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Preface to the Second Edition

Image Processing: Dealing with Texture 1st Edition was published in January 2006. This is a
comprehensive guidebook to texture analysis techniques with traditional algorithms and their
examples. Meanwhile, a lot of methodologies have been developed over the past 14 years. In order
to describe the world of texture analysis again, we need to perform a large revision on dealing with
texture in image processing. The following topics are mainly revised and/or added in the second
edition.
(1) 3.3 Fractals and multifractals: this section is updated based on the newly developed techniques

using fractals and multifractals. The multifractals are newly added in part.
(2) 3.4 Image statistics: this section is updated based on the important fundamentals in image

statistics by rewriting Sections 3.6 and 3.8 of the first edition.
(3) 3.8 Texture repair: this section is newly added based on the development of texture repair

techniques.
(4) 4.4 Local phase features: this section is newly added based on the development of local phase

feature techniques.
(5) 4.6 Dual tree complex wavelet transform: this section is newly added based on the dual tree

complex extension of wavelet transform technique.
(6) 4.7 Ridgelets and curvelets: this section is newly added based on several extensions of the

wavelet transform technique.
(7) 4.12 Deep texture features: This section is newly added based on the recent development of

deep neural network techniques.

Image Processing: Dealing with Texture, 2nd Edition, newly includes the MATLAB codes of the
various algorithms and examples presented in this book. We hope the codes are helpful for under-
standing several algorithms behind the technologies dealing with textures in image processing.

For supplementary materials, including most of the executable programs used to create the
examples in the book, please visit the accompanying website at www.wiley.com/go/kamataText2.

www.wiley.com/go/kamataText2
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Preface to the First Edition

It is often said that everybody knows what texture is but nobody can define it. Here is an
unconventional definition: texture is what makes life beautiful; texture is what makes life inter-
esting and texture is what makes life possible. Texture is what makes Mozart’s music beautiful,
the masterpieces of the art of the Renaissance classical and the facades of Barcelona’s buildings
attractive. Variety in detail is what keeps us going from one day to the next and the roughness of the
world is what allows us to walk, communicate and exist. If surfaces were smooth, friction would
not exist, the Earth would be bombarded by asteroids and life would not have developed. If surfaces
were smooth, pencils would not write, cars would not run, and feet would not keep us upright.

Texture is all around us, and texture is also on the images we create. Just as variation in what
we do allows us to distinguish one day in our life from another, texture allows us to identify what
we see. And if texture allows us to distinguish the objects around us, it cannot be ignored by any
automatic system for vision. Thus, texture becomes a major part of image processing, around which
we can build the main core of image processing research achievements.

This book is exactly trying to do this: it uses texture as the motivation to present some of the
most important topics of image processing that have preoccupied the image processing research
community in recent years. The book covers the topics that have already been well established in
image processing research and it has an important ambition: it tries to cover them in depth and be
self-contained so that the reader does not need to open other books to understand them.

The book is written on two levels. The top, easy level, is for the reader who is simply inter-
ested in learning the basics. This level is appropriate for an undergraduate or Master’s level course.
The second level goes in depth, demonstrating and proving theorems and concepts.

This level is appropriate for research students. Examples that refer to the advanced level are
marked with a B and the theory of this level is presented in boxes with a grey background. In a
sense, the book is an interlacing of mainstream material and appendices that cover advanced or
even peripheral issues.

The book aspires to be a classical textbook on image processing and not an account of the state of
the art. So, the reader who hopes to find here the latest algorithms proposed, will be disappointed.

A large part of this book was written when the first co-author was on sabbatical at the Informatics
and Telematics Institute in Thessaloniki, Greece. The support of the Institute as well as the support
of our home institutions, namely the University of Surrey for the first co-author when writing this
book, and the University Jaume I, throughout this endeavour is gratefully acknowledged.

We would also like to thank the Media Lab of the Massachusetts Institute of Technology for
allowing us to use five images from the VisTex database, the Signal and Image Processing Institute
of the University of Southern California for allowing us to use three images from their USC-SIPI
Image database, and Dr Xavier Llado who supplied the images shown in Figures 1.5 and 1.6.

For the accompanying website please visit www.wiley.com/go/texture.

Maria Petrou and Pedro García Sevilla

http://www.wiley.com/go/texture
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About the Companion Website

This book is accompanied by a companion website:
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The website includes:

● MATLAB codes.

Scan this QR code to visit the companion web site:

http://www.wiley.com/go/kamataText2
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Introduction

What is Texture?

Texture is the variation of data at scales smaller than the scales of interest. For example, in Figure 1.1
we show the image of a person wearing a Hawaiian shirt. If we are interested in identifying the
person, the pattern on the shirt is considered as texture. If we are interested in identifying a flower
or a bird on the shirt, each flower or bird of the pattern is a non-textured object, at the scale of this
image, as we can hardly see any detail inside it.

Why are we interested in texture?

We are interested in texture for two reasons.

● Texture may be a nuisance in an automatic vision system. For example, if we were to recognise
an object from its shape, texture would create extra lines in the edge map of the object and the
shape recognition algorithm would be confused. This is demonstrated in Figure 1.2.

● Texture may be an important cue in object recognition as it tells us something about the material
from which the object is made. For example, in the image of Figure 1.3 we may discriminate the
city from the woods and the fields using the type of variation the image shows at scales smaller
than the objects we are talking about.

How do we cope with texture when texture is a nuisance?

There are algorithms that can isolate the texture regions irrespective of the type of texture. The
texture regions then may be identified and treated separately from the rest of the image. Since
texture manifests itself as image intensity variation, it gives rise to many edges in the edge map of
the image. A trivial algorithm that can isolate texture regions is to consider a scanning window and
count inside the window the number of edgels. Any window with number of edgels higher than a
certain threshold is considered as belonging to a textured region. Figure 1.4 demonstrates the result
of this algorithm applied to the image of Figure 1.3. In Box 1.1 a more sophisticated algorithm for
the same purpose is presented.

This algorithm is as follows.

Step 1: Perform edge detection in the image to produce edge map A, where all edgels are marked
with value 1 and the non-edgels with value 0.

Image Processing: Dealing with Texture, Second Edition. Maria Petrou and Sei-ichiro Kamata.
© 2021 John Wiley & Sons Ltd. Published 2021 by John Wiley & Sons Ltd.
Companion Website: www.wiley.com/go/kamataText2

http://www.wiley.com/go/kamataText2
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2 1 Introduction

Figure 1.1 Costas in bloom. Source: Maria Petrou.

(a) (b) (c)

Figure 1.2 (a) An original image. Source: Maria Petrou. (b) Manually extracted edge map. (c) The automatic
edge extraction algorithm is confused by the presence of texture on the box.

Step 2: Create an output array B, the same size as the edge map A, and set all its elements equal to
1 or 255 (all white).

Step 3: Consider an M × M window, where M could be, for example, 15, 21, etc., depending on the
resolution you desire. Select also a threshold T, such that 0 << T < M2.

Step 4: Scan A with this window and each time sum up the values of edge map A covered by the
window. Assign the output to the central pixel of the window in the output array B. Note that
B may be obtained by convolving edge map A with a flat window of size M × M, i.e. a window
with all its weights equal to 1.

Step 5: Threshold B, so that if one of its elements has value below T becomes white, while if it has
a value above or equal to T it becomes black (value 0). Call this output array C. This way you will
obtain an output like that of Figure 1.4a.

Step 6: Consider each black pixel in C, and examine its 3 × 3 neighbourhood. If even one of those
neighbours has value white, keep this as black pixel. If all its neighbours are black, convert it
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(a) (b)

Figure 1.3 (a) Blewbury from an aeroplane (size 256 × 256). Source: Maria Petrou. (b) Edge map where the
urban area has been annotated. Other texture patches correspond to woods.

(a) (b)

Figure 1.4 (a) When a scanning window of size 17 × 17 was placed in Figure 1.3b with its centre at a pixel
marked here as black, the number of edgels inside the window was more than 100. (b) Boundaries of the
black regions in (a).

into white. Note that this may be achieved by convolving B with a flat (all elements equal to 1)
3 × 3 window. If the result of the convolution for a pixel is more than 0, the value of the pixel in
the output array should be 0; otherwise it should be 1. (This assumes that the white pixels have
value 1.) This way, you will produce a result corresponding to Figure 1.4b.
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How does texture give us information about the material of the imaged object?

There are two ways by which texture may arise in optical images:

● Texture may be the result of variation of the albedo of the imaged surface. For example, the image
in Figure 1.2a shows the surface of a box on which a coloured pattern is printed. The change of
colours creates variation in the brightness of the image at scales smaller than the size of the box,
which on this occasion is the object of interest.

● Texture may be the result of variation of the shape of the imaged surface. If a surface is rough,
even if it is uniformly coloured, its image will be textured due to the interplay of shadows and
illuminated parts. The textures in the image of Figure 1.3 are the result of the roughness of the
surfaces of the town and the woods when seen from above.

Are there non-optical images?

Yes, there are. They are the images created by devices that measure something other than the inten-
sity of reflected light. For example, the grey value in magnetic resonance images (MRI), used in
medicine, may indicate the proton density of the imaged tissue. Another example concerns images
called seismic sections, which are created by plotting data collected by seismographs. In this case,
the grey value represents the intensity of the reflected seismic wave by the different rocks that make
up the crust of the Earth.

What is the meaning of texture in non-optical images?

Texture in non-optical images indicates variation of a certain physical quantity at scales smaller
than the scales of interest. For example, in a proton weighted MRI image of the brain, the presence
of texture indicates variation of the proton density from one location to the next. Such variation
will manifest itself in the image in the same way as variation of the albedo or surface roughness
does in an optical image. From the image processing point of view, texture is treated in the same
way in optical and non-optical images. So, in this book we shall talk about images irrespective of
the sensor with which they have been captured.

What is the albedo of a surface?

The albedo of a surface is a function that characterises the material from which the surface is made.
It gives the fraction of incident light this material reflects at each wavelength. When we say that a
surface is multicoloured, effectively we say that it has an albedo that varies from location to location.

Can a surface with variable albedo appear non-textured?

Yes, if it is imaged by a single band sensor and the intensity of reflected light by the different
coloured patches within the sensor sensitivity band yields constant accumulated recordings.

Can a rough surface of uniform albedo appear non-textured?

Yes, if the roughness of the surface and the incident light are such that no part of the surface is
in shadow, all parts of the surface receive the same amount of light and the surface is mat (i.e. the
material it is made from reflects equally in all directions, irrespective of the direction from which
it is viewed). An example is a rough mat surface seen under totally diffuse ambient light.
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Figure 1.5 A surface imaged from two different distances may create two very different image textures.
Source: Maria Petrou.

What are the problems of texture that image processing is trying to solve?

Image processing is trying to solve three major problems concerned with texture.

● Identify what a surface represents by analysing the texture in an image of a surface sample: this
is the problem of texture classification.

● Divide an image into regions of different textures: this is the problem of texture segmentation.
● Decide whether a texture is as it is expected to be or contains faults: this is the problem of texture

defect detection.
● Create a new texture or repair a damaged texture.

What are the challenges in trying to solve the above problems?

The most important challenge is trying to infer information concerning the surface (i.e. its rough-
ness (surface relief) and its albedo) by studying the texture of the image of the surface. The problem
is that the same surface may appear totally differently textured under different imaging conditions.
Figure 1.5 shows the same surface imaged from different distances. Its appearance changes dra-
matically and pure image processing without any extra information would never recognise these
two images as depicting the same object. Another example is shown in Figure 1.6 where the same
surface is imaged from the same distance, but with the illuminating source being at two different
positions. Again, pure image processing would never recognise these two images as depicting the
same object. These two examples illustrate two important properties of texture:

● Texture is scale-dependent
● Image texture depends on the imaging geometry.

How may the limitations of image processing be overcome for recognising textures?

Image processing that makes use of additional information, e.g. information concerning the imag-
ing geometry, may be able to deal with both the scale dependence of texture as well as its depen-
dence on the imaging geometry. An alternative way is to use computer vision techniques that allow
one to recover the missing information suppressed by the imaging process. For example, a rough
surface exists in 3D. However, when it is imaged on a 2D medium, the information concerning
the third dimension is lost. This information is independent of the imaging process. If one could
recover it from the available image, then one would have had a scale-invariant description of the
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Figure 1.6 A surface imaged under different illumination directions may give rise to two very different
image textures. Source: Maria Petrou.

roughness of the surface. The recovery of such information is possible if one uses extra information,
or more than one image.

What is this book about?

This book is about the methods used to deal mainly with the first two problems related to texture,
namely texture classification and texture segmentation. However, we shall also consider the prob-
lem of in-painting, i.e. the problem of repairing damaged texture. The various methods will be
presented from the point of view of the data rather than the approach used; we shall start from the
simplest image textures, i.e. 2D binary images, and proceed to composite grey texture images.

Box 1.1 An algorithm for the isolation of textured regions

Texture in an image implies intensity variation at scales smaller than the image size. It is well
known that intensity variation gives rise to edgels in the edge map of the image. A high density
of edgels, therefore, characterises textured regions.

Let us imagine that each edgel is a person standing in a flat landscape. The person sees
the world around them through the other individuals who might surround them and obscure
their view. Suppose that we define the field of view of each individual as the maximum angle
through which they can see the world through their neighbours who stand within a certain
distance from them. Individuals who are standing in the middle of a textured region will have
their views severely restricted and therefore their fields of view will not have large values. On
the other hand, individuals standing at the borders of textured regions will be able to see well
towards the outside of the textured region and they will enjoy high values of field of view.

The trouble is that even edge pixels that simply separate uniformly coloured regions will
enjoy equally high values of the field of view. So, we need to devise an algorithm that will
distinguish these two types of edgel: those that delineate textured regions and those that
simply form edges between different uniformly shaded regions.

The following are the steps of such an algorithm demonstrated with the help of the image
of Figure 1.7a.
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(a) (b)

(c) (d)

(e) (f)

Figure 1.7 (a) Original image of size 256 × 256 showing a town. Source: Maria Petrou. (b) The edge
map of the image obtained by using the Sobel edge detector. (c) The edgels that have field of view
larger than 90∘ within a local neighbourhood of size 9 × 9 (i.e. n = 9). (d) The edge map of panel (b)
without the edgels of panel (c) and any edgel in a neighbourhood of size 7 × 7 around them (i.e. m = 7).
(e) The edgels of panel (d) plus all edgels from panel (b) that are in a neighbourhood of size 7 × 7
around them (i.e. 𝛿m = 0). (f) The final result keeping only the edgels of panel (e) that have field of view
larger than 90∘ within a neighbourhood of 9 × 9.

Step 1: Identify the edgels in the image using an edge filter that does very little or no smooth-
ing (e.g. Sobel filters). Call the output edge map A. An example is shown in Figure 1.7b.

Step 2: Consider a neighbourhood of size n × n around each edgel. Sort the neighbours of the
edgel in a clockwise (or anti-clockwise) order around it. Find the angle between any two
successive neighbours with the vertex of the angle being the edgel of interest. The largest
of these angles is the field of view of the edgel of interest. This process is demonstrated in
Figure 1.8.

(Continued)
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Box 1.1 (Continued)

Step 3: In A keep only the edgels that have a field of view larger than d degrees. Call this
output B. Such a result is shown in Figure 1.7c.

Step 4: Around each edgel you have kept in B, consider a window of size m × m. Delete all
edgels in A that are inside this window. Call the result C. An example is shown in Figure 1.7d.
Note that in this way you have eliminated all those edgels with high viewing angles that do
not delineate texture regions. However, at the same time the texture regions have shrunk.

ϕ
1

2

4

5

3

Figure 1.8 Each tile in this figure represents a pixel. The black tiles represent edgels. The windowed
region with the thick black line represents the neighbourhood of size n × n we consider around the
edgel in the middle. In this case n = 9. The neighbours inside this window are sorted in an
anti-clockwise direction. The numbers next to them indicate their rank. We measure the angle between
any two successive rays from the central edgel. The largest of these angles, marked here with 𝜙, is the
field of view of the central edgel.

Step 5: Around each edgel you have kept in C, consider a window of size (m + 𝛿m) × (m + 𝛿m).
Restore inside the window all edgels that are present in A. Call the result D. An example is
shown in Figure 1.7e. Note that now you have only the edgels that constitute the textured
region. Constant 𝛿m makes sure that the window used in this step is slightly larger than the
window used in the previous step, because we are dealing with discrete points which are at
a certain average distance from each other.

Step 6: For each edgel in D calculate the field of view as you did before. Keep only the edgels
that have a field of view larger than a threshold d. This is the final result. For the example
the final result is shown in Figure 1.7f.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1.9 (a) An original image of size 382 × 287, showing the cross section of the aorta of a rabbit
that had too much cholesterol. The edgels in the texture region are sparse. Source: Maria Petrou. (b)
Edge map produced using a Sobel edge detector. (c) The edge map made denser by replacing every 4
pixels by 1 and marking the new pixel as an edgel, even if only a single pixel in the original 2 × 2
configuration was an edgel. (d) The edgels that have a field of view larger than 90∘ within a local
neighbourhood of size 5 × 5 in panel (c). (e) The edgels of panel (c) after the edgels in (d) and their
neighbouring edgels inside a window of size 4 × 4 are removed. (f) The edgels of panel (e) plus all their
neighbouring edgels inside a window of size 6 × 6 in panel (c) restored. (g) The edgels in (f) which have
a field of view larger than 90∘. (h) The final result in the original size.

(Continued)
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Box 1.1 (Continued)

This algorithm works well for texture regions with dense edgels. If the edgels are not very
dense, but you still want to identify the textured regions, you may preprocess the edge map
using the following step.

Step 1.5: Make the edge map denser by replacing every l × l tile of pixels by a single pixel.
Even if only one of the pixels in the tile is an edgel, make the replacement pixel an edgel
too. This way the edge map will shrink but the number of edgels will be preserved and the
map will be made denser.

The result may be brought to the full size by the following step.

Step 7: Replace every pixel with a tile of size l × l. All pixels in the tile will be marked either
as edgels or background according to how the original pixel was marked. This will yield a
thick boundary for the textured region. If this is a problem the boundary may be thinned
while preserving its continuity.
Steps 1.5 and 7 are demonstrated in Figure 1.9.
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2

Binary Textures

Why are we interested in binary textures?

A grey or colour image contains a lot of information, not all of which is necessary in order to convey
its contents. For example, in the image of Figure 2.1 we can easily recognise the trees and the
birds although only two brightness levels are used. Texture indicates variation of brightness. The
minimum number of brightness levels we can have is two, so, the simplest way of representing an
image is to binarise it.

What is this chapter about?

This chapter is about developing some basic tools that will allow us to quantify binary textures.

Are there any generic tools appropriate for all types of texture?

No, there are not. This is because there is a vast variety of textures one may encounter. In fact, every
surface we see may appear textured at some resolution. So, the variety of textures is as great as the
variety of the world around us.

Can we at least distinguish classes of texture?

Yes, there are some broad texture classes. Look at Figure 2.2 and try to spot the odd one out. You
will find the answer in the next paragraph.

What are the texture classes?

There are two broad categories of texture: regular and irregular. Most textures of man-made objects
are regular, like those in Figures 2.2a and 2.2b, while most natural textures are irregular. Texture
2.2d is semi-regular; it consists of regularly shaped objects placed at random positions. The odd one
out in Figure 2.2 is texture 2.2c, because it shows a random pattern, while all other images exhibit
some regularity.

Image Processing: Dealing with Texture, Second Edition. Maria Petrou and Sei-ichiro Kamata.
© 2021 John Wiley & Sons Ltd. Published 2021 by John Wiley & Sons Ltd.
Companion Website: www.wiley.com/go/kamataText2

http://www.wiley.com/go/kamataText2


�

� �

�
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Figure 2.1 We can easily recognise the depicted objects, even from a binary image. Source: Maria Petrou.

(a) (b)

(c) (d)

Figure 2.2 Four binary textures: which one is different from the other three?
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Which tools are appropriate for each type of texture?

For regular textures we use shape grammars to describe them. For irregular textures we use sta-
tistical descriptors based on Boolean models and mathematical morphology.

2.1 Shape Grammars

What is a shape grammar?

A shape grammar is a formal way of describing a regular pattern. For example, if we wanted to
describe with words the pattern of Figure 2.3a, it would have been quite tedious. However, if we
were to describe with words the pattern of Figure 2.3b, we could simply say: it is a rectangular
arrangement of the pattern shown in Figure 2.3c, with the patterns tightly packed from all direc-
tions. So, in order to describe a pattern we need basically two things: some elementary patterns and
a set of placement rules. Formally, we need something more: we need some symbol to mark the
position where we “stick” the elementary patterns together, and we need a starting pattern.

Box 2.1 Shape grammars

A shape grammar is defined as a collection of four items.

1. A set V of shapes, called terminals. These are in effect the primitive patterns from which
we can build up the texture.

2. A set U of shapes called markers. These are small markers which indicate the places
where the “new bricks” should be placed when building the texture pattern.

3. A mapping between two sets W1, and W2, which consist of elements that are elements
of sets V and U and combinations of them. The mapping is many to one, allowing us to
replace an element of set W1 by an element of set W2. These are the placement rules.

4. A starting pattern S. This must be an element of W1 so that we can start building the
texture from it.

(a) (b) (c)

Figure 2.3 (a) A random texture. (b) A texture with a regular primitive pattern and regular placement rules.
(c) The primitive pattern of texture (b) scaled up.
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Example 2.1

Consider the texture of Figure 2.4. Write a shape grammar to describe it.

Figure 2.4 An example of a regular pattern.

Figure 2.5 There may be more than one primitive pattern that may be used to characterise the same
texture.

Rule 1

Rule 2

Rule 3

Rule 5

Rule 4

Figure 2.6 The rules of a grammar that
may be used to produce the texture of
Figure 2.4, using as primitive element
the first pattern in Figure 2.5.
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Rule 5

Rule 1

Rule 3

Rule 2

 Rule 1 Rule 1

Rule 3

Rule 2

Rule 1

Figure 2.7 Successive application of the rules of Figure 2.6 allows us to reproduce the texture of
Figure 2.4. The sequence of rules used characterises the texture.

(Continued)
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Example 2.1 (Continued)

Rule 1

Rule 2

Rule 3

Rule 4

Rule 6

Rule 5

Rule 7

Rule 8

Rule 9

Rule 10

Figure 2.8 The rules of a grammar that may be used to characterise the texture of Figure 2.4, using
as primitive element the third pattern in Figure 2.5. The simpler the primitive elements we use, the
more rules we need.
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 Rule 1Rule 1

Rule 2

Rule 1Rule 1

Rule 2

Rule 5

Rule 5

Rule 6

Rule 10

Rule 5

Rule 5

Figure 2.9 Successive application of the rules of Figure 2.8 allows us to reproduce a section of the
texture of Figure 2.4.

(Continued)
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Example 2.1 (Continued)
Figure 2.10 The rules of a grammar that may
be used to characterise the texture of
Figure 2.4, using as primitive element the fifth
pattern in Figure 2.5.

Rule 1

Rule 2

Rule 3

Rule 4

Rule 5

Rule 6

Rule 7

Rule 8

Rule 9

Rule 11

Rule 12

Rule 10
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Rule 7 Rule 1

Rule 5

Rule 5Rule 9

Rule 3

Rule 3  Rule 10

Rule 11

Figure 2.11 Successive application of the rules of Figure 2.10 allows us to reproduce a section of the
texture of Figure 2.4.

The first problem we have to solve is the choice of the primitive pattern. We may choose any one
of those shown in Figure 2.5.

Let us choose the first one of these patterns. Let us also choose a small circle to be used as a
marker. Figure 2.6 is the set of rules we need in order to produce the texture of Figure 2.4. Finally,
we need to choose a starting element. Let us choose as the starting element the left-hand side
element of rule 1. Figure 2.7 is an example of how texture 2.4 may be produced by the successive
application of the proper rules. We can see that the texture we had may be fully described and
reproduced on the basis of the five rules of Figure 2.6.

Figure 2.8 shows the set of rules we would need to reproduce the pattern if we had chosen the
third primitive pattern of Figure 2.5. Figure 2.9 shows how we may apply these rules to reproduce
a section of the texture of Figure 2.4. Notice that now we need the application of more rules to
construct a section of the same size as before. This is because our primitive element is now simpler.
This becomes more obvious if we choose as our primitive pattern the last pattern of Figure 2.5. The
rules needed in this case are shown in Figure 2.10, and their application to produce part of the
texture of Figure 2.4 is shown in Figure 2.11.
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Example 2.2

Use the rules of Figure 2.10, with starting element the left-hand side of rule 1, to pro-
duce a texture pattern different from that of Figure 2.11.

Figure 2.12 An alternative pattern that may be
produced by the successive application of the
rules of Figure 2.10.

Figure 2.12 shows an example of an alternative pattern that may be constructed by starting with
the element on the left-hand side of rule 1 and applying the rules of Figure 2.10 in the following
sequence: 2, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 9, etc. Note that it is not
possible to produce a pattern that consists of disconnected components, as none of the rules we
have allows the continuation of the pattern with a gap.

What happens if the placement of the primitive pattern is not regular?

The texture shown in Figure 2.2d is an example of a semi-stochastic pattern; the primitives are
regular, but the rules according to which they are placed appear to be random. Such patterns may
be described by stochastic grammars. In a stochastic grammar the rules are applied in a random
order, or they depend on a random variable. They may even be given different weights, i.e. they may
be drawn from a random distribution that favours some of the rules more than others. Examples
of semi-stochastic textures are those of Figure 2.13.

Figure 2.13 Two semi-stochastic textures.
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Example 2.3

Use the rules of Figure 2.10, with starting element the left-hand side of rule 1, to pro-
duce a semi-stochastic pattern.

Figure 2.14 A pattern that was produced by the
application of the rules of Figure 2.10 in a
random order. Starting with the left-hand side of
the first rule of Figure 2.10, we proceed by
applying rules 2, 10, 3, 7,…, to produce this
pattern, growing it from its top left corner.

Figure 2.14 shows a pattern that was produced by the rules of Figure 2.10 applied in a totally
random order, but avoiding overlaps. In other words, every time a rule indicated continuation
towards a direction where there was already a tile, this rule was abandoned and another one
was chosen at random.

What happens if the primitive pattern itself is not always the same?

Then we must use rules that choose primitives from a set of possible primitive patterns every time
they are applied.

What happens if the primitive patterns vary in a continuous way?

Then we may use a probability density function to describe the distribution of the possible values
of the parameters that describe the shape of the primitive pattern. This leads to the 2D Boolean
models used for texture description.

2.2 Boolean Models

What is a 2D Boolean model?

The Boolean model consists of two independent probabilistic processes: a point process creating
the germs and a shape process creating the grains. The outcome of the point process is a set of
locations in the 2D space. The outcome of the shape process is a set of shapes that are placed at the
random positions chosen by the point process.
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Box 2.2 How can we draw random numbers according to a given probability density function?

Most computers have programs that can produce uniformly distributed random numbers. Let us
say that we wish to draw random numbers x according to a given probability density function
px(x). Let us also say that we know how to draw random numbers y with a uniform probability
density function defined in the range [A,B]. We may formulate the problem as follows.

Define a transformation y = g(x) that is one-to-one and that is such that if y is drawn from
a uniform probability density function in the range [A,B], samples x are distributed according
to the given probability density function px(x).

Since we assume that relationship y = g(x) is one-to-one, we may schematically depict it as
shown in Figure 2.15.

x

y g(x)

x1

y1

Figure 2.15 A one-to-one relationship between x and y.

It is obvious from Figure 2.15 that distributions Py(y1) and Px(x1) of the two variables are
identical, since whenever y is less than y1 = g(x1), x is less than x1:

Py(y1) ≡ (y ≤ y1) = (x ≤ x1) ≡ Px(x1). (2.1)

The distribution of x is known, since the probability density function of x is known:

Px(x1) ≡ ∫
x1

−∞
px(x)dx. (2.2)

The probability density function of y is given by:

py(y) =

{ 1
B − A

for A < y ≤ B
0 otherwise

. (2.3)

The distribution of y is then easily obtained:

Py( y1) ≡ ∫
y1

−∞
py( y)dy =

⎧⎪⎨⎪⎩
0 for y1 ≤ A
y1 − A
B − A

for A < y1 ≤ B
1 for B < y1

. (2.4)

Upon substitution in (2.1), we obtain

y1 − A
B − A

= Px(x1) (2.5)
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which leads to:

y1 = (B − A)Px(x1) + A. (2.6)

Random number generators usually produce uniformly distributed numbers in the range [0, 1].
For A = 0 and B = 1 we have:

y1 = Px(x1). (2.7)

So, to produce random numbers x, distributed according to a given probability density function
px(x), we use the following algorithm.

Step 1: Compute the distribution of x, Px(x1) using Equation (2.2).
Step 2: Tabulate pairs of numbers (x1,Px(x1)).
Step 3: Draw uniformly distributed numbers y1 in the range [0, 1].
Step 4: Use the tabulated numbers as a look-up table, where for each y1 = Px(x1) you look up

the corresponding x1. These x1 numbers are the random samples distributed according to
the desired probability density function.

Example B2.4

Produce 50 random numbers drawn from a Gaussian probability density function
with mean 𝜇 = 2 and standard deviation 𝜎 = 3. Assume that you have at your dis-
posal a random number generator that produces samples from a uniform probability
density function in the range [0, 1].

Figure 2.16 A Gaussian probability density function
with 𝜇 = 2 and 𝜎 = 3 and the histogram of 50 random
numbers drawn according to it.
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−2 0 2 4 6
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Drawn numbers

In this case:

px(x) =
1√
2𝜋𝜎

e−
(x−𝜇)2

2𝜎2 . (2.8)

Note that ∫ +∞
−∞ px(x)dx = 1 and that ∫ 𝜇

−∞ px(x)dx = ∫ +∞
𝜇

px(x)dx = 1∕2.
The distribution of such a probability density function is computed as follows:

Px(x1) =
1√
2𝜋𝜎 ∫

x1

−∞
e−

(x−𝜇)2

2𝜎2 dx. (2.9)

(Continued)
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Example B2.4 (Continued)

We distinguish two cases: x1 ≤ 𝜇 and x1 > 𝜇. We shall deal with the second case first:

Px(x1) =
1√
2𝜋𝜎 ∫

𝜇

−∞
e−

(x−𝜇)2

2𝜎2 dx + 1√
2𝜋𝜎 ∫

x1

𝜇

e−
(x−𝜇)2

2𝜎2 dx

= 1
2
+ 1√

2𝜋𝜎 ∫
x1

𝜇

e−
(x−𝜇)2

2𝜎2 dx. (2.10)

If we set

z ≡ x − 𝜇√
2𝜎

⇒ dx = 𝜎
√

2dz (2.11)

we obtain

Px(x1) =
1
2
+ 1√

𝜋 ∫
z1

0
e−z2 dz = 1

2
+ 1

2
erf(z1) (2.12)

where z1 ≡ (x1 − 𝜇)∕(
√

2𝜎) and the error function is defined as:

erf(z) ≡ 2√
𝜋 ∫

z

0
e−t2 dt (2.13)

When x1 ≤ 𝜇, we write:

Px(x1) =
1√
2𝜋𝜎 ∫

𝜇

−∞
e−

(x−𝜇)2

2𝜎2 dx − 1√
2𝜋𝜎 ∫

𝜇

x1

e−
(x−𝜇)2

2𝜎2 dx

= 1
2
− 1√

2𝜋𝜎 ∫
𝜇

x1

e−
(x−𝜇)2

2𝜎2 dx. (2.14)

In the last expression we change variable of integration from x to y ≡ −x ⇒ dx = −dy. Then:

Px(x1) =
1
2
+ 1√

2𝜋𝜎 ∫
−𝜇

−x1

e−
(−y−𝜇)2

2𝜎2 dy

= 1
2
− 1√

2𝜋𝜎 ∫
−x1

−𝜇
e−

(y+𝜇)2

2𝜎2 dy. (2.15)

If we set

z ≡ y + 𝜇√
2𝜎

⇒ dy = 𝜎
√

2dz (2.16)

we obtain

Px(x1) =
1
2
− 1√

2𝜋𝜎
𝜎
√

2∫
z1

0
e−z2 dz = 1

2
− 1

2
erf(z1) (2.17)

where here z1 ≡ (−x1 + 𝜇)∕(
√

2𝜎). In summary, we deduced that:

Px(x1) =
⎧⎪⎨⎪⎩

1
2
− 1

2
erf

(
−x1+𝜇√

2𝜎

)
for x1 ≤ 𝜇

1
2
+ 1

2
erf

(
x1−𝜇√

2𝜎

)
for x1 > 𝜇

. (2.18)

The error function may be easily computed by using various rational approximations, one of
which is

erf(x) = 1 − (a1t + a2t2 + a3t3)e−x2 (2.19)
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where t ≡ 1∕(1 + px), p = 0.47047, a1 = 0.3480242, a2 = −0.0958798 and a3 = 0.7478556. This
approximation is valid for 0 ≤ x < ∞ and it returns the value of the error function with accuracy
better than 2.5 × 10−5.

Using this approximation, we create the table of values given in Table 2.1.
We then draw 50 numbers uniformly distributed in the range [0, 1] and look them up under

column Px(x1) to read the numbers we are really interested in, namely the corresponding x1 num-
bers. Wherever there is no exact entry in our look-up table, we perform linear interpolation. Some
of the drawn numbers and the corresponding x1 numbers worked out from the look-up table are
given in Table 2.2. We usually construct the look-up table so that it is very unlikely that we shall
draw a number smaller than the smallest one in the table or larger than the largest one in the
table. The example we give here uses a rather sparse look-up table. Figure 2.16 shows the theo-
retical Gaussian probability density function superimposed on the histogram of the 50 numbers
drawn.

Box 2.3 What is a Poisson process?

Imagine that we draw N random numbers uniformly distributed in the range [0,T]. Every
time we do it, we find yet another combination of N such numbers. So, if we concentrate our
attention on a sub-range of this range, say [t1, t2], every time we repeat the experiment, we
have yet another number of values in this range. Let us say that in the ith realisation we have
ki values in the range [t1, t2]. The probability of ki taking a particular value k is given by the
Poisson probability density function

p(ki = k) = e−𝜆(t2−t1)
(𝜆(t2 − t1))k

k!
(2.20)

where 𝜆 = N∕T.
If the range is chosen to start from 0, i.e. if t1 = 0, and say t2 = t, then these numbers ki

constitute a Poisson process which is a function of t: k(t).

Example B2.5

Create a pattern of 100 × 100 pixels using a Poisson process with parameter 𝜆 = 0.005.
Use a shape process that creates squares with side l. The values of l are Gaussianly
distributed with mean l0 = 5 and standard deviation 𝜎l = 2. Repeat the experiment
for 𝜆 = 0.01, 0.015, 0.025, 0.05, and 0.1.
Using the definition of 𝜆 immediately after Equation (2.20), and for a total number of pixels T =
100 × 100 = 10, 000, we work out that we must draw N = 50 pixels when 𝜆 = 0.005. Therefore,
we must identify 50 locations uniformly distributed in the 100 × 100 grid where we shall place
black squares of randomly chosen sizes. We draw 100 random numbers uniformly distributed in
the range [1, 100]. Then we combine them two by two to form the coordinates of the 50 pixels we
need. We use the method of Example 2.4 to draw random numbers Gaussianly distributed with
mean 5 and standard deviation 2 in order to decide the size of each square. Each drawn number
is rounded to the nearest integer. The result is shown in Figure 2.17a. The results for the other
values of 𝜆 are shown in Figures 2.17b–2.17f.
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Table 2.1 Pairs (x1, Px(x1)) when Px(x1) is the distribution function of a Gaussian
probability density function with mean 𝜇 = 2 and standard deviation 𝜎 = 3.

x1 Px(x1) x1 Px(x1) x1 Px(x1)

−2.5 0.06680 0.6 0.32038 3.6 0.70309
−2.4 0.07123 0.7 0.33240 3.7 0.71452
−2.3 0.07587 0.8 0.34459 3.8 0.72574
−2.2 0.08075 0.9 0.35694 3.9 0.73673
−2.1 0.08586 1.0 0.36945 4.0 0.74750
−2.0 0.09120 1.1 0.38209 4.1 0.75803
−1.9 0.09679 1.2 0.39486 4.2 0.76832
−1.8 0.10263 1.3 0.40775 4.3 0.77836
−1.7 0.10871 1.4 0.42073 4.4 0.78814
−1.6 0.11506 1.5 0.43381 4.5 0.79767
−1.5 0.12166 1.6 0.44695 4.6 0.80694
−1.4 0.12853 1.7 0.46016 4.7 0.81594
−1.3 0.13566 1.8 0.47341 4.8 0.82468
−1.2 0.14305 1.9 0.48670 4.9 0.83315
−1.1 0.15072 2.0 0.50000 5.0 0.84135
−1.0 0.15865 2.1 0.51330 5.1 0.84928
−0.9 0.16685 2.2 0.52659 5.2 0.85695
−0.8 0.17532 2.3 0.53984 5.3 0.86434
−0.7 0.18406 2.4 0.55305 5.4 0.87147
−0.6 0.19306 2.5 0.56619 5.5 0.87834
−0.5 0.20233 2.6 0.57927 5.6 0.88494
−0.4 0.21186 2.7 0.59225 5.7 0.89129
−0.3 0.22164 2.8 0.60514 5.8 0.89737
−0.2 0.23168 2.9 0.61791 5.9 0.90321
−0.1 0.24197 3.0 0.63055 6.0 0.90880
0.0 0.25250 3.1 0.64306 6.1 0.91414
0.1 0.26327 3.2 0.65541 6.2 0.91925
0.2 0.27426 3.3 0.66760 6.3 0.92413
0.3 0.28548 3.4 0.67962 6.4 0.92877
0.4 0.29691 3.5 0.69145 6.5 0.93320
0.5 0.30855

Example B2.6

Create a texture pattern of 100 × 100 pixels in size, using the following 2D Boolean
model. A point process defined as a Poisson process with parameter 𝜆 = 0.005, and a
shape process that creates circles with radius r given by a Gaussian probability den-
sity function with mean r0 = 5 and standard deviation𝜎r = 2. Approximate each circle
by its nearest digital circle. Repeat the experiment for 𝜆 = 0.01, 0.015, 0.025, 0.05, and
0.1.
We work again as for example 2.5. The results for the various values of 𝜆 are shown in Figure 2.18.



�

� �

�

2.2 Boolean Models 27

Table 2.2 The numbers on the left were drawn from a uniform probability density
function with range [0, 1]. Each one of them was treated as a value of Px(x1) and
Table 2.1 was used as a look-up table to find the corresponding value of x1. The thus
deduced x1 values are given in the corresponding position on the right of this table.
They are samples from a Gaussian probability density function with mean 𝜇 = 2 and
standard deviation 𝜎 = 3.

Uniformly distributed Gaussianly distributed

numbers in the range [0,1] numbers with 𝝁 = 2 and 𝝈 = 3

0.13412 0.88634 −1.32152 5.62203
0.82812 0.33051 4.84066 0.68432
0.00055 0.50676 −5.97104 2.05078
0.35441 0.76733 0.87948 4.19036
0.15503 0.22638 −1.04556 −0.25284
0.79651 0.68888 4.48786 3.47826
0.25230 0.21248 −0.00188 −0.39367
0.89950 0.16105 5.83650 −0.97067
0.52185 0.93618 2.16434 6.77440
0.68380 0.01647 3.43533 −5.13699
0.73431 0.53067 3.87797 2.23079
0.23325 0.40219 −0.18480 1.25688
0.24480 0.90535 −0.07308 5.93836
0.09923 0.33897 −1.85813 0.75394
0.35064 0.80364 0.84899 4.56437
0.63024 0.48476 2.99748 1.88541

λ = 0.005, N = 50 λ = 0.01, N = 100 λ = 0.015, N = 150
(a) (b) (c)

λ = 0.025, N = 250 λ = 0.05, N = 500 λ = 0.1, N = 1000
(d) (e) (f)

Figure 2.17 2D Boolean patterns created for different values of parameter 𝜆 of the Poisson process. The
shape process creates squares with side l Gaussianly distributed with mean l0 = 5 and standard deviation
𝜎l = 2. Parameter 𝜆 determines how many such shapes are created and placed uniformly inside the grid.
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λ = 0.005, N = 50 λ = 0.01, N = 100 λ = 0.015, N = 150
(a) (b) (c)

λ = 0.025, N = 250 λ = 0.05, N = 500 λ = 0.1, N = 1000
(d) (e) (f)

Figure 2.18 2D Boolean patterns created for different values of parameter 𝜆 of the underlying Poisson
process. The shape process created circles with radius r. The values of r were drawn according to a Gaussian
probability density function with mean r0 = 5 and standard deviation 𝜎l = 2, using the method described in
Example 2.4. For 𝜆 = 0.1 we had far too many circles and obtained complete coverage of the grid.
Parameter 𝜆 of the Poisson process determines how many such shapes are created and placed uniformly
inside the grid.

How can we use the 2D Boolean model to describe a binary texture?

One can distinguish two types of parameter in a binary texture: aggregate and individual parame-
ters. The aggregate parameters are those that we can measure directly from the image. An example
of an aggregate parameter is the average number of black pixels inside a window of fixed size.
The individual parameters are those that govern the Boolean model that we assume describes the
texture. An example of an individual parameter is the value of 𝜆 of the underlying Poisson germ
process. The individual parameters are estimated from the values of the aggregate parameters. Both
types of parameter may be used to characterise the texture; however, if one needs to reproduce the
texture, one must estimate as completely as possible the individual model parameters. In that case,
one must also check the validity of the adopted Boolean model, since it is possible that it may not
be applicable.

How can we estimate some aggregate parameters of the 2D Boolean model?

Some useful aggregate parameters of a Boolean texture are the area fraction, f , the specific
boundary length, L, and the specific convexity, N+. There are many more aggregate parameters
that may be defined, but we chose these particular ones because they are useful in estimating
some of the basic individual parameters of the underlying Boolean model in the case when the
grains are assumed to be convex shapes and the germ process is assumed to be Poisson.
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What is the area fraction?

The area fraction f is defined as the ratio of the black (covered) pixels over all pixels in the image.
For example, in the image of Figure 2.19a this parameter is f = 0.38 because there are 38 black
pixels and the image consists of 100 pixels.

What is the specific boundary length?

The specific boundary length L is defined as the average boundary length per unit area in the image.
It may be estimated by counting the number of border pixels in the image. These are all pixels that
are black but have at least one white neighbour. When using the word “neighbour” one has to
specify whether a neighbour is a pixel that has with the pixel in question a common side or just a
common vertex. This determines the type of image connectivity we decide to adopt.

What types of image connectivity may we have?

If we accept as neighbours only pixels that share a common side with the pixel being examined,
then we are using 4-connectivity. If in addition we count as neighbours pixels that share a

(a) (b) (c)

(f)(e)(d)

u

+

+
+

+
+

+

+

+

+

Figure 2.19 (a) A 10 × 10 binary image. (b)The boundary pixels of the image. These are the interior
boundary pixels identified as having at least one white neighbour using 8-connectivity to define which are
the neighbours of a pixel. (c) The border pixels that may be counted as boundary pixels as well. (d) A convex
grain and the point from which its tangent is orthogonal to vector u. (e) Patterns used to identify boundary
pixels from which a tangent can be drawn to the black grain that is perpendicular to the upward vertical
direction. The tangent points are marked with a cross. The third pattern is intentionally left incomplete with
an apparently missing pixel at its top right corner, in order to indicate that it is indifferent whether that
pixel is black or white. (f) The tangent points of tangents perpendicular to the vertical direction identified
in the image.
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common vertex with the pixel in question, then we are using 8-connectivity. Very different
results may be obtained according to which connectivity we adopt.

How does image connectivity influence the estimation of the specific boundary
length?

As the whole theory of 2D Boolean models is based on the assumption of convex grains, it is advis-
able to use 8-connectivity to decide whether a pixel is a boundary pixel or not. To appreciate the
problem of choosing between 4-connectivity and 8-connectivity in deciding the pixels that consti-
tute the boundary pixels of the grains, we present in Table 2.3 the “perimeter” of a digital circle of
a certain radius when 4- or 8-connectivity is used and the corresponding value of the perimeter of
a circle in the continuous domain. In the same table we also include the areas of the digital and
continuous circles. Figure 2.20 shows some digital circles and their boundary pixels defined using
4- and 8-connectivity with the background pixels.

Table 2.3 Perimeter and area of digital and continuous circles. The perimeter of the digital circle was
measured using 4-connectivity (second column) and 8-connectivity (third column) in order to decide
whether a pixel of the digital circle had a background pixel as a neighbour or not. The digital circle in each
case was defined as the set of pixel positions (i, j) that satisfied the inequality i2 + j2 ≤ r2, with the centre of
the circle assumed to be at (0, 0).

Digital circle Continuous circle

Radius Perimeter 𝚷 Perimeter 𝚷 Area A Perimeter Area
r 4-connectivity 8-connectivity 2𝝅r 𝝅r2

1 4 5 5 6.28 3.14
2 8 12 13 12.57 12.57
3 16 20 29 18.85 28.27
4 20 28 49 25.13 50.27
5 28 36 81 31.42 78.54
6 32 44 113 37.70 113.10
7 36 52 149 43.98 153.94
8 44 60 197 50.27 201.06
9 48 68 253 56.55 254.47

10 56 76 317 62.83 314.16
11 60 84 377 69.12 380.13
12 64 92 441 75.40 452.39
13 72 100 529 81.68 530.93
14 76 108 613 87.96 615.75
15 84 116 709 94.25 706.86
16 88 124 797 100.53 804.25
17 96 132 901 106.81 907.92
18 100 140 1009 113.10 1017.88
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4−connectivity 8−connectivity
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Figure 2.20 (a) Some digital circles. (b) Boundary pixels that share a common side with the background
pixels. (c) Boundary pixels that share either a common side or a common vertex with the background pixels.

How do we deal with border effects?

The issue is whether to count as border pixels those that touch the edges of the image or not. Let us
assume that we use 8-connectivity in order to decide whether a pixel is a boundary pixel or not. The
boundary pixels of image 2.19a, which are interior to the image and are boundary pixels because
they touch a white pixel, are shown in Figure 2.19b. We can count 35 such pixels, and therefore,
from this count we estimate that the specific boundary length L is 0.35. If in addition we consider
as boundary pixels those that touch the border of the image itself, then we must also include the
two pixels marked in Figure 2.19c, and in this case L = 0.37. A compromise solution is to count
only as boundary pixels the pixels that touch either the left or the bottom border of the image. It
can be shown that the estimator of the specific boundary length in this case is unbiased. Intuitively
we understand this by saying that we make a compromise and it is as if the image continues in a
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wrapped round way in the two directions, so counting only the border pixels once makes sense. If
we use this unbiased estimator in our example, we must only consider the border black pixel on
the left in Figure 2.19c, and this will yield L = 0.36.

Is there a way to estimate the specific boundary length L, bypassing the problem of 4-
or 8-connectivity?

Yes, with the following algorithm.

Step 1: Choose n digital lines passing through a white point somewhere in the middle of the image.
Step 2: Along each line count how many times it crosses a boundary, i.e. how many transitions

there are from white to black and vice versa.
Step 3: Divide this number by the total number of pixels per digital line. The quantity you compute

this way is the specific boundary length per unit length, P(𝛽i), where 𝛽i is the angle line i
forms with the chosen reference direction, say the horizontal axis.

Step 4: The specific boundary length L per unit area is given by (see example 2.7):

L = 𝜋

2n

n∑
i=1

P(𝛽i). (2.21)

What is the specific convexity N+?

The specific convexity N+ is defined as the average number of boundary points per unit area from
which one can draw a tangent to the black grain orthogonal to a fixed direction. For example, if
the fixed direction is indicated by vector u in Figure 2.19d, the tangent to the grain is drawn as
shown in the same figure. These points are the points of lower positive tangents. Such points
are identified by the existence of local patterns like those shown in Figure 2.19e and they are
marked with a + in Figure 2.19f. It is very easy to identify them in this example. We find that
we have six such points, and so N+ = 6∕100 = 0.06. However, in practice they have to be identified
using the hit-or-miss algorithm described later, in Example 2.22 and in Box 2.8, using the patterns
shown in Figure 2.19e. In addition, we use more than one orientation for vector u, typically four,
with u pointing up, down, left and right, and estimate N+ as the average of its values over these
orientations.

The patterns shown in Figure 2.19e are adequate if we think that the maximum radius of a grain
is about 3. If we think that larger grains exist in the image, then extra patterns must also be used
with the hit-or-miss transform. These extra patterns should be similar to the first two patterns
of Figure 2.19e, but with longer sequences of black pixels, i.e. 3, 4, 5, etc., up to the maximum
expected radius of the grains. The last pattern should have its top right corner missing, indicat-
ing that it is indifferent whether that pixel is black or white (like the third of the patterns shown
in Figure 2.19e).
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Example B2.7

Show that if P(𝛽) is the specific boundary length per unit length in polar direction 𝛽,
the specific boundary length per unit area is given by:

L = 1
4 ∫

2𝜋

0
P(𝛽)d𝛽. (2.22)

Δβ

R

R
r

r

A B

Figure 2.21 A grain at distance r from the origin of the axes will have radius R = r tan Δ𝛽
2

.

Since P(𝛽) is the probability of boundary crossings per unit length, we expect to find P(𝛽)dr
boundary crossings in a length dr. Let us say that dr is so small that we shall have at most a
single boundary crossing inside it. We shall show next that the length of the boundary, if it exists
inside dr, is 𝜋rd𝛽∕2, where d𝛽 is an elementary angle around orientation 𝛽. Let us consider a
circular grain as shown in Figure 2.21. (Since the grains are assumed convex, to the first approx-
imation they may be represented by circles.) Then the radius R of the grain, in terms of angle Δ𝛽
and its distance r from the origin of the polar coordinates we use, is:

R = r tan Δ𝛽
2

≃ rΔ𝛽
2

. (2.23)

The boundary length of the grain then is 2𝜋R = 2𝜋rΔ𝛽∕2 = 𝜋rΔ𝛽. However, this boundary will
be counted twice, since it will be encountered once when the ray from the origin crosses the grain
at point A and once when it crosses the grain at point B (see Figure 2.21). Therefore, the effective
boundary length we may assign to each boundary crossing is 𝜋rΔ𝛽∕2. The boundary length then
we expect to find inside the area of a circle of radius 𝜌 is:

∫
𝜌

0 ∫
2𝜋

0
P(𝛽)dr𝜋r d𝛽

2
= 𝜋

2 ∫
𝜌

0
rdr ∫

2𝜋

0
P(𝛽)d𝛽 = 𝜋

2
1
2
𝜌2P(𝛽)d𝛽. (2.24)

The specific boundary length per unit area is the above result divided by the area of the circle we
considered, i.e. by 𝜋𝜌2, which yields Equation (2.22).
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Example B2.8

Consider a circular image of radius 𝜌 = 1. At two points centred 𝜌∕2 away from the
centre of the image, there are two grains of radius 𝜌∕4 each. For this image compute
the specific boundary length per unit area directly and by applying formula (2.22).
Compare the two answers you get.

π
6

π
6

π
3

1
4

1
2

OE =

EF =

O

B

A

E

F

D

C

OA = OB = OC = OD = 1

Figure 2.22 A circular image of radius 1 with two grains of radii 1∕4.

Since 𝜌 = 1, the radius of each grain is 1∕4 and the perimeter of each grain is 2𝜋∕4 = 𝜋∕2. So, the
total perimeter of both grains is twice that, i.e. 𝜋. We must divide this by the area of the circular
image, i.e. by 𝜋𝜌2 = 𝜋 to compute the specific boundary length per unit area, which turns out to
be 1.

Let us now apply formula (2.22). For simplicity, let us assume that the two grains are placed
in diametrically opposite directions, say at 𝛽 = 0 and 𝛽 = 𝜋. This assumption does not affect the
result of our calculation. We can see from Figure 2.22 that for triangle OEF we have:

sin(ÊOF) = EF
OE

=
1∕4
1∕2

= 1
2
⇒ ÊOF = 𝜋

6
. (2.25)

As 𝛽 is measured anti-clockwise from reference direction OE, function P(𝛽), which counts the
number of boundary crossings per unit length as a function of 𝛽, is:

P(𝛽) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2 for 0 ≤ 𝛽 <
𝜋

6

0 for 𝜋

6
≤ 𝛽 <

5𝜋
6

2 for 5𝜋
6
≤ 𝛽 <

7𝜋
6

0 for 7𝜋
6
≤ 𝛽 <

11𝜋
6

2 for 11𝜋
6

≤ 𝛽 < 2𝜋

. (2.26)

Then:

L = 1
4 ∫

2𝜋

0
P(𝛽)d𝛽
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= 1
4

(
∫

𝜋

6

0
2d𝛽 + ∫

7𝜋
6

5𝜋
6

2d𝛽 + ∫
2𝜋

11𝜋
6

2d𝛽

)
= 1

4

(
2𝜋

6
+ 2 2𝜋

6
+ 2𝜋

6

)
= 𝜋

3
∼ 1. (2.27)

We observe that the formula gives very approximately the right answer.

How can we estimate some individual parameters of the 2D Boolean model?

Individual parameters of the 2D Boolean model are parameter 𝜆 of the Poisson process and the
parameters that describe the shape and size of the grains. Here we shall restrict ourselves only to
the average area A and the average perimeter Π of the grains. In order to estimate them we make
use of three equations that relate them to the aggregate parameters we defined earlier:

f = 1 − e−𝜆A

L = 𝜆(1 − f )Π

N+ = 𝜆(1 − f ). (2.28)

Justification of these equations is given in Box 2.4. From the values f = 0.38 and N+ = 0.06 we
derived for the image of Figure 2.19a, and the third of the above equations, we deduce that 𝜆 =
0.06∕0.62 = 0.097. Using this value in the second of these equations alongside the value L = 0.36,
we deduce that the mean perimeter of the grains is Π = 5.99 pixels and using it in the first equation
we deduce that the mean grain area is A = 4.93.

There are also more sophisticated aggregate parameters that may be computed from the image
and that may be used to infer more information about the distribution of the grain shape and size
so that the image may be characterised better. Of course, if one had known a priori what the prim-
itive pattern of the texture was, then the process would have been more straightforward. Often one
makes the assumption that the grains may be described by some very simple parametric shape, e.g.
a circle. One can then compute characteristics of the distributions of the parameters of the assumed
shape.

Example B2.9

Compute the mean value of a variable that has a probability density function given
by the Poisson process:

p(k) = e−𝜆 𝜆
k

k!
. (2.29)

The mean value of k will be given by:

k =
∞∑

k=0
ke−𝜆 𝜆

k

k!
= e−𝜆

∞∑
k=0

k𝜆
k

k!
. (2.30)

(Continued)
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Example B2.9 (Continued)

Consider the series expansion of e𝜆:

e𝜆 =
∞∑

k=0

𝜆k

k!
. (2.31)

Differentiate it with respect to 𝜆 to obtain:

e𝜆 =
∞∑

k=0
k𝜆

k−1

k!
= 1

𝜆

∞∑
k=0

k𝜆
k

k!
. (2.32)

If we solve then (2.32) for 𝜆, we have

𝜆 = e−𝜆
∞∑

k=0
k𝜆

k

k!
(2.33)

which upon comparison with (2.30) yields 𝜆 = k.
So, the mean value k of the expected number of events per unit area (or length) of the Poisson

process is equal to parameter 𝜆 of the process.

Box 2.4 How can we relate the individual parameters to the aggregate parameters of the 2D
Boolean model?

We assume that the probability of finding k events in an area of size A is given by a Poisson
probability density function of the form:

p(k) = e−𝜆A (𝜆A)k

k!
. (2.34)

In our case, “event” means having the centre of a grain placed inside the area. The size of the
area is measured in pixels. Since we measure all the distances in pixels, it is as if we consider
a pixel to be a tile of side 1.

We wish first of all to compute the number of pixels that are expected to be covered in the
image. A pixel is covered if it is itself the centre of a grain, or if a grain has been placed near
by, no further away than the average radius of the grains. In other words, a pixel is covered if a
grain has been placed with its centre anywhere inside a circular neighbourhood, with size equal
to the average size of a grain, around it. Let us say that the average size of a grain is A pixels. So,
for a pixel to be uncovered, there should be no grain placed in a circular neighbourhood around
it of size A pixels. In other words, the number of events happening inside that neighbourhood
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should be zero. The probability of getting 0 events in a neighbourhood of size A is:

p(0) = e−𝜆A (𝜆A)0

0!
= e−𝜆A. (2.35)

(Remember that 0! = 1.)
The probability of a pixel being covered is 1 minus the probability of being uncovered, i.e.

1 − p(0). So, for an image of size N × N we expect to find N2(1 − p(0)) covered pixels, which
upon division with the total number N2 of pixels in the image yields the fraction f of covered
pixels:

f = 1 − p(0) = 1 − e−𝜆A. (2.36)

This is the first equation that relates the measurable from the image aggregate parameter f
to the individual parameters A and 𝜆.

Let us say next that the average grain perimeter is Π. The mean number of grains per unit
area is 𝜆 (see Example 2.9). Therefore, we expect to have 𝜆Π boundary pixels per unit area.
However, not all of them will be visible, as in order to be visible they have to be uncovered. The
probability of a pixel being uncovered was worked out above to be e−𝜆A. So, the probability of
𝜆Π pixels being uncovered (and therefore visible as boundary pixels) is 𝜆Πe−𝜆A. If we substitute
e−𝜆A from (2.36) we obtain that the specific boundary length L, i.e. the average number of
boundary pixels per unit area is:

L = 𝜆(1 − f )Π. (2.37)

This is the second equation that relates the measurable from the image aggregate parameters
L and f with the individual parameters Π and 𝜆.

Finally, since we assume that the grains are convex, we must have as many points from
which a tangent to the grain perpendicular to a certain direction can be drawn as we have
grains (see Figure 2.19d). So, there must be 𝜆 such points per unit area. For these points to be
visible, they must be uncovered. The probability of a point being uncovered is e−𝜆A as above,
so the specific convexity N+, which is the average number of such points per unit area, is given
by:

N+ = 𝜆e−𝜆A = 𝜆(1 − f ). (2.38)

This is the final equation we present here, which relates the aggregate parameters N+ and f ,
that can be directly estimated from the image to the individual parameter 𝜆.

Example B2.10

Create a texture pattern of 100 × 100 pixels in size using a Boolean model, the point
process of which is a Poisson process with parameter 𝜆 = 0.005 and the shape process
of that creates digital circles with radius r = 4. Estimate the aggregate and individual
parameters of the texture pattern.

(Continued)
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Example B2.10 (Continued)

(a) (b)

(c) (d)

Figure 2.23 Estimating the aggregate parameters of a 2D Boolean model. (a) A realisation of the 2D
Boolean model. (b) A digital circle of radius 4 and its boundary pixels using 8-connectivity. (c) The
boundary pixels identified in the image. (d) Tangent points in the four chosen directions.

Figure 2.23a shows a random texture pattern created using the given parameters. Figure 2.23b
shows a digital circle of radius 4 and its boundary pixels identified using 8-connectivity.
Figure 2.23c shows the boundary pixels of the whole image. Note that we included as boundary
pixels the pixels where the grains touch the image border at the left and bottom, but not at
the right and top. We use the boundary pixels to estimate the value of aggregate parameter L.
Figure 2.23d shows the tangent points obtained using four possible directions that allow the
estimation of aggregate parameter N+. One has to count these points and divide by 4 to obtain
an estimate of N+.

From the values of these aggregate parameters and with the help of Equations (2.28) we can
estimate the individual parameters of this pattern, namely the density of grains 𝜆, their average
area A and their average perimeter Π. Table 2.4 shows the numerical values estimated for the
aggregate and individual parameters for this pattern.

We observe that the value of 𝜆 is pretty close to the one we used. In addition, a digital circle
of radius 4 consists of 49 pixels, and its boundary pixels are 28. Both these values are very close
to the estimated ones. However, this should not be surprising. This example is the ideal case for
applying this methodology. We know that the 2D Boolean model is applicable since the pattern
was created this way, and all grains are of the same shape and size.
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Table 2.4 Numerical values measured from the image for
the aggregate parameters and values of the individual
parameters estimated from the values of the aggregate
parameters for the texture of Figure 2.23a.

Aggregate Measured value
parameter from the image

f 0.2056
L 0.1088

N+ 0.0038

Individual Estimated value Real value
parameter from Equation (2.28)

𝜆 0.004783 0.005
Π 28.631579 28.000
A 48.117261 49.000

Example B2.11

Estimate the aggregate and individual parameters of the artificial textures created
in Examples 2.5 and 2.6.
Table 2.5 shows the aggregate and individual parameters estimated for each image. The values
of Π and A are the average perimeter and area, respectively, of the grains.

The perimeter of a 5 × 5 digital square is Π = 16 and its area is A = 25. So, for the image with
the squares that have sides Gaussianly distributed with mean 5, these are the expected estimates
for Π and A.

Digital circles are more different from their continuous counterparts than digital squares are
from theirs. Table 2.3 gives the values of the perimeter and the area of digital and continuous
circles of integer-valued radii in the range [1, 18]. We can see that as the circles become larger, the
differences between the digital and continuous case gradually disappear. The perimeter values for
the images of Example 2.6 were estimated using 8-connectivity. From Table 2.3 we can see that
a digital circle with radius 5 has perimeter Π = 36 for 8-connectivity, and area A = 81. So, these
are the expected values for the image of Figure 2.18. In view of this, we infer that the estimations
shown in Table 2.5 are reasonably close to the true values only for small values of 𝜆. Note that,
as the images are of specific size, the higher the value of 𝜆 the more the grains overlap, leading to
unreliable statistics. This is easily appreciated from the image with circles for 𝜆 = 0.1 for which
no statistics can be computed since it is totally filled with overlapping grains. In general, for fixed
size images, the smaller the 𝜆 and the smaller the grains, the more reliable the computed statistics
are. For higher values of 𝜆 and/or big grains, one needs a very big image in order to have accurate
estimations.

However, one should worry about the accuracy of the estimated parameters only if one wishes
to use them for some feedback in the manufacturing process that created the imaged grains, or
the characterisation of the size and shape of the grains for some further scientific assessment. If
one only wishes to extract some features that characterise the texture pattern for the purpose of
recognition and texture classification, even if the computed numbers are not reliably related to
the physical properties of the depicted material, they may still be useful as texture discriminators.
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Table 2.5 Estimation of the aggregate and individual parameters of the images generated in Examples 2.5
and 2.6. The true value of Π for square grains is 16 and for circular grains and 8-connectivity is 36. The true
value of A for square grains is 25 and for circular grains and 8-connectivity is 81.

