gold nanoparticle and quantum dots as example systems, they show

their training data-free, unsupervised learning algorithm can give high-quality 3D recon-

structions that well correlate with the samples’ optical characteristics and can be used

broadly for comprehensive physicochemical analysis of nanoparticles.

For “postprocessing” type reconstruction, Wang et al. [17] train GAN to recover

information and remove artifacts from the simply reconstructed tomograms with

missing-wedge effects (Fig. 4C). In their GAN model, which is also known as informa-

tion recovery and de-artifact model (IRDM), a U-Net++ is used as the generator and it

takes the FBP reconstructions as the input and outputs the information recovered and

de-artifacted tomograms. During the training process, a CNN discriminator is respon-

sible for judging whether the tomogram is produced by the generator or from the ground

truth library. Although the discriminator does not directly contribute to the reconstruc-

tion process, its derivative during the backpropagation is necessary to help the generator

to give better reconstructions. The model is trained on publicly accessible datasets of bio-

medical, daily life, and phantom images and tested on the experimentally obtained atomic

electron tomography with missing wedge up to 40°. Beside the superior performance of

their IRDM comparing with the conventional FBP highlighted by the power spectrum,

their research also provides some insights into the training dataset selection. For example,

training dataset with high complexity can improve the robustness of IRDM against high

missing wedge angles, and training datasets with features and missing wedge regions sim-

ilar to the targeted sinograms are more appropriate to be selected. The U-Net type of

encoder-decoder neural networks can also be implemented in 3D to directly segment

or denoise volumetric images. An example of such model is the 3D U-Net for the auto-

matic segmentation of confocal microscopic images [35]. But unlike the electron tomog-

raphy, those studies focus more on the segmentation rather than the missing information

recovery or artifact correction due to the difference in the imaging mechanisms. Recent

efforts demonstrate that such 3D CNNs are also capable for volumetric image segmen-

tation with the presence of high noise and missing wedge effect in cryo-electron tomo-

grams [90,91]. For example, Moebel et al. [91] develop the DeepFinder, which is a 3D

CNN-based platform for multiclass macromolecule identification from cryo-electron

tomograms. During the training process, the expert labeled 3D coordinates of the mac-

romolecules are first converted to the voxel-wise annotation maps to avoid the time-

consuming step of generating voxel-wise ground truth by manual segmentation. After

the training, the DeepFinder can predict the macromolecule categories voxel wisely

and then use them to determine the location of macromolecule particles. The DeepFin-

der outperforms the conventional template matching and other deep learning methods in
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both synthetic and experimental datasets, which makes it a promising algorithm for the

semiautomated analysis of the cryo-electron tomography data.

The ML approaches can also directly learn to give the reconstructions with the sino-

gram as inputs and volumetric images as output. But despite efforts into such domain

transform learning in medical CT [92–94] and positron emission tomography (PET)

[95] imaging systems, their applications in the electron microscopy tomography tech-

niques are still underexplored. For example, Zhu et al. [96] develop automated transform

by manifold approximation (AUTOMAP), a supervised learning framework that allows

the mapping between the senor data and the image domain (Fig. 4D). In AUTOMAP,

the input sensor data will be passed thought fully connected layers followed by convolu-

tional layers to give the final reconstruction. Although demonstrated on the MRI, the

authors also anticipate that this algorithm can be applied in arbitrary image reconstruction

tasks such as low-dose X-ray CT and PET with improved artifact reduction and recon-

struction accuracy. Such direct ML reconstructions are implemented in an end-to-end

manner and does not involve the assistance from other reconstruction methods, but dis-

advantages can still exist in the needs of training data and heavy computational cost [87].

4. ML-assisted analysis of nonimage data

While the recently fast-growing CNN benefits or directly enables the information

extraction from real-space microscopy image data, other ML algorithms can contribute

to the postprocessing and analysis of the large amount of resulting extracted information.

For example, in the electronmicroscopy characterization of nanoparticle sample, the suc-

cessful detection of individual particle contours has to be followed by the high-

throughput and automatic data analysis [97] to reveal their shape attributes such as the

aspect ratio of nanorods or the edge length and truncation of nanocubes which play

important roles in determining their catalytic, optical, and biomedical properties. Mean-

while, the heterogeneity of the sample which is caused by the impurity species and the

particle shape distribution is an indicator of the synthesis quality and can change the par-

ticle’s self-assembly or other behaviors. Benefited from the “big data” nature of micros-

copy images of nanomaterial systems, unsupervised ML techniques are capable of

analyzing the datapoints distribution in the feature space and clustering the nanoparticle

shapes into groups with high similarity. Wang et al. [7] develop AutoDetect-mNP

algorithm to classify the metal nanoparticle contours extracted from TEM images in

an unsupervised manner. The AutoDetect-mNP utilizes four shape descriptors (area,

eccentricity, aspect ratio, circularity) computed from the nanoparticle contours detected

from TEM images as inputs and employ the k-means algorithm for the unsupervised clas-

sification. Their results show AutoDetect-mNP can reliably distinguish Au nanorods and

triangular prisms from impurities and further differentiate shape subgroups with different

aspect ratios and corner truncation without any human intervention. Similarly, in Lee

296 Intelligent nanotechnology



et al.’s work [39], the morphologies of gold nanorods are grouped in a two-step manner:

A center-to-perimeter distance is first used to distinguish the particles into obvious geom-

etries such as square, sphere, and rod. Then an unsupervised GMMwhich takes the major

and minor axis length and solidity as the inputs is responsible for clustering them into

subclasses with more shape details. Slater et al. [38] select solidity, maximum pixel inten-

sity, and the projection area as the descriptors of the particle morphology and explore

their classifications with three unsupervised learning algorithms including k-means,

DBSCAN, and ordering points to identify the clustering structure (OPTICS) (Fig.

5A). For all clustering algorithms tested, the resulting datapoints from each

Fig. 5 ML works in nanoparticle morphology grouping. (A) Distribution of clusters of nanoparticles
plotted as a function of particle maximum intensity and solidity. Particles are clustered by DBSCAN
with area, maximum intensity, and solidity as input properties. (B) 3D reconstructions from the
clusters shown in (A). Colors correspond to each cluster in (A). (C) Nanoparticle clustering using
center of gravity method represented as scatter plots for the first three principal components
(PCs). Each dot represents one individual nanoparticle. Resulting shape groups are colored in blue,
orange, green, and red. ((A,B) Reproduced with permission from T.J.A. Slater, Y.-C. Wang, G.M.
Leteba, J. Quiroz, P.H.C. Camargo, S.J. Haigh, et al., Automated single-particle reconstruction of
heterogeneous inorganic nanoparticles, Microsc. Microanal. 26 (2020) 1168–75, https://doi.org/10.1017/
S1431927620024642. (C) Adapted with permission from L. Boselli, H. Lopez, W. Zhang, Q. Cai, V.A.
Giannone, J. Li, et al., Classification and biological identity of complex nano shapes, Commun. Mater. 1
(2020) 1–12, https://doi.org/10.1038/s43246-020-0033-2.)
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morphological group are passed into the single-particle reconstruction algorithm to

reveal their averaged 3D geometries (Fig. 5B). The successful reconstruction not only

confirms the high homogeneity within the groups found by the unsupervised classifica-

tion, but also provides a new approach for the 3D reconstructions of heterogeneous inor-

ganic nanoparticles. Comparing with their supervised or manual counterparts, in such

unsupervised classifications of nanoparticle morphology, the advantage exists in the

absence of training dataset and the reduced manual inputs. The absence of training

dataset allows the algorithms to be robustly applied to nanoparticle systems with little

previous knowledge. And the reduced manual inputs introduce less subjective bias from

the human researchers, which truly reflects the natural distribution of the particle

morphology.

It is noteworthy that in some unsupervised learning techniques such as k-means and

GMM, the number of clusters still needs be user defined and can impact the clustering

results significantly. To further decrease the level of such “supervision,” metrics like max-

imum entropy [7] and Bayesian information criterion [39] can help the determination of

optimal cluster numbers that give best datapoint separation. On the other hand, as one

can tell, the selection of particle shape descriptors which serves as the input of the clus-

tering algorithms can also be quite different from system to system. Examples include the

solidity, convexity, area, eccentricity, aspect ratio, circularity, major/minor axis length,

and even the maximum pixel intensity in the projection area. Obviously, different

choices of the shape descriptors emphasize certain aspect of the particle geometry, leading

to different classification results. Moreover, in most cases, especially for the particles with

complicated convex contours, no descriptor can comprehensively keep all the informa-

tion from the original particle contour. Considering this factor, the contour itself, if

appropriately combined with dimension reduction techniques, can also be used as the

unsupervised classification inputs (Fig. 5C), which are more generalizable to all different

shapes regardless of the convexity [98]. Other than morphology classification, unsuper-

vised learning algorithms such as PCA and k-means are also widely used in diffraction data

classification which can automate and accelerate the crystal structure mapping in 4D

STEM [10,12].

Another kind of information that can be extracted from electron microscopy data is

the temporal information. For example, recent development of LP-TEM allows the real-

time observation of nanoparticle diffusion, and the anomalous behavior in the resulting

trajectories can lead to the studies in particle-substrate interaction, the heterogeneity of

the liquid cell substrate, and even the liquid structure in the liquid cell environment. For

such data with strong temporal and sequential correlation, certain types of neural network

models like LSTM are designed to analyze and extract information from them, which has

been already widely demonstrated in the trajectory analysis of colloidal particles

[36,99–101] and biomedical molecules [102–106] imaged by optical microscopy. One

example for such application is to overcome the long trajectory and large number of
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particles needed in the particle diffusive dynamic characterization in LP-TEM. Jamali

et al. [107] develop MoNet, which can classify as well as regress the power law depen-

dence in the mean square displacement for short trajectories of individual nanoparticles,

once trained on the simulated trajectory data. In MoNet, the input trajectory coordinates

are first passed into six parallel 1D convolutional sublayers with different filter size and

step size to capture local dynamics in different spatial resolutions. Then the outputs of

the convolutional layers are concatenated and passed through several fully connected

layers to give the final categorical or numerical regression results. Applying the trained

MoNet model to experimental LP-TEM data further helps reveal the nanoparticle dif-

fusion transition from fractional Brownian motion to continuous-time random walk

(CTRW) when increasing the electron beam dose rate. This transition is caused by

the electron beam radiolysis-induced passivation of the functional groups on the liquid

cell membrane surface, which reduces the binding between nanoparticles and the liquid

cell substrate and causes detrap and long-distance jumps as in the CTRW model.

5. Conclusion and outlook

Thanks to the pioneering work on model development in computer science and the suc-

cessful application attempts in biomedical and optical microscopy image processing, ML,

especially the CNNs, has now become a powerful tool in the processing and statistical

analysis of electron microscopy data of nanomaterials. The direct information extraction

from 2D electron microscopy images can be achieved by different designs of CNN archi-

tectures, covering tasks of increasing complexity from the single image classification and

regression, image-to-image (pixelwise) classification and regression, object detection, to

the instance segmentation. While more research in nanomaterial characterization is

found to be focused on previous two tasks, the latter two are still under exploration prob-

ably due to the high computational cost and limited spatial accuracy, which should soon

be overcome given the rapid-growing research efforts in model development. Similarly,

beyond the instance segmentation, recent works inML further show success in the object

tracking, which means to link the trajectory of objects in a sequence of 2D image frames.

Such trajectory tracking is helpful in the automation of nanoparticle diffusion study in

real-time and real-space imaging such as LP-TEM and can be a potential future direction

of research. In the 3D electron tomography with TEM and STEM-EDX, CNNs can

help the reconstruction process by denoising, interpolating, and extrapolating the exper-

imental sinogram, postfixing or segmenting the reconstruction given by simple algo-

rithms, and implementing the actual sinogram-to-image domain transformation.

Again, less work is found in the nanomaterial characterization field in the second and

third scenarios, probably, due to the increasing model complexity and computational

costs. It is also anticipated that the plenty of successful examples of the ML-based 3D

reconstruction found in medical imaging field such as CT and PET can inspire more
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work in the TEM and SETM-EDX tomography in the near future. Lastly, besides the

CNNs, other supervised ML techniques such as fully connected neural networks, LSTM

and unsupervised learning including the various dimension reduction techniques and

clustering algorithms can contribute to the analysis of other type of nonimage informa-

tion obtained from the microscopy characterization such as contour geometry, diffusion

trajectory, and diffraction pattern. Implementing ML algorithms in nanomaterial study is

a highly interdisciplinary research area, and one must be equipped with rich domain

knowledge in material science as well as deep and wide understanding in statistics, math-

ematics, and ML models to sensor the needs and provide the solution. In this review, the

authors attempt to have a glance on recent ML efforts in analyzing the nanomaterial

microscopy data and, not intended to being comprehensive, to provide some useful

insights on the ML model developing, selecting, and training in solving practical micros-

copy image analysis challenges.
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CHAPTER 11

Deep learning in biomedical informatics
Che-Lun Hung
Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan

1. Introduction

With the massive influx of multimodal data in the last decade, the role of data analytics in

health informatics has grown rapidly. Deep learning (DL) is defined as a technology based

on artificial neural networks (ANNs), which have recently emerged as a powerful

machine learning (ML) tool. The rapid increase in computing power, fast data storage,

and parallelization, as well as predictive capabilities and the ability to generate automat-

ically optimized advanced functions and semantic interpretation from input data, all con-

tribute to the rapid adoption of this technology. This chapter introduces the latest

developments in the use of deep learning in health informatics and makes an important

analysis of the relative advantages, potential shortcomings, and future prospects of the

technology. This chapter mainly focuses on the key applications of DL in the fields of

computational biology, drug design, medical imaging, pervasive sensing, medical infor-

matics, and public health. Artificial intelligence (AI) has become a trend in recent years,

opening up an entirely new era of research in various fields. The demand for AI in health-

care has increased in both the academia and industry; therefore, the potential benefits of

its applications have been proven. Previous studies have attempted to implement AI

methods on medical images, electronic health records, molecular characteristics, and a

variety of lifestyles. Researchers used data aggregated from multiple data sources to train

models that mimic what clinicians do when they see patients and help in decision-making

through results and interpretations. It included how to read clinical images, predict

results, discover the connection between genotype and phenotype or phenotype and dis-

ease, analyze treatment responses, and track lesions or structural changes (e.g., hippocam-

pal volume reduction). In addition, predictive research (e.g., disease or readmission

predictions) and correlation and pattern recognition research have been extended to early

warning systems with risk scores and overall pattern research and population care (such as

predictive care for an entire population).
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2. Deep learning network

2.1 Convolutional neural networks
Convolutional neural networks (CNNs) have been widely used in image recognition

tasks. There are several reasons why CNN models are gaining popularity. For instance,

CNN models have a deeper architecture; thus, it can analyze more detailed features in

images than traditional neural networks (NNs). The typical structure of CNNs has three

layers, that is, the input layer, hidden layer, and output layer. Raw images are fed into the

input layer and further transferred to the hidden layer to perform feature extraction tasks.

The hidden layer is composed of convolution, pooling and fully connected layers. Fea-

ture extraction in the convolution and pooling layers is the main characteristic of a CNN

model. The convolution layer can automatically extract features from raw images by con-

voluting the raw images with a sliding window of a fixed-size filter. The function of the

pooling layer is to reduce the dimensionality of feature maps while retaining relevant fea-

tures. Generally, the fully connected layer is the last layer of a CNN model, which then

flattens feature maps to perform classification.

2.2 Recurrent neural network
A recurrent neural network (RNN) is a type of ANN model, which considers history

information that is widely applied in the field of natural language and time sequence data.

An RNN can continually update the hidden state in an RNN model. The operation of

an RNN considers the current input and previous hidden state to constantly update the

condition of the hidden state. Although RNN models have achieved high performance

on temporal data, they exhibit the vanishing and exploding gradient problem for long-

term sequence data. RNNmodels often cannot memorize long sequence data; therefore,

they cannot improve performance when processing long time-series data.

2.3 Long short-term memory
Long short-term memory (LSTM) is a variation of an RNN model. An RNN can only

memorize short-term information, but LSTM can handle long time-series data. More-

over, an RNN model has the vanishing gradient problem for the long sequence data;

however, LSTM can prevent this problem during training. An LSTM model can recall

previous long-term time-series data and has automatic control for retaining relevant fea-

tures or discarding irrelevant features in the cell state. An LSTMmodel has three gates to

control features, that is, the input gate, forget gate, and output gate. The input gate con-

trols new information to flow into the cell state. The forget gate removes previous unim-

portant information from the cell state. The output gate regulates extracted information

from the cell state and then decides the next hidden state. An LSTMmodel can automat-

ically save or remove stored memory using these gates.
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2.4 Autoencoder
An autoencoder (AE) is described as an unsupervised learning DL-based model that can

automatically discover the potential rule of data. The architecture of an AE consists of

three parts, that is, an encoder, code, and decoder. The main purpose of the encoder

is to compress input information and then generate the code. The code of an AE rep-

resents the latent space, which is the summary of the input data after processing the com-

pression operator. Furthermore, the decoder reconstructs the input data based on the

code. The core of an AE model is the use of compression and decompression processes

to make input and output values have the same meaning.

2.5 Applications
2.5.1 Transfer learning
Transfer learning is a machine learning method which is used to train a target model on a

target dataset using learned features obtained from a pre-trained model on a base dataset

[1–4]. It not only can improve the accuracy of training target model, but also is able to

significantly improve overfitting issue caused by the small target dataset. Usually, the pre-

trained network parameters are regarded as the initial network parameters for a target

network. In other words, these weights can also be the initialized layer of the target net-

work. Then, the target network is trained on the target dataset with pre-trained

features [1].

Generative adversarial networks (GANs) employ two networks, generator and dis-

criminator, to contest with each other to learn a representative distribution from the

training data [5]. A generator network generates fake images from a random noise input

image, while a discriminator network predicts whether the input images are real images

or generated images. The parameters in both generator and discriminator are updated via

backpropagation. For approaching optimization, the generator continues to generate

fake images which are more and more similar to real images. Meanwhile, the discrimi-

nator has to distinguish real or generated fake images. Finally, the well-trained discrim-

inator is able to use to perform classification tasks.

2.5.2 Computational biology
For the past 20years, with the gathering of an outsized amount of biological and medical

data, as well as the emergence of genome sequences, protein structures, and drug inhib-

itors, many biomedical problems have emerged [6–10]. Computational biology is an

interdisciplinary field that involves the analysis and discovery of biological phenomena

on large collections of biological data, such as genetic sequences, cell populations or pro-

tein samples, by using computational methods to make new predictions or discover new

biology. In computational biology, the major biological data are based on the genome,
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and its common applications include transcriptomics [9], splicing analysis [9,11], gene

expression [11] and variants [7,12], and DNA methylation [7,8], among others [7,9,11].

2.5.3 Transcriptomics
For transcriptomics, DL has been applied successfully in transcriptomics data with high-

dimensional matrixes. Ibrahim et al. [13] proposed a multi-level feature selection

approach (MLFS) based onDBNwith active learning to discriminate genes andmiRNAs

based on expression profiles that resulted in the classification of six cancers. In addition to

DBN, Kelley et al. [14] developed an open-source framework, Basset, under CNN, to

explore the effects of sequence variants on chromatin regulation and annotate the non-

coding genome for DNase-seq data. For CNN, Jing et al. [15] and Washburn et al. [16]

also reported transcriptomic applications. Jing et al. attempted to predict transcription

factor-binding sites using a general CNN model; Washburn et al. used different gene

families to constrain datasets to explain the evolution in the first approach, and then

in the second approach, adopting evolutionary information of orthologous genes to con-

trol the evolutionary divergence in the training process. In addition, for time series-based

DL methods, Quang and Xie [17] presented two approaches to predict noncoding func-

tion de novo from sequences alone; one is pure RNN, another is an integration frame-

work with CNN and BLSTM (CNN+BLSTM).

2.5.4 Splicing analysis
For splicing analysis, Leung et al. [18] proposed a DNN model with dropout to predict

alternative splicing (splicing patterns) from five tissue-specific RNA-seq datasets in

mouse, whose method exhibits better performance than that of Bayesian network

(BN). Liu et al. [19] also proposed another DNN model combined with HMM

(DNN+HMM), PEDLA, for identifying the cis-regulatory regions and replication tim-

ing domains, respectively. For other DLmethods, Lee and Yoon [20] developed a DBN-

based method integrated with RBM’s training process (for class imbalanced prediction)

by boosting contrastive divergence with categorical gradients to predict splice junction at

the DNA level. Yang et al. [21] presented an integration architecture BiRen, which is

integrated CNN and BRNN (CNN+BRNN), to predict enhancer patterns from the

DNA sequence alone. Using the integration strategy, Bretschneider et al. [22] proposed

the hybrid method COSSMO, which has two models, one is LSTM, another integrates

Resnet and LSTM (Resnet+LSTM), to explain the competitive effects and predict the

percentage selected index distribution of splice sites.

2.5.5 Gene expression
For gene expression, Denas and Taylor [23] designed a CNN model as a preprocessing

job to translate the ChIP-seq data into the gene’s transcription factor activity profiles.

After that, Zeng et al. [24] attempted to use the transfer-learning approach (TLA) with
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CNN from natural images to biological images. The pre-trained CNN has been used to

annotate gene expression pattern images automatically in the mouse brain at various

structural levels. Singh et al. [25] also developed DeepChrome, a CNN framework,

to predict gene expression through feature extraction from histone modification in

REMC database. For other DL methods, Chen et al. [26] exploited a DNN-based

method with dropout, D-GEX, for gene expression profiling on both microarray and

RNA-seq data, whose results outperformed those by linear regression (LiR). To explain

how dependencies among histone modifications control the differential patterns of gene

regulation, Sekhon et al. [27] presented an attention-based architecture, DeepDiff, which

utilizes multiple LSTM modules to predict cell type-specific gene expression.

For genetic variants and DNA methylation, Quang et al. [28] proposed a DNN

model, DANN, which outperforms LiR and SVM to annotate the pathogenicity of

genetic variants. Zhou and Troyanskaya [29] developed an approach DeepSEA, a

CNN-based model, to predict chromatin effects of sequence alterations with single-

nucleotide sensitivity and the evaluation of disease-associated sequence variants. Wang

et al. [30] designed a stacked DnAE (SDnAE)-based software, DeepMethy, to predict

the methylation state of DNA CpG dinucleotides according to genome topology and

DNA sequence patterns. Zeng and Gifford [31] presented a sequence-based framework,

CpGenie, to learn regulatory codes of DNAmethylation using CNN first, and then pre-

dict the impact of sequence variation on proximal CpG-site DNA methylation. Some

studies integrate multiple methods in genetic variants and DNA methylation. For exam-

ple, Angermueller et al. [32] proposed an integrated architecture with CNN and RNN

(CNN+RNN), DeepCpG, for predicting missing CpG status for genome-wide analysis

of single-cell DNA methylation data (within five cell types).

2.5.6 Genomics
In addition to the aforementioned applications in computational biology, there are many

more applications, and numerous DL methods have been proposed for addressing such

problems. Using an individual DL method, Xu et al. [33] developed an RNN and par-

ticle swarm optimization approach to investigate genetic regulatory networks under

time-series gene expression data, whereas Chuang et al. [34] adopted RL and binary par-

ticle swarm optimization for operon prediction in bacterial genomes. Both Ralha et al.

[35] and Bocicor et al. [36] also used RL for prediction. Ralha et al. proposed a system,

BioAgent, to improve the biological sequence annotation performance. Bocicor et al.

designed an RL-based approach to solve the DNA fragment assembly problem. There

are more applications that use CNN and DNN to solve the genomics problem. For

the trans-eQTL prediction problem,Witteveen [37] presented MASSQTL, an approach

with nine DNNmodels from various encoded biological features. Ma et al. [38] reported

DCell, a visible NN (VNN)-based system, which simulates a basic eukaryotic cell. Gude-

nas andWang [39] designed a DNN-based model, DeepLncRNA, to predict subcellular
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localization based on lncRNA transcript sequences. Umarov and Solovyev [39] analyzed

sequence characteristics of prokaryotic and eukaryotic promoters using the CNNmodel.

Several studies have presented multiple approaches simultaneously to compare their per-

formance. For instance, Ditzler et al. [40] implemented two approaches including DBN

and RNN, for metagenomics, and then compared them with multilayer perceptron NN

(MPNN) to explore their applicability. Lin and Wong [41] designed and implemented

two models, CNN and deep feedforward NN (DFNN), to predict off-target mutations

in CRISPR-Cas9 and GUIDE-seq data sets.

With regard to combinations of more than two DL, ML, and statistical techniques, Liu

et al. [42] proposed a hybrid architecture consisting of a combination of DNN and HMM

(DNN+HMM) to identify cis-regulatory regions and replication timing domains, respec-

tively, whose results outperformed those of a Gaussian mixture model-HMM hybrid. Fan

and Zhang [43] designed a predictor, lncRNA-MFDL, which is a combination of RBM

and Deep Stacked Network (DSN) (RBM+DSN), for the identification of lncRNAs

fromGencode andRefseq. To predict translation initiation sites fromQTI-seq data, Zhang

et al. [44] presented TITER, a framework developed by integrating CNN and LSTM

(CNN+LSTM). In addition, Arango-Argoty et al. [45] developed deep antibiotic resis-

tance gene (DeepARG) models, DeepARG-SS for short sequences and DeepARG-LS

for long genome sequences, to construct a dissimilarity matrix from all known categories

of antibiotic resistance genes (ARGs). DeepARG is implemented using the Python

Lasagne (PL) module (https://github.com/Lasagne/Lasagne), which has many versions

based on complex methods such as CNN+LSTM+FNN. Furthermore, Li et al. [46]

proposed an approach, DECRES, based on complex methods with randomized deep fea-

ture selection (RDFS), random forest (RF), and FNN (RDFS+RF+FNN) to recognize

the enhancer and promoter regions in the human genome. Armenteros et al. [47] designed

a combination model with RNN, conditional random field classification (CRFC), and

optimized transfer learning (OTL) (RNN+CRFC+OTL) to perform the signal peptide

predictions among three types of prokaryotic signal peptides.

