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Roger-the-Crab
A mobile manipulator concept for exploring robotics, control, signal
processing, learning, and behavior.
Figure 1.1. Using a circular network of definitions from Webster’s
Dictionary, Deb Roy [246] explains that to use such symbolic networks, at
least one of the references must be grounded (adapted from [246]).



Figure 1.2. Thelen’s ontogenetic landscape. Time in the right column is in
units of months after birth and denotes approximately when the behavior
begins to be observed (estimated from figure 9.18). (Adapted from [274].)
Figure 2.1. Myosin molecules consist of multiple molecular subchains that
participate in specialized roles. (Source: Adapted from [45, 192])
Figure 2.2. Structure of striated muscle. (Source: Adapted from [192])
Figure 2.3. The Huxley model of a single actin-myosin interaction
undergoing a constant force contraction. (Source: Originally due to [124],
adapted from [192])
Figure 2.4. A qualitative description of the isometric twitch, unfused, and
fused tetanic responses in larger mammalian muscles subject to periodic
activation at 5, 20, 40, and 60 [Hz]. (Source: Adapted from [192])
Figure 2.5. Qualitative force capacity of muscle as a function of length and
velocity. Tension T is normalized by the maximum developed tension (Tmax),
power P by maximum power output (Pmax), length l by muscle free length
(l0), and velocity v by the maximum unloaded contractile velocity (vmax).
(Source: Adapted from [192])
Figure 2.6. The Huxley model combining active and passive muscle
dynamics
Figure 2.7. A charge q moving along a conductor at velocity v through a
magnetic field, B, from north to south magnetic poles
Figure 2.8. Moving electric charges create a torque on the coil due to the
Lorentz force
Figure 2.9. Faraday’s law describes how electrical current is generated in
response to a mechanical input energy
Figure 2.10. The iron core DC motor
Figure 2.11. Electromechanical model of the DC motor
Figure 2.12. Plot colors and the corresponding vertical axes illustrate a
family of performance curves relating motor speed, current, power, and
efficiency to the torque generated by a DC motor
Figure 2.13. The compound load of the motor-gearhead combination



Figure 2.14. The hydraulic servo valve directs high pressure hydraulic fluid
from a reservoir to drive a piston: (left) flow for extending the linear
actuator; (right) flow for retracting the actuator.
Figure 2.15. The Sarcos GRLA (General Large Robot Arm)
Figure 2.16. The jet-pipe servo valve for controlling pneumatic actuators
Figure 2.17. The Utah/MIT dextrous hand with polymeric tendons and
analog control box
Figure 2.18. The operation of an air muscle
Figure 2.19. The 2001-era “Hand B” Integrated Shadow Hand-Arm System
(www.shadow.org.uk/)
Figure 3.1. The segmental structure of the spinal cord, the corresponding
sensory and motor regions of the body, and the cross-sectional anatomy of
the cord applied to the withdrawal reflex. (Source: Adapted from [28])
Figure 3.2. The α- and γ-motor feedback loops that regulate muscle tone
and stiffness. (Source: Adapted from [192])
Figure 3.3. The mechanisms that contribute to the quadriceps femoris
stretch reflex (L4) in response to the tapping of the patellar tendon
Figure 3.4. The spring-mass-damper (SMD) system
Figure 3.5. The free body diagram of the SMD system
Figure 3.6. A trajectory of an asymptotically stable harmonic oscillator on a
bowl-shaped Lyapunov function (left) and the top-view projection on the
phase plane (right)
Figure 3.7. Qualitative state space trajectories of the harmonic oscillator
Figure 3.8. The 1 DOF revolute (1R) mechanism is the inertial object in a
PD control process with reference θref

Figure 3.9. The transfer function for the generic harmonic oscillator in the
form of a SISO filter
Figure 3.10. Series and parallel composition of transfer functions and the
closed-loop transfer function (CLTF)
Figure 3.11. The musculature for the eye’s lateral (pan) degree of freedom
Figure 3.12. A control model for the 1-DOF oculomotor system consists of
active and passive elements

http://www.shadow.org.uk/


Figure 3.13. A sequence of compositions yields the closed-loop transfer
function for the PD controlled, oculomotor system
Figure 3.14. The unit step reference input
Figure 3.15. The response of the second-order PD position controller in
figure 3.8 as a function of ζ (K =1.0 [Nm/rad], I =2.0 [kgm2]) given
boundary conditions  and θ∞=1.0 [rad]
Figure 3.16. The response of the second-order PD position controller to
cos(ωt) input function, where ω is the driving frequency for various values
of ζ
Figure 4.1. Coordinate frames commonly used to specify robot tasks
Figure 4.2. The kinematic definitions and intermediate coordinate frames
used to define Roger
Figure 4.3. Two coordinate frames related through a pure translation
Figure 4.4. Two coordinate frames related through a pure rotation
Figure 4.5. Projecting C onto the x-y plane of frame B
Figure 4.6. Two coordinate frames related through a rotation and a
translation
Figure 4.7. The planar 2R manipulator
Figure 4.8. The reachable workspace for the planar 2R robot
Figure 4.9. The Unimate PUMA 560
Figure 4.10. The human shoulder, arm, and wrist. Three intersecting
revolute axes in the wrist create an approximately spherical wrist joint
important for brachiation in human ancestors
Figure 4.11. A geometric construction for simplifying the inverse kinematic
solution
Figure 4.12. The complete inverse kinematic mapping for the planar 2R
manipulator
Figure 4.13. The pinhole camera geometry
Figure 4.14. Top view of a 2D stereo geometry where depth is encoded
exclusively in stereo disparity
Figure 4.15. The binocular imaging geometry with independently panning
cameras. On the right, the stereo geometry is defined in terms of parameter



γ =θ +ϕ, the sum of the eye configuration, θ, and the angular offset from the
fovea, ϕ
Figure 4.16. Multi-sensor models of space and hand-eye coordination. This
illustration uses a different coordinate system than other Roger examples,
and arms/hands have been removed from images for clarity.
Figure 4.17. The Jacobian of the 2R manipulator transforms sets of
executable velocities in configuration space from posture (θ1, θ2) into sets of
achievable velocities in Cartesian space from endpoint position (x, y)
Figure 4.18. Singularities in the 2R manipulator
Figure 4.19. The 2D planar manipulator and a specific endpoint velocity
command
Figure 4.20. The velocity ellipsoid in terms of the eigenvalues and
eigenvectors of JJT for the planar 2R manipulator
Figure 4.21. The manipulator conditioning ellipsoids JJT for Roger’s 2R
manipulator
Figure 4.22. Triangulation parameters for Roger’s stereo system
Figure 4.23. Scaled localizability ellipsoids for Roger’s stereo geometry
Figure 4.24. Redundant solutions for the planar 3R manipulator at x=−1, 

Figure 4.25. Internal motions along the self-motion manifold of the planar
3R manipulator with l1 =l2 =l3 =1 and fixed endpoint position at x=−1.0, 

Figure 5.1. A palm view of the right hand shows the finger’s intrinsic
iterossei muscles containing as many as 120 muscle spindles per gram of
tissue
Figure 5.2. Cutkosky’s taxonomy of manufacturing grasps (Source: [68].
Reprinted with permission.)
Figure 5.3. A newspaper photo of the computer-controlled mechanical hand
built by Heinrich Ernst at MIT under the direction of Claude Shannon
Figure 5.4. Freddy was designed and built by a team of researchers at the
University of Edinburgh: Pat Ambler, Harry Barrow, Chris Brown, Rod
Burstall, Gregan Crawford, Robin Popplestone (pictured), and Stephen
Salter



Figure 5.5. The Hanafusa manipulator. (Source: Adapted from [102])
Figure 5.6. The Okada manipulator (Source: [217]. ©IEEE. Reprinted with
permission.)
Figure 5.7. The Lian, Peterson, Donath manipulator. (Source: [173])
Figure 5.8. The nine degree of freedom Stanford/JPL hand [250] equipped
with fingertip load cells on the end of a five degree of freedom GE P50
robot arm
Figure 5.9. The DLR Hand II. (Source: Courtesy of DLR, Institute of
Robotics and Mechatronics)
Figure 5.10. A 2D Cartesian hand-object system. (Source: Adapted from
Kobayashi [148]. © MIT Press)
Figure 5.11. The object frame O and the local contact frames Ci, i=1, 3
oriented with respect to the local surface normal
Figure 5.12. Two contacts form a grasp on an ellipsoidal object. (Left) The
geometry of a pair of contact frames relative to the object frame. (Right)
The magnitude of forces λ aligned with the contact frames.
Figure 5.13. The planar projection of the three-dimensional grasp in figure
5.12
Figure 6.1. A single element of a set of point masses comprising a planar
lamina. The  axis of frame O is directed out of the plane of the figure.
Figure 6.2. A rectangular body with total mass m rotates about the  axis of
coordinate frame A
Figure 6.3. An eccentric mass distribution that rotates about an axis that
passes through the origin of frame A
Figure 6.4. Moving the center of rotation to the center of mass
Figure 6.5. The simple dynamic model describing Roger’s eye
Figure 6.6. The dynamic parameters of Roger’s arm relative to inertial
shoulder frame 0
Figure 6.7. The feedforward compensator linearizes and decouples multiple
degree of freedom controllers
Figure 6.8. A smaller and dramatically underpowered pair (L and R) of
Roger’s 2R manipulators yields dynamic manipulability ellipsoid (JM−2JT)



for l1 =l2 =0.25 [m], m1 =m2 =0.2 [kg], and τTτ ≤ 0.005 [N2m2]. Gravity acts
in the negative  direction.
Figure 7.1. Projective geometry and image formation
Figure 7.2. Refraction at an optical interface. An incident light ray traveling
in air and an optical interface with n>nair.
Figure 7.3. Geometric parameters for the biconvex lens
Figure 7.4. Milestones in the evolution of the human eye: (a) the eyespot
consists of a layer of photosensitive cells; (b) a pit forms that makes the
primitive retina directionally sensitive; (c) the pinhole eye filled with water
to create sharper images; (d) transparent aqueous humor fills cavity with
transparent corneal covering; (e) the lens forms; and (f) the human eye
developed a separate iris, focusing musculature, and spherical eyeball
enclosed in a bony socket. (Source: Adapted from [100] and [28])
Figure 7.5. The extrinsic muscles for the oculomotor system. The
oculomotor nerve innervates the inferior oblique; the inferior rectus; the
medial rectus; and the superior rectus. The trochlear nerve innervates the
superior oblique, and the abducens nerve innervates the lateral rectus. The
inset at the bottom shows the displacement of the pupil due to the exclusive
action of the muscles.
Figure 7.6. Some of the cutaneous sensory neurons that provide feedback
signals to the somatosensory cortex
Figure 7.7. Raibert’s VLSI tapered tactile cell. (Source: Adapted from
[238])
Figure 7.8. Hillis’s elastic contact resistance sensor. (Source: Adapted from
[114]. © MIT Press)
Figure 7.9. Boie’s capacitive tactile sensor [19]
Figure 7.10. Begej’s optical tactile sensor. (Source: [35] © IEEE)
Figure 7.11. The Dario et al. artificial skin. (Source: Adapted from [69])
Figure 8.1. The open-closed quarter-wave resonance cavity
Figure 8.2. An analysis of the sound pressure level as a function of
frequency using the Computerized Speech Lab. The signal is the phrase
“the rainbow passage.” (Source: Courtesy Dr. M. Andrianopoulos)



Figure 8.3. An analysis of sound pressure level as a function of frequency
for a prolonged [a] vowel sound using the Computerized Speech Lab
(Source: Courtesy Dr. M. Andrianopoulos)
Figure 8.4. The F1 vs. F2 chart for 10 vowel sounds sampled from men,
women, and children (Source: Adapted from [277])
Figure 8.5. The continuous spatial function g(x) is sampled by a sequence
of regularly spaced Dirac delta functions f(x) to create the discrete
approximation h(x) of signal g(x).
Figure 8.6. The effects of sampling on reconstruction
Figure 8.7. Local computation of image features
Figure 8.8. The performance of a simple low-pass filter
Figure 8.9. The Fourier transform of the rect(x) function shows why it
behaves as a low-pass filter
Figure 8.10. The distinguishing appearance of an edge can depend on the
overall shape of the intensity surface rather than the magnitude of its first
derivative alone
Figure 8.11. Second-order N-jets can be used to sharpen edges in signals by
identifying the inflection point in the intensity function.
Figure 8.12. Fourier transform pairs for one-dimensional, derivative of
Gaussian operators at three scales σ =1, 2, 4: (a) the Gaussian low-pass
operator, (b) noise reduction and differentiation in the gradient operator, and
(c) the Laplacian (second-derivative) of Gaussian (LoG) operator in one-
dimension
Figure 8.13. An image of a field of sunflowers (reprinted by permission
from [175])
Figure 8.14. A part of the Gaussian Pyramid for the image of a field of
sunflowers
Figure 8.15. The top 200 scale-space blob responses in the scale-normalized
Laplacian of Gaussian (LoG) pyramid (reprinted by permission from [175])
Figure 8.16. Edges and ridges reported at σ =1.0, 16.0, and 256.0,
respectively (reprinted by permission from [175])
Figure 8.17. The result of automatic scale selection to detect edge (left) and
ridge (right) invariants (reprinted by permission from [175])



Figure 8.18. The result of automatic scale selection to detect corner
invariants (reprinted by permission from [175])
Figure 9.1. The afferents and efferents of the spinal cord
Figure 9.2. The evolution of the human brain
Figure 9.3. The sensory homunculus
Figure 9.4. The visual cortex
Figure 9.5. The motor cortex
Figure 9.6. The flow of information and control from sensory to motor
areas of the brain
Figure 9.7. Hierarchies in the sensory and motor organization of human
behavior
Figure 9.8. The Moro reflex
Figure 9.9. The palmar grasp reflex
Figure 9.10. The plantar reflex
Figure 9.11. The asymmetric tonic neck reflex
Figure 9.12. The Galant reflex
Figure 9.13. The Landau response
Figure 9.14. The symmetric tonic neck reflex triggered by neck extension
Figure 9.15. The lateral propping reflex
Figure 9.16. The parachute reflex is a bilateral extension to brace for a fall
Figure 9.17. The emergence and subsequent inhibition of several
developmental reflexes
Figure 9.18. A developmental sequence—a chronicle of some of the
milestones involving postural stability and the use of the hand during the
first 12 months. (Right) Gross motor development. (Left) Some of the early
fine motor developmental milestones.
Figure 10.1. Critical points in potential function ϕ, distinguished by the
value of the curvature of ϕ at the critical point
Figure 10.2. The Utah/MIT dexterous hand
Figure 10.3. Maximum manipulability model for the Utah/MIT finger.
(Left) Level curves. (Right) Scalar field  and streamlines



inside the reachable workspace generated by equation 10.7.
Figure 10.4. A geometrical interpretation of the gradient and nullspace of
artificial potential ϕ1

Figure 10.5. Cascaded nullspace projections create the c3 ⊲ c2 ⊲ c1 multi-
objective controller
Figure 10.6. Three distinct control responses for the same initial and final
configurations: (a) the PD control (second-order) arm response; (b) the
steepest descent in configuration space; and (c) the steepest descent in
Cartesian space
Figure 10.7. A subordinate POSTURAL action based on the manipulability
index is projected into the nullspace of the superior Cartesian endpoint
controller
Figure 10.8. The evolution of a two-contact grasp using the moment
residual control gradient. (Left) Three intermediate two-contact geometries
en route to the final grasp configuration and their respective 
coordinates on the phase portrait for this pair of faces. (Right) Multiple
distinct basins of attraction when different pairs of faces are considered
(reprinted by permission [59]).
Figure 10.9. A simulated planar grasp of a square object. States are
indicators of membership in models mi, i=0, 4. X denotes “unknown,” “T”
is the thumb, “1” is the index finger, and “2” is the middle finger.
Figure 10.10. The region of attraction R1 and the equilibrium set E1 ⊂R1 for
navigation function ϕ1 corresponding to controller c1

Figure 10.11. The region of attraction surrounding E1 can be extended by
sequential control. A sequential combination of c1 and c2 can be configured
to approach minimum E1 from all states in the interior of R1 ∪R2.
Figure 10.12. A visual inspection sequence traverses an aspect transition
graph defined by [γg γl γm γr] states and POSTURAL, TRACK, and SEARCH
actions in 𝒜 to read the barcode on packages
Figure 11.1. Thing, a 12-DOF quadruped
Figure 11.2. A single leg in contact with an external, horizontal surface
creates a moment about the platform’s center of mass



Figure 11.3. Two different three-legged stances that share legs 1 and 3.
Only one of the two stances formed by legs (l1l2l3) and (l0l1l3) can be stable
at a time.
Figure 11.4. Learning performance for the ROTATE gait. (Left) A learning
curve. (Right) Greedy performance.
Figure 11.5. The ROTATE policy with contingencies for a variety of run-time
contexts. The central cycle has transition probabilities of greater than 95%
in the training context.
Figure 11.6. The 0-1-2-3 leg control sequence in the ROTATE policy
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Preface

The technician in charge, guided by the directions for testing in the Handbook of Robotics, said,
“How are you?” The indicated answer was to have been, “I am well and ready to begin my functions.
I trust you are well, too,” or some trivial modification thereof. … He was instantly jolted by the
nature of the LNE-Prototype’s voice. It had a quality like no robotic voice he had ever heard.… So
surprising was this that it was only after several moments that the technician heard, in retrospect, the
syllables that had been formed … They were, Da, da, da, goo.
—“Lenny,” by Isaac Asimov [9]

Robots have been used to entertain, to teach, and to manufacture goods.
Examples of such systems extend back thousands of years and have sparked
discussions about autonomy, free will, and the difference between thoughts
and actions. Despite this long, multifaceted history, the vast majority of
successful robotics applications today rely on very little sensor feedback
and the modern-day equivalent of a mechanism used in eighteenth-century
music boxes.

Now, sophisticated sensors can be used to provide many types of
continuous feedback. Nevertheless, the average robot today still
accumulates very little experiential knowledge over time regarding
interactions with the world and engages in little or no reflection about
whether things are going well and are likely to continue doing so in the
future. A manufacturing robot, for example, may get a signal that a pallet of
parts has arrived that triggers preprogrammed strategies for picking up each
part and placing it in the required position. There is a lot of knowledge
encoded in this response to the signal, but none of it resides in the robot
itself—it is almost exclusively the contribution of the human programmer.



Consequently, manufacturing robots excel in repetitive tasks and highly
structured environments where uncertainty is assiduously avoided.

New applications are being considered, however, in situations where
more autonomous robots are required to interact with less well-structured
(natural) environments. These applications will challenge the ability of
external programmers to anticipate all the situations that might arise—the
robots themselves will have to own the knowledge behind their actions. In
these contexts, robots must participate in the discovery, organization, and
reuse of control knowledge acquired over time in the course of direct
experimental interactions with the world.

One of the principle challenges facing this new robot is computational
complexity—the complexity of the robot itself and of the unstructured
environment. In this setting, when faced with a new task, there exists a huge
variety of sensory and motor alternatives with different expected outcomes
and rewards relative to a task. Moreover, some of the events on which
expected rewards depend may not be in evidence or even directly observed.

How do animals cope so successfully with this overwhelming
complexity? The collection of processes underlying development are
certainly part (or most) of the answer. We focus on three principal
observations of the sensorimotor developmental stage: developmental
mechanisms exploit morphological properties of the infant that support
basic skills in low-dimensional actions, they improve as additional
resources are engaged, and development translates a huge amount of tacit
information encoded in the genome into implicit, actionable forms.

Embodiment presents a kinodynamic and perceptual setting that encodes
important innate structure. Properly activated by stimuli in the environment,
this combination of opportunities for effective action built into a body can
be composed to create hierarchies of acquired behavior (or skills) that
exploit these aptitudes, avoid kinodynamic limitations, and serve as
roadmaps through an otherwise intractible state space. In the process,
patterns of stimuli that activate roadmaps are discovered and used to carve
up the complicated world into recognizable affordances for behavior. This
process is clearly observable in animals of several species in the
sensorimotor developmental stage when young animals explore their
aptitudes and represent the world in terms of opportunities to express them.



We can test these insights from developmental psychology and
neurology by creating hypotheses that run on robots. In this book, we focus
on the first stage of human postnatal development, the sensorimotor stage,
wherein policies for postural stability, locomotion, and object manipulation
begin to emerge. This text explores what robotics says about the aptitudes
of embodiment and what psychology and neurology can tell us about the
sensorimotor stage to create a principled computational account of
development that can be applied to all embodied systems. Such a
framework provides a synthetic, controllable experimental basis for
evaluating theories in developmental psychology and, at the same time, will
lead to better, smarter robots.

Introducing Roger

At several places in the text, we make use of a simple robot named Roger to
reinforce the discussion. Roger is the descendant of another, simpler visual
and motor system also named Roger-the-Crab by Paul Churchland [53] to
study the kinematics of hand-eye coordination. Churchland’s Roger
consisted of a stereo vision system and a simple planar manipulator with
two joints that he used to show how independent spatial observers can be
related through a simple neural map relating Roger’s hands and eyes.

Roger-the-Crab
A mobile manipulator concept for exploring robotics, control, signal processing, learning, and
behavior.



We use a more elaborate Roger as a pedagogical device for acquiring a
practical understanding of the concepts discussed in the book. Roger moves
about in flatland (the x-y plane) by actuating two drive wheels in a
differential steering arrangement. He has two planar arms, each
incorporating two rotational degrees of freedom—one in the shoulder and
one in the elbow. A control program can apply a torque to each of these
joints. There are tactile sensors at the endpoint of each arm and in the body
that measure the magnitude and direction of the net contact force acting on
these bodies. Roger has two eyes (pinhole cameras) that can pan
independently. The eyes produce a stereo RGB (red-green-blue) image pair.

In total, Roger has eight degrees of freedom (two wheels, two eyes, and
two arms) and each DOF has sensors that report the current position and
velocity of the joint. The relationship between applied torque and
accelerations in the joints is governed by the body posture, the state of
motion, and equations describing the dynamics of the robot—Roger must
contend with significant inertial forces during controlled movement.

Intended Audience

Robotics is a unique discipline in that it affords us the ability to study
sophisticated machines and computation simultaneously in a platform
where we can precisely control experimental studies of intelligence. The
discussion in the book begins by studying the embodied systems on which
development depends—in particular, how embodied structure can be used
to compensate for the lack of structure in the open environment. The
discussion attempts, wherever possible, to compare and contrast human
bodies with their robotic counterparts. We explore the mathematical
foundations of sensory and motor systems, that might normally be covered
in a first course in robotics (kinematics, dynamics, actuators, sensors,
control, and signal processing). Much of the supporting mathematics is
introduced in the appendices so as not to interfere with the flow of the book.
The more advanced (and specialized) material presented (knowledge
representations, biological sensors, muscles and mechanisms,
developmental neurology, potential fields, learning, and redundant systems)
is critical to the overall thesis of the book. It provides much of the



representational framework that can be used to model development in robot
systems.

In addition to roboticists, this book might be of interest to

•  developmental psychologists and neurologists who wish to acquire a
mathematical understanding of kinematics, dynamics, control, and stability
—essential characteristics of developing human infants;
•  biomechanists and kinesiologists who typically have a strong background
in kinematics and dynamics and can benefit from the discussions of
peripheral sensors, control, neurology, redundancy, and learning;
•  behavioral neurologists who wish to get an introduction to computational
models for describing control, learning, and development;
•  computer scientists engaged in knowledge representations and learning;
and
•  cognitive scientists who wish to explore the role of embodiment.

The text has been used in an undergraduate course entitled Introduction
to Robotics, which caters to computer scientists and engineers as an
introduction to the mathematics underlying robot systems, perception, and
control. The content presented in chapters 2, 3, 4, and 6 represent the core
material for many undergraduate introductions to robotics. A recent offering
at the University of Massachusetts used chapters 1 (introduction), 2
(actuation), 3 (control), 4 (kinematics), 6 (dynamics), and 8 (signal
Processing), with selected subjects from other chapters and eight written
and related programming assignments.

The complete text (with liberal use of the written and programming
assignments) has been used successfully in a graduate course (primarily
computer science and engineering students) that focused on the special
properties of embodied machine learning systems. For this audience, it was
possible to cover all the material (albeit, at a slightly aggressive pace) in 32
hours of lecture and approximately 6–8 hours per week of independent
work outside of the classroom. The text has also been used for graduate
seminars engaging computer scientists, engineers, psychologists, and
students interested in cognitive science and philosophy. In this case, the
classes typically focused on the sections of the text that covered the
physiology, biomechanics, and cognitive attributes of human infants



(chapters 1, 2.1, and 3.1) as well as the proposed computational architecture
and the case study regarding hierarchical locomotion skills (chapter 10).
These classes also included supplemental material from other texts in
developmental psychology.

Several appendices are included to provide more complete introductions
to the mathematical concepts used in the body of the text. Appendix A
provides a selective primer to linear algebra and integral transforms.
Appendix B introduces common methods for deriving the dynamic equation
of motion for articulated systems. Appendix C reviews the basics of
numerical relaxation.

Our focus excludes a number of popular topics such as path planning,
geometrical reasoning, and SLAM (simultaneous localization and mapping)
as well as many new and specialized topics in robotics. We have done so to
emphasize the analog to biological systems and because excellent texts
already exist for these subjects. Moreover, a number of related topics will
not be pursued in any depth because to do so would lengthen the discussion
significantly. Human behavior depends ultimately on a hierarchy of
concerns from segmental reflexes to cortical sensory and motor processes,
social behavior, and cultural institutions. A complete account of
development must consider the influence of all these factors and is beyond
the scope of this text; these include the relationship between development
and language, emotion, social aspects of development (imitation and adult
scaffolding). We will also omit a discussion of modeling at the neural level,
despite the close relationship between computational learning methods and
neuroscience. However, we expect that the focus of the book will have an
increasingly important role in all of these issues as research proceeds—it is
our position that cooperation, communication, and social behavior can
emerge from exactly the same developmental processes that eventually lead
to mastery of the physics of movement and manipulation.
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1
Introduction

Thousands of years ago, early roboticists may have been engineers engaged
in state-of-the-art public works or priests and philosophers inspired by
mechanical automata to consider the relationship between mind and body.
Over many centuries, an increasingly diverse set of scientists and engineers
have remained attracted to this experimental platform as a means of
advancing science and technology in many different fields. Rapid recent
advances in our ability to build better and more sophisticated robots have
made them influential in increasingly important economic and social roles
as well.

Case in point: Robots are now an established tool in modern
manufacturing. However, most successful applications of manufacturing
robots still depend on programmer-specified states, actions, and precisely
controlled run-time contexts. In the manufacturing application, even small
deviations from the design context usually lead to expensive retooling and
reprogramming. The robotics revolution in manufacturing has been realized
by imposing a great deal of structure—essentially, restricting the run-time
environment until it meets constraints imposed by the automation. The
credit for progress in robotics, thus far, is due largely to new materials,
sensors, mechanisms, actuators, batteries, computing power, open-source
code repositories, and brilliant engineers. Very little credit can be attributed
to cognitive breakthroughs in the robots themselves. In fact, one could say
that robots suffer from a severe form of savantism—a developmental
disorder in which their impressive physical ability is in stark contrast to
their overall cognitive disability.



Today, roboticists are anticipating applications where robots will become
more commonplace in close proximity to human beings and provide
services that support daily human activities in unstructured human
environments. Unlike the manufacturing setting, robots in unstructured
environments (in the wild, so to speak) must have multiple kinds of sensors
to differentiate run-time situations and must, themselves, construct control
contingencies for dealing with many of these situations. These robots will
grow increasingly skilled at solving common problems in familiar
situations.

Since the 1950s, a growing community of scientists, combining insights
from psychology, artificial intelligence, linguistics, neuroscience, computer
science, anthropology, and philosophy, have focused specifically on
theories of intelligence. In 1973, Christopher Longuet-Higgins coined the
term cognitive science to describe the study of the processes of thought by
supporting testable theory and experiment as prescribed in the scientific
method like other natural sciences. However, cognitive science often
considers disembodied processes and disregards the significant contribution
of the body to knowledge and representation. In addition to creating more
flexible robots, studying knowledge representation in robotics advances a
platform for a synthetic approach to cognitive science that may well lead to
advances in that field as well. Cognitive robots—those that use stored
representations of the robot itself and the interactions it has with a complex
environment—must function adequately, as humans do, with incomplete
information. They must learn and transfer what they know to new
situations, substituting experience and cognitive structure for the spatial and
temporal structure of the manufacturing line.

A computational perspective on cognitive robotics quickly reveals major
theoretical challenges related to the scalability of machines that learn.
Nikolai Bernstein [23], credited with the invention of a field of study he
called “biomechanics,” described “dexterity” as a quality of intelligent
behavior denoting skill, flexibility, and creativity in sensory and motor
problem-solving. In his book, Bernstein noted that
mammals have relatively many more singular, aimed movements of attack, hunting, and so on. All
these actions are not stereotyped, differing from one occasion to another and displaying very accurate
and quick adaptability. They manifest progressive increase in an ability to quickly create new,
unlearned motor combinations exactly fitting an emerging situation.



Bernstein endorsed the idea that modular skills—recombined in many ways
with little effort to represent many contingencies—may have an advantage
over comprehensive, high-dimensional, and fully integrated behavior. He
elaborated the argument by identifying multiple independently useful
nonprehensile skills underlying the prehensile skills of primates:
accurate, precise, and strong targeted movements, such as aiming, touching, grasping, accurate and
strong striking, far and precise throwing, accurate and carefully planned pressing. These simple
movements … gradually developed into numerous meaningful chain actions, such as the handling of
objects [and] the using of tools.

To Bernstein, dexterity depends on the ability to create new motor
combinations, rapidly and efficiently, in new situations. It is supported by
unique idiosyncratic skills and strategies that can be different in every
individual and it reveals a deep understanding of problems and solutions.
The concept of a rich and flexible sensory and motor substrate giving rise to
cognitive representation of the external world is an essential part of human
intelligence—it’s likely to be an important key to creating new,
multifunctional dexterous robots as well. Bernstein’s concept of dexterity
quickly confronts what he called the “degrees of freedom” problem,
wherein perceptual and mechanical flexibility combined with environments
that are uncertain and unstructured leads to too many choices for control. A
computational perspective on dexterity suggests that the complexity of
deciding how to act in this context will be formidable, and yet the quality of
dexterity admired by Bernstein and others (quick-wittedness, adroitness) is
synonymous with computational efficiency.

Infants of many species, however, demonstrate the acquired ability to act
dexterously by relying on the structure imposed by embodiment together
with memories of past experiences. How can we understand the structure
introduced by embodiment, and how should memory be organized to
support dexterity? Mathematical tools commonly used in robotics to
describe the kinematics and dynamics of multiple degree of freedom,
actuated systems provide a solid basis for analyzing the aptitudes and
limitations of embodied developmental systems. In addition, computational
models of animal learning provide powerful machine learning tools for
robots that learn by exploration—interacting directly with the domain.
These tools provide some input into the content and organization of
memory necessary to support efficient responses to unexpected run-time



conditions. Still, a developmental curriculum is required that guides
exploration toward skills on the developmental frontier. For example, an
aspect of growth related to neurological maturation manages sensory and
motor resources over time to control the complexity of developmental
learning and control. Computational approaches to resource scheduling and
model checking may, likewise, present opportunities to learn incrementally
and in situ.

1.1 Knowledge and Representation

Nowhere is the difference between animals and robots more conspicuous
than in their comparative abilities to acquire, represent, and reuse
knowledge. Knowledge can be represented in different ways to support
different kinds of informative exchanges with the environment and to
facilitate different kinds of reasoning [70, 184].

Explicit knowledge is knowledge that has been codified in a compact,
symbolic, and easily articulated form. It supports communication between
individuals and transfer to new tasks. Encyclopedias, dictionaries, and user
manuals are all good examples of explicit knowledge representations—they
presume a “common ground” between the source and the consumer of
information. For example, in figure 1.1 the meaning of push is defined by
reference to force, which in turn is defined by circular reference to energy
and strength [246]. This is how dictionaries work—language is grounded
by association. Consequently, the meaning of push is determined only after
one of these references bottoms out in something the agent really knows.
Only then can this grounded reference to meaning be propagated
throughout the semantic network in figure 1.1 and to related concepts. In
this sense, language is purposefully vague. When we are asked to consider
the phrase “fresh-baked bread,” for example, these three syllables are
instantly associated with sights, sounds, aromas, tastes, and memories of
people and perhaps a kitchen from long ago or your favorite bakery.
Linguistic tokens are labels for concepts that require the listener to provide
proprietary, grounded associations to color and nuance them according to
individual experience.



Figure 1.1
Using a circular network of definitions from Webster’s Dictionary, Deb Roy [246] explains that to
use such symbolic networks, at least one of the references must be grounded (adapted from [246]).

Skills, like riding a bike or playing the piano, are idiosyncratic and
generally cannot be articulated or communicated completely between
individuals. In taxonomies of knowledge representations, this is referred to
as implicit knowledge—acquired as the agent explores direct interactions
with the environment. This kind of knowledge encodes policies for
transforming sensor feedback into control inputs with respect to an
objective function. Implicit knowledge, represented as control circuits, for
example, represents a coordinated strategy for perception and action that
solves a familiar problem in the context of a range of run-time
environments. Implicit knowledge cannot, in general, be completely
engineered by a third party, nor can it be created in a manner that is
completely independent of how it must be used. It describes patterns of co-
occurring stimulation that actually occur during interaction now with the
real world and so it avoids problems of circular semantics. Moreover,
implicit knowledge represents sensory and motor interactions that unfold in
reliable sequences and, thus, reflect both the agent and the environment.

Tacit knowledge is encoded in the agent’s physical and precognitive
configuration. It includes such things as the performance of sensors and
actuators as well as the kinematic characteristics of a controllable sensor
geometry. In animals, tacit knowledge is selected by objective measures of
fitness in the course of genetic variation and natural selection. It is compiled
into neuroanatomical structures including peripheral sensors, body size and



mass distribution, and programs for growth and maturation. Animals are
born with considerable knowledge built in.
Built into the body by the genetic code are structures (hard head, strong muscles, good eyes) and
functions (being able to duck without thinking, for example). Structure, function, special adaptations,
instincts—all of these presets in the organism provided for by the genes—are “knowledge.”
(Wilson [293])

Thus, embodiment determines the range of interactions an agent can have
with the environment. It determines which aspects of this interaction can be
observed and what subset of the interaction state it can control. The
knowledge hierarchy rests on the foundation that tacit knowledge provides
—it informs higher-level decision-making by biasing interactions toward
those that exploit the agent’s kinodynamic and perceptual aptitudes, and it
provides the foundations for acquired implicit and explicit conceptual
structure.

1.2 Embodied Cognitive Systems

Since the middle of the twentieth century, there has been a growing interest
among roboticists and cognitive scientists regarding the role of embodiment
in cognitive systems [282, 162, 41, 278, 224, 275]. The emerging
philosophy challenges almost 500 years of Cartesian dualist philosophy that
considers acting and thinking to be separate and independent concerns
requiring different principles and representations. Instead, the integrated
embodied system paradigm acknowledges the active nature of cognition
where movement and perception support direct experimental interactions
with the world and, hence, the accumulation of situated knowledge. Still, it
remains to be determined how the skill and knowledge that reside in control
circuits like these can be learned autonomously, organized hierarchically,
and acquired in an order that manages the incremental complexity of
learning—this is the objective of active research in developmental
programming.

1.3 Developmental Robotics

Instead of trying to produce a programme to simulate the adult mind, why not rather try to produce
one which simulates the child’s? If this were then subjected to an appropriate course of education one



would obtain the adult brain.
—A. M. Turing, 1950 [280]

The “curse of dimensionality” is often cited as a basic challenge in machine
learning. The “curse” requires that to achieve a given coverage in sampled
training data, the number of samples grows exponentially as the
dimensionality of the data increases. If 10 samples are sufficient to
approximate a function of one parameter, then on the order of 10n samples
will be necessary for functions that depend on n independent parameters.
This gets out of hand very quickly. There are, conservatively, 200
independent degrees of freedom (DOF) in the human body. Ten unique
postures for each of these degrees of freedom yields on the order of 10200

postural states of the body.1 Moreover, precise movements between postures
can require activating different combinations of thousands of motor units,
and humans inhabit a large variety of different habitats on Earth (and
occassionally, elsewhere). Searching for rewards in this enormous number
of states and actions is challenging, but animals of many species routinely
solve problems that are comparable in scale.

A community of developmental roboticists are studying principles of
animal development that can explain how embodied systems can defeat the
enormous complexity of cumulative learning in open, unstructured
environments [290]. Observations of such systems reveal that
developmental learning leverages structure tacitly encoded in the embodied
system to learn from direct exploratory interactions with the world [253,
254, 193, 179] and can, therefore, address tasks that cannot be fully
anticipated in advance by human engineers [117, 32, 212, 160, 109].

Computational accounts of development propose a tightly coupled
relationship between learning and embodiment mediated by elective
actions, perception, and cognitive representation [198, 199]. These
approaches have been incorporated into experimental frameworks for
cumulative learning in order to address many tasks and run-time
environments [253, 75, 228, 58, 33]. Several studies (e.g., [8, 179]) state the
explicit desire to influence theories of development and intelligence in
biological systems embedded in natural settings as well. Some research in
this area specifies a developmental scaffolding provided by a human
programmer [212, 160, 108]. Others seek stronger methods and
autonomous progression through developmental stages, often using



information theoretic measures to identify developmental frontiers and to
determine when those frontiers should advance [267, 257].

An influential hypothesis at the boundary between robotics and
developmental psychology formulates development in terms of dynamical
systems theory [274, 273, 302, 141]. The developmental chronology
leading to adult human walking behavior is a striking example of how the
intrinsic dynamics and neurological structure of the infant team up to solve
difficult learning problems during the first year of life.

Example: Learning to Walk: A Developmental Conspiracy

The earliest indications of a mature walking gait can be elicited from the
newborn child. At birth, if an infant is held so that the soles of its feet touch
a supporting surface and the experimenter moves the infant forward, it will
raise one leg, move it forward, and lower it again—first one leg and then
the other—using a motor circuit called the bipedal gait reflex [274]. To
accomplish this, the infant’s nervous system triggers a pattern of muscle
innervations that couple the pair of limbs through the pelvic girdle in
response to proprioceptive signals from the periphery.

The gait reflex illustrates the genetic structuring of a neuromuscular and
kinodynamic synergy in service to important locomotion tasks that lie in the
infant’s future. To become an independent biped, several other
developmental dominoes must fall into place. The newborn’s leg has been
flexed in gestation and needs exercise to increase the range of motion and
improve the strength-to-weight ratio of the extensor musculature. While this
is happening, the infant grows, lengthening and hardening bones, changing
the distribution of mass, and improving muscle tone as the infant acquires
policies for postural stability and balancing.

The influence of growth and maturation on the performance of the
developing infant is obvious in the “ontogenetic landscapes” created in the
seminal work of Thelen [274]. For example, figure 1.2 illustrates the
emergence and differentiation of stable locomotive behavior over the course
of the first year. At three months, the same experiment that elicited the
bidepal gait reflex at birth will show a reflexive extension of the leg when
the soles of the feet contact the supporting surface. This response is called
the positive support reflex, and its emergence prepares the limb to support



the mass of the body. At about five months, infant growth begins to disrupt
the dynamics of the bipedal gait reflex. The support and forward motion
stimuli still presumably trigger the gait reflex, just as before, but the
amplitude of the response is significantly attenuated in part by dynamic
influence of the body itself. The positive support reflex and a related distal
stiffening2 dominate in this stage and produce the stiff-legged appearance
characteristic of a toddler. The infant is now focused on the problem of
balancing while still supporting itself using its arms and contacts with walls
and furniture. As the infant ventures out on its legs, away from other forms
of support, it has a characteristically wide stance and stiff knees. With a
little practice, the infant begins to adapt to variation in the slope of the
terrain or obstacles where their foot must fall. With additional growth,
strength, and skill the gait narrows, generating greater forward velocity [39]
and eventually presenting the bipedal swing gait, buttressed by the
reactivated gait reflex along with an array of supporting skills.



Figure 1.2
Thelen’s ontogenetic landscape. Time in the right column is in units of months after birth and denotes
approximately when the behavior begins to be observed (estimated from figure 9.18). (Adapted from
[274].)

☐

In the spectrum of the research on developmental robotics described
above, this book focuses on the beginning—the infant’s first year—where
so much “robotics” is accomplished in the maturing infant’s brain (see
figure 9.18). The infant is exploring what its body can do and where the
environment affords rewarding opportunities to exercise these aptitudes.
From the moment of birth, the processes that guide the sensorimotor stage
of development are on full display providing the opportunity to study this
foundational layer of postnatal development and focus on the nexus
between developmental learning and robotics.

1.4 Frontiers in Robotics



The impact of a theory describing sensorimotor development that can be
applied in synthetic (robot) systems will yield behavioral robustness and,
thus, support applications of autonomous robotics that are currently beyond
the state of the art. For example, the service robotics industry is projected to
grow quickly with new products entering the market at an accelerating rate.
In this respect, the robotics industry shares important characteristics with
the automobile industry in the early twentieth century and the home
computer market in the 1980s [256]. New technologies for actuation and
sensing promise to make robots more responsive to unexpected events in
their immediate surroundings. New system architectures are improving
responsiveness and robustness, and new technologies for grasping and
manipulation provide the basis for mobile manipulators that can interact
manually with their surroundings to set the world into motion and do work.
Coupled with maturing technologies for mapping and navigation, mobile
manipulators may well evolve to serve new roles in less well-structured
human environments. Principles of development may prove to be
indispensable tool as robots acquire cognitive representations of this richer
class of interactions.

One emerging industry that will benefit is health care, in particular,
residential eldercare. As a whole, health care is the largest segment of the
US economy and is becoming too expensive to deliver. The mainframe
approach to medical care is limited in capacity and some experts are calling
for new technologies that support distributed and more personalized health
care. Asia and Europe are already experiencing demographic pressure that
demands more efficiency and productivity in eldercare now [247].
Technology for “aging in place” includes information technology and
assistive devices that can coexist with humans in home health care settings.
Appropriate technology will provide affordable cognitive and physical
assistance and improve the relationship of clients to caregivers, family, and
community support services. Some of the tools for personalized medicine
will incorporate sophisticated knowledge specific to particular clients and
their homes that adapts over time to lifestyle and disability. Clearly, it
would be difficult, if not impossible, to engineer this knowledge in the
traditional sense. Here again, developmental principles may prove to be
indispensable.



The frontier of human exploration in the twenty-first century requires
long-term exposure to extreme environments on Earth, in space, and on
other planets. The logistics of maintenance and supply at the threshold of
these environments exposes people to significant risks. Servicing satellites
in orbit and refueling interplanetary expeditions are examples of possible
future roles for autonomous robots. Likewise, robots that build human
habitat on the Earth’s Moon and Mars without requiring constant, low-level
human supervision may pave the way for permanent colonies on other
planets. Autonomous machines might assist human pioneers—digging
trenches, mining mineral deposits, repairing other machines, transporting
equipment over large distances on challenging terrain, or moving gingerly
over the surface of gossamer orbiting structures. It is difficult to imagine
that human engineers can anticipate the situational knowledge that these
robots will need. Once again, principles of cognitive development may
support robots that adapt to their peculiar environments autonomously.

Finally, successful computational approaches to development in robots
may provide new ways of understanding developmental phenomena in
humans. Neuroscientists, neurologists, and developmental psychologists
study the organs and processes of knowledge acquisition in humans—each
discipline contributes critical pieces of the puzzle, but they are hampered by
serious methodological constraints. At one extreme, neuroscientists study
structure without reference to the environment or the ecological niche that it
serves. At the other end of the spectrum, neurologists and developmental
psychologists study integrated cognitive agents using relatively short-term
empirical studies that are difficult to completely control. In either case, the
resulting description of the developing human infant, for instance, is
procedural rather than declarative and sheds little light on the mechanisms
of development. A synthetic computational approach to development and
knowledge acquisition in sensory and motor systems is likely to become an
important new tool in these communities as well because it must rest on
theories of mechanism and can be used to conduct controlled
experimentation into the interactions between a cognitive agent and its
environment. As a consequence, the biggest impact of research on next
generation robots may well be its influence on our basic understanding of
behavior in many animals and in ourselves.



1.5 Organization of the Book

Early in his book on synthetic psychology, Braitenberg [38] states the law
of uphill analysis and downhill invention, which observes that it is difficult
to infer the processes responsible for the behavior of an organism by
observing its behavior alone—that analysis is harder than invention. A
consequence of this asymmetry holds that when we analyze behavior to
infer mechanism, we tend to overstate its complexity and, as in many other
domains, the simplest explanations are often the best.
What I cannot create, I do not understand.
—Richard Feynman, California Institute of Technology

The epigraph above was taken from Nobel laureate Richard Feynman’s
blackboard at the time of his death. When Feynman said “create,” he almost
certainly did not mean it literally. Instead, he meant that, starting from
scratch, a complete understanding of a concept required a firm
understanding of each step of the reasoning involved and that the exercise
of explaining it simply and concisely contributes a deeper appreciation for
the problem. The wisdom of this insight is especially relevant to the
understanding of development and its relationship to robotics, where
“create” in Feynman’s quote may take a different meaning than it would to
a theoretical physicist. In the context of developmental theory, “create” may
literally mean building a developing robot system. This book approaches
developmental robotics with this objective in mind.

If robots and computational systems are to be effective platforms for the
study of human development, we should pause to consider what the
successful outcome of such a study is likely to be. We should not
necessarily expect the developing robot to behave qualitatively as the
human infant behaves. The central hypothesis of this text holds that
development is inseparable from the embodiment of the agent—the
performance of motor systems, the mechanics of movement, and the
performance and spatial distribution of sensors. Robots (even humanoid
robots) are more like an alien species than they are a bifurcation from some
existing branch of the evolutionary tree of life on Earth. The qualities of
development in this strange new agent should be recognized in terms of its
impact on the complexity of learning, its positive impact on the



transformation of tacit knowledge into actionable forms, and its improved
ability to transfer acquired knowledge into new contexts and tasks. This
book takes a strong architectural view of development as a design guide for
implementing developing robot systems and, thus, achieving robust and
intelligent sensorimotor machines—as Feynman might have counseled. We
set modest goals that focus on the role of development in the sensorimotor
stage first because it is required in embodied development, and, as a result,
we discuss what unique forms of structure the robot system brings to the
table. To this end, the book is organized in four parts to introduce a variety
of topics from many disciplines.

Part I: Motor Units—The book begins at the end of the cognitive
spectrum most responsible for movement. Mechanisms for actuation have a
huge influence on the performance of movements. The viscoelastic
properties of muscle tissue, for example, contribute significantly to
movement and control, and it is clear that the dynamics of robot actuators
have a similarly profound impact on the quality of movement in robot
systems. In chapter 2, the active and passive properties of actuation are
discussed and their influence on the quality of movement is presented.

All motor behavior, whether reflexive or highly trained, ultimately
causes movement by submitting references to motor units. In vertebrates,
these primitive motor units use closed-loop spinal circuitry that accelerates
the animal’s limbs in order to eliminate postural errors. Chapter 3
introduces techniques from linear, closed-loop control to provide an analog
of such equilibrium setpoint controllers for use in robot systems. A classical
mathematical treatment of the spring-mass-damper system is used to derive
the time- and frequency-domain response of such systems and to introduce
analytical descriptions of system stability.

Part II: Structure in Kinodynamic Systems—The geometry of the
sensors incorporated into the embodied agent determine their relationship to
information distributed in the three-dimensional world. Consequently, the
kinematic and dynamic properties of an embodied system influence access
to information that is otherwise hidden in an unstructured environment. The
most durable knowledge available to a robot is the reliable kinodynamics of
its own body. Chapters 4 and 6 review tools for describing geometric and
inertial properties of mechanisms, especially linear techniques for



identifying the kinematic and dynamic aptitudes of articulated mechanisms.
These mechanisms create controlled movements and, thus, change the
viewpoint and acuity of sensors. Redundant kinematic systems are
discussed that solve a given problem in many different ways and afford the
opportunity to optimize behavior over multiple performance criteria at the
same time.

The distinctive human brand of cognitive ability derives largely from the
dexterity of our hands. Hands impose a powerful inductive bias on learning,
development, and cognitive organization. They are special in the spectrum
of perceptual organs because, in addition to being an important means of
deploying our sense of touch, they are used to manipulate the world in ways
that expose new, hidden information. They are an important cognitive organ
as well and much of this value stems from the kinematic relationship
between hands and objects. Chapter 5 applies the new tools developed in
chapter 4 to examine the kinematic qualities of a candidate grasp.

Part III: Structure in Sensory Feedback—New sensor devices are
invented every year that measure an increasingly diverse range of signals,
some of which have no biological analog. Part III starts by focusing on two
important sensors that do have a biological counterpart. Chapter 7
introduces natural and artificial sensors for detecting light reflecting from
environmental surfaces, introduces some of the mechanoreceptors of the
human hand, and surveys some of the robot sensors designed to serve these
roles in engineered systems.

Signal processing is a rich field that has a mature computational
foundation. We concentrate on low-level signal processing that can produce
feedback for use in closed-loop control processes and that can be applied
generally to many kinds of signals. Chapter 8 discusses how information is
encoded in these heterogeneous signals. Spectral analysis using the Fourier
transform is introduced to consider how information is affected when
continuous signals are sampled to produce feedback, and scale-space filters
are discussed as a means of recovering the deep structure in a signal.

Part IV: Sensorimotor Development—Humans (and many other animals)
enjoy a neurological organization that guides the developing infant through
a sequence of sensorimotor milestones. Chapter 9 discusses developmental
reflexes as well as mechanisms of growth and maturation in human infants



that serve this role while controlling the incremental complexity of
sensorimotor learning. We identify several principles that support
developmental algorithms for use in robot systems.

In chapter 10, we discuss how admissible control laws can be used to
implement hierarchies of closed-loop movement primitives that submit
references to embedded motor units. The control basis framework is
employed to provide a discrete set of closed-loop movement primitives
parameterized by sensory and motor resources that can co-articulate
multiple objectives in a strictly prioritized way. Every combination of these
resources creates a (unique) closed-loop action that submits new references
to motor units and returns its internal state to supervisory programs.

Finally, this framework is demonstrated in a case study concerning a
reinforcement acquiring mechanism for acquiring hierarchical skills. We
sketch a framework that can incorporate policies for several other
locomotion skills in a gross motor hierarchy that can walk and navigate.
The examples of synthetic sensorimotor development presented in this
chapter illustrate a staged developmental process in which implicit
knowledge about the domain is acquired and reused to implement solutions
to more complex tasks.

1.6 Exercises

1. Knowledge types. Are the following most appropriately considered tacit,
implicit, or explicit sources of knowledge? Please support your answer.

(a) “apples are red”
(b) an expert golf swing
(c) the distance between your eyes
(d) your hair/skin color
(e) the difference between keys and loose change in your pocket
(f) shivering/perspiring
(g) the ratio of the circumference of a circle to its diameter
(h) laughing when tickled

2. Transmitting knowledge. Describe how tacit, implicit, and explicit
knowledge is transmitted effectively between two agents. Support your



answer with examples.
3. Closed-loop processes.

(a) The field of cybernetics draws a relationship between open- and
closed-loop control and analogous biological processes. Give one
example each of open- and closed-loop mechanisms in the human body.
(b) Closed-loop stability is an important aspect of other environmental
processes as well. Give some examples of stable closed-loop systems at
the planetary scale that are critical for life on Earth.

4. Tacit knowledge: Braitenberg vehicles. In 1984, Valentino Braitenberg
published a book entitled Vehicles: Experiments in Synthetic Psychology
that demonstrated how tacit neurological structures can transform stimuli
from complex environments into rich and complex behavior [38]. The four
simplest Braitenberg “bugs” are illustrated here.

The lover incorporates ipsilateral (same side) connections between the
vehicle’s sensors in the front and its wheel motors. The connection is
inhibitory or excitatory (the former designated by the small circles near the
wheels). A lover’s motors are inhibitory—full-on in no light, slowing as
stimulation increases, and capable of reversing direction in very bright
light. When more light is detected on the right photocell it slows the right
motor more than the left, orienting the vehicle toward the light and causing



the trajectory in the picture. When these bugs are themselves sources of
stimulation to one another, they exhibit very complex behavior that is
strikingly natural in appearance.

(a) Explain the trajectories of the other three types of vehicles (the
coward, explorer, and aggressor) created when other combinations of
inhibitory/excitatory and ipsilatoral/contralateral control logic is used.
(b) Suppose that the vehicles each carry a light source.

i. How will a pair of lovers behave?
ii. How will a lover and a coward interact? Is there a more
appropriate name for these two agents in this multi-agent context?
iii. How will a lover and an explorer interact? Is there a name for the
role of these two agents in this multi-agent context?
iv. Predict how a random population of hundreds of these bug types
might behave in a closed environment.

5. Invent your own homework. Make a homework problem out of your
favorite content in chapter 1. Write a question and a solution for it from the
material in the reading. The problem can call for a short discussion,
analysis, or calculation—it should not take more than 30 [min] to solve
open-book.

1. By way of comparison, the number of atoms in the known universe is estimated to be between
1078 and 1082.
2. A distal co-contraction reflex appears to be a common motor policy during the acquisition of new
motor skills throughout the life of a human being. One can see the effect by observing a grown-up
novice learning to ice skate.



I
MOTOR UNITS



2
Actuation

Definition 2.1: Actuator.  A physical device that transforms electrical,
chemical, or thermal energy into mechanical energy.

Actuators determine how quickly and smoothly a visual sensor can track
stimuli; how precisely a contact force can be controlled; and how much
mechanical work can be applied to the environment. Actuation is, thus, an
appropriate place to begin the study of the origins of knowledge in active
perceptual and motor systems.

This chapter begins by reviewing the properties of muscle that
collectively lead to grace and power in biological systems. In addition, the
physics and electrodynamics of permanent magnet DC motors are presented
in detail followed by a brief description of other familiar and commonly
used actuators. Finally, some emerging technologies that may lead to new
actuation concepts in future robot systems are reviewed.

2.1 Muscle

Quite a long time ago, a specialized soft tissue evolved in a common
ancestor to many animals that creates contractile forces from specialized
biomolecular interactions in response to electrical stimulation. Muscle has
important active and passive properties that influence the acceleration and
stiffness of an actuated limb. From the perspective of a molecular biologist,
an organism is a complex assemblage of many such molecular machines
that move and interact with each other through malleable noncovalent



bonds. The force source in muscle is one such molecular machine based on
the interaction of two important proteins, actin and myosin. This
combination is ubiquitous in the animal kingdom as a means of
transforming the chemical energy in cells into mechanical work. So
common is this actuator in biology that working hybrid muscles can be
fabricated by combining actin and myosin from different animals. Slime
molds (and soil amoeba) employ a pure form of actin that when combined
with meromyosin extracted from rabbit muscle will produce a kind of
hybrid slime mold–rabbit muscle. Human muscle is made of the same stuff
—the descendent of molecular structures inherited from some of the oldest
organisms on earth.

2.1.1 The Contractile Proteins

Figure 2.1 shows the main structural characteristics of the myosin molecule
at the heart of muscular contraction. Myosin consists of several molecular
chains that researchers have successfully extracted from processed muscle
tissue. The distinctive myosin molecule has a long tail with a double-lobed
bulbous head on one end where interactions with actin take place to create
contractile forces. The heavy molecular chains (heavy meromyosin or
HMM) form the bulbous working end and constitute roughly two-thirds of
the total molecular weight. Separate light chains have also been identified,
including the alkali light chains (A-1 and A-2) and the DTNB light chains
—named after the treatments that dissociate them from the rest of the
molecule. The light meromyosin (LMM) tail is about 1000 [Å]1 in length
and is primarily an elastic structural element that connects the molecule into
the thick filament structure (figure 2.2).



Figure 2.1
Myosin molecules consist of multiple molecular subchains that participate in specialized roles.
(Source: Adapted from [45, 192])



Figure 2.2
Structure of striated muscle. (Source: Adapted from [192])

The counterpart of the myosin molecule in the actin-myosin interaction
is the relatively small G-actin molecule. In its polymerized form, it forms a
fibrous double helix called F-actin—part of the thin filament structure
(figure 2.2). Together, the myosin and actin filament structures form the
central mechanism for active muscular contractile forces.

2.1.2 The Sliding Filament Model

Striated muscle tissue is a hierarchical structure that is organized to support
as many actin-myosin interactions as possible per unit volume of muscle
tissue. Figure 2.2 illustrates the structural hierarchy of striated muscle at
several levels of detail from bulk tissue down to the molecular interactions
that generate contractile forces in the quadriceps muscle. This large muscle



is made up of bundles of muscle fibers (also known as myocytes or muscle
cells), each of which is composed of several myofibrils. The myofibrils are
constructed from linear chains of sarcomeres—the smallest unit of
actuation.

A sarcomere combines a latticework of thin (actin) and thick (myosin)
filaments into a linear actuator between two disks of connective tissue
called Z-disks (Z sections in figure 2.2). Neural stimuli propagate over the
surface of the muscle tissue and penetrate into the sarcomeres through the
Z-disk, causing the thin actin fibers to bind free calcium ions in troponin.
These Ca++ ions prepare attachment sites on the thin filament for the S-1
subchain (figure 2.1) in the head of myosin molecules in the thick
filaments. After it attaches, the head of the myosin molecule changes shape
and its angle of attachment to the thin filament, producing a shear force
between the thick and thin filaments [192]. If the bulk force is sufficient to
cause a contraction against the load, the thin filament will slide 50–100 [Å]
relative to the thick filament, changing the relationship between actin and
myosin and causing them to detach. This process is repeated
asynchronously over many sites in the sarcomere to generate forces and to
amplify displacements over the length of the myofibril.

Figure 2.3 illustrates a model of the actin-myosin attachment involved in
the contraction of striated muscle under a uniform load. The model is
originally due to Sir Andrew Fielding Huxley, a Nobel prize–winning
physiologist and biophysicist [124, 192]. The model assumes that the thick
(myosin) filament is fixed at section M in figures 2.2 and 2.3. When the thin
filament moves to the right, the muscle is stretching, and when it moves to
the left, the muscle is contracting. The relative position of the active head of
the myosin molecule is subject to elastic forces connecting it to the thick
filament with an equilibrium position defined at x=0 (figure 2.3) and a
maximum deflection x=h of the active site. When the head of the myosin
molecule links to the active site on the thin (actin) filament, a crossbridge is
formed that applies these elastic forces to the thin filament.



Figure 2.3
The Huxley model of a single actin-myosin interaction undergoing a constant force contraction.
(Source: Originally due to [124], adapted from [192])

Let 0 ≤ n(x) ≤ 1 be the probability that the crossbridge in figure 2.3 has
been formed at displacement x. Huxley estimated the rate of change in the
probability of attachment as the weighted sum of two kinds of events in the
population of active crossbridges:

where f(x) describes the probability that a new attachment will form where
a crossbridge doesn’t currently exist, and g(x) describes the probability that
an existing crossbridge will detach [125]. The shapes of functions f(x) and
g(x) that Huxley chose are illustrated in figure 2.3 (b). To continue the
probabilistic formulation, these functions should be normalized on the
interval [−h, h] so that they constitute probability distributions. By doing so,
these same models can be used to describe the bulk properties of muscle as
well as the behavior of a single actin-myosin interaction.

Huxley demonstrated that the shape of these functions is less important
than the asymmetry about x=0. If x<0, muscular forces would be negative,
requiring muscles to push on tendons rather than pull. Therefore, for x<0,
Huxley chose the rate of attachment f(x)=0 and the rate of detachment
g(x)>>0. Conversely, when 0<x<h, f(x) dominates g(x). These properties
lead to behavior where muscles tend to shorten in response to neural
excitation. While the model is very simple and says nothing about the
biomolecular processes that lead to this behavior, it provides a descriptive
account that predicts reasonable muscle behavior. There is a large literature



that extends the model and a more complete introduction can be found in
the seminal text by McMahon [192].

So far, the discussion has focused on the developed tension—the active
generation of force in muscle tissue. However, the net output of a bundle of
muscle fibers (as in the quadriceps muscle in figure 2.2) depends on passive
viscoelastic properties of muscle tissue as well.

2.1.3 Active and Passive Muscle Dynamics

After receiving neural activation and before any contraction is evident,
muscle tissue responds by becoming resistant to stretch. After a short delay,
the activated muscle begins to contract. Under isometric (constant length)
conditions and subject to periodic activation, the developed tension
combined with the passive properties of the tissue produces forces like
those in figure 2.4.

Figure 2.4
A qualitative description of the isometric twitch, unfused, and fused tetanic responses in larger
mammalian muscles subject to periodic activation at 5, 20, 40, and 60 [Hz]. (Source: Adapted from
[192])

For low frequency activation, a sequence of independent muscle twitch
contractions is observed that can last anywhere between 7.5 and 100 [msec].
If the activation pulses are applied at higher frequencies, individual twitch
responses overlap and add—the average steady state contractile force



increases and the amplitude of the output ripple decreases. This
phenomenon is called unfused tetanus. In mammalian muscle, the steady
state ripple in the output is insignificant at an input activation frequency of
about 60 [Hz]. In this situation, the output is a constant contractile force
called fused tetanus and it yields a maximum output in a muscle like the
quadriceps of about 20.0 [N/cm2].

These phenomena all relate to the isometric test conditions in which they
are observed. Even so, to account for these observations, the molecular
mechanisms of developed tension discussed in section 2.1.2 must be
extended to include the passive viscoelastic character of the muscle tissue
itself. These passive properties are even more influential when the system is
in motion. Figure 2.5 shows how muscle dynamics influences overall
performance [192]. It illustrates the capacity of “muscle in motion” to
generate forces as a function of its position and velocity. Figure 2.5 (a)
illustrates normalized muscle tension as a function of the length of the
muscle relative to its free length l0. The diagram shows both flexed (l/l0 <1)
and extended (l/l0 >1) configurations. The passive tension for flexed
configurations is assumed to be zero. The diagram provides a qualitative
illustration of what the total muscle tension—the sum of the developed
tension and passive viscoelastic tension—looks like for some larger
muscles as well.



Figure 2.5
Qualitative force capacity of muscle as a function of length and velocity. Tension T is normalized by
the maximum developed tension (Tmax), power P by maximum power output (Pmax), length l by
muscle free length (l0), and velocity v by the maximum unloaded contractile velocity (vmax). (Source:
Adapted from [192])

The influence of muscle (and limb) velocity of muscle force is illustrated
in figure 2.5 (b). It plots normalized tension against normalized velocity.
For positive v/vmax, the net force generated decreases as velocity increases.
For v/vmax <0, the muscle is capable of greater tension to a point but quickly
gives up and yields when the muscle begins to lengthen. The developed
power (the product of developed tension and velocity) generated by the
muscle is illustrated in the blue curve in figure 2.5 (b). The most striking
feature of these plots is the nonlinear and asymmetric behavior of muscle as
an actuator. It is unilaterally contractile, has limited range of motion, and
behaves very differently when it is extended versus flexed and when it is
contracting versus lengthening.

Despite the clearly nonlinear character of muscle, a linear model of its
behavior can provide insight into some of the important aspects of bulk
muscle dynamics. Figure 2.6 presents such a model that is often cited by
researchers [192]. Function F(x, t) is used to model the active contractile
behavior of muscle (the developed tension). Figure 2.6 extends Huxley’s
elastic molecular account of the actin-myosin interaction with additional
viscoelastic components to represent the passive properties of muscle
tissue. For example, it has been observed that at a given stimulation level,
muscle tension decreases with velocity. To model this phenomenon, a linear



dashpot (or damper)2 is introduced that produces an opposing force
proportional to velocity . This may also serve as a linear
approximation of the pre-stiffening behavior prior to contraction. To model
the passive elasticity of the muscle system, two linear springs are included.
The spring Kmuscle is arranged in parallel with the force source and the
dashpot to represent the elasticity of the muscle tissue. Another spring
Ktendon is arranged in series to model the elastic tendons that attach the
muscle to the skeletal load. We will analyze systems composed of such
linear elements in more detail in chapter 3.

Figure 2.6
The Huxley model combining active and passive muscle dynamics

Muscle tissue is remarkable stuff, capable of storing a small amount of
energy for direct use and making more from using both aerobic (fast) and
anaerobic (slower) chemical pathways. The raw materials for these
pathways ultimately come from glucose and fatty acids in the bloodstream
and stored in fat. It can function efficiently even in oxygen deficit and for
long periods of time before fatigue. It incorporates specialized cells and
tunes bulk viscoelastic properties for each degree of freedom in the skeleton
to deliver a variety of motor responses. Moreover, it grows and changes in
response to use.

2.2 Robot Actuators

Although commonly used robotic actuators have little in common with
muscle tissue, they too influence the active and passive behavior of the
limb, and each choice presents different challenges with respect to power
output, dynamic range, and packaging. Like muscle, actuators for robotic



applications take stored energy and transform it into mechanical work.
There are a wide variety of technologies available, and the research
community is actively developing new concepts. In this section, a survey of
commonly used actuators is presented. The most common robot actuator is
the DC electric motor, so this device will be covered in detail. Other
technologies in common use, like hydraulic and pneumatic actuators, as
well as more specialized and/or emerging technologies, will be introduced
at the end of the chapter.

2.2.1 Permanent Magnet DC Electric Motors

Electric motors are used often in consumer products and produced in such
volume that they are relatively inexpensive. These actuators employ
electromagnetic fields to transform electrical current into forces or torques.
The behavior of the permanent magnet DC motor is governed by the
Lorentz force,

where q is the electrical charge of a particle moving at velocity v through a
conductor that is positioned in a magnetic field B (figure 2.7). The
“particle” is actually the net behavior of many electrons that produce a
current in the conductor. By convention, the direction of positive current
flow is the direction of flow of positive charges in the conductor—opposite
to the direction that electrons flow—as in figure 2.8. In equation 2.2, the
current qv and the magnetic field, B, are vector quantities with magnitude
and direction. The Lorentz force is the vector product (or cross product) of
qv and B. As a result, we find that the conductor is subject to a force that is
mutually perpendicular to both the current and the magnetic field. In figure
2.7, this force is directed into the plane of the paper.



Figure 2.7
A charge q moving along a conductor at velocity v through a magnetic field, B, from north to south
magnetic poles

Figure 2.8
Moving electric charges create a torque on the coil due to the Lorentz force

When a current loop is fashioned out of the conductor and positioned in
the magnetic field as in figure 2.8, the result is an upward force on the right
side of the loop and a downward force on the left—generating a net torque
and causing the loop to accelerate as it rotates about the dotted line in the
figure.

The torque on the rotor in figure 2.8 cannot act continuously through an
entire revolution. One can verify this fact by rotating the current loop 90
[deg] until the plane of the loop becomes perpendicular to the magnetic
field. In this configuration, the vector product indicates that the Lorentz
force is now directed radially away from the axis of rotation and, therefore,
creates no more torque. In fact, this rotor-field geometry is a stable
equilibrium. If the rotor continues past 90 [deg], the Lorentz force will



create a torque back toward the 90 [deg] rotor posture. To construct a
continuously rotating DC motor, the current in the loop must be shut off as
the coil approaches 90 [deg] and reversed after it passes this point—a
process called commutation. The commutator can be implemented using a
solid state switching circuit or mechanically using brushes and conducting
pads. The collective behavior of many current loops, each commutated
appropriately and separated by small angular offsets about the axis of
rotation produces an approximately constant torque at a given speed even
though each loop is switching polarity twice every rotation.