Estimated values

Aggregate parameters Individual parameters

Grain Real 𝜆 f L N+ 𝜆 Π A

0.005 0.1274 0.0694 0.0037 0.0042 18.7568 32.1395
0.010 0.2494 0.1247 0.0054 0.0071 23.3084 40.2493

Square 0.015 0.3455 0.1672 0.0062 0.0095 26.8594 44.5674
0.025 0.5064 0.2107 0.0052 0.0105 40.5192 67.0185
0.050 0.7465 0.2130 0.0028 0.0109 76.7568 125.3698
0.100 0.9390 0.1307 0.0009 0.0152 141.2973 184.4430

0.005 0.3555 0.1141 0.0024 0.0037 47.5417 117.9651
0.010 0.5732 0.1664 0.0039 0.0091 42.6667 93.1781

Circle 0.015 0.7296 0.1543 0.0030 0.0110 51.8655 118.8717
0.025 0.9102 0.1177 0.0015 0.0161 81.1724 149.2643
0.050 0.9524 0.0610 0.0008 0.0163 78.7097 187.0172
0.100 1.0000 0.0199 0.0001 Not applicable

Example B2.12

Is the simple Boolean model described earlier valid for the image of Figure 2.24a?

(a) (b)

Figure 2.24 Two semi-stochastic
textures.

The model is not valid for texture 2.24a for several reasons:

● The pattern is deterministic and not random.
● The grains are not convex.
● The grains are too complicated to be adequately described by the shape parameters we use

here, namely their mean area and mean perimeter. However, this is no reason by itself to
invalidate the Boolean model as there are algorithms and theorems that allow the cal-
culation of higher-order moments of the probability density functions of the grain shape
parameters. We simply have not presented them here.
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Example B2.13

Estimate the aggregate and individual parameters of the texture in image 2.24b.

Table 2.6 Estimated parameters for the image in
Figure 2.24b, assuming a 2D Boolean model.

Parameter Value Parameter Value

f 0.766663 𝜆 0.003286
L 0.097748 Π 127.482587
N+ 0.000767 A 442.865387

Table 2.6 shows the results obtained for each aggregate and individual parameter.

Example 2.14

Use the parameters you estimated in Example 2.13 for the texture of Figure 2.24b and
create a texture. Comment on its relevance to the original texture from which the
parameters were estimated.

Original r = 12 r = 16

Figure 2.25 The original image and two textures created using the 2D Boolean model with
parameter values estimated from it.

To create a new texture we use in the Poisson process the estimated value of 𝜆 = 0.003286. We
assume that the grains are digital circles with perimeter equal to the estimated value Π = 127.48,
and area A = 442.87. From Table 2.3 we can see that these values indicate a radius of 16 and 12
respectively. Figure 2.25 shows the textures created using these values. We can easily note that the
main difference from the original image is the larger size of grains. It seems that our estimation
method overestimated both Π = 127.48 and A = 442.87.

What is the simplest possible primitive pattern we may have in a Boolean model?

It is a straight line segment. This leads to the 1D Boolean models used to describe binary textures.
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What is a 1D Boolean model?

It is a model appropriate for creating and describing binary strings. In this case, the shapes of the
Boolean model are simply line segments. For each segment the left end-point is considered to be
the origin of the shape. From this origin the shape is said to emanate to the right. Thus, in the 1D
Boolean model, a shape is completely identified by the length of the line segment and the position
of its origin. In a typical realisation of a 1D Boolean model, shapes tend to overlap each other.

The locations of the origins of the shapes in a 1D Boolean model are the outcomes of the point
process with parameter p, which is the probability of a particular point to be the origin of a line
segment. This probability is called the marking probability and is one of the parameters of the
discrete 1D Boolean model. The lengths of the line segments (primary grains) are distributed
according to some distribution function C(k), where k = 1, 2,…. Thus, C(k) is the probability that
a line segment has length less than or equal to k, where k is discrete and C(0) ≡ 0. The marking
probability and the segment length distribution together form the discrete 1D Boolean model.

An observation of a discrete 1D Boolean model consists of a series of covered and uncovered
run-lengths (also called grain segments and pore segments, respectively). An uncovered
run-length, that is a sequence of white pixels, is obtained from a sequence of outcomes of the
point process that do not consider these points as beginnings of shapes, and that are not covered
by other segments. A covered run-length, that is a sequence of black pixels, is due to one or more
overlapping outcomes of the shape process.

How may the 1D Boolean model be used to describe textures?

We may use the 1D Boolean model to describe textures by converting first the 2D binary texture
into a 1D string, or into a set of 1D strings. Then we may make assumptions about the parametric
probability distributions that govern the origin and length of each line segment that appears in
these strings. Finally, we may estimate the parameters of these distributions. The values of these
parameters are the features that characterise the texture.

How can we create 1D strings from a 2D image?

There are several ways:

1. Read each row of the image separately. If any of the rows starts or ends with a black pixel, we
ignore the segment that includes it if we do statistics on the black sequences of pixels. On the
other hand, if we compute the statistics of the white sequences, we ignore the sequences that
may reach the beginning or the end of a row. This is made clear in Figure 2.26.

2. Read each column of the image separately. Again we ignore incomplete sequences of pixels when
we perform statistics. This is made clear in Figure 2.28.

3. Raster scan the image row after row as shown in Figure 2.29a. Note that this method brings next
to each other pixels that are at the opposite ends of the image.

4. Raster scan the image column after column as shown in Figure 2.29b. Again, pixels far apart
may find themselves next to each other.

5. Raster scan the image row after row, as shown in Figure 2.29c.
6. Raster scan the image column after column as shown in Figure 2.29d.
7. Scan the image using a Hilbert curve. An example of such a scan line is shown in Figure 2.29e.

Such a scanning path remains in the neighbourhood of a pixel as long as possible before it moves
away from it. Such a string, therefore, preserves as much as possible the 2D neighbourhood
structure of the data while creating a 1D string out of them.
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(b)(a) (c)

Figure 2.26 (a) An original binary image. The individual strings we can create from it by reading each row
separately when we are interested in performing statistics with sequences of (b) black pixels and (c) white
pixels. In both cases, sequences that touch the edges of the image are omitted because we are not in a
position to know whether they are complete or not.

The strings created by scanning the image of Figure 2.26a in a raster way and by following the
Hilbert path are shown in Figure 2.30.

Box 2.5 How to construct Hilbert curves

Step 0: Construct a grid consisting of four quarters.
Step 1: Construct a curve that connects the centres of the four grid elements using three

segments, as shown in Figure 2.27a.
Step 2: Reduce the curve you constructed in the previous step to half its size and then copy

it four times over to a new grid. The curve is copied without any change in the bottom two
quarters, but it is rotated to the left for the top-left quarter and rotated to the right for the
top-right quarter.

Step 3: Join the curves in the four quarters with three new segments. Figure 2.27b shows steps
2 and 3 where the three new segments are drawn with dashed lines.

The above steps allow one to construct a Hilbert curve appropriate for scanning a 4 × 4
image. In the general case, the result of step 2 is reduced to half its size, then copied to a new
grid with the required rotations, and finally, three segments are added to join the four curves
into one. Figure 2.27c shows the next two steps of the construction of a Hilbert curve, where
the added segments are drawn using dotted lines.

Note that, depending on the three segments chosen in the first step, four differ-
ent curves may be drawn, but they are simply rotated versions of the curves shown in
Figure 2.27.

(Continued)
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Box 2.5 (Continued)

(a) (b) (c)

Figure 2.27 The first few steps of drawing a
Hilbert curve.

Example B2.15

Construct the Hilbert curve with which you can scan a 4 × 4 image.
We shall use the algorithm of Box 2.5. Let us consider a square of size 1 × 1 and coordinate axes
so that the (0, 0) point is at the top left corner of the square, with the positive y axis being from top
to bottom. Then the coordinates of the four centres of the quarters of the square are (0.25, 0.25),
(0.25, 0.75), (0.75, 0.25) and (0.75, 0.75). We may visualise this by looking at Figure 2.27a.

“Construct a curve” in step 2 of the algorithm simply means “read the locations of these
centres in the following order: (0.25, 0.25), (0.25, 0.75), (0.75, 0.75), (0.75, 0.25).” Step 3 of the
algorithm means that now the coordinates of the sequence of points that make up the curve are:
(0.125, 0.125), (0.125, 0.375), (0.375, 0.375), (0.375, 0.125).

Figure 2.28 At the top, an original binary image. In the middle,
the individual strings we can create from it by reading each
column separately when we are interested in performing
statistics with sequences of black pixels. Note that sequences of
black pixels at the ends of the strings have been omitted because
they are considered incomplete. At the bottom, the individual
strings we can create from the original image by reading each
column separately when we are interested in performing
statistics with sequences of white pixels. Note that sequences of
white pixels at the ends of the strings have been omitted
because they are considered incomplete.
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(c) (d) (e)

(a) (b)

Figure 2.29 (a) A raster scanning line that reads the rows of the image sequentially. (b) A raster scanning
line that reads the columns of the image sequentially. (c) A raster scanning line that reads the rows of the
image in a boustrophedon way. (d) A raster scanning line that reads the columns of the image in a
boustrophedon way. (e) A Hilbert scanning line that remains in the neighbourhood of a pixel as long as
possible before it moves away.

To repeat this curve without change, in order to scan the bottom left quarter of the 1 × 1 square,
simply means shifting these coordinates by (0, 0.5), to become (0.125, 0.625), (0.125, 0.875),
(0.375, 0.875), (0.375, 0.625).

To scan the bottom right quadrant we simply add to the coordinates (0.5, 0.5): (0.625, 0.625),
(0.625, 0.875), (0.875, 0.875), (0.875, 0.625).

To scan the top left quadrant, we have first to rotate the curve by 90∘ anticlockwise. This
simply means that we permutate the coordinates by one position to the right, so the new order
is: (0.125, 0.375), (0.375, 0.375), (0.375, 0.125), (0.125, 0.125). However, in order to start the
scanning from the top left point, we have also to reverse the order of the points: (0.125, 0.125),
(0.375, 0.125), (0.375, 0.375), (0.125, 0.375).

To scan the top right quadrant, we have first to shift the coordinates by (0.5, 0): (0.625, 0.125),
(0.625, 0.375), (0.875, 0.375), (0.875, 0.125). Then we have to rotate the curve by 90∘ clockwise.
This means that the coordinates will be permutated by one position to the left: (0.875, 0.125),
(0.625, 0.125), (0.625, 0.375), (0.875, 0.375). Finally, in order to finish with the top right point, we
have to reverse the order: (0.875, 0.375), (0.625, 0.375), (0.625, 0.125), (0.875, 0.125).

All we have to do now is to concatenate the four sequences we created, starting from the one
that scans the top left quadrant, carrying on with the one that scans the bottom left quadrant,
then the bottom right quadrant and finally the top left quadrant: (0.125, 0.125), (0.375, 0.125),

(Continued)
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Example B2.15 (Continued)

(0.375, 0.375), (0.125, 0.375), (0.125, 0.625), (0.125, 0.875), (0.375, 0.875), (0.375, 0.625),
(0.625, 0.625), (0.625, 0.875), (0.875, 0.875), (0.875, 0.625), (0.875, 0.375), (0.625, 0.375),
(0.625, 0.125), (0.875, 0.125).

To work out the pixel coordinates for a 4 × 4 image, we multiply all these values with 4 and
subtract 0.5 to account for the fact that the centre of the first pixel is at point with continuous
coordinates (0.5, 0.5) and we call it pixel (0, 0). So, the corresponding pixel coordinates are: (0, 0),
(1, 0), (1, 1), (0, 1), (0, 2), (0, 3), (1, 3), (1, 2), (2, 2), (2, 3), (3, 3), (3, 2), (3, 1), (2, 1), (2, 0), (3, 0).

Example B2.16

You are given the following 4 × 4 image:

g =

⎛⎜⎜⎜⎜⎝
1 0 3 5
6 1 0 5
2 3 0 6
1 3 5 2

⎞⎟⎟⎟⎟⎠
. (2.39)

Scan it by using the Hilbert curve you constructed in Example 2.15, to create a 1D
string.
All we have to do is to read the grey values following the sequence of pixels we constructed in
Example 2.15: 1, 0, 1, 6, 2, 1, 3, 3, 0, 5, 2, 6, 5, 0, 3, 5

How can we estimate the parameters of the 1D Boolean model?

As in the 2D case the individual parameters, namely the marking probability p and the distribution
function C(k) of the lengths of the line segments, may be estimated from some aggregate parame-
ters. The aggregate parameters used in this case are:

Np: the number of white points in the sequence;
Nps: the number of white segments in the sequence;
S(k): the number of pairs of white pixels that are k pixels apart, for various values of k.

Figure 2.30 An original image and the strings one can create from it by following the scanning lines
shown in Figure 2.29(a)–(e) from top to bottom, respectively.
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From these aggregate parameters the individual parameters are estimated by using the formulae:

p =
Nps

Np
C(k) = 1 − 1

p

(
1 − S(k + 1)

S(k)

)
. (2.40)

The origin of these last two equations is explained in Box 2.6. Note that for characterising the texture
one may use the aggregate parameters directly, or one may use the derived individual parameters.
The individual parameters have the extra advantage that they allow one to create textures of similar
statistical characteristics as the original texture and in addition they give an insight into the process
that created the observed pattern. This may be significant for some applications.

Example 2.17

Estimate the aggregate and the individual parameters of the texture in Figure 2.24b,
using all scans of Figure 2.29 to convert the image into a 1D string.
The values of the aggregate parameters Np and Nps for each type of scanning method used to
produce the 1D string are shown in Table 2.7. From these we compute the individual parameter
p, also shown in the same table. From the values of S(k) (which are aggregate parameters) and the
value of p, we compute the values of C(k) that are individual parameters. These are shown plotted
versus k in Figure 2.31. Since C(k) is a distribution function, values outside the range [0, 1] are
clearly erroneous and they should not be used as texture features. We use only values of k for which
C(k) is roughly inside the range [0, 1]. We note that for Hilbert scanning, C(k) is not behaving at
all like a distribution function. As it is not even monotonically increasing, it indicates negative
values of the corresponding probability density function. This behaviour is a strong indication
that the Boolean model is not applicable to the string produced from the original image by Hilbert
scanning. Another problem with this string is that it consists of very long sequences of black pixels,
since the scanning curve remains in the vicinity of a pixel as long as possible. As the total length of
the string is fixed, long sequences of black pixels indicate that the string may not be long enough
for reliable statistics to be computed.

The other four scanning methods yield approximately similar curves C(k). This should not
be surprising as the texture is isotropic, and rotating it by 90∘ should not cause any significant
change in the values of the descriptors we are using.

Table 2.7 Aggregate parameters Np and Nps and individual parameter
p estimated from image 2.24b using the scanning methods shown in
Figure 2.30.

Scan Np Nps p

(a) 15292 1512 0.098875
(b) 15292 1539 0.100641
(c) 15292 1464 0.095736
(d) 15292 1503 0.098287
(e) 15292 1462 0.095606

(Continued)
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Example 2.17 (Continued)
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Figure 2.31 Function C(k) estimated from image 2.24b using the scanning methods shown in
Figure 2.29, from (a) to (e), respectively.

Example 2.18

Estimate the aggregate and the individual parameters of the texture in Figure 2.24b,
using the lines and columns of the image individually, without concatenating them
to form continuous strings. Ignore the sequences which touch the edges of the image
as we are not in a position to know whether they are complete or not.
The results are shown in Table 2.8, and the values of C(k) are plotted in Figure 2.32.
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No noticeable difference appears to be between these results and those in Example 2.17. This is
an indication that the image is sufficiently large for the statistics computed not to be significantly
affected by the false strings created by the raster and boustrophedon scannings.

Table 2.8 Aggregate parameters Np and Nps and individual parameter
p estimated from image 2.24b using each row and column of the
image independently, as shown in Figures 2.26 and 2.28.

Scan Np Nps p

Rows 15292 1527 0.099856
Columns 15292 1542 0.100837
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Figure 2.32 Function C(k) estimated from image 2.24b using the image rows (a), and columns (b),
separately. Curve (a) of this figure is very similar to curves (a) and (c) of Figure 2.31. This indicates that
the erroneous strings created by the wrapping of the scanning line in example 2.17 for cases (a)–(d)
have an insignificant effect on the computed values of Np and Nps.

Box 2.6 Parameter estimation for the discrete 1D Boolean model

Let X be a Boolean sequence of length L characterised by parameters p and C(k), with p being
the probability of any particular pixel being the origin of a black line, and C(k) being the
probability of finding a line made up with fewer than k black pixels.

Let us consider a pair of neighbouring pixels in the sequence. For this pair to represent a
transition from a white pixel to a black pixel, the first pixel must be white, and the second must
be the beginning of a black line. The estimated probability of a pixel being white is equal to
the fraction of the white pixels in the sequence, i.e. Np∕L, where Np is the number of white
points in the sequence. Since p is the probability of a pixel being the origin of a black line,
then the probability of finding a transition pair of pixels is pNp∕L. If we multiply this with the
total number L of pixels in the sequence, we have the total number of such transitions that
we expect to find: pNp. And since each white segment of pixels has only one end, the number

(Continued)
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Box 2.6 (Continued)

of ends, i.e. transitions we find, must be equal to the number Nps of white segments in the
sequence: Nps = pNp. From this we obtain that the marking probability p can be estimated
as the ratio of these aggregate parameters: p = Nps∕Np, i.e. the ratio of the number of white
sequences observed over the total number of white pixels observed.

Let us consider next the probability S(k) of finding two white pixels k positions apart. Let
us name the first of these pixels x0 and the following ones x1, x2 and so on. For such a pair of
pixels to exist, the first one must be white, the second one should not be the origin of a line
longer than k − 1 pixels, the third one must not be the origin of a line longer than k − 2 pixels,
and so on, until the xk−1 pixel, which should not be the origin of a line longer than 1 pixel, and
pixel xk , which should not be the origin of a line. To find the probability S(k), we must multiply
the probabilities of these pixels being in the desired state.

Let us remind ourselves that C(j) is the probability of having a line shorter than or equal
to j. Then the probability of having a line longer than j must be 1 − C(j). The probability of
having a line longer than j starting from a particular pixel must then be p (1 − C(j)). So, the
probability of not having a line longer than j starting from a particular pixel is 1 − p (1 − C(j)).
If we apply this for j = k − 1, j = k − 2,…,j = 1, and multiply all these probabilities and also
take into consideration the probability p(𝑤) of finding a white pixel in the first place, and the
probability p of pixel xk not being the origin of a line, we find:

S(k) = p(𝑤)
k−1∏
j=1

[
1 − p (1 − C(j))

]
p. (2.41)

Let us apply this for k + 1:

S(k + 1) = p(𝑤)
k∏

j=1

[
1 − p (1 − C(j))

]
p. (2.42)

If we divide these two equations by parts, we obtain:

S(k + 1)
S(k)

= 1 − p (1 − C(k)) ⇒ p (1 − C(k)) = 1 − S(k + 1)
S(k)

⇒ 1 − C(k) = 1
p

(
1 − S(k+1)

S(k)

)
⇒ C(k) = 1 − 1

p

(
1 − S(k+1)

S(k)

)
. (2.43)

So, C(k) may be computed directly from observable parameters of the sequence.

Example 2.19

Figure 2.33 shows an 8 × 8 binary image and the binary string created from it by
reading its pixels in a boustrophedon way. Estimate the values of p and C(1),C(2),C(3)
and C(4) of the texture it depicts, using the white pixels and ignoring boundary
effects.
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Figure 2.33 An 8 × 8 binary image and the
string created from its pixels by reading
them in a boustrophedon way. The string is
presented folded to fit in the page.

The total number of white pixels in the image is Np = 41. The total number of strings of white
pixels is Nps = 12. So, p = 12∕41 = 0.29. Then we count the number of pairs of white pixels that
are next to each other (k = 1), the number of pairs of white pixels that have one other pixel in
between them (k = 2), etc., up to the number of pairs of white pixels that have four other pixels
between them (k = 5). These are the values of S(k). We then use equation (2.43) to estimate C(k):

k = 1 S(1) = 29 C(1) = 1 − 41
12

(
1 − 20

29

)
= −0.06

k = 2 S(2) = 20 C(2) = 1 − 41
12

(
1 − 23

20

)
= 1.51

k = 3 S(3) = 23 C(3) = 1 − 41
12

(
1 − 27

23

)
= 1.59

k = 4 S(4) = 27 C(4) = 1 − 41
12

(
1 − 22

27

)
= 0.37

k = 5 S(5) = 22.

What happens if the primitive patterns are very irregular?

An example of such a texture is shown in Figure 2.2c. Such a pattern requires a purely statistical
description, as parametrisation of the observed shapes is very difficult. The best tool for this is
mathematical morphology.

2.3 Mathematical Morphology

What is mathematical morphology?

Mathematical morphology is a collection of non-linear processes that can be applied to an image to
remove details smaller than a certain reference shape, which is called structuring element. Some
examples of such reference shapes are shown in Figure 2.34. The lines drawn cross at the point that
is the centre of each shape. Mathematical morphology relies on two simple operations: dilation
and erosion. Other operations, like opening and closing, may be defined in terms of them.

What is dilation?

Dilation is the process by which we “dilate” the objects in the image by placing the centre of the
structuring element on every object pixel and marking every pixel covered by the structuring ele-
ment as an object pixel. Figure 2.36a delineates the background pixels which will be turned into
object pixels if a structuring element of size 3 × 3 pixels (shown in Figure 2.34a) were used to dilate
the original image of Figure 2.35. Figure 2.36b shows the result of this operation. Notice that the
object has lost any gaps narrower than 3 pixels it used to have, and at the same time it has been
augmented in size.
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(a) (b) (c) (d)

(f)(e) (g) (h)

Figure 2.34 Some example structuring elements. The crossed lines mark the centres of the elements. The
size of structuring element (a) is 3 × 3 pixels and elements (d) and (e) are three pixels long.

Figure 2.35 The amorous hippopotamus.

What is erosion?

Erosion is the process by which we “erode” an object by placing the centre of the structuring ele-
ment on every object pixel and keeping only those pixels that allow the structuring element to fit
fully inside the object. Figure 2.37a delineates the object pixels that will be turned into background
pixels if a structuring element of size 3 × 3 pixels (shown in Figure 2.34a) were to be used to erode
the original image of Figure 2.35. Figure 2.37b shows the result of this operation. Notice that the
object has been reduced only to a few pixels that were at the centre of thick patches. Any details
narrower than 3 pixels are lost, and details larger than this have been reduced in size because they
lost a layer of pixels all around them.
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(a) (b)

Figure 2.36 (a) The amorous hippopotamus about to be dilated with the structuring element of
Figure 2.34a (shown at the top right here). The white pixels were covered by the structuring element when
the latter was placed on each of the black pixels in turn, and they will be converted into black pixels too. (b)
The amorous hippopotamus dilated with the structuring element of Figure 2.34a (shown at the top right
here). All white pixels in (a) were turned into black.

(a) (b)

Figure 2.37 (a) The amorous hippopotamus about to be eroded with the structuring element of
Figure 2.34a (shown at the top right here). The white pixels constitute details narrower than the structuring
element, so they will be converted into background pixels. (b) The amorous hippopotamus eroded with the
structuring element of Figure 2.34a (shown at the top right here). All white pixels shown in (a) became
background pixels.
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(a) (b)

Figure 2.38 (a) The amorous hippopotamus about to be opened. All white pixels will be restored to their
original status, i.e. they will become object pixels again. These pixels are identified by dilating the eroded
image 2.37b. (b) The amorous hippopotamus opened.

Is there any way to lose details smaller than a certain size but leave the size of larger
details unaffected?

Yes, this can be done by the operations of opening and closing.

What is opening?

Opening is the operation by which we dilate an image after we have eroded it. Figure 2.38a delin-
eates the background pixels that will be turned into object pixels if a structuring element of size
3 × 3 pixels (shown in Figure 2.34a) were used to dilate the eroded version of the amorous hip-
popotamus shown in Figure 2.37b. The final result of this operation is shown in Figure 2.38b. Notice
that the thin details of the original object have been lost, while the solid parts have been rounded
and they have been restored to their original size. We say that opening removes the “hairs” of an
object.

What is closing?

Closing is the operation by which we erode an image after it has been dilated. Figure 2.39a delin-
eates the object pixels that will be turned into background pixels if a structuring element of size
3 × 3 pixels (shown in Figure 2.34a) were to be used to erode the dilated version of the amorous
hippopotamus shown in Figure 2.36b. The final result of this operation is shown in Figure 2.39b.
Notice that the narrow gaps in the original object have been filled, while the overall size of the
object has not increased. This is because the process of erosion removed the extra layer of pixels
around the object which had been added by the process of dilation. We say that closing fills up the
narrow “gulfs” of an object.
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(a) (b)

Figure 2.39 (a) The amorous hippopotamus about to be closed. All white pixels will be returned to their
original status, i.e. being background pixels. They were identified by eroding the dilated image 2.36b. (b)
The amorous hippopotamus closed.

How do we do morphological operations if the structuring element is not symmetric
about its centre?

Figures 2.40–2.43 show the results of applying all operations we have discussed so far to the
amorous hippopotamus using as structuring element the object of Figure 2.34b. We notice that

(a) (b)

Figure 2.40 (a) The amorous hippopotamus about to be dilated with the structuring element shown at the
top right. All white pixels will be made object pixels. (b) The amorous hippopotamus dilated. Note the shift
to the top right in relation to the original grid.
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(a) (b)

Figure 2.41 (a) The amorous hippopotamus about to be eroded with the structuring element shown at the
top right. The delineated pixels are object pixels that will be turned into background pixels because when
the centre of the structuring element was placed on them, the structuring element could not fit fully inside
the object. (b) The amorous hippopotamus eroded.

(a) (b)

Figure 2.42 (a) The amorous hippopotamus about to be opened with the structuring element shown at
the top right. The delineated pixels are going to be turned into black. (b) The amorous hippopotamus
opened. To achieve opening we placed the centre of the structuring element at every black pixel of image
2.41b and converted all pixels it covered into black.

this element treats preferentially details along the diagonal from bottom left to top right. To allow
comparison with other results, the superimposed grid remains in its original position in all figures.

Since the structuring element looks like a small image, can we exchange the roles
of object and structuring element?

Yes, we can. As an example, let us dilate the object of Figure 2.34a by using as structuring element
the amorous hippopotamus of Figure 2.35. However, we have first to decide which the centre of
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(a) (b)

Figure 2.43 (a) The amorous hippopotamus about to be closed with the structuring element shown at the
top right. The delineated pixels are going to be removed. (b) The amorous hippopotamus closed. To achieve
closing we placed the centre of the structuring element at every black pixel of 2.40b and if the structuring
element could not fit fully inside the black region, the pixel was deleted.

(a) (b)

Figure 2.44 The object of Figure 2.34a dilated with the structuring element of Figure 2.36. It is done by
placing the centre of object 2.36 in all nine positions of object 2.34a. Depending on whether the centre of
object 2.36 is a black or a white pixel, we shall obtain result (a) or result (b), with the 3 × 3 original object in
the second case visible with its centre coinciding with the selected centre of object 2.36.

the amorous hippopotamus image is. Let us assume that the centre is one of its black pixels. The
result then is shown in Figure 2.44a which was effectively produced by placing the centre of the
amorous hippopotamus to the nine pixels that make up object 2.34a and superimposing the results.
By comparing this figure with that of Figure 2.36b we see that there is no difference. Let us next
assume that the centre of the amorous hippopotamus is one of the interior pixels of the image,
which happens to be a white pixel. By placing this centre on each of the nine pixels that make up
object 2.34a and superimposing the results, we obtain the result shown in Figure 2.36b. We see that
the difference with Figure 2.36b now is the presence of the original 3 × 3 black square in the centre
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of the new result. So dilation is a commutative operation, when the centre of the structuring
element is a pixel that belongs to the set of object pixels. In such a case, it does not matter which
object we dilate by which. However, this is not true for erosion. If we tried to erode object 2.34a by
the amorous hippopotamus, we would get nothing because the amorous hippopotamus cannot fit
inside object 2.34a.

Is closing a commutative operation?

No, it is not. If we apply erosion to either of the dilated images 2.44 using as structuring element
2.35, we shall obtain object 2.34a. We shall not obtain the result we had by closing the amorous
hippopotamus with the square shown in Figure 2.34a. This is because erosion is not a commutative
operation.

Can we use different structuring elements for the erosion and the dilation parts of the
opening and closing operators?

Yes, we can use any elements we like, depending on the application we are interested in. For
example, in Chapter 1 we presented an algorithm for finding the boundaries of textured regions
from non-textured ones. The operation we did to eliminate edge pixels along boundaries of two
uniform regions was a type of erosion and dilation with locally adaptive structuring elements. In
addition, mathematicians propose that the structuring elements used for dilation and erosion in
the opening and closing operations must be the negative of each other. For example, if erosion is
done by using the structuring element of Figure 2.34b, to obtain opening we must use the element
of Figure 2.34c for the dilation part. Equivalently, if the dilation is done by using the structuring
element of Figure 2.34b, to obtain closing, we must use the element of Figure 2.34c for the erosion
part. Figure 2.45a delineates the pixels that have to be removed from the dilation of Figure 2.40b, in
order to obtain the closing of the amorous hippopotamus obtained by dilating first with the struc-
turing element of Figure 2.34b, followed by erosion with the structuring element of Figure 2.34c.
The result is shown in Figure 2.45b. Notice that the difference from Figure 2.43b is a shift of the
image to the top right by one pixel. Figure 2.46a delineates the pixels that have to be added to the
erosion of Figure 2.41b, in order to obtain the opening of the amorous hippopotamus obtained by
eroding first with the structuring element of Figure 2.34c, followed by dilation with the structuring
element of Figure 2.34b. Notice that the difference between this result shown in Figure 2.46b and
that shown in figure 2.42b is a shift of the new result towards the bottom left by one pixel. The
shifts observed in results 2.45b and 2.46b are made more obvious in the simple examples shown in
Figure 2.47.

Can we apply morphological operators to the white pixels of an image instead
of applying them to the black pixels?

Yes, we can define as the “object” in an image whichever class we choose: either the black pixels
or the white pixels. If we apply erosion to the white pixels of image (Figure 2.35) we shall obtain
the same result that we would obtain were we to apply dilation with the same structuring element
to the black pixels and vice versa. For example, image 2.37b could have been obtained by dilating
the white pixels of image 2.36 with a white square structuring element of size 3 × 3. Note, however,
that erosion 2.41b could have been obtained by dilating the white pixels of image 2.36 with a white
structuring element in the shape of 2.34c, which is the reflection of that used for eroding the black
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(a) (b)

Figure 2.45 (a) The amorous hippopotamus after his dilation with structuring element 2.34b (result in
2.40b), about to be eroded with structuring element 2.34c. The delineated pixels are to be removed. (b) The
result. The object was shifted by one pixel to the top right in comparison with image 2.43b.

(a) (b)

Figure 2.46 (a) The amorous hippopotamus after his erosion with structuring element 2.34b (result in
2.41b), about to be dilated with structuring element 2.34c. The delineated pixels are to be converted into
object pixels. (b) The result. The object was shifted by one pixel to the bottom left in comparison with
image 2.42b.

pixels. This distinction is not obvious for the case of element 2.34a which is symmetric about its
origin. We say that erosion and dilation are dual operations. Opening and closing are also dual of
each other.

Can we apply more than one morphological operator to the same image?

Yes, we can apply as many operators as we like and the image can take. In fact some complex
morphological operators are best applied in a cascaded way, one after the other. For example, if we
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(a) (b) (c) (d) (e)

(j)(i)(h)(g)(f)

Figure 2.47 The image in (a) is dilated with structuring element 2.34c, to produce (c), which then is
eroded with structuring element 2.34b to produce the closing shown in (e). Note that the net effect is a shift
of the image towards the top right. In the bottom row, the same original image is first eroded with
structuring element 2.34c, to produce (h) and then dilated with structuring element 2.34b to produce the
opening shown in (j). Note that the net effect is a shifted copy of the eroded image towards the bottom left
added to the originally eroded image.

(a) (b)

Figure 2.48 (a) The amorous hippopotamus about to be dilated with structuring element 2.34d (shown
here at the top right). (b) The amorous hippopotamus dilated.

dilate an image with the structuring element shown in 2.34d and the result with the structuring
element shown in 2.34e, we shall obtain the same result as if we were to dilate the original image
with the structuring element shown in 2.34a. This is demonstrated in Figure 2.48 which shows
the dilation of the amorous hippopotamus with structuring element 2.34d. Figure 2.49 shows what
will happen to the result if it is dilated with structuring element 2.34e. If all delineated pixels are
made black, this figure will be identical to 2.36b which was the dilation of the original image with
structuring element 2.34a. We say that dilation is an associative process:

Result = Dilation(Dilation(Image_A by Image_B) by Image_C)
= Dilation(Image_A by Dilation(Image_B by Image_C)).
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Figure 2.49 The dilated amorous hippopotamus of
Figure 2.48b about to be dilated with the
structuring element of Figure 2.34e (shown here at
the top right). The result will be the same as that
shown in Figure 2.36b.

Is erosion an associative operation as well?

No, the successive erosion of an image by two structuring elements is equivalent to the erosion of
the image with a structuring element which is the result of dilating one of the original structuring
elements by the other:

Result = Erosion(Erosion(Image_A by Image_B) by Image_C)
= Erosion(Image_A by Dilation(Image_B by Image_C)).

Figure 2.50 demonstrates the erosion of the amorous hippopotamus with structuring element
2.34d. Subsequent erosion of the result by structuring element 2.34e will remove the delineated
pixels of Figure 2.51. The result will be the same as that shown in Figure 2.37b which was obtained
by directly eroding the original image with 2.34a. This is because structuring element 2.34a may
be obtained by dilating structuring element 2.34d with structuring element 2.34e.

This property finds significant applications in the use of mathematical morphology for texture
characterisation. For example, if we use a 3 × 3 square as the structuring element and we erode an
image twice, this is equivalent to eroding the image only once with a square structuring element
of size 5 × 5.

How can we use morphological operations to characterise a texture?

We saw how the various morphological operators may remove details of the image smaller than
a certain size, either by cutting them off (if they are protrusions), or filling them up (if they are
intrusions). For example, if in Figure 2.37a we count the delineated white pixels, ignoring those
that are also white in 2.38a, we shall have the number of pixels that form parts of the object smaller
than 3 × 3 pixels in size.

Imagine now that we open an object (effectively the black pixels of a binary texture) with struc-
turing elements of various sizes, say d × d, where d = 3, 5, 7,…. After every opening we count the
number of pixels that have been removed when the result is compared with the original image.
These are the pixels that constitute details smaller than the size of the structuring element in the
original image. We shall have a series of numbers then, that constitute a function C that depends
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(a) (b)

Figure 2.50 (a) The amorous hippopotamus about to be eroded with structuring element 2.34d (shown
here at the top right). The white pixels are to be removed. (b) The amorous hippopotamus eroded.

Figure 2.51 The eroded amorous hippopotamus of
Figure 2.50b about to be eroded again with the
structuring element of Figure 2.34e (shown here at the top
right). If we remove the delineated pixels, the result will
be the same as that of Figure 2.37b which was obtained
by using a structuring element that is the dilation of
structuring element 2.34d with structuring element 2.34e.

on the size of the structuring element d. This function C(d) is called the pattern spectrum of the
texture and it may be used to characterise and classify the texture.

The process of computing C(d) is known as granulometry because it counts how many “gran-
ules” of a certain size are present in the texture.

Figure 2.52 shows some openings of image 2.1 obtained by using structuring elements of increas-
ing size. Figure 2.53 shows the pattern spectrum C(d) of this image which was computed from these
openings.

If we wish to capture the directionality of textures, we may use anisotropic (i.e. not circularly
symmetric) structuring elements. However, it is better if they are symmetric about their centres.
For example, for exploring the directionality of a texture along the two main diagonal directions,
elements 2.34g and 2.34h should be used, instead of elements 2.34b and 2.34c. For directionalities
along other orientations, appropriate structuring elements may be constructed.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.52 Some openings of image 2.1 with structuring elements of size (a) 3 × 3 (d = 3), (b) 7 × 7
(d = 7), (c) 11 × 11 (d = 11), (d) 15 × 15 (d = 15), (e) 19 × 19 (d = 19) and (f) 23 × 23 (d = 23).

Figure 2.53 The pattern spectrum for image 2.1.
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Box 2.7 Formal definitions in mathematical morphology

In binary mathematical morphology, an image consists of pixels with values 0 and 1. Each
pixel is represented by its position vector x. The centre of the image is taken to be the centre
of the co-ordinate axes. “Object” is the set A of pixels x with value 1:

A ≡ {x|value of x = 1}. (2.44)

The complement Ac of object A is effectively the background:

Ac ≡ {x|x ∉ A}. (2.45)

The reflection −A of object A is the set of its pixels reflected about the origin of the axes:

−A ≡ {−x|x ∈ A}. (2.46)

The translation of an object by a vector y is defined as:

A + y ≡ {x + y|x ∈ A}. (2.47)

Then the dilation dil(A,B) of object A by object B is denoted by A ⊕ B (or by A + +B by some
other authors), and is defined as:

dil(A,B) ≡ A ⊕ B ≡ A + +B ≡ ⋃
y∈B

A + y ≡ {x + y|x ∈ A, y ∈ B}. (2.48)

This operation is otherwise known as Minkowski addition of sets A and B.
The erosion er(A,B) of object A by object B is denoted by A ⊖ B (or by A − −B by some other

authors), and is defined as:

er(A,B) ≡ A ⊖ B ≡ A − −B ≡ ⋂
y∈B

A + y ≡ {x|x + y ∈ A, y ∈ B}. (2.49)

This operation is otherwise known as Minkowski subtraction of set B from set A.
The properties of commutativity and associativity of dilation may be expressed as:

A ⊕ B = B ⊕ A (2.50)

(A ⊕ B)⊕ C = A ⊕ (B ⊕ C). (2.51)

The property of successive erosions being equivalent to a single erosion by the two structuring
elements dilated by each other may be written as:

(A ⊖ B)⊖ C = A ⊖ (B ⊕ C). (2.52)

The duality of the operations is formally expressed as:

A ⊕ B =
[
Ac ⊖ (−B)

]c (2.53)

A ⊖ B =
[
Ac ⊕ (−B)

]c
. (2.54)
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Example 2.20

Use mathematical morphology to define the outer and the inner boundary of the
object in image 2.54a.
The solution is shown in the successive panels of Figure 2.54.

(a) (c) (e)

(b) (d) (f)

(g)

(h)

Figure 2.54 (a) The original image of an object. (b) The 3 × 3 structuring element used for these
operations. (c) The delineated pixels will be added to the object if it is dilated by structuring element
(b). (d) The delineated pixels will be removed from the object if it is eroded by structuring element (b).
(e) The object dilated. (f) The object eroded. (g) The difference of the original object from its dilated
version is the outer object boundary. (h) The difference of the eroded version of the object from the
original object is the inner object boundary.

Example 2.21

Identify all 3 × 3 neighbourhood configurations for which the central pixel plays vital
role in local connectivity.
There are 29 possible 3 × 3 binary configurations. In this problem we must consider only those
which have the central pixel black, and which contain at least two other black pixels and at least
two white pixels, for the question to be meaningful.

Figure 2.55 shows all configurations in which the central pixel is important for local connec-
tivity. Note that, in all cases, if the central pixel is removed, the local connectivity is destroyed. (We
assume that we work with 8-connectivity, i.e. a pixel is connected with another pixel even if they
share only a vertex.)

(Continued)
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Example 2.21 (Continued)

Figure 2.55 If the 3 × 3 neighbourhood of a pixel looks like any one of these configurations, the
central pixel is important for the local connectivity of the shape.

Example B2.22

Imagine fitting circles inside an object. Every pixel of the object may belong to many
such circles. For each pixel we keep the largest circle to which it belongs. The cen-
tres of these circles form the skeleton of the object, also known as medial axis. The
skeleton of an object intuitively is understood as the thinnest possible version of
the object that preserves its topological properties (i.e. it does not disconnect it into
smaller parts or create holes that were not present in the original object) and con-
sists of object pixels that are equidistant from at least two object boundary pixels.
Use mathematical morphology to define the skeleton of the object in Figure 2.56a.

As opening removes “hairs” sticking out of an object, one may first think that by successive
openings and subtractions with structuring element 2.34f, the skeleton of the object will be iden-
tified. This leads to the “naive” (and wrong) solution of the problem that has been presented in
some books.
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(d)

(h)(e) (f)

(j) (k) (l)

(g)

(a) (b) (c)

(i)

Figure 2.56 (a) The original image. (b) The delineated pixels will be removed. (c) The object eroded.
(d) The delineated pixels will be added to the eroded image to produce the opening. (e) The original
image opened. (f) The difference between the original image and its opened version. (g) The
delineated pixels will be removed from (c). (h) The eroded image 2.56c. (i) The delineated pixels will
be added. (j) The opened version of (c). (k) The difference between (c) and its opened version. (l) The
final skeleton produced by adding images (f), (h) and (k). This is the wrong result.

Let us perform the following operations.

1. Erode image 2.56a with structuring element 2.34f to obtain image 2.56c (Figure 2.56b
marks the pixels that are removed from 2.56a).

(Continued)
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Example B2.22 (Continued)

2. Dilate image 2.56c to obtain image 2.56e (the opening of 2.56a). Image 2.56d delineates
the pixels added to 2.56c to perform the dilation.

3. Find the difference between the original image 2.56a and the opened one, to produce image
2.56f.

4. Erode the already once-eroded image 2.56c, by removing the pixels marked in image 2.56g,
to produce image 2.56h.

5. Dilate image 2.56h by adding the pixels marked in 2.56i to produce the opened image of
2.56j.

6. Subtract 2.56j from the starting image 2.56c, to produce image 2.56k.
7. Note that if we try to repeat the loop, by opening image 2.56h which has already been eroded

twice, we shall get nothing, so we stop here.
8. The skeleton is produced by superimposing the two residual images 2.56f and 2.56k, and

the image that cannot further be eroded, 2.56h. This is shown in 2.56l.

The above solution does not lead to a good skeleton. The major problem is the breaking down
of connectivity. This is because we tried to erode the image from all four directions simultane-
ously by using structuring element 2.34f. A much more sensible approach is to proceed by eroding
only from one direction at a time, with structuring elements that guarantee the preservation of
local connectivity. This can be done by the use of the so-called hit-or-miss transform that con-
siders pairs of structuring elements and proceeds by finding pixels that fit both the image and its
background. Figure 2.57 shows the pairs of elements we need.

(a) (c) (e) (g) (i) (k) (m) (o)

(p)(n)(l)(j)(h)(f)(d)(b)

Figure 2.57 Pairs of elements that should be used to produce the skeleton of a binary image.

Figure 2.58a1 shows again the original image and Figure 2.58b1 its complement. Figure 2.58c1
shows the eroded image with structuring element 2.58f1, and 2.58d1, the eroded complement with
structuring element 2.58g1. Note that, because element 2.58g1 has its centre outside the black
region, when we try to see whether it fits inside the object 2.58b1, we must test all points of the
image, not just the black points (i.e. we must place the centre of the element at every point inside
the frame either black or white and see whether the black part of the element is contained inside
the black object in the image). Figure 2.58e1 marks the only pixel that is black in both 2.58c1 and
2.58d1, i.e. it is the intersection of the sets of marked (black) pixels in the two eroded images. In
effect this is the pixel in the original image at which pattern 2.58h1 matches. This is the result of
the hit-or-miss transform.
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(a1) (c1) (e1)

(f1)

(g1)

(h1)
(b1) (d1)

(a2) (c2) (e2)

(f2)

(g2)

(h2)

(b2) (d2)

Figure 2.58 Panels (e1) and (e2) are
the hit-or-miss transforms of images
(a1) and (a2) produced with the pairs of
structuring elements (f1)–(g1) and
(f2)–(g2), respectively.

The black pixel in Figure 2.58e1 looks as if it were superfluous to the shape of the object, and
it may be removed from the original object. After it is removed, we obtain object 2.58a2. Its com-
plement is 2.58b2. Again we erode these two images with the pair of elements 2.58f2 and 2.58g2
respectively, to obtain their eroded versions 2.58c2 and 2.58d2. The common pixels in these two
results are marked in 2.58e2, and they indicate the positions in the starting image 2.58a2 where

(Continued)
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Example B2.22 (Continued)

pattern 2.58h2 fits. Figures 2.59–2.61 show the results of the hit-or-miss transform when the
remaining pairs of elements of Figure 2.57 are applied in a cascaded way.

(a1) (c1) (e1)

(f1)

(g1)

(h1)
(b1) (d1)

(a2) (c2) (e2)

(f2)

(g2)

(h2)
(b2) (d2)

Figure 2.59 Images (a1) and (a2)
eroded with structuring elements (f1)
and (f2), produce panels (c1) and (c2),
respectively.
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(a1) (c1) (e1)

(f1)

(g1)

(h1)
(b1) (d1)

(a2) (c2) (e2)

(f2)

(g2)

(h2)
(b2) (d2)

Figure 2.60 Panels (b1) and (b2) are
the complements of (a1) and (a2) and
they are eroded with elements (g1) and
(g2) to produce panels (d1) and (d2),
respectively.

(Continued)
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Example B2.22 (Continued)
Figure 2.61 Panels (e1) and (e2) are
the hit-or-miss transforms that mark
the pixels in panels (a1) and (a2)
where patterns (h1) and (h2) match,
respectively.

(a1) (c1) (e1)

(f1)

(g1)

(h1)

(b1) (d1)

(a2) (c2) (e2)

(g2)

(f2)

(h2)

(b2) (d2)
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Figure 2.62 shows the successive skeletons of the object produced when elements 2.57 are
applied for the second time. Finally, Figure 2.63 shows the remaining intermediate results until
the final skeleton is produced. The process stops when all pairs of elements in Figure 2.57 are
applied once one after the other and they have no effect on the input image. Note that again this
skeleton is not perfect because of the superfluous pixels preserved where the object touches the
image border. This is because we started producing the skeleton inside the minimum enclosing
rectangle of the object in Figure 2.58a. If we had allowed a white border one pixel wide all
around the object, all those artifacts would have not been present and the skeleton would have
been perfect, as shown at the bottom right of Figure 2.63.

(a)–(b) (c)–(d) (e)–(f) (g)–(h)

(i)–(j) (k)–(l) (m)–(n) (o)–(p)

Figure 2.62 The successive thinning stages of the second cycle of applying the hit-or-miss transform
to original image 2.58a, using the pairs of structuring elements of Figure 2.57. The starting image is
the result produced by removing the black pixels identified in 2.61e2 from 2.61a2. Each panel has
been produced from the previous (moving from left to right and from top to bottom), by applying the
hit-or-miss transform with the pair of structuring elements from Figure 2.57 identified underneath the
panel. The grey pixels are those that are removed at each stage.

(Continued)
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Example B2.22 (Continued)

(a)–(b) (e)–(f) (g)–(h)

(k)–(l) (e)–(f) Correct result

Figure 2.63 Applying successively the elements of Figure 2.57 in turn to intermediate result 2.62
(bottom right panel), eventually produces the skeleton of the object, after two more rounds. Note that
some elements do not produce any change to the result of the previous stage, and those intermediate
results have been omitted. The letters underneath each panel identify the pair of elements of
Figure 2.57 used to produce it from the previous panel. The grey pixels are those that are removed at
each stage. The bad behaviour of the algorithm where the skeleton touches the edge of the image is
because we did not allow a single pixel border around the object before we started skeletonising it. If
we add that border, the results we shall obtain is shown in the bottom right panel.

In general, the hit-or-miss transform may be used to identify pixels in a binary image where a
particular local pattern is present. This is very useful in the 2D Boolean model we saw the section
What is the specific convexity N+? where we had to identify all pixels from which horizontal tan-
gents to the grains could be drawn, by identifying the presence of a local configuration of black
and white pixels (see Figure 2.19).
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Box 2.8 Hit-or-miss algorithm

The hit-or-miss algorithm for skeletonisation is as follows.

Step 0: Make sure that the binary object you wish to skeletonise has a border of white pixels
all around it. Call this O0.

Step 1: Erode O0 with structuring element 2.57a. Call the result Oa.
Step 2: Take the complement of the object, by turning all white pixels into black and all black

pixels into white, and erode it with structuring element 2.57b. Call the result Ob.
Step 3: Find the common pixels between Oa and Ob, i.e. the pixels that are black in both

images, and remove them from O0, to form result O1.
Step 4: Erode O1 with structuring element 2.57c. Call the result Oc.
Step 5: Erode the complement of O1 with 2.57d. Call the result Od.
Step 6: Find the common pixels between Oc and Od and remove them from O1, to form

result O2.
Step 7: Erode O2 with 2.57e. Call the result Oe.
Step 8: Erode the complement of O2 with 2.57f. Call the result Of .
Step 9: Find the common pixels between Oe and Of and remove them from O2, to form

result O3.
Step 10: Erode O3 with 2.57g. Call the result Og.
Step 11: Erode the complement of O3 with 2.57h. Call the result Oh.
Step 12: Find the common pixels between Og and Oh and remove them from O3, to form

result O4.
Step 13: Erode O4 with 2.57i. Call the result Oi.
Step 14: Erode the complement of O4 with 2.57j. Call the result Oj.
Step 15: Find the common pixels between Oi and Oj and remove them from O4, to form

result O5.
Step 16: Erode O5 with 2.57k. Call the result Ok.
Step 17: Erode the complement of O5 with 2.57l. Call the result Ol.
Step 18: Find the common pixels between Ok and Ol and remove them from O5, to form

result O6.
Step 19: Erode O6 with 2.57m. Call the result Om.
Step 20: Erode the complement of O6 with 2.57n. Call the result On.
Step 21: Find the common pixels between Om and On and remove them from O6, to form

result O7.
Step 22: Erode O7 with 2.57o. Call the result Oo.
Step 23: Erode the complement of O7 with 2.57p. Call the result Op.
Step 24: Find the common pixels between Oo and Op and remove them from O7, to form

result O8.
Step 25: If O8 is the same as O0, exit. If not, set O0 = O8 and go to step 1.
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What is the “take home” message of this chapter?

This chapter has dealt with binary patterns. Each such texture may be thought of as consisting of
a collection of black primitive shapes placed in a 2D space. One has to quantify two processes: the
way the shapes are placed in the 2D space and the shapes themselves. On the basis of that, we
identified the following cases:

● Shapes that are fixed and finite in variety, placed according to fixed rules in the plane. Examples
are the textures of Figures 2.2a, 2.2b, 2.3b, 2.4 and 2.24a. Most of such textures are human-made.
They may be described by grammars which, however, are not unique descriptors. The same gram-
mar may be used to describe totally different textures. All textures that may be described by the
same grammar form a class of their own called language.

● Shapes that are fixed and finite in variety, placed according to randomly chosen rules. Examples
are the textures of Figure 2.2d and both textures in Figure 2.13. These are semi-stochastic
textures. A lot of them are also human-made. They may be described by stochastic
grammars.

● Shapes that are not fixed and finite in variety, but that may be described parametrically,
e.g. bubbles of radius r uniformly distributed in a certain range, or Gaussianly distributed
with certain mean and standard deviation, placed according to a random process in the
2D space. Examples are the textures of Figures 2.17, 2.18 and 2.24b. Such textures may be
described by the 2D Boolean model that estimates the parameters of the statistical processes
involved.

● Shapes that are neither fixed, nor parameterisable, placed according to some unknown random
process. If we know nothing about the binary texture, we try to capture some of its characteristics
by applying binary mathematical morphology and various granulometries. Most natural textures
belong to this category. Examples are the textures of Figures 2.1 and 2.2c. The 2D Boolean model
may be applied to such textures with the understanding that it will only approximate the shapes
of the blobs by fitting them with some parameterisable shapes. The 1D Boolean model may also
be applied, without any claim in modelling even approximately the shapes of the granules of the
texture.

It is worth noting that none of the above texture descriptors are one-to-one, i.e. none of them
uniquely characterises each texture, except for two cases: when we are dealing with fixed shapes
and fixed placement rules and the sequence by which the rules are applied is also quoted as part
of the texture descriptor; and when the 2D Boolean model is fully applicable. The latter happens
if the primitive patterns are either fixed or parametric with probability density functions of the
shape parameters fully defined by the estimated individual parameters, and they are placed in the
plane according to a random process, also fully defined by the estimated individual parameters.
An example would be the case of a texture with its primitive shapes (grains) to be circles with
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their radii Gaussianly distributed and placed according to a Poisson process. If the estimated indi-
vidual parameters were the mean radius and the standard deviation of the radii of the grains, as
well as the 𝜆 parameter of the Poisson distribution, then the texture would have been fully char-
acterised, but not defined, since no two realisations of a random texture are expected to be exactly
identical.
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3

Stationary Grey Texture Images

What is a stationary texture image?

A stationary texture image is an image which contains a single type of texture, i.e. the same texture
fills up the whole image and so its local statistical properties are the same everywhere in it. Some
examples of stationary texture images are shown in Figure 3.1.

What is this chapter about?

This chapter is about the methodologies commonly used to characterise stationary grey texture
images. The image processing problem one tries to solve here is known as texture classification:
one seeks to identify a few numbers, the so-called texture features, that capture the character-
istics of a particular texture, so they may be used to identify the texture, even when the texture
appears in an image not seen previously. This problem is often related to the following set-up. One
has a catalogue of textures, i.e. a database of reference images. Each texture in the database is char-
acterised by a set of parameters, the texture features. When a new texture image comes along, one
computes the same features from it, and by comparing them with the values of the corresponding
features in the database, tries to recognise the unknown texture.

This chapter will cover: grey scale mathematical morphology, fractals and multifractals, sta-
tistical features, including histograms, the Weibull distribution, the variogram, run-length and
co-occurrence matrices, Fourier-based features, Gibbs distributions and Markov random fields.

Are any of the methods appropriate for classifying binary textures useful for the
analysis of grey textures?

Yes. There are two ways by which we may make use of the techniques developed for binary textures
to deal with grey textures.

1. Some of the techniques are directly generalisable for grey images. These are, for example, the
mathematical morphology based techniques.

2. A grey image may be analysed into a set of binary images either by thresholding or bit-slicing.
Then texture features may be derived for each binary image in the set and be used to characterise
the grey image.

Image Processing: Dealing with Texture, Second Edition. Maria Petrou and Sei-ichiro Kamata.
© 2021 John Wiley & Sons Ltd. Published 2021 by John Wiley & Sons Ltd.
Companion Website: www.wiley.com/go/kamataText2

http://www.wiley.com/go/kamataText2
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(a) Cloth 1 (b) Cloth 2

(c) Food (d) Plastic

(e) Fabric 1 (f) Fabric 2

(g) Beans (h) Sand

Figure 3.1 Some stationary grey texture images. Images (a), (c), (e), (f) and (g) © Massachusetts Institute of
Technology. Images (b), (d) and (h) © University of Southern California. Reproduced with permission.
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3.1 Image Binarisation

How may a grey image be analysed into a set of binary images by thresholding?

If the range of grey values present in an image is [Gmin ,Gmax ], we may choose M values t1, ..., tM
such that Gmin < t1 < ... < tM < Gmax , and analyse the image into a stack of M + 1 binary slices, by
marking black in the first binary slice all pixels which have grey value in the range [Gmin , t1), in
the second binary slice all pixels with grey value in the range [t1, t2), and so on. One may choose to
have as many binary slices as one wishes, up to the maximum value equal to the number of grey
levels present in the image. This, however, would be impractical. A few binary slices are usually
adequate. Figure 3.2a shows an original 256 × 256 image and Figures 3.2b–3.2i show its analysis
into eight binary slices. The original image had grey values in the range [28,234] as one can see
from the histogram of the image shown in Figure 3.2j. The thresholds used were 31, 63, 95, 127,
159, 191 and 223, and they are marked with thin vertical lines in the histogram. It is possible that
if the thresholds are chosen at random, some of the slices will end up with very few pixels. This is
the case, for example, of slice 1, which corresponds to the range of grey values [0, 31).

How can we deal with the problem of unequal number of pixels in each range of grey
values?

We may plot the histogram of the image first and choose the thresholds so that all ranges of grey
values contain the same number of pixels. Let us say that the image contains N2 pixels. If we want to
divide it into eight equally populated slices, each of them must contain N2∕8 pixels. We construct
the histogram of the image, and then we start from the leftmost bin and start adding the values
of the subsequent bins, until we reach roughly the value N2∕8. The grey value of the bin before
which we stopped is our first threshold t1. We proceed this way until we define all our thresholds.
Figure 3.3 shows the eight slices into which the original image 3.2a may be analysed in this way.
The thresholds chosen for this slicing were 77, 92, 103, 113, 123, 135 and 152 and they are marked
with the thin vertical lines in the histogram of the image in Figure 3.3j.

Alternatively, we may first apply histogram equalisation (see the book Image Processing, The
Fundamentals [75]) to the image and then apply thresholding. Figure 3.4 shows the result of apply-
ing histogram equalisation with random additions and the slices we obtain using the same thresh-
olds used for the construction of the binary images in Figure 3.2. Histogram equalisation with
random additions introduces some arbitrariness to the process. However, any effect this might
have on the image is masked by the binarising process. That is why one cannot see any difference
between these results and those of Figure 3.3.

How may a grey image be analysed into a set of binary images by bit-slicing?

The most commonly used grey images take grey values in the range [0,255]. This means that each
grey value is represented by 8 bits. In bit slicing, we use one binary slice for each bit, i.e. 8 slices
in total. Each pixel is marked in all those binary slices where its corresponding bit has value 1. For
example, let us consider a pixel with grey value 176. This number may be written as 176 = 128 +
32 + 16 = 27 + 25 + 24. Therefore, its binary representation is 10110000. (10110000 = 1 × 27 + 0 ×
26 + 1 × 25 + 1 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 0 × 20 = 176). This pixel, therefore, will be marked
in the binary planes that represent the first, the third and the fourth bits, and in no other plane.
Figure 3.5 shows the analysis of an image in its bit planes. It can be seen that the binary images
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(a) Original image (b) Slice 1 (c) Slice 2

(d) Slice 3 (e) Slice 4 (f) Slice 5

(g) Slice 6 (h) Slice 7 (i) Slice 8
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(j) Histogram of the image

Figure 3.2 Splitting a grey image into a set of binary images by thresholding. (a) Original image. (b)–(i)
Binary images obtained by thresholding. Each one of them flags with black the pixels that have grey values
in the range between two successive thresholds. Source: Maria Petrou. (j) Histogram of the original image
showing the thresholds used.
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(a) Original image (b) Slice 1 (c) Slice 2

(d) Slice 3 (e) Slice 4 (f) Slice 5

(g) Slice 6 (h) Slice 7 (i) Slice 8
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(j) Histogram of the image

Figure 3.3 Splitting an image into a set of binary images all of which have approximately the same
number of black pixels. (a) Original image. (b)–(i) Binary images obtained by thresholding. Source: Maria
Petrou. (j) Histogram of the original image. The vertical lines show the threshold values used.
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(a) Equalised image (b) Slice 1 (c) Slice 2

(d) Slice 3 (e) Slice 4 (f) Slice 5

(g) Slice 6 (h) Slice 7 (i) Slice 8
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(j) Histogram of the image

Figure 3.4 Splitting an image into a set of binary images after histogram equalisation. (a) Original image
after histogram equalisation with random additions. Source: Maria Petrou. (b)–(i) Binary images obtained by
thresholding. Source: Maria Petrou. (j) Histogram of the equalised image. The vertical lines show the
threshold values used.
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(a) Original image (c) Slice 2(b) Slice 1

(d) Slice 3 (e) Slice 4 (f) Slice 5

(g) Slice 6 (h) Slice 7 (i) Slice 8

Figure 3.5 Splitting an image into a set of binary images by bit-slicing. (a) Original image. (b)–(i) Bit slices,
from the most significant bit to the least significant bit, respectively. Source: Maria Petrou.

that correspond to the last few bits do not seem to contain any useful information. As example 3.1
shows, the division in bit planes does not have any physical meaning. It is rather a mathematical
tool dictated by the binary technology we use and not by the nature of objects we observe or the
human visual system. This, however, does not mean that one may not be able to construct useful
features that characterise an image from such binary slicing.

Is there any relationship between the binary planes produced by thresholding and the
bit planes?

There is no immediate relationship. However, one may isolate bit planes with flagged pixels that
have grey values in a single coherent range. Let us define the subtraction of two sets A and B as
follows:

A − B ≡ {x; x ∈ A and x ∉ B}. (3.1)
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Note that according to this definition, we do not worry whether B contains extra elements
that are not in A. We just ignore them. For example, if A = {10, 12, 13, 24, 27, 28} and
B = {12, 24, 27, 28, 30, 32}, A − B = {10, 13}.

Then if we use Bi to indicate the set of flagged pixels in the binary plane which corresponds to
the ith bit, starting from the most significant, we can see that

B2 − B1 flags all pixels with grey value in the range [64, 127]
B3 − B2 − B1 flags all pixels with grey value in the range [32, 63]
B3 − B2 flags all pixels with grey value in the ranges [32, 63] and [160, 191]
B3 − B1 flags all pixels with grey value in the ranges [32, 63] and [96, 127].

From this we can see that binary planes that result from thresholding may be created as combina-
tions of the bit planes of the image, and therefore some operations that are applied to thresholded
versions of the image may be performed directly on the bit planes and thus implemented in hard-
ware.

Example 3.1

Calculate the ranges of grey values contained by each binary slice in the case of an
8-bit grey image.
The first binary slice contains all those pixels that have 1 in the first bit place, irrespective of what
value they have in the other bit places. Let us represent the value of a pixel in binary form by
A1A2A3A4A5A6A7A8, where Ai takes either value 0 or 1. After we have identified the pixels with
A1 = 1, we consider the remaining digits. The smallest value the remaining digits can make is
0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 0 × 20 = 0, and the largest is 1 × 26 + 1 ×
25 + 1 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 1 × 20 = 127. If A1 = 1, the grey levels that are flagged
in this binary slice are those in the range [1 × 27 + 0, 1 × 27 + 127], i.e. grey levels in the range
[128, 255].

The second binary slice contains all those pixels that have A2 = 1. We may again compute the
smallest and the largest value that the bits on the right of this bit can make: the smallest value
digits A3A4A5A6A7A8 can make is 0, if all of them are 0, and the largest is 1 × 25 + 1 × 24 +
1 × 23 + 1 × 22 + 1 × 21 + 1 × 20 = 63. Given that A2 = 1, we may then say that the smallest and
largest values digits A2...A8 can make are 1 × 26 + 0 and 1 × 26 + 63, respectively, i.e. 64 and 127.
Now, there are two cases for digit A1: it is either 0, in which case the grey value of the pixel is in
the range [64, 127], or 1, in which case the grey value of the pixel is in the range [1 × 27 + 64, 1 ×
27 + 127], i.e. [192, 255]. So, this bit plane flags all those pixels that have grey values in the ranges
[64, 127] and [192, 255].

The third binary slice flags all those pixels that have A3 = 1. The minimum and maximum
numbers made up by the remaining digits to the right are 0 and 31, respectively. A3 = 1 means
we have to add 25 = 32 to these numbers. If we consider the digits A1 and A2 to the left, we have
four possible combinations in binary form: 00, 01, 10, 11. These correspond to the numbers 0,
26 = 64, 27 = 128 and 27 + 26 = 192, respectively. If we add to each one of these numbers the
minimum and the maximum numbers of the rest of the digits, we have all ranges of grey values
that are flagged in this bit plane: [32, 63], [96, 127], [160, 191], [224, 255].