3. Drug discovery

3.1 Computer-aided drug design
In the past few decades, computer-aided drug design (CADD) methods have been used

for the rapid discovery of chemical libraries to match predicted and actual drug activity

and reduce the cost of developing new active compounds. CADD is employed to sim-

ulate the interactions between active compounds and their targets, including receptors,

enzymes, and transporters [48]. The simulation results are used to design complementary

structures for their goals; then, many chemical databases are screened to identify new
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biologically active compounds. Generally, the step of CADD is to simulate the active

compound, then screen the compound database, and optimize the lead compound. Opti-

mized leads can speed up the drug discovery process, thereby minimizing resource

requirements. CADD approaches include two aspects: structure-based drug design

and ligand-based drug design. The structure-based design approaches include docking,

de novo ligand design, fragment-based drug discovery, and structure-based pharmaco-

phore modification. The ligand-based design approaches include two classes, quantitative

structure–affinity relationships (QSARs) and pharmacophore-based design. ANNs have

been successfully used in CADD, especially in QSARs [5,49]. ANNmethods are used in

QSARs to represent chemical structures, preprocess and select the relevant descriptors,

and so forth. The most widely used ANNs for QSARs are backpropagation NNs

(BPNN), which is a forward NNwith multilayered perception [50]. A BPNN is a robust

method with several abilities such as superior fault tolerance, parallel co-processing,

self-organizing, and self-learning. It is capable of approximating any nonlinear depen-

dence of output variables, such as properties and activities on the values of input variables

such as descriptors. It is currently the era of big data. Data, such as chemical libraries and

biological data, have been noted to increase dramatically. Therefore, to screen such a sig-

nificant number of chemical libraries and biological data, new approaches and platforms

are needed. Graphics processing units (GPU) are a massively parallel architecture consist-

ing of thousands of CUDA cores designed for handling large datasets. In 2006, Hinton

et al. [51] proposed a DBN that can construct a network with many hidden layers. Kriz-

hevsky et al. [52] introduced the first fast GPU implementation of a CNN, AlexNet,

which consists of eight layers, to improve classification accuracy and computational per-

formance. Afterward, several new deep CNNs have been proposed, such as VGG,

ResNet, and GoogLeNet (Inception), for the ImageNet competition. These significant

successful results have attracted the attention of many researchers and leading pharmaceu-

tical companies. Hence, more DL algorithms have been used in CADD. These algo-

rithms are described below. Ref. [9] used a DNN in drug discovery for the following

four tasks: (1) new drugmolecule identification; (2) protein engineering; (3) gene expres-

sion data analysis; and (4) pharmacodynamics modeling. We then summarize relevant

research results in the following subsections.

3.1.1 New drug molecule identification
Computational models (e.g., virtual screening), as an effective and feasible way, have

been used to identify new drug candidates from large chemical libraries to facilitate drug

discovery processes. Zhang et al. [53] used a DL NN to analyze and predict compound

selectivity. Ma et al. [54] used DNN and GPU to perform predictions on a set of large

diverse QSAR datasets collected from Merck’s drug discovery. Pereira et al. proposed

DeepVS [55], which uses a DLNN to improve the performance of docking-based virtual

screening. Kadurin et al. [56] presented a generative adversarial AE (AAE) for generating
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novel molecular fingerprints with a defined set of parameters. They used the AAE in

screening 72 million compounds in PubChem and select candidate molecules with

potential anti-cancer properties. Hughes et al. [57] developed a deep CNN and quanti-

tatively summarized the knowledge from hundreds of epoxidation reactions using a data-

base of 702 epoxidation reactions to build a model that accurately predicted sites of

epoxidation for developing safer drugs. Wang et al. [58] proposed a new calculation

method for predicting diffusion tensor imaging measures from drug molecular structure

and protein–sequence using a stacking AE with DL. Shin et al. [59] used DNN to classify

the human colorectal carcinoma cell line (Caco-2) for predicting cellular permeability.

IBM Research AI [60] proposed an end-to-end NN model, which can predict drug–
target interactions directly from low-level representations.

3.1.2 Protein engineering
Researchers also use DL methods to explore and discover protein structure and function.

To identify the function of proteins, many efforts have been made to mimic the inter-

action between proteins and other biomolecules such as DNA. Hassanzadeh and Wang

[61] proposed the DeeperBind, which uses a long- and short-term recursive CNNs for

predicting protein-binding specificity associated with DNA investigation. DL methods

can also be used for predicting the biological function of proteins directly from their orig-

inal three-dimensional (3D) electron density and electrostatic potential fields [62].

Schwartz et al. [63] have proposed a multi-task, multi-label DNN for protein annotation

and discovery. They collected more than 90 million records, 80% of which were used as

training sets, 10% to validate model training, and 10% used as a test set for the final eval-

uation of model performance. According to their experiment results, using a DNN can

significantly reduce the time required for analysis and the computational cost compared

to traditional methodologies. In their research, they also pointed out that through some

creative DNN architecture, almost any imaginable experiment can contribute to the

entire, including interactive networks, gene expression, epigenetics, phenotypic effects,

drug binding, and clinical outcomes.

3.1.3 Gene expression data analysis
With the advent of next-generation sequencing technology, a large amount of hetero-

geneous genomics data can now meet the requirements of DL methods. Liang et al. [64]

proposed an ML model to cluster cancer patients from multi-platform observation data.

The model can identify both intra- and cross-modality correlations and meaningful dis-

ease subtypes from multi-platform cancer data. Alipanahi et al. [65] proposed a DL tech-

nology called DeepBind to identify causal disease variants and indicate how variations

affect DNA- and RNA-binding within a specific sequence. Aliper et al. [66] demon-

strated how to use DNNs to train on large transcriptional response datasets to classify

drugs into treatment categories based on their transcriptional profiles. Chaudhary
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et al. [67] have also used a DL-based model in hepatocellular carcinoma (HCC) classi-

fication, which could effectively distinguish the survival subgroups of patients in six

cohorts and achieve HCC prognosis predictions. Xiao et al. [68] developed a

DL-based ensemblemodel for cancer prediction. Themodel was evaluated on three pub-

lic RNA-seq datasets for three cancers, that is, lung adenocarcinoma, gastric adenocar-

cinoma, and breast invasive cancer.

3.1.4 Pharmacodynamics modeling
Pharmacodynamics modeling has been identified to be critical for determining the inter-

action between a drug and related targets. Given the diversity of drug molecules and their

targets, potential drug–protein interactions are complex and have many potential confor-

mations. For example,Wen [69] et al. used a DNN for drug–target prediction. Kwon and
Yoon [70] used CNNs for chemical–chemical interaction prediction. Lee et al. [71] used

LSTM and feedforward NNs to predict the intraoperative bispectral index during the

combined use of propofol and remifentanil. The DL hyperparameters of their model

include eight memory cells in the long and short-term storage layers and 16 nodes in

the hidden layer of the feedforward NNs. Model training and testing were then per-

formed using separate datasets for 131 and 100 cases. The average consistency correlation

coefficient was 0.561. Zhao et al. [72] developed a model based on ML and DL in symp-

tom analysis, disease prediction, and medicine law of Traditional Chinese Medicine

(TCM). They conducted experiments on relevant outpatient medical records and con-

firmed that the model can reflect the basic principles of clinical diagnosis of TCM com-

binations. The prediction model has good performance in evaluating indicators.

4. Medical images

Image detection and recognition focus on detecting a particular element in a medical

image. In most cases, images are volumetric. Therefore, efficient parsing may be

required. In this regard, a popular strategy to attempt is marginal space learning [73]

because it is efficient and enables the robust detection of organs. Its DL counterpart

[74] is even more efficient, as its probabilistic boosting trees are replaced with an

NN-based boosting cascade. However, the entire volume of an image should still be pro-

cessed to reliably detect anatomical structures. Using Ref. [74] improves efficiency even

further by replacing the search process with a man-made agent that follows anatomy to

detect anatomical landmarks using deep RL. The strategy can detect several landmarks in

a complete CT volume in a few seconds. Bier et al. proposed a stimulating method by

which anatomical landmarks are detected in two-dimensional (2D) X-ray projection

images [75]. In their method, they trained projection-invariant feature descriptors from

3D annotated landmarks employing a DNN. Other popular detection methods are the

so-called region proposal CNNs. In [76], they are used to robustly detect tumors in
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mammographic images. Detection and recognition can also be used in many other ways,

and an excellent body of literature exists. Here we only report on two other applications.

In histology, cell detection and classification are a crucial task, which is addressed by

Aubreville et al. using guided spatial transformer networks [77] that allow detection

refinement before a particular classification is completed. The task of mitosis classification

benefits from this procedure. CNNs are also highly effective for other image classification

tasks. In [78], they are used to automatically detect images containing motion artifacts in

confocal laser-endoscopy images.

4.1 Image segmentation
In addition, image segmentation has greatly benefited from recent developments in DL.

In image segmentation, we aim to figure out the outline or structure of an organ as accu-

rately as possible. Again, approaches based on CNNs seem to dominate. Here, we report

only Holger Roth’s DeepOrgan [79], which is the brain magnetic resonance (MR) seg-

mentation performed by Moeskops et al. using CNNs [80], a completely convolutional

multi-energy 3D U-net presented by Chen et al. [81], and a U-net-based stent segmen-

tation in X-ray projection domain by Breininger et al. [82] as representative examples. As

described by Nirschl et al., segmentation using deep CNNs can also be performed in two

dimensions. Regarding histopathological images [83], Middleton et al. experimented

with the fusion of NNs and active contour models in 2004 before the emergence of

DL [84]. However, their approach neither used DNNs nor end-to-end training, which

may be desirable for a state-of-the-art method. Hence, revisiting traditional segmentation

approaches and integrating them with DL in an end-to-end manner seem to be a prom-

ising scope of research. Fu et al. follow a similar idea by mapping Frangi’s vesselness into

an NN [85]. They demonstrated that they can adjust convolution kernels within the ini-

tiative of the algorithm toward the precise task of vessel segmentation in ophthalmic fun-

dus imaging. Another interesting class of segmentation algorithms is the use of recurrent

networks for medical image segmentation. Poudel et al. demonstrated this for a fully con-

nected convolutional RNNonmulti-slice magnetic resonance imaging cardiac data [86],

whereas Andermatt et al. showed the effectiveness of gated recurrent units for brain

segmentation [87].

4.2 Image registration
While the perceptual tasks of image detection and classification receive a lot of attention

with respect to applications of DL, image registration is yet to attract such attention. Nev-

ertheless, there are several promising works on image registration in the literature, which

indicate that there are numerous opportunities. One typical problem in point-based reg-

istration is identifying good feature descriptors that allow correct identification of the

corresponding points. Wu et al. proposed using AEs to mine relevant features in an
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unsupervised way [88]. Schaffert et al. promoted this even further and used the registra-

tion metric as a loss function for learning good feature representations [89]. An alternative

way to unravel 2D/3D registration problems is to estimate the 3D pose directly from 2D

point features [90]. For full volumetric registration, samples of DL-based approaches are

also determined. The quicksilver algorithm canmodel a deformable registration and use a

patch-wise prediction directly from an image appearance [1]. Another approach is to

model a registration problem as an impact problem, which is addressed using an agent

and RL. Liao et al. proposed predicting rigid registration to predict the best subsequent

motion so that two volumes are aligned [2]. This approach can also be applied to non-

rigid registration employing a statistical deformation model [3]. In this case, actions are

movements within the vector space of the deformation model. Agent-based approaches

also apply to point-based registration problems. Zhong et al. demonstrated this for intrao-

perative brain shift using imitation learning [4].

4.3 Computer-aided diagnosis
Computer-aided diagnosis is considered as one of the most challenging problems within

the field of medical image processing. Here, we are not only playing a supporting role but

also quantifying the evidence for diagnosis. On the contrary, the diagnosis is predictable.

Therefore, decision-making should be thorough and must be reliable. The analysis of

chest radiographs is a significant amount of work for radiologists and is performed rou-

tinely. Hence, reliable support to stop human error is extremely desirable. For example,

Diamant et al. [91] used transfer-learning techniques in this regard. A similar workload is

imposed on ophthalmologists when reading volumetric optical coherence tomography

data. Google’s DeepMind has only recently proposed to support this process in terms

of referral decision support [92]. Many other studies have been conducted in this context,

for instance, automatic cancer assessment in confocal laser-endoscopy in several tissues of

the top and neck [1–4,76–93], DL for mammogram analysis [94], and classification of skin

cancer [95].

4.4 Physical simulation
Support for physical modeling is a new area of DL. So far, this has been used in the gam-

ing industry to calculate real-world physics engines [96] or to calculate smoke simulations

in real time [97]. Meister et al. pioneered the introduction of DL into biomedical model-

ing. [98]. Based on this observation, researchers began to introduce this method into the

field of medical imaging, for example, the depth scattering estimation of Maier et al. [99].

Unberath et al. went further to emulate an entire X-ray formation process in their

DeepDRR [100]. Horger et al. [101] demonstrated that even noise of unknown distri-

butions is often learned, leading to an efficient generative noise model for realistic phys-

ical simulations. In addition, other physical processes have been examined using DL. In
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[102], cloth decomposition using DL embedding prior physical operators with precision

learning is proposed. Furthermore, the identification of physically less plausible interre-

lations is attempted. Han et al. [103] then planned to convert MR volumes to computed

tomography volumes. Stimpel et al. went further by predicting X-ray projections from

MR projection images [104]. Although these observations seem promising, such

endeavors should be carefully followed. Schiffers et al. demonstrated that cycle GANs

may produce correctly appearing fluorescence images from fundus images in ophthal-

mology [105]. However, undesired effects appear, as occasionally drusen are mapped

onto microaneurysms during this process. Cohen et al. showed even worse effects

[106]. In their study, cancers disappeared or were created during the modality-to-

modality mapping. Hence, such approaches need to be handled with care.

5. Electronic health records

5.1 Medical informatics
Medical informatics focuses on the analysis of large-scale aggregate data in the medical

environment to enhance and develop clinical decision support systems, or it focuses

on evaluating medical data to ensure quality assurance and accessibility of medical ser-

vices. Electronic Health Record (EHR) is an extremely rich source of patient informa-

tion, including detailed medical history information, such as diagnosis, diagnostic

examinations, medications, treatment plans, immune records, allergies, radiological

images, and sensor multiple time-series (such as EEG nursing unit), and laboratory

and test results. Effectively mining these big data will provide valuable insights for disease

management [107,108]. However, this is not easy for the following reasons:

(1) Due to different lengths, irregular sampling, lack of structured reports, and data loss,

data are often complicated. The quality of reports varies greatly between organiza-

tions and individuals.

(2) Several petabytes of multimodal datasets, including medical images, sensor data, lab-

oratory results, and unstructured text reports.

(3) The long-term time dependence between clinical events and disease diagnosis and

treatment complicates learning. For example, there are often long and varying delays

in distinguishing the onset of a disease from the onset of symptoms.

(4) Traditional ML methods cannot be extended to large and unstructured datasets.

(5) Lack of interpretability of results hinders the adaptability of the methods in the clin-

ical environment.

DL methods have been carefully designed to scale large distributed datasets well. The

success of DNNs is largely due to their ability to learn novel features/patterns and under-

stand supervised and unsupervised data representations. A hierarchical system of super-

vision. DNNs can combine multiple DNN architecture components to effectly process

multimodal information. Therefore, it is not surprising that DL is rapidly adopted in
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medical informatics research. For example, Shin et al. [109] proposed a combined text

image CNN to identify semantic information that links radiographic images and reports

from a typical picture archive and a hospital’s communication system. Liang et al. [110]

have used a modified version of a CDBN as an effective training method for large-scale

hypertension datasets and performed TCM diagnosis through a manually converted

EHR database. Putin et al. [111] used a DNN to identify markers that predict the age

of humans based on simple blood tests. Nie et al. [112] proposed a DL network for auto-

matic disease inference, which requires manual collection of key symptoms or problems

related to a disease.

In another study, Mioto et al. [113] showed that a set of denoising AEs can be used to

automatically infer features from a large EHR database and represent patients without

additional effort. These conventional functions can be used in several situations. The

authors demonstrated that their system can predict the likelihood that a patient will

develop a specific disease (such as diabetes, schizophrenia, and cancer). In addition,

Futoma et al. [114] compared the ability of different models based on large EHR data-

bases to predict hospitalization rates. Although training DNN models is not simple, the

prediction accuracy of DNNs is much higher than traditional methods (such as penalty

logistic regression).

Lipton et al. [115] used LSTM RNNs to solve the time dependence in EHRs using

multivariate time-series data in an intensive care monitoring system. RNNs were used

because they can remember sequential events, improving the modeling of different time

delays between the onset of emergency clinical events (such as respiratory distress, asthma

attacks, and symptoms). In related research, Mehrabi et al. [116] proposed the use of a

DBN to discover common time patterns and characterize disease progression. The author

also emphasizes that the identification and interpretation of newly discovered patterns

require further research.

The motivation behind these studies is to develop a universal system to accurately

predict the length of stay, future diseases, readmission rates, and mortality, to improve

clinical decision-making, and optimize clinical pathways. Early prediction of healthcare

is directly related to saving patients’ lives. In addition, the discovery of novel models may

lead to new hypotheses and research questions. In computational phenotyping research,

the goal is to discover meaningful data-driven and disease characteristics.

For example, Che et al. [117] emphasized that although DNNs are superior to

traditional ML methods in their ability to predict and classify clinical events, they suffer

from the problem of model interpretability, which is important for clinical adaptability.

They pointed out that the interpretation of individual units of DNNs may be misleading,

and the behavior of DNNs is more complicated than originally thought. They suggested

that once a DNN is trained using big data, a simpler model can be used to distribute

knowledge and imitate the predictive performance of the DNN. To explain the func-

tions of DL models, such as stacked denoizing AEs and LSTM-based RNNs, they use
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gradient-enhanced decision trees (GBDTs). A GBDT is a collection of weak predictive

models. In this work, they represented linear combinations of functions.

DL provides unprecedented powerful functions and efficiency by mining large-scale

multimodal unstructured information stored in hospitals, cloud providers, and research

organizations, paving the way for personalized healthcare. Although it has the potential to

surpass traditional ML methods, proper initialization and adjustment are important to

avoid overfitting. Noisy and sparse datasets can cause significant performance degrada-

tion, which indicates that some challenges need to be addressed. In addition, using

DL systems in clinical practice requires the ability to track and interpret extracted features

and patterns.

5.2 Public health
Public health aims to primarily prevent diseases, extend lifespans, and promote medical

care by analyzing the spread of diseases and social behaviors related to environmental fac-

tors. Public health research transforms small-scale local populations into large-scale popu-

lations covering several continents, such as epidemics and pandemics. Its applications

include epidemicmonitoring, modeling of lifestyle diseases such as obesity related to geo-

graphic areas, monitoring and prediction of air quality, and drug safety monitoring. Tra-

ditional predictive models often grow exponentially with the size of the data and use

complexmodels derived from physics, chemistry, and biology. Therefore, adjusting these

systems can vary, depending on the parameter settings and temporary characteristics that

only experts can provide. However, existing computational methods are also able to

accurately model several phenomena, including the progression of diseases or the spread

of air pollution. However, their ability to integrate real-time information is limited,

which has been deemed essential for controlling epidemics or the adverse effects of newly

approved drugs. In contrast, DL methods have a strong generalization ability. They are

identified as data-driven methods that automatically build hierarchical models and

encode information within their structure. Most DL algorithm designs are based on

online ML. Therefore, as new training datasets appear, the optimization of the cost func-

tion will proceed in sequence. One of the simplest online optimization algorithms used in

DNNs is stochastic gradient descent. For these reasons, DL, recommendation systems,

and network analysis are recommended as the key analysis methods for public health

research [118].

For example, monitoring and predicting the concentration of air pollutants is a rep-

resentative area, where DL has been successful. Ong et al. [119] pointed out that poor air

quality is responsible for approximately 60,000 deaths each year and the main cause of

many chronic obstructive pulmonary diseases. They described a system that predicts

the concentration of major air pollutants in Japan based on sensor data obtained from

52 cities. Their proposed DNN consists of stacked AEs and is trained online. The
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difference between this deep architecture and the standard deep AE is that output com-

ponents are gradually added during the training process. To track a large number of sen-

sors and interpret results, they took advantage of the sparsity in their data and fine-tuned

the DNN on the basis of a regularization method. However, they pointed out that DL

methods as data-driven methods are affected by the inaccuracy and incompleteness of

real-world data.

Another interesting application is tracking epidemiological and lifestyle disease out-

breaks via social media. Social media can provide a wealth of information as regards dis-

ease progression in real time, such as influenza and Ebola. Zhao et al. [120] used the social

media service Twitter to constantly track the health of the public. A DNN was used to

mine popular features, and then the features are combined in a simulated environment to

model the progression of a disease. The text in Twitter messages can also be used to gain

insights into antibiotics and infectious intestinal diseases. Authors in [121] used a DBN to

classify antibiotics-related Twitter posts into nine categories (side effects, needs/needs,

advertisements, advice/information, animals, general use, drug resistance, abuse, and

others). They then randomly selected Twitter messages for manual tagging and classifi-

cation to obtain a classifier. They used a training set of 412 manually labeled examples and

150,000 unlabeled examples. Their RBM-based DL method was pre-trained in a layer-

by-layer process. Fine-tuning was based on standard backpropagation and labeled data. In

[113], DL was used to create keywords related to three types of infectious intestinal dis-

eases (Campylobacter, Norovirus, and food poisoning). As compared to the officially

recorded cases, their results show that social media can predict bowel diseases well.

Social media can also provide information that is not normally recorded to track cer-

tain stigmatizing behaviors; for example, Garimella et al. [122] used geotagged images

from Instagram to track lifestyle diseases, such as obesity, drinking, and smoking, and

compared self-categorization of images from users with annotations obtained using

DL algorithms. Research has found that even though self-annotation can often provide

useful demographic information, machine-generated annotations are more useful for

behaviors such as excessive drinking and drug abuse. In [123], a DL method based on

RBMs was developed to model and predict activity levels and prevent obesity by con-

sidering self-motivation, social influence, and environmental events.

People are becoming more interested in how to characterize and track human behav-

ior using cell phone metadata. Metadata usually includes the duration and location of calls

or text messages and can provide valuable demographic information. A CNN has been

used to predict demographic information from cell phone metadata, which is represented

as a 2D matrix of time. The CNN consists of a series of five horizontal convolutional

layers, a vertical convolution filter, and two dense layers. This method achieves high

accuracy for age and gender prediction while eliminating the need for manual

features [109].
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Using electronic medical records, mobile networks, and social media to mine online

data and metadata about individuals and large-scale populations is a way to inform public

health policies. In addition, mining food and drug records to identify adverse events can

provide an important large-scale alert mechanism. We provide some examples that use

DL to early identify and model the spread of epidemics and public health risks. However,

strict regulations to protect data privacy restrict the access and aggregation of relevant

information. For example, you can use Twitter messages or Facebook posts to identify

new mothers who are at risk of postpartum depression. Although this is affirmative since

this information will slander specific individuals, it is but controversial whether this infor-

mation should be obtained. Therefore, we need to strike a balance between ensuring that

individuals can control access to their private medical information and providing ways to

make the information available for public health research [124]. The complexity and lim-

ited interpretability of DL models constitute an obstacle to making informed decisions

about the precise operation of DNNs, which, in turn, may limit the application of DNNs

to sensitive data.

5.3 Deep learning in healthcare: Limitations and challenges
Although for different AI tasks, DL technology can bring substantial improvements com-

pared with traditional ML methods, many researchers and scientists are still skeptical

about its use in medical applications. Because DL theory has not yet provided a complete

solution, many questions remain unanswered; thus, these doubts have arisen. The follow-

ing four aspects summarize some potential problems related to DL:

(1) Although some recent works have been conducted to visualize advanced features

using weight filters in CNNs [125,126], the entire DL model is usually unexplain-

able. Therefore, most researchers use DL methods as black boxes and cannot explain

why it provides good results or cannot apply modifications in a case of incorrect

classification.

(2) As we have emphasized in the previous section, to train a reliable and effective

model, expressing new concepts requires a lot of training data. Although we have

recently witnessed a surge in available healthcare data, and many organizations have

begun to effectively convert medical records from paper records to electronic

records, disease-specific data remain scarce. Therefore, not all applications (especially

rare diseases or events) are well suited for DL. A common problemmay occur during

DNN training (especially in the case of small datasets), namely, overfitting, which

may occur when the number of parameters in the network is proportional to the

total number of samples in the training set. In this case, the network can remember

training examples but cannot generalize them to new examples that have not been

observed. Therefore, although the error on a training set is driven to a small value,

the error on a new dataset will be extremely high. To avoid the overfitting problem
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and improve generalization ability, regularization methods such as dropout [127] are

usually used in the training process.

(3) Another important aspect to require under considerationwhendeep learning tools are

employed is that for several applications thedata cannot bedirectlyused as input for the

DNN. Therefore, preprocessing, normalization or change of input domain is usually

required before the training. Moreover, the setup of the many hyperparameters that

control the architecture of a DNN, like the dimensions and therefore the number of

filters during a CNN, or its depth, remains a blind exploration process that sometimes

requires accurate validation. Finding the right preprocessing of the info and therefore

the optimal set of hyperparameters are often challenging, since it makes the training

process even longer, requiring significant training resources and human expertise,

without which is not possible to get an efficient classification model.

(4) The last aspect we want to emphasize is that many DNNs can be easily fooled. For

instance, [128] showed that some small changes (such as imperceptible noise in the

image) can be made to the input samples, resulting in sample classification errors.

Nevertheless, it must be pointed out that almost all machine learning algorithms

are susceptible to such problems. The value of a particular feature can be deliberately

set high or low to cause misclassification in logistic regression. Similarly, for decision

trees, the samples can be guided along the wrong partition by simply switching a

single binary feature on the final layer. Therefore, in general, any machine learning

model is susceptible to such manipulations. On the other hand, the work in Ref.

[129] discusses the opposite problem. The author shows that even without samples,

it is possible to obtain meaningless synthetic samples, which will be strictly classified.

This is also the true limitation of the deep learning paradigm, but it is a detrimental to

other machine learning algorithms as well.

In summary,we believe that healthcare informatics todaymay be a human–machine collab-

oration which will ultimately become a symbiosis within the future. As more data becomes

available,DL systems can elaborate and deliverwhere human interpretation is difficult. This

willmakediagnoses of diseases faster and smarter and reduceuncertainty of the decidingpro-

cess. Finally, the last boundary of DL might be the feasibility of integrating data across dis-

ciplines of health informatics to support the longer term of precision medicine.
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1. Introduction

Nanotechnology is a field that is characterized by sophisticated and often expensive

experiments, highly complex materials defined by a huge number of potential physical

variables, and useful computational tools that can predict some, but not all, important

properties. As such, experiments are often a bottleneck in progress in nanoscience.

Two concepts have emerged that facilitate this process, namely automation and algorith-

mic experimental selection. Automation allows researchers to increase the throughput

and repeatability of experiments, while algorithmic experimental selection represents

an approach to systematize the selection of experiments to more efficiently use each

experiment to achieve a given experimenter-defined goal. Autonomous experimen-

tation (AE) represents the convergence of automation and experiment selection pow-

ered by machine learning in which robotic platforms perform experiments that are

selected by machine learning algorithms in an iterative fashion. This is in contrast with

high-throughput experimentation (HTE) where the focus is on using automation to

increase the number of experiments performed rather than using all available information

to select each experiment in a closed-loop fashion. This chapter seeks to review progress

in the field of AE with particular relevance to nanotechnology and discuss the unique

opportunities that arise when considering the applications of AE in nanoscience.

It is worth emphasizing that AE as a paradigm encompasses many terms that have

emerged, including self-driving labs [1], materials acceleration platforms [2], robot sci-

entists [3–5], and autonomous research systems (ARES) [6]. However they are named,

for a system to be capable of AE, it must be able to iteratively perform the following tasks

without human intervention of any kind [7]:

• Create hypotheses

• Propose an experiment to test the hypothesis

• Conduct the experiment

• Record the results
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• Analyze the results

• Update the hypothesis

In addition to noting what is required, it is equally important to be explicit about what is

not required. First, there are no specific hardware requirements, such as having a robotic

arm or being a mobile platform.While many implementations of AE have used robots or

other methods to make their systems more versatile or to allow them to use lab equip-

ment designed for human use, this is not required. Second, there is no limitation on the

type of scientific knowledge that can be explored. Some AE implementations have

focused on traditional scientific knowledge, such as fundamental structure-property rela-

tionships in materials science. Others, however, have focused on procedural knowledge

such as how to manufacture materials or synthesize compounds. Finally, there is often

some focus on the scientific process itself such as determining the accuracy of measure-

ment or learning how often a component needs to be replaced.