Figure 2.9
Faraday’s law describes how electrical current is generated in response to a mechanical input energy

If we remove the supply voltage (thus, opening the circuit) and rotate the
commutated rotor by some other means (a wind/water-driven turbine or the
hand crank in figure 2.9), then the mechanical rotation of the conductor
loop in the magnetic field will generate a voltage on the open terminals of
the rotor. This phenomenon is described by Faraday’s law,

which states that the electromotive force (ℰ) that pushes electrons around
the circuit is proportional to the time rate of change of the magnetic flux ϕB

=∫ ∫ B ·dA, surrounded by the loop in figure 2.9. Informally, magnetic flux
can be thought of as the number of magnetic field lines in figure 2.9 that



pass through the interior plane of the current loop (zero in the geometry
shown in the figure). Because the electromotive force is related to the time
rate of change of the magnetic flux, the faster the crank is turned, the more
potential is generated. This is the principle underlying a generator. If a load
is connected to the terminals of the commutated rotor to close this circuit,
then this electromotive potential creates a generated current in the
connected load. Comparing figures 2.8 and 2.9, we find that if the hand
crank rotates the generator in the same direction that the motor in figure 2.8
turned, then the current induced by the generator is in the opposite direction
of the current supplied by the battery in the DC motor.

In addition to the angular velocity of the rotor , the generated potential
Vb depends on the number of active motor windings and the magnetic field
strength. Motor manufacturers publish a motor constant Km to describe the
net relationship between motor velocity and the generated potential,

If the motor is perfectly efficient, then it can be shown that this Km is the
same Km constant that relates motor current and torque τm =KmI. To see how,
imagine that torque production depends on a different constant Kτ. Then by
equating the mechanical power output ( ) to the sum of electrical power in
(VI) and resistive losses (I2R) at steady state (i.e., dI/dt=0), we find

Therefore, without other losses like bearing friction, the motor constant
performs double duty, turning velocity into backward electromotive force
(back emf) and current into torque.3

Both effects are present simultaneously in the commutated DC motor.
The rotating motor produces a back emf in each current loop—the net
potential created by the moving rotor Vb throttles the net current in the rotor
as a function of the rotational velocity. As the rotor speed increases, the sum
of the supply voltage Vs and the generated potential −Vb approaches zero. At
this point, no current is flowing in the rotor and, therefore, no additional



torque is produced by the motor. If the rotor velocity increases further, then
the back emf will decelerate the rotor until it once again balances the supply
voltage and the back emf. We draw two important conclusions regarding the
dynamics of DC motors:
1. the torque produced in the motor is proportional to the rotor current; and
2. the steady state velocity of the motor is determined by the applied
voltage—determined by the velocity at which the back emf equals the
supply voltage.

Figure 2.10 illustrates how modern motors package many commutated
current loops into a functioning DC motor. The figure is a view down the
axis of rotation, showing how insulated motor wire is wound in many loops
within the magnetic field. In this example, the rotor is a piece of iron with
radial fingers that serve to columnate the magnetic field and provide a
channel for several motor windings. A loop is formed when a wire comes
out of the plane of this figure through a pair of these fingers and returns
down through the plane of the paper between another pair of rotor fingers
180 [deg] away from the first pair.

Figure 2.10
The iron core DC motor



The permanent magnet DC motor is very popular because it is reliable, it
has a good power-to-weight ratio, and it can produce relatively large
torques. However, the massive iron core rotor compromises motor
performance. Moreover, it can lead to a measurable ripple in the magnetic
field strength as the motor rotates. This is known as cogging and can be
observed as a preference for rotor positions that maximize the amount of
iron between the poles of the permanent magnet. One can feel the cogging
effect by turning the rotor of an inexpensive motor without a gearhead—it
makes it difficult to control the position of the rotor in these motors
precisely.

Variations on this basic design can increase motor efficiency and
performance. Surface wound motors employ more expensive rare earth
magnets to produce stronger magnetic fields that can eliminate some or all
of the iron in the rotor. As result, rotor inertia can be reduced significantly
and cogging can be virtually eliminated. This approach is taken to the
extreme in the moving coil DC motor, where the coil is the rotor. As a
result, the rotor inertia is very low compared to the iron core rotor. Moving
coil motors can be manufactured in a large range of geometries including
the “printed circuit motor” with thicknesses down to 0.02 [in] and
diameters up to 12 [in] and frameless motors that save weight by
incorporating the motor directly into the structure of the actuated device.

Manufacturers measure DC motor performance and publish it in motor
catalogs to make it easier to select the right motor for an application. The
catalogs report electromechanical properties like electrical resistance R and
inductance L in the motor windings, the moment of inertia J of the rotor,
and the mass and geometry of the motor package. They also tabulate
empirical parameters that characterize the overall performance of the
integrated motor system in terms of the DC motor electrodynamics.



Figure 2.11
Electromechanical model of the DC motor

DC motor electrodynamics—Figure 2.11 illustrates a simple circuit model
for the DC motor. The motor windings are modeled in terms of the
electrical resistance R and inductance L of the rotor. Resistance R defines a
linear relationship between supply voltage and the rotor current,

The inductance L measures how efficiently the geometry of the current flow
generates a magnetic field. The strength of a magnetic field is measured in
terms of magnetic flux ϕ=LI. A change in the current through an inductor
corresponds to a changing magnetic field and, thus, by Faraday’s law,
creates an induced voltage

Equation 2.5 defines the current-voltage relation for an inductor.
Inductance is measured in Henries [H], where—an inductance of 1 [H]
produces 1 [V] when the current through the inductor changes at the rate of
1 [A/s].4 The third circuit element in figure 2.11 that must be considered is
the net potential Vb generated by the motor velocity (equation 2.3).

Kirchhoff’s voltage law states that the voltage V applied by the power
source across the two motor terminals in figure 2.11 must be the same as
the sum of the voltage changes across the resistor, the inductor, and the
generator in series.

Performing this sum using results in equations 2.4, 2.5, and 2.3 yields



Often, the inductance in the motor windings is insignificant (relative to
the resistance in the windings) and can be neglected. Under these
conditions, Kirchhoff’s voltage law takes a simpler (approximate) form,

The equation describing the electrodynamics of the motor is derived by
using Euler’s equation to equate motor torque and acceleration:5

where, J [kg ·m2] is the rotational moment of inertia of the rotor and we
have substituted an expression for current I derived from equation 2.7.
Rearranging terms, we get

Equation 2.8 is a second-order differential equation of motion that
approximates the motor’s dynamics. Tools for solving equations like this
for θ(t) will be introduced in chapter 3.

Performance—DC motor performance is quite different from that of
muscle tissue (figure 2.5). Muscle performance is limited by the finite range
of motion of the contractile elements, and forces depend directly on the
length of the muscle relative to its free length and the stretch velocity. In
contrast, DC motors can produce a continuous, bidirectional torque, and
performance is independent of rotor position.

For a fixed supply voltage Vs and no external load, the steady state
velocity of a motor is that speed where the back emf is equivalent to the
supply voltage. This free-running condition rotates the motor at the no-load
speed ω0, which can be measured in the laboratory. In this condition, there
is a small measurable current, called the no-load current I0, required to



overcome the friction in the motor bearings and thermodynamic losses.
Figure 2.12 illustrates these conditions using a family of relations called
torque-speed curves that are commonly used to characterize the
performance of the motor.

Figure 2.12
Plot colors and the corresponding vertical axes illustrate a family of performance curves relating
motor speed, current, power, and efficiency to the torque generated by a DC motor

Other conditions within the spectrum of operating conditions can also be
plotted on this family of curves. For instance, by holding the supply voltage
Vs fixed, a resistance torque on the motor shaft can be increased in the
laboratory until it is just sufficient to bring the motor to a stop.6 The load τs

that causes this to happen is called the stall torque and it corresponds to a
measured stall current Is. These quantities can be found in figure 2.12 as
well.

The line from the no-load (τ =0, ω =ω0) coordinate in the upper left of
the diagram to the stall torque condition (τ =τs, ω =0) in the lower right
describes the motor’s torque-speed relation. We know it is linear because of
the linear relationship between back emf and velocity expressed in equation



2.3 and the slope of this relation is the negative ratio of no-load speed to
stall torque −ω0/τs.

Another linear torque-current relationship is constructed to estimate the
motor constant Km that describes how well the motor transforms current into
torque τ =KmI. Figure 2.12 illustrates this relation by drawing a line from
zero torque and no-load current in the lower left of the diagram to the stall
torque and stall current in the upper right.

The power output of the motor is determined by computing the product
of torque and speed for several loads between zero and the stall torque.

which results in the parabolic power curve in figure 2.12. It indicates that
maximum power production occurs at 1/2 the stall torque and 1/2 the no-
load speed. The blue torque-power function in the figure indicates that
maximum power production occurs at 1/2 the stall torque. Examining the
corresponding black torque-speed curve at 1/2 τs, we see that maximum
power production also occurs when the motor speed ω ≈1/2ω0.

Motor efficiency follows directly as the ratio of output power Pout to the
input electrical power VI, where V is the constant supply voltage and I is the
motor current at load torque τload.

Example: Torque-Speed Calculation

The Faulhaber company provides a detailed specification sheet for its DC
motors, one of which is summarized in the table. These four parameters are
enough to construct the torque-speed curves for the motor.

Selected parameters from the Faulhaber 3257-024-CD
DC micromotor datasheet
No-load speed ω0 = 5900 [rpm]
No-load current I0 = 0.129 [A]
Stall torque τs = 539 [mN · m]



Selected parameters from the Faulhaber 3257-024-CD
DC micromotor datasheet
Torque constant Km = 37.7 [mN · m/A]

From the no-load and stall parameters, the slope of the torque-speed
function can be determined,

and an estimate for the stall current is derived:

This is a relatively high stall current. It is likely that the motor would not
survive at stall condition for 24 [V] input, so stall must be avoided and/or
the current that the motor draws under these conditions must be limited.
This is reflected in the manufacturer’s recommendation that this motor
operate in the interval [0, 70] [mN · m] (far short of the stall torque).

Suppose that the motor is subjected to a 24 [V] input and a (midrange)
load torque of 35 [mN · m]. In this case, motor current is significantly
smaller,

and the electrical power input at this load can be computed:

The manufacturer also recommends that the motor be operated at speeds in
the interval [0, 5000] [rpm]. At the hypothetical 24 [V] input and 35 [mN ·
m] load, the predicted motor speed is

(greater than the manufacturer’s recommended motor speed), and the
mechanical power generated for this loading condition is



so that the overall efficiency at this load-speed combination is

If this analysis is repeated for several loads in the interval of
recommended torques for this motor, the complete torque-speed curves for
this motor (as in figure 2.12) can be generated.

☐

Gearheads—Often, motors are connected through a transmission to
external loads like the limb of a robot. Sequences of gears can be used to
amplify motor torques and reduce output velocities for applications like
this. The dynamics of the integrated system (motor, limb mass, and external
loads) can be altered dramatically by the gear ratio chosen and is, thus, an
important aspect of the overall design.

Figure 2.13
The compound load of the motor-gearhead combination

Consider the compound load in figure 2.13. The motor produces a
torque, KmI, that accelerates the combined load mass moment of inertia of
the motor JM and the load JL. Figure 2.13 shows a pair of gears between the
motor and the load that scales the angular displacement, velocity, and
acceleration of the load relative to the motor.



Normally, the gear ratio, η, is less than 1.0—a 100:1 reduction has η =0.01.
If we consider the transmission to be perfectly efficient7 and linear, then the
power output is equal to the power input, or

Therefore, a gearbox reduction (η <1) decreases velocity and amplifies
output torque; if η =0.01, then the output shaft carries 100 times the torque
at 0.01 times the velocity of the input shaft.

The gearhead has no direct analog in biological muscle8—it changes the
dynamics of the actuator in important ways that change its ability to sense
forces. To see how, we follow a discussion by Craig [65] in which the
dynamics of the compound load in figure 2.13 is derived. Ignoring frictional
losses, Newton’s second law for the compound load is written

Therefore, from the perspective of the motor, the net inertia of the
compound load is Jnet =JM +η2JL. For a 100:1 reduction (η =0.01), the load
inertia is attenuated by a factor of 10, 000 relative to the motor inertia.
Conversely, from the perspective of the external load, the motor behaves
like a massive flywheel. Such a drive configuration will look very stiff from
the outside and, as a consequence, DC motors with large gear reductions are
generally not easily backdrivable—such an actuator is passively stiff and
insensitive to external loads from the limb or from contacts between the
limb and the environment. For robots designed for precision free-space
movements (as is often the case in manufacturing operations) large



reductions are appropriate. However, when unexpected contacts may occur
or energetic disturbances must be dissipated, backdrivable drive trains can
comply and avoid damage in the robot and in the environment.

2.2.2 Hydraulic Actuators

Hydraulic actuators transmit power via hydraulic fluids. A hydraulic fluid is
nearly incompressible and transmits power at the sonic velocity of the fluid.
An example of such a system is the brake in an automobile. In older cars,
the driver applies a force to the brake pedal to actuate a master cylinder and
create an elevated pressure in the hydraulic brake line. The pressure wave
propagates very quickly via the hydraulic fluid to the brake cylinder located
near the wheel, where the pressure in the brake line is transformed back into
the linear displacement of another piston that actuates the brake mechanism.

The ratio of the cross-sectional area of the master cylinder A1 to that of
the brake cylinder A2 defines the gain in the transformation. If s1 is the
displacement of the master cylinder with area A1 and if s2 is the
displacement of the brake cylinder with area A2, then the reduction is

relative to the force applied to the brake pedal. A displacement of a couple
of centimeters at the brake pedal can correspond to a displacement on the
order of millimeters in the brake caliper. This implies that η <1 and the
mechanical advantage created can apply much greater clamping force on
the brake caliper than is applied at the brake pedal. Just as in DC motors
with gearheads, a significant mechanical advantage means that it is difficult
to backdrive the system. In the automobile braking system, and in other
applications discussed in this section, this is a virtue—to backdrive the
brake peddle, we would have to apply huge forces to the brake caliper.

Power brakes use the car’s engine to turn a compressor and create a high
pressure hydraulic source. Displacements of the brake pedal actuate a
hydraulic servo valve and control how much hydraulic pressure is applied
to the brake line. As result, much lighter pressure on the pedal is required to
create appropriate braking forces. Power steering systems operate in much
the same way using servo valves like that illustrated in figure 2.14. This



bidirectional configuration uses high pressure power assist to actuate the
steering gear in response to user inputs (left/right) on the steering wheel.
The gain in power steering systems can be inversely proportional to vehicle
velocity to provide more help at low speeds and to improve road feel
(backdrivability) at higher speeds. However, when high pressure assist is
used to drive small forces, the servo valve must eliminate a lot of energy as
heat and, therefore, compromises efficiency.

Figure 2.14
The hydraulic servo valve directs high pressure hydraulic fluid from a reservoir to drive a piston:
(left) flow for extending the linear actuator; (right) flow for retracting the actuator.

Still, when a high pressure hydraulic source is controlled by servo valves
and when there exists an appropriate mechanical advantage, hydraulic
systems have excellent power-to-weight ratios. The common backhoe, for
example, uses high pressure hydraulic actuators to great advantage. These
machines are powerful and relatively fast and are easily packaged in
articulated arm structures.

The Sarcos GRLA (for General Large Robot Arm) in figure 2.15 runs
hydraulic actuators at up to 3000 [psi] to drive a robot arm that is 1.75 [m]
long from shoulder to wrist. The robot can be driven by an exoskeletal
master worn by a human teleoperator. As in the backhoe, the geometrical
scale and the work output of the user are amplified dramatically by
managing the high pressure hydraulic fluid flow rather than relying
exclusively on human muscle power.



Figure 2.15
The Sarcos GRLA (General Large Robot Arm)

Hydraulic actuators can be quite useful in environments where electric
motors may not be recommended, like explosive or wet environments. But
they can be messy, and the servo valves can be quite expensive and difficult
to maintain. Hydraulic fluid transmits relatively high frequencies (up to
about 5 [KHz]), and servo valves can reverse the direction of flow in as
little as 5 [msec]. This bandwidth makes it possible to implement active
controllers on top of the passively stiff actuator. For example, in the power
assisted braking scenario discussed earlier, a small embedded controller can
enhance the pedal input by superimposing a high frequency signal to keep
the wheel from skidding, as in ABS braking systems.

Nature has devised ways for animals to use hydraulic actuators as well.
Some spiders, for example, cannot extend their legs by activating muscles
alone—they have no extensor musculature that is adequate for the task. To
solve this problem, these spiders use their blood as hydraulic fluid.
Consequently, blood pressure in spiders can be very high compared to other
animals. Special valves and muscles compress their forebodies and act as



actuators for their legs. Some jumping spiders create huge leaps (of up to 10
times their body size) using hydraulic forces created in a specialized fourth
pair of legs.

2.2.3 Pneumatic Actuators

Pneumatic actuators use compressed air as the working fluid. Pressurized
air from a reservoir or a compressor provides a relatively large energy
density that can be routed to the place where mechanical work is required.
Air is inherently elastic at low velocities, and as a consequence, these
actuators are passively backdrivable and naturally compliant. Two principal
configurations of pneumatic actuators are in use today: piston-cylinder
arrangements and air muscles.

Pneumatic cylinders—Mechanical work can be derived from compressed
air by using it to drive a piston. A pneumatic valve is required to control
how air is introduced into the drive piston and, thus, controls the tension in
attached tendons. Valves can be simple and support “bang-bang” control, or
they can be relatively sophisticated (and more expensive) and, thus, support
continuously controllable air flow. One such continuous pneumatic control
valve (figure 2.16) was used int the Utah/MIT dexterous hand in figure 2.17
[131, 129, 133, 132]. The actuators in the hand combine glass cylinders and
graphite pistons to create a fast, low-friction, and passively compliant
actuator.

Figure 2.16
The jet-pipe servo valve for controlling pneumatic actuators



Figure 2.17
The Utah/MIT dextrous hand with polymeric tendons and analog control box

Intricate tendon routing geometry in the Utah/MIT hand supported fully
antagonistic actuation for 16 degrees of freedom using a remote actuator
pack containing 32 actuators driving pairs of tendons. A pair of jet-pipe
servo valves was used to actively control the effective compliance of the
fingers—increasing or decreasing it relative to the passive compliance of
the air. The result was a force source with very little mass and damping.

The servo valve in figure 2.16 combines a relatively large power
capacity with speed by controlling a large air flow using a small, light jet-
pipe. An input voltage deflects the jet-pipe within a magnetic field to adjust
the differential pressure in a bellows that deflects to regulate the pressure in
the piston. The result is a high performance, continuous force source. These
actuators are still relatively cheap and light, with a power-to-weight ratio in
the range of 16:1 and a relatively high bandwidth (40 [Hz]). They can,
however, have issues with stiction, they may need additional damping for
stability, and they can be relatively delicate and sensitive to shock. The
Utah/MIT hand also employed high-speed analog controllers at the joint
level to stabilize the high-performance actuators.

McKibben air muscles—One of the oldest theories of muscular action,
dating to the third century BC, holds that animal spirits, or pneuma, flow
down nerves to fill muscles and cause contraction [192]. Although this
intuition has proven to be without merit, contemporary pneumatic actuators
use principles like this to great effect.



Air muscles are popular for their strength at the expense of the speed of
pneumatic cylinders. These actuators use the energy stored in compressed
air just as the piston-cylinder arrangement does. Air muscles consist of a
cylindrical rubber bladder surrounded by a tough plastic netting as
illustrated in figure 2.18. When the bladder expands radially, the plastic
mesh “scissors” and shortens in length. As a result, the transformation from
pressure to force is nonlinear. The greatest forces are possible when the
muscle is fully elongated and force capacity decreases as the muscle
contracts.

Figure 2.18
The operation of an air muscle

Simple construction leads to very lightweight actuators that are robust
with respect to misalignment, passively compliant, and backdrivable, with a
maximum power-to-weight ratio on the order of 100:1. The range of motion
in the actuator is proportional to the length of the bladder, leading to a
contraction of up to 40 percent of the original length and strength
proportional to the bladder diameter.

The Shadow Robot Company manufactures a 20 degree of freedom hand
that can be mounted on a 2 degree of freedom wrist and 4 degree of
freedom arm entirely actuated by this type of air muscle in a variety of
different sizes (figure 2.19). The joints are driven antagonistically by
opposing pairs of muscles. Air muscles lead to flexibility in packaging and
an overall size comparable to human hands and a total weight of between 5
and 10 [kg]. The hand uses compressed air at 60 [psi] for the main power
supply and about 64 [W] of electrical power to run a communication bus
and the servo valves. The family of air muscles produce between 0.5 [Nm]



and 1.5 [Nm] that yield a control bandwidth of approximately 3 [Hz], which
is comparable to human performance.

Figure 2.19
The 2001-era “Hand B” Integrated Shadow Hand-Arm System (www.shadow.org.uk/)

2.2.4 Emerging Actuator Technologies

Research in innovative new actuator technologies is very active. As a result,
there are a number of promising new technologies that still await
breakthroughs related to strength and bandwidth, mechanical properties
(elastic modulus, tensile strength, fatigue life, thermal and electrical
conductivity), thermodynamic issues (efficiency, power and force densities,
power limits), power requirements, device fabrication, integration and
packaging, and control.

Shape memory alloys (muscle wire)—Nickel titanium (also known as
nitinol) is in a unique class of materials known as shape memory alloys. A
crystallographic phase transformation in the material is responsible for its
shape memory effect. When heated by an electric current, the alloy

http://www.shadow.org.uk/


undergoes a transition from martensite to austenite and the resulting strain
in the new crystal structure causes the filament to deform into a preset
shape. Thus, nitinol is a candidate for transformations from thermal energy
to mechanical work.

Flexinol© is a trade name for small diameter shape memory alloy
actuator wires. Individual wires contract by 5%–7% of their length when
heated electrically and can then be easily stretched out again as they cool
back to room temperature. The contraction is opposite to the ordinary
thermal expansion and is 100 times larger. Even though the wires are small
diameter, they can exert comparatively high forces and are well suited to
applications like smart endoscopes that can be steered by the surgeon and
stents for use in structural support for veins and arteries that are inserted
and positioned in one shape and then left behind in another. Nitinol wire
can take a lot of current to heat electrically and responds rather quickly,
although its heating-cooling cycle time is relatively slow (on the order of 1
[Hz]).

Polymeric actuators—The mechanical properties of polymers can be
sensitive to thermal, electrical, and chemical stimulation, which makes
these materials candidates for new kinds of actuators. For example, polymer
gels can exhibit abrupt volume changes (up to 1000-fold) in response to
temperature, pH, and electric fields. These changes are relatively large and
reversible. A number of devices have already been constructed that
demonstrate the conversion of chemical or electrical energy into mechanical
work in this manner with forces up to 100 [N/cm2] and contraction rates on
the order of a second [270].

Chemical gels consist of a polymer lattice with an interstitial fluid—
sharing properties of both liquid and solid. There are many examples of
natural gels (i.e., Jell-O gelatin, the vitreous humor of the eye (section
7.1.2), and artificial gels like polystyrene). The shape and dynamics of a gel
are defined by the interaction between the polymer and the fluid.
Chemically activated gels are compliant elements that undergo reversible
length changes in response to chemical stimuli. Gel dynamics are limited by
the diffusion of molecules in the fluid through the polymer lattice.
Consequently, the larger the distance that a molecule must migrate, the
longer it will take for the material to cycle through full range. Therefore,



polyacrylamide gel fibers with a diameter of 25×10−6 [m] contract on the
order of a second, while 0.01 [m] fibers can take 2.5 [days] to contract [48].
In addition, some gels can support substantial loads. Polyacrylonitrile-
polypyrrole (PAN-PPY) and polyvinyl alcohol (PVA) gel fibers generate up
to 100 [N/cm2] [48], approximately equal to that of a human muscle.

In one published study, researchers explored using an antagonistic
arrangement of PVA muscles to actuate a parallel jaw gripper; an apparatus
is presented that innervates the artificial muscle by controlling the
concentration of an acetone bath [40]. However, in general, these devices
are still very slow and weak compared to other actuators. Recent research
focuses on thin films and groups of small fibers that lead to faster
contraction rates and larger forces. A number of fundamental issues remain
to be addressed. Foremost among these is the design of an actuator package
that can bathe the gel in a succession of chemical solutions (acid and base,
for example) in a manner that is feasible given the robot mechanism.

Electroactive polymers are plastics that expand or contract in the presence
of an electric field. These materials store electrons inside large molecules in
the polymer and allow charge to migrate between molecules. As a result,
electroactive polymers have a significant capacitance and can be used as
batteries. Moreover, as charge is stored, the length of chemical bonds in the
polymer is changed, which leads to its potential as an artificial muscle.
However, electroactive polymers require a considerable amount of voltage
to push electrons into the polymer and thus change shape. Most
electroactive polymers capable of large shape changes deform to a degree
proportional to the square of voltage. Movements on the order of 10 percent
of the original length are attainable.

The dielectric constant is a relative measure of a material’s ability to
store electric charge. The greater the dielectric constant, the larger the
capacity to store charge. Practical electroactive polymers like those used in
batteries have relative dielectric constants of around 5. However, new
composite electroactive polymers exhibit dielectric constants as high as
1000 [305] without sacrificing the elasticity of the polymer substrate. These
new hybrids may reduce the voltage necessary to induce a movement,
which would make these actuators more friendly to other electronic devices.



In one example, researchers made an actuator by using two polypyrrole
films to sandwich an insulating plastic tape [218]. When the sandwich is
polarized by applying a positive voltage to one side and a negative voltage
to the other, the composite bends. Polypyrrole is interesting as an actuator
for dexterous robots since its electrical conductivity changes
proportionately with pressure. Since these sandwiches draw a small amount
of current, it is possible that such devices may serve as tactile sensors as
well.

The main problem with the polymer technologies is their relatively slow
response (on the order of seconds). An electrorheological fluid (ERF) is a
material that changes from a liquid to a solid upon application of an electric
field. These fluids have a response on the order of a millisecond. A novel
approach to artificial muscle utilizes the fast time response of the ERF and
the elasticity of polymeric gels to create a faster artificial muscle [34]. The
polymer gel with ERF stiffens to a solid within 100 [msec] after the
application of an electric field. When subjected to a strong electric field
(3000 [V/cm]), the material flexes. Although the actuator response is
approaching the speed of muscle, its strength is limited ( ∼ 0.001 [N]) and
the voltages required are very high.

Synthetic muscle—Artificial muscle has been fabricated from naturally
occurring long chain proteins. In muscle tissue, actin and myosin proteins
interact to form a kind of biochemical ratchet (section 2.1). Energy-rich
ATP molecules power the attachment, bending, and straightening of the
myosin molecules.

Researchers have extracted actin and myosin protein from scallops and
used chemical reactions to link the molecules together into polymeric gels.
When a microscopic piece of actin gel is placed against the myosin gel and
immersed in an ATP solution, the actin gel springs into motion at about one
thousandth of a millimeter per second [135]. Obviously, this approach has a
long way to go before it leads to practical actuators, if it ever does at all, but
the technology may hold promise for implantable assistive technology for
human muscle since the body’s immune system might accept implants
made from human muscle proteins.

Buckytubes—Fullerenes (buckyballs) and nanotubes (buckytubes) are
specialized crystalline configurations of graphitic carbon. Carbon nanotubes



are very thin and long tubes. Their diameter is only a few nanometers, about
the diameter of typical molecules, and they can be up to millimeters in
length. Carbon nanotubes increase their length when electrons are pushed
into the carbon structure. This effect can be used for electromechanical
actuators. The relatively large length change and the high elastic modulus
lead to very large forces for carbon nanotube actuators.

A laminar composite consisting of a film of parallel buckytubes bonded
to each side of a tape substrate that is rigid in tension but can bend was used
to demonstrate the use of carbon nanotubes as an actuator [17]. The
polarization of the sandwich can be relatively small—on the order of ± 1
[V]. The buckytubes elongate when positive voltages are applied and
shorten when negative voltages are applied, flexing the tape substrate
between them. Carbon nanotubes can, in principle, be used to create
macro-, micro-, and nano-scale actuators that are extremely robust to harsh
thermal and chemical conditions. Moreover, these new actuators can
potentially achieve a greater mechanical stress than any other technology—
much greater than muscle tissue.

2.3 Exercises

1. Static force capacity of muscle. The impressive performance of human
muscle is demonstrated by estimating the muscular force required for a
familiar motor task using the human morphology. A planar mechanism is
illustrated that simulates the human elbow joint, biceps muscle, and a
forearm that is 0.35 [m] in length. The biceps (possibly a McKibben air
muscle) is attached on one end to ground and on the other end to the
forearm 0.05 [m] from the elbow. Assume that the total forearm weight is
17 [N] and acts at the forearm’s center of mass located 0.175 [m] from the
elbow.



The robot arm is stationary in the posture shown, where it supports a 50 [N]
load attached to the endpoint of the manipulator.

How much force F [N] must the biceps apply at the forearm insertion
point to hold the arm and load in the posture illustrated?
2. DC motor physics.

(a) What electromagnetic phenomenon is responsible for transforming
electrical current into torque in the permanent magnet DC motor?
(b) What physical phenomenon accounts for the backward electromotive
force (back emf)? How does it contribute to the behavior of the DC
motor?
(c) What role does commutation play in a DC motor?
(d) What is cogging?

3. DC motor: Current-speed relation. A DC motor with an armature
resistance R =20 [Ω] is connected to a supply voltage Vs =20 [V]. At full
speed the voltage generated by the back emf is Vb =18 [V].

(a) Calculate the motor current at the instant that the motor starts from
rest ( ).
(b) Calculate the current when the motor is at full speed.

4. DC motor: Steady-state velocity. Because of its state of motion, a motor
has a voltage derived from the back emf of Vb =14 [V] at 2100 [rpm]. What
is Vb at 3500 [rpm]?
5. DC motor: Current/power. A 24 [V] DC motor has an armature
resistance of R =10 [Ω] and draws 2 [A] at 300 [rpm].

(a) Calculate the voltage due to back emf Vb at 300 [rpm].



(b) What is Vb at 1200 [rpm]?
(c) What current will the motor draw at 1200 [rpm]?
(d) Compute the power dissipated by the motor at 1200 [rpm].

6. DC motor: Gearhead. A motor-gearhead combination is shown in the
figure below.

(a) What is the steady-state angular velocity of the load for 10 [V] in?
(b) When the rotor is locked (i.e., ) and 10 [V] is applied, how much
torque is generated on the load?
(c) If JM =0.005 [kg ·m2] and JL =1.0 [kg ·m2], which is most significant
in the output inertia?

7. DC motor: Torque-speed curves. The motor/gearbox parameters for
Roger’s wheel motors, shoulder motors, elbow motors, and eye motors are
recorded in the table. These are really powerful motors, but not extremely
fast (you may assume that they have a gearbox included that is built into the
motor constants). All motors run on 24 [V] supply voltage.

Parameter Wheel Shoulder Elbow Eye

ω0 [rad/sec] no-load speed 175.0 30.1 50.3 122.2
I0 [A] no-load current 0.38 0.26 0.17 0.12
τs [N ·m] stall torque 475.0 205.3 120.7 2.7

 torque constant 0.105 0.623 0.364 0.163

Assume that the motor/gearbox is 100 percent efficient, and plot the speed,
current, efficiency, and power curves for the eye motor. Create separate



plots and use engineering units.
8. Prismatic actuators. One way to implement a prismatic actuator
combines a DC motor and the rack-and-pinion gear system in this
schematic that transforms motor torque and angular velocity into linear
force and translational velocity respectively, for the prismatic joint.

where r =0.01 [m] is the radius of the pinion gear.

Suppose that the DC motor specifies a 24 [V] input, has a motor torque
constant Km =0.105 [Nm/A], rotor resistance R =1.7 [Ω].

(a) Compute the no-load speed of the motor and the upper bound on
maximum velocity  of the linear actuator.
(b) Compute the locked-rotor torque and use this to find the upper bound
on the force output f of the linear actuator.

9. Hydraulic transmission. A red 1965 Volkswagen Beetle weighs only
1609 [lb], which explains why the VW engineers didn’t think it required



power assisted brakes.

For the hydraulic transmission between a brake peddle (the master cylinder)
and a brake cylinder in this schematic, suppose that it requires 600 [lb] of
force on the drum brake to cause the wheel to lock up.

The brake cylinder diameter is 1.5 [in] and the master cylinder diameter is
0.5 [in].

(a) How much brake peddle force is necessary to skid to a stop?
(b) It is important that air bubbles in a hydraulic brake line be
eliminated. Why is this? How will the brake system behave if air is in
the hydraulic line?

10. Invent your own homework. Make a homework problem out of your
favorite content in chapter 2. Write a question and a solution for it from the
material in the reading. The problem should be different from the questions
already here, with extra credit to those that draw a comparison between
muscles and motors. The question should call for a short discussion,
analysis, and calculation—it should not take more than 30 [min] to solve
open-book.

1. The symbol Å stands for Angstrom, which is equivalent to 10−10 [m].
2. In reality, muscle damping is nonlinear and depends on position as well as velocity. It was
originally thought to be due to the viscous flow of water within the muscle fiber itself, but later this
was found to be insufficient to account for experimental observations.



3. DC motors are, in fact, typically only 75%–90% efficient—brushless motors with solid state
switching for commutation are normally higher efficiency, and brushed motors usually fall at the
lower end of the range.
4. Joseph Henry (1797–1878) was an American who discovered electromagnetic induction at about
the same time as Michael Faraday (1791–1867). The standardized unit of inductance [H] was chosen
in recognition of Henry.
5. We derive Euler’s equation in section 6.2.
6. Not all motors will survive this procedure; the motor catalogs should be checked for limits on
continuous current.
7. Typically, efficiency (power out / power in) for planetary gearboxes is between about 60% and
90%. It decreases sharply for very low loads. A useful rule of thumb is that transmission losses are
approximately 10% per engaged gear pair. Overall motor system efficiency is the product of the
motor and gearbox efficiencies.
8. One could argue that the human patella (kneecap) significantly increases the leverage applied by
the quadriceps to the femur (lower leg bone) through the patellar tendon. This is a torque advantage
implemented in the tendon routing between muscle and skeleton.



3
Closed-Loop Control

When an organism (or a robot) interacts purposively with the environment
around it, it coordinates patterns of actuation over multiple limbs using
control inputs. Control inputs are used to modify the passive behavior of the
embodied system. An open-loop controller can produce an extended pattern
of motor inputs in response to a single trigger event. In this case, the control
logic tacitly encodes an effective response to the trigger. For example,
human beings blink in response to loud noises and when nearby objects
loom threateningly on the retina (section 9.3.1), and specialized peripheral
receptors on the tip of the finger can cause a response in spinal neurons that
withdraw the arm and hand from painful stimuli (section 3.1). Open-loop
responses are, therefore, often described as feed forward control laws.

Closed-loop controllers use continuous feedback to measure progress
toward reference states and modify motor inputs to eliminate errors. Under
some conditions, closed-loop systems can guarantee asymptotic properties
of controlled processes and, therefore, serve as an attractive model for
biological motor control. Moreover, deciding which measurable errors to
eliminate over time provides the basis for models of motor learning in
animals and robots.

Both open- and closed-loop controllers can be implemented in the lowest
levels of the neural control circuitry—generating responses before the
subject is conscious of the triggering stimuli. Closed-loop actions, however,
can also reside at higher levels in the central nervous system and can recruit
multimodal feedback and many mechanical degrees of freedom to, for
example, navigate an automobile through a four way stop using a full array



of visual, auditory, tactile, proprioceptive, GPS, and inertial signals along
with multimodal memories of similar circumstances.

In this chapter, we begin by discussing how biological circuits consisting
of muscle spindles, tendon organs, and α-γ motor neurons manage groups of
muscle fibers using a closed-loop construction called a motor unit. This
simple computational element relies on negative feedback—a fundamental
principle of stable closed-loop control. The spring-mass-damper (SMD)
system is examined in some detail as a simple mathematical model of the
biological motor unit, wherein errors in the position of a limb—the mass—
are attenuated over time by the combination of forces generated by an
elastic element—the spring—and a viscous element—the damper. We will
use an energy-based analysis to demonstrate that the position error in a
SMD goes to zero over time, a useful property of the biological motor unit.
The SMD is also the basis for a proportional and derivative (PD) feedback
control law that can be easily implemented for use in robot controllers.

The chapter closes by deriving the differential equation of motion for the
SMD and solving for its response as a function of time. To get a sense of
the performance of PD controllers in robot systems, the sensitivity of the
SMD response to control parameters and to the frequency of the reference
input is evaluated.1

3.1 The Closed-Loop Spinal Stretch Reflex

The lowest level in the human motor control hierarchy is also the most
ancient (section 9.1). It resides at the interface between the central nervous
system (CNS) and the peripheral nervous system (PNS), and it is
responsible for the stable control of the distal musculature. This is the
foundation for a full spectrum of stimulus-response motor behavior.

3.1.1 Spinal Processing

The spinal cord is part of the central nervous system and consists of five
regions, each of which is made up of one or more vertebral segments. From
top to bottom they are the cervical (C1–C8), thoracic (T1–T12), lumbar
(L1–L5), sacral (S1–S5), and coccygeal segments, for a total of 31 spinal
segments. Thirty-one sets of spinal nerves emerge from the spinal cord—



one from each segment. Neural projections in the cord form a bidirectional
pathway connecting the rest of the central nervous system with the
peripheral nervous system and the musculoskeletal system.

The cord itself is about 1 [cm] in diameter and is protected inside the
bony vertebral column. However, the cross section of the cord varies along
its length. The vast number of mechanoreceptors (section 7.2.1) and
muscles in the hand and forearm (chapter 5), for example, project to the
largest cross section at the cervical eight vertebra. Two types of neural
tissue reside in the spinal cord: gray matter, containing spinal sensory and
motor cells, and white matter, containing ascending and descending tracts.
White matter gets its name from the appearance of the neuroglial cells that
support and insulate these pathways. Three regions (or fasciculi) of white
matter can be identified (dorsal, ventral, and lateral). The dorsal fasciculus
is primarily ascending sensory fibers, while ventral and lateral fasciculi
contain both sensory, and motor fibers. Ascending tracts in the cord
communicate sensory information such as discriminative touch,
proprioception, pain, and temperature for different regions of the body’s
surface to the brain. Descending tracts conduct information from the brain
back out to the periphery to innervate muscles, organs, and glands.

Figure 3.1 shows five segments of the spinal cord (C5 through T1) that
project to sensors and muscles in the arm. Each set of spinal nerves consists
of dorsal and ventral roots that correspond to sensory and motor fibers,
respectively. Sensory projections gather peripheral sensory signals, and
motor fibers project activation signals back to the muscles. Each dorsal root
receives sensory input from a contiguous region of the body’s surface called
a dermatome, and the set of muscles innervated by a single ventral root is
called a myotome. Dorsal and ventral roots from the same side of the cord
join to form a peripheral nerve that serves that side of the body. Peripheral
nerves contain mixed sensory and motor fibers from several adjacent spinal
roots.



Figure 3.1
The segmental structure of the spinal cord, the corresponding sensory and motor regions of the body,
and the cross-sectional anatomy of the cord applied to the withdrawal reflex. (Source: Adapted from
[28])

Figure 3.1 also shows how this section of the cord participates in a low-
level motor response called the withdrawal reflex. It is initiated by stimuli
from free-ended nerve fibers that respond to pain and, depending on the
position of the stimuli on the dermatome, activate a corresponding set of
myotomes through spinal nerves. The number of motor elements enlisted by
the reflex is proportional to the strength of the stimulus. The response is
generated by synapses in the cord and can be inhibited by higher levels in
the CNS. There are many variations on this basic theme. For example, the
extensor reflex is a withdrawal reflex in one arm accompanied by an
extension about 0.5 [sec] later in the other arm. The same kind of coupling
is responsible for reciprocal inhibition to manage antagonistic muscles.

3.1.2 Motor Nuclei

Upper motor neurons (UMNs) in the motor cortex project commands down
through a motor hierarchy to muscles. High-level motor commands fan out
through subcortical regions, midbrain, brain stem, and spinal interneurons
to lower motor neurons (LMNs) in spinal gray matter. Ultimately, these
signals terminate at neuromuscular junctions. The LMNs include the α- and



γ-motor neurons in figure 3.2 that connect upward to the rest of the CNS via
spinal interneurons and outward to the periphery via the dorsal and ventral
roots of spinal nerves. The α-motor neurons are responsible for initiating
contractions in extrafusal muscle. A single motor neuron is the exclusive
source of activation for a bundle of individual muscle fibers comprising a
motor unit that may engage as few as 30 muscle fibers in the small intrinsic
muscles of the hand and as many as 3000 muscle fibers in large muscles
like the quadriceps.

Figure 3.2
The α- and γ-motor feedback loops that regulate muscle tone and stiffness. (Source: Adapted from
[192])

The relatively fast α-motor neurons create closed-loop behavior in the
motor unit that depends directly on two important proprioceptive
mechanoreceptors: the neuromuscular spindle and the Golgi tendon organ
(section 7.2.1). Spindles measure the degree of stretch in the muscle fiber
and contribute to precision position control. The relatively slow γ-motor
neuron regulates muscle tone by setting the reference length of the spindle
receptor. If the measured length is greater than the reference, the α-motor



neuron activates a muscle contraction; otherwise, it is inhibited, allowing
activity in an antagonist to extend the muscle. The Golgi tendon organ
measures the degree of stretch at the tendon-muscle interface and inhibits
the α-motor neuron if stretch approaches maximum levels. Thus, muscle
and tendon stretch feedback supports stable equilibrium postures in the
limbs and provides built-in safety overrides.

The action of the motor unit can be elicited by the familiar clinical
practice of striking the patellar tendon just under the kneecap with a rubber
mallet. Figure 3.3 illustrates the musculature involved and the motor unit
responsible for this response. Striking the tendon induces a slight elongation
in muscle spindles in the quadricep muscle, which causes a reflexive
contraction of the muscle and produces a characteristic kick in the leg. The
reflexive response is implemented in spinal synapses and cannot be
inhibited by higher-level motor processes. The responsible α-motor neurons
in this case can be found in spinal segments L2–L4. Similar muscle stretch
reflexes can be elicited in the biceps (C5–C6), the triceps (C6–C7), and the
ankle (S1). The muscle stretch reflex is also used to compensate for muscle
fatigue by increasing α-motor activation and recruiting additional motor
units when the original motor units produce diminished responses to
changes in length.

Figure 3.3
The mechanisms that contribute to the quadriceps femoris stretch reflex (L4) in response to the
tapping of the patellar tendon

The motor unit is an example of a negative feedback stabilized system.
The position circuit acts to cancel some of the (signed) error in the spindle
length. Under the correct conditions, such a system will track the reference
input—in this case, the reference spindle length supplied by the γ-motor



neuron. Negative feedback was first submitted for a patent in 1928 by
Harold S. Black. Black’s patent application was initially met with
skepticism, reportedly compared to a perpetual motion machine. However,
it is now recognized as a fundamental principle of stability in compensated
dynamical systems. We will examine the conditions that govern the
behavior of stable systems in section 3.2.2 after a brief introduction to the
dynamics of the spring-mass-damper.

3.2 The Canonical Spring-Mass-Damper

The prototype for many closed-loop robot control applications is the spring-
mass-damper (SMD) (figure 3.4). Mass m moves exclusively in the 
direction and behaves in accordance with Newton’s second law ∑ fx =mẍ
(chapter 6). The energy necessary to change the momentum of the mass is
stored as kinetic energy,

Figure 3.4
The spring-mass-damper (SMD) system

If the mass is displaced from its equilibrium position, spring K produces
a force proportional to the deflection and in the opposite direction fK =−(Kx)



. This force tends to restore the spring to its undeformed shape (where
x=0). The work required to produce this deformation is stored as potential
energy in the spring. It is computed by integrating the product of the spring
force and the differential displacement of the mass over the trajectory

The energy stored in the deformed spring is transformed into kinetic energy
when it changes the momentum (mv) of the mass. An ideal spring stores
and releases energy reversibly—with no losses.

The third component of the SMD system is the damper B illustrated as a
piston-cylinder arrangement (or dashpot) in figure 3.4. To change length, a
viscous fluid inside the dashpot must flow through small holes in the piston.
The force in the dashpot is due to the resistance to this fluid flow—
proportional to and in the opposite direction of the piston velocity 

. Consequently, whenever mass m is moving, the damper
produces a force that dissipates its kinetic energy and tends to bring it back
to the rest state over time.

A common application of the SMD is as a mechanism that returns your
screen door to the closed position. The door itself is the inertial object and
the device that connects the door to the doorjamb contains a spring and a
damper. In this case, the damper is a piston and cylinder arrangement with
holes in the piston so that air moves into and out of the cylinder subject to
viscous losses. Opening the door requires the user to overcome the inertia
of the door as well as the forces in the spring and damper. When released,
the spring and the damper, properly balanced, cause the door to close
quickly and to shut gently. The same principle is used in automobile
suspensions to isolate the passenger compartment from bumps and potholes
and to keep the tires on the road. Typically, the damper in a screen door will
fail as the mechanism ages, allowing unwanted air to leak past the piston by
other means than the holes designed for that purpose. As a result, the
damping coefficient decreases, the relationship between spring and damper
becomes unbalanced, and the door begins to slam shut.

3.2.1 Equation of Motion: The Harmonic Oscillator



If the external disturbance force fd(t) (illustrated in figure 3.5), is applied to
mass m in the +  direction while it is at rest at x=0, it will cause the mass to
accelerate in the same direction as the applied force and, over time, it will
accumulate a positive velocity and displacement. As a consequence, the
mass is subject to forces in the −  direction due to the spring and the
damper as illustrated. In general, all forces and positions in the system are
functions of time; however, in the following we will drop the explicit
reference to time to simplify the notation.

Figure 3.5
The free body diagram of the SMD system

We treat mass m as a free inertial body subject to multiple external
forces. For this system, Newton’s second law (section 6.1), which states that
the sum of all forces causes the mass to accelerate ∑ f =ma, is written

By rearranging terms, this equality defines the second-order equation of
motion for the one-dimensional SMD.

The homogeneous (unforced) version of equation 3.1 is the
characteristic differential equation defining the dynamics of the one-
dimensional linear SMD.



The second-order behavior of the SMD belongs to a class of systems known
as harmonic oscillators. This form of the equation makes it clear that the
dynamic behavior of the SMD depends directly on the mass m and the
choice of spring constant K and damping constant B. Equation 3.2 is often
written in a manner that highlights physically meaningful aspects of the
system,

where

Parameter ωn [rad/sec] is the natural frequency of the viscoelastic system. It
describes the frequency at which the undamped spring and mass exchange
potential and kinetic energy if the system is set in motion. The
dimensionless parameter, 0 ≤ ζ ≤ ∞, is called the damping ratio and
represents the relative rates at which energy is dissipated in the damper and
released by the spring.

We will see (figure 3.15) that this system is capable of producing
qualitatively different behavior in response to the same input depending on
the values of ωn and ζ (and, thus, on the values of K and B). To design
control systems, we would like to determine, at a minimum, under what
conditions the controlled system is stable. In the most basic terms, this
dynamical system is stable if the position of the mass stays within bounds in
response to inputs. More generally, the stability of any controlled system
requires that bounded inputs produce bounded outputs (BIBO) for all time
[225]. This criterion and other, stronger conditions of stability are captured
for linear and nonlinear systems alike in the elegant methods of Lyapunov.

3.2.2 Stability: Lyapunov’s Direct Method

Aleksandr Lyapunov (1857–1918) worked on potential theory and
probability theory, and invented methods for characterizing the behavior of
dynamical systems such as those we have been considering. Lyapunov’s
direct method requires a dynamic model of the system and its current state
to determine future states. The state q of an nth-order linear differential



equation governing function f(t) is a coordinate in a multidimensional state
space at time τ,

is the value of the i-th time derivative of f(t) evaluated at time τ.2

Perhaps the simplest condition that guarantees stability requires that the
state of the system never leaves the interior of a bounded region in the
phase space defined by q. This condition is stated in definition 3.1.

Definition 3.1: Stability.  The origin of the state space is stable if there
exists a region S(q) containing the origin, such that system trajectories that
begin at states within S(q) remain within S(q).

For the second-order differential equation describing the SMD, the phase
space is defined by two independent state variables . Figure 3.6
illustrates the phase plane describing the state of the second-order SMD
system and identifies a region S(q) that contains the origin. The state of the
SMD (the gray dot in the diagram) is a coordinate in the  plane and
evolves according to the second-order dynamics (equations 3.2 and 3.3) of
the system. Definition 3.1 requires that states that start inside region S(q)
remain there always.

Figure 3.6
A trajectory of an asymptotically stable harmonic oscillator on a bowl-shaped Lyapunov function
(left) and the top-view projection on the phase plane (right)



A subset of Lyapunov stable systems—called asymptotically stable
systems—satisfies a stronger condition where the system comes to rest at
the origin of the state space as t → ∞. For the one-dimensional SMD in
figure 3.6, state variables  both approach zero as time goes to infinity.

Definition 3.2: Asymptotic stability.  Systems that satisfy definition 3.1
are asymptotically stable if as t → ∞, the systems state approaches the
origin of the state space.

Qualitative specifications such as these are formalized by way of the
Lyapunov function, V(q, t)—a scalar function written in terms of state
variables q and time that is continuous in all first derivatives.

Theorem 3.2.1: (Lyapunov’s direct method (1892)).  If function, V(q, t),
exists such that

then the dynamical system described by V(q, t) is asymptotically stable.

The first two conditions in Lyapunov’s direct method establish that the
origin is a unique minimum over the entire phase space. The third condition
requiring a negative definite dV/dt guarantees that the closed-loop dynamics
of the system lead inexorably downhill on V(q, t) to the unique minimum.
Lyapunov established that if the system is stable, then a Lyapunov function
that satisfies these criteria is guaranteed to exist—a system that complies
with the conditions outlined in theorem 3.2.1 is said to be stable in the sense
of Lyapunov or Lyapunov stable.

Lyapunov’s direct method is of great consequence because it establishes
a strong stability guarantee without ever explicitly solving for a time-
domain solution to the dynamic equations of motion and can be applied to
linear and nonlinear systems alike. However, if a candidate Lyapunov
function does not satisfy the conditions of theorem 3.2.1, it does not



constitute proof that the system is unstable. In this situation, one must
continue to search for a suitable Lyapunov function.

Example: Stability Analysis for the Spring-Mass-Damper

For the one-dimensional spring-mass-damper (figure 3.4) the state is
defined in the position-velocity space . Consider a Lyapunov function
that is the sum of kinetic energy and potential energy.

Figure 3.7
Qualitative state space trajectories of the harmonic oscillator

Level curves in the energy function are elliptical (figure 3.7) with shapes
determined by the relative values of m and K. Energy is zero at the origin of
the state space and is greater than zero everywhere else, thus equation 3.5
serves as a reasonable candidate Lyapunov function. Differentiating
equation 3.5 with respect to time yields

This expression can be written exclusively in terms of the state variables by
solving equation 3.2 for ẍ in terms of x and . Rewriting equation 3.6
accordingly yields



Since , whenever B >0 the rate of change in the system energy dE/dt ≤
0. Every cycle, however, dE/dt=0 when  is zero at the crest and trough of
each oscillation. This observation precludes a global assertion of asymptotic
stability by the direct method. We can repair the analysis by noticing that
the only equilibrium position for this system is at . Therefore, other
states for which x ≠ 0 and dE/dt=0 are still subject to nonzero spring forces
directed toward x=0. As the mass accumulates velocity, once again equation
3.7 guarantees that energy is dissipated. This happens every cycle in the
harmonic oscillator until the state converges to the origin of the state space.
The qualitative result is a trajectory like the clockwise spiral labeled B >0
in figure 3.7. Moreover, if B =0, energy is conserved and the system orbits
along the E =1.0 isolevel curve continuously—reversibly exchanging
potential energy in the spring for kinetic energy in an unending cycle.

Note that, even though we believe the SMD to be asymptotically stable
for B >0, we have not yet proved that result using Lyapunov’s direct
method alone—to do that, we must find a new candidate for the Lyapunov
function that satisfies all the conditions required in theorem 3.2.1. A fruitful
approach is to add a skew term of the form ( ) into equation 3.5, where 𝜖
is an appropriately chosen positive constant. Under this Lyapunov function,
the derivative with respect to time can be shown to be negative definite (see
exercise 3.4.8.b). As a result, we conclude that the linear spring-mass-
damper system is asymptotically stable over the entire state space as we
suspected.

☐

Global stability assertions for more complicated systems are quite
difficult to establish in general, but it is sometimes significantly easier to
establish local asymptotic stability guarantees.

Theorem 3.2.2: (Local asymptotic stability).  Beginning from the usual
conditions on the Lyapunov function, V(0, t)=0 and V(q ≠ 0, t)≥0, if it is
possible to establish a bound VC, such that



•  the sublevel set C ={q | (V(q, t) ≤ V C)} is bounded, and
•  dV(q, t)/dt ≤ −λV (q, t) for all q∈C,

then every trajectory that starts in C converges to q=0 as t → ∞.

3.3 Proportional-Derivative Feedback Control

Harmonic oscillators like the SMD are very common in nature and they
provide a useful model for describing important features of biological
motor systems. In particular, the viscoelastic parameters of the SMD can be
used to emulate the bulk elasticity and damping of muscle tissue (section
2.1.3) and to implement negative feedback like that produced by the α-γ
motor neurons (section 3.1.2) to stabilize the system over a wide range of
these parameters. The passive properties of the SMD make it an attractive
candidate for a closed-loop, parametric motor unit in robotic actuation
systems where limb position, velocity, force, and stiffness can be controlled.

Figure 3.8
The 1 DOF revolute (1R) mechanism is the inertial object in a PD control process with reference θref

Figure 3.8 illustrates a hybrid implementation of the SMD that combines
sensory, computational, and motor elements to build an integrated, one
degree of freedom (1-DOF), closed-loop motor unit. The closed-loop design
includes feedback sensors that measure the angular position and velocity 

 of the limb and a proportional-derivative (PD) control process (named



after the feedback it requires) that simulates the sum of the torques from a
torsional spring K [N · m/rad] and damper B [N · m/(rad/s)], so that

The resulting motor command torque τm is submitted to the motor driver
circuitry to accelerate the limb consisting of mass m located at a distance l
from the axis of rotation and, thus, approximate the behavior of a SMD.

Euler’s equation  expresses Newton’s second law for such a
system, where τ [N ·m] is torque applied to the load at the origin and I =ml2

[kg·m2] is the combined moment of inertia of the motor and the load about
the  axis. The derivation of the differential equation governing the response
of the PD controlled motor unit follows that of the analog SMD on which it
is based (section 3.2.1). The homogeneous (unforced) equation of motion
for the 1-DOF revolute (1R) motor unit is

As before, equation 3.8 can be written in terms of the damping ratio ζ
and natural frequency ωn of the harmonic oscillator,

The PD feedback implementation of the SMD provides flexibility. In
particular, it makes it easy to change the reference position of the controller
in a manner analogous to the way the γ-motor neuron is used to set the
reference length of a muscle spindle, and it makes it convenient to change
the values of the control parameters K and B.

The added flexibility of the hybrid PD controller comes with a cost. The
implementation employs discrete-time inputs to control a continuous-time
plant by sampling the state feedback, storing it in memory, computing the



command torque, and writing the result in another memory location for use
by the motor driver circuitry. This sample-and-hold process introduces a
small time lag between the perceived state and the motor response. If this
lag is comparable to or greater than the natural period of the harmonic
oscillator (1/ωn [sec]), then continuous-time analysis is inaccurate and the
resulting control design may produce an unstable system response.3 If,
however, the time lag is small relative to 1/ωn, then the error associated with
continuous-time analysis is small as well, and solutions for θ(t) given input
references θref(t) can be good approximations of the behavior of real
systems.

In the following, we focus on this case and introduce tools for
continuous-time analysis using the Laplace transform. The Laplace
transform makes it easy to manipulate and solve linear differential
equations by transforming them into an algebraic form. In this form,
solutions for system behavior can be determined relatively easily for a
variety of inputs to provide insight into the performance of controlled
movement that applies equally to animal and robot motor systems.

The rest of this chapter provides a brief introduction to the properties of
the Laplace transform that are most relevant to this discussion and
summarizes the results of applying this analytical tool to the analysis of the
1R motor unit in figure 3.8. The interested reader can find the complete
derivation for these results in appendix A.10—the more casual reader can
skip the appendix without compromising the background required by
subsequent chapters.

3.3.1 A Primer for Laplace Transforms

The Laplace transform is a bijection defined by a pair of reciprocal
mappings,

Table A.2 in appendix A.10.3 summarizes several Laplace transform
pairs that relate time-domain functions to their counterparts in the complex
frequency-domain. As we will discuss further, they provide a uniform
mechanism for analyzing the behavior of control systems subject to a large



variety of reference inputs θref(t) and, thus, reveal a great deal about a
particular control design.

The function F(s) is the image of f(t) in the complex s-domain. Ignoring
boundary conditions,4 this exponential basis leads to an important
consequence. If ℒ[f(t)]=F(s), then

Therefore, the Laplace transform maps an nth-order linear differential
equation with constant coefficients describing the behavior of function f(t)
into an nth-order polynomial F(s). The inverse Laplace transform
f(t)=ℒ−1[F(s)] represents f(t) as a weighted sum of exponential functions of
the form est parameterized by complex frequencies s∈ ℂ.

Applied to the PD controller (equation 3.9), the Laplace transform yields
a dual representation for the second-order system.

3.3.2 Stability in the Time-Domain

The behavior of the hybrid system illustrated in figure 3.8 is completely
determined once the parameters (ζ, ωn), or equivalently (K, B), are specified
in the equation of motion. For example, in the homogeneous form of the
right side of equation 3.12, the polynomial

defines the characteristic equation of the harmonic oscillator. The pair of
roots to equation 3.13,

may be complex conjugates σ ± iω with real σ =Re(s) and imaginary ω
=Im(s) parts, repeated real roots, or distinct real roots and determine the



values of s in basis functions of the form Aest that comply with constraints
imposed by the original homogeneous second-order differential equation

.
The roots of the characteristic equation depend solely on the parameters

of the hybrid SMD, but they govern the PD response more globally—in
particular, they lead to straightforward conclusions regarding closed-loop
stability. Clearly, if any roots of the characteristic equation have positive
real parts Re(s)>0, then, as t → ∞, terms of the form Aest will also grow to
infinity, and the state of the system  will leave region S(q) (figure 3.6).
Such a system is unstable by definition 3.1. Conversely, when Re(s) ≤ 0, the
system is stable, and if Re(s)<0, the system is asymptotically stable so that
the error goes to zero exponentially as t → ∞.

3.3.3 The Transfer Function, SISO Filters, and the Time-Domain
Response

Equation 3.12 can be rewritten to describe the 1R motor unit (figure 3.8) in
the complex frequency-domain.

Among the advantages of describing the system in the s-domain is the
ability to express the PD control law as a single-input, single-output (SISO)
filter as in figure 3.9. This perspective has its roots in signal processing,
where these filters are called transfer functions.

Figure 3.9
The transfer function for the generic harmonic oscillator in the form of a SISO filter



Transfer functions provide a convenient mechanism for composing
filters and, thus, analyzing complicated, interacting dynamical systems. As
a result, control systems can be composed using modular transfer functions
with independent dynamics, and the composite transfer function can be
derived by manipulating the circuit into the equivalent closed-loop transfer
function.

Figure 3.10
Series and parallel composition of transfer functions and the closed-loop transfer function (CLTF)

For example, figure 3.10 illustrates how linear combinations of pairs of
transfer functions combine to form an equivalent SISO filter. Of particular
importance to us is the combination of transfer functions in closed-loop
feedback systems. The loop structure on the bottom of figure 3.10 is a
generic prototype for such systems. It incorporates a feedback transform H
to prepare sensor data for comparison to reference inputs, a summation
junction where feedback errors are computed, and a feedforward transform
G (which includes the plant and the feedforward controller) to compute
system outputs. Writing the ratio of output OUT(s) to input IN(s) for the
loop structure



Equation 3.16 defines the closed-loop transfer function (CLTF) of a
feedback control system. It captures the dynamics of the feedback control
structure in the form of a single equivalent SISO filter.

Together, identities like those in figure 3.10 provide a means of
transforming more complex closed-loop systems into equivalent closed-
loop transfer functions.

Example: Closed-Loop Oculomotor Transfer Function

Figure 3.11 illustrates the geometry of a pair of antagonistic muscles in the
human oculomotor system that are primarily responsible for panning
movements of the eyeball (section 7.1.2). These movements are used to
track moving stimuli on the retina or to quickly saccade to targets inferred
from other sensor data—to multiple elements of a complex visual scene or
to the direction of a sound, for example. In the latter case, the history of
stimuli is said to orient the closed-loop visual response.

Figure 3.11
The musculature for the eye’s lateral (pan) degree of freedom

Figure 3.12 shows a simple, linear control model for this part of the
oculomotor control system, in which the eye is the inertial object (1/I)
subject to passive damping (B) in the musculature. This part of the control
is bold in the figure.



Figure 3.12
A control model for the 1-DOF oculomotor system consists of active and passive elements

The torque generated by the antagonistic muscles is modeled by an
elastic element that produces a motor torque proportional to the error,

The sum of torques generated actively by the motor and passively by the
damper is applied to the inertial load. Integrators, 1/s and 1/s2, incorporated
into the nested feedback loops are required to transform the output
acceleration s2Θ(s) into velocity and position feedback, respectively. A
sequence of pairwise compositions from figure 3.10 is used to simplify this
relatively complex control circuit in order to determine the net, closed-loop
transfer function for the PD controlled, oculomotor system.

In figure 3.13(a) the inner loop is simplified by performing a serial
combination of the damper and the velocity integrator.



Figure 3.13
A sequence of compositions yields the closed-loop transfer function for the PD controlled,
oculomotor system

From figure 3.13(a) to (b), the inner loop is replaced by the local closed-
loop transfer function with

The series combination of feedforward transforms in (b) is evaluated
yielding (c).



Once again, an equivalent closed-loop transfer function is derived that
results in (d), where

Finally, by converting the output to Θ(s) and transforming into standard
form, we arrive at figure 3.13(e).

Compare this result with the Laplace transform of the equation of motion
for the 1R motor unit proposed in equation 3.15.

☐

The closed-loop transfer function in figure 3.13(e) represents the PD
controlled plant in a form that supports analysis for any Laplace-
transformable input function, θref(t).

3.3.4 The Performance of Proportional-Derivative Controllers

An exponential basis function for a complex root of equation 3.13 can be
written as the product of two exponential functions e(σ+ iω)t =eσteiωt. For all
stable parameterizations of equation 3.13 (i.e., when σ =Re(s) ≤ 0), the first
term eσt is an exponentially decreasing function of time. By Euler’s formula
(appendix A.10.1), the second term can be written eiωt =cos(ωt)+isin(ωt).
This term, therefore, introduces oscillatory responses for roots with
imaginary parts. PD control responses are, thus, the product of an
exponentially decreasing response and an oscillatory response—the relative
importance of these two responses depends on parameters K and B.

The unit step response—The unit step response is a natural choice for
characterizing the behavior of the PD control design in figure 3.8. It
represents a discrete change in the reference input in figure 3.14, where the
reference input changes instantaneously at t=0 from 0 to 1 [rad] where it
remains for 0 ≤ t<∞.



Figure 3.14
The unit step reference input

Appendix A.10.3 treats this case and derives the control responses in
figure 3.15 for a PD controller with fixed values of spring constant K and
rotational moment of inertia I and different values for the damping
coefficient B that produce damping ratios 0 ≤ ζ ≤ 2. Recall that ζ represents
the ratio of the rate at which kinetic energy is dissipated by the damper to
the rate at which potential energy is released from the spring. Low values of
ζ are, thus, dominated by the energetics of the spring and are oscillatory,
while larger values of ζ are increasingly dissipative.



Figure 3.15
The response of the second-order PD position controller in figure 3.8 as a function of ζ (K =1.0
[Nm/rad], I =2.0 [kgm2]) given boundary conditions  and θ∞=1.0 [rad]

When the controlled system is stable, different configurations of the PD
control law produce four qualitatively different responses.

Undamped—When B, and therefore ζ, are zero, the roots of equation 3.13
are purely imaginary complex conjugates (s1, 2 = ± iω). There is no
dissipatory element in the system and as result, the control response
conserves energy by storing and releasing energy in the spring at the natural
frequency  of the system. This response is illustrated in figure
3.15 by the curve labeled ζ =0. For the idealized mathematical formulation
where, for instance, springs are perfectly reversible, the system produces a
constant amplitude oscillation for t>0. Such a system is marginally or
orbitally stable.



Underdamped—For 0<ζ <1, the roots of equation 3.13 are complex
conjugates with real σ =Re(s)<0 and imaginary ω =Im(s) parts. The
imaginary parts lead, once again, to oscillation, but the (negative) real parts
are dissipative and introduce an exponentially decaying envelope that
causes the amplitude of oscillation to decrease exponentially over time. For
small positive convergence thresholds, a slightly underdamped response
will converge more quickly than other PD configurations. Underdamped
behavior—illustrated in curves labeled ζ =0.1, 0.2, 0.4, and 0.7 in figure
3.15—is asymptotically stable by definition 3.2.

Critically damped—When ζ =1, there exist repeated, negative real roots to
equation 3.13. For a given moment of inertia I, this corresponds to a unique
combination of values for K and B that separate under- and over-damped
configurations. This configuration of the PD controller, illustrated using the
ζ =1 curve in figure 3.15, is non-oscillatory, asymptotically stable, and often
selected as an optimal control design point.

Overdamped—ζ >1 corresponds to two distinct, negative, real roots so that
the time-domain solution is the weighted sum of two negative exponential
terms. The overdamped PD response is dominated by the damper’s viscous
behavior and is a consequence of the behavior generated by the least
negative real root. It is non-oscillatory and takes more time to converge as ζ
increases. An example of the overdamped response in figure 3.15 is the
curve labeled ζ =2.0.

Example: Controlling Eye Movements

Oculomotor responses include saccadic movements of up to 900 [deg/sec]
—the fastest movements in the human body. A saccade can be triggered by
anticipatory goals (e.g., when your eyes scan ahead while reading text). In
contrast, smooth-pursuit oculomotor controllers track features as the visual
scene evolves over time.

All oculomotor responses depend on closed-loop motor units (figure
3.12) that combine passive damping, active contractile forces, and α-γ
motor neurons to actuate the eye. Starting from the closed-loop transfer
function for the generic motor unit (figure 3.13(e)) and selecting a critically
damped response (ζ =1.0), the closed-loop transfer function is



From Table A.2, the Laplace transform of the unit step is

Therefore, the system response to the unit step input of magnitude θref is

The mapping back to the time-domain response is defined by the inverse
Laplace transform (equation A.20); however, we can accomplish the same
result by rewriting equation 3.17 in terms of a linear combination of
Laplace transform pairs in table A.2. A partial-fraction expansion of this
quotient yields

so that table A.2 can be used to determine the inverse Laplace transform
term by term.

Compare this result to the solution to the equivalent boundary value
problem (equation A.24).

☐

This example illustrates how the closed-loop response of the PD
controller can be derived for any Laplace-transformable driving function
(e.g., table A.2). These inputs provide useful diagnostic performance
feedback. Of particular importance is the response of the harmonic
oscillator to oscillatory driving functions, which we examine next.



Frequency response: Amplitude and phase—Other input reference
functions can be used to identify different aspects of the behavior of the
classical harmonic oscillator. Consider, for example, the time varying input
reference function θref(t)=Acos(ωt).5 Figure 3.16 plots the amplitude and
phase of the harmonic oscillator relative to the amplitude and phase of the
Acos(ωt) reference input for various values of the driving frequency ω and
damping ratios ζ. The PD control model exhibits significant frequency-
dependent behavior at different driving frequencies. An obvious feature of
the response is the sharp peak in the amplitude response. This peak is a
resonance phenomenon that is located at driving frequencies where ω/ωn

=1, that is, when the reference input frequency is equal to the natural
frequency of the harmonic oscillator. This effect is more pronounced as the
damping ratio decreases. In fact, for ζ =0, the gain becomes theoretically
infinite—the undamped (ζ =0) system can be destabilized by pumping
energy in at the resonant frequency much like a child pumps to increase the
amplitude of a playground swing.