�

� �

�

3.1 Image Binarisation 87

In a similar way we may compute the ranges of grey values flagged in each of the remaining
binary planes. Note that as we move towards the less significant bits, the ranges flagged together
become more fragmented and narrower. For example, the last bit plane, the one that flags pixels
with A8 = 1, flags all pixels that have an odd grey value. Table 3.1 gives the ranges of grey values
flagged in each bit plane.

Table 3.1 Pixels with grey values in the ranges on the right are flagged in the
corresponding bit plane (slice) identified on the left.

Slice Flagged ranges of grey values

1 [128,255]
2 [64,127] [192,255]
3 [32,63] [96,127] [160,191] [224,255]
4 [16,31] [48,63] [80,95] [112,127]

[144,159] [176,191] [208,223] [240,255]
5 [8,15] [24,31] [40,47] [56,63] [72,79] [88,95]

[104,111] [120,127] [136,143] [152,159] [168,175]
[184,191] [200,207] [216,223] [232,239] [248,255]

6 [4,7] [12,15] [20,23] [28,31] [36,39] [44,47] [52,55] [60,63]
[68,71] [76,79] [84,87] [92,95] [100,103] [108,111] [116,119]
[124,127] [132,135] [140,143] [148,151] [156,159] [164,167]
[172,175] [180,183] [188,191] [196,199] [204,207] [212,215]
[220,223] [228,231] [236,239] [244,247] [252,255]

7 [2,3] [6,7] [10,11] [14,15] [18,19] [22,23] [26,27] [30,31]
[34,35] [38,39] [42,43] [46,47] [50,51] [54,55] [58,59] [62,63]
[66,67] [70,71] [74,75] [78,79] [82,83] [86,87] [90,91] [94,95]
[98,99] [102,103] [106,107] [110,111] [114,115] [118,119]
[122,123] [126,127] [130,131] [134,135] [138,139] [142,143]
[146,147] [150,151] [154,155] [158,159] [162,163] [166,167]
[170,171] [174,175] [178,179] [182,183] [186,187] [190,191]
[194,195] [198,199] [202,203] [206,207] [210,211] [214,215]
[218,219] [222,223] [226,227] [230,231] [234,235] [238,239]
[242,243] [246,247] [250,251] [254,255]

8 All pixels with odd number grey values
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00 000001 1 1 1 1 1 11111{ 1 }

0 0 0 0 0 0 0 0 0 0 0 0 01111111Er(A)
B

= }{

0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 1 1 1A= }{

B= { }1 1

−B= 1{ 1 }

000001 1 1 1 1 1 1 1 1 1 1 1 0= }{0Dil(A)
B

Wrong:

Figure 3.6 A binary sequence A may be dilated with the asymmetric structuring element B by placing the
centre of B (indicated in bold) at all samples of A with value 1 and giving value 1 to all samples covered by
the structuring element. If instead of doing that we place the centre of B at every point of the sequence and
take the maximum value of the samples covered by B and assign it to the sample under its centre, we shall
get the wrong result, shown underneath the correct dilation result. If, however, we do that using the
reflection −B of B, we shall get the right answer. Note that erosion of A by B may be produced either by
placing the centre of B at every sample with value 1 in A and, if B does not fit inside the sequence of 1s, the
sample under its centre is turned to 0, or by placing the centre of B at every sample of A and taking the
minimum of the sample values covered by B and assigning it to the sample under the centre of B.

3.2 Grey Scale Mathematical Morphology

How is mathematical morphology generalised for grey images?

Mathematical morphology for binary images assumes that an object pixel has value 1 and a back-
ground pixel has value 0. When dilation is performed, the structuring element is placed on the top
of the image, with its centre at an object pixel. All covered pixels then are turned into object pixels,
i.e. they are given value 1, i.e. they are turned into black in the pictorial representation of the pro-
cess. One may express this by saying that we place the reflected structuring element at all pixels
(black or white) of the image and we assign to the pixel covered by the centre of the structuring
element the maximum value of the pixels covered by the structuring element:

New_value_at (i, j) = max (all pixels covered by refl str el centred at (i, j)). (3.2)

Note that if the structuring element is symmetric with respect to its centre, the word “reflected”
in the above statement is meaningless. This is made clear in Figure 3.6. In texture analysis we use
structuring elements that are symmetric about their centre, so reflection is not usually an issue.

Erosion may be defined as the process of placing the centre of the structuring element at all
pixels of the image and assigning to the pixel covered by the centre of the structuring element the
minimum value of the pixels covered by the structuring element:

New_value_at (i, j) = min (all_pixels_covered_by_str_el_centred_at (i, j)). (3.3)

These definitions may be directly generalised to grey images, where the minimum and maximum
is computed inside a window that plays the role of the structuring element. Such a structuring
element is said to be flat.

Example 3.2

Perform erosion, dilation, opening and closing to the image of Figure 3.7a, using a
flat structuring element of size 3 × 3.



�

� �

�

3.2 Grey Scale Mathematical Morphology 89

15 17 23 18 16 16 18 21

16 46 52 53 48 20 17 22

15 60 63 55 40 23 15 19

18 40 48 61 38 20 16 17

13 16 22 33 20 19 15 16

16 17 19 28 35 15 17 20

13 18 21 32 36 40 42 39

15 16 15 35 33 38 14 14

40 38 2040

40 40 38 20

20 20 19

19 19 19 15

20

63 55 40 23

48 61 38 20

22 33 36 20

21 33 36 20

1516161715 15

15 40 38 20 15 15

15 1513 16

13

13

13

15

16

16 19

19

15

15

15

15

15

15

15

15

63 63 63

63 63 63

63 63 63

55 48 23

61 48 23

61 40 23

424240

40 4242

20386148 61 61

22 33 36

21 35 36

19

14 14

240 238 233 237 239 239 237 234

239 209 203 202 207 235 238 233

236

238

239

235

241

213

239

217222

219

220

235

223

194

192

233

236

240239240

237

240 195

215

239

232

235

236

217

227

216

207

200 215 240

220 241

215234237242

239 238 240 238

240222242

192 192 192 200 207 232 240 240 240238 239 239

240240232194192192192

242 239 235 236 240 240

240 215

192 192 192 194 232215

235207

240240240236239242207 194 194 235194 217

240 240 240236239242215233 222 219 213 213

222 219 215 213 213 242 239 236 240 240 240

192 200 215 232

207 194 217 235

233 222 219 235

222 219 235 240

235 235 235 236

236236236

234

234

217

215 215 217 235

235217215215

20

(b) Erosion (c) Dilation

(e) Closing(d) Opening
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(a) Original image

Figure 3.7 (a) A grey image. The highlighted 3 × 3 frame indicates the structuring element that is
used to scan the image. The min and max grey value inside this 3 × 3 window is computed at each
position and assigned to the central pixel in order to create the erosion (shown in (b)) and the dilation
(shown in (c)) of the image, respectively. Erosion followed by dilation produces the opening of the
image, shown in (d), and dilation followed by erosion produces the closing of the image, shown in (e).
(f) The complement of image (a). (g) The erosion of (f). (h) The dilation of (f). (i) The opening of (f). (j)
The closing of (f).

This is demonstrated in Figures 3.7a–e.

How is the complement of an image defined for grey images?

The complement of the image is defined by subtracting the grey value of each pixel from its maxi-
mum possible value.
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Example 3.3

Apply erosion, dilation, opening and closing to the complement of image 3.7a, using
a flat structuring element of size 3 × 3.
The complement of image 3.7a is obtained by subtracting its grey values from 255. The result is
shown in Figure 3.7f. Its erosion, dilation, opening and closing with a flat structuring element of
size 3 × 3 are shown in 3.7g–3.7j, respectively.

What is a non-flat structuring element?

A non-flat structuring element is one that has grey values in its pixels. Erosion using such an ele-
ment is performed in the same way as with the flat element, except that, as the structuring element
slides across the image, at each location, before the minimum is obtained, the values of the structur-
ing element are subtracted from the corresponding grey values of the image underneath. Dilation
using such an element is performed in the same way as with the flat element, except that as the
structuring element slides across the image, at each location, before the maximum is obtained,
the values of the structuring element are added to the corresponding grey values of the image
underneath.

Example 3.4

Perform dilation and erosion on the 1D signal of Figure 3.8a with the structuring
element of Figure 3.8b, i.e. a structuring element with values (1, 2, 1).
The dilation of signal 3.8a with structuring element 3.8b is shown in Figure 3.8c. To pro-
duce the dilation, the values of the structuring element are added to the signal values and
the maximum between the three consecutive sums is picked up and assigned to the central
position.

The erosion of signal 3.8a with structuring element 3.8b is shown in Figure 3.8d. In order to pro-
duce the erosion, the negative structuring element of Figure 3.8e is added to the three consecutive
samples around each sample position and the minimum is taken.

In 3.8c and 3.8d the grey parts are some selected places where the addition of the structuring
element is shown explicitly.

Figure 3.9 shows the results of dilation and erosion of the same signal with a flat structuring
element for comparison. The grey areas here represent the difference between the eroded or dilated
signal and the original signal.
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grey value

(a)

grey value

(b)

grey value

(c)
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1 6 17 sample location

17 sample location61

original

location
sample

(d)

location
sample
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original

dilated

Figure 3.8 (a) The original signal. (b) The structuring element. (c) The top line is the signal dilated.
(d) The bottom line is the signal eroded. (e) The negative of the structuring element used to perform
the erosion. In (c) and (d) the grey patches show how the structuring element is placed at selected
positions 1, 6 and 17. For dilation, the maximum (and for erosion the minimum) over three
consecutive positions is identified and assigned to the central position.

(Continued)
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Example 3.4 (Continued)
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Figure 3.9 (a) The original signal. (b) The flat structuring element of size 3. (c) The top line is the
signal dilated. (d) The bottom line is the signal eroded. (e) The “negative” of the structuring element
used to perform the erosion (the same as the original one since it is flat). The grey patches show the
difference between the original signal and the result.

Example 3.5

Perform erosion, dilation, opening and closing to the image of Figure 3.7a, and its
complement, by using a 3 × 3 structuring element with value 2 in the middle and 1
everywhere else.
The results are shown in Figure 3.10.
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(b) Erosion

(e) Opening

(c) Dilation

(f) Closing

(i) Dilation(h) Erosion

(k) Closing(j) Opening

(g) Complement

(a) Original image

(d) Structuring element

Figure 3.10 (a) The original image. (b) The image eroded by subtracting at each position the value of
the structuring element, shown in (d), before taking the minimum. (c) The image is dilated by adding
at each position the value of structuring element (d) before taking the maximum. (e) The opening of
the image, obtained by dilating (b), i.e. by adding at each position the value of the structuring element
and taking the maximum inside each 3 × 3 window. (f) The closing of the image obtained by eroding
(c). (g) The complement of (a) obtained by subtracting its values from 255. (h) Erosion of (g) by (d). (i)
Dilation of (g) by (d). (j) Opening of (g) by (d). (k) Closing of (g) by (d).

What is the relationship between the morphological operations applied to an image
and those applied to its complement?

For an image A and a symmetric structuring element, the following relations hold:(
Adilated)complement =

(
Acomplement)eroded (3.4)(

Aeroded)complement =
(

Acomplement)dilated (3.5)



�

� �

�

94 3 Stationary Grey Texture Images

(
Aopen)complement =

(
Acomplement)close (3.6)(

Aclose)complement =
(

Acomplement)open
. (3.7)

Example 3.6

Assuming that the maximum grey value a pixel can take is G, prove that the ero-
sion of an image is equal to the complement of the dilation of its complement, if the
structuring element is symmetric about its centre.
Let us consider a structuring element consisting of M pixels, with values g1, g2,… , gM. Let us
consider a random position of the image where the structuring element is currently placed. Let
us say that the grey values of the pixels of the image which are covered by the structuring element
are x1, x2,… , xM. To perform erosion, we compute:

min {x1 − g1, x2 − g2,… , xM − gM}. (3.8)

The complement of the image at the same position will have values G − x1,G − x2,… ,G − xM.
To perform the dilation of the complement with the same structuring element, we compute:

max {G − x1 + g1,G − x2 + g2,… ,G − xM + gM}. (3.9)

This may be written as:

max {G − (x1 − g1),G − (x2 − g2),… ,G − (xM − gM)}. (3.10)

This now makes it obvious that the minimum value obtained in (3.8) will be the same as the
maximum value obtained in (3.10), and therefore that the erosion of an image is the same as the
complement of the dilation of its complement, performed using the same structuring element.

Note that this is not valid if the structuring element is not symmetric about its centre, because
different pixels will be involved in the erosion and different in the dilation, since for the dilation
the structuring element will have to be reflected.

Example 3.7

Demonstrate, using the results of Figure 3.10, that the erosion of an image is equal to
the complement of the dilation of its complement, and that the opening of an image
is equal to the complement of the closing of its complement and vice versa.
As we have defined the complement of an image to be its difference from a flat image with values
255 everywhere, to show that one image is the complement of another we must show that if we
add them we get a flat image with values 255. This is demonstrated in Figure 3.11, where, for
example, we add panels (b) and (i) of Figure 3.10 in order to show that erosion of the image with
a 3 × 3 flat structuring element is the complement of the dilation of the complement of the image
with the same structuring element.
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255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

(b)+ (i) (c)+ (h) (e)+ (k) (f)+ (j)

Figure 3.11 Underneath each panel one can see which panels of Figure 3.10 were added to produce
the result shown. (b)+(i): The erosion of an image is equal to the complement of the dilation of its
complement. (c)+(h): The dilation of an image is equal to the complement of the erosion of its
complement. (e)+(k): The opening of an image is equal to the complement of the closing of its
complement. (f)+(j): The closing of an image is equal to the complement of the opening of its
complement.

Example 3.8

Demonstrate, by using the results of Figure 3.10, that if one subtracts the opening of
an image from the original image, one obtains the same result as when one subtracts
the complement image from the closing of the complement of the image.
This is demonstrated in Figure 3.12.

Figure 3.12 Underneath each panel one can see which
panels of Figure 3.10 were subtracted to produce the
result shown.

16 080

00132

8 21 0 0

321522

00

0 0

00

(a)−(e)

22 15 2 3

8 21

2 13

8 16

(k)−(g)

Example 3.9

Demonstrate, by using the results of Figure 3.10, that if one subtracts an image from
its closing, one obtains the same result as when one subtracts the opening of the com-
plement image from the complement of the image.
This is demonstrated in Figure 3.13.

(Continued)
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Example 3.9 (Continued)
Figure 3.13 Underneath each panel one can see which
panels of Figure 3.10 were subtracted to produce the
result shown.
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What is the purpose of using a non-flat structuring element?

Let us consider the case of erosion with a structuring element with values g1, g2,… , gc,… , gM in its
M positions. Let us also consider the values x1, x2,… , xc,… , xM of the image covered by the structur-
ing element when the centre of the structuring element is placed at pixel c, with value xc. Erosion
means that we replace xc with the minimum of values {x1 − g1, x2 − g2,… , xc − gc,… , xM − gM}.
Let us assume that the minimum is xd − gd, where d is one of the pixels covered by the structuring
element, other than pixel c. The replacement only takes place if

xd − gd < xc − gc ⇒ gc − gd < xc − xd. (3.11)

The significance of this is the following: a local minimum with value xd wins and changes the
value xc of a neighbouring pixel, by making it xd − gd, only if it is “deeper” than pixel c by more
than gc − gd. (The word “deeper” is only strictly correct if gc > gd.)

In a similar way, we may work out that a local maximum wins and replaces the value of a neigh-
bouring pixel, only if it is “sticking above” it by more than gc − gd. (The term “sticking above” again
is only strictly correct if gc > gd.)

So, the use of grey values for the structuring element serves the purpose of identifying only sig-
nificant local minima or local maxima that are worth influencing the values of their neighbours.
At the same time, we see that the actual values of the structuring element do not matter, but only
their relative values. So, for practical purposes, we shall obtain the same results if we remove a con-
stant value from all values of the structuring element. Therefore, it is advisable to use structuring
elements with at least one of their values 0. This value serves as a reference level for all other values
that have meaning only in relative terms.

Example 3.10

Remove the bias of structuring element Figure 3.10d, and then use it to compute the
erosion and dilation of the image of Figure 3.10a. Thus, show that the results are the
same as those in Figures 3.10b and 3.10c, apart from the bias.
The bias of the structuring element is removed if we subtract from all its elements 1, in order to
make at least one of its elements have value equal to 0. Figure 3.14 shows the results obtained by
using this structuring element. Note that the difference from results 3.10b and 3.10c is equal to
the removed bias of the structuring element.
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(a)

(b) Erosion (c) Dilation

Figure 3.14 (a) Structuring element 3.10d with the bias removed. (b) Erosion and (c) Dilation of
image 3.10a, obtained with this new structuring element.

How can we perform granulometry with a grey image?

Once we have generalised the definitions of erosion and dilation for grey images, we can directly
generalise the granulometric approach to grey texture analysis. In most situations a flat structuring
element is used, and opening is performed with structuring elements of various sizes to produce
the pattern spectrum (see Figure 2.53). Here, instead of counting black pixels, like we did in the
case of binary images, we subtract the result of opening from the original image pixel by pixel and
add the differences.

Example 3.11

Compute a number that expresses how much of the original signal of Figure 3.8a is
in peaks narrower than three samples.
We perform erosion with a flat structuring element of size 3, followed by dilation with the
same structuring element. This way we obtain the opening of the signal. Then we sub-
tract the result from the original signal. Figure 3.15a shows the erosion of the original
signal.

The grey patches show the difference between the original signal and its eroded version.
Figure 3.15b shows the dilation of the eroded signal, i.e. the opening of the original signal. The
grey patches show the difference between the opened signal and the eroded one. To deal with
boundary effects we leave out two samples at either end of the original signal. If we count the
grey boxes within these limits in Figure 3.15a, we see that erosion reduced the original signal by
28 boxes. If we count the grey boxes in 3.15b we see that dilation increased the eroded signal by
19 boxes. So, the original signal was reduced by 9 boxes, because it had peaks narrower than
three samples occupying 9 boxes.

(Continued)
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Example 3.11 (Continued)

grey value

(a)

grey value

(b)

sample location

sample location

eroded original

eroded

original

opened original

Figure 3.15 (a) The signal of Figure 3.8a eroded with a flat structuring element of size 3. (b) The
eroded signal dilated with a flat structuring element of size 3, to produce the opening of the original
signal of Figure 3.8a. The grey patches show the difference between the result and the signal to which
the operation was applied.

Example 3.12

Compute the number that expresses how much detail the signal of Figure 3.8a has in
valleys narrower than three samples.
We perform dilation with a flat structuring element of size 3, followed by erosion with the same
structuring element. This way we obtain the closing of the signal. Then we subtract the result from
the original signal.

Figure 3.16a shows the dilation of the original signal. The grey patches show the difference
between the original signal and its dilated version.

Figure 3.16b shows the erosion of the dilated signal, i.e. the closing of the original signal. The
grey patches show the difference between the closed signal and the dilated one.

To deal with boundary effects we leave out two samples at either end of the original signal.
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If we count the grey boxes within these limits in Figure 3.16a, we see that dilation increased
the original signal by 24 boxes. On the other hand, counting the grey boxes in 3.16b we see that
erosion decreased the dilated signal by 16 boxes.

So, the original signal was increased by 8 boxes, because it had valleys narrower than three
samples occupying 8 boxes.

original

grey value

(a)

dilated

grey value

(b)

dilated original

closed original

sample location

sample location

Figure 3.16 (a) The signal of Figure 3.8a dilated by a flat structuring element of size 3. (b) The
dilated signal eroded by a flat structuring element of size 3, to produce the closing of the original
signal of Figure 3.8a. The grey patches show the difference between the result and the signal to which
the operation was applied.
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Can we extract in one go the details of a signal, peaks or valleys, smaller than a
certain size?

Yes, this can be done by the so-called blanket method.

What is the blanket method?

One dilates and erodes the original signal with a flat structuring element and then takes the dif-
ference of the two results pixel by pixel and adds the differences to produce a single number.
The process is repeated for structuring elements of various sizes in order to produce the pattern
spectrum.

Example 3.13

Produce the pattern spectrum of the signal of Figure 3.8a for structuring elements of
size 3, 5 and 7 using the blanket method.

pattern
spectrum

3 5 7

0.2
0.4
0.6
0.8
1.0

(d)
size of struct.element

grey value

dilated

grey value

grey value

(c) sample location

(b) sample location

(a) sample location

eroded

dilated

eroded

dilated

eroded

Figure 3.17 (a) The signal of Figure 3.8a dilated and eroded by a flat structuring element of size 3.
(b) The same signal dilated and eroded by a flat structuring element of size 5. (c) The same signal
dilated and eroded by a flat structuring element of size 7. In all cases the thick line enveloping the
graph from the top is the dilation, and the thick line enveloping the graph from the bottom is the
erosion. The shaded boxes indicate the difference between erosion and dilation. Their numbers
normalised by the number of boxes that make up the signal (excluding those near the borders) are
plotted in (d) to form the pattern spectrum.
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The result is shown in Figure 3.17. Counting boxes in (a) gives 52 shaded boxes that consti-
tute details smaller than three samples. The total number of boxes occupied by the signal itself
(excluding those under the first and last samples) is 158. This gives as value of the pattern spec-
trum for structuring element of size 3: 52∕158 = 0.329. For structuring element of size 5 we get
76∕144 = 0.528 and for size 7: 87∕126 = 0.690. The pattern spectrum of this signal is shown in
Figure 3.17d.

How can we deal with border effects without losing part of the image?

Let us say that the structuring element is of size (2M + 1) × (2M + 1) and the image is of size N × N.
We repeat the first M columns of the image to the left, reflecting them with respect to the left image
border. We also repeat the last M columns of the image to the right, reflecting them about the right
image border. Then we reflect the top M rows of the image to the top, reflecting them about the top
image border, and the bottom M rows of the image to the bottom, reflecting them about the bottom
image border. We apply then the morphological operations to the enlarged image, leaving its border
pixels unprocessed. Figure 3.18 demonstrates this process for a 7 × 7 image and a 5 × 5 (M = 2)
structuring element. As erosion and dilation involve taking minimum and maximum values over
windows, this repetition of the pixels near the border does not affect the result, assuming that we
are using a symmetric structuring element.

On the contrary, if we either assume 0 values for the pixels outside the image border, or assume
toroidal boundary conditions, where the image is wrapped around in four directions, artifacts will
occur.

How do we apply the blanket method in practice?

Perform the following process for various values of M, using a symmetric structuring element.

Step 0: Sum up the grey values of the input image I, to produce number A.
Step 1: Enlarge the image by reflection, as explained in Figure 3.18, so that, if the structuring ele-

ment is of size (2M + 1) × (2M + 1) and the image is of size N × N, the enlarged image is of size
(N + 2M) × (N + 2M). Call this image I0.

Step 2: Dilate image I0 with the structuring element by placing the centre of the structuring element
at all pixels of the image, but leaving a border of M unprocessed pixels all around. Produce output
image Id, of size N × N.
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Figure 3.18 Enlargement of the image in order to deal with boundary effects when applying erosion or
dilation.
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Step 3: Erode image I0 with the structuring element, by placing the centre of the structuring ele-
ment at all pixels of the image, but leaving a border of M unprocessed pixels all around. Produce
output image Ie, of size N × N.

Step 4: Subtract Ie from Id, pixel by pixel.
Step 5: Take the sum of all pixel values of image Id − Ie. Call this number B.
Step 6: Calculate B∕A to work out the value of the pattern spectrum of the original image for struc-

turing element of size (2M + 1) × (2M + 1).

Example 3.14

Perform erosion, dilation, opening and closing to the images of Figure 3.1 using flat
structuring elements of sizes 3 × 3, 7 × 7 and 11 × 11. Then plot their pattern spectra.

Erosion

Dilation

Opening

Closing

3 × 3 7 × 7 11 × 11

Figure 3.19 Morphological operations applied to the image of Figure 3.1a with structuring elements
of sizes indicated at the bottom of each column. Note the blocky effect created by the use of a square
structuring element instead of a round one. Source: Maria Petrou.
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Figure 3.19 shows the results of the morphological operations for the various structuring elements,
for image 3.1a. Figure 3.20 shows the pattern spectra of six of these images, computed using struc-
turing elements of sizes 3 × 3 to 21 × 21.
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Figure 3.20 Pattern spectra for some images of Figure 3.1. They may be used to discriminate the
different textures.
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How can we use the pattern spectrum to classify textures?

The shape of the pattern spectrum is characteristic of the texture. We may use it as is, i.e. a series
of numbers that are features that characterise the texture. Alternatively, one may model it by a
parametric curve. The values of the parameters characterise the texture. For example, if the pattern
spectrum in log–log coordinates can be fitted by a straight line, the texture is said to be approximated
by a fractal. The slope of the line that fits the pattern spectrum in log–log coordinates may be
used to estimate the so-called fractal dimension of the texture, which may serve as a feature
characterising the texture.

3.3 Fractals and Multifractals

What is a fractal?

A fractal is a shape that has the same structure at all scales. An example of a fractal curve is shown
in Figure 3.21 which depicts a fractal curve called the von Koch snowflake, first proposed in 1904.

Figure 3.21 To create a von Koch snowflake curve, start with a straight line segment of length l. Divide it
into three equal segments and replace the middle one by two segments of equal size, so that the replaced
segment with the two new segments form an equilateral triangle. Repeat this ad infinitum for every line
segment of the curve.
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Figure 3.22 To create a fractal surface from a Sierpinski triangle, start with an equilateral triangle with
side of length l. Divide it into four equal triangles and replace the middle one with a regular tetrahedron of
side l∕2. Repeat this ad infinitum for every equilateral triangle of the surface.

An example of a fractal surface is shown in Figure 3.22. These are examples of deterministic fractals
that may be generated by applying a specific rule repeatedly.

One may also have fractals which, instead of having the same shape at all scales, have the same
statistical properties at all scales.

These are self-similar fractals. So, a self-similar fractal remains the same either statistically or
literally if all its coordinates are scaled by the same factor. If different coordinates have to be scaled
by different factors, the fractal is called self-affine.

A fractal is characterised by, among other things, its fractal dimension.

What is the fractal dimension?

The fractal dimension of a curve is defined as

D ≡ ln N
ln(1∕r)

(3.12)

where N expresses how many replicas of the curve, scaled by a factor 1∕r, we can fit in the curve.
The more accurately we try to measure the length of a fractal curve, the longer we find it. We may

say that as the size of the measure we use tends to zero, the length of the curve tends to infinity.
This is demonstrated in Example 3.15.

To express the fact that the length of the curve is always longer than what we actually measure,
we say that we use a “corrective” exponent in the measuring units we use. For example, in everyday
life, if we measure a line, we may say that it is three metres long and write 3 m. If we measure an
area, we may say it is three square metres and write 3 m2. Here, we may say that the length of the
curve is 3 mD, where D is a number between 1 and 2 and attempts to correct for the underestimate
of the length of the curve as represented by number 3. This exponent D is the fractal dimension of
the curve.

Example 3.15

Measure the length of the von Koch snowflake curve of Figure 3.23a using as measur-
ing units those shown in Figure 3.23b, which are such that each one is smaller than
the previous one by a factor of 3.

(Continued)
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Example 3.15 (Continued)

(a)

(b)

Figure 3.23 The line segments in (b) are assumed to be rigid measuring rods that have to be placed
on the top of the curve in (a) to see how many times they fit along the curve. The smaller the rod, the
better it will follow the details of the curve.

The measuring process entails taking the measuring unit and checking how many times it fits on
the curve. We must imagine that our measuring unit is like a solid rigid rod, and we physically
pick it up and place it along the curve.

When we do this with the topmost rod, we see that we can only fit it on the curve once. So, the
length of the von Koch snowflake curve is found to be 1 L, where L is our unit. Assume now that we
pick up the second rod in Figure 3.23b. This one has length L∕3, and because it is smaller allows
us to follow the details of the curve better. We find that it fits four times along the curve, so now we
find that the length of the curve is 4 × (L∕3), i.e. 4∕3 L. Let us pick up the third rod. This is L∕9
in length and, being even smaller, allows us to follow even more details of the curve. Now we find
the length of the curve to be 16 × (L∕9), i.e. 16∕9 L. With the last rod we find that the length of the
curve is 64∕27 L.

A real von Koch snowflake curve will have even smaller details than those shown in
Figure 3.23a, as the process of its creation is supposed to carry on ad infinitum. Therefore, it is
not difficult to see that as the rods we use become smaller and smaller, more and more details
are being picked up, and the length of the curve we compute tends to infinity, since at each scale
we find the length we found at the previous scale multiplied with 4∕3.
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Example 3.16

Compute the fractal dimension of the von Koch snowflake curve.
From example 3.15 we see that 4 (unit∕3) is the new length we find when the unit we use is 1∕3 the
previous unit. In order to compensate for this increase in length, we say that we shall use an expo-
nent D for the unit, so that the length remains the same as before: 4 (unit∕3)D = 1 (unit)D. This
leads to 4(1∕3)D = 1. By taking the logarithm of both sides, we obtain ln 4 − D ln 3 = 0, which
means that D = ln 4∕ ln 3 = 1.2618.

We obtain the same answer if we apply equation (3.12). We obtain four equal replicas of the
curve every time we scale it down by 3, so in that formula, N = 4 and r = 1∕3.

Example 3.17

Compute the fractal dimension of the surface of Figure 3.22.
We notice that when we scale down the triangle by 2, we can fit four of them to the flat surface.
Then the central one is replaced by a tetrahedron, i.e. one of those triangles is replaced by three
equal ones, so the total surface now consists of six equilateral triangles that have a quarter of the
area of the original one. Therefore, we may apply Equation (3.12) with r = 1∕4 and N = 6 to
obtain D = ln 6∕ ln 4 = 1.29248.

Example 3.18

Compute the fractal dimension of the von Koch snowflake curve using the
box-counting method.
According to this method, we cover the shape with boxes of size 1∕2n, where n takes values 0, 1, 2, ...
and count each time the number of boxes N(n) of this size that are needed to cover the shape. The
fractal dimension is then defined as:

D = lim
n→∞

ln N(n)
ln 2n . (3.13)

Figure 3.24 demonstrates the application of this formula for the calculation of the fractal
dimension of the von Koch snowflake. By counting the boxes we get the following table:
n = 0 N=1 -
n = 1 N=2 ln N(1)

ln 21 = 1.00
n = 2 N=6 ln N(2)

ln 22 = 1.29
n = 3 N=14 ln N(3)

ln 23 = 1.27
n = 4 N=32 ln N(4)

ln 24 = 1.25.

If we carry on, eventually the computed number will approach 1.26 which is the theoretically
calculated value.

(Continued)
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Example 3.18 (Continued)

Figure 3.24 The box-counting method for the computation of the fractal dimension of the von Koch
snowflake. For n = 1 we have four boxes, only two of which contain parts of the curve. So N(1) = 2.
For n = 2, out of the 16 boxes needed to cover the whole space, only six contain parts of the curve.
For n = 4, only the 32 shaded grey boxes contain parts of the curve.

Example 3.19

Use the box-counting method to work out the fractal dimension of a circle.
Figure 3.25 shows the successive stages of dividing the unit square that contains a circle into

smaller and smaller squares. We can easily count the occupied boxes at each division:

n = 0 N=1 -
n = 1 N=4 ln N(1)

ln 21 = 2.00
n = 2 N=12 ln N(2)

ln 22 = 1.79
n = 3 N=20 ln N(3)

ln 23 = 1.44
n = 4 N=44 ln N(4)

ln 24 = 1.36
n = 5 N=80 ln N(5)

ln 25 = 1.26.
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If we carry on, eventually the numbers will converge to 1, since the circle is a smooth curve and
not a fractal.

Figure 3.25 Calculating the fractal dimension of a
circle by successive divisions of the occupied cells.

Example B3.20

Consider the surface created in Figure 3.22. The first stage of the creation of the sur-
face is reproduced in Figure 3.26a. Imagine a cross-section of the surface along line
OA as marked in that figure. The line forms angle 𝛼 < 30∘ with the height OF of the
original triangle. Draw this cross-section and compute all lengths that constitute it
as functions of angle 𝛼 and the side of the original triangle l.

O

A
N

GB

E

F

D
α

GB

E

90−α

30+α

60

(a) (b)

H

M

Figure 3.26 (a) The first stage of constructing the fractal surface of figure 3.22. (b) Triangle BGE in
magnification.

(Continued)
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Example B3.20 (Continued)

We must compute lengths OB, BE and EA first. Triangle OMN is equilateral with side l, and it is
easy to see from Figure 3.26a that:

ON = l
OF = l cos 30∘ = l

√
3∕2

OD = DF = OF∕2 = l
√

3∕4 (3.14)

DB = OD tan 𝛼 = (l
√

3 tan 𝛼)∕4
DG = l∕4

BG = DG − DB = l(1 −
√

3 tan 𝛼)∕4.

Let us define:

u ≡ OA = OF
cos 𝛼

=
l
√

3
2 cos 𝛼

. (3.15)

So, length OB is:

OB = BA = OA∕2 = u∕2. (3.16)

Then we must compute length BE:
Consider triangle BEG as shown in Figure 3.26b, and apply the sine rule to it:

BE
sin 60∘

= BG
sin(𝛼 + 30∘)

. (3.17)

Substituting BG from the last of Equations (3.14) into the above expression, we obtain:

BE =
l
√

3(1 −
√

3 tan 𝛼)
8 sin(𝛼 + 30∘)

. (3.18)

This equation may be rearranged as follows:

BE =
l
√

3
2 cos 𝛼

×
(1 −
√

3 tan 𝛼) cos 𝛼
4 sin(𝛼 + 30∘)

. (3.19)

Let us define a function f of 𝛼:

f (𝛼) ≡ (1 −
√

3 tan 𝛼) cos 𝛼
4 sin(𝛼 + 30∘)

. (3.20)

Then using the definition of u from (3.15) and f from (3.20) into (3.19), we obtain:

BE = uf (𝛼). (3.21)

To compute EA we observe that:

EA = BA − BE = OA∕2 − BE = u∕2 − uf (𝛼) = u(1∕2 − f (𝛼)). (3.22)

Let us recapitulate. The process of creating the fractal surface divides segment OA into three
parts with lengths:

OB = u
2

BE = uf (𝛼) (3.23)

EA = u
(1

2
− f (𝛼)

)
.
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When we replace triangle HGF with a tetrahedron, segment BE is replaced by two other seg-
ments. These are segments BS and SE defined in Figure 3.27a which shows a 3D impression of
the regular tetrahedron that sits on triangle HGF of Figure 3.26a. We need to compute the lengths
of segments BS and SE in order to complete the answer to this problem.

Q

H

F

L T
U

B
T

E

G

30

90−α

(b)(a)

GB

E

S

60+α

Figure 3.27 (a) The regular tetrahedron with which we replace triangle HGF of Figure 3.26a at the
first stage of constructing the fractal surface. (b) Triangle BGE in magnification.

We start by observing that GU is the height of an equilateral triangle with side l∕2, and L is the
centre of the triangle. The side of the tetrahedron is also l∕2. So, we know that:

QG = QH = QF = GF = HF = HG = l∕2
UF = HF∕2 = l∕4

GU =
√

GF2 − UF2 = l
√

3∕4

GL = 2GU∕3 = l∕(2
√

3)

QL =
√

QG2 − GL2 = l∕
√

6. (3.24)

For obvious reasons QL is parallel to ST, so triangle STG is similar to triangle QLG. So, we have:
ST
QL

= GT
GL

. (3.25)

Let us examine triangle BGT as shown in Figure 3.27b. By applying the sine rule to this triangle
we obtain:

BG
sin(60∘ + 𝛼)

= GT
sin(90∘ − 𝛼)

= BT
sin 30∘

. (3.26)

From Figure 3.26a, we can see that:

BG = DG − DB = HG∕2 − OD tan 𝛼 = l∕4 − l
√

3 tan 𝛼∕4 = l(1 −
√

3 tan 𝛼)∕4. (3.27)

Combining Equations (3.26) and (3.27), we obtain:

BT =
l(1 −
√

3 tan 𝛼)
8 sin(𝛼 + 60∘)

GT =
l(1 −
√

3 tan 𝛼) cos 𝛼
4 sin(𝛼 + 60∘)

. (3.28)

(Continued)
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Example B3.20 (Continued)

We may use the expression for GT and the values of QL and GL from (3.24) into (3.25) to obtain
the value of ST:

ST =
√

2l(1 −
√

3 tan 𝛼) cos 𝛼
4 sin(𝛼 + 60o)

. (3.29)

If we define a function g of 𝛼

g(𝛼) ≡ sin(30∘ + 𝛼)√
3 sin(60o + 𝛼)

(3.30)

then one can see that:

BT = uf (𝛼)g(𝛼) ST = 2
√

2 cos 𝛼 uf (𝛼)g(𝛼). (3.31)

One may easily prove that:

1 − g(𝛼) = cos 𝛼√
3 sin(60∘ + 𝛼)

. (3.32)

Then from the right-angled triangles BST and STE one can compute the lengths of BS and SE:

BS = uf (𝛼)g(𝛼)
√

1 + 8cos2𝛼

SE = uf (𝛼)
[
1 − g(𝛼)

]√
1 + 8sin2(30∘ + 𝛼). (3.33)

Figure 3.28 shows the profile of this cross-section for u = 1 and 𝛼 = 15∘. For these values we
find f (15∘) = 0.183 and g(15∘) = 0.4226. Segment OA is divided into three parts of length 0.5,
0.183 and 0.317. The middle part is further divided into two parts of length BT = 0.07734 and
TE = 0.10566. At point T we draw a line perpendicular to segment OA and measure along it
length TS = 0.2113 to mark point S. Then we join point S with points B and E to form the profile.
The lengths of segments BS and SE are 0.225 and 0.2363, respectively.

AETBO

S

Figure 3.28 The cross-section of the surface created at the first stage of the creation of the fractal
surface of Figure 3.26, along a line that forms a 15∘ angle with the north–south axis of the first
triangle, and passes through its top vertex.

Example B3.21

Draw the profile of the fractal surface of Example 3.20 for 𝛼 = 0∘.
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Let us assume that the length of segment OA, which in this case coincides with OF, is 1 (i.e. u = 1).
Then for 𝛼 = 0∘ we find from the corresponding equations:

From (3.20): f = 1∕2
From (3.30): g = 1∕3
From (3.23): OB = 1∕2

BE = 1∕2
EA = 0

From (3.31): BT = 1∕6
ST =

√
2∕3

From (3.33): BS = 1∕2
SE = 1∕

√
3.

Figure 3.29a shows this profile. Its total length is:

OB + BS + SE = 1
2
+ 1

2
+ 1√

3
= 1 + 1√

3
. (3.34)

From the lengths of the segments we can compute the tangents of angles 𝜙 and 𝜓 :

tan𝜙 = ST
BT

= 2
√

2 tan𝜓 = ST
TE

= ST
BE − BT

=
√

2. (3.35)

At the next stage of the fractal construction, shown in Figure 3.22, segment SE will not be
affected. In fact it will not be affected at any stage as it coincides with an edge. Segment OB will
be replaced by a replica of profile 3.29a scaled down by 2, while segment BS will be replaced by
the same scaled-down profile reflected left to right. This will bring at vertex B two angles 𝜓 and
one angle 𝜙. The tangent of the total angle is:

tan(𝜙 + 2𝜓) = tan𝜙 + tan 2𝜓
1 − tan𝜙 tan 2𝜓

. (3.36)

We need the tangent of 2𝜓 :

tan 2𝜓 = 2 tan𝜓

1 − tan2𝜓
= −2
√

2. (3.37)

Then:

tan(𝜙 + 2𝜓) =
2
√

2 − 2
√

2
1 + 8

= 0. (3.38)

This shows that the edges of the tetrahedra that make up the scaled-down segments will touch
each other. As fractals continue ad infinitum at all scales, we may say that segment SE is not
part of the line profile either, since being the edge of a tetrahedron it will also be in contact with
another edge of the structure at the next larger scale. The new profile is shown in 3.29b. Notice
that this new profile is the line OB1S1B2SE. The lengths of segments OB1, B1S1, S1B2 and B2S are
1∕4. So the total length of the profile remains the same.

At the subsequent steps, segments OB1, B1S1, S1B2 and B2S will all be replaced by segments of
similar shape but half their size, and the total length of the line will also remain the same. The
next two stages are shown in Figures 3.29c and 3.29d.

(Continued)
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Example B3.21 (Continued)

(c) (d)

(b)

ψ ϕ
O

(a)

ψ

S S

EBB1B T OE = A

S1 B2

ψ
ϕ

Figure 3.29 The cross-section of the surface created at the first four stages of the creation of the
fractal surface of Figure 3.26, along a line that forms 0∘ angle with the north–south axis of the first
triangle, and passes through its top vertex.

Example B3.22

Compute the fractal dimension of the curve created in Example 3.21.
The process of creating the curve of Example 3.21 may be summarised as follows.

Replace shape 3.30a with shape 3.30b, which consists of two scaled-down versions, by a factor
of 2, of the original shape. It can be easily shown, from the original geometry, that angle𝜔 is equal
to 𝜙∕2 defined in Figure 3.29, and such that sin𝜔 = 1∕

√
3. Figure 3.30d shows the application

of the box-counting method for computing the fractal dimension. By counting boxes of size 1∕2n,
for n = 0, 1, 2, ..., we form the following table:

n = 0 N=1 -
n = 1 N=2 ln N(1)

ln 21 = 1.00
n = 2 N=4 ln N(2)

ln 22 = 1.00
n = 3 N=8 ln N(3)

ln 23 = 1.00
n = 4 N=16 ln N(4)

ln 24 = 1.00.

The curve becomes smoother and smoother, and it tends to a straight line with “fractal” dimen-
sion 1. So, this is not a fractal at all.
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(d)(c)

ωω
(a) (b)

Figure 3.30 The first four stages of creating the curve of Example 3.21 and the application of the
box-counting method to find its fractal dimension.

Example B3.23

Think of a simple procedure that will convert a number into its binary form. Apply
it to write 175 as a binary number.
Let us call this number X. We shall do the following.

Step 1: Compute X1 ≡ ⌊log2X
⌋

.
Step 2: If X − 2X1 = 0, exit. The binary representation of X is a 1 followed by X1 − 1 zeros.
Step 3: If X − 2X1 = X2 ≠ 0, compute X3 ≡ ⌊log2X2

⌋
.

Step 4: If X2 − 2X3 = 0 exit. The binary representation of X is a 1, followed by X1 − X3 − 1 zeros,
followed by 1, followed by X2 − 1 zeros.

Step 5: If X2 − 2X3 = X4 ≠ 0, compute X5 ≡ ⌊log2X4
⌋

.
Carry on in a similar way, until you exit the algorithm.

Set X = 175. We have log2175 = 7.4512. Then X1 = 7.
175 − 27 = 175 − 128 = 47, so, X2 = 47.
log247 = 5.5546, so, X3 = 5.

(Continued)
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Example B3.23 (Continued)

47 − 25 = 47 − 32 = 15, so, X4 = 15.
log215 = 3.9069, so, X5 = 3.
15 − 23 = 7, so, X6 = 7.
log27 = 2.8074, so, X7 = 2.
7 − 22 = 7 − 4 = 3, so, X8 = 3.
log23 = 1.5850, so, X9 = 1.
3 − 21 = 1, so, X10 = 1.
log21 = 0, so, X11 = 0, and we exit the algorithm.
So the binary representation of 175 is 1, followed by X1 − X3 − 1 = 1 zeros,
followed by 1, followed by X3 − X5 − 1 = 1 zeros,
followed by 1, followed by X5 − X7 − 1 = 0 zeros,
followed by 1, followed by X7 − X9 − 1 = 0 zeros,
followed by 1, followed by X9 − X11 − 1 = 0 zeros, followed by 1:
10101111.

Example B3.24

Consider a square image of size 128 × 128. Divide the image into four quadrants. By
considering the binary representation of the indices of the pixels, work out what the
first bit of the pixel indices in each quadrant will be.
The top left quadrant will consist of all pixels with indices (i, j) both in the range [0, 63]. The top
right quadrant will have the pixels with indices (i, j) in the ranges [64, 127] and [0, 63], respec-
tively, the bottom left will consist of all pixels with indices (i, j) in the ranges [0, 63] and [64, 127],
respectively, and the bottom right will consist of all pixels with both indices (i, j) in the range
[64, 127]. Since the image is of size 128 × 128, and 128 = 27, all pixel indices are 7-bit binary
numbers. If we write these indices in binary form, we shall see that the top left quadrant will have
(i, j) indices both starting from 0, the top right quadrant index i starting from 1 and index j from
0, the bottom left quadrant index i starting from 0 and index j from 1, while the bottom right
quadrant will have both indices starting from 1. This is shown schematically in Figure 3.31

i

j

0,1 1,1

0,0 1,0

Figure 3.31 The first bit of the indices of the pixels in each
quadrant of an image are always those indicated here.

Box 3.1 The box-counting method for binary images

As this method keeps dividing the image into quadrants (see Example 3.16), we assume that the
image is square, with dimensions a power of 2. Let us assume then that we have expressed all
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pixel coordinates in binary form (see Example 3.23). With some careful thinking (see Example
3.24), we can soon realise that the first bit of each pixel coordinate tells us in which first division
quadrant the pixel is. The second bit tells us in which quadrant the pixel is in the second
division, the third bit in the third division and so on. At each division level, the arrangement of
the bits follows that shown in Figure 3.31. So, for example, a pixel with coordinates that have
as first three bits (101, 011), belongs to the top right quadrant in the first division (1, 0), the
bottom left quadrant of the top right quadrant in the second division (0, 1), and the bottom
right quadrant of the bottom left quadrant of the top right quadrant in the third division (1, 1),
as shown in Figure 3.32.

Figure 3.32 The largest font is used to indicate the first
bit of the index of a pixel, the medium font indicates the
second bit and the smallest font indicates the third bit.
The grey square indicates the cell to which a pixel, with
indices the first three bits of which are (101, 011), belongs.

01
01

00 10

11
00

11

10
00 10

01 11

So, if we want to know the fractal dimension of a binary curve, like that of Figure 3.24, we
assume that the pixels of the curve have value 1 and the background has value 0. Then we
apply the following algorithm.

Step 0: Consider the input binary image I(i, j), of size 2n0 × 2n0 .
Step 1: Consider the binary indices (i, j) of each pixel. These binary numbers consist of n0 bits.

Let us indicate by P(n; x) the nth bit of number x.
Step 2: Set up n0 arrays:

M(1; k) where k = 1, 2, 3, 4
M(2; k) where k = 1, 2,… , 16
…
M(n; k) where k = 1, 2,… , 4n

…
M(n0; k) where k = 1, 2,… , 4n0

Set all elements of all these arrays equal to 0.
Step 3: For i = 0, 1,… , 2n0 − 1 and j = 0, 1,… , 2n0 − 1, and if I(i, j) ≠ 0, do:

for n = 1, 2,… ,n0, set
k1 = 2n−1P(1; i) + 2n−2P(2; i) + · · · + 20P(n; i)
k2 = 2n−1P(1; j) + 2n−2P(2; j) + · · · + 20P(n; j)
k = 2nk2 + k1 + 1
M(n, k) = 1.

Step 4: For n = 1, 2,… ,n0, set N(n) =
∑

kM(n, k).

(Continued)
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Box 3.1 (Continued)

Step 5: Use N(n) in (3.13) to work out the various approximations of the fractal dimension of
the curve.

Note that step 2 sets up the cells for all divisions of the grid. It is obvious from Figure 3.24
that in the first division we have only 4 cells, in the second 16, and so on, until the last one
where each cell consists of a single pixel, so we have 2n0 × 2n0 = 4n0 cells. Note that the cells
of each division are indexed sequentially by index k. A cell is considered occupied even if a
single pixel of the curve belongs to it. In step 3, and for each bit of the coordinate position of a
curve pixel (which also identifies which division we consider), we identify the cell to which this
pixel belongs and mark it as occupied. The calculation of k1 and k2 identifies the cell of the
division under consideration, by considering all bits of the coordinates of the pixel on the left
of the current bit (division). In step 4 we count how many cells for each division are occupied.

Obviously, if we are only interested in calculating the fractal dimension for the largest value
of n, i.e. for the finest division, the algorithm is trivial, since a cell of the finest division consists
of a single pixel. Then, for a 2n0 × 2n0 binary image, we simply count the number of black pixels
that make up the depicted object. This is number N(n0). We use it then in (3.13) to compute
the fractal dimension of the binary image. Seen this way, we realise that when we compute the
fractal dimension of a binary image, we do not take any consideration of the spatial distribution
of the pixels that make up the depicted shape. That is why the generalised fractal dimensions
(see section on What is the generalised fractal dimension of a binary shape?) and the local
connected fractal dimension (see section on How do we compute the local connected fractal
dimension of a binary image?) were introduced.

However, to compute the fractal dimension it is better not to use just the last division into
blocks, where each block consists of a single pixel, but a few previous divisions too. Then
the fractal dimension will be computed as the slope of the line fitted to the pairs of points
(ln 2n

, ln N(n)). In fact experiments have shown that the last couple of divisions where the
bocks consist of 4 or 1 pixel only yield unreliable results and it is better if they are not used
at all (see Example 3.53).

Example B3.25

For the 16 × 16 image of Figure 3.24 apply the algorithm of Box 3.1 to work out the
fractal dimension of the curve.
Note that n0 = 4. The 32 pixels that contain parts of the curve have coordinates:

(0, 15), (1, 14), (1, 15), (2, 14), (2, 15), (3, 14), (3, 15), (4, 15)
(5, 13), (5, 14), (5, 15), (6, 12), (6, 13), (6, 14), (7, 11), (7, 12)
(8, 11), (8, 12), (9, 12), (9, 13), (9, 14),(10, 13), (10, 14), (10, 15),
(11, 15), (12, 14), (12, 15), (13, 14), (13, 15), (14, 14), (14, 15), (15, 15).
As we scan the image in a raster way, the first pixel we shall encounter with non-zero value will

be pixel (7, 11). The binary representations of these indices are: (0111, 1011).
For n = 1, P(1; 7) = 0 and P(1; 11) = 1. Then:
k1 = 20 × 0 = 0 and k2 = 20 × 1 = 1. Then k = 21 × 1 + 0 + 1 = 3. So:
M(1, 3) = 1
For n = 2, P(2; 7) = 1 and P(2; 11) = 0. Then:
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k1 = 21 × 0 + 20 × 1 = 1 and k2 = 21 × 1 + 20 × 0 = 2. Then: k = 22 × 2 + 1 + 1 = 10.
So:
M(2, 10) = 1
For n = 3, P(3; 7) = 1 and P(3; 11) = 1. Then:
k1 = 22 × 0 + 21 × 1 + 20 × 1 = 3 and k2 = 22 × 1 + 21 × 0 + 20 × 1 = 5. Then:
k = 23 × 5 + 3 + 1 = 44. So:
M(3, 44) = 1
For n = 4, P(4; 7) = 1 and P(4; 11) = 1. Then:
k1 = 23 × 0 + 22 × 1 + 21 × 1 + 20 × 1 = 7 and k2 = 23 × 1 + 22 × 0 + 21 × 1 + 20 × 1 = 11.
Then: k = 24 × 11 + 7 + 1 = 184. So:
M(4, 184) = 1
In the same way we have to check for all other curve pixels in the image. At the end, we shall

have to count the number of occupied cells at each level, by simply adding the elements of the
corresponding M matrix up.

Box 3.2 The box-counting algorithm for grey images

Step 0: Consider the input grey image I(i, j), of size 2n0 × 2n0 and with 2m0 grey levels.
Step 1: For each pixel, consider its binary indices and its grey value in binary form: (i, j,m).

The first two of these binary numbers consist of n0 bits, while the last one of m0 bits. Let
us indicate by P(n; x) the nth bit of number x. Set L = max {n0,m0} and express all three
numbers as L-bit binary numbers.

Step 2: Create L empty sets:
M1 = ∅ which will contain elements in the range [1, 8]
M2 = ∅ which will contain elements in the range [1, 64]
…
Mn = ∅ which will contain elements in the range [1, 8n]
…
ML = ∅ which will contain elements in the range [1, 8L].

Step 3: For i = 0, 1,… , 2n0 − 1 and j = 0, 1,… , 2n0 − 1, if I(i, j) ≠ 0 execute step 4.
Step 4: For n = 1, 2,… ,L, set

k1 = 2n−1P(1; i) + 2n−2P(2; i) + · · · + 20P(n; i)
k2 = 2n−1P(1; j) + 2n−2P(2; j) + · · · + 20P(n; j)
k3 = 2n−1P(1; I(i, j)) + 2n−2P(2; I(i, j)) + · · · + 20P(n; I(i, j))
k = 4nk3 + 2nk2 + k1 + 1
Mn = Mn ∪ {k}, adds element k to set Mn.

Step 5: For n = 1, 2,… ,L, set
N(n) = cardinality(Mn), where cardinality is the number of elements in the set.

Step 6: Use N(n) in Equation (3.13) to create a sequence of approximations of the fractal
dimension of the image.

If we are only interested in the finest box division, we essentially have to count the number
of non-zero pixels, and use that as N(n0) in (3.13). Clearly this is not going to be particularly
informative for the structure of the image, so several intermediate values of n may be used
instead, to yield a sequence of numbers characterising the image.
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Example B3.26

Apply the algorithm of Box 3.2 to the image of Figure 3.33.

0 1 0 2

1 0 3 0

0 2 3 1

0 3 0 0

j

i Figure 3.33 A 4 × 4 2-bit image.

For this image n0 = m0 = L = 2. The algorithm of Box 3.2 fills the 3D image space with boxes,
numbered as shown in Figure 3.34. Each of these boxes will be further subdivided into 8 boxes in
the same way. For each level of division, the algorithm counts how many of the boxes are occupied
by the image when it is interpreted as a landscape.

k1

k3 k3 k3

k3 k3 k3 k3

k3

k2

k2 k2 k2 k2

k2 k2
k2

k
1

k1 k1

k1k1k1k1

1 2

3
4

65

7 8

Figure 3.34 Treating the image as a landscape, we imagine that it exists in a 3D space, which we
may fill with 3D boxes. Here we show the boxes used for a 4 × 4 image, with four grey levels, and for
the first level of division of the image volume, by dividing the range of values along each axis into two
halves.

We must consider the binary representations of each pixel’s coordinates and grey value. In
what follows, each of these numbers is first given in the decimal system and then in the binary.
The first non-zero pixel has i = 1 = 01, j = 0 = 00 and I(i, j) = 1 = 01. Thus, for n = 1, it has
k1 = 0, k2 = 0 and k3 = 0, yielding an index k = 1, indicating that it is in box number 1 in the
first division. Therefore, the index of this box is added to set M1: M1 = {1}.

The same pixel, for n = 2, will yield k1 = 1, k2 = 0 and k3 = 1, yielding an index k = 18. So,
for the second level of division, we add index 18 to set M2: M2 = {18}.

The second non-zero pixel has i = 3 = 11, j = 0 = 00 and I(i, j) = 2 = 10. So, for n = 1, we have
k1 = 1, k2 = 0 and k3 = 1, resulting in k = 6 and thus M1 = {1, 6}. For n = 2, k1 = 3, k2 = 0 and
k3 = 1, we obtain k = 20 and M2 = {18, 20}.

In a similar way we may deal with the other pixels:
Pixel (0, 1) = (00, 01) and I(0, 1) = 1 = 01.
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For n = 1 k1 = 0, k2 = 0, k3 = 0, k = 1 and M1 = {1, 6}. Note that element 1 already belongs
to set M1, so it is not repeated.

For n = 2, k1 = 0, k2 = 1, k3 = 1, k = 21 and M2 = {18, 20, 21}.
Pixel (2, 1) = (10, 01) and I(2, 1) = 3 = 11.
For n = 1 k1 = 1, k2 = 0, k3 = 1, k = 6 and M1 = {1, 6}.
For n = 2, k1 = 2, k2 = 1, k3 = 3, k = 55 and M2 = {18, 20, 21, 55}.
Pixel (1, 2) = (01, 10) and I(1, 2) = 2 = 10.
For n = 1 k1 = 0, k2 = 1, k3 = 1, k = 7 and M1 = {1, 6, 7}.
For n = 2, k1 = 1, k2 = 2, k3 = 2, k = 42 and M2 = {18, 20, 21, 55, 42}.
Pixel (2, 2) = (10, 10) and I(1, 2) = 3 = 11.
For n = 1 k1 = 1, k2 = 1, k3 = 1, k = 8 and M1 = {1, 6, 7, 8}.
For n = 2, k1 = 2, k2 = 2, k3 = 3, k = 59 and M2 = {18, 20, 21, 55, 42, 59}.
Pixel (3, 2) = (11, 10) and I(3, 2) = 1 = 01.
For n = 1 k1 = 1, k2 = 1, k3 = 0, k = 4 and M1 = {1, 6, 7, 8, 4}.
For n = 2, k1 = 3, k2 = 2, k3 = 1, k = 28 and M2 = {18, 20, 21, 55, 42, 59, 28}.
Pixel (1, 3) = (01, 11) and I(1, 3) = 3 = 11.
For n = 1 k1 = 0, k2 = 1, k3 = 1, k = 7 and M1 = {1, 6, 7, 8, 4}.
For n = 2, k1 = 1, k2 = 3, k3 = 3, k = 62 and M2 = {18, 20, 21, 55, 42, 59, 28, 62}.
So, we may count now how many of the level n = 1 boxes and how many of level n = 2 boxes

are occupied:

N(1) = cardinality(M1) = 5 N(2) = cardinality(M2) = 8. (3.39)

From these values we may identify two successive estimates of the fractal dimension, using
Equation (3.13):

For n = 1 D = ln 5
ln 2

= 2.32

For n = 2 D = ln 8
ln 4

= 1.50 (3.40)

Note a shortcut for the calculation of the last level of division: if this level results in boxes consisting
of single pixels, to find how many boxes are occupied all we have to do is to count the non-zero
pixels. However, a better estimate is obtained if the level of division stops at an earlier point, or, if
several successive high values of n are used, to work out a single value by fitting the pairs of points
(ln 2n, ln N(n)) with a straight line (see Box 3.3 and Example 3.53).

What is the generalised fractal dimension of a binary shape?

In the box counting method for computing the fractal dimension of a binary shape, we cover the
image plane with boxes of progressively smaller size and we simply check whether a box contains
part of the shape or not. To define the generalised fractal dimension of the shape, we have to
count the individual pixels of the shape that happen to be inside the box. If all points that make
up the shape are N and there are Ni points inside the ith box, then we assign to that box the value
pi ≡ Ni∕N, which indicates the probability of finding a point of the shape inside a box of that size,
say 𝜀 × 𝜀. In this context the image is considered to be of size 1 × 1, so 𝜀 is a number smaller than
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1. Then the generalised fractal dimension of the shape is defined as:

Dq ≡ 1
q − 1

lim
𝜀→0

ln
∑

ip
q
i

ln 𝜀
. (3.41)

We have the following special cases. For q = 0,

D0 = −lim
𝜀→0

ln
∑

i1
ln 𝜀

= −lim
𝜀→0

ln(number_of_non-empty_boxes)
ln 𝜀

. (3.42)

This is the fractal dimension we compute by the ordinary box counting method (see
Equation (3.13)). To distinguish from the other dimensions, we call it capacity dimension.
For q = 1, it can be shown (see Example 3.27) that definition (3.41) reduces to:

D1 = lim
𝜀→0

−
∑

ipi ln pi

ln 1
𝜀

. (3.43)

As −
∑

ipi ln pi is the entropy used to measure the information conveyed by random variable pi,
this dimension is known as the information dimension of the shape. For q = 2, we have:

D2 = lim
𝜀→0

∑
ip2

i

ln 𝜀
. (3.44)

Note that
∑

ip2
i is the probability with which we can find two points within the same box of size

𝜀. This is related to the two-point correlation function that expresses the probability of two points
being less than 𝜀 distance apart. So, this dimension is known as the correlation dimension.

Other values of q are also used. Dq plotted versus q constitutes the multifractal spectrum of
the image. Non-fractals and mono-fractals (i.e. ordinary fractals) have flatter multifractal spectra
than multifractals.

What is the role of q in the definition of the generalised fractal dimension?

It can be seen from (3.41) that when q is positive, boxes with small values of pi (almost empty
regions of the shape) have their values suppressed more than boxes with big values (dense regions
of the shape). For example, if pi = 0.7, for q = 2 the value of pq

i is 0.49, not very different from the
original pi value. If, however, pi = 0.1, for q = 2 the value of pq

i is 0.01, i.e. 10 times smaller than
pi. When q is negative, small numbers (almost empty regions of the shape) are exaggerated much
more than larger numbers (dense regions of the shape). For example, if pi = 0.7, for q = −2 the
value of pq

i is 1∕0.49 ≃ 2, but if pi = 0.1, for q = −2 the value of pq
i is 100, much larger than 0.1. So,

q acts like a non-linear filter that exaggerates differently sparse and dense regions of a shape.

Example B3.27

Show that for q → 1, (3.41) yields (3.43).
We must use de l’Hospital’s rule to work out what the limit of the right-hand side of (3.41) is for
q → 1.

D1 = lim
𝜀→0

(
1

ln 𝜀
lim
q→1

ln
∑

ip
q
i

q − 1

)
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= lim
𝜀→0

⎛⎜⎜⎜⎝
1

ln 𝜀
lim
q→1

d(ln
∑

ip
q
i )

dq
d(q−1)

dq

⎞⎟⎟⎟⎠
= lim

𝜀→0

⎛⎜⎜⎜⎝
1

ln 𝜀
lim
q→1

∑
ip

q
i ln pi∑
ip

q
i

1

⎞⎟⎟⎟⎠
= lim

𝜀→0

(
−1
ln 1

𝜀

[∑
i

pi ln pi

])
. (3.45)

The last result is because
∑

ipi = 1.

Example 3.28

Figure 3.35 shows the drawing of a ganglion cell. Compute its generalised fractal
dimensions and its multifractal spectrum for q = −2,−1, 0, 1, 2.

Figure 3.35 A ganglion cell.

We remember that the size of the image is considered to be 1 × 1. Figure 3.36 shows the boxes with
which we cover the image plane (delineated with white lines), with sizes 𝜀 = 1∕2, 1∕3, 1∕4, 1∕6.
Figure 3.37 shows the number of object pixels that have been identified inside each box. These
numbers have to be divided with 45, the total number of object pixels, to produce numbers pi that
have to be used in formula (3.41).

Applying (3.41) for 𝜀 = 1∕2, we have:

Dq = 1
q − 1

ln
[(

11
45

)q
+
(

11
45

)q
+
(

13
45

)q
+
(

10
45

)q]
ln
(

1
2

) . (3.46)

(Continued)
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Example 3.28 (Continued)

(a) ε = 1/2 (b) ε = 1/3

(c) ε = 1/4 (d) ε = 1/6

Figure 3.36 We cover the image with
boxes of decreasing size and count the
number of shape pixels inside each box.

1 0 2 2

1 1 1 2 0

1 2 2 1

1 1 3 0 0

2 1 2

0 2 0

0 0

2

1 3

2

22 1

02 2

4

4

3

3 3 2 1

2 3 4

5 2

3 2 1

11

13

4

6 46

494

4 4

10

11

(a) ε = 1/2 (b) ε = 1/3

(c) ε = 1/4 (d) ε = 1/6

3

Figure 3.37 The number of object pixels
inside each box.