In the following sections, we detail the development, existing applications, and future

opportunities for AE in nanotechnology. We begin with (Section 2) a discussion of the

development of AE capabilities with a particular focus on three complementary facets of

the technology, namely automation, machine learning for experiment selection, and

broader artificial intelligence for knowledge generation. Next, we discuss (Section 3) case

studies of AE systems in use for nanoscience including the synthesis of carbon nanotubes,

the optoelectronic properties of organic thin films, and the synthesis of nanoparticles.

Finally, we discuss (Section 4) some existing and emerging platform technologies for

AE exploration in nanoscience that could enable entire autonomous labs to be realized

in microscopic domains including both nano- andmicroscale fluid handling and scanning

probe technologies. We conclude with a discussion of noteworthy future challenges and

opportunities facing the exploitation of AE in nanoscience.

2. Development of AE capabilities

Although the rapid proliferation of many AE systems in recent years is striking, many

major advances over the past half century have set the stage for the rapid development

and exploitation of AE systems. In particular, these enabling advances can be broadly bro-

ken up into innovations in (1) automation and robotics; (2) domain knowledge, discov-

ery systems, and artificial intelligence; and (3) machine learning, optimization, and data

analysis. These categories are crosscutting with the iterative stages that define an AE cycle

(Fig. 1). Interestingly, the degree to which each of these systems must be tailored for the

particular scientific field varies widely. For instance, the methods required to tailor a

robotic system to automate a specific process vary greatly between, for example, chem-

istry and mechanics. In contrast, many machine learning methods can be applied across

scientific disciplines with little or nomodification. As a middle ground, many of the tech-

niques to leverage domain knowledge can employ processes that apply to multiple dis-

ciplines but differ in their specific implementations.
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2.1 Automation and robotics
As technology has progressed, laboratory equipment has become more complex and

automated. The field of chemistry is a great example of this progress. Automated synthesis

and characterization of molecules date to the early 1960s. By 1971, researchers from Pur-

due University had designed a computer-controlled system that integrated sensors and

actuators to control the temperature of the system, including the capability to add four

different reagents in controlled quantities and stir the resulting solution [8]. When com-

pleted, the system could automatically characterize the reaction rates of the resulting solu-

tion using spectrophotometry.

Synthetic systems have become more sophisticated, particularly driven by biotech

and pharmaceutical companies’ need to screen millions of compounds for potential

clinical relevance. High-throughput screening (HTS) became widespread in the

1990s, leveraging microtiter plates (MTP) with 96 wells that were ultimately miniatur-

ized to include 384 and then 1536 individual wells [9]. The advantages of increased well

density were twofold. First, it allowed more experiments to be done per plate,

Fig. 1 AE systems are often conceptualized as loops. Here, we break the traditional learning loop into
three distinct sections. Domain knowledge/discovery systems/artificial intelligence creates or updates
a hypothesis based on results and ultimately draws conclusions from the research. Machine learning/
optimization/data analysis selects experiments and interprets results, often through statistical models
of the system of interest. Finally, automation/robotics performs the experiments and analyzes the
results, often through a network of connected lab equipment.
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increasing throughput. Second, it decreased the costs of supplies, as the sample volumes

decreased from the 100–200μL range to <50μL. Plates as dense as 3456 wells (1–2μL)
have been used, but higher costs and difficulties working at such small volumes have

limited thewidespread use of the 3456-well format. Facing physical limits on the density

of wells and diminishing returns fromminiaturization, many researchers shifted focus in

the mid-2000s to more tightly integrated systems. Initial HTS systems focused solely on

the screening aspect of the research. However, later efforts focused on the entire

process, including assay preparation, counter screening, and hit validation. These

high-throughput commercial systems are ripe for conversion into AE systems and have

been so used by both industry and researchers [10,11]. It is worth noting, however, that

the conventional plate-based approach performs a plates worth of experiments in par-

allel, which limits the feedback cycle of using new data to inform subsequent experi-

mental selections.

In addition to increasing the throughput of chemical synthesis, work has been done to

make systems that are more robust and versatile. Two methods have been utilized to

accomplish this. The first method has been to create modular components that can be

used for many different applications. An early example of this approach is a system of

modular lab equipment developed by Legrand and Foucard in the 1970s [12]. This system

combined various sensors, actuators, and a control system to manage chemical reactions.

The automation allowed multiday reactions to be run continuously and allowed fine

control of parameters, increasing yield while decreasing experiment time relative to man-

ual experimentation. More sophisticated attempts followed. For example, in 2018

researchers at MIT created a continuous-flow chemical synthesis system that had five dif-

ferent bays that could host different modules [13]. This allows a single machine to be

configured for different synthesis requirements. The second major method that has been

used to make experimental systems more robust and versatile has focused on developing

robotic systems that use regular laboratory equipment designed for human researchers.

Advances in robotics have made it cheaper and easier to design robotic systems that both

conduct experiments and record results. This means that researchers can often use off-

the-shelf equipment, both for robotic manipulation of samples and for conducting exper-

iments, thus decreasing the burden of designing an entire AE system from scratch. The

first robot-based AE system, named “Adam,” was developed in 2004. The system unified

the capabilities of a built-in freezer, liquid handlers, incubators, plate readers, robot arms,

a centrifuge, bar code readers, and environmental sensors [4]. Four separate computers

were needed to coordinate all of its actions. Although the researchers determined that

the capital and maintenance expenses were not cost-effective at the time, Adam was able

to demonstrate impressive increases in productivity [7]. While studying the genetics of

yeast, researchers observed 3 and 100� reductions of experiments to obtain comparable

results to human researchers [3]. This result, and its successor “Eve,” represented a sem-

inal and pioneering work in the field.
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While Adam leveraged commercially available automation hardware that had been

developed for the biological and pharmaceutical communities, other disciplines lacked

existing widespread automation solutions. Thus, further development of AE systems

experienced somewhat of a lull between the innovation that constituted Adam and

themid-2010s.When AE systems started emerging, systemsmost often included bespoke

hardware/automation solutions that were custom developed for the needs of the material

system. For example, the ARES system, which constituted the first AE system in the

materials space, was developed to automate carbon nanotube (CNT) growth by chemical

vapor deposition (CVD) [6]. To realize closed-loop experimentation, the team at the Air

Force Research Laboratory had to develop a custom process for automating both the

synthesis and characterization of CNTs. In particular, they utilized a 532nm laser to

selectively heat 10μm cylinders that were arrayed on a thermally insulating wafer. In

addition to controlling the temperature of the pillar to facilitate synthesis, the laser

was also used as an excitation source for Raman spectroscopy, allowing the growth rates

of the CNT to be monitored in-situ. In addition to the temperature of the reaction, the

system can also control the pressure and the gas composition of the reaction environment.

This system is discussed further as a case study in Section 3.1.

To provide another example of a bespoke automation solution, this time at the mac-

roscale, the Intelligent Towing Tank was designed to research vortex-induced vibrations

caused by separated flow around a structure [14]. To accomplish this task, researchers

mounted a carriage onto rails running the length of a 10-m-long tank of water. The car-

riage was able to travel at a speed of up to 1.5m/s along the length of the tank, while also

allowing lateral and rotational movements. Like ARES, these custom hardware solutions

allowed the team to automate the research pipeline and include it into a broader AE

system.

Despite the proliferation of AE systems, each is commonly built as a unique, one-off

system. Amajor challenge presented by this is that it requires researchers to be experts not

only in their own area of research, but also in programming, networking, and robotics, to

say nothing about increasing the capital cost associated with realizing an AE system. For

AE systems to become widespread, robust and customizable hardware platforms are

needed that are easy to create, run, and maintain.

One approach for facilitating the development of hardware compatible with AE sys-

tems is to integrate robots into already functioning lab environments with minimal

changes to the lab equipment and layout. Researchers at the University of Liverpool

demonstrated this capability by outfitting a KUKA Mobile Robot with a gripper neces-

sary to perform a wide range of chemistry experiments [15]. The robot used both laser

positioning for laboratory navigation and a touch feedback system for fine positioning at

each of the six stations. Although mobile robots would certainly still have limitations and

need some accommodations to the lab environment, they could be easier to implement

in shared labs and have lower initial capital costs than custom systems like “Adam.”
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Another method to facilitate the widespread adoption of AE systems is to make it eas-

ier to control and coordinate the research process. ChemOS consists of six software mod-

ules that facilitate and consolidate control over all processes of an AE system [16]. It is

designed to allow control over multiple robots or experimental systems simultaneously

and can coordinate robots in different geographical locations. It is easy to see how such a

system could not only make it easier for individual researchers to set up AE systems in the

lab but also for AE systems at different universities to work together in coordinated

research plans.

Despite efforts to make the hardware used in AE systems more broadly applicable, it

seems unlikely that there will ever be a single system that is used for all disciplines. A robot

designed to use a human-centric lab may decrease the initial capital costs, but for most

applications, a system designed for automation from the start is likely to be more efficient

and more reliable. Furthermore, the uniqueness of the Adam, ARES, and the Intelligent

Towing Tank show the vast differences in requirements for different research areas. As

AE systems continue to proliferate in other areas of science, it is likely that the machinery

necessary to automate experiments and collect results will continue to vary greatly by

research discipline. Therefore, a key barrier to this proliferation is the engineering work

necessary to automate these research tasks. Given the acceleration in development that is

possible when leveraging established automation solutions, researchers should look to

off-the-shelf solutions and promote a culture of open-source hardware development.

2.2 Domain knowledge, discovery systems, and artificial intelligence
Although automation can improve throughput and decrease researcher hours, automa-

tion alone is not enough to create an AE system. The system needs to be able to interpret

the scientific goal, develop a testable hypothesis, and then update that hypothesis when

new results are returned. To some extent, AE systems will likely always have some human

input, at the least in defining the scientific goal at the highest level. In a sense, how human

researchers frame that goal, and the limits that are placed on the available parameter space,

often contain interesting information and constitute a hypothesis in and of itself. For

example, when building a machine to grow CNTs or synthesize molecules, the very

capabilities designed into the AE system contain decades of wisdom on how to best

accomplish these goals and embody the theory that the chosen conditions will encompass

interesting or useful outcomes. Additionally, AE systems are often given search spaces,

and these spaces usually contain knowledge about which parameters and values are con-

sidered likely to lead to success.

Additionally, there have been attempts to systematically incorporate domain knowl-

edge into AE systems, allowing them to take advantage of the vast wealth of scientific

knowledge that has been previously codified. For example, simulation by solving estab-

lished governing equations offers a way to incorporate domain knowledge into a
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problem. In mechanics, finite element analysis (FEA) can provide insights into how a

mechanical structure will perform. By incorporating FEA into the AE system, a prelim-

inary estimate of the space can be achieved. Physical testing can then refine and confirm

the simulated predictions, rather than starting with a blank slate. Simulation can also be an

effective input to an AE system even when simulation cannot accurately predict the ulti-

mate objective, as recently demonstrated by the Bayesian experimental autonomous

researcher (BEAR) fromBostonUniversity [17].While running a campaign tomaximize

toughness, the BEAR used FEA simulations of yield force to narrow the searchable space.

Although it was not able to simulate toughness directly or find high performing structures

with simulation alone, it was able to rule out structures that could not perform well

because of yield forces that were too high. Further, the simulated yield force was also

used to transform experimental data so that the AE system would instead learn a measure

of the system ductility. This example showed that it is possible to use simulations of

related systems in a systematic way to accelerate AE.

Although simulation can be a powerful tool, it can be time intensive and require

expensive supercomputers. Thus, coordinated sharing of simulated data is of high value.

For instance, the Materials Project is an effort to systematically create and share high-

quality simulation data for materials research [18]. The Materials Project uses supercom-

puter clusters at several national laboratories to simulate key materials properties for

hundreds of thousands of materials. This information is then stored in a standardized for-

mat and accessible through an API. The project has even created standardized Python

objects to help researchers work with the information contained in the database. By

creating a system to create and share domain knowledge in a structured way, theMaterials

Project provides valuable tools to create and improve AE systems.

Ultimately, it is valuable to push the depth to which AE systems can interpret exper-

imental results. Part of the motivation of this comes from early attempts in the 20th cen-

tury to develop computer programs that could reason and think like a scientist. One such

example, called Dendral, was developed by scientists from Stanford. The system origi-

nally used rules of molecular fragmentation that scientists defined to help understand data

frommass spectroscopy [19]. As an example of increasing the level of reasoning employed

by the system, researchers later augmented Dendral to discover the fragmentation rules

on its own. This key shift meant that the system was not only finding primary scientific

knowledge (understanding the data from mass spectroscopy), but also developing a

broader understanding of the system that extended beyond the specific data being ana-

lyzed. Other systems followed using increasingly sophisticated collections of heuristics.

Some of these works include BACON for the rediscovery of empirical laws such as con-

servation of momentum or Snell’s law of refraction [20], ABACUS for identifying more

complicated relationships such as free-falling bodies in viscous liquids and analysis of

chemical compounds [21], KEKADA for reproducing the heuristics and learning process

that Hans Krebs used to discover the Urea cycle [22], FAHRENHEIT for identifying test
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procedures and measurement error handling [23], and Eureqa that rediscovered of New-

ton’s 2nd law by studying pendula and spring systems [24].

In addition to these focused systems, attempts to create more robust and broadly

applicable systems are under development. For example, IBM’s Watson made headlines

when it beat the best human Jeopardy players in 2011 [25]. The underlying system,

DeepQA, uses natural language processing to create order from unstructured informa-

tion. IBM has since adapted this system to work on medical diagnosis, but there is no

fundamental limitation that would prevent DeepQA or other systems from analyzing

other areas of scientific research. Ultimately, the goal is to develop a system that can parse

scientific literature, find potential research opportunities, run the necessary experiments,

and publish the results without human intervention. To that end, the Nobel Turing

Challenge offers the ultimate goal: to create an AE system that can produce scientific

insight worthy of a Nobel prize [26].

2.3 Machine learning, optimization, and data analysis
Finally, a great amount of work has been done in selecting the most efficient experiments

for each iteration of an AE cycle. AE systems often work in multidimensional spaces

where the set of possible experiments numbers in at least the millions. Furthermore,

experimental results necessarily include stochastic variations with unknown properties,

further complicating the process of drawing conclusions from sparse data. When facing

extremely large spaces with multiple dimensions, human researchers tend to utilize brute

force methodologies, such as searching on a regular grid or one factor at a time (OFAT).

However, both methods tend to be inefficient in high-dimensional spaces and are prone

to identifying local optima rather than global optima.Machine learning (ML) can provide

a key insight in this process by providing statistical models of the system under study that

allow smarter choices in experiment selection, decreasing the number of experiments

necessary to achieve a researcher’s goals. Although there are countless methods for select-

ing experiments, one overarching characteristic is that selecting experiments sequentially

such that each experiment utilizes all available data is crucial for the efficient exploration

of complex parameter spaces.

To address the efficient sequential selection of experiments to build predictive

models, the field of active learning has emerged within the broader field of machine

learning. The field of active learning focuses on the closed-loop phenomenon of selecting

actions or experiments that influence the data added to the training set [27]. A popular

active learning algorithm that has received much popularity due to its success in

optimizing unknown and expensive functions is Bayesian optimization (BO), which is

comprised of two main components, the belief model and the decision policy

[28–31]. The belief model is built using the data acquired and subsequent experiments

are selected using a decision policy. The belief model may be generated using numerous
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mathematical functions with Gaussian processes and neural networks being popular

choices. The probabilistic nature of the belief model often enables the prediction of prop-

erties such as the mean and uncertainty of the space. To select the subsequent experiment

or sets of experiments, the decision policy in the form of an acquisition function is uti-

lized. Decision policies often balance competing goals of exploration (selecting experi-

ments in areas with large uncertainty) and exploitation (selecting experiments in areas of

the space that are likely to be high performing). To represent these goals, decision policies

are formulated to be exploratory (e.g., a maximum variance, MV, decision policy),

exploitative (e.g., pure exploitation decision policy), or to seek a balance between

exploratory and exploitative behavior (e.g., expected improvement, EI). In addition

to the success BO has seen in numerous applications, the availability of open-source soft-

ware has facilitated the rapid adaptation and utilization of BO in numerous applications

ranging from AE to hyper-parameter tuning of deep neural networks. In particular, the

ML community has developed and maintained several open-source libraries and tools,

such as ChemOS and Phoenics [29,32]. While fields such as chemistry have evidently

led the way in software development and distribution, other fields seeking to adapt

AE can certainly benefit from the plethora of freely available software and tutorials.

Two AE systems have sought to quantify the improvements that can be gained

through efficient selection of tests. The first study looked at the formation of self-

assembled inorganic molecules in a three dimension space [33]. The purpose was to

map this space as completely as possible, finding where polyoxometalate molecules

would self-assemble into large single crystals. Interestingly, the paper benchmarks their

ML algorithm against both human experts (PhD students who were familiar with the

relevant science) and against random selection. The AE system first used a random forest

classifier to determine where crystallization was likely to occur based on an initial training

set. It then probed the boundary of this region by selecting experiments where the clas-

sifier showed high levels of uncertainty. The ML algorithm improved its classifier accu-

racy by about 16 percentage points, while human scientists and random selection

improved by about 8 and 0 percentage points, respectively. The machine algorithm

aggressively probed the boundary where crystallization occurred while the human

researchers used OFAT methods, which limited the breadth of their search. In another

example, the BEAR benchmarked their Bayesian optimization (BO) approach against a

grid search [34]. As a benchmark, the grid search consisted of 1800 tests at 600 distinct

points in a four-dimensional test space. Then, six separate campaigns of 100 sequential

experiments were run using two distinct decision policies: MV and EI. All six campaigns

matched the performance of the grid search and five of the six campaigns (all three cam-

paigns that utilized EI and two of the three campaigns that utilized MV) outperformed

the grid method, despite using significantly fewer experiments.

These two examples not only highlight the possible advantages of machine learning,

but also some of the diverse options available for further research. Traditional BO assumes
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a batch size of one. However, the first study picked batches of 10 experiments at a time,

while the BEAR did experiments both with singles batches and with 6 asynchronous

experiments running simultaneously. Additionally, the BEAR examined two different

acquisition functions: maximum variance (exploring the space) and expected improve-

ment (find a minimum or maximum). Further optimization of the experiment selection

process can be gained through careful study of these and related issues.

Finally, it is important to note that while much scientific research can be thought of as

an optimization (i.e., a campaign with the goal to identify the best combination of param-

eters) or exploration (i.e., a campaign with the goal to learn the most information about

parameter space) in a multidimensional space, this does not mean that the experimental

selection techniques are easily transferable. For areas where research consists of exploring

a well-defined multidimensional space, many machine learning techniques require no

adjustments to move between very different fields of study. In contrast, other research

areas, such as chemical synthesis, are not easily formulated as a search in a continuous,

multidimensional space due to the combinatorial nature of molecular design together

with the complexities of which materials are inherently stable or synthesizable. In this

field and other related fields, black-box optimizers are poorly suited and the process

of defining a suitable parameter space is a major component of the challenge of bringing

AE systems to bear. Additional solutions include using similarity calculations to predict

similar chemical characteristics, using functional groups to filter libraries, and using

diverse drug libraries as initial starting points [35]. Along those lines, researchers recently

demonstrated an autoencoder that converts SMILES strings (an ASCII-based represen-

tation of a chemical structure) into a continuous multidimensional space [36]. This space

can then be used to linearly interpolate between two chemical compounds or to optimize

using machine algorithms. Similar, clever solutions likely exist not only in chemical syn-

thesis but also in a variety of other research fields.

2.4 Overview of the development of autonomous
experimentation (AE) systems
While we have previously focused on discrete components of AE systems, namely, (1)

automation and robotics; (2) domain knowledge, discovery systems, and artificial intel-

ligence; and (3) machine learning, optimization, and data analysis, it must be acknowl-

edged that functioning AE systems have been developed and applied in fields such as

chemistry, biology, mechanics, and nanoscience. Even though the discussion of each

AE system is beyond the scope of this paper, it is useful to put into context the chrono-

logical development of these systems (Fig. 2). The first AE system was developed in 2004

in the field of biology and called Adam, while the second AE system was 12years later in

2016 in the field nanoscience and called ARES. Thereafter, articles describing the

340 Intelligent nanotechnology



development of two distinct systems in chemistry were published in 2018. Two years

later in 2020, an astounding seven articles were published describing the development

and application of AE systems in chemistry, mechanics, and nanoscience.While the intri-

cacies on the development and application of each AE systemmerits abundant discussion,

the role of AE systems in nanotechnology is discussed in the following section. The fol-

lowing section examines and details the development and application of AE systems,

describes the enhancement observed using the AE system, and expounds on the impact

and implications of AE systems in the field of nanoscience.

3. Case studies of AE in nanotechnology

Nanotechnology presents numerous opportunities for the utilization of AE. Still in its

infancy, AE in nanotechnology has emerged and been shown to be an excellent approach

for rapidly exploring vast and complex parameter spaces to optimize parameters and con-

ditions and for knowledge discovery. In the field of nanoscience, AE systems have been

successfully applied to study the synthesis of CNTs, thin films, and nanoparticles. Com-

mon to the development of AE systems for these applications was the compatibility of

experimentation methods, such as processing and characterization at various stages of

synthesis, with automation. Consequently, significant efforts were dedicated to the

design and development of custom and modular hardware and software components

to achieve reliable, high-throughput, and automated experimentation methods. As

described above, the development of hardware for automated experimentation leveraged

advancements in robotics for handling and transport requirements and while the active

learning component of AE systems leveraged open-source libraries and tools from the

ML community. In the case studies described in this section, AE systems have demon-

strated efficient exploration of parameter spaces resulting in the reduction of necessary

experiments by over an order of magnitude relative to manual approaches. In addition

to reducing the number of experiments needed to find optimum parameters, the machine

learningmodels used in AE have enabled researchers to deepen their understanding of the

parameter space by extracting key insights motivating future research efforts to consider

Fig. 2 Historical timeline on the development of autonomous experimentation (AE) systems [1,3,6,
13,15,34,37–41].
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the incorporation of physics knowledge, access to previously collected materials data-

bases, and the exploration of alternative machine learning methods such as reinforcement

learning.

3.1 Carbon nanotube synthesis
In the past two decades, CNTs have garnered substantial research interest due to their

remarkable electrical, optical, mechanical, and electronic properties with potential trans-

formative applications in electronics, medicine, energy, and composite materials [42–45].
CNTs are composed of concentrically arranged graphite sheets with diameters between

0.4 and 100nm and are categorized as single-walled CNTs (SWNTs) or multiwall CNTs

(MWNTs) [46–48]. SWNTs consist of a single graphene sheet rolled in a tubular geom-

etry with typical diameters between 0.4 and 2nm, while MWNTs include multiple con-

centric graphene sheets rolled in a tubular geometry and possess typical diameters

between 1.5 and 100nm. To synthesize CNTs, approaches such as laser ablation, arc dis-

charge, plasma torch, and chemical vapor deposition (CVD) have been employed; how-

ever, the most frequently used technique currently is CVD as it enables the production of

CNTS in large quantities with specified properties such as tube diameter, tube length,

and tube alignment [49]. While CNTs present unprecedented properties and potential,

the synthesis of CNTs using CVD is not sufficiently understood or controlled to a high

enough degree to enable reliable defect-free high-throughput production [50,51]. The

challenge stems from the vast number of synthesis conditions that must be considered

when synthesizing CNTs using CVD [52], which is further amplified when considering

that the experiments are painstakingly time-consuming and laborious. To address the

challenge of traversing parameter space for optimum CNT synthesis conditions, AE

has emerged as an approach for accelerating the understanding and production of reliable

CNTs. In fact, exploring the development of AE in CNT growth provides an interesting

window into AE development more generally as the sophistication and autonomy of sys-

tems to study CNT growth have been progressively improved throughout the years.

The development and application of AE in CNT synthesis began with the develop-

ment of semiautomated and automated experimentation systems such as Robofurnace

[53] and the adaptive rapid experimentation and in-situ spectroscopy system [54], respec-

tively. Robofurnace was an automated CVD system for high throughput and reliable

synthesis of thin films and was utilized to investigate the variability of CNT forest height

and density by performing 26 identical CNT growth experiments. By using Robofur-

nace, the coefficients of variation of CNT forest height and density were reduced by 50%

and 62%, respectively, when compared to manual experimentation. Additionally,

Robofurnace was used to develop a rapid CVD recipe for CNT forest growth achieving

a 10-fold improvement in CNT forest mass density compared to a benchmark recipe

using a manual tube furnace. Moreover, Robofurnace enabled 16 or more experiments
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per day in comparison to 2–4 experiments using a manual tube furnace. The adaptive

rapid experimentation, on the other hand, was an automated experimentation system that

possessed in-situ spectroscopy inside the CVD chamber and was able to conduct over 100

experiments per day with automated control and in-situ Raman characterization. From

an experimental throughput perspective, this system was a major advance as it was esti-

mated as performing 100 times more experiments per day than could be performed man-

ually. By using this automated system, regions of selectivity toward SWNT and MWNT

nucleation growth were mapped in the four-dimensional parameter space (temperature,

partial pressure of H2, partial pressure of C2H4, and partial pressure of H2O) using sta-

tistical linear regression analysis. These works present the advantages of automated exper-

imentation to increase experimental throughput and determine complex relationships

between input parameters and performance, and motivate the inclusion of active learning

to circumvent the need for human intervention in experimental design.

While the previously discussed studies demonstrate the utility of automation for CNT

synthesis, efforts to further increase the pace of research in CNT synthesis led to the

development of an AE system for CNT synthesis, namely an autonomous research system

(ARES) [6]. ARES was reported to be capable of designing, executing, and analyzing its

own experiments to learn synthesis conditions for CNT growth. By combining the pre-

viously developed adaptive rapid experimentation and in-situ spectroscopy system with

ML, ARESwas able to autonomously learn the synthesis conditions for growing SWNTs

at target growth rates. Using a random forest model and a genetic algorithm, ARES iter-

atively conducted experiments with series of experiments conducted in grouped tasks of

29–94 experiments. Convergence tests compared the experimental growth rates to the

ARES-predicted growth rates where ARES was observed to converge after 500 exper-

iments where larger yield of CNTs is observed with larger growth rates (Fig. 3A). Prior to

commencing the experimental campaign, 84 experiments were selected in a grid

throughout parameter space to build an initial predictive model. During the experimental

campaign, the target growth rate was constant for initial experiments but later varied to

promote coverage of the parameter space, showing an interesting interaction between

the autonomous system and human experimenters. This approach led to 8% of model

predictions matching the experimental values in the initial phases of the experimental

campaign and 68% of model predictions matching experimental values at later stages

in the campaign. While this approach was able to learn conditions for SWNT growth

with over 500 experiments, the active learning approach used in ARES was updated

to utilize BO [56] with the goal of further accelerating the pace of research.