Figure 3.16
The response of the second-order PD position controller to cos(ωt) input function, where ω is the
driving frequency for various values of ζ



Figure 3.16(a) shows that if the driving frequency is relatively large, the
amplitude response goes to zero asymptotically and the ability of the PD
controller to track the reference input is compromised. The bandwidth of
the system is that frequency where the amplitude response drops  of the
reference amplitude. The input frequency corresponds to the half power or
−3 dB point of the PD controller. The over- and critically damped
configurations in figure 3.16(a) have a relatively small bandwidth using this
criteria; the situation improves for underdamped configurations at the
expense of overshoot and ringing in the resulting oscillatory output. In
figure 3.16(b), we see that the natural frequency also identifies the point at
which the response lags 90 [deg] behind the reference input. If the driving
frequency increases beyond the natural frequency, the response goes
asymptotically toward a response that is 180 [deg] out of phase with the
forcing function.

3.4 Exercises

1. The spring-mass-damper (SMD). A torsional SMD system is illustrated
in its equilibrium position at θ =0 (there is no gravity). The moment of
inertia I of the system about the  axis at the base is 1 [kg m2]. The response
of the system to angular displacements from equilibrium is governed by the
spring K and the damper B (not shown).

(a) Write the characteristic equation of the SMD.
(b) Compute the natural frequency ωn and the damping ratio ζ.
(c) What are the roots of the characteristic equation?
(d) You push on the mass to rotate the system to π/2, as shown in the
figure. How much force must you apply to the mass to hold it in this



position?
(e) At time zero, the SMD is released from rest  at position θ =π/2.

i. Solve for the time response θ(t).
ii. Identify the term in the solution that dominates the behavior of the
system for large t.
iii. Plot the phase portrait for this system—that is, θ versus  for t=0,
∞.

2. Electrical analog for the SMD. The series combination of a resistor,
inductor, and capacitor creates the electrical analog of the mechanical SMD
system. Kirchhoff’s voltage law states that the supply voltage V is equal to
the sum of the voltage drops across these three circuit elements.

(a) Derive the differential equation that governs the behavior of the RLC
circuit.
(b) Compare the result to equations 3.1 and 3.3 and show how RLC
parameters correspond to SMD parameters in this pair of harmonic
oscillators.
(c) Derive the natural frequency ωn and the damping ratio ζ in the RLC
system.

3. Critical damping.
(a) Find the damping coefficient, B, for critical damping in the second-
order system .



(b) Show that when ζ =1 and the roots of the characteristic equation 
 are s1, s2 =−ωn, terms in the time-domain solution like

Ae−ωnt and Ate−ωnt both satisfy the original differential equation 
.

4. Natural frequency. Design a second-order control law,  with
natural frequency, ωn =50 [rad/sec]:

(a) For m=1 [kg], find K and B for critical damping.
(b) Comment on why it might be useful to design the natural frequency
of a controlled system.

5. Characteristic equation. Consider the second-order characteristic
equation 3s2 + 24s+ 21=0.

(a) What is the natural frequency of the system?
(b) What is the damping ratio?
(c) What is the bandwidth of the system?

6. Time-domain solutions. Suppose that the plant described by the
following characteristic equations are released from state 

. Derive the time-domain response x(t) of the
system.

(a) 
(b) 

7. Stability: Complex frequency domain.
(a) Root locus. The governing characteristic equation for the SMD
system is s2 +(B/m)s+(K/m)=0. Let m=1 [kg] and damping coefficient B
=2 [N sec/m]. Plot the roots of the characteristic equation on the real-
imaginary plane as K varies between −∞ and +∞. Identify the parts of the
resulting root locus that are unstable, overdamped, critically damped,
and overdamped.
(b) Characteristic equation. For each characteristic equation, determine
if the system is stable and explain your result.

i. s2 +s−2
ii. s2 −s−6
iii. s2 +8s+16



iv. s2 +3s+9
v. s2 −4s+1
vi. s2 +9s−1
vii. s3 +4s2 +s−6
viii. s3 +3s2 +3s+1

(c) Closed-loop transfer function. For each closed-loop transfer
function, determine if the system is stable and explain your result.

8. Stability: Lyapunov.
(a) Comparing frequency- and time-domain analysis. Consider the
system governed by .

i. Determine the roots of the characteristic equation. Is this system
stable?
ii. Given a Lyapunov function of the form , what can
be concluded about the asymptotic stability of this dynamic system?

(b) Skew symmetric terms. 
In section 3.2.2, Lyapunov’s direct method was applied to the SMD
system,

with ambiguous results. The problem arises because the candidate
Lyapunov function was defined to be the total energy of the system,



It has been demonstrated that adding a skew symmetric term of the form 
 to the total energy function can solve this problem.

 Consider the modified function

for small positive epsilon. Evaluate the Lyapunov conditions for this
function to define two constraints on the value of 𝜖 (in terms of m, K,
and B) that guarantee that the SMD system is asymptotically stable in the
sense of Lyapunov.
(c) Nonlinear systems. Consider the SMD system with nonlinear
viscoelastic components defined by

The dissipative force in the damper is a function of the x coordinate of
the mass,

i. The equation of motion for this system becomes

Write the expression for the total energy in this system.
ii. Using total energy as a candidate Lyapunov function, evaluate the
three criteria necessary for establishing asymptotic stability using
Lyapunov’s second method.
iii. In the phase portrait, plot the region for which this candidate
Lyapunov function has properties required of an asympotically stable
dynamical system.

(d) Pendulum. An idealized, frictionless pendulum is illustrated in the
figure.



The equation of motion for the ideal pendulum below is

The kinetic energy for this system is

and the potential energy in the pendulum is

i. Use the total energy function KE +PE as a candidate Lyapunov
function. Is the system stable? Is it asymptotically stable?
ii. Suppose that the pendulum is released from rest at θ = π/4.

(A) Label this starting state on the phase plane and sketch the
trajectory that this system should execute after it is released.
(B) What is the magnitude of the velocity when π = 0?

iii. Suppose that this experiment actually performed a trajectory like
so:



What term was missing in the dynamic model of this system?
9. Invent your own homework. Make a homework problem out of your
favorite content in chapter 3. Write a question and a solution for it from the
material in the reading. The problem should be different from the questions
already here. Ideally, they should call for a short discussion and quantitative
analysis—it should not take more than 30 [min] to solve open-book.



Part I Summary: Muscles, Motors, and Control

At the most basic level, sensorimotor agents interact with the world by
moving parts of their body, and these interactions reflect the character (both
strengths and limitations) of the system that transforms energy into
movement. This is where our discussion begins. Part I of the book
introduces the two most frequently used actuators—muscle and the DC
motor. The former dates back to the dawn of multi-celled organisms and is
recognizable in a wide variety of contemporary animals, and the latter is the
most widely used actuator over the past century for automation and
robotics.

Muscle tissue itself is a massive army of biomolecular “robots” with
viscoelastic properties derived from the interaction of two proteins—actin
and myosin. From this close-up perspective, the mathematics for modeling
and analyzing the behavior of muscle is very similar to descriptions of
actuators employed by engineers. Huxley’s description of the sliding
filament model proposes a means for producing energetic, whole-body
movements that depend on the probabilistic activation of trillions of
simultaneous actin-myosin interactions.

In the discussion of robotic actuators, our focus centered on the
ubiquitous permanent magnet DC motor. We introduced the physics
responsible for turning electrical current into force with this device and
wrote the equations for the motor dynamics. Motor performance curves for
the DC motor are very different from those of muscle tissue and lead, and
thus to differences in the quality of movement as well. The conclusion of
the discussion about actuation provides a brief survey of other actuator
technologies in use today and speculates about emerging actuator
technologies that may be available in the future.

Coordinating the behavior of muscle tissue or DC motors depends on
closed-loop control to produce movement in response to perceptable errors.
An example in the nervous system is the negative feedback response in
spinal nerves responsibile for the stretch reflex. The discussion of control in
part I focuses on spinal processing and the motor nuclei in animal systems.
It also provides a mathematical abstraction for motor units based on the



spring-mass-damper (SMD) and a classical treatment of time-domain
solutions and stability for such systems.

Part I begs the question—how are integrated movements in animals and
in robots organized around the behavior of multiple, stable, closed-loop
systems? This structure simplifies the enormously complex task of learning
and/or planning such movements. It also begins an analysis of how physical
properties of an agent determine what it can and cannot do and, therefore,
what it can and cannot experience. This theme carries through part II, where
we examine how the embodied control system influences the quality and
representation of environmental interactions.

1. The presentation in this chapter emphasizes the intuition underlying the analysis. Interested readers
can find complete derivation of these results in appendix A.10.3.
2. For the sake of this definition, we define the zeroth-order derivative .

3. In this case, a related technique for discrete-time system analysis using the z-transform can be
used.
4. The more general definition of the transform for derivatives is presented in appendix A.10.3,

where f(n−k)(0) is a boundary condition representing the value of the (n−k)th derivative of function
f(t) at t = 0.
5. Appendix A.11.1 derives the equations that describe the system behavior as a function of time for
this reference input.



II
STRUCTURE IN KINODYNAMIC SYSTEMS



4
Kinematic Systems

Kinematics is a subfield of dynamics in which the geometrical aspects of
motion are considered—apart from issues of mass and acceleration. The
kinematic influence of the skeleton on the movement of an animal is
fundamental and inescapable. Far from being a curse, however, exploiting
the kinematic aptitudes of a biomechanical system leads to higher
performance: it can produce an economy and grace of movement, enhance
sensory and motor acuity, and guide the search for skillful motor strategies.
The same kinematic principles can be used to guide robot programming and
to exploit the aptitudes of robot devices.

This chapter introduces tools for analyzing movement in kinematic
systems. All machines introduce sweet spots where attractive kinematic
properties can be exploited. We begin with a discussion of mechanisms
[220], after which the kinematic performance of articulated machines is
examined in some detail, including forward and inverse mappings between
body configurations and Cartesian task descriptions. The governing
kinematic equations for hand-eye coordination are presented, and the
chapter concludes by reviewing measures of kinematic conditioning—
descriptions of the ability of mechanisms to project velocity and force
efficiently into Cartesian space.

4.1 Terminology

Engineers have been studying principles of machine design for a very long
time. At the most basic level, animals and robots are mechanisms whose



behavior is governed by the same principles.
A mechanism is a collection of bearings, gears, cams, links, and belts

that convert motions from one form to another and transmit power. It is an
assemblage of individual rigid bodies known as links that are connected in
pairs through kinematic constraints called joints. A joint permits a specific
relative motion between adjacent links—prismatic joints permit
translations, and revolute joints support rotations. Any parameter (length or
angle) of a mechanism that specifies the position of an independent joint is
called a configuration variable. A kinematic chain is an assemblage of
interconnected links whose kinematic properties depend on how links and
joints are combined. The posture of devices with multiple configuration
variables is a coordinate in the configuration space. The minimum number
of such variables necessary to fully define the configuration of a mechanism
is called the degree of freedom (DOF) of the system.

A mechanism is formed when one of the links is held fixed and the
others move relative to the fixed link. The fixed link is referred to as the
ground link or ground frame. Most mechanisms considered in the machine
design literature consist of closed chains—that is, kinematic chains with
every link connected through joints to two adjacent links. However, many
robotic devices are open chains, wherein one or more so-called unitary
links are connected to only one joint.

4.2 Spatial Tasks

Tasks specify (directly or indirectly) the spatial configuration of limbs for
locomotion and/or manipulation, the positioning of sensory devices, and the
relative geometry of external objects in the environment. To meet task
specifications, control inputs are used to modify the spatial configuration of
the mechanisms comprising the robot.

In general, several frames of reference may be necessary to fully specify
a robot control task. Kinematic relations such as those in figure 4.1 are
naturally arranged in tree structures rooted in a fixed world frame. The
distribution of objects is often described in terms of their position and
orientation in the world frame or task frames fixed in the world to avoid
accumulating uncertainty. For example, in figure 4.1, the station coordinate
system is such a frame. It describes aspects of the task related to the world



through fixed spatial offsets. From the station frame, several other features
of the task (obj1, obj2, goal) may be specified as fixed offsets or
determined using sensor systems.

Figure 4.1
Coordinate frames commonly used to specify robot tasks

The sensory and motor resources of the robot can also be located in the
world frame using spatial transformations. For example, the transform from
world to base locates a coordinate frame attached to the robot. It could be a
fixed position relative to the world frame, as in figure 4.1, or it could be
time varying and controllable, as in the case of a mobile manipulator. In the
latter case, it is established by integrating displacements1 in the mobile base
in a process called odometry or by relation to other visual or tactile features
in the room whose positions are known.

From the base frame, two important frames establish the spatial
distribution of sensory and motor resources that can be applied to the task.
The first locates the wrist frame, and the second identifies the pose of the
sensor head relative to the base. These frames reflect both fixed offsets in
the body and the posture of controllable degrees of freedom measured using
sensors in every joint. Together with knowledge of the hand posture, they
constitute multiple forward kinematic relations in the robot that depend of
configuration variables and, therefore, support reasoning about spatial
errors and control. The tool frame in figure 4.1 identifies the working end of



the grasped screwdriver. It is estimated by considering visual and tactile
feedback in the context, perhaps, of prior information about the geometry of
screwdrivers.

Given a complete specification of the kinematic tree described above,
control tasks can be expressed in terms of the coordinate frames in figure
4.1. In principle, then, movements in the actuated degrees of freedom can
be computed in order to bring the tool and goal frames together and turn the
screw. However, spatial estimates are not all equally precise. The geometry
of the arm, fingers, and head depends on the dimensions of the mechanisms
and measurements of joint angles, which are relatively precise. In contrast,
fingertip contact locations, visual feedback, and estimates of the grasped
pose of the screwdriver can be significantly less precise.

Example: Kinematic Description of Roger-the-Crab

Roger-the-Crab was originally developed by Paul Churchland in 1988 to
demonstrate how the Cartesian space around a simple organism can be
encoded in neural projections between sensory and motor maps [53]. The
original Roger was a single, planar, two degree of freedom arm and a
stereovision system. Figure 4.2 defines the kinematic parameters and
intermediate coordinate frames of a more elaborate mobile, bimanual
version of Roger. The robot lives in the x-y plane and has a nine-
dimensional configuration space consisting of two pan degrees of freedom
in the eyes (θ1, θ2), two degrees of freedom for the left arm (θ3, θ4) and the
right arm (θ5, θ6), and three degrees of freedom in the mobile base (x, y, θ)0.
Each revolute joint (except for the wheels) rotates about the world frame 
axis. Roger’s wheel and arm joints rotate continuously, and his eyes have a
range of motion limited to −π/2 ≤ θ1, θ2 ≤ π/2.



Figure 4.2
The kinematic definitions and intermediate coordinate frames used to define Roger

Roger consists of several kinematic chains that establish spatial
quantities marked by intermediate coordinate frames. Four important
coordinate frames are rooted at fixed locations relative to the base frame B.
Frames V1 and V2 establish the positions of Roger’s eyes relative to B, and
frames A1 and A2 establish the positions of the shoulders of Roger’s arms
relative to B. In Roger, these frames are rigid translations from frame B in
the B direction and are used to describe and control the geometry of sensors
and effectors deployed by the robot.

Information about the goal frame G is derived from visual and tactile
sensors. Cameras at frames V1 and V2 can pan independently using
actuated joints θ1 and θ2. The transform from frames V1 and V2 to frames
aligned with the gaze (right inset) is a pure rotation parameterized by the
configuration variables. The eyes are pinhole RGB cameras (section 4.5.1)
with a focal length of 64 [pixel]2 that produce a one-dimensional image 128



pixels wide. Each eye, therefore, has a field of view of ± 45 [deg] directed
into the world by motor actions that pan the eyes and/or the body. Signals
from the camera pair can be used to estimate the goal location by
triangulation.

Tactile sensors are located at endpoint frames E1 and E2. The transform
from arm frames to the endpoint frames depends on the geometry of links
and actuated joints (θ3, θ4, θ5, θ6) in the arms. Tactile observations take the
form of force vectors in the x-y plane written in the end effector coordinate
frame. Like vision, signals from the tactile sensor together with knowledge
of the configuration of the robot can be used to determine the Cartesian
location of the goal frame G via forward kinematic relations (section 4.4.1).

The task of positioning the endpoint frames and directing the gaze of the
eyes is completely controllable using commands to motors that actuate each
of the degrees of freedom in these kinematic chains. Such completely
controllable kinematic systems are holonomic.3 The pose of the mobile base
is established by defining the location and orientation of the base coordinate
frame using odometry to estimate (x, y, θ)0 in world coordinates. Navigation
tasks for the wheeled base are expressed in this three-dimensional pose
space as well. However, unlike the other kinematic systems comprising
Roger, the mobile base is nonholonomic—the wheels do not permit
translational velocities along B. In world coordinates, from any given pose
q =[x y θ]T, the wheeled system can generate rotational velocities 

 and translational velocities along the current heading 
. Therefore, the controllable velocity from any given

pose is a two-dimensional subset of the pose velocity space and is
expressed as a linear combination of a rotational velocity and a pose-
dependent translational velocity

where vθ and vxy are scalar magnitudes for rotational and translational
velocities, respectively. The difference between the number of degrees of
freedom in the task and those in the control is stated succinctly in the form
of a single nonholonomic kinematic constraint that restricts translational
velocities



where l is the vector in the x-y plane that is orthogonal to the current vehicle
heading (the lateral direction). Now, the navigation task becomes more
challenging—the absence of a “whole kinematic law” introduces interesting
control and path planning issues. Other examples exist of important
nonholonomic systems—for instance, when fingertips roll over the surface
of a grasped object during manipulation.

☐

To construct control tasks, we require a means of transforming (sets of)
Cartesian quantities expressed in one coordinate frame into another frame
appropriate for control. In the next section, we introduce one such
representation called the homogeneous transform.

4.3 Homogeneous Transforms

A group is a set of elements that is closed under a binary operation—that is,
applying the operator to pairs of elements in the set produces a result that is
also an element of the set. In addition, to constitute a group the operator
must be associative—that is, (a·b)·c=a·(b·c). The group must include an
identity element I, such that a·I =I ·a=a, and every element a in the set must
have an inverse a−1, such that a·a−1 =I, that is also in the set. The classical
example of a group is the set of integers and the addition operator.

Rigid body motions describe Euclidean groups. In particular, a three-
dimensional translation group T consists of elements that are displacements
t∈ ℝ3 ([x y z]T, for example). The translation group is closed under addition.
Moreover, the elements of the special orthogonal group in three dimensions
SO(3) designates three orthogonal rotations (roll, pitch, yaw, for example).
The rotation group is closed under multiplication, and compositions of
elements preserve Euclidean distances. Groups T and SO(3) are
independent subgroups of the special Euclidean group SE(3), elements of
which describe how rigid bodies move in a six-dimensional Cartesian
space. As a consequence, to completely define the pose of a rigid body, one



needs to specify a minimum of six independent variables that specify the
translation and rotation of the body.

4.3.1 Translational Components

Figure 4.3a shows two coordinate frames, A and B, that are related through
a pure translation. A position vector rB written in frame B is expressed in
coordinate frame A using the linear transformation

where AtB represents the translation from frame A to frame B written in
frame A coordinates. During a pure translation, the relative orientation of
the two frames remains fixed and the , , and  coordinate axes remain
parallel.

Figure 4.3
Two coordinate frames related through a pure translation

4.3.2 Rotational Components

There are several alternatives for representing rotations [286], including
exponential coordinates [202], Euler angles, roll-pitch-yaw notations,
quaternions, and direction cosines. Of these choices, the direction cosines
are the least compact—requiring nine numbers to specify three rotation
variables—but, as we will see, direction cosines contribute to a simple,
invertible, and homogeneous representation for SE(3).



Figure 4.4
Two coordinate frames related through a pure rotation

To derive the direction cosine matrix, consider frames B and C in figure
4.4, related through a pure rotation. Position vector r written in frame C
coordinates can be expressed in frame B coordinates by employing the 3×3
direction cosine matrix BRC, such that

where , , and  represent the orthonormal basis for a coordinate frame.
The dot operator in equation 4.1 is the dot (or scalar) product (appendix

A.1). Columnwise, the direction cosine matrix maps the orthonormal
(orthogonal and unit length) basis vectors in frame C into a new
orthonormal basis written in frame B. The first column, for example,
projects basis vector C onto the , , and  axes of frame B. The matrix
multiply in equation 4.1 sums the independent projections of the x, y, and z
components of rC onto the basis vectors for frame B.

Figure 4.5
Projecting C onto the x-y plane of frame B



The rotation matrix BRC can be derived geometrically by writing basis
vectors ( , , )C in frame B coordinates and then entering the result into the
appropriate columns of BRC. Consider the rotation illustrated in figure 4.5
and let  be the projection of C onto coordinate frame B.

Repeating this geometric construction for  and  yields

The columns of BRC represent the basis vectors of frame C projected onto
the basis vectors of frame B. Conversely, the rows of BRC represent the
projection of the basis vectors for frame B onto the basis vectors of frame
C. This suggests, and it is clear by inspection of equation 4.1, that the
inverse of the direction cosine matrix is its transpose, .

Finally, note that the rotation in figure 4.3b is about the  axis and,
therefore, preserves the direction of the  axis. The positive sense of the
rotation indicates the rotation from frame B to frame C.

Rotations about  and  are constructed in the same way. For the sake of
completeness, the direction cosine matrix for pure rotations about the , ,
and  axes are summarized here,

where cθ and sθ are shorthand notation for cos(θ) and sin(θ), respectively.



The homogeneous transform incorporates translation and rotation in a
single linear transformation. It applies a translation from frame A to frame
B followed by a rotation from frame B to frame C, as in figure 4.6. The
order of application of the transforms is important—spatial transforms such
as these are not commutative.

Figure 4.6
Two coordinate frames related through a rotation and a translation

The homogeneous transform ATC and the homogeneous position vector
are defined as follows:

The fourth row in each of these definitions is there to provide the
bookkeeping required to sum the affects of the translation and rotation
correctly. It is left to the reader to verify that the product rA = ATC rC yields
the intended homogeneous position vector for the construction in figure 4.6.

4.3.3 Inverting the Homogeneous Transform

The inverse of the homogeneous transform is simple to derive. Here, we
simply present the solution and leave it to the reader to verify.



The homogeneous transform is commonly used in robotics and computer
graphics and is one way of representing the kinematic transformations
between the coordinate frames indicated in task descriptions like figures 4.1
and 4.2. It provides a closed-form method for describing spatial
transformations associated with articulated mechanisms and is easily
composed and inverted. Moreover, the homogeneous transform is the basis
for the standardized Denavit-Hartenberg (D-H) notation that makes it
possible to represent a complete kinematic specification for a robot using
tables of standardized D-H parameters [221].

4.4 Manipulator Kinematics

Forward and inverse kinematic relations describe reciprocal mappings
between an n-dimensional configuration space (q∈ ℝn) describing the
degrees of freedom in the kinematic system and the Euclidean space
(r∈SE(3)) consisting of the complete pose of a Cartesian frame (typically
the endpoint of the manipulator). The dimensionality of vector r depends on
the representation used for orientations. Section 4.3 introduced the 4×4
homogeneous transform to represent SE(3) so, in this case, r∈ ℝ16—not the
most compact representation. In the following, we will often consider only
positions in Cartesian space—that is, r ∈ ℝ3.

Forward kinematic transformations map subsets if configuration space to
subsets of Cartesian space, q ↦ r, and inverse kinematic transformations
map them back again, r ↦ q. The character of these mapping functions
reveals a great deal about the aptitudes and limitations of robotic
mechanisms.

4.4.1 Forward Kinematics

Closure and associativity properties of SE(3) imply that homogeneous
transforms can be used to compose other homogeneous transforms. This is



of great consequence when describing tasks, especially when this
description incorporates the configuration variables of a robot.

Consider the forward kinematics of Roger-the-Crab’s two degree of
freedom robot arm (figure 4.2). This manipulator geometry consists of a
series of two revolute joints with parallel axes of rotation so that the
manipulator remains in the plane normal to this axis of rotation. For this
reason, it is often called the planar 2R manipulator.

Example: Forward Kinematics of the Planar 2R Manipulator

Figure 4.7 illustrates Roger’s arm. It includes several intermediate
coordinate frames distributed along the length of the arm. Frame 0 is the
arm frame that locates the shoulder joint with respect to the body frame in
figure 4.2. Frames 1, 2, and 3 represent cumulative displacements from
frame 0. Frame 1 is rotated by θ1 so that 1 remains directed along link 1 as
the shoulder joint moves.



Figure 4.7
The planar 2R manipulator

Relative to frame 1, a translation along 1 for a distance l1 followed by a
rotation of θ2 about 1 results in frame 2, with 2 directed along link 2.
Finally, relative to frame 2, a translation along 2 of distance l2 locates the
endpoint frame 3.

The net transformation from frame 0 to frame 3 is the product of this
sequence of homogeneous transformations.



where ci =cos(θi); si =sin(θi); and c12 =cos(θ1 +θ2). Identities sin(α ± β)=sinα
cosβ ± cosα sinβ and cos(α ± β)=cosα cosβ ∓sinα sinβ are used to simplify
the result.

☐

The forward kinematic relation in the form of the homogeneous transform
0T3 provides insight into the kinematic character of the planar 2R
manipulator. For example, inspecting the rotational part of the transform,
we determine that the orientation of the end effector relative to frame 0 is a
rotation about the  axis of (θ1 +θ2). Moreover, the position of the end
effector is determined in the fourth column of the transform,

These equations can be evaluated over all reachable joint angles to yield the
reachable workspace for the manipulator. Figure 4.8 illustrates the result for
the planar 2R manipulator assuming that each joint is free to rotate
continuously (light gray). Also illustrated in darker gray is the reachable
workspace for the human shoulder-elbow analog of the 2R manipulator
with realistic joint range limits (-π/4 ≤ θ1 ≤ 5π/4, 0 ≤ θ2 ≤ π). Three
kinematic variations of Roger’s arm are sketched in the figure. The leftmost
panel shows Roger’s arm where l1 =l2. Under these conditions, Roger can
reach the entire interior (including the perimeter) of the disk with radius l1

+l2 centered on the shoulder joint. Absent joint range limitations, each
position in the interior of the reachable workspace can be achieved using



two configurations of the arm—one with the elbow flexed and one with the
elbow (hyper)extended. The adult human arm conforms fairly closely to the
l1 =l2 case.

Figure 4.8
The reachable workspace for the planar 2R robot

The dexterous workspace is the subset of the reachable workspace where
all orientations of the end effector can be achieved. This subset is non-
empty only when l1 =l2 (the left panel). It includes only a single Cartesian
location (the origin), corresponding to a one-dimensional subset of
configurations where θ2 = ± π and -π ≤ θ1 ≤ π. Given this elbow posture, the
endpoint orientation can assume any value in the plane by controlling the
position of shoulder in the range −π to π.

Realistic joint range limits interact with relative link lengths to
significantly influence the reachable workspace and, as the center and right
panels of figure 4.8 illustrate, there are significant advantages to keeping l1

and l2 approximately equal in length.

4.4.2 Inverse Kinematics

Tasks are efficiently expressed in terms of Cartesian goals r∈SE(3) that are
transformed into configuration variables q∈ ℝn for use in motor controllers.
The mapping required is the inverse of the kinematic mapping discussed in
section 4.4.1. However, forward kinematic functions are nonlinear—many
Cartesian goals are unreachable, and others can be realized by many



possible joint angle configurations. As result, inverting forward kinematic
mappings is nontrivial.

Complete inverse kinematic solutions yield all joint angle configurations
for any reachable Cartesian goal. In general, complete inverse kinematic
solutions are very difficult (or impossible) to compute in closed form;
however, they do exist for some important special cases. For example,
Pieper [229] formulated a general inverse kinematic solution for six degree
of freedom manipulators consisting of three revolute or prismatic joints
followed by three consecutive joints with rotational axes that intersect at a
point. The first three degrees of freedom generate positions in ℝ3 and the
spherical wrist generates SO(3). Several robot designs incorporate this
kinematic simplification, a notable example of which was the Unimate
PUMA 560 (figure 4.9a), the first commercially available arm. The human
arm-wrist geometry in figure 4.9b embodies these kinematic properties as
well. Three proximal degrees of freedom in the shoulder and elbow position
the wrist in ℝ3. Three orthogonal rotational axes (humeral rotation, wrist
flexion/extension, and wrist adduction/abduction) intersect at a point in the
wrist near the base of the palm and, thus, generate SO(3). Therefore, the
ability to position and orient the hand are decoupled to a large degree.



Figure 4.9
The Unimate PUMA 560

Figure 4.10
The human shoulder, arm, and wrist. Three intersecting revolute axes in the wrist create an
approximately spherical wrist joint important for brachiation in human ancestors

Most closed-form solutions exploit structure in the kinematic design and
employ algebraic or geometric methods [285]. Of these approaches,
geometric methods attempt to identify opportunities to decompose the
inverse kinematic problem for a particular manipulator into several lower-
dimensional problems. The properties underlying Pieper’s conditions are an



example of such an approach, whereby the problem is decomposed into
inverse position and inverse orientation components. Instead of a
comprehensive treatment of these techniques, we will pose a particularly
simple example in the context of inverse kinematic solutions applicable to
Roger’s two degree of freedom planar arm that first appeared in [65].

Example: Geometric Inverse Kinematic Solution for the Planar 2R
Manipulator

Kinematic parameters for Roger’s planar, 2R arm are defined in figures 4.2
and 4.7. We note that for Roger, l1 =l2. In this example, we construct a
complete inverse kinematic solution for this limb. Recall that by “complete”
in this case, we mean that every point in the interior of the reachable
workspace should yield two discrete solutions, one each for positive and
negative values of the elbow joint. The exception is the origin (0, 0)—the
dexterous subset of the reachable workspace—where there exists an infinite
number of inverse kinematic solutions.

Figure 4.11 defines a set of auxiliary variables that will simplify the
derivation of the inverse kinematics—the mapping from a Cartesian target
(x, y) to the corresponding values for the joint angles (θ1, θ2).

Figure 4.11
A geometric construction for simplifying the inverse kinematic solution

We can write the square of the magnitude of vector r in terms of the (x,
y) coordinate of the endpoint for the 2R manipulator r2 =x2 +y2. Introducing



the forward kinematic relations for this manipulator (equation 4.5) yields

and after simplifying,

Rearranging terms and solving for c2 yields

The quotient on the right side of equation 4.6 determines the geometric
feasibility of target r for the 2R mechanism with link lengths l1 and l2. For
an inverse kinematic solution to exist, equation 4.6 must produce a value
for c2 in the interval [−1, +1]—when this is true, r is reachable.

To solve for both θ2 solutions, we note that , so that 
, and

The pair of θ1 values that correspond to these θ2 solutions are determined
by using auxiliary variables k1 and k2 (figure 4.11),

so that

Finally,



and

so that

These kinematic relations are summarized in the pseudocode presented in
figure 4.12 [65].

Figure 4.12
The complete inverse kinematic mapping for the planar 2R manipulator

☐

Forward and inverse kinematic transformations contribute to a
proprioceptive sense of space. Proprioception refers to the sense of the
position and movement of one’s body—including the orientation and



viewpoint of externally directed sensors. Combined with other sensor
modalities, like tactile sensing and vision, proprioceptive information can
contribute to the acquisition of exteroceptive information regarding the
space outside the robot’s body. One of the most important sources of this
kind of information is derived from stereoscopic vision.

4.5 Kinematics of Stereo Reconstruction

Stereo vision is largely a kinematic issue. In section 4.4, forward kinematic
functions were used to map the configuration variables of a robot
manipulator into Cartesian coordinates. This mapping function can be used
to map tactile events on the surface of the manipulator to the Cartesian
places where contacts occur. Forward kinematic relations can also be used
to localize other sensory events. For example, oculomotor configuration
variables corresponding to binocular visual events can be mapped to the
Cartesian location of a light source. In this section, we will introduce a
simple model of the imaging geometry and the kinematic equations
underlying stereoscopic reconstruction.

4.5.1 Pinhole Camera: Projective Geometry

Figure 4.13 illustrates a pinhole camera, constructed by making a single
small hole in an opaque enclosure. The pinhole is positioned at the origin of
the camera’s coordinate frame in the diagram and provides the only
pathway for electromagnetic energy to enter the enclosure. Rays of light
travel in straight line paths through the opening to strike the image plane at
x=−f, where f is called the focal length. The process creates an image of
environmental light sources. Such a projective geometry preserves the
topology of the light sources from the perspective of the camera (the +
axis in figure 4.13).



Figure 4.13
The pinhole camera geometry

Pinhole cameras can be found in the writing of philosophers,
astronomers, and scientists going back thousands of years in references
from China (Mo-Ti, fifth century BC), ancient Greece (Aristotle, ca. 350
BC), and Persia (Alhazen of Basra, tenth century). It was described in the
notebooks of Leonardo da Vinci in the fifteenth century, and the sixteenth-
century Dutch artist Johannes Vermeer, one of the early realists, used the
camera obscura to create his remarkably accurate interior still lifes. With
the advent of optical lenses and good quality light sensitive materials early
in the nineteenth century, the camera obscura evolved into the modern
camera.

The perspective projection performed by the pinhole camera is defined
by the geometric construction in figure 4.13. By similar triangles, world
coordinate (x, y, z) projects to image plane coordinates u=−fy/x and v =−fz/x.
The positive directions for  and  are defined by the positive directions of 
and , respectively, and all valid world coordinates have positive 
components. Consequently, the image of these sources is inverted on the
focal plane. Moreover, scale on the image plane (the ratio of the image
plane distance to the Cartesian distance) is inversely proportional to range
x. The resulting depth-dependent projective distortion explains why train
tracks appear to come together on the horizon at a position called the
vanishing point. Projective scale distortion diminishes as a subject with
finite depth approaches x=∞. Under these circumstances, the projection is
approximately orthographic. In practical applications, perspective
distortion is generally insignificant if the depth of the object is small



relative to its range. Under these circumstances, the subject is said to have
shallow structure and the projection can be assumed to be essentially
orthographic.

4.5.2 Binocular Localization: Forward Kinematics

The perspective projection equations map light rays reflected from three-
dimensional objects onto a two-dimensional image plane. Information about
depth in the scene is lost in this projection and cannot be recovered without
additional information. A stereo pair of cameras with two different
perspectives on the scene can reconstruct some of the three-dimensional
structure lost in the projection.

Example: Stereo Localization in the Plane

Consider Roger’s planar binocular imaging geometry in figure 4.14. At the
bottom of the figure, a pair of pinhole cameras separated by 2d in the 
direction are opaque enclosures with pinhole apertures aimed along parallel
gaze directions, L and R. The reference frame midway between the
pinholes is called the stereo (or cycloptic) coordinate frame. The goal is to
recover the (x, y) coordinate of point p in the stereo frame. This is a special
case where the two cameras have fixed gazes mutually parallel to the
cycloptic  axis; depth is encoded exclusively in the “disparity” between the
image coordinates of point p on the left and right image planes. Under these
conditions:

so that



Figure 4.14
Top view of a 2D stereo geometry where depth is encoded exclusively in stereo disparity

The difference of these functions yields x(uL −uR)=2df, and therefore

The range estimate is inversely proportional to the stereo disparity, (uL −uR),
which is positive for any feature p in front of the camera pair. The
numerator of equation 4.12 is a positive constant. As a result, the range
goes to positive infinity as the disparity goes to zero and regions with equal
disparity are equally distant.



Figure 4.15
The binocular imaging geometry with independently panning cameras. On the right, the stereo
geometry is defined in terms of parameter γ =θ +ϕ, the sum of the eye configuration, θ, and the
angular offset from the fovea, ϕ

It is relatively straightforward to generalize this result to cases where the
cameras can pan independently (i.e., that can “verge” toward feature p).
Figure 4.15 shows the new geometry for this situation and defines variables
θ and ϕ for the left camera. We assume that the verge degrees of freedom
are located at the pinhole apertures and rotate about axes parallel to the
stereo frame  axis. The new variable, γ, is the sum of the eye angle, θ, and
the angular offset of the feature p from the image center. The illustration on
the right of figure 4.15 identifies the governing geometry of this stereo
system. It is relatively straightforward to solve for the spatial coordinates of
feature p under these conditions.

It is left as an exercise for the reader to verify these triangulation
equations for this geometry.

☐



4.6 Hand-Eye Kinematic Transformations

In addition to contact interactions with the world, kinematic structures are a
means of delivering sensors to places where useful information is
accessible. Supported by joint angle feedback, degrees of freedom in the
arms, hands, and head can be used to orient tactile and visual sensors to the
world geometry. Visual signals are subject to line-of-sight constraints, and
tactile signals are subject to reachability constraints, but together these
independent sensors provide richer and more complete information than is
possible with either one alone.

Figure 4.16 summarizes the kinematic mapping functions for the arm
and eye subsystems of Roger-the-Crab developed in this chapter. It
illustrates how they are related to each other and to the Cartesian task
space.4 The middle panel shows a regular Cartesian grid describing the
space around the robot. The reachable subset of the world is green and can
be observed using both visual and tactile sensors. The region of space that
is not reachable by either arm is colored red—environmental stimuli in this
region are accessible only by vision.



Figure 4.16
Multi-sensor models of space and hand-eye coordination. This illustration uses a different coordinate
system than other Roger examples, and arms/hands have been removed from images for clarity.



The bottom panels of figure 4.16 remap the reachable subset of Cartesian
space onto the configuration variables of Roger’s arms. Joint angles in the
arm can rotate continuously, so these maps are toroidal—the top/bottom
and left/right edges of the configuration space wrap around at ± π. Figure
4.16 shows how the reachable subset of Cartesian space is deformed when
parameterized in terms of the configuration variables of Roger’s arms.

The top panel in the figure shows the results of projecting Cartesian
space onto the configuration parameters of Roger’s stereo oculomotor
system. The world beyond arm’s length is red and maps to a narrow
diagonal where the gaze of the two eyes is convergent but very nearly
parallel—that is, γL ≈γR. We observe a kind of fish eye stereo effect that
emphasizes a region of space directly in front of the pair of eyes. Lateral
and distant regions of space are compressed into a relatively small range of
stereo configuration parameters.

The regular Cartesian grid lines in figure 4.16 are deformed when they
are projected into these configuration spaces. Both the visual and
proprioceptive maps preserve the topology of the Cartesian space, but as a
result of this deformation, configuration space observers vary in precision
and sensitivity depending on where they are “looking.”

The kinematic mapping functions derived in earlier sections are
illustrated in figure 4.16. Function f(x, y) is the pinhole camera projections
(section 4.5.1) for the stereo pair that map a coordinate in Cartesian space to
visual parameters γL and γR. Its inverse, f−1(), represents the stereo
triangulation equations (section 4.5.2). Functions g(θ1, θ2) and g−1(x, y) are
the forward and inverse kinematic transformations, respectively, for Roger’s
arms (section 4.4). These mappings are written for the left arm, gL(), and the
right arm, gR(). Compositions of these transformations can be used to map
directly from oculomotor to arm configurations and vice versa.

Goals in one motor map are strongly associated with goals in the other
maps—a visual stimulus, for example, is associated with arm configurations
where spatially colocated tactile events are likely to also occur. All the blue
features in the configuration space maps refer to the single blue square in
the Cartesian map. A unique observation in the oculomotor space is
associated with up to two configurations of each arm. This is the basis for a
multimodal and fused interpretation of space.



Immediately after birth, human infants use a relatively mature binaural
auditory sense of space to bootstrap reaching and visual orientation skills
[54, 24, 25]. During the infant’s first year (and beyond), cells from layers of
tissue in the visual, auditory, and somatosensory cortices project via neural
processes to associated cells in the motor cortex where colocated stimuli are
expected. During this period, developmental reflexes orient the neck and
hand so as to place the hand in the field of view. Among other things, this
reflex generates training data and bootstraps the acquisition of hand-eye
projections like this (section 9.3.2). All of these precursor skills and
cumulative perceptual abilities support more complex skills in a
developmental progression—from spatial mapping, to objects, to grasping
and manipulation, and to words (section 9.4). The first complete sense of
the space outside the infant is supported by correlations between sight,
sound, and touch that capture mappings like those in figure 4.16.

4.7 Kinematic Conditioning

Techniques for evaluating the kinematic condition of a robot rely on
methods for analyzing the ability of the mechanism to deliver velocities as
well as positions. Tools from linear analysis provide useful insight;
however, forward kinematic transformations are generally nonlinear. To
make use of these tools, the forward kinematic equations must be linearized
around an operating configuration using the Jacobian of the nonlinear
kinematic equations.

4.7.1 Jacobian

Nonlinear forward kinematic functions r(q), like those in equations 4.5 and
4.13, map coordinates in configuration space, q, to Cartesian space. Assume
that these functions are analytic so that they can be written in the
neighborhood of q =a in the form of a Taylor series:

The first-order linear approximation of the function r(q) near q =a is
extracted from the Taylor series by ignoring higher-order terms,



Equation 4.15 maps differential displacements in configuration space, dq,
into differential displacements in Cartesian space, dr. Equivalently, it
transforms input velocities to output velocities. The matrix of partial
derivatives, ∂r/∂q, is the Jacobian, J, named after the mathematician Carl
Gustav Jacobi. It represents the tangent hyperplane of the function r(q) in
the neighborhood dq surrounding q =a. The Jacobian is an accurate local
approximation of the original nonlinear system in the limit as dq → 0 and it
can be analyzed using powerful tools applicable to linear systems.

4.7.2 The Manipulator Jacobian

The Cartesian velocity of the manipulator is derived by differentiating the
forward kinematic mapping and, in general, depends on both the pose and
the velocity of the joints in the mechanism. The analysis can be applied at
any point on an articulated structure; however, without loss of generality,
we consider the velocity of the endpoint of the kinematic chain and
illustrate the idea using the planar 2R manipulator whose forward kinematic
equations were derived in section 4.4.1.

Example: First-Order Velocity Control for the Planar 2R Manipulator

The x-y components of the forward kinematic function for the planar 2R
manipulator (equation 4.5) are repeated here:

The first derivative of these equations is written

which can be rewritten to emphasize the locally linear relationship:



The manipulator Jacobian J is a 2×2 matrix that defines the locally linear
mapping from a two-dimensional displacement/velocity in configuration
space [dθ1 dθ2]T to a two-dimensional displacement/velocity in Cartesian
space [dx dy]T at the manipulator endpoint.

With no joint range limits, this manipulator can execute continuous
rotations in both θ1 and θ2—that is, it can execute arbitrary velocities 
from any configuration θ in configuration space. Suppose that the set of
executable velocities forms the unit disk in configuration space centered on
configuration θ, as illustrated on the left side of figure 4.17. In general, the
projection into Cartesian space represented by the Jacobian deforms this set,
as illustrated on the right side of the diagram.

Figure 4.17
The Jacobian of the 2R manipulator transforms sets of executable velocities in configuration space
from posture (θ1, θ2) into sets of achievable velocities in Cartesian space from endpoint position (x,
y)

The determinant (appendix A.2) of the Jacobian in equation 4.17 is a
scalar value with units [m2/rad2] proportional to the “scale” of the
transformation. The determinant for the 2R manipulator Jacobian is written

It describes the degree to which velocities in configuration space are
amplified or attenuated as they are projected into velocities in the Cartesian
plane. A determinant of zero indicates that the Jacobian is singular and has
lost rank. In general, this means that an n-dimensional input maps (locally)



to a lower-dimensional manifold of the output space. From equation 4.18,
the 2R manipulator Jacobian is singular when sin(θ2)=0, or when θ2 =0, π
(figure 4.18). These configurations correspond to endpoint positions on the
outer and inner boundary of the reachable workspace. In these postures, the
manipulator can not generate arbitrary velocities in the x-y plane. Figure
4.18 shows that the achievable endpoint velocities for these singular
configurations are limited to a one-dimensional subset of the Cartesian
plane.

Figure 4.18
Singularities in the 2R manipulator

Figure 4.19
The 2D planar manipulator and a specific endpoint velocity command

In nonsingular configurations, however, the manipulator Jacobian is full
rank and is, therefore, invertible. Suppose that Roger’s arm is required to
execute an endpoint velocity of v =1 [m/sec] in the  direction as in figure
4.19. Inverting equation 4.17 (appendix A.2) yields



so that

This closed-form relation defines the joint angle velocities that produce the
target endpoint velocity for every pose (θ1, θ2) of the manipulator. As the
arm approaches singular configurations like those in figure 4.18, the inverse
of the Jacobian becomes ill-conditioned because 1/l1l2s2 goes to infinity. As
a consequence, equation 4.19 predicts that the fully extended 2R
manipulator requires infinite joint space velocities to withdraw the endpoint
radially (along the −  direction in figure 4.18) toward the origin. Readers
can easily verify that this is not the correct conclusion using their own arms.
Omitting the higher-order terms in equation 4.14 and relying solely on a
first-order approximation can introduce significant inaccuracies, and the
predicted behavior near singularities can be misleading in important ways.

☐

Manipulability Ellipsoid—The scalar determinant is only a coarse
measure of manipulator conditioning—the manipulator Jacobian also
provides an opportunity to examine the spatial character of the velocity
transform. If we assume that joint angle velocities in the manipulator are
limited to the unit (hyper)sphere, , then we can derive the quadratic
form (appendix A.6) describing the corresponding envelope of Cartesian
endpoint velocities.

The rightmost inequality in equation 4.20 defines the quadratic form we are
interested in. It describes the Cartesian manipulability ellipsoid—a set of
Cartesian velocities generated by mapping the unit (hyper)sphere of joint



space velocities through the manipulator Jacobian. Appendix A.6 shows
how the ellipsoid is determined from the eigenvalues and eigenvectors of
JJT.

The velocity ellipsoid is pictured for the 2R planar manipulator in figure
4.20. The diagram illustrates the relative ability of the arm to generate
endpoint velocities from this configuration in different directions. Unit
vectors, 1 and 2, are the eigenvectors of JJT. They define the principal axes
of the transformation. The relative amplification of velocity in these
directions is proportional to the square root of the corresponding
eigenvalues λ1 and λ2 of JJT. In this light, the directions in which the
manipulator is best at transforming small joint angle velocities  into large
Cartesian velocities  is identified by the eigenvector with the largest
eigenvalue and the scale is proportional to the square root of that
eigenvalue.

Figure 4.20
The velocity ellipsoid in terms of the eigenvalues and eigenvectors of JJT for the planar 2R
manipulator

Conversely, imagine an encoder that measures joint angle positions over
the interval [0, 2π) with 8 bits of precision. In this case, the encoder



resolves 2π/28 =[rad/tick]. Projecting this resolution through the Jacobian
yields

Thus, the eigenvector with the smallest eigenvalue identifies the direction in
Cartesian space where precision is optimized—the direction from the
current pose where the sensor resolves the smallest Cartesian displacements
per encoder tick.

Force Ellipsoid—The work output produced at the endpoint of a
mechanism that is in contact with the world is the product of endpoint force
f and distance dr traveled. If we assume no losses, then the work input in
configuration space must be equal to the work output in Cartesian space
[65],

However, since dr =Jdθ, we can write

so that

The manipulator Jacobian, therefore, describes the transformation from
joint velocity to Cartesian velocity and the mapping from Cartesian
endpoint forces to joint torques.

As a consequence, the velocity ellipsoid (equation 4.20) has a direct
analog in the quadratic form representing the force ellipsoid

Thus, unit hypersphere τTτ maps through the manipulator Jacobian to the
Cartesian force ellipsoid defined by the eigenvalues and eigenvectors of
(JJT)−1. The eigenvectors of JJT and (JJT)−1 are identical, and the
eigenvalues of JJT (velocity amplifier) are reciprocals of the eigenvalues of



(JJT)−1 (force amplifier). Therefore, once the eigenvectors and eigenvalues
of JJT are established, both the velocity and force capabilities of the
manipulator can be determined.

Example: Velocity and Force Ellipsoids for Roger

Velocity and force conditioning ellipsoids for Roger’s arms are illustrated in
figure 4.21. Close inspection verifies that the eigenvectors are the same and
that eigenvalues are reciprocal. For velocity (left), a large eigenvalue of JJT

amplifies relatively small  inputs into large  outputs along the
corresponding eigenvector. This is evident near x=0.5 [m], where the left
arm is nearly fully extended and joint velocities are mapped efficiently
through the Jacobian to Cartesian velocities in the ±  direction. Conversely,
the arm is quite good at detecting small Cartesian displacements of the
endpoint in the  direction as relatively large displacements of the joints in
the arm.

Figure 4.21
The manipulator conditioning ellipsoids JJT for Roger’s 2R manipulator

The nearly extended right arm demonstrates the same kind of kinematic
efficiency in the force generating capacity of the arm. Unlike the capacity
for Cartesian velocity, when the robot arm is extended, it is quite good at
converting relatively small joint torques into relatively large endpoint



forces. Loads in the  direction on the extended arm are carried primarily in
the links (skeleton) and not in the actuators (musculature). Conversely, in
directions with small eigenvalues, small external loads produce relatively
large joint torques. As result, these robot configurations are capable of
detecting and precisely controlling relatively small interaction forces at the
expense of strength.

☐

The tools introduced in this section characterize (to first order) how
kinematic devices produce Cartesian velocities and forces. The Jacobian is
the key to this analysis—it can be viewed as a configuration-dependent
velocity amplifier that describes kinematic mappings. In the next section,
the same analysis will be applied to stereo triangulation. In this analysis,
however, the emphasis is not force and velocity; instead, we focus on how
visual acuity depends on the kinematic configuration of the oculomotor
system.

4.7.3 Stereo Localizability

In section 4.5.2, stereo reconstruction is posed as a kinematics problem.
Stereo triangulation equations are used to transform the configuration of a
pair of eyes and the signal on the image plane (collectively, an oculomotor
configuration) into an estimate of the Cartesian coordinate of the light
source.

Errors in the result of stereo triangulation arise from errors in the
mechanism, imprecision in joint angle sensors, optical aberrations in lenses,
and finite resolution on the image plane. In this section, we consider the last
of these sources of uncertainty, the finite resolution of the image plane, and
consider how bounded input errors map to expected triangulation errors.

The precision of the stereo system can be analyzed using the techniques
developed in the previous section for the manipulator—namely, by mapping
a bounded differential error in the oculomotor configuration through a
quadratic form based on the oculomotor Jacobian to produce a distribution
over the differential errors expected in the Cartesian location of the light
source.



Example: Roger’s Oculomotor Jacobian and Stereo Localizability

Figure 4.22 reproduces the important geometry from the binocular system
treated in section 4.5 in the context of Roger’s stereo visual system. The
stereo triangulation results for this geometry are repeated here in equation
4.23.

Figure 4.22
Triangulation parameters for Roger’s stereo system

These equations localize point p. To estimate the sensitivity of this result to
small errors in the imaging geometry, we compute the oculomotor Jacobian.

The triangulation equations are differentiated to create the local, linear
approximation dp=Jdγ. The partial derivative of equation 4.23 with respect
to configuration variables, γL and γR, yields



Equation 4.24 maps differential changes in a feature coordinate on the
image plane, dγT =[dγL dγR], to differential changes in the estimated position
of the source dpT =[dx dy].

If the net error from all sources is bounded to a disk of radius k on the
image plane, then

defines the stereo localizability ellipsoid. Roger’s focal length is 64 pixels.
If features on the image plane are accurate to 1 pixel, then the maximum
angular error in γ is bounded by k =tan−1(1/64)=0.01562379 rad. Therefore,
the localizability ellipsoid has principal axes of length  and ,
where λ1 and λ2 are the eigenvalues of JJT.

Figure 4.23 illustrates localizability ellipsoids at several positions
(marked by crosshairs) in Roger’s field of view. The ellipsoids illustrate the
shape and relative magnitude of the Cartesian error covariance. Generally,
the lateral error is relatively small and the radial error can be significant
depending on the position of the subject. The circular ellipsoid closest to the
eyes is the position where stereo acuity is maximized.

Figure 4.23
Scaled localizability ellipsoids for Roger’s stereo geometry

☐



4.8 Kinematic Redundancy

All the Jacobians introduced to this point have been square—the dimension
of the input space has been equal to the dimension of the output space.
Thus, the nonsingular 2R manipulator in section 4.7.2 generates output
velocities in the two-dimensional Cartesian plane. However, there is no
requirement that input and output dimensions should be the same. In
general, a forward velocity transform can be written in terms of the
nonsquare Jacobian J∈ ℝm×n, where m ≠ n.

The velocity transformation  with  and  is redundant if
J∈ ℝm×n has more columns than rows (n>m) and J is full rank—that is, the
determinant of JJT ∈ ℝm×m is nonzero. Under these conditions, the
manipulator has redundant degrees of freedom, and an infinite number of
inverse kinematic solutions exist. The set of such solutions is defined on a
continuous (n − m) dimensional manifold, where , known as the
nullspace of the redundant Jacobian. A sequence of movements in the
nullspace trace out a path on the multidimensional self-motion manifold.

Example: Self-Motion Manifold

With respect to endpoint positions in the x-y plane, the planar 3R
manipulator in figure 4.24 is redundant. The forward kinematic equations
for this manipulator are:



Figure 4.24
Redundant solutions for the planar 3R manipulator at x=−1, 

and the Jacobian is written

The Jacobian defines the velocity relation, , and the self-motion
manifold is determined by solving for the configuration space velocity, ,
that causes no displacement in the endpoint—that is, .

Equation 4.26 represents a system of two equations in three unknowns
that can be solved for internal motions by introducing one more constraint
—namely, that . Under these circumstances, one can verify
that



A trajectory on the self-motion manifold for a particular endpoint position
is generated by following  through a sequence of manipulator postures
(figure 4.25).

Figure 4.25
Internal motions along the self-motion manifold of the planar 3R manipulator with l1 =l2 =l3 =1 and
fixed endpoint position at x=−1.0, 

☐

Internal motions introduce postural flexibility that supports multiple
objective control designs—to avoid kinematic singularities or meet force
and velocity requirements, for example—to optimize subordinate tasks in
the nullspace of the Cartesian endpoint velocity task.

The general solution for redundant systems (like equation 4.26) involves
inverting nonsquare Jacobians J∈ ℝm×n. When the Jacobian has more rows
than columns (m>n), there are more constraint equations than unknowns
and the system of equations is overconstrained. When there are fewer rows
than columns (m<n) the system is underconstrained—there are fewer
constraint equations than there are unknowns. Redundant Jacobians are
examples of underconstrained systems and, consequently, there is no unique



inverse. In the previous example concerning the planar 3R manipulator,
there are many velocities in configuration space that map through J to the
same velocity in Cartesian space.

In appendix A.9, the pseudoinverse is introduced to address both under-
and overconstrained systems using least squares optimal solutions. In the
underconstrained (redundant) case, , where , and m<n, the
result is the right pseudoinverse

so that  yields a unique inverse kinematic solution that minimizes qTq.
Chapter 10 will return to the implications of redundancy in the control of
complex robots by introducing tools that exploit redundancy in order to co-
articulate multiple, simultaneous control objectives.

4.9 Exercises

1. Inverting the homogeneous transform. Given the general expression
for the homogeneous transform and its inverse:

Prove that BTA is the inverse of ATB.
2. Homogeneous structure of operators in SE(3). Homogeneous
transforms are not the most compact representation for describing spatial
relationships; in fact, much of the information in a homogeneous transform
is redundant. Given the following transform,



use the structural properties of the homogeneous transform to solve for the
unknown values.
3. Spatial algebra with the homogeneous transform.

(a) Composing homogeneous transforms. Consider three coordinate
frames: W (world), A, and B, where

i. Use the given transforms for WTA and WTB to calculate the
transform from A to B, ATB.
ii. The position vector that locates point P with respect to coordinate
frame B is given by

Solve for the position vector that locates point p with respect to
frame A, rA.

(b) Hand-eye coordination. Given homogeneous transforms from world
to camera coordinates and from world to fingertip coordinates:



i. Solve for camTfing.
ii. Compute the position of the hand’s fingertip in the camera’s
coordinate frame.

4. Simple, open-chain machines: 1R mechanism. The mechanism in this
diagram is composed of a single revolute degree of freedom. The
configuration q =θ maps the endpoint of the mechanism to outputs (x, y).
Derive the

(a) forward kinematics by composing the set of homogeneous transforms
i−1Ti:i=1, N, through the intermediate coordinate frames illustrated, and
compute the composite 0TN transform;
(b) reachable workspace, the subset of Cartesian space that the endpoint
(frame N) can reach; and



(c) Jacobian, describing how joint velocities map (instantaneously) into
Cartesian velocities.

5. Simple, open-chain machines: 2P mechanism. The machine in this
diagram is composed of two consecutive prismatic degrees of freedom
(implemented as linear sliding elements) with input degrees of freedom (q1,
q2) and generates endpoint positions (x, y). Derive the

(a) forward kinematics by composing the set of homogeneous transforms
i−1Ti:i=1, N, through the intermediate coordinate frames illustrated, and
compute the composite 0TN transform;
(b) reachable workspace, the subset of Cartesian space that the endpoint
(frame N) can reach; and
(c) Jacobian, describing how joint velocities map (instantaneously) into
Cartesian velocities.

6. Simple, open-chain machines: PR mechanism. In this diagram of an
open-chain mechanism consisting of a sequence of prismatic and revolute
degrees of freedom, the prismatic joint moves through range of motion 0 ≤
q1 ≤ l1 and the revolute joint can rotate continuously 0 ≤ q2 <2π. The length
of the link from the revolute joint to the endpoint is l2. Derive the



(a) forward kinematics by composing the set of homogeneous transforms
i−1Ti: i=1, N, through the intermediate coordinate frames illustrated, and
compute the composite 0TN transform;
(b) reachable workspace, the subset of Cartesian space that the endpoint
(frame N) can reach; and
(c) Jacobian, describing how joint velocities map (instantaneously) into
Cartesian velocities.

7. Kinematic analysis. The planar 2R mechanism is used in several
examples and serves as Roger’s arm in the Roger-the-Crab simulator. It
consists of a pair of adjacent revolute joints that rotate about the world
frame  axis.

(a) Write the homogeneous transforms for 0T1, 1T2, 2T3, and compute the
net transform 0T3 = 0T1 1T2 2T3. Simplify the result.
(b) The Jacobian for the 2 DOF manipulator is derived in the text:

i. Compute the joint angle velocities required to execute an
instantaneous velocity of 1 [m/s] in the 0 direction from any initial
joint angle configuration—that is,



ii. Compute an expression for the torques on the joints of the
manipulator necessary to apply 1 [N] endpoint force in the − 0

direction from any initial posture in the interior of the reachable
workspace.

(c) Compute the eigenvalues and eigenvectors for JJT at θ1 = π/4, θ2

=π/2, assuming l1 =l2 =1. Draw the velocity ellipsoid at this
configuration.

8. Forensic anthropology: Force and velocity ellipsoids. “Lucy”
(Australopithecus afarensis) was discovered in 1978 in Ethiopia by Mary
Leakey. Lucy is a rare data point

concerning the emergence of contemporary humans in the fossil record. She
is classified Hominid—an ape closely related to human beings—that lived
around 3.75 million years ago. In terms of overall body and brain size, Lucy
resembles a chimpanzee. However, her hip joint, knee, and pelvis indicate
that she walked uprightlike a modern human. This suggests that human-like
bipedalism may have preceded the development of the contemporary
human hand and brain. Subsequently, the discovery of Ardipithecus
ramidus (“Ardi”), dating back another 500,000 years before Lucy, supports
this general hypothesis.



Although the skeletons of Lucy and the chimp are similar, the respective
ranges of motion of hip and knee are quite different. The musculature,
tendons, and ligaments of the chimp establish a relatively bent-leg and
duck-footed posture that influences the quality of bipedal movements. This
is clearly demonstrated in Walking with Lucy (https://youtu.be
/xT8Np0gI1dI).

Based on the anatomical differences in the two animals, formulate
representative configurations of the planar 2R manipulator to approximate a
support leg midstride for the chimp and for Lucy in the sagittal ( - ) plane,
and plot their respective force and velocity ellipsoids. Using this result,
contrast the kinematic ability of Lucy’s hip and knee with that of the
chimpanzee and speculate about the kinds of habitat that could select for
these skeletal variations.
9. Pinhole camera.
This image is captured by a self-driving car going 20 [mph]. The roads are
icy, and the vehicle estimates that it requires (conservatively) 35 [m] to

https://youtu.be/xT8Np0gI1dI
https://youtu.be/xT8Np0gI1dI


come to a controlled stop from this speed in these conditions.
Suppose that the stop sign is 2.5 [m] high and that the vehicle’s forward-

looking camera has a focal length f =0.015 [m].
(a) Is it possible for the vehicle to stop in time?
(b) Approximately how tall is the pedestrian?

10. Redundant gaze control for Roger-the-Crab. Roger must direct its
one-dimensional cycloptic gaze to a reference direction θref by distributing
the one-dimensional error Δθgaze over two controllable configuration
variables

(a) Use the pseudoinverse to find displacement

that minimizes the sum of squared displacements in the base and eye
rotation.



(b) Describe how joint range limits in the eyes −π/2 ≤ θeye ≤ +π influence
how you would implement such a solution.
(c) The base is more massive than the eyes. How would you modify this
approach to minimize the total time or energy or the movement rather
than the sum of squared displacements?

11. Invent your own homework. Write a question and a solution from the
material in chapter 4. The problem should be different than the questions
already here. Ideally, the solution should require a quantitative analysis and
a conclusion. Good questions should not take more than 30 [min] to solve
open-book.

1. Displacements are commonly determined by measuring wheel rotations, counting strides, or using
inertial measurement units (IMUs).



2. A pixel (a picture element) is a single receptive field on the image plane. Pixels tile the image
plane and, therefore, define a unit of length.
3. Holo- (in Greek óλoς) means “whole” and -nomic (from νóμoς) means “law.”
4. Figure 4.16 was constructed by scanning a discretized configuration space for the limb in question
and using forward kinematic functions to index into a Cartesian map. The color of the Cartesian map
at that location is copied to the corresponding configuration space bin. Small asymmetries in the
figure are artifacts of the discrete model and the projection process.



5
Hands and Kinematic Grasp Analysis

Dexterity, as defined by Bernstein [23], is the bridge between a physical
and a cognitive relationship with the world. It is exemplified by the deft
interaction between hands (specialized parallel kinematic chains) and the
environment, where multiple kinds of contact interactions are supported and
from which feedback conveys information about objects, materials, and
forces.

5.1 The Human Hand

Hands are levers of influence on the world that made intelligence worth having. Precision hands and
precision intelligence coevolved in the human lineage, and the fossil record shows that hands led the
way.
—Steven Pinker, How the Mind Works [230]

Several books have been written on the human hand [21, 279, 210],
underscoring its importance in human behavior. In a book entitled The
Hand [293], Frank Wilson discusses the impact of the hand on the evolution
of the human brain. Wilson’s argument tracks human evolution through the
oldest known primates (the Paleocene mammals) that were about the size of
a squirrel and had developed binocular vision. Not long after that on an
evolutionary time scale, there followed a modified forearm and collar bone
that increased the range of motion and mobility of the wrist and arm; five
ray (pentadactyl) paws with individually prehensile fingers and toes (but
not yet an opposable thumb); and nails instead of claws. Most of these
adaptations were in service to life in the trees. In addition, jaws, skull, and



teeth changed in response to a changing diet, and brain size increased.
Napier [210] proposed that the four-footed climbing behavior of the smaller
primates (like a squirrel) was supplanted by an inverted brachiation style of
locomotion, where the body of the animal swings under a supporting grasp
on a tree limb. Brachiation requires that the bones of the arm and wrist are
in tension, and greater mobility is required in the shoulder to swing freely.

As these primates moved onto the ground, two important kinematic
modifications ensued as part of a gradual co-evolution of the brain and
musculoskeletal system toward Homo sapien: (1) a bipedal gait and (2)
modifications in the arm and hand toward tool use. Most primates have four
fingers and one thumb that is somewhat shorter and more mobile than the
fingers. Chimpanzees stand out as accomplished tool users even though
their hands are less similar to the human hand than they are to those of the
ape. What chimps and humans do have in common is extra mobility in the
wrist where it meets the ulna (figure 5.1), which effectively increases the
yaw range of motion of the hand relative to the forearm (figure 4.10). Lucy
(Australopithecus afarensis) is one of the few examples of a relatively
complete skeleton for a prehuman hominid in the fossil record.
Anthropologists propose that Lucy’s most valuable new functionality was
her ability to hold, pound, and throw stones. In contrast to chimps, which
can only lob objects underhand, her pelvis, gluteus maximus, shoulder
(from brachiation), rotating forearm, and improved grip enhanced her
ability to fight with her arms and throw projectiles overhand at high
velocity and with precision. Lucy no longer had to depend on her jaws and
teeth as the primary means of attack and defense [187].



Figure 5.1
A palm view of the right hand shows the finger’s intrinsic iterossei muscles containing as many as
120 muscle spindles per gram of tissue

Lucy had a remarkably humanlike lower body (see exercise 8 in section
4.9). However, her hand was more like an ape’s than a modern human’s,
with a relatively short and immobile thumb unable to reach completely
across the palm. Figure 5.1 illustrates some of the special-purpose skeletal
and intrinsic muscular adaptations of our hands since Lucy that make it
such a useful device. Each of the four fingers of the human hand consists of
three joints, the most proximal of which is called the metacarpal-phalangeal
joint [173]. It has two degrees of freedom and is capable of
adduction/abduction over a range of approximately 30 [deg], as well as
flexion/extension of approximately 120 [deg]. The next two joints of the
human finger are the interphalangeal joints. These are one degree of
freedom hinge joints with a range of motion of approximately 90 [deg].

The human thumb is a more complex mechanism. It is relatively long
and can reach fingertip oppositions with each of the four fingers.
Altogether, nine muscles actuate the thumb: four extrinsic muscles that
originate in the forearm and five more intrinsic muscles. The proximal joint
is called the carpometacarpal joint and contains two degrees of freedom.
The first is an adduction/abduction with a range of motion of approximately
90 [deg]. The axis of this rotation is skewed somewhat from the plane



defined by the fingers. The single most powerful muscle in the hand
originates in the forearm and flexes the carpometacarpal joint of the thumb
toward the other fingers. Some of the smaller intrinsic muscles configure
the thumb in opposition to the fingers so that this strong flexor can apply
the forces that squeeze objects between the fingers and the thumb. The next
joint of the thumb is the metacarpal-phalangeal joint, which can be
extended to place the thumb in the plane of the palm or flexed so that the tip
of the thumb approaches the palm through a displacement of about 60
[deg]. The last (distal) joint of the thumb is a single degree of freedom
hinge joint called the interphalangeal joint with a range of motion of about
90 [deg].

The cumulative evolutionary innovations that led to human dexterity—
the collar bone, fingernails, shoulder and wrist mobility, pelvic adaptations
and the bipedal gait, fingertip-thumb oppositions—were driven by
competitive pressure and have produced the most dexterous primate hand in
the fossil record. Lucy’s modern pelvis preceded a modern hand, and both
emerged before significant modification to a chimp-like brain. It is,
therefore, reasonable to suppose that all of these new interacting changes
toward bipedalism and bimanual dexterity called for a new kind of brain
that supported the ability to acquire and differentiate materials, to fabricate
and use tools, and to apply these skills to solve problems related to survival
and reproduction. All of this evolutionary development accommodates a
specific range of environmental mass, geometry, and force—all determined
by the arrangement of bones and muscles in the limbs—and supports
strategies for grasping and manipulation that depend on the ability to
control internal (isometric) loads in the skeleton.