For q = −2, we have:

D−2 = −1
3

ln
[

2×11−2+13−2+10−2

45−2

]
− ln 2

= 2.0126. (3.47)

For the other values of q, we obtain:

D−1 = 2.0064 D0 = 2 D1 = 1.9934 D2 = 1.9865. (3.48)

In a similar way, we work out the values for the other values of 𝜀. These are shown in Table 3.2.
Each one of the Dq is computed as a limit, for 𝜀 → 0. The numbers in each column of the table
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are fitted in the least square error sense with an equation of the form D = 𝛼𝜀 + 𝛽. The value of
Dq then is equal to 𝛽. This limit is given at the bottom row of this tale. The multifractal spectrum
of this image is plotted in Figure 3.38, consisting of the sequence of numbers in the bottom row of
the table.

Table 3.2 The last row shows the values of the various generalised
fractal dimensions of image 3.35, each computed as the limiting
value of the values in the column above it.

𝜺 D−2 D−1 D0 D1 D2

1∕2 2.0126 2.0064 2.0000 1.9934 1.9865
1∕3 2.0629 2.0351 2.0000 1.9571 1.9077
1∕4 2.1575 2.0722 2.0000 1.9444 1.9019
1∕6 1.9167 1.8790 1.8394 1.8021 1.7696
𝜀 → 0 2.0066 1.9207 1.8394 1.7689 1.7100

Figure 3.38 The multifractal spectrum of image 3.35.

1.7
−2 −1 0 1 2

1.8

1.9

2.0

2.1
Dq

q

Example 3.29

Compute the generalised fractal dimensions and its multifractal spectrum for q =
−3,−2,−1, 0, 1, 2, 3, for Figure 3.39.
Figure 3.39 A 256 × 256 area of the image in Figure 2.1. Source:
Maria Petrou.

(Continued)
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Example 3.29 (Continued)

The results are shown in Table 3.3 and the multifractal image is plotted in Figure 3.40.

Table 3.3 The numbers of each column have been fitted with the least squares
error to obtain the limiting values listed in the bottom row.

𝜺 D−3 D−2 D−1 D0 D1 D2 D3

1∕2 2.0235 2.0156 2.0077 2.0000 1.9924 1.9851 1.9779
1∕4 2.0471 2.0294 2.0137 2.0000 1.9883 1.9783 1.9698
1∕8 2.0560 2.0335 2.0149 2.0000 1.9882 1.9786 1.9705
1∕16 2.1616 2.0765 2.0255 2.0000 1.9846 1.9733 1.9641
1∕32 2.3372 2.1602 2.0379 1.9986 1.9799 1.9670 1.9568
𝜀 → 0 2.2184 2.1056 2.0298 1.9994 1.9825 1.9704 1.9608

Dq

1.9

2.0

2.1

2.2

2.3

q
3210−1−2−3

Figure 3.40 The multifractal spectrum of image 3.39.

Box 3.3 Least squares error fitting of data with a straight line

Assume we have N pairs of values (xi, yi) and we want to fit them with a straight line of the
form: y(x) = Ax + B. We want to define the values of A and B so that the square difference
between yi and y(xi) is minimal. We define the total square error we wish to minimise as:

E ≡
N∑

i=1

(Axi + B − yi)2. (3.49)

To minimise E with respect to A and B, we differentiate it with respect to these two variables
and set the derivatives to 0:

𝜕E
𝜕A

= 2
N∑

i=1

(Axi + B − yi)xi

= 2A
N∑

i=1

x2
i + 2B

N∑
i=1

xi − 2
N∑

i=1

yixi

𝜕E
𝜕B

= 2
N∑

i=1

(Axi + B − yi)
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= 2A
N∑

i=1

xi + 2B
N∑

i=1

1 − 2
N∑

i=1

yi. (3.50)

Setting the right-hand sides to 0 leads to the following system of linear equations with respect
to A and B:( N∑

i=1

x2
i

)
A +

( N∑
i=1

xi

)
B =

N∑
i=1

yixi( N∑
i=1

xi

)
A + NB =

N∑
i=1

yi. (3.51)

The solution is

A = 1
D

[
N

N∑
i=1

(xiyi) −

( N∑
i=1

xi

)( N∑
i=1

yi

)]

B = 1
D

[( N∑
i=1

yi

)( N∑
i=1

x2
i

)
−

( N∑
i=1

xi

)( N∑
i=1

xiyi

)]
(3.52)

where:

D ≡ N
N∑

i=1

x2
i −

( N∑
i=1

xi

)2

. (3.53)

Box 3.4 Robust line fitting using the RanSac method

If P denotes the set of points that we want to fit with a straight line, the algorithm is as follows.

Step 1: Select two points from P randomly and determine the line L defined by them.
Step 2: For every point in P compute its distance from line L, and then determine the subset S

(consensus set) consisting of the points with distances less than a certain threshold E (error
tolerance).

Step 3: If the number of points in the consensus set S is greater than a given threshold, compute
the line that fits set S using the least square error method. Otherwise, repeat the above
process until you find an appropriate consensus set S, or notify failure after a predefined
number of attempts.

Step 4: If no consensus set with at least as many as the minimum acceptable number of points
was found in the allowed number of attempts, select the largest consensus set found and
compute the parameters of the line using it.

How do we compute the local connected fractal dimension of a binary image?

Step 1: We consider every point of the shape in turn and place a window of size M around it. It
could be a circular window of radius M, or a square window of size (2M + 1) × (2M + 1). Inside
the window we count the number of points N(M) that are connected with the central pixel.

Step 2: We repeat it for windows of various sizes.
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Step 3: We plot log N(M) versus log M and fit it with a straight line using least squares error (see
Box 3.3). The slope of the line is the connected fractal dimension of the point under considera-
tion.

Step 4: We then make a histogram of the local connected fractal dimensions of the various pixels.
This histogram characterises the binary shape.

Example 3.30

Prove that when you compute fractal dimensions using logarithms it does not matter
what basis you use for the logarithm.
Consider that the logarithm of a number x in base a is s and in base b is t. We shall work out the
way these two logarithms are related. By definition:

s = logax ⇒ x = as

t = logbx ⇒ x = bt

|||||||||
⇒ as = bt ⇒ slogba = t ⇒ logaxlogba = logbx. (3.54)

We note that the logarithms of the same number in two different bases differ only by a constant
factor. When we use ratios of logarithms, as long as numerator and denominator are in the same
base, it makes no different to the result what that base is.

Example 3.31

For each black pixel of image 3.41a calculate its local connected fractal dimension by
considering squares of size 3 × 3, 5 × 5, etc. Then construct a histogram of the identi-
fied local connected fractal dimensions, the entries of which may be used to charac-
terise the texture.
At each black pixel of the image, we place the centre of a window of size (2M + 1) × (2M + 1)
and count how many black pixels inside the window are connected to the central pixel. We use
8-connectivity for that. We assign this number to the corresponding pixel. Figures 3.41b–f and
3.41h–l show this process. For each pixel and each window size M we consider the corresponding
number N(M) of pixels we found, and plot ln N(M) versus ln M. The slope of the line is the local
connected fractal dimension of the neighbourhood of the pixel. Since we need at least two window
sizes to compute this number, we apply this process only to the pixels inside the white frame in
Figure 3.41c. We identify these pixels with a sequential index shown in Figure 3.41g.

Table 3.4 shows the values of M and N(M), as well as their logarithms that have to be used for
the calculation of the fractal dimension.

Figure 3.42 shows the histogram of the local connected fractal dimensions, using bins 0.2 wide.
We note that the dominant local connected fractal dimension is in the range [1.4, 1.6), with fre-
quency 7∕24 = 0.292.
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Figure 3.41 (a) An original binary image. (b)–(f) The thick black frames indicate the windows that
will be used for counting the black pixels connected to the black pixel on which the centre of the
window will be placed. The white margin shows the pixels that will be processed, each time omitting
a margin of M pixels around the image to avoid boundary effects. The window will be placed with its
centre on the top of each black pixel inside the white frame. (g) The sequential numbering of the
pixels inside the white frame in panel (c). (h)–(l) The number of connected neighbours each processed
pixel has, for each size neighbourhood window used.

Figure 3.42 The histogram of the local
connected fractal dimensions, computed from the
entries of Table 3.4. It can be used as a feature
vector to characterise the structure of the binary
pattern of the ganglion cell of Figure 3.41a.
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Example 3.31 (Continued)
Table 3.4 The local connected fractal dimension of the pixels of Figure 3.41.

M = 1 M = 2 M = 3 M = 4 M = 5 Dconnect

log M 0.000 0.301 0.477 0.602 0.699

Pixel 1 3 6
log N(M) 0.477 0.778 1.000
Pixel 2 3 5
log N(M) 0.477 0.699 0.737
Pixel 3 3 8
log N(M) 0.477 0.903 1.415
Pixel 4 4 7 13
log N(M) 0.602 0.845 1.114 1.044
Pixel 5 3 8 17
log N(M) 0.477 0.903 1.230 1.561
Pixel 6 4 8 16
log N(M) 0.602 0.903 1.204 1.234
Pixel 7 3 9
log N(M) 0.477 0.954 1.585
Pixel 8 3 9 18 29
log N(M) 0.477 0.954 1.255 1.462 1.638
Pixel 9 4 9 17 27
log N(M) 0.602 0.954 1.230 1.431 1.372
Pixel 10 3 7
log N(M) 0.477 0.845 1.222
Pixel 11 4 10 20 30
log N(M) 0.602 1.000 1.301 1.477 1.466
Pixel 12 4 11 19 28 39
log N(M) 0.602 1.041 1.279 1.447 1.591 1.406
Pixel 13 4 10 19 30
log N(M) 0.602 1.000 1.279 1.477 1.451
Pixel 14 6 11 19 30 40
log N(M) 0.778 1.041 1.279 1.477 1.602 1.194
Pixel 15 5 11 18 28 39
log N(M) 0.699 1.041 1.255 1.447 1.591 1.269
Pixel 16 3 7 17
log N(M) 0.477 0.845 1.230 1.541
Pixel 17 5 10 16 27
log N(M) 0.699 1.000 1.204 1.431 1.182
Pixel 18 5 9 16 27
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Table 3.4 (Continued)

M = 1 M = 2 M = 3 M = 4 M = 5 Dconnect

log M 0.000 0.301 0.477 0.602 0.699

log N(M) 0.699 0.954 1.204 1.431 1.192
Pixel 19 4 7
log N(M) 0.602 0.845 0.807
Pixel 20 4 10 16
log N(M) 0.602 1.000 1.204 1.268
Pixel 21 3 7 13
log N(M) 0.477 0.845 1.114 1.323
Pixel 22 3 5
log N(M) 0.477 0.699 0.737
Pixel 23 4 7
log N(M) 0.602 0.845 0.807
Pixel 24 4 8
log N(M) 0.602 0.903 1.000

Example 3.32

Compute the histogram of local connected fractal dimensions for Figure 3.39.
We used 15 different window sizes, from 3 × 3 to 31 × 31 (M = 1, 2,… , 15). Figure 3.43 shows the
histogram of the local connected fractal dimensions constructed with bin width 0.1.

Figure 3.43 The histogram of the local
connected fractal dimensions for image
3.39.
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Which statistical properties remain the same at all scales in non-deterministic
fractals?

The random fractals we use are characterised by self-similar second-order statistics. These are
expressed either by the power spectrum, or by the autocorrelation function. Some self-affine frac-
tals used very often are the so-called fractional Brownian motions. They are characterised by
the self-affine scaling of the variance of their pairwise point differences.

Box 3.5 What is self-affine scaling?

When we plotted the von Koch snowflake and computed its fractal dimension, in the section
What is the fractal dimension?, we treated it as a binary curve drawn in an image plane. Alter-
natively, we may treat it as a 1D function plotted against its independent variable. Then, we
may consider that when we scale the independent variable by r, the function itself is scaled
by a function of r, say a(r),

f (rx) = a(r)f (x) (3.55)

where f (x) is then said to be a self-affine fractal function.
We shall show next that a(r) = rH where H is a constant that characterises the fractal.
Let us assume that we scale the independent variable by r = r1r2. Then:

f (r1r2x) = a(r1r2)f (x). (3.56)

We may also write:

f (r1r2x) = f (r1(r2x)) = a(r1)f (r2x) = a(r1)a(r2)f (x). (3.57)

By comparing (3.56) and (3.57) we deduce that:

a(r1r2) = a(r1)a(r2). (3.58)

Let us consider a function Q(d) ≡ ln[a(ed)], where d ≡ ln r. By definition, we have:

Q(d1 + d2) = ln[a(ed1+d2 )]. (3.59)

Then, by using (3.58), we obtain:

Q(d1 + d2) = ln[a(ed1 )a(ed2 )] = ln[a(ed1 )] + ln[a(ed2 )] = Q(d1) + Q(d2). (3.60)

From this result we conclude that if a is a continuous function, Q is a linear function, and,
therefore, it must have the form Q(d) = Hd. So, ln[a(ed)] = Hd = H ln r = ln rH and, therefore,
a(r) = rH . Therefore, for a self-affine fractal

f (x) = 1
rH f (rx) (3.61)

where H is called the Hurst dimension of the fractal.

Box 3.6 What is the relationship between the fractal dimension and exponent H?

Let us consider a segment of a self-affine fractal, as shown in Figure 3.44. Let us say that we
need N(n − 1) boxes to cover it at a certain scale n − 1. Let us say now that we halve the size
of the boxes along both axes. This means that we scale the x axis with r = 1∕2. Then the curve
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drawn in the figure will be scaled by rH = 2−H . How many boxes of the new size do we need to
cover the curve? Let us consider a column of boxes intersected by the curve and marked grey
in Figure 3.44. Halving the size of the boxes is equivalent to scaling the independent variable
by 1∕2. The particular vertical part of the curve after the scaling will have a span 2−H times
the original span. So, we shall need 2−H more boxes to cover the vertical span of the curve.
However, the new boxes are half the vertical size of the original ones, so we shall need twice
as many: 2 × 2−H to cover a column. The boxes are also half the size in the horizontal direction,
so we shall need twice as many to cover the extent of the function along the x axis. This makes
the total number of new boxes N(n) = 2 × 2 × 2−HN(n − 1). If we use this equation recursively,
we may write

N(n) = 22−HN(n − 1) =
[
22−H
]2

N(n − 2) = … =
[
22−H
]n

N(0) =
[
22−H
]n

(3.62)

where we have used N(0) = 1 as this by definition is the largest scale where a single box of
side 1∕20 = 1 covers the whole fractal.

x

f(x)

Figure 3.44 Fractal dimension and self-affinity.

The fractal dimension as defined by Equation (3.13) is given by:

D = lim
n→∞

ln N(n)
ln 2n = lim

n→∞

ln
[
22−H
]n

ln 2n ⇒

D = lim
n→∞

ln
[
2n]2−H

ln 2n ⇒ D = lim
n→∞

(2 − H) ln 2n

ln 2n ⇒ D = 2 − H. (3.63)

Note that if the fractal were a self-affine surface, instead of a self-affine curve, we would
have had another independent variable y in addition to x. Our boxes would have been cubes
rather than squares, and the columns of the function would have to be filled along the y axis
with twice as many boxes as previously, so we would have had another factor of 2 appearing
in (3.62). The result would have been:

Dsurface = 3 − H. (3.64)

(Continued)
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Box 3.6 (Continued)

In general

D = DT + 1 − H (3.65)

where DT is the topological dimension of the structure, i.e. 1 if the fractal is a curve, 2 if it is
a surface and so on.

Box 3.7 What is the range of values of H?

If H > 1, when we scale the boxes down by a factor of 2 in order to compute the fractal dimen-
sion in Box 3.6, instead of needing more boxes to cover a column of the function, we would
have needed fewer, since 21−H would have been less than 1. Then the curve would have looked
smoother and smoother as we looked at it in more and more detail and it would have not been
a fractal at all (see Example 3.22). On the other hand, if H < 0, Equation (3.65) would have
implied that the fractal dimension of the structure would have been larger than the topological
dimension by more than 1, i.e. a fractal surface would have had fractal dimension more than
3, meaning it would have been a rough volume, not a rough surface. So, the range of values of
H must be 0 < H < 1. This is an intuitive explanation of why H should be in the range (0, 1).
For a proper proof, based on the definition of fractional Brownian motions, see Box 3.8.

Example B3.33

Prove that if x and y are two random variables,

[E{xy}]2 ≤ E{x2}E{y2} (3.66)

where E{z} is the expectation value of z.
Let us consider a random variable defined as ax − y, for some parameter a, and write the trivially
obvious identity:

E{(ax − y)2} = a2E{x2} − 2aE{xy} + E{y2}. (3.67)

The left-hand side of this expression is the expectation value of non-negative numbers, so it is
always non-negative. So the right-hand side should also be always non-negative, independently
of the value of a. The right-hand side is a quadratic polynomial in a and in order to be always
positive its discriminant must be non-positive

4[E{xy}]2 − 4E{x2}E{y2} ≤ 0 (3.68)

which proves (3.66).

Example B3.34

Prove that if 𝜎X is the standard deviation of a zero mean random process X , then

𝜎A+B ≤ 𝜎A + 𝜎B (3.69)
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where A and B are two zero mean random processes.
The above expression may be equivalently written according to the notation of Example 3.33 as:√

E{(A + B)2} ≤√E{A2} +
√

E{B2}. (3.70)

Since all terms in the above expression are positive, we may square both sides and so (3.70)
may equivalently be written as

E{A2 + B2 + 2AB} ≤ (√E{A2} +
√

E{B2}
)2

(3.71)

which, upon expansion of the square on the right-hand side and splitting of the terms on the
left-hand side, is equivalent to

E{A2} + E{B2} + 2E{AB} ≤ E{A2} + E{B2} + 2
√

E{A2}
√

E{B2} (3.72)

which is equivalent to:

E{AB} ≤√E{A2}
√

E{B2}. (3.73)

This is true according to the result of example 3.33.

Example B3.35

Consider a function

f (x) ≡ (1 + x)𝛼 − b − x𝛼 for x > 0 (3.74)

where b is some constant. Prove that this function is monotonic, and that it is always
increasing if 𝛼 > 1 or 𝛼 < 0, while it is decreasing for 0 < 𝛼 < 1.
A function is monotonic if its first derivative is always positive or always negative. Upon differen-
tiation we obtain:

f ′(x) = 𝛼(1 + x)𝛼−1 − 𝛼x𝛼−1 = 𝛼
[
(1 + x)𝛼−1 − x𝛼−1] . (3.75)

Since x > 0, 1 + x > x > 0 and for 𝛼 > 1 the quantity inside the square bracket is always posi-
tive, thus f ′(x) > 0 always, and f (x) is an increasing function of x. If 𝛼 < 0, the quantity inside the
square bracket is negative and when multiplied with the negative 𝛼 in front, makes the derivative
again positive and the function again increasing. When 0 < 𝛼 < 1, the square bracket is negative,
but the 𝛼 in front is positive, so f ′(x) is negative, which implies a decreasing function f (x).

What is a fractional Brownian motion?

A fractional Brownian motion is a random function 𝑣(t) that is characterised by


(
𝑣(t + Δt) − 𝑣(t)|Δt|H < y

)
= F(y) for all t and all Δt (3.76)

where F(y) is a cumulative distribution function. In other words, a fractional Brownian motion is
a random variable, which is being characterised not by its distribution function, but by the distri-
bution function of the differences between the values it takes at two positions Δt apart, scaled by
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(Δt)H , where H is some parameter. Usually, F(y) is assumed to be the cumulative distribution of a
Gaussian probability density function with zero mean and variance 𝜎2:

F(y) = 1
𝜎
√

2𝜋 ∫
y

−∞
e−

x2

2𝜎2 dx. (3.77)

Example B3.36

Show that:

∫
∞

−∞
e−x2 dx =

√
𝜋. (3.78)

Consider the integral:

∫
∞

−∞ ∫
∞

−∞
e−(x2+y2)dxdy = ∫

∞

−∞
e−x2 dx ∫

∞

−∞
e−y2 dy =

{
∫

∞

−∞
e−x2 dx

}2

. (3.79)

We may compute the double integral by using polar coordinates defined as r ≡√x2 + y2 and
x = r cos 𝜃, y = r sin 𝜃, for which dxdy = rdrd𝜃:

∫
∞

−∞ ∫
∞

−∞
e−(x2+y2)dxdy = ∫

∞

0 ∫
2𝜋

0
e−r2 rdrd𝜃 = 2𝜋 ∫

∞

0
e−r2 rdr =

2𝜋 ∫
∞

0
e−r2 d(−r2)

(
−1

2

)
= −𝜋[e−r2 |∞0 = 𝜋. (3.80)

By equating the right-hand sides of (3.79) and (3.80) we obtain the result.

Example B3.37

Prove that

∫
∞

0
se−s2 ds = 1

2
and ∫

∞

−∞
s2e−as2 ds = 1

2a

√
𝜋

a
. (3.81)

We observe that sds = 1
2

ds2 and so we may write

∫
∞

0
se−s2 ds = ∫

∞

0
e−s2 1

2
ds2 = 1

2

[
−e−s2 |||∞0 = 1

2
(3.82)

which proves the first of formulae (3.81). For the second integral we proceed as follows:

∫
∞

−∞
s2e−as2 ds = − 1

2a ∫
∞

−∞
se−as2 d(−as2) =

− 1
2a

[
se−as2 |||+∞−∞ + 1

2a ∫
∞

−∞
e−as2 ds = 1

2a ∫
∞

−∞
e−as2 ds. (3.83)

In the last integral we define a new variable of integration x ≡√as, which implies that ds =
dx∕
√

a. Then:

∫
∞

−∞
s2e−as2 ds = 1

2a
√

a ∫
∞

−∞
e−x2 dx. (3.84)
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The last integral is given by (3.78), so we finally obtain:

∫
∞

−∞
s2e−as2 ds = 1

2a
√

a

√
𝜋. (3.85)

Example B3.38

Starting from Equation (3.76), and assuming that F(y) is given by (3.77), prove that a
fractional Brownian motion satisfies equation

E {|𝑣(t + Δt) − 𝑣(t)|} = 𝜎

√
2
𝜋
|Δt|H (3.86)

where E{z} is the expectation value of z.
Let us define:

z ≡ 𝑣(t + Δt) − 𝑣(t)|Δt|H (3.87)

Then using Equations (3.76) and (3.77) we may write:

(z < y) = 1
𝜎
√

2𝜋 ∫
y

−∞
e−

x2

2𝜎2 dx. (3.88)

The problem we wish to solve is the estimation of the mean value of |z|. To do that we need
the probability density function pz(z). This is given by the derivative of the distribution function
(z < y) with respect to y, which is a Gaussian, since we chose (z < y) = F(y) to be the distri-
bution function of a Gaussian. So:

pz(y) =
1

𝜎
√

2𝜋
e−

y2

2𝜎2 . (3.89)

Then:

E{|z|} = ∫
∞

−∞
|z|pz(z)dz = 2∫

∞

0
zpz(z)dz = 2

𝜎
√

2𝜋 ∫
∞

0
ze−

z2

2𝜎2 dz. (3.90)

If we change the variable of integration to s ≡ z∕
(√

2𝜎
)

and observe that the limits of s are 0

and ∞, and dz =
√

2𝜎ds, we obtain:

E{|z|} = 2
𝜎
√

2𝜋 ∫
∞

0
2𝜎2se−s2 ds = 2√

𝜋

√
2𝜎 ∫

∞

0
se−s2 ds. (3.91)

Then we use the first of formulae (3.81) to obtain:

E{|z|} =
√

2𝜎 2√
𝜋

1
2
= 𝜎

√
2
𝜋
. (3.92)

By substituting z from (3.87), we obtain Equation (3.86).
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Example B3.39

Starting from equation (3.76), and assuming that F(y) is given by (3.77), prove that a
fractional Brownian motion satisfies equation

E
{|𝑣(t + Δt) − 𝑣(t)|2} = 𝜎2|Δt|2H (3.93)

where E{z} is the expectation value of z. This equation is known as the power law
of the fractional Brownian motion. The quantity on the left-hand side is known as
the variogram of the random process (see the section What is the variogram of an
image?).
Working as in the previous example, we deduce that:

E{z2} = ∫
∞

−∞
z2pz(z)dz = 1

𝜎
√

2𝜋 ∫
∞

−∞
z2e−

z2

2𝜎2 dz. (3.94)

To compute this integral we apply the second one of formulae (3.81) with a = 1∕(2𝜎2):

E{z2} = 1
𝜎
√

2𝜋
𝜎2
√
𝜋2𝜎2 = 𝜎2. (3.95)

By substituting z from (3.87), we derive Equation (3.93).

Example 3.40

Use Equation (3.93) to compute the fractal dimension of the images in Figure 3.1.
We re-write equation (3.93) here to refer to pixels (i, j) and (k, l) and their grey values g(i, j) and
g(k, l) respectively, as

E
{|g(i, j) − g(k, l)|2} = 𝜎2d2H (3.96)

where d ≡√(i − k)2 + (j − l)2. To use this equation to compute H, and from it D, we consider
many pairs of pixels at a particular distance from each other and compute their average square
difference. This corresponds to the value of the left-hand side of Equation (3.96) for a given value
of d2. We repeat this for several different values of d. We then plot the average square differences
we computed versus d2 in log–log axes and from the slope of the curve we estimate H:

log
(

E
{|g(i, j) − g(k, l)|2}) = 2 log 𝜎 + H log(d2). (3.97)

Figure 3.45 shows the plots of the average square differences of the grey values of pairs of pixels
versus the square of their distances, in log–log coordinates, for all textures in Figure 3.1. We can
immediately see from these graphs that the model of Equation (3.97) is not valid. According to
this equation, the graphs should be straight lines. We observe, however, that all graphs may be
fitted by a straight line with a slope different from 0, only up to a small value of distance d = 4
or d =

√
32 ≃ 5.7. Then the model may be fitted just to that part of each graph. Table 3.5 shows

the values for H obtained by fitting Equation (3.97) to the linear part of each curve. For each
value of H we compute the corresponding value of the “fractal dimension” of the texture. The
term “fractal dimension” is inside quotation marks here, because it is obvious that these textures
are not fractals. The fractal model, however, allows us to compute a feature for each texture (the
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value of D) which somewhat characterises the 2-point relationships between pixels up to relative
distances d ∼ 5.
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Figure 3.45 Average square differences versus d2 for the textures of Figure 3.1. Both axes are
logarithmic. The congestion of points towards the right is caused by small relative changes in the
logarithm of d2 when d is large. In reality, each point is the average of many more paired pixel values
for small values of d than for larger values.

(Continued)
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Example 3.40 (Continued)
Table 3.5 Values of H and D estimated from the log–log plots of the average square differences of
pairs of pixels at relative distance d from each other, versus d2. The fractal model is fitted only to the
part of the curve that is linear, either up to d ≃ 5.7 (first two columns of results) or up to d = 4 (last
two columns of results).

1 ≤ d2
< 32 1 ≤ d2

< 16

Image H D H D

Cloth 1 0.356020 2.643980 0.384457 2.615543
Cloth 2 0.293155 2.706845 0.318384 2.681616
Food 0.213984 2.786016 0.288067 2.711933
Plastic 0.438988 2.561012 0.503764 2.496236
Fabric 1 0.243839 2.756161 0.324784 2.675216
Fabric 2 0.369560 2.630440 0.495040 2.504960
Beans 0.411235 2.588765 0.456610 2.543390
Sand 0.333166 2.666834 0.430733 2.569267

Example 3.41

Compute the fractal dimension of the images in Figure 3.1, using the box-counting
method of Box 3.2. Comment on these results in view of the conclusions of Example
3.40.
The box-counting method fits the fractal model to the signal/image as a whole. From example
3.40 it is clear that the fractal model is not applicable to these textures. So, the “fractal dimension”
we shall compute by the box-counting method will not really be a fractal dimension. However, it
may still be used as a feature, since it is a number that is obtained from the data and somewhat
characterises the data.

Table 3.6 shows the “fractal dimension” D computed for each image for the largest values of n
we used. Remember that n is the parameter that defines the size of the box we use (see Example
3.18 and Equation (3.13)). We use n = 2, 3, 4, 5 and 6. Although the images are of size 256 × 256
and values of n = 7 and 8 were possible, these values lead to far too small boxes, consisting of
4 or 1 pixel, respectively. They are not used as they do not offer credible image statistics. Once
we have worked out the number of occupied boxes N(n) for each value of n, we fit with a least
squares error line the pairs of points (ln 2n, ln N(n)). Let us say that the equation of this line is
ln N(n) = 𝛼 ln 2n + 𝛽. Then we have:

lim
n→∞

ln N(n)
ln 2n = lim

n→∞
𝛼 + lim

n→∞

𝛽

ln 2n ⇒ D = 𝛼. (3.98)

So, the slope of the fitted line is the estimated fractal dimension of the image.
For a true fractal and large values of n, the computed value of D should converge to the fractal

dimension.
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Of course, here, what we compute is not really a fractal dimension and that is why the values of
D we get are almost all near 3: the results we get are equivalent to trying to fit straight lines to the
full curves of Figure 3.45. The curves are dominated by their flat parts on the right and each fitted
line would have been shallower than the linear part of the curve on the left, i.e. it would produce
a smaller value of H than the true H, which corresponds to the linear left part, i.e. it would result
in a larger value of D than the value of D, which corresponds to the part of the curve that agrees
with the fractal model.

Table 3.6 The fractal dimension computed for the textures of Figure 3.1 using the box-counting
method, and stopping it for a maximum value of n = 2, 3, 4, 5 or 6 (see Equation (3.13)). For a true
fractal, the values of D would converge to the true fractal dimension as n increases. N here is the
number of boxes of size 1∕2n × 1∕2n × 1∕2n needed to cover the whole image treated as a landscape
with the grey value of each pixel indicating its height. Note that the image volume is assumed to be
1 × 1 × 1.

n=2 n=3 n=4 n=5 n=6

Image N D N D N D N D N D Final D

Cloth 1 64 3.000 429 2.915 2646 2.842 14123 2.757 43768 2.570 2.6135
Cloth 2 52 2.850 334 2.795 2144 2.767 11840 2.706 40951 2.554 2.5996
Food 64 3.000 436 2.923 3051 2.894 19390 2.849 50927 2.606 2.6882
Plastic 64 3.000 396 2.876 2522 2.825 13094 2.735 39388 2.544 2.5956
Fabric 1 62 2.977 403 2.885 2385 2.805 10896 2.682 34504 2.512 2.5439
Fabric 2 63 2.989 418 2.902 2990 2.886 17041 2.811 47169 2.588 2.6638
Beans 64 3.000 507 2.995 3473 2.940 17204 2.814 44434 2.573 2.6398
Sand 59 2.941 378 2.854 2342 2.798 11387 2.695 36828 2.528 2.5675

Example B3.42

Prove that the increments of a fractional Brownian motion constitute a self-affine
fractal in a statistical sense.
Let us define Δ𝑣(Δt) ≡ 𝑣(t + Δt) − 𝑣(t). Let us also consider scaling Δt by a factor r > 0. Then
from (3.93), on page 138, we have:

E
{
Δ𝑣(Δt)2} = 𝜎2|Δt|2H

⇒ E
{
Δ𝑣(rΔt)2} = 𝜎2|rΔt|2H

= r2H𝜎2|Δt|2H

= r2HE
{
Δ𝑣(Δt)2}

⇒
√

E
{
Δ𝑣(rΔt)2

}
= rH
√

E
{
Δ𝑣(Δt)2

}
. (3.99)

The last expression shows that the square root of the mean square increment scales like an
affine fractal with Hurst dimension H (see Equation (3.61)).
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Box 3.8 Prove that the range of values of H for a fractional Brownian motion is (0,1)

Consider the fractional Brownian motion 𝑣(t) and its values at arguments t + 𝜏1 + 𝜏2, t + 𝜏1
and t, where 𝜏1 and 𝜏2 are some positive increments of the independent variable. The
increments of the function are random variables. We observe that 𝑣(t + 𝜏1 + 𝜏2) − 𝑣(t) =[
𝑣(t + 𝜏1 + 𝜏2) − 𝑣(t + 𝜏1)

]
+
[
𝑣(t + 𝜏1) − 𝑣(t)

]
. Then we may apply the result of Example 3.34

to the standard deviations of these three random variables:√
E
{[

𝑣(t + 𝜏1 + 𝜏2) − 𝑣(t)
]2} ≤

√
E
{[

𝑣(t + 𝜏1 + 𝜏2) − 𝑣(t + 𝜏1)
]2}

+
√

E
{[

𝑣(t + 𝜏1) − 𝑣(t)
]2}

. (3.100)

We make use of Equation (3.93) to write:

𝜎(𝜏1 + 𝜏2)H ≤ 𝜎𝜏H
2 + 𝜎𝜏H

1 ⇔

(𝜏1 + 𝜏2)H ≤ 𝜏H
2 + 𝜏H

1 . (3.101)

Let us define s ≡ 𝜏2∕𝜏1. Then the last expression may equivalently be written as

𝜏H
1 (1 + s)H ≤ 𝜏H

1 (1 + sH)⇔
(1 + s)H ≤ 1 + sH ⇔

(1 + s)H − 1 − sH ≤ 0 (3.102)

where we made use of the fact that 𝜎, 𝜏1, 𝜏2 > 0.
Let us consider function f (s) ≡ (1 + s)H − 1 − sH . This is the same as the function of Example

3.35 for b = 1. Note that f (0) = 0 and this function will be decreasing if 0 < H < 1, according to
the result of Example 3.35. Function f (s) being decreasing means that if s > 0, f (s) < f (0) = 0.
So, for (3.102) to be valid, H must be in the range (0, 1).

Example B3.43

Prove that

2(a − b)(c − d) ≡ (a − d)2 + (b − c)2 − (a − c)2 − (b − d)2 (3.103)

where a, b, c and d are some real numbers.
The proof is trivial if we expand the squares on the right-hand side and factorise the remaining
terms after the cancellation of the squares.

Box 3.9 What is the correlation between two increments of a fractional Brownian motion?

Consider a point t and three increments 𝜏1, 𝜏2 and 𝜏3, such that 𝜏3 > 𝜏2 > 𝜏1 > 0. The correlation
between two different increments is:

E
{[
𝑣(t + 𝜏3) − 𝑣(t + 𝜏2)

] [
𝑣(t + 𝜏1) − 𝑣(t)

]}
. (3.104)
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According to (3.103), this may be re-written as:

1
2

E
{[

𝑣(t + 𝜏3) − 𝑣(t)
]2 + [𝑣(t + 𝜏2) − 𝑣(t + 𝜏1)

]2−[
𝑣(t + 𝜏3) − 𝑣(t + 𝜏1)

]2 − [𝑣(t + 𝜏2) − 𝑣(t)
]2} =

1
2

E
{[

𝑣(t + 𝜏3) − 𝑣(t)
]2} + 1

2
E
{[

𝑣(t + 𝜏2) − 𝑣(t + 𝜏1)
]2}−

1
2

E
{[

𝑣(t + 𝜏3) − 𝑣(t + 𝜏1)
]2} − 1

2
E
{[

𝑣(t + 𝜏2) − 𝑣(t)
]2} =

𝜎2

2
[
𝜏2H

3 + |𝜏2 − 𝜏1|2H − |𝜏3 − 𝜏1|2H − 𝜏2H
2

]
. (3.105)

The last expression was derived because of (3.93).
Consider first H = 1∕2. The right-hand side of (3.105) is zero, and therefore the increments

of the fractional Brownian motion are uncorrelated.
In general however,

E
{[
𝑣(t + 𝜏3) − 𝑣(t + 𝜏2)

] [
𝑣(t + 𝜏1) − 𝑣(t)

]}
=

𝜎2

2
𝜏2H

1

[
s2H
3 + (s2 − 1)2H − (s3 − 1)2H − s2H

2

]
(3.106)

where s3 ≡ 𝜏3∕𝜏1 > 1 and s2 ≡ 𝜏2∕𝜏1 > 1.
Let us define some new variables u3 ≡ s3 − 1 and u2 ≡ s2 − 1. Then we have:

E
{[
𝑣(t + 𝜏3) − 𝑣(t + 𝜏2)

] [
𝑣(t + 𝜏1) − 𝑣(t)

]}
=

𝜎2

2
𝜏2H

1

[
(1 + u3)2H − u2H

3 − ((1 + u2)2H − u2H
2 )
]
. (3.107)

Since 𝜏2 < 𝜏3, then s2 < s3, and s2 − 1 < s3 − 1 and u2 < u3. Consider function f (u) ≡
(1 + u)2H − u2H . This is the same as the function of Example 3.35 for b = 0 and 𝛼 = 2H. For
0 < 2H < 1, therefore, this function is decreasing and, when u2 < u3, f (u2) > f (u3) and the
function on the right-hand side of (3.107) is negative. When 2H > 1, f (u) is increasing, and so
for u2 < u3, we have f (u2) < f (u3), which implies a positive correlation.

We conclude, therefore, that the increments of a fractional Brownian motion are negatively
correlated (i.e. anti-correlated) for 0 < H < 1∕2, uncorrelated for H = 1∕2 and positively corre-
lated for 1∕2 < H < 1. The case H = 1∕2 is known as Brownian motion or the Wiener process.

Example B3.44

Show that for a discretised fractional Brownian motion, with Hurst exponent H, the
increment between the first two samples is correlated with the increment between
samples k and k + 1 according to:

𝜌(k) = 𝜎2

2
[
(k + 1)2H + (k − 1)2H − 2k2H] (3.108)

where 𝜎2 is the variance of the samples.
Let us consider the increment between the first two samples, by setting t = 0 and 𝜏1 = 1 on the
left-hand side of (3.105), and its correlation with the increment between samples k and k + 1 by
setting 𝜏2 = k and 𝜏3 = k + 1. Then (3.108) follows trivially from (3.105).
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Example B3.45

Show that for k → ∞ the correlation between the increments of a fractional Brown-
ian motion, as worked out in Example 3.44, goes like:

𝜌(k) ≃ 𝜎2H(2H − 1)k2H−2. (3.109)

When k → ∞, 1
k
→ 0. So, we may re-arrange (3.108) to isolate the small parameter and then use

Taylor expansion to work out how 𝜌(k) behaves at that limit:

𝜌(k) = 𝜎2

2

[
k2H
(

1 + 1
k

)2H
+ k2H

(
1 − 1

k

)2H
− 2k2H

]
≃ 𝜎2k2H

2

[
1 + 2H 1

k
+ 2H(2H − 1)

2
1
k2 + 1 − 2H 1

k
+ 2H(2H − 1)

2
1
k2 − 2

]
= 𝜎2k2H−2H(2H − 1). (3.110)

Example B3.46

A random process is said to exhibit long range dependence if its increments are sta-
tionary and∑

k

𝜌(k)
𝜎2 → ∞ (3.111)

where 𝜌(k) is the autocorrelation function of the increments of the process and 𝜎2

the variance of the increments. Show that the fractional Brownian motion for 1∕2
< H < 1 exhibits long range dependence.
We know that the increments of the fractional Brownian motion are stationary. The long range
behaviour of the autocorrelation function is according to Equation (3.110). We note that for
1∕2 < H < 1, −1 < 2H − 2 < 0 while 0 < 2H − 1 < 1. So, the correlation coefficient 𝜌(k)∕𝜎2 is
positive and decays very slowly with k, more slowly than 1∕k, which corresponds to the harmonic
series

∑
k(1∕k), which diverges. So,

∑
k𝜌(k)∕𝜎2 also diverges, and the fractional Brownian motion

exhibits long range dependence for 1∕2 < H < 1.

Example B3.47

Calculate the autocorrelation matrix A between two one-step increments at two dif-
ferent locations, for a fractional Brownian motion of Hurst exponent H.
Let us consider an element Alk of the matrix, expressing the correlation between increments l and
l + 1, and k and k + 1. In (3.105) we set:

t = k
𝜏1 = 1

t + 𝜏2 = l ⇒ 𝜏2 = l − k
t + 𝜏3 = l + 1 ⇒ 𝜏3 = l − k + 1. (3.112)
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Then:

Alk = E{[𝑣(l + 1) − 𝑣(l)][𝑣(k + 1) − 𝑣(k)]}

= 𝜎2

2
[|l − k + 1|2H + |l − k − 1|2H − 2|l − k|2H] . (3.113)

Example B3.48

A Toeplitz matrix is a diagonal constant matrix, i.e. a matrix for which Aij = Ai−1,j−1.
Show that the autocorrelation matrix of a fractional Brownian motion is a symmetric
Toeplitz matrix.
We note from (3.113) that Alk depends only on l − k ≡ 𝛼, which is constant along the diagonals
of the matrix, as shown in Figure 3.46. The elements along each diagonal are given by:

Alk = 𝜎2

2
[|𝛼 + 1|2H + |𝛼 − 1|2H − 2|𝛼|2H] . (3.114)

Note also that if we replace 𝛼 with −𝛼, we have:

Akl =
𝜎2

2
[| − 𝛼 + 1|2H + | − 𝛼 − 1|2H − 2| − 𝛼|2H] . (3.115)

By comparing the right-hand sides of (3.114) and (3.115), we conclude that Akl = Alk, i.e. that
the matrix is symmetric.

Figure 3.46 The value of 𝛼, which appears in (3.114), is
constant along each diagonal of the matrix. A11

A31 A32 A33 A34

A41 A42 A43 A44

A21 A22

A12

A23 A24

A14A13

α = 3
α = 2

α = 1

α = −2

α = −3

α = 0

α = −1

Example B3.49

Show that if the autocorrelation matrix of a process is written as A = LLT , and v is a
vector made up from samples that form white noise, with unit variance, the sequence
created by multiplying vector v from the left with L will have autocorrelation
matrix A.

(Continued)
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Example B3.49 (Continued)

White noise means that the autocorrelation matrix of the samples is diagonal with values along
the diagonal equal to the variance of the noise (see Book I). So, we may write

E{vvT} = 𝜎2I = I (3.116)

since 𝜎2 = 1 for the noise we consider. The new random sequence will consist of the elements of
matrix Lv. Its autocorrelation matrix will be:

E{Lv(Lv)T} = E{LvvTLT} = LE{vvT}LT = LILT = A. (3.117)

Example B3.50

The Cholesky decomposition of a symmetric semi-definite matrix A is A = LLT , where
L is a lower triangular matrix. Work out the formulae that will allow you to perform
the Cholesky decomposition of a 4 × 4 matrix A.
Let us define matrix L as

L ≡
⎛⎜⎜⎜⎜⎝

l11 0 0 0
l21 l22 0 0
l31 l32 l33 0
l41 l42 l43 l44

⎞⎟⎟⎟⎟⎠
. (3.118)

Then we have:

A =

⎛⎜⎜⎜⎜⎝
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎞⎟⎟⎟⎟⎠
= LLT

=

⎛⎜⎜⎜⎜⎝
l11 0 0 0
l21 l22 0 0
l31 l32 l33 0
l41 l42 l43 l44

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

l11 l21 l31 l41
0 l22 l32 l42
0 0 l33 l43
0 0 0 l44

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
l2
11 l11l21 l11l31 l11l41

l21l11 l2
21 + l2

22 l21l31 + l22l32 l21l41 + l22l42
l31l11 l31l21 + l32l22 l2

31 + l2
32 + l2

33 l31l41 + l32l42 + l33l43
l41l11 l41l21 + l42l22 l41l31 + l42l32 + l43l33 l2

41 + l2
42 + l2

43 + l2
44

⎞⎟⎟⎟⎟⎠
. (3.119)

We note that:

l11 =
√

a11

l21 =
a12

l11
l31 =

a13

l11
l41 =

a14

l11

l22 =
√

a22 − l2
21 l32 = 1

l22
(a23 − l21l31) l42 = 1

l22
(a24 − l21l41)

l33 =
√

a33 − l2
31 − l2

32 l43 = 1
l33

(a34 − l31l41 − l32l42)
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l44 =
√

a44 − l2
41 − l2

42 − l2
43. (3.120)

These formulae may be generalised to:

lii =

√√√√aii −
i−1∑
k=1

l2
ik

lij =
1
ljj

(
aji −

j−1∑
k=1

likljk

)
for i > j. (3.121)

These formulae constitute the Cholesky algorithm. They can be used to obtain the Cholesky
decomposition of any symmetric positive semi-definite matrix A.

Example B3.51

Show that you may achieve the Cholesky decomposition of a positive semi-definite
4 × 4 matrix A by considering the decomposition:⎛⎜⎜⎜⎜⎜⎝

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
1 0 0 0

l21 1 0 0
l31 l32 1 0
l41 l42 l43 1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

d1 0 0 0
0 d2 0 0
0 0 d3 0
0 0 0 d4

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

1 l21 l31 l41
0 1 l32 l42
0 0 1 l43
0 0 0 1

⎞⎟⎟⎟⎟⎠
. (3.122)

Let us calculate the right-hand side of (3.122):⎛⎜⎜⎜⎜⎜⎝

1 0 0 0
l21 1 0 0
l31 l32 1 0
l41 l42 l43 1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

d1 d1l21 d1l31 d1l41
0 d2 d2l32 d2l42
0 0 d3 d3l43
0 0 0 d4

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

d1 d1l21 d1l31 d1l41
l21d1 d1l2

21 + d2 l21d1l31 + d2l32 l21d1l41 + d2l42
l31d1 l31d1l21 + l32d2 l2

31d1 + l2
32d2 + d3 l31d1l41 + l32d2l42 + d3l43

l41d1 l41d1l21 + l42d2 l41d1l31 + l42d2l32 + l43d3 l2
41d1 + l2

42d2 + l2
43d3 + d4

⎞⎟⎟⎟⎟⎟⎠
. (3.123)

Then we have:

d1 = a11 l21 =
a12

d1
l31 =

a13

d1
l41 =

a14

d1

d2 = a22 − d1l2
21 l32 = 1

d2
(a23 − l21d1l31) l42 = 1

d2
(a24 − l21d1l41)

d3 = a33 − l2
31d1 − l2

32d2 l43 = 1
d3

(a34 − l31d1l41 − l32d2l42)

d4 = a44 − l2
41d1 − l2

42d2 − l2
43d3. (3.124)

(Continued)
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Example B3.51 (Continued)

These formulae may be generalised as follows.

di = aii −
i−1∑
k=1

dkl2
ik

lij =
1
dj

(
aji −

j−1∑
k=1

dklikljk

)
for i > j. (3.125)

Finally, if we define D
1
2 to mean a diagonal matrix with values along the diagonal the square

roots of the values of matrix D, then we may write:

A = LDLT = LD
1
2 D

1
2 LT =

(
LD

1
2

)(
D

1
2 LT
)
=
(

LD
1
2

)(
LD

1
2

)T
. (3.126)

Obviously then, the Cholesky decomposition of A is with the help of the lower triangular matrix
LD

1
2 .

These formulae may be used to calculate the Cholesky decomposition of any symmetric
semi-positive definite matrix A, without having to take the square roots of differences like when
using the algorithm in Example 3.50.

Box 3.10 Synthesising a 1D fractal

Step 0: Select the size of the fractal you wish to construct. Call it N .
Step 1: Calculate the autocorrelation matrix, of size N × N , of the fractal you wish to construct,

using (3.113). Call it A.
Step 2: Apply Cholesky decomposition to matrix A, so you can write it as A = LLT (see

Box 3.11).
Step 3: Construct a random sequence of white noise with variance 1, consisting of N samples.

Call it v.
Step 4: Multiply v from the left with L to obtain the fractal sequence.

To construct a random sequence of white noise with variance 𝜎2, do the following:

Step 0: Select the length of the sequence to be an odd number, let us say 2M + 1.
Step 1: Select 2M + 1 random numbers p(m), uniformly distributed in the range [0∘, 360∘).
Step 2: Construct the sequences:

FR(m) = 𝜎 cos(p(n)) for − M ≤ m ≤ M
FI(m) = 𝜎 sin(p(n)) for 0 ≤ m ≤ M

FI(m) = −FI(−m) for − M ≤ m < 0. (3.127)

Step 3: Treat sequences FR(m) and FI(m) as the real and the imaginary parts of the discrete
Fourier transform (DFT) of a signal made up of 2M + 1 samples, and take the inverse DFT.
The result is a sequence of white noise.
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Figure 3.47 shows two fractal signals consisting of 500 samples each, constructed with this
algorithm with H = 0.1 and H = 0.9.

H = 0.9

H = 0.1

100 200 300 400 500

White Noise

Figure 3.47 Synthesising 1D fractals from a sequence of white noise with 𝜎 = 1.

Box 3.11 The Shur algorithm for Cholesky decomposition of a symmetric Toeplitz matrix

The Shur algorithm for Cholesky decomposition of a symmetric Toeplitz matrix is the result of
theoretical considerations that are beyond the scope of this book. So, it is given here only as
a recipe without any justification of the various steps it involves.

Step 0: Assume that the matrix you wish to decompose is N × N :

T =

⎛⎜⎜⎜⎜⎝
1 t1 t2 · · · tN−1
t1 1 t1 · · · tN−2
⋮ ⋮ ⋮ · · · ⋮

tN−1 tN−2 tN−3 · · · 1

⎞⎟⎟⎟⎟⎠
. (3.128)

Step 1: Construct the 2 × N matrix G:

G =
(

1 t1 t2 · · · tN−1
0 t1 t2 · · · tN−1

)
. (3.129)

Step 2: Construct N × N matrix C, with the first row the same as that of matrix G, and all the
rest 0:

C =

⎛⎜⎜⎜⎜⎝
1 t1 t2 · · · tN−1
0 0 0 · · · 0
⋮ ⋮ ⋮ · · · ⋮
0 0 0 · · · 0

⎞⎟⎟⎟⎟⎠
. (3.130)

Step 3: Shift one position to the right the first row of matrix G, removing the rightmost element
and inserting a 0 on the left. Call the result G′:

G′ =
(

0 1 t1 t2 · · · tN−2
0 t1 t2 t3 · · · tN−1

)
. (3.131)

Step 4: Assume that the columns of matrix G′ are indexed with i, taking values from 1 to N .
For i = 2 to N , inclusive, do the following.

(Continued)
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Box 3.11 (Continued)

Step 4.1: Set:

𝜌 = −
G′

2i

G′
1i
. (3.132)

Step 4.2: Create matrix:

R =
(

1 𝜌

𝜌 1

)
. (3.133)

Step 4.3: Multiply from the left with matrix R the submatrix of G′ formed by the columns i to
N inclusive. Call the result Ĝ.

Step 4.4: Divide each element of Ĝ by
√

1 − 𝜌2. Call the result G̃.
Step 4.5: Replace the columns of G′ you used to produce Ĝ with G̃. Call this new G.
Step 4.6: Copy the elements of the new G in the first row from column i to column N , in the

corresponding positions of row i of matrix C.
Step 4.7: Shift the first row of matrix G one position to the right, removing the right-most

element and inserting a 0 on the left, to create new matrix G′.
Step 5: At the end, matrix C is the LT matrix of the Cholesky decomposition of the original

matrix T.

Example B3.52

Use the algorithm of Box 3.11 to construct the Cholesky decomposition of matrix:

T =
⎛⎜⎜⎝

1 0.5 0.3
0.5 1 0.5
0.3 0.5 1

⎞⎟⎟⎠ . (3.134)

We first construct matrices G and C:

G =
(

1 0.5 0.3
0 0.5 0.3

)
C =
⎛⎜⎜⎝

1 0.5 0.3
0 0 0
0 0 0

⎞⎟⎟⎠ . (3.135)

Then form matrix G′:

G′ =
(

0 1 0.5
0 0.5 0.3

)
. (3.136)

Set i = 2. Compute 𝜌 = −0.5∕1 = −0.5 and form matrix R:

R =
(

1 −0.5
−0.5 1

)
. (3.137)

Construct matrix Ĝ:

Ĝ =
(

1 −0.5
−0.5 1

)(
1 0.5
0.5 0.3

)
=
(

0.75 0.35
0.00 0.05

)
. (3.138)
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Divide every element of Ĝ by
√

1 − 0.52 =
√

0.75 = 0.866, to form matrix G̃:

G̃ =
(

0.87 0.40
0.00 0.06

)
. (3.139)

Create a new matrix G:

G =
(

0 0.87 0.40
0 0.00 0.06

)
. (3.140)

Update matrix C:

C =
⎛⎜⎜⎝

1 0.5 0.3
0 0.87 0.40
0 0 0

⎞⎟⎟⎠ . (3.141)

Create from new matrix G the new matrix G′:

G′ =
(

0 0 0.87
0 0 0.06

)
. (3.142)

Now set i = 3. Compute 𝜌 = −0.06∕0.87 = −0.07 and form matrix R:

R =
(

1 −0.07
−0.07 1

)
. (3.143)

Construct new matrix Ĝ:

Ĝ =
(

1 −0.07
−0.07 1

)(
0.87
0.06

)
=
(

0.87
0.00

)
. (3.144)

Divide every element of Ĝ by
√

1 − 0.072 = 0.998, to form matrix G̃:

G̃ =
(

0.87
0.00

)
. (3.145)

Create a new matrix G:

G =
(

0 0 0.87
0 0 0.00

)
. (3.146)

Update matrix C:

C =
⎛⎜⎜⎝

1 0.5 0.3
0 0.87 0.40
0 0 0.87

⎞⎟⎟⎠ . (3.147)

To check the validity of the result, we multiply CTC, i.e. LLT, and check whether we get matrix
T:

LLT =
⎛⎜⎜⎝

1 0 0
0.5 0.87 0
0.3 0.4 0.87

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0.5 0.3
0 0.87 0.40
0 0 0.87

⎞⎟⎟⎠ =
⎛⎜⎜⎝

1 0.5 0.3
0.5 1.01 0.5
0.3 0.5 1.01

⎞⎟⎟⎠ . (3.148)

This is equal to the original matrix T within the accuracy of the calculation.
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Box 3.12 What is the power spectrum of a fractal?

Given that the fractal is a non-stationary process with stationary increments, the power spec-
trum of the fractal function itself cannot be defined. Nevertheless, we may define a generalised
power spectrum and work out its scaling property.

The scaling property of the Fourier transform tells us that if F(𝜔) is the Fourier transform
of a function f (x), then the Fourier transform of function f (rx) is 1

r
F
(

𝜔

r

)
(see the book Image

Processing, The Fundamentals [75]). We also know that the Fourier transform of 𝛼f (x) is 𝛼F(𝜔).
So, the Fourier transform of r−Hf (rx) is 1

rH+1 F
(

𝜔

r

)
. Therefore, we have the following Fourier

transform pairs:

f (x)↔ F(𝜔)

f (rx)↔ 1
r

F
(
𝜔

r

)
(3.149)

1
rH f (rx) ↔ 1

rH+1
F
(
𝜔

r

)
. (3.150)

If f (x) is a fractal function, then r−Hf (rx) = f (x), according to Equation (3.61). So,

F(𝜔) = 1
rH+1

F
(
𝜔

r

)
F∗(𝜔) = 1

rH+1
F∗
(
𝜔

r

)
F(𝜔)F∗(𝜔) = 1

r2H+2
F
(
𝜔

r

)
F∗
(
𝜔

r

)
|F(𝜔)|2 = 1

r2H+2

||||F (𝜔r )||||2. (3.151)

To estimate the power spectral density of the fractal function, we make use of the periodogram,
i.e. we consider a finite range X of the domain of the function and allow X to tend to infinity:

P(𝜔) ≡ lim
X→∞

1
X
|F(𝜔)|2. (3.152)

Substituting |F(𝜔)|2 on the right-hand side of (3.152) from (3.151), we obtain:

P(𝜔) = lim
X→∞

1
X

1
r2H+2

||||F (𝜔r )||||2. (3.153)

However, when 0 ≤ x ≤ X , 0 ≤ rx ≤ rX . So, we may define a new variable Y ≡ rX , over which
we shall take the power spectrum of the scaled function. As X → ∞, Y → ∞ too:

P(𝜔) = lim
X→∞

1
Xr

1
r2H+1

||||F (𝜔r )||||2
= lim

Y→∞

1
Y

1
r2H+1

||||F (𝜔r )||||2
= 1

r2H+1
P
(
𝜔

r

)
. (3.154)

We may therefore write:

P(𝛼𝜔) = 1
𝛼2H+1

P(𝜔). (3.155)
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We note that the power at 2𝜔 is 22H+1 times smaller than the power at 𝜔, the power at 3𝜔 is
32H+1 times smaller than the power at 𝜔 and so on. We conclude, therefore, that for a fractal:

P(𝜔) ∝ 𝜔−(2H+1). (3.156)

We define:

𝛽 ≡ 2H + 1 (3.157)

Exponent 𝛽 characterises the spectrum of a fractal and it may be used to derive the fractal
dimension. We may write

Pf (𝜔) = Pf (1)𝜔−𝛽 ⇒ log Pf (𝜔) = log Pf (1) − 𝛽 log𝜔 (3.158)

where 𝜔 > 0.
The power spectral density of the function is plotted as a function of the angular frequency

𝜔 in log–log coordinates and the slope of the line (−𝛽) is computed. The fractal dimension
then is derived by using Equations (3.157) and (3.63):

D = 2 − H = 2 − 𝛽 − 1
2

= 5 − 𝛽

2
. (3.159)

This relationship holds for fractal curves. In the general case we must use Equation (3.65). If
DT is the topological dimension of the space we are working, the scaling property of the Fourier
transform in pair (3.149) will insert factor 1∕rDT (instead of simply 1∕r) on the right-hand side
of the pair. This will result in factor 1∕r2H+2DT (instead of 1∕r2H+2) on the right-hand side
of (3.151). Finally, this will be reduced to 1∕r2H+DT when the limits of the ranges of all the
independent variables are taken in (3.154). So, in the general case,

P(𝜔) ∝ 𝜔−𝛽 with 𝛽 = 2H + DT (3.160)

where the relationship between fractal dimension D, topological dimension DT, Hurst expo-
nent H and parameter 𝛽 is:

D = DT + 1 − H = DT + 1 −
𝛽 − DT

2
⇒ D =

3DT + 2 − 𝛽

2
. (3.161)

Note that Equation (3.160) is valid if the multidimensional fractal is isotropic, i.e. scaling
any one of its independent variables by r results in scaling the function by rH . In other words
it assumes that the power spectrum of the fractal is the same along all directions.

Box 3.13 What is the autocorrelation function of a fractal?

Accepting that a fractal function is not stationary, we cannot define its autocorrelation function.
However, as it has stationary increments, we can define the autocorrelation function of its
increments, as we have done in Box 3.9. Nevertheless, having defined the generalised power
spectrum of a fractal in Box 3.12, we can work out the scaling properties of its autocorrelation
function too. According to the Wiener–Khinchine theorem, (see Example 3.109), the Fourier
transform of the autocorrelation function of a function is the power spectrum of the function,
or the inverse Fourier transform of the power spectrum is the autocorrelation function. So, we

(Continued)
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Box 3.13 (Continued)

may write for the autocorrelation function 𝜌(x) and the generalised power spectrum P(𝜔):

𝜌(x) = ∫
+∞

−∞
P(𝜔)ej𝜔xd𝜔. (3.162)

The scaled version of 𝜌(x) is:

𝜌(rx) = ∫
+∞

−∞
P(𝜔)ej𝜔rxd𝜔. (3.163)

Let us define a new variable z ≡ r𝜔:

𝜌(rx) = ∫
+∞

−∞
P
(z

r

)
ejzx dz

r
. (3.164)

From the scaling property of the generalised power spectrum of a fractal, Equation (3.155),
we may write:

P(z) = 1
𝛼2H+1

P
( z
𝛼

)
⇒ P
(z

r

)
= r2H+1P(z). (3.165)

Substituting from (3.165) into (3.164), we obtain:

𝜌(rx) = r2H ∫
+∞

−∞
P(z)ejzxdz ⇒ 𝜌(rx) = r2H𝜌(x). (3.166)

This is the scaling property of the generalised autocorrelation for a fractal. It effectively
shows that the autocorrelation function for shifts r times larger is r2H stronger than the auto-
correlation for the original shift.

Box 3.14 Construction of a 2D fractal

Step 0: Select the Hurst exponent H to be between 0 and 1 and the variance of the samples,
𝜎2. Assuming that the values of the pixels will be in the range [0, 1], select 𝜎2 appropriately.
Select also the size, (2N + 1) × (2N + 1), of the image you wish to construct.

Step 1: Create an empty array of size (2N + 1) × (2N + 1). Call it P. For −N ≤ k ≤ N and 0 ≤
l ≤ N , draw random numbers uniformly distributed in the range [0∘, 360∘) to assign values
to elements P(k, l).

Step 2: For −N ≤ k ≤ N and −N ≤ l < 0 set P(k, l) = −P(−k,−l).
Step 3: Create an array F of size (2N + 1) × (2N + 1). Assign to its elements values according

to:

F(k, l) =

[(
2𝜋k

2N + 1

)2

+
(

2𝜋l
2N + 1

)2
]−0.5(H+1)

. (3.167)

Step 4: Create two arrays of size (2N + 1) × (2N + 1). Call them R and I. Assign to them values
as follows:

R(k, l) = 𝜎F(k, l) cos[P(k, l)] I(k, l) = 𝜎F(k, l) sin[P(k, l)]. (3.168)
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Step 5: Use matrices R and I as the real and the imaginary part of the DFT of the image you
want to construct and take the inverse DFT:

f (i, j) =
N∑

k=−N

N∑
l=−N

(R(k, l) + jI(k, l))e2𝜋j ki+lj
2N+1 . (3.169)

Step 6: As the values of f will be real and may also be negative, they have to be mapped
to the range [0, 255] to be visualised as an image. First we scale them to be in the range
[−128, 127], as follows.
Identify the minimum and the maximum values of f . Call them a and b, respectively.
Obviously, a < 0 and b > 0.
Identify c = max {|a|, b}.
Scale all values of f and round them to the nearest integer, to form f̃ , as follows.

f̃ (i, j) =
⌊

f (i, j)
c

× 128 + 0.5
⌋
. (3.170)

Add 128 to all values of f̃ to produce the fractal image.
Figure 3.48 shows two fractal images constructed with this algorithm for N = 128 and H =
0.3 and 0.7.

Figure 3.48 Synthesising 2D fractals of size
257 × 257. Source: Maria Petrou.

H = 0.3 H = 0.7

Example B3.53

Compute the fractal dimension of the fractals constructed in Box 3.14, using the
box-counting method of Box 3.2 and Equation (3.158). Compare the results with the
true fractal dimensions of the images.
These images are of size 257 × 257. First, we crop them to size 256 × 256, as the box counting
method is appropriate only for images of size a power of 2. Then we follow the same steps as in
example 3.41. Figure 3.49 shows the pairs of points (ln 2n, ln N(n)) computed for these images.
We can see that they do not form a straight line for all values of n. In fact as n increases, and
the boxes become smaller, the fractality of the pattern becomes more and more dominated by the
digitisation noise, and the image stops behaving like a fractal. One has to be able to identify the
values of n over which the straight line may be fitted. We use for this the following algorithm.

(Continued)
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Example B3.53 (Continued)

Step 0: Select a value for the correlation coefficient r that will determine the quality of fitting we
demand. The selected value should be in the range 0.9 ≤ r < 1. For constructed fractals, where
we expect a very good fractal behaviour, r may be as high as 0.9995. For real images, where we
know that the fitting is bound not to be good, r may be considerably lower.