In the ARES BO framework, the upper confidence bound (UCB) decision policy

and a Matern 5/2 kernel belief model were utilized. Two experimental campaigns were

conducted with the growth rate as the objective, treated as the square root of the growth

rate in the implementation. One campaignwas warm started with 25 experiments known

to produce successful growth rates, while the second campaign was warm started with
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48 experiments selected uniformly at random throughput the parameter space. Both

campaigns converged to optimum conditions in approximately 100 experiments which

was a fivefold decrease relative to the previously used random forest-based approach.

Moreover, the optimized growth rate found using BO was greater than growth rates

found by the random forest planner by a factor of eight. A benefit of the BO approach

Fig. 3 Autonomous experimentation (AE) case studies in carbon nanotube growth, thin-film
applications, and nanoparticle synthesis. (A) Experimental campaign of ARES with experimentally
measured and predicted growth rates with converge after 500 experiments with SEM images
depicting an increase in the yield of CNTs with an increase in growth rate [6]. (B) Experimental
campaigns conducted using CAMEO to identify the material with the largest bandgap difference
between amorphous and crystalline states [37]. (C) Artificial chemist enables quantum dot (QD)
synthesis such as synthesis of perovskite QDs for 11 target emission colors along with a
demonstration of continuously measured peak emission energy for 1h at 2.7eV (blue) and 2.0eV
(red) [55]. (D) Enhancement in throughput due to the use of automation ζ and enhancement in
efficiency due to the use of custom active learning approaches ξ.
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is the ability to use the belief model to model the parameter space. This was beneficial in

contributing to the discovery of multiple optima in growth parameters that produce sim-

ilar growth rates with similar diameter distributions of CNTs. These results demonstrate

the efficacy of BO as an efficient sequential optimization algorithm for AE systems.

3.2 Optoelectronic properties of thin films
Properties of thin films are highly sensitive to defects resulting in significant deviation

from bulk properties [57]. Designing and fabricating thin films with optimal properties

poses a challenge due to the requirement for time and labor-intensive exploration of a

vast parameter space of compositions, deposition parameters, and processing parameters

which affect the structure and properties of the film [58]. With a limited number of accu-

rate computational and theoretical models for predicting performance, experiment

remains the primary way of studying thin organic films. A particular class of thin-film

properties that have received significant attention are optoelectronic properties as a result

of their increasing application in solar energy conversion, efficient solid-state lighting,

and flexible electronics [59,60]. However, progress has been limited due to lack of scal-

able, high-quality, and reliable fabrication processes [61].While new thin-film photovol-

taic technologies are continuously emerging to address the issues of low performance

[62], rapidly exploring the utility of these technologies remains a major bottleneck to

significant progress in designing the next generation of thin films with optimum opto-

electronic properties [63]. In the field of thin films, AE has emerged as a promising

approach to traverse the complex parameter space of thin-film design and fabrication.

Prior to the utilization of AE,many efforts in the field of thin filmswere geared toward

increasing experimental throughput and accelerating the experimental cycle of thin-film

fabrication. By combining HTE and ML techniques, new photovoltaic materials were

realizedwith over an order ofmagnitude reduction in experimental time relative to aman-

ual process [64]. Specifically, over this 2-month period, a total of 96 precursor solutions

were created which were synthesized using 28 solid precursors based on recently devel-

oped compounds. A total of 75 unique chemical compositions were deposited into thin

films and 65 (87%) exhibited properties that were promising for optoelectronic applica-

tions. By implementing automated solutions, such as automated characterization, a

35-fold increase in throughput was observed relative to their manual laboratory baseline.

The advancements described in this work provided evidence for the utility of automation

and ML in accelerating the experimental cycle further motivating efforts toward AE.

Theoptimizationofholemobilityof2,20,7,70-tetrakis(N,N-di-p-methoxyphenyl-amine)

9,90-spirobifluorene (spiroOMeTAD), an organic hole transport material common to

perovskite solar cells, was demonstrated using an AE system. The AE systems, called

“Ada,” was capable of synthesizing, processing, characterizing organic thin films, and

selecting subsequent experiments using BO [1]. “Ada” achieved this by automating
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robotics at five key experimental steps: (1) measuring andmixing solutions; (2) depositing

solutions as thin films; (3) annealing films; (4) imaging the films to detect morphologies,

defects, and impurities; and (5) characterizing the optical and conductive properties of the

films. From the optical and conductive properties obtained from automated experimen-

tation, “Ada” selected subsequent experiments using ChemOS’s Phoenics global BO

algorithm [16,29]. Specifically, the hole mobility of the thin films was assessed using

the pseudo-mobility ratio, which constitutes the quotient of the sheet conductance of a

thin film and the absorptance of oxidized spiroOMeTAD in the film. The parameter space

that was exploredwas two dimensional and consisted of the annealing time and the dopant

concentration, where the dopant concentrationwas prepared from stock solutions of spir-

oOMeTAD and cobalt (III) dopant with a fixed amount of plasticizer

4-tert-butylpyridine. In the study, 2 AE campaigns were conducted each with an exper-

imental budget of 35 experiments where each campaign was completed under 30h. Both

campaigns converged to the optimum doping ratio and annealing time of�0.4 and�75 s,

respectively. Capitalizing on the benefit of the BO approach to utilize the belief model to

explore theparameter space, a nontrivial local optimumwith ahighdoping ratio and ahigh

annealing time was also determined which represented an unexpected scientific

observation.

AE systems have also been employed to study the optical properties of inorganic thin

films. Specifically, an AE system employed to optimize the properties of thin films was the

exploration of a Ge-Sb-Te ternary system to identify the optimal contrast in bandgap

between amorphous and crystalline states for applications in photonically addressable

phase change memory material (PCM) [37]. To achieve this, a closed-loop autonomous

system for materials exploration and optimization (CAMEO) was developed which was

able to autonomously control a high-throughput X-ray diffraction system at a synchro-

tron beamline, request specific input from a human in the loop, access prior experimental

and theory-based knowledge of the target material system, and incorporate physics

knowledge such as the Gibbs phase rule, and utilize BO to select subsequent experiments.

CAMEOwas able to identify the compositionwith the largest bandgap in 19 experiments

(approximately 10h) which was approximately a 10-fold reduction in the number of pre-

viously required experiments in the full set of 177 compositions (Fig. 3B). Additionally,

CAMEO was compared to simulated campaigns of BO with a Gaussian process belief

model andUCBdecisionpolicy (GP-UCB).Basedon these simulated learningcampaigns,

CAMEOwas able to identify the compositionwith the largest bandgap in 19 experiments,

while a traditional BO formulation such as GP-UCB needed 54 experiments. Further-

more, the composition found by CAMEO outperformed a popular alternative composi-

tion in a photonic switch device by exhibiting an enhanced switching contrast resulting in

50% more interval states. From, the campaigns a new PCM was identified, and high-

resolution transmission electronmicroscopy revealed a complex nanocomposite structure

consisted of FCC-Ge-Sb-Te (GST) and Sb-Te phaseswhere the dotted lines indicated the
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atomically sharp interface (Fig. 3B). The success of CAMEO demonstrated the additional

acceleration that AE systems can achieve when incorporating physics-based prior knowl-

edge and human cooperation, which is a promising direction for the development and

expansion of future AE systems.

3.3 Synthesis and optimization of nanoparticles
Nanoparticles possess unique size-related physio-chemical, optical, magnetic, and elec-

tronic properties; however, controlling the size, morphology, and properties of nanopar-

ticles remains a challenge as numerous synthetic parameters and conditions must be

considered [65,66]. Microfluidic reactors, such as tube-based flow reactors, have attained

increasing popularity as a means for controlled synthesis of high-quality colloidal nano-

particles and have presented unprecedented opportunities for accelerating fundamental

and applied studies of nanoparticles [67,68]. With the growing interest in flow reactor

technology, versatile and reconfigurable microfluidic reactors have emerged enabling

automated microfluidic reactors motivating the development and application of AE sys-

tems for nanoparticle research.

To tune the quantum yield and composition polydispersity of metal halide perovskite

quantum dots (QDs) at target bandgaps through halide exchange reactions, the “Artificial

Chemist” was designed and developed [41]. The Artificial Chemist comprised a precur-

sor formulation module, a flow reactor module, an in-situ QD characterization module,

and a BO active learning algorithm. By varying the conditions of the halide exchange

reactions, the Artificial Chemist was able to simultaneously tune the photoluminescence

quantum yield and the emission linewidth at target bandgaps. Notably, the Artificial

Chemist enabled the study of >1400 reactions across 11 target peak emission energies

and eight different reaction optimization algorithms (Fig. 3C). Among the eight different

optimizations, three algorithms that were top performers were an ensemble neural net-

work (NNE)-based BO approach with an EI decision policy, and NNE-based BO

approach with anUCB decision policy, and a covariance matrix adaption evolution strat-

egy (CMA-ES) approach. These 3 approaches were able to achieve their objective within

25 experiments with NNE-UCB being reported as the most consistent approach with

the greatest performance. Additionally, it was reported that when the Artificial Chemist

was pretrained, an NNE-based BO approach with an exploitative decision policy further

reduced the number of experiments necessary by twofold. The development of the Arti-

ficial Chemist as a modular and versatile AE system for flow synthesis of nanoparticles has

opened opportunities for reliable and high-throughput manufacturing of advanced and

highly tuned nanoparticles.

A distinct AE system was used to efficiently explore the synthesis parameter space of

lead halide perovskite (LHP) QDs and their corresponding peak emission energies [55].

The parameter space considered in this study included eight independent flow rate
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parameters. Using the AE system, the synthesis parameters for 10 different target peak

emissions were found in less than 40min per target peak emission. Using an ENN-

BO approach, the AE system first utilized 200 experiments to explore the parameter

space using a maximum variance decision policy and then utilized five exploitative exper-

iments for each target peak emission. Using this BO approach with the AE system,

10 optimized LHP QD production that corresponded to 10 target emission colors that

ranged from blue to red were identified in the eight-dimensional parameter space (Fig.

3C). In another study with a smaller two-dimensional parameter space, a different team

developed and utilized an AE system to explore the synthesis of cesium lead bromide

QDs, a similar QD parameter space explored by the Artificial Chemist [41], but with

a focus on optimizing the circular dichroism (CD) signal [69]. Driven by the customized

materials acceleration operating system in the cloud (MAOSIC) enabled the optimization

of the CD signal as a function of temperature and concentration in 250 experimental

loops using stable noisy optimization by branch and fit (SNOBFIT)-based reinforcement

learning.

3.4 Enhancement observed due to the introduction of automation
and autonomy
The incorporation of AE in the previously discussed case studies demonstrated enhance-

ment in experimental throughput due to the application of automated experimentation

and enhancement in the research pace (Fig. 3D). In particular, experiment throughput

enhancement ζ was reported to be a factor of 100 for ARES, an expected 100 times

increase from a fully automated workflow for thin-film synthesis, and 1000 times increase

in nanoparticle synthesis. While the substantial increase in experimental throughput due

to automation experimentation is certainly desirable, AE systems have also demonstrated

the ability to employ active learning approaches such as BO to further enhance the pace

of research, quantified here as the enhancement factor ξ. Notably, ARES reported ξ¼5

where the random forest approach utilized 500 experiments while BO utilized 100

experiments. Additionally, CAMEO reported ξ¼10where 19 experiments were needed

to find an optimummaterial composition relative to the full set of 177 composition spots.

Finally, the artificial chemist reported ξ¼2 using a pretrained BO approach that required

25 experiments while the other BO approaches required more than 50 experiments.

4. Platform technologies for AE in nanoscience

The case studies described above show how totally different platform technologies for AE

are often needed to accommodate different experimental types in nanoscience. That need

not be the case as robust and transferable experimental platforms such as MTP have dem-

onstrated clear advantage in advancing a community holistically. Thus, a major current

emphasis in nanoscience is identifying platform technologies that can enable rapid
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exploration of many distinct systems with a single unified set of hardware. Motivated by

the achievements of MTP in providing a standardized format for automated chemical

processing, such a platform technology that is inherently built for nanotechnology

research could take advantage of the small size of nanoscale systems to increase experi-

mental throughput in a fashion akin to Moore’s law. However, many challenges remain

to realizing such a general system, often motivated by the unique complications intrinsic

to nanoscale systems or the difficulties in integrated characterization hardware that is typ-

ically not utilized in an automated framework. This section details some recent efforts and

ongoing work in this area.

4.1 Platforms for miniaturized liquid handling
Many nanoscience experiments are either performed in liquid or can be prepared in a

liquid state. Thus, one popular approach to generating platform technologies is to look

to the miniaturization of liquid handling. Automated liquid handling for nanotechnology

research requires metering, mixing, and characterizing samples. While MTP-based HTE

typically achieves this through a series of discrete large instruments such as liquid dispens-

ing robots and photoluminescence plate readers, these require fluid volumes on the μL
scale. Thus, one major emphasis has been to reduce the volumetric scale of these reac-

tions. One such examples of automated liquid dispensing into a microwell chip at the

nanoliter scale was presented by Wang et al. [70].

Inkjet printing is a technique that uses electrical, piezoelectric, or thermal effects to

generate and sputter droplets on a surface in micro- and nanoscale using various inks. In

traditional inkjet printing applications, results of the printing are observed afterward and

there is no way determining or measuring the printed droplets during the patterning pro-

cess. This limitation leads to not having control over adjusting printing results in-situ. To

overcome this, Zhang et al. proposed an inkjet printing method that enables in-situ mon-

itoring of size of the printed droplets by using a scalar diffraction vision system. Their

system is able to measure the size of printed drops and adjust printing conditions [71].

In comparison to conventional inkjet printing, this method showcases real-time result

monitoring, and it has the capability to automate all of the result inspection process. Sim-

ilarly, it is of importance to understand the droplet jetting behavior in inkjet printing,

such that consistent droplet deposition quality can be achieved. Huang et al.’s proposed

method aims to use an unsupervised learning method by using the videos data as the study

subjects to observe the droplet behavior in the inkjet printing process. This method was

reported to be capable of learning latent representations of the droplet jetting process

video data, which can be crucial to understand and predict the droplet behavior [72].

With this method’s capabilities, this can be used for real-time monitoring of the inkjet

printing process in the future, and enable an automated systemwhere printing conditions

can be optimized based on the droplet jetting behavior in-situ.
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Rather than requiring discrete fluid drops prepared by printing, another approach is

to use microfluidic devices with the capability to continuously flow and mix liquid sam-

ples. To produce discrete reaction vessels, these systems often produce emulsions with

discrete drops. For example, Du et al.’s work DropLab is a fully automated microfluidic

platform that controls droplet generation and screening and is capable of automated

pL-scale liquid metering, sequential droplet formation, and sample introduction into

the microfluidic device [73], as well as generation of droplet assays, and parallel screening

of the droplet assays with low sample volumes. DropLab has been demonstrated for auto-

mated screening of enzyme inhibition assays and protein crystallization, as well as iden-

tification of reducible carbohydrates (Fig. 4A) [74].

Fig. 4 Development of platforms for liquid handling. (A) DropLab systemwith depiction of the slotted-
vial array, multiwell plate, wax seal for long-term storage, and deposition of droplets in the nanowell
plates through a capillary [74]. (B) Robotic platform for fluid delivery comprised of a multiwell plate
holder, microfluidic device, and microscope stage [75]. (C) Pipeline for AI-guided quantum dot (QD)
synthesis in flow [66].
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Interestingly, the concepts of microtiter plates and microfluidic systems have been

merged to take advantage of their respective advantages. For example, Lagoy et al.

reported the automated integration of microwell plates and microfluidic devices with

a robotic system that automatically and reliably transfers fluid into anymicrofluidic system

from a microwell plate through a single inlet tube. Their system can perform automated

measurement of neural dose responses of chemical concentrations, multistep cell staining,

and chemical screening (Fig. 4B) [75].

While autonomous fluid handling for microfluidic devices still have room to grow,

one of the important applications in this area is autonomous material synthesis in flow

usingmicrofluidic devices. Similar to the advantages that microwell plates bring into sam-

ple preparation and interrogation, microfluidic reactors can highly reduce chemical con-

sumption and waste generation, and can offer high-throughput and efficient chemical

synthesis. The nature of microfluidic nanoreactors offers accelerated exploration of mul-

tivariable synthesis of target materials thanks to their superior heat and mass transfer.

Combining the potential of microfluidic nanoreactors with AI-based experiment selec-

tion strategies make flow syntheses techniques an ideal approach for accelerated material’s

study. There have been various studies where microfluidic reactors have been utilized for

autonomous exploration of colloidal nanomaterial syntheses, mainly quantum dots

[55,76–78]. Latif et al.’s work shows AI-guided LHP quantum dot synthesis, which is

fully autonomous and includes the generation of a large set of spectroscopic data in real

time for experiment selection and data mining. The system they developed is capable of

rapid formulation optimization of colloidal synthesis space without any user guidance,

and their AI-based strategy integrated with microfluidic reactors provides a single plat-

form capable of autonomous learning, optimization, and manufacturing of quantum dots

(Fig. 4C) [55].

4.2 Scanning probes for patterning and interrogating nanoscale
materials
As a platform technology for nanoscience, scanning probes provide unsurpassed abilities

to observe, characterize, and manipulate materials at the atomic scale. Critically, as these

single systems marry the capabilities to both image and manipulate, they can provide a

path to closed-loop nanoscale experimentation in a single instrument. SPM techniques

differ from each other based upon the nature of the probe in use and the type of infor-

mation collected. For instance, scanning tunneling microscopy (STM) utilizes a sharp

conducting tip as a probe to measure probe-sample current to image surfaces at the

atomic level, while atomic force microscopy (AFM) uses the deflection of a microfabri-

cated cantilever to measure the force between a sharp tip and the substrate, thus enabling

topographic imaging, characterization, and manipulation of materials.

While most often used for characterization tasks, scanning probes are exceptional, and

in some cases superlative tools, for fabricating nanoscale materials. For example, dip-pen
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nanolithography (DPN) is a scanning probe-based lithography technique that uses the

AFM cantilever tip as a “pen” to transfer and pattern various materials ranging from small

molecules, biological materials, nanoparticles, and polymers in a direct-write fashion.

Critically, it has been used to pattern liquids at the sub-aL scale [79]. While conventional

DPN is open-loop and it therefore lacks precise control over the patterned amounts

[80–82], Saygin et al.’s work is the first reported example of tracking and controlling

the amount of liquid patterned with DPN in a closed-loop at the fL scale. While setting

up experiments was not fully automated, the process for measuring the patterned

amounts of liquid, predicting how much could be patterned based on cantilever-liquid

state, and selecting patterning parameters for target amounts was all automated (Fig. 5A)

[83]. Given the importance of preparing and manipulating liquid samples in small scales,

this work lays the foundation toward fully automated liquid sample preparation

with AFM.

While preparing samples with high precision, either by using DPN or other nanoscale

processes, is necessary for nanoscale material discovery, the materials have to be charac-

terized. SPM imaging techniques have exceptional control and high precision at the

atomic scale; however, there are still experimental limitations that require improvement.

Some of these limitations can be summarized as the quality of the probe tip and the need

to correct tip quality during imaging, the long required time to take quality images, and

the need for identifying small areas of interest prior to postexperiment analysis. Interest-

ingly, many approaches have been proposed to address these problems and research

groups have come up with their own techniques. While these challenges have not been

fully addressed, the strategies employed include many facets of ML that are encouraging

from the perspective of automation and incorporation into AE systems more generally.

One major challenge that must be addressed is that SPM does not only depend on the

sample surface, but also the shape and state of the probe tip itself. Indeed, the probe is

often the limiting factor in determining whether it is possible to get a good quality image

with high resolution. This is especially true in STM where tip flaws must be repeatedly

corrected to maintain good quality imaging. Identifying and correcting STM tip condi-

tions have been mainly user-controlled tasks, where manual tip conditioning requires a

pulse (or a crash), which followed by a scan to check if the tip can image with high qual-

ity. In order to optimize the time required not only tomanually identify and correct STM

tips, but also to minimize human error, several groups developed automated tip state

detection and conditioning techniques. The software developed byRashidi andWolkow

can detect STM tip states autonomously based on the image being taken via CNNs.

When the software detects a double tip artifact, it can then act accordingly to correct

the tip through automated indentation with the surface, which they explain as

“autonomous tip sharpening” [86].While Rashidi andWolkow’s methodwas only dem-

onstrated while scanning the H:Si(100) surface, Gordon et al broadened their automated

tip state detection and correction method while scanning on both metallic and
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Fig. 5 Incorporation of machine learning approaches and scanning probes for patterning and interrogating nanoscale materials.
(A) Development of a closed-loop dip-pen nanolithography approach [83]. (B) Workflow for AI-aided atomic force microscopy (AFM) for the
classification of samples in real time [84]. (C) Pipeline for training an artificial neural network for analysis of electronic quantum matter
image arrays obtained from scanning probe microscopy (SPM) [85]. (D) Concept schematic for the integration of automated scanning probe
approaches and active learning.



semiconducting surfaces using CNNs [87]. In the following year, Gordon et al published

a new method where they show tip state detection is achieved with partial scans by com-

bining several methods as a hybrid approach. This hybrid method is reported to be at least

an order of magnitude faster than the previously reported CNN protocols [88].

One of the biggest limitations in obtaining a high-resolution AFM image is the

required time to complete a full scan. To address this problem, people have implemented

autonomous processes for constructing images. Undersampling or subsampling is one of

the complementary approaches for high-speed AFM, which is done by simply reducing

the number of pixels in the scanned image. A complete image is then formed from the

undersampled data by postprocessing [89]. Where the required time for a conventionally

taken AFM image is measured in the order of minutes, undersampling reduces this time

significantly. Luo and Andersson proposed an alternative way for reconstructing sub-

sampled AFM image using a deep neural network approach, where usually the recon-

struction methods for subsampled AFM images rely on optimization. They report that

with deep neural networks (DNNs), reconstruction of the subsampled image is signifi-

cantly faster than optimization methods, which is in the order of seconds in comparison

to several minutes [90]. Wu et al proposed a path planning method for high-speed imag-

ing with super resolution, where two different key automated applications are combined:

generation and reconstruction of low-resolution image through CNNs and automated

detection of area of interest for further probing. In the proposed method, the authors

performed an initial fast scan to generate a low-resolution AFM image, which was then

reconstructed into a higher resolution image using a CNN. The reconstructed

“superresolution” AFM image was then further analyzed with an advanced object detec-

tion approach to determine and locate the objects of interest. Followed by this, the

detected objects were scanned with low speed and high resolution, the results of which

were then matched with the previously reconstructed AFM image to generate a single,

superresolution image [91].

While reducing the time required to take a high-resolution AFM image is important,

identifying and locating the area of interest on a sample is still an important challenge

which relies on human input. It is important to be able to detect the objects or areas

of interest prior to postanalysis of an image. Huang et al proposed an SVM-based AI algo-

rithm that is capable of recognizing and identifying different areas of interest in real time

while imaging with an AFM (Fig. 5B). Their AI-AFM can differentiate ferroelectric

domains from nonferroelectric mappings by analyzing the AFM image pixel-by-pixel,

without relying on an image being completed and can adjust the scanning parameters

to initiate further probing at the identified areas of interest. Pixel-by-pixel recognition

enables adaptive adjustment of scanning parameters without any user intervention

[84]. Following Huang et al.’s AI-AFM, Krull et al proposed DeepSPM, which is

explained as “artificial-intelligence-driven scanning probe microscopy.” Their proposed

method is capable of continuous SPM data acquisition, where all the imaging steps are
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initiated and controlled by the AI system without any human intervention. Their pro-

posed method combines all the previously presented methods: autonomous parameter

selection and optimization, image analysis in real time, and adaptive probing and auto-

matic detection and conditioning of the tip state. DeepSPM operates in a control loop,

where it selects an appropriate scanning region and determined the scanning area and

after completing a scan it evaluates both the imaging parameters and the selected area;

this continues until the system completes a “good” image. If the classifier CNN thinks

that the probe is bad, the system uses a deep RL agent to condition the tip. While the

authors demonstrated this method with STM, they conclude that DeepSPM can be gen-

eralized to most SPM techniques with their open-source code [92].

There have also been advances in automated image analysis for SPM images. Postex-

periment analysis of SPM images conventionally relied upon on researcher’s manual

interpretation, which includes selection of necessary filtering techniques, detection

and quantitative analysis of subjects of interest. This process may require multiple soft-

ware packages, is very time consuming, and open to human error and subjectivity when it

comes to detection and identification of target measures. Automation of SPM imaging

can provide fast and consistent postprocessing alternatives in comparison to conventional

methods.

One of the first examples in this area was showed by Randall et al., where automated

detection and identification of atomic terraces, dimer rows, vacancies, dangling rows, and

surface contamination of STM images of Si (100) 2�1 H surfaces were performed by

identifying all the dimer rows and deciding what each specific atom position corre-

sponded to based on published knowledge about Si surfaces [93]. Open-source toolbox

development is another approach toward automated data analysis of SPM images. Two

such examples can be seen in Stirling et al. and Gudinas et al.’s works; they developed

open-source toolboxes for automated SPM data analysis, which can be applied to a wide

range of SPMdatasets and can perform adaptive masking and flatting, step edge detection,

atom and molecule recognition and generate image statistics [94,95]. Gudinas et al. state

that the toolbox they developed is limited by the quality of the STM images, and high

background noise can result in poor results for isolating defects. One of the most impres-

sive examples of automated data analysis of SPM images was proposed by two different

groups. Zhang et al. showed that they were able to extract buried information from

experimental SPM data by using an artificial neural network (Fig. 5C) [85], which

was not possible for humans to detect, and similarly, Alldritt et al. showed that buried

information from experimental AFM data can be extracted reliably and rapidly using

CNNs [96].

The combination of automated platform technologies for nanoscience with active

learning algorithms presents innumerable opportunities for the discovery and develop-

ment of new materials (Fig. 5D). While prior work has developed and utilized

closed-loop systems involving microfluidics, SPM, and STM, ample opportunity exists
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for the application ofAE systems for regression, classification, and discovery applications in

these areas.The increasing availability of open-source software packages for active learning

lowers the barrier to entry for combining nanoscience platform technologies and active

learning algorithms to select subsequent experiments using available experimental data.