The movement of hands has been analyzed by physiologists [139, 211]
and engineers using time and motion studies [68, 67]. These studies often
characterize the posture of the hand in terms of its capacity to deliver power
and precision. Power grasps envelop the object between the fingers and the
palm in a manner that firmly connects hand and object. Precision grasps
hold the object between the tips of the fingers and the thumb to more fully
control the mobility of the object relative to the palm. For example, one
such taxonomy created by Mark Cutkosky [68] (figure 5.2) was produced
from observations of grasps used by machinists in a manufacturing setting.
At the root of the taxonomy is the distinction between precision and power,



but these are further resolved into seven types of precision grasps and nine
types of power grasps. Power grasps are further delineated into prehensile
grasps that use hand forces exclusively and nonprehensile grasps that
depend on gravitational (or inertial) forces as well. Figure 5.2 reveals a
strong preference to exploit the dominant spherical and cylindrical
symmetries of the hand—a direct product of our evolutionary history and a
preference that is also evident in many objects engineered for use by human
hands.

Figure 5.2
Cutkosky’s taxonomy of manufacturing grasps (Source: [68]. Reprinted with permission.)



5.2 Kinematic Innovations in Robot Hands

Subtle innovations in the geometry, actuation, and sensory abilities of the
primate hand supported new ways of interacting with objects. Along with
changes in the pelvis, oral-facial structure, and the larynx, a new brain
evolved in Homo sapiens capable of organizing all of this new information.
This extended period of coevolution is responsible for many of the traits we
recognize as distinctively human and intelligent. It may be the case that
robot systems are undergoing such a critical stage of evolution right now. If
this is true, then the incremental refinements in robot hands over the last 50
years will likely have played an important role.

In 1961, Heinrich Ernst [79] demonstrated what may have been the first
computer-controlled mechanical hand that found and manipulated wooden
blocks using sensor feedback (figure 5.3). The hand had a total of 30 joint
angle and tactile sensors that measured contact pressure. Ernst
demonstrated a tactile probing process and a procedure by which blocks
were grasped and stacked.



Figure 5.3
A newspaper photo of the computer-controlled mechanical hand built by Heinrich Ernst at MIT
under the direction of Claude Shannon

In the early 1970s, a robot named Freddy (figure 5.4) was built at the
University of Edinburgh. The research team demonstrated that automated
assembly could be accomplished using an instrumented manipulator. A set
of wooden parts for a toy car and ship were placed randomly in Freddy’s
workspace, and the robot localized and assembled them. Computer vision
was used to separate light-colored parts from a darker background, and two
views were used to recognize and localize the parts. Parts of the scene that
were not recognized were assumed to be piles, and Freddy would grasp and
move features of the pile to separate them. If grasps didn’t work, Freddy
would plow through the pile to disturb it and try again. After all the parts



required were detected and cataloged, force feedback was used to execute
an assembly sequence for the toy.

Figure 5.4
Freddy was designed and built by a team of researchers at the University of Edinburgh: Pat Ambler,
Harry Barrow, Chris Brown, Rod Burstall, Gregan Crawford, Robin Popplestone (pictured), and
Stephen Salter

These landmark experiments used a parallel jaw gripper—the oldest and
most commonly used type of robot hand. It consists of a single degree of
freedom mechanism that opens and closes a pair of parallel (or pivoting)
jaws and produces a clamping motion. Because it is so simple and
mechanically robust, many industrial applications still rely on this
technology. Often, the presentation of the part, or the geometry of the part
and/or the fingers, can be customized for the automated task. There are
estimates that 80 percent of automated industrial assembly tasks can be
accomplished using these relatively simple devices [105].

However, whenever the significant structure of the manufacturing line is
not available or the manipulator must accommodate many objects and tasks,
these simple hands can be less effective. There is little (or no) remaining
mobility in the grasped object relative to the hand with the parallel jaw



gripper, so fine assembly motions must be accomplished using the larger,
heavier degrees of freedom in the arm. As a consequence, in some task
geometries, the performance of the system can be sensitive to limitations in
motor precision and errors in sensor feedback that cannot be corrected using
fine motor control in the hand.

In 1977, Hanafusa and Asada [101] introduced a concept for a planar
three-fingered hand design to improve robustness to uncertainty and fine
motor control for grasped objects. Figure 5.5 is a schematic of the Hanafusa
hand gripping an object. Three single degree of freedom fingers are
positioned symmetrically, 120 [deg] apart, around the object to form a
planar grasp. Contacts are actuated radially by stepper motors through coil
springs. The combination of a force source in series with a spring provides
passive elasticity and force sensing. The deflection of the spring (and
therefore the contact normal force) is measured by a potentiometer inside
the coil spring, and a contact roller eliminates the tangential components of
the grip force. To grasp a planar shape, a vision system was used to extract
the object silhouette [36], and an equilibrium grasp was selected that
minimized the potential energy in the springs ∫ F ·ds, where F is the force
generated by spring as it deflects and ds is the differential deflection in the
springs as they conform to the shape of the object. This approach is robust
to sensory and motor imprecision—small errors are rejected by the passive
elasticity of the hand. Moreover, the pose of the grasped object remains
controllable to a limited degree by way of the stepper motor inputs.



Figure 5.5
The Hanafusa manipulator. (Source: Adapted from [102])

To improve fine motor control, new designs emerged using multiple
degree of freedom fingers to control contact position and elasticity in ℝ3.
Many of these designs adopted anthropomorphic geometries with multiple
fingers and an opposable thumb. For example, in 1979, Okada [216, 217]
developed a five degree of freedom arm-wrist combination coupled with a
three-fingered, eleven degree of freedom hand. The Okada hand (figure
5.6) was more anthropomorphic than its predecessors with four degrees of
freedom in the fingers and three degrees of freedom in the thumb. It could,
therefore, implement common human grasping primitives such as wrapping
and pinching, and the extra fingertip mobility supported active tactile
exploration. This more ambitious kinematic design required innovations in
packaging to minimize weight and simplify the routing of electrical wires
for power and communication. Okada placed the motors in the trunk of the
robot and actuated the hand through wire-sheathed cables approximately
1.7 [m] long that introduced significant additional friction and elasticity.
Hybrid position-torque controls were implemented in hardware for the
fingers that combined position control and force control over opposing pairs
of contacts to simultaneously control the position of a grasped object and
the magnitude of internal grasp forces. The hand could grasp and hold
objects up to 5 [N] in weight and demonstrated the ability to tighten nuts on



a threaded shaft, to move a grasped object from side to side, to twirl a
baton, and to rotate a grasped ball.

Figure 5.6
The Okada manipulator (Source: [217]. ©IEEE. Reprinted with permission.)

Advances in packaging, actuators, and control led to enhanced mobility
of the grasped object, but this functional advantage came at the expense of
mechanical complexity. These designs could not match the mechanical
robustness of the simpler parallel jaw manipulator. The steady and
aggressive development of new actuators, tendons, sensors, and control for
more reliable and dexterous hands has been a focus ever since.

In the 1980s, many roboticists focused on dexterity and considered how
optimization techniques could be applied directly to improve hand function
independent of any particular task. For example, Lian et al. [173] developed
an anthropomorphically motivated hand designed to reproduce several
important human movements and postures including multiple types of
opposition (fingertip, lateral, and digito-palmar) and palmar (cylindrical)
and spherical power grasps. The design of the Lian manipulator (figure 5.7)
employed graphical simulations of these grasps using a parametric
kinematic model of the hand to explore combinations of parameters that
supported these movements. The resulting three-fingered hand incorporated
three degree of freedom fingers with two parallel distal interphalangeal
joints and an orthogonal axis in the proximal (metacarpal-phalangeal) joint



—the former flexing and extending in the plane and the latter operating the
finger in adduction/abduction. The thumb is similar except that the
proximal joint is inclined at 60 [deg] to the palm, while the fingers are
perpendicular to the palm. As in its predecessors, the Lian hand used DC
electric motors and sheathed stainless steel cables, and grasping forces were
determined by measuring cable tensions and joint positions.

Figure 5.7
The Lian, Peterson, Donath manipulator. (Source: [173])

Rather than emulating human grasp postures, the design of the
Stanford/JPL hand in figure 5.8 employed number synthesis [220] to
analyze the mobility and connectivity of alternative hand designs and
ranked them using quantitative performance criteria in relation to a
reference object. This work systematically enumerated candidate designs
with up to three fingers and up to three degrees of freedom per finger. In
addition, a range of values for continuous parameters defining the position
of fingers around the palm and link lengths were explored. Each candidate
was scored with respect to the resulting range of motion and the anticipated
fingertip contact geometry on a reference object to optimize the hand
geometry [252, 249].



Figure 5.8
The nine degree of freedom Stanford/JPL hand [250] equipped with fingertip load cells on the end of
a five degree of freedom GE P50 robot arm

Simulations were used to evaluate over 600 candidate designs.
Kinematic parameters were chosen to minimize the condition number
(appendix A.8) of the finger Jacobians on the surface of a 1 [in] sphere
grasped over the palm. The design also considered features aimed at
improving the ability to perform power grasps.

The resulting hand design incorporated three fingers, each with three
degrees of freedom (figure 5.8). It was actuated using an N +1 tendon
scheme, where four antagonistic tendons control three joints in each finger.
Teflon coated tendons were routed through flexible conduit and driven by
12 motors and gear trains mounted in the forearm. A position control loop
used measurements of tendon tension near the fingertip, motor position, and
velocity to estimate joint positions and velocities. The effects of friction and
elasticity were mitigated by sensing tendon tension close to the point of
application. The hand was fitted with hemispherical fingertip load cells to
measure contact forces and positions accurately.

Kinematic innovation in robot hands has continued since these early
concepts. In addition, new materials, sensor and actuator technologies, and
powerful embedded computing platforms have succeeded in creating
smaller, lighter, faster robots, and this integrated approach is rapidly
advancing the state of the art in dexterous and anthropomorphic robot
hands. For example, the Deutsches Zentrum für Luft- und Raumfahrt



(DLR) designed a series of hands for use in space applications. The DLR II
hand in figure 5.9 consists of four identical fingers, each with four joints
and three independent degrees of freedom. The medial and distal joints are
coupled as in human fingers due to cross-joint tendon coupling. An
additional palm degree of freedom is incorporated for a total of 13 DOF.
The hand is actuated by remotely located electric motors capable of forces
at the fingertip of about 30 [N], and the hand itself (without actuators)
weighs approximately 1.8 [kg].

Figure 5.9
The DLR Hand II. (Source: Courtesy of DLR, Institute of Robotics and Mechatronics)

5.3 Mathematical Description of Multiple Contact Systems

Thus far, this chapter has focused on kinematic innovations in hand design
that supported important functions in primates (including hominids) and
that led to better hands for robots. In this section, the kinematic basis of
contact systems is introduced to describe how contacts transmit generalized
forces and velocities through environmental surfaces. We will focus on
multiple contact systems that can be used to stabilize an object that is held
within a grasp. To begin, a brief introduction to screw theory is presented
and used to examine how contacts restrict the free motion of an object. A
variety of contact types is presented and incorporated into a systematic
procedure for constructing the grasp Jacobian.1 Following this introduction,
we discuss form- and force closure conditions that support prehensile
grasping. The chapter ends with an example demonstrating how grasp force



solutions are determined given a contact configuration and a manipulation
task.

5.3.1 Screw Systems

Screw theory is a useful tool for kinematic and static analysis. As a
consequence, it is often used in research concerning contact and grasping.
The first concept we consider from screw theory is that of the twist.

Definition 5.1: Twist.  A generalized velocity v=[v ω]T, where v∈ ℝ6

represents translational velocity v∈ ℝ3 concatenated with angular velocity
ω∈ ℝ3.

In the case of contacts on an object, a twist can be used to describe the
velocities that the object can move unimpeded by a contact constraint.

Example: Twist Constraints on Object Mobility in a Planar Grasp

Following similar analyses [102, 251, 82, 80, 81, 148, 149], let V describe
the set of object twists that are not restricted by contact constraints. Let the
complement  describe the set of object twists restricted by the contact
system. Given this framework,  and . To completely
immobilize an object using a system of n contacts, we require that

where vi and  denote elements of V and , respectively, derived from
contact i.

Figure 5.10 illustrates a simple hand-object system that we will use to
consider the influence of multiple contact twist constraints on the mobility
of a grasped object [148, 149]. In this simple planar system, the object
frame remains parallel to the world frame (no object rotation is permitted),
and neither hand nor object can translate out of the plane (in the  direction).
Therefore, in this case we consider object twists vO =[vx vy]T ∈ ℝ2. The
elements labeled 1, 2, and 3 are linear actuators whose length can be
controlled. When assembled into this hand-object system the long axis of



the actuators define the active (controllable) subset of the -  plane for each
actuator. In the lateral direction, the actuators are passive—free to slide
along unactuated and frictionless prismatic joints. For now, we assume that
contacts on the square object are Velcro and can push and pull the object.

Figure 5.10
A 2D Cartesian hand-object system. (Source: Adapted from Kobayashi [148]. © MIT Press)

Considering the contact geometry of finger 1 alone, we find that an
object twist  corresponds to a combination of active and passive
velocities in the hand mechanism:

Active joints can be moved (and locked) so they contribute to set 
describing how the object’s pose is restricted (and, thus, controllable) in the
hand. Passive joints contribute to set V, which represents object degrees of
freedom that are unrestricted by the contact. Writing this relation for fingers
2 and 3 yields



Equation 5.1 can be used to evaluate the impact of different combinations
of the contacts on the resulting mobility of the object. For example, with
just fingers 1 and 2,

Therefore, fingers 1 and 2 alone do not fully immobilize the object—it can
move uncontrollably in response to perturbations in the  direction.
However, for all three fingers,

from which we conclude that when the three contacts are fixed in place by
the actuators and the object does not break contacts, the object is fully
constrained. Furthermore, the space of controllable object velocities using
this contact configuration is the union of the motion constraints defined by
the active degrees of freedom.

We conclude that this planar contact geometry (with Velcro contacts) will
fully immobilize the object when actuators are fixed in place and that the
object position in the (x, y) plane is fully controllable.

☐

5.3.2 The Grasp Jacobian

The Velcro contacts in figure 5.10 do not permit any relative movement
between the contact pad and the object. This analysis can be generalized to
account for other hand mechanisms, object surface geometries, and contact



types by eliminating the Velcro pads and replacing them with independent
contact coordinate frames aligned with the local surface normal as in figure
5.11. By convention, we designate the i axis of the contact frame to be
aligned with the inward surface normal. The i axis is chosen to be the
surface tangent to the contact surface in the same direction as positive  in
the planar mechanism. The i axis is determined to produce a right-handed
contact frame Ci, i=1, 3.

Figure 5.11
The object frame O and the local contact frames Ci, i=1, 3 oriented with respect to the local surface
normal

In section 5.3.3, we will see that, in addition to Velcro, there are several
other contact types that can transmit different combinations of forces and
moments that are defined conveniently in the local contact frame. However,
for the case of the Velcro contacts

proposed in figure 5.10, using independent forces that act along the local
i and i axes at each contact in figure 5.11, we can write a linear expression

that maps two-dimensional object twists vO =[vx vy]T into contact frame
twists vC =[v1x v1z v2x v2z v3x v3z]T. For the planar grasp in figure 5.11,

or



where . Matrix G is called the grip transform or the grip
matrix [188], the grasp Jacobian [251], or the grasp matrix [235]).
Assuming that none of the contacts are broken when the object moves, GT

maps object velocity vO to the corresponding velocity of each contact in the
contact coordinate frame vC. In the following, we adopt the term grasp
Jacobian for matrix G to emphasize the relationship to other kinematic
Jacobian mappings.

When a contact restricts the movement of the object, it does so by
applying forces through the contacting surfaces.

Definition 5.2: Wrench.  A generalized force w=[f m]T, where w∈ ℝ6 is a
force f ∈ ℝ3 concatenated with a moment m∈ ℝ3.

A wrench can be used to restrict the free motion of the object. Therfore,
twists and wrenches form a straightforward, complementary account of the
quality and controllability of a contact interface. Moreover, the screw
representation for these quantities leads to a concise expression for the
power transmitted from the contact to the object.

Definition 5.3: Power.  The product of a wrench and a twist wTv [Nm/s] is
the rate of work produced or power.

If there is no dissipative loss, then the net power transmitted to the object
is equivalent to the power produced by the contact,

Since vC =GTvO (equation 5.7), we can write

so that



Like the manipulator Jacobian, grasp Jacobian G captures instantaneous
velocity and force mappings from contact coordinates to object coordinates,
and it changes if contacts roll, slip, or are broken. Moreover, the
performance of a grasp depends on factors (internal loads, contact friction)
that are necessary to maintain the grasp geometry.

By equation 5.8, the grasp Jacobian for the planar velocity mapping in
figure 5.11 also applies to the transformation from the contact loads ωC =[f1x

f1z f2x f2z f3x f3z ]T to the net wrench applied to the object ωO =[fx fy]T.

In general, the number of rows in the grasp Jacobian is 6 to represent ωO

∈ ℝ6, and the number of columns can be as large as 6N, where N is the
number of contacts. In practice, the number of columns is determined by
the number of contacts and the contact type.

5.3.3 Contact Types

The contact coordinate systems in figure 5.11 can represent more general
types of contact forces than the Velcro contacts we started with—even
contacts that can push but cannot pull. Table 5.1 lists a variety of contact
types distinguished by the geometry and material properties of the
contacting surfaces. The least restrictive of these is the frictionless point
contact (bottom of the table), which constrains (compressive) translations
along the contact normal but preserves five other free/unrestricted degrees
of freedom between the pair of bodies.

Table 5.1
Contact types and the degree of freedom remaining at the contact interface

Remaining DOF Type of contact
0 Planar contact with Velcro/glue
1 Line contact with friction
2 Soft finger



Remaining DOF Type of contact
3 Point contact with friction; plane contact without friction
4 Line contact without friction
5 Point contact without friction

Source: Adapted from Salisbury [250]. © Stanford University Department of Mechanical
Engineering.

Moving from the bottom to the top of the table, each more elaborate
contact type removes additional degrees of freedom until the planar
Velcro/glue contact permits no relative motion between the contact and the
object. Combinations of contacts like those in table 5.1 form contact
systems in which object motion is restricted by the union of constraints
applied at each contact.

In order to reduce the complexity of grasp planning, Iberall [126]
observed that the human hand often exploits oppositions between the thumb
and the fingers and chose to represent a set of fingertip contacts as a single
virtual finger with an enhanced contact type. For example, a pair of discrete
fingertip point contacts without friction on a plane create a virtual line
contact without friction on the plane. Table 5.1 indicates that this pair of
contacts reduces the relative mobility of the object to four degrees of
freedom.

Table 5.2 describes three common contact types (a subset of those in
table 5.1) using the local contact coordinate frame. In keeping with the
conventions used in [202, 138], the contact wrench space supported by each
contact type is defined by a set of wrenches in the column space of the
selection matrix HT. These wrenches are due to independent unit magnitude
forces or moments acting along the axes of the contact coordinate frame
and scaled by effort variables λ. This representation makes it
straightforward to write contact maintenance constraint inequalities in the
fourth column of table 5.2. A frictionless point contact, for example,
transmits a force along the surface normal. To maintain compression at the
contact (and thus maintain contact), λfz must be greater than or equal to zero.
Likewise, the point contact with friction requires the same positive
(compressive) normal force along the  direction but also supports frictional
forces tangent to the contact surface (i.e., in the  and  directions). These
forces may not exceed limits imposed by a Coulomb friction model that



requires that the magnitude of the net tangential force  does not
exceed the product of the coefficient of friction and the magnitude of the
normal force, μλfz.

Table 5.2
Point contacts with and without friction and the soft finger contact

The bottom row of table 5.2 describes the soft finger contact—similar, in
terms of contact mechanics, to compliant tissue on human fingertips—that
deforms to comply with surface patches in the environment. As a result, this
contact type can also support moments about the local surface normal
subject to constraints that depend on a finite torsional coefficient of friction
γ and the normal force λmz ≤ γλfz.2

5.3.4 The Generalized Grasp Jacobian

Independent contact wrenches for Ci are mapped to the object frame wrench
using a modified version of equation 5.8 written in terms of λCi.



Mapping Gi is derived by constructing the linear transformations that (1)
rotate wrenches in the contact frame into a frame aligned with the object
frame and then (2) translate the wrench to the location of the object frame.
The rotation matrix ORCi that transforms the object frame to contact
coordinates Ci is written in a block diagonal form,

which applies the rotation to the force and moment components of a contact
wrench independently.

To translate the result from the contact site to the object frame, we note
that the force components of the wrench map to the same forces in the
object frame, whereas contact frame moments sum with the couple ρ×fCi,
where ρ∈ ℝ3 is the position vector locating frame C with respect to frame
O,

The top half of this matrix maps contact forces to the object frame, and the
bottom half sums the contact moments with moments caused by the contact
forces at the position of the object frame. The bottom-left 3 × 3 portion of
Pi is the matrix form of the cross product used to compute ρ×fCi. The net
result is a geometrical means of computing the grasp Jacobian given
knowledge of the contact configuration, the local contact frames, and the
individual contact types:

For an n contact grasp configuration, the grasp Jacobian and effort is
written



and

Example: The Two-Contact Grasp Jacobian

Following the analysis in [251], we derive the grasp Jacobian for the two-
contact planar grasp geometry in figure 5.12 and use it to solve for grasp
forces that meet frictional constraints. The grasp Jacobian maps n contact
wrenches (written in the contact frames) into a net wrench in the object
frame. The left contact is a point contact with friction λC1 =[λ1 λ2 λ3]T, and
the right contact is a soft finger λC2 =[λ4 λ5 λ6 λ7]T. Referring to table 5.2,

Figure 5.12
Two contacts form a grasp on an ellipsoidal object. (Left) The geometry of a pair of contact frames
relative to the object frame. (Right) The magnitude of forces λ aligned with the contact frames.

The local contact frames must be rotated to align with the object frame. In
this example, the rotation from object frame to C1 is a rotation about O of
π/2 followed by a rotation about O of π/2.



Similarly, the rotation from the object frame to C1 is a rotation about 0 of
π/2 followed by a rotation about 0 of −π/2.

The rotation matrices are used to construct the block diagonal forms that
apply to both force and moment components of the contact wrenches
independently:

To translate wrench from the contact site to the object frame, equation
5.11 is evaluated for  and :

As a consequence of these transformations, we can map each of the
independent contact forces into object frame wrenches,

so that



In general, the λi create wrenches in the contact frames that map through
the grasp Jacobian and sum to produce wrenches (wO) in the object frame.
Column i of G corresponds to the independent wrench that is applied to the
object when the corresponding λi =1. For example, the third column in G is
the object frame wrench [1 0 0 0 0 0]T corresponding to λ3 =1 in contact C1.
We assume that each component of λ is independently controllable. A
reference wrench wref can be applied to the object if a linear combination λ
in the column space of G can be found subject to contact type constraints.

☐

5.3.5 Grasp Performance: Form and Force Closure

Scientists that study the mechanics of contact speak formally about the
quality of contact systems in terms of mechanical closure properties that
describe how well grasp configurations can resist object twist or wrench
disturbances. In the literature, the case when a fixed contact geometry
immobilizes an object without consideration of additional forces (called
form closure) is distinguished from the case when the contact system
implements a viscoelastic potential well in which changing contact forces
resist disturbance forces (called force closure).

Reuleaux originally [241] defined form closure as “the condition under
which a positive combination of contact wrenches derived from frictionless
contacts can resist perturbation forces.” Because of the assumption that
contacts are frictionless, the contact forces cited in Reuleaux’s definition
arise solely from compression in the contacting materials and are directed



along the local surface normal. If we consider rigid material, we can restate
this definition exclusively in terms of restrictions on object twists.

Definition 5.4: Form closure.  A condition of complete restraint in which
any object twist ∈ ℝ6 is geometrically incompatible with rigid body
assumptions concerning the object and a set of fixed contacts.

Under these conditions, form closure does not depend on internal forces
or friction to immobilize the object and can, therefore, be attractive when
such forces are problematic. For example, milling operations impose large
forces to stock material that must be held rigidly to achieve precise part
geometries. Form closure fixtures can provide high precision up to the yield
point of the materials without requiring large internal forces as would be the
case for clamps and vises. Theoretical results have established bounds on
the number of fixturing elements needed to completely immobilize a
workpiece. In 1875, Reuleaux used a first-order analysis to show that (non-
exceptional) bodies require at least four frictionless contacts for form
closure in the plane [241]. Exceptional surfaces are surfaces of revolution
and cannot be rendered completely immobile by any number of frictionless
point contacts. In 1897, Somov [264] used the same kinds of analysis to
prove that at least 7 frictionless point contacts are necessary for form
closure in three dimensions. Mishra et al. [196] have established an upper
bound of 6 frictionless point contacts on planar objects with piecewise
smooth contours and 12 for the spatial case (except in the case of
Reuleaux’s exceptional surfaces). Second-order analyses incorporating the
curvature of contact surfaces can be used to verify form closure using fewer
discrete contacts in special cases (see, for example, [242]).

A form closure contact geometry essentially builds a cage around the
object that eliminates any movement of the object relative to the hand.
Manipulation, however, often requires precise relative motions to, for
instance, start a nut on a threaded bolt. There are better options available
when the hand can control grasp forces and impart frictional forces. Several
of the contact types listed in table 5.1 incorporate frictional forces that act
in the local surface tangent at the contact location. These forces depend, in
general, on the magnitude of the normal contact force and the materials and
suface textures comprising the hand-object system. To exploit these
properties, stable grasp solutions depend on the force closure property and



concern the resilience of the grasp to random, bounded wrench disturbances
by modifying grip forces and engaging frictional forces.

Definition 5.5: Force closure.  A grasp configuration is force closure if a
solution for contact frame wrenches λ exists that complies with contact type
constraints such that Gλ=−wdist for arbitrary disturbance wrenches wdist

relative to the object frame.

A grasp is force closure (and stabilizable) if and only if G is surjective
(onto) [202], requiring that there are no object frame wrenches, wO, that are
inaccessible by mapping contact effort variables λ through the grasp
Jacobian. The mapping is, in general, many-to-one, reflecting a continuum
of homogeneous solutions in the nullspace of the grasp Jacobian 𝒩(G)
whose rank (𝒩(G))≥1. In general, force closure depends on the ability of
the hand to squeeze the object within 𝒩(G) to scale frictional forces as
required. A force closure grasp with frictionless point contacts is also form
closed.

Stated another way, force closure requires that the contact configuration
is capable of applying contact forces within a convex subset of object
wrench space containing the origin where Σwi =0. If rank (𝒩(G))=k, the
envelope of this set is scalable in k independent ways to accommodate
arbitrary wdist while satisfying frictional contact constraints.

Example: Solving for Forces in Force Closure Grasps

Suppose that the grasp forces in figure 5.12 must support an object mass of
0.1 [kg] against a gravitational load in the negative  direction. This will
require the sum of contact forces in the positive  direction of the object
frame of approximately 1.0 [N]. In this case, the three-dimensional analysis
of the grasp in figure 5.12 can be reduced to the -  plane of the object
frame, and a contact force solution is generated for wdist =[0 −1 0 0 0 0]T.
The coefficients of friction for tangential forces are μ1 =0.2 and μ2 = 0.5.

In general, solutions for contact wrenches wC such that wO =GwC have
homogeneous and particular parts,



The particular solution is a vector of contact force commands λp that
produce the reference wrench −wdist. In this case, the task requires that λ1

+λ4 =1.0. To apply a net zero moment about the  axis λ1 =λ4 =0.5. However,
λ1 and λ4 correspond to tangential forces and depend on the magnitude of
the normal forces, λ3 and λ6, and the respective coefficients of friction. On
the left side, λ1 ≤ 0.2λ3 requires that λ3 ≥2.5, and on the right side λ4 ≤ 0.5λ6

requires that λ6 ≥1.0. Static equilibrium requires that the sum of forces in
the  direction must be zero; therefore λ3 =λ6 = 2.5.

Figure 5.13
The planar projection of the three-dimensional grasp in figure 5.12

In equation 5.12, λh is the homogeneous part of the solution and
describes combinations of contact forces that impart a zero net wrench to
the object.

Therefore, in figure 5.12, the nullspace is the opposition between λ3 and λ6,

to create compressive (internal) forces in the object capable of supporting
the tangential forces required—as well as the soft finger moment λ7 in the
original version of the problem in figure 5.12.

The grasp supports a convex six-dimensional hyper-rectangular volume
in wrench space surrounding the equilibrium pose of the object that can be
controlled to stabilize the grasp against disturbances. The volume can be
scaled by squeezing the object (increasing k) and, thus, expanding the
capacity of the wrench closure.

☐



A natural choice for solving systems of interdependent contact forces is to
use mathematical programming techniques to solve for contact forces
subject to a system of inequality constraints [142, 99]. These techniques can
be used in a closed-loop framework to solve for the minimum nullspace
grasp forces required to stabilize a grasp against unexpected perturbations.

5.4 Exercises

1. Screw space: Nonlinear vector space. Explain why twists and wrenches
do not constitute basis vectors for a linear screw space describing all
velocities and forces, respectively.
2. Object mobility.

(a) What is the minimum number of Velcro contacts in figure 5.10
required to suppress perturbations and control position in ℝ2?
(b) Analyze grasp stability for the more general system in figure 5.11
considering frictionless point contacts.

i. Is the three-contact grasp stable and controllable? Justify your
answer.
ii. What is the minimum number and identity of contacts of this type
that can suppress arbitrary perturbations ∈ ℝ2? Provide the analysis
to support your answer.

3. Virtual fingers. The left column of this figure depicts a pair of
frictionless point contacts on the surface of an object. This contact
geometry is sometimes called a frictionless line contact. The right column
proposes a virtual finger, positioned midway between contacts 1 and 2. The
bottom row of the figure shows the independently controllable contact
forces for these two cases in contact coordinates.



The virtual finger is equivalent to the original contact system if for every
contact wrench [λf1 λf2]T in the two-contact system there exists a unique
equivalent solution [λfz λmy]T and vice versa.

(a) Define the selection matrices , and  using the conventions
established in table 5.1.
(b) Using the geometry specified in the figure, derive  for the two-
contact system and  for the proposed virtual finger.
(c) Use these relations to describe the reciprocal mapping between effort
variables λ1, 2 and λVF for these alternative representations of arbitrary
contact wrenches.
(d) Does the virtual finger completely and correctly represent the
original two-contact system?

4. Planar grasp force solution: Two contacts on the spoon.

In this planar two-contact grasp geometry, the contacts are frictionless point
contacts. All contact forces are in the -  plane and are parallel to the O

axis. Wrenches, in this case, can be written w=[fx fy mz]T.

(a) Assuming that ∥fi∥=1, write the grasp Jacobian, G∈R3×2, such that 

(b) Write the constraints on λ imposed by the contact types.
(c) Write a solution for the λ necessary to apply the wrench w=[ 0 0.25 0
]T that will support the object in the posture shown.
(d) Is this grasp form closure? Explain.
(e) Is this grasp geometry force closure if we consider point contacts
with friction? Explain.

5. Planar grasp force solution: Two contacts on a circle. A two-contact
grasp is performed on this circular knob with radius R =0.025 [m]. The



contacts are point contacts with friction with controllable contact forces.
Assume only forces in the x-y plane, so that wrenches

(a) Assuming that ∥fi∥=1, write the grasp Jacobian, G*∈R3×4, such that

(b) Write the constraints on λ imposed by the point contact with friction
model.
(c) Write a solution for the λ necessary to apply a pure torque of 0.5
[Nm] to the knob w=[ 0 0 0.5 ]T.

6. Planar grasp force solution: Three contacts on the coffee cup. Three
frictionless point contacts are positioned on the planar shape to produce
object frame wrenches about the object’s center of gravity.



(a) Assuming that ∥fi∥=1, write the grasp Jacobian, G*∈R3×3, such that

(b) Write the constraints on λ imposed by the frictionless point contact
type at each contact.
(c) Solve for a (force closure) solution λ such that

(d) Are there other grasp configurations involving fewer frictionless
point contacts than this for which a force closure solution exists?

7. Planar grasp force solution: Three contacts on a ring. In this inside-
out planar three-contact grasp geometry on the inside of a donut with hole
radius R =1, the top two contacts are frictionless point contacts. The
bottommost contact is a point contact with friction (μ=0.25). All forces are
restricted to the x-y plane, so that wrenches



(a) Is this geometry form closure? Explain.
(b) Assuming that ∥fi∥=1, write the grasp Jacobian, G*∈R3×4, such that

(c) Write the constraints on λ imposed by the contact types.
(d) Write the solution for the minimal ||λ|| necessary to apply a [0 0 0.5]T

wrench to the object.
(e) Is the grasp geometry force closure? Explain.

8. Invent your own homework. Make a homework problem out of your
favorite content in chapter 5. Write a question and a solution for it from the
material in the reading. The problem should be different from the questions
already here. Ideally, they should call for a short discussion and quantitative
analysis—it should not take more than 30 [min] to solve open-book.

1. Many of the mathematical tools employed to describe systems of multiple contacts and grasping
are specialized versions of the more general methods introduced in chapter 4.
2. The constraint on the magnitude of the moment that can be supported by the soft finger contact
also depends on the magnitude of the tangential force [137, 138]. Table 5.2 uses a simpler, less



accurate, but nonetheless useful model.



6
Dynamics of Articulated Systems

The dynamic analysis of an inertial system describes how forces act on
bodies to create accelerations. In structures that are designed to be rigid like
bridges and trusses, it can concern the time varying pattern of deflection in
the elastic members and the distribution of forces resulting from external
loads. In robot structures, most often we consider each link to be rigid and
derive the relationship between forces and accelerations over the entire
articulated structure subject to kinematic constraints. These expressions can
be complex and, depending on the kinematics of the mechanism, they can
couple the motion of several degrees of freedom.

Techniques for writing the governing equations of motion for more
complicated mechanisms like those used in robotic devices is the subject of
considerable research. The interested reader can find two important
examples (the Newton-Euler iteration and the Lagrangian) in appendix B.
In this chapter, our focus is on how knowledge of dynamics supports (1)
simulation, (2) compensation for nonlinearities and inertial coupling in
robot control, and (3) analytical tools for describing robot performance.

6.1 Newton’s Laws

Newton’s famous laws concern the motion of a point mass in ℝ3.

First law—A particle remains in a state of constant rectilinear motion
unless acted on by an external force. Stated another way, a point mass
experiencing no external forces will move in a constant velocity along a



straight line. The first law implicitly adds the observer to the system—it
requires that the complete state of motion of the observer is known (or is
nonaccelerating) in order for Newton’s laws to apply. Such a frame of
reference for the observer is called an inertial coordinate frame.

Second law—The time-rate-of-change in the momentum (mv) of the
particle is proportional to the externally applied forces, . When the
mass of the body is constant, the second law leads to the most commonly
used form of Newton’s equation, .

Third law—A force imposed on body A by body B is accompanied by a
reciprocal reaction force—equal in magnitude and opposite in direction—
on body B by body A. This law has important consequences when multiple
bodies interact in articulated mechanical structures.

Newton’s three laws provide the starting point for the derivation by
defining the dynamics of a point mass. Many kinodynamic systems employ
revolute degrees of freedom. In these cases, Newton’s laws are recast in
terms of torques rather than forces and, instead of mass, the critical inertial
quantity is the mass moment of inertia. We begin this chapter by deriving
the moment of inertia and describing how it depends on the geometry of
motion. With this foundational physics, we can write the dynamic equation
of motion in a form called the computed-torque equation for a simple
mechanism consisting of a single revolute degree of freedom.

6.2 The Inertia Tensor

To describe how torques cause angular accelerations in a rigid body, the
distribution of mass about the center of rotation must be considered. In
figure 6.1, point mass mk is an element of a rigid planar lamina that rotates
about the  axis of frame O. Thus, when ω ≠ 0, mass mk describes a circular
orbit of radius rk. Figure 6.1 defines two additional basis vectors,  and ,
aligned with the radial and tangential directions of the orbit, respectively.



Figure 6.1
A single element of a set of point masses comprising a planar lamina. The  axis of frame O is
directed out of the plane of the figure.

To generate an angular acceleration about O, a torque is applied around
the  axis,

The velocity of mk due to the rotation about O is , so
that . Here,  describes how much torque τk is
required to produce angular acceleration  for mass mk as it orbits the origin
of coordinate frame O about the  axis. The rotational inertia of the entire
lamina is the sum over all mk,

The inertial parameter J [kg · m2] is the scalar moment of inertia of the
rotating system and depends on the distribution of mass relative to the
center of rotation. Equation 6.1 relates torque to angular acceleration in the
same way that Newton’s equation  relates force to linear
acceleration. The counterpart of linear momentum (p=mv) is angular
momentum L=Jω in the rotating system, so that Euler’s equation can be
written in the same form as Newton’s second law,



Therefore, analogous to the Newtonian particle, rotating bodies conserve
angular momentum (and remain in a constant state of angular velocity)
unless acted upon by an external torque.

To extend this analysis to objects that rotate about three orthogonal axes
requires the construction of the inertia tensor.1 Appendix B.1 considers a
discrete stack of planar laminae (figure B.1) and derives the inertia tensor of
a three-dimensional body about an arbitrary axis ∈ ℝ3. The result is the
well-known 3×3 positive definite and symmetric inertia tensor

where the diagonal elements Jxx, Jyy, and Jzz are called the moments of inertia
and the off-diagonal elements Jxy, Jxz, and Jyz are the products of inertia.

Example: Rotational Moment of Inertia

The rectangular body illustrated in figure 6.2 rotates about the , , and 
axes of frame A. For rotation around the  axis,



The other elements of the inertia tensor can be computed in a similar
fashion. Since the mass of the rectangular body is m=(lwh)ρ, we find that

 

Figure 6.2
A rectangular body with total mass m rotates about the  axis of coordinate frame A

In figure 6.2, the mass is distributed on one side of the , , and  axes of
frame A. Eccentric mass distributions like this increase the magnitude of the
inertia tensor (appendix A.5) so that it requires more torque to accelerate
the body about the axes of frame A than it would about a frame with a more
symmetric mass distribution. Moreover, an eccentric mass distribution leads
to nonzero products of inertia in the tensor that inertially couple across the 
, , and  axes. Therefore, given an arbitrary frame A, to generate an
acceleration exclusively around the  axis ( ) requires torques
around all three axes. This is evident by combining equations 6.1 and B.4:



For symmetric bodies, when the axes of rotation are parallel to the axes of
symmetry of the body and the center of rotation coincides with the center of
mass, the inertia tensor is diagonalized and its magnitude is minimized,
leading to an efficient and uncoupled transformation from torques to
accelerations. Unfortunately, links in a robot mechanism generally do not
rotate about their centers of mass, nor do they rotate exclusively about axes
of symmetry. Often, for a link in a mechanism, it is convenient to calculate
the inertia tensor in a frame that reflects its symmetry and then to transform
the result into a different frame that expresses the kinematic constraints of
the mechanism. To do so, we require a means of recomputing the inertia
tensor in response to translations and rotations of frame A.

6.2.1 The Parallel Axis Theorem

The center of mass is the location about which the mass of the body is
distributed symmetrically—it is the mean position of the mass distribution
in three dimensions. Given an arbitrary choice for frame A in figure 6.2, the
center of mass of the body is defined

For a body with a known inertia tensor at the center of mass CMJ, the
parallel axis theorem states that the inertia tensor at any other parallel frame
(related to frame CM by pure translation) is computed as

where rcm =[rx ry rz] and m is the total mass of the body. The correction to
CMJ is precisely the contribution to the inertia tensor of a point mass equal in
magnitude to the total mass of the body and concentrated at rcm.



Figure 6.3
An eccentric mass distribution that rotates about an axis that passes through the origin of frame A

Example: Translating the Center of Rotation

In the previous example, the axes of frame A are parallel to the axes of
symmetry of the body, but the center of mass of the rectangular body is
offset from any of the axes of rotation.2

Figure 6.4
Moving the center of rotation to the center of mass

Suppose that the center of rotation is now translated to the object’s center
of mass at rx =w/2, ry =l/2, and rz =h/2 as in figure 6.4. In this situation, the
parallel axis theorem holds that



and

Completing similar computations for the remaining four unique elements
of the inertia tensor reveals that the result of moving the center of rotation
to the center of mass is the diagonalized inertia tensor

The diagonalized inertia tensor is a consequence of moving frame A to
the center of mass, and it reflects the alignment of the frame to the axes of
symmetry of the rectangular body. Other choices for the orientation of
frame CM produces an eccentric mass distribution as before and
reintroduces nonzero products of inertia in the tensor.

☐

6.2.2 Rotating the Inertia Tensor

The angular momentum vector Jω of a rotating body is conserved during
the rotation of the coordinate frame; therefore,

and the new inertia tensor can be written



Exercise 6.4.1 provides an opportunity to solve an example problem that
requires the rotation of the inertia tensor.

6.3 The Computed Torque Equation

The dynamics of articulated mechanisms stem directly from foundations in
Newtonian mechanics, although for interesting robots, these relations can
be quite complex. The complexity stems from the interaction between the
multiple bodies involved that influence how velocities propagate through a
kinematic chain and how forces present at one part of the mechanism
propagate to cause changes in momentum elsewhere in the structure.

There are multiple techniques for deriving the dynamics of a robot from
a description of the system. Two important examples (the Newton-Euler
iterations and the Lagrangian) are introduced in appendix B. The result is a
description of the relationship between forces and accelerations that
depends on the state of motion of the inertial device.

The result is the equation of motion written in a form called the
computed torque equation.

For an n degree of freedom robot, q is the n×1 vector of configuration
variables and τ is the corresponding n×1 vector of forces or torques applied
at these degrees of freedom. M(q) is the configuration-dependent
generalized inertia matrix. It is an n×n, positive definite and symmetric
matrix (by virtue of its physical relationship to mass and/or mass moments)
and is, therefore, always invertible. The n×1 vector  depends on both
positions q and velocities  and represents centripetal and Coriolis forces
(terms that contain the products of velocities). Vector G(q) is an n×1 vector
of gravitational forces and/or torques. In addition, real systems may be
subject to friction and/or forces derived from contacts. The n×1 vector F in
equation 6.6 accounts for the forces and torques in the mechanism from
these types of forces. Equation 6.6 is sometimes referred to as the state



space form of the dynamic equations since it is written in terms of state
variables .

Example: Dynamic Model of Roger’s Eye

Roger’s eye is modeled as a single revolute joint with point mass m located
at the end of a massless link of length l (figure 6.5). For this idealized
system, the center of mass is located at the point mass, and since it is
dimensionless, the moment of inertia Jcm =0. Therefore, by the parallel axis
theorem, the moment of inertia of the link about the origin is ml2. A pure
control torque about the  axis is applied by a motor at the origin and, for
the purposes of this example, we assume that mass m is subject to a
gravitational acceleration (−g) . This simple robot can be treated using the
same free body analysis we used to write the dynamic equation of motion
for the spring-mass-damper (section 3.2.1). In this case, however, the sum
of all the torques acting on the eye is equal to the time-rate-of-change in its
angular momentum,

where τm is the torque applied by the motor and mglsin(θ) is the
gravitational torque on the mass as a function of θ.



Figure 6.5
The simple dynamic model describing Roger’s eye

Rearranging terms reveals the computed torque equation for the eye,

where: the generalized inertia is a scalar M=ml2; torques arising from
Coriolis and centripetal forces  do not exist; and G=−mglsin(θ).

☐

Appendix B introduces two methods for deriving the dynamic equations
of motion for generic mechanisms with multiple degrees of freedom,
including parallel chain mechanisms common in robotics. The first method
is a systematic extension of the free body analysis used in the previous
example, known as the Newton-Euler iteration. The second method
employs Lagrange’s equations, which yield the dynamics directly from the
energetics of the system. Appendix B also includes examples of these
techniques applied to the 2R planar manipulator to illustrate how inertial
coupling works in multiple degree of freedom systems. The results of this
derivation are summarized here in the form of the computed torque
equation.

Example: Dynamic Model of Roger’s Arm



Roger (figure 4.2) has two arms mounted at shoulder joints to a mobile
platform. His arms are planar 2R mechanisms with point masses m1 and m2

at the ends of two massless links l1 and l2 as in figure 6.6. For the purposes
of this example, we consider frame 0 in figure 6.6 (the shoulder joint) to be
an inertial frame connected to ground. Moreover, in this example, we
consider the case when the arm is not in contact with the environment. The
dynamic equations of motion for this simplified version of Roger’s arm is
derived in appendix B.4.3 using the Newton-Euler iteration.

Figure 6.6
The dynamic parameters of Roger’s arm relative to inertial shoulder frame 0

Under these circumstances, we can organize the governing dynamic
equations derived in appendix B.4.3 into the state space form to arrive at the
computed torque equation for Roger’s arm,

where



This is a slightly more complicated expression than we found in the
previous example regarding the dynamics of the eye. All three terms in
equation 6.8 couple torques to multiple degrees of freedom. In general,
arbitrary configurations of the manipulator introduce gravitational torques
on both joints, as do the inertial loads in  due to the manipulator’s
state of motion. The generalized inertia is written in the form of a 2×2
matrix. In general, therefore, to achieve a specific acceleration in the arm
requires a pattern of torques on both joints.

☐

A consequence of the inertial coupling is that motor units addressing an
error in a single configuration variable will cause associated accelerations
in other configuration variables. The nonlinear and coupled dynamics
illustrated by this example are the rule rather than the exception, especially
for robots with revolute joints.

In principle, given a kinematic description of the robot and the
distribution of mass in the device, the techniques introduced in appendix B
can be used to describe the whole-body dynamics of a robot. However,
closed-form derivations quickly become complicated for real robots, and
numerical techniques are often employed. Regardless of the method
employed, once the dynamic equations are derived, there are a number of
ways that knowledge of this Newtonian structure can be exploited to
enhance the understanding and control of complex robots.

6.3.1 Simulation



The computed torque equation can be inverted to solve for the net
acceleration of the mechanism resulting from joint torques combined with
inertial, gravitational, and external loads. Given the state of motion ( ),
we can write the net result of all of these forces and torques on
accelerations as

Equation 6.9 can be solved approximately using discrete-time, numerical
integration. Given suitable initial values for the state variables, a simulation
predicts future states by stepping through time and estimating the area
under the acceleration function to determine the change in velocity and
computing the area under the velocity curve to estimate the change in
position. For example, using a simple Euler integrator, we find

Better integrators can be used that employ, for example, higher-order
approximations and nonuniform time steps.

6.3.2 Feedforward Control

In section 3.2, a simple motor unit for robot control was proposed using the
spring-mass-damper to produce an asymptotically stable system that
approximates some of the viscoelastic properties of muscle and the lower
motor neurons controlling limb movement in animals. Applied to the 2R
manipulator, the coupled, nonlinear dynamics in equation 6.8 suggest that
error suppression in one degree of freedom can cause errors in other
degrees of freedom. Thus, the coupling can make the characteristic second-
order response of the SMD quite different. To the extent that the equation of
motion can precisely capture the dynamics of the robot, it can be used to
compensate for these coupling terms.



Figure 6.7
The feedforward compensator linearizes and decouples multiple degree of freedom controllers

The feedforward compensator in figure 6.7 scales the output of the PD
controller to linearize and decouple degrees of freedom in the plant. In this
case, the PD controller is designed for uncoupled, unit masses (or mass
moments, as appropriate). Therefore, for each degree of freedom, it
produces a force command for this reference plant . The
feedforward compensator computes the command forces/torques for the
real plant by correcting the vector of desired accelerations,

The plant is an analog expression of the inverse dynamics

so that plugging equation 6.11 into equation 6.12 yields the identity relation

Therefore, the combination of the feedforward compensator with the plant
creates the identity system. As result, motor units for each degree of
freedom suppress errors precisely like a canonical second-order system by
computing the pattern of actuation required to suppress the coupling
influences of adjacent degrees of freedom.

6.3.3 Analysis: The Dynamic Manipulability Ellipsoid



When  and ignoring torques due to gravity, the computed torque
equation can be simplified to . Under these circumstances, the tools
for linear analysis developed in section 4.7 and appendix A.6 provide
insight into the mapping between applied forces and accelerations in multi-
degree of freedom articulated systems. For example, the generalized inertia
ellipsoid describes the relationship between applied torques τ and
accelerations  in terms of the eigenvalues and eigenvectors of MMT. This
is the basis for a linear analysis describing, in relative terms, how the
acceleration in the manipulator depends on the manipulator’s configuration
[208].

To get a measure of how the manipulator dynamics, gravity, the current
state of motion, and even limits on actuator performance influence the
ability to generate endpoint accelerations in Cartesian space,3 we start from
the velocity relation , where J is the manipulator Jacobian.
Differentiating with respect to time yields

Substituting the expression for  (equation 6.9, with external loads F=0), we
find

where we have dropped the explicit dependencies on q and  and introduced
two new acceleration terms:

The  term includes centrifugal and Coriolis forces, and  captures
forces due to gravity. The first term on the right-hand side of equation 6.13
depends on torque τ, and therefore the ability of the limb to generate
accelerations depends directly on the physical limits of the actuators. If we
follow the formulation in [47, 245] and assume symmetric torque limits



then a normalized actuator torque, , can be written as

where . The set of admissible torques is, thus, a unit
hypercube defined by .

Substituting  for τ in equation 6.13 yields

In this form, the term  accounts for all the velocity and gravitational
effects—that is, all accelerations in the system that are present even when
the command torque is zero.



Figure 6.8
A smaller and dramatically underpowered pair (L and R) of Roger’s 2R manipulators yields dynamic
manipulability ellipsoid (JM−2JT) for l1 =l2 =0.25 [m], m1 =m2 =0.2 [kg], and τTτ ≤ 0.005 [N2m2].
Gravity acts in the negative  direction.

Equation 6.17 maps the n-dimensional hypercube defined by  to
an m-dimensional acceleration polytope [47] that defines the set of feasible
end-effector accelerations. An illustration of an acceleration polytope for
Roger is presented in figure 6.8. It describes the directional capacity for
acceleration at the endpoint that includes the full dynamics of the limb and
a symmetric model of torque limits in the actuators. Equation 6.17 can also
be used to perform the now familiar elliptic deformation of an n-
dimensional hypersphere, , to an m-dimensional dynamic
manipulability ellipsoid. In this case, the expression for the hypersphere is
written in terms of the inertia matrix, M, the Jacobian, J, and the bias
accelerations:



Rosenstein [245] observed that since M and L are symmetric, this
expression can be simplified,4

so that

Equation 6.19 defines the elliptic deformation that characterizes the
mapping from torques to end effector accelerations through the limb’s
dynamics. Yoshikawa [298] presented essentially the same formulation
(without normalized torques) and called the elliptic mapping the dynamic
manipulability ellipsoid. He also proposed the same kind of scalar
conditioning metric used to measure kinematic conditioning,

and called it the dynamic manipulability measure [297, 298].
The dynamic manipulability metric is proportional to the volume of the

dynamic manipulability ellipsoid and to the volume of the corresponding
acceleration polytope in Cartesian space derived from the ∥τ∥∞ ≤ 1
constraint.

Example: Gravity and Roger

Figure 6.8 illustrates the dynamic manipulability ellipsoid for several
configurations of the arms of a smaller and underpowered Roger (without
wheels) as it extends its arms to full length in the  and  directions. The
lateral extension postures also show the principal axes of the dynamic
ellipsoids. Black ellipsoids represent the unbiased Cartesian performance of
the robot defined by equation 6.19 and red ellipsoids are gravity-biased
dynamic manipulability ellipsoids scaled appropriately to reflect torque



limits. An acceleration polytope is also illustrated in green for one of the
candidate postures. This set contains all the accelerations possible from a
given posture that are consistent with torque limitations in the manipulator.

The manipulator can support a candidate posture when the red ellipse
contains the endpoint position for that posture—that is, when actuator
torques can generate a net endpoint acceleration of zero. When released at
rest from some of the postures shown, the manipulator will not be able to
support the gravitational load. In particular, vertical extensions of the arm
less than x=0.3 [m] and horizontal extensions greater than about y =−0.175
[m] cannot statically support the weight of the arm.

☐

6.4 Exercises

1. Rotating the inertia tensor. The inertia matrix of the Wright Flyer
relative to the x-y-z coordinate system located at its center of mass is shown
in the following figure, where the  axis is longitudinal and the  axis is
lateral.

(a) What could a—perhaps unintended—consequence be of designing
control surfaces to produce torques for roll-pitch-yaw about the x-y-z
axes given inertia tensor I?
(b) About which axis must you rotate I to produce Idiag?
(c) What angle (in radians or degrees) must the frame illustrated be
rotated to diagonalize the inertia tensor?
(d) Compute the principal moments of inertia.

2. Coriolis forces on Earth. A locomotive with a mass of 2×104 [kg] is
traveling due north along a straight track at 40 [m/s] at 43°N latitude.
Starting with equation B.7, calculate the magnitude and direction of the
lateral force on the track.



3. Forensic dynamics. Some historians believe that Gustave Coriolis
(1792–1843) discovered the Coriolis effect early in the nineteenth century
using observations of cannon accuracy during the Napoleonic Wars (ca.
1803–1815). The theory goes that the longer-range cannons were observed
to miss reliably to the right. Could this theory be correct?
 Assume that Coriolis fired a cannon due north in France (45 [deg] N
latitude) and that the ball traveled at some unknown average velocity V
throughout its flight. Further, assume an un-rifled cannon fired at a loft
angle of 45 [deg] produced a shot with an average range of 5 [km] when
fired on flat terrain and that lateral deviations due to turbulent airflow over
the round projectile at this range could deflect the ball ± 100 [m].

(a) Determine the muzzle velocity for this firing geometry that produces
the 5 [km] range.
(b) Estimate the duration/time of flight for the parabolic arc of the
projectile.
(c) Compute the maximum altitude for the cannonball.
(d) Compute the Coriolis acceleration.
(e) How would a projectile appear to be deflected due to Coriolis
accelerations?
(f) How plausible is the Napoleonic cannon theory as an empirical basis
for the discovery of the Coriolis force?

4. Simple, open-chain machines: 1R mechanism. The mechanism
illustrated is attached to inertial frame 0 and includes infinitesimal point
masses at the end of each link that are subject to gravitational (mg) loads—
each link is, otherwise, massless.



(a) Derive the equation of motion in the state space form for the simple
mechanism (i) by inspection; (ii) using the Newton-Euler equations; and
(iii) using the Lagrangian.
(b) Draw the dynamic manipulability ellipsoid (JM−2JT) for this
configuration. On the same diagram draw a second ellipsoid illustrating
the influence of the gravitational bias.
(c) Draw the feedforward, dynamically compensated PD controller (as in
figure 6.7). Identify the required terms of the computed torque equation
and their dependence on state feedback, and specify PD gains to produce
a critically damped response. Explain why the feedforward
compensation linearizes and decouples the system.

5. Simple, open-chain machines: 2P (Cartesian) mechanism.

(a) Derive the equation of motion in the state space form for this simple
mechanism (i) by inspection; (ii) using the Newton-Euler equations; and
(iii) using the Lagrangian.
(b) Draw the dynamic manipulability ellipsoid (JM−2JT) for this
configuration. On the same diagram draw a second ellipsoid illustrating
the influence of the gravitational bias.



(c) Draw the feedforward, dynamically compensated PD controller (as in
figure 6.7). Identify the required terms of the computed torque equation
and their dependence on state feedback, and specify PD gains to produce
a critically damped response. Explain why the feedforward
compensation linearizes and decouples the system.

6. Simple, open-chain machines: PR mechanism.

(a) Derive the equation of motion in the state space form for this simple
mechanism (i) by inspection; (ii) using the Newton-Euler equations; and
(iii) using the Lagrangian.
(b) Draw the dynamic manipulability ellipsoid (JM−2JT) for the
configuration. On the same diagram draw a second ellipsoid illustrating
the influence of the gravitational bias.
(c) Draw the feedforward, dynamically compensated PD controller (as in
figure 6.7). Identify the required terms of the computed torque equation
and their dependence on state feedback, and specify PD gains to produce
a critically damped response. Explain why the feedforward
compensation linearizes and decouples the system.

7. Invent your own homework. Make your own exercise out of your
favorite content in chapter 6. Write a question and a solution for it from the
material in the reading. The problem should be different from the questions
already here. Ideally, it should be based on material in this chapter (and,
perhaps, previous chapters); it should call for a quantitative analysis and a
short discussion; and it should not take more than 30 [minutes] to solve
open-book.



Part II Summary: The Kinodynamic Affordances of Embodied
Systems

The sensorimotor stage in human development is a period when infants
learn to manage their limbs and gross motor behavior. The knowledge
acquired during this developmental stage is, to a large degree, focused on
understanding the kinematics and dynamics of the body. In part II, we have
reviewed some results from robotics that describe and characterize the
kinodynamics of bodies in terms of their velocities, forces, and
accelerations.

Mechanisms and Kinematic Relations—We reviewed some of the
important terminology of mechanisms including the mathematical
representation of spatial frames of reference. We used this framework to
write forward and inverse kinematic relations for very simple devices
including Roger’s arms and eyes.

Jacobian and the Conditioning Ellipsoid—The degree of error
amplification (or conversely, precision) in the kinematic mapping can
profoundly influence the quality of sensory and motor behavior. We
differentiated nonlinear forward models to reveal a locally linear velocity
relationship called the Jacobian. The conditioning ellipsoid was derived as a
method for characterizing the influence of the Jacobian mapping from
configuration variables to spatial quantities. We noted that manipulators are
not general purpose—they have a configuration-dependent ability to
transform forces and velocities into the task space. Examples were
presented that applied this analysis to Roger’s manipulators and to his
binocular vision systems.

Hands and Grasp Analysis—Seemingly minor variations in the
kinodynamic configuration of arms and hands have made a significant
evolutionary contribution to human intelligence. After a brief overview of
the uniqueness of and importance of the human hand, chapter 5 provides a
historical survey of influential robot hands that emerged as researchers
learned more about the complementary nature of mechanism, control, and



representations for prehensile grasping. Following this survey, the grasp
Jacobian and methods for solving for grasp forces given knowledge of the
grasp geometry are presented.

Dynamics—We developed the governing dynamics for articulated
mechanisms and the acceleration polytope and the dynamic manipulability
ellipsoid. We reviewed extensions that explain how gravity and the state of
motion can influence the ability of a robot to accelerate. These results
describe the capabilities of the robot mechanism and its actuators.

These analytical tools describe how a robot’s body influences and
sometimes dominates the control of motions and forces. There have been
demonstrations of systems that learn to exploit dynamics in the literature.
Robot weight lifters, for example, use nonlinear optimization to find motion
plans for producing forces that significantly exceed the rated static payload
of the robot [287, 247, 161]. They do so by storing kinetic energy and
refocusing it via limb dynamics. Given knowledge of the robot, one can
exploit such “kinodynamic lenses” using the techniques discussed in part II
of the book.

In part III, we will examine where structure exists in the low-level
feedback signals built into animals and robots. Then, in part in part IV, we
will discuss supervisory control mechanisms capable of exploiting the
kinodynamic aptitudes of robots.

1. A tensor is a geometric operator that describes relations between vectors and is independent of any
particular choice for the coordinate system. Inner (dot) products and vector (cross) products are
tensors, as is the inertia tensor that projects vectors of torques onto the vector space of accelerations.
2. For a rectangle with uniform mass density, the center of mass is the same as its geometric center.
3. In this discussion, we assume that the manipulator Jacobian is square and full rank. The general
case is treated in [298, 208, 47] using the pseudoinverse (appendix A.9).
4. A−T = (A−1)T, A−2 = A−1A−1, and for symmetric matrices, AT = A.



III
STRUCTURE IN SENSOR FEEDBACK



7
Stimuli and Sensation: Organs of Visual and Tactile Perception

Animals (and autonomous robots) are embedded in ongoing sensorimotor
interactions with a complex world. Stimuli originating in the environment
can be used to activate purposeful movements that change access to these
stimuli. Thus, animals and autonomous robots have the ability to actively
control the type and quality of feedback as they reshape the environment to
make it conform with the business of survival.

So far, our discussion has focused on how embodiment determines the
relative quality of movement and perception, combining low-level issues
related to actuation, control, and kinodynamics. The sensors we discuss in
this chapter and the signal processing techniques we introduce in the next
chapter complete the ground floor of an integrated cognitive architecture
describing the possibilities for (extended) interaction with the world.

In this chapter, we introduce two principal sensing modalities—vision
and touch—that contribute significantly to a human being’s merkwelt and
that have direct analogs in robotics. So far, the robotic counterpart to these
sensors is a poor approximation of the range of feedback available in
animal systems, but they provide important, complementary contact and
noncontact sensing of the external world. Together with proprioceptive
feedback, they will contribute to the foundation of a growing cognitive
agent.

The state of the art in these two sensors is also quite different. For
example, parts of the human eye—those parts left after we exclude motor
and behavioral systems that support vision—are similar to the now familiar
cameras that are in our computers, cell phones, and doorbells. Therefore,



vision, in this chapter, will not focus on cameras per se, but will try to
focus, instead, on how electromagnetic signals convey information that is
influenced by interactions with the world and how one might go about
building a practical, integrated, and interactive vision system for use by
robots.

Tactile feedback is also critically important to human survival on Earth.
However, the organs of touch are not as familiar and are less similar to their
analogs in robot systems. Therefore, after a brief introduction to some of
the mechanoreceptors in the human skin and muscle, we will spend some
time surveying some of the common technologies for robot tactile sensing.
In the following chapter, we will consider how signals from these devices
can be processed to highlight information in the environment.

7.1 Light

Light is produced when an atom in an excited state relaxes into a lower
energy state—the difference in energy is emitted in the form of a photon.
Black body radiators are theoretical objects that absorb all incident radiation
and emit electromagnetic energy over a spectrum of wavelengths
determined by the body’s temperature. The net power radiated from such a
body is the difference between the power emitted and absorbed and is
determined by the Stefan-Boltzmann law,

where A [m2] is the surface area of the body; T [K] is the absolute
temperature of the body in degrees Kelvin; T0 [K] is the absolute
temperature of the environment; 0<𝜖<1 is the emissivity of the body; and σ
=5.670367×10−8 [W/(m2K4)] is the Stefan-Boltzmann constant.

Our sun is essentially a black body radiator, and, therefore, the frequency
spectrum of sunlight is a function of its surface temperature. In the absence
of nearby matter, light energy radiated by the sun spreads uniformly across
the surface of a sphere whose radius grows at the speed of light. Therefore,
the energy density of light emitted from a point source at a distance R from
the source is proportional to 1/R2. The sun delivers about 1200 [W/m2] to the
Earth’s surface when it is directly overhead.



The environment is bathed in electromagnetic energy with varying
frequency content and intensity that originates in many phenomena: other
black body radiators (like the glowing products of combustion and
incandescent light bulbs); bioluminescence in organisms like fireflies and
photo-luminescent plankton (a byproduct of chemical processes); and other
man-made devices (e.g., LEDs and lasers).

7.1.1 Image Formation

The spatial distribution of electromagnetic energy is measured by projecting
it onto a discrete array of receptive regions where it is transformed into
electrical signals that constitute an image. The process of image formation
in figure 7.1 portrays a very brief history of a few rays of light as they leave
multiple sources and make their way onto the image plane. Every
illuminated object in the environment acts as a secondary light source by
absorbing, transmitting, and reflecting incident radiation. On its way from
the source to the image plane, light acquires geometric and chromatic
artifacts from each of the objects it encounters en route.

Figure 7.1
Projective geometry and image formation

To manipulate the path of a light ray, reflective and/or refractive optical
elements are commonly used—biological systems make use of both. The
result is a spatial distribution of pixel responses that represent a projection



of the luminosity function in the direction of the camera’s gaze at time t that
is refreshed with new data at (typically) 30 image frames per second.

In section 4.5.1, the kinematic properties of the pinhole camera were
introduced to provide a basis for analyzing the relative acuity of stereo
vision. The pinhole projective imaging geometry is ideal in many ways.
Pinhole cameras create a focused image over an infinite depth of field. That
is, light sources are in focus regardless of their distance from the camera.
However, the pinhole only permits a very small amount of electromagnetic
energy onto the image plane. Receptors, therefore, must be extremely
sensitive. Optical elements can be used to gather light and bring it into
focus over a finite depth of field. Together with mechanisms for actively
controlling focus, optics can increase the size of the pinhole aperture
significantly—gathering more of the environmental signal—while still
providing all the information in the pinhole image. In this section, we will
discuss refractive optical elements (lenses) that collect and focus light onto
the imaging plane for this purpose.

Snell’s law—The path of light is modified as it passes through the interface
between optical materials with dissimilar optical properties. For example,
when we examine an object submerged in water, the difference in the
optical properties at the air-water interface causes light rays to be refracted.
Most of us are aware of the fact that, under these circumstances, objects
under the water are not precisely where they appear to be. The effect is
diminished when the gaze is close to the normal of the water surface. In
fact, we observe that the change in direction is proportional to the angle
between the surface normal and the incident light. To understand why, we
examine the physics of light.

A light ray is electromagnetic energy that consists of coupled, orthogonal
electric and magnetic waves and propagates in the direction of the Poynting
vector. The index of refraction for an optical material is the ratio of the
speed of light in a vacuum to that in the optical material.

where μ is the magnetic permeability of the material (μ0 is the permeability
of free space) and 𝜖 is known as the electric permittivity (𝜖0 is the



permittivity of free space).

Figure 7.2
Refraction at an optical interface. An incident light ray traveling in air and an optical interface with
n>nair.

As illustrated in figure 7.2, when an electromagnetic wavefront crosses
an optical boundary from air into a material whose index of refraction is
greater than that of air, the light rays are refracted, bending the wavefront
toward the normal of the optical interface. The phenomenon is described by
Snell’s law,

where ni is the index of refraction for the medium through which the
incident light ray travels, and nt is the index of refraction for the medium
through which the transmitted light ray travels. The geometry and optical
properties of lenses are designed to manipulate the geometry of light rays to
focus this energy into coherent images.

The Gaussian Lens Formula—Most lenses combine pairs of convex
and/or concave spherical surfaces whose centers of curvature are located on
the optical axis. By convention, the surfaces of the lens have a positive
radius if the center of curvature is to the right of the lens and negative if it is
to the left. Therefore, R1 is positive and R2 is negative for the biconvex lens
shown in figure 7.3.



Figure 7.3
Geometric parameters for the biconvex lens

Incoming parallel light rays on the left of the figure originate from an
infinitely distant source and are focused at a distance f (the focal length) to
the right of the lens. By combining Snell’s law and the geometry of the lens,
the focal length of a lens like this in air (nair =1.0) can be written

where f is the focal length, n>1 is the refractive index of the lens material,
and d is the thickness of the lens at the optical axis. A thin lens
approximation can be used when d is small compared to R1 and R2. Under
these conditions, equation 7.4 can be simplified to yield

As the infinitely distant source approaches from the left, light rays from
the source are increasingly divergent as they reach the lens, causing the
point-of-focus to move further to the right. This case is also depicted in
figure 7.3.

Mechanisms for focusing cameras change the distance between the lens
and the focal plane in order to bring objects at different depths into focus.
The thin lens equation (equation 7.6) describes where objects at different
ranges will be focused.



where S1 is the distance from the lens to the object; S2 is the distance from
the lens to the place where the image is formed; and f is the focal length of
the lens.

If an object is placed at f <S1 ≤ ∞, then a focused image will be produced
on an imaging surface at a distance S2 accordingly. Small displacements
from this position will cause the image to defocus. Objects at S1 =f will
focus at S2 =∞, and S1 <f will create divergent rays that cannot be focused at
a positive S2.

Modern high-performance cameras make use of optics based on these
principles, together with a mechanical means of changing the distance of
the lens from the image plane and algorithms for focusing on the subject
that minimize image distortion and work well at low ambient light levels.
Natural selection has produced a variety of species with eyes that exploit
the same principles supported by an expanded array of reflexes for
optimizing signal quality and protection.

7.1.2 The Evolution of the Human Eye

The human eye is a complex organ whose basic design is shared by several
species. Many variations of the eye across species today relate to a common
basic design that dates back perhaps 540 million years. Figure 7.4 illustrates
a sequence of five milestones in the evolution of a contemporary eye
common to many animals. The first organisms that developed light
sensitive nerve cells probably lived in the shallow seas where life on Earth
is believed to have begun. These eyespots resembled the structure in figure
7.4(a), and provided ancient animals with the ability to differentiate light
from dark or perhaps to detect when light was occluded by looming
predators. Animals with these sensors couldn’t resolve directions well, but
they could distinguish night from day, set circadian rhythms, and, over time,
became selectively responsive to the band of the electromagnetic spectrum
that penetrated the shallow, salt water seas in which they lived.