Step 1: Set nmax equal to the largest value of n.
Step 2: Fit the pairs of points with a straight line using all values of n up to and including nmax .
Step 3: Compute the correlation coefficient rnmax

to assess the quality of the fitting.
Step 4: If rnmax

≥ r, exit the algorithm with the slope of the fitted line as the estimated fractal
dimension of the image.

Step 5: If rnmax
< r, set nmax = nmax − 1 and go to Step 2.

It is possible that if r has been set too high, the algorithm will never exit via step 4, but it will
fail to find a satisfactory fitting. A lower value of r should then be used.

In Figure 3.49 we show the fitted lines to the data points for r = 0.9995 for the two constructed
fractals, as well as the ideal lines with slopes the true fractal dimensions. This figure shows how
sensitive the method of estimating the fractal dimension is. A very slight change in the slope,
caused by the inclusion of a single extra point may damage the slope significantly. This is not
only for this method, but rather an inherited sensitivity of the model, as it involves exponentials
that are very sensitive to small perturbations.

Table 3.7 shows the fractal dimensions and the correlation coefficients with each range of val-
ues of n for H = 0.3 and 0.7.

The estimations for four different directions in the spectra: horizontal, vertical, and two diag-
onals for H = 0.3 and 0.7 are shown in Table 3.8.
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Figure 3.49 The pairs of points (ln 2n, ln N(n)) fitted with a straight line for each of the two images.
In each case the ideal line, with slope the fractal dimension we used to construct the fractal is also
plotted.
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Table 3.7 The fractal dimensions and correlation coefficients with each n.

H = 0.3

256 × 256 pixels, 256 gray levels

n N D

1 8 3.000
2 52 2.850
3 293 2.732
4 1571 2.654
5 8008 2.593
6 31932 2.494
7 58318 2.262
8 65535 2.000

𝜀 → 0 2.504

H = 0.7

256 × 256 pixels, 256 gray levels

n N D

1 8 3.000
2 50 2.822
3 226 2.607
4 1055 2.511
5 4697 2.440
6 18964 2.368
7 48956 2.226
8 65533 2.000

𝜀 → 0 2.361

Table 3.8 The fractal dimensions for four different directions in the spectra.

H = 0.3 H = 0.7

Direction 𝜷 D 𝜷 D

Horizontal 2.593 2.704 3.390 2.305
Vertical 2.599 2.701 3.386 2.307
Diagonal 1 2.606 2.697 3.379 2.311
Diagonal 2 2.592 2.704 3.435 2.282



�

� �

�

158 3 Stationary Grey Texture Images

Is fractal dimension a good texture descriptor?

The fractal dimension on its own is not a good texture descriptor, for the following reasons.

(i) Images are not really fractals, i.e. they do not exhibit the same structure at all scales. This can
be seen from the plots in Figure 3.45. These curves are supposed to be straight lines, but only
parts of them can be fitted well by straight line segments. In general, these curves are more
complicated. By describing their shapes with a single number, i.e. the slope, we throw away a
lot of the information they contain. This problem is dealt with by the use of the variogram and
its models, where the range over which the fractal model applies is also taken into account
(see the section on Which parametric models are commonly used to fit the variogram over its
Range?).

(ii) In fractal image analysis, often image isotropy is assumed. This problem can be dealt with by
computing different fractal dimensions along different orientations.

(iii) The fractal dimension does not capture any texture inhomogeneity. This may be partly dealt
with by using extra image features alongside the fractal dimension, like lacunarity, or the
generalisation of the multifractal spectrum, computed from the generalised fractal dimension
for grey images.

(iv) Images are not the products of non-stationary stochastic processes with stationary increments,
but often they are non-stationary stochastic processes with non-stationary increments, leading
to inhomogeneous appearance. It is obvious, therefore, that one has to use more complex mod-
els. This leads us to the adoption of multifractal models. Multifractal models, which effec-
tively consider the image consisting of the combination of several fractals and extracts local
information to characterise the different parts, should not be confused with the multifractal
spectrum, which treats the image as a whole and simply tries to capture its inhomogeneities,
by producing a single sequence of numbers, usually 5, to be used as its features.

What is lacunarity?

Lacunarity is a measure of non-homogeneity of the data. It measures the “lumpiness” of the data.
It is defined in terms of the ratio of the variance over the mean value of the image function. It
may be computed for the full image, or locally, inside local windows, in which case its value may
be assigned to the central pixel of the window. If computed locally, lacunarity may be used as a
feature appropriate to segment non-stationary textures, which will be examined in Chapter 4. Also,
the histogram of the local lacunarity values may be used as an image feature.

Any one of the following definitions might be used for an N × M image (or sub-image), with grey
values I(n,m)

s ≡
1

NM

∑N
n=1
∑M

m=1I(n,m)2(
1

NM

∑N
k=1
∑M

l=1I(k, l)
)2 − 1 (3.171)

a ≡ 1
NM

N∑
n=1

M∑
m=1

||||||
I(n,m)

1
NM

∑N
k=1
∑M

l=1I(k, l)
− 1
|||||| (3.172)

p ≡
(

1
NM

N∑
n=1

M∑
m=1

(
I(n,m)

1
NM

∑N
k=1
∑M

l=1I(k, l)
− 1

)p) 1
p

(3.173)

where p is some parameter.
Note that if the distribution of grey values is totally uniform,  is 0. The higher the value of ,

the more inhomogeneous the surface.
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Example B3.54

Show that s = 2
2.

We start from the definition of p for p = 2 and take its square:

2
2 =

1
NM

N∑
n=1

M∑
m=1

(
I(n,m)

1
NM

∑N
k=1
∑M

l=1I(k, l)
− 1

)2

= 1
NM

N∑
n=1

M∑
m=1

(
I(n,m) − 1

NM

∑N
k=1
∑M

l=1I(k, l)
)2

(
1

NM

∑N
k=1
∑M

l=1I(k, l)
)2

= 1(
1

NM

∑N
k=1
∑M

l=1I(k, l)
)2 ×

1
NM

N∑
n=1

M∑
m=1

⎛⎜⎜⎝I(n,m)2 +

(
1

NM

N∑
k=1

M∑
l=1

I(k, l)

)2

−

2I(n,m) 1
NM

N∑
k=1

M∑
l=1

I(k, l)

)

= 1(
1

NM

∑N
k=1
∑M

l=1I(k, l)
)2

(
1

NM

N∑
n=1

M∑
m=1

I(n,m)2+

1
NM

N∑
n=1

M∑
m=1

(
1

NM

N∑
k=1

M∑
l=1

I(k, l)

)2

−

2 1
NM

N∑
n=1

M∑
m=1

I(n,m) 1
NM

N∑
k=1

M∑
l=1

I(k, l)

)
. (3.174)

The last term on the right-hand side of the above equation is just the square of the average grey
value of the image (the two double sums are identical). The penultimate term includes a double
sum over indices n and m, which, however, do not appear in the summand. So, all this double sum
yields is a factor NM. This factor NM cancels with the denominator NM, and so the penultimate
term is just the summand. So, we get:

2
2 = 1(

1
NM

∑N
k=1
∑M

l=1I(k, l)
)2 ×
⎛⎜⎜⎝ 1

NM

N∑
n=1

M∑
m=1

I(n,m)2 +

(
1

NM

N∑
k=1

M∑
l=1

I(k, l)

)2

−

2

(
1

NM

N∑
k=1

M∑
l=1

I(k, l)

)2⎞⎟⎟⎠
= 1(

1
NM

∑N
k=1
∑M

l=1I(k, l)
)2 ×

⎛⎜⎜⎝ 1
NM

N∑
n=1

M∑
m=1

I(n,m)2 −

(
1

NM

N∑
k=1

M∑
l=1

I(k, l)

)2⎞⎟⎟⎠ . (3.175)

(Continued)
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Example B3.54 (Continued)

This may be written as:

2
2 =

1
NM

∑N
n=1
∑M

m=1I(n,m)2(
1

NM

∑N
k=1
∑M

l=1I(k, l)
)2 − 1 = s. (3.176)

Example 3.55

Compute the lacunarity measures for the image in Figure 3.50.

31

2

3

02

0

0

0

11

3 1

1 20 Figure 3.50 A 2-bit image.

We note that we have 16 pixels in the image (NM = 16), 5 of them have value 0, 5 have value 1, 3
have value 2 and 3 have value 3. The sum of all grey values is 20, and the sum of their squares is
44. Then:

s =
44
16(

20
16

)2 − 1 = 1.76 − 1 = 0.76

a =
1

16

[|||||| 0
20
16

− 1
|||||| × 5 +

|||||| 1
20
16

− 1
|||||| × 5 +

|||||| 2
20
16

− 1
|||||| × 3 +

|||||| 3
20
16

− 1
|||||| × 3

]

= 1
16

[
5 +
||||16
20

− 1
|||| × 5 +

||||32
20

− 1
|||| × 3 +

||||48
20

− 1
|||| × 3
]
= 0.75

2 =

√√√√√ 1
16

⎡⎢⎢⎣
(

0
20
16

− 1

)2

× 5 +

(
1
20
16

− 1

)2

× 5 +

(
2
20
16

− 1

)2

× 3 +

(
3
20
16

− 1

)2

× 3
⎤⎥⎥⎦

=

√
1

16

[
5 +
(16

20
− 1
)2

× 5 +
(32

20
− 1
)2

× 3 +
(48

20
− 1
)2

× 3
]

=
√

1
16

[
5 + 2864

400

]
=
√

1
16

× 4864
400

=
√

0.76 = 0.8718. (3.177)
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Example 3.56

Use an 11 × 11 window to scan images 3.1c and 3.1d. Inside each window compute the
lacunarity using formula (3.172) and assign it to the central pixel of the window. At
the end, scale the results of both images in the same scale, [0, 255] in order to visualise
them as images. We use the same scale for both images in order to be able to make
comparisons between the two. Plot also the histograms of the unscaled lacunarity
values you computed.
We compute the lacunarity values using 11 × 11 windows displayed as images, (a) food, (b) plastic
as shown in Figure 3.51. We also plot the histograms of the lacunarity values for each image as
shown in Figure 3.52.

(a) (b)

Figure 3.51 Lacunarity values using 11 × 11 windows displayed as images. (a) Food. (b) Plastic.
Source: Maria Petrou.
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Figure 3.52 Histograms of the lacunarity values. (a) Food. (b) Plastic. Both histograms have been
constructed using identical bins, so direct comparison between the two is possible.



�

� �

�

162 3 Stationary Grey Texture Images

How can we compute the multifractal spectrum of a grey image?

Remember that in the box-counting method we simply checked whether a box is occupied or not
in order to compute the fractal dimension of a binary shape. For the generalised fractal dimension
of a binary shape, we counted the number of points of the shape inside each box. For a grey image
now, instead of counting the number of points, we also have to account for the value of each point.
So, people assign to each box something they may call “strength” of the signal, or “mass” of the
signal. The natural extrapolation of the previous approaches is to sum the grey values of the pixels
inside the box. However, in some cases, people measure the contrast of the pixels inside the box. So,
to define the generalised fractal dimension of a grey image, we cover the image plane with boxes of
size 𝜀 × 𝜀. Inside each box we compute a “strength”, or a “measure”. Let us call the strength of box
i, ni. Let us sum all the strengths of all the boxes we have used to cover the image, and call this sum
N𝜀. Then we may assign to box i the value pi ≡ ni∕N𝜀, which indicates the probability of finding
strength ni inside a box of size 𝜀 × 𝜀. Then the generalised fractal dimension of the grey image is
defined as in the case of the binary shape by formulae (3.41), (3.42) and (3.43).

The multifractal spectrum is the sequence of numbers we obtain if we let q take various values.
Usually, q = −2,−1, 0, 1, 2. Note: 𝜀 actually is a fraction of the image size, i.e. in these calculations,
the image is assumed to have size 1 × 1 and 𝜀 takes values 1∕2, 1∕4, etc.

Example 3.57

Calculate the multifractal spectra for the images in Figure 3.1 using as measure the
contrast of the signal inside each box.
Each image is of size M × M, where M = 256. Let us cover them with boxes of size 64 × 64, 32 × 32,
16 × 16, 8 × 8 and 4 × 4, corresponding to values of 𝜀 1∕4, 1∕8, 1∕16, 1∕32 and 1∕64, respectively.
There will be 16, 64, 256, 1024 and 4096 boxes, respectively. Inside each box, we shall define the
strength of the signal as follows.

Find the minimum, b, and the maximum, a, grey value inside the box. The strength of the signal
inside the box is (a − b)∕(M𝜀). That is, for box i, the strength is:

ni;𝜀 =
ai − bi

M𝜀
. (3.178)

Here, we made explicit the dependence of ni on 𝜀, in order to clarify that this calculation hap-
pens for boxes of the same size. Also, we made explicit the dependence of a and b on the identity
of the box i, in order to make clear that this calculation happens for each box for fixed 𝜀. The total
strength of the signal then is:

N𝜀 =
∑

i
ni;𝜀. (3.179)

Then to each box i we assign

pi;𝜀 =
ni;𝜀

N𝜀

(3.180)

where again we made explicit the dependence of pi on the value of 𝜀.
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Then, for fixed q, we consider all pairs
[
log 𝜀, log

(∑
ip

q
i;𝜀

)]
and fit them with a least squares

error straight line (see Box 3.3):

log

(∑
i

pq
i;𝜀

)
= A + B log 𝜀. (3.181)

The slope of this line B, divided by q − 1 (when q ≠ 1) is the generalised fractal dimension Dq
of the image. Doing it for all values of q, we produce the multifractal spectrum of the image.

For the case of q = 0, the term “non-empty box” refers to the boxes for which ni;𝜀 ≠ 0. In other
words, we exclude the boxes inside which the image is flat. It is possible that due to noise such boxes
do not exist. In that case, perhaps some tolerance around the value of 0 might be considered, but
even better, we may realise that since D0 is actually the box-counting fractal dimension, we may
calculate it directly using the method of Equation (3.13).

For the case of q = 1, we must use de l’Hospital’s rule, as shown in Equation 3.45 to solve the
same problem. Table 3.9 shows the multifractal spectra on Dq for each value of q.

Table 3.9 The multifractal spectra for the images using as measure the
contrast of the signal inside each box.

Image q = −2 q = −1 q = 0 q = 1 q = 2

Cloth 1 2.0496 2.0229 2.0000 1.9851 1.9593
Cloth 2 2.0307 2.0150 2.0000 1.9895 1.9723
Food 2.0715 2.0172 2.0000 1.9924 1.9840
Plastic 2.1204 2.0523 2.0000 1.9725 1.9303
Fabric 1 2.1864 2.0989 2.0000 1.9408 1.8424
Fabric 2 2.0574 2.0273 2.0000 1.9824 1.9546
Beans 2.1320 2.0534 2.0000 1.9728 1.9310
Sand 2.1064 2.0534 2.0000 1.9641 1.9068

Example 3.58

Calculate the multifractal spectra for the images in Figure 3.1 using as measure the
sum of the grey values of the pixels inside each box.
In the same way, we calculate the multifractal spectra for the images using as measure the sum
of the grey values of the pixels inside each box. Table 3.10 shows the multifractal spectra on Dq
for each value of q.

(Continued)
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Example 3.58 (Continued)
Table 3.10 The multifractal spectra for the images using as measure the sum
of the grey values of the pixels inside each box.

Image q = −2 q = −1 q = 0 q = 1 q = 2

Cloth 1 2.0314 2.0147 2.0000 1.9946 1.9748
Cloth 2 2.0052 2.0025 2.0000 1.9990 1.9951
Food 2.0185 2.0088 2.0000 1.9980 1.9853
Plastic 2.0379 2.0180 2.0000 1.9937 1.9706
Fabric 1 2.0139 2.0065 2.0000 1.9976 1.9887
Fabric 2 2.0107 2.0053 2.0000 1.9985 1.9894
Beans 2.0963 2.0387 2.0000 1.9928 1.9575
Sand 2.0021 2.0010 2.0000 1.9997 1.9981

What is a multifractal?

A multifractal is a process that is everywhere locally a fractal characterised by a different Hurst
exponent H at each locality. To avoid confusion, a function 𝛼(t) is introduced, known as the Holder
exponent, in association with the so-called Holder regularity that derives from Equation (3.86).

What is the Holder regularity?

We may interpret Equation (3.86) to imply that at every point t

𝑣(t + Δt) ∼ 𝑣(t) + C|Δt|H (3.182)

where C is some constant. This is known as Holder regularity. In the case of a multifractal, it is
written as

𝑣(t + Δt) ∼ 𝑣(t) + C|Δt|𝛼(t) (3.183)

where 𝛼(t) is the Holder exponent, characterising the multifractal.

What is the difference between a fractal and a multifractal?

A fractal is a non-stationary process with stationary increments. A multifractal has non-stationary
increments. The fractal increments obey Equation (3.86), while for multifractals exponent H is
replaced by a function 𝛼(t) that depends on locality t.

Example B3.59

Use the method of Box 3.10 to construct a 1D multifractal, with Holder exponent
𝛼(t) = 1 − t2, for t ∈ [0.01, 0.99]. The multifractal should consist of 99 points.



�

� �

�

3.3 Fractals and Multifractals 165

A multifractal consists of many ordinary fractals that somehow are “tangent” to the multifrac-
tal at each location. Let us sample the t parameter using 99 points, starting with t = 0.01 and
ending with t = 0.99, in steps of 0.01. For every value of t we compute the corresponding value of
𝛼(t). This is the value of H with which we should construct an ordinary fractal of size 99 sam-
ples, using the method of Box 3.10. This way, we shall have 99 ordinary fractals. From each
one of them we shall keep only one sample, i.e. from the first one we shall keep the value of
its first sample, from the second the value of its second sample, etc. Combining all these val-
ues we shall form the multifractal. The result is shown in Figure 3.53. Using a Gaussian white
noise with 𝜎 = 1, we obtain a synthetic 1D multifractal in this figure. If we use a different ran-
dom sequence at each point, we also obtain a different synthetic 1D multifractal as shown in
Figure 3.54.

0 10 20 30 40 50 60 70 80 90 100

Gaussian Noise

Multifractal

Figure 3.53 Synthetic 1D multifractal

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3

Figure 3.54 Synthetic 1D multifractal using a different random sequence at each point.
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Example B3.60

Use the method of Box 3.14 to construct a 2D multifractal, of size 65 × 65, with Holder
exponent 𝛼(i, j) that varies across the image according to:

𝛼(2k + 1, 2l + 1) =

(
1 −
(

2k + 1
65

)2
)(

1 −
(

2l + 1
65

)2
)

for k, l = 0,… , 31. (3.184)

The value of 𝛼(i, j) at other pixel positions is given by:

𝛼(2k, 2l) = 𝛼(2k, 2l − 1) = 𝛼(2k − 1, 2l) = 𝛼(2k − 1, 2l − 1) for k, l = 1,… , 32. (3.185)

You must construct 322 = 1024 fractal surfaces with Hurst exponent H =
𝛼(2k + 1, 2l + 1), given by (3.184). Each surface could be of size 64 × 64. Then from
each surface you will retain the values of a single 2 × 2 patch with its top left corner
at pixel (2k + 1, 2l + 1). These 2 × 2 patches will form the final multifractal you will
construct.
Using a random field for all fractals, we obtain a synthetic 2D multifractals as shown in
Figure 3.55. If we use a different random field at each point, we also obtain a different synthetic
2D multifractal as shown in Figure 3.56.

Figure 3.55 Synthetic 2D multifractals. Source: Maria Petrou.

Figure 3.56 Synthetic 2D multifractals using a different random sequence at each point. Source:
Maria Petrou.
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How can we characterise an image using multifractals?

A multifractal is characterised in the following ways.

(i) With its Holder exponent 𝛼(t). However, as this varies with locality, it is not a very efficient
way of characterising the fractal because for each pixel it will have a separate value, so we
shall have as many values as pixels. Note: as the Holder exponent corresponds to the Hurst
dimension H of an ordinary fractal, which in turn corresponds to the fractal dimension D, this
method corresponds to the calculation of the local fractal dimension in the vicinity of each
pixel.

(ii) A multifractal may also be characterised by its Hausdorff spectrum fh(𝛼). To compute it, we
first compute 𝛼 at the vicinity of every pixel. Then we divide the pixels into subsets, where the
elements of each subset have the same value 𝛼 (within some tolerance Δ𝛼). In other words,
we bin the values of 𝛼. Then we compute the fractal dimension fh(𝛼) of all the pixels of each
subset. Note that in this process we consider the pixels of each subset as point sets and we
do not take into consideration their grey value. This implies that the value of fh(𝛼) is in the
range [0, 2]. It is 0 if there is only one pixel in the subset, 1 if the pixels form a line and 2 if
all pixels of the image belong to the subset and thus form a plane. If the subset is empty, we
set by definition fh(𝛼) = −∞. Of course, in all other cases, as the pixels of the subset will be
irregularly distributed, fh(𝛼) will have a non-integer value in the range [0, 2]. This is known as
the Hausdorff dimension of a set of points.

(iii) Finally, a multifractal may also be characterised by its large deviation multifractal spec-
trum fg. The Holder exponent 𝛼 is computed inside local neighbourhoods of various sizes.
The large deviation multifractal spectrum fg(𝛼) expresses the probability p(𝛼) of finding a box
of size parameter n with Holder exponent 𝛼:

p(𝛼) ≡ nfg(𝛼)−2 ⇒ fg(𝛼) = 2 +
log p(𝛼)

log n
. (3.186)

How can we calculate the Holder exponent of each pixel?

There are various approaches.

(i) We may interpret (3.183) to hold literally, and treat (𝑣(t + Δt), 𝑣(t)) as the grey values of two
neighbouring pixels (see Example 3.61).

(ii) We may interpret (3.183) more correctly, understanding that it holds on average (expectation
values). Then we may use a small window around each pixel, inside which we may consider
several pairs of values (𝑣(t + Δt), 𝑣(t)), for several Δt values and compute in the least square
error sense (see Box 3.3) a value for 𝛼, which will be assigned to the central pixel of the window
(see Example 3.62).

Example 3.61

If g is the image, use Equation (3.183) for neighbouring pixels to compute the Holder
exponent for each pixel. Then use these Holder exponents to construct the Hausdorff
spectrum of the image.

(Continued)
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Example 3.61 (Continued)

In terms of grey pixel values, we assume that the following equation holds locally:

g(i, j) ≃ g(k, l) + C
√
(i − k)2 + (j − l)2

𝛼

. (3.187)

Here C is some constant. Let us apply this relationship to the 3 × 3 neighbourhood of a pixel.
The four closest neighbours of the pixel are at distance 1 from it and they may be used to estimate
constant C:

g(i, j + 1) ≃ g(i, j) + C
g(i, j − 1) ≃ g(i, j) + C
g(i + 1, j) ≃ g(i, j) + C
g(i − 1, j) ≃ g(i, j) + C. (3.188)

Therefore:

C = 1
4
[
g(i, j + 1) + g(i, j − 1) + g(i + 1, j) + g(i − 1, j) − 4g(i, j)

]
. (3.189)

From the diagonal neighbours we have:

g(i + 1, j + 1) ≃ g(i, j) + C
√

2
𝛼

g(i + 1, j − 1) ≃ g(i, j) + C
√

2
𝛼

g(i − 1, j + 1) ≃ g(i, j) + C
√

2
𝛼

g(i − 1, j − 1) ≃ g(i, j) + C
√

2
𝛼

. (3.190)

Therefore:√
2
𝛼

= 1
4C
[
g(i + 1, j + 1) + g(i + 1, j − 1) + g(i − 1, j + 1) + g(i − 1, j − 1) − 4g(i, j)

]
(3.191)

Or:

𝛼 = 1
log
√

2
log
||||g(i+1, j+1)+g(i+1, j−1)+g(i−1, j+1)+g(i−1, j−1) − 4g(i, j)

g(i, j+1)+g(i, j−1)+g(i+1, j)+g(i−1, j)−4g(i, j)
|||| . (3.192)

So, the algorithm is as follows:

Step 1: Use (3.192) to work out a value of 𝛼 for every pixel in the image.
Step 2: Quantise the values of 𝛼 into, say, five bins.
Step 3: Identify the pixels that have 𝛼 values in the same bin. They form a point set.
Step 4: Use the algorithm of Box 3.1 to work out the capacity dimension of each of the point sets.

You will have one capacity dimension for each bin you used in step 2. The sequence of these
numbers constitutes the Hausdorff spectrum of the image.

Note that Equation 3.192 may result in: +∞, −∞, and NaN (that is, 0
0

). To deal with this, the
following is done.

● When we have NaN, we assign 𝛼 = 0, the same as 2
2

, 3
3

, etc.
● When we have −∞, we use the minimum value of 𝛼 after discarding −∞.
● When we have +∞, we use the maximum value of 𝛼 after discarding +∞.
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Using the third image in Figure 3.55, we obtained the matrix of alpha values as shown in
Figure 3.57.

And Figure 3.58 shows the five points sets from the matrix of alpha values.
Next Table 3.11 shows the fractal dimensions computed for each point set for different values

of n.

Figure 3.57 The matrix of alpha values.

Figure 3.58 The five point sets from the matrix of alpha values.

Table 3.11 The five point sets from the matrix of alpha values.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

Point set 1 2.0000 1.9037 1.7859 1.6230 1.4067 1.2263
Point set 2 2.0000 1.9534 1.9093 1.8828 1.8034 1.7233
Point set 3 2.0000 2.0000 1.9183 1.8587 1.7589 1.5657
Point set 4 2.0000 2.0000 1.9527 1.9128 1.8433 1.7319
Point set 5 2.0000 2.0000 1.9443 1.8394 1.6598 1.4206

Example 3.62

If g is the image, use Equation (3.183) in its original form, i.e. (3.86), to compute the
Holder exponent for each pixel. Then use these Holder exponents to construct the
Hausdorff spectrum of the image.
Write (3.86) in the form:

|g(i, j) − g(k, l)| = C
√
(i − k)2 + (j − l)2

𝛼

⇒ log |g(i, j) − g(k, l)| = log C + 𝛼

2
log
[
(i − k)2 + (j − l)2] . (3.193)

(Continued)
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Example 3.62 (Continued)

The algorithm is as follows.

Step 1: Around each pixel (i, j) consider a 5 × 5 window. Pair the central pixel with all 24 pix-
els around it and thus come up with 24 pairs of values (log

[
(i − k)2 + (j − l)2] , log |g(i, j) −

g(k, l)|).
Step 2: Fit these pairs of values with a straight line in the least square error sense (see Box 3.3) to

identify the value of 𝛼∕2 as the slope of the fitted line. Assign this value to pixel (i, j).
Step 3: Quantise the values of 𝛼 into, say, five bins.
Step 4: Identify the pixels that have 𝛼 values in the same bin. They form a point set.
Step 5: Use the algorithm of Box 3.1 to work out the capacity dimension of each of the point sets.

You will have one capacity dimension for each bin you used in step 3. The sequence of these
numbers constitutes the Hausdorff spectrum of the image.

The matrix of 𝛼 values, the five point sets, and the fractal dimension for each point set, are
shown in the following. Note that the image is 64 × 64 and the point sets are 60 × 60. The matrix
of alpha values is shown in Figure 3.59.

And Figure 3.60 shows the five points sets from the matrix of alpha values.
Next Table 3.12 shows the fractal dimensions computed for each point set for different values

of n.

Figure 3.59 The matrix of alpha values. Source: Maria
Petrou.

Figure 3.60 The five point sets from the matrix of alpha values. Source: Maria Petrou.

Table 3.12 The five point sets from the matrix of alpha values.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

Point set 1 2.0000 1.9534 1.8515 1.7692 1.7608 1.7670
Point set 2 2.0000 1.7925 1.7098 1.6646 1.6320 1.5654
Point set 3 2.0000 1.7925 1.7365 1.7145 1.7000 1.6383
Point set 4 1.5850 1.4037 1.4865 1.5271 1.5063 1.4394
Point set 5 1.0000 0.7925 0.9358 1.0000 1.0644 1.0074
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Box 3.15 The 1D binomial multifractal

Imagine a histogram of N records binned in 2k bins. If the shape of this histogram is a binomial
multifractal, we expect to find in the first 2k−1 bins N(1 − p) of the records, and in the second
2k−1 bins Np of the records, for all values of k, up to k = K. The values of p and K characterise
this multifractal model.

Example B3.63

Construct a binomial multifractal distribution with K = 3 and p = 0.8. If N = 1000,
how many objects do you expect to find in each bin? This method of constructing a
fractal is known as multiplicative cascade.
Let us call the distribution function we are constructing g(x), where 0 ≤ x ≤ 1. In the first division
(k = 1), the range of the independent variable is divided in two, and in the left half the value of g(x)
is g1 = 0.2, while in the right half we have g2 = 0.8. This is shown in Figure 3.61a. In the second
division (k = 2), each one of these ranges is again divided into two halves, and the distribution in
the left half will be multiplied with 0.2, while in the right half with 0.8. Thus, in the four bins we
have now, g(x) takes the following values:

g11 = 0.2 × 0.2 = 0.04
g12 = 0.2 × 0.8 = 0.16
g21 = 0.8 × 0.2 = 0.16
g22 = 0.8 × 0.8 = 0.64.
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xx
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Figure 3.61 Construction of a binomial multifractal distribution with 23 bins and p = 0.8.

The indices of the bins have been selected to reflect the position of each bin in the two successive
divisions. The result is shown in Figure 3.61b. In the third and final division (k = K = 3), each
one of the bins is again divided into two halves, and the value in the left half is multiplied with
0.2, while in the right half with 0.8. Thus, in the eight final bins, g(x) takes the following values:

g111 = 0.04 × 0.2 = 0.008
g112 = 0.04 × 0.8 = 0.032
g121 = 0.16 × 0.2 = 0.032
g122 = 0.16 × 0.8 = 0.128
g211 = 0.16 × 0.2 = 0.032
g212 = 0.16 × 0.8 = 0.128
g221 = 0.64 × 0.2 = 0.128

(Continued)
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Example B3.63 (Continued)

g222 = 0.64 × 0.8 = 0.512.

This is shown in Figure 3.61c.
If N = 1000, we expect to find in the eight bins 8, 32, 32, 128, 32, 128, 128 and 512 objects, from

left to right, respectively.

Example B3.64

Work out how many bins you expect to find with identical number of objects in a
binomial multifractal distribution with K divisions and probability p. Verify the for-
mula you derive by checking the validity of the results of Example 3.63.
The number of objects in a bin is N times pn, where n is the number of times this bin was the
right half of a bin of the previous division step, times (1 − p)m, where m is the number of times
this bin was the left half of a bin of the previous division step. Obviously, n + m = K, since we
have K divisions in total. So, we may say that the number of objects in a bin is NpK−𝛼(1 − p)𝛼 ,
where 𝛼 may vary from 1 to K. For example, for the leftmost bin, 𝛼 = K, since this bin is in all
divisions left, and thus all factors are 1 − p, while for the right-most bin 𝛼 = 0, since this bin is in
all divisions on the right, and therefore, all its factors are p. For other values of 𝛼, we are going
to have CK

𝛼 = K!
𝛼!(K−𝛼)!

different bins that will have the same occupancy, since there are as many
different combinations of values m and n that sum up to K. In any case, this formula is also valid
for the extreme values of 𝛼 too.

In example 3.63, we had K = 3 and p = 0.8.
For 𝛼 = 0, there will be C3

0 = 3!
0!3!

= 1 bin with 1000 × 0.83 × 0.20 = 512 objects.

For 𝛼 = 1, there will be C3
1 = 3!

1!2!
= 3 bins with 1000 × 0.82 × 0.21 = 128 objects.

For 𝛼 = 2, there will be C3
2 = 3!

2!1!
= 3 bins with 1000 × 0.81 × 0.22 = 32 objects.

For 𝛼 = 3, there will be C3
3 = 3!

3!0!
= 1 bin with 1000 × 0.80 × 0.23 = 8 objects.

These numbers agree with the results of Example 3.63.

Example B3.65

Show that the average number of non-empty bins in a binomial multifractal distri-
bution of N objects and parameters K and p is:

F0 =
K∑
𝛼

CK
𝛼

[
1 −
(
1 − pK−𝛼(1 − p)𝛼

)N]
. (3.194)

When placing the N objects in the bins,
the probability of the first object falling in a particular bin is pK−𝛼(1 − p)𝛼 ;
the probability of the first object not falling in this bin is 1 − pK−𝛼(1 − p)𝛼 ;
the probability of none of the N objects falling in this bin is

(
1 − pK−𝛼(1 − p)𝛼

)N ;
the probability of this bin being non-empty is 1 −

(
1 − pK−𝛼(1 − p)𝛼

)N .
Since there are CK

𝛼 bins with the same expected occupancy, determined by the value of 𝛼, the
average number of non-empty bins F0 is given by (3.194).
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Box 3.16 Extension to 2D of the 1D binomial multifractal

A possible way to extent the definition of the 1D binomial multifractal to 2D is the following.
At each step divide the square domain of the image function into four quadrants. Assign to
the top left quadrant a probability p1, to the top right a probability p2 and to the bottom left
a probability p3. The bottom-right quadrant will receive objects with probability 1 − p1 − p2 −
p3. You carry on dividing each quadrant in the same way, distributing the probabilities in the
same way. Figure 3.62 shows the first two steps of this process.
Figure 3.62 The first two stages of creating a 2D
binomial multifractal. p
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At the end you have two options:
(i) You imagine you have N objects to distribute to the cells you have created and distribute

them according to the probabilities assigned to each cell, i.e. by multiplying N with the
corresponding probability and rounding the results to the nearest integer. If we were to
interpret the output as an image, N here would have been the sum of the grey values
of all the pixels of the image.

(ii) You scale the probability values you have assigned to the cells in the range [0, 255],
rounding the scaled values to the nearest integer.
Option (i) is more appropriate for using the 2D binomial multifractal to model a 2D
(joint) histogram, while option (ii) is more appropriate for the creation of a 2D image.
Figure 3.63 shows such an image constructed with p1 = 0.24, p2 = 0.27 and p3 = 0.29.

2 × 2 4 × 4 8 × 8

16 × 16 32 × 32 64 × 64

Figure 3.63 Creating a 2D binomial multifractal image.
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Are multifractals good image models?

For some images they may be. In particular, multifractals may be used in computer graphics to
produce realistically looking surfaces of natural scenes. However, multifractals fit a particular type
of model to the data, which may not be appropriate. A far better approach is to let the data guide
us to the best model, or not to use any model at all, but the data themselves, an approach known
as non-parametric. This leads us to the following approaches:

(i) The variogram (and by extension the autocorrelation function) and the various models that
can be used for it, with the fractal model being just one of many.

(ii) The various types of image histograms, which may be modelled with the Weibull distribu-
tion, that are versatile in shape and scale.

(iii) The various types of co-occurrence matrices, which may be considered as non-parametric rep-
resentations.

All these approaches are under the general heading of image statistics.

3.4 Image Statistics

What is an image statistic?

It is a function that tells us how many pixels have what property. In the calculation of such a func-
tion, one may treat the pixels as individuals (one-point statistics), as pairs (two-point statistics),
or even as n-tuples (many-point statistics).

What is a one-point statistic?

A one-point statistic is a distribution calculated by considering the pixels as individuals.
Examples are the various histograms we construct using the assigned values pixels have, like the
rank-frequency plot, or the run length matrix. Note that the values we use to construct a
histogram do not need to be necessarily grey values; they may well be feature values calculated
at the vicinity of each pixel and assigned to the pixel. Some histograms may be modelled by the
Weibull distribution.

What is a two-point statistic?

A two-point statistic is calculated by considering pairs of pixels. Examples of such statistics are
the variogram, the normalised correlation function of the image and the various types of
co-occurrence matrix. The spatial relative position of the paired pixels is fixed when computing
the statistic, but the statistic is computed for many such pairs of relative pixel positions.

What is a many-point statistic?

A many-point statistic is calculated by considering n-tuples of pixels. Examples are the higher
order co-occurrence matrices, but also the Markov random fields (see Section 3.6) as well as,
at the extreme case, the Gibbs distribution (see Section 3.7), in which case n is the number of all
image pixels. As in the two-point statistic, the spatial relative position of the pixels of an n-tuple is
fixed when computing the statistic.
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How do we construct features from one-point, two-point or many-point image
statistics?

If it is a simple statistic, e.g. a histogram made up from a few bins, the sequence of values of the
statistic computed may be used directly as a signature of the texture. If the statistic is more com-
plicated, e.g. Gibbs distribution, we model the corresponding distribution of the statistic and use
the parameters of the model as features. An example here is the use of the Markov parameters
as texture features capturing the distribution of the neighbourhood configurations in an image.
Depending on what we do, we call the approach parametric (e.g. Markov random fields or Gibbs
distributions) or non-parametric (e,g. co-occurrence matrices).

What is the histogram of the image?

It is a plot of the number of pixels that have a certain value versus the value, when the values are
integer numbers, or against the bin number, when the values are real or integer. For example, if
the histogram refers to grey values, which are integer numbers, we may plot the number of pixels
that have a certain grey value versus the grey value. Alternatively, we may create bins of a certain
width, say width 5, and for the value of the first bin we count together all pixels that have grey value
in the range [0, 4], for the second bin all pixels with grey value in the range [5, 9] and so on. If we
do not plot integer values, but real numbers, e.g. the gradient magnitude of each pixel, then the
pixel values are not integers and the use of bins is compulsory. When the histogram is normalised
by dividing its values with the total number of points we plotted and with the bin width, it may be
treated as a probability density function.

Can we have rolling bins?

Yes. For example, in bin 1 we may count all pixels with grey value in the range [0, 4], in the sec-
ond bin all pixels with grey values in the range [1, 5], in the third with [2, 6] etc. Such a histogram
counts all pixels as many times as the bin width, in this example 5 times, and so when normalised
this has to be taken into account. The resultant histogram is smoother than the one created without
the rolling bins. The use of rolling bins is equivalent to spreading the “vote” of each pixel equally
to five neighbouring bins of width 1 grey value each. So, the same effect can be achieved by sim-
ply smoothing the histogram with a five-samples long averaging window. This naturally leads to
the idea of smoothing the histogram with other more appropriate windows, like, for example, a
Gaussian window.

Example 3.66

Compute the grey value histograms of images 3.1b, 3.1f, 3.1g and 3.1h. Use bins of
grey value width 1. Then smooth the histograms by using an averaging window of
five-bins long.
The results are shown in Figure 3.64.

(Continued)
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Example 3.66 (Continued)
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Figure 3.64 Raw (on the left) and smoothed (on the right) probability density function of a single
pixel having a certain value (normalised histograms with bin width 1), for some of the textures of
Figure 3.1.
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Example 3.67

Compute the histograms of the gradient magnitude of all images in Figure 3.1. Use
30 bins, the same for all images.
First we have to compute the gradient magnitude at each pixel position (see the book Image
Processing, The Fundamentals [75]). We may use for that a Sobel filter: we convolve the image
with filter (1, 2, 1) horizontally and the result with filter (−1, 0, 1) vertically, to work out the ver-
tical component for the gradient vector at each pixel position. Let us call it 𝛿y. Then we con-
volve the original image vertically with filter (1, 2, 1) and the result with filter (−1, 0, 1) horizon-
tally, to work out the horizontal component for the gradient vector at each pixel position. Let
us call it 𝛿x. Then at each pixel we compute

√
𝛿2

x + 𝛿2
y . Finally, we divide each of these num-

bers by 8 to compute the gradient magnitude at each pixel position. This division is necessary
because the smoothing filter (1, 2, 1) has weights summing up to 4 and not to 1, and because
the differencing filter (−1, 0, 1) considers pixels two positions apart and not one to estimate the
derivative.

After we have done this for all images, we find the minimum b and the maximum a value of
all gradient magnitudes we computed for all images. This is because we wish to have the same
bins for all images, to be able to make direct comparisons. Since we need 30 bins, we define the
bin width Δ as:

Δ = Max_Value − Min_Value
Number_of_Bins

= a − b
30

. (3.195)

Then we apply the following algorithm to create the histogram for each image.

Step 1: Create an array H of 30 elements, enumerated from 0 to 29, all of which have initial value
0. This will be the histogram of the image.

Step 2: For each pixel value g ≠ a, compute k ≡ ⌊ g−b
Δ

⌋
. If g = a set k = 29. This step identifies the

bin to which this pixel belongs.
Step 3: Set H(k) = H(k) + 1. This step counts the pixel in the correct bin.

The results are shown in Figure 3.65.

(Continued)
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Example 3.67 (Continued)
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Figure 3.65 Histograms of the gradient magnitude for the textures of Figure 3.1.
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Example 3.68

The orientation histogram of an image is defined by counting the number of pixels
that have gradient vector in the same direction, with some tolerance that defines the
width of the bin used for the construction of the histogram. The gradient orientation
may be computed as follows. First, we use the method of Example 3.67 to compute
the components of the gradient vector (𝛿x, 𝛿y) at each pixel position. From them we
compute the orientation as 𝜃 = tan−1(𝛿y∕𝛿x), taking care of the signs of the numerator
and the denominator so the values of 𝜃 are in the range [0∘, 360∘). Figure 3.66 shows
the result of this process for a particular image. Compute the orientation histogram
of this image and visualise it as a polar function.

Figure 3.66 The orientations of the gradient vectors
computed for each pixel.

We select to use bins of width 45∘. Then we count the number of orientation vectors in the
ranges [0, 45∘), [45∘, 90∘), [90∘, 135∘), [135∘, 180∘), [180o, 225∘), [225∘, 270∘), [270∘, 315∘) and
[315∘, 360∘). The constructed histogram is shown in Figure 3.67a.

To visualise the histogram, we consider polar coordinates in the plane, in order to plot the
values of the histogram as a function of the orientation. First, we identify the middle value of each
bin, i.e. 22.5∘, 67.5∘, etc. and we plot a point at radius equal to the value of the histogram for that
bin. Then we join the 8 points we plotted with straight lines. The result is shown in Figure 3.67b. A
quick glance at this representation immediately makes it obvious that the image, from which the
orientation field shown in Figure 3.66 was computed, was anisotropic, with dominant orientation
along 22.5∘ ± 22.5∘.
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Figure 3.67 (a) The orientation histogram of image 3.66. (b) The orientation histogram visualised as
a function of the polar angle.
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Example B3.69

When creating histograms, it is very important to use bins with equal capacity. When
creating the orientation histogram of 3D (volume) data, the bins represent orienta-
tions in 3D space. Show that, in order to create bins of equal solid angle, we must use
cylindrical coordinates (R, 𝜙, z) and divide the azimuth circle in equal segments and
the z axis in equal segments too.

Δφ
B

Aθ

z

x

O

φ

S Δθ
C

D

Figure 3.68 The unit sphere and an infinitesimal
surface element on it.

Figure 3.68 shows the unit sphere. We know that a solid angle is measured in sterads equal to
the area it subtends on the surface of the unit sphere with its centre at the vertex of the angle. We
realise, therefore, that we can create bins of equal solid angle if we divide the surface of the unit
sphere in spherical patches of equal area. Let us consider an infinitesimal surface element, as
shown in Figure 3.68, created by considering two arcs on parallel circles of Δ𝜙 degrees, along the
azimuth direction, and two arcs of Δ𝜃 degrees along two polar circles. These infinitesimal arcs
are arcs AB, BC, CD and DA as shown in Figure 3.68. The area of the infinitesimal patch they
define is |AB| × |AD|, where |AB| and |AD| are the lengths of the corresponding arcs. Length|AD| is clearly |SA|Δ𝜙, since |SA| is the radius of the parallel circle to which this arc belongs.
From triangle OAS, this radius is |SA| = |OA| sin 𝜃 = sin 𝜃. So, |AD| = sin 𝜃Δ𝜙. Length |AB| is|AB| = |OA|Δ𝜃 = Δ𝜃. So, the area of the infinitesimal patch is sin 𝜃Δ𝜙Δ𝜃. If r is the radius of the
sphere, cylindrical coordinate z is related to polar angle 𝜃 by z = r cos 𝜃 = cos 𝜃. Therefore, Δz =
− sin 𝜃Δ𝜃. We may say, therefore, that the infinitesimal patch we considered has area |ΔzΔ𝜙|,
where the absolute value is used, because area is always positive. To create a finite patch, we have
to integrate this area over a range of z and a range of 𝜙. So, if we choose equal ranges in z and in
𝜙, we shall create finite patches of equal area on the sphere, which will then be used to define the
solid angle bins of the 3D orientation histogram we wish to construct.

Box 3.17 Constructing the 3D orientation histogram of a 3D image

Step 0: Select the number of bins you will use for the z axis. Call it Nz. Select the number of
bins you will use for the azimuth angle 𝜙. Call it N𝜙.



�

� �

�

3.4 Image Statistics 181

Step 1: Compute the bin width for the z axis. The range of values of z is [−1, 1]. So, set Δz =
2∕Nz. Set Δ𝜙 = 360∘∕N𝜙.

Step 2: Set up an array H of size Nz × N𝜙 and initialise all its elements to 0. Assume that the
indices (i, j) of its elements will take values from 1 to Nz and from 1 to N𝜙, respectively.

Step 3: Convolve the image along the x, y and z axis with the 3D filter that is 3 × 3 × 3 in size,
with weights along its three planes that are orthogonal to the direction of convolution as
shown in Figure 3.69.

Figure 3.69 The generalisation of the Sobel filter to
3D. These are the three panels of weights when the
convolution of the image happens from left to right.
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The output of each convolution should be divided by 32 to take into consideration the fact
that smoothing panels have weights summing up to 16 and the derivatives are estimated by
considering voxels two positions apart. The final output of this step will be three volumes,
each one containing one component of the gradient vector at each voxel position. Let us
call these components 𝛿x, 𝛿y and 𝛿z.

Step 4: For each voxel, compute:

Oz =
𝛿z√

𝛿x2 + 𝛿y2 + 𝛿z2
Õ𝜙 = cos−1

( |𝛿x|√
𝛿x2 + 𝛿y2

)
. (3.196)

Note that Õ𝜙 is always going to be in the range [0∘, 90∘]. From Õ𝜙 we can compute O𝜙, which
must take values in the range [0∘, 360∘), by taking into consideration the sign of 𝛿x and 𝛿y,
as follows.

O𝜙 = Õ𝜙 if 𝛿x > 0 and 𝛿y > 0

O𝜙 = 180∘ − Õ𝜙 if 𝛿x < 0 and 𝛿y > 0

O𝜙 = 180∘ + Õ𝜙 if 𝛿x < 0 and 𝛿y < 0

O𝜙 = 360∘ − Õ𝜙 if 𝛿x > 0 and 𝛿y < 0. (3.197)

Step 5: For each voxel, compute:

ĩ = ⌊Oz

Δz
⌋ j = ⌊O𝜙

Δ𝜙
⌋. (3.198)

From ĩ we must compute the bin index i, as follows.
If Nz is even, say Nz = 2k, i = ĩ + k.
If Nz is odd, say Nz = 2k + 1 and 𝛿z > 0, i = ĩ + k + 1.
If Nz is odd, say Nz = 2k + 1 and 𝛿z < 0, i = ĩ + k.

Step 5: Set:

H(i, j) = H(i, j) + 1. (3.199)
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Example B3.70

You want to construct the 3D orientation histogram for some volume data, using 10
bins in the z direction and 12 bins for the azimuth direction. A particular voxel has
gradient vector (15,−12,−8). Work out the bin to which it belongs.
First we compute the bin width for each component:

Δz = 2
10

= 0.2

Δ𝜙 = 360∘
12

= 30∘. (3.200)

We are given: 𝛿x = 15, 𝛿y = −12, 𝛿z = −8. We compute:

Oz =
𝛿z√

𝛿x2 + 𝛿y2 + 𝛿z2
= −8√

152 + (−12)2 + (−8)2
= −0.384

Õ𝜙 = cos−1

( |𝛿x|√
𝛿x2 + 𝛿y2

)
= cos−1

(
15√

152 + (−12)2

)
= 38.66∘. (3.201)

Since 𝛿x > 0 and 𝛿y < 0, O𝜙 = 360∘ − 38.66∘ = 321.34∘.
Next, we work out:

ĩ = ⌈Oz

Δz
⌉ = ⌈−0.384

0.2
⌈= ⌈−1.92⌉ = −1

j = ⌈O𝜙

Δ𝜙
⌉ = ⌈321.34o

30∘
⌈= ⌈10.711⌉ = 11. (3.202)

As Nz is even, equal to 2 × 5, k = 5 and i = −1 + 5 = 4.
Figure 3.70 shows the accumulator array we create to make the histogram. The black dot indi-

cates the bin to which this particular voxel contributes.
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Figure 3.70 The accumulator array we create in
order to compute the 3D orientation histogram
with 10 bins along the z axis and 12 for the
azimuth angle. The numbers next to the lines
defining the various cells are the cell boundaries.
The integers between the lines indicate the bin
indices.
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What is the rank-frequency plot?

The rank-frequency plot is the plot of the logarithm of the number of pixels that have the same grey
value versus the logarithm of the rank of these numbers, in decreasing order.

Example 3.71

Construct the rank-frequency plot for the 3-bit image of Figure 3.71a.
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Figure 3.71 (a) A 3-bit grey image. (b) Its rank-frequency plot.

Table 3.13 shows the number of pixels for each one of the possible grey values for this image,
their rank, in decreasing order of occurrence, and the logarithms of the values needed for the
construction of the rank-frequency plot.

Figure 3.71b shows the rank-frequency plot constructed.

Table 3.13 The number of pixels with each one of the grey values and the rank of
these numbers in decreasing order. Here m(r) is the number of pixels with grey value
with rank r.

Grey value m(r) log m(r) r log r

0 18 1.255 3 0.477
1 13 1.114 5 0.699
2 16 1.204 4 0.602
3 11 1.041 7 0.845
4 12 1.079 6 0.778
5 9 0.954 8 0.903
6 21 1.322 2 0.301
7 44 1.643 1 0.000
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What is the run-length matrix?

The run length matrix is a matrix with elements Pij, which return the number of times j consecutive
pixels were found to have the same grey value i along a given direction.

Example 3.72

Construct the run-length matrices of the image in Figure 3.72, for the two main direc-
tions and along the two diagonal directions.
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Figure 3.72 A 2-bit 6 × 6 image.

The four run-length matrices constructed for the four main directions of the image are shown in
Figure 3.73.
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Figure 3.73 Each matrix is 4 × 6, as there are four different grey values and the maximum number of
consecutive pixels we may find with the same grey value is 6. The arrows at the top left of each matrix
indicate the direction along which each matrix has been constructed.

How do we compute the run-length matrix in practice?

We compute the run-length matrix in the following way:

Step 0: Set up a binary array S the same size as the image, where you will mark the pixels that
already have been counted in some run length. Initialise all elements of the array to 0.
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Step 1: Select the direction along which you wish to construct the matrix. If along the horizontal
direction, set i0 = 1 and j0 = 0; along the vertical direction, set i0 = 0 and j0 = 1; along the top
left to bottom right diagonal, set i0 = 1 and j0 = 1; along the bottom left to top right diagonal, set
i0 = 1 and j0 = −1.

Step 2: Create an array P of size (G + 1) × N, where G is the largest grey value in the image and N
is the largest linear dimension of the image. Arrange so that index g of the array runs from 0 to
G and index n runs from 1 to N. Initialise all elements of the array to 0.

Step 3: For each pixel (i, j) of input image I, which has 0 value in the marking array S:
Step 3.1: Set k = 1 and S(i, j) = 1.
Step 3.2: If (i + i0, j + j0) is not out of the image border go to step 3.3.
Step 3.3: If I(i, j) = I(i + i0, j + j0), set k = k + 1, S(i + i0, j + j0) = 1 and go to step 3.5.
Step 3.4: If I(i, j) ≠ I(i + i0, j + j0), go to step 3.6.
Step 3.5: Set i = i + i0 and j = j + j0 and go to step 3.2.
Step 3.6: Set P(I(i, j), k) = P(I(i, j), k) + 1 and go to step 3 to deal with the next unmarked pixel.

The marking array S ensures that a pixel that has been counted in a run length of, say, 5 pixels,
will not be counted again as being the origin of a run length of 4 pixels.

How do we compute features from the run-length matrix?

The first step is to normalise all elements of the run-length matrix so they sum up to 1, in order to
be able to treat it like a probability density matrix. We set

pij =
Pij∑G

i=0
∑N

j=1Pij

(3.203)

where G is the maximum grey value of the image and N is the maximum linear size of the image.
Then we may compute the following features.
Short run emphasis is the expectation value of the run lengths, putting emphasis on the short

ones by taking the inverse of each run length to the power of 2:

Fsre ≡
G∑

i=0

N∑
j=1

1
j2 pij. (3.204)

Long run emphasis is the expectation value of the run lengths, putting emphasis on the long
ones by putting them in the power of 2:

Flre ≡
G∑

i=0

N∑
j=1

j2pij (3.205)

Grey level non-uniformity is the marginal created by integrating over all runs, raised to the
power of 2 to accentuate the different behaviours of the different grey values, and summed up for
all grey values:

Fgln ≡
G∑

i=0

( N∑
j=1

pij

)2

. (3.206)

Run length non-uniformity is the marginal created by integrating over all grey values, raised
to the power of 2 to accentuate the variety of the encountered run lengths, and summed up for all
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run lengths:

Frln ≡
N∑

j=1

( G∑
i=0

pij

)2

. (3.207)

Run percentage is the number of non-zero elements of matrix P over the total number of pos-
sible runs:

Frp ≡ Number of pij ≠ 1
(G + 1)N

. (3.208)

The definitions of grey level non-uniformity and run length non-uniformity given here are dif-
ferent from those found in the original paper that introduced them, as those were computed from
non-normalised matrices. The way we define these features here allows us to interpret them as
marginals.

Example 3.73

Compute features (3.204)–(3.207) from the first run-length matrix of Figure 3.73.
The sum of all entries of the horizontal matrix is 27. Then:

Fsre =
3∑

i=0

6∑
j=1

1
j2 pij

= 1
12 × 6

27
+ 1

12 × 6
27

+ 1
12 × 5

27
+ 1

12 × 2
27

+ 1
22 × 2

27
+ 1

22 × 1
27

+ 1
22 × 1

27
+ 1

22 × 3
27

+ 1
32 × 1

27
= 1

27
× 751

36
= 0.773 (3.209)

Flre =
3∑

i=0

6∑
j=1

j2pij

= 1 ×
( 6

27
+ 6

27
+ 5

27
+ 2

27

)
+4 ×

( 2
27

+ 1
27

+ 1
27

+ 3
27

)
+ 9 × 1

27
= 56

27
= 2.074 (3.210)

Fgln =
3∑

i=0

( 6∑
j=1

pij

)2

=
( 6

27
+ 2

27

)2
+
( 6

27
+ 1

27

)2
+( 5

27
+ 1

27
+ 1

27

)2
+
( 2

27
+ 3

27

)2

= 64
729

+ 49
729

+ 49
729

+ 25
729

= 187
729

= 0.257 (3.211)

Frln =
6∑

j=1

( 3∑
i=0

pij

)2
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=
( 6

27
+ 6

27
+ 5

27
+ 2

27

)2
+( 2

27
+ 1

27
+ 1

27
+ 3

27

)2
+
( 1

27

)2

= 361
729

+ 49
729

+ 1
729

= 411
729

= 0.564 (3.212)

Frp = 1
24

× Number_of_pij ≠ 1 = 9
24

= 0.375. (3.213)

What is the variogram of an image?

The variogram of an image I is a function 𝛾(d) that returns half the average squared difference in
grey values of two pixels that are at a distance d apart:

𝛾(d) ≡ 1
2K

∑
all K pairs at dist. d

[I(i, j) − I(i + k, j + l)]2 where
√

k2 + l2 = d. (3.214)

Note that some people call this function a semi-variogram and define the variogram without
the 2 in the denominator. A numerical factor plays no role in the use of 𝛾(d), so we do not worry
about it here. The variogram is related to the image autocorrelation function R(d) through

𝛾(d) = 𝜎2 − R(d) − 𝜇2 (3.215)

where 𝜎2 is the variance of the pixel values and 𝜇 is their mean value.

Example 3.74

The variogram of some data is defined as

𝛾(d) ≡ 1
2

E{(Vi − Vj)2} for |i − j| = d (3.216)

where E is the expectation operator, and positions i and j are at distance d from each
other, while Vi is the value at position i. Prove Equation (3.215).
Let, for the sake of simplicity, index i identify a location (e.g. a pixel in an image) and index i + d
identify another location at distance d from i (e.g. another pixel in the image at distance d from
the first along any direction). We also remember that the expectation operator means averaging
over all pixels, or pairs of pixels, or whatever appears in its argument.

Let us start from the definition of 𝛾(d):

𝛾(d) ≡ 1
2

E{V 2
i + V 2

i+d − 2ViVi+d}

= 1
2

E{V 2
i } +

1
2

E{V 2
i+d} − E{ViVi+d}

= E{V 2
i } − E{ViVi+d}. (3.217)

Here we made use of the fact that when averaging over all pixels, it does not matter whether we
start from a shifted index or not. Clearly this is correct only if the data are infinite (i.e. index i takes
infinite values), or if the data are repeated periodically, so no matter where we start from, as long

(Continued)
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Example 3.74 (Continued)

as we consider the same number of samples/pixels, the average, i.e. the output of the expectation
operator, will be the same: E{V 2

i } = E{V 2
i+d}.

We also have for the variance of the data:

𝜎2 ≡ E{(Vi − 𝜇)2}
= E{V 2

i + 𝜇2 − 2Vi𝜇}
= E{V 2

i } + 𝜇2 − 2𝜇E{Vi}
= E{V 2

i } + 𝜇2 − 2𝜇2

E{V 2
i } = 𝜎2 − 𝜇2. (3.218)

Then, by substitution from (3.218) into (3.217) and recognising that E{ViVi+d} = R(d), we obtain
(3.215).

Example 3.75

Prove that the variogram of some data 𝛾(d) for shift d is related to the autocovariance
of the data C(d) through

𝛾(d) = 𝜎2 − C(d) − 2𝜇2 (3.219)

where 𝜇 is the mean value of the data.
The autocovariance function of the data is:

C(d) ≡ E{(Vi − 𝜇)(Vi+d − 𝜇)}
= E{ViVi+d − Vi𝜇 − Vi+d𝜇 + 𝜇2}
= E{ViVi+d} − 𝜇E{Vi} − 𝜇E{Vi+d} + 𝜇2

= E{ViVi+d} − 𝜇2 − 𝜇2 + 𝜇2

⇒ E{ViVi+d} = C(d) + 𝜇2. (3.220)

Here we made use of the fact that when the expectation operator is applied to individual values
it yields the expected value of the data, i.e. 𝜇, and when the expectation operator is applied to a
constant it leaves it unchanged.

We may substitute now from (3.220) and (3.218) into (3.217) to obtain (3.219).

Example 3.76

Calculate the variogram of the signal shown in Figure 3.8a for d = 1, d = 2 and d = 3.
Using the entries of table 3.14 we can calculate the values of the variogram:

𝛾(1) = 1
48

(14 × 02 + 2 × 12 + 2 × 22 + 2 × 32 + 4 × 42) = 1.92

𝛾(2) = 1
46

(4 × 02 + 4 × 12 + 4 × 22 + 4 × 32 + 7 × 42) = 3.65
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𝛾(3) = 1
44

(1 × 02 + 6 × 12 + 4 × 22 + 3 × 32

+5 × 42 + 2 × 52 + 1 × 72) = 5.18. (3.221)

Table 3.14 Number of pairs of samples with certain absolute difference in value, for
different distance d from each other.

Absolute difference d = 1 d = 2 d = 3

0 14 4 1
1 2 4 6
2 2 4 4
3 2 4 3
4 4 7 5
5 0 0 2
6 0 0 0
7 0 0 1
Total 24 23 22

How do we compute the variogram of an image in practice?

You may use the following simple algorithm, or alternatively we may use precalculated pairs of
pixels by considering digital circles (see Example 3.90).

Step 1: Select a value of distance d.
Step 2: For each pixel (i, j) draw a random number 𝜙 in the range [0, 90∘]. Then consider the set

of coordinates (i + d cos𝜙, j + d sin𝜙). By interpolation, find the grey value at this position. Note
that the interpolation you use might be as simple as nearest neighbour interpolation. The restric-
tion of the values of angle𝜙 in the first quadrant ensures that you will not count a pair of positions
twice.

Step 3: Compute the average square difference of the values of all paired positions you considered.
Divide this value by 2. This is 𝛾(d).

Step 4: Repeat from step 1 by considering another value of d.

Note that it is possible to consider many angles 𝜙 to construct several pairs from a particular
pixel. In general, however, this is not considered necessary if we have enough pixels to construct
reliable statistics by creating a single pair from each pixel. It is, of course possible to fix angle 𝜙 and
construct a different variogram for different orientations in order to capture texture anisotropy.
It is also worth noting that this method is most appropriate for dense grid data. Often, however,
the data we have are sparse, i.e. they are not arranged in a regular grid. This often happens in
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geophysics, where the data are collected at positions where data collection is possible and they
do not, in general, constitute a rectangular grid. As such data characterise natural structures or
physical phenomena, their variation is often characterised by their variogram.

How do we compute the variogram of irregularly sampled data in practice?

Assume that we have data points spread over a grid of size N × N. Assume also that only M < N2 out
of these grid positions have known values. These grid positions, with known values, are randomly
scattered all over the N × N grid. We index these points sequentially using index i, i = 1, 2,… ,M
and assume that the value of point i is Vi, while its grid coordinates are (xi, yi). We can compute the
variogram of these values using the following algorithm.

Step 1: Create a list of xi, yi and Vi of all the points with known values.

Step 2: Compute
⌊

N ×
√

2
⌋ ≡ K. This is the largest possible distance between any two points with

known values which is along the grid diagonal.

Step 3: Create two accumulator arrays N(k) and S(k) for k = 1, 2,… ,K, and set all their elements
to 0.

Step 4: Go through the list of points i, with i = 1, 2,… ,M, and for each j > i, set:
d =
√

(xi − xj)2 + (yi − yj)2

k = ⌊d⌋
N(k) = N(k) + 1 and S(k) = S(k) + (Vi − Vj)2.

Step 5: Set: 𝛾(k) = S(k)∕(2N(k)).

Example 3.77

Compute the variogram of the images of Figure 3.1 for d = 1, 2, 3, 4, 5.
Then subsample each image by randomly keeping only 10% and 20% of its pixels

and calculate again their variograms.
Figure 3.74 shows the results. We observe that even with only 10% of the pixels, randomly
selected from the image, the computed variogram does not look different from that computed
by using all the pixels. This is a very important observation, as it means that the variogram
of the data on a complete grid may be adequately inferred from sparse data. For textures
that are adequately characterised by their second order statistics, one then may assign values
to the empty cells of a sparsely populated grid, so that the variogram of the constructed full
grid agrees with the variogram of the given values. This method is used in geosciences (see
Section 3.8).
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Figure 3.74 Variograms for the images of Figure 3.1. (a) Using the whole image. (b) Using only 10%
of the pixels, randomly selected. (c) Using 20% of the pixels, randomly selected.
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How can we use the variogram to characterise textures?