5. Conclusions and future directions

Nanoscale systems have many unique features, but their unifying characteristic is that

they are small. This simple feature can translate to a major advantage when considering

experimentation in that each system under study occupies a small volume, providing a

potential path to extraordinary rate of experimentation. Unfortunately, the nanoscale

dimensions of such systems are often also a challenge as the analytical systems needed

to interrogate nanoscale systems are often quite large. Thus, the path to realizing general

purpose AE systems for studying nanoscale materials must find a balance between

leveraging scalability while maintaining a consistent and clear window into the nanoscale

world. The examples of AE systems that have been realized to date show the promise of

this new experimental paradigm in accelerating research, but challenges remain. The

overwhelming combinations of materials, processing conditions, and properties mean

that human intuition and oversight will remain a critical factor, if only to select the scope

and objective of AE campaigns. Further, advances from other communities on how best

to leverage AE systems to employ simulation and other types of prior knowledge will be

indispensable in realizing the potential of AE systems. Taken together, we show how AE

as a physical embodiment as themerging of data science and physical experimentation can

help advance the field of nanoscience.
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1. Introduction

Counterfeiting is growing worldwide and has become a serious global issue [1–6]. Over

the last few decades, counterfeited and pirated goods have pervaded all levels of our mod-

ern society. They are commonly found in medicine, food, cosmetics, precious art, and

almost every aspect of our daily life [1,3–6]. For example, a report by the World Health

Organization showed that approximately 10% of medicines around the world may be

counterfeit, and this number could be even higher in developing countries [7]. Coun-

terfeit goods not only pose a risk to human health but also cause significant damage to the

global economy. It has been reported that the global economic losses caused by fake

products reached 1.82 trillion USD in 2020 [8]. Anti-counterfeiting technologies are

implemented by authorities and/or manufacturers to prevent the production and/or sale

of counterfeit goods (including banknotes, identity cards/documents, and commercial

products). The global market size for these technologies was 51.8 billion USD in

2017, and is predicted to grow annually at a rate of 11.7% from 2018 to 2025 [9]. There

is therefore a prevailing need for multidisciplinary research to devise new secure anti-

counterfeiting strategies to “outsmart” counterfeiters.

Typical anti-counterfeiting systems comprise two components: patterned security

tags and reliable authentication techniques. The key ingredient of a security label is

the information carrier within the pattern. It is usually a nanomaterial that exhibits at least

one unique physical response under external stimuli (e.g., light, heat, magnetic field,

etc.). The physical responses are encoded in the patterns of the security labels that can

be directly visualized by eye or read by an authentication tool such as an optical micro-

scopes or spectrometers. The field of anti-counterfeiting has seen three major trends over

the past few decades: (1) new stimuli-responsive nanomaterials are being investigated as

information carriers to increase the encoding levels (see Section 3); (2) new patterning

techniques are being created to enhance the patterning complexity while decreasing

the fabrication cost (see Sections 3 and 4); and (3) miniaturized authentication tools
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integrated with smartphones and advanced algorithms are being developed (see Sections

5 and 6). Fundamental advances in nanotechnology and artificial intelligence are gener-

ally seen as key to the development of the next-generation of anti-counterfeiting tech-

nologies. This draws attention to the synthesis of novel functional nanomaterials with

unique properties and the development of techniques in pattern extraction, recognition,

and comparison.

2. Encryption mechanism of optical security labels

The commercialized anti-counterfeiting technologies mainly include radio frequency

identification tags (RFIDs) and optical anti-counterfeiting tags (e.g., holographic tags,

barcodes, and QR codes), which allow frequent authentication at any point of dispatch

and storage from the manufacturer to the end user [10,11]. Combining intelligent light

management through nanomaterials with novel printing techniques and smartphones as

verification tools has the scope to create advanced optical anti-counterfeiting technolo-

gies that are less expensive, simpler, and more reliable than RFIDs.

The encryption mechanism of optical security labels relies on the optical responses of

the nanomaterial under external light stimuli. The irradiation of an optical nanomaterial

results in the absorption, reflection, refraction (including transmission), diffraction, and

scattering of the incident light, which can give the material a specific color (i.e., structural

color) and can be used as coding information in anti-counterfeiting (Fig. 1). The absorp-

tion of the incident light may also lead to the formation of excitons (i.e., electron–hole
pairs) or surface plasmons (i.e., the collective oscillation of free-electron clouds in reso-

nance with the incident electromagnetic field) depending on the types of optical nanoma-

terials involved [9]. The generated excitons can recombine and emit light with

wavelengths different to those of the incident light. Emission that occurs immediately

upon excitation is called fluorescence, whereas emission after the excitation source is

removed (referred to as afterglow) can involve thermally activated delayed fluorescence

Fig. 1 Optical responses of a material interacting with light.
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(TADF)or phosphorescence. Surface plasmons that are strongly confinedwithin themetal

nanoparticles orhighlydoped semiconductornanoparticles caneffectively absorb and scat-

ter light, not only providing the material color but also generating high electromagnetic

field intensities in the close vicinity of the surface of the nanoparticles [12–14]. The strong
near-field enhancement effect can be exploited for the amplification of fluorescence and

Raman signals of molecules surrounding the nanoparticles, offering additional optical

responses. The multiple optical responses including scattered light, surface plasmon-

enhanced fluorescence (SPEF), and surface-enhanced Raman scattering (SERS), can be

assigned as multiple codes for anti-counterfeiting applications [12,13,15].

So far, the optical information in the majority of the investigated security labels is

encoded in two-dimensional (2D) patterns in “collective behaviors.” That is, the coding

signals of two neighboring information carriers within the security labels cannot be spa-

tially distinguished. These security labels fall into the category of traditional optical secu-

rity labels produced by a deterministic process. The low complexity and high

predictability of these security labels mean that they could be readily copied by counter-

feiters [16]. To address this issue, physical unclonable functions (PUFs, also known as

physical one-way functions) have been proposed and introduced in optical encryption

and decryption, and are the foundation for unclonable anti-counterfeiting systems

(referred to as PUF security labels) [17]. Recent advances in nanotechnology give

researchers opportunities to encode optical information in random physical patterns with

spatially distinguishable nanoscopic features, forming PUF security labels. These labels,

on the macroscopic level, show features that look similar to traditional optical security

labels, while on the nanoscopic level, they are completely different from each other

due to the random nanoscopic features within the macroscopic pattern. These nano-

scopic features are batch-to-batch dependent and prohibitively difficult to duplicate [18].

3. Advanced optical nanomaterials for anti-counterfeiting applications

Driven by potential applications in optical encryption, imaging, and displays, there has

been tremendous interest in optical nanomaterials owing to their unique and fascinating

properties that are superior to those of bulk materials [9,10]. Much of this interest is pow-

ered by the growing expertise in wet-chemical synthesis routes that enable the produc-

tion of nanomaterials with well-controlled size, morphology, and composition [10,19]

and advanced micro/nanofabrication techniques that are able to generate 2D patterns

[20,21]. There are three main types of materials exploited for their unique optical prop-

erties in multiple dimensions (e.g., responsive wavelength (color), reflection or emission

intensity, and/or emission lifetime): photonic crystals, luminescent materials, and plas-

monic materials. Such nanomaterials carry rich optical information and are widely

applied in anti-counterfeiting applications [9].
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3.1 Photonic crystals
Photonic crystals (also known as structural color materials) are periodic dielectric struc-

tures that can manipulate the flow of light and have been successfully used in commercial

anti-counterfeiting applications as hologram labels. Their colors mainly arise from inter-

ference, diffraction, scattering of incident light caused by the special periodic structures of

the materials [22,23]. Numerous fabrication methods have been developed to achieve

photonic structures at different length scales and can be categorized into self-assembly

approaches, top-down routes, and their combinations [22]. Self-assembly methods take

advantage of intraparticular interactions (e.g., capillary force and electrostatic interac-

tions) [24–27] of colloidal building blocks or external forces (e.g., electric field and mag-

netic field) [27–29] to arrange them into ordered structures. With the help of spin

coating, a wafer-scale monolayer crystal composed of non-close-packed spherical build-

ing blocks has been produced through colloidal self-assembly [30]. Top-down

approaches, on the other hand, make use of advanced microfabrication techniques

(e.g., direct laser writing [31], holographic lithography [32], nanoimprint lithography

[33,34], etching [35], and so on) to generate periodic structures with desired separation

and ordering from bulk materials. For example, Campbell et al. demonstrated the fabri-

cation of photonic crystals with sub-micrometer periodicity by a holographic lithography

that involves the exposure of a photoresist film to a three-dimensional (3D) interference

pattern generated by four noncoplanar laser beams and the dissolution of unexposed pho-

toresist [22]. Compared with self-assembly methods, the top-down approaches have

illimitable pattern design capability but suffer from high fabrication cost. As a practical

fabrication strategy for security labels with desired patterns, self-assembly can serve as

complementary processing steps within a sequence of the top-down fabrication tech-

niques. To this end, templated self-assembly and novel printing techniques have been

developed for the fabrication of patterned photonic crystals [23,36].

The optical response (λ) of photonic crystals comprising spherical particles is deter-

mined by their structures and can be expressed by the following equation:

mλ ¼
ffiffiffi
8

3

r
D
X
i

n2i V i � sin 2ϕ

 !1=2

(1)

where D is the lattice constant (i.e., center-to-center distance between two nearest

spheres), ni and Vi are the refractive index and volume fraction of each component,

and ϕ is the angle between the incident light and the sample normal [26]. The lattice

constant of a photonic crystal can be adjusted by controlling the size of the building

blocks [21], filling the voids with a chemical that is able to swell and shrink [23], or

mechanical pressing or stretching [37], which allow researchers to manipulate their opti-

cal properties in the visible region. According to Eq. 1, the change of the compositions

(i.e., refractive index, ni) of the building blocks and the filling materials in the voids also
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allows for a shift in their spectra. When the building blocks are magnetic particles, the

lattice constant and ordering of the photonic crystals can be further tuned by the external

magnetic field [25]. It has been demonstrated by the group of Yin that magnetic Fe3O4

colloids are able to assemble into photonic crystals that show vibrant colors from red to

blue when increasing the strength of the applied magnetic field [25].

3.2 Luminescent materials
Luminescent materials (also known as phosphors) are substances including organic and

inorganic compounds that emit light under excitation. Although a large number of lumi-

nescent materials have been discovered, here we will mainly focus on perovskite quan-

tum dots (QDs), rare-earth fluoride nanocrystals, and carbon dots, as they have received

much attention as information carriers for anti-counterfeiting applications.

Liquid phase synthesis is the most popular approach to prepare inorganic QDs due to

its simplicity and potential for mass production. The hot-injection method, involving

injection of a metal–organic precursor into a high-boiling solvent containing ligands

and the subsequent decomposition or reaction with other precursors in the solvent at

an elevated temperature, is widely used for the synthesis of nanocrystals ranging from

II-VI semiconductors to rare-earth fluorides and halide perovskites [38–43]. Their size,
shape, composition, and heterostructures (especially core–shell structures) can be easily

engineered by controlling the reaction time and temperature as well as the ratios of the

precursors and ligands [39,44]. Monodispersed rare-earth fluoride and halide perovskite

nanocrystals with high crystallinity and desired morphology have been achieved through

hot-injection method. However, this method also suffers from two major drawbacks.

Firstly, it requires harsh reaction conditions, such as a high temperature and oxygen/

water-free environment, to obtain high-quality nanocrystals. Secondly, the produced

nanocrystals show poor water solubility because of the presence of hydrophobic ligands

on their surface.

The reprecipitation method, which takes advantage of the solubility variations of pre-

cursors when mixing a polar solvent containing highly concentrated precursors with a

poor solvent to reprecipitate the desired product, is another facile method for synthesiz-

ing colloidal perovskite QDs [45]. The synthesis is initiated by the dropwise addition of

the concentrated precursor solution into a poor solvent to induce reprecipitation of

perovskite QDs at room temperature, due to the supersaturation of the precursors in

the mixed solvents [46]. The presence of ligands in the poor solvent can narrow the size

distribution of QDs and increase their resistance to moisture in air [46,47], which are

important for the fabrication of bright and stable fluorescent security labels. Similar to

the reprecipitation method, chemical co-precipitation is a widely adopted method for

the synthesis of rare-earth fluoride nanocrystals, which makes use of the precipitation

of target products out of the precursor solution at a relatively low temperature. Carbon
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dots, a metal-free luminescent material, were discovered as a by-product of single-walled

carbon nanotubes synthesized by arc discharge [48]. The wet-chemical synthesis of car-

bon dots exploits the polymerization or carbonization of organic molecules at an elevated

temperature [48,49]. Commonly used wet-chemical methods include the hydrothermal/

solvothermal approach, chemical oxidation method, and microwave/ultrasound-assisted

synthesis route [48].

These luminescent materials are particularly interesting for optical anti-counterfeiting

applications due to their rich optical properties and solution processability. For example,

halide perovskite QDs show tunable photoluminescence wavelengths with ultra-high

brightness, while rare-earth fluoride nanocrystals exhibit upconversion properties with

tunable emission lifetimes [42,50–52]. Carbon dots, as an environmentally friendly

and low-cost material, can exhibit the attractive optical properties found in halide perov-

skite QDs and rare-earth fluoride nanocrystals noted above [53], which makes it possible

to encode optical information on space or time scales.

3.3 Plasmonic materials
Plasmonics is a subfield of photonics that deals with surface plasmons and the optical

properties resulting from light interacting with metal thin films and nanostructures.

A critical prerequisite for anti-counterfeiting applications of plasmonic nanostructures

is the controllable synthesis of high-quality metallic nanoparticles with desired size

and shapes to tailor their distinct plasmonic signatures and near-field enhancements. This

can be done by careful optimization of synthesis conditions. Hitherto, a number of wet-

chemical methods with well-understood growth mechanisms have been developed for

the synthesis of colloidal metal nanoparticles with controllable size and morphology

[54–57] since the discovery of gold colloids by Faraday. One of the most commonly used

methods is citrate reduction, in which sodium citrate is used as a reductant and stabilizer

for the synthesis of spherical gold or silver nanoparticles with average diameters ranging

from 8 to 150nm [19,55,58,59]. Modification of the citrate reduction method by using

polyvinylpyrrolidone (PVP) as a capping agent and hydrogen peroxide as an oxidative

etchant (called the oxidative etching method) allows the synthesis of high-yield of silver

nanoplates [59]. This strategy can also be used to prepare gold triangular nanoplates

through the selection of suitable reductant, stabilizer, and oxidative etching agent

[60]. Polyol reduction is another well-established method for the synthesis of metal col-

loids with controllable particle shapes (e.g., quasi nanospheres, nanocubes, nanowires,

etc.), in which polyol acts not only as a reducing agent but also a solvent and PVP is usu-

ally used as stabilizing agent [19,55,58]. A “seed-mediated” route has been developed for

the synthesis of gold nanorods, using sodium borohydride to produce small seeds and

ascorbic acid to reduce the metal salt in the growth solution [61]. Surfactant cetyltri-

methylammonium bromide (CTAB) can alter the surface energies of the seeds for
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different crystallographic planes. The group led by Murray discovered that the introduc-

tion of aromatic additives in the seed-mediated synthesis method can dramatically

improve the uniformity of gold nanorods [62]. By controlling the size, shape, and com-

position of the colloidal metal nanoparticles, their surface plasmon resonance peaks can be

tailored over the entire visible to mid-infrared region of the electromagnetic spectrum

[19,55,58]. The seed-mediated route has been extended to synthesize metallic nanopar-

ticles with complex nanostructures such as core–shell structures with and without a small

interior gap [63–67]. The former is actually a nanomatryoshka structure, while the latter

is the conventional core–shell structure. To fabricate nanomatryoshka structures, the core

nanoparticles are modified with an insulation layer (e.g., DNA, polymer, silica dioxide,

and dithiol molecules) and then used as seeds for the shell growth. The insulation layer

allows the embedding of Raman-active molecules in the nanogap junction, where the

electromagnetic field is localized and enormously magnified. With the built-in hot spots,

their SERS signals are enhanced. The concepts of colloidal self-assembly and lithographic

fabrication techniques described in Section 3.1 have also been widely adopted for the

fabrication of complicated metal nanostructures [12,19,29,56,58,66,68–76].

4. Advanced optical anti-counterfeiting labels

With access to the well-established fabrication techniques presented above, an immense

variety of optical nanomaterials with controlled nanostructures (e.g., size, shape, and

even periodicity) have been successfully fabricated. These nanomaterials often bear

unique and tunable optical properties that are particularly interesting to anti-

counterfeiting applications. To harness these properties in a security label, the positioning

of the nanostructures to form a 2D pattern on a supporting substrate is a prerequisite.

Although top-down lithography techniques can be employed for this purpose, a more

cost-effective and widely used technique is printing, in which the nanoparticles synthe-

sized through wet-chemical methods are used as inks [12,18,77]. Another cost-effective

approach for the fabrication of 2D security labels is hybrid nanofabrication, which

involves the combination of lithographic patterning techniques with colloidal self-

assembly methods [25,78]. In this section, selected important encryption mechanisms

for anti-counterfeiting applications and corresponding examples of optical security labels

fabricated by the above-mentioned techniques are highlighted.

4.1 Conventional optical anti-counterfeiting labels
4.1.1 Structural color-based anti-counterfeiting labels
Structural colors in nature have been known for centuries. With the development of

microscopes, especially electron microscopes, the physical mechanisms underlying the

brilliant colors of creatures like butterflies [79–81], chameleons [82], and beetles [83]

are now well understood. Inspired by nature, materials with artificial structural colors
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have been fabricated and applied in the anti-counterfeiting field.Many physical phenom-

ena are responsible for the colors, which can be broadly categorized into optical absorp-

tion, scattering, and interference mechanisms. The absorption mechanism mainly

involves small metal (plasmonic) nanoparticles and will be discussed in the section of plas-

monic anti-counterfeiting. Here we will focus on structural colors originated from scat-

tering and interference.

A typical example of structural color based on scattering was demonstrated by Cao

et al. [84], who exploited the resonant light-scattering properties of individual silicon

nanowires, as shown in Fig. 2A. Each silicon nanowire acts as a cylindrical cavity reso-

nator that can trap light in circulating orbits by multiple total internal reflections from the

periphery, generating a high-field intensity within the nanowire when the wavelength of

incident light matches one of the optical resonances supported by the nanowire. Simul-

taneously, the incident light at the resonant wavelength is strongly scattered back to the

far field by the nanowire and can be easily detected by a dark-field microscope (Fig. 2A,

left). The wavelength of the light scattered by a silicon nanowire (λ) can be given by the

following equation:

p λ=nð Þ � 2πr (2)

where p is a positive integer, n is the refractive index of the silicon nanowire, and r is its

radius. By simply positioning the silicon nanowires with controllable diameters into a

defined pattern on a flat surface through conventional lithography techniques, the wave-

length of the scattered light can be tuned over the entire visible light region and an anti-

counterfeiting tag with a wide range of vivid colors can be achieved (Fig. 2A, right).

A similar resonant light-scattering phenomenon has been reported for single spherical

silicon nanoparticles [89], where their observed resonances in the visible spectral range

correspond to the excitation of magnetic and electric dipole modes.

Optical interference is the most common mechanism for the generation of structural

color. To date, four different types of structures that allow for optical interference have

been reported, as summarized in Fig. 2B. Thin films composed of a dielectric layer on a

reflective surface (Type I) are one of the most understood interference structures

[85,87,90]. As shown in the left panel of Type I, when white light is incident on the thin

films, there are two reflection processes at the interfaces of the materials differing by their

refractive indices. At each interface, the incident light splits into two components (i.e.,

transmitted and reflected). The reflected light beams from the two interfaces create a

phase-matched condition depending on the thickness of the dielectric layer. The thick-

ness of the layer can be tuned for constructive interference between the two reflected

light beams to give a monochromatic color that is discernable by the naked eye. Yakovlev

et al. demonstrated optical interference thin films as structure units for color image print-

ing using TiO2 sol–gel as an ink [85]. Colored interference layers with patterned struc-

tures were produced by controlling the thickness of highly refractive layers on the order
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Fig. 2 Optical encryption mechanisms of photonic crystals and examples of the structural colors from
corresponding encryption mechanisms: (A) scattering [84], Copyright 2010, American Chemical
Society and (B) interference mechanisms: (Type I) a dielectric layer on a reflective surface [85],
Copyright 2016, American Chemical Society, (Type II) a dielectric layer sandwiched between two
metal reflectors (also called Fabry-Perot-type interference) [75], Copyright 2016, Wiley-VCH, (Type
III) Microscale concave structures [86], Copyright 2019, Springer Nature, (Type IV) self-assembled
microspheres [25,26,87,88], Copyright 2011, Wiley-VCH, Copyright 2018, Wiley-VCH, Copyright 2009,
Springer Nature and Copyright 2018, Wiley-VCH.
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of the wavelength through inkjet deposition (Type I, right). Kats et al. demonstrated an

ultrathin optical interference coating comprising highly absorbing films of a few to tens of

nanometers in thickness on a metal surface, which can be used to produce color images

insensitive to surface roughness using lithographic techniques [70,91]. Different from

lossless dielectric layers discussed above, the reflection and transmission phase shifts at

the interface between the highly absorbing film and air are not limited to 0 or π. These
nontrivial interface phase shifts allow the total phase accumulation at the boundary and

within the absorbing dielectric film to reach approximately 0 (modulo 2π) for certain
films with thicknesses far below λ/4n.

Fabry-Perot-type interference is found in structures comprising a dielectric layer

sandwiched between two metal reflectors (Type II, Fig. 2B), which have been investi-

gated for decades for color filtering [75,92]. Recently, Yang et al. reported an asymmetric

Fabry-Perot interference structure comprising a thin layer of nickel film and a thick alu-

minum film, separated by a lossless SiO2 dielectric layer (Type II, left) and demonstrated

the feasibility of using such structures for high-resolution color printing (Type II, right)

[75]. They showed that full color printing with high brightness, saturation, and resolution

(>50,000dpi) could be achieved using Fabry-Perot-type elements as the pigments. The

replacement of the lossless dielectric spacing layer with ultrathin amorphous silicon (a-Si)

in a similar asymmetric Fabry-Perot interference structure enabled the printing of 2D

colored images with wide gamut, angle insensitivity, high resolution (up to

150,000dpi), and enlarged viewing angle [92].

It has been recently reported that optical interference can also occur at microscale

concave interfaces with adjacent volumes of high- and low-refractive-index media

(Type III, Fig. 2B). As demonstrated by Goodling et al., incident light traveling along

different trajectories and undergoing multiple total internal reflections at these concave

interfaces allows the total phase accumulated along each trajectory to realize constructive

interference (Type III, left top) [86]. The intensity of the total internal reflections from

the concave interfaces (I) as a function of wavelength of all incident light paths for fixed

angles of light incidence (θin) and observation (θout) can be given by the following

equation:

I ¼
X

m,all possilbe paths
Am αmð Þ

� �
rm αm,

n1

n2

� �h im
exp

2πin1
λ0

lm αmð Þ
� �����

����
2

(3)

where the index of summation m represents the number of reflections that occur for each

trajectory,Am is an amplitude factor, αm ¼ π
2
� π�θin + θ0ut

2m
is the local angle of incidence, rm

is the complex Fresnel reflection coefficient, n1 and n2 are the refractive indices of the

medium above and below the interface, respectively, λ0 is the wavelength of light in

air, and lm¼2mRcos(αm) is the physical path length of each trajectory (R: the optical

interface’s radius of curvature). This was the first report to unveil the mechanism behind
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the optical phenomenon that light was only observed near the solid–liquid contact line

and this effect is dependent on sessile-droplet diameter and contact angle. Typical exam-

ples of concave structures include multiphase droplets, 3D patterned polymer surfaces,

and solid microparticles. By taking advantage of this unique optical phenomenon, col-

orful images with defined patterns (e.g., a patterned shape of an elephant) composed of

concave structures have been produced (Type III, right top). Following the work of

Goodling et al., Fan et al. fabricated an array of concave structures by the transfer of a

partially embedded polymeric microsphere monolayer onto the sticky surface of a trans-

parent tape and demonstrated the potential application of such structures for smart traffic

safety and advertisement displays at night [30].

Among the existing interference systems, the most widely studied is photonic crystals

that comprise self-assembled microspheres (Type IV, Fig. 2B). The structural colors of

such photonic crystals are attributed to interference and reflection, which can be

described by the Bragg-Snell law [26]. As discussed earlier, this law can be approximately

expressed as Eq. (1). Based on this equation, the parameters that affect the optical prop-

erties of photonic crystals are schematically summarized in the first panel of Type IV.

They are lattice constant, effective refractive index, crystal structure, incidence/viewing

angle (or titling angle of photonic crystals when the direction of incident light is fixed),

the degree of order and defects in photonic structures. The lattice constant is the param-

eter that has been the most intensively employed to control the color of the photonic

crystals. This parameter can be tailored through mechanical deformation, swelling and

deswelling, heat-induced polymer volume or phase transition, and charge-induced

expansion and contraction. Since colloidally stable inks of microspheres can be easily pre-

pared using appropriate solvents as dispersing media, inkjet printing has been widely

adopted for the fabrication of 2D and 3D photonic crystal-based anti-counterfeiting

labels [21,36,37,87,93,94]. For example, Keller et al. fabricated stable inks for inkjet

printing of short-range ordered 2D photonic crystals with controllable layer numbers

on various substrates (e.g., Si wafer, glass slide, and glossy photo paper) without any sur-

face treatment [87]. The printed opal holography on a silicon wafer showsmultiple bright

colors with a wide angle dependence in daylight (Type IV, column 2) [87].With the help

of infiltration, full-spectrum noniridescent structural color patterns can be rapidly printed

on liquid-permeable substrates on a large scale [27,95]. It has been reported by Nam et al.

that when the thickness of well-ordered 2D photonic crystal patterns is controlled down

to a single layer, the resulting anti-counterfeiting labels can achieve covert-overt trans-

formation by simply changing the background and/or illumination intensities [36]. Kim

et al. developed a magnetically tunable and lithographically fixable material called

“M-ink” and used this material to create high-resolution patterns with brilliant colors

through amaskless lithographic technique (Type IV, column 3) [25]. The degree of order

in “M-ink” and consequently its colors can be reversibly controlled with an external

magnetic field. Photochemical fixing of the magnetically tunable “M-ink” in a
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photocurable resin was employed to generate multicolored patterns. Such a robust and

scalable structural color printing technique together with low-cost “M-ink” material

offers a great opportunity to manufacture colorful security labels for general consumer

goods. In addition, defects can be easily created in photonic crystals by doping and used

to tune their optical properties. Zhang et al. reported brilliant noniridescent structural

colors with enhanced brightness by doping amorphous photonic structures with gra-

phene nanosheets containing a fraction of graphene quantum dots (GQDs) [88]. The

doped amorphous photonic structures showed vivid structural colors with high color

contrast and saturation but low dependence to viewing angle (Type IV in Fig. 2B,

the upper part of column 4). It is believed that the uniform light absorption ability of

grapheme nanosheets in the whole visible spectrum and the remarkable excitation tun-

able emission of GQDs are responsible for the high color saturation and brightness.When

further filling the voids of these photonic structures with a humidity-sensitive hydrogel,

their colors can be dynamically tuned by changing the humidity surrounding the

photonic structures (Type IV, the bottom part of column 4), which allows for the devel-

opment of dynamic anti-counterfeiting labels. The dynamic color change originates from

the variation of the lattice constant due to the swelling and deswelling effect.

The structures of photonic crystals such as the symmetry and the shapes of the build-

ing blocks also have a dramatic effect on their optical properties, as they can cause aniso-

tropic lattice constants. Except for colloidal self-assembly approaches, top-down

techniques, for example holographic lithography, standing-wave lithography, and

two-photon polymerization lithography, enable the fabrication of 3D photonic crystals

with controllable lattice that shows a continuous hue [22,97]. Ito et al. reported the pro-

duction of brilliant structural colors by creating periodic microfibrillation in glassy poly-

mer films through standing-wave lithography (Fig. 3A) [96]. As shown in the top panel of

Fig. 3A, a standing-wave pattern can be formed in a photosensitive polymer film when

the reflected wave from the resist–substrate interface interferes with the incident wave.