Figure 7.4
Milestones in the evolution of the human eye: (a) the eyespot consists of a layer of photosensitive
cells; (b) a pit forms that makes the primitive retina directionally sensitive; (c) the pinhole eye filled
with water to create sharper images; (d) transparent aqueous humor fills cavity with transparent
corneal covering; (e) the lens forms; and (f) the human eye developed a separate iris, focusing
musculature, and spherical eyeball enclosed in a bony socket. (Source: Adapted from [100] and [28])

The eyespot eventually evolved into a pit organ (figure 7.4(b)) and
further into the pinhole eye (figure 7.4(c)) with much greater ability to
focus and improved directional sensitivity. This eye can image the
environment and discriminate between different shapes and brightnesses.
The contemporary nautilus, a small mollusk with tentacles like a squid, uses
one of these ancient eyes. Without a lens to gather light, these eyes are still
relatively poor, but animals with such an eye can now hunt visually as well
as flee when being hunted. Specialized transparent epithelial cells evolved
to cover the pit organ, as in figure 7.4(d), to exclude contaminants from the
imaging chamber and to contain the special vitreous humor. This fluid
creates a greater index of refraction and supports vision in animals that
move out of the oceans and onto the land. The transparent epithelial cells



evolved to form two layers with a fluid (the aqueous humor) between them.
Optical properties were again enhanced, but the mechanical toughness of
the outer structures were also improved, as well as the metabolic support of
the tissues involved. Eventually, the lens (figure 7.4(e)) and the musculature
to focus the eye actively and to control the amount of light entering the eye
evolved (figure 7.4(f)) to create an imaging device whose basic form and
function would be replicated in many species from this common lineage.

The photosensitive surface of the eye is called the retina and in some
animals, including humans, consists of rod and cone receptors. The rods are
more sensitive to overall light intensity and are about twice as numerous as
the cones. The cones, however, are specialized receptors responding to red,
green, and blue wavelengths. The greatest concentration of receptors is near
the fovea. The entire array functions as a parallel image capture and signal
processing architecture. There are about 100 × 106 receptors on the retina.
When stimulated, they produce impulses in adjacent retinal cells. This early
processing system computes properties of the image in compact retinal
neighborhoods and compresses the signal significantly—only about 0.8×106

nerve fibers exit the eyeball via the optic nerve.

Human oculomotor anatomy—Figure 7.4(f) is an anatomical sketch of
the human eye. It is roughly spherical in shape, about 2.4 [cm] in diameter
and weighs about 7.5 [g] [28]. The eyeball itself is housed in a bony orbital
cavity and consists of a larger posterior cavity filled with vitreous humor,
which is a jellylike substance formed early in fetal development and never
replaced. The vitreous humor is both structural and optical. Light enters the
eye through the structures of the anterior cavity of the eyeball, which is
filled with aqueous humor produced in the ciliary processes and flows
through the pupil, where it is absorbed by the venous system. It maintains
intraocular pressure and links the lens and the cornea to the circulatory
system. Common disorders, like glaucoma, can result if the intraocular
pressure is not regulated adequately.

The white of the eye (sclera, Greek skleros, “hard”) and choroid
structures are both structural and optical. In this case, opacity is the
important optical property and this is accomplished in part by the pigments
in the choroid that block stray light from striking the light-sensitive retina.
The pigmentation also includes the colors in the iris that have evolved in



response to ambient lighting conditions at various places on earth. The iris
contains radial and circumferential fibers that surround the pupil. They
behave as a diaphragm controlled by the autonomic nervous system to
shutter incoming light.

The lens of the eye would normally assume a roughly spherical shape
but is elongated slightly by tension in the suspensory ligaments. The ciliary
muscle forms a ring between the iris and the lens that, when innervated,
reduces tension in the ligaments and thereby improves the focus on nearby
objects by decreasing focal length (equation 7.5). The ciliary muscle and
the iris control intrinsic parameters of the stereo imaging system. The
pupillary light reflex is a kind of closed-loop regulator that constricts or
dilates the iris in response to ambient light levels. When an eye is exposed
to changing stimuli, it responds and there are sympathetic responses in the
other eye even if it is not similarly stimulated. These reflexive responses are
often used to test for intact neural pathways.

In addition to the intrinsic ciliary muscle and iris, there are several
extrinsic muscles that participate in the control of the binocular field of
view. Figure 7.5 illustrates some of this musculature. Squinting can
influence the shape of the lens and affect the intensity of incident light
under voluntary control. Moreover, a parasympathetic response referred to
as the accommodation reflex engages a feedback loop via the primary visual
cortex to condition the visual system’s near-field acuity. In response to an
approaching object, the ciliary muscle relaxes appropriately to plump both
lenses by virtue of their passive elasticity, the binocular configuration
verges on the subject to reduce double vision and to keep the stimulus near
the respective fovea, and pupillary constriction (miosis) improves visual
acuity by using the iris to narrow the pupil toward a pinhole aperture (see
section 4.5).



Figure 7.5
The extrinsic muscles for the oculomotor system. The oculomotor nerve innervates the inferior
oblique; the inferior rectus; the medial rectus; and the superior rectus. The trochlear nerve innervates
the superior oblique, and the abducens nerve innervates the lateral rectus. The inset at the bottom
shows the displacement of the pupil due to the exclusive action of the muscles.

Variations on the Theme—In terms of structure, all vertebrates have eyes
similar to ours. Invertebrates generally have poorly developed or compound
eyes, except for the octopus [84]. The octopus has a well-developed brain
and has evolved an eye much more like ours, with a cornea, eyelids, iris,
and lens. This is an example of evolutionary lightning striking twice and
creating essentially the same design via a dramatically different
evolutionary thread. Other species have tuned the basic design of their eye
to optimize its performance in particular environments and ecological
niches. For example, bees, fish, butterflies, birds, and reptiles are all
capable of seeing color, but most mammals do not (with the significant
exception of the primates). Much of this commitment to color seems to be
in service to reproductive success or to help distinguish flowers and fruits
for food.



More examples of variations on the basic design of the vertebrate eye are
found all over the animal kingdom. Herbivores often have side-facing
(monocular) vision systems with almost no overlap in the field of view.
They rely on a larger panoramic field of view more than stereo vision. The
chameleon has eyes on independently controllable turrets capable of both
side- and forward-looking configurations. However, predators are
distinguished by their forward-facing (stereo) system that provides
precision near-field depth perception with a narrow field of view (<180
[deg]). Rattlesnakes (a predator) have their eyes oriented to the side but also
have forward-looking stereo pit organs, an ancient eye with no lens that
responds selectively to infrared radiation (heat). They use the pit organs to
orient their strike and the visual spectrum to detect motion over a wide field
of view.

Cheetahs have a wide, eccentric foveal region spanning a broad
horizontal band, presumably for locating prey on the African plains. Other
forms of retinal variation serve nocturnal animals by employing a reflective
back surface of the receptive cells to catch stimulus that might otherwise
slip through unnoticed and bounce it back through the receptive tissue a
second time. This is the reason why a deer’s eyes will glow in a car’s
headlights and why photographs of people taken with a flash will often
show red eye. Many species of small birds sacrifice muscles for size since
space in their small skulls comes at a premium. Small owls, for instance,
need large eyes to hunt at night and some species have evolved without the
ability to pan their eyes within their skull in order to gather more light.
These species direct their gaze using movements in the neck. The largest
eye in nature belongs to the giant squid and may be up to 15 [in] in
diameter.

Finally, fishing birds exploit the fact that light reflected from flat
surfaces like roads or smooth water is polarized horizontally. The
kingfisher, for example, uses a polarizing lens to filter out reflected glare in
order to see its prey more clearly.

7.1.3 Photosensitive Image Planes

During the twentieth century, several devices were developed to emulate the
eye’s ability to create images—signals with both spatial and temporal



content that can be broadcast for viewing elsewhere and can be inputs to
computational vision systems. Researchers have designed an analog of the
human retina using integrated CMOS image capture chips [183]. These
devices are fast, low power, and compact by virtue of decreasing pixel size
and has become inexpensive due to its ubiquitous use in modern cell phones
and web cams.

The solid state, charge-coupled device (CCD) has become synonymous
with modern video signals. However, it is not a method for turning light
into electrical charge; it is a high-speed analog shift register. It allows
analog signals to be transferred along a chain of solid state capacitive
elements under the control of a clock signal. The CCD implements a form
of solid state “bucket brigade” for sampled analog signals that is relatively
power efficient, fast, and free of the distortions common to previous
methods.

The photoreceptors in modern solid state cameras detect a wide range of
frequencies from infrared to ultraviolet and are quite sensitive, which makes
them extremely valuable in astronomy. The Hubble Space Telescope uses a
CCD and techniques for eliminating random thermal noise to create sharp
images in the extended visible spectrum. Color images are created using
CCD arrays by tiling the image plane with pixels that respond selectively to
red, green, and blue wavelengths. Every 2×2 square of pixels uses filter
masks to create one red, one blue, and two green receptive fields. More
expensive color imaging devices use three CCD arrays (3CCD) and a beam
splitting prism to separate white light into red, green, and blue components.

7.2 Touch

Haptics concerns the sense of touch—in particular, the perception of
movement and contact using tactile and proprioceptive feedback. In human
beings, it engages a variety of central and peripheral neural systems that
measure forces, heat flux, pain, accelerations, and the degree of stretch in
muscle fibers and tendons. Many of these haptic signals originate in a
variety of mechanoreceptors with overlapping receptive fields that could
number in the hundreds per cubic centimeter for tissue near the skin
surface. They contribute to our sense of shape and material (thermal
conductivity, hardness, texture), provide feedback to help stabilize a grasp,



and perceive a variety of other sensations associated with contact
phenomena. Without these signals, as happens under anesthesia or when our
hands get very cold, human beings experience profound difficulty with the
simplest and most mundane activities of daily life. The quality of our haptic
experience is due to the collective behavior of peripheral nerve cells.

7.2.1 Cutaneous Mechanoreceptors

A variety of specialized cells have evolved to measure the state of the
musculoskeletal system (proprioceptive sensors) and external stimuli
(exteroceptive sensors). Among these, there is a special class of
mechanoreceptor that converts mechanical and thermal energy into
electrical signals in the nervous system that contribute to a sense of touch.
Some of these specialized cells are presented in figure 7.6.
Mechanoreceptors are specialized peripheral nerve cells that detect stresses
of various forms related to contact and movement. The probability that the
mechanoreceptor’s cell membrane produces a spike (the action potential) is
proportional to the magnitude of the stressor.

Figure 7.6
Some of the cutaneous sensory neurons that provide feedback signals to the somatosensory cortex

The collection of mechanoreceptors in figure 7.6, responsible for the
sense of touch, are organized conceptually in terms of their typical depth in
the (sub)cutaneous tissue.



Internal receptors—In general, sensorimotor control requires both position
and force feedback. Internal receptors measure the relative position of body
parts—a sensor modality known as proprioception. Four receptors of this
type are described below [60, 163].
•  Neuromuscular spindles sense the degree of stretch in the muscle fiber.
These receptors contribute feedback support for the reflexive cohesion of
the skeleton and provide precise movement control. They come in two
varieties: one responds to high frequencies and another responds to low
frequencies and DC traction.
•  The Golgi tendon organ exhibits a very slow response and contributes to
the control of muscular tension by measuring the degree of stretch of the
muscle fiber at the tendon-muscle interface.
•  The articular surfaces in the joints of the body produce signals
proportional to extreme position, velocity, or ligament tension. These
receptors provide feedback for extreme movement of the joint.
•  Ruffini corpuscles function, in part, as thermal receptors and contribute to
the sensation of kinematic forces and accelerations.

Dermal receptors—Beneath the epidermal layer of the skin, the dermis
incorporates two types of receptors [60]:
•  Meissner corpuscles respond to light touch; they are located beneath the
convoluted dermal papillary layer. These structures are ovoid, with the
major axis perpendicular to the skin surface, and contain neural fibers
running normal to and tangential to the skin surface. The Meissner
corpuscles are specialized high-frequency transducers.
•  Pacinian corpuscles (as distinguished from an intramuscular Pacinian-
type receptor) respond best to accelerating mechanical displacement rather
than constant velocity deformation. These sensors are quite sensitive to
pressure but are not sensitive to direction, and they respond primarily to
vibration stimuli.

Epidermal receptors—Epidermal receptors provide the most direct
evidence of interactions between the skin surface and the external world.
Figure 7.6 illustrates three different types of receptors:



•  Hair is the mechanical extension of the hair follicle. It measures
deflections in the follicle caused by contact. The hair on the surface of our
skin is the site of the greatest rate of on-going cell division in the body. Hair
follicles create new cells and extrude a hair shaft that extends beyond the
surface of the epidermis. Nerve cells in the follicle detect deflections in the
hair shaft as, for instance, when brushed by environmental contacts, or
subjected to air or fluid flow. In some animals, stiff hairs (whiskers) act as
proximity sensors. Attached to each epidermal hair follicle is a tiny bundle
of muscle fiber called the arrector pili that make the hair stand up and cause
the follicle to protrude slightly above the surrounding skin (goose bumps).
This is an evolutionary adaptation to make the animal seem larger in a
defensive posture or to warm the animal by insulating the skin with a thin
blanket of stationary air.
•  Merkel disks are sensory receptors with a large bandwidth that are
sensitive to compression and shear stimuli. They are located in relation to
the dermal papillae in a position that localizes the strain associated with
small contact forces on the surface of the skin.
•  Free-ended nerve fibers respond to a variety of stimuli, including
temperature and pain. These receptors are classified by their diameter,
conduction speed, sensitivity or threshold level, and the presence or absence
of a myelin sheath. The presence of a myelin sheath increases the diameter
and induces a different conduction path in the nerve fiber. As the diameter
increases, the threshold stimulation decreases, the amplitude and duration of
the output signal increase, and the velocity of the signal increases. A- and
C-type free-ended receptors are prevalent in the epidermis. Type A has a
relatively large diameter and is myelinated while type C is smaller, more
numerous, and unmyelinated.

The data in table 7.1 was compiled from a variety of sources [60, 97,
112, 136, 163] to summarize the collective performance of the sensory
apparatus in the human hand. The relative contribution of the various sensor
signals in the human hand produces a very rich and diverse array of tactile
sensation. The so-called touch blend [255] of temperature, pressure, and
vibration signals is capable of distinguishing wet, slimy, greasy, syrupy,
mushy, doughy, gummy, spongy, or dry, and properties such as hardness,
texture, compliance, size, shape, and curvature can be estimated [76, 266].



Movement is critical to the formation of haptic images, and active
exploratory strategies that make efficient use of tactile exploration have
been reported [4, 69, 77, 97, 104, 114, 255].

Table 7.1
Sensory signal performance on the fingertip

Frequency response 0 to 400 [Hz] (+ very high frequency)
Response range 0 to 100 [g/mm]2

Sensitivity Approx. 0.2 [g/mm]2

Spatial resolution 1.8 [mm]
Signal propagation Motor neurons 100 [m/sec]

Sensory neurons 2 to 80 [m/sec]
Autonomic neurons 0.5 to 15 [m/sec]

7.2.2 Robotic Tactile Sensing

Technologies for robotic tactile sensing are diverse, ranging from simple
binary contact sensors to artificial skins that provide complex, wide
spectrum stress/strain and thermal conductivity information at the interface
between a robot and the environment. However, tactile systems for use with
robots are quite primitive relative to their biological counterparts, and there
is a huge gap between the haptic abilities of animals and those of robots.
The difficulty lies, in part, in our limited ability to fashion small sensors
that can be distributed in tough, elastomeric robot “skin” that is easily
repaired; that requires few electrical connections and is addressable; and
whose signals convey complementary forms of information efficiently.

This section provides a historical overview of tactile technologies by
considering a few innovative concepts for deriving information from
contact. This is a very active area of research, and this review will not
attempt to be comprehensive or cutting-edge. Instead, we focus on
commonly used transducers and design concepts. For a more thorough
review, the interested reader is directed to [66, 169, 170].

Several characteristics of viable contact sensor technologies are
important when specifying a tactile sensor for general use in a dexterous
robot [103]. The maximal spatial resolution of a particular sensor is
determined by the maximum spatial density permitted in its fabrication. The
spatial frequency observable in tactile signals is defined by the resolution of



the sensor. A typical specification calls for spatial resolution on the order of
1–2 [mm]—roughly, the minimum two-point tactile separation observable
on the fingertip of the human hand. The temporal bandwidth is determined
by the rate of data acquisition and bandwidth requirements depend on the
task. For example, slip detection or active texture analysis requires
relatively high-frequency signal content. The sensor sensitivity measures the
ratio of the change in the sensor output to a change in the input, and the
dynamic range of a sensor is the logarithm of the difference between the
smallest and largest signal values that are detectable. Hysteresis in a sensor
causes its output to depend on the recent history of inputs. In response to
periodic stimulation, the output of the mechanoreceptors in figure 7.6 show
a fair degree of hysteresis; however, hysteresis in robotic tactile sensors
proves to be very challenging for roboticists. Finally, roboticists must
consider the means of addressing tactile patches and making room for the
electrical connection from sensor to controller. The number of wires needed
to access an array of sensors varies with the technology used and the
scheme employed to address the sensor patch [130].

Binary contact switch—The most straightforward tactile sensor is perhaps
the binary contact switch. It has been used in a wide variety of applications:
homing robots by providing a reference-zero position for each degree of
freedom; providing bumpers for mobile robots; or, arranged in spatial
arrays, improving the precision of contact position and force observations.
For example, Raibert [238] developed a tactile sensor by arranging binary
contact sensors inside tapered separating spaces and used local VLSI
processing to produce a smart sensor. A sketch of a separator cell is shown
in figure 7.7. The tapered cell yields an increasing contact force threshold
for each successive switch, creating, in this case, an eight bit binary word
encoding the contact pressure over the cell. A prototype chip using 48
tactile cells in a 6×8 array was constructed to produce 4 bits of pressure
output per cell. Using serialized input and output data, a full-scale prototype
incorporated 200 tactile cells with a 1 [mm] spacing driven by only five
wires: power, ground, clock, data-in, and data-out.



Figure 7.7
Raibert’s VLSI tapered tactile cell. (Source: Adapted from [238])

Load cells—Strain gauges are simple electromechanical devices that
change resistance in response to mechanical strain (deformation). They are
electrical conductors that are bonded to mechanical members such that
deflections in the underlying structural element also cause a small
deflection in the sensor element. As the strain gauge flexes, small changes
in its cross-sectional area create measurable changes in the electrical
resistivity of the strain gauge. Given knowledge of the elastic modulus and
geometry of the structural element, these changes in resistance can be used
to compute the forces that cause these minute deformations. Strain gauges
have been used for quite a long time to estimate loads in large structures
such as bridges and buildings.

This idea has also been used to measure forces in robot hands [301].
Multiple strain gauges (six or more) can be configured to measure the full
six-dimensional state of stress in a body—three components each of force
and moment. Very small versions of six-axis load cells have been fabricated
as contact sensors ([73], for example) and incorporated into hemispherical
fingertips to determine contact loads [251, 29, 66] and extended to estimate
contact normals. This technique yields high-precision contact position and



force measurements, with good sensitivity and dynamic range. However,
integrated load cells can be relatively expensive and can undergo plastic
deformations if they are subject to excessive loads.

Three-axis load cells using the same strain gauge technology are being
developed for use in tactile arrays. MEMS fabrication techniques have been
used to build silicon load cells with three (and fewer) axes that are small
enough to embed in elastomeric skin [281, 18]. Emerging fabrication
techniques make it conceivable that many such devices can be embedded in
moldable elastomers to sense the distribution of strains in the robot’s
structure, actuators, transmissions, and coverings.

Conductive elastomers—Conductive elastomers have been used
extensively in the design of tactile sensors [16, 69, 103, 105, 114, 238].
Since it is desirable to cover the tactile system with a compliant layer [83],
it might be advantageous to use a conductive rubber, a doped rubber, or a
conductive foam to act both as protective skin and pressure transducer.
These materials produce predictable changes in resistivity when
compressed. However, currently available materials are often hysteretic,
and doped materials are generally not very rugged. Moreover, low
sensitivity, noise, drift, long time constants, and low fatigue life pose
problems in these transducers.

Hillis [114] addressed these limitations by proposing the sensor
illustrated in figure 7.8. The sensor employs a conductive silicone rubber
that deforms around the separator under load to come into contact with an
underlying conductor. Increased contact pressure increases the size of the
contact patch and, thus, decreases the contact resistance. Since the signal is
proportional to the contact resistance rather than the point-to-point
resistance in the silicone material, different separators can be designed to
produce the correct sensitivity, resolution, and dynamic range for different
applications. Hillis constructed an array of 256 tactile sensors with a spatial
resolution of about 1 [mm] using this technology. A 16×16 array of 256
tactile cells was addressed by row and column using 32 wires in a cable less
than 3 [mm] in diameter.



Figure 7.8
Hillis’s elastic contact resistance sensor. (Source: Adapted from [114]. © MIT Press)

Optical technologies—Tactile sensors have been designed that change the
intensity of an optical signal in response to contact loads. For example, a
deformation caused by contact forces can be used to shutter a beam of light
[60, 240]. The sensitivity and dynamic range of such a sensor can be
changed by altering the mechanical properties of the sensor without altering
the optical transduction. Commercial systems of this type are available
[179] and have been used in tactile image research [206].

An interesting approach in the literature employs a phenomenon known
as “frustrated total internal reflection” [19]. The effect is demonstrated by
looking straight down into a cold glass of water on which condensation has
formed. The silvery condensate reflects light—hiding objects outside the
glass unless they come into contact with the glass’s surface. The more
forceful the contact, the more prominent the image of the contact becomes
on the otherwise silvery glass surface. A tactile sensor based on this effect
is in figure 7.9.



Figure 7.9
Boie’s capacitive tactile sensor [19]

Light rays directed laterally in the figure remain in this light guide by the
geometry of the optical system. However, the textured material on the top
surface of the light guide reflects light diffusely, causing some reflected
light to escape through the bottom surface. Pressure applied to the
transduction membrane causes more of the textured surface to contact the
transparent medium and creates an intensity image of the state of
compression in the material. This tactile image can be conducted away from
the contact site by way of optical fibers [20].

Tactile sensors can be constructed directly from optical fibers by
observing that when a fiber is bent a few microns, the light intensity at the
center of the fiber is attenuated. The sensitivity of the effect depends on
optical parameters as well as the curvature of the bend. This kind of
transduction can be used in a glove to measure the posture of a hand or
fashioned into a tactile sensor. In related designs, a transmit-receive pair is
separated by a polymeric light guide so that the received light intensity is
proportional to the contact force.

Another optical sensor has been demonstrated in the laboratory based on
the birefringence effect of photoelastic materials. This effect is used in
engineering analysis to locate stress concentrations in planar parts subject to
transverse loads. When subject to a mechanical stress, the strain in these
materials causes a change in the polarization of transmitted light. Therefore,



the internal strain in these materials can be encoded in a varying light
intensity.

Capacitive sensors—The capacitance between two parallel plates
separated by a dielectric material is Ae/d, where A is the plate area, d the
distance between the plates, and e the permittivity of the dielectric medium.
Capacitive touch sensors are designed to change capacitance in response to
applied forces. To measure the capacitance, and thus the contact load, one
can use a very precise current source and measure the time-rate-of-change
in the voltage, C =Ae/d=(1/I)(dV/dt), or an RC circuit can be implemented
using the load sensitive capacitor to transform contact load into signal
frequency.

For example, figure 7.10 illustrates a concept proposed by Boie [35],
wherein the dielectric medium also serves as an elastic element that
compresses (changing d) under load.

Figure 7.10
Begej’s optical tactile sensor. (Source: [35] © IEEE)

The concept shows advantages over conductive elastomers in speed and
immunity to noise. Investigators have shown promising results, and arrays
of high spatial density appear to be possible [260]. In another concept, the



electrical and mechanical components of the sensor can be designed
independently.

Magnetic sensors—The (relative) strength of a magnetic field can be
measured in a number of ways. For example, if contact loads cause changes
in the relative position of a pair of induction coils, the forces at the contact
will show up as a change in the output voltage from a moving coil
transformer. Luo et al. [180] and Vranish [283] have demonstrated touch
sensors based on these principles. Luo et al. fabricated an array of 256
tactile cells with a spacing of 2.5 [mm] that demonstrated good linearity,
sensitivity, and dynamic range, that can be mechanically robust, with low
hysteresis and small thermal drift effects.

Magnetic properties of materials can also be used directly as in
magnetoresistive and magnetoelastic materials that change magnetic
properties when subjected to loads, and the physics of electromagnetic
fields can be used as well in phenomena like the Hall effect.

Integrated, multimodal contact sensing—Few robotic systems have
attempted to emulate the range of sensory feedback provided by the
cutaneous mechanoreceptors presented in figure 7.6. One early exception
was the research reported in [13, 69] and illustrated in figure 7.11, where
several components of somatosensory signal content are integrated into an
ambitious concept for robotic tactile sensing.

Figure 7.11
The Dario et al. artificial skin. (Source: Adapted from [69])

The figure depicts a composite structure that is intended to provide a
large bandwidth response as well as to measure the relative thermal
conductivity of the object. Three interdependent signals are produced by the



sensor—two of which derive from polyvinylidene difluoride (PVF2), a
material that possesses both piezo- and pyroelectric characteristics. Piezo-
and pyro-electric materials respond directly to mechanical and thermal
stresses, respectively, by producing output voltages. The dermal layer of
PVF2 in figure 7.11 is used to detect contact forces. The structure responds
to frequencies up to 500 [Hz], limited by the resonant frequency of the
composite structure. It does not, however, respond well to DC forces. The
layer of conductive rubber on top of the dermal PVF2 is included to add this
signal component.

A layer of resistive paint in the structure is used to provide a reference
temperature of 98.6 [F] to the epidermal PVF2 layer. The signal output of
this layer is due to a combination of contact deformation and the heat flux
conducted through the epidermis and into the environment. The signal from
the thermally insulated dermal PVF2 helps to decompose the coupled piezo-
and pryo-electric responses in the epidermal signal. The complexity of the
integrated sensor together with the complex coupled signals it provides
pushes the envelope in multimodal robotic tactile sensing.

7.3 Exercises

1. Snells’s law. A great blue heron finds a frog sitting on the bottom of a
shallow pond. Us ge Snell’s law to determine the effects of refraction on the
surface of a pond.
 Assume that the index of refraction of air nair =1.0 and of water nwater

=1.33. Further, assume that the heron is able to estimate the direction of its
foveal gaze ϕ=−π/4 [rad] and senses that the pond is 30 [cm] deep.



(a) Use Snell’s law and planar geometry to compute the value of the
corrected Cartesian heading ϕc that incorporates refraction at the air-
water interface and, thus, serves as a better reference for a motor action.
(b) Compute the error vector 𝜖=[Δx Δy Δθ]T from the true Cartesian
position of the frog to its apparent position due to refraction.
(c) Describe the appearance of the heron from the frog’s perspective.

2. Optics: Thin lens equation. A biconvex thin lens with R1 =30 [mm] and
R2 =−60 [mm] is made out of an optical glass with an index of refraction
n=1.5.
 The subject of a photograph is brought into focus on an image plane
located at a distance of 70 [mm] from the center of the lens. Compute the
range of this subject from the camera.
3. Compound lenses: The human eye. The cornea is a relatively fixed lens
that does about two-thirds of the necessary work, after which the lens
actively controls, focal length to bring distant subjects to focus on the
retina. The lens in the human eye is relatively spherical in shape under no
load and is stretched by muscular forces applied through the suspensory
ligaments in order to control focus. In this exercise, use the thin lens
equation to understand how elastic deformation of the lens influences focus.
 Consider a biconvex thin lens, with positive R1, negative R2, and |R1|=|R2|.
The lens material has an index of refraction n=1.5. We will use this model
to estimate the range of lens radii necessary for focusing over an infinite
depth of field to get a sense of the deformation required in the elastic lens of
the human eye.
 Plot the R parameter against the range S1 at which the eye produces a
focused image 2.4 [cm]—roughly, the fixed distance between the lens and
the retinal fovea in the human eye.
4. Black body radiation. Consider the radiant heat transfer between a
human being and the environment. Assume that the skin of an adult human
has surface area A≈2 [m2]. Furthermore, assume that absolute skin
temperature T =306.15 [K] in an environment with T0 =293.15 [K] and that
the emissivity of skin 𝜖=1.

(a) Calculate the amount of energy lost from an exposed human body
under these circumstances over a 24-hour period by radiative heat loss,



and convert the result to [kcal] (food calories) to estimate how much
caloric intake is required per day to maintain body temperature against
this radiative heat loss.
(b) Do the same exercise for an ambient temperature of T0 =310.15 [K] (
∼ 100 [F]). How much radiant heat load on the human body must be
dissipated by respiration/perspiration in a 24-hour period (in [kcal])?

5. Invent your own homework. Make your own exercise out of your
favorite content in chapter 7. Write a question and a solution for it from the
material in the reading. The problem should be different from the questions
already here. Ideally, it should be based on material in this chapter (and,
perhaps, previous chapters) and focused on sensors; it should call for a
quantitative analysis and a short discussion; it should not take more than 30
[min] to solve open-book.



8
Signals, Signal Processing, and Information

Human beings and robots can use time varying signals generated by internal
and external phenomena to construct richly annotated representations of the
dynamic world. Proprioceptive information describes the internal state of
the agent—things like actuator temperatures, battery levels, vestibular
feedback, and the state of motion of the robot body. Exteroceptive signals
derive from external sources—for humans, this includes visual, tactile,
auditory, and olfactory stimuli in the environment. We focus on interpreting
signals originating in the external environment that provide inputs to an
active information processing system—the first step toward integrating
perception, control, and decision-making.

In this chapter, we begin by examining the process of sampling
continuous signals to see how it might distort information for humans and
robots alike and analyze how signal processing operators influence the
frequency content of constructed representations. A set of signal processing
tools is presented that can be used to make useful information stand out and
to diminish the effect of noise. The chapter concludes by introducing scale-
invariant signal processing as a perceptual front end to support multimodal
information gathering and domain-general problem-solving.

8.1 Sampling Continuous Signals

The first step in extracting information from the environment involves
sampling data from continuous external signals. One of the greatest
contributions to signal processing in the last century concerned the impact



of sampling on the information content of signals. To provide a basis for the
following discussion, we begin with a short primer for the Fourier
transform and its use in determining the frequency content of signals. A
more complete introduction can be found in appendix A.10.2.

The Fourier transform defines a reversible mapping—a bijection—from
a spatial or temporal function to a weighted sum of sinusoidal basis
functions. For example, a video is a temporally-indexed stream of image
frames, each of which captures spatially-indexed data on the two-
dimensional image plane. The Fourier transform can describe both the
temporal frequencies ([rad/sec]) in the video stream at each pixel and the
spatial frequencies ([rad/m]) of intensities in the image plane.

The Fourier mapping of the one-dimensional spatial signal g(x) (e.g., a
row of gray-level values in an image plane) to an equivalent representation
of the signal in the spatial frequency-domain G(ωx) is defined by equation
8.1.

where , x [m] is the spatial variable, and ωx [rad/m] is the
corresponding spatial frequency variable so that ωxx is in radians. The
exponential term in the expression represents the sine and cosine series via
Euler’s formula e−iωxx =cos(ωxx)−isin(ωxx). One may view the Fourier
transform as the projection of function g(x) onto basis functions e−iωxx for
spatial frequencies ωx ∈[−∞, ∞]. The spectral coefficients G(ωx) determine
how much sinusoidal basis functions account for the global shape of
function g(x).

The inverse Fourier transform is written

Example: Spectral Properties of the Human Voice



Part of the distinctive character of human vocalization is captured using the
influential source-filter theory. This presentation follows a more complete
analysis by Titze [277], in which the input to the vocal tract is a glottal
airflow shaped by the oscillation of the vocal folds much like the buzzing
embouchure of the trumpeter. Vibrating vocal folds introduce acoustic
energy distributed over a broad frequency spectrum through the narrow
glottis. This is the auditory source. The filter is the plumbing between the
input and the point at which sound is projected into the environment. In a
trumpet, this is a conduit of varying diameter and length controlled by three
valves. In the human vocal tract, the shape of the resonance cavity is
articulated by the upper throat, mouth, tongue, and lips [277]. The filter
leaves a recognizable spectral signature on all acoustic signals produced
due to the resonant properties of the vocal tract—properties that are
apparent in the way that energy is distributed over the frequency spectrum.

Figure 8.1
The open-closed quarter-wave resonance cavity

The acoustic signature for the human vocal tract can be predicted from
the physics of sound production. For resonance, there must exist a
constructive pattern of interference among pressure waves subject to
multiple reflections in the vocal tract. To a first approximation, the vocal
tract is modeled by the open-closed resonance cavity—a constant diameter



tube, open at one end, that radiates sound pressure into an infinitely larger
environment (figure 8.1). The closed end of the tube reflects an incident
pressure wave upward in the diagram, and the open end of the cavity
reflects an inverted pressure wave that travels back down the tube.
Resonance in the open-closed cavity implies the existence of standing
waves as pictured. At resonance, the reflected pressure waves combine
constructively to create a standing wave at frequencies

where c [m/sec] is the speed of sound in the gas filling the cavity and L [m]
is the length of the open-closed resonator. Properly stimulated by an input
signal, several resonance modes or formants will exist simultaneously, one
for each Fn.1

A standing wave is reinforced when the net phase change for a round trip
(closed end to open end and back again) is an integer multiple of 2π. When
n=1, F1 =c/4L, a crest in the pressure wave at the closed end of the tube
completes a quarter cycle by the time it reaches the open end. The open end
reflects and inverts the pressure wave, and it reaches the input end of the
tube a quarter cycle later in phase, once again, with the source. Thus, the
open-closed resonator is also called a quarter-wave resonator. The
resonance phenomenon amplifies tones at the resonance frequency and
attenuates other frequences and, thus, stamps the trademark sound of the
trumpet, for example, on all signals broadcast into the environment.

Consider a speaker whose vocal tract—from vocal folds to the opening
at the mouth—has length L=17.5 [cm] and use c=35000 [cm/s] for the speed
of sound in air. Under these conditions, Equation 8.3 predicts the first four
resonant frequencies (formants) to be F1 =500 [Hz], F2 =1500 [Hz], F3

=2500 [Hz], and F4 =3500 [Hz]. Figure 8.2 is the result of a computer
analysis using the Fourier transform of an unstructured speech sample from
a human subject voicing the phrase “the rainbow passage.”



Figure 8.2
An analysis of the sound pressure level as a function of frequency using the Computerized Speech
Lab. The signal is the phrase “the rainbow passage.” (Source: Courtesy Dr. M. Andrianopoulos)

The top panel of figure 8.2 illustrates signal amplitude versus time
recorded for “the rainbow passage.” The bottom panel shows a signal
spectrogram depicting the distribution of signal energy over frequency and
time.

The power in the signal at each frequency is proportional to |F(ω)|2.
However, in practice, the sound pressure level (SPL) at a location is a
related quantity and can be measured directly by using a microphone,

where P0 is a standard reference pressure of 0.00002 [Pa] and P is the
measured sound pressure at the location of the listener. The smaller inset in
figure 8.2 contains a plot of the SPL observed for the speech sample as a



function of signal frequency. This speech sample contains many different
sounds and, as result, the peaks in the SPL plot are roughly consistent with
the first four resonant frequencies predicted using the quarter-wave model.

Figure 8.3 shows what happens when the source stimulus is a prolonged
[a] vowel sound; to produce this sound, the subject opens their mouth
slightly and flattens the tongue. This causes the first four formants in the
inset SPL plot to be shifted significantly from the four regularly spaced
peaks predicted by the open-closed resonator model (figure 8.2).

Figure 8.3
An analysis of sound pressure level as a function of frequency for a prolonged [a] vowel sound using
the Computerized Speech Lab (Source: Courtesy Dr. M. Andrianopoulos)

This idea can be used to segment continuous speech—for instance,
plotting the frequency of the first two formants on the F1-F2 plane [277] can
used used to recognize vowel sounds in unstructured speech (figure 8.4).



The discriminating power of this vocal texture increases as higher-order
formants are considered.

Figure 8.4
The F1 vs. F2 chart for 10 vowel sounds sampled from men, women, and children (Source: Adapted
from [277])

☐

Many other signal processing applications make use of the Fourier
transform. An important instance of this class of problems concerns
predicting the impact of the spatial and temporal frequency of observation
on the precision of sampled data.

8.1.1 The Sampling Theorem

In both animals and robots, signal processing begins when sensor signals
are sampled—a process by which the continuous signal is represented
approximately in the form of discrete observations. The process of sampling
has a direct impact on the fidelity of information represented in sampled
feedback. Clearly, sampling discards some information. What may not be
initially obvious is that sampling may also introduce information that is not
faithful to the original signal.

The Dirac delta function is a mathematical abstraction of the sampling
process. This operator is referred to as a singularity operator for reasons that



are obvious by its definition:

In addition, this function has the following two important properties:

The first of these properties is a form of normalization so that the sampling
operator does not alter the scale of the original function, and the second is
referred to as the sifting property because it samples the value of function
g(x) precisely at the location x=ξ. Real sensors always employ some
integral over small neighborhoods in space and/or time. However, important
characteristics of sampled data can be analyzed using this simple model.



Figure 8.5
The continuous spatial function g(x) is sampled by a sequence of regularly spaced Dirac delta
functions f(x) to create the discrete approximation h(x) of signal g(x).

Figure 8.5 illustrates two spatial functions, g(x) and f(x). The first, g(x),
is a continuous spatial function and the second, f(x), is an infinite sequence
of Dirac delta operators separated by x0. The product of these two functions
is a sampled approximation of the original g(x).

By the convolution theorem (appendix A.10.2), we know that the product of
these two spatial functions is equivalent to the convolution of their Fourier
transform pairs, so if



By the definition of continuous convolution (equation A.18),

so that, by the properties of the Dirac delta sampling operator,

Equation 8.5 states that the frequency spectrum of the sampled image
consists of duplicates of the spectrum of the original signal distributed at
2π/x0 [rad/m] frequency intervals (figure 8.6)—this quantity is inversely
proportional to the spatial distance between samples (figure 8.5) and is
known as the sampling frequency. Spectral energy in G(ω) at frequencies
greater than half of the sampling frequency (or π/x0 [rad/m]) will overlap in
the sampled approximation H(ω). The resulting signal distortion is called
aliasing—a phenomenon where high frequency energy in g(x) is added to
the reconstructed image in frequency bands where it does not belong.



Figure 8.6
The effects of sampling on reconstruction

Figure 8.6 shows how this happens. Suppose we use a perfect
rectangular band-pass filter R(ω) to extract a single copy of the repeated
spectrum in H(ω), where

The figure shows the repeated spectra due to sampling and the clipped-out
copy, R(ω)H(ω). For the band limited signal (figure 8.6(a)), this yields an
approximation of the original G(ω) so that the inverse Fourier transform, ℱ
−1[R(ω)H(ω)], is a faithful reproduction of the original spatial signal g(x).

Figure 8.6(b) shows the qualitative effect of an inadequate sampling
frequency. In this case, the sampling frequency is too small to separate a
single copy of the repeated spectra in H(ω) and R(ω)H(ω) is corrupted by
information in adjacent spectra. Therefore, some of the information in
R(ω)H(ω) is an artifact of the sampling process itself. The sampling
theorem follows directly from these observations.

Definition 8.1: Nyquist sampling theorem.  A band limited signal, g(x),
can be faithfully reconstructed from discrete samples at regular intervals,
x0[m], if the sampling frequency, 2π/x0 [rad/m], is at least twice the
maximum frequency in g(x).

The theorem is generally attributed to early work by Harry Nyquist
(1928); however, other names are also associated with the result. It was first
stated in the form presented here by Claude Shannon in 1949. As a
consequence of the sampling theorem, we can now consider how the



performance of signal processing depends on the bandwidth of the signal
and design filters for separating the informative signal from the noise.
Integrated solutions that consider all of these issues relative to the
requirements of a control task can avoid introducing spurious information
in the sampled feedback.

8.2 Discrete Convolution Operators

Useful information in signals can be extracted from properties concerning
the local shape of the signal as a function of independent spatial and
temporal variables. Visual pathways in the human nervous system include
special circuits for identifying oriented edges, motion, texture, and other
features that depend only on local properties of the intensity function. The
mathematical framework for extracting local shape information in signals is
convolution.

In the following, the function g(·) represents an adequately sampled
(faithful) approximation of a continuous environmental signal in space and
time. This could be a sequence of image frames, sound pressure levels, or a
history of tactile force observations. Without loss of generality, we will
introduce techniques for processing these signals in the context of low-
dimensional spatial signals.

For two-dimensional continuous images, the convolution operation
(appendix A.10.2) is written,

where * denotes the convolution operator. The equivalent operation for
discrete operators and signals is

where we assume that the number of rows and columns in operator f(x, y)
are equal and odd so that its center coincides with g(x, y).



Figure 8.7 illustrates how the convolution process aligns operator f over
a subset of image g near (x, y), sums the pixel-wise products of f and g for
this subset, and stores the result in output position h(x, y). Conceptually, this
computation happens in parallel over all (x, y) where complete f-shaped
neighborhoods are defined in g, leaving a region of unprocessed image data
around the image border.

Figure 8.7
Local computation of image features

Specifying parameter α in equation 8.6 corresponds to specifying a (2α
+1)×(2α +1) kernel for operator f. For example, when α =1, operator f(x, y)
is a 3×3 matrix, so that h(x, y) depends on the weighted sum of only 9
pixels in the neighborhood of g(x, y). Larger kernels gather support from
larger neighborhoods of g. As a consequence, the kernel size of f has a
direct influence on how sensitive the response h=f *g is to spatial
information embedded in image g.

8.2.1 Spectral Filtering



Informally, function h=f *g represents the degree to which the shape of
function f is correlated with the local shape of g. More formally, the Fourier
transform allows us to view convolution operator f as a spectral filter.

Consider a one-dimensional signal g(x) and operator f(x). The
convolution theorem (appendix A.10.2) states that convolution in the spatial
domain is equivalent to multiplication in the frequency domain,2 that is

Therefore, in the frequency domain, F(ωx) can be viewed as a multiplicative
weighted mask applied to G(ωx). This perspective provides some insight
into the frequency dependent influence of operator f(x) on signal g(x).

Low-Pass Filtering—If the one-dimensional rectangular convolution filter
f(x) in figure 8.8 is used to filter a signal g(x) defined on the interval x∈[0,
7]. The convolution computes h(x)=f(x)*g(x)=g(x−1)+g(x)+g(x+1) for
values of x∈[1, 6]. The figure shows that h(x) shares the general shape of
g(x), but suppresses rapid variations in the signal; it is a smoothed version
of g(x).

Figure 8.8
The performance of a simple low-pass filter

To see why this happens, we consider a continuous approximation of f(x)
using the rectangular function rect(x) illustrated on the left side of figure
8.9. As a convolution operator, this function computes a response
proportional to the local mean of a signal over the domain x∈[−1/2, +1/2].
The Fourier transform of rect(x) is the sinc(ω/2π) function (see table A.1).
Figure 8.9 shows that the spectral coefficients F(ωx) for low frequencies are
near unity, but they rapidly fall off (and can be inverted) for higher
frequencies. This convolution operator will therefore attenuate high



frequencies while allowing lower frequencies to pass relatively unscathed.
Because of its spectral sensitivity, operator f(x) is an example of a low-pass
filter. High frequency content in the signal will be eliminated by such
operators—sharp edges in the original image will be smoothed in the
filtered image—emphasizing information in lower frequency bands.

Figure 8.9
The Fourier transform of the rect(x) function shows why it behaves as a low-pass filter

High-Pass Filtering—Rapid changes in environmental surface orientation
or reflectivity, or spatial discontinuities between foreground objects and the
background can cause edges in feedback signals. The steepness of image
function g(x, y) can be measured directly by computing its gradient. For
example, the gradient at position (x, y) in a two-dimensional image function
is ∇g(x, y)=(∂g/∂x) +(∂g/∂y)  can be approximated using finite differences,
where

If ∇g =[hx hy]T, where hx =fx *g and hy =fy *g, the finite difference
expressions above suggest one choice for the directional gradient operators

The magnitude and orientation of ∇g everywhere in the two-dimensional
signal can also be computed



Places where the gradient magnitude (equation 8.7) is greater than some
appropriate threshold are strongly correlated with edges in the signal.
Several examples of convolution operators for detecting edges based on
finite difference gradient approximation can be found in the literature.
Some of these are presented in table 8.1. These operators constitute high-
pass filters that emphasize high-frequency content in signals at the expense
of low-frequency information.

Table 8.1
Gradient (First Derivative) Operators

8.2.2 Frei and Chen Signal Decomposition Operators

In 1977, Frei and Chen [88, 12] considered a set of nine independent
convolution operators defined using a 3×3 kernel.



The Frobenius inner product3 of any pair of these operators is zero,
verifying that the Frei-Chen operators form an independent basis for signals
in 3×3 neighborhoods of the image plane.
At each (x, y) location in the image, a nine-dimensional vector of responses
images, h(x, y), whose elements are defined hk =fk *g, k ∈[0, 8], represents
the local shape of the signal in the neighborhood around g(x, y).

The energy of the response is proportional to the magnitude of h(x, y).
The response energy for the edge-like operators f1 and f2 is (h2(x, y)+h2(x,
y))1/2. To decide whether pixel (x, y) is likely to be an edge, the Frei-Chen
edge detector [88] compares the edge response energy to the total response
energy over all nine Frei-Chen basis operators.

Figure 8.10 plots two hypothetical response vectors, h(x1, y1) and h(x2,
y2). Response h(x1, y1) has significantly more total energy than h(x2, y2) and
more edge-like energy as well. However, the distribution of energy in h(x2,
y2) is heavily concentrated in the h1 and h2 elements of the response vector
—the energy in response h(x1, y1) is not. If we label edges solely on the
strength of the response to operators f1 and f2 (as in the left panel of figure
8.10), we erroneously conclude that h(x1, y1) is a better example of an edge
than h(x2, y2).



Figure 8.10
The distinguishing appearance of an edge can depend on the overall shape of the intensity surface
rather than the magnitude of its first derivative alone

Instead, Frei and Chen proposed an angular threshold θF−C (right panel of
figure 8.10) so that if

then the information in h(x, y) supports labeling the pixel located at (x, y) as
an edge.

Appearance-based measurements such as this are more robust than those
based solely on gradient magnitude. They demonstrate how patterns of
response to multiple signal processing filters can be more informative than
single operators. However, the Frei-Chen edge detector is limited to the
expressive power of the 3×3 Frei-Chen kernel space. In section 8.3, these
ideas are extended to include a more comprehensive family of signal
operators.

8.2.3 Noise, Differentiation, and Differential Geometry

As a practical concern, all signals are influenced to some degree by noise—
random processes that add spurious, generally high frequency disturbances
to signals. The output of differential operators, like edge detectors, is
particularly sensitive to noise. For this reason, most edge operators combine
low-pass characteristics to suppress noise with high-pass filtering to detect
derivatives. For example, the Prewit f1 operator in table 8.1 combines finite



difference gradient computations in the horizontal direction with low-pass
filtering (using the rect(x) function) in the vertical direction. Useful
information, however, is band limited, that is, confined to lower spatial or
temporal frequency bands below a cutoff ωcutoff. Parts of the signal above
ωcutoff may be subject to aliasing or noise.

Consider a differentiable one-dimensional low-pass filter f(x) designed to
suppress signal frequencies above an appropriate cutoff in a one-
dimensional signal g(x). It is relatively simple to show that

(see equation A.18). Therefore, rather than smoothing signal g with the
low-pass filter and then performing another convolution to differentiate the
result, precisely the same result can be obtained if signal g is convolved
once with fx. As a consequence, the differential structure of a band-limited,
one-dimensional signal can be represented as a vector of signal derivatives
estimated using finite difference operators

to arbitrary order N called the N-jet. The result is a family of independent
responses that capture the differential geometry (or shape) of the signal.
This idea can be extended to address signals in higher dimensions. For
example, in computer vision, the N-jet of order 2 for a two-dimensional
image function g(x, y) is the vector

Differential structure has significant implications in the construction of
domain-general representations of signal structure, as we shall see in
section 8.3.

Example: Edge Sharpening

There are many circumstances in which sharp geometric features in the
world can appear as gradual intensity variations on an image plane. Optical
aberrations in the lenses, thermal effects, and diffusive particles (fog) in the



air may defocus edges. Gradient information alone can be used to detect
edges, but, in some cases, at the expense of precision. One way to improve
precision over a wide range of edge strength is to use second derivative
information to estimate the precise center of edges.

The top plot in figure 8.11 represents the image of a diffuse edge in the
discrete signal g(x). Suppose that classifying edges in g(x) depends
exclusively on the gradient gx(x)≈fx *g(x) and, in particular, on the case
when the gradient magnitude exceeds a threshold |gx|>τ. The middle plot in
the figure shows the result of convolving g(x) with the finite-difference
gradient operator fx =[−1/2 0 1/2]. Choosing a relatively small value for τ
has the virtue of detecting weak as well of strong edges; however, strong
edges will bloom over several pixels. In the middle plot, a relatively low
threshold creates seven adjacent edge labels.

Figure 8.11
Second-order N-jets can be used to sharpen edges in signals by identifying the inflection point in the
intensity function.



We can localize strong edges precisely without sacrificing the ability to
detect weak edges by estimating the 2-jet for the one-dimensional signal
g(x) [g gx gxx] and looking for gradients that exceed a moderate threshold in
places where the second derivative crosses zero,

The bottom panel in the figure shows the second derivative of function g(x).
The zero crossings in gxx(x) provide a real-valued estimate of the apparent
center of the edge to sub-pixel accuracy.

Using both first- and second-order derivative information, one can
precisely localize weak and strong edges alike. Often, this technique is used
in two-dimensional computer vision applications using the a 3×3 Laplacian
operator to approximate the sum of the diagonal elements of the image
Hessian. In this case,

where the Laplacian operator is defined

Exercise 8.4.3b asks the reader to derive this operator using finite
differences on the image function.

☐

The next section explores a parametric family of signal processing
operators that support noise reduction and reveal differential structure over
a large range of spatial and temporal scales.

8.3 Structure and Causality in Signals



Cartographers create maps (continents, countries, cities, towns, streets,
buildings) for each scale of a navigation task. Reasoning at small scales
focuses on fine details and requires a narrow receptive field, whereas other
tasks require large scales, involve coarse details, and require large receptive
fields—perhaps extended over time. In general, the spectrum of
environmental scale (geometrical and inertial) to which an agent attends is
determined by the scale (kinematic and dynamic) of the embodied4 agent.
Scale remains important throughout the full spectrum of abstraction
employed by human decision makers. Linguists, for example, describe a
basic level of discourse with which to efficiently communicate categorical
prototypes over scale—trees and forests. Most often, basic level categories
in speech whose members are easily recognizable, share physical and
functional attributes, and elicit a consistent response [71]. Basic level
categories are maximally distinctive between classes and maximally
informative within classes. They enhance the capacity for inference and
provide prototypical associations that support new problem domains [302].

These observations support a hierarchical cognitive framework where
scale is a factor in determining appropriate levels of granularity and
abstraction. Computer vision researchers have contributed important
concepts regarding the influence of scale on information in visual imagery.
The shape of the sampled luminosity function shares common structure
when viewed at long and short range although the scale of this structure is
quite different—nearby objects looming in the foreground are still generally
recognizable for some time as they recede toward the horizon. Up to limits
on sample resolution, features that distinguish objects in the projected
luminosity function are preserved across scales.

In 1983, Witkin [294] introduced the term scale space and developed a
systematic way to relate signal representations and structures at different
scales. Koenderink [151] proposed adding a scale parameter to the image
function g(x, y, σ) and used this representation to detect differential
structure in the multiscale image function. An important consequence of
expanding the description of image functions this way is that topological
events associated with critical points in the luminosity function (extrema,
ridge points, corners, blobs) can be computed robustly and form a
convenient set of primitives for a structural information theory. Koenderink
also proposed combining Gaussian derivative operators at different scales



into more explicit descriptors of image geometry [151]. Lindeberg and ter
Haar Romeny [177] describe scale as a fundamental parameter of sampled
data and argue that multi-scale representations are necessary for an agent to
understand and control interactions across the full spectrum of viewpoints
afforded by the environment.

In the following, we summarize the major findings of this research
including an introduction to the Gaussian kernel, a means of determining
the local intrinsic scale and differential structure of generic signals. We will
review the underlying theory and implementation of this framework using
the results and images reported in [175].

8.3.1 Gaussian Operators

Gaussian convolution operators are discrete approximations of the
continuous Gaussian function

where σ is the standard deviation of the Gaussian kernel. Increasing σ
dilates the function, so that the filter response draws support from a larger
neighborhood in the signal. The left side of figure 8.12 (a) shows the
continuous Gaussian operator at three scales. Smaller σ values in fσ(x)
correspond to higher bandwidth (broader) spectra Fσ(ω) on the right side of
the figure. Therefore, the Gaussian convolution operator behaves as a low-
pass filter—a smoothing filter that suppresses noise—with a cutoff
frequency that is inversely proportional to σ.



Figure 8.12
Fourier transform pairs for one-dimensional, derivative of Gaussian operators at three scales σ =1, 2,
4: (a) the Gaussian low-pass operator, (b) noise reduction and differentiation in the gradient operator,
and (c) the Laplacian (second-derivative) of Gaussian (LoG) operator in one-dimension

The infinitely differentiable Gaussian operator fσ(x) supports smoothing
and noise suppression and provides a convenient means of computing the
N-jet to arbitary order. For example, the first- and second-derivative



Gaussian operators that combine differentiation and smoothing at the scale
specified by σ are written

Figure 8.12 rows (b) and (c) show the first and second derivatives of the
Gaussian operator at the same three scales illustrated in row (a). These
functions are generalizations of the finite difference operators we saw in
section 8.2.1 over the scale parameter. The first derivative of the Gaussian
in row (b) of the figure is symmetric, odd, and behaves like an edge
detector; the second derivative in row (c) behaves like a one-dimensional
version of the Laplacian operator introduced in equation 8.11. However,
implementing the Laplacian using Gaussian scale space operators creates
band-pass characteristics that are dependent on σ.

Deep structure in signals consists of information that is persistent across
scale. To estimate the differential geometry of a signal, a family of
convolution operators must correctly suppress fine-grained detail without
introducing spurious information. Done correctly, the result is a family of
derived signals in the N-jet that describe the topological structure of the
signal across scales. Koenderink captures this property in his causality
requirement [151]. Causality requires that small scale structure is supported
by structure at larger scales; for example, strong responses to large scale
edge operators supports expectations of elevated responses to smaller scale
edge operators that are co-linear with the larger feature in the signal g(x, y,
σ). Lindeberg and ter Haar Romeny use these arguments to assert that the
Gaussian kernel is unique among all candidates as a means of generating
scale space [177].

8.3.2 The Gaussian Pyramid: Blobs

Spatially isotropic Gaussian derivative filters treat spatial and scale
variables uniformly—a property referred to as homogeneity. They support
feature detection in visual signals that are robust to translations and



rotations of the sensor, viewing distance (scale), and intensity
transformations. In general terms, this family of signal operators can be
used to detect important keypoints in signals.

Equation 8.10 (re-written slightly here),

states that signals can be smoothed and differentiated by applying a fixed-
scale differentiation operator (dn/dxn) to a blurred version of the original
signal (fσ *g)—effectively down sampling g in a manner that depends on
scale σ. When fσ denotes the scale dependent Gaussian kernel, this idea
leads to a useful conceptualization of scale-space in terms of the Gaussian
pyramid.

Figure 8.13
An image of a field of sunflowers (reprinted by permission from [175])

Consider the image of a field of sunflowers (figure 8.13), for which
extrema in the second derivative (the curvature) of g(x, y, σ) are an
important source of signal structure. In two dimensions, the Gaussian low-
pass filter is written



Operator f(x, y, σ) dilutes the overall contrast in the image by a factor
proportional to 1/σ2. Therefore, to compare responses across scales, each
response must be normalized by multiplying it by a factor proportional to
σ2.



Figure 8.14
A part of the Gaussian Pyramid for the image of a field of sunflowers



An N-level pyramid in scale-space is configured using a sequence of
exponential values σ =2t in the Gaussian blurring operator (equation 8.15),
for t=0, N −1. Figure 8.14 shows three levels in the scale-normalized
Laplacian of Gaussian (LoG) pyramid computed

for the field of sunflowers, where Lxy is the Laplacian operator (equation
8.11).

The scale that maximizes the normalized LoG response for each pixel is
called the intrinsic scale σint of that pixel. It describes the shape of the signal
in a circular neighborhood around g(x, y) with radius . The scale-
normalized LoG responses over the entire Gaussian pyramid are sorted by
magnitude and rendered in descending order. The result reported in [175]
for the field of sunflowers is rendered, next to the original image, in figure
8.15. It captures a form of structure common to all sunflowers in the image
from foreground to background.

Figure 8.15
The top 200 scale-space blob responses in the scale-normalized Laplacian of Gaussian (LoG)
pyramid (reprinted by permission from [175])



8.3.3 Multi-Scale Edges, Ridges, and Corners

In addition to blobs, other multi-scale differential invariants can also be
defined using combinations of Gaussian derivatives at multiple scales. Once
again, this presentation follows [175], in which differential invariants are
introduced to capture edges, ridges, and corners in visual imagery.

Oriented edges—In section 8.2.3, the algorithm for detecting edges
involved finding zero crossings in the second derivative response that are
co-located with significant gradient (first derivative) support,

Lindeberg offers a variant of this approach that is generalized over scales.
The proposed multi-scale differential invariant establishes properties in the
second and third derivative using a pair of oriented Gaussian derivative
operators. He introduces a local orthonormal coordinate frame (u, v) called
gauge coordinates oriented with the v-axis parallel to the gradient direction
at position (x, y). To do so, the multi-scale Gaussian gradient operators are
rotated by an amount ϕ(x, y)=tan−1(gy/gx). By this definition, gv is always
positive and the lateral first derivative, gu, is zero. Steering the Gaussian
operators in this fashion simplifies the definition of the edge feature in
terms of its differential structure.

In the approach proposed in [175], edges are localized to sub-sample
accuracy in places that comply with a pattern of differential responses,

Most sharp edge structures corresponding to object boundaries exist
simultaneously at many scales. The left column in figure 8.16 shows three
images in the Gaussian pyramid and the corresponding oriented edge
responses consistent with equation 8.16 at three different scales.



Figure 8.16
Edges and ridges reported at σ =1.0, 16.0, and 256.0, respectively (reprinted by permission from
[175])

Ridges—Gauge coordinates (p, q) for ridge detection orient a frame with
the local principal curvatures of the luminosity function such that off-
diagonal terms in the image Hessian, gpq =gqp =0. A ridge is an extremum in
the same direction as the maximum principal curvature, which we align
with direction p, such that

The pair of images in the right column of figure 8.16 shows the response to
this kind of ridge detector for three different scales.

Figure 8.17 show the result of computing edge and ridge features at the
intrinsic scale recommended by these metrics. The results illustrate that



these features extend over large spatial dimensions, across large and small
scales, and link (across scales) into continuous, multi-scale entities.

Figure 8.17
The result of automatic scale selection to detect edge (left) and ridge (right) invariants (reprinted by
permission from [175])

Corners—Lindeberg also proposes a feature detector for corners using a
differential geometry that maximizes

Figure 8.18 show the results of multi-scale corner features. In this
rendering, one can see several examples of a corner feature where strong
reponses are detected at multiple scales simultaneously, thus enhancing the
confidence that the environment affords a corner at that location.

Figure 8.18
The result of automatic scale selection to detect corner invariants (reprinted by permission from
[175])

Blobs, edges, ridges, and corners in scale space are highly correlated
with interest points in the image. Moreover, blobs and edges have direct
corollaries in spatio-temporal signals such as tactile force sensations. These



features can be used as landmarks for establishing correspondances in
multiple signals, and for recovering reliable environmental geometry, and
therefore, for recognizing and interacting with familar scenes.

8.4 Exercises

1. Spectral properties of the human voice. The example in section 8.1.1
concerning the human capacity to vocalize employs the open-closed or
quarter-wave resonator to approximate the human vocal tract. This model
establishes the frequency-selective nature of the human organ of speech (or,
in this case, song).
 Luciano Pavarotti was a famous operatic tenor who was recorded hitting
F5 (the second F above middle C) at a fundamental frequency ∼ 698.456
[Hz]). What fundamental frequency might he have attained if he filled his
lungs with helium before performing?
2. Aliasing. A square wave signal, f(t), is depicted; g(t) represents its
fundamental frequency, shown as the dotted line.

(a) What is the bandwidth of the square wave, f(t)?
(b) Consider the sinusoidal function illustrated by the dotted line. What
must the minimum sampling frequency be to reconstruct this function
faithfully? Give your answer in samples per second.
(c) If the square wave, f(t), is sampled at this frequency, will there be
aliasing effects in the Fourier coefficient of f(t) at 3 [Hz]?
(d) If the sampling rate is insufficient, what can you say about the
expected effects of aliasing on the reconstructed square wave?



3. Convolution.
(a) Show that for any two functions, f and g, f *g′=(f *g)′.
(b) The Laplacian operator approximates the second derivative of the
image function. Derive the Laplacian operator as it appears in section
8.2.3 using finite differences.

4. Frei-Chen: Appearance-based primitives. Show that the Frei-Chen
operators are orthogonal representations of 3×3 image regions.
5. Invent your own homework. Make your own exercise out of your
favorite content in chapter 8. Write a question and a solution for it from the
material in the reading. The problem should be different from the questions
already here. Ideally, it should be based on material in this chapter (and,
perhaps, previous chapters) and focused on sensors; it should call for a
quantitative analysis and a short discussion; it should not take more than 30
[min] to solve open-book.



Part III Summary: Transducers, Signals, and Perceptual
Structure

Part III begins in chapter 7, where important organs of visual and tactile
sensation are discussed. The physics of visual image formation, that
illustrate how light is captured, focused onto the image plane, and sampled
in both space and time, are introduced. The sense of touch is also
highlighted in human beings in terms of rich array of mechanoreceptors and
a remarkable (and less well understood) ability in humans to discern the
“touch blend” of haptic categories present in multi-modal contact sensation.

In chapter 8, techniques for frequency analysis in generic signals are
introduced. We derived the sampling theorem by considering how a
continuous signal is altered when it is approximated as a set of discrete
samples and the conditions that lead to spurious information (called
aliasing) in the sampled feedback. Several tools for linear signal processing
using convolution were presented, including spectral filtering; a variety of
finite difference operators used to detect edges; and filters that detect the
differential structure of signals. The appearance-based decomposition of
luminance functions is presented and the Gaussian kernel is introduced as
the correct means of generalizing these approaches to multi-scale
differential filters used to detect the deep structure of signals. We have
taken an information-theoretic perspective on signals that is uncommitted to
any particular task, sensor, or environment. This view comes from the
computer vision and machine learning communities over the last twenty
years but is still an emerging paradigm in the robotics world. Part III
concludes by presenting several famous examples from scale-space vision
processing that is widely used and influential in computer vision.

With a large library of analytical tools and techniques at our disposal,
part IV ties all of the insight presented up to this point into a discussion of
sensorimotor development in human infants and a computational
architecture that supports experimental work on developmental
programming in an embodied (robot) system.



1. Here, Fi = ωi/(2π) is the i-th resonance frequency in the quarter-wave resonator in [Hz]. This
should not be confused with F(ω) that denotes the spectral coefficients in equations 8.1 and 8.2.
2. The opposite is also true; convolution in the frequency domain is equivalent to multiplication in
the spatial domain.
3. The Frobenius inner product is defined as A : B = trace(ABT) = trace(ATB).
4. Here, we generalized the term embodied to include extensions of the literal body, like those
afforded by microscopes, telescopes, wheels, levers, and airplanes.



IV
SENSORIMOTOR DEVELOPMENT



9
Infant Neurodevelopmental Organization

The human genome specifies everything that defines Homo sapiens in
terms of body shape, organs of perception and movement, and the
configuration of a hierarchy of embedded processing from peripheral
sensors to spinal cord, brainstem, cerebellum, and midbrain into the newest
component of the central nervous system—the cerebral cortex. All of these
innovations are the common genetic legacy of the species, as are important
processes of growth and maturation that transform the newborn into an
adult. Growth produces biochemical and neurological changes over time
that have a profound impact on morphological and computational abilities
and change a human being’s relationship to the environment. Collectively,
all of these developmental mechanisms lead to individuals that acquire
physical and cognitive abilities well suited to life on Earth. This
organization represents an embodied cognitive developmental system in
which genetically mediated processes of growth and maturation play critical
computational roles to provide a pathway to adulthood—including
important physical and perceptual skills as well as the knowledge that
supports critical decision-making and control.

In this chapter, we review the evolution of the contemporary human
brain and focus on the role played by cortical control hierarchies to guide
behavior and model a lifetime of integrated sensory and motor experience.
The chapter continues by reviewing the neurological organization of the
newborn human infant that leads reliably through milestones in
sensorimotor development during the first year of life.



9.1 The Evolution of the Brain

Over the course of millions of years, our ancestors evolved mechanisms for
connecting stimuli to response. In its simplest form, a signal that originates
in a peripheral receptor passes through a synapse to innervate a group of
muscle cells called a motor unit. As many such mappings evolved,
prominent ganglia emerged consisting of clusters of highly interconnected
nerve cells. Several such ganglia, organized in an elongated neural tube
(figure 9.1), gave birth to highly specialized organs in the central nervous
system. Animals with such a dorsal neural tube—fishes, reptiles, birds, and
mammals—are called chordates and belong to the phylum chordata. These
animals use the neural tube to connect perception to action at many
different scales in space and time. Vertebrates evolved a bony spine about
the cord to provide structure and to protect the neural tube. The elongated
central ganglion receives inputs (afferents) from dorsal fibers and produces
outputs (efferents) via ventral motor processes (figure 9.1).

Figure 9.1
The afferents and efferents of the spinal cord

The dorsal-ventral organization was an early form of spatial
specialization in the nervous system. Somatosensory fibers bring
information about external stimuli, muscle traction, and tension in tendons
and ligaments to the spinal cord, and motor fibers conduct reflexive actions
back out to the muscles. In time, a dense brainstem consisting of specialized
cells formed at one end (thus, defining the anterior aspect) of the ganglion



(figure 9.2). This organ, sometimes called the animal brain, is organized
into the hindbrain, the midbrain, and the forebrain. The forebrain
specialized originally to process olfactory information. However, in higher
animals, it performs the bulk of the early sensory processing (see the
reptilian brain in figure 9.2). The midbrain participates in the processing of
sensory information and the hindbrain specialized to manage complex
motor systems.

Figure 9.2
The evolution of the human brain

The cerebellum developed to smooth and coordinate the motor systems
in the increasingly agile mammalian body. The most recent innovation in
the central nervous system of mammals is the cerebrum, which incorporates
the cerebral cortex (or just cortex), an organ specialized for interpreting and
integrating a rich variety of sensory signals and for initiating sequential



motor behavior. The evolutionary process by which learned (cerebellar and
cerebral) behavior is overlaid on top of autonomic control persisted through
the early mammals and primates and into the human being (figure 9.2). In
the human brain, these new structures dominate the older parts of the
central nervous system. The hierarchy in the cortex extends the temporal
scope of the neural control architecture and creates increasingly stable
situational feedback from noisy sensors and unstructured environments. In
the economy of cognitive organization, the value of increasing perceptual
sophistication and motor acuity as well as an enormous capacity to
remember and differentiate subtle environmental contexts justifies the
expenditure of up to 20 percent of a human’s resting metabolism in the
neocortex.