A variogram is characterised by three parameters, shown in Figure 3.75, namely the range, the sill
and the nugget.

Range is the shift value Rd beyond which the variogram 𝛾(d) does not change as d increases.
Sill is the value the variogram attains at the range Rd, which does not change as d increases.
Theoretically, 𝛾(0) is expected to be 0. However, when we construct the variogram empirically,

due to noise in the measurements or even microstructure in the data, the slope of the points on the
left does not often indicate that the data pass through the (0, 0) point. This is known as the nugget
effect. The intercept of the notional line that fits the data with the vertical axis is known as the
nugget of the variogram.

The values of these parameters, as well as the parameters of any model we use to fit the variogram
over its range, may be used as features that characterise the texture.

How may we compute automatically the nugget, sill and range of the variogram?

The nugget may be computed by extrapolating a line fitting the data for small values of d until its
intercept with the vertical axis is found.

To compute the sill and range, we create a histogram of the values of 𝛾 . We then identify the bin
with the maximum number of values. This must be the bin that contains all points that correspond
to the flat part of the variogram. The average value of this bin is the sill. From all points dk that had
values in the bin with the maximum occupancy, we select the point with the minimum value of dk.
This is the range of the variogram. The algorithm is as follows.

Step 0: Select a width 𝛾0 of the bins for the values of 𝛾 you will use.
Step 1: Set:

𝛾min ≡ min
d

{𝛾(d)} 𝛾max ≡ max
d

{𝛾(d)} dmax ≡ max {d}. (3.222)

Step 2: Set N ≡ ⌊ 𝛾max
𝛾0

⌋
+ 1.

Step 3: Create an array A of size N and initialise all its elements to 0. Let its elements be indexed
by k = 1,… ,N.

Step 4: For d from 1 to dmax , compute:

k = ⌈𝛾(d)
𝛾0
⌉ A(k) = A(k) + 1. (3.223)

Step 5: Find the maximum of A(k), Amax , and the corresponding index kmax such that A(kmax ) =
Amax .

Step 6: Create an array B of size Amax . Set l = 1.
Step 7: For d from 1 to dmax : If (kmax − 1)𝛾0 ≤ 𝛾(d) < kmax 𝛾0, set:

B(l) = d l = l + 1. (3.224)

Range

Nugget

Sill

γ

d

0

Figure 3.75 The black dots represent data values. The solid line
represents the generic shape of the variogram.The value at d = 0 is the
nugget, the constant value for d ≥ range is the sill. We may identify the
sill by collapsing the data on the vertical axis and finding the bin with
the maximum occupancy.
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Step 8: Find the minimum of B(l). This is the range of the variogram.
Step 9: Compute the average value of 𝛾(B(l)). This is the sill of the variogram.

Example 3.78

Compute automatically the range and the sill of the variograms of images 3.1.
We used bin width 𝛾0 = 50 and dmax = 100. Table 3.15 shows the values of the range and sill of
these images computed automatically. We also list the variance of each image. The agreement the
variance has with the value of the sill is an indication that the sill and range have been computed
correctly. Indeed, beyond the range, the variogram uses the differences of uncorrelated data. As
these data values are subtracted, the variance of their difference is twice the variance of the data
values themselves. The average squared difference is divided by 2 to produce the variogram value,
and, therefore, what the variogram computes beyond the range is the variance of the grey values.

Figure 3.76 shows two indicative results of the variograms of two of the images with the iden-
tified values of range and sill marked.

Table 3.15 The range and sill of the variograms of images 3.1, as well as the
variance of the grey values of each image.

Image Range Sill Variance

Cloth 1 20 1421.6 1413.6
Cloth 2 15 578.2 592.9
Food 7 1929.2 1941.7
Plastic 16 1423.7 1450.4
Fabric 1 19 875.6 862.5
Fabric 2 10 1469.4 1465.6
Beans 12 2770.1 2767.6
Sand 4 594.7 603.7

Sill

Range

Sill

Range

(a) Cloth 1 (b) Cloth 2

Figure 3.76 The variograms of the two images in Figure 3.1.
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Can we use the variogram for anisotropic textures?

Yes. We may compute the variogram for paired pixels along the same orientation, and thus have
a different variogram for different directions of the image. So, the variogram may be expressed as
𝛾(d1, d2), with d1 and d2 being the relative shifts of the pixels along the horizontal and vertical axis,
respectively.

How can we model an anisotropic variogram?

Although different models may be used along different directions, often we use a separable func-
tion, so that the variogram is modelled as a function of the distance of the paired pixels times a
function of the orientation angle. For example, for the case of the fractal model, where 𝛾(d) ∼ d2H ,
the model becomes 𝛾(d) ∼ d2Hf (𝜃), where 𝜃 is a function of the orientation angle 𝜃.

Example 3.79

You are given a random field g(i, j), with variogram 𝛾(d1, d2). Assume that you distort
this random field, by shifting the value of each pixel (i, j)T ≡ r to a new position r′ =
(i′, j′)T , given by

r′ =
(

i′
j′

)
=
(

m11 m12
m21 m22

)(
i
j

)
≡ Mr. (3.225)

Show that the variogram of the distorted random field is given by 𝛾(M(d1, d2)T).
Let us calculate the variogram of the new field g′(i′, j′) we created. Let us denote by s′ ≡ (k′, l′)T

another location in field g′(i′, j′) and by s ≡ (k, l)T the corresponding location in field g(i, j). We
also note that the arguments of the variogram of g(i, j) represent shift between two locations, so
we may write i − k ≡ d1 and j − l ≡ d2. Then:

E{|g′(i′, j′) − g′(k′, l′)|2} = E{|g′(r′) − g′(s′)|2}
= E{|g(Mr) − g(Ms)|2}
= E{|g(m11i + m12j,m21i + m22j) − g(m11k + m12l,m21k + m22l)|2}
= 𝛾(m11i + m12j − m11k − m12l,m21i + m22j − m21k − m22l)

= 𝛾(m11(i − k) + m12(j − l),m21(i − k) + m22(j − l))

= 𝛾
(

M(d1, d2)T) . (3.226)
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Example 3.80

You are given the isotropic fractal images shown in Box 3.14. Construct anisotropic
fractal images from them, with the help of the transformation matrix

M =

( √
1 − 𝛼 cos 𝜃0

√
1 − 𝛼 sin 𝜃0

−
√

1 + 𝛼 sin 𝜃0

√
1 + 𝛼 cos 𝜃0

)
(3.227)

where 𝛼 is a parameter controlling the degree of anisotropy of the created image,
with 0 ≤ 𝛼 ≤ 1, so that for 𝛼 = 0 the new image is also isotropic, while for 𝛼 = 1
the new image has maximum anisotropy, and 𝜃0 is the dominant direction of
anisotropy.
To construct an anisotropic version of the given image, we first create an empty array the same
size as the given image. Let us identify its pixels with indices (i′, j′). Matrix M tells us how the
coordinates (i, j) of the original image are transformed to the coordinates of the new image. This,
however, is not what we need. We need to know how the (i′, j′) coordinates of the new image are
transformed to the (i, j) of the original image, so we can read directly the grey value of the original
image and assign it to the transformed coordinates. For this purpose, we need the inverse of matrix
M, which can easily be calculated. First we calculate the determinant of the matrix:√

1 − 𝛼2cos2𝜃0 +
√

1 − 𝛼2sin2
𝜃0 =
√

1 − 𝛼2. (3.228)

Then, with the help of co-factors, we obtain:

M−1 =

( 1√
1−𝛼

cos 𝜃0 − 1√
1+𝛼

sin 𝜃0
1√
1−𝛼

sin 𝜃0
1√
1+𝛼

cos 𝜃0

)
. (3.229)

Then we apply the following algorithm.

Step 1: For every pixel (i′, j′) of the new image, work out the corresponding pixel in the original
image by multiplying (i′, j′)T from the left with matrix M−1, given by (3.229). The coordinates
you will find will be real numbers, (x, y).

Step 2: Round coordinates (x, y) to the nearest integer, to identify the pixel in the original image
(i, j) that corresponds to pixel (i′, j′) of the new image.

Step 3: Read the grey value of pixel (i, j) and assign it to pixel (i′, j′).

Note that this algorithm uses nearest neighbour interpolation to assign a grey value to the
non-integer position (x, y). Other methods, like bilinear interpolation might be used instead (see
the book Image Processing, The Fundamentals [75]).

Figure 3.77 shows anisotropic textures produced from Figure 3.48 using parameters
𝜃0 = 30∘, 45∘, 60∘ and 𝛼 = 0, 0.5 and 0.9.

(Continued)
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Example 3.80 (Continued)

Original

θ0 = 30° α = 0.0

θ0 = 45° α = 0.0 θ0 = 45° α = 0.5 θ0 = 45° α = 0.9

θ0 = 60° α = 0.0 θ0 = 60° α = 0.5 θ0 = 60° α = 0.9

θ0 = 30° α = 0.5 θ0 = 30° α = 0.9

Figure 3.77 Distorted versions of the 2D fractal in Figure 3.48 for H = 0.3. The orginal image is
257 × 257 pixels. Source: Maria Petrou.

Example 3.81

An isotropic fractal image with variogram 𝛾(d1, d2) ∝ (d2
1 + d2

2)
H , was used to create an

anisotropic fractal image with the help of matrix M given by Equation (3.227). Show
that the variogram of the distorted image will be proportional to:

(d2
1 + d2

2)
H(1 − 𝛼 cos[2(𝜃 − 𝜃0)]

)H
. (3.230)
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According to Example 3.79, the variogram of the distorted image will be given by 𝛾(M(d1, d2)T).
We must first calculate M(d1, d2)T and then substitute it into the formula that gives the variogram
of the original image. To be consistent with the isotropic version of the image, we shall use polar
coordinates for the displacement vector (d1, d2)T, by considering that it consists of a displacement
distance d along a direction 𝜃. Then we can write: (d1, d2)T = (d cos 𝜃, d sin 𝜃)T. So:

M
(

d1
d2

)
=

( √
1 − 𝛼 cos 𝜃0

√
1 − 𝛼 sin 𝜃0

−
√

1 + 𝛼 sin 𝜃0

√
1 + 𝛼 cos 𝜃0

)(
d cos 𝜃
d sin 𝜃

)
=

( √
1 − 𝛼 cos 𝜃0d cos 𝜃 +

√
1 − 𝛼 sin 𝜃0d sin 𝜃

−
√

1 + 𝛼 sin 𝜃0d cos 𝜃 +
√

1 + 𝛼 cos 𝜃0d sin 𝜃

)

=

(
d
√

1 − 𝛼 cos(𝜃 − 𝜃0)
d
√

1 + 𝛼 sin(𝜃 − 𝜃0)

)
. (3.231)

Then the variogram of the new image is:

𝛾(M(d1, d2)T) ∝
[(

d
√

1 − 𝛼 cos(𝜃 − 𝜃0)
)2

+
(

d
√

1 + 𝛼 sin(𝜃 − 𝜃0)
)2
]H

=
[
d2(1 − 𝛼)cos2(𝜃 − 𝜃0) + d2(1 + 𝛼)sin2(𝜃 − 𝜃0)

]H
=
[
d2cos2(𝜃 − 𝜃0) − d2𝛼cos2(𝜃 − 𝜃0) + d2sin2(𝜃 − 𝜃0) + d2𝛼sin2(𝜃 − 𝜃0)

]H
=
[
d2 − d2𝛼

[
cos2(𝜃 − 𝜃0) − sin2(𝜃 − 𝜃0)

]]H
= d2H[1 − 𝛼 cos[2(𝜃 − 𝜃0)]

]H
. (3.232)

Can we use the autocorrelation function itself to characterise a texture?

In general we do not use the autocorrelation function, but the normalised autocorrelation function,
defined as

𝜌(x, y) =

1
(Ni−|x|)(Nj−|y|)∑i

∑
jI(i, j)I(i + x, j + y)

1
NiNj

∑Ni
i=1
∑Nj

j=1 I(i, j)2
(3.233)

where I(i, j) is the grey value of pixel (i, j) and the image is assumed to be of size Ni × Nj. The sum-
mation over i and j in the numerator is over all legitimate values of these coordinates, depending
on the sign of the shifts x and y:

Sum i Sum j
From To From To

x ≥ 0 y ≥ 0 1 Ni − x 1 Nj − y
x ≥ 0 y < 0 1 Ni − x 1 − y Nj

x < 0 y ≥ 0 1 − x Ni 1 Nj − y
x < 0 y < 0 1 − x Ni 1 − y Nj

Note that 𝜌(0, 0) = 1. This definition of the autocorrelation function does not obey the
Wiener–Kinchine theorem, i.e. its Fourier transform is not the power spectrum of the image (see
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Example 3.109). This is because for the theorem to be obeyed, the image has to be assumed to be
repeated ad infinitum in all directions, while in the present definition we do not make such an
assumption.

Another important point to note about the above definition is that although we say we are com-
puting the autocorrelation function, in practice we must remove the mean of each image before
we apply formula (3.233). So, we are actually computing the auto-covariance function, and not the
autocorrelation. This is because we are interested in genuine high-frequency variations of the data
and not any drift that might be caused, for example, by spatially variable illumination. Figure 3.78
shows four texture images, and, next to each one, the corresponding auto-covariance function
appropriately scaled to be presented as a surface. Figure 3.79 shows the auto-covariance functions
of two other images and below each one the corresponding autocorrelation function. The effect of
failing to remove the mean is very clear.

The normalised autocorrelation function as defined above may be used in three ways to charac-
terise a texture:

● By using it directly as a signature
● By inferring the periodicity of the texture from it
● By extracting parametric features from it.

How can we use the autocorrelation function directly for texture characterisation?

We can use 𝜌(x, y) directly as representing the texture and compare it point by point with the auto-
correlation function of another texture to see how similar the two textures are. The comparison may
be done by computing, for example, the sum of the squares of the differences, or the correlation
coefficient between the two functions, or some other measure of similarity.

Alternatively, one may use 𝜌x(x) ≡ ∑y𝜌(x, y) and 𝜌y(y) ≡ ∑x𝜌(x, y) as the texture signatures. It is
expected that if a texture is isotropic, these two signatures will be, to a large extent, identical. How-
ever, when one is dealing with stochastic phenomena, the word “identical” has to be used with cau-
tion. For example, Figure 3.80 shows these two signatures for two random (and isotropic-looking)
textures. It is very difficult to say that the 𝜌x(x) and 𝜌y(y) marginal signatures of the auto-covariance
function of each texture look the same, apart from some general characteristics: the signatures of
the micro-texture have higher density of peaks than the signatures of the macro-texture. For tex-
tures that have some periodicity, and in particular periodicity along two orthogonal directions, like
the textures shown in Figure 3.81, one might have expected the two signatures to look the same. The
plots in Figure 3.81 show that this is not the case: a slight misalignment of the direction of repetition
of the pattern with one of the axes totally destroys the periodic nature of one of the signatures.

Figure 3.82 shows two macro-textures, a directional periodic and an isotropic random. What
characterises these signatures is the lack of much detail in their shapes. They make a clear state-
ment on the type of texture they are called to characterise. In particular, the signature along the
y axis for the fabric texture captures very accurately the periodicity of that texture along that axis,
and indicates that we may use the auto-covariance function to infer the periodicity of the texture
pattern.

How can we infer the periodicity of a texture from the autocorrelation function?

If a texture has a repeated primitive pattern, every time the shift of the autocorrelation function is
equal to the repetition shift, 𝜌(x, y) will have a peak. The number of peaks we observe may be used
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Figure 3.78 Normalised auto-covariance function (the autocorrelation function after having the mean of
each image removed) for images cloth 1, food, plastic and fabric 1, from top to bottom, respectively.
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Figure 3.79 Normalised auto-covariance (top) and autocorrelation functions (below them) for cloth 2 and
fabric 2, from top to bottom, respectively.
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Figure 3.80 Marginals of the auto-covariance function for images food and plastic.

to characterise the texture, and from their positions one may infer the periodicity of the texture.
Table 3.16 lists the number of peaks observed in each marginal of 𝜌(x, y), for all example images of
Figure 3.1. By simply looking at these numbers we may say that, for example, the bean texture is
a macro-texture (few peaks) isotropic (more or less the same number of peaks in both signatures)
with an effective periodicity of Teff = 256∕12 ≃ 21. Teff was computed by observing that we have
an average of 12 (= (13 + 11)∕2) peaks in a dimension of 256 (the image is 256 × 256 in size). So,
we may say for this texture that it is macroscopic, isotropic, with blobs of linear size of about 21
pixels. We may make a similar inference for the texture plastic (Figure 3.80). The values of the
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Figure 3.81 Marginals of the auto-covariance function for images cloth 2 and fabric 2.

central peaks of the two marginals, also listed in Table 3.16, may be used as discriminating features
between these two textures.

Using the same logic, texture fabric 1 (Figure 3.82) appears to be an anisotropic texture, with
more or less double periodicity along one of the axes. We may infer that it is a macroscopic tex-
ture made up of elongated blobs that along the x axis have size roughly 256∕11 ≃ 23 and along
the y axis 256∕5 ≃ 51. This assessment is roughly correct. However, when it comes to cloth 2, this
logic leads to the wrong conclusions: according to the number of peaks along the two signatures,
cloth 2 (Figure 3.81) appears to be an anisotropic micro-texture. From the actual signatures them-
selves, cloth 2 appears anisotropic, perfectly periodic along the y axis, with random fluctuations
along the x axis. Neither of these assessments is correct. The reason for this failure is the fact that
we are dealing with an anisotropic micro-texture, and the use of two marginals only to charac-
terise the auto-covariance function is not enough: for a better characterisation, the marginal of the
auto-covariance function has to be computed along several orientations. The orientations which
coincide with the directions of periodicity will present signatures like 𝜌y(y) of Figure 3.81 from
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Figure 3.82 Marginals of the auto-covariance function for images fabric 1 and beans.

which one can easily infer the periodicity as being 256∕19 ≃ 13 pixels. Along all other orientations
we shall be getting signatures like 𝜌x(x) of the same figure.

We can then see that to infer periodicity, we must compute the standard deviation of the
distances of the successive peaks we identify: when there is periodicity this spread is expected to
be very low, while when there is no periodicity the spread is expected to be high. The values of
these standard deviations when all peaks are counted, i.e. without any curve smoothing taking
place, are given in the sixth and seventh columns of Table 3.16. We note that the correlation
with observed periodicity is not very good. This is because we have not taken into consideration
the effective breadth of each peak: a standard deviation of the distances between peaks is only
meaningful in terms of the mean distance between peaks, i.e. the mean size of the peaks. We
may have an estimate of this “effective” peak size if we divide the size of the image, along each
direction considered, with the number of peaks observed in the corresponding marginal. So,
effective_peak_size=image_size/number_of_peaks. We must then divide each standard deviation
with the corresponding effective peak size. As all images we use are of the same size, this is
equivalent to multiplying the standard deviations with the corresponding number of observed
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Table 3.16 Features derived from the profiles of the autocorrelation functions of the texture images of
Figure 3.1.

Image 𝝆x(0) 𝝆y (0) Peaks Peaks 𝝈
𝝆x (x)

𝝈
𝝆y (y)

𝝈N𝝆x (x)
𝝈N𝝆y (y)

C
𝝆x(x) 𝝆y (y)

Cloth 1 0.042 0.043 13 9 10.1 16.6 131 149 N
Cloth 2 0.040 0.075 35 19 2.5 0.4 88 8 SP
Food 0.011 0.019 41 39 2.4 3.9 98 152 N
Plastic 0.070 0.048 9 11 12.3 10.1 111 111 N
Fabric 1 0.018 0.121 11 5 15.7 3.5 173 18 SP
Fabric 2 0.029 0.111 31 37 1.3 0.4 40 15 P
Beans 0.040 0.011 13 11 1.3 10.5 17 116 SP
Sand 0.014 0.023 35 33 3.1 2.4 109 79 N

peaks. The result is given in columns 8 and 9 of Table 3.16, under the headings 𝜎N𝜌x(x) and 𝜎N𝜌y(y),
with suffix N standing for “normalised”. On the basis of these numbers, we may characterise
each texture as periodic, if both numbers are low, semi-periodic, if only one number is low
indicating periodicity along one direction only, and non-periodic, if both numbers are high. These
classes are indicated by letters P, SP and N respectively, given in the last column of the table,
under the heading C. We can see that these characterisations agree with the appearance of these
textures.

A note of caution: one should be careful when one uses terms like “low” and “high”. Such terms
have only relative meaning, and it is in this spirit that they are used here.

How can we extract parametric features from image statistics?

By fitting various parametric models to them. For many-point statistics we may use statistical
models, like the Markov random fields, where the parameters involved are known as Markov
parameters, or Gibbs distributions, where the parameters involved are known as local poten-
tials. For the one- or two-point statistics we may use functional models, e.g. first or second order
polynomials. The way of computing the parameters of some such models is described in Boxes
3.18–3.20. Alternatively, more specialised models, like the Weibull distribution for the histogram
or the generalised Zipf distribution for the rank-frequency histogram may be used. In all cases
the texture features are the parameters of the model used.

Box 3.18 Least square error fitting of a second order surface in 2D

Let us assume that we have a function with known values 𝜌i at points (xi, yi). We assume that
we can fit the following function to these data:

𝜌(x, y) = Ax2 + By2 + Cxy + Dx + Fy + G. (3.234)
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The total error of fitting this function to the data is:

E =
∑

i
(𝜌(xi, yi) − 𝜌i)2 =

∑
i
(Ax2

i + By2
i + Cxiyi + Dxi + Fyi + G − 𝜌i)2. (3.235)

We must choose parameters A, B, C, D, F and G so that this error is minimum. We take the
partial derivative of this error with respect to each one of the parameters in turn, and set it to
zero, to produce a system of linear equations for the unknown parameters:

𝜕E
𝜕A

= 0 ⇒ 2
∑

i
(Ax2

i + By2
i + Cxiyi + Dxi + Fyi + G − 𝜌i)x2

i = 0

𝜕E
𝜕B

= 0 ⇒ 2
∑

i
(Ax2

i + By2
i + Cxiyi + Dxi + Fyi + G − 𝜌i)yi2 = 0

𝜕E
𝜕C

= 0 ⇒ 2
∑

i
(Ax2

i + By2
i + Cxiyi + Dxi + Fyi + G − 𝜌i)xiyi = 0

𝜕E
𝜕D

= 0 ⇒ 2
∑

i
(Ax2

i + By2
i + Cxiyi + Dxi + Fyi + G − 𝜌i)xi = 0

𝜕E
𝜕F

= 0 ⇒ 2
∑

i
(Ax2

i + By2
i + Cxiyi + Dxi + Fyi + G − 𝜌i)yi = 0

𝜕E
𝜕G

= 0 ⇒ 2
∑

i
(Ax2

i + By2
i + Cxiyi + Dxi + Fyi + G − 𝜌i). (3.236)

So, the system of linear equations we have to solve is:

A
∑

i
x4

i + B
∑

i
y2

i x2
i + C

∑
i

x3
i yi + D

∑
i

x3
i + F
∑

i
yix2

i + G
∑

i
x2
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∑

i
𝜌ix2

i
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i
x2

i y2
i + B
∑

i
y4

i + C
∑

i
xiy3
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∑

i
xiy2

i + F
∑

i
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∑

i
y2
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∑
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∑
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∑
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x2
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∑
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∑
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∑
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xiyi =
∑
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i
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∑
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∑

i
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∑

i
x2

i + F
∑
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∑
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∑
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∑
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∑
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∑
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∑
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∑
i

yi =
∑

i
𝜌iyi

A
∑

i
x2

i + B
∑
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∑

i
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∑
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∑
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∑
i

1 =
∑

i
𝜌i.

This is a system of six linear equations for six unknowns and it may be solved to yield the
values of A, B, C, D, F and G.

Box 3.19 Least square error fitting of a second order curve in 1D

Let us assume that we have a 1D function with values 𝜌i at points xi. Let us also assume that
we wish to fit these data points with a parabola, i.e. with a curve with equation:

𝜌(x) = Hx2 + Jx + K. (3.237)

(Continued)
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Box 3.19 (Continued)

We must select parameters H, J and K so that the fitting square error is minimum:

E =
∑

i
(𝜌(xi) − 𝜌i)2 =

∑
i
(Hx2

i + Jxi + K − 𝜌i)2. (3.238)

By setting the first partial derivatives of E with respect to the unknowns equal to zero, we
obtain the following system of linear equations:

𝜕E
𝜕H

= 0 ⇒ 2
∑

i
(Hx2

i + Jxi + K − 𝜌i)x2
i = 0

𝜕E
𝜕J

= 0 ⇒ 2
∑

i
(Hx2

i + Jxi + K − 𝜌i)xi = 0

𝜕E
𝜕K

= 0 ⇒ 2
∑

i
(Hx2

i + Jxi + K − 𝜌i) = 0. (3.239)

So, the system of linear equations we have to solve is:

H
∑

i
x4

i + J
∑

i
x3

i + K
∑

i
x2

i =
∑

i
𝜌ix2

i

H
∑

i
x3

i + J
∑

i
x2

i + K
∑

i
xi =
∑

i
𝜌ixi

H
∑

i
x2

i + J
∑

i
xi + K

∑
i

1 =
∑

i
𝜌i. (3.240)

This is a system of three linear equations for three unknowns that may be solved easily to
yield the values of parameters H, J and K.

Box 3.20 Least square error fitting of an exponential function to a set of data

Assume that we have a set of points (di, 𝜌i) and we wish to fit them with a function of the form:

𝜌(d) = Me−Sd ⇒ ln 𝜌(d) = ln M − Sd (3.241)

Our problem is to estimate the values of M and S so the curve fits the data in the least
square error sense.

Taking the logarithm of the function allows us to deal with a linear fitting problem instead
of a non-linear one. Let us call for simplicity L ≡ ln M. The total fitting error then is:

E ≡∑
i
(L − Sdi − ln 𝜌i)2. (3.242)

Partial differentiation leads to:

𝜕E
𝜕L

= 0 ⇒ 2
∑

i
(L − Sdi − ln 𝜌i) = 0

𝜕E
𝜕S

= 0 ⇒ 2
∑

i
(L − Sdi − ln 𝜌i)di = 0. (3.243)
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Then L (and therefore M) and S may be estimated by solving the following system of linear
equations:

L
∑

i
1 − S
∑

i
di =
∑

i
ln 𝜌i

L
∑

i
di − S

∑
i

d2
i =
∑

i
di ln 𝜌i. (3.244)

What is the generalised Zipf distribution?

If m(r) is the frequency with which a particular grey value is observed in the image and r is its rank,
when these frequencies are arranged in decreasing order, then the generalised Zipf distribution is:

m(r) = C
r𝜃

⇒ log m(r) = log C − 𝜃 log r. (3.245)

In other words, the generalised Zipf distribution fits a straight line in the rank-frequency plot.
The parameters of this line, namely log C and 𝜃 may be used as the texture features. If 𝜃 = 1, we
have the Zipf distribution.

Example 3.82

Calculate the Zipf parameters for the image of Figure 3.71a.
All we have to do is to fit a straight line using least squares error (see Box 3.3) to the pairs of values
given by the third and fifth column of Table 3.13. The equation of such a line is y = 1.6001 −
0.6925x. So, C = 39.8199 and 𝜃 = 0.6925.

Box 3.21 What is the relationship of the Zipf distribution and fractals?

To answer this question first we manipulate a little the Zipf distribution given by
equation (3.245):

m(r) = C
r𝜃

⇒ m(r)
1
𝜃 = C

1
𝜃

r
. (3.246)

If we call C1∕𝜃 ≡ A and 1∕𝜃 ≡ s, this expression becomes:

m(r)s = A
r
⇒ r = A

m(r)s . (3.247)

We may express this equation as:

Observation_of_decreasing_importance ∝ Frequency_of_occurrence−s
. (3.248)

Let us compare this with Equation (3.156), with the substitution (3.157), which may be writ-
ten as:

Power_in_spatial_detail ∝ Spatial_frequency−𝛽 (3.249)

We note that in both cases we have a power law that relates the structure of the data with
the frequency with which this structure occurs. These are special cases of a much broader
category of models, known as the power law models.
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Figure 3.83 Plots of the Weibull distribution for several values of parameters 𝛾 and 𝜆.

What is the Weibull distribution?

The Weibull distribution is defined for non-negative arguments only, as

f (x) ≡ 𝛾

𝜆

( x
𝜆

)𝛾−1
e−
(

x
𝜆

)𝛾
(3.250)

where 𝛾 > 0 is called the shape parameter and𝜆 > 0 is called the scale parameter. An alternative
definition is:

p(x) ≡ 1
𝛽

(
x
𝛽

)𝛾−1

e−
1
𝛾

(
x
𝛽

)𝛾
. (3.251)

Some plots of the Weibull distribution for various values of its parameters are shown in
Figure 3.83.

Example 3.83

Show that the two definitions of the Weibull distribution, given by (3.250) and (3.251),
are equivalent.
By comparing the exponents of the two equations, we realise that 𝛾𝛽𝛾 = 𝜆𝛾 . We verify that the two
definitions then are equivalent by substituting in (3.250) 𝜆 from 𝜆 = 𝛾

1
𝛾 𝛽.
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Example 3.84

Show that the Weibull distribution integrates to 1, and so it may be considered as a
probability density function.

∫
∞

0
f (x)dx = 𝛾

𝜆 ∫
∞

0

( x
𝜆

)𝛾−1
e−
(

x
𝜆

)𝛾
dx

= ∫
∞

0
d
(
−e−

(
x
𝜆

)𝛾)
= −e−

(
x
𝜆

)𝛾 ||||
∞

0
= 1. (3.252)

Example 3.85

Assume that the Weibull distribution is a probability density function, according to
which N objects, characterised by their x value, are distributed in bins of width Δx.
Calculate the number of expected objects in a bin that accumulates objects with value
in the range [x, x + Δx).
Let us calculate first the cumulative distribution of f (x).

F(𝛼) ≡ ∫
𝛼

0
f (x)dx = 𝛾

𝜆 ∫
𝛼

0

( x
𝜆

)𝛾−1
e−
(

x
𝜆

)𝛾
dx

= ∫
𝛼

0
d
(
−e−

(
x
𝜆

)𝛾)
= −e−

(
x
𝜆

)𝛾 ||||
𝛼

0
= 1 − e−

(
𝛼

𝜆

)𝛾
. (3.253)

Then the probability assigned to a bin with values in the range [x, x + Δx) will be given by the
difference of the two values of the cumulative distribution:

pbin(x) = F(x+Δx)−F(x) = 1−e−
(

x+Δx
𝜆

)𝛾
−
(

1 − e−
(

x
𝜆

)𝛾)
=e−

(
x
𝜆

)𝛾
−e−

(
x+Δx
𝜆

)𝛾
.

(3.254)

We have to multiply this with N to work out the number of objects we expect to find in this bin.

How can we estimate the parameters of the Weibull distribution from a set of data?

There are two ways.

(i) Assume that the value of the data histogram in bin i is H(i) and that bin i contains objects
with values in the range [x, x + Δx). The Weibull distribution predicts, for the same bin, value
W(i), worked out as Npbin(x) (see Example 3.85), where N is the total number of binned



�

� �

�

210 3 Stationary Grey Texture Images

objects and pbin(x) is computed from (3.254). Then we may select values for 𝛾 and 𝜆 so that
C ≡ (H(i) − W(i))2 is minimised. The minimisation of this cost function is not trivial, as its
derivatives with respect to the unknowns are not first order polynomials in the unknowns.
The minimisation may be done by a method like simulated annealing (see the book Image
Processing, The Fundamentals for such an application of simulated annealing [75]).

(ii) We may use the so-called Weibull plot method. Consider the cumulative distribution given
by (3.253) and re-arrange it as follows:

F(𝛼) = 1 − e−
(

𝛼

𝜆

)𝛾
⇔ e−

(
𝛼

𝜆

)𝛾
= 1 − F(𝛼)

⇔ −
(
𝛼

𝜆

)𝛾
= ln [1 − F(𝛼)]

⇔
(
𝛼

𝜆

)𝛾
= − ln [1 − F(𝛼)]

⇔ 𝛾 ln 𝛼 − 𝛾 ln 𝜆 = ln (− ln [1 − F(𝛼)]) . (3.255)

The algorithm then is as follows.

Step 1: Construct the histogram you wish to model, and normalise it by dividing all its values with
the total number of pixels you used and with the bin width. Call it H(i), where i = 1,… ,M, with
M being the total number of bins.

Step 2: Construct the cumulative histogram as F(j) =
∑j

i=1 H(i).
Step 3: To every j value corresponds an 𝛼j value, which is the upper limit of the range of values

accumulated in bin j.
Step 4: Use least square error fitting (see Box 3.3) with pairs

(
ln 𝛼j, ln

(
− ln
[
1 − F(j)

]))
.

Step 5: The slope of the fitted line is the value of 𝛾 .
Step 6: The value of the intercept of the line is B = −𝛾 ln 𝜆. From the knowledge of the intercept

and the value of 𝛾 , work out the value of 𝜆 as 𝜆 = e−
B
𝛾 .

It has been shown theoretically, that the 𝛾 parameter of the Weibull model of the grey level his-
togram of a fractal image is related to the fractal dimension D by

D = 𝛾 + 1. (3.256)

Example 3.86

Fit the histograms you computed in Example 3.67 with the Weibull distribution.
Comment on the applicability of the model.
Figure 3.84 shows the results of the fittings using gradient histograms.

The Weibull distribution is appropriate for modelling the statistics of random textures. It is
therefore inappropriate for modelling histograms that correspond to deterministic textures or are
bimodal (i.e. they have two or more peaks), like the one shown in Figure 3.64 of the bean image.
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Figure 3.84 Fitting the histograms of the gradient magnitude for the textures of Figure 3.1 with the
Weibull distribution.
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Which parametric models are commonly used to fit the variogram over its range?

The following models have been used in various applications. The exponential model

𝛾(d) ≡
⎧⎪⎨⎪⎩

C0 for d = 0
C0 + C1

(
1 − exp

(
− |d|

a

))
for 0 < d < range

CS for d ≥ range
(3.257)

The Gaussian model

𝛾(d) ≡
⎧⎪⎨⎪⎩

C0 for d = 0
C0 + C1

(
1 − exp

(
− d2

a

))
for 0 < d < range

CS for d ≥ range
(3.258)

The spherical model

𝛾(d) ≡
⎧⎪⎨⎪⎩

C0 for d = 0

C0 + C1

(
3
2

d
a
− 1

2

(
d
a

)3
)

for 0 < d < range

CS for d ≥ range

(3.259)

The linear model

𝛾(d) ≡
⎧⎪⎨⎪⎩

C0 for d = 0
C0 + C1

d
a

for 0 < d < range
CS for d ≥ range

(3.260)

The fractal model

𝛾(d) =
⎧⎪⎨⎪⎩

C0 for d = 0
C0 + C1d2H for 0 < d ≤ range
CS for d ≥ range

(3.261)

In these formulae, a, C1 and H are the model parameters. Obviously, in each case, the sill value
CS is equal to the value of the middle branch of the equation for d = range.

Example 3.87

Fit the fractal model to the variograms of the images of Figure 3.1 knowing the range
of values over which the model fits.
We computed the range for each one of these images in Example 3.78. So, we shall fit the fractal
model for 0 < d ≤ range.

Let us call the variogram computed from the data 𝛾(d) and the model we wish to fit �̃�(d) =
C2d2H. Let us take the logarithm of both sides of the model:

log �̃�(d) = 2 log C + 2H log d ≡ 𝛾0 + 2H log d. (3.262)
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Here we defined 𝛾0 ≡ 2 log C for the sake of simplicity. We wish to fit the model to the data in
the least square error sense. We follow the algorithm in Box 3.3 with

xi ↔ log di

yi ↔ log 𝛾(di)
A ↔ 2H
B ↔ 𝛾0

where di are the values of distance d for which we know the value of the variogram.
So, the algorithm that fits the fractal model to the data is:

Step 1: Compute the variogram 𝛾(di) of the data, using the algorithm in the section How do we
compute the variogram of an image in practice?, for values di of d, for i = 1, 2,… ,K, where K
is the total number of d values we use that are less than or equal to the range.

Step 2: Compute xi ≡ log di and yi ≡ log 𝛾(di).
Step 3: Compute: S ≡ ∑ixi, T ≡ ∑ix2

i , E ≡ ∑iyi and F ≡ ∑ixiyi.
Step 4: Compute G ≡ KT − S2

Step 5: Compute 𝛾0 = (ET − FS)∕G and H = (KF − SE)∕(2G).

Table 3.17 shows the results for all the images.

Table 3.17 Fitting the fractal model to the variograms of the texture images
in Figure 3.1 for 0 < d ≤ range.

Image Range 𝜸0 H

Cloth 1 20 2.5681 0.2435
Cloth 2 25 2.3542 0.1883
Food 7 3.0004 0.1896
Plastic 16 2.5079 0.2940
Fabric 1 19 2.5885 0.1395
Fabric 2 10 2.7690 0.2328
Beans 12 2.8113 0.3179
Sand 4 2.3205 0.3850

How can we fit automatically a model to a variogram?

This algorithm tries to find automatically the range of shifts over which the model we have selected
fits the data with a goodness of fit better than a certain threshold. As a measure of goodness of fit
it uses the correlation coefficient.

Step 0: Select a threshold r0, which is in the range [0.5, 1).
Step 1: Fit the model to the variogram data for the full range of d values.
Step 2: Set kmax = K, where K is the total number of distances dk used to construct the variogram.
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Step 3: Compute:

A ≡
kmax∑
k=1

log dk log 𝛾(dk)

B ≡
kmax∑
k=1

log dk

C ≡
kmax∑
k=1

log 𝛾(dk)

D ≡
kmax∑
k=1

[log dk]2

E ≡
kmax∑
k=1

[log 𝛾(dk)]2. (3.263)

Step 4: Compute the correlation coefficient of the fit, defined as:

r ≡ kmax A − BC√
(kmax D − B2)(kmax E − C2)

. (3.264)

If the model fits well, r tends to 1 and if the model does not fit the data well, r tends to 0.
Step 5: If r ≥ r0, we accept that the model fits the data well and go to step 7.
Step 6: If r < r0, the model does not fit the data well. We set kmax = kmax ∕2 and go to step 3.
Step 7: If we reach this point with kmax = K, we exit the algorithm accepting that the model fits

the data well for the full range of variogram shifts.
Step 8: If kmax ≠ K, in the previous iteration r was smaller than r0, but now r is above r0. We wish

to find the maximum possible value of index k for which the model fits the data, i.e. for which
r ≥ r0. We set:

kT ≡ 2kmax kmax = kmax + 1. (3.265)

Step 9: We fit the model to the data in the range [1, kmax ] and compute r.
Step 10: If r < r0, we fit the model to the data in the range [1, kmax − 1] and exit the algorithm.
Step 11: If r ≥ r0, we set kmax = kmax + 1.
Step 12: If kmax < kT , we go to step 9.
Step 13: If kmax ≥ kT , we fit the model to the data in the range [1, kmax − 1] and exit the algorithm.

This algorithm may be used for any model we select for the variogram.

Example 3.88

Apply the above algorithm to the images of Figure 3.1 for the fractal model and check
whether the algorithm will fit the same model as the one identified in Example 3.87.
The results are shown in Table 3.18. We must compare these results with those of Table 3.17. Given
that the range of applying the model was selected by using bins of the values of the variogram,
something that by itself is a little gross, the first thing to notice is that the agreement between the
range computed in Example 3.78, and reproduced in Table 3.17, agrees remarkably well with the
upper bound of the interval over which the model is fitted. In addition, the values of 𝛾0 agree to
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within one or two decimal places. The agreement in the value of H (and by implication in the value
of the fractal dimension that is 3 − H) is not as good, but still within 10–20% accuracy, apart from
the two fabric textures that are nearly deterministic patterns. This should not surprise us, as H is
really an exponent and exponential models are very sensitive and non-linear to perturbations.

Table 3.18 Best fitting of the fractal model to the variograms of the texture images of Figure 3.1
using r0 = 0.95.

Image Interval fitted 𝜸0 H

Cloth 1 [1, 28] 2.6165 0.2076
Cloth 2 [1, 14] 2.3467 0.1956
Food [1, 5] 2.9780 0.2317
Plastic [1, 20] 2.5428 0.2640
Fabric 1 [1, 5] 2.5108 0.2485
Fabric 2 [1, 5] 2.6763 0.3850
Beans [1, 19] 2.8774 0.2557
Sand [1, 6] 2.3545 0.3082

Can we use non-parametric descriptions of texture?

Yes. For example, we may use the various moments of the various histograms we construct. Alter-
natively, we may use features constructed from the co-occurrence matrices and the run length
matrices.

What is a histogram moment?

The q moment of a histogram with bins H(i) is defined as

Mq ≡∑
i

iqh(i) (3.266)

where h(i) is the normalised value of bin i, obtained by dividing H(i) by the bin width and the sum
of all bin values.

What is the co-occurrence matrix?

It is a discrete function representing the probability of finding a pair of pixels in a certain relative
position having a certain pair of grey values. It is a matrix, because it is defined over pairs of discrete
grey values.
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What are the generalised co-occurrence matrices?

These are matrices that express the co-occurrence of characteristics other than the grey values of
pixels. They may be created by considering pixel attributes in addition to grey values. Successful
algorithms have been produced by considering co-occurrence matrices that measure the frequency
of occurrence of pairs of pixels, in a particular relative position from each other, having a par-
ticular pair of grey values, a particular pair of magnitudes of the local gradient and a particu-
lar relative orientation of their gradient vectors. Such co-occurrence matrices also capture local
shape information of the image function. One, however, should be careful in dealing with such
high-dimensionality matrices: the resolution with which these quantities are measured should be
reduced to produce matrices of a manageable size. For example, if each of the above-mentioned
quantities is quantised using 10 discrete values only, the co-occurrence matrix that results will have
10 × 10 × 10 × 10 × 10 = 105 elements. Relative abundances of some of these elements have been
shown to make good texture features.

What is a high order co-occurrence matrix?

A high order co-occurrence matrix may be defined by considering n-tuples as opposed to just pairs
of pixels. It may be constructed by considering other pixel characteristics than their grey values.
When considering n-tuples of pixels, the co-occurrence matrix corresponds to a higher-order joint
probability density function.

How is a co-occurrence matrix defined?

There are two ways in which we may define a co-occurrence matrix. We may define it to be direc-
tional and we may define it to be rotationally invariant. For the construction of a rotationally
invariant co-occurrence matrix, we consider all pairs of pixels that are at a fixed distance d from
each other, irrespective of the relative orientation the line that joins them forms with the reference
direction of the image. Such matrices are parametrised by the distance d only. We may have as
many matrices as different distances we choose to use. So, we may write

C(k, l; d) ≡∑
i

∑
j

∑
n̂
𝛿 (k − g(i, j)) 𝛿 (l − g((i, j) + dn̂))) (3.267)

where n̂ is the unit vector pointing in a chosen direction, g(i, j) is the grey value of pixel (i, j), g((i, j) +
dn̂) is the grey value of another pixel that is at distance d from pixel (i, j) and at the orientation
defined by unit vector n̂, and C(k, l; d) is the total number of pairs of pixels at distance d from each
other identified in the image, such that the first one has grey value k and the second has grey value
l. In the above expression, 𝛿(a − b) takes value 1 if a = b and it takes value 0 if a ≠ b.

Alternatively, we may define the co-occurrence matrix so that it captures directional information.
In this case we consider only pairs of pixels that are at a certain distance apart, and at the same time
the line that connects them forms a certain angle with the reference direction of the image. These
matrices are parametrised by two parameters, the distance d and the angle 𝜙 with respect to the
reference direction. Again, we may choose to have as many such matrices as different values of d
and 𝜙 we wish to consider. In this case, we may formally define the co-occurrence matrix as:

C(k, l; d, 𝜙) =
∑

i

∑
j
𝛿 (k − g(i, j)) 𝛿 (l − g(i + d cos𝜙, j + d sin𝜙)) . (3.268)
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Example 3.89

From the image of Figure 3.85, compute the co-occurrence matrix for the following
four relative positions: next door neighbours along the horizontal direction, next
door neighbours along the vertical direction, two positions in the direction of the
main diagonal once removed, and pairs of positions expressed as (i, j) and (i + 2, j + 1).
Figure 3.85 An image with three grey levels.
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As the image contains three grey levels only, the co-occurrence matrices will be 3 × 3. To construct
them we count the number of pairs of pixels we find at the given relative positions with a certain
pair of grey values. If we divide each co-occurrence matrix with the number of pairs of pixels
used to construct it, we may treat them as probability density functions. The results are shown in
Figure 3.86.
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Figure 3.86 Top row, co-occurrence matrices. Bottom row their normalised versions. The pairs of
pixels used in each case are (a) next door neighbours along the horizontal direction, (b) next door
neighbours along the vertical direction, (c) neighbours in the direction of the main diagonal leaving a
gap in between, and (d) at positions expressed as (i, j) and (i + 2, j + 1).

Example 3.90

Construct digital circles with radii 1, 2,… , 8 pixels.
A circle is defined as the locus of points at a fixed distance from the centre. Since the representation
of each circle has to be made by pixels, it is not possible to apply the definition of the circle as we
know it for continuous spaces. Instead, we must check the distance of each pixel from the central

(Continued)
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Example 3.90 (Continued)

pixel, which is assumed to be at coordinate position (0, 0), and then decide whether the pixel
belongs to the perimeter of the circle with radius r or not, according to whether this distance d
is in the range [r − 0.5, r + 0.5) or not. For example, a pixel at position (7, 2) with respect to the
centre is at distance

√
72 + 22 =

√
53 = 7.3 from it. This number rounds to 7, so this pixel belongs

to a digital circle with radius 7. Figure 3.87 shows the digital circles with radii 1, 2,… , 8. Note that
the larger the radius, the more the digital circle resembles a continuous circle. The centre of each
circle is marked with an × and it is assumed to be at position (0, 0). The coordinate directions are
marked with the coordinate axes drawn.

i

j

Figure 3.87 Digital circles with radii 1, 2,… , 8, from top to bottom and left to right, respectively. The
centre of each circle is at position (0, 0) and the directions of the coordinate axes used are also
indicated.
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Example 3.91

If the centre of a digital circle is at position (0, 0), identify the coordinates of the pixels
that constitute each circle with radius 1, 2,… , 8 pixels. Use the coordinate directions
marked in Figure 3.87.
Table 3.19 lists the coordinates of the pixels that constitute each circle in Figure 3.87.

Table 3.19 The coordinates of the pixels that make up the digital circles in Figure 3.87. The centre of
the coordinate system in each case is assumed to be at the centre of each circle.

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8

(−1,0) (−2,0) (−3,0) (−4,0) (−5,0) (−6,0) (−7,0) (−8,0) (−4,−7)
(−1,1) (−2,1) (−3,1) (−4,1) (−5,1) (−6,1) (−7,1) (−8,1) (−5,−6)
(0,1) (−1,2) (−2,2) (−4,2) (−5,2) (−6,2) (−7,2) (−8,2) (−6,−6)
(1,1) (0,2) (−1,3) (−3,2) (−4,3) (−5,3) (−6,3) (−7,3) (−6,−5)
(1,0) (1,2) (0,3) (−3,3) (−3,4) (−5,4) (−6,4) (−7,4) (−7,−4)
(1,−1) (2,1) (1,3) (−2,3) (−2,5) (−4,4) (−5,5) (−6,5) (−7,−3)
(0,−1) (2,0) (2,2) (−2,4) (−1,5) (−4,5) (−4,6) (−6,6) (−8,−2)
(−1,−1) (2,−1) (3,1) (−1,4) (0,5) (−3,5) (−3,6) (−5,6) (−8,−1)

(1,−2) (3,0) (0,4) (1,5) (−2,6) (−2,7) (−4,7)
(0,−2) (3,−1) (1,4) (2,5) (−1,6) (−1,7) (−3,7)

(−1,−2) (2,−2) (2,4) (3,4) (0,6) (0,7) (−2,8)
(−2,−1) (1,−3) (2,3) (4,3) (1,6) (1,7) (−1,8)

(0,−3) (3,3) (5,2) (2,6) (2,7) (0,8)
(−1,−3) (3,2) (5,1) (3,5) (3,6) (1,8)
(−2,−2) (4,2) (5,0) (4,5) (4,6) (2,8)
(−3,−1) (4,1) (5,−1) (4,4) (5,5) (3,7)

(4,0) (5,−2) (5,4) (6,4) (4,7)
(4,−1) (4,−3) (5,3) (6,3) (5,6)
(4,−2) (3,−4) (6,2) (7,2) (6,6)
(3,−2) (2,−5) (6,1) (7,1) (6,5)
(3,−3) (1,−5) (6,0) (7,0) (7,4)
(2,−3) (0,−5) (6,−1) (7,−1) (7,3)
(2,−4) (−1,−5) (6,−2) (7,−2) (8,2)
(1,−4) (−2,−5) (5,−3) (6,−3) (8,1)

(Continued)
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Example 3.91 (Continued)
Table 3.19 (Continued)

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8

(0,−4) (−3,−4) (5,−4) (6,−4) (8,0)
(−1,−4) (−4,−3) (4,−4) (5,−5) (8,−1)
(−2,−4) (−5,−2) (4,−5) (4,−6) (8,−2)
(−2,−3) (−5,−1) (3,−5) (3,−6) (7,−3)
(−3,−3) (2,−6) (2,−7) (7,−4)
(−3,−2) (1,−6) (1,−7) (6,−5)
(−4,−2) (0,−6) (0,−7) (6,−6)
(−4,−1) (−1,−6) (−1,−7) (5,−6)

(−2,−6) (−2,−7) (4,−7)
(−3,−5) (−3,−6) (3,−7)
(−4,−5) (−4,−6) (2,−8)
(−4,−4) (−5,−5) (1,−8)
(−5,−4) (−6,−4) (0,−8)
(−5,−3) (−6,−3) (−1,−8)
(−6,−2) (−7,−2) (−2,−8)
(−6,−1) (−7,−1) (−3,−7)

Example 3.92

Assume that an image contains one of the circles in Figure 3.87 and that it is scanned
in a raster way, from top left to bottom right, following a scanning line like the one
defined in Figure 2.29. This creates a sequence of the pixels. Identify the coordinates
of the pixels that are on the perimeter of each circle and they come after the pixel in
the centre of the circle.
Since the sequence we create scans the image line by line from left to right, after we meet the centre
of the circle, the first black pixel we meet is the one on the right of the centre and in the same row
as the centre. The next is on the left of the centre and one row below it, and so on. Table 3.20 lists
the coordinates of all those pixels that come after the central pixel in the case of each circle.
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Table 3.20 The coordinates of the pixels that will appear after the centre of the circle in a raster
scan of an image, with the digital circles of Figure 3.87. The centre of the coordinate system in each
case is assumed to be at the centre of each circle.

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8

(−1,1) (−2,1) (−3,1) (−4,1) (−5,1) (−6,1) (−7,1) (−8,1)
(0,1) (−1,2) (−2,2) (−4,2) (−5,2) (−6,2) (−7,2) (−8,2)
(1,1) (0,2) (−1,3) (−3,2) (−4,3) (−5,3) (−6,3) (−7,3)
(1,0) (1,2) (0,3) (−3,3) (−3,4) (−5,4) (−6,4) (−7,4)

(2,1) (1,3) (−2,3) (−2,5) (−4,4) (−5,5) (−6,5)
(2,0) (2,2) (−2,4) (−1,5) (−4,5) (−4,6) (−6,6)

(3,1) (−1,4) (0,5) (−3,5) (−3,6) (−5,6)
(3,0) (0,4) (1,5) (−2,6) (−2,7) (−4,7)

(1,4) (2,5) (−1,6) (−1,7) (−3,7)
(2,4) (3,4) (0,6) (0,7) (−2,8)
(2,3) (4,3) (1,6) (1,7) (−1,8)
(3,3) (5,2) (2,6) (2,7) (0,8)
(3,2) (5,1) (3,5) (3,6) (1,8)
(4,2) (5,0) (4,5) (4,6) (2,8)
(4,1) (4,4) (5,5) (3,7)
(4,0) (5,4) (6,4) (4,7)

(5,3) (6,3) (5,6)
(6,2) (7,2) (6,6)
(6,1) (7,1) (6,5)
(6,0) (7,0) (7,4)

(7,3)
(8,2)
(8,1)
(8,0)

How do we compute the co-occurrence matrix in practice?

In practice we do not compute distances between pixels as a matter of routine, because this is very
computationally expensive. For the rotationally invariant matrix we create lists of pixels that, given
a starting pixel, all are within distance d ± 0.5 from it. We then simply consider these lists as digital
masks that are used to scan the image. For example, if we wish to create the co-occurrence matrix
for d = 2, we consider each pixel of the image in turn. Let us say that the coordinates of the current
pixel are (i0, j0). Then we consider all pairs this pixel forms with pixels at positions (i0 + k, j0 + l)
where (k, l) take all values under the heading r = 2 of Table 3.20. The purpose of considering only
part of the full digital circle is for pairs of pixels to be considered only once.

So, to compute the rotationally invariant co-occurrence matrix C(g1, g2; d) of an 8-bit image g(i, j)
for distance d, we apply the following algorithm.
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Step 1: Create an array Cd(g1, g2) of size G × G, where G is the numbers of grey levels of the image,
and initialise all its elements to 0.

Step 2: Scan the image once. At each position (i, j), update the following elements of the array

Cd (g(i, j), g(i + k, j + l)) = Cd (g(i, j), g(i + k, j + l)) + 1 (3.269)

Cd (g(i + k, j + l), g(i, j)) = Cd (g(i + k, j + l), g(i, j)) + 1 (3.270)

where, for d up to 8, (k, l) takes all pairs of values that appear in Table 3.20 under the heading
r = d. For larger values of d one must create first the corresponding list of pixel coordinates.

Note that we update two elements of matrix Cd(g1, g2) because rotational symmetry means that
we do not distinguish between pairs of grey values (g1, g2) and (g2, g1). Alternatively, we may use
only half of array Cd(g1, g2), say the top-right triangular half, and increment only one element,
namely element (min (g1, g2),max (g1, g2)).

For pixels that are near the left, right and bottom border of the image, we consider only those
values of (k, l) for which positions (i + k, j + l) are within the image boundaries.

If we wish to create a directional co-occurrence matrix, then we simply use a single pair of values
(k, l) in Equation (3.269) which are the same for all pixels (i, j) in the image. We need an intermediate
step for the algorithm, where for a given orientation 𝜙 and distance d, we compute the shift (k, l).

Step 0: Decide upon the distance d and the direction 𝜙 along which you wish to compute the
co-occurrence matrix. Note that 𝜙 could be in the range [0, 360∘).

Step 1.5: Set:

k = ⌊d cos𝜙 + 0.5⌋ l = ⌊d sin𝜙 + 0.5⌋. (3.271)

The co-occurrence matrix we create this way is of size 256 × 256 for an 8-bit image. If we do not
wish to have such a large matrix, we may reduce the number of separate grey levels in the image.
For example, we may map the 256 grey levels to only G by using:

g(i, j)new =
⌊

g(i, j)old

255
× (G − 1) + 0.5

⌋
. (3.272)

How can we recognise textures with the help of the co-occurrence matrix?

Co-occurrence matrices are very rich representations of an image. At the same time they are very
bulky. One may use directly some of the elements of co-occurrence matrices to characterise a tex-
ture, particularly for the cases where some reduction in the number of grey values has already been
applied. In particular, ratios of elements of the co-occurrence matrix have been shown to be good
texture descriptors. This is because they capture the relative abundance of certain image charac-
teristics. Which elements should be used to create characteristic relative abundances is a matter of
training the algorithm, i.e. it is a matter of trial and error.

The classical approach, however, is to compute certain characteristics of the co-occurrence
matrix. The co-occurrence matrix, after all, corresponds to a joint probability density function and
one can characterise probability density functions by computing a few statistics from them. The
most commonly used features computed from the co-occurrence matrix are listed below. In all
cases, the co-occurrence matrix has been normalised by dividing all its elements with the total
number of pairs of pixels considered, so that it really is a joint probability density function

p(m,n) = 1
All pairs of pixels used

Cd(m,n). (3.273)

The features used then are defined as follows:
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● Energy:
G−1∑
m=0

G−1∑
n=0

p(m,n)2. (3.274)

● Entropy:

−
G−1∑
m=0

G−1∑
n=0

p(m,n) ln p(m,n). (3.275)

● Contrast:

1
(G − 1)2

G−1∑
m=0

G−1∑
n=0

(m − n)2p(m,n). (3.276)

● Correlation:∑G−1
m=0
∑G−1

n=0 mnp(m,n) − 𝜇x𝜇y

𝜎x𝜎y
. (3.277)

Here:

𝜇x =
G−1∑
m=0

m
G−1∑
n=0

p(m,n) 𝜇y =
G−1∑
n=0

n
G−1∑
m=0

p(m,n) (3.278)

𝜎2
x =

G−1∑
m=0

(m − 𝜇x)2
G−1∑
n=0

p(m,n) 𝜎2
y =

G−1∑
n=0

(n − 𝜇y)2
G−1∑
m=0

p(m,n). (3.279)

● Homogeneity:
G−1∑
m=0

G−1∑
n=0

p(m,n)
1 + |m − n| . (3.280)

In all these definitions, G is the total number of grey levels we use. For an 8-bit image G = 256.

Example 3.93

Compute the features from co-occurrence matrix 3.86c.
Energy:

E =
2∑

m=0

2∑
n=0

p(m,n)2

= 0.482 + 0.122 + 0.122 + 0.22 + 0.082 = 0.3056. (3.281)

Entropy:

H = −
2∑

m=0

2∑
n=0

p(m,n) ln p(m,n)

= −0.48 ln 0.48 − 0.12 ln 0.12 − 0.12 ln 0.12 − 0.2 ln 0.2 − 0.08 ln 0.08
= 1.385. (3.282)

(Continued)
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Example 3.93 (Continued)

Contrast:

C = 1
22

2∑
m=0

2∑
n=0

(m − n)2p(m,n)

= 1
4
×
[
(1 − 2)2 × 0.2 + (2 − 1)2 × 0.12

]
= 1

4
× 0.32 = 0.08. (3.283)

Correlation:

𝜇x =
2∑

m=0
m

2∑
n=0

p(m,n) = 0 × 0.48 + 1 × 0.32 + 2 × 0.20 = 0.72

𝜇y =
2∑

n=0
n

2∑
m=0

p(m,n) = 0 × 0.48 + 1 × 0.24 + 2 × 0.28 = 0.80

𝜎2
x =

2∑
m=0

(m − 0.72)2
2∑

n=0
p(m,n)

= (0 − 0.72)2 × 0.48 + (1 − 0.72)2 × 0.32 + (2 − 0.72)2 × 0.2 = 0.6016

𝜎2
y =

2∑
n=0

(n − 0.8)2
2∑

m=0
p(m,n)

= (0 − 0.8)2 × 0.48 + (1 − 0.8)2 × 0.24 + (2 − 0.8)2 × 0.28 = 0.72

R =
∑2

m=0
∑2

n=0mnp(m,n) − 𝜇x𝜇y

𝜎x𝜎y

= 1 × 1 × 0.12 + 1 × 2 × 0.12 + 1 × 2 × 0.2 + 2 × 2 × 0.08 − 0.72 × 0.8√
0.6016 ×

√
0.72

= 0.504
0.658

= 0.766. (3.284)

Homogeneity:

U =
2∑

m=0

2∑
n=0

p(m,n)
1 + |m − n|

= 0.48
1 + |0 − 0| + 0.12

1 + |1 − 1| + 0.12
1 + |1 − 2| + 0.2

1 + |2 − 1| + 0.08
1 + |2 − 2| = 0.84.

How can we choose the parameters of the co-occurrence matrix?

Macro-textures are textures with large primitive patterns. Therefore, large values of d would
be most appropriate for capturing the repetitiveness of the pattern. Micro-textures, on the con-
trary, are textures with very fine detail. Small values of d would be most appropriate. Rotationally
invariant co-occurrence matrices are most appropriate for isotropic textures. For textures that show
different behaviour along different directions, we should use several co-occurrence matrices along
a few different angles and compute features from all of them.
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Example 3.94

Compute the rotationally invariant co-occurrence matrices for image 3.1g for d = 2,
d = 6 and d = 16 for 256 grey levels and for 16 grey levels. Present the matrices as
grey images with their values scaled and rounded to the nearest integer, in the range
[0, 255].
The results are shown in Figure 3.88. These matrices are symmetric.

d = 2 G = 16 d = 6 G = 16 d = 16 G =16

d = 2 G = 256 d = 6 G = 256 d = 16 G = 256

Figure 3.88 Rotationally invariant co-occurrence matrices for the image beans. Source: Maria Petrou.

Example 3.95

Compute the co-occurrence matrices for image 3.1e for𝜙 = 45∘,𝜙 = 135∘ and𝜙 = 225∘,
for 256 grey levels and for 16 grey levels. Present the matrices as grey images with
their values scaled and rounded to the nearest integer, in the range [0, 255].
The results are shown in Figure 3.89. To visualise better the detailed structure of the matrix, the
grey values have been produced by appropriate scaling the values log(x + 1) where x is the entry
of the co-occurence matrix before normalisation by division with the sum of its elements.

This is a rather anisotropic texture and one can see that the directional co-occurrence matrices
constructed are different from each other.

(Continued)
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Example 3.95 (Continued)

k = 20 l = 0 G = 16 k =14 l =14 G =16 k = 0 l = 20 G= 16

k = 20 l = 0 G = 256 k = 14 l = 14 G = 256 k = 0 l = 20 G = 256

Figure 3.89 Directional co-occurrence matrices for the image fabric 1. Source: Maria Petrou.

Example 3.96

Use co-occurrence matrices to infer the illumination direction under which image
3.1c was captured. Tolerate an error of ±22.5∘.
When a rough surface is illuminated from a direction other than the zenith direction, even if the
surface is isotropic, the image created is anisotropic. Along the direction of illumination there
will be more interchanges of dark and bright spots than along all other directions. Since we
are allowed to work out the illumination direction with tolerance ±22.5∘, we can consider the
rotationally sensitive co-occurrence matrices constructed for pairs of pixels along the two main
directions and the two main diagonals, and compute the contrast feature from them. The direc-
tion with the maximum value of the contrast feature is the direction of illumination. We use
distance d = 1 for such a calculation, as we wish to capture sharp transitions from bright to dark
caused by shadows created on the rough surface. The values of the contrast for this image are
given in Table 3.21.

We note that the maximum contrast is for the direction along the secondary diagonal, i.e. from
bottom left to top right. So, the lighting source when this image was captured was either towards
the bottom left of the image or towards the top right, i.e. either at 225∘ from the horizontal image
axis or at 45∘. To distinguish which of the two is correct, we must consider also the sign of the
change when we compute the contrast feature from the co-occurrence matrix. In other words, in
factor (m − n)2 in formula 3.283 it matters whether the first or the second pixel of the pair had the
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value m or n. So, we may compute again contrast features, but now using the top and the bottom
triangle of the co-occurrence matrix separately.

From the upper triangle we shall have all the transitions from low to high value, as in an
ordinary matrix representation, element Cmn belongs to the upper triangle for n > m. So, if m
is the grey value of the first pixel of the pair and n the grey value of the second, element Cmn
represents transitions from dark to bright. The new contrast values for the 8 directions are given
in Table 3.22.