This causes the selective crosslinking of the photoresist in alternating layers in the film,

leading to the generation of residual stresses across the non-crosslinked layers of the pho-

toresist. Upon a weak solvent exposure, periodic microfibril layers with random porous

features can be formed, which is triggered by the stress applied to the non-crosslinked

layers. Combined with conventional photolithography, various colorful patterns can

be produced (Fig. 3A, bottom). Direct laser writing by multiphoton polymerization

of a photoresist has been developed for the rapid, cheap, and flexible fabrication of pho-

tonic structures with lattice constants in the micrometer scale and thereby the optical

response in the infrared spectral region [97]. Liu et al. developed an annealing strategy

to shrink the photonic crystals fabricated by the direct laser writing technique to reduce

the lattice constant (Fig. 3B) [23].Woodpile photonic crystals with lattice constants in the

range of 305–672nm have been realized. The resulting structures show optical responses

in visible spectral region originating from Bragg diffraction. Any 3D microscopic models

with woodpile structures of desired colors can be generated (e.g., the Eiffel Tower shown
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in Fig. 3B). It should be noted that both standing-wave lithography and heating-assisted

two-photon polymerization lithography could induce nonuniform anisotropic lattice

constants within the produced photonic crystals and cause local deviation of colors,

which could be potentially used in unclonable anti-counterfeiting.

4.1.2 Luminescent anti-counterfeiting labels
Lanthanide-doped nanoparticles are known for their multidimensional emission proper-

ties, including emitting color, ratio-metric intensities from multiple emission bands, and

luminescent lifetimes, originating from the lanthanide ions. Such ions possess a wealth of

Fig. 3 Structural colors from 3D photonic crystals. (A) Periodic microfibrillation in glassy polymer films
fabricated through standing-wave lithography [96], Copyright 2019, Springer Nature and (B) lattice
constant shrinkable woodpile photonic crystals fabricated by direct laser writing technique [23],
Copyright 2019, Springer Nature.
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electronic transitions within their 4f electron shells, showing characteristic “ladder-like”

multiple excited states (Fig. 4A, top left). One of the merits of lanthanide-doped upcon-

version nanoparticles for anti-counterfeiting applications is that their optical responses are

tunable by ion doping. As illustrated in Fig. 4A, the doped ions can be categorized into

sensitizer and activator, which facilitate light absorption and emission, respectively. The

absorption of the sensitizer mainly determines the excitation wavelength of lanthanide-

doped nanoparticles. The most commonly used sensitizers are lanthanide ions having

strong absorption in the near infrared (NIR) region such as Yb3+ and Nd3+. NIR lasers

with wavelengths of 808 and 980nm are typical excitation sources for downconversion

(converting a high-energy photon to two lower-energy photons) [104] and upconver-

sion (the opposite process of downconversion) [105,106] to occur. Other sensitizers like

Eu3+ and Ce3+ can efficiently absorb ultraviolet (UV) light, allowing for downshifting

(converting a high-energy photon to a lower-energy one) [104,106]. In addition, some

lanthanide-doped nanoparticles are also scintillating materials that can convert X-ray to

visible light [107].

Lanthanide-doped nanocrystals have been widely studied in X-ray luminescence

[108]. For example, Ou et al. fabricated lanthanide-doped NaLuF4 nanoparticles with

ultralong-lived X-ray luminescence (lifetime up to 30days) [98], which can be poten-

tially applied in the anti-counterfeiting field (Fig. 4A, right). Moreover, the phenom-

ena of downshifting and upconversion have been used as dual optical responses that

are excited under different conditions to increase the anti-counterfeiting levels [105].

Recently, Liu et al. demonstrated the simultaneous downshifting/upconversion from

lanthanide-doped core/shell fluoride nanoparticles for multimode anti-counterfeiting

[109]. They chose LiLuF4/LiYF4 core/shell nanoparticles as a host material and doped

two types of lanthanide-ion pairs in the shell. The first type of doping ion pairs are

Eu3+/Ce3+ and Tb3+/Ce3+ that enable downshifting fluorescence, and the second

type of doping ion pairs are Er3+/Yb3+, Ho3+/Yb3+, and Tm3+/Yb3+ that allow

for upconversion fluorescence. It should be noted that the lanthanide-ion pairs for

upconversion nanoparticles generally act as sensitizing and emitting centers that

absorb the energy of NIR photons to emit light in the visible ranges. The resulting

materials can change color from green to yellow to orange to red or from violet to

white to green when varying the excitation sources and their intensities. In other

work by Xie et al., novel lanthanide-doped core–shell nanoparticles with dual

downshifting and upconversion luminescence were designed and fabricated. The

nanoparticles were used as environmentally, friendly luminescent inks to produce

dual-mode emission patterns on papers by printing [100]. As shown in Fig. 4A,

the printed picture of a temple shows different multicolored patterns under the exci-

tation of a 980-nm laser and 254nm UV light. Full-color features can also be achieved

from multi-shell upconversion nanoparticles under excitation of two-pulsed lasers

with different wavelengths [106].
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Fig. 4 Luminescent encryption using (A) lanthanide-doped nanoparticles [9,98–100], Copyright 2019,
Wiley-VCH, Copyright 2021, Springer Nature, Copyright 2013, Springer Nature, Copyright 2019, The
Royal Society of Chemistry and (B) carbon dots for anti-counterfeiting applications [101–103],
Copyright 2017, the Authors. Published by American Association for the Advancement of Science
(AAAS), Copyright 2016, Wiley-VCH, Copyright 2018, Wiley-VCH.
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It has been reported that the emission colors of lanthanide-doped upconversion nano-

particles can bemodulated by temperature [110]. Heat-induced luminescence quenching

is a well-known phenomenon due to the non-radiative combination of photoexcited

carriers. As expected, such thermal quenching behavior has been commonly observed

in NaYF4: Yb3+, Er3+ upconversion nanoparticles [111]. Recently, an anomalous

heat-induced luminescence enhancement (also called inverse thermal quenching effect)

was reported by the group of Shao for NaYF4: Yb
3+, Er3+ upconversion nanoparticles

smaller than 30nm [50]. Since then, several kinds of small-sized upconversion nanopar-

ticles with a thermal luminescence enhancement effect have been reported [40,50]. Inter-

estingly, this abnormal thermo-enhanced luminescence becomes more significant as the

size of the nanoparticles decreases [40] and can be further magnified by low-valence ion

doping [112,113]. A similar phenomenonwas also found inNa3ZrF7: Yb
3+, Er3+/Ho3+/

Tm3+ upconversion nanoparticles [114]. Several mechanisms have been proposed to

explain the inverse thermal quenching effect: (1) phonon-promoted energy transfer from

Yb3+ sensitizers to activating ions [115]; (2) the removal of luminescent quencher—

water molecules physically adsorbed onto Yb3+ on the nanoparticle surface—at an ele-

vated temperature [116]; and (3) defect-assisted electron capture from the excited states of

Yb3+ sensitizers and then the release of the trapped electrons to the adjacent excited states

of activators gradually with a rise in temperature [78]. By taking advantage of this inverse

thermal quenching effect, anti-counterfeiting labels that can recover hidden luminescent

information [99] or dynamically switch between two luminescent colors [117] through

modulation of temperatures have been developed.

Apart from emission colors, the luminescent lifetime of upconversion nanoparticles

can also be finely tuned by lanthanide-ion doping [99], whichmakes it possible to encrypt

optical information on time scale. Lu et al. reported the tuning of the luminescent life-

times of upconversion nanoparticles from a few microseconds to several hundreds of

microseconds by controlling the concentration of activator ions and demonstrated life-

time multiplexing using the upconversion nanoparticles as information carriers (Fig. 4A,

bottom left) [99]. It is well known that the luminescence of upconversion nanoparticles

relies on energy transfer from the sensitizer to the emitter ions. Manipulating the

sensitizer-emitter distances allows control over their luminescent lifetime. As

proof-of-concept, three layers of patterns made of upconversion nanoparticles with dif-

ferent luminescent lifetimes have been produced. The hidden information in the covert

patterns was unlocked bymonitoring the lifetime values from each pixel of each layer. To

increase coding capacity, it is straightforward to combine emission colors and lumines-

cent lifetimes for optical encryption from a single type of upconversion nanoparticles

[116]. This was achieved by the design of core/multi-shell upconversion nanoparticles

with controllable energy relay paths [106]. For example, Liu et al. synthesized hexagonal

NaGdF4:Mn@NaYF4:Yb/Tm-NaYF4 core@shell–shell nanoparticles that can be

excited under both 808 and 980nm irradiation [112]. It was believed that such a design
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could effectively separate Yb3+ and Mn2+ ions, thus preventing the back-energy transfer

fromMn2+ to Yb3+. This is of importance to realize a long-livedMn2+ luminescence and

short-lived lanthanide upconversion emission in the same particles.

Quantum dots (QDs) are extremely small semiconductor nanoparticles that can emit

light of specific wavelength with high quantum yield. Widely studied QDs include toxic

II–VI and perovskite QDs, and environmentally, friendly carbon dots. The former is a

good ink material for the fabrication of microscopic security labels [18], but not macro-

scopic ones due to their high toxicity. In this section, we will highlight the key optical

characteristics, such as downshifting, upconversion, and phosphorescence, of carbon dots

toward their anti-counterfeiting applications [53]. Low toxicity and biocompatible car-

bon dots with different emission colors have been synthesized and used as inks for lumi-

nescent pattern generation [53,118,119]. Lou et al. reported that the aggregation of

carbon dots within predefined patterns caused luminescence quenching [49]. Upon

exposure to water, the luminescence recovered due to the redispersion of the carbon dots

in the fiber network of the paper. The afterglow phenomenon of carbon dots including

TADF and phosphorescence has also been observed when they are embedded in nano-

confined spaces of zeolitic crystalline matrices (Fig. 4B, left). As reported by Liu et al., the

carbon dots@zeolite composites showed a high quantum yield of �52% and a long

lifetime of 350ms [101]. The authors demonstrated fluorescence and afterglow dual-

responsive security labels using these carbon dots@zeolite composites as information car-

riers. By simply replacing zeolite with boric acid [120] or silica [121], ultralong lifetime

and efficient room temperature phosphorescent carbon dots have been achieved. The

group of Lin reported that N-doped and N, P-codoped carbon dots themselves showed

strong and long lifetime phosphorescence in an ambient environment [122]. Lumines-

cent inks composed of these carbon dots and polyvinyl alcohol (PVA) have been prepared

for the printing of optical patterns (Fig. 4B, middle and right) [102]. Fluorescence,

upconversion, and phosphorescence triple-mode security labels have been realized for

N-doped carbon dots embedded in PVA [102]. Phosphorescence is very sensitive to oxy-

gen and moisture, and the exposure of phosphorescent materials to highly humid envi-

ronments can cause phosphorescence quenching. By simply drying the security patterns

by heating, however, the phosphorescence was easily recovered (Fig. 4B, right), which

allows for dynamic anti-counterfeiting [103].

4.1.3 Plasmonic anti-counterfeiting labels
Metallic nanostructures, including colloidal and lithographically defined nanoparticles,

support localized surface plasmon resonances, which give rise to color. The colors are

largely determined by the structures of the metal nanoparticles, such as the size, morphol-

ogy, interparticle separation, and assembly configuration [56]. The use of metal nanos-

tructures to generate plasmonic colors has a long history. In ancient Rome, gold

nanoparticles were used to stain glass for aesthetic purposes. A famous example of the

377Nanomaterials and artificial intelligence in anti-counterfeiting



aesthetic use of gold nanoparticles is the beautiful Lycurgus Cup that appears green in

reflected light and red in transmitted light. There is a growing interest in plasmonics

for color-based applications driven by their advantages over conventional pigments,

which include rich everlasting colors without photobleaching, with high contrast and

spatial resolution [73,123–126].
Gold nanorods are particularly interesting for color-based applications as their optical

properties are highly sensitive to their aspect ratio, allowing their plasmon absorption

peak to be tuned throughout the entire visible spectrum [19,42]. Advances in nanofab-

rication techniques allow the precise control over nanorod assembly onto nanopatterned

substrates [127]. For example, Kuemin et al. demonstrated the successful self-assembly of

gold nanorods into the recessed regions of a patterned substrate in an oriented fashion

through capillary assembly (Fig. 5A) [127]. As shown in Fig. 5A, as the three-phase con-

tact line moves over the surface of a patterned substrate with recessed features, gold

nanorods are deposited in the desired regions, while the excess nanorods are dragged back

to the colloidal solution by the interfacial capillary forces. The recessed holes within any

lithographically defined 2D patterns (e.g., WALK Ampelmann) acted as trapping sites for

aligned assembly of the nanorods on the single-particle level. Each pixel was composed of

a single nanorod that changes color from green to red when rotating the polarizer by

90 degree. Thai et al. extended this strategy to fabricate vertically aligned gold nanorod

arrays on patterned substrates [129]. These standing gold nanorod arrays offer large SERS

enhancement and can be potentially used for SERS-based anti-counterfeiting

applications.

It is well known that gold nanorods can transform into spherical nanoparticles upon

photothermal treatment and display completely different plasmon absorption profiles.

Based on this phenomenon, Zijlstra et al. developed a new technique integrating of

wavelength, polarization, and spatial dimension to produce multiplexed images [130],

which can be readily used in optical patterning, encryption, and anti-counterfeiting.

The encoded information density can easily go beyond 1012 bits per cm3 (1T bit

cm�3), ensuring high security level for anti-counterfeiting applications. In contrast to

periodic plasmonic nanoparticle arrays shown in Fig. 5A, disordered systems have also

shown color tunability. For example,Mao et al. recently demonstrated the tunable reflec-

tion colors of disordered plasmonic nanoparticles by controlling the coupling to an exter-

nal cavity [131]. The cavity was created by sequential deposition of a silver film, LiF

spacer, and disordered silver nanoclusters on a solid substrate. By tuning the thickness

of the cavity between the silver mirror and the layer of disordered silver nanoclusters,

the system exhibiting broadband adsorption underwent a phase transition to one with

finite reflection bands. These plasmonic color patterns could serve as security labels

due to their unique far-field optical appearance.

Top-down lithographic methods are able to produce periodic plasmonic nanostruc-

tures that can generate colors in high resolution for color-based devices in combination
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with thin-film deposition techniques [73,76,132]. The plasmonic colors generated

through lithographic methods overcome the limitations of conventional color printing

such as insufficient resolution and the fading of dye pigments and lack of multicolor in

self-assembled nanoparticles. Aluminum nanorods with tunable dimensions and separa-

tion have been lithographically patterned to form periodic arrays on a flat substrate [133].

The color of the nanorod arrays is determined by their length, aspect ratio, and

Fig. 5 Examples of static plasmonic colors, fluorescence image, and Raman mapping from metal
nanostructures. (A) Oriented gold nanorod arrays fabricated by template-assisted capillary self-
assembly [127], Copyright 2012, Wiley-VCH, (B) gold\silver nanodisc arrays with controlled diameter
and interparticle distance fabricated by electron-beam lithography technique [128], Copyright
2012, Springer Nature, and (C) dye-embedded silver@silica core–shell spherical nanoparticle arrays
fabricated by shadow-mask-lithography-assisted self-assembly (left) [12] Copyright, 2016, Wiley-
VCH, and silver nanowire patterns with sandwich structures fabricated by direct laser writing
technique (right) [124], Copyright 2015, The Royal Society of Chemistry.
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interparticle distance. Both the longitudinal plasmon resonance and far-field diffractive

coupling are responsible for the vivid colors. When the nanorod arrays were placed

on an elastic substrate, the interparticle spacing can be tuned by stretching the substrate

in different directions [134]. Consequently, the scattering color can be modified to blue

or red from the initial color of the at-rest structure. Well-ordered arrays of other metal

nanostructures (e.g., metal nanodisks [69], nanoholes [135,136], anisotropic cross-shaped

antenna [137], and nanoaperture structures [136]) have also been lithographically fabri-

cated. The scattering strength of the nanoantenna resonators can be enhanced by hybrid-

ization with a thin metal film (also called metal back reflector). For example, Kumar et al.

demonstrated printing color at the optical diffraction limit using hybridized nanodisk

arrays (i.e., nanodisk array sitting above a metal back reflector separated by a spacer)

as color pixels (Fig. 5B) [128]. Since the color of the hybridized nanodisks is sensitive

to their dimensions, the full palette of colors can be achieved by tuning the parameters

of the nanodisks, such as their diameter and interparticle spacing. This allows for the gen-

eration of bright-field color prints with resolutions up to �100,000dpi. The color print

can be used as anti-counterfeiting marks as it carries a large amount of optical information

that is difficult to duplicate.

The interaction between light and metal nanostructures not only gives rise to color

but also generates a strong near field in close vicinity to the metal surface. Integration of

plasmonic nanostructures with both fluorescence and Raman-active molecules enables

the system to simultaneously show far-field scattering, fluorescence, and Raman triple

optical signals, as illustrated in the left panel of Fig. 5C. The fluorescence and Raman

signals are particularly strong when the molecules are located in the small gaps (i.e.,

hot spots) of two adjacent nanoparticles [12]. The multiple optical signals of the emitter

coupled plasmonic nanostructures can be assigned as spectral codes for anti-

counterfeiting applications. We have developed a multiplexed security label that carries

triple graphical and spectral information in the same device [12]. SERS encryption alone

has also been widely studied for anti-counterfeiting applications [68,124,138]. A notable

example is the SERS-based nanodisk codes reported by Qin et al., which are composed

of a graphic Raman “barcode” and a spectral Raman fingerprint [69]. The encoding ele-

ments aremade of dispersible arrays of gold nanodisks that are prepared by on-wire lithog-

raphy. Raman-active chromophores—methylene blue and para-mercaptoaniline—are

loaded in the small nanogaps of two neighboring gold nanodisks. Other metal nanostruc-

tures such as silver nanowires, sandwich structured nanowires, and plasmene nanosheets

(2D plasmonic nanomaterials) have been developed as plasmonic nanoantenna for SERS-

based anti-counterfeiting applications [68].

The realization of dynamic color generation is of importance for high security level

anti-counterfeiting. So far, several concepts for the generation of dynamic plasmonic

colors have been proposed that involve the reversible modification of the size and inter-

particle distance of metal nanoparticles, dielectric property of surrounding medium, and
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the phase of the materials [29]. The most straightforward method for reversible control of

the size of metal nanoparticles is electrochemical deposition, which allows a precise and

controlled growth of nanometer-thick layers of metals on predefined metal islands

[65,141]. Wang et al. applied the electrochemical deposition technique to generate

highly ordered plasmonic nanodomes in real time that permit dynamic color modulation

(Fig. 6A) [82]. The authors used an anodized aluminum oxide template on 50-nm-thick

SiO2-coated conductive ITO substrate as an etching mask to produce a SiO2 nanohole

array and then deposited a thin layer of gold into the nanoholes, to form an array of gold

nanodomes. Subsequently, a silver shell with controllable thickness was electrochemi-

cally deposited onto the nanodomes from a silver-ion containing electrolyte and then

dissolved as demanded. The color of the electrode is determined by the thickness of silver

shell and can be reversibly switched from blue to red. A mechanical chameleon was used

as a model to demonstrate the dynamic color change based on the well-ordered gold/

silver nanodome arrays (Fig. 6A, right).

An alternative way to generate dynamic plasmonic colors is the reversible tuning of

the interparticle distance of metal nanoparticle assemblies [131], which can be achieved

by altering the electrostatic interaction between the adjacent nanoparticles or the length

of thermoresponsive surface ligands. For example, Liu et al. reported a hydrolysis-

induced electrostatic strategy to dynamically control the spacing between strongly

coupled nanoparticles within a silver nanoparticle film and therefore the plasmonic colors

(Fig. 6B) [139]. The metal nanoparticle film was fabricated by positioning poly(acrylic

acid) (PAA)-coated silver nanoparticles on top of a layer of sodium borate (Na2B4O7)

residing on a glass substrate. Upon exposure to moisture, the sodium borate hydrolyzed

into H3BO3. The released OH� ions deprotonated the carboxyl groups on the capping

agent (i.e., PAA), increasing the electrostatic repulsion between the silver nanoparticles

in the film owing to the increase of the surface charges. Consequently, the nanoparticles

were pushed away from each other and their coupling strength weakened. This led to the

gradual change of the extinction peak of the silver nanoparticle film from 526nm (pink)

to 423nm (yellow) in 220ms. Even a small change in distance resulted in large blue shifts

in the order of 100nm. This process is highly reversible, and the initial state could be

returned in 640ms, with outstanding repeatability in color switching over 1000cycles.

This hydrolysis-induced electrostatic strategy for dynamic color control is attractive

for anti-counterfeiting applications, owing to its sustained reversibility, ease of scalable

fabrication, and fast switching times.

A reversible change of refractive index of the medium surrounding nanostructured

metal surfaces is another important strategy to dynamically generate plasmonic colors.

Liquid crystal (LC) is a functional optical material that allows electrical switching of

its orientation and anisotropic refractive index. Based on this phenomenon, Franklin

et al. developed a LC-plasmonic coupled system by integrating the LCs with arrays of

shallow aluminum nanowells (Fig. 6C) [125]. The nanowells were imprinted on a
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Fig. 6 Examples of dynamic plasmonic colors originated from the reversible modification of (A) the
size [82], Copyright 2016, American Chemical Society, (B) interparticle distance of metal
nanoparticles [139], Copyright 2019, Wiley-VCH, (C) dielectric property of surrounding medium
[125], Copyright 2015, Springer Nature, and (D) the phase of the materials [140], Copyright 2021,
Elsevier.
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polymer and covered with a smooth layer of aluminum and used as the bottom electrode.

An indium tin oxide (ITO)-coated glass substrate was used as the counter electrode.

A high birefringence (Hi-Bi) LCwas filled in the cell in direct contact with the aluminum

surface. When an external voltage was applied, the LC molecules began to vertically

rotate from their initial state, until they all aligned along the electrical field between

the two electrodes. After the removal of the voltage, the LC molecules returned to their

original state. The potential-driven reorientation of LCs changed the surrounding refrac-

tive index. The surface plasmon resonance frequency is highly sensitive to this parameter,

resulting in a change in the observed color. Based on this mechanism, the authors fab-

ricated a plasmonic color micro-image of the Afghan girl (Fig. 6C, right), which could be

electrically modulated [125]. The group took this approach a step further to produce sin-

gle plasmonic pixels for full RGB color generation by exploiting the polarization rotation

of LC in addition to the anisotropic refractive index [76]. By combining these two effects,

the reflective color of a single plasmonic pixel was dynamically tuned over the full visible

spectral range as a function of the external voltage applied.

According to the Drude–Lorentz free electron model, a metal is considered a plasma

consisting of positive ions fixed at the crystal lattice and free electrons with equal number

of opposite charges. Under light radiation, the free electrons within the metal coherently

oscillate at a frequency ofωp relative to the lattice of positive ions. For bulk metals,ωp can

be expressed as the following equation:

ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � e2
ε0 � me

r
(4)

where N is the density of free electrons, ε0 is the dielectric constant of a vacuum, e is the

charge of an electron, and me is the effective mass of an electron. For a spherical metal

nanoparticle, the theoretical frequency of its localized surface plasmon can be approxi-

mated to ωp/(1+2εm)
1/2 (note that εm is the dielectric constant of the surrounding

medium). In other words, the electron density N of a metal nanoparticle determines

its plasma frequency ωp and thus the plasmonic resonance frequency of the metal nano-

structure. Reversible phase change materials are substances that can undergo phase tran-

sition from one type of material to another under external stimuli, (e.g., light, heat,

magnetic field, and so on). These materials may offer an opportunity to dynamically

adjust the electron density N. Recently, we reported a highly crystalline carbon nitride

that can undergo phase change from semiconductor to metalloid upon UV irradiation in

an inert environment (Fig. 6D) [140]. When it was wrapped by cellulose nanofibers, the

material changed color from yellow to blue upon UV illumination and reversibly

switched back to its original color upon exposure to heat or moisture. The color change

was ascribed to hot electron-induced surface plasmon resonance, and the hot electrons

were found to exist for 5days after the removal of the UV source. The photochromic
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paper was applied to color displays and dynamic security labels. Compared with electrical

modulation, optical modulation is a simpler way to encrypt optical information and is

compatible with the existing optical anti-counterfeiting techniques. Other phase transi-

tion materials, like magnesium hydride, have also been explored for dynamic plasmonic

color generation [32]. Upon hydrogenation and dehydrogenation, magnesium nanos-

tructures alter their crystallographic and electronic structure, resulting in significant

changes in optical properties along with the metal to insulator transition.

4.2 Physical unclonable function (PUF)-based optical anti-counterfeiting
labels
All the security labels discussed above that use the “collective behavior” of optical nano-

materials for information encryption represent the traditional approach to

anti-counterfeiting. The graphical patterns of these traditional security labels can be

authenticated either on visual inspection or using optical microscopes. The anti-

counterfeiting level of these security labels is determined by the complexity of the ink

formulation, the limited access to the chemical components used in the ink, and/or lack

of access to expensive lithographic fabrication techniques. Although the traditional secu-

rity labels pose technical barriers for counterfeiting, they can still be duplicated due to

their predicable and deterministic decoding mechanisms. The PUF-based encryption

strategy is an ideal solution to the drawback of clonability of the traditional security labels.

Chaos, especially the disorder or randomness of a system, is a common phenomenon

in nature. For instance, no two identical natural objects or creatures can be found. Taking

advantage of the disorder or randomness of a system as a PUF for information encryption

enables the creation of unique and unclonable security labels. This concept was pio-

neered in 2002 by Pappu et al., who used a laser beam to scan polymer block containing

disordered glass spheres to generate randomly fluctuated scattering signals [17]. The col-

lection of the scattered light with a charge-coupled device (CCD) camera produced a

speckle pattern, which was then transformed to 1D or 2D PUF keys. Any rough surface

(e.g., the surface of a plastic card or a piece of paper) can also produce a speckle pattern

[13,142]. The security of this technique ultimately relied on the unlimited distribution

possibility of the scatterers in the medium or on the surface and the difficulty of recreating

their microstructure down to atomic length scales. Since the first report on PUF

encryption, the field has received much interest, devoted to the development of random

structures with specific optical responses [17]. All the optical responses (i.e., scattering/

reflection, luminescence, and SERS) that are used in the conventional anti-

counterfeiting labels have been exploited for PUF-based encryption and anti-

counterfeiting [13,18,140,143].