9.2 Hierarchy in the Neocortex

The cortex (a word derived from the Latin word for the bark of a tree)
exhibits a particularly dense organization of highly interconnected neurons.
This structure forms the outer layer of the cerebral hemispheres, often
called the gray matter. It is highly convoluted to maximize the surface area
of the layer within the confined volume of the cranium. Unfolded, the 2
[mm] thick sheet of cortical tissue is about 0.3 [m2] in area [110].

Signals stream into and out of the cortex from all over the periphery.
About 1 million neural fibers project via the optic nerve through the
subcortical structures1 to the primary visual cortex. Another million ascend
the spinal cord carrying proprioceptive and tactile stimuli from the
periphery to the somatosensory cortex, and about 30,000 neural fibers carry
auditory information to the primary auditory cortex.

There are about 100, 000 neurons per square millimeter in the cortex;
this corresponds, conservatively, to a total of 30 billion neurons. Assuming
a modest 1000 synapses per cell, a back-of-the-envelope calculation reveals
that there are roughly 30 trillion synapses forming the cortical associative
memory. The capacity of such a system is enormous. In a book entitled On
Intelligence, Jeff Hawkins [110] observed that the cortical tissue computes a
forward model that stores sequences of patterns and predicts what will
happen next. The text contends that the brain’s immense capacity as an
associative memory derives from a simple replicated structure that is



important to understanding cortical function. Across the 2 [mm] thickness
of the cortical “bark,” there exists a common six-layer columnar structure
that includes ascending (encoding) and descending (decoding) projections.
This relatively simple structure forms the basic unit of cortical computation
[200].

Underneath the convoluted cortical layer in the brain resides a larger
volume of white matter that provides metabolic support and contains
relatively long axonal projections from one cortical area to another. A broad
class of pyramidal neurons—named for the shape of the cell body—resides
throughout the central nervous system and, importantly, in the top layer of
the columnar cortical structure, where they project miles of axons to other
cortical areas.

One can get a sense of the data flow in the cortex by tracing neural
projections between functional areas in the pyramidal system. The cortex is
organized into several functional areas that preserve the spatial qualities of
the signal—spatial qualities that reflect the geometry of the agent’s body as
well as that of the outside world. For example, mechanoreceptors in the
skin project neural fibers that enter the spinal cord via dorsal roots (figure
9.1), and this information is conducted up the cord, through midbrain
structures, and to the thalamus. From here, peripheral sensory information
is projected onto the cerebral hemispheres in a region known as the
somatosensory cortex (figure 9.3).   The primary somatosensory cortex
(region S1) is a map of the peripheral sensor distribution where the amount
of cortical tissue reflects the density of peripheral sensors—the hands, feet,
and digestive tract receiving a great deal of attention in the somatosensory
cortex. The mapping on the cortex preserves the topology of the body, as
illustrated in figure 9.3. Sensor processes project contra laterally to the
cortex so that the left hemisphere receives stimuli from the right side of the
body and vice versa.



Figure 9.3
The sensory homunculus

The same topographic organization is evident in the visual pathways.
The rods and cones of the retina project immediately onto an interconnected
layer of neurons that perform local computations on signals from small,
compact neighborhoods of retinal receptors. After this preprocessing, visual
information is conducted along an elongated ganglion and exits the retina as
the optic nerve. The optic nerve projects to a cortical nucleus (a region of
interconnected cell bodies) at the rear of the thalamus called the lateral
geniculate nucleus (LGN). The cells here also represent a retinotopic map
of the visual field that is distorted in a manner that reflects salience. In this
case, the fovea or optical center of the retina dominates this map.   From
here, visual information is projected onto the primary visual cortex (region
V1), illustrated in figure 9.4. Populations of cortical and precortical neurons
are highly specialized experts at extracting important kinds of information
from a visual scene. Some are proficient at isolating edges (or sharp
intensity variations) oriented in certain directions. Others detect motion in



the receptive field or are specialized to interpret the disparities between left
and right images as depth in the visual scene. There exists a hierarchical
abstraction of the visual information, up to the level of objects and more
global contexts in the scene.

Figure 9.4
The visual cortex

In [192], there is an account attributed to Robert Boyle, a seventeenth-
century Irish physicist, of a knight that suffered a depressed fracture of the
skull and paralysis of one side of the body until the local barber elevated the
depressed bone. Boyle suggested that this implies a specialized area of the
cortex devoted to movement of the limbs. The motor cortex is a topographic
map of the musculoskeletal system (figure 9.5). Neural processes from the
motor cortex project through the thalamus, influenced by the basal ganglia,
into the spinal cord, and eventually to the motor units that activate muscle
cells. This is, of course, a major oversimplification. A single voluntary
movement actually involves large synergies of muscle activity that are
sensitive to dynamic and geometric constraints, as well as the context of the
task. The motor cortex has reciprocal connections to the cerebellum and the
basal ganglia. Some of the output generated in the motor cortex passes
almost directly to the spinal cord. Precise individual finger movements are
an example of such cortical muscle control. However, the primary role of



the motor cortex is to innervate lower-level motor subsystems. It is one
element of a hierarchical motor organization that extends from low-level
reflex arcs to long-term, deliberate motor plans.

Figure 9.5
The motor cortex

Figure 9.6 is a schematic description of the flow of information in the
cortex. Signals from the sensory organs project into the primary cortical
areas where they are recoded and passed to secondary cortical regions.
Information from other sensory and motor sources is combined in the
association regions of the cortex. These association areas are less well
understood. It may be here that the cumulative experience of the individual
—acquired sensory and motor expertise and decisions regarding risk and
reward—influences motor processes that interact with the environment.



Figure 9.6
The flow of information and control from sensory to motor areas of the brain

Rather than a view of brain in which a world model insulates and
decouples motor functions from perceptual functions, our understanding of
neuroanatomy suggests an architecture in which information—from sensors
and/or memory—are coupled hierarchically to motor activities. This view is
summarized in figure 9.7. At one extreme, sensor-motor mappings like the
withdrawal response produce the fastest response times possible in the
nervous system. This end of the motor control hierarchy is compiled into
human neuroanatomy and resides in the spinal cord, the brainstem, and the
cerebellum. Higher-level cortical pathways for control respond to training
and continually reassess feedback. Each new layer in the information
processing hierarchy recodes input stimuli to detect features that inform and
stabilize decision-making.



Figure 9.7
Hierarchies in the sensory and motor organization of human behavior

9.3 Neurodevelopmental Organization



Pathfinder was launched on December 4, 1996. After 28 weeks en route
and a traumatic entry into the Martian atmosphere, it bounced to a stable
position on the planet’s surface on July 4, 1997. It had been dormant in
transit to Mars, and now, after having come to rest, it underwent a
metamorphosis into its working configuration—unfurling its body from the
cramped confines of the spacecraft and assuming a configuration for
mobility and exploration that it would have for the rest of its life.
Pathfinder sent its final data transmission on September 27, 1997.

When a human infant is born, it has been in utero for 37–42 weeks. Its
muscles are weak and the range of motion is severely limited. The human
infant, unlike Pathfinder, has been very busy in the interim. Neural,
sensory, and motor systems differentiated at the cellular level,
developmental reflexes are prepared to exercise stiff joints and strengthen
muscles after birth, to coordinate limbs, to protect the newborn, and to
provide the kind of experiences that bootstrap cognitive models of the
world it has entered. These reflexes serve developmental roles before,
during, and long after the child is born. The vast majority of physical,
neurological, and cognitive development occurs after birth, when growth
and interaction with the environment express the potential encoded in the
human genome.

The neonate2 was prepared over the course of millions of years of
evolution for a developmental trajectory that simultaneously discovers the
abilities of its body, important properties of the environment, and the latent
potential for controlled interactions between the two. This period of growth
extends through significant changes in size and body mass, the hardness of
bones and skeletal geometry, strength, and sensory acuity driven by an
innate desire to interact with the world and to explore. The prohibitive
complexity of this process is incomprehensible to the neonate and yet, a
similar period of growth will reliably shepherd generations of newborns
through infancy, adolescence, and toward adulthood within a decade or two.

Many reflexive stimulus-response arcs exist throughout the nervous
system that get this growth started. These circuits have evolved with the
body of the organism and are encoded in terms of neural pathways
representing common patterns of interaction between the organism and the
environment over the evolutionary time scale. The limbic reflexes
contribute to survival and the normal metabolic functions of the organism.



They address visceral and vegetative functions, protect our sensory and
motor organs, and control swallowing and breathing, often without any
conscious attention [28]. Developmental reflexes, however, can also
bootstrap hierarchical compositions of stimulus-response reactions by
preparing the organism to learn. They serve as building blocks for more
complex acquired behavior, and they support training contexts that make
learning data efficient in situ. For example, the primary stepping reflex
(section 9.3.2) is present at birth and yet does not participate in integrated
walking behavior until sometime around the end of the first year. Before
that, maturational mechanisms inhibit its expression and focus instead on
vestibular responses and postural stability (section 9.3.4) to stiffen the leg,
support the toddler’s weight, and provide a developmental context for
learning to balance. Piaget [227] called such patterns—capable of
prolonging certain types of interactions with the world—“primary circular
reactions.” Thus, developmental mechanisms manage the learning process
to acquire knowledge interactively in stages, in a manner that avoids the
worst-case complexity of flat learning problems.

Developmental reflexes may persist for a lifetime or, after having served
their roles, may disappear by inhibition or cell death. Reflexes that are
inhibited once they have served their developmental role can reemerge as a
result of disease or trauma. Clinical neurologists use reemergence as a
diagnostic tool to help localize lesions in the central nervous system. Other
developmental reflexes transform into mature forms of the original
stimulus-response behavior. For example, the palmar grasp reflex (section
9.3.2) is elaborated over time and morphs into mature forms of the original
reflex (e.g., the pincer grasp in figure 9.18). Both of these mechanisms of
development, composition and adaptation, rely on primitive sensorimotor
behavior (or primitive “preadaptation” behavior [42]) from which other
motor skills are constructed.

There are well-documented clinical accounts of developmental reflexes,
their onset and persistence, and the techniques required to elicit them,
including videos demonstrating their characteristic presentation. The
summary presented in this chapter is drawn from many such sources.
Principle among these are the excellent accounts found in [165, 74, 87]. The
remainder of this chapter will catalog many of the developmental reflexes
cited in the literature in terms of their onset and persistence—the conditions



that cause them to emerge and those that, subsequently, cause them to be
inhibited, respectively. We consider the roles that each of these reflexes
play in helping the infant learn gross and fine motor skills in a
developmental trajectory. The chapter concludes by describing several
cognitive milestones that go along with these developmental artifacts.

9.3.1 Limbic Reflexes: Visceral, Vegetative, and Behavioral

A number of reflexive responses contribute to the normal function of an
organism’s body. They are the firmware of the biological plant.3 Protection
is a central concern. For example, the flexor-withdrawal reflex in human
beings (the neuroanatomy of which is discussed in chapter 3) consists of the
flexion and withdrawal of an extremity in response to a painful stimulus. It
is illustrated by the rapid withdrawal of one’s hand and arm when the
fingers come into contact with a hot object or the flexion of the ankle, knee,
and hip as a result of a painful stimulus on the sole of the foot. This
reflexive tactile response has counterparts that are triggered by auditory and
visual stimuli. The acoustic stapedius reflex innervates the stapedius
muscle (the smallest muscle in the human body) attached to the tiny stapes
bone in the middle ear in response to loud noises. Noises of sufficient
amplitude (80–90 [dB]) cause the muscle to contract and protect the middle
ear from excessive excitation. This reflex is also active just prior to
speaking to attenuate the response to one’s own voice. Oculomotor
reflexes can cause pupillary responses that dilate or contract the iris to
control the intensity of light striking the retina. A pain in the neck can dilate
the ipsilateral (same side) pupil, a response called ciliospinal dilation, the
orbicularis reflex causes a forceful closing of the eye in response to pain,
and a defensive eye blink is triggered by visual looming or corneal contact.

Other reflexes concern the vegetative needs of the organism. For
example, many visceral reflexes are concerned with the control of the
movement of food and waste.

Pharyngeal reflex—Also known as the swallowing reflex, this response is
part of a complex orchestrated behavior to propel food into the stomach.
Food is pushed to the back of the mouth where pharyngeal swallow is
triggered. It consists of a peristaltic wave, moving food downward while
protecting the airway.



Gag reflex—This esophageal reflex contracts the back of the throat and
thus prevents objects from entering the throat except as part of normal
swallowing to help prevent choking.

Elimination reflexes—An anal sphincter contraction reflex and the
micturition reflex participate in the elimination of solid and liquid wastes,
respectively.

As soon as a newborn emerges from the birth canal, it must begin the
lifelong task of respiration. Several reflexes aid the autonomic processes of
breathing:

Laryngeal reflex—The laryngeal reflex is one of the protective respiratory
reflexes. It closes the vocal folds, and thus the airway, in response to
irritating stimuli in the larynx, trachea, and bronchi.

Sneeze reflex—Receptors located in the nose or pharynx instigate a deep
inhale, followed by an explosive expiration. This is a response to irritation,
including photic sneeze reflexes (in response to bright light) present in
about one in four people.

Attentional primitives are also expressed in a suite of reflexive behavior.
A family of orienting reflexes exists that both direct attention to stimuli and
configure sensors for attending in certain ways. Sensitivity can be enhanced
toward novel stimuli—a loud noise or a flash of light. For example, the
audito-oculogyric reflex turns the eyes toward a sharp sound. Orienting
responses direct attention to the location of the new stimulus, including
altering the initial response to become more sensitive to the stimulation
(e.g., using dilation of the pupil to improve visual sensitivity to dim light).

There are many, many more examples of reflexes that contribute to
normal function, but these reflexes do not always contribute to development
per se.

9.3.2 Spinal- and Brainstem-Mediated Reflexes

Primitive reflexes are generally considered to foster cognitive development
by helping an organism exercise useful neuronal pathways and by providing
a compositional basis for higher-level behavior. In this section, we will



review a number of the primitive reflexes often cited in the clinical
neurology literature.

Sucking/rooting/tongue retrusion reflexes—These reflexes are part of an
array of related reflexes that coordinate finding objects/food and impelling
(or expelling) them into (or out of) the mouth. Rooting and sucking emerge
24–28 weeks in utero and are fully present at birth; at this stage, they can be
inhibited by satiation. They are strongest in the first 2 months and are
inhibited normally at 3–4 months. They are triggered by tactile stimulation
on the cheek (rooting), stimulation on the surface of the lip (sucking), and
pressure from a hard object on the tongue (retrusion). Sucking develops the
oral muscles, interacts with tongue control and swallowing, and inhibits the
gag reflex. If retained too long, these feeding reflexes can affect normal
swallowing, speech, and manual dexterity. Primitive reflexes like these can
resurface in adult patients with senility or traumatic brain injury.

Moro reflex—Illustrated in figure 9.8, this reflex is sometimes called a
clasp reflex—a panic reflex that causes the newborn to hang on and cry in
alarm: the arms go out and as the response grows, they come back in again
in a clasping action with a loud cry.

Figure 9.8
The Moro reflex



To elicit a Moro response, the baby’s head and shoulders are supported,
with the arms in flexion across the chest. From this posture, the head and
shoulders are suddenly dropped a few inches while releasing the arms. The
arms should fully abduct and extend and then return to the midline. This
reflex emerges 8–9 weeks in utero, is fully present at birth, and is
masked/inhibited at about 16 weeks.

The uterine presentation involves opening and then closing the arms and
legs in response to a sudden loud sound. The uninhibited Moro reflex is
attributed to brainstem (subcortical) activity, which is transformed into the
adult startle response—the Strauss reflex—at about 16 weeks. The Strauss
response engages more perceptual areas of the cortex to sort through the
range of possible triggering stimuli.

The palmar grasp reflex (figure 9.9) is localized to spinal segments C6
to C8 just below the brainstem. A tactile stimulation on the palm or the sole
of the foot can cause simultaneous flexion of the fingers or toes. In the
hands, this motion often causes force closure (section 5.3) about the source
of the tactile stimulation. It emerges at about 11 weeks in utero and persists
for 2–3 months after birth; however, its fractionated form (the reflex for a
single finger) can persist until 10 months of age. These movements
participate in single-finger oppositions with the thumb. At its peak, the
infant can support their complete body weight suspended from palmar
grasps and traction response reflexes.

Figure 9.9
The palmar grasp reflex



The palmar reflex can be activated by sucking movements as well
because the hands and mouth are related through the Babkin response.
This type of innervation is gradually obscured by voluntary activity in
roughly 4–6 months. If the palmar grasp reflex is retained beyond its
normal developmental period, it may delay the development of individuated
finger movements and hand-to-mouth coordination, may lead to swallowing
problems and delayed speech. The pincer grip is the mature successor of the
palmar reflex. It normally takes over at about 36 weeks after birth.

Stroking the lateral aspect of the foot near the plantar area (heel) will
evoke the plantar reflex (figure 9.10), which causes the toes to fan out in
extension. If the stimulus is directed across the ball of the foot, then a grasp
reflex can be elicited. The plantar reflex emerges at 18 weeks in utero, is
fully present at birth, and is normally inhibited at about 6 months. It
produces kicking movements, enhances muscle tone, provides vestibular
stimulation, and assists the birthing process. In addition, it begins a pattern
of innervation of neural pathways that are used later for creeping,
lateralized crawling movements, and hand-eye coordination and helps to
integrate vestibular feedback into motor control.

Figure 9.10
The plantar reflex

The asymmetric tonic neck reflex (ATNR) in figure 9.11 is evoked in
response to a head turn and causes extension of the ipsilateral (same side)
extremities and flexion in the contralateral limbs. This reflex emerges
around 18 weeks in utero and is normally inhibited around 6 months after
birth. It is believed that ATNR facilitates movement down the birth canal;
helps to maintain unobstructed airways when lying prone; and focuses the
eyes on the outstretched hand, thus extending the infant’s ability to focus
from about 17 [cm] (at birth) to arm’s length. If the ATNR persists beyond



the normal period, it may frustrate the ability to focus at larger ranges and
lead to preferences for homolateral movements of the arms and legs instead
of important contralateral coordination patterns that are required for
crawling and walking. Further, it may inhibit bimanual manipulation, cause
delays in the development of a preferred hand/eye/ear/leg, and lead to poor
ocular pursuit across midline.

Figure 9.11
The asymmetric tonic neck reflex

The Galant reflex in figure 9.12 is believed to be a spinal reflex. It
emerges at 20 weeks in utero, is present at birth, and is inhibited by 3–9
months. It presents as an ipsilateral curving of the trunk in response to
tactile stimulation on the flank and plays a role in learning to rotate and use
torso movements in crawling, creeping, and walking. If it is retained too
long, it can induce an asymmetric hip rotation during walking as well as
posture and gait anomalies, and it can also interfere with the development
of the amphibian reflex and the segmental rolling reflex.



Figure 9.12
The Galant reflex

The placing reaction is mediated in subcortical nuclei (basal ganglia)
and leads to a retraction, raising, and replacement of a limb (arm or leg) in
response to contact on the shin or forearm. Imagine bumping your shin on a
curb; the placing reaction responds during its active period by raising your
foot up and stepping back down on the top of the curb. It emerges at about 9
months in utero and disappears by inhibition or integration at about 6
months after birth.

The primary stepping reflex is a spinal reflex triggered when the sole
of the foot touches a supporting surface. A leg extension at the back of a
stride (near toe off) causes a reflexive flexion, forward hip rotation, and
then a leg extension again in anticipation of heel strike at the front of the
stride. The result resembles a lateralized stepping action. It can be elicited
at birth well before the newborn is ready to walk unattended, and it will
disappear 3–4 weeks after birth. It reappears as a component of the mature,
integrated gait at about 12–24 months in concert with a suite of supporting
postural reflexes. This is about the point in time when the characteristically
wide toddler’s gait narrows and forward progress improves. The reflex
temporarily disappears due to inappropriate gait dynamics and reemerges
when leg length, mass, and strength are once again favorable during this
period of growth [272]. Presumably, the reflex is intact, but its ability to
create large amplitude movements in the limb is compromised. In such a
situation, other postural reflexes dominate. There is some controversy about
whether exercising the reflex helps or hinders the development of
unassisted walking. In one study, it was concluded that exercise preserves



and strengthens the areas of the cortex associated with movement and, thus,
integrates these areas more strongly with the spinal stepping reflex [303].

The corticospinal system matures during the first 5–7 years. Before
maturation, primitive reflexes are pronounced and can be elicited clinically.
However, as the corticospinal system matures, cortical systems influence
control to a greater degree, and many primitive reflexes become difficult or
impossible to elicit. For instance, the innervation of the plantar reflex yields
a normal positive Babinski sign in the 3-month-old infant. It should not
persist beyond 6 months of age. In the mature adult, however, corticospinal
lesions due to trauma or dementia may remove inhibitory pathways and
permit the primitive Babinski sign to reappear [28]. Clinicians can use such
evaluations to help localize damage to the brain and plan therapies. If, on
the other hand, primitive reflexes are retained beyond the normal
developmental periods, they can be associated with spatial problems,
motion sickness, problems with visual perceptual, poor sequencing skills,
and a poor sense of time.

9.3.3 Bridge Reflexes

Bridge reflexes are a special class of reflexes that have a significant impact
on sensorimotor development. Unlike the primitive reflexes (section 9.3.2),
bridge reflexes are not present at birth, and in contrast to postural reflexes,
which occur next in the chronology (section 9.3.4), they do not persist
beyond the developmental period.

The ulnar release and radial release responses refer to reflexive
support for the beginning of independent finger movements. From the
palmar grasp configuration, the ulnar release begins by releasing the index
finger, causing a subsequent cascade release in adjacent fingers until they
are all extended. The radial release is similar, beginning on the little finger
side of the fingers. These reflexes appear roughly at birth and persist until
about 4 months, at which point they are integrated into other coordinated
movements of the hand.

The traction response can be observed in two primary contexts—the
proprioceptive and contactual phases. The proprioceptive phase can be
elicited between 0 and 2 months of age and is characterized by a
simultaneous flexion of the shoulder, elbow, wrist, and fingers



(withdrawing the whole limb) in response to pulling the shoulder into
extension. At about 2 months, the infant will swipe at visual (and auditory)
targets, and the shoulder extension will trigger the proprioceptive traction
response. As a result, the infant will fail to make contact with the object.
Between 3 and 5 months the fully integrated traction response participates
in a more mature swiping motion with an open hand. Its abnormal
persistence as a primitive action will interfere with voluntary reaching and
grasping, object manipulation, and transport for visual exploration.

The contactual phase emerges at about 1 month of age and can be
observed until about 3–5 months. A tactile stimulus on the palm between
the index finger and the thumb produces an immediate flexion of the fingers
around the stimulus followed by a flexion of the joints in the arm (via the
traction response). The flexion of the fingers is the earliest form of the
grasp reflex.

The avoiding response can appear about 1 month after birth and will be
lost or integrated into mature manipulative behavior by about 6 months. In
contrast to the deep pressure on the palm required to elicit the palmar grasp
reflex, a light contact on the back of the distal phalange can cause the hand
to open by extending and abducting the fingers, with a coordinated arm and
wrist movement that places the hand next to the face with the palm facing
forward. The palmar grasp and the avoid response overlap during the first
year and can conflict, causing the infant to alternately open and close the
hand next to their face, especially when excited. The avoid reflex also
participates in the release of objects from the hand. A remnant of the avoid
reflex can persist and be elicited in adult subjects under conditions of severe
stress.

The oculo-cephalic reflex is sometimes called the “doll’s eye” response.
It consists of a conjugate gaze stabilization in response to head movement.
The vestibulo-ocular reflexes allow the eyes to remain fixed on a target
even as the head moves vertically and horizontally. It emerges at roughly 2
weeks after birth and persists through 3 months.

When supported in the Landau position (prone, with examiner’s hand
supporting from beneath the trunk), the infant will strike the “superman”
pose (see figure 9.13). The head will extend above the plane of the trunk,
with trunk and legs extended isometrically against gravity. When the
infant’s head is pushed downward (into flexion), the legs reflexively drop



down into flexion as well in a response known as the Landau reflex. If the
head is released, then the infant will resume the superman pose.

Figure 9.13
The Landau response

The Landau reflex emerges between 3 and 10 months and persists until
about 36 months. It is related to labyrinthine and spinal reflexes, and it
contributes to good trunk and hip muscular extension for straight sitting. It
exerts an important inhibitory influence on certain postural reflexes (section
9.3.4), serves to strengthen muscles, and aids in the development of
vestibulo-ocular motor skills.

The instinctive grasp response is a three-step motor response that
accomplishes involuntary grasps. The orienting stage of this response
emerges between 4 and 5 months. It causes the palm of the hand to turn
toward a stimulation on the hand. A stimulation on the radial side of the
hand supinates the hand; ulnar stimulation pronates the hand. At about 6 to
7 months of age, the groping stage of this response orients and then
advances the palm toward the stimulus and between 8 and 10 months, the
trapping stage in the sequence envelops the object in a grasp. Remnants of
this involuntary grasp can persist into adulthood, but generally, the
instinctive grasp is fully integrated by approximately 10 months of age. It is
the most mature grasping reflex; subsequent manipulative control is
increasingly cortical, visual, and tactile.

The symmetric tonic neck reflex (STNR) in figure 9.14 creates a body
posture with extension in the back and arms so that the upper limbs move



forward to bear weight. If the head is in flexion, the hands are brought to
midline across the chest in front of the gaze. It emerges around 6–9 months
after birth and is inhibited at about 9–11 months. During this period, it
participates in the early stages of the development of upright postures and
bipedal gaits. If retained, it can delay the development of hand-eye and
swimming skills and can prevent forward progress in crawling motions by
inhibiting independent limb movement.

Figure 9.14
The symmetric tonic neck reflex triggered by neck extension

9.3.4 Postural Reflexes

Some primitive reflexes that use vestibular feedback contribute to the
development of postural control associated with balance and stability. The
vestibular systems involve the inner ear, vision, proprioception (like the
muscle spindles in sections 3.1.2 and 7.1.2), and, cutaneous
mechanoreceptors to provide kinesthetic feedback—a sense of spatial body
posture and the relationship to the Earth through visual, inertial, and
gravitational feedback. In the middle ear, for example, very specialized
inertial structures act to provide a kind of accelerometry. Small crystals
called otoliths (stones) located on cilia in the inner ear are part of
specialized cells that measure the orientation of the head in the gravitational
field. Much of the sensorimotor period in human infants is devoted to
integrating a sense of gravity into balance and postural stability.

The labyrinthine reflexes are a family of primitive responses to
vestibular information mediated in the brainstem and associated with the
postural control of the head. They emerge a cascade of related postural
reflexes. The tonic labyrinthine reflex forward (TLRf) emerges in utero,



is present at birth, and disappears by about 4 months. From a prone
position, it causes the head to rise off the floor and is the first step toward
stabilizing the head in a vertical orientation against gravity. Its cousin, the
TLR backward (TLRb) emerges at birth and is gradually inhibited over the
period from 6 weeks to 3 years. TLRb is involved in the development of
postural reflexes that persist throughout life.

When the infant is suspended in an upright vertical orientation, tactile
stimuli on the bottom of the foot triggers a muscle stretch reflex that stiffens
the leg by co-contracting antagonist muscles. The lower extremities become
pillar-like to support the infant’s weight in a maneuver called the positive
supporting reflex. It emerges at 3–4 months and persists throughout life.
Most infants can actually support their weight by 5–6 months and bounce at
7 months. There is an analogous response in the upper limbs that interacts
strongly with visual and labyrinthine righting reflexes and the Landau
extension.

Sometimes called the “body-on-head” reflex, the righting reflex turns
the shoulders and the trunk in the direction that the head is pointing. It is
important for moving the neck configuration back toward its nominal,
forward-looking configuration and is instrumental in the transition from
prone to supine. It is present at birth and normally observable through 4
months, at which time it is integrated into voluntary movements.

Another pair of important head righting reflexes, distinguished by the
use of different sensor feedback, delivers the head to a posture with nose
vertical and eyes horizontal from any body posture. The optical-head
righting reflex (OHRR) is driven by visual input. It emerges at 2–3 months
of age and remains for life. It is important for balance and eye movement
control. If underdeveloped, it can lead to poor visual tracking, motion
sickness, and disorientation. The related labyrinthine-head righting reflex
(LHRR) is the vestibular counterpart of OHRR. Both are essential for
balance and for integrated control of visual focus. LHRR also emerges 2–3
months after birth and remains for life.

The amphibian reflex is a trunk movement (thought to be quite old) that
supports coordinated asymmetric limb movements between the arms and
legs. It emerges 4–6 months after birth and remains for life. Its absence in a
clinical evaluation sometimes indicates the persistence of uninhibited
primitive reflexes, particularly ATNR, and therefore can be used to



diagnose developmental abnormalities. It is essential for crawling, walking,
and running.

The segmental rolling reflex emerges at around 6 months of age and
persists throughout the rest of life. It is essential for coordinated cross-
lateral movements such as walking, running, jumping, and swimming. It
also helps the infant to roll over and up into a sitting position.

The lateral propping reflex (figure 9.15) is an analog of the positive
support reflex in the lower extremities. It constitutes a protective, weight-
bearing extension of an arm, essential for protective bracing and the ability
to sit up unaided. This postural reflex appears at 5–7 months after birth—
first in the form of anterior propping and later as lateral propping. It
remains intact for the rest of the individual’s lifetime.

Figure 9.15
The lateral propping reflex

The parachute reflex (figure 9.16) emerges 8–9 months after birth and
is retained for the rest of life. When the baby is turned posterior end up
from the prone position, the arms extend symmetrically as if the baby is
preparing to break its fall. It is a reaction to vestibular input and interacts
with Moro and propping reactions to help support the sitting infant. It also
aids in the transition to a seated position.



Figure 9.16
The parachute reflex is a bilateral extension to brace for a fall

9.3.5 Maturational Processes

In this section, we describe some of the early mechanisms of maturational
growth that are mediated by genetic factors and hormonal influences and
that determine growth and development in the nervous system. A very brief
overview of the evolution and major structures of the brain is included in
section 9.1.

Brain development and physical maturation—The early brain contains
stem cells that replicate by neurogenesis and differentiate to form precursor
cells (neuroblasts or glioblasts) for neurons or glial cells, respectively.
These two types of cells constitute about half the volume of the central
nervous system (CNS), even though glial cells may outnumber neurons by
as much as 50:1. Still, there are approximately 1 billion neurons by 5
months gestation and about 100 billion at birth. The human brain is roughly
25 percent of adult weight at birth, and this ratio reaches about 50 percent
by 6 months, 75 percent in 2 years, and roughly 90 percent by 6 years of
age. The development of the central nervous system occurs in stages that
overlap and interact. Neurons move from the neural tube (figure 9.1) to
form different parts of the brain. This process is largely completed by birth.
They differentiate to form specialized neurons and undergo synaptogenesis
—a process by which neurons project fibers and synapses to neighbors and
more distant neurons. The growth of new synapses creates a super
connectivity and the potential for much greater intercellular communication



than will be present ultimately in the mature brain. There is a culling and
rearrangement of these connections between neurons after birth. This
pruning is guided by interaction and experience. Unused pathways between
cells will atrophy and eventually disappear.

Glial cells are the glue in the nervous system, as the name implies, but
they are more than that. They guide neuronal migration early in
development, modify the growth of axons and dendrites, and play a role in
synaptic plasticity and synaptogenesis. Glial cells are also active
participants in synaptic transmission, regulating neurotransmitters in the
synaptic cleft. They serve a supporting role for neurons—they protect and
provide structural support, they supply nutrients and oxygen, they ingest
dead neurons, and they form insulating myelin around neural processes.
Myelin is a fatty sheath that surrounds many neural processes, a kind of
insulation that changes the ability of axons to conduct signals. The effect is
to change both the resistivity and capacitance of the fiber and therefore, the
strength and timing of information propagated in the brain. Myelination
begins in the third trimester in utero and continues rapidly through the first
2 years. It begins early for motor-sensory roots, the brainstem, and
structures necessary for reflex and survival. The vestibular nerve (involved
in balance) is the first cranial nerve to myelinate. This happens in utero,
which suggests that balance and postural control begin to develop in utero
as well. Facial nerves, related to breathing, sucking, swallowing, and
coordinated movements of the lips, are the second cranial nerve to
myelinate. Motor nerves myelinate before sensory nerves. By 3 months
after birth, the vestibulo-ocular reflex is involved in producing conjugate
eye movements in response to head motions to help track objects in the
world visually and correct for egomotion. The corticospinal tract starts to
myelinate at about 36 weeks after birth. It precedes from proximal to distal
and from head to toe. The shortest axons myelinate first, followed by the
upper extremities and trunk, and finally the lower extremities (with the
longest axons) last.

Developmental mechanisms in animals are believed to contribute
structure needed for overcoming worst case learning complexity.
Developmental processes manage access to neural projections that engage
sensory and motor resources. For example, motor learning for reaching
movements proceeds from proximal-to-distal musculature—a consequence



of patterns of myelination in the motor cortex [23, 22, 24]—which has
significant impact on the development of manipulation skills. The same
processes are observed in the lower body musculature and bipedalism.
Moreover, the sensory and motor resources, themselves, change
characteristics over time. A newborn’s eyes are capable of focusing only to
a range of about 21 cm [169]. Their immature visual organs have limited
acuity as well as compromised sensitivity to brightness and color. As result,
the infant’s attention is initially focused on large regions of movement and
strongly contrasting features [114, 260]. Soft bones in the neonate’s inner
ear respond preferentially to low frequencies in utero and during the first
few weeks to avoid the full complexity and dynamic range of auditory
signals. Several researchers have observed that limitations in the infant’s
central and peripheral nervous system may also serve to bootstrap neonatal
learning [213, 78, 288, 70]. Taken together, these characteristics of the
immature infant serve to simplify initial interactions with the world so that
important behavioral and cognitive substrates can develop.

Plasticity—Many aspects of brain development are determined genetically.
However, other important aspects are plastic and can adapt to stimulation.
Plasticity is demonstrated by the ability of some cortical regions to take on
functions normally associated with other regions. The incentive to remap
can arise from neural deficit or injury, as well as a lack of stimulation. For
example, topographically aligned spatial mappings in the visual and
auditory cortical regions will change and interact if the geometry of one or
both of these sensor systems is altered [146]. The mechanisms for
remapping combine maturational and experiential influences. There exists a
greater capacity for plasticity early in life when neuro- and synapto genesis
prepare the neonatal brain to accept information in many ways. Pathways
that are stimulated repeatedly are wired up in the neural substrate, and those
that are starved of stimulation atrophy and die or undergo synaptic
rearrangement. This process can extend to a lesser degree throughout life
as, for example, when expert skills are honed through practice and
experience.

Hemispheric specialization—Brain function is distributed over both
hemispheres in general, but there does appear to be some degree of
hemispheric specialization. For example, handedness preference in young



children is usually established by 2 years of age and footedness by 5 years.
Moreover, in 95 percent of right-handed individuals, speech is handled in
the left hemisphere, whereas left hemisphere specialized speech occurs in
only 70 percent of left-handed people. Much of this specialization is
complete by birth, but in infants born with some form of hemispheric
dysfunction a great deal of plastic compensation is possible. In dramatic
seizure disorders where hemispherectomies (the removal of an entire
hemisphere of the brain) are employed, young patients can achieve almost
completely normal function by virtue of plasticity and neuronal
rearrangement. Significant plastic rearrangement has also been
demonstrated in apes [95].

Physical growth—Body growth creates changes in shape, proportion, and
mass distribution, which has implications in the relative strength-to-weight
ratio over time. Smaller limbs create smaller endpoint position errors in
response to errors in motor inputs. Therefore, infants may be capable of
reducing errors due to immature motor pathways by adapting
morphologically. Genetic factors influence the rate at which growth occurs
indirectly through neural and hormonal activity. Hormones produced in the
hypothalamus regulate the production of human growth hormone, and
chemical triggers for growth exist that can accelerate or decelerate growth
in the brain and the body. During infancy and adolescence, humans can
experience tremendous growth spurts. Different organs and body parts grow
at different rates, preceding generally from head to foot (cephalo-caudal)
and from trunk to periphery (proximo-distal).

9.4 Developmental and Functional Chronology in the First
Year

There is a rich neurological organization in the infant that changes over
time. Figure 9.17 illustrates parts of this sequence for some of the reflexes
discussed thus far in this chapter. Compositions of primitive reflexes can be
used to create foundational stimulus-response arcs, including context
sensitive policies for postural control, for balance and agility, and for hand-
eye coordination. In general, this sequence proceeds from primitive



reflexes, through the bridge reflexes, and into postural reflexes that persist
throughout life.

Figure 9.17
The emergence and subsequent inhibition of several developmental reflexes

The cognitive and behavioral outcome of developmental processes varies
from individual to individual in a population to reflect unique experiences.
Remarkably, the shared embodiment of the species—its morphology,
strength, and perceptual acuity—links individuals with a diverse history of
direct, situated experiences into transferable knowledge about the world.

As described in [165, 74, 87], the relationship between neurological
structure and function provides a coarse model for the sensorimotor
development of the infant during the first year of life. A summary of this
developmental trajectory is provided in figure 9.18. The right side of this



diagram shows the development of gross motor function in the context of
postural stability and mobility, and the developmental subtree on the left
represents fine motor skills for manual dexterity and prehension. These two
domains interact in important ways during the first year of life.

Figure 9.18
A developmental sequence—a chronicle of some of the milestones involving postural stability and
the use of the hand during the first 12 months. (Right) Gross motor development. (Left) Some of the
early fine motor developmental milestones.

On the right side of figure 9.18, a sequence of postural stability tasks is
illustrated. Feedback information for this subtree is primarily derived from



vestibular, proprioceptive, and (later) visual organs. Gross motor control
starts with the infant acquiring the ability to control its head. At about 2
months, the child learns to raise its head off the floor (like a mast) into a
configuration where the vertical axis of the head is aligned with gravity.
This occurs during a period of learning about and strengthening muscles in
the neck and the back that are as yet weak in extension. The infant uses
optical and labyrinthine righting reflexes that develop over the first few
weeks. From the prone position, these reflexes interact with the symmetric
tonic neck reflex to develop a quadrupedal position by about 6 or 7 months
of age. The purely proprioceptive body-on-head righting reflex helps to
rotate the trunk in response to a head angle. The infant thus acquires
policies for rotating the trunk and head about the body axis to pan the head
and eyes. All of this behavior contributes to stabilizing the infant in sitting
and later standing postures.

The developmental subtree on the left side of figure 9.18 depicts
milestones in prehensile behavior during the first year. The trajectory is
depicted in terms of hand postures and grasp configurations, but it is more
accurate to view these milestones as the consequence of acquired manual
expertise along with well-coordinated hand, arm, and body controls. The
palmar grasp and the traction responses, together with the avoid response,
create a swiping motion with the arm and launches the palm of the open
hand toward objects where a tactile stimulus will cause the palmar grasp
reflex to close the fingers, pinning the object between the fingers and the
palm. The asymmetric tonic neck reflex strengthens neural pathways that
map visual signals to arm and hand postures. At about 6 months of age,
when the infant first begins to explore voluntary postural actions that free
up its hands, an explosion of developmental activity emerges related to the
discovery of affordances for grasping and manipulation. The mechanisms of
growth and maturation work with these reflexes to encourage cortical
development—ulnar to radial, proximal to distal—that develops arm and
hand controls, culminating at one extreme in grasps that engage the tips of
the thumb and fingers to create a large degree of mobility in the grasped
object relative to the palm.

Other developmental trajectories are taking place concurrently. Early on,
when the infant succeeds in raising its head up from a prone posture, it
begins to engage other people by capturing gaze and smiling. Shortly after



hands become free (around 6 to 9 months), deictic gestures (things like
pointing, giving, showing, and waving) begin to develop. Near the end of
the sequence in figure 9.18, the child demonstrates skills for picking up
objects within reach, transporting them to its mouth, putting them in cups,
and stacking. Expertise in these pick-and-place tasks ignites another
developmental explosion in language learning, wherein words are attached
to experiences gathered using these newfound perceptual and motor skills.

9.5 Sensory and Cognitive Milestones

As infants proceed through developmental sequences, they exhibit a
growing repertoire of sensory, motor, and cognitive abilities. These abilities
are evaluated clinically and used to assess developmental progress. In
contrast to most robot systems, sensory and motor performance in infants
develops over the first year at the same time that the infant is learning how
the environment affords information regarding actions, places, and things.
Therefore, before we move onto an analytical treatment of sensorimotor
systems, it is instructive to review when certain features of signals become
detectable and when informative abstractions of these signals become
available.

9.5.1 Sensory Performance

Touch is the fundamental means of interaction and is important for early
growth. Rooting is a critical reflexive feeding response driven by tactile
sensations on the cheek, and many of the reflexes discussed in section 9.3.2
are triggered in part by tactile stimuli. Mouthing is a form of tactile
exploration—the mouth is heavily represented in the somatosensory cortex.
Infants often put new objects into their mouths and then look at them.
Mouthing behavior also supports subsequent verbal behavior. Exploratory
mouthing usually stops at about 6 months of age.

Temperature is not sensed directly but is actually an observation of the
heat flux into (sensation of hot) or out of (cold) the child’s body and is
observed by free-ended nerve fibers in the epidermal layers of the skin.
Infants are generally more sensitive to cold than they are to hot.



Pain is transmitted to the brain from free-ended nerve fibers distributed
around the body in the skin as well as from strain transducers such as Golgi
tendon organs and articular surfaces that signal extreme positions,
velocities, or ligament tension in joints. An infant responds to painful
stimuli with a drop in heart rate and blood pressure.

Taste is relatively well developed at birth. Infants prefer sweet liquids to
plain water and relax their faces in response to sweetness, purse their lips in
response to sour sensations, grimace in response to bitter tastes, and show
displeasure to salt.

Smell is related to taste. Neonates smile in response to the scent of a
banana and frown to rotten eggs. They are capable of localizing smells and
turn away from bad odors. Breastfed newborns can recognize their mother
by smell, whereas bottle-fed babies prefer the scent of lactating to
nonlactating women.

Hearing in infants is more sensitive and responsive to some sounds than
to others. They prefer complex spectral content to pure tones. By 3 months,
they respond reliably to the human voice and can differentiate [ba], [ga],
[ma], and [na] sounds and can screen out distracting sounds, including
human voices in other languages. Caregivers participate actively in auditory
training by addressing infants in a manner that facilitates infant auditory
development and receptive abilities for language. Motherese refers to the
higher-pitched baby talk used by adults instinctively when interacting
verbally with infants—it includes an increased average pitch, as well as
exaggerated prosody, inflection, stress, and duration.

Vision is the least mature infantile sensory organ. The neonate’s eye
muscles, retina, and optic nerve are underdeveloped, resulting in poor
overall visual acuity. The pupils are not able to dilate fully at birth, and the
muscles that control the curvature of the lens are not yet fully developed,
leading to a visual acuity of around 20/200 at birth. As a consequence,
neonates attend preferentially to low spatial frequencies at first and respond
to higher spatial frequencies as the ocular musculature matures. At 1 month,
they are attentive to low bandwidth black and white imagery; between 3
and 5 months, color responses, visual attention, and attention to their own
hands develop. By about 6 months of age, the normal developing infant’s
visual acuity reaches about 20/100, and by 2 years it is approaching adult
visual performance.



Motion sensitivity and tracking develop soon after birth. For example,
the blink reflex can be elicited by looming objects at about 3 weeks of age,
and it is believed that infants detect kinetic depth cues and begin to exploit
binocular depth cues at 2–3 months of age even though conjugate binocular
eye movements are still relatively uncoordinated. Neonates track faces
longer than other types of visual patterns, but they don’t do as well at
discerning static faces from a background of equal complexity. By 2–3
months, they respond selectively to facial pattern, recognize their mothers,
and can differentiate two individuals in photographs. By 7 months, they
often have acquired the ability to interpret the affective content of facial
expressions and respond appropriately to happy and sad faces. Between 6
and 12 months, sensitivity to depth cues was demonstrated in the famous
“visual cliff” study by Gibson and Walk [93]; during the development of
crawling behavior, infants demonstrate reluctance to cross the apparent
depth boundary even under the urging of their mothers.

Intermodal perception refers to the ability to associate multimodal
sensory information with control decisions, places, and objects. Intermodal
inference can introduce robustness when sensors have different spatial
acuity or different viewpoint constraints or when the scene is only partially
observable in context. The ability to form intermodal associations begins as
early as 1 month of age, when infants begin to recognize the shape of
something in their mouth—their pacifier, for instance. Infants will turn their
head to orient vision to a sound by 4 months of age, when it is believed they
also have visual expectations conditioned on what they have heard. About
the same time, the infant can associate the sight and sound elicited from a
wooden block dropping to strike a table and distinguish this experience
from the intermodal perception of a rubber ball under the same
circumstances.

9.5.2 Cognitive Development in the Sensorimotor Stage

More than simply an account of stimulus and response, a developmental
sequence begins the process of acquiring a representation of experience that
informs future control decisions. In developmental psychology, there are a
variety of theories regarding the accumulation and use of background
knowledge by the infant. For example, Piaget proposed that children begin



to associate cause and effect during interactions with the environment at
about 7 or 8 years of age. By this account, before this age, a child will often
mistake causation for animacy. However, more recent research concerning
infants as young as 7 months old suggests that they understand how actions
(cause) influence outcomes (effect) even while incorrectly attributing
agency to inanimate objects.

For example, object permanence refers to the ability to infer the
existence of a previously observed object even when it is not currently
detectable in sensor feedback. It implies a representation for objects that is
robust to changes in scale, shape, viewpoint and occlusion and the ability to
predict how interactions with the scene change one’s perceptions—make
hidden objects observable, and vice versa. Spelke et al.’s [264] moving rod
study suggested that infants as young a 3 months of age have acquired an
implicit understanding of object permanence and a qualitative
understanding of gravity. Baillargeon [10] reported similar results when 3-
month-olds appeared to recognize objects over a wide variety of viewing
contexts and to believe that objects would behave as rigid bodies.
Moreover, young infants do seem to form prototypes for shapes and faces.
Quinn et al. [237] found that 3-month-old children, who lived with cats,
attended to dogs longer, implying that they found them novel and
demonstrating situational awareness.

Many theories of adult social behavior incorporate a theory of mind that
is used to infer the state of another person’s mind. To describe the ability of
a child to learn from parental demonstration, György Gergely [91] proposed
that the capacity to imitate in young children is the product of a teleological
process. The word teleological (Greek teleos, “goal; end state”) denotes a
rational agent that, in Gergely’s framework, extracts the goals, means, and
constraints of a demonstrated movement or behavior. Partial support cited
for this assertion include findings that infants as young as 6 months old can
use a landmark to find nearby hidden objects and by 5–7 months of age,
infants understand that movements of a parent’s hands are often directed
toward the goals of a demonstrated behavior. Related studies showed that
infants start to respond to intermodal relational structure by 7 to 10 months
of age [297] and form categories for birds, planes, animals, and vehicles
[185, 186]. Poulin-Dubois et al. [234] reported that by 9 months of age,
infants begin to demonstrate expectations about animate as well as



inanimate objects. Two-year-olds can use dead reckoning to some degree,
but without straightforward landmarks, children as old as 7 years find it
difficult. At 10 years of age, children can remember routes in terms of the
actions needed to follow them—turn left, turn right—and they can integrate
landmarks and (sub)routes, and discern spatial configurations.

In the next chapter, we explore a computational framework for
describing a developmental agent that incorporates many of the motivations
and mechanisms of human development introduced in this chapter. The goal
is a developmental robot that explores, learns, and then exploits patterns of
controllable interaction in the agent-environment system.

9.6 Exercises

1. Primitive reflexes in human beings. Indicate true or false and provide a
brief explanation:

(a) The pharyngeal reflex closes the vocal folds and the airway.
(b) Sneezing due to bright light, called the photic sneeze reflex, is a
somehat rare response to very bright light.
(c) The Moro reflex is present at birth and continues throughout a
human’s life.
(d) At birth, the weight of the infant’s brain is 75 percent of its adult
weight and reaches full adult weight at about 5 years of age.

2. Reflexive support for bipedalism. Several developmental reflexes assist
in the acquistion of skills related to bipedalism. Identify at least three such
reflexes and explain their role in bipedal locomotion.
3. Fine motor control. Which reflexes can play a role in the inability of an
infant to learn to hold a pen?
4. Vestigial reflexes. Can you identify any candidates for reflexes that were
more important to our ancesters than they are, perhaps, to contemporary
humans?
5. Multi-functional reflexive behavior: ATNR. It has been observed that
the asymmetric tonic neck reflex may contribute to learning hand-eye
behavior. Identify another possible role that the ATNR can support, and
explain how.



6. Population-normed developmental chronology. Based on the
following clinical observations, identify the reflexes elicited and give an
estimate of the child’s age.

(a) When you press your finger across the proximal finger joints
(knuckles) on the palm, the infant grasps it tightly.
(b) When you turn the newborn’s head to the left, the child’s left arm and
leg extend and the right arm and leg flex.
(c) When the infant is inverted (head down), he extends his arms and
legs toward the ground.
(d) If the child’s flank is stroked, the infant demonstrates no ipsilateral
curving of the trunk.
(e) A newborn demonstrates body righting, but neither the primary
stepping reflex nor the positive support reflex can be successfully
elicited. Estimate the child’s age.
(f) A child shows both ulnar release and radial release responses as well
as body and neck righting. Estimate the child’s age.
(g) The palmar grasp cannot be elicited any longer, but the child has not
yet mastered the coordination of the index finger and thumb required for
a pincer grasp. Estimate how long it will be before the child will be able
to request its pacifier (“binky”) verbally.
(h) A child is observed to reliably produce a parachute response and a
pincer grasp, but, surprisingly, persists in producing a strong ATNR.

i. Estimate the age of the child.
ii. Identify a family of developmental reflexes (other than parachute
and pincer) that may be disrupted by the unexpected persistance of
ATNR.
iii. What behavioral consequences do we anticipate going forward in
the rest of the unfolding gross motor developmental sequence?

(i) Transfer to reflexive robot control. Give at least two examples of
reflexes that could be implemented for a robot (Roger) to serve the same
useful/practical purposes attributed to developmental reflexes in infant
humans.



(j) Reflexive motor recuitment. In the following scenarios, discuss the
reflexive responses that could be elicited and observed, and explain the
rationale behind them:

i. There is a loud bang in your vicinity.
ii. You accidently look directly at the sun.
iii. A child trips and falls.

7. Invent your own homework. Make a homework problem out of your
favorite content in chapter 9. Write a question and a solution for it from the
material in the reading. It should combine comparison, observation, short
discussion, analysis, and/or calculation, and should not take more than 30
[min] to respond.

1. The subcortical structures (e.g., the thalamus, basal ganglia, amygdala, and hippocampus) play an
important role by triaging incoming visual, auditory, and somatosensory signals and curating
outgoing motor commands.
2. The term neonate means “newborn” and refers to infants up to 28 days after birth.
3. The term plant is often used like this in the context of control theory, where it refers to a controlled
dynamical system.



10
A Computational Framework for Experiments in
Developmental Learning

Clinical observations of newborn development demonstrate that infants use
an array of prior reflexive and neurological structures to help them learn to
interact with the world. Even so, for newborns (and interesting robots),
exploring the breadth of possible interactions with the unstructured world
around them is an enormously complex computational problem. However,
we also know that processes related to biological growth (morphological,
biochemical, and cognitive) collectively referred to as maturation, influence
the newborn in profound ways during the transition from neonate to adult.
Nowhere in the child’s life is this more conspicuous than in the first twelve
months after birth. Faced with unknowable complexity in the natural world,
the infant copes using a pre-configured developmental curriculum—a
sequence of tractable interaction contexts stored in the genome that helped
this infant’s ancestors adapt to their environments fast enough to survive.

The curriculum is implemented, in part, by scheduling sensory and
motor resources that highlight critical skills. The developmental reflexes
introduced in chapter 9 each focus on a relatively small fraction of the
sensory and motor resources provided by the human body, but they train
and/or serve as building blocks for more integrated skills, each of which, in
turn, reveals more of the latent ability of the species and provides even
more opportunity for higher-level control. In animal systems,
developmental curricula change over time as new neural pathways emerge,
limbs grow, muscles strengthen, sensing becomes more acute, and
background control knowledge deepens.



In this chapter, we introduce a computational framework for
experimental studies in developmental learning that can be implemented
using robotic systems. Much of the motivation for such a framework comes
from the discussion of the neurodevelopmental structure in human infants
presented in chapter 9. In particular, we wish to consider how maturational
schedules for allocating sensory and motor resources can be used to
efficiently transform embodiment (the intent of the robot designer) into
reusable hierarchical skills to form the foundation for higher-level cognitive
structures. To this end, a combinatoric basis for control actions and
feedback state is introduced using a parametric landscape of attractors
[127] as a proxy for the native reflexes observed in infant behavior. A
taxonomy of actions is proposed to provide structure for learning from
exploration and to introduce a means of using multimodal associations in
memory as probabilistic references for prospective control. Skills are
constructed using sequential combinations of these enhanced multi-
objective reflexes.

10.1 Parametric Closed-Loop Reflexes

The foundation of newborn behavior in many animals is a layer of
segmental and developmental reflexes that combine sensory and motor
resources into closed-loop interactions with the world. Our computational
model of robot development also starts at the level of low-dimensional
reflexes as well. The control basis framework is used to provide a discrete,
combinatorial basis for an exhaustive set of primitive closed-loop
controllers—every primitive closed-loop relation possible, in fact—given a
description of the robot’s sensory and motor resources [117]. A primitive
closed-loop linear control relationship with the world is specified, 

, where Φ is a set of potential functions, 2Σ is the power
set of feedback features, and 2𝒯 is the power set of independent motor units.
Each of these primitives optimizes a particular relationship between the
robot’s sensor geometry and internal and external sources of stimuli.

10.1.1 Potential Functions: ϕ



Scalar potential functions describe how energy is stored in the geometry of
an elastic, electrical, or gravitational field. The value of a scalar potential
field at the location of a particle in the field represents the energy that will
be liberated if the particle is released from this configuration. The gradient
of the potential field, therefore, defines a force acting on the particle.

The spring in the spring-mass-damper system in chapter 3 is an example
of a system that stores energy in the deformed system geometry. In this
case, the potential function is the cumulative energy stored in the elastic
deformation of the spring,

This energy is released when the spring is allowed to assume its original
shape. Equation 10.1 describes a simple bowl-shaped quadratic that is
everywhere positive except at the origin—the only place where it is zero.
Furthermore, the gradient of ϕ at any position in the field is a force acting
on the mass that accelerates the system toward its undeformed state at x=0,

which is known as Hooke’s law. The particle in a quadratic potential field is
asymptotically stable if there is a dissipative element in the system, as in the
PD controller described in section 3.3. Because they are computationally
efficient and relatively simple to implement they have inspired many
researchers to propose a number of potential field-based motion controllers
(e.g., [154, 143, 144, 207, 181, 213, 150, 244, 15, 7, 166, 167]).

Potential fields also have support in biological theories of adaptive motor
control. For example, equilibrium point theory proposes that combining a
discrete set of force fields—that independently generate equilibria—with
the mechanical properties of muscle yield a means of generating continuous
movements to continuous equilibrium postures [30, 205]. These ideas have
been used to model the motor behavior in a frog’s leg as the superposition
of force fields [94] and, in this chapter, serve as a modular basis for
implementing purposeful movements [203, 205].

The conditions that preclude local minima in asymptotically stable
systems have a useful geometrical interpretation—in particular, they depend



fundamentally on the shape of the potential function captured in its
differential geometry. For a multivariate potential function ϕ(q1, …, qn)
defined on domain q∈ ℝn, the critical points of the potential function are
places where the gradient of ϕ(q) vanishes,

The image, under ϕ, of critical points are called the critical values of the
field. The stability of a critical point depends on the second-order
(curvature) information at the critical point as well. The general description
of curvature for a multivariable function is the Hessian matrix that
represents the second derivatives of the function, d2ϕ/dq2.

Equation 10.3 captures the compound curvature of potential function ϕ(q).
A critical point is degenerate if it also has zero curvature—that is, the
Hessian is identically zero. In this case, the neighborhood around the
critical point forms a local plateau where the state of the system is not
controllable.

Figure 10.1 illustrates three types of controllable neighborhoods
surrounding a critical point in a two-dimensional domain that can be
distinguished by properties of the Hessian at the critical point. The type 0
critical point on the left is distinguished by a positive definite Hessian
(appendix A.3). As a result, ϕ is convex in this neighborhood and gradient
descent on ϕ(q) will converge exclusively to a unique type 0 minimum
where it will suppress bounded perturbations. Type 0 critical points,
therefore, constitute stable fixed points in the field.



Figure 10.1
Critical points in potential function ϕ, distinguished by the value of the curvature of ϕ at the critical
point

Type 1 critical points have positive curvature in some directions and
negative curvature in others, corresponding to the saddle point in the
middle of figure 10.1. Finally, type 2 critical points have negative curvature
in all directions (the Hessian is negative definite). Therefore, type 2 critical
points are maxima in potential ϕ. In the context of gradient descent, both
type 1 and type 2 critical points are unstable because, even when the
gradient vanishes, minute perturbations to q1 and/or q2 result in nonzero
gradients that cause the system configuration to depart from the critical
point. In measurement theoretic terms, the region where the gradient
vanishes is a set of measure zero.

Harmonic functions—The greedy character of the quadratic ϕ can be
preserved in systems with constraint boundaries (obstacles) internal to
domain q. Conceptually, the convex ϕ can be cleaved so that the gradient
flows around obstacles instead of through them. A class of transformations
called conformal deformations—functions that satisfy Laplace’s equation—
can accomplish this goal without introducing local minima. In n
dimensions, Laplace’s equation is written

and requires that the trace of the Hessian (the sum of the diagonal elements
in equation 10.3) is zero. These functions describe many natural physical
processes that rely on minimum energy configurations such as the shape of



soap films, laminar fluid flow, and steady-state temperature and voltage
distributions in conductive media. Appendix C introduces efficient
numerical methods for solving equation 10.4 for minimal surfaces in the
interior of a closed domain subject to boundary constraints.

Informally, solutions for Laplace’s equation are smooth functions that
distribute curvature evenly over the interior of the domain. The gradient
flow produces nonintersecting streamlines that flow away from obstacles,
exclude local minima (and maxima) in the interior of the domain, and
terminate at goals. Equation 10.4 demonstrates why this must be true: in the
interior, where Laplace’s constraint is satisfied, if any of the terms on the
right-hand side of equation 10.4 is positive, then there must be other terms
that are negative. Therefore, only type 1 critical points (saddle points) may
exist on the interior of the domain and, except for sets of measure zero at
critical points, for every coordinate q in the interior there must always be a
direction that is downhill on the potential function.

If the potential at obstacles is fixed to a value of 1.0 and the potential at
goals is fixed at 0.0, then the harmonic potential in the interior of the
domain is formally equivalent to the hitting probability of a random walk—
the probability p(q) that a random walk beginning at interior coordinate q
will encounter an obstacle before it reaches a goal [61]. Gradient descent on
the scalar harmonic potential field, therefore, minimizes the chances of a
collision with known obstacles. In cases when only partial knowledge of
obstacles is available, this approach yields conservative strategies that can
be refined efficiently as new information about obstacles (and goals) is
acquired. Many examples of using harmonic functions for path control can
be found in the robotics literature [62, 2, 112, 271, 145, 63, 64, 61, 128,
295].

Navigation functions—Rimon, Whitcomb, and Koditschek showed that, in
certain domains, there always exist potential functions on which gradient
descent achieves goals for almost all initial states (all but for a set of
measure zero). In a series of papers, they described the properties of a
potential function that support its use as a control function [244, 243, 292].
They call such functions navigation functions. Such a function should have
four properties.



1. Analyticity: An analytic function, ϕ(q), is infinitely differentiable (C∞

continuous) such that its Taylor series about q0 converges to ϕ(q) for q close
enough to q0.
2. Polar: Polar functions produce gradients (streamlines) that terminate at a
unique minimum.
3. Morse: Isolevel curves for Morse functions can only be single points,
closed curves, or closed curves that join at critical points—that is, Morse
functions cannot include degenerate critical points where the slope and the
curvature are simultaneously zero leading to plateaus in ϕ (i.e., stationary
points) where the system could come to rest short of the goal.
4. Admissibility: Potential fields for robot control require bounded torque
at obstacle boundaries (and everywhere else in the interior subset of
configuration space).

10.1.2 Closed-Loop Actions: 

Control primitives suppress errors by following the gradient of the scalar
potential function ϕ(σ) to generate a series of references uτ ∈ ℝn to n motor
units. The local sensitivity of the potential to changes in the motor variables
is written in terms of the control Jacobian.

The subscript c is used in equation 10.5 to designate a control Jacobian
derived from the partial derivatives of a scalar potential function and to
distinguish it from a manipulator Jacobian, which will be written J (without
a subscript). In the following, the subscript will sometimes be used to
identify the potential from which the control Jacobian is derived.

In the neighborhood of the current kinematic configuration, Jc defines a
one-dimensional subset of ℝn (the gradient) and an (n−1)-dimensional
nullspace in which the potential remains approximately constant. The
gradient of ϕ(σ) is used to optimize the objective function by generating
new setpoints for the underlying motor units,



where κ is a small positive step size and  is the Moore-Penrose right
pseudoinverse of Jc (appendix A.9). The right pseudoinverse yields an exact
solution to equation 10.6 that minimizes ∥Δuτ∥2.

10.1.3 A Taxonomy of Parametric Actions

As proposed in the opening for section 10.1, a liberal upper bound on the
number of closed-loop actions in the control basis is the size of set A={Φ ×
2Σ × 2𝒯}, where 2Σ and 2𝒯 are the power set of sensor and motor resources,
respectively. It follows that even relatively simple robots and environments
can produce an enormous space in which to search for a solution to a task.
Without the benefit of additional structure, the control basis framework will
overwhelm state-of-the-art planning and machine learning algorithms.

However, clinical observations suggest that neonates use a
comparatively small set of primitive segmental, intersegmental, and
developmental reflexes organized neurologically by maturational processes.
In the sections that follow, we discuss how logical and developmental
organization can be realized in the control basis for autonomous learning in
robot systems as well. We begin by introducing a taxonomy of actions that
partition the set of actions A into meaningful subsets based on the source of
the feedback σ these actions employ.

POSTURAL Actions
Posture variation is a means through which motion and strength characteristics of the arm (are) made
compatible with the task.
—S. L. Chiu [49]

POSTURAL actions  respond to proprioceptive feedback σ ∈2Σp ⊂2Σ in
order to optimize the kinematic condition of the robot and avoid kinematic
constraints. In this case, objective functions ϕ(σ) are functions of the
configuration variables q for kinematic (sub)chains, such that gradient
descent dϕ/duτ performs a step-wise greedy optimization of the objective
function. Task independent POSTURAL primitives create movements that



improve perceptual acuity, enhance motor performance, and avoid range of
motion constraints.

Several forms of POSTURAL actions have been cited in the literature as a
means of exploiting the aptitudes of the robot body (see chapter 4 and
appendix A.8). Scalar conditioning metrics have been used as design tools
for relating manipulator geometry to a task domain [251] and as scalar
objective functions for optimizing inverse kinematic solutions [50, 147,
171, 172, 209, 296, 299].

Example: Manipulability Reflex

Dexterous hands are sensory organs as well as effectors that adapt
movements in response to tactile feedback. Often, there is significant
uncertainty in the position and orientation of environmental surfaces with
which the hand comes into contact. In these situations, the exploring hand is
supported by configurations that produce forces and velocities equally well
in all directions in response to contact feedback.

In [98], isotropic conditioning was proposed as an independent objective
for motor control that can be integrated into a variety tasks and situations—
especially those that support haptic exploration and that depend on mobility
of the grasped object. A postural reflex was described for the Utah/MIT
dexterous hand in figure 10.2. Each finger of this hand has four degrees of
freedom. The knuckle joint approximates adduction/abduction in the human
finger about an axis that is perpendicular to the distal finger joints. The last
three degrees of freedom (the phalanges and interphalangeal joints) are
redundant in the plane they share, so there are a possibly infinite number of
joint angle configurations for each reachable (x, y) coordinate in this plane
(see figure 4.24).



Figure 10.2
The Utah/MIT dexterous hand

A control Jacobian for use as a manipulability reflex is defined

where J is the manipulator Jacobian for the last three joints of the finger.
The control Jacobian Jm represents the gradient of the manipulability field
with respect to these joint angles and the corresponding POSTURAL reflex
becomes

Reflexes like this map joint angle configurations in σ into differential joint
angle movements in uτ.

Figure 10.3 shows the manipulability potential in the plane defined by
the last three links of this finger at each location in the reachable workspace
(ignoring joint range limits). Level curves for the function are in the left
panel and the function itself, with an overlaid schematic of the finger and its
reachable workspace, is in the right panel. Inside the reachable workspace
of the finger, several fingertip trajectories resulting from equation 10.7 are
illustrated. The trajectories begin at locally optimal manipulability
configurations near the boundaries of the workspace and terminate at the
finger posture indicated in the diagram.



Figure 10.3
Maximum manipulability model for the Utah/MIT finger. (Left) Level curves. (Right) Scalar field 

 and streamlines inside the reachable workspace generated by equation 10.7.

☐

New instances of related POSTURAL actions are created by configuring
different combinations of proprioceptive sensor and effector resources from
a common series or parallel kinematic chain. For example, in [98], a
manipulability reflex was demonstrated to condition the kinematic
configuration of the multifingered Utah/MIT dexterous hand in contact with
a stationary workpiece by reposturing the corresponding multiple degree of
freedom arm. Other candidates for POSTURAL reflexes have been used to
optimize Cartesian precision or amplification (section 4.7.2), visual acuity
(section 4.7.3), and acceleration (section 6.3.3). These metric fields are
completely determined by the geometry and mass of the limb and capture
the kinodynamic sweet spots of the embodied system [107].

TRACK Actions—TRACK actions are closed-loop controllers  that employ
feedback features σ ∈2Σext ⊂2Σ derived from external stimuli. These features
are used to identify and localize goals and/or determine errors that are
eliminated by following the gradient of the potential function Jc =∂ϕ/∂uτ

downhill as in equations 10.5 and 10.6. Tethering the control state to
features observed in the environment means that the feedback status of



TRACK actions establish concrete, observable facts about the run-time
environment.

SEARCH Actions— SEARCH actions sample goals from probabilistic models
stored in memory describing the empirical transition dynamics of actions in
situ. If S is the set of all interaction states detectable by the sensors, then the
control basis framework designates SEARCH actions  that sample
references  from distributions of the form Pr(uτ|s, (s′∈P(s))), where s∈S is
the current multimodal state and uτ defines new setpoints for effectors τ that
are likely to generate outcome states s′ that belong to a (sub)goal partition
P(S) of S.

Initially, the distributions that guide SEARCH actions are uniformly
distributed over values of the effector variables, and they are updated over
the course of many interactions to reflect the cumulative, long-term
statistics of the run-time environment.

SEARCH  and TRACK actions  are natural counterparts. Together they
support an enhanced SEARCHTRACK-er that uses background knowledge to
find hidden signals in a complex, three-dimensional dataset and then
regulates the value of those signals. For example, to find a coffee cup on a
tabletop, SEARCH actions can be used to visually inspect places on the table
where the cup has been found before. If this process is successful and the
cup is successfully detected and localized, other SEARCH actions can predict
where to move to and how to reach to produce signals from the cup on
fingertip tactile sensors. The sequence of successful SEARCH actions have
modified the sensor geometry to uncover new information in the world. The
new information can guide additional SEARCH or be used to support a
family of TRACK actions to, for example, actively regulate force closure
while transporting the cup.