We conclude that the illumination was from the top right side of the image. This indeed is
confirmed by inspecting the original image.

Table 3.21 Contrast value for the four main directions for the image in Figure 3.1c.

Horizontal Main diagonal Vertical Secondary diagonal

0.0222 0.0313 0.0273 0.0407

Table 3.22 Contrast values for 8 different directions for
the image in Figure 3.1c.

Direction Contrast value

From right to left 0.0115
From bottom right to top left 0.0150
From bottom to top 0.0129
From bottom left to top right 0.0194
From left to right 0.0107
From top left to bottom right 0.0163
From top to bottom 0.0144
From top right to bottom left 0.0213

3.5 Texture Features from the Fourier Transform

How can we use the Fourier transform to construct texture features?

We can use the power spectrum to infer the structural characteristics of a texture. When using the
power spectrum of an image we must have the following points in mind.

(i) If the image is assumed to be repeated ad infinitum in both directions, the power spectrum
is the Fourier transform of the autocorrelation function of the image (Wiener–Khinchine
theorem, see Example 3.109). So, just like the autocorrelation function, the power spectrum
may be used to infer the periodicity of a texture.
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(ii) The power spectrum of an image may easily be altered by interference that may not be obvious
to the naked eye (see Examples 3.97 and 3.107).

(iii) The calculation of the DFT assumes that the image is repeated ad infinitum in all directions.
This creates false peaks in the power spectrum (see Example 3.103). This may be mitigated by
multiplying the signal or image with a mask that tampers its values around the borders, so the
discontinuities due to the implicit repetition are reduced (see Examples 3.104 and 3.105).

(iv) The power spectrum looses a lot of important information concerning the structure of the
image conveyed by the phase component (see Example 3.110).

How is the power spectrum defined?

The power spectrum is defined as the square magnitude of the Fourier transform

P(u, 𝑣) = FR(u, 𝑣)2 + FI(u, 𝑣)2 (3.285)

where FR(u, 𝑣) and FI(u, 𝑣) are the real and the imaginary parts of the Fourier transform of the image
respectively, and u and 𝑣 are the frequencies along the x and y axes of the image, respectively. If it
is divided with the number of pixels in the image, it is called a periodogram.

In practice, since we are interested in characterising textures, we ignore the peak at frequency
(0, 0), as this corresponds to the overall average brightness of the image.

Figure 3.90 shows the power spectra for four of the textures in Figure 3.1 without the value at
(0, 0). These images were created from the logarithmic values of the spectra computed according
to Equation 3.293 and scaled according to Equation 3.294.

How can we infer the periodicity of a texture from its power spectrum?

The peaks of the power spectrum indicate basic repetition frequencies in the image. As the power
spectrum is a 2D function, to work out periodicities displayed along a particular axis we have to
sum up the values of the power spectrum along directions orthogonal to the axis. The obvious
directions we may consider are the image axes, and so we may define Pu(u) ≡ ∑𝑣P(u, 𝑣) and P𝑣(𝑣) ≡

Fabric 1 Fabric 2

Beans Sand

Figure 3.90 Power spectra for four of the textures of Figure 3.1. The spectra images were created with the
help of Equations (3.293) and (3.294), after the direct component was omitted.
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Table 3.23 The five strongest peaks in the signatures of the spectra of the images fabric 1 and fabric 2.

Fabric 1 Fabric 2

Order Position Value D 𝚫B Position Value D 𝚫B

1 Pu(4) 11699.5 9003.7 9 P
𝑣
(16) 15012.8 11834.0 4

2 P
𝑣
(7) 4635.4 3356.2 6 Pu(38) 14601.6 13254.6 10

3 P
𝑣
(15) 2717.8 1585.0 8 Pu(1) 11176.9 4341.7 2

4 Pu(10) 2535.9 379.6 2 Pu(18) 10805.5 8057.5 10
5 Pu(12) 2125.5 145.4 2 P

𝑣
(32) 6987.2 5201.9 8

Table 3.24 The five strongest peaks in the signatures of the spectra of the images beans and sand.

Beans Sand

Order Position Value D 𝚫B Position Value D 𝚫B

1 Pu(2) 24199.7 3335.6 2 P
𝑣
(2) 3098.6 423.7 3

2 P
𝑣
(7) 22397.0 10439.4 3 P

𝑣
(6) 2835.9 506.3 4

3 Pu(4) 21719.0 3934.1 3 P
𝑣
(9) 2547.0 357.8 2

4 Pu(7) 21209.1 6045.7 3 Pu(9) 2499.7 827.0 6
5 P

𝑣
(10) 18802.4 7679.4 3 Pu(3) 2291.2 452.1 5

∑
uP(u, 𝑣). If the periodicity of the image is perfectly aligned with any of these axes, Pu(u) and P𝑣(𝑣)

will have clear peaks in the right frequencies.
Tables 3.23 and 3.24 show the five highest peaks identified for each of the textures in Figure 3.90,

identified in the corresponding Pu(u) and P𝑣(𝑣) of each spectrum. Figure 3.91 shows the plots of
Pu(u) and P𝑣(𝑣). We may see that the peaks of fabric 2 are clearly distinct from the background and
indicate the presence of some repeated pattern along the two orthogonal directions. The continuum
over which these peaks sit shows that the pattern is noisy, as indeed is the case. None of the other
spectral signatures shows clearly distinct peaks, except perhaps fabric 1, which shows some peaks
at low frequencies (large repeated pattern), as indeed is the case. These peaks are at positions 4
and 7 along the two axes, indicating a repeated primitive of size 256∕4 ≃ 64 along one axis and
256∕7 ≃ 37 along the other axis. In a similar way, we can see that the repeated patterns for fabric 2
must be smaller, as their periodicities manifest themselves in higher frequencies.

To be able to tell whether the identified peaks are of any significance, we must find a way to
express how distinct they are from their surrounding values. One may do that by moving away
from each peak in both directions until a local minimum is reached. Let us say that the value of
the peak is A and the values at the two surrounding minima are B1 and B2. We define then the
“distinctiveness” of the peak as

D ≡ A −
B1 + B2

2
(3.286)

and its “breadth” as

ΔB = |Position of B2 − Position of B1|. (3.287)
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Figure 3.91 Power spectral signatures for fabric 1, fabric 2, beans and sand.
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Figure 3.92 The phase spectra of the first three images of Figure 3.1 with their values scaled in the range
[0, 255] to allow their representation as images. Source: Maria Petrou.

Tables 3.23 and 3.24 give the distinctiveness and breadth of each of the five strongest peaks for
each spectrum. We can clearly see that the peaks which really indicate some periodicity are those
which are the most distinct.

What is the phase and magnitude of the Fourier transform?

The magnitude of the Fourier transform is defined as

M(u, 𝑣) =
√

FR(u, 𝑣)2 + FI(u, 𝑣)2 =
√

P(u, 𝑣). (3.288)

The phase Φ(u, 𝑣), which takes values in the range [−𝜋, 𝜋) or [0, 2𝜋), is defined by

sinΦ(u, 𝑣) =
FI(u, 𝑣)
M(u, 𝑣)

and cosΦ(u, 𝑣) =
FR(u, 𝑣)
M(u, 𝑣)

. (3.289)

Figure 3.92 shows the phases of the first three images of Figure 3.1. We may observe that these
representations do not appear to have any recognisable or useful structure.

Example 3.97

Compute the power spectrum of image 3.93a.
Let us assume that the image is of size M × N, and let us call the image function f (k, l). Then we
apply the following algorithm.

Step 1: Compute the Fourier transform of the image:

F(m,n) = 1√
MN

M−1∑
k=0

N−1∑
l=0

f (k, l)e−2𝜋j
[

km
M
+ ln

N

]
. (3.290)

Step 2: Express it as a real and an imaginary part:

F(m,n) = FR(m,n) + jFI(m,n). (3.291)

Step 3: Compute the power spectrum by multiplying F(m,n) with its complex conjugate:

Pf (m,n) = F(m,n)F∗(m,n) = F2
R(m,n) + F2

I (m,n). (3.292)

(Continued)
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Example 3.97 (Continued)

Visualisation of this function is a problem, because its dynamic range is very large. As a con-
sequence, it is difficult to present it as a digital image with grey values in the range [0, 255]. To
overcome this problem we need the following steps.

Step 4: Compute:

P̃f (m,n) ≡ log(1 + Pf (m,n)). (3.293)

Step 5: Scale P̃f (m,n) and round it to the nearest integer, in order to plot it as an image

P̃f (m,n)new value =

⌊
P̃f (m,n)old value − P̃f (m,n)min value

P̃f (m,n)max value − P̃f (m,n)min value
× 255 + 0.5

⌋
(3.294)

where ⌊ ⌋means taking the integer part, and P̃f (m,n)min value and P̃f (m,n)max value are
the minimum and the maximum values of P̃f (m,n), respectively.

Note that function P̃f (m,n) is only created to help us visualise the power spectrum, and any sub-
sequent calculations involving the spectrum have to be done using the raw values of Pf (m,n).

Figure 3.93a shows the original image and Figure 3.93b its power spectrum. If we notice care-
fully, the power spectrum appears to have some vertical and horizontal structure that does not
seem to correspond to any visible periodicity of the kind in the original image. In panel 3.93c we
can see the same power spectrum after histogram equalisation. Strong blockiness and some ver-
tical and horizontal structure are very obvious now. These must be due to some artifacts present
in the original image which are not discernible by the naked eye.

(a) (b) (c)

Figure 3.93 Computing the power spectrum of an image. (a) Original image. (b) Fourier spectrum of
the image. Source: Maria Petrou. (c) The Fourier spectrum after histogram equalisation. Source: Maria
Petrou.

Example 3.98

Derive the discrete Fourier transform of a discrete function of length 2N + 1 defined
as follows:

f (i) =
{

A if − M ≤ i ≤ M,

0 if − N ≤ i < −M or M < i ≤ N.
(3.295)

Plot the result for A = 1, M = 3 and N = 7.
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The discrete Fourier transform of this function is defined as:

F(k) = 1√
2N + 1

M∑
i=−M

Ae−j 2𝜋ki
2N+1 . (3.296)

If we change summation variable from i to ĩ ≡ i + M, we obtain:

F(k) = A√
2N + 1

2M∑̃
i=0

e−j 2𝜋k(ĩ−M)
2N+1 = A√

2N + 1
ej 2𝜋kM

2N+1

2M∑̃
i=0

e−j 2𝜋kĩ
2N+1 . (3.297)

The sum on the right-hand side of this expression may be computed by applying the geometric
progression formula

T∑
t=0

a0qt = a0
qT+1 − 1

q − 1
(3.298)

for a0 = 1, q = e−j 2𝜋k
2N+1 and T = 2M:

F(k) = A√
2N + 1

ej 2𝜋kM
2N+1

e−j 2𝜋k(2M+1)
2N+1 − 1

e−j 2𝜋k
2N+1 − 1

. (3.299)

This expression may be further simplified as follows:

F(k) = A√
2N + 1

ej 2𝜋kM
2N+1

e−j 𝜋k(2M+1)
2N+1

(
e−j 𝜋k(2M+1)

2N+1 − ej 𝜋k(2M+1)
2N+1

)
e−j 𝜋k

2N+1

(
e−j 𝜋k

2N+1 − ej 𝜋k
2N+1

)
F(k) = A√

2N + 1
ej 𝜋kM

2N+1
(2M−2M−1+1)

−2j sin 𝜋k(2M+1)
2N+1

−2j sin 𝜋k
2N+1

F(k) = A√
2N + 1

sin 𝜋k(2M+1)
2N+1

sin 𝜋k
2N+1

. (3.300)

To plot this function for A = 1, M = 3 and N = 7, we must compute its values for k =
0,±1,±2,… ,±7. We notice that for k = 0 both numerator and denominator become 0, so we
must apply de L’Hospital’s rule:

F(0) = A√
2N + 1

lim
k→0

𝜕

𝜕k

(
sin 𝜋k(2M+1)

2N+1

)
𝜕

𝜕k

(
sin 𝜋k

2N+1

)
F(0) = A√

2N + 1
lim
k→0

𝜋(2M+1)
2N+1

cos 𝜋k(2M+1)
2N+1

𝜋

2N+1
cos 𝜋k

2N+1

F(0) = A√
2N + 1

(2M + 1). (3.301)

(Continued)
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Example 3.98 (Continued)

Figure 3.94a shows the original function f (i), while Figure 3.94b shows F(k) plotted as a func-
tion of k for the parameter values specified.
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Figure 3.94 (a)A 1D digital signal. (b) The discrete Fourier transform of the signal.

Example B3.99

Show that the Fourier transform of a Gaussian is also a Gaussian.
Consider a Gaussian function

g(x) ≡ e−
x2

2𝜎2 (3.302)

and take its Fourier transform:

G(𝜔) = ∫
∞

−∞
g(x)e−j𝜔xdx = ∫

∞

−∞
e−

x2

2𝜎2 e−j𝜔xdx = ∫
∞

−∞
e−

x2+j2𝜎2𝜔x
2𝜎2 dx. (3.303)

We may complete the square in the exponent on the right-hand side of this expression to obtain:

G(𝜔) = ∫
∞

−∞
e−

x2+j2𝜎2𝜔x+j2𝜎4𝜔2−j2𝜎4𝜔2

2𝜎2 dx = e−
−j2𝜎4𝜔2

2𝜎2 ∫
∞

−∞
e−

(x+j𝜎2𝜔)2

2𝜎2 dx. (3.304)

We observe that j2 = −1. So:

G(𝜔) = e−
𝜎4𝜔2

2𝜎2 ∫
∞

−∞
e−

(x+j𝜎2𝜔)2

2𝜎2 dx. (3.305)

The integral we have to compute is that of a complex variable along the real axis. We may
use for that contour integration (see Box 3.22). We select the contour shown in Figure 3.95, with
r → ∞. The integrand we wish to integrate along this contour is f (z) ≡ e−

z2

2𝜎2 . This function has
no poles inside the contour, so its integral along the contour is 0:

∫
B

A
f (z)dz + ∫

C

B
f (z)dz + ∫

D

C
f (z)dz + ∫

A

D
f (z)dz = 0. (3.306)
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Figure 3.95 The contour along which we are
going to integrate.

jσ2ω

B

Imaginary

A

D C

r−r Real

Let us consider each term separately.

∫
B

A
f (z)dz = ∫

r

−r
e−

x2

2𝜎2 dx =
√

2𝜎 ∫
r∕(𝜎
√

2

−r∕(𝜎
√

2
e−y2 dy. (3.307)

For r → ∞ this integral is given by (3.78) as being equal to 𝜎
√

2
√
𝜋.

∫
C

B
f (z)dz = ∫

𝜎2𝜔

0
e−

(r+jy)2

2𝜎2 dy

= ∫
𝜎2𝜔

0
e−

r2+2jry−y2

2𝜎2 dy

= e−
r2

2𝜎2 ∫
𝜎2𝜔

0
e−

2jry−y2

2𝜎2 dy. (3.308)

As r tends to∞, this integral vanishes. The same happens for the integral from D to A. The remain-
ing integral is:

∫
D

C
f (z)dz = ∫

−r

r
e−

(x+j𝜎2𝜔)2

2𝜎2 dx = −∫
r

−r
e−

(x+j𝜎2𝜔)2

2𝜎2 dx. (3.309)

This is the integral we wish to calculate, if we let r go to ∞. So, if we substitute in (3.306), we
obtain:

𝜎
√

2𝜋 − ∫
∞

−∞
e−

(x+j𝜎2𝜔)2

2𝜎2 dx = 0. (3.310)

Finally:

G(𝜔) =
√

2𝜋𝜎e−
𝜎2𝜔2

2 (3.311)

This shows that the Fourier transform of a Gaussian is a Gaussian with amplitude
√

2𝜋𝜎 times
the amplitude of the original Gaussian and variance Σ2 equal to the inverse of the variance of the
original Gaussian: Σ2 = 1∕𝜎2.

Box 3.22 Contour integration

Several integrals may be computed with the help of contour integration in the complex plane
using the residue theorem. The residue of a function f (z) of a complex variable z at point z0 is
defined with the help of function 𝜙(z)

𝜙(z) ≡ (z − z0)mf (z) (3.312)

(Continued)



�

� �

�

236 3 Stationary Grey Texture Images

Box 3.22 (Continued)

where m is a positive integer. If 𝜙(z0) ≠ 0, function f (z) is said to have a pole of order m at z0.
Then the residue of f (z) at z0 is computed as

B0 ≡ 𝜙(m−1)(z0)
(m − 1)!

(3.313)

where we remember that 0! = 1 and 𝜙(m−1)(z0) is the m − 1 derivative of 𝜙(z), with respect to
z, computed at z0, with 𝜙(0)(z0) being the value of the function itself.

Once we have identified the poles of the integrand of the integral we wish to compute,
we then select a closed contour along which we shall perform the integration. The residue
theorem states that the integral of a function with poles at points z0, z1,…,zn, enclosed by the
contour, is given by:

∫contour
f (z)dz = 2𝜋j(B0 + B1 + · · · + Bn) (3.314)

where B0, B1,…,Bn are the residues of the integrand at the corresponding poles.
Figure 3.96 shows some typical contours which might be constructed for the calculation of

some integrals.

Real

Imaginary

Real

Imaginary

(b)(a)

Figure 3.96 The black dots indicate poles of the integrand. In (a) the sum of the integrals along the
four branches of the contour (the two semicircles and the two straight line parts) is 0, as the pole is
outside the contour. Nevertheless, the pole influences the value of the integral, as, in order to avoid it,
we have included the small semicircle that is constructed to have radius 𝜀 → 0. In (b) the sum of the
integrals along the four straight line branches of the contour is equal to the sum of the residues at the
two poles inside the contour.

Example B3.100

Show that the discrete Fourier transform of a digital Gaussian is not a Gaussian.
Let us consider a Gaussian function of length 2N + 1 and standard deviation 𝜎 defined as:

g(i) ≡ e−
i2

2𝜎2 for i = −N,−(N − 1),… , 0,… , (N − 1),N. (3.315)

The discrete Fourier transform of this function is given by:

G(k) = 1√
2N + 1

N∑
i=−N

g(i)e−j 2𝜋ik
2N+1 ⇒



�

� �

�

3.5 Texture Features from the Fourier Transform 237

G(k) = 1√
2N + 1

N∑
i=−N

e−
i2

2𝜎2 e−j 2𝜋ik
2N+1 ⇒

G(k) = 1√
2N + 1

N∑
i=−N

e−
i2 (2N+1)+j2𝜋ik2𝜎2

2𝜎2 (2N+1) ⇒

G(k) = 1√
2N + 1

N∑
i=−N

e−
(
√

2N+1i)2+2(
√

2N+1i)

(
1√

2N+1
2𝜋jk𝜎2

)
+ 4𝜋2j2k2𝜎4

2N+1 − 4𝜋2j2k2𝜎4
2N+1

2𝜎2 (2N+1) ⇒

G(k) = 1√
2N + 1

e
4𝜋2j2k2𝜎4

2𝜎2 (2N+1)2

N∑
i=−N

e−
(
√

2N+1i+ 1√
2N+1

2𝜋jk𝜎2 )2

2𝜎2 (2N+1) ⇒

G(k) = 1√
2N + 1

e−
(

2𝜋k
2N+1

)2
𝜎2

2

N∑
i=−N

e−
((2N+1)i+2𝜋jk𝜎2 )2

2𝜎2 (2N+1)2 . (3.316)

We notice that the second factor on the right-hand side of (3.316) is a Gaussian of the form
e−

𝜔2

2Σ2 where 𝜔 ≡ 2𝜋k
2N+1

and Σ2 ≡ 1
𝜎2 . However, the sum on the right depends on k, i.e. it makes

the amplitude of the Gaussian depend on the frequency k. We cannot remove this dependency
by changing the variable of summation, as we did in the case of example 3.99, because the limits
of the summation are finite and if we change summation variable, the dependency on k will
manifest itself in the limits of the summation instead of being explicit in the summand. This
shows that the discrete Fourier transform of function (3.315) does not have the same functional
form as the original function.

Example B3.101

Compare the DFT of a digital Gaussian with the FT of the Gaussian function.
The discrete Fourier transform of g(i) defined by equation (3.315) may be written as:

G(k) = 1√
2N + 1

N∑
i=−N

g(i) cos 2𝜋ik
2N + 1

− j 1√
2N + 1

N∑
i=−N

g(i) sin 2𝜋ik
2N + 1

. (3.317)

First we shall show that the imaginary part of G(k) is zero. Let us consider the sum:
N∑

i=−N
g(i) sin 2𝜋ik

2N + 1
. (3.318)

Obviously, g(i) is a symmetric function, i.e. g(−i) = g(i), while sine is antisymmetric, so the
summand in (3.318) is an antisymmetric function summed over pairs of positive and negative
indices. All terms will cancel in pairs, making this sum zero. So, we may say that:

G(k) = 1√
2N + 1

N∑
i=−N

e−
i2

2𝜎2 cos 2𝜋ik
2N + 1

. (3.319)

(Continued)
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Example B3.101 (Continued)

In Figure 3.97a we plot G(k) as a function of k for N = 7 and 𝜎 = 3.5. In the same graph we also
plot the continuous Fourier transform of the continuous Gaussian function with the same value of
𝜎, as given by Equation (3.311), appropriately scaled: the definition of the discrete Fourier trans-
form we used, as given by Equation (3.316), includes a factor 1∕

√
2N + 1 that in the continuous

domain would have corresponded to a factor 1∕
√

2𝜋, which, however, was not included in defini-
tion (3.303) of the continuous Fourier transform we used. So, in Figure 3.97 we plot G(𝜔)∕

√
2𝜋,

instead of just G(𝜔). The horizontal axis in these figures is index k. For each value of k we com-
pute the corresponding value of 𝜔, which is 𝜔 = 2𝜋k∕(2N + 1), and use it to compute the value of
G(𝜔). Figures 3.97b and 3.97c show the corresponding graphs for N = 9 and N = 12 respectively.
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Figure 3.97 Continuous and discrete Fourier transforms of a Gaussian. (a) N = 7. (b) N = 9. (c) N = 12.

Example 3.102

Compute the power spectrum of the 1D digital signals

f1(i) = sin 2𝜋i
4

for i = 0, 1,… , 15 (3.320)

and

f2(i) = sin 2𝜋i
8

for i = 0, 1,… , 15. (3.321)

Figure 3.98 shows the digital signals and their corresponding power spectra. Note that each signal
contains exactly one frequency, and therefore, only one peak appears in the first half of its power
spectrum at the expected location.
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Figure 3.98 Two digital signals and their corresponding power spectra. (a) f1(i) = sin 2𝜋i
4

. (b)

f2(i) = sin 2𝜋i
8

.

Example 3.103

Consider the following 1D digital signal:

f (i) = sin 2𝜋i
4

for i = 0, 1,… , 16. (3.322)

Compute its power spectrum, compare it with the power spectrum of signal f1(i) of
Example 3.102 and comment.
The second column of Table 3.25 presents the values of this signal for i = 0, 1, 2,… , 16. The
Fourier transform of this signal is given by:

F(k) = 1√
17

16∑
i=0

f (i)e−j 2𝜋ki
17 for k = 0,… , 16. (3.323)

(Continued)
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Example 3.103 (Continued)
Table 3.25 Second column: values of function f (i). Third column: a Gaussian window. Fourth column:
the result of multiplying f (i) with the Gaussian window. Fifth column: T(i) window given by equation
(3.326). Last column: the result of multiplying f (i) with T(i).

i f (i) G(i) f (i)G(i) T(i) f (i)T(i)

0 0.000000 0.009999 0.000000 0.000000 0.000000
1 1.000000 0.029424 0.029424 0.761594 0.761594
2 0.000000 0.074983 0.000000 0.964028 0.000000
3 −1.000000 0.165472 −0.165472 1.000000 −1.000000
4 0.000000 0.316216 0.000000 1.000000 −0.000000
5 1.000000 0.523289 0.523289 1.000000 1.000000
6 0.000000 0.749888 0.000000 1.000000 0.000000
7 −1.000000 0.930570 −0.930570 1.000000 −1.000000
8 0.000000 1.000000 0.000000 1.000000 0.000000
9 1.000000 0.930570 0.930570 1.000000 1.000000
10 0.000000 0.749888 0.000000 1.000000 0.000000
11 −1.000000 0.523289 −0.523289 1.000000 −1.000000
12 0.000000 0.316216 0.000000 1.000000 0.000000
13 1.000000 0.165472 0.165472 1.000000 1.000000
14 0.000000 0.074983 0.000000 0.964028 0.000000
15 −1.000000 0.029424 −0.029424 0.761594 −0.761594
16 0.000000 0.009999 0.000000 0.000000 0.000000

We may separate the real and the imaginary parts in the above expression to write:

F(k) = 1√
17

16∑
i=0

f (i) cos 2𝜋ki
17

− j 1√
17

16∑
i=0

f (i) sin 2𝜋ki
17

. (3.324)

The power spectrum computed from F(k) is shown in the second column of Table 3.26. For the
time being, ignore the other two columns of this table.
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Table 3.26 Values of the power spectra of f (i), f (i) × G(i), and f (i) × T(i). G(i) is a
Gaussian mask the same size as the signal, used in order to taper the edges of the
signal. T(i) is used for the same purpose but it is flat away from the edges, so it
preserves the shape of the signal better.

Power spectrum of

k f (i) f (i)G(i) f (i)T(i)

0 0.000000 0.000000 0.000000
1 0.002284 0.000105 0.000191
2 0.014056 0.017783 0.000253
3 0.082049 0.500836 0.032783
4 3.135978 2.066701 3.148183
5 0.500200 1.294236 0.626852
6 0.129792 0.118448 0.128415
7 0.075281 0.001889 0.043126
8 0.060361 0.000000 0.020199
9 0.060361 0.000000 0.020199
10 0.075281 0.001889 0.043126
11 0.129792 0.118448 0.128415
12 0.500200 1.294236 0.626852
13 3.135978 2.066701 3.148183
14 0.082049 0.500836 0.032783
15 0.014056 0.017783 0.000253
16 0.002284 0.000105 0.000191

In Figure 3.99a we plot the original signal and in Figure 3.99b its power spectrum. The power
spectrum is intentionally plotted out of scale to show the power that appears at frequencies other
than those of the main peaks. From (3.322) we can see that the original continuous signal was
a sinusoid with frequency 𝜋∕2. However, the power spectrum we computed from it indicates
non-zero energy in other frequencies, due to the discontinuity between the start and the end point
of the signal. In addition, the two main peaks appear at indices k1 = 4 and k2 = 13, which corre-
spond to frequencies 𝜔1 = 2𝜋4∕17 = 0.47𝜋 and 𝜔2 = 2𝜋13∕17 = 1.53𝜋 (i.e. −0.47𝜋) which are
shifted away from the ±0.5𝜋 frequencies of the continuous signal.

(Continued)
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Example 3.103 (Continued)

−1

−0.5

0

0.5

1

1.5

2

0 2 4 6 8 10 12 14 16

0

0.25

0.5

0 2 4 6 8 10 12 14 16

(a) (b)

−1

−0.5

0

0.5

1

1.5

2

0 2 4 6 8 10 12 14 16

Gaussian mask
Masked signal

0

0.25

0.5

0 2 4 6 8 10 12 14 16

(c) (d)

−1

−0.5

0

0.5

1

1.5

2

0 2 4 6 8 10 12 14 16

T(i) mask
Masked signal

0

0.25

0.5

0 2 4 6 8 10 12 14 16

(e) (f)

Figure 3.99 (a) A digital signal. (b) The power spectrum of the digital signal. (c) The signal multiplied
with a Gaussian mask. (d) The power spectrum of the signal on the left. (e) The signal multiplied with
the mask given by Equation (3.326). (f) The power spectrum of the signal on the left. These power
spectra contain some peaks that go beyond the vertical scale of the graphs. The reason we plot them
this way is because we wish to pay attention to the power distributed at frequencies other than the
main peaks.
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The difference between Figures 3.98 and 3.99b is due to the size of the signal in each case. In
the first case the size of the signal is a multiple of the signal period (see Equation (3.320)), so the
repetition of the signal assumed by the discrete Fourier transform does not introduce any new
frequencies. Here, however, the size of the signal is not a multiple of the signal period, so non-zero
energy appears at several frequencies due to the interference between the natural frequency of the
signal and the size of the signal. The peaks are spread, and their maxima are shifted away from
their true locations.

Example 3.104

Multiply the digital signal of Equation (3.322) with a digital Gaussian function point
by point and compute its power spectrum. Choose the standard deviation 𝜎 of the
Gaussian so that the discontinuity due to its truncation is 0.01. Normalise the result
so that the original signal and the new signal have the same total energy.
Let us first define the Gaussian mask we need:

G(i) = e−
(i−8)2

2𝜎2 . (3.325)

If we wish to have a maximum discontinuity of 0.01 at the edges of the mask, we must choose the
𝜎 of the Gaussian so that G(0) = 0.01, i.e. 0.01 = e−

(−8)2

2𝜎2 ⇒ ln 0.01 = − 64
2𝜎2 ⇒ 𝜎 =

√
− 64

2 ln 0.01
=

2.636.
The third column of Table 3.25 gives the values of this mask and the fourth column the values

of the signal after it is multiplied with the mask point by point.
Next, we compute the power spectrum of the masked signal. However, since we do not wish

the new signal to have less overall energy than the original one, we scale the values of its power
spectrum by the ratio of the total energy of the original signal over the total energy of the new
signal. By summing the squares of the values of the second column of Table 3.25 we conclude
that the original signal had energy 8. By summing the squares of the values of the fourth column
of Table 3.25 we conclude that the new signal has energy 2.336077. Therefore, we multiply the
values of the spectrum of the new signal with 8∕2.336077 = 3.424544. This way we obtain the
values presented in the penultimate column of Table 3.26. From these numbers we can see that
the use of the Gaussian mask reduced the energy in frequencies away from the true frequency of
the original signal, while it preserved the two signal peaks. Figure 3.99c shows the profile of the
mask and the masked signal, and Figure 3.99d shows the power spectrum of the masked signal.
The vertical scale has intentionally been chosen so that the real peaks are drawn out of scale while
we see the changes in the energy distribution in the remaining frequencies. We can see now that
the true spectral content of the signal has been preserved while the energy in other frequencies has
been largely suppressed.
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Example 3.105

Multiply point by point the digital signal of Equation (3.322) with a digital T(i) func-
tion defined as

T(i) ≡
⎧⎪⎨⎪⎩

tanh i for i = 0, 1, 2
1 for 3 ≤ i ≤ I − 3
tanh(I − i) for i = I − 2, I − 1, I

(3.326)

where I is the maximum value of i. Compute the power spectrum of the resultant
signal. Normalise the result so that the original signal and the new signal have the
same total energy.
In this case parameter I in definition (3.326) is I = 16. The last two columns of Table 3.25 show the
mask, and the signal multiplied with this mask point by point, respectively. The total energy of the
masked signal is 7.160051. To preserve, therefore, the total energy of the signal, we must multiply
the values of its power spectrum with 8∕7.160051 = 1.117311. The last column of Table 3.26 gives
the power spectrum of the masked signal.

Figures 3.99e and 3.99f show the masked signal and its scaled power spectrum, in a scale that
allows us to appreciate the suppression of the energy in frequencies outside the main two peaks.
We note that in comparison with the Gaussian mask, this mask preserves more of the energy of
the original signal.

If we fit the values of each spectrum of Table 3.26 around the peak at 4 with a parabola, we
may identify the exact location of the peak and from that infer the frequency of the continuous
signal. It turns out that the peak is at points 4.037, 4.170 and 4.053 for the three spectra, i.e. that of
the unmasked signal, that of the signal masked with the Gaussian and that of the signal masked
with the T(i) filter, respectively, yielding frequencies 2𝜋4.037∕17 = 0.475𝜋, 2𝜋4.17∕17 = 0.491𝜋
and 2𝜋4.053∕17 = 0.477𝜋, respectively, instead of the correct 0.5𝜋. This shows that the Gaussian
mask, even though it requires higher energy correction than the T(i) mask, has superior perfor-
mance in terms of yielding a more accurate estimation of the true frequency of the underlying
signal.

Example 3.106

Draw three cycles of the signal that is actually seen by the discrete Fourier transform
in Examples 3.103, 3.104 and 3.105. Use them to explain how the use of the mask in
the last two examples allows the reduction of the energy in frequencies outside the
peaks formed by the main frequency present in the signal.
The discrete Fourier transform assumes that the signal is repeated ad infinitum outside its range
of definition. So, the Fourier transform of the original signal actually refers to the signal shown
in Figure 3.100a, while the Fourier transform of the signal multiplied with the Gaussian mask
refers to the signal shown in Figure 3.100b. The Fourier transform of the signal multiplied with
mask T(i) refers to the signal shown in Figure 3.100c.

In all three cases only three cycles of the signal are shown, but the signal is assumed to continue
ad infinitum in both directions. We can see that in all three cases we cannot avoid the periodicity
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due to the finite length of the original signal. However, in both masked cases the transitions at the
seams of the repeated segments are reduced in size, suppressing their power.
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(b) (c)

Figure 3.100 (a) Digital signal (3.322) repeated three times. (b) The same signal, multiplied with a
Gaussian mask, repeated three times. (c) The same signal, multiplied with the T(i) mask, repeated
three times.

Example B3.107

In view of the results of examples 3.98 and 3.104 interpret the power spectrum com-
puted in Example 3.97, shown in Figure 3.93c.
The vertical and horizontal lines at low frequencies are due to the discontinuities of the image at
its edges: the discrete Fourier transform assumes that the image is repeated ad infinitum. This
implies that the left-most edge of the image is brought into contact with the right-most edge and
the top with its bottom. If the image contains macro-texture like this particular one, this wrapping
round of the image borders creates discontinuities that manifest themselves as vertical and hor-
izontal frequencies. We may eliminate them by tapering the edges of the image by multiplying it
with a Gaussian window. This particular image is of size 256 × 256 and the Gaussian window we
must use must be centred at pixel (128.5, 128.5) and have standard deviation 𝜎 = 59.4, so that its

(Continued)
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Example B3.107 (Continued)

discontinuity at point i = 1, j = 128.5 is only 0.1. It is defined according to the following formula:

G(i, j) ≡ e−((i−128.5)2+(j−128.5)2)∕(2𝜎2) for i = 1,… , 256 and j = 1,… , 256. (3.327)

This window is shown in Figure 3.101a. The windowed image is shown in 3.101b. The power
spectrum of the windowed image is shown in 3.101c and the histogram equalised version of it in
3.101d.

We notice that the vertical and horizontal lines of the power spectrum have disappeared, but
the blocky structure remains. This blocky structure is also artificial as it implies a repetition of
the image with period smaller than that of the whole image. In fact, the size of the central block
is 172 × 172. Such an effect can only be created by applying a rectangular convolution filter on
the image. The power spectrum of the image then must have been multiplied with the Fourier
transform of this filter. It is possible that such a filter was applied by the scanner with which this
image was digitised. The impulse response of a rectangular filter has been computed in Example
3.98. From the position of the edges of the blocky structure we can infer the size of the filter used
to scan the image. From Equation (3.300) we can see that the Fourier transform of such a filter
becomes zero when k = (2N + 1)∕(2M + 1). Since for our image 2N + 1 = 256, and the first zero
of the Fourier transform happens when k = 172∕2 = 86, we infer that 2M + 1 = 2.98 and there-
fore the size of the unknown filter must have been 3 × 3. This image, therefore, cannot be used for
any further analysis as it has been distorted. A correct (undistorted) version of it will be used for
the subsequent examples.

In all cases we wish to use the power spectrum of an image to work out the image characteristics,
we shall use the Gaussian window to avoid the effects of the wrap-round borders. Alternatively,
we could use the 2D version of the window defined by Equation (3.326). It is also worth noting
that before we use an image we must check it carefully for any distortions it might have been
subjected to, as these distortions may be detrimental to what we wish to compute from it.

(a) (b)

(c) (d)

Figure 3.101 Computing the power spectrum
of an image using a Gaussian window. (a) A
Gaussian mask. (b) The image multiplied with
the Gaussian mask. (c) The Fourier spectrum of
the masked image. (d) The Fourier spectrum of
the masked image after histogram equalisation.
This spectrum has to be compared with the
spectrum of the same image shown in 3.93c to
observe that the vertical and horizontal artifacts
have been eliminated by using the Gaussian
window. Source: Maria Petrou.
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Example 3.108

Compute the fractal dimension of image 3.1d using Equations (3.158) and (3.161).
First we have to compute the power spectrum of the image using the process defined in Example
3.104 and the Gaussian window defined in Example 3.107 as the image is of size 256 × 256. The
result for image 3.102a is shown in Figure 3.102b.

We need a single cross-section of this power spectrum from which to compute the fractal dimen-
sion. Let us define some polar coordinates (𝜔, 𝜃) in the frequency space (m,n):

m ≡ 𝜔 cos 𝜃 n ≡ 𝜔 sin 𝜃. (3.328)

One may choose a value of 𝜃 for which to plot the cross-section of the computed power spec-
trum, for values of 𝜔: 1, 2, 3, 4,… ,min (M,N). For the selected value of 𝜃 and for each value of 𝜔
we can produce a pair of values (m̃,ñ), for which we need the corresponding value of the power
spectrum Pf (m̃,ñ). The pair (m̃,ñ), however, will not, in general, be an integer pair, so the value
Pf (m̃,ñ) will correspond to an inter-grid position and it will have to be computed by interpola-
tion. This is a bad idea. We should avoid interpolating spectra, as interpolation tacitly assumes
that the interpolated function is smooth, while spectra often contain spikes, even when they cor-
respond to smooth images. It is far better to consider the values of (m,n) we have, and work out
the corresponding (𝜔, 𝜃) values:

𝜔 =
√

m2 + n2 𝜃 = tan−1
( n

m

)
. (3.329)

Here we must use a DFT where the dc component is in the middle of the image, and m and n
are allowed to take values in the range [−128, 127]. The sign of m and n should be used, so that
𝜃 takes values in the range [0, 360∘).

Then we usually take slices of the power spectrum along various directions and compute
parameter 𝛽. Often people average the values obtained along the various directions. Of
course, when we select an orientation, we have to allow for some tolerance in the values of
𝜃 we worked out. Say we select direction 𝜃0. Then we may consider all points we have with
𝜃0 − Δ𝜃 < 𝜃 < 𝜃0 + Δ𝜃, where Δ𝜃 is some tolerance we are prepared to accept. We can plot
those points versus 𝜔, to visualise the power spectrum of the image along direction 𝜃0, and
we may fit the pairs of values we have (log𝜔, log[P(𝜔; 𝜃0)]) with the least squares method, to
work out the slope of the fitted curve 𝛽(𝜃0), and from it the fractal dimension along 𝜃0, from
Equation (3.161) with DT = 2. We may also use all points we have together, irrespective of their 𝜃
value.

In Figures 3.102c–3.102e we plot some of the cross-sections we computed for this image
for 𝜃0 = 0∘, 𝜃0 = 45∘ and 𝜃0 = 90∘ with Δ𝜃 = 1∘. In 3.102f we plot all points, irrespective of
the value of 𝜃. By fitting the pairs of points in each panel with a straight line using LSE, we
worked out the following fractal dimensions for this image. From the power spectrums as
shown in Figures 3.102, by calculating 𝛽, the results of the fractal dimension are shown in
Table 3.27.

(Continued)
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Example 3.108 (Continued)

(a) Original image multiplied

with a Gaussian mask

(b) Histogram equalised

Fourier spectrum
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(c) Cross-section for θ = 0°

20

24

28

212

216

220

224

1 2 4 8 16 32 64 128

P
(ω

)

ω
(d) Cross-section for θ = 45°

20

24

28

212

216

220

224

1 2 4 8 16 32 64 128

P
(ω

)

ω

20

24

28

212

216

220

224

1 2 4 8 16 32 64 128

P
(ω

)

ω
(e) Cross-section for θ = 90° (f) Whole spectrum

Figure 3.102 Computing the fractal dimension of an image from its power spectrum. (a) Original
image (plastic) multiplied with the Gaussian mask. Source: Maria Petrou. (b) Fourier spectrum of the
image after histogram equalisation. Source: Maria Petrou. (c)–(e) Cross-sections of the power spectrum
for 𝜃 = 0∘, 45∘ and 90∘, respectively. (f) Using all orientations together.
Table 3.27 The results of the fractal dimension D by calculating 𝛽 .

𝜽 𝜷 D

0∘ 2.687 2.656
45∘ 3.183 2.409
90∘ 2.964 2.518
All points 3.127 2.436
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Example B3.109

You are given a real digital signal f (i) of length 2N + 1. Prove that its power spectrum
is equal to the discrete Fourier transform of its autocorrelation function.
For the sake of this proof we define the discrete Fourier transform of a signal as:

F(k) = 1
2N + 1

N∑
i=−N

f (i)e−j 2𝜋ki
2N+1 . (3.330)

The power spectrum of the signal then is:

P(k) ≡ |F(k)|2 = F(k)F∗(k) = 1
(2N + 1)2

N∑
i=−N

f (i)e−j 2𝜋ki
2N+1

N∑
l=−N

f ∗(l)ej 2𝜋kl
2N+1 . (3.331)

Here we have changed the dummy variable of the definition of DFT from i to l in the second
sum in order to avoid any confusion. Since f (i) is real, it is equal to its complex conjugate, so
f ∗(l) = f (l), and we may write:

P(k) = 1
(2N + 1)2

N∑
i=−N

N∑
l=−N

f (i)f (l)ej 2𝜋k(l−i)
2N+1 . (3.332)

Let us define a new summation variable: t ≡ i − l ⇒ i = l + t.
Figure 3.103 shows the summation space when the (i, l) or the (t, l) variables are used. Note

that the bounding equations i = N and i = −N are transformed into t = N − l and t = −N − l,
respectively. The power spectrum now is equal to:

P(k) = 1
(2N + 1)2

N∑
l=−N

N−l∑
t=−N−l

f (l + t)f (l)e−j 2𝜋kt
2N+1

= 1
(2N + 1)2

{ N∑
l=0

−N−1∑
t=−N−l

+
N∑

l=0

−1∑
t=−N

+
N∑

l=0

N−l∑
t=0

+

−1∑
l=−N

−1∑
t=−N−l

+
−1∑

l=−N

N∑
t=0

+
−1∑

l=−N

N−l∑
t=N+1

}
f (l + t)f (l)e−j 2𝜋kt

2N+1 . (3.333)

In the first sum we change the variable of summation from t to t̃ ≡ t + 2N + 1 ⇒ t = t̃ − 2N − 1
so that the limits of summation over t̃ are from N − l + 1 to N. In the last sum we change variable
of summation from t to t̃′ ≡ t − 2N − 1 ⇒ t = t̃′ + 2N + 1 so that the limits of summation over
t̃′ are from −N to −N − l − 1:

P(k) =

[{ N∑
l=0

−1∑
t=−N

+
N∑

l=0

N−l∑
t=0

+
−1∑

l=−N

−1∑
t=−N−l

+
−1∑

l=−N

N∑
t=0

}
f (l + t)f (l)e−j 2𝜋kt

2N+1

+
N∑

l=0

N∑
t̃=N−l+1

f (l + t̃ − 2N − 1)f (l)e−j 2𝜋k(t̃−2N−1)
2N+1

+
−1∑

l=−N

−N−l−1∑
t̃′=−N

f (l + t̃′ + 2N + 1)f (l)e−j 2𝜋k( ̃t′+2N+1)
2N+1

]
1

(2N + 1)2 . (3.334)

(Continued)
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Example B3.109 (Continued)
Figure 3.103 (a) The shaded region
indicates the range of indices i and l over
which we sum in order to compute the
power spectrum of the signal. (b) The region
over which we sum when we change
indices of summation to t and l.

l

N i−N

N

−N

(a)

2N
t

l

−N

t = N −l
N

−2N−Nt = − N−l

N

(b)

Since for the computation of DFT, the signal is assumed to be repeated ad infinitum with peri-
odicity equal to its size, f (l + t̃ − 2N − 1) = f (l + t̃) and f (l + t̃′ + 2N + 1) = f (l + t̃′). In addition,

e−j 2𝜋k(t̃−2N−1)
2N+1 = e−j 2𝜋kt̃

2N+1 ej 2𝜋k(2N+1)
2N+1 = e−j 2𝜋kt̃

2N+1 ej2𝜋k = e−j 2𝜋kt̃
2N+1 (3.335)

and similarly:

e−j 2𝜋k( ̃t′+2N+1)
2N+1 = e−j 2𝜋k ̃t′

2N+1 . (3.336)

Finally, we may rename the dummy summation variables t̃ and t̃′ as t without confusion. Then
upon substitution into (3.334), we obtain:

P(k) = 1
(2N + 1)2

{ N∑
l=0

−1∑
t=−N

+
N∑

l=0

N−l∑
t=0

+
−1∑

l=−N

−1∑
t=−N−l

+
−1∑

l=−N

N∑
t=0

+
N∑

l=0

N∑
t=N−l+1

+
−1∑

l=−N

−N−l−1∑
t=−N

}
f (l + t)f (l)e−j 2𝜋kt

2N+1 . (3.337)

We combine the first, second and fifth sums, as well as the third, fourth and sixth sums together,
to obtain:

P(k) = 1
(2N + 1)2

{ N∑
l=0

N∑
t=−N

+
−1∑

l=−N

N∑
t=−N

}
f (l + t)f (l)e−j 2𝜋kt

2N+1

= 1
(2N + 1)2

N∑
l=−N

N∑
t=−N

f (l + t)f (l)e−j 2𝜋kt
2N+1

= 1
2N + 1

N∑
t=−N

1
2N + 1

N∑
l=−N

f (l + t)f (l)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

R(t)

e−j 2𝜋kt
2N+1 . (3.338)

We recognise the quantity identified by the underbrace as being the autocorrelation function R(t)
of the original signal. Then:

P(k) = 1
2N + 1

N∑
t=−N

R(t)e−j 2𝜋kt
2N+1 (3.339)

which shows that the DFT of the autocorrelation function of the signal is equal to its power spec-
trum. This result is known as the Wiener–Khinchine theorem.



�

� �

�

3.5 Texture Features from the Fourier Transform 251

Does the phase of the Fourier transform convey any useful information?

It has repeatedly been demonstrated that the phase of the Fourier transform contains more infor-
mation than the magnitude. See Examples 3.111 and 3.112.

Example 3.110

Consider the original image of Figure 3.104. Compute its Fourier transform and from
this its magnitude, using formula (3.288), and its phase, using formulae (3.289).

From the phase and magnitude of an image we can recover the real and imaginary
parts of its Fourier transform using:

FR(u, 𝑣) = M(u, 𝑣) cosΦ(u, 𝑣)
FI(u, 𝑣) = M(u, 𝑣) sinΦ(u, 𝑣). (3.340)

Apply the above formulae to compute the real and imaginary parts of the
Fourier transform using the original values of M(u, 𝑣), but instead of Φ(u, 𝑣), use
Φne𝑤 1(u, 𝑣) = Φ(u, 𝑣) + 30∘, Φnew 2(u, 𝑣) = Φ(u, 𝑣) + 60∘, and Φnew 3(u, 𝑣) = Φ(u, 𝑣) + 90∘.
In each case use the real and imaginary parts as input to the inverse Fourier
transform to construct an image. What is the relationship of these images with the
original one?
The results are shown in Figure 3.104. The original image was a real image with no imaginary
part. Note how the added angle to the phase influences the real and imaginary parts of the inverse
Fourier transform. For example, adding 90∘ exchanges the real and imaginary parts of the orig-
inal image.

To work out the relationship between these outputs and the original one, we start from the
reconstruction formula for image f (m,n) from its DFT F(u, 𝑣). The image is assumed to be of size
M × N. Then

f (m,n) = 1
MN
∑
u,𝑣

F(u, 𝑣)ej2𝜋
(

um
M
+ 𝑣n

N

)
= 1

MN
∑
u,𝑣

M(u, 𝑣)ejΦ(u,𝑣)ej2𝜋
(

km
M
+ ln

N

)
(3.341)

where we expressed the Fourier transform in terms of its magnitude and phase. Suppose now that
we add and subtract a number 𝜃 from the phase of the DFT:

f (m,n) = 1
MN
∑
u,𝑣

M(u, 𝑣)ej(Φ(u,𝑣)+𝜃)ej2𝜋
(

km
M
+ ln

N

)
e−j𝜃

=

⎡⎢⎢⎢⎢⎢⎢⎣
1

MN
∑
u,𝑣

M(u, 𝑣) cos
(
Φ(u, 𝑣) + 𝜃 + 𝜋

(
km
M

+ ln
N

))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

F̃R(m,n)

+

j 1
MN
∑
u,𝑣

M(u, 𝑣) sin
(
Φ(u, 𝑣) + 𝜃 + 𝜋

(
km
M

+ ln
N

))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

F̃I(m,n)

⎤⎥⎥⎥⎥⎥⎥⎦
e−j𝜃

≡ [F̃R(m,n) + jF̃I(m,n)
]

e−j𝜃. (3.342)

(Continued)
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Example 3.110 (Continued)

Original image Imaginary part

Real part (Φ(u,v) + 30°) Imaginary part  (Φ(u,v) + 30°)

Imaginary part  (Φ(u,v) + 60°)

Imaginary part  (Φ(u,v) + 90°)

Real part (Φ(u,v) + 60°)

Real part (Φ(u,v) + 90°)

Figure 3.104 Real and imaginary parts of the inverse Fourier transform after adding 0∘, 30∘, 60∘ and
90∘ to the phase of the image.

The reconstruction we obtain after we add the constant to the phase of the DFT consists of a real
F̃R(m,n) and an imaginary image F̃I(m,n). From the above expression we see that:

f (m,n) = F̃R(m,n) cos 𝜃 + F̃I(m,n) sin 𝜃

+ j
(
−F̃R(m,n) sin 𝜃 + F̃I(m,n) cos 𝜃

)
. (3.343)
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Since f (m,n) is real, we deduce that:

F̃R(m,n) cos 𝜃 + F̃I(m,n) sin 𝜃 = f (m,n)
−F̃R(m,n) sin 𝜃 + F̃I(m,n) cos 𝜃 = 0. (3.344)

These equations may be solved for F̃R(m,n) and F̃I(m,n):

F̃R(m,n) = f (m,n) cos 𝜃 F̃I(m,n) = f (m,n) sin 𝜃 (3.345)

Since 𝜃 is a constant, we see that the addition of a constant to the phase of the DFT of an image
creates a complex image in the spatial domain with real and imaginary parts that are dimmed
versions of the original image.

Example 3.111

In the case of Example 3.110 compute the mean grey value gm of the image and set
M(u, 𝑣)new 1 = gm for every pair of values (u, 𝑣). Use this M(u, 𝑣)new 1 with the orig-
inal values of Φ(u, 𝑣) in Equations (3.340) to recover the real and imaginary parts of
the Fourier transform. Then take the inverse Fourier transform to obtain an image.
Repeat this for M(u, 𝑣)ne𝑤 2 = min {1.5gm, 255}. Comment on the relationship of the
recovered images with the original one and the role played by the fixed value of
M(u, 𝑣).
The results are shown in Figure 3.105. It can be seen that, although the magnitude information
has been totally destroyed, the constructed images still have some similarity with the original one.
Increasing the chosen value of M(u, 𝑣) simply makes the reconstructed image brighter.

Original Image M (u,v)new_1 M (u,v)new_2

Figure 3.105 Image reconstruction using a fixed value for its Fourier transform magnitude.
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Example 3.112

In the case of example 3.110 setΦnew 1(u, 𝑣) = 30∘ for every pair of values (u, 𝑣) and use
the original values of M(u, 𝑣) in Equations (3.340) to recover the real and imaginary
parts of the Fourier transform. Then take the inverse Fourier transform to obtain an
image. Repeat this for Φnew 2(u, 𝑣) = 90∘. Comment on the relationship of the recov-
ered images with the original one.
The results are shown in Figure 3.106. Note that, although the original values of the magnitude
have been used, there is no similarity between the reconstructed images and the original one.

Original image Φnew_1(u,v) = 30° Φnew_2(u,v) = 90°

Figure 3.106 Image reconstruction using a fixed value for its Fourier transform phase. The grey
values of the reconstructed images are proportional to the magnitude of the reconstructed complex
values. For Φnew 2(u, 𝑣) = 90∘ the reconstructed image has only an imaginary part. For
Φnew 1(u, 𝑣) = 30∘ the reconstructed image has real and imaginary parts, both of which look pretty
similar to the magnitude that is displayed here.

Example 3.113

Consider the original images beans and Costas shown in Figure 3.90 and 1.1, respec-
tively. Compute their Fourier transforms. Call the magnitude and phase of the
transform MB(u, 𝑣), MC(u, 𝑣), and ΦB(u, 𝑣) and ΦC(u, 𝑣) for the beans and Costas images,
respectively. Define

Φ0(u, 𝑣; 𝛼) ≡ 𝛼ΦB(u, 𝑣) + (1 − 𝛼)ΦC(u, 𝑣) (3.346)

where 0 ≤ 𝛼 ≤ 1. By using MB(u, 𝑣) and Φ0(u, 𝑣; 𝛼) for 𝛼 = 0.75, 0.5, 0.25 and 0, compute
the real and imaginary parts of the Fourier transform and use the inverse Fourier
transform to construct images. Comment on the resemblance these images have
with the original images.
The results are shown in Figure 3.107. Although the magnitude used in all cases is from the beans
texture, it is clear that 𝛼 strongly influences the final result, that is, the appearance of the final
result is dominated by the image the phase of that enters with the highest weight in (3.346).
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α = 0 (Φ0 = ΦC) α = 0.25 (Φ0 = 0.25ΦB + 0.75ΦC)

α = 0.5 (Φ0 = 0.5ΦB + 0.5ΦC) α = 0.75 (Φ0 = 0.75ΦB + 025ΦC)

Figure 3.107 Inverse Fourier transform using MB(u, 𝑣) and Φ0(u, 𝑣) for different values of 𝛼. Source:
Maria Petrou. For 𝛼 = 0 the phase used in the inverse Fourier transform is from the Costas image and
that is clearly visible here, although the magnitude is from the beans image. When the phase of both
images enters in equal proportions (𝛼 = 0.5), we have a transparency effect, as the two images exist
one on top of the other.

Since the phase conveys more information for a pattern than its power spectrum, why
dont́ we use the phase to describe textures?

When we use a numerical quantity to describe something, we require the values of this quantity to
change only slightly when the differences between two “somethings” is small. This is not the case
for the phase values of a signal, because we express them by angles modulo 360∘, creating strong
discontinuities in the values near the edges of the range; something with phase 359∘ is not expected
to be very different from something with phase 2∘, and yet their phases differ by as much as 357∘!

Is it possible to compute from the image phase a function the value of which changes
only due to genuine image changes?

Yes. This process is called phase unwrapping. We can imagine that the phase we compute with
the Fourier transform is the modulo 360∘ of a quantity that varies continuously. Figure 3.108 shows
how this quantity takes sequential values in an image and how we just map it always on a circle.
The process of phase unwrapping tries to recover the original quantity from the computed one, by
adding 360∘ to the computed phase every time it makes a sudden jump.
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O
A

B

C

D

E (1440 o)

(0 o)

(1080 o)

(720 o)

(360 o)

O

(b)(a)

A B C D E

(0 o 360o)

Figure 3.108 (a) Imagine that you start from point A and you move along the thick line measuring your
orientation anti-clockwise with respect to reference direction OA. When the angle you measure becomes
360∘ , imagine that it carries on increasing by taking values around the circle at the second level, and so on.
It is as if a cut has been made along line OA so that, when you reach point A after you have completed a
circle, you can move along some other dimension of space, onto another circle, where a similar cut has
been made to allow you to move to another circle and so on. (b) Here all these extra circles are shown
collapsed on the original circle, so that when you move along the thick line you always retrace the same
circle and your measuring apparatus is set back to 0 every time you pass through point A. In phase
unwrapping we have situation (b) and we are trying to recover situation (a).

How do we perform phase unwrapping?

Let us consider a signal, the true phase of which is shown by the curve in the top panel of
Figure 3.109. The black dots indicate the places where this continuous function is sampled. In
reality we do not have these points. We have the points shown in the second panel of the same
figure, because we compute the phase using the inverse tangent function which wraps it in the
range (−180∘, 180∘]. So, our problem is to start from the points in the second panel and recover the
points in the top panel. This may be achieved by differentiating the phase and then integrating it
as demonstrated next. The third panel of the figure shows the first derivative of the sequence of
points in the second panel:

Δ𝜙(n) ≡ 𝜙(n) − 𝜙(n − 1) for n = 1,… ,N. (3.347)

We can see that at the points where the phase was wrapped round this difference has high abso-
lute value. To recover then the unwrapped phase Φ(n), we define first a sequence of corrections
c(n)

c(n) =

⎧⎪⎪⎨⎪⎪⎩

0 when |Δ𝜙(n)| < T or when n = 0

−360 when Δ𝜙(n) ≥ +T

+360 when Δ𝜙(n) ≤ −T

(3.348)



�

� �

�

3.5 Texture Features from the Fourier Transform 257

Figure 3.109 At the top the true phase of a
signal. Below it, the phase we compute from
the real and imaginary parts of the Fourier
transform of the signal. Below, the first
difference of the numbers plotted in the
second panel. At the bottom, the sequence of
numbers plotted from the unwrapped phase
after the linear drift has been removed. This
sequence is intrinsic to the signal and it may
be used to characterise it.
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where T is some positive threshold. Let us choose it for this example to be T = 100. We can easily
see that for our example the correcting sequence c(n) is:

0, 0, 0, 0, 0, 0, 0,−360, 0, 0, 0,+360,−360, 0, 0, 0, 0, 0.

Then the corrected sequence is recovered by performing integration from left to right and step
by step along the differentiated sequence:

Φ(0) = 0 + c(0)
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Φ(1) = Φ(0) + Δ𝜙(1) + c(1)
Φ(2) = Φ(1) + Δ𝜙(2) + c(2)
Φ(3) = Φ(2) + Δ𝜙(3) + c(3)

… . (3.349)

We notice that at the end the created sequence will have a total added corrective term C(N) =∑N
n=0 c(n) = −360. To identify the sequence that genuinely expresses signal changes, we remove

from the result this drift by fitting a straight line between points (0, 0) and (N,C(N)). The equation
of such a line is:

Φ̂(n) = n
N

C(N). (3.350)

Then the sequence which is of interest to us is:

g(n) = Φ(n) − Φ̂(n) = Φ(n) − n
N

C(N). (3.351)

The drift line is the straight line plotted in the top panel of Figure 3.109. We then find the differ-
ence between this line and the unwrapped phase values. These are the values that characterise the
signal, which for this particular example are:

0,−19,−18,−16,−35,−14,−33,−52,−51,−29, 32, 73, 74, 75, 56, 58, 59, 120.

This sequence is plotted in the bottom panel of Figure 3.109.

What are the drawbacks of the simple phase unwrapping algorithm?

The phase unwrapping algorithm described above has several drawbacks.

● If the signal becomes zero at some position, its phase is undefined and there is no mechanism in
the algorithm allowing one to deal with that.

● The signal has to be sampled very densely, so that its genuine phase changes much more slowly
than the changes due to the discontinuity jumps. This may allow one to choose a threshold T
reliably.

● The algorithm propagates the integrated value by incrementing the value at the first sample. This
means that any error committed at any stage influences all subsequent samples.

We shall see in Chapter 4 that instead of using such an algorithm to define phase features, we
find other indirect ways to encode phase information (see Section 4.4).

Example 3.114

Consider the textures of Figure 3.1. Pick up two horizontal lines from each texture,
and by treating them as 1D signals, phase unwrap them and produce for each line the
characterising sequence of numbers. Plot the 16 sequences, with the two that came
from the same texture one below the other.
The results are shown in Figure 3.110. We can see that lines that came from the same texture are
reasonably similar to each other, and sufficiently distinct from the lines of other textures, with the
only exception perhaps the lines that correspond to the image sand.
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Cloth 1

Cloth 1

Cloth 2

Cloth 2

Food

Food

Plastic

Plastic

0 64 128 192 256

Fabric 1

Fabric 1

Fabric 2

Fabric 2

Beans

Beans

Sand

Sand

0 64 128 192 256

Figure 3.110 Phase-unwrapped sequences obtained for two horizontal lines of the texture images of
Figure 3.1.

How do we perform phase-unwrapping in 2D?

In 2D we can work out the phase function from one point to another along many different paths.
This is schematically demonstrated in Figure 3.111. All paths should yield the same phase for the
final point, but of course this usually does not happen. At the end, the unwrapped phase of the
final point may be computed as the average of the results of all paths followed, or by consider-
ing the phase that most paths yielded. In some schemes one may backtrack along paths to check
whether the original point with the correct starting phase may be recovered, when starting from
the estimated phase of the final point, and accordingly correct the estimation of the phase of the
final point.

Example B3.115

Identify all the paths that lead from pixel A to pixel Q in the grid shown in
Figure 3.111, when you are allowed to move only from left to right and from top to
bottom. How many do you expect there to be?
Let us consider an N × M grid such that pixel A is at its top left corner and pixel Q at its bottom
right. As we are allowed to move only from left to right and from top to bottom when we try to
go from A to Q, it is obvious that any path we follow will consist of N + M − 2 pixels. Let us call

(Continued)
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Figure 3.111 Four of the possible paths that lead from pixel A to pixel Q.
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Example B3.115 (Continued)

the horizontal “steps” we perform when tracing such a path by letter R and the vertical steps by
letter B. The sequence of steps that make up a path will be a string of M − 1 Rs and N − 1 Bs of
total length N + M − 2. The question then is: how many strings of total length N + M − 2 can we
make that contain M − 1 Rs and N − 1 Bs? This is a combinatorial problem and the answer is:

Number_of_paths = (N + M − 2)!
(N − 1)!(M − 1)!

. (3.352)

Applying this formula to our problem, we have: N = M = 4. Then we work out that there are
20 possible paths from A to Q. These are shown in Figure 3.112
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Figure 3.112 All paths that lead from A to Q when we can only move from left to right and from top
to bottom in the grid shown in Figure 3.111.

The creation of binary slices by thresholding is equivalent to re-binning the pixels into wider
histogram bins and marking the pixels that belong to each bin in a separate slice. This leads to the
slice transform of the image.

What is the slice transform of an image

It is the representation of an image as a linear combination of the binary slices from which it con-
sists. If in one slice we mark with 1 all pixels that have a particular grey value and with 0 all pixels
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Figure 3.113 A 2-bit image may be written as the linear superposition of its binary slices.

that do not have this value, the binary slices we create may be thought of as an orthogonal basis.
The image then may be written as the sum of these binary slices, with each one multiplied with
the corresponding grey value. This is shown schematically in Figure 3.113. See Box 3.23 for further
details on the slice transform.