Artificial fingerprints made by polymer wrinkle films are also a random scattering

structure and have been widely investigated for PUF-based anti-counterfeiting
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[144,145,147,148]. In 2015, Bae et al. reported artificial fingerprints made by polymeric

particles with stochastically generated silica film wrinkles (Fig. 7A, left) [145]. The wrin-

kle surface can sufficiently scatter light and be read by an objective equipped smartphone

(also called a smartphone microscope). Embedding luminescent materials in the wrinkles

makes them detectable with fluorescence microscopes. Similar to human fingerprints, the

Fig. 7 Typical disordered physical features of PUF-based security labels. (A) Artificial fingerprints
[144,145], Copyright 2018, Science, Copyright 2015, Wiley-VCH, (B) self-assembled stochastic
particle arrays [7,12,13,146], Copyright 2016, Wiley-VCH, Copyright 2020, The Royal Society of
Chemistry, Copyright 2018, AAAS, Copyright 2020, Springer Nature, (C) inkjet-printed random QD
patterns [18], Copyright 2019, Springer Nature, and (D) optical interference films [143], Copyright
2019, The Royal Society of Chemistry.
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artificial fingerprints are composed of random patterns of ridges and valleys (Fig. 7A, left),

which ensure their unclonability. Their uniqueness is determined by the local ridge char-

acteristics (i.e., the ridge ending and the ridge bifurcation, called minutiae points) and

their relationships. By controlling the composition of polymer film, dynamic wrinkle

patterns can be achieved. For instance, the group of Jiang reported NIR-light-responsive

dynamic wrinkles based on a bilayer system that used functional polymers as the top stiff

layers and carbon nanotube (CNT)/poly(dimethylsiloxane) (PDMS) elastomer as the

bottom supporting substrate (Fig. 7A, right) [144]. UponNIR light irradiation, the wrin-

kle surface was flattened by the thermal expansion of the elastic CNT-PDMS substrate,

caused by the conversion of photons to thermal energy. Once the NIR light was turned

off, the surface switched back to its wrinkle state. The group also showed that, with a

copolymer containing pyridine (P4VP-nBA-S) and hydroxyl distyrylpyridine

(DSP-OH) as the skin layer, the wrinkle surface became smooth under irradiation with

visible light (450nm) or acid treatment [148]. The dynamic regulation of the wrinkle can

be used as an additional control to increase the level of security.

Another widely studied physical function is self-assembled stochastic nanoparticle

arrays [15,20,146,149,150]. Plasmonic nanoparticles have shown an extraordinary capa-

bility to manipulate light by scattering it out to the far field [12,15]. This remarkable char-

acteristic makes it possible to image a single nanoparticle with an optical microscope.

Single-nanoparticle imaging by a dark-field microscope has been intensively used for

their optical characterization in order to correlate their spectra with their size and shape

[15,149,151]. The excitation of surface plasmons results in a strong near-field intensity in

the close vicinity of a metal surface that is orders of magnitude higher than that of the

incident field [13,152]. This enables the amplification of fluorescence and Raman signals

emitted by a surface-confined probemolecule [12,152,153]. Taking advantage of the rich

optical properties of plasmonic nanoparticles, we used fluorescein-doped silver-silica

core–shell nanoparticles as information carriers to generate multiplex security labels

[12]. The coding information can be read not only as color images by dark-field and fluo-

rescence microscopes but also as a spectral fingerprint by a Raman spectrometer, thus

increasing their security level.When the particle density within the security labels reaches

single-particle level, they show a random pattern consisting of discrete nanoparticles (Fig.

7B, column 1). This feature of randomness nondeterministically encodes graphical infor-

mation in the nanoparticle patterns, guaranteeing intrinsically unreplicable code outputs.

We further extended this concept to a plasmonic nanopaper system, in which plasmonic

silver nanocubes were embedded in cellulose nanofibers [13]. The nanopaper was

encoded with SERS and fluorescence signals by immobilization of a benzenethiol

Raman reporter onto the silver nanocubes and printing fluorescein molecules on the

plasmonic nanopaper. The random location of silver nanocubes resulted in the random

distribution of Raman intensity across the whole nanopaper. The obtained security label

carried multiplexed optical signals including surface plasmon resonance, fluorescence,
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and SERS. The localized surface plasmon resonance and fluorescence information is used

as the first layer of security and can be easily verified by the naked eyes, while the SERS

mapping with randomRaman intensity distribution is used as the second layer of security

and can be readily read out by Ramanmicroscopy. Surface plasmon resonance and SERS

have also been exploited as sole encoding signals for PUF-based security labels [13].

Luminescent particles are also considered as a promising information carrier for PUF

encryption [154]. Carro-Temboury et al. demonstrated the use of lanthanide-doped zeo-

lites in polymer films as taggants and developed multicolor fluorescent PUF encryption

systems (Fig. 7B, column 3) [146]. The zeolites doped with three different lanthanide

(III) ions emitted primary RGB colors by selective excitation of the individual zeolites,

producing the three raw fluorescence images. The images were then digitized into three

binary images. By merging the digitized images with 60�60 pixels through an RGB+K

or RGB-CMYK approach, a final multi-response digital key with a maximal encoding

capacity of 43600 or 73600 was generated. The authors demonstrated that the encoding

capacity is dramatically enhanced using the multicolor taggants for PUF encryption

and the high-encoding capacity enables unbreakable encryption. The fluorescence mate-

rials can be easily extended from inorganic materials to biomaterials. For example, Leem

et al. reported protein-based edible PUFs using silk protein (i.e., fibroin) and fluorescent

proteins as bio-taggants (Fig. 7B, column 4) [7]. Such edible PUFs shared the same

encoding and decoding mechanism as the inorganic ones reported by Carro-Temboury

and co-workers. The edible cryptographic primitives have great potential in pharmaceu-

tical anti-counterfeiting.

Other physical functions including inkjet-printed random QD patterns and optical

interference films have also been developed [18,143]. Recently, we reported inkjet print-

ing of PUF-based luminescent QD security labels made of physically unclonable flower-

like dot patterns using II–VI semiconductor core–shell QDs as information carriers (Fig.

7C) [18]. The surface modification of the print substrates with randomly distributed

poly(methyl methacrylate) (PMMA) nanoparticles is the key step for the successful inkjet

printing of the flower-like dot patterns. The PMMA nanoparticles served as stochastic

pinning points for the QDs to dwell during the solvent evaporation of the ink droplets.

This nondeterministic pattern formation process determines the individuality of the

flower-like dot patterns. Just like the flowers in nature, every flower-like dot pattern

is unique. Any 2D macroscale patterns composed of thousands of flower-like dots

(e.g., the Fuzhou University logo, QR codes, and bar codes shown in Fig. 7C) can

be generated using the inkjet-printing technique. Colorful PUF-based luminescent secu-

rity labels can be achieved using the RGB emission core–shell QDs as inks. These covert

security labels can be visualized by the naked eye when exposed to UV light, which offers

a simple preliminary verification. The flower-like dot patterns within the security labels

are used as the second layer of security and can be readily read out by a smartphonemicro-

scope with UV light excitation. Random colorful patterns are also commonly seen on
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soap bubbles, originating from optical interference. Inspired by this phenomenon, we

demonstrated an unclonable anti-counterfeiting system that comprises an optical

interference film made of an uneven coordination polymer layer on a flat gold reflector

(Fig. 7D) [143]. The random colorful pattern similar to that of soap bubbles from the

uneven coordination polymer film is used as the physical function. The colorful

PUF-based security labels were fabricated by fast crystallization of the coordination

polymer—cupric bromide complex of pyrazine 1,4-dioxide—on lithographically defined

gold micropatterns. The fast crystallization results in the formation of the coordination

polymer with different particle sizes and irregular particle shapes, which allows the optical

interference to occur. The gold layer is of vital importance for the creation of colors as it

absorbs blue light but reflects most of the other visible light. The fabricated PUF-based

security labels exhibit multiple high-contrast colors under bright/dark-field modes and

a single color under fluorescence mode (Fig. 7D). The encryption with colors on a

50mm square produces unique PUF codes with a maximal encoding capacity of 82500

(the number 8 represents the distinguishable visible colors).

5. Artificial intelligence-based authentication

As discussed above, advanced optical anti-counterfeiting labels carry two layers of

security—macroscopic patterns andnanoscalePUFs [155,156].The former canbe visually

verified, while the latter requires advanced readout tools and algorithms for accurate

authentication. Generally, a physical mark on the PUF-based security label is required

to define the positions of all the pixelswithin the physical functions for their authentication

[143].Otherwise, imaging the rotated physical functionswill lead to a completely different

PUF code [146]. A typical authentication procedure of PUFs includes the registration of

the physical key by the manufacturer, reading out the uncertain physical key by the users

and then the comparison of the uncertain physical keywith the registered ones in the data-

base. There are two well-established strategies to authenticate PUF functions. One

involves the conversionof thephysical function into adigital key andpoint-by-point com-

parison of the digital keyswith those in the database [7,157],while the other one relies on a

similar character extraction, recognition, and comparison analysis to those used to authen-

ticate real fingerprints [13,18,143]. The computer vision community has developedmany

algorithms for pattern recognition, enhancement, and identification. The point-by-point

comparison gives rise to high-encoding capacity but suffers from being time consuming.

The character extraction method can significantly reduce authentication times but

decreases encoding capacity as only partial of pixels within the security label are used

for verification. The verification accuracy of both strategies can be affected by the image

quality of the security labels, which is determined by many factors, such as the imaging

equipment, conditions, and personnel habits of users. Dusts on the pattern and poor image

quality cause false positives of up to 20% using conventional algorithms [10].
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To address this problem, we developed a deep learning (artificial intelligence) and

computer vision technique to validate PUF-based security labels. Fig. 8A illustrates a typ-

ical authentication procedure through deep learning. Firstly, all the physical functions on

the commercial products are readout by the manufacturer (Fig. 8A, step 1) and then sent

Fig. 8 (A) Deep learning decoding mechanism [18], Copyright 2019, Springer Nature. (Top left)
Schematic illustrating the authentication process: (1) image capture and database generation from
the goods by the manufacturers, (2) image learning by deep learning engine, (3) image capture
from the goods by the consumers using their smart phones, (4) image recognition and comparing
by deep learning engine, and (5) authentication outcome feedback to the consumers. (Top right)
Image learning: Plots of train and validation accuracy as a function of the number of training
epochs. (Bottom left) A library of six single dot pattern security labels (g1–6), six fluorescence
images taken from g1 (referred to as genuine product) with different brightness, sharpness,
rotation angles, magnifications, and the mixture of the above-mentioned factors (h1–6), six
fluorescence images from security labels that are not in the database (referred to as fake products)
(i1–6), and recognition rates of labels (h1–6) and (i1–6) by the authenticating way of deep learning.
(B) A convenient and reliable authentication strategy based on the computer vision technique to
verify the colorful PUF patterns with a different definition, rotation angle, brightness, magnification,
and a mixture of these factors. A high correct validation rate of 100% is achieved using a match
threshold of 0.3 [143], Copyright 2019, The Royal Society of Chemistry.
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to neural networks for training (step 2). Note that only one image is taken from one secu-

rity label and rotated to create training images. During the training phase, the neural net-

works learn the characteristic features of the security label. This is carried out by sending

80% of training images for learning and 20% for validation. The training is finished when

the training and validation accuracy is above 97%.When the consumers receive the prod-

ucts, they image the physical functions with their personal devices (step 3), which are

automatically sent to the neural networks for validation (step 4). The neural networks

learn the characteristic features of the test physical functions and compare them with

those stored in the database, producing a matching score. By comparing the matching

scores with the threshold, the neural networks immediately provide the authentication

results (real or fake) to the users (step 5). The selection of an appropriate threshold ensures

low-false-positive and false-negative rates. Since the first report on using deep learning

for PUF authentication [18], this approach has been adopted and further developed for

the verification of various PUFs [79,158]. To omit the training process required for the

deep learning technique, a computer vision-based authentication has been developed, in

which only key characteristic features of the security labels are extracted and compared

(Fig. 8B). Since the extracted feature vectors are invariant to location, scaling, and rotation,

the computer vision-based verification technique allows us to accurately verify the PUF-

based security labelswith adifferent image scaling, focusing, and rotation in the absenceof a

physicalmark and image training.Moreover, the approach is also robust to changes in illu-

mination and noise on the security labels. Themain drawback is that it requires large stor-

age space to save the images of the security labels taken by themanufacturer. It appears that

the integration of advanced artificial intelligence with computer vision techniques may

lead to more powerful and robust authentication techniques.

6. Summary and outlook

We have described the optical encoding mechanisms, summarized the widely studied

optical nanomaterials including their synthetic methods and optical properties, and

highlighted the recent advances in optical anti-counterfeiting technologies. Firstly, the

synthesis of various nanomaterials that can generate unique optical properties was pre-

sented. These nanomaterials can be broadly categorized as nanophotonic (including plas-

monic) materials and luminescent materials. We discussed the construction of optical

nanomaterials synthesized by wet-chemical methods into security labels with 2D patterns

through self-assembly or inkjet printing. The direct fabrication and engineering of nanos-

tructures via thin-film deposition, lithographic, and imprinting methods were also dis-

cussed. These nanostructures are able to create structural colors due to their optical

absorption, scattering, diffraction, or interference. The structural colors can be dynam-

ically tuned by controlling the size, shape, and composition of the components, lattice

constant (or periodic distance), interparticle coupling distance and refractive index,
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etc. Furthermore, examples of luminescent nanomaterials that produce fluorescence,

TADF, upconversion and/or phosphorescence upon light excitation were presented.

Secondly, two types of optical security labels have been developed using these nanoma-

terials as basic ingredients, which are referred to as conventional and PUF-based security

labels. The former involves the use of collective behaviors of the optical nanomaterials for

optical encryption. The main advantage of such security labels is that they can be easily

verified by the naked eyes. However, the problem is that they are clonable due to their

predicable and deterministic decoding mechanisms. In contrast, PUF-based security

labels that make use of random nanoscopic physical features for optical encryption are

difficult to be copied. Yet, they generally need an advanced and costly instrument to

readout the encoded information. Lastly, a number of authentication techniques based

on conventional image analysis, machine learning, deep learning or computer vision have

been developed. Both deep learning and computer vision authentication approaches pro-

vide a solution to efficient and accurate authentication of PUF-based security labels with

variations in sharpness, brightness, rotations, amplifications, and a mixture of these para-

meters. Compared with the other existing authentication algorithms, deep learning does

not require any storage space for the security label images and is more efficient and robust.

Ideal anti-counterfeiting techniques require the security labels to be inexpensive,

mass-producible, unclonable, and convenient for authentication with a simple and

portable device. Optical PUF encryption is considered to be the next-generation

anti-counterfeiting technique. However, there is still a long way toward their practical

implementation. It is therefore necessary to improve existing PUF anti-counterfeiting

techniques and develop new PUF techniques. To realize their practical application,

future strategic directions are presented below: (1) the development of inexpensive, envi-

ronmentally friendly (ideally edible) nanomaterials with rich optical properties that are

dynamically tunable to increase the encoding levels, which allows for the development

of dynamic and multiplex PUF security labels; (2) the development of patterning tech-

niques that are able to integrate PUF-based security labels with the conventional ones

into a single device while decreasing fabrication cost; and (3) the development of

low-cost, miniaturized and nondestructive readout tools and advanced artificial intelli-

gence authentication algorithms that ensure the simple, rapid, and accurate authentica-

tion of PUF-based security labels. It is believed that merging state-of-the-art

nanotechnology and artificial intelligence techniques will be crucial to realize the com-

mercialization of PUF-based security labels.
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CHAPTER 14

Machine learning data processing as
a bridge between microscopy and the
brain
Yijun Baoa and Yiyang Gonga,b
aDepartment of Biomedical Engineering, Duke University, Durham, NC, United States
bDepartment of Neurobiology, Duke University, Durham, NC, United States

1. Introduction

A brain has many neurons that together can convey complex emotions and behaviors.

Neuroscientists want to understand the activities of neurons, including the relationship

between the activity of neurons and animal behavior. Electrophysiology has been a useful

tool to quantify neural activities associated with the dynamic neuron membrane poten-

tial, especially the action potential, or “spike,” voltage waveform that acts as the funda-

mental unit of communication between neurons. However, electrophysiology with

cellular resolution typically requires invasively inserting an electrode into the brain;

the technique can only sample one or more neurons simultaneously spread over large

volumes of tissues. Optical microscopy can image many neurons in a large field of view

simultaneously, chronically, and in vivo. Genetically encoded calcium indicators (GECI)

[1–4] and genetically encoded voltage indicators (GEVI) [5–8] were two types of genet-

ically encoded tools that can translate changes in intracellular calcium concentration or

membrane voltage associated with action potentials into changes in fluorescence inten-

sity. Fluorescence microscopy can image these indicators by exciting them at one wave-

length and capturing emission photons at a different wavelength. Generally, the classes of

GECIs and GEVIs have trended toward larger responses and higher brightness, and have

enabled more sensitive recordings of neural activity limited by shot noise. Depending on

the wavelength of the excitation light, the indicators needed to absorb one or more pho-

tons to be excited, requiring the one-photon, or multiphoton microscopy [9]. In parallel

with sensor development, microscopy development has improved optical sectioning,

capture efficiency, and resolutions. Combining genetically encoded indicators and

advanced microscopy techniques, neuroscientists can now record the neural activities

of hundreds to thousands of neurons in multiple animal models at high speed.

The fluorescence imaging data, although very informative, was not at cellular reso-

lution in raw form as with electrophysiological data. Neuroscientists currently perform a
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multistep video processing pipeline to extract the neural activities from individual neu-

rons (Fig. 1). The pipeline includes correcting motion artifacts, segmenting spatial foot-

prints of neurons, extracting temporal traces, and inferring activity spikes [10–12]: First,
motion artifacts caused movement of animals during in vivo experiments should be cor-

rected so that the imaged neurons in different frames are aligned; second, active neurons

with dynamic activity should be segmented; third, for each neuron, the temporal activity

trace should be calculated; and finally, the spikes of that neuron can be inferred from the

activity trace. In the past, many neuroscientists manually drew masks for the neurons and

automated the remaining steps. However, advances in imaging techniques have brought

large increases in the recording size (from several GB to several hundreds of GB); ambi-

tious neuroscience experiments sometimes measure neural activity from multiple planes

in a brain simultaneously, over multiple animals and multiple days. All these factors make

Send stimulus

Record a video

Correct motion
artifacts Feedback (optional)

Segment neuron
footprints

Extract activity
traces

Infer activity
spikes

Analyze animal
behavior

Fig. 1 Typical flow chart of data processing steps in neuroscience experiments using genetically
encoded indicators and fluorescence microscopy. The optional orange feedback loop is added in
feedback closed-loop experiments.
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manual neuron segmentation very time-consuming. In addition, manual segmentation

lacks consistency; multiple labelers or even the same labeler can mark the same neuron

differently over multiple instances. Automated neuron segmentation techniques can

potentially offer better consistency, scalability, and speed, and thus can advance neuro-

science research based on fluorescent imaging microscopy. Researchers have developed

many automated neuron segmentation algorithms based onmachine learning techniques.

The accuracy and speed of these algorithms have continually improved over time, and

the state-of-the-art algorithms now approach the accuracy of human labelers but signif-

icantly outperform humans in speed [10,13,14]. Some neuroscience experiments seek to

perform closed-loop, real-time behavioral or neural manipulation in response to the

recorded neural activity [15,16] (Fig. 1). These real-time investigations require an online

video processing pipeline, which adds the following requirements: the processing speed

must be faster than the recording speed of the microscope, and the processing results must

be updated shortly after the image collection without waiting for future frames.

Researchers have also developed some online methods using machine learning, although

these methods generally lag the performance of batch algorithms that process large por-

tions of videos together.

In this chapter, we will give an overview of existing neuron segmentation methods

based on machine learning, focusing mostly on processing calcium imaging data from

two-photon microscopy. Because current GECIs have a better signal-to-noise ratio

(SNR) than GEVIs, and current two-photon microscopy has better SNR and optical

sectioning than one-photon microscopy in scattering tissues, many data processing

methods targeted GECI and two-photon microscopy data first, with some of them later

generalizing to GEVI or one-photon microscopy.We will also briefly discuss spike infer-

ence after neuron segmentation.

2. Machine learning

Machine learning is the studyof computer algorithms that improves automatically through

experience and by the use of data [17]. It is a branch of artificial intelligence that can learn

from data, identify informative patterns, and make decisions with minimal human inter-

vention. This is particularly helpful when there is no deterministic step-by-step guide for

the desired tasks. The tasks of identifying neurons and neural spikes from the imaging

videos fall into the class of feature extraction andpattern recognition problems.Many solu-

tions to this class of problems come from two major categories of machine learning tech-

niques in image and video processing: unsupervised learning and supervised learning.

Unsupervised learning methods learn from unlabeled data by extracting meaningful fea-

tures. They do not require human intervention in principle. Supervised learningmethods

learn to predict the output from labeled data, which includes the desired outputs of the

inputs. These labels are prepared using other means, often with human labeling. The
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segmentation algorithms are trainedusingpairs of raw inputdata andoutput labels,with the

goal of finding general rules that map the raw input data to output labels.

Widely used unsupervised learning methods in neuron segmentation include cluster-

ing, dimensionality reduction, and dictionary learning. Clustering sought to group the

pixels in the video according to their similarity (Fig. 2A). Graphically, a clustering algo-

rithm defined a distance between any two pixels and sought to divide the pixels into sev-

eral groups, so that any two pixels belonging to the same group had a small distance (and

were thus similar), and any two pixels not belonging to the same group had a large dis-

tance (and were thus different) [18]. In neuron segmentation, the similarity was often

related to the temporally synchronized activity [19,20]. Dimensionality reduction sought

to decompose the calcium imaging video into a product of two matrices, and the decom-

posed matrices had much smaller dimensions and ranks than the original video [21]. The

most widely used decomposition was spatial and temporal decomposition, where one

decomposed matrix represented the spatial footprints of neurons and the other repre-

sented the temporal activities of neurons [12,22–24] (Fig. 2B). Matrix factorization algo-

rithms often added constraints or penalties with the decomposition, so that the factorized

matrices had some desired features present in neurons and calcium dynamics. Dictionary

learning, also known as sparse coding, sought to find a finite number of basis functions

and used a sparse linear combination of the basis functions to represent the video. In neu-

ron segmentation, the basis functions were often the spatial footprints of individual neu-

rons [25–27], temporal activities of individual neurons [28], or a combination of the

spatial and temporal components [29].

Supervised learning often built artificial neural networks that originated from mim-

icking how the neurons in animal brains process signals. The constructed neural networks

often had multiple layers, each containing several artificial neurons and performing a spe-

cific operation. The most widely used neural network in image and video processing was

the convolutional neural network (CNN), which applied convolution layers to integrate

the information from groups of pixels across the entire image (Fig. 2C). There were often

multiple pooling layers that downscaled the data, so that higher-level features can be

computed and learned. If the output was just a single number that classified the input,

a fully connect layer was usually used as the final layer of the neural network to produce

a single output indicator. These CNNs were known as classifiers. If the output value was

binary, they can classify whether the neuron candidates were truly neurons based on their

spatial properties [11,30]. When the allowed output had a finite number of options, they

can represent the type of cells [31]. If the desired output should have the same size as the

input, up-converting layers restored high-level features back to the original dimension-

ality after pooling. The outputs of this type of CNNwere feature maps that corresponded

to the input pixel by pixel. One traditional output is the probability map [14], which

inferred the probability of each pixel being active. However, the output layer can also

represent other quantities, like spatial gradient [32] or pixel-pixel affinity [19]. The

402 Intelligent nanotechnology



Fig. 2 Typical categories of machine learning algorithms used in neuron segmentation. Multiple
sources (A) Clustering. This type of method constructed a graph, in which each node represented a
pixel and the length of the edge between each pair of pixels represented the dissimilarity between
the pair of pixels. A cluster of nodes with short distances can represent a neuron. (B) Matrix
factorization. A video is modeled as the linear superposition of the contributions from various
neural components, background (neuropil), and random noise; the contribution of each neuron
was the tensor product of its spatial footprint and its temporal activity. Matrix factorization
methods seek to find the best matrices that represent the spatial and temporal components of the
neurons using some iterative optimization algorithms, so that the reconstructed video is as close
to the original video as possible subject to some constraints and regularizations.
(C) A convolutional neural network (CNN). A typical CNN has convolution, max-pooling,
convolution transpose (up-conversion), concatenation, and dropout layers. These tensor operations
can generate features from various resolution levels to help segment neurons. The output image
has the same dimension as the input image. ((A) From Q. Spaen, R. Asín-Achá, S.N. Chettih,
M. Minderer, C. Harvey, D.S. Hochbaum, HNCcorr: a novel combinatorial approach for cell
identification in calcium-imaging movies, Eneuro 6(2) (2019), https://doi.org/10.1523/eneuro.0304-18.
2019, Copyright © 2019. (B) From A. Giovannucci, J. Friedrich, P. Gunn, J. Kalfon, B.L. Brown, S.A.
Koay, J. Taxidis, F. Najafi, J.L. Gauthier, P. Zhou, B.S. Khakh, D.W. Tank, D.B. Chklovskii, E.A.
Pnevmatikakis, elife 8 (2019), https://doi.org/10.7554/eLife.38173, Copyright © 2019. (C) Modified from
Y. Bao, S. Soltanian-Zadeh, S. Farsiu, Y. Gong, Segmentation of neurons from fluorescence calcium
recordings beyond real-time, Nat. Mach. Intell. 3(7) (2021) 590–600, https://doi.org/10.1038/s42256-
021-00342-x, Copyright © 2021 Springer International Publishing.)
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outputs of this type of CNN often required additional postprocessing to finally generate

the segmented neuron masks. U-Net [33] was a popular CNN architecture widely used

in image segmentation. In addition to convolution, pooling, and up-converting layers, it

also used concatenations to connect two ends of the overall network, so that both low-

level and high-level information can help generate the output. Many neuron segmenta-

tion methods used either the original U-Net [31] or the modified forms of U-Net

[10,19,32,34]. In addition to CNNs, other supervised learning techniques, such as the

recurrent neural network (RNN), have been applied in neuron segmentation as

well [35].

Some algorithms combined the benefits of unsupervised and supervised learning

techniques. For example, hybrid algorithms employed unsupervised learning to extract

features (e.g., calcium sources) from the data, and employed supervised learning to eval-

uate the features and decided whether they are true features of interest (e.g., neurons)

[11,30]. Alternatively, unsupervised learning algorithms can postprocess the outputs of

CNNs, often simpler quantities than the raw data, to generate final neuron masks

[19]. In addition, semisupervised learning trained algorithms in regimes between unsu-

pervised and supervised learning, often when there was not sufficient training data [36].

These methods trained models from a dataset containing both labeled and unlabeled data;

training models on the small, labeled dataset initialized the models, and guided classifi-

cation and feature extraction on the large, unlabeled dataset.

Machine learning problems are closely tied with optimization problems, because the

learning processes often minimize some cost functions or loss functions. In supervised

learning, these functions quantify the difference between the training labels and the out-

puts from processing the training data. Minimizing these functions leads to a map

between future test data input and algorithm output. In unsupervised learning, computers

try to extract informative features from the input and reconstruct the input using the

extracted features. The goal is to make the reconstructed input closely match the real

input under some constraints, and their differences are usually quantified using cost func-

tions. In practice, the cost functions often contain regularization terms to reflect the pref-

erences or constraints. Popular optimization algorithms, such as gradient descent,

stochastic gradient descent, and alternating gradient descent, are often employed in

machine learning. But different from conventional optimization problems, the machine

learning problems aim to minimize the equivalent loss or cost functions in data not used

in training, so the trained models are generalizable and do not overfit the training data.

3. Identifying active neurons

Most GECIs report active neurons with increases in fluorescent intensity. Neurons pre-

sent their footprints most clearly during their active frames, so that active neurons appear

brighter than inactive neurons and background in neighboring regions. Neurons often
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have near oval shapes, and the boundary pixels are often brighter than the interior pixels,

because many GECIs are mainly expressed in the cell cytoplasm rather than the nucleus.