Integrated skills constructed from combinations of multiple POSTURAL,
SEARCH, and TRACK actions can serve collectively as a SEARCH prefix that
funnels the state of the system into an initiation set from which a new target
skill can be learned. Such a framework relies on vertical transfer to
integrate and reuse implicit knowledge embedded in skills.

10.1.4 Co-Articulation: Multi-Objective Control



In practice, multiple actions that use disjoint sets of effector variables uτ can
superimpose commands to the motor units and rely on them to suppress
disturbances due to unmodeled inertial or objective coupling. A more
principled approach, however, even when sharing effector resources over
multiple objectives, uses a null space composition to protect actions from
destructive interactions.

In the linear transformation Δϕ=JcΔuτ, the redundant control Jacobian Jc

∈ ℝ1×n defines a one-dimensional subset of ℝn (the gradient of ϕ with
respect to uτ) and an (n−1)-dimensional subspace that is orthogonal to the
gradient. In appendix A.9, the annihilator of the linear control Jacobian Jc

is presented in the form of a linear operator  that defines the
nullspace of Jc, where In is the n×n identity matrix. Therefore, combinations
of subordinate control actions can be projected into the nullspace of Jc that
produce no change in the value of the superior control potential ϕ.

We employ the notation proposed by Huber et al. [121, 118, 117]: if 
 and  are control basis primitives that employ the same

effector resources, τ, then c2 ⊲ c1 designates that c2 is subordinate to (left of)
c1, and, therefore, changes to references uτ due to c2 must be projected into
the nullspace of c1:

where the quantity  represents the locally linear nullspace of
controller c1. The operator ⊲ is called the subject-to operator, and the multi-
objective controller c2 ⊲ c1 is read “c2 subject-to c1.”

Figure 10.4 shows how the potential function ϕ1 defines a one-
dimensional gradient and an orthogonal, (n−1)-dimensional nullspace 𝒩1,
depicted here as the tangent to the local level set of function ϕ1.
Displacements of the particle in 𝒩1 have no influence on the value of ϕ1.



Figure 10.4
A geometrical interpretation of the gradient and nullspace of artificial potential ϕ1

The projection of actions from c2 into 𝒩1 guarantees that c2 will not
destructively interfere with c1 (i.e., it preserves the asymptotic properties of
c1). Equation 10.8 is a conservative projection when all actions are derived
from independent potential fields [174]. A version of this relation that
optimizes progress on all subordinate objectives can be found in [208].

In sufficiently redundant systems, the nullspace projection technique can
be applied to an arbitrary number of cascaded primitive control laws and
can be generalized to controllers that engage different effector resources
(appendix A.9). Figure 10.5 shows how such an expression involving three
independent controllers, c3 ⊲ c2 ⊲ c1, compiles into cascaded nullspace
projections. This control expression is rewritten vertically with subordinate
controllers above superior controllers. A system like this composes a multi-
objective control reference and submits it to underlying motor units.



Figure 10.5
Cascaded nullspace projections create the c3 ⊲ c2 ⊲ c1 multi-objective controller

Example: The Mechanics of Human Finger Movement

The manipulator in figure 10.6 is similar to a human finger absent the
abduction (out-of-plane) movements of the knuckle joint. Flexing and
extending the interphalangeal joints (θ1, θ2, θ3) causes movement of the
fingertip within the reachable subset of the x-y plane. Each example in
figure 10.6 shows a trajectory between the initial configuration (light gray)
and the final joint angle configuration (bold black), where the endpoint
position of the manipulator is (x, y)ref.



Figure 10.6
Three distinct control responses for the same initial and final configurations: (a) the PD control
(second-order) arm response; (b) the steepest descent in configuration space; and (c) the steepest
descent in Cartesian space

Panel (a) shows the response when the final reference posture is
submitted to underlying motor units executing independent PD control laws
for joints θ1, θ2, and θ3. The resulting finger trajectory is determined entirely
by the second-order dynamics of the controlled limb.

Panels (b) and (c) show the response of two control basis primitives that
each submit a sequence of θ reference configurations to underlying motor
units and, thus, control the path of the manipulator as it descends the
gradient of the Cartesian potential function

The case depicted in panel (b) uses the gradient

In this underdetermined (redundant) case, the pseudoinverse of Jxy produces
an exact solution for the target endpoint position that minimizes ∥Δθ∥2—it
does not follow the direction of steepest descent of the Cartesian potential
(equation 10.9). The difference between the actual trajectory and the
straight line path in the task space can be significant.

To accurately descend the steepest gradient in the Cartesian potential, the
control action is redesigned



This control configuration also produces an exact solution, but the
pseudoinverse of the control Jacobian for this design minimizes ||Δr||2,
resulting in the trajectory in figure 10.6, panel (c).

In the human hand, trajectories of the finger reflect the integrated
biomechanical structure of the hand—the way that muscles in the forearm
couple to produce movement in the hand and how tendons route past
proximal joints to terminate on finger bones. These mechanical adaptations
tacitly support the movements of the hand in its multiple roles as sensor and
effector to respond to unexpected contacts and surface geometries and to
enhance the mobility and stability of grasped objects.

In robot systems, the tacit support provided by the integrated
biomechanical structure can be approximated in the multi-objective control
framework. Yoshikawa [298] observed that when manipulating small
objects, the posture of human fingers resembled those that optimized the
scalar manipulability metric field  (section 10.1.3), where J is
the finger Jacobian. This metric is a measure of the volume of the
conditioning ellipsoid (section 4.7.2), and maxima in the field correspond
generally to configurations from which the manipulator can generate forces
and velocities equally well in all directions.

For some manipulators, as in the example in section 10.1.3 that
considered a finger of the Utah/MIT dexterous hand, the manipulability
measure itself can be used as a navigation function. For these manipulators,
a manipulability objective function is written in the form of the potential
function1

This potential leads to the closed-loop POSTURAL controller presented in
equation 10.7. The independent response of this controller applied to a
finger in the Utah/MIT hand was presented in figure 10.3.

Figure 10.7 illustrates a case in which the manipulator starts in a
suboptimal initial configuration with one joint fully extended and another



fully flexed. The distal joint remains strongly flexed throughout the entire
Cartesian motion pictured in panel (a).

Figure 10.7
A subordinate POSTURAL action based on the manipulability index is projected into the nullspace of
the superior Cartesian endpoint controller

To describe more humanlike finger movements, Yoshikawa [298]
proposed a POSTURAL controller based on the manipulability potential
(section 10.1.3) subject-to the Cartesian endpoint controller,

and results in the finger postures in figure 10.7(b) for these initial and final
endpoint coordinates. In general, these postures of the finger are better at
generating forces and velocities in all directions in the x-y plane and, so,
approximate some of the tacit knowledge encoded in the biomechanical
structures critical to the perceptual and motor functions of the human hand.

☐

10.1.5 States: 

Many factors affecting the quality of a solution to a control task depend on
decisions about sensory and motor resources. Matching informative features
in the external environment with complementary sensor geometries in the
embodied system is critical to solving everyday control problems safely and
efficiently in unstructured environments. Often, the properties on which
solution safety and quality depend are difficult or impossible to measure



directly. In these situations, extended periods of interaction and observation
can be used to infer missing (or hidden) influences on control quality.

In the dynamical systems community, Taken’s embedding theorem [269]
states that a history of (2n + 1) time-delayed observations of the same
quantity (e.g., [ϕ(t), ϕ(t−τ), ϕ(t−2τ), …, ϕ(t−2nτ)]) is sufficient to
characterize the behavior of an n-dimensional dynamical system. There are
equivalent results in control theory [1]. Time-delayed coordinates (such as
these) arise in information theory as well, where the information in a signal
is encoded in finite-temporal differences approximating time derivatives of
the signal at time t (chapter 8),

The time history of feedback in the phase portrait  is, likewise, a
faithful representation of system dynamics. The stream of coordinates
comprising the phase portrait of controlled sensorimotor systems, however,
characterize interactions—visual and tactile—between the robot and
environmental stimuli.

State in the control basis is defined in terms of a membership function
 that, in its most general form, classifies the temporal response of the

system to nonstationary, multimodal stimuli in the run-time environment
and, thus, supports a uniform framework for active perception and
information gathering. The approach is introduced using an example.

Example: Representing Grasp Dynamics

Coelho [56, 59, 57, 58, 55] used the three-fingered Stanford/JPL hand and
contact force measurements in R3 from fingertip load cells to experiment
with reinforcement learning algorithms for grasping. A pair of closed-loop
control primitives derived from the control basis framework were used to
minimize the sum of contact forces and moments, respectively, in a multiple
contact grasp configuration. Learned compositions of these controllers can
guarantee locally optimal contact configurations for a large class of object
geometries. Coelho studied control decisions that could reallocate contact
resources to find better grasps. One of the contributions of this work was a



method for using membership functions in the phase portrait to provide
state feedback for reinforcement learning applications.

Figure 10.8 illustrates the phase portrait for a two-contact moment
residual controller engaging an irregular planar triangle that is
representative of the kinds of models that Coelho acquired from
experiments using real robots and three-dimensional objects. The left panel
shows the case when the two-contact moment residual controller derives
tactile feedback from the particular pair of faces indicated. The initial
contact configuration is illustrated in inset (a). The gradient of the moment
residual potential drives the system to intermediate grasp configuration (b)
and ultimately converges to configuration (c), where the rate of change in
value of the potential  is approximately zero. The region defined by states
that lead to the same attractor is called the basin of attraction—states in the
neighborhood of this trajectory are funneled to the same equilibrium state.
We say that the irregular triangle activates the controller in this fashion
whenever the pair of contacts are placed on these two particular faces.

Figure 10.8
The evolution of a two-contact grasp using the moment residual control gradient. (Left) Three
intermediate two-contact geometries en route to the final grasp configuration and their respective 

 coordinates on the phase portrait for this pair of faces. (Right) Multiple distinct basins of
attraction when different pairs of faces are considered (reprinted by permission [59]).

A single controller may have multiple basins of attraction to reflect all
the ways that the irregular triangle can activate the moment residual
controller, as in the right panel of figure 10.8. Three such basins of
attraction, corresponding to the three unique combinations of two contacts



on three faces, are illustrated. Now, the state for the two-finger grasp on the
irregular planar triangle is the distribution over membership in four
independent phase portrait models {m0, m1, m2, m3}, where model m0

denotes convergence  and is common to all asymptotically stable
actions. Models m1, m2, and m3 summarize prior experience with the two-
contact moment residual controller and this object.

Each basin of attraction in figure 10.8 represents a prediction about the
asymptotic quality of the evolving grasp. The probability distribution over
models, therefore, can be used to compute the expected performance of
future equilibrium grasp configurations as t → ∞. For example, in figure
10.8, the minimum coefficient of friction (μ0) required (assuming point
contacts with friction) to generate internal grasp forces in the equilibrium
grasp configuration2 is computed for each of the models and, weighted by
the probability distribution over models, used to estimate the hidden
frictional properties of objects.

In Coelho’s experiment, each γi for a given closed-loop action is a
Boolean function asserting that Pr(mi|z1:k)>β, where β reflects the threshold
of belief that run-time observations z1:k could have been generated by model
mi. Given this novel definition of state, Coelho demonstrated that the robot
learns to allocate effectors τ ⊆{T, 1, 2} and fingertip load cells σ ⊆{T, 1, 2}
to measure contact positions and normals as needed to funnel the grasp state
to the neighborhood of the optimal solution.

Figure 10.9 illustrates the use of the control basis in a hypothetical
regrasping sequence reported by Coelho [55]. Five models are used to
explain observations. The grasp state for the two-contact grasp is a
probability distribution over models m0, m1, and m2; for the three-contact
grasp controller, the distribution is over models m0, m3, and m4. The state of
this grasping task is the union of these two control contexts. Observations
from controller  generate state [0 0 1 X X] (model m2) and trigger a
control transition to the three-contact grasp controller  that generates [0
X X 1 0] (model m3). From this state, the grasp policy de-allocates contact
#1 and runs  to generate state [1 1 0 X X] (models m0 and m1). There is
new information in the decision process every time the membership pattern
changes for a given controller—it is not necessary to converge before a new
controller is selected. This policy terminates when controller  recognizes



model m0 and m1 simultaneously, signifying that the system has reached the
attractor with the smallest residual error.

Figure 10.9
A simulated planar grasp of a square object. States are indicators of membership in models mi, i = 0,
4. X denotes “unknown,” “T” is the thumb, “1” is the index finger, and “2” is the middle finger.

In one demonstration, Coelho reported 64 models describing the
response of two- and three-contact moment residual controllers applied to
three different objects. The result of enhancing the state space significantly
reduced the number of tactile probes required to converge to a grasp and
significantly improved the asymptotic quality of the result [59, 55]). The
ensemble of control actions avoids challenging problems associated with
the local perspective of each of them and views grasping with incomplete
state as a sequential information gathering activity that optimizes the hand-
object interaction.

☐

Policies like that in figure 10.9 incorporate tacit properties of the hand
into the sensory and motor subtasks involved in grasping objects.
Information, like whether finger #1 is left or right of finger #2, is translated
into implicit (actionable) forms that can be reused in different, but related,



circumstances. For example, Coelho also demonstrated that the state of the
system can use the same transition structure to recognize the object based
solely on the history of tactile feedback [55].

Membership functions can also manage complexity by effectively
reducing the precision of state representation, particularly in the earliest
stages of sensorimotor development. In keeping with observations of
human neonates, the sensorimotor stage generally focuses on low-
dimensional behavior guided by a maturational schedule. Likewise, skills
on the developmental frontier of an “immature” robot can begin by
regulating important control contexts in low-dimensional sensorimotor
spaces, advancing the frontier as requisite skills are mastered. A
developmental curriculum like this uses systems of constraints on
perceptual and motor resources to throttle learning complexity and,
therefore, to focus on foundational developmental milestones.

10.2 A Multimodal Landscape of Attractors

Figure 10.10 shows a potential function ϕ1 defined on continuous
coordinates q =[ q1 q2 ] in a task space. Controller  defines a subset
of the domain called the region of attraction3 R1, where sensors σ1 detect the
requisite multimodal goals and potential ϕ1 is sensitive to movements in
motor units τ1. In general, the shape of R1 depends on the geometry of the
environment and can change over time. The one-dimensional control
gradient −∇ϕ1 is illustrated with the complementary one-dimensional
nullspace 𝒩1 that is orthogonal to the gradient everywhere in the interior of
R1.



Figure 10.10
The region of attraction R1 and the equilibrium set E1 ⊂R1 for navigation function ϕ1 corresponding
to controller c1

Whenever task space coordinates q are in the interior of set R1, controller
c1 can be engaged to funnel [44] task space coordinates into set E1

containing an equilibrium fixed point by gradient descent on ϕ1. The precise
time-domain response depends on the underlying dynamics of the
controlled process, and it may persist beyond the time at which the system
first reaches the fixed point. In this case, the controller actively suppresses
disturbances and, up to motor limits, confines task space coordinates to
remain near set E1. In this light, the controller serves a role commonly
found in other optimization frameworks. For example, the Lagrange
multiplier method [27] uses state-dependent functions like ϕ1 to represent
both the objective to be optimized and the constraints that optimization
must respect and the objective functions commonly used in optimization
methods are essentially potential functions.

The response of the controller is classified using the membership
function γ1 introduced in section 10.1.5—where γ is a probability
distribution over models in the phase portrait summarizing past experience.
As before, the membership function is used to recognize different ways that
the environment affords fixed points in potential ϕ1 and, thus, different ways
that it activates closed-loop reflexes. The precision of the membership



function can grow over extended periods of training and exploration but,
perhaps more importantly, simple membership functions can provide
critical structure in early developmental stages. For example, in a fully
observable context, a simple Boolean membership function can be used to
distinguish controllers that are activated by stimuli in the environment from
those that are not.

Simple structures like this can be exploited to accelerate early stages of
learning significantly.

When a second closed-loop action shares domain q as in figure 10.11,
the state of the system is approximated by the multi-objective control status
γ =[ γ1 γ2 ]T. Panel (a) shows how the geometric arrangement of the two
controllers can act as a proxy for task variables q by carving up the domain
into four disjoint regions in the q1-q2 plane where combinations of c1 and c2

can influence the objective performance of the system in different ways.
Panel (b) illustrates the image of the domain through closed-loop
interactions c1 and c2. The pair of control responses distinguish four
different multimodal aspects of the environmental scene. The term aspect is
a reference to a representation of objects invented in the computer vision
community [232, 231] to model the influence of viewpoint on visual
appearance. It is generalized here to model the influence of a controllable
whole-body sensor geometry on multimodal control interactions [258, 156,
157, 158, 155, 248, 164]. This framework represents multimodal
affordances in the environment using the common language of membership
functions over combinations of controllers and is used to model the joint
response of multiple, coupled dynamical systems.



Figure 10.11
The region of attraction surrounding E1 can be extended by sequential control. A sequential
combination of c1 and c2 can be configured to approach minimum E1 from all states in the interior of
R1 ∪R2.

The relative geometry of the attractors induces a sequential structure
called a probabilistic Aspect Transition Graph (ATG). It supports a
mathematical framework (section 10.2.1) for modeling decision-making in
situations where outcomes are partly random and partly under the control of
a decision maker.4 A trivial example of an ATG is illustrated in figure
10.11(b) by the single edge representing a TRACK action that transitions
between vertices E2 and E1.

In general, multimodal aspects are only partially observable, and a
history of predictable transitions between aspects is required to recognize
latent geometric structures completely as, for instance, when a visual
geometry is altered so that previously unseen aspects of an object can be
seen. In a similar fashion, the generalized aspect supports transitions from
purely visual states to visual and tactile states to realize contact forces and
grasps. In the remainder of the text, the term aspect is used as a synonym
for the multimodal state of the control task.

As the number of attractors increases, so does the precision of the multi-
objective control state. Moreover, the geometrical arrangement of attractors
can reveal transition structures that form roadmaps through the state space.
In the context of a particular room or object, for instance, such a roadmap
can be used to optimize the current sensor geometry with respect to signals
afforded by the environment and required by a task.



Example: Multi-Objective Visual Inspection Task

Hart and Grupen [107] presented a control basis program that uses
POSTURAL, SEARCH, and TRACK control actions to construct a sequential skill
for reading barcodes. A bimanual robot, named Dexter (figure 10.12),
incorporates two 7-DOF whole arm manipulators (WAMs) from Barrett
Technology; two 3-fingered, 4-DOF Barrett hands; and a 2-DOF head
mechanism. Feedback from robot includes joint angle positions from each
actuated degree of freedom, six fingertip contact load cells, and a pair of
Sony cameras mounted on the head. The task was to inspect packages and
read barcodes for the purpose of routing packages in a large distribution
center.



Figure 10.12
A visual inspection sequence traverses an aspect transition graph defined by [γg γl γm γr] states and



POSTURAL, TRACK, and SEARCH actions in 𝒜 to read the barcode on packages

The focus of this example is a skill for reading the barcode on a
randomly oriented package. In some cases, the robot requires a contingency
for manipulating the package to control the viewing geometry. In this
context, the skill is preprogrammed sequential policy for optimizing the
viewing geometry of the object using control primitives and other
preconfigured skills.

ϕr : the POSTURAL range of motion objective (exercise 10.3.4) for each of
Dexter’s arms;
ϕc : the SEARCH action that samples places in ℝ3 where contact signals are
likely to be detected on fingertip loadcells given visual inputs;
Φg : a TRACK objective that engages sequences of contact placement and
force TRACK-ing primitives to implement a policy5 for grasp control [55,
233];
ϕm : a POSTURAL objective that optimizes the bimanual manipulability of the
arms (equation 10.12); and
ϕl : a POSTURAL localizability controller that optimizes stereo acuity using 

, where J is the stereo reconstruction Jacobian (section 4.7.3).

The state of the barcode reading application is represented in terms of
feedback status from TRACK and POSTURE controllers using membership
functions that distinguish the following categories in the phase portrait.

The program in the left column of figure 10.12 is designed to modify the
sensor geometry in order to improve visual acuity as necessary until the
barcode is readable. The middle column presents several snapshots of
Dexter performing a visual inspection task [107]. In panel (a), Dexter is in
his home posture—where all degrees of freedom in the robot (excluding the
hands) are in the middle of their respective ranges of motion—the outcome
of executing the closed-loop range of motion controller based on ϕr.



When Dexter is home, the visual field of view of the workspace is
unoccluded, and image differencing techniques distinguish foreground and
background pixels. The foreground blob is used as the reference for a
TRACK controller to foveate each eye on this stimulus. This controller is not
illustrated in figure 10.12, but it is running throughout the task to preserve
the conditions required for stereo triangulation and, thus, the conditions
required to localize the object.

On the basis of the Cartesian blob feedback, control setpoints are
submitted to arm controllers that position the fingertips near the surface of
the package where contact forces are expected. This is accomplished using
a SEARCH action based on potential ϕc that positions the hands at locations
sampled from the distribution Pr(contact|foreground blob). The result is the
sensor geometry in panel (b) that achieves contacts on some of the fingertip
load cells. From this state, the grasp policy Φg is engaged to bring all six
load cells into contact, distribute them so that the sum of measured contact
forces and moments is minimized, and CONVERGE to a reference grasp force
(panel (c)). Once the grasp is established, it continues to execute as the
superior control task in the multi-objective control configuration for all
subsequent actions to make sure that the grasp condition is preserved over
the course of subsequent manipulation actions.

Panel (d) shows the outcome of a composite action ϕm ⊲ Φg that has
locally optimized the manipulability of the bimanual hand-arm
configuration subject-to grasp control constraints. Between panel (d) and
panel (e), the robot executes ϕm ⊲ ϕl ⊲ Φg, where a hand-arm manipulability
controller is subordinate to a controller that descends the gradient of the
binocular localizability field (section 4.7.3) to optimize visual acuity subject
to Φg.

The rightmost column shows images from the robot’s left camera (a)
when Dexter is in the home posture; (d) after the box has been grasped and
transported to a well-conditioned kinematic configuration; and (e) after the
object is moved to the location where binocular localization is adequate for
reading the barcode. Much of this strategy is aimed at exploiting kinematic
properties of the robot—manipulability, range of motion, and visual
localizability—to solve the task.



As demonstrated in this case study, programming control basis
applications involves designing a sequence of control actions that exploit
the tacit abilities of the sensorimotor system and transform them into
actionable forms. Development is, in part, about accumulating policies like
this with embedded control knowledge and using these temporally extended
skills as actions in a hierarchical behavioral system.

The program Φbcr (barcode reader) in figure 10.12 responds robustly to a
large variety of instances in the class of barcode reading problems—it is
robust to variation in run-time conditions like table height, object shape and
initial location. Moreover, Φbcr handles these contingencies internally and
summarizes all of this activity in status feedback γbcr ∈{0, 1, 2} for use in
applications that invoke this skill.

In the next section, we introduce a framework for learning optimal
control compositions for behavior like Φbcr. We discuss how implicit
knowledge structures like Φbcr can be acquired using a semi-autonomous,
exploration-based learning process and can be transferred to new instances
of behavior in this class.

☐

10.2.1 Reinforcement Learning in a Landscape of Attractors

The Markov Decision Process (MDP) is an appropriate mathematical
framework for sequential decision processes like that shown in figure
10.12. A system is Markovian if knowledge of its current state sk provides a
sufficient context for choosing the optimal control action  from that state.
Formally, an MDP is a tuple,

where S is the set of system states, A is the set of actions, Ψ⊆S ×A defines
the subset of actions that are allowed from a particular state, P:S ×A×S →
[0, 1] is the probability that state sk and action ak generates a transition to
state sk+1, and R:S ×A → ℝ is a function that maps state-action pairs to a
real-valued reward [236].

A policy, π(s, a), is a function that returns the probability of selecting
action a∈Ψ from state s∈S in order to optimize future rewards R. One of the



virtues of reinforcement learning is that prior knowledge of the transition
policy P in equation 10.13 is not required to estimate an optimal policy.
Instead, RL can compile these transition probabilities directly into implicit
knowledge embedded in the policy. However, because P transfers
efficiently to other tasks, reinforcement learning also contributes a means of
accumulating explicit knowledge by estimating P explicitly.

In the rest of this section, we describe a particular means of solving for
the optimal solution to an MDP using Q-learning [288, 289].

The Bellman Equation—Following Sutton and Barto [268], the value of
state s under a policy π, denoted Vπ(s), is the expected sum of discounted
future rewards when policy π is executed from state s,

where E{·} denotes the expected value, 0.0<γ ≤ 1.0 represents a
discounting factor per decision, and scalar rt is the reward received at time t.

If we extract the k =0 term from equation 10.14,

where π(s, a) is the fixed policy defining the probability of selecting action
a from state s;  is the transition probability of the underlying MDP—that
is, the probability that  and  is the reward associated with this
transition. The expected value in the last expression is just Vπ(s′), so that

Value functions derived from policy π(s, a) interact with an underlying
MDP to provide a partial ordering over all possible policies. If policy π
achieves more reward than π′, then Vπ(s)≥V π′(s) for all s∈S. The optimal



policy π* produces a value function, V*, that dominates all other value
functions possible,

Since the optimal policy produces the most value at every state, it can be
written without reference to π*,

which is known as the Bellman optimality condition. This condition
establishes a consistency relation between the value of state s, Vπ(s), and the
value of possible successor states, Vπ(s′). The Bellman condition requires
that the value of a state must be the sum of the discounted value of the
expected next state and a reward R(s, a) expected en route. Once a suitable
estimate of V*(s) is attained, any policy that is greedy with respect to V*(s)
is an optimal policy.

Value Iteration—A collection of algorithms used to compute optimal
policies from complete knowledge of the underlying MDP are called
Dynamic Programming (DP) algorithms. Within this general class,
Reinforcement Learning (RL) algorithms [268] are distinguished by
properties that make them ideal for realizing developmental systems.

Equation 10.15 provides the basis for a numerical iteration with which to
estimate Vπ(s).

This relation is used in value iteration algorithms that converges to Vπ as k
→ ∞ [268]. Typically, dynamic programming employs an iterative sweep
though the state-action space called a full backup. However, reinforcement
learning techniques generally estimate Vπ(s) using sampled backups. If a
robot starts from random initial states and follows a fixed policy π while
accumulating statistics regarding the average discounted reward achieved
from each state, then these averages will converge uniformly to the value
function Vπ as the number of visits to each state approaches infinity.



Although optimality guarantees are compromised for sampled exploration,
this type of algorithm is important for developing robots because it permits
samples to be drawn most often from regions of the state and action space
that appear to be most fruitful with respect to the task. Regardless of the
implementation, greedy ascent of the converged value function constitutes
an optimal policy for accumulating reward.

To improve the policy, π(s, a), the backup process explores actions other
than those prescribed by the greedy ascent of V(s) and uses the current
estimate of Vπ(s) to approximate the subsequent value of adhering to π from
that point on. To see this clearly, we can write the value recursion in state-
action form, referred to as the quality function.

The policy adapts to exploration by evaluating whether there exists an
action, a, other than π(s), for which Q(s, a)>Q(s, π(s)). If so, then it is better
to alter the policy to call for this new action every time state s is visited.
The new policy, π′, is identical to π, except that in state s, it now
recommends the new action a. The policy improvement theorem [268]
guarantees that a procedure like this will lead monotonically toward optimal
policies.

Another practical modification to value iteration examines the quality of
adjacent states exclusively:

where γ is, once again, a discount factor that accounts for expected future
rewards, and a new parameter α<1 is used to apply an appropriate weight to
the most recent experiment relative to the existing experience codified in
Q(s, a)k. Watkins [288, 289] showed that this algorithm converges to
optimal policies in many useful kinds of problems. Rewriting this
expression in a slightly different form reveals the commonly used Q-
learning backup equation



10.2.2 Skills

The control basis supports a Markovian description of controlled
interactions between an embodied agent and a complex Newtonian
environment. It provides all sensor-effector combinations in the embodied
system and, with appropriate potential functions, all closed-loop actions and
states afforded by the environment. For interesting robots and
environments, this can yield an enormous variety of primitive actions and
states.

Reinforcement learning [267] is a natural choice for solving an MDP
derived from the control basis because it can compose optimal sequences of
actions from direct exploratory interaction with the domain. However,
machine learning algorithms that depend on randomized exploration are
subject to the curse of dimensionality [22], which predicts that the
probability of discovering rewarding state-action combinations decreases
exponentially as the dimensionality of the search space grows. Without an
effective developmental organization, infants (or interesting robots) might
spend a large fraction of their lifetime exploring actions that do not produce
reward.

Lessons learned from the overview of sensorimotor learning during the
first year in a human infant’s life (chapter 9) suggest that development is
guided by a genetically determined curriculum that proceeds, for example,
from midline to periphery and from head to tail. These patterns of
maturation in the human infant can be conveniently expressed using Ψ⊂A
(equation 10.13)—a lower-dimensional subset of all actions A that are
eligible for execution from each state. Ψ can be used to define a
developmental frontier—a small niche in the state-action space that can be
explored efficiently and that evolves as new skills accumulate. Skills that
are acquired within a developmental frontier are added to A to support more
skills as the frontier advances—acquiring hierarchical skills that quickly
subsume more primitive actions when possible and help to throttle
incremental learning complexity. Membership functions for a∈Ψ can be
used to satisfy logical conditions for safety, reachability, controllability, and
learnability—properties that support otherwise autonomous learning agents.

Hierarchy reduces the computational expense of planning in AI systems
by storing and reusing successful plans. A sequence of planned actions that



perform well in many related situations can be stored in memory as a macro
—an operator that maps a set of initial conditions (or preconditions) into
outcomes (or postconditions). Good macros are added to the set of actions A
considered by a planner. Although the size of the state-action space
increases as a result, the extra cost of searching for solutions in S ×A is
more than compensated by the value of the implict knowledge stored in the
macro—eliminating the need to reconstruct the sequence in every case in
which it is applicable. Versions of this powerful idea are employed
frequently in planners to accumulate knowledge and to amortize the cost of
search [85, 197, 5, 195, 152, 161, 86, 37, 51, 52].

In developmental psychology, Piaget used the term schema to refer to a
kind of macro that infants use to explore their environments [227, 226]. He
proposed that infant development occurs in stages that acquire schemas
using a process called accommodation that composes sequences of actions
to achieve a goal. A schema serves both as an abstract action and as the
basis for a cognitive representation. From the Piagetian perspective, new
experiences are interpreted using a process of assimilation, wherein
representations of the world are organized using these schematic units of
knowledge. Thus, by this account, the infant interprets experiences based on
what they already know.

Roboticists have also explored schemas as an action-based
representation for common knowledge regarding objects and categories.
Arbib [6] discussed schemas as hierarchical functional entities that are used
to construct new schemas. Drescher [72] used schemas to represent
empirical cause and effect relations in sensorimotor systems. Holmes and
Isbell [116] provided a more general implementation of the schema
proposed by Drescher. They created suitable rules for schema discovery and
refinement and showed that they compare favorably to other predictive state
representation.

Computational issues in robotic applications involving complex forms of
state estimation and high-dimensional control have been used to motivate
hierarchical architectures as well. Many examples exist in the literature
ranging from architectures for process control, behavior-based systems,
planners in partially observable systems, architectures that focus on the full
range from gross motor (mobility) to fine motor (manipulation) skills, and
architectures for next-generation autonomous robot systems [194, 3, 123,



215, 134, 11, 164]. This challenging problem remains an active and open
area of research, and developmental systems offer a new theoretical and
experimental perspective.

The final chapter illustates the use of the control basis to construct an
analog of the native reflexes with which an embodied agent discovers
sequential skills—hierarchical, multimodal roadmaps in S ×A. We examine
how knowledge is compiled into actionable forms and used to help solve
problems that are out of reach without the necessary prerequisite
knowledge. The goal is to motivate a cumulative hierarchy of skills and to
evaluate the impact of the resulting implicit knowledge on the performance
of future problem-solving.

10.3 Exercises

1. Critical points. Figure 10.1 distinguished three types of critical points on
the basis of properties of the Hessian of the potential function in the
neighborhood of the critical point.

(a) What property of the Hessian is associated with the neighborhood
surrounding the type 0 critical point?
(b) What type of critical points can be present in a harmonic function,
and how are these types of critical points reflected in the Hessian?
(c) What type of critical points correspond to unstable fixed points in a
potential function, and what are the properties of the Hessian that
determines that a critical point is unstable?

2. Navigation functions: Hooke’s law. Argue for or against the proposition
that the quadratic potential function (Hooke’s law) is a navigation function.
3. Navigation functions: Harmonic potential. Discuss the qualifications
of a harmonic function as a navigation function.
4. Navigation functions: Range of motion potential. Consider a 3R
manipulator, where each joint angle θi is restricted to the interval [−π/2,
+π/2]. The range of motion reflex helps to avoid joint range limits by
distributing deviations from θi =0 evenly over all three degrees of freedom.



(a) Is this range of motion potential a navigation function?
(b) Write the expression for the control Jacobian Jc.

5. Grasp contact control. Consider a planar grasping problem where the
generalized object force (or wrench) generated by contact i applied at
position θi is

Define the wrench residual produced by N contacts, to be . In the
following, consider the two-contact system (N =2) on the circular object
illustrated here.

(a) Write a closed-form expression for potential function ϕw =ρTρ that
represents the (scalar) squared wrench residual.
(b) Show that ϕw(θ′), where θ′=(θ1 −θ2) is a navigation function on −π ≤
θ′<+π.
(c) Write the control Jacobian for the wrench residual

(d) Derive a closed-form solution for the right pseudoinverse

(e) Write the expression defining differential movements for θ1 and θ2

that descend the wrench residual potential



6. Invent your own homework. Make a homework problem out of your
favorite content in chapter 10. Write a question and a solution for it from
the material in the reading. They should call for a comparison, an
observation, a short discussion, analysis, and calculation—it should not take
more than 30 [min] to solve open-book.

1. In the form of a control Jacobian, the manipulability measure defined by Yoshikawa [299] is
negated to make the extremum in the field a minimum instead of a maximum.
2. In [55], a mathematical programming problem subject to inequality constraints is used to compute
μ0.
3. For our purposes, the interior of the region (or basin) of attraction is essentially equivalent to the
gray areas in the phase portraits shown in figures 10.8 and 10.9—both sets represent the full range of
interaction that a particular controller can elicit from the environment.
4. In general, this graph is equivalent to the probabilistic transition function required to compute
optimal policies in discrete-time stochastic systems described using Markov Decision Processes
(MDPs). This subject will be introduced in section 10.2.1.
5. The convention in the control basis framework is to distinguish control compositions (concurrent
or sequential) from reflexive/primitive controllers by using a capital Φ.



11
Case Study: Learning to Walk

Gross motor skills involve whole-body movements that recruit large muscle
groups and apply relatively large forces to the environment. They are a
central focus of development in human children during the first two years
of life and rely heavily on maturational structure to organize coordinated
motor behavior. The pronounced influence of native reflexes and patterns of
myelination in the brain during this period contribute to overcoming what
would otherwise be crushing sensory and motor complexity. The result is
layer upon layer of skills for balance and coordinated behavior in limbs that
contribute to the mastery of one’s body—focused on large-scale movement,
strength and range of motion, vestibular and proprioceptive feedback, body
dynamics, postural stability, and locomotion. The right side of figure 9.18
illustrates some of the milestones that demonstrate these new skills for
whole-body postural control. Gross motor skills are elaborated over time by
processes of accomodation and assimilation to be robust to the demands of
different circumstances—they are enhanced and more fully integrated into
other tasks throughout childhood and into adulthood.

This book concludes with a discussion of a sequence of experiments
conducted by Huber et al. [121, 122, 120, 118, 119, 117] in which
hierarchical skills associated with four-legged postural stability and
locomotion were learned using principles of developmental organization
observed in human infants. This case study highlights an embodied system
that uses computational models of operant conditioning and theories of
reinforcement to learn to control, and subsequently to exploit, some of the
events generated during its interaction with the world.



11.1 Thing: A Quadruped

The robot in figure 11.1 (Thing) was developed to investigate techniques for
developmental learning in multilegged locomotion. The robot coordinate
frame is attached rigidly to the center of mass (COM) of the platform. The -
axis of this frame defines the longitudinal axis of the robot, the -axis runs
laterally, and the -axis is parallel to the world frame -axis, as illustrated in
figure 11.2.

Figure 11.1
Thing, a 12-DOF quadruped



Figure 11.2
A single leg in contact with an external, horizontal surface creates a moment about the platform’s
center of mass

Thing has four legs li:i=0, 3 each with three independent degrees of
freedom [θ0 θ1 θ2]i actuated by small servo motors. These angles are
measured by sensors in the legs and used to compute the Cartesian endpoint
position of each leg ri ∈R3 in the robot coordinate frame for i=0, 3 using
forward kinematic relations. The contact load carried by each leg is
estimated by measuring torques in the leg motors. Thresholds on motor
torques are used to identify those legs currently supporting the platform.
The robot continuously measures stride length over a sequence of
supporting stances to estimate its pose (r, φ)COM in world coordinates, where
φ is the yaw angle about the world frame -axis.

Finally, Thing uses a forward-looking infrared proximity detector that
transmits IR light and observes reflected energy from environmental
surfaces. Depending on the viewing geometry, environmental surfaces
within about 20–25 [cm] of the robot typically reflect enough energy to be
detected. Thing uses this information to accumulate a model of detected
obstacles in a world frame occupancy grid for use in motion control.

11.2 Controllers and Control Combinatorics



Locomotor skills for Thing employed three classes of closed-loop actions
drawn from the control basis: (1) moment residual controllers for platform
stability; (2) kinematic conditioning controllers; and (3) a single, closed-
loop path controller.

ϕm: Moment Residual Control—An important class of controllers for
walking and grasping actively reconfigures the geometry of contact
interactions in order to minimize the net forces and moments created by
(sub)sets of contacts on environmental surfaces. All tasks performed by
Thing required that the robot learn to place three or four contacts on the
ground that define a support polygon and to shift its center of mass in the x-
x plane into one of these polygons. A byproduct of transitioning between
stable states is the accumulation of displacements (Δx, Δy, Δθ) of the robot
in the plane. In this case, this happens when the robot has its feet planted
and moves its center of mass to achieve the zero moment point. Placing
contacts is the responsibility of a family of moment residual controllers
based on gradient descent of ϕm.

For Thing, the contact between the leg li and the ground is assumed to be
a frictionless point contact (section 5.3.3, table 5.2) that produces unit
magnitude force fi in the +  direction (figure 11.2) on the endpoint of the
robot leg and, consequently, produces moment ri ×fi about the COM.

The quadratic moment residual,

is a scalar potential function whose objective underlies many approaches to
gait stability and prehensile control in the literature. For example, the zero
moment point (ZMP) within a support polygon of a statically stable stance
[284] coincides with the minimum in equation 11.1. Minima in ϕm derived
from unit forces such as these also distribute contact forces evenly.

The sensory resource model for moment control is the contact position ri

between the endpoint of each leg and the ground plane Σm ={r0, r1, r2, r3}.
Legs that are not in contact yield fi =0 and, thus, do not influence ρ or ϕm.
The quadratic potential function in equation 11.1 can be configured with
one or more contacts, but to stabilize the walking platform, only n≥3
contacts are considered. Since Thing has four legs, there are 



possible combinations1 of contact states that can be optimized with respect
to the moment residual control potential ϕm.

The effector resource model for moment control describes all the effector
variables that can be used to descend the gradient of the squared moment
residual 𝒯m ={r0, r1, r2, r3, (r, φ)COM}. However, we observe that for triples
involving legs i, j, and k, the moment residual depends only on five
independent effector variables, {ri, rj, rk, (r, φ)COM} that can be combined in

ways. For the (single) quadruped stance, the moment residual is sensitive to
all six independent effector variables, so that the total number of unique
parameterizations of moment residual controllers is

ϕk: Range of Motion Kinematic Conditioning Control—If other concerns
(e.g., stability and locomotion) cause legs to approach kinematic limits,
controllers derived from ϕk can be used to reposture multiple limbs so that
each joint is closer to the center of its range of motion. When applied to
legs in contact with the ground, this action produces byproduct
displacements of the robot’s body and, therefore, can contribute to body
translation and rotation as well as range of motion.

Each of Thing’s legs can be subject to a quadratic range of motion
(ROM) potential2

where j enumerates the three degrees of freedom of leg li and θj is the
midrange setpoint for joint j. This objective function can be summed over
any subset of the robot’s four legs and yields a potential with a positive
definite Hessian that satisfies the essential criteria of a navigation function.



In this case, the sensory resource model for Thing consists of the joint
angle configuration [θ0 θ1 θ2] of independent legs in the set Σk ={l0, l1, l2, l3},
and, therefore, the power set of effector resources 
combinations of one, two, three, and four legs.

The kinematic condition of leg li can be modified by changing its
endpoint position or by leaving it planted on the ground and changing the
value of Thing’s position rCOM and/or orientation φCOM. Therefore, the effector
resource model for the ROM objective ϕk is 𝒯k ={l0, l1, l2, l3, (r, φ)COM}, and
the total number of kinematic conditioning controllers is

where  denotes 15 unique σk whose kinematic condition is measured
using proprioceptive sensors and the terms in the brackets count the unique
combinations of effector resources used to optimize the ROM measures. The
leftmost term in brackets is the number of combinations of leg effectors,
and the rightmost term in brackets is the number of combinations of effector
variables (r, φ)COM. The result is a family of

control configurations within the class of kinematic conditioning
controllers.

ϕp: Path Control—The third primitive action is a closed-loop controller
designed to execute collision-free trajectories to Cartesian goals. Potential
field ϕp is a two-dimensional harmonic function (section 10.1.1) defined on
a discrete (x, y) occupancy grid describing the ground plane. The potential
at FREESPACE grid nodes is computed using numerical relaxation techniques
introduced in appendix C to create the harmonic potential field.
Observations of obstacles are added to the occupancy grid as they are
discovered using a combination of odometry and the forward-looking
infrared bumper. Goal configurations are provided by an external process or
user. The gradient of the artificial potential defines collision-free motion



plans from every FREESPACE grid node to the GOAL states. If no goals are
reachable, the interior of ϕp converges everywhere to the OBSTACLE potential
and no gradient (nor, therefore, path) exists.

Only one (whole-body) ϕp primitive control configuration was provided
in the control design described by Huber. However, during early stages of
development, there is no control support for executing the paths generated
—prerequisite skills for postural stability, walking, and changing direction
do not, as yet, exist. The path control primitive is similar in this regard to
the stepping reflex in human newborns; it exists at birth but is inhibited by a
variety of mechanisms and becomes possible, both physically and
computationally, only after supporting prerequisite skills are acquired and
integrated.

Huber’s developmental approach involved the hierarchical programming
of locomotor skills over a sequence of autonomous learning experiments
that acquire implicit knowledge in the form of reusable skills. The goal was
to evaluate how skill composition influences performance in exploration-
based learning. Initially, the range of resources available is restricted and
foundational skills are constructed from control basis primitives. After that,
hybrid compositions of primitives and acquired skills extend the
developmental frontier, structure continuing exploration, reuse acquired
control knowledge, and address increasingly complex tasks.

11.3 Locomotion Controllers

The initial size of the landscape of attractors is determined by the number of
resource parameterizations for potentials ϕm and ϕk, a total of 187+110=297
possible choices from each state. If we assume binary control feedback
∈{!CONV, CONV}, as proposed in [118, 117]), this control design could
potentially yield 2297 states and, if k-way concurrency is permitted (section
10.1.4), then the number of actions is bounded by the sum of permutations,3

For k =3, this yields 26, 022, 249 possible concurrent actions accessible
from each of the 2297 states! The resulting MDP is expressive enough to



represent a large variety of skills and tasks, but finding these solutions in
such a large state-action space is extremely challenging by randomized
exploration. Fortunately, many of these actions are unproductive; many
states are unreachable or uncontrollable and should be eliminated to support
safe exploration. Developmental constraints on state-action combinations
can be used to create smaller search spaces on a skill-by-skill basis and,
therefore, support autonomous and sample efficient reinforcement learning.

The Landscape of Stable Stances—Thing can execute four unique tripod
stances. We assume that in each of these four cases, the robot can elect to
apply ϕm-based moment residual control references to one of the three legs
involved at a time. The effect is to improve the static stability of the tripod
in question by placing a single leg optimally. This recruitment model yields
12 unique moment residual controllers—one for each of three controllable
legs in each of the four unique tripods.

To manage periodic gaits involving four independent legs, a single
kinematic conditioning controller based on the ϕk potential was incorporated
into set Ψ at this stage. It addresses the condition of intermediate four-
legged stances that occur during a gait by controlling the robot heading φ
exclusively while foot placements remain fixed. The 12 moment residual
controllers plus this single kinematic conditioning controller comprise a set
of 13 unique primitive controllers for learning skills—restricting the range
of sensor and motor resources biases the kinds of rewards accessible to the
robot and, in this particular case, it emphasizes control sequences that cause
rotation. Huber allowed up to three concurrent objectives to be addressed
simultaneously in the experiments reported in [117], leading potentially to

permutations of the 13 primitive controllers.

11.3.1 Aggregate State Representation

To evaluate the functional condition of the four-legged robot, the status of
the 13 control primitives is summarized using five Boolean membership
functions γ (section 10.1.5), one signifying the convergence status of the
moment residual controller for each of the four unique tripod stances—



regardless of the motor resources that were used to assert these conditions
—and another indicating the status of the kinematic conditioning objective.
Huber aggregated the feedback status of independent actions using * as a
wildcard for the effector resource. If we write the control configurations in
the form  and define —a
disjunction over the three alternative τ resources for each tripod—then the
state vector underlying this developmental context is written

resulting in 25 states, from which each of the 1885 concurrent primitive
actions can be engaged.

Stability and Feasibility Constraints—Huber [118, 119] proposed an
analog of native neurological structure in animals in the form of a Discrete
Event Dynamic System (DEDS). In the DEDS formalism [219, 239, 263,
153], the state of the underlying system is assumed to evolve within a set of
discrete events, some subset of which are controllable. In robotic systems,
discrete event systems are used to regulate safety, kinodynamic
conditioning, to guarantee real-time constraints and freedom from deadlock
[121, 122, 120, 118, 119]. Constraints are represented as Boolean axioms
that describe patterns of events that must either be preserved or excluded in
the controlled system. This approach reduces the complexity of the state-
action space significantly, eliminates catastrophic errors during exploration,
and supports single trial learning algorithms.

Example: Logical Organization of Locomotor Skills

To guarantee that Thing will not fall over in the course of learning, Huber
required that at least one moment residual controller was converged
(yielding a stable stance) at all times. This specification was expressed as a
logical disjunction over the four bits that describe the convergence status of
the four distinct moment residual controllers. Given the state definition in
equation 11.3, this specification is written



Logical structure like this effectively reduces the number of legal actions
available from each state. As Huber points out, concurrent moment residual
controller , for example, can potentially modify all five
predicates yielding the state [ 0 0 0 0 0 ], where equation 11.4 evaluates
FALSE. Removing all such control compositions reduces the number of legal
actions available per state from 1885 to 157—a great deal of exploration
may be required to discover this kind of logical structure empirically.
Moreover, observing constraints like equation 11.4 supports autonomous
exploration by avoiding conditions that might require costly external resets.

Figure 11.3
Two different three-legged stances that share legs 1 and 3. Only one of the two stances formed by
legs (l1l2l3) and (l0l1l3) can be stable at a time.

Huber used a similar logical expression to capture kinematic structure
specific to this legged platform and, thus, to make exploration and system
identification more efficient. For Thing, it was observed that there are
mutually exclusive stable stances (figure 11.3) when two different tripods
share a pair of legs. This condition is expressed succinctly as a logical
constraint on patterns of control equilibria.

This kinematic constraint reduces the number of accessible states from
32 to 16 each with an average of about 50 control alternatives (down from
157) [117].

☐

11.4 Learning the rotate Skill



Due in large part to the rotational symmetry of the robot, the first skill that
Thing acquired was a policy for accumulating a heading change. The
robot’s morphology and the structured control design were well suited to
learning the ROTATE gait.4 The reward function is defined to be proportional
to positive angular rotation of the robot’s heading.

Index k designates consecutive values of the robot heading φk following
convergence of action ak. This provides the robot with immediate reward
(that could be zero or negative) after each control decision.

Q-learning was used to approximate the optimal value function for rotate
tasks subject to stability constraints. For each state-action combination, the
value of that pair was approximated over the course of training (section
10.2.1) and stored in a lookup table. Learning performance was very
repeatable—the same value function was computed over many separate
experiments in a single, uninterrupted trial that lasted roughly 11 minutes.
Figure 11.4 shows a representative learning curve, and figure 11.5 shows
the transition dynamics of the newly acquired ROTATE skill. ROTATE
incorporates 16 of the 32 observable states in the design. The four states in
the central cycle constitute a four-legged rotation gait—the 12 other states
occur stochastically during exploration and make the policy more robust to
disturbances at run-time by restoring the system to the central cycle if
conditions permit.

Figure 11.4
Learning performance for the ROTATE gait. (Left) A learning curve. (Right) Greedy performance.



Figure 11.5
The ROTATE policy with contingencies for a variety of run-time contexts. The central cycle has
transition probabilities of greater than 95% in the training context.

Figure 11.6 illustrates the policy for counterclockwise rotation showing
the leg movements and net heading change accumulated by control action.
It is the dual of figure 11.5 with actions at nodes and transitions triggered
by events in the state representation. The figure omits the subordinate
tertiary controllers included in figure 11.5 for actions Φ1 and Φ2. Although
they frequently show up in the learned policies, they are less consequential.
Skills like ROTATE are, to some degree, error correcting toward a limit cycle,
transferrable, and extensible (e.g., to other terrains), so they are attractive
candidates for building blocks in a cumulative cognitive representation of
the world.



Figure 11.6
The 0-1-2-3 leg control sequence in the ROTATE policy accumulates approximately 45 [deg] per cycle

11.5 The STEP Skill

The STEP5 skill is used to coordinate a longitudinal stepping gait that
accumulates translational movements of the platform along the initial
heading while preserving at least one stable tripod at all times. The
immediate reinforcement defined to achieve this goal rewards translational
displacements along the current heading

where hT =[cos(φk−1)sin(φk−1)] is the current heading and dT =[(xk −xk−1)(yk

−yk−1)] is the translational displacement in the ground plane. The second
term in the reward is the same as the reward function for the ROTATE skill
and thus encourages independent rotation and translation skills. Safety
constraints and kinematic limitations remain as they were for the ROTATE
skill.

Sensorimotor Recruitment—The resource model extended the model used
in ROTATE by incorporating additional kinematic conditioning controllers



and longitudinal translation as an effector used to optimize range of motion
in stable stances [117]. As a result, the upper bound on the number of states
|S| in the MDP is 28 (up from 25 for ROTATE) and the logical stability
(equation 11.4) and kinematic feasibility (equation 11.5) constraints, in this
context, restrict this design to 72 legal states and, with up to two-way
concurrency, an average of 257 actions per state. This design has
approximately four times the number of states and five times the average
number of actions per state than the simpler ROTATE skill.

Two variants of the acquired STEP skill were learned in repeated
experiments—a periodic strategy with approximately constant forward
motion and a more complex, aperiodic strategy with time-varying forward
velocity. The periodic policy was considered superior to the aperiodic
variant because it produced more uniform translational progress with a
significantly simpler policy. Figure 11.7 shows a typical learning curve for
the periodic STEP skill.   After approximately three hours of exploration
(roughly 10, 000 control steps) in a single trial, the platform achieved
roughly 0.0013 [m/action], where m is the projection of robot displacements
in ℝ2 along the current heading.

Figure 11.7
Performance of the STEP skill during learning (left) and the greedy performance (right) with
exploration turned off

11.6 Hierarchical walk and navigate Skills

ROTATE and STEP represent coordinated motor patterns for creating
displacements of the robot while preserving a stable stance. As with



parameterized primitive actions, these sequential skills are tied directly to
the resources and morphology of the embodied system. They are also a
functional abstraction that insulates subsequent learning and problem-
solving from the details of low-level mobility and stability concerns.

The WALK6 skill is a hierarchical composition of control basis primitives
together with the ROTATE and STEP skills. Goals in the neighborhood of the
robot are defined as random offsets from the robot’s current position. To
represent state, the run-time status of ROTATE and STEP are added to the state
vector resulting in 212 states and an average of 231 actions per state. The
reward function for WALK favors sequences of actions that reduce the
Cartesian distance to the goal,

where dk is the x-y distance between the robot and the goal position
following the convergence of action k.

The relative impact of the ROTATE and STEP skills on learning
performance was evaluated by formulating three versions of the learning
problem: (1) primitives alone (baseline); (2) primitives and the ROTATE skill;
and (3) primitives with both ROTATE and STEP skills. Figure 11.8 compares
the performance of the three WALK designs.

Figure 11.8
(Left) Performance of WALK skill learning in the three cases considered. (Right) Percentage of actions
that were derived from ROTATE and STEP as opposed to primitives in each of the three problem
designs.



The graph on the right of figure 11.8 shows that when WALK engages
primitives and ROTATE (case 2, green), the final skill only uses ROTATE
approximately 2 percent of the time. Even this limited use, however,
manages heading errors in the platform and improves performance
significantly over case 1 (red) when primitive actions are used exclusively.
When WALK uses primitives along with both ROTATE and STEP (case 3, blue),
temporally extended skills are selected as optimal actions more than 50
percent of the time, indicating a significant reuse of the implicit knowledge
in the ROTATE and STEP skills with primitives acting primarily to glue the
skills together.

Figure 11.9 illustrates several paths generated by the WALK skill from
surrounding initial positions and randomized initial orientations. After
roughly 10,000 actions (approximately 200 minutes of training), the
performance of both larger problem designs exceeds the more economical
base system that uses primitive actions exclusively. Moreover, although
case 2 and case 3 designs yield approximately the same asymptotic
performance after about 110000 actions (over 36 hours of training), the
larger (case 3) design has significant advantages early in training. However,
even after this extended period of training, the case 1 design (with access
only to primitives) had significant difficulty achieving good performance on
the WALK skill.

Figure 11.9
Trajectories toward x=1.4 [m] and y =1.6 [m] from a variety of initial positions. The final heading of
the platform is not specified.



Huber concluded his experiments in hierarchical walking skills by
constructing a hand-built NAVIGATE skill that could walk between start and
goal states at some distance from one another given obstacles whose
positions are unknown a priori. It incorporated versions of ROTATE, STEP,
and WALK to implement rotation and translation gaits that also permitted a
small range of crab angles. It also included the path control primitive
introduced in section 11.2 to compute collision-free trajectories to the goal
location. NAVIGATE detected environmental boundaries at run-time and
integrated them into a spatially indexed occupancy grid. In this
implementation, the numerical relaxation incorporates new boundaries and
computes new harmonic potentials at about 5 [Hz].

Figure 11.10 is a demonstration of this integrated mobility controller
[118]. The NAVIGATE skill employs a simple, three-state supervisory policy
to traverse from the x in the right foreground to the x in the left background
and avoids obstacles. Over time, the coarse geometry of the environment
emerged in the occupancy grid in the left-hand column. The integrated
mobility controller can solve many such mazes provided a path exists at the
resolution of the occupancy grid [295]. The control knowledge encoded in
this hierarchy of controllers is capable of creating motor plans that are not
possible in flat control learning schemes. The contingencies built into each
skill can be enhanced in every task that engages them and are activated as
needed without the need to consider them directly while learning to
compose the NAVIGATE skill.



Figure 11.10
Behavior generated by the integrated, hierarchical mobility controller for Thing

11.7 Developmental Performance: Hierarchical Gross Motor
Skills

This case study examined a computational account of early development
consisting of a native control stack (an analog of spinal reflexes),
bootstrapped by tacit knowledge encoded in the sensory and motor



morphology and subject to a developmental curriculum for engaging
resources in the maturing agent. The hypothesis, supported by experimental
data, is that the newborn uses this structure to acquire hierarchical skills—
implicit knowledge structures describing how environmental affordances
align with kinodynamic aptitudes in the embodied agent—in an otherwise
autonomous learning architecture.

A quadruped (Thing) was provided with a combinatorial basis for
closed-loop interactions with the environment called the control basis and
engaged in building a library of temporally-extended control skills. The
data shows that native structure, a maturational schedule for engaging
resources, and a recursive basis for control and abstraction is an effective
means of controlling the incremental complexity of skill learning in high-
dimensional systems.

The foundation of the hierarchical agent consists of a set native closed-
loop actions A enumerated by combining sensory, motor, and computational
resources using the control basis framework. This comprehensive set of
potential actions is subject to morphological constraints to yield a set of
exploratory actions A0. The developmental curriculum focuses exploration
on Ψi+1 ⊂Ai to discover sequential skills for controlling new aspects of the
robot-world interaction. As these reusable skills are acquired, they are
added to Ai and used to create a new developmental frontier Ψ to build new
skills that extend the set of actions Ai+1 over time.

Figure 11.11 summarizes the developmental schedule described in this
section. The outcome of each stage is a new skill (underlined). In stage 1,
the new ROTATE skill is learned using a constrained set of primitive actions
and their associated states. This program is acquired reliably in about 11
[min] of training by virtue of the highly structured developmental context
Ψ1. Much of the structure exploited in the design is used to guarantee that
the robot can explore autonomously without making functional errors—in
particular, Thing learns to walk without falling down. In stage 2, a slightly
less restricted developmental context was used to learn the new STEP skill.
STEP composes primitives to make forward progress along the current
heading. Stage 3 was used to construct a skill called WALK that coordinates
ROTATE and STEP skills along with primitive controllers to create
quadrupedal gaits that move to arbitrary positions nearby. The performance



in the series of WALK designs suggests that the learning algorithm is
successful at reusing prior control knowledge when it exists. Finally, a
NAVIGATE skill integrates path controller ϕp with the WALK skill to execute a
sequence of via points to circumvent obstacles and arrive at goal positions.

Figure 11.11
A summary of the developmental staging of an integrated navigation behavior. In stage 1, the
acquired ROTATE policy achieves 0.35 [rad/action] in 11 [min]. In stage 2, STEP achieves 1.3
[mm/action] in 180 [min], and in stage 3, WALK achieves 1.53 [mm/action] in 480 [min].

Skills concerning flat terrain and constraints ensuring stability proved
quite robust. Small changes in the environment occasionally generate
unexpected transitions in the acquired skills, sometime visiting states that
had been generated by stochastic exploration. If this was the case, then the
learned policy may recover on its own. When environmental changes were
more significant, these deviations may require additional learned
contingencies. In subsequent work, MacDonald [122, 182] tested the
proposition that skills represented in this form can be extended
monotonically to address these contingencies without disrupting existing
skills, as is the case with many behavior-based architectures. He found that
incremental extensions of the skills presented in this chapter transferred



successfully to piecewise horizontal terrains. Figure 11.12 shows a traversal
that Thing executed using this extended WALK policy on such a terrain.

Figure 11.12
A demonstration of walking over irregular terrain. Steps (white) are 1 [cm] high.



Part IV Summary: Foundations for Hierarchical Skills

A great deal of the credit for patterns of growth and development in animals
belongs to knowledge encoded tacitly in the infant’s body. The infant
human relies on reflexive structures to generate behavior and to shape the
acquisition of higher-level (or more integrated) behavior. Thus, native
reflexes help to defeat complexity as they help the infant learn what their
bodies can do and how these skills are afforded by the world about them.
Processes of discovery and growth are constantly extending sensory and
motor skills and, with them, the complexity of the interactions that the
growing child can explore.

Part IV considers how properties of sensorimotor machines introduced in
earlier parts of the book lead efficiently to hierarchies of reuseable skills.
We begin with a description of hierarchy in the cerebral cortex and review a
variety of low-level limbic, brainstem, bridge, and postural reflexes that
structure and shape exploration during the first year in a human infant’s life.
Reflexes and the layers of integrated skills they support constitute a
sensorimotor instruction set that matures over time via growth processes to
control the latent complexity of interactions between the newborn and the
world.

In chapter 9, important clinical observations regarding infant
sensorimotor development are reviewed to inform the design of a
computational framework that can be used in a robot. Rather than mimic the
morphology of the infant or the sequence of milestones illustrated in figure
9.18, the goal is a computational framework that can explain the milestones
in the figure in the context of the infant human’s morphology and
developmental context.

The premise of chapter 10 is that the embodiment of an organism—its
morphology (kinematics and dynamics), the type and geometrical
distribution of sensors, aptitudes for precision, strength, and speed—
influences the behavior acquired. The chapter introduces the foundations of
a computational agent that can exploit opportunities encoded tacitly in the
embodied robot system while controlling the incremental complexity of
learning in unstructured environments.



The control basis framework was introduced to provide a computational
analog for the native reflexes in animals that play an important role in
cumulative learning and development. The architecture expresses control
interactions in a landscape of attractors parameterized by a nonstationary
set of sensor and motor resources. A developmental curriculum in this
framework is used to support experimentation with the reflexes and
maturational mechanisms presented in chapter 9. A taxonomy of closed-
loop actions consisting of POSTURE, TRACK, and SEARCH actions
distinguished by the source of stimuli. We illustrated a handcrafted example
of a single skill in the “barcode reader” and conclude part IV with a
longitudinal example of hierarchical skill development for quadruped
walking and navigation (originally published by Huber [118]) that
demonstrates the leverage that hierarchies of implicit knowledge (skills)
lend to performance on subsequent learning tasks.

1. Combinations of n elements of a set chosen r at a time (aka “n choose r”) is computed as follows:

2. Huber used a combination of the manipulability potential (equation 10.12) and joint range of
motion constraints. Similar behavior is observed with the simpler quadratic formulation presented in
equation 11.2, which we use here in order to introduce a useful ROM potential.
3. Permutations of n elements of a set chosen r at a time is computed .
4. This presentation departs from the terminology in [117] by using ROTATE to describe the optimal,
sequential policy that Huber called the “turning gait.”
5. Here, the STEP skill denotes the optimal, sequential policy that Huber called the straight line gait
[117].
6. WALK is equivalent to Huber’s goal directed walking gait in [117].



A
Tools for Linear Analysis

A.1 Linear Algebra

Elements of the set of real numbers ℝ span a one-dimensional, linear subset
of Euclidean space. Suppose that two such sets, S1 and S2, describe
independent one-dimensional spaces. Together, these sets span (or form a
basis for) ℝ2 so that every element of ℝ2 can be represented by a unique
pair of values in the set S1 ×S2. If we denote the directions of the lines in ℝ2

derived from S1 and S2 by 1 and 2, respectively, then elements of ℝ2 can be
expressed as a=a1 1 + a2 2. Direction vectors 1 and 1 have unit length (or
magnitude) (indicated by the “hat” over the variable) in ℝ2 and vectors a
can have arbitrary magnitude. The magnitude of a vector is the Euclidean
length of the vector and generalizes to ℝn in a straightforward manner.

Definition A.1: Vector magnitude.  A vector a=[ a1 a2 ⋯ an ]∈ ℝn has
magnitude . Vectors with unit magnitude are called unit vectors.

Definition A.2: Unit vector.  Unit vector =[ a1/∥a∥ a2/∥a∥ ⋯ an/∥a∥ ] is
parallel to the vector a and has unit length (∥ ∥=1).

Basis vectors are linearly independent if it is not possible to generate i

from weighted combinations of j ≠ i. Definition A.3 states this requirement
another way.

Definition A.3: Linear independence.  a1 1 +a2 2 +⋯+an n =0 if and only
if a1 =a2 =⋯=an =0.



There can be many linearly independent bases for a vector space.
However, as the definition implies, each will have the same number of
independent basis vectors equal to the dimension of the vector space—to
measure distance in Euclidean geometry, an orthonormal basis is required.

By convention, we denote all vectors v as column vectors and their
transpose vT as row vectors. Then, a mathematical projection operator called
the scalar product is defined:

Definition A.4: Scalar (dot) product.  For vectors a, b∈ ℝn, the scalar
product is written

The scalar projection defined by definition A.4 has a geometrical
interpretation in ℝn as well.

If a and b are both unit length, then the inner product yields the cosine of
the angle between  and .

The column vectors of V=[ 1 2 … n] constitute an orthonormal basis set
for ℝn if the vi are unit length and mutually orthogonal.

Definition A.5: Orthogonality.  For vectors i, j ∈ ℝn, i and j are
orthogonal if and only if .

Definition A.5 is equivalent to requiring that i does not project onto the
linear subspace spanned by j, ∀j ≠ i.

There are many uses for the scalar product. One that comes up often in
chapters 3, 4, and 6 is the squared magnitude of a vector quantity, as for
instance in the kinetic energy of a particle , which is a scalar
product of the particle’s velocity vector weighted by the particle’s mass.
Thus, kinetic energy is a scalar quantity and has no direction per se,
whereas momentum, mv, is a vector quantity. Work, W =∫ fTds, is an
important scalar quantity computed as the integral of the scalar product of
force and displacement vectors.



Figure A.1
The geometrical interpretation of the vector product

The torque due to an applied force acting through a lever is another form
of vector transformation that we see in chapter 6. In figure A.1, a point R,
located at position r in the x-y plane, experiences a force, f, that creates a
torque, τ, about an axis that is perpendicular to the plane and passes through
the center of rotation, O. It is easy to see that the radial component of f
creates no torque around O, so that it is only the perpendicular component,
f⊥, that contributes to the torque. Alternatively, we can see that the 
component of f creates a torque in the same direction as τ of magnitude fyrx,
and the  component of f creates torque fxry in the opposite direction.
Therefore, we find that the net torque is expressed τz =fyrx −fxry. The torque
is subscripted z because it was derived from vectors in the x-y plane and
rotates particle R about the ẑ-axis through O. This geometric intuition holds
in three dimensions as well as the plane, and the result becomes

This system of equations can be written in terms of the product of a matrix
operator that defines the cross (or vector) product. Note that a vector
crossed with a vector is another vector, unlike the scalar (dot) product.

Definition A.6: Vector (cross) product in ℝ3.



where , , and  are the unit basis vectors for the first, second, and third
components of vectors a and b, respectively. The cross product of two, non-
parallel vectors creates a third vector that is mutually orthogonal to the two
original vectors—a×b=0 is a sufficient condition to establish that a and b
are parallel.

Alternatively, the cross product of vectors a and b can be written a×b=
(∥a∥∥b∥ sin(θ)) , where θ is the angle between a and b measured in the
plane formed by the vectors, and  is the unit normal to this plane.
However, there are two choices for this normal,  and − . The sign is
determined by employing a right-handed convention for coordinate
systems. The right-handed coordinate frame obeys the commutative elations
involving the vector product:

Finally, the rules for multiplication using vector and scalar products are
not naive generalizations of rules for multiplication of scalars. Some
important rules for vector operators include

The outer product maps two vectors in ℝn into a ℝn×n matrix, sometimes
known as the covariance of the two vectors.



Definition A.7: Outer product.  Given a, b ∈ ℝn,

A.2 Matrix Inverse

The determinant of a square matrix, A∈ ℝn×n, is an important scalar
measure of the condition of a matrix. In chapter 4, we use the determinant
as part of an analysis of the kinematic acuity of spatial transformations.

Definition A.8: Determinant.

where Δij is the ij-cofactor of matrix A. To compute Δij, we construct matrix
Aij by removing the ith row and jth column from A, then

Definition A.9: Inverse.  The inverse of square matrix A∈ ℝn×n is written
A−1 and is defined by the relation AA−1 =I, where I is the n×n identity
matrix.

To compute the matrix inverse, an n×n matrix of the cofactors of A is
defined

The adjoint matrix of A is defined to be the transpose of the matrix of
cofactors



Now, if detA ≠ 0, we can define a unique inverse for the square matrix

A.3 Definiteness

Throughout the text, the positive/negative definiteness of a matrix is used to
establish other important properties in functions, mechanisms, and in the
stability of dynamical systems—including those that employ feedback
controllers. Definiteness is defined formally using the following conditions.

Definition A.10: Definiteness properties.  Definiteness properties for
matrix A∈ ℝn×n are established by checking the validity of the following
assertions:

The following three theorems can be used to establish the definiteness of
a square matrix A. Without loss of generality, we will only state the
theorems in the form suitable for establishing positive definiteness.

Theorem A.3.1.  Symmetric matrix A∈ ℝn×n is positive definite if and only
all the eigenvalues of A are positive.

Sylvester’s criterion can also be used to establish positive definiteness.
We define the ith leading principal minor of A, Ai, to be the first i rows and
columns of A.

Theorem A.3.2 (Sylvester’s theorem).  Symmetric matrix A∈ ℝn×n is
positive definite if and only if detAi >0, i=1, …, n.

Square matrices that are not symmetric can still be positive definite.

Theorem A.3.3.  Square nonsymmetric matrix A∈ ℝn×n is positive definite
if and only if (A + AT)/2 is positive definite.



A.4 Hessian

The behavior of compensated dynamical systems is analyzed in several
discussions throughout the book. A useful analogy of such systems
considers the inertial system in the form of a particle that rolls over a
potential surface. Properties of this surface can be used to establish
important features of real systems, including their asymptotic stability.

Some aspects of the shape of a function can be characterized by
examining the Hessian of the function. Consider a generic multivariable
nonlinear function, f(q0, q1, …, qn), defined on some compact domain Q∈
ℝn.

Definition A.11  The Hessian of function f(·), ∂2f/∂q2, is defined by a
matrix of partial second derivatives,

Definition A.12: Convex.  If the Hessian is positive semidefinite over the
domain Q, then the function f(·) is convex over Q.

Definition A.13: Harmonic.  If the trace of the Hessian (Laplacian) is
identically zero—that is,

then function f(·) is harmonic.

Definition A.14: Subharmonic.  If the trace of the Hessian is negative
semidefinite—that is,

then function f(·) is subharmonic.



Each of these properties implies that a greedy descent (ascent) of the
function f(·) will eventually reach an extremum in the field. In chapters 3
and 10, we see that constraints on the shape of functions like those
discussed here can be used to see how the state of dynamical systems will
evolve as t → ∞.

A.5 Matrix Norms

It is often necessary to measure the distance between vectors of matrices or
to characterize their magnitude. There are many choices for distance
measures that all share the basic properties of a valid metric space.

Definition A.15: Distance metrics.  A valid distance metric can be any
real-valued function such that

For example, the magnitude of a vector v =[xy]∈R2 defined using the l2

norm ∥v∥2 =√x2 +y2 satisfies these conditions as does the l∞ norm of a matrix
∥A∥. Both of these choices can be used to measure distance in vectors and
linear transforms.

A.6 Quadratic Forms

Linear transform y =Ax can be described by examining how sets of inputs
map to sets of outputs. The mapping process reveals how matrix A deforms
one vector space into another and can be used to determine how constraints
in x map to constraints in y. For example, in chapter 4, linearized kinematic
mappings that depend on robot posture project force and precision from
configuration space to Cartesian space and, thus, speak directly to the
ability of the robot to address tasks in the world [208, 298].

To visualize the mapping, consider a set 𝒰 of input vectors x∈ ℝm that
define a (hyper)sphere of radius . Set 𝒰 is



deformed in the process of mapping through the n×m transform A to
produce an n-dimensional hyperellipsoid in the output space.

The quadratic form yTM−1y defines a (hyper)ellipsoidal set ℰ ={ y∈ ℝn |
yTM−1y ≤ k2 } centered on the origin for the positive definite and symmetric
matrix M−1 ∈ ℝn×n. The shape of this ellipse reveals the anisotropic
character of the linear transformation.

Example: Plotting the Quadratic Form

Consider . This quadratic

yields the equation of the output ellipsoid:

The principal axes of the output set are computed by solving for the
eigenvalues {λ1, λ2} and eigenvectors { 1, 2} of M−1, where unit length
eigenvectors i determine the orientation of the ellipse and eigenvalues λi

determine the length of the corresponding axes. The eigenvalues of M−1 are
found by solving for the roots, λ, of the characteristic polynomial.

The eigenvectors are determined by substituting the resulting eigenvalues
back into equation A.3 and solving for the corresponding direction in the
output space.



The diagonalized M−1 matrix represents the quadratic form in terms of the
eigenvector basis where elements of the output set are written y =e1 1 +e2 2

and e=[e1 e2]T.

The boundary of set ℰ ={ y | yTM−1y ≤ k2 } is defined by the equality 
. Therefore,

This ellipsoid is illustrated in figure A.2 for k =1.

Figure A.2
A set of inputs on the left, x∈𝒰, maps to the set of outputs on the right, y∈ℰ, via the linear mapping y
=Ax



The eigenvectors of M−1 =(AAT)−1 are equivalent to those for M.
Moreover, if the eigenvalues of M−1 are (λ1, λ2), then the eigenvalues of M
are ( ). This observation has some practical significance
because it eliminates the need to invert M when plotting the quadratic form.
The magnitude of the principal axes of the quadratic form representing the
mapping x=Ay (figure A.2) are, therefore,  in the 1 direction
and  in the 2 direction.

☐

A.7 Singular Value Decomposition

The singular value decomposition (SVD) provides the most significant
decomposition of matrices [208] and yields the most direct insight into
general (nonsquare) linear transformations. We consider the general linear
mapping y =Ax, which transforms an input space, x∈ ℝn, to an output
space, y∈ ℝm, using matrix A∈ ℝm×n. The quadratic construction ATA is a
positive semidefinite matrix whose eigenvalues (solutions to det(λIn

−ATA)=0) are greater than or equal to zero. We define the singular values of
A, , which are sorted into descending order, σ1 ≥σ2 ≥⋯≥σp ≥0.
Matrix A has a rank k ≤ p=min(m, n), which is defined by the number of
nonzero singular values.

Definition A.16: SVD.  For A∈ ℝm×n, there exist orthogonal matrices

such that

There are two possible cases to consider: (1) m≥n, in which some outputs in
ℝm are, in general, not achievable; and (2) m<n, in which there may be
many inputs that map to the same output. These cases lead to two diagonal
forms for Σ:



Methods exist for efficiently computing orthogonal matrices U and V
given Σ [96]. Since U and V are orthogonal, they satisfy

Following the discussion in Nakamura [208] and Yoshikawa [298], if we
define y*=UTy and x*=VTx, then we can rewrite the original transformation
y*=Σx*. This form makes it clear that the transformation is composed of
three steps; a rotation from x to x* that preserves length, a directionally
dependent scaling by the σi from x* to y*, and another length preserving
rotation from y* to y.

Definition A.17: Span and nullspace.  The singular value decomposition
of matrix A provides a convenient definition of the span and the nullspace
of the transformation.

1. ℛ(A) = span[u1, …uk], where the ui ∈ ℝm, i=1, k are the first k column
vectors of the U matrix and define the singular vectors (the principal axes)
of the transform A.
2. 𝒩(A) = span[vk+1, …, vn], where the vi ∈ ℝn, i = k +1, n are the last (n−k)
column vectors of the V matrix and define an orthonormal basis for the
nullspace of matrix A—the input subspace that produces no net output (the
homogeneous part of a solution for y).

On the basis of the singular value decomposition, other important
properties of matrix A can be computed easily.

Definition A.18: Determinant.  The product of singular values is the
determinant, .



Definition A.19: Condition number.  The condition number of matrix A is
the ratio of the largest singular value to the smallest, κ=σ1/σp.

A.8 Scalar Condition Metrics for Linear Transforms

Tools for linear analysis include a number of scalar metrics that provide
insight into the quality of the transformation y =Ax [298, 208]. Often the
measure of quality in linear transformations is described in terms of their
singular values and singular vectors. The principal axes of the conditioning
ellipsoid (AAT) are the singular vectors of A, and the degree of
amplification in these directions are proportional to the corresponding
singular values. Section A.7 presents a brief description of the singular
value decomposition. For our purposes, however, it is sufficient to note that
the singular vectors of A are the eigenvectors of AAT, and the singular
values of A are the square roots of the eigenvalues of AAT. Our summary
here assumes that the ellipsoid is expressed in terms of its singular values
[σ1 σ2 ⋯ σm] of A (or the square root of the eigenvalues,  of
AAT) in descending order of magnitude.

A.8.1 Minimum Singular Value

Small singular values imply that relatively large differences in the inputs
map to relatively small differences in the output space. This happens in
directions parallel to the minor axis of the conditioning ellipsoid. The rank
of A is equivalent to the number, r, of nonzero singular values it has. If
r<m, then the transformation is singular (has lost rank) and σi =0, i>r.
Outputs are insensitive to inputs in directions corresponding to zero
singular values. In these directions, infinite changes in the inputs cause zero
change in the outputs. One measure of the spatial performance of linear
transformations is the magnitude of the minimum singular value,
κ1(A)=σmin, which can be thought of as the distance from a singularity.

A.8.2 Condition Number

The condition number, 1 ≤ κ2(A) ≤ ∞, describes how errors in the input
space can be amplified by the linear transformation. To derive the condition



number, define an estimate, , that is an approximate solution to x=A−1y;
then we may write  so that . Therefore,

Since y =Ax, ||y|| ≤ ||A|| ||x|| and ||x||≥||y||/||A||, so that

and

When κ2 =1, the linear transformation is isotropic and small errors in x
correspond uniformly to small errors in y. As matrix A approaches a
singularity, κ2 → ∞.

The condition number is equivalent to the ratio of the maximum and
minimum singular values of A and, therefore, describes the eccentricity of
the conditioning ellipsoid. The inverse of the condition number

varies continuously between zero (singular configurations) and unity
(isotropic configurations).

A.8.3 Volume

The volume of the ellipsoid can be appreciable even when the matrix A is
near a singularity, but in general, volume increases as the conditioning
ellipsoid becomes more spherical—that is, when the linear transformation is
isotropic—and when A is singular, its volume is zero.

The product of the singular values yields a measure proportional to the
volume of the ellipsoid, which can also be derived using the determinant of
AAT,



A.8.4 Radius

The geometric mean is a related conditioning metric defined by

The geometric mean describes the radius of the hypersphere with the same
volume as the output ellipsoid.

This kind of analysis applied to linearized kinematic equations can be
used to highlight kinematic aptitudes and limitations of embodied
mechanical systems, including the transmission of forces and velocities; the
precision and sensitivity of the device to errors; the ability to create
accelerations; and the effects of inertia. We will examine these properties in
the next several sections.

Example: Scalar Conditioning Metrics Applied to Roger’s Arm

Figure A.3 illustrates the scalar conditioning metrics introduced in this
section for Roger’s arm using singular values computed as the square root
of the eigenvalues of JJT. In panels (b), (c), (e), and (f), regions inside the
reachable workspace that map to black are singular configurations; maxima
are endpoint positions that correspond to isotropic configurations. These
metrics are qualitatively equivalent, distinguished primarily in their
sensitivity near isotropic configurations and their computational expense.
The information in panel (d), the condition number, is equivalent to panel
(c).



Figure A.3
Scalar kinematic conditioning metrics for Roger’s planar 2R arm configuration. Each panel shows
the range of the respective metric from black (minimum) to white (maximum).

☐

A.9 The Pseudoinverse

Given two matrices, A∈ ℝm×n and B∈ ℝn×m, the Penrose conditions [222] are
used to define the conditions under which B can serve as an inverse of A.
These conditions distinguish increasingly strong inverse relations—the
generalized inverse, the reflexive generalized inverse, and the
pseudoinverse [208].



The generalized and reflexive generalized inverse are not unique. They
represent a family of possible inverse relations. The pseudoinverse,
however, selects a single, unique (least squares) element from the set of
generalized inverses. If S represents a set of inverse mappings, then 

.
Consider y =Ax, where y∈ ℝm, A∈ ℝm×n, and x∈ ℝn. For such a

transformation, rank(A) cannot exceed p=min(m, n), and the pseudoinverse
(or Moore-Penrose generalized inverse) of A is written for three cases [209,
140].

Case 1: m >n and rank(A)=n

In this case, ATA∈ ℝn×n is nonsingular, and arbitrary outputs y are not
achievable in general—the system represents a set of m equations in n
unknowns (the xi) and is therefore overdetermined. This is often the case
when matrix A is a linear regression for a scalar y in terms of n
independent variables xi ∈x. Matrix A is estimated from m observations
of the relation, each of which may be corrupted with noise, and m can be
very large relative to n. In this case, the inverse for A is selected that
minimizes the quadratic output error

This quadratic form is positive semidefinite for any given A, so gradient
descent of the squared error defines a unique minimum where



Equation A.5 is the left pseudoinverse for m≥n and solves for the inverse
of A that minimizes the squared error ∥y−Ax∥2 of the original
overdetermined system.

Case 2: m <n and rank(A)=m

For this case, AAT ∈ ℝm×m is nonsingular and the transform represents
too few constraint equations to uniquely determine the n unknowns. As a
result, the transform is underdetermined and redundant. Consequently,
there are many inputs x that map to the same y.

The pseudoinverse yields the single element of this set that satisfies a
constrained optimization problem:

To solve such a problem, we formulate the Lagrangian equation for the
constrained system in terms of Lagrange multiplier λ,

Following [140], the solution is subject to two necessary conditions. The
first of these establishes the optimality condition,



which yields

The second necessary condition requires

Substituting the result from equation A.6 into this expression yields

Combining the results from equations A.6 and A.7 yields the least
squares (optimal) solution

from which the pseudoinverse of A for the underdetermined case is
written

Equation A.8 is the right pseudoinverse for when there are excess
degrees of freedom in an underdetermined system. It yields the exact
solution x=A#y that minimizes ∥x∥2.

Case 3: m = n and rank(A)=m

Both the left and right pseudoinverses simplify to the ordinary matrix
inverse when m=n.



The pseudoinverse provides a general framework for treating problems that
engage different resources in different contexts and that address many
different tasks. Especially interesting is its application to robots with excess
degrees of freedom. In this case, redundancy can be used to address
multiple simultaneous goals in a concurrent control design.

The nonsingular Jacobian, J∈ ℝm×n, where m is the number of rows and n
is the number of columns, has rank p=min(m, n). When m<n, the
pseudoinverse can also be used to define an (n − m) dimensional orthogonal
space defined by 𝒩 =(In − J#J)—the annihilator of matrix J—where In is
the n × n identity matrix. We can demonstrate that J# and (In − J#J) are
orthogonal by computing their inner product,

given that I−J#J is symmetric (so that [I−J#J]=[I−J#J]T) and that J#JJ# =J#

by the Penrose conditions. Therefore, (In −J#J) defines the orthogonal linear
nullspace 𝒩 of pseudoinverse J#. This important definition allows us to
consider subordinate objectives that reside exclusively in the nullspace of
superior objectives without disturbing the superior task.

A.10 Linear Integral Transforms

A transform is a function that performs a mapping between sets.1

Transforms can take many forms. In section 4.3, the homogeneous
transform is introduced to map Euclidean sets to other Euclidean sets. In
this section, we introduce two more linear transforms that have had a huge
impact on the solution and/or manipulation of equations that are central to
the study of sensory and motor systems.

Linear integral transforms map equations from one domain to another in
order to make certain forms of analysis and interpretation simpler. They
change the representation of a function in a manner that makes important
structure in the equations clear. The change in representation involves



mapping (or projecting) it into an orthogonal basis. In general, the integral
transform takes the form

This mapping transforms functions f(t) into image function F(u) using the
kernel function Φ(t, u). Important kinds of transforms yield well-defined
inverse kernel functions that perform the inverse mapping

The integral transforms we will consider with invertible kernels constitute
bijective mappings between sets {f(t)} and its image {F(u)}. These
mappings are one-to-one. This means that single elements of {f(t)} map to
single elements of {F(u)}. Moreover, bijections are onto—they “cover” the
target set in the sense that they do not omit any element of either set and
they do not leave any of the elements in the target domain inaccessible
through the mapping. As a result, the integral transform we consider can be
described by tabulating transform pairs f(t)↔F(u) for (many) elements of
these sets.

We will introduce two important bijective integral transforms. The
Fourier transform maps time-domain functions (signals) into complex
spectral coefficients that weight sinusoidal basis functions in a complex
frequency space. This transformation makes finding and manipulating
information in signals more efficient. The related Laplace transform maps
differential functions (often found in dynamical/control systems) into
polynomial functions of a complex frequency s whose roots can be used to
solve the original differential equation.

A.10.1 Complex Numbers

The complex number s is used to denote a coordinate in the real-imaginary
plane. It can be expressed in the Cartesian form,



where σ =Re(s) is the real part of s, ω =Im(s) is the imaginary part of s, and 
. Parameters σ and ω are real numbers, and i is called imaginary

because there is no real solution to . Imaginary numbers are defined by
their coordinates (σ, ω) on the two-dimensional complex plane, where the
horizontal axis is the real part σ of s, and the vertical axis is the imaginary
part ω of s as in figure A.4.

This same concept can be expressed in polar form, where

where  is the magnitude of s, and ϕ=atan(ω/σ) is the phase of s.

Figure A.4
The complex plane

Complex numbers extend the one-dimensional real number line to the
two-dimensional complex plane. They are equal only if both their real and
imaginary parts are equal. The complex conjugate of s=σ +iω, is s*=σ −iω,
both addition and subtraction work as they would in two-dimensional
vectors in the plane. Other operators (*, /, ) are defined to extend
common algebraic manipulation into the complex plane in reasonable ways
—relational operators don’t naturally extend to the complex plane.

Exponentiation of purely imaginary numbers is defined using Euler’s
formula,

so that the exponentiation of an arbitrary complex number is defined:



A.10.2 Fourier Transform

The Fourier transform represents a signal by projecting it onto an infinite
family of sinusoidal basis functions. It defines a mapping from a spatial or
temporal function to a representation that makes its frequency content
explicit. For example, a one-dimensional spatial signal f(x) maps via the
Fourier transform to its frequency-domain equivalent

where x [m] is the spatial variable and ωx [cycles/m] is the corresponding
spatial frequency so that (2πωxx) is in radians and . One may view
the Fourier transform as the projection of function f(x) onto basis functions
e−i(2πωxx) for spatial frequencies ωx ∈[−∞, ∞]. The spectral coefficients F(ωx)
determine how much the exponential sinusoidal basis functions account for
the global shape of function f(x).

The inverse transform is written

Table A.1 lists several Fourier transform pairs that make evaluating the
transform much more convenient for commonly used functions. The
analysis can be applied to orthogonal spatial and temporal dimensions of a
function independently. For example, in an acoustic signal, time varying
acoustic waves can be represented as the weighted sum of pure tones with
appropriate phase (determined by the mixture of sine and cosine at a
particular frequency). In this case, F(ωt)=ℱ[f(t)] defines the spectral
coefficients for frequency components measured in cycles/second. In
computer vision, the signal consists of a luminosity function that varies
spatially over the image plane. When the sampling interval is in units of
pixels (picture elements), the transform identifies the response of the



sinusoidal basis at spatial frequencies, ω =(ωx, ωy), in cycles/pixel. In video
applications, both spatial and temporal variation exists and F(ω) describes
the amplitude and phase of the sinusoidal basis functions in terms of spatial
and temporal frequencies.

Table A.1
Fourier Transform Pairs

Decomposed in this fashion, certain spatiotemporal frequencies can be
isolated, they can be amplified or attenuated to influence the appearance of
the signal, or they can be used to recognize distinctive patterns in periodic
functions. The transform can be generalized to account for multiple
orthogonal spatial dimensions (in image analysis) and spatiotemporal
variables (in video analysis).

In computer vision, the transform is written to accommodate two spatial
variables on the image plane. The corresponding definitions in 2D are



Transforming the spatial signal into the frequency-domain provides the
basis for a very general spatial frequency filter. Table A.1 summarizes some
of the one-dimensional Fourier transform pairs that will be useful in this
text.

We conclude this brief introduction to the Fourier transform with two
important theorems—the shift theorem and the convolution theorem—that
prove useful in section 8.1.1, where we analyze the effect of sampling on
the information content of signals.
Shift Theorem. The shift theorem follows directly from the definition of
the Fourier transform. If

We conclude that the Fourier transform of the shifted function is a weighted
version of the Fourier transform of the original function. The new spectral
coefficients are weighted by an exponential term that depends on the spatial
frequency, ωx.



Convolution Theorem. The convolution of two functions f(x) and g(x),
written f(x)*g(x), is defined by the integral,

where α is the integration variable. The result, h(x), is the spatial
correlation of function f(x) and function g(x), whose origin has been shifted
to α =x. An important property of convolution lies in the way it maps
through the Fourier transform.

This result is commonly known as the convolution theorem and it states
that convolution in the spatial-domain is equivalent to multiplication in the
frequency-domain. It is easy to show that the opposite is also true;
convolution in the frequency-domain is equivalent to multiplication in the
spatial-domain. As we will see, this result implies that convolution
operators are essentially spectral filters whose bandpass characteristics are
defined by their Fourier transforms.

A.10.3 Laplace Transform

The Laplace transform is a linear bijection between the time-domain (t) and
the complex frequency-domain (s) defined by a reciprocal pair of integral
transforms.



The Laplace transform ℒ[f(t)] converges for functions f(t) that are
solutions to linear differential equations with constant coefficients—these
functions are Laplace-transformable. The image F(s) of f(t) is a function
the complex frequency variable s [rad/sec] so that the product st is in [rad].
The expression for the inverse Laplace transform ℒ−1[·] makes it clear that
f(t) is assumed to be a weighted sum of exponential terms est. Recall that for
s=σ +iω,

so that the function f(t) is captured in the form of the sum of weighted,
exponentially damped, odd and even sinusoids.

Example: Laplace Transform of an Exponential Function f (t)=et

In this case,

If we assume that Re(s)>1 so that e(1−s)t → 0 as t → ∞, then

and therefore,

☐

Example: Laplace Transform of the Unit Step Function f (t)=1, t ≥0



The function in figure A.5 is known as the unit step function u(t). It is often
used in the analysis of a differential equation whose inputs can change
instantaneously (at t=0), such as when the reference input to a control
system changes. The Laplace transform of the unit step is as follows:

Figure A.5
The unit step input function

 

Table A.2 includes these and several other functions that are commonly
encountered in linear system analysis.

Table A.2
Laplace transform pairs



A.11 Time-Domain Responses for the Harmonic Oscillator

Consider only the class of asymptotically stable systems (those with roots
that have negative real parts). In this case, equation 3.14 yields either two
distinct roots (when ζ ≠ 1) or a repeated real root (when ζ =1).

Two Distinct Roots (ζ ≠ 1)—Two distinct roots of equation 3.13 include
both distinct real roots (ζ >1) and complex conjugate roots (ζ <1)—the
former leading to an overdamped response and the latter resulting in an
underdamped response. In both of these situations, the time-domain
solution is written in the form

and the complete solution in the time interval [0, ∞) is derived by
specifying three boundary conditions on x(t) with which to solve for



constants A0, A1, and A2. For example, general boundary conditions can be
used to describe a system that is released at time zero from position x0 and
velocity  that returns to equilibrium at x∞.2 Under these conditions, three
constraint equations can be written in the unknown coefficients,

so that a complete time-domain solution is determined:

Repeated Real Roots—(ζ =1)—A special case exists when ζ =1, in which
case the quadratic characteristic equation produces repeated real roots, s1

=s2 =−ωn. We might presume that the solution will take the form x(t)=A0

+A1e−ωnt, and this solution does satisfy the original differential equation, but
it does not provide the flexibility to address the general set of boundary
conditions proposed. Instead, it can be shown that all solutions of the form

also satisfy the original differential equation (see section 3.4, exercise 3b).
Given generic boundary conditions where the system is released at time

zero from position x0 with velocity  and returns to equilibrium at x∞, three
constraint equations can be written in the unknown coefficients,

so that a complete time-domain solution for the critically damped case is
determined:



Example: Time-Domain Response of the Spring-Mass-Damper

The second-order response generates four qualitatively different responses
that depend on the roots of the characteristic equation. To see how this
happens, consider a harmonic oscillator with spring constant K =1.0 [N/m],
mass m=2.0 [kg], and a variable damper  chosen for ζ
values in the interval [0.0, 2.0]. This example considers the time-domain
performance of this system subject to a particular boundary condition,

Case 1: Overdamped (ζ >1)

Under these boundary conditions, equation A.21 simplifies to

 The overdamped condition leads to a pair of distinct real roots—for ζ
=2.0, , and s1, 2 =−0.19, −2.64. When these roots are inserted into
equation A.23, they determine the overdamped response in the curve
labeled ζ =2.0 in figure A.6. The real root with the smallest absolute
value approaches its asymptote more slowly and will, therefore,
dominate the system’s asymptotic behavior. It produces a relatively
sluggish, non-oscillatory response that reflects the excessively
dissipative influence of the damper. As a result, overdamped control
configurations take comparatively longer to converge to equilibrium
setpoints than configurations with ζ =1.



Figure A.6
The response of the second-order PD position controller as a function of ζ (K =1.0 [N/m], m=2.0 [kg])
given boundary conditions  and x∞=1.0

Case 2: Underdamped (ζ<1)

When 0 ≤ ζ <1, roots s1 and s2 are complex conjugates

where α =−ζωn, , and . The imaginary parts of these
roots cause oscillations since eiωt =cos(ωt)+isin(ωt), and the real parts
cause the amplitude of the oscillations to decay exponentially over time.
These kinds of systems are underdamped because the forces in the spring
dominate dissipative forces in the damper.
 Inserting complex conjugate roots into equation A.23, we find



Substituting Euler’s formulas (eiωt =cos(ωt)+isin(ωt) and e−iωt =cos(ωt)
−isin(ωt)), we find

 This type of response is illustrated in figure A.6 in all the curves
where ζ <1. As ζ → 0, the behavior becomes less dissipative until at ζ =0
(when B =0), the roots are purely imaginary and the system behaves like
an ideal spring. In this configuration, x(t) undergoes a constant amplitude
oscillation at the natural frequency ωn, converting potential energy into
kinetic energy and back again, reversibly.

Case 3: Critically damped (ζ =1)

Evaluating this general solution (equation A.22) subject to these
boundary conditions (x0 =0, , and x∞=1) yields

Critically damped behavior is illustrated in figure A.6 by the curve
labeled ζ =1. It approaches zero error faster than the overdamped
configuration but does not oscillate so it is often the design target for
robot control applications.

☐

The progression through unstable, undamped, underdamped, critically
damped, and overdamped behavior in response to changes in the value of a
PD control parameter can be visualized in another way using the root locus
diagram that plots the pair of roots on the real-imaginary plane as a function
of a control parameter (K or B) in the PD control design. Usually, the



parameter in question is K. For example, in exercise 3.4.7a, the value of
mass m and damper B are held fixed, and the reader is asked to plot the
roots of the resulting second-order system to inform the choice of a
complementary spring constant K. However, the test parameter can be B as
well, as is the case in the following example.

Example: The Root Locus Diagram for the PD Control System

Figure A.7 plots the two roots (s1 in blue, and s2 in red) of equation 3.13
under the same conditions considered in Figure 3.15.

Figure A.7
The root locus for the continuum of responses underlying figure 3.15 when K =1.0 [Nm/rad], I =2.0
[kgm2], and −3.5 ≤ B ≤ 3.5 (corresponding to −1.24 ≤ ζ ≤ 1.24)

All PD control configurations with roots on the right half plane (σ
=Re(s)>0), where both B and ζ are negative, are unstable, with damper B
injecting rather than dissipating energy.

Starting on the right-hand side of the diagram, we observe a pair of
distinct real (positive) roots s1 and s2 that approach one another along the
real axis, converge into a repeated (positive) real root, and then depart to
form complex conjugates.

When the conjugate roots lie on the imaginary axis (where Re(s)=0), the
system response is undamped and marginally (or orbitally) stable. This
system configuration causes the system to oscillate about a setpoint while
conserving energy. As B continues to increase from the marginally stable
configuration, it generates the family of underdamped responses (0.0 ≤ ζ



<1.0) corresponding to 0 ≤ B <2.78. When B increases to the unique
critically damped configuration, where ζ =1.0 (and B is approximately
2.78), there is a pair of repeated (negative) real roots and the system is non-
oscillatory. Increasing B further causes the pair of roots to, once again,
depart from one another along the real axis. These system configurations
are overdamped and the excess damping may be less sensitive to
disturbances of greater magnitude at the cost of slower, more viscous
behavior.

The root locus allows designers to customize control parameters or even
include additional roots to change the locus and, thus, to shape the system
behavior.

☐

A.11.1 Frequency-Dependent Amplitude and Phase Response

Consider the transform pair for the sinusoidal input of frequency ω (table
A.2).

As before, the output of the system is the product of the closed-loop transfer
function and the input,

and we see that the forcing function contributes a pair of purely imaginary
conjugate roots s= ± iω. Therefore, the partial-fraction expansion of the
closed-loop transfer function subject to the sinusoidal forcing function will
look like

The inverse Laplace transform of these terms yields time-domain responses
like k1eiωt and k2e−iωt, respectively. Therefore, the response of the second-



order system to a sinusoidal input is also a sinusoid of the same frequency.3

Returning to equation A.25, we see that the magnitude of the sinusoidal
response is proportional to the amplitude of the forcing function, A, and the
gain expressed in the closed-loop transfer function

The influence of the CLTF on the response can be determined by evaluating
equation A.26 at the roots introduced by the forcing function (s= ± iω).

The result is a complex number with corresponding magnitude and phase,

Figure A.8 plots the magnitude and phase of the harmonic oscillator for
various values of the driving frequency ω and the damping ratio ζ. Note the
striking resonance in the magnitude response near the natural frequency. In
fact, for ζ =0, the gain becomes theoretically infinite—the undamped (ζ =0)
system can be destabilized by pumping energy in at the resonant frequency
much like a child pumps to increase the amplitude of a swing.



Figure A.8
The magnitude (a) and the phase response (b) of the second-order SMD position controllerevaluated
at s= ± iω for various values of ζ

Panel A.8 (a) shows that if the driving frequency is large, the gain in the
CLTF goes to zero asymptotically, and the ability of the second-order
system to track such reference functions is compromised. The bandwidth of
the system is that frequency where the gain falls to , which corresponds
to the half power or −3 [dB] point of the CLTF. The over- and critically
damped configurations in panel (a) have a relatively small bandwidth using
this criteria, and increases for underdamped configurations at the expense of
overshoot and oscillation. In panel (b), we see that the natural frequency
also identifies the point at which the response lags 90 [deg] behind the
reference input. If the driving frequency increases beyond the natural
frequency, the response goes asymptotically toward a phase lag of 180
[deg].



A.11.2 Stiffness and Impedance

Stiffness refers to the change in force due to a change in deformation. For a
linear spring, the ratio of change in force to change deflection is the spring
constant, K =ΔF/Δx. The transfer function generalizes this concept to linear
differential systems like the spring-mass-damper and to time-dependent
displacement functions.

For example, the transform pair for the continuous-time SMD (equation
3.12) leads directly to the stiffness relation

which can be written in the form of an equivalent SISO filter as in figure
A.9(a). The filter transforms an input displacement into externally applied
force—it represents the inverse dynamics of the spring-mass-damper. The
stiffness of the SMD is a time varying function that satisfies a differential
relation. It is clear, in this context, that a time varying deformation will
produce a second-order force response—the stiffness of the SMD is also,
therefore, a second-order phenomenon.

Figure A.9
The transfer functions describing the (a) stiffness and (b) compliance of the SMD controller

The reciprocal relation in figure A.9(b) is a transfer function describing
the forward dynamic model of the SMD. It describes how an external input
force causes a deflection. Therefore, the forward dynamic relation describes
the compliance of the spring-mass-damper.

The transfer function can be used to describe how power is transmitted
through the PD motor unit to the environment. Impedance describes how
power is converted from one form to another in electrical, mechanical,
hydraulic, thermal, and chemical systems that are described by linear
differential equations. In all of these types of systems, power is described as
the product of effort and flow variables. For example, in electrical circuits



the effort variable is voltage (an electromotive force), the flow variable is
current, and the product of voltage and current is power.

The ratio of effort and flow describes a generalized resistance per unit of
flow called impedance. For example, in the case of a current flow through a
resistor (V =IR), the impedance of this circuit is V/I =R. Transfer functions
generalize the concept of resistance to devices that have differential
effort/flow relationships. For example, the capacitor is defined by
i(t)=C(dV(t)/dt). Applying the Laplace transform we get I(s)=CsV(s), so that
the impedance of the capacitor, V(s)/I(s), is just 1/Cs.

To describe the dynamics of mechanical systems, effort variables are
forces and flow variables are velocities. Using the same techniques, we can
describe the mechanical impedance of the controlled system as the ratio of
force to velocity at the point at which the force is applied.

Starting from equation A.29, and noting that V(s)=sX(s), we write the
impedance of the SMD as

which is written in the form of an equivalent SISO filter in figure A.10(a).
The reciprocal of impedance is admittance (figure A.10(b)).

Figure A.10
The transfer functions describing the (a) impedance and (b) admittance relations for the SMD
controller

Impedance matching techniques are often used at the interface between
such systems to optimize the transfer of power between them. Impedance
control techniques [115] are used to create complementary impedance
couplings between a robot manipulator and the task in which it is engaged.
For example, turning a crank mechanism that is stiff radially and compliant
tangentially requires controls for the robot manipulator that are stiff
tangentially and compliant radially in order to transmit power efficiently
through the crank mechanism.



1. The mapping can transform elements of one set, X, into elements of another set, Y, or from set X
back into itself.
2. The state at t = ∞ for the asymptotically stable system is the equilibrium state (x∞, 0). We use the
position constraint at t = ∞ as the third boundary condition for the time-domain solution.
3. Recall, eiωt = cos(ωt) + isin(ωt) and e−iωt = cos(ωt) −isin(ωt).



B
The Dynamics of Kinematic Chains

Newton’s laws are sufficient to describe the dynamics of kinematic chains
and whole-body mechanisms comprised of open, closed, serial, and parallel
chain mechanisms. We begin by deriving the three-dimensional inertial
counterpart of mass in rotating systems.

B.1 Deriving the Inertia Tensor

A tensor is a geometric operator that describes relations between vectors
and is independent of any particular choice for the coordinate system. The
dot product and cross product are tensors, as is the inertia tensor that
projects vectors of torques onto the vector space of accelerations.

The analysis in section 6.2 yields an expression for the scalar moment of
inertia about a single axis of rotation by examining the relationship between
torque and angular acceleration in a planar lamina. In this section, we
complete this derivation to construct the 3×3 inertia tensor that describes a
rotational inertial quantity about three orthogonal—often dynamically
coupled—axes by summing the contribution of a stack of the lamina
introduced in section 6.2 to arrive at the inertia tensor describing the total
moment of inertia of a three-dimensional body about an arbitrary axis ∈
ℝ3.

The right side of figure B.1 shows the jth laminar element alone and
considers the contribution of all the particles mk from this lamina to the total
rotational inertia of the body about axis .



Figure B.1
(Left, A stack of planar lamina approximates the distribution of mass in a three-dimensional object.
(Right) The contribution of a single lamina to the inertia tensor describing rotation about .

Equation 6.1 states that the mass moment of inertia  is the
inertial contribution of the entire lamina. This result applies to the jth
lamina pictured in figure B.1 too; however, in this case, the moment arm is

so that the squared magnitude  required for equation 6.1 is

From figure B.1, the first term on the right is the squared magnitude of the
position vector r, and the second term is the squared magnitude of the
projection of r onto . The difference is, therefore, the squared magnitude of
rk.

The (total) inertia tensor sums terms like this over all masses mk in a
lamina and over all j laminae,

where the leading superscript A reminds us that the center of rotation is
located at the origin of frame A.

The value of AJaa depends on the distribution of mass and on the axis of
rotation . To separate these independent concerns, equation B.1 is written
is a slightly different way.



where I3 is the 3×3 identity matrix. In this form, the axis of rotation, , can
be moved outside the double summation,

Equation B.3 is the 3×3 positive definite and symmetric inertia tensor. It
depends only on the mass distribution of the body and the choice of frame
A, but it is independent of the axis of rotation . If r =[x y z]T, equation B.3
can be expanded into a commonly used form,

where diagonal elements Jxx, Jyy, and Jzz are called the moments of inertia
and the off-diagonal elements Jxy, Jxz, and Jyz are the products of inertia. In
the limit, as the number of laminae increases, the stack approaches a
continuous three-dimensional volume in which differential volume (dx dy
dz) is associated with differential mass dm=ρ(dx dy dz), where ρ is the mass



density of the body. Under these conditions, the elements of the inertia
tensor are computed as continuous integrals over the object volume.

There are several procedures for deriving the computed torque equation for
more complex mechanisms. This appendix presents two: (1) the Newton-
Euler iterations provide the most direct analogy to a free body analysis
implemented in a two-step iteration where the state of motion is propagated
outward and the load in the mechanism is the subject of an inward iteration
to define the complex dynamics of the articulated mechanisms comprising
interesting robots. It’s principle value is the direct application of Newton’s
Laws, but in practice it is rather cumbersome, and (2) a closed-form
formulation based on Lagrange’s equations.

B.2 Inertial Coordinate Frames

The inertial reference frame is that special frame. Inertial frames make
Newton’s laws work. If a particle has no external forces on it, then, by
Newton’s first law, it should remain in a state of constant rectilinear motion.
This will be true for all candidate inertial frames when rotational velocity
and acceleration, as well as translational acceleration, for all of these frames
is zero (i.e., . To see why, say the particle was stationary in one
instant relative to a particular inertial frame. From the perspective of an
observer attached to that frame, it should remain stationary unless acted
upon by an external force. From the perspective of any noninertial frame
(one that might be rotating or accelerating), this will not be true. Even with
no external forces on the particle, it will appear to start moving and some
fictitious forces will have to be invented to account for the apparent (non-
Newtonian) acceleration. Coriolis and centrifugal forces owe their existence



to the fact that human physicists make observations from the rotating
surface of the Earth and are therefore accelerating with respect to an inertial
frame of reference. By the same reasoning, the inertial frame can be moving
at a constant absolute velocity (maybe v =0) and still satisfy Newton’s first
law. The simplest expression of Newton’s laws (section 6.1) predicts free
body motion correctly only if care is taken to refer the analysis to an
appropriately chosen inertial frame.

B.3 Rotating Coordinate Systems

When frame B undergoes a rotational velocity ω =[ωx, ωy, ωz]T with respect
to frame A, the rotation matrix ARB(t) is a function of time. Consider a
rotation about the -axis. The component of ω about the -axis, ωz, causes a
displacement of the -axis in the  direction.

Similarly, the ωy component of the net angular velocity displaces the -axis
in the −  direction,

so that, in general,



If frame 1 rotates with a constant angular velocity ω relative to a fixed
frame 0, then for arbitrary vectors r1 =rx +ry +rz , where rx, ry, rz are
constants, the position vector with respect to the stationary frame changes
as

If we assume that coordinate frame B in figure B.2 is moving with a
constant angular velocity ω with respect to an inertial frame A, then the
velocity of particle Q in inertial coordinates ( ) consists of its translational
velocity in frame B ( ) plus a term due to the angular velocity of frame B
(ω×rB). This second term is due directly to the angular velocity of frame B
—an observer attached to frame B cannot correctly account for the forces
on particle Q by observing its apparent motion.

Figure B.2
Velocity in an inertial frame due to a time varying rotation matrix

From another perspective, we may consider coordinate frames A and B
to be related by way of a time varying rotation matrix

The velocity of Q with respect to frame A is then



In the final expression for , we have expressed the absolute angular
velocity of frame B in frame B coordinates for notational convenience.

Again we find that the velocity of particle Q relative to the inertial frame
consists of the translational velocity of Q within the B coordinate system
plus a term inherited from frame B’s state of motion. This result holds for
any vector quantity that is expressed in a local coordinate system that is
itself rotating with respect to an inertial frame of reference.

Using this rule to differentiate equation B.5, and assuming that ,1

we arrive at the equation of the total acceleration of particle Q in terms of
local observations of its position, velocity, and acceleration in frame B.

where the first term on the right side of the equation is the true acceleration
of particle Q expressed in the noninertial (rotating) frame, the second term
is the fictitious Coriolis acceleration, and the third term is the fictitious
centrifugal acceleration.

Rearranging terms to solve for the acceleration visible to an observer
attached to frame B, we find that

B.4 Newton-Euler Iterations



Figure B.3 presents a generic link that is part of a multiple degree of
freedom robot arm.2 The link is assumed to be a rigid body that can
incorporate an actuated degree of freedom θi. The local coordinate frame for
link i is attached to the proximal end of the link, with the i axis aligned
with a joint axis and i aligned with the link itself. The location of the
center of mass and the velocities, accelerations, and forces describing the
movement of the link are expressed in this local frame.

Figure B.3
Free body diagram of link i

Link i is part of a kinematic chain and, therefore, subject to interaction
forces with neighboring links, but we will analyze the motion of the link as
if it is a Newtonian free body whose center of mass is in a known absolute
state of motion  and subject to a net force F and moment N. These
hypothetical loads are used to explain the observed state of motion—if there
are nonzero accelerations , then F and N are the net forces and
moments required to produce these accelerations given the free body
assumption and the link’s inertial properties.

The net force and the time-rate-of-change in velocity are related through
Newton’s equation

which states that the force acting on this free body is equivalent to the time-
rate-of-change in the body’s linear momentum. In the nomenclature of



figure B.3, the quantity  is expressed in the local coordinate frame, which
is itself rotating. In particular, if frame i in figure B.3 has angular velocity
Ri(t)ωi with respect to the inertial frame, then

is Newton’s law for body i, where F is the net force acting upon link i
written in absolute/inertial coordinates, Ri is the rotation matrix relating
frame i to the inertial frame, and ωi is the absolute angular velocity of link i
written in link i coordinates. The equivalent relation between angular
acceleration and net torque incorporates the inertia tensor for the link.

is Euler’s equation for body i, where N is the net torque acting upon link i
written in inertial coordinates, and Ri is the rotation matrix relating frame i
to the inertial frame.

B.4.1 Propagating Velocities in Open Kinematic Chains

If we define the complete state of motion in a mechanism—that is, all
positions, velocities, and accelerations in the inertial frame—then we can
use Newton’s laws to compute the forces in the structure resulting from this
state of motion. The Newton-Euler equations provide an iterative means of
propagating the absolute state of motion  from link i to link i+1. Link
i+1 inherits the absolute state of motion of the link i and adds velocities and
accelerations from the ith actuator to arrive at the absolute state of motion
for link i+1. The iteration begins at the inertial frame where 

 and proceeds link by link until it reaches the distal end
of the manipulator.

In the following derivations, we will assume that the absolute state of
motion  is known, and our goal is to write expressions for these
quantities at frame (i+1).



Angular velocity: ω

Angular acceleration: 

Linear acceleration: 

Consider the motion of particle q moving with respect to coordinate
frame 1, which is moving in turn with respect to inertial frame 0 as in
figure B.4.

Figure B.4
Propagating velocity and acceleration into a noninertial coordinate frame

 Here, 0ω1 and 0v1 are the angular and translational velocity,
respectively, of frame 1 expressed in frame 0 coordinates.
 Given 1pq, the position vector for point q in frame 1 coordinates, then

where 0t1 is just the position vector of frame 1 written in frame 0
coordinates. For general velocities in SE(3), the velocity of particle q



expressed in frame 0 can be written

The linear acceleration of particle q is then

We can write this equation for each link, i, by substituting i for frame 1,
(i−1) for frame 0, and (i+1) for particle q.

Equation B.13 can be simplified given the type (prismatic or revolute) of
the (i+1)st degree of freedom.

Now we have established the complete state of motion  for link i.
Next, we project the accelerations at frame i to the link’s center of mass
where we can use the Newton-Euler equations to solve for the total
acceleration, , and consequently the net forces and moments (F, N)
that are consistent with these accelerations.



B.4.2 Propagating Force in Open Kinematic Chains

Section B.4.1 establishes that velocities are inherited from link to link
starting from an inertial frame and culminating in the velocity at the end of
the kinematic chain. The same is true of forces in the mechanism. If our
mechanism is moving in free space, then the distal unitary link, link n, in
the chain sees only those forces accounted for in its state of motion and
applied to its proximal end by link n−1.

Figure B.5
The propagation of forces in a kinematic chain

As we move along the kinematic chain, distal to proximal, each
successive link inherits a component of force applied to its distal end. Just
as velocity propagates from the inertial frame (where velocities are zero)
outward, forces propagate from the free end of the manipulator (where
forces are zero) inward. Figure B.5 shows link i in a kinematic chain. We
define ifi and iηi as the force and torque, respectively, exerted on link i by
link i−1. Furthermore, the superscript designates that these quantities are
written in frame i coordinates. If we assume that the structure is in static
equilibrium, then



To summarize, the Newton-Euler equations are solved iteratively starting
from the inertial frame ( ) and proceeding from proximal to distal.
This procedure propagates velocities and accelerations from link to link and
solves for the net force ( iFi) and moment ( iNi) on the center of mass of
each link in the kinematic chain. Having finished this outward iteration, we
begin an inward iteration starting from the free (distal) end of the
manipulator, where i+1fi+1 = i+1ηi+1 =0. Equations B.18 and B.19 are applied
to resolve the force and torque on the proximal end of link i. The forces and
moments at frame i result in mechanical strains in a link or a joint, or they
produce translational or rotational accelerations in the system. In the case of
revolute joint i with axis of rotation about the i-axis, the component of the
torque about the i-axis,

produces an angular acceleration of the joint, whereas other components of
the torque at frame i are resisted in the mechanism and propagated into
other portions of the structure.

B.4.3 The Outward-Inward Iteration



The Newton-Euler method begins with the designation of an inertial (or
absolute) frame of reference where the complete state of motion is defined.
Typically, it is adequate to use the coordinate frame where the robot is
attached to the Earth.3 In figure B.6, the complete state of motion of frame 0

 must be known in inertial coordinates. It serves as the boundary
condition for the Newton-Euler iteration and establishes the Newtonian
framework for the rest of the analysis.

Figure B.6
Stages in the Newton-Euler iterations for a 3R planar manipulator (n=3). The equations defining the
iteration denoted by the blue and red block arrows are summarized in table B.1.

Table B.1
Newton-Euler iterations.



The outward iteration propagates the known state of motion at the
inertial frame outward into successive links. At each step, the absolute state
of motion for link i is the sum of the state of motion for link (i−1) and the
local state of motion of the ith degree of freedom. When the outward



iteration is completed, the complete state of motion  is established
for every link in a manner that respects kinematic constraints in the
mechanism—constraints associated with joint forces that preserve the
connection between adjacent links in the kinematic chain. However, we do
not have enough information, yet, to determine what these joint forces are.
If we treat each link of the robot as a free body, however, then Newton’s
second law can determine the net (hypothetical) force F and moment N that
must be applied to each link at the center of mass to explain the state of
motion determined by the outward iteration.

The inward iteration is used to propagate forces and torques from the
endpoint of a manipulator back to the inertial frame. This iteration begins at
the free end of the manipulator and proceeds from the (n+1)st coordinate
frame back to the inertial frame. It requires a boundary condition at frame
n+1 to define contact forces and torques on the endpoint of the manipulator.
Normally, for a manipulator in free space (no contact), this boundary
condition specifies fn+1 =ηn+1 =0; however, it could be established using
contact sensing. In the course of the inward iteration, the net force Fi and
torque Ni computed in the outward iteration is equated to the sum of the
interaction forces, (f, η)i and (f, η)i+1, between adjacent links.

Example: The Computed Torque Equation for the Planar 2R
Manipulator

A planar 2R manipulator is modeled as two point masses m1 and m2 at the
end of two massless links l1 and l2. This choice simplifies the derivation of
the computed torque equation because for this distribution of mass, the
scalar moment of inertia about the -axis at the center of mass is

In addition to a description of the mass distribution, the Newton-Euler
equations require a kinematic specification of the manipulator. In this case,
it requires the position vectors from frame i to frame i+1 and from frame i
to the center of mass of link i,



where the vector quantity (in this case p) uses the trailing subscript to
indicate a spatial reference (i.e., the origin of a coordinate frame or the
center of mass) and the leading superscript identifies the coordinate frame
in which it is written.

Figure B.7
The planar 2R manipulator with discrete mass distribution

Finally, the rotation matrices for use in the Newton-Euler iterations are
pure rotations about the  axes,

To establish a Newtonian framework, the analysis requires that the
absolute state of motion of the inertial frame (frame 0) must be specified as
a boundary condition for the outward iteration. Generally, this would be



considered a nonrotating (ω =0) and nonaccelerating inertial frame 
. However, the affects of a gravitational acceleration can be

incorporated directly into the choice of boundary conditions.
The equivalence principle states that the motion of a free body subject to

gravitational acceleration −g 0 cannot be distinguished from the motion of
the same free body subject to no external forces whose frame of reference is
accelerating in the opposite direction g 0. These cases are illustrated in
figure B.8 (a) and (b), respectively. In this example, the equivalence
principle is used to specify boundary conditions at the inertial frame 

 and  that will be propagated into link 1 and link 2 using
the outward iteration equations summarized in table B.1.

Figure B.8
The equivalence principle applied to the planar 2R manipulator

Outward iteration







To create boundary conditions for the inward iteration, the force and torque
on the endpoint of link 2 (i.e., at frame 3) must be established. If the
manipulator is not in contact with the environment at the endpoint, then this
boundary condition is f3 =η3 =0. However, we will consider the more
general case where f3 =[fx fy 0]T and η3 =0. This boundary condition



represents arbitrary frictionless point contacts in the plane on the endpoint
of the 2R manipulator.

Inward iteration



where

☐

B.5 Lagrangian Mechanics

The Lagrangian L is defined to be the difference between the kinetic energy
T and the potential energy V of a dynamical system.



This simple expression, together with results from the calculus of
variations, yields an elegant means for constructing the dynamic equations
of motion.

Theorem B.5.1 (Lagrange’s equations).  The equations of motion for a
mechanical system with generalized coordinates q ∈ ℝm and Lagrangian L
are given by

where ϒi is the vector of external forces acting on the ith generalized
coordinate, qi.

In vector notation,

The proof of equation B.5.1 involves the calculus of variations and is
beyond the scope of this text. However, we may gain some physical
intuition into Lagrange’s equation by examining equation B.5.1 more
closely. For example, suppose that kinetic energy terms in the Lagrangian
look like  and that potential energy is of the form mgqi. Substituting
these kinds of energy terms into the Lagrangian, we find

We see that the time-rate-of-change in the momentum (left-hand side) is
equal to the net external force on the system (right-hand side). This is just
Newton’s equation as we would expect.



1. If , this term will generate the fictitious Euler acceleration.
2. This link is illustrated with a revolute joint, but prismatic joints can be treated the same way.
3. This common assumption is not strictly true. Exercise 3 in chapter 6.4 considers estimating the
magnitude of the error stemming from the rotation of the earth.



C
Numerical Methods for SolvingLaplace’s Equation

For solutions to Laplace’s equation

the value at the center of a symmetric, interior subset of freespace Ω is the
average of the values of its 2n Manhattan neighbors—this is known as the
mean-value property. We can write this in the form of an equality,

The mean-value property leads to numerical methods for solving
Laplace’s equation using finite difference methods [43]. Let ϕ(x, y) be a
function that satisfies Laplace’s equation and let u(xi, yj) represent a discrete
regular sampling of ϕ on a grid indexed by integers i and j. A finite
difference approximation to the second derivatives can then be used to
derive the discrete form of Laplace’s equation,

Equation C.1 defines a linear system of equations on the grid and can be
extended to higher dimensions in a straightforward fashion. Boundary
conditions define the value of the potential on ∂Ω, and we wish to
determine the potential at all other grid points such that equation C.1 is
satisfied.



Relaxation methods are traditionally used to solve such systems.
Techniques such as Jacobi iteration, Gauss-Seidel iteration, and Successive
Over-Relaxation (SOR) can be used [43]. For Laplace’s equation in n
dimensions, these iterative methods repeatedly replace each grid element’s
value with a weighted average of its 2n neighbors. This approach computes
discrete potential values on the nodes of a grid. However, multilinear
interpolation functions that are smooth and harmonic can yield piecewise
continuous potentials between discrete potential values for use in control.

For Laplace’s equation, the Jacobi iteration replaces every nonboundary
u(xi, yj) with the average of its neighbors’ values,

where k is the iteration number. The iteration updates the entire
configuration space simultaneously in the sense that old and new data are
not combined, and the process is repeated until the residual at each node
(equation C.1) drops below a convergence threshold everywhere in the grid.

The Gauss-Seidel iteration is similar to the Jacobi iteration, except that it
mixes values from different iterations:

Gauss-Seidel is more space efficient since it iterates in a single solution
array. Moreover, it iterates to a fixed precision faster than Jacobi iteration.

Successive Over Relaxation (SOR) adds an acceleration constant (ω)
that modifies the value of ϕ at a node in the grid by an amount proportional
to the current residual (equation C.1).

SOR generally requires fewer iterations to converge than does Gauss-
Seidel, which requires fewer iterations typically than Jacobi iteration [64,
43]. However, the transient response of the Jacobi iteration approaches the



harmonic function monotonically, which is very appealing when the
environment is dynamic since gradient direction is valid even before the
relaxation process has converged.

The numerical methods employed to compute harmonic functions lead to
especially efficient implementations on SIMD machines,1 which permit an
iteration over the grid to be accomplished in one parallel step using only
one solution variable per processing element. On single processor
architectures the full multigrid method appears to be the fastest numerical
technique for computing harmonic functions [191]. This method has an
asymptotic running time of O(N), where N is the number of nodes in the
grid. This method compares favorably with other complete path planning
techniques (e.g., distance propagation).

Example: A Collision-Free Arm Controller for Roger

To generate collision-free motions in the simple 2R robot in figure C.1, we
define a closed domain, Ω∈ ℝ2, defined on the configuration variables, θ1

and θ2. This representation is formulated in the discrete model in the
rightmost configuration space (or c-space) occupancy grid in figure C.1.

Figure C.1
The mapping of the Cartesian occupancy grid to the configuration space occupancy grid

Every grid element in the configuration space receives a unique label:
OBSTACLE, GOAL, or FREESPACE. To perform this labeling, the Cartesian



occupancy grid is queried. A single candidate configuration, (θ1 θ2), maps to
a set, R, of Cartesian grid elements that describe the entire volume occupied
by the manipulator in this configuration. If any element of R is occupied by
an obstacle, the corresponding c-space grid element is labeled OBSTACLE. If
R is obstacle-free, the c-space grid element is labeled FREESPACE. Finally, if
the terminal element of R (the manipulator endpoint) is a goal, the c-space
grid element is labeled GOAL. Note that it is possible, using this mapping,
for GOALS to be surrounded by OBSTACLES and therefore inaccessible from
FREESPACE.

The boundary of Ω, ∂Ω, is the union of OBSTACLE and GOAL subsets.
GOALS are assigned to the lowest potential in the field, ϕgoal =0.0, and paths
are computed by descending the gradient of the potential field. The quality
of a path can be influenced by constraints on the potential function at the
obstacle boundaries. Neumann boundary conditions require that the
gradient flow into obstacle boundaries is zero. Gradient flow subject to
Neumann boundary conditions is tangential to the local obstacle boundary.
Dirichlet boundaries fix the potential at OBSTACLE boundaries at the highest
potential in the system ϕobs =1.0. As a consequence, obstacles act as sources
of flow and gradients near obstacles depart along the normal to local
Dirichlet boundaries. In this example, all boundaries are modeled as
Dirichlet boundaries.

Discrete configuration space maps can model arbitrary Cartesian shapes
up to the spatial resolution of the discrete occupancy grid. In this example,
θ1 is toroidal, allowing it to rotate continuously, and θ2 is subject to joint
angle limits—namely, −3.1 rad<θ2 <+3.1 rad. Values outside of this range
for θ2 are labeled OBSTACLES in the c-space grid to eliminate self-collisions
between the links.

The potential of FREESPACE grid elements is computed by the numerical
relaxation techniques described earlier in this section to satisfy Laplace’s
equation—this example uses SOR. Gradients in the converged harmonic
function create streamlines in c-space that originate at OBSTACLES (sources)
and terminate at GOALS (sinks). Figure C.2 shows some examples of
collision-free motor solutions. A Cartesian goal position (green) is placed in
the small room defined by obstacles (red) with a small doorway. The
Cartesian goal maps to two GOAL regions in c-space, one for each of the two



arm configurations possible. One of these GOAL regions is embedded inside
an OBSTACLES region and is, therefore, inaccessible. The streamline that the
robot follows depends on the robot’s initial configuration. The time history
of two representative trajectories is shown (blue) in both Cartesian and
configuration space. In the lower pair of diagrams, an additional rectangular
obstacle is added, and its effect on the robot’s trajectory is illustrated.

Figure C.2
Gradient descent on a harmonic function yields a collision-free motor plan for Roger’s right arm.
(Left) The Cartesian space. (Right) The c-space.

☐



The example introduces harmonic functions as a means of defining a
sequence of postural goals to the underlying motor system. We assume that
dynamic compensation and appropriate dissipative elements exist in the
lower-level motor units and need not be considered here. Harmonic
functions are resolution complete in the sense that if a path exists at the
resolution of the occupancy grid, it will be found. To check whether a path
exists, it is sufficient to verify the presence of a nonzero gradient in the
converged harmonic function. This is accomplished in the same amount of
time required to compute the next step in a path. This property is of some
practical significance since many search techniques can find paths quickly
on average but may take an indeterminate amount of time in some
environments to conclude that no path exists. In the framework outlined,
obstacles can be arbitrary in shape and can be used to represent other
geometrical constraints. For example, if Roger wants to protect an
unoccluded line of sight to a desired object while reaching to it, then he
may map the ray from his eye to the target as an obstacle. This mechanism
could be used to implement the visual cliff constraint (section 9.5.1) in a
straightforward manner. One of the challenging features of harmonic
function motion planners is the numerical precision required. The path is
extracted from the harmonic potential function by computing the local
gradient, but this gradient can be very shallow. In practice, numerical
precision limitations may make it hard to differentiate shallow gradients
from cases where the gradient vanishes and no path to the goal exists.

Voltage distributions in conductive media can be described as a diffusion
process subject to Laplace’s equation, which has caused some to speculate
about the possibility of extremely fast path planners. Resistive networks
were employed in the 1940s as analog computers to solve Laplace’s
equation [189]. Tarassenko and Blake [271] describe a VLSI version of this
hardware scheme in which a programmable resistive grid consisting of an
array of transistors whose drain-source resistances are governed by gate
voltages. The transistor network can be used to set both Dirichlet and
Neumann boundary conditions. The steady-state voltages at FREESPACE
nodes represent a discrete sampling of a harmonic function. Given that the
computation is performed by voltages settling in a resistive network, this
appears to provide the fastest theoretical framework for robot path planning



—although this approach has not yet been successfully demonstrated in
realistic applications.

Harmonic functions introduce some fundamental limitations, however.
As the grid size is increased, the settling time will also increase, and voltage
differences within the grid will decrease. Thus, there are physical limits to
the size (and hence resolution) of a useful resistive grid. Nonetheless, these
limits appear to be in the range of hundreds or perhaps even thousands of
resistive elements on a side, using currently available VLSI technology.

In nature, fields with these properties describe minimal energy
phenomena such as laminar fluid flow, the shape of soap films, and the
steady-state temperature and voltage in conductive media. In robotics,
navigation functions guarantee that a particle subject to the local field
gradient will eventually reach a globally minimum potential configuration.
The harmonic function is subject to Laplace’s equation as the governing
constraint. Like the soap film, Laplace’s constraint requires that the scalar
field minimizes the global strain energy of the scalar field with known
boundary conditions. As a result, there are no local minima, and gradient
descent on the field formally minimizes the hitting probability of the
system. We developed an array of techniques for computing harmonic
functions and using them in collision-avoiding path planning and
continuous, quasi-static path control tasks.

1. SIMD is an acronym for Single Instruction, Multiple Data parallel architectures.
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null space, 308
pseudoinverse, 312
singular values, 309
singular vectors, 309
span, 308

maturation, 240, 251
mechanism, 79

closed-chain, 80
joint, 79

prismatic, 79
revolute, 79

link, 79
ground link, 80
unitary, 80

open-chain, 80
membership function, 264, 265, 267, 269
moment of inertia, 33, 148, 149
Moment residual control, 265
Moore-Penrose pseudoinverse, 256, 261
Moro reflex, 232, 244
motor cortex, 226
motor nuclei, 49
motor unit, 47, 50, 51, 58, 59, 61, 65, 221, 226, 252, 255

lower motor nuclei, 49
mouthing behavior, 246
muscle, 17–23

actin, 17
bulk viscoelastic model, 23
developed tension, 21
fused/unfused tetanus, 21
Huxley model, 20
myocytes, 19
myofibril, 19
myosin, 17, 18
sarcomere, 19
sliding filament model, 18
twitch, 21

muscle stretch reflex, 50, 51
myelin, 241
myelination, 240, 241



corticospional tract, 241
proximo-distal, 243, 246
ulnar to radial, 246
vestibular nerve, 241
vestibulo-ocular, 241

myocytes, 19
myofibril, 19
myosin, 17, 18
myotome, 49

nautilus, 174
navigation function, 255
negative definite, 254
negative feedback, 47, 51
neonate, 229
neural tube, 221
neuroanatomy

basal ganglia, 226
brainstem, 222, 228
cerebellum, 222, 226, 228
cerebral cortex, 222. See cerebrum
cerebrum, 222

auditory cortex, 224
cerebral hemispheres, 223, 224
gray matter, 223, 224
motor cortex, 226
pyramidal neurons, 224
somatosensory cortex, 224
visual cortex, 224, 225
white matter, 224

cortex, 222. See cerebrum
midbrain

lateral geniculate nucleus, 225
thalamus, 224–226

neocortex, 222. See cerebrum
spinal cord, 222, 226, 228

neurons, 241
axons, 241
dendrites, 241

Newton-Euler iterations, 155, 333, 337, 341
Newton’s laws, 147
nonholonomic constraints, 83
null space, 256
Nyquist, Harry, 199
Nyquist sampling theorem, 198

object permanence, 248
occupancy grid, 283, 285, 294, 353–355



FREESPACE, 285
oculo-cephalic reflex, 237, 244
odometry, 81
Okada, Takashi, 125
Open-closed resonator, 192. See quarter wave resonator
optical-head righting reflex (OHRR), 239, 244, 245
optics, 170

biconvex lens, 172
evolution, 174
Gaussian lens formula, 172
index of refraction, 171
reflective, 170
refractive, 170
Snell’s law, 171
thin lens, 172
thin lens equation, 173

orthonormal, 299
outer product, 302
outward-inward iterations, 333. See Newtown-Euler iterations

palmar grasp reflex, 230, 233, 237, 244, 245
parachute reflex, 240, 244
parallel axis theorem, 151
pathfinder, 229
perspective

vanishing point, 96
perspective projection

orthographic projection, 96
shallow structure, 96

phase portrait, 264, 265
phylum chordata, 222
Piaget, Jean, 277

accomodation, 277, 281
assimilation, 277, 281
schema, 277

pinhole camera, 95, 170
depth of field, 171
history, 95
perspective, 95
perspective projection, 96

Pinker, Steven, 119
pit organ, 174
placing reaction, 235, 244
plantar reflex, 233, 236, 244
plasticity, 242
pneumatic actuator, 37

jet-pipe servo valve, 37
McKibben air muscle, 39



polymeric actuator, 41
Popplestone, Robin, 124
positive definite, 253
positive support reflex, 239, 244, 245
potential function, 252

differential geometry, 253
elastic, 252
navigation function, 255
region of attraction, 268
streamlines, 254

power, 133
preadaptation primitives, 230
primary stepping reflex, 229, 235
products of inertia, 149, 333
projective geometry, 96
proprioception, 191
pseudoinverse, 111, 256, 261, 312

q-learning, 274
value iteration, 275

quadratic forms, 305
quarter wave resonator, 192, 193

reachable workspace, 90
reinforcement learning, 274

sampled backup, 275
release reflexes, 236, 244, 245
right-handed coordinate systems, 301
righting reflex, 239, 244, 245
robot hands, 122–126, 128

barrett hand, 270
DLR II hand, 128
Freddy, 123
Hanafusa hand, 124
Lian manipulator, 126
Okada hand, 125
parallel jaw gripper, 124
Stanford/JPL hand, 126

robots
Barrett Whole Arm Manipulator (WAM), 270
dexter, 272
PUMA 560, 91
Sarcos General, Large Robot Arm (GRLA), 35
Shadow Hand-B, 40
Thing, 281
Utah/MIT dexterous hand, 257

Roger-the-Crab
coordinate frames, 82



kinematics, 81
nonholonomic base, 83

rooting reflex, 232, 246
rotating coordinate systems, 334
rotation, 84

direction cosine matrix, 85

saddle point, 254
sampling, 191, 196

continuous signals, 191
convolution theorem, 197
Dirac delta function, 196
Nyquist samling theorem, 198
sifting, 196

sampling continuous signals, 191
sarcomere, 19
scalar product, 299
screw systems, 129, 132

power, 132
twist, 129
wrench, 132

second-order system, 321. See harmonic oscillator
segmental rolling reflex, 239, 244, 245
sensors

vestibular, 238
Shannon, Claude, 199
shape memory alloy, 40
signal processing

convolution
differential geometry, 207
Gaussian kernel, 209
Gaussian operators, 208
Gaussian pyramid, 209
intrinsic scale, 209
Laplacian, 207
Laplacian of Gaussian, 212

deep structure, 12, 208
differential structure, 205
N-jet, 205

intrisic scale, 208
scale space, 208

causality, 205, 209
deep structure, 209
intrinsic scale, 212
intrinsic structure, 209

structural information theory, 208
singular value decomposition, 307
skills



locomotion, 283
sliding filament model, 18
Snell’s law, 171
somatosensory cortex, 224
spectral coefficients, 201
spectral filter, 201

high-pass, 202, 203
low-pass, 201

spinal cord, 48
afferents, 222, 224
dorsal roots, 222, 224
efferents, 222
ventral roots, 222

spring-mass-damper (SMD), 47
stability, 51, 55

asymptotic, 55, 67, 253
BIBO, 54
critical points, 253
Lyapunov, 55
marginal, 67
negative feedback, 51

startle, 233. See Strauss reflex
Stefan-Boltzmann equation, 170
stereo

triangulation, 100
stereo localization, 107
stereo vision, 94
Strauss reflex, 233
streamlines, 254
stretch reflex, 48
sucking reflex, 232, 244
symmetric tonic neck reflex (STNR), 238, 244, 245
synaptogenesis, 241
synthetic muscle, 42

tactile sensing, 181
addressing, 182
bandwidth, 182
hysteresis, 182
sensitivity, 182
spatial resolution, 181

tactile sensors
binary contact switch, 182
capacitive, 185
conductive elastomers, 183
load cells, 182
magnetic, 186
multimodal, 186



optical, 184
teleological agent, 248
tensor, 148, 149, 331
tetanus, fused/unfused, 21
touch, 178

mechanoreceptors, 179
articular surfaces, 179, 247
free-ended nerve fibers, 49, 180, 246
Golgi tendon organ, 179
hair, 180
Meissner corpuscles, 180
Merkel disks, 180
muscle spindles, 179
Pacinian corpuscles, 180
performance, 181
Ruffini corpuscles, 180

touch blend, 181
trace, 254
transfer function, 61, 62

admittance, 330
closed-loop transfer function (CLTF), 62, 63, 65, 68, 327
compliance, 329
impedance, 329, 330
stiffness, 329

translation, 84
twist, 129
twitch, 21

value iteration, 275
vector

direction, 299
magnitude, 299

vector product, 301
vertebrate, 222
vestibulo-ocular reflex, 241
virtual finger, 134
viscoelastic muscle model, 23
vision, 207. See signal processing

binocular, 96
disparity, 97
triangulation, 96

CMOS image capture, 178
cortex, 224
disparity, 225
edges, 225
high-pass filter, 202
image formation, 170
luminosity function, 170, 208, 214, 317



motion, 225
optic nerve, 225
scale space

blob, 209
stereo localization, 96
stereo triangulation

localizability, 107

Wilson, Frank, 119
withdrawal reflex, 226. See flexor-withdrawal reflex
workspace

dexterous, 90
reachable, 90

wrench, 132, 134
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