The intensity of the neurons varies over time, usually in the form of a nearly constant

baseline and some sparse active transients. The transients typically follow a rapid rise

and slow decay waveform, and the time constants of different calcium sensors have been

measured in the literature. The pixels belonging to the same neuron usually fire concur-

rently, so these pixels have high correlations with each other. On the other hand, back-

ground pixels dominated by noise have low correlations to each other even if they are

spatially connected.

Many machine learning techniques have been developed and applied to the problem

of segmenting active neurons from calcium imaging videos. Based on the dimensionality

of the processed data, these methods can be categorized into three major types: segmen-

tation from 2D summary images, segmentation from 3D videos as a whole or in blocks,

and segmentation from 3D videos frame-by-frame. Based on machine learning tech-

niques, these methods can be characterized into three major types: unsupervised learning,

supervised learning, and a combination of both. Different methods have different speeds

and accuracy (Fig. 3). We will categorize algorithms primarily by their dimensionality

and secondarily by their core machine learning techniques.

Fig. 3 Summary of accuracy and speed of various neuron segmentation technique categories. The
data are mainly from Refs. [10,14]. The accuracy was quantified using the F1 score defined in
the referenced papers. The speed was quantified as the number of frames of a video divided by
the total processing time. We assumed the two-photon imaging video had a relatively good
quality, the lateral size was �512�512, and the computer was a standard desktop. Because the
evaluation data in different papers were different, and some papers did not report quantitative
speed, we filled this figure together with our best estimate to aid in qualitative comparisons.
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3.1 2D segmentation methods
The first class of neuron segmentation algorithms processed small sets of 2D summary

images. One 2D summary image can compress the temporal information of a 3D movie

down to one quantity per pixel. Widely used summary quantities include the mean [34],

maximum [37], correlation [20], or standard deviation [38]. Typically, active neurons

should show higher strength in the summary images than background pixels, and image

segmentation techniques can segment neurons based on these summary quantities. Par-

ticularly, the correlation image calculated the correlation of the temporal traces of each

pixel to the neighboring pixels. If a pixel belonged to an active neuron, it should have

high correlations with neighboring pixels, whereas if a pixel did not belong to a neuron, it

should contain mostly noise and thus have low correlations with neighboring pixels. Seg-

menting 2D summary images was conceptually simpler than segmenting 3D video, and

some methods developed for general cell segmentation can be applied directly [32].

One of the simplest 2D segmentation methods was applying a threshold on the sum-

mary image to identify active pixels and grouping active pixels into neurons. Some

methods applied spatial filtering to enhance neuron shapes (CALIMA [39]). When neu-

rons were slightly overlapped, watershed (SeNeCA [40]) or adaptive thresholding

(ACSAT [37]) can separate some of them. Unsupervised learning algorithms can learn

the spatial features of neurons or explore the similarity among pixels in multiple dimen-

sions, so they can potentially identify fundamental neuron features or cluster pixels more

accurately. Convolutional sparse block coding (CSBC [26]) is a dictionary learning

method that modeled the mean image using convolutional sparse block coding, which

inferred the most likely locations of neurons using convolutional block pursuit and

learned the shapes of neurons using block K-SVD.HNCcorr [20] usedHochbaum’s nor-

malized cut to cluster pixels according to their similarities between correlation images.

Local selective spectral clustering (LSSC [18]) represented the video using a 2D image

of a special embedding norm and used spectral clustering to cluster pixels in the embed-

ding space to neurons. NeuroSeg [41] processed the normalized image convolved with a

generalized Laplacian of Gaussian filter by combining adaptive thresholding and cluster-

ing using agglomerative hierarchical clustering (Fig. 4A). Supervised learning algorithms

were mainly based on CNNs, which can learn the spatial features of neurons after training

on manually labeled examples. U-Net [33] was a widely used CNN in biomedical image

processing tasks, and it has been used to directly segment the 2D summary images of fluo-

rescent imaging videos (e.g., UNet2DS [34] and Seong et al. [31]). Cellpose [32] was a

general cell segmentation technique not specific to neurons, which used a modified

U-Net to predict the horizontal and vertical gradients as well as whether a pixel belonged

to any cell. The three predicted maps were combined into a gradient vector field, and all

the pixels that converged to the same fixed point were assigned to the same neuron mask.

Some algorithms combined unsupervised and supervised learning. For example, DISCo
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Fig. 4 Example neuron segmentation results using machine learning algorithms. Multiple sources
(A) Result of NeuroSeg, a 2D unsupervised learning segmentation algorithm. Contours of
segmented neurons are overlaid on the 2D image. No overlapping neurons were allowed.
(B) Result of STNeuroNet, a 3D block supervised learning segmentation algorithm. Contours of true
positive (green), false positive (red), false negative (cyan) neurons are overlaid on the correlation
image. The accuracy of the segmented neurons was evaluated by comparing them with
independent manual markings. Overlapping neurons were allowed in the output. (C) Result of
OnACID-E, a 3D frame-by-frame unsupervised learning algorithm. Contours of segmented neurons
up to a specific number of frames are overlaid on the correlation image. More neurons were
segmented with increasing numbers of frames. ((A) From J. Guan, J. Li, S. Liang, R. Li, X. Li, X. Shi,
C. Huang, J. Zhang, J. Pan, H. Jia, L. Zhang, X. Chen, X. Liao, NeuroSeg: automated cell detection and
segmentation for in vivo two-photon Ca2+ imaging data, Brain Struct. Funct. 223(1) (2018) 519–533,
https://doi.org/10.1007/s00429-017-1545-5, Copyright © 2021 Springer International Publishing.
(B) From S. Soltanian-Zadeh, K. Sahingur, S. Blau, Y. Gong, S. Farsiu, Fast and robust active neuron
segmentation in two-photon calcium imaging using spatiotemporal deep learning, Proc. Natl. Acad.
Sci. 116(17) (2019) 8554–8563, https://doi.org/10.1073/pnas.1812995116, Copyright © 2019 National
Academy of Sciences. (C) From J. Friedrich, A. Giovannucci, E.A. Pnevmatikakis, Online analysis of
microendoscopic 1-photon calcium imaging data streams, PLoS Comput. Biol. 17(1) (2021) e1008565,
https://doi.org/10.1371/journal.pcbi.1008565, Copyright: © 2021.)
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[19] applied a 3D CNN to predict the correlation image, and applied a U-Net on the

concatenated mean and correlation images to predict pixel-pixel affinities and

foreground-background probability; it then used graph cut to postprocess the U-Net

output and clustered pixels to neurons. The multiple output layers of the U-Net enabled

more sophisticated postprocessing that made use of both the activity probability of each

pixel and the relationship among neighboring pixels for more accurate segmentation.

ImageCN [30] detected regions of interest (ROIs) using a local adaptive thresholding

algorithm, separated overlapping neurons using watershed, and finally classified ROIs

as neurons or nonneurons using a CNN.

Overall, the class of algorithms processing 2D summary images was relatively fast but

less accurate. 2D methods were usually very fast because of two reasons: calculating the

summary images was fast, and the time processing the summary images was nearly inde-

pendent of the video length. However, these algorithms struggled with separating over-

lapping neurons because overlapping neurons were usually connected in the summary

images [14,20,34,42]; these connected regions were often incorrectly identified as a sin-

gle neuron. Even when algorithms correctly identified the connected regions as contain-

ing multiple neurons, the algorithms failed to accurately mark the boundary between the

neurons that was blurred in the summary image. ACSAT [37] recursively lowered the

threshold to separate potentially overlapping neurons, but it could only separate overlap-

ping neurons when the overlapping pixels were less bright than the unique pixels. SeN-

eCA [40] used an appropriately interrupted watershed algorithm to separate overlapping

neurons, but the watershed may not preserve the natural shapes of neurons. UNet2DS

[34] and Cellpose [32] removed the pixels belonging to multiple neurons when creating

training labels, so that the trained CNN only learned features of nonoverlapping pixels.

2D methods can find both active and inactive neurons, because inactive neurons can also

have a higher mean or maximum intensity than background pixels.

3.2 3D block segmentation methods
The second class of neuron segmentation algorithms processed the entire video or blocks

of frames, and simultaneously analyzed both spatial features of neurons and temporal

dynamics of neural activity. Because 3D methods extracted neurons based on their cal-

cium dynamics, they usually only extracted active neurons. Unsupervised learning

methods modeled the imaging video as independent contributions from each neuron,

background, and noise, and the contribution of each neuron can be further decomposed

into the spatial neuron shape and temporal dynamics (Fig. 2B). The models can be sum-

marized as follows:

Y x, tð Þ ¼
X

i
ai xð Þci tð Þ + B x, tð Þ + E x, tð Þ (1)
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where Y is the entire 3D video, ai is the spatial component of each neuron, ci is the tem-

poral component of each neuron, B is the background, E is the noise, x is the 2D spatial

coordinate, and t is the time. For the convenience of computation, the models were often

expressed in a matrix form,

Y N�Tð Þ ¼ A N�Kð Þ C K�Tð Þ + B N�Tð Þ + E N�Tð Þ (2)

whereY is the entire video reshaped to a 2D matrix, A is the spatial components of all K

neurons in theN pixels of each image, andC is the temporal waveforms of all K neurons

over all T frames. The dimensions of the matrices are labeled as superscripts. K is usually

much smaller than N and T, so the dimensionality of the representation is much smaller

than the dimensionality of the raw data. Researchers have developed many unsupervised

learning algorithms to extract A and C in these models, so that they can segment neuron

shapes and extract their temporal traces simultaneously. These methods mainly used opti-

mization strategies aiming to maximize or minimize a target quantity or a cost function.

For example, independent component analysis (PCA/ICA [21] and ICA + SRO [43])

maximized the spatial and temporal sparsity, and Suite2p [12] minimized the noise and

used a classifier to refine segmented ROIs based on several statistics related to shape and

activity. The cost functions under optimization were often constructed with constraints

or regularizations matching calcium activities: the calcium activities of a neuron were

spatially localized, temporally sparse, and nonnegative. For example, nonnegative matrix

factorization (NMF [22]) minimized the noise under a nonnegativity constraint. Con-

strained nonnegative matrix factorization (CNMF [23], enhancedCNMF [44], panelized

matrix decomposition (PMD) [45], and CNMF-E [24]) maximized the spatial and tem-

poral sparsity under nonnegativity and noise constraints. Adding these constraints or reg-

ularizations forced the factorized matrices to better satisfy the physical properties of

calcium imaging andmade the results more interpretable. Dictionary learning approaches

(ADINA [25], SSDT [29], and Temporal DL [28]) modeled the neurons and calcium

activities as sparse signals in the spatial and/or temporal domains with a limited number

of spatial and/or temporal convolutional kernels as basis functions. EXTRACT [46] ana-

lyzed the problem mainly through noise estimation: it solved the current cell’s spatial and

temporal components using the one-sided Huber estimator. These methods usually

updated the spatial and temporal components alternatively using some iterative optimi-

zation algorithms. Some algorithms used additional dimensional reduction techniques

like principal component analysis (PCA) [21,43], singular value decomposition (SVD)

[12], or penalized matrix decomposition [45] before the matrix factorization to reduce

the computation load and suppress noise. Haeffele et al. [47] discussed a generalized prob-

lem formation for these structured matrix factorization problems. They proved that

although these problems were nonconvex, their local minima are global minima if the

rank of the factorized matrices was sufficiently large and adapted to the data. Methods
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not based on matrix factorization also exist. For example, the activity-based

level set method (ABLE [48]) represented the boundaries of neurons using level set func-

tions, and updated the level set functions by solving a partial differential equation.

Supervised learning methods seek to learn implicit features of neurons from the train-

ing data and apply the knowledge to new data. Unlike supervised 2Dmethods that aggre-

gated temporal information before applying CNN, supervised 3D methods also dealt

with temporal information within the CNN. ConvNet [42] temporally downscaled

the video, so that each frame is much longer than the typical calcium transient duration,

and then applied a (2+1)D CNN (2D spatial kernel and 1D temporal max-pooling) to

the downscaled 3D video. This method treated spatial and temporal features differently.

The algorithm effectively applied a 2D segmentation method on the downsampled

frames of videos and applied a maximum projection on the output images. Because

the temporal domain processing was relatively simple, this algorithm showed that the

(2+1)D CNN could only achieve accuracy scores similar to a 2D CNN. STNeuroNet

[14] used a full 3D CNN (DenseVNet) that learned both the spatial features of neurons

and the temporal features of neural activities (Fig. 4B). Although it also had a temporal

max-pooling layer within the CNN, the layers before the temporal max-pooling treated

spatial and temporal dimensions equivalently. This method divided the videos into sev-

eral temporal blocks to bypass the limited graphics card memory and used postprocessing

to aggregate the information from all the blocks. Because the ground truth markings were

usually just a set of neurons, STNeuroNet used the ground truth markings to create a

binary video indicating whether a pixel was active in each frame. The algorithm then

fed blocks of these binary videos as training ground truths together with blocks of spatially

filtered raw videos to train the CNN.

Some methods combined both unsupervised and supervised learning paradigms. For

example, CaImAn Batch [11] first used CNMF to propose active components. It then

added a quality control step to screen these components with appropriate neuron shapes

based on spatial footprint consistency, peak SNR, and a CNN classifier. The quality con-

trol step removed some nonneuron calcium sources, such as axons and dendrites that

were not the main research interest. On the other hand, if the study focused on dendrites,

the classifier could be trained to remove neurons and keep only dendrites. MIN1PIPE

[35] also used CNMF to extract the spatial footprints and temporal traces of the candidate

neurons, but it refined candidate neurons according to the temporal traces. They applied

RNNs with a long-short-term memory (LSTM) module as the classifier for calcium

spikes.

The algorithms processing 3D inputs generally producedmore accurate segmentation

than the algorithms processing 2D summary images. The 3D algorithms used the addi-

tional temporal information to separate overlapping neurons according to their individual

active periods, or identify clusters of pixels that had temporal dynamics similar to calcium
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activity. However, the speed of 3D algorithms was slower than the speed of 2D algo-

rithms because processing temporal information carried a larger computation load. Nev-

ertheless, the state-of-the-art algorithms in this class could process recordings at a speed

close to the video rate, �30 frames/s [14].

3.3 3D frame-by-frame segmentation methods
In addition to processing the video after collecting the entire imaging video (named off-

line processing), some in vivo neuroscience experiments need online processing. These

experiments wanted to respond to neural behaviors in real-time, and some closed-loop

experiments wanted to send feedback to neurons or the animal according to the recorded

neural activities [15,16]. Because 3D block segmentation methods processed all frames

together or a large block of frames each time, these algorithms had a significant delay

between collecting data and obtaining segmented neurons and thus were not ready to

use in real-time in vivo neuroscience experiments. Alternative 3D segmentation algo-

rithms can process the video in a frame-by-frame fashion. Among these methods, some

processed each frame without knowing any information from future frames, and they

periodically exported a set of segmented neurons up to the most recent frame with a delay

of at most a few frames. These methods are called online segmentation methods, and they

can fulfill the tasks in real-time in vivo neuroscience experiments.

The 3D frame-by-frame segmentation methods also included unsupervised, super-

vised, or combined learning paradigms. Some methods modified 3D block segmentation

methods to incrementally add one frame at a time. For example, OnACID [49] and

OnACID-E [50] are the online versions of CNMF [23] and CNMF-E [24]. These

methods used online NMF to estimate the temporal activity at the latest frame given

the existing spatial components, and marked new components in each residue frame

(Fig. 4C). To model the background of one-photon imaging, OnACID-E also used a

ring-shaped CNN and trained it in an unsupervised way. Alternatively, some methods

applied 2D segmentation techniques on each frame and aggregated the output from all

frames. These algorithms benefited from the fact that each individual frame had only a

few, well separated active neurons that were easy to segment. Therefore, while any exist-

ing 2D segmentation method can be used theoretically, much simpler 2D methods can

significantly speed up the processing without sacrificing accuracy. For example, the dic-

tionary learning method SCALPEL [27] identified connected components by simple

thresholding in each frame and merged these components using prototype clustering

based on dissimilarity. Supervised methods applied a CNN on each frame and aggregated

the output from all frames, but the CNN can be much lighter than the CNN used to

process 2D summary images. For example, SUNS [10] applied a shallow U-Net to each

frame, thresholded and segmented active pixels into connected regions in each frame, and

merged these connected regions from all frames. Similar to STNeuroNet, SUNS also
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used the ground truth markings to create a binary video indicating whether a pixel is

active in each frame to assist training. The number of parameters in the shallow

U-Net of SUNS was three orders of magnitude smaller than in the original U-Net,

so the training and execution were much faster. The low number of trained parameters

also effectively prevented overfitting by learning only the most fundamental features.

SCALPEL and the batch version of SUNS preprocessed the entire video to enhance neu-

rons before segmenting each frame, and the aggregation process aggregated all frames

together. The online version of SUNS modified the preprocessing so that it only relied

on frames from the recent past, and it aggregated recent frames periodically to add the

newly found neurons to the set of segmented neurons. Combining unsupervised and

supervised learnings is also feasible. For example, CaImAn Online [11] was based on

OnACID [49], and it added a quality control step to screen the segmented neuron can-

didates based on peak SNR and a CNN classifier.

In general, the accuracy and speed of 3D frame-by-frame segmentation methods were

not significantly different from 3D block segmentation methods (Fig. 3). SUNS had a

much faster speed than other 3D methods because of its light CNN and fast computation

speed of modern GPUs.

4. Spike inference

In addition to neuron segmentation, many spike inference algorithms also implemented

machine learning techniques. The goal of spike inference is to infer the time and ampli-

tude of neural activity transients from the fluorescence intensity of a neuron as a function

of time, also called a fluorescence trace. After segmenting neurons, the fluorescent trace

can be obtained by averaging the fluorescent intensities of all pixels within the neuron

masks in all frames. However, because some neurons overlap with each other, the over-

lapped pixels will cause crosstalk from the activities of overlapped neurons. Some

methods have been developed to unmix activity from multiple overlapping neurons

and create traces that contain only the activity of each individual neuron. The goal of

spike inference is to locate the time and estimate the number or amplitude of the activity

transients from the noisy traces. All traces contain not only the information of neural

activities but also noise induced by either shot noise or electronic noise in the microscope

electronics. Similar to neuron segmentation methods, spike inference methods also

employ both unsupervised learning and supervised learning. However, different natures

of the problems, such as dimensionality, necessitate different approaches when processing

neural trace data.

Whenaneuron fires an actionpotential, or a “spike,” its fluorescence tracewill display a

period of high intensity, also known as a fluorescence transient. A fluorescence transient

displays a stereotypical rapid increase in intensity followedbyagradual decay.Although the

relationship between the spikes and fluorescence waveforms is broadly consistent for
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neurons in the same brain area expressing the same types of GECIs, the waveforms may

differ stochastically over individual neurons or different brain areas and could benonlinear.

Nevertheless, in the first order, the fluorescence trace can be approximated as a spike train

convolved with a typical rise-decay waveform plus some noise, so the spike inference

problem is also sometimes named spike deconvolution. The simplest spike inference

method is setting a threshold and assigning each rising edge across the threshold as a spike.

However, this method is inaccurate in the presence of noise, and it lacks the ability to sep-

arate activities from close spikes. Likewise, conventional linear deconvolution based on

Fourier transform is not suitable, because it cannot provide a temporally sparse spike train.

Some more sophisticated deterministic methods used Schmitt-trigger thresholding

(Peeling [51]), annihilating filter (finite rate of innovation (FRI) [52]), group delay

(GDSpike [53]), or Bayesian inference (particle filter smoother (PFS) [54] and Markov

chain Monte-Carlo (MCMC) [55]) methods to infer the spike times.

Similar to neuron segmentation, machine learning techniques, including unsuper-

vised learning and supervised learning, have been widely used in spike inference algo-

rithms. Unsupervised learning methods assumed a form of calcium generative model,

where the spike times were estimated by maximizing a likelihood function (e.g.,

maximum-a-posteriori (MAP) [56] and MLSpike [57], Fig. 5A) or minimizing a cost

Fig. 5 Spike inference algorithms seek to find the calcium transients from fluorescent traces. Multiple
sources (A) MLSpike is an unsupervised algorithm that predicted the time and numbers of action
potentials from fluorescence traces. (B) STM is a supervised algorithm that predicted the spiking
rate during a recording. ((A) Modified from T. Deneux, A. Kaszas, G. Szalay, G. Katona, T. Lakner, A.
Grinvald, B. Rózsa, I. Vanzetta, Accurate spike estimation from noisy calcium signals for ultrafast three-
dimensional imaging of large neuronal populations in vivo, Nat. Commun. 7(1) (2016) 12190, https://
doi.org/10.1038/ncomms12190, Copyright © 2016. (B) From L. Theis, P. Berens, E. Froudarakis, J.
Reimer, M. Román Rosón, T. Baden, T. Euler, A.S. Tolias, M. Bethge, Benchmarking spike rate inference
in population calcium imaging, Neuron 90(3) (2016) 471–482, https://doi.org/10.1016/j.neuron.2016.04.
014, Copyright © 2016 Elsevier Inc.)
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function (e.g., blind sparse deconvolution (BSD) [58], OASIS [59], nonnegative decon-

volution (NND) [60], fast compressible state-space (FCSS) [61], and functional pruning

[62]). The model parameters can be estimated directly from the recording (e.g., MLSpike

[57]) or jointly with spike times (e.g., MAP [56], BSD [58], FCSS [61], and OASIS [59]).

DeepSpike [63] used a recognition model consisting of a CNN and RNNs, which was

independent of the generative model, but this method learned the parameters in both

models simultaneously by jointly maximizing a likelihood function. By precisely fitting

the spike time with the fluorescent trace, many algorithms can achieve super resolution in

the temporal domain when processing high SNR recordings; these algorithms could

locate the spike times more accurately than the sampling rate of the microscope

[54,55,58].

Recently, many supervised learning techniques have been developed to make use of

increasingly effective training data. Because humans were unable to precisely locate the

spikes, the ground truth labels used to train the algorithms were usually obtained by

simultaneous electrophysiology recording and two-photon microscopy [2,64,65]. Elec-

trophysiology recordings can find all spikes and locate the times of spikes with microsec-

ond precision. Supervised learning methods often did not assume explicit calcium

generative models, but they learned the implicit relationship between the spikes and

the traces by minimizing a loss function. The CNN was again one technique used in

spike inference (e.g., signal-to-signal (S2S) [66] and CASCADE [67]), but it was no lon-

ger the dominant technique because of the different problem dimensionality. LSTM

(e.g., DeepCINAC [68]), support vector machine (SVM) (e.g., PCA-SVM [69],

HA_time [70]), and RNN (e.g., the supervised version of DeepSpike [63]) were all

supervised learning techniques used in spike inference. Maximum likelihood can also

be used in supervised learning; it maximized a conditional probability as the likelihood

function (e.g., spike-triggered mixture (STM) [65]). Although neuroscientists desired

precise discrete spike trains from optical recordings, using spike train labels directly often

caused poorly trained supervised algorithms, because a slightly shifted spike significantly

degraded the loss function. Therefore, many methods smoothed the spike trains in some

way, such as convolving with a narrow Gaussian kernel and used the smoothed spike

trains as the training labels. The outputs of these methods represented firing rates rather

than discrete spike trains (Fig. 5B). Another difficulty in applying supervised learning

algorithms is their low generalizability to recordings with different imaging conditions

from the training data, such as frame rate and noise level. CASCADE [67] included

methods to resample the original ground truth datasets to match the sampling rate and

noise level to the test dataset.

The methods discussed above all processed the 1D temporal traces. Some methods

can combine spike inference with previous steps in the overall calcium imaging analysis

pipeline. These methods processed the entire 3D video; they combined trace unmixing

with spike inference, and sometimes with neuron segmentation as well. In the neuron
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segmentation methods discussed in the previous section, SSDT [29], ADINA [25], and

CNMF [23] all solved neuron segmentation, trace calculation, and spike inference simul-

taneously. SSDT and ADINA used sparse dictionary learning, which represented the

video using a sum of convolutions of basis functions and sparse spike trains. CNMF opti-

mized the temporal sparsity of the spike trains to decompose the video into spatial and

temporal components. 3D supervised learning was also possible, but it was unrealistic to

create training labels by measuring the spikes of all neurons in a video using electrophys-

iology recording. Therefore, DeepCINAC [68] manually defined the spikes of neurons

as the rising edges of the transients and excluded false transients caused by overlapped

neurons by visual inspection of the video. As a result, the algorithm detected false tran-

sients caused by overlapped neurons and thus eliminated the need for trace unmixing.

However, this algorithm relied on the manually labeled transients, and thus had accuracy

limited by the accuracy of the labels.

5. Discussion

We focused on segmenting the body of neurons (somas), but some techniques can also

segment and recover the activities of nonsomatic compartments, such as boutons, spines,

axons, and dendrites [22,45,71,72]. Because human labels of dendrites and spines were

lacking, existing methods of segmenting subcellular compartments were mainly unsuper-

vised. In addition to the general methods, some methods were tailored for some specific

forms of data generated by advanced microscopes. Seeded iterative demixing (SID [38])

adapted the matrix factorization approach to light-field microscopy. SCISM [73], devel-

oped for volumetric two-photon imaging of neurons using stereoscopy (vTwINS), iter-

atively selected neurons by greedily minimizing the residual norm. Finally, an algorithm

incorporated the external stimulus as another dimension in the segmentation problem

[74]; this method estimated cell shapes, spike times, and stimulus tuning curves simulta-

neously based on variational inference.

A complete calcium imaging analysis pipeline includes (1) motion correction, (2)

neuron segmentation, (3) trace extraction, and (4) spike inference. We mainly focused

on the methods for the second or fourth steps in this chapter, although many 3D block

neuron segmentation methods based on unsupervised learning can also extract traces

simultaneously, and some may even perform steps (2–4) together in their optimization

process (e.g., SSDT [29], ADINA [25], and CNMF [23]). Some recent studies have

simultaneously computed other combinations of steps. Deformable NMF (dNMF

[75]) included a time-varying spatial deformation function in the matrix decomposition

model, so they can perform steps (1–3) simultaneously.

In addition to calcium imaging, voltage imaging is another fluorescent imaging tech-

nique based on GEVIs. GEVIs usually have much faster kinetics than GECIs, and they

can potentially resolve neural activities with an order of magnitude better temporal
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resolution than that of GECIs. However, GEVIs are currently less developed than

GECIs, and the current GEVIs report action potentials with smaller changes in relative

fluorescence intensity than the changes of GECIs. The resulting low SNR presents chal-

lenges to the entire video processing pipeline. Nevertheless, algorithms for voltage imag-

ing have also been developed [45,76].

In conclusion, we introduced a select set of neuron segmentation and spike inference

algorithms using various machine learning techniques. These methods have played

important roles in processing calcium imaging data generated by fluorescent microscopy

and in retrieving information necessary for additional neuroscience analysis. Fast and

accurate calcium imaging processing methods can replace labor-intensive human labeling

and automate the analysis of neural activity. Fast online processing methods can poten-

tially enable real-time closed-loop neuroscience experiments.
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