Box 3.23 The slice transform

Consider that we write the binary slices shown in Figure 3.113 as column vectors, one next to
the other. Then we may re-write the expansion shown in Figure 3.113 as:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
1
2
2
2
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
1 0 0 0
0 1 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
0
1
2
3

⎞⎟⎟⎟⎟⎠
. (3.353)

In general, a column image g, with NM elements, may be written as

g = Sh (3.354)

where S is an NM × G matrix, one column of that identifies with 1 the pixels with a particular
grey value and with 0 all other pixels, and h is the list of the G grey values of the image, each
one corresponding to one column of matrix S.

Now, let us imagine that we bin the grey values of the image into H different bins, and
let us say that we consider that each bin corresponds to its middle grey value, rounded to
the nearest integer. For example, if we have an 8-bit image and we use bins of width 10, the
first bin with values in the range [0, 9) will correspond to grey value 4, the second bin, with
values in the range [10, 19) will correspond to grey value 14, and so on. We may construct
matrix S now so that each of its columns identifies the pixels that belong to a particular bin.
Then the slice transform of the image approximates the image by representing it as the linear
superposition of the binary slices that correspond to the histogram bins, each slice multiplied
with the representative grey value of the bin:

g ≃ Sh. (3.355)

Here now h is the column vector of the histogram bins representative grey values. For
example, for the slices of Figure 3.2, the histogram bins are [0, 30), [31, 62), [63, 94), [95, 126),
[127, 158), [159, 190), [191, 222) and [223, 255). The corresponding grey values may be cho-
sen to be: 15, 46, 78, 110, 142, 174, 206 and 239, respectively. Figure 3.114a shows the

(Continued)
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Box 3.23 (Continued)

approximate representation of the original image using these values in (3.355). The bins used
in Figure 3.3 are [0, 76), [77, 91), [92, 102), [103, 122), [123, 134), [135, 151) and [152, 255].
The corresponding grey values of the bins may be selected to be: 38, 84, 97, 112, 128, 143 and
203, respectively. Figure 3.114b shows the approximate representation of the original image
using these values in (3.355).

(a) (b)

Figure 3.114 The approximate
representation of the original image.

Example 3.116

The tone transform of an image is defined as a transform that takes the grey values
of the image and maps them on different grey values, not necessarily in a linear way.
The image of Figure 3.2a has been subject to the following tone transform:

[0, 30) → [220, 256)
[31, 62) → [150, 179)
[63, 94) → [120, 149)
[95, 126) → [90, 119)
[127, 158) → [60, 89)
[159, 190) → [30, 59)
[191, 222) → [0, 29)
[223, 255) → [180, 219)

Show what the image looks like now, using the approximate slice transform.
All we have to do is to use Equation (3.355), with the same S matrix as we had for the original
histogram, but now replacing vector h with the new vector of representative grey values of the
bins: (238, 165, 135, 105, 75, 45, 15, 200)T. The result is shown in Figure 3.115.

Figure 3.115 The approximate representation of
the original image. Source: Maria Petrou.
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3.6 Markov Random Fields

What is a Markov random field?

A Markov random field (MRF for short) is a random field that possesses the Markovian prop-
erty: the value of a pixel depends directly only on the values of the neighbouring pixels and on no
other pixel.

What is a random field?

A random field is created when one performs a random experiment at each location and assigns
the outcome of the random experiment to that location.

Which are the neighbouring pixels of a pixel?

This depends on how we define the neighbourhood of a pixel. Figure 3.116 shows some com-
monly used neighbourhoods for Markov random fields. These neighbourhoods imply spatial prox-
imity of the pixels that influence the value at the central location. This, however, is not necessary.
Figure 3.117 shows some more complicated Markov neighbourhoods.

< 2| i−i   | + | j−j   |oo

| i−i   | + | j−j   |oo < 4| i−i   | + | j−j   |oo < 3

=1| i−i   | + | j−j   |oo

| i−i   | + | j−j   |oo < 3

| i−i   | + | j−j   |oo < 2

(i   ,j   )oo

(a) (b) (c)

(d) (e) (f)

Fourth order Fifth order Sixth order

First order Second order Third order

Figure 3.116 Some Markov neighbourhoods and the conditions that have to be satisfied by the
coordinates of a pixel (i, j) in order to belong to the neighbourhood of the central pixel (i0, j0). The most
commonly used ones are those of the first and second order.
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(a) (b) (c)
Figure 3.117 Some more exotic Markov neighbourhoods, where the neighbours that influence the value
of the pixel at the centre are not spatially adjacent to it.

How can we create a Markov random field?

Consider an empty grid, like the one shown in Figure 3.118. Suppose that we decide to fill in the
missing numbers by throwing a coin for each pixel 255 times and counting the number of heads.
The “grey” value we assign to each empty grid cell is the number of heads we count for that pixel
position. By doing this we create a random field.

The probability p(k) of getting k heads in n throws is given by the binomial distribution

p(k) =
(n

k

)
𝜃k(1 − 𝜃)n−k (3.356)

where (n
k

)
= n!

k!(n − k)!
(3.357)

and 𝜃 is the probability of getting a head in a single throw. For an unbiased coin, 𝜃 = 1∕2.
Let us imagine now that, having done this process once and filled in all the numbers, we change

the coin, so that it becomes biased. We bias it in such a way that when we decide to choose the
value assigned to a certain grid location, we take into consideration the values of the neighbouring
locations. Let us say, for example, that we want the coin to be such that

p(head|given_values_of_nbrs)
p(tail|given_values_of_nbrs)

= es (3.358)

where s is a function of the values of the neighbours. We can work out now the bias of the coin by
observing that

p(head|given_values_of_nbrs) = 𝜃 and, therefore,
p(tail|given_values_of_nbrs) = 1 − 𝜃:

𝜃

1 − 𝜃
= es ⇒ 𝜃 = es

1 + es . (3.359)

Using such a coin to decide the new values at the grid positions allows us to create an example
of a Markov random field.

For the particular example considered here, if we substitute 𝜃 from (3.359) into (3.356), we obtain
the local conditional probability density function for a particular grey value k to arise, given the
values of the neighbouring pixels, as:

p(k|given_values_of_nbrs) =
(n

k

) eks

(1 + es)n . (3.360)
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Figure 3.118 An empty grid. We have to choose grey
values for these pixels to create first a random field, and
from it a Markov random field.

As the outcomes of the random experiment we performed to decide the value of each pixel were
governed by the binomial distribution, this model is known as an auto-binomial MRF model.

How can we use Markov random fields to characterise textures?

This is a parametric approach where we model the texture as a Markov random field. We have
to choose first the type of neighbourhood we shall adopt and then the form of function s in
Equation (3.360). Once these are fixed, the parameters on which function s depends characterise
the texture. These are called Markov parameters.

Let us say, for example, that we adopt the neighbourhood structure of Figure 3.116a and assume
that function s has the form

s = a(gl + gr) + b(gt + gb) (3.361)

where gl, gr, gt and gb stand for the grey value of the left, right, top and bottom neighbour of the
central pixel, respectively. Parameters a and b in (3.361) are the Markov parameters.

Such models also offer the option to create textures, so they are appropriate for texture synthesis
by analysis, a technique used in computer graphics.

What is texture synthesis by analysis?

It is a technique by which the parameters of a real image texture are inferred and used to create
textures to render images. This technique may also be used to infer how uniquely the estimated
parameters characterise the texture.

Example 3.117

Show that if a Markov parameter is positive, it encourages a pixel to have a value
similar to its neighbours, and if it is negative, it encourages a pixel to have a value
dissimilar to its neighbours.
Consider Equations (3.359) and (3.361). For simplicity, assume that in (3.361) a = b. Let us also
consider that the neighbours have high values. Then if a is positive, es is a very high number, and
we can see from (3.359) that 𝜃 → 1, which implies that we bias our coin so that it has a very high
probability of producing a head in a single throw, thus a very high probability of producing a high
number of heads in 255 throws, thus a very high probability of producing a grey value similar to
those of the neighbouring pixels. On the contrary, if a < 0, es would tend to zero for large values
of the neighbours, so 𝜃 would tend to zero, and our experiment would tend to produce a small
number of heads in 255 throws, so the central pixel would most likely have a small grey value, in
contrast to its neighbouring pixels, which have been assumed to have high values.
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Example 3.118

Infer the qualitative relationships for the Markov parameters that might charac-
terise the textures of Figure 3.119, assuming that the model applied is the one given by
Equation (3.360), where s is a linear combination of the values of the eight neighbours
of the pixel, identified by the second-order Markov neighbourhood of Figure 3.116b.
Assume that in each case each stripe is 1 pixel wide.

(a) (b) (c) (d)

Figure 3.119 Four directional textures.

If we identify each neighbour as left, right, top, bottom, etc., with the corresponding parameters
arranged as shown in Figure 3.120, we can easily deduce that for each texture in Figure 3.119 we
must have:

Image 3.119a: al = ar > 0 and at = ab = atl = abr = atr = abl < 0
Image 3.119b: at = ab > 0 and al = ar = atl = abr = atr = abl < 0
Image 3.119c: atl = abr > 0 and atr = abl = at = ab = al = ar < 0
Image 3.119d: atr = abl > 0 and atl = abr = at = ab = al = ar < 0

?

atl

al ar

at atr

abl ab abr

Figure 3.120 The parameters and pixels that influence the value
of the central pixel in the case of a second-order Markov
neighbourhood.

Example 3.119

Infer the missing value of the empty pixel in the images of Figure 3.121.
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Figure 3.121 Context allows us to determine the
missing values.

The first image appears to contain a deterministic texture, where four 0s in a cross-like shape
imply the value of 1 in the middle. So, in 3.121a the missing value is 1. In 3.121b, we see that four
0s in a cross-like shape imply the value of 1 in 6 out of 10 times, and they imply the value of 2 in 4
out of 10 times. So, for the second texture we may say that the neighbours imply that the missing
value is 1 with probability 0.6 and 2 with probability 0.4.

How can we apply the Markov model to create textures?

Applying directly formula (3.360) to choose the grey values of the pixels is not practicable: the for-
mula contains very large numbers which will easily overflow any computer, particularly if we want
to have grey values in the range [0, 255]. We shall see later in this chapter how we create textures in
practice. Here, however, in order to demonstrate the formula we shall apply it for simplified cases
where we consider grids of size 64 × 64 and pixels that take only nine distinct grey values, i.e. they
take integer values in the range [0, 8]. We shall create textures using the neighbourhoods shown
in Figures 3.116a,b,c and 3.117 with the Markov model given by Equation (3.360) with function s
being a linear combination of the values of the neighbours of the pixel. The parameter value with
which the grey value of each neighbour will have to be multiplied is shown in Figure 3.122. We
shall assume that each image is repeated ad infinitum in all directions, so that even the border
pixels have well defined neighbourhoods.

We start by creating a random field of size 64 × 64 where the grey value at each position is drawn
from the probability density function given by (3.356) with n = 8 and 𝜃 = 0.5:

p(k) = 8!
k!(8 − k)!

1
28 = 157.5

k!(8 − k)!
. (3.362)

We have to use the following algorithm that uses the process described in Box 2.2.

Step 1: Create a look-up table with the values of k1 and (k ≤ k1):

P(k1) ≡ (k ≤ k1) =
k1∑

k=0
p(k) = 157.5

k1∑
k=0

1
k!(8 − k)!

. (3.363)

Step 2: Draw random numbers uniformly distributed in the range [0, 1] and, treating them as values
of P(k1), use this look-up table to identify the corresponding number k1 which is thus drawn
according to the probability density function (3.362). Draw 64 × 64 numbers, one for each pixel.

Figure 3.123 shows a random field created this way. To visualise this field, we multiplied the grey
value of each pixel with 255∕8 and rounded it to the nearest integer. However, for the subsequent
stages of the process, we kept the numbers in the range [0, 8] to avoid overflows.
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Figure 3.122 Some Markov neighbourhoods. The numbers indicate the Markov parameters that determine
the way the corresponding pixels influence the value of the pixel in the middle.

Figure 3.123 A random field created using a binomial distribution with
n = 8 and 𝜃 = 0.5. Source: Maria Petrou.

From this random field we want to create a texture with the neighbourhood structure and the
Markov parameters shown in 3.122a. This neighbourhood structure implies that for pixel (i, j), func-
tion s has the form:

s = gi,j−1 + gi,j+1 − gi−1,j − gi+1,j (3.364)

where gij is the grey value of pixel (i, j).

Step 1: Create a random field.
Step 2: Visit each pixel in turn and compute function s for it, using the values its neighbours have

in the random field created in the previous step.
Step 3: From the value of s compute the value of 𝜃, using Equation (3.359).
Step 4: Compute the form of the probability density function appropriate for this pixel.
Step 5: Create the look-up table for this probability density function.
Step 6: Draw the new value for this pixel, using uniformly distributed numbers and the look up

table.

We have to be very careful, however, which pixels we update in one go. If we update all pixels
simultaneously, we may, for example, update the value of a pixel to make it more similar to its
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horizontal neighbours, but then we update the values of the horizontal neighbours according to
their own neighbours, and as a result we may destroy any similarity we might have achieved in
the previous update. It is appropriate, therefore, to update in one pass only the pixels that are not
neighbours of each other, and leave the remaining pixels with their old values. In the next pass, we
update the next lot of pixels that are not neighbours of each other, and so on, until all sets of pixels
have been assigned updated values. Then we start again updating once more all pixels, in waves of
sets of pixels that are not neighbours of each other. The division of an image into sets of pixels that
are not neighbours of each other is called coding or colouring. The coding of an image depends on
the neighbourhood structure we have adopted. Figure 3.124 shows the codings appropriate for the
example neighbourhoods of Figures 3.116a,b,c and 3.117 and for an image of size 16 × 16. Pixels
that belong to the same coding are marked with the same symbol and they may have their values
updated simultaneously.

Figure 3.125 shows the results obtained for the neighbourhoods and values shown in
Figure 3.122, when all pixels in the image are updated simultaneously. Figure 3.126 shows the
results obtained for the same neighbourhoods and values of the Markov parameters when the
pixels are updated in sets of pixels with non-overlapping neighbourhoods. In the case of neigh-
bourhood 3.122a, for example, we update first half of the pixels, those marked by an open circle in
the top left panel of Figure 3.124, and then we update the remaining pixels in the next pass.

Can we apply the method discussed in the previous section to create images with 256
grey levels?

It is known that a binomial distribution may be approximated with a Gaussian if n is very large and
n𝜃(1 − 𝜃) is also much larger than 1. Then Equation (3.356) may be replaced with:

p(k) ≃ 1√
2𝜋n𝜃(1 − 𝜃)

e−
(k−n𝜃)2

2n𝜃(1−𝜃) . (3.365)

This approximation effectively means that drawing random numbers according to the probability
density function (3.356) may be replaced by drawing random number from a Gaussian distribution
with mean n𝜃 and standard deviation

√
n𝜃(1 − 𝜃), provided that n and n𝜃(1 − 𝜃) are much larger

than 1.
If we allow 256 different grey levels in the image, we can create a random field using this approx-

imation with n = 255 and 𝜃 = 0.5. Such a field is shown in Figure 3.127. Naturally, since 𝜃 = 0.5,
the grey level values of this image cluster around the value 128, and so this image has very little
contrast.

Figure 3.128 shows the images we obtain after 1, 5, 20 and 50 iterations of the image, using the
Gaussian approximation with 256 grey values and updating at each pass only the pixels that do not
influence each other. (An iteration consists of as many passes as are necessary for all pixels to have
their values updated.)

The images in Figure 3.128 should be compared with those of Figure 3.126. We see that, although
we started from a totally uncorrelated field, different patterns are gradually emerging according to
the model we impose on it, and they are similar with those of Figure 3.126, except in the cases that
correspond to the neighbourhoods 3.122c and 3.122e. We also observe that, although we allowed
256 grey levels here, the patterns we get appear almost binary. If we see the form function s takes
(e.g. Equation (3.364)), we see that for grey values in the range [0, 255], s could be a very high
number. In fact, s can be positive or negative, with a very high absolute value, for a large range of
grey values of the neighbours of a pixel. Once s becomes a large positive number, 𝜃 is almost 1, and
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(a) 1st odrer MRF (b) 2nd odrer MRF

(c) 3rd order MRF (d) 1st exotic

(e) 2nd exotic (f) 3rd exotic

Figure 3.124 Codings of a 16 × 16 image when the Markov neighbourhoods of figures 3.116a,b,c and
3.117 are adopted, from left to right and top to bottom, respectively. In each case, pixels flagged by the
same symbol may have their values updated together. Note that a coding is not necessarily unique for a
particular neighbourhood structure. For example, coding (e) may also be used for neighbourhood 3.117a
instead of coding (d).
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1 iteration 5 iterations 20 iterations 50 iterations

Figure 3.125 Creating textures using the Markov model with a binomial distribution, for the
neighbourhoods defined in Figure 3.122 used sequentially from top to bottom, respectively. In all cases the
starting configuration was the one shown in Figure 3.123. These results are incorrect as all pixels were
updated simultaneously at each iteration, and the updates of pixels which influence each other often cancel
each other out and prevent the target pattern from emerging. Source: Maria Petrou.
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1 iteration 5 iterations 20 iterations 50 iterations

Figure 3.126 Creating textures using the Markov model with a binomial distribution for the
neighbourhoods defined in Figure 3.122 used sequentially from top to bottom, respectively. Source: Maria
Petrou. In all cases the starting configuration was the random field shown in 3.123. These results are
correct and as expected. At each pass only pixels that do not influence each other had their values updated.
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Figure 3.127 A random field created using the
approximation of a binomial distribution with a Gaussian
distribution with n = 255 and 𝜃 = 0.5. Source: Maria
Petrou.

once s becomes a large negative number, 𝜃 is almost 0. This means that the Gaussian approximation
we use breaks down, as the condition that n𝜃(1 − 𝜃) must be large is violated. It also means that the
“coin” we use to conduct our random experiment is very easily biased towards producing almost
always heads, or towards producing almost always tails. This explains the binary nature of the
constructed images.

The two neighbourhoods that produce the most unexpected results of all are the only two in
Figure 3.122 where the positive and negative weights do not sum up to 0. This implies that, right
from the beginning, the value of s is a very high positive or negative number, since it is the result of
adding, for example, four numbers in the range [0, 255] and subtracting from them eight numbers
in the same range, for the case of neighbourhood 3.122c. Such numbers are bound to polarise es to
be close to 0. The problem arises from the use of e as basis of the exponential model adopted. If the
basis used were a number close to 1, it would not be easy to polarise 𝜃 to be either 1 or 0. Say we
use as basis a number 𝛼. We can see that 𝛼s may be written as es ln 𝛼 , where ln 𝛼 could be considered
as a scale factor. So, the same effect may be achieved by using integer numbers not in the range
[0, 255], but integer numbers clustered closer to 1. This interpretation allows us to move away from
the “flipping a coin” auto-binomial model we used to exemplify Markov random fields.

Another remedy would be to make sure that the positive and negative influences a pixel
accepts are more balanced, by replacing neighbourhoods 3.122c and 3.122e with those shown in
Figure 3.129. The images constructed with these Markov parameters are shown in Figure 3.130.
The images constructed with the same Markov parameters but with basis 𝛼 = 1.008 (instead of
e ≃ 2.71828) are shown in Figure 3.131. We can see that these images look much more similar to
the images in 3.126.

When our problem is such that it requires the use of approximation (3.365), it becomes
evident that the auto-binomial model is no longer adequate. Then it is better to use instead the
auto-normal Markov random field model.

What is the auto-normal Markov random field model?

This is the model which assumes that: the value of each pixel is the outcome of a random experi-
ment (thus the use of term “random field”); the samples of the outputs of the random experiment
performed to decide each pixel value are drawn from a Gaussian distribution (thus the use of term
“normal”); the parameters of this Gaussian are functions of the values of the neighbouring pixels
(thus the term “Markov”). This model is also known as the Gaussian Markov random field.

A simple version of such a model assumes that the standard deviation of the Gaussian is constant
and independent of the values of the neighbours. So, the probability density function from which
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1 iteration 5 iterations 20 iterations 50 iterations

Figure 3.128 Creating textures using the Markov model and approximating the binomial distribution with
a Gaussian, for the neighbourhoods defined in Figure 3.122 used sequentially from top to bottom,
respectively. Source: Maria Petrou. In all cases the starting configuration was the random field shown in
3.127. For the third and fifth neighbourhood models we note that the created images immediately freeze in
configurations that are clearly wrong.
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Figure 3.129 Two neighbourhoods with Markov parameters that retain the balance between positive and
negative influences to the central pixel.

1 iteration 5 iterations 20 iterations 50 iterations

Figure 3.130 Creating textures using the Markov model and approximating the binomial distribution with
a Gaussian, for the neighbourhoods defined in Figure 3.129, used sequentially from top to bottom,
respectively. Source: Maria Petrou. In both cases the starting configuration was the one shown in Figure
3.127.

the new values of a pixel are drawn has the form

p(gij|gi′j′ , (i′, j′) ∈ Nij) =
1√
2𝜋𝜎

exp
⎧⎪⎨⎪⎩−
(

gij −
∑L

l=1 algi′j′;l

)2

2𝜎2

⎫⎪⎬⎪⎭ (3.366)

where p(gij|gi′j′ , (i′, j′) ∈ Nij) is the probability of pixel (i, j) having grey value gij, given the values of
its neighbours, L is the total number of pixels in the neighbourhood Nij of pixel (i, j)which influence
its value, al is the parameter with which a neighbour influences the value of (i, j), and gi′j′;l is the
value of the pixel at the corresponding position. If we assume that pixels in symmetric positions
about pixel (i, j) have identical parameters, then instead of gi′j′;l being the grey value of a single pixel,
it will be the sum of the values of the two pixels that are in symmetric positions about (i, j) and that
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1 iteration 5 iterations 20 iterations 50 iterations

Figure 3.131 Creating textures using the Markov model and approximating the binomial distribution with
a Gaussian, for the neighbourhood defined in Figures 3.122c and 3.122e, from top to bottom, respectively,
but changing the basis of the exponential to 𝛼 = 1.008. In both cases the starting configuration was the
random field shown in 3.127. Source: Maria Petrou.

influence the value of (i, j) with identical parameters. Then L is not the total number of pixels in
the neighbourhood of (i, j), but rather the total number of different Markov parameters we have.
In addition, we have parameter 𝜎, which is also a model parameter.

Figure 3.132 shows some textures created by using this model on the random field shown in
Figure 3.127 with the neighbourhood structures of Figures 3.116a,b,c and 3.117, and Markov
parameters shown in Figures 3.122a,b,d,f and 3.129. The value of 𝜎 was chosen to be 8, which
corresponds to a variance of 64 which is 256 × 0.25, i.e. the variance of the Gaussian approximation
of the binomial model for n = 256 and 𝜃 = 0.5. Of course, we again use the codings of Figure 3.124.
The results shown in Figure 3.132 should be compared with those shown in Figures 3.128 and
3.130.

We note that the realisation of the model with neighbourhood structure 3.122b is rather different
from that shown in 3.128, in spite of the balance of the negative and positive influences a pixel
receives from its neighbours. This is because this model simultaneously encourages vertical and
horizontal lines, and, depending on the starting configuration, we expect to obtain sometimes an
image with vertical lines, sometimes with horizontal lines, and sometimes with patches of vertical
and horizontal lines. When such self-contradictory models are used, the outcome is not always
predictable and it is possible to get different results by changing, for example, the order in which
the different sets of coded pixels are used.

Note that the difference with the auto-binomial model is that the binomial distribution returns
discrete values, while the normal distribution returns continuous values. The approximation that
led from the auto-binomial model to the auto-normal model becomes possible when the possible
outcomes of the associated random experiment become so many that one may assume that the
corresponding random variable becomes a continuous variable. Thus, the binomial distribution is
no longer appropriate, while the Gaussian becomes relevant. Of course, we know that grey values
will always be discrete rather than continuous, but we tacitly agree to round the values drawn from
the normal distribution to the nearest integer in order to convert them to grey values.
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1 iteration 5 iterations 20 iterations 50 iterations

Figure 3.132 Creating textures using the Markov model with a normal distribution, for the
neighbourhoods defined in Figure 3.122 used sequentially from top to bottom, respectively, but replacing
neighbourhoods (c) and (e) with the ones defined in Figure 3.129. In all cases the starting configuration was
the random field shown in 3.127. Source: Maria Petrou.
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How can we estimate the Markov parameters of a texture?

We can do that by using a maximum likelihood estimation, MLE for short, or least square
error estimation, LSE for short.

What is maximum likelihood estimation?

Assume that we have a probability density function that depends on some parameters. To make
this dependence explicit, we write p(x|Ω) where Ω is a vector made up from the various parameters
that appear in p(x).

Let us first consider the case when p(x) depends only on one parameter, say 𝜔, and we observe
one value of variable x, say x = x1. Can we deduce anything about the value of parameter 𝜔? We
decide that 𝜔 should be such that the probability of observing the value x1 is maximal. This is
a maximum likelihood approach. It is schematically demonstrated in Figure 3.133 where 𝜔 is
assumed to be allowed to take one of only three possible values.

If we have more than one observations for x, say we have points x1, x2,… , xN , then we com-
pute the likelihood p(Data|Ω) of this combination of points to arise, given that they are assumed
independent. The likelihood is defined as:

p(Data|Ω) ≡ N∏
k=1

p(xk|Ω). (3.367)

We then choose Ω that maximises the likelihood p(Data|Ω).
Often in practice we use the log-likelihood instead of the likelihood.

p(x | ω)
p(x | ω = ω1) p(x | ω = ω2) p(x | ω = ω3)

p(x1 | ω2)

p(x1 | ω1)

p(x1 | ω3)

xx1

Figure 3.133 We have a different probability density function for each value of parameter 𝜔. Each one of
these probability density functions assigns a different probability to the value x1 to arise. If we observe
value x1 and use a maximum likelihood estimation for parameter 𝜔, we shall estimate 𝜔 as being equal to
𝜔2, since this value maximises the probability of observing value x1.
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What is the log-likelihood?

The log-likelihood is defined as

l(Data|Ω) ≡ N∑
k=1

ln p(xk|Ω) (3.368)

where N is the total number of independent observations and p(xk|Ω) is the probability of value xk
to arise, given the parameter values Ω. Sometimes, because the computation of p(xk|Ω) may cause
underflows, instead of maximising the likelihood p(Data|Ω), we maximise the log-likelihood. Note
that either we maximise a function or its logarithm makes no difference to the result, except that
the log-likelihood l(Data|Ω) tends to have a more blunt maximum than the likelihood p(Data|Ω).

Box 3.24 What is the relationship between a maximum likelihood estimation and a Bayesian
estimation?

The estimation problem we have may be expressed as follows, according to the Bayesian
estimation theory. Given a set of observed data values {x1, x2,… , xN}, which come from the
same population with probability density function p(xi|Ω), what are the most probable val-
ues of parameters Ω? In other words, choose Ω so that we maximise the posterior probability
p(Ω|Data). By applying Bayest́heorem we have

p(Ω|Data) =
p(Data|Ω)p(Ω)

p(Data)
(3.369)

where p(Ω) is the prior probability of the particular configuration of parameter values to arise
and p(Data) is the prior probability of the data to arise.

Prior probability p(Data) does not depend on the unknown Ω, so it makes no difference to
the solution of the problem and it may be ignored. The Bayesian estimator then should choose
values of Ω so that the numerator of (3.369), i.e. p(Data|Ω)p(Ω) is maximised.

Now the maximum likelihood estimator chooses Ω so that p(Data|Ω) is maximised.
If we have no prior information about the parameters of function p(Ω), we may assume that

all parameter values are equally likely, i.e. we may assume that p(Ω) is a constant. Then the
maximum of p(Data|Ω)p(Ω) is the same as the maximum of p(Data|Ω), i.e. the solution of the
Bayesian estimator is the same as the solution of the maximum likelihood estimator.

How can we apply the maximum likelihood estimation to estimate the parameters
of a Markov random field?

First we have to extract from the image a set of independent observations. Since the value of a
pixel depends on the values of its neighbours, we must choose pixels that are not neighbours of
each other. So, we must again use the coding of the image as we did for the creation of textures.
Pixels that belong to the same code and may be used together are marked with the same symbol
in Figure 3.124. These pixels are not neighbours of each other and so they constitute independent
observations.

We then use the pixels that are flagged by the same symbol and compute the value of the proba-
bility density function p(xk|Ω) for each one of them, given the values of its neighbours and a chosen
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set of model parameter values Ω. We then multiply all these quantities to produce the likelihood
p(Data|Ω) of Equation (3.367). We repeat the process for various values of Ω and choose the one
that maximises p(Data|Ω).

We may repeat the procedure for the pixels flagged by all other symbols in the coding. Each set
of pixels will result in a different set of values for the Markov parameters, although ideally they
should all result in exactly the same values. We adopt the average values as the parameters that
characterise the texture. These are the Markov texture features. This method is extremely slow
in practice and it can only be used for the simplest of cases.

How do we know which parameter values to try when we apply the maximum
likelihood estimation to estimate the Markov parameters?

People often express the values of the Markov parameters as random variables themselves, dis-
tributed according to some probability density function. The parameters of the distributions of the
parameters are called super-parameters.

For example, one may assume that parameter a in Equation (3.361) is a random number drawn
from a Gaussian probability density function with mean 𝜇a and standard deviation 𝜎a. Parame-
ters 𝜇a and 𝜎a are the super-parameters for this case. Their values are specified from some prior
knowledge concerning the type of image we are dealing with.

Example 3.120

Use maximum likelihood estimation to compute the parameters of the artificial tex-
ture with nine distinct grey levels shown in the first line of Figure 3.126 using the
neighbourhoods of Figures 3.116a and 3.117a.
This texture was created with parameter values a = −1 and b = 1 as they appear in
Equation (3.361). To estimate these parameters from a given image, we shall apply the
maximum likelihood estimation using the two sets of pixels identified by the two codes in
Figure 3.124a separately. Each set of pixels will yield a different estimate of the parameters. The
accepted estimate will be the average of the two estimates.

The maximum likelihood estimation relies on us sampling several possible values of the param-
eters. Let us make the assumption that both parameters are uniformly distributed in the range
[−𝛼, 𝛼]. Let us choose 1.5 as the value of super-parameter 𝛼. Let us also decide to sample the range
[−1.5, 1.5]uniformly in steps of 0.25. Then there are 169 possible distinct pairs of values of param-
eters (a, b) we must try in order to choose the one that maximises the probability of observing the
pattern we observe.

It turned out that several pairs of parameter values maximised the likelihood. These pairs
of parameters (a, b) were: (−0.25, 0.25), (−0.5, 0.5), (−0.75, 0.75), (−1.0, 1.0), (−1.25, 1.25) and
(−1.5, 1.5), that is, a = −b for all values of a < 0 that were considered. The results were exactly
the same for both sets of pixels considered (identified by the two codes).

Then we applied neighbourhood 3.117a and used the two sets of pixels identified by the coding
of Figure 3.124d, in order to obtain two estimates for each of the two parameters of this model.
These two estimates were subsequently averaged. Note that this model is totally wrong for this
texture. We used again the same super-parameters and we identified that the values of the param-
eters that maximised the likelihood were a = 1.25 (for the top-left and bottom-right neighbours)
and b = −0.5 (for the top-right and bottom-left neighbours).
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Example 3.121

Use the parameters you estimated in Example 3.120 for the neighbourhood structure
3.117a to re-synthesise the texture. How similar is this texture to the one from which
the parameters were originally estimated?
The textures obtained using the parameters estimated in Example 3.120 for the neighbourhood
structure in Figure 3.117a are shown in Figure 3.134. We can see that this texture looks totally
different from the one in the first row of Figure 3.126 since it was created using a different model.
This example shows how significant is to be able to select the right neighbourhood for the Markov
model with which to model a given texture.

Original 5 iterations 20 iterations 50 iterations

Figure 3.134 An original texture and texture created using the parameters estimated from it, in
Example 3.120, assuming the wrong type of neighbourhood. Source: Maria Petrou.

Example 3.122

Use the maximum likelihood estimation to compute the parameters of the tex-
tures of Figure 3.135a, assuming a first order Markov neighbourhood and the
auto-binomial Markov random field model given by Equation (3.360) with function s
given by (3.361). Consider the following options for the parameter values and select
the one that maximises the likelihood of the image: (a, b) = (−1, 1) and (a, b) = (1,−1).

Figure 3.135 (a) A 2-bit 4 × 4 image. (b) The two
codings keeping only the pixels that have full
neighbourhoods. 3

3

3

3

2

22 1

0

1

0

0

1

0

2 1

(b)(a)

Figure 3.135b shows the codings of the 2 × 2 image that remains after we ignore the pixels that
do not have complete Markov neighbourhood. pixels marked with the same symbol belong to
the same coding as they are not neighbours of each other when we adopt the first order Markov
neighbourhood. Table 3.28 lists the values related to the pixels of the coding marked with crosses.
We remember that s ≡ a(gl + gr) + b(gt + gb).

(Continued)
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Example 3.122 (Continued)
Table 3.28 The data used for the estimation of the best set of Markov parameters from the first
coding of the image.

k gl gr gt gb s for pk s for pk

(−1,1) (1,−1)

0 3 3 1 1 −4 0.930 4 10−7

2 1 1 3 2 3 0.012 −3 0.012

The entries in the column under pk were computed from:

pk =
(n

k

) eks

(1 + es)n = 4!
(4 − k)!k!

ek(a(gl+gr)+b(gt+gb))(
1 + ea(gl+gr)+b(gt+gb)

)4 . (3.370)

For example, for the first set of parameters, i.e. a = −1 and b = 1, we have:

p0 = 4!
4!0!

1(
1 + e−4

)4 p2 = 4!
2!2!

e6(
1 + e3

)4 . (3.371)

The likelihood value for the first set of parameters is 0.930 × 0.012 = 0.01116, while the like-
lihood value for the second set of parameters is 10−7 × 0.012 ≃ 10−9. Therefore, according to the
first coding, the parameter values that maximise the likelihood are a = −1 and b = 1.

Table 3.29 lists the values related to the pixels of the coding marked with open circles.
Again the second coding indicates that the set of parameters that maximises the product p3p1,

which is the likelihood, is a = −1 and b = 1. This set of parameters seems correct, as it corresponds
to the case of horizontal neighbours being dissimilar and vertical neighbours similar, and the
image we have shows the presence of vertical lines.

Table 3.29 The data used for the estimation of the best set of Markov parameters from the second
coding of the image.

k gl gr gt gb s for pk s for pk

(−1,1) (1,−1)

3 0 0 3 2 5 0.026 −5 10−7

1 3 2 0 0 −5 0.026 5 10−7
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Example 3.123

Use the maximum likelihood estimation to compute the parameters of the textures
of Figure 3.1 assuming that the first order Markov neighbourhood (shown in Figure
3.116a applies.
First of all, to make the problem tractable, we re-quantise the grey levels of these textures to only
eight. We may do that by taking each 8-bit pixel value and keeping only its first three significant
bits. This way all pixels will have grey values in the range [0, 7]. This is equivalent to applying the
method demonstrated at the beginning of this chapter in Figure 3.2. This method may not be very
appropriate as it may totally destroy some low-contrast patterns. So, it is better to use the method
demonstrated in Figure 3.3, which results in all eight grey levels being equally represented in the
reduced image.

Then we apply the maximum likelihood estimation to the images that result, using the same
super-parameter assumptions as in Example 3.120.

The results for the parameters of each image are presented in Table 3.30. Each set of pixels of
the coding produced exactly the same parameter values.

Note that on the basis of these parameters the textures are not easily distinguishable.
In the third column of Table 3.30 we give the parameters computed for neighbourhood 3.117a.

There were again two parameters to be estimated, referring to the influence of pixels in symmetric
positions about the central pixel. We used the coding of Figure 3.124d. In both cases we used the
same super-parameters as in Example 3.120. If instead of using basis e we used basis 𝛼 = 1.1,
we obtained the parameters shown in Table 3.31 for the two types of the assumed neighbour-
hood. We can see that the two sets of parameters do not differ from each other by a simple scaling
(by ln 1.1 = 0.095310), in spite of the fact that changing basis amounts to simply scaling the
parameters.

Table 3.30 Parameters estimated for the textures in Figure 3.1 using
the MLE method, and the neighbourhood structures shown in Figures
3.116a and 3.117a.

Neighbourhood 3.116a Neighbourhood 3.117a

Image a b a b

Cloth 1 −0.25 0.25 0.25 −0.25
Cloth 2 −0.25 0.25 −0.25 0.25
Food 0.25 −0.25 −0.25 0.25
Plastic 0.25 −0.25 0.25 −0.25
Fabric 1 −0.25 0.25 0.25 −0.25
Fabric 2 −0.25 0.25 −0.25 0.25
Beans −0.25 0.25 0.00 0.00
Sand 0.25 −0.25 0.25 −0.25

(Continued)
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Example 3.123 (Continued)
Table 3.31 Parameters estimated for the textures in Figure 3.1 using
the maximum likelihood estimation method, and the neighbourhood
structures shown in Figures 3.116a and 3.117a. For the exponential
function basis 𝛼 = 1.1 was used instead of e.

Neighbourhood 3.116a Neighbourhood 3.117a

Image a b a b

Cloth 1 −0.50 1.00 0.50 −0.25
Cloth 2 −0.25 0.50 −0.25 0.25
Food 0.50 −0.25 −0.50 0.25
Plastic 0.25 0.25 0.50 −0.25
Fabric 1 −0.25 0.50 0.50 −0.25
Fabric 2 −0.25 0.75 −0.75 0.50
Beans −0.25 0.75 −0.25 0.25
Sand 1.50 −1.25 0.25 −0.25

How can we estimate the Markov parameters using the least square error estimation
method?

We shall demonstrate this method by applying it to model (3.366) for the second-order Markov
neighbourhood shown in Figure 3.116b.

There are eight pixels in this case that influence the value of a pixel. However, we do not expect
neighbours in symmetric positions about the centre to play different roles in the value of the central
pixel, so we may assume that pixels in diametrically opposite positions about the central position
enter into the equation with identical coefficients. This means that we have four parameters al to
estimate plus parameter 𝜎, which characterises the random experiment performed in each loca-
tion to assign a value to the pixel. (Remember that when we introduced Markov random fields we
talked about flipping a coin n times to decide the value of a pixel. In a Gaussian Markov random
field, instead of flipping a coin, one draws a random number from a Gaussian distribution with
mean value that depends on the values of the neighbours and with variance some value that is also
characteristic of the process.) So, all in all, we have to estimate five parameters.

We re-write here Equation (3.366) in a more suitable form

p(gij|gi′j′ , (i′, j′) ∈ Nij) =
1√
2𝜋𝜎

exp
⎧⎪⎨⎪⎩−
(

gij −
∑4

l=1alsij;l

)2

2𝜎2

⎫⎪⎬⎪⎭ (3.372)
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where we used
sij;1 ≡ gi−1,j + gi+1,j

sij;2 ≡ gi,j−1 + gi,j+1

sij;3 ≡ gi−1,j−1 + gi+1,j+1

sij;4 ≡ gi−1,j+1 + gi+1,j−1 (3.373)

with gij being the grey value of pixel (i, j).
We have one such equation for each pixel. In the least square error estimation, we assume

that each pixel takes its most probable value allowed by all other pixels. In the absence
of any constraints, each pixel (i, j) will take value gij =

∑4
l=1 alsij;l which maximises the probability

(3.372). Clearly, this will not be possible, and it can only be achieved within the limits of uncertainty
expressed by parameter 𝜎. We may, therefore, for an image of size N × M, estimate parameters al
in such a way that the system of NM equations

gij =
4∑

l=1
alsij;l (3.374)

is satisfied as much as possible, with the variance of the errors of imbalance between the left and
the right side of each equation being 𝜎2.

The values of the parameters estimated from these equations are given by:

𝜎2 = 1
(N − 2)(M − 2)

∑
ij

[
gij −

4∑
l=1

alsij;l

]2

(3.375)

⎛⎜⎜⎜⎜⎝
a1
a2
a3
a4

⎞⎟⎟⎟⎟⎠
=

⎧⎪⎪⎨⎪⎪⎩
∑

ij

⎡⎢⎢⎢⎢⎣
s2

ij;1 sij;1sij;2 sij;1sij;3 sij;1sij;4

sij;2sij;1 s2
ij;2 sij;2sij;3 sij;2sij;4

sij;3sij;1 sij;3sij;2 s2
ij;3 sij;3sij;4

sij;4sij;1 sij;4sij;2 sij;4sij;3 s2
ij;4

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

−1

∑
ij

gij

⎛⎜⎜⎜⎜⎝
sij;1
sij;2
sij;3
sij;4

⎞⎟⎟⎟⎟⎠
. (3.376)

Equation (3.375) is the unbiased estimation of the variance of the errors with which the estimated
values of the parameters allow the satisfaction of equations (3.374). For the derivation of these
equations see Box 3.25.

Box 3.25 Least square parameter estimation for the Markov random field parameters

Equation (3.374) expresses a system of NM linear equations with four unknowns. It is an
overdetermined system, so it may be solved in the least square error sense. Let us write it
first in matrix form

G = SA (3.377)

where G is an (NM) × 1 vector made up from the pixel grey values,

G ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎝

g11
g12
⋮
gij
⋮

gNM

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(3.378)

(Continued)
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Box 3.25 (Continued)

S is a (NM) × 4 matrix made up from the values of the neighbours of each pixel,

S ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎝

s11;1 s11;2 s11;3 s11;4
s12;1 s12;2 s12;3 s12;4
⋮ ⋮ ⋮ ⋮

sij;1 sij;2 sij;3 sij;4
⋮ ⋮ ⋮ ⋮

sNM;1 sNM;2 sNM;3 sNM;4

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(3.379)

and A is a 4 × 1 vector of the values of the unknown parameters al:

A ≡
⎛⎜⎜⎜⎜⎝

a1
a2
a3
a4

⎞⎟⎟⎟⎟⎠
(3.380)

As S is not a square matrix, we cannot take its inverse to solve system (3.377). However, if
we multiply both sides of (3.377) from the left with ST , we shall have on the right-hand side
matrix STS which is 4 × 4, i.e. square, and so allows us to take its inverse:

STG = STSA ⇒ A =
(

STS
)−1STG. (3.381)

Matrix
(

STS
)−1ST is called the pseudo-inverse of matrix S and when used to solve an overde-

termined system of linear equations yields the least square error solution of the system.
If we substitute the result of Example 3.124 for STG and the result of example 3.125

for STS, we shall obtain the formula given by Equation (3.376) for the estimation of
parameters al.

Example B3.124

If matrices G and S are defined by Equations (3.378) and (3.379), respectively, show
that

STG =
∑

ij
gij

⎛⎜⎜⎜⎜⎝
sij;1
sij;2
sij;3
sij;4

⎞⎟⎟⎟⎟⎠
. (3.382)

We start by computing explicitly the left-hand side of the above equation and then show that it is
equal to the right-hand side:

STG =

⎛⎜⎜⎜⎜⎝
s11;1 s12;1 … sNM;1
s11;2 s12;2 … sNM;2
s11;3 s12;3 … sNM;3
s11;4 s12;4 … sNM;4

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

g11
g12
⋮

gNM

⎞⎟⎟⎟⎟⎠
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=

⎛⎜⎜⎜⎜⎝

∑
ijsij;1gij∑
ijsij;2gij∑
ijsij;3gij∑
ijsij;4gij

⎞⎟⎟⎟⎟⎠
=
∑

ij
gij

⎛⎜⎜⎜⎜⎝
sij;1
sij;2
sij;3
sij;4

⎞⎟⎟⎟⎟⎠
. (3.383)

Example B3.125

If matrix S is defined by Equation (3.379), show that

STS =
∑

ij

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝

sij;1
sij;2
sij;3
sij;4

⎞⎟⎟⎟⎟⎠
(

sij;1 sij;2 sij;3 sij;4
)⎤⎥⎥⎥⎥⎦

. (3.384)

We start by directly computing the left-hand side of the above equation and show that it is equal
to the right-hand side:

STS =

⎛⎜⎜⎜⎜⎝
s11;1 s12;1 … sNM;1
s11;2 s12;2 … sNM;2
s11;3 s12;3 … sNM;3
s11;4 s12;4 … sNM;4

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

s11;1 s11;2 s11;3 s11;4
s12;1 s12;2 s12;3 s12;4
⋮ ⋮ ⋮ ⋮

sNM;1 sNM;2 sNM;3 sNM;4

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝

∑
ijs2

ij;1
∑

ijsij;1sij;2
∑

ijsij;1sij;3
∑

ijsij;1sij;4∑
ijsij;2sij;1

∑
ijs2

ij;2
∑

ijsij;2sij;3
∑

ijsij;2sij;4∑
ijsij;3sij;1

∑
ijsij;3sij;2

∑
ijs2

ij;3
∑

ijsij;3sij;4∑
ijsij;4sij;1

∑
ijsij;4sij;2

∑
ijsij;4sij;3

∑
ijs2

ij;4

⎞⎟⎟⎟⎟⎠
=
∑

ij

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝

sij;1
sij;2
sij;3
sij;4

⎞⎟⎟⎟⎟⎠
(

sij;1 sij;2 sij;3 sij;4
)⎤⎥⎥⎥⎥⎦

. (3.385)
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Example 3.126

Use the least square error approach to compute the parameters of the texture images
of Figure 3.1 using the second order Markov neighbourhood shown in Figure 3.116b.
We assume that pixels in symmetric positions about the central pixel influence its value with the
same parameter. We have, therefore, five independent parameters to estimate. For the chosen
neighbourhood the coding of Figure 3.124b identifies four sets of pixels. The values of the five
parameters computed from each set of pixels separately as well as their average values are shown
in Table 3.32. Parameters atb, alr, atlbr and atrbl refer to the way the top and bottom, left and right,
top-left and bottom-right, and top-right and bottom-left neighbours influence the central pixel.

Table 3.32 Estimated MRF parameters using the LSE method for the images in Figure 3.1. Different
sets of pixels refer to different codes in the coding used.

Image Set atb alr atlbr atrbl 𝝈

Set 1 0.410 0.291 −0.137 −0.064 13.097
Set 2 0.406 0.300 −0.143 −0.062 13.153

Cloth 1 Set 3 0.423 0.281 −0.141 −0.062 13.013
Set 4 0.411 0.294 −0.138 −0.068 13.108
Mean 0.412 0.292 −0.140 −0.064 13.093

Set 1 0.381 0.213 −0.007 −0.087 11.678
Set 2 0.377 0.221 −0.003 −0.095 11.755

Cloth 2 Set 3 0.386 0.218 −0.007 −0.098 11.847
Set 4 0.375 0.225 −0.012 −0.088 11.846
Mean 0.380 0.219 −0.007 −0.092 11.781

Set 1 0.353 0.444 −0.099 −0.198 22.693
Set 2 0.352 0.440 −0.096 −0.195 22.910

Food Set 3 0.348 0.451 −0.100 −0.197 22.966
Set 4 0.353 0.442 −0.101 −0.194 22.893
Mean 0.352 0.444 −0.099 −0.196 22.866

Set 1 0.448 0.437 −0.209 −0.176 9.005
Set 2 0.452 0.438 −0.222 −0.167 9.116

Plastic Set 3 0.460 0.431 −0.222 −0.168 9.086
Set 4 0.462 0.431 −0.214 −0.178 9.088
Mean 0.455 0.434 −0.217 −0.173 9.074

Set 1 0.246 0.148 0.000 0.107 13.930
Set 2 0.235 0.185 −0.006 0.088 14.191
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Table 3.32 (Continued)

Image Set atb alr atlbr atrbl 𝝈

Fabric 1 Set 3 0.288 0.115 0.009 0.090 14.223
Set 4 0.252 0.183 −0.024 0.091 14.221
Mean 0.255 0.158 −0.005 0.094 14.141

Set 1 0.552 0.493 −0.262 −0.281 7.521
Set 2 0.551 0.497 −0.262 −0.287 7.782

Fabric 2 Set 3 0.550 0.491 −0.259 −0.284 7.550
Set 4 0.558 0.495 −0.265 −0.287 7.756
Mean 0.553 0.494 −0.262 −0.285 7.652

Set 1 0.464 0.438 −0.196 −0.205 15.313
Set 2 0.461 0.438 −0.197 −0.200 15.189

Beans Set 3 0.464 0.424 −0.191 −0.196 15.034
Set 4 0.467 0.441 −0.197 −0.210 15.382
Mean 0.464 0.435 −0.195 −0.203 15.229

Set 1 0.453 0.485 −0.222 −0.216 7.911
Set 2 0.449 0.485 −0.236 −0.198 8.009

Sand Set 3 0.457 0.480 −0.236 −0.201 7.933
Set 4 0.451 0.478 −0.218 −0.211 7.951
Mean 0.453 0.482 −0.228 −0.207 7.951

Example 3.127

Use the parameters computed in Example 3.126 to re-synthesise the textures.
The results after 50 iterations are shown in Figures 3.136 and 3.137.

We can see that, for micro-textures, the synthesised textures are quite similar to the
original ones.

For textures which contain blob-like structures, much bigger than the size of the neighbourhood
used, the synthesised textures are very different from the original ones. It is obviously impossible
for the neighbourhood we used to capture the characteristics of these textures. The neighbour-
hoods of the sizes we chose simply do not exhibit stationary statistics over the whole image in

(Continued)
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Example 3.127 (Continued)

these cases, since when, one blob meets another blob, the statistics of the local neighbourhood
change significantly.

Original images Synthetic images

after 20 iterations

Synthetic images

after 50 iterations

Figure 3.136 Synthesised textures using the parameters estimated by the least square error (LSE)
estimation method. Results for images cloth 1, cloth 2, food and plastic, from top to bottom,
respectively.
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Original images Synthetic images

after 20 iterations

Synthetic images

after 50 iterations

Figure 3.137 Synthesised textures using the parameters estimated by least square error. Results for
fabric 1, fabric 2, beans and sand, from top to bottom, respectively.

How can we work out the size of the Markov neighbourhood?

To work out the most relevant size of Markov neighbourhood we should use for modelling a texture
with the help of the autocorrelation function of the texture image. However, any neighbourhood of
size more than, say, 3 × 3 pixels is rather difficult to use in practice: it requires the determination of
far too many parameters from the sample texture we have. A much better approach to using Markov
random field models for textures with large blobs, i.e. macrotextures, is to analyse the texture image
into frequency bands with the help of the Laplacian pyramid.
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What is the Laplacian pyramid?

The Laplacian pyramid is an image representation that returns the value of the sum of the second
derivatives of the image, along the coordinate axes, at each pixel location, for a succession of scales.
It is constructed as follows.

Step 1: Smooth the input image I0 with a Gaussian filter, to produce an output image I′1.
Step 2: Subtract I′1 from I0 to form array L1 = I0 − I′1.
Step 3: Subsample image I′1 by omitting every second row and every second column to produce

image I1, which is half the size of the original image along each dimension.
Step 5: Smooth image I1 with a Gaussian filter, to produce an output image I′2.
Step 6: Subtract I′2 from I1 to form array L2 = I1 − I′2.

The above process may be repeated for as many steps as we wish, until the final array Ln is as
small as a single pixel. The sequence of image representations we create that way I0, I1,… , In is
known as a Gaussian pyramid and the sequence L1,L2,… ,Ln−1 that we can create from it is called
a Laplacian pyramid. The process of constructing these two image representations is shown
schematically in Figure 3.138. In Chapter 4, when we discuss wavelets, we shall see in more detail
why such a representation is said to analyse the image into a set of frequency bands. Figure 3.139
shows the frequency bands in which the Gaussian and the Laplacian pyramids analyse the image,
without any further analysis at this point.

2

2

2

I3

I2

L2

L3

L1

Convolution
*G

Subsampling

Convolution
*G

Subsampling

Convolution
*G

I0

I1

Gaussian pyramid Laplacian pyramid

Subsampling

Figure 3.138 The way we construct Gaussian and Laplacian pyramids. I0 is the input image. G represents
the Gaussian filter with which we convolve the image to smooth it.
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Figure 3.139 The frequency domain of an image, with 𝜔x and 𝜔y
the frequencies along the x and y axis, respectively. The dc
component is at the centre. A four-level Gaussian pyramid
represents an image in the three nested frequency bands
represented here by rectangles ABCD, FGHE, KLIJ and MNOP. The
corresponding Laplacian pyramid consists of three levels, one of
which is made up from the frequencies inside the annulus
ABCDEFGH, the next one made up from the frequencies inside the
annulus EFGHIJKL and the final one made up from the frequencies
inside the annulus IJKLMNOP.

ωx

ωy

CD

F

HE

J

K L

I
N

MP
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Why is the creation of a Laplacian pyramid associated with the application of a
Gaussian function at different scales and the subtraction of the results?

Convolution is a linear process. Subtracting the results of two convolutions produced by using two
different filters is equivalent to convolving the original signal with the difference of the filters. When
the two filters are Gaussians with different standard deviations, their difference looks like the filter
of Figure 4.92. A filter with such a shape is known as a Mexican hat filter, or sombrero filter or
DoG (difference of Gaussians) filter. Such a filter estimates the second derivative of the signal.

Why may the second derivative of a Gaussian function be used as a filter to estimate
the second derivative of a signal?

Differentiation always enhances noise. Before we differentiate a signal we usually smooth it. A
Gaussian filter may be used for this purpose. The smoothed signal is then differentiated. Smooth-
ing (by convolution with a low pass filter) is a linear process. Differentiation is also a linear process.
The order by which we apply two linear processes does not affect the result we get. So, instead of
smoothing the signal, by convolving it with a filter, and differentiating the result, we may differen-
tiate the filter and convolve the signal with the derivative of the filter. So, convolution of a signal
with the second derivative of the Gaussian filter will produce the same result as we would have got
if we had convolved the signal with a Gaussian to smooth it first, and then differentiated it twice to
estimate its second derivative.

Example 3.128

Construct the four-level Gaussian pyramid of the image shown in Figure 3.140a. For
the low pass Gaussian filter use 3.140b. Assume that the image is repeated ad infini-
tum in all directions.

(Continued)
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Example 3.128 (Continued)

(b)(a)

Figure 3.140 (a) A 2-bit 16 × 16 image. (b) A smoothing Gaussian mask.

We first augment the image into size 18 × 18 by repeating at the top its last row, at the bottom its
first row, on its left its right-most column and on its right its left-most column. Then we convolve
the augmented image with the Gaussian filter given in 3.140b, ignoring border pixels that do not
have complete neighbourhoods. The result will be a 16 × 16 image. We note that the elements
of the filter sum up to 16, so the output of the convolution should be divided by 16 to yield the
smoothed version of the image. The result is shown in Figure 3.141a.

Image 3.141a is subsequently sub-sampled by omitting its even rows and columns, to produce
the 8 × 8 image shown in 3.141b.

Image 3.141b next is augmented by repeating its top row at the bottom and its bottom row at the
top, its left column on the right and its right column on the left. Then the 10 × 10 augmented image
is convolved with the Gaussian mask, omitting from the convolution process a layer of pixels
all round. The 8 × 8 output of the convolution, after division by 16, is shown in Figure 3.142a.
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This is sub-sampled by keeping only its odd rows and columns, to produce the 4 × 4 image of
Figure 3.142b.

Finally, 3.142b is smoothed and sub-sampled to produce the final layer of the Gaussian pyra-
mid, consisting only of 2 × 2 pixels, as shown in Figure 3.143.

Figures 3.140a, 3.141b, 3.142b and 3.143b constitute the four layers of the Gaussian pyramid.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1

1 2 3 3 2 2 1 1 1 1 1 1 1 1 1 1

1 2 3 3 3 2 1 1 1 1 2 2 2 1 1 1

1 2 2 3 3 2 1 1 1 2 2 3 2 2 1 1

1 1 2 2 2 2 1 1 1 2 3 3 3 2 1 1

1 1 1 1 1 1 1 1 1 2 3 3 3 2 1 1

1 1 1 1 1 1 1 1 2 2 2 2 2 2 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1

1 1 2 3 3 2 1 1 1 1 1 2 2 2 1 1

1 2 2 3 3 2 2 1 1 1 2 2 3 2 1 1

1 2 3 3 3 2 2 1 1 1 2 3 3 2 1 1

1 2 2 3 2 2 1 1 1 2 2 3 3 2 1 1

1 1 2 2 2 1 1 1 1 2 3 3 3 2 1 1

1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 1

(a) The 16 × 16 smoothed image

(b) The 8 × 8 sub-sampled image

1 1 1 1 1 1 1 1

1 3 2 1 1 1 1 1

1 2 3 1 1 2 2 1

1 1 1 1 1 3 3 1

1 1 1 1 1 1 1 1

1 2 3 1 1 1 2 1

1 3 3 2 1 2 3 1

1 2 2 1 1 3 3 1

Figure 3.141 The smoothed and sub-sampled images.

(Continued)
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Example 3.128 (Continued)
Figure 3.142 The smoothed image and sub-sampled
images.

1 2 1 1 1 1 1 1

1 2 2 1 1 1 1 1

1 2 2 1 1 2 2 1

1 1 1 1 1 2 2 1

1 1 1 1 1 1 2 1

1 2 2 2 1 1 2 1

1 2 2 2 1 2 2 1

1 2 2 1 1 2 2 1

(a) The 8 × 8 smoothed image

1 1 1 1

1 2 1 2

1 1 1 2

1 2 1 2

(b) The 4 × 4 sub-sampled image

(a) The 4 × 4 smoothed image

(b) The 2 × 2 sub-sampled image

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1

1 1

Figure 3.143 The smoothed and sub-sampled images.

Example 3.129

For the image of Figure 3.140a construct the three-level Laplacian pyramid.
For the first level, we subtract image 3.141a from the original image. The result is shown in
Figure 3.144a.

Next, we subtract Figure 3.142a from 3.141b to produce the result shown in Figure 3.144b.
The third level of the pyramid is created by subtracting image 3.143a from 3.142b. There-

fore the third and final levels of the pyramid are shown in figures 3.144c and 3.144d,
respectively.
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0 −1 0 −1 0 −1 0 −1 0 −1 0 −1 0 −1 0 −1

0 0 0 0 0 −1 0 −1 0 −1 0 −1 0 −1 0 −1

0 1 0 0 1 1 0 −1 0 −1 0 −1 0 −1 0 −1

0 0 −1 −1 −1 0 0 −1 0 −1 1 1 1 −1 0 −1

0 1 1 0 0 1 0 −1 0 0 0 −1 0 0 0 −1

0 −1 0 0 0 0 1 −1 0 1 0 0 0 1 0 −1

0 −1 0 −1 0 −1 0 −1 0 0 −1 −1 −1 0 0 −1

0 −1 0 −1 0 −1 0 −1 1 1 1 1 1 1 0 −1

0 −1 0 −1 0 −1 0 −1 0 −1 0 −1 0 −1 0 −1

0 −1 1 1 1 1 0 −1 0 −1 0 −1 0 −1 0 −1

0 −1 0 −1 −1 0 0 −1 0 −1 0 0 0 0 0 −1

0 1 1 0 0 1 1 −1 0 −1 1 1 0 1 0 −1

0 0 −1 −1 −1 0 0 −1 0 −1 0 −1 −1 0 0 −1

0 1 1 0 1 1 0 −1 0 1 1 0 0 1 0 −1

0 −10 0 0 −1 0 −1 0 0 −1 −1 −1 0 0 −1

0 −10 −1 0 −1 0 −1 0 1 1 1 1 1 0 −1

0 −1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 1 0

0 0 0 0 0 0 −1 0

0 0 1 −1 0 0 0 0

0 1 1 0 0 0 1 0

0 0 0 0 0 1 1 0

(b) The second level of the 8 × 8 subtracted image

(c) The third level of the 4 × 4 subtracted image

(a) The first level of the 16 × 16 subtracted image

0 0 0 0

0 1 0 1

0 0 0 1

0 1 0 1

0 0

0 0

(d) The second level of the 4 × 4 subtracted image

Figure 3.144 The Laplacian pyramid.

How can we use the Laplacian pyramid representation of an image to model it as a
Markov field?

The key point of the Laplacian pyramid representation of an image is that each level of the pyra-
mid corresponds to a different frequency band of the image. Then we may use a different Markov
random field to model each frequency band.
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How can we synthesise a texture if we know the Markov parameters of the levels of its
Laplacian pyramid?

The key issue is on the way we recover an image from the knowledge of its Laplacian pyramid. Let
us use the following operators to help us represent schematically the construction of the Laplacian
pyramid:
∗ means convolution with the Gaussian mask G.
↓means subsampling by a factor of 2. Let I0 be the original image, and Li the ith level of the Lapla-

cian pyramid. Let also I′i indicate the smoothed version of image Ii−1. For a three-level pyramid, we
may then write:

I′1 = I0 ∗ G (3.386)

L1 = I0 − I′1 (3.387)

I1 =↓ I′1 (3.388)

I′2 = I1 ∗ G (3.389)

L2 = I1 − I′2 (3.390)

I2 =↓ I′2 (3.391)

I′3 = I2 ∗ G (3.392)

L3 = I2 − I′3 (3.393)

I3 =↓ I′3. (3.394)

We can clearly see from the above that, if for the moment we neglect the details, and if we add
equations (3.387), (3.390) and (3.393), we shall have L1 + L2 + L3 ∼ I0 − I3, as the intermediate
terms cancel each other out. So, we must be able to recover I0 from the knowledge of L1, L2, L3
and I3.

More precisely, assume that we are given L1, L2, L3 and I3. We wish to reconstruct the original
image I0. To do that, we must define first an operation that upsamples an image by a factor of 2,
so that we have a mechanism to make two different layers of the pyramid of equal size. Such an
operation may be applied in two successive steps:

(i) Insert rows and columns of 0s between the existing rows and columns of the image and at its
bottom and right, so that the downsampled image is restored to its original size; let us denote
this operator by ↑.

(ii) Blur the augmented with 0s image with the help of the Gaussian kernel.

Let us denote by Ĩi the result of applying these two operators to image Ii. So:

Ĩ3 = (↑ I3) ∗ G
I2 ≡ L3 + Ĩ3

Ĩ2 = (↑ I2) ∗ G
I1 ≡ L2 + Ĩ2

Ĩ1 = (↑ I1) ∗ G
I0 ≡ L1 + Ĩ1. (3.395)

Note that I1, I2 and I0 that appear in (3.395) are not quite the same as their corresponding coun-
terparts in (3.386)–(3.394). Nevertheless, we retained the same name to make the correspondence
obvious.



�

� �

�

3.6 Markov Random Fields 299

Now we know how to reconstruct an image from the knowledge of its Laplacian pyramid and
the top most level of its Gaussian pyramid, we are ready to synthesise a texture with the help of the
multi-resolution Markov random fields, and a given training sample from which we shall learn the
Markov parameters we wish to use for the synthesis.

Step 1: Construct the Laplacian pyramid of the image you have been given for training.
Step 2: Work out the Markov parameters of each layer of the Laplacian pyramid separately, assum-

ing a first or second order Markov neighbourhood.
Step 3: Synthesise a texture for each set of the levels of the Laplacian pyramid, using the estimated

Markov parameters.
Step 4: Replace the Laplacian levels of the given image with the synthesised levels and work out

the full sized image, which must exhibit similar texture to the given training image.

Is a Markov random field always realisable given that we define it arbitrarily?

No, it is not. A Markov random field is realisable provided it is self-consistent: as each pixel is
influenced by its neighbours, and the neighbours by their own neighbours, and so on, it means
that not all neighbourhoods we choose and not all model parameters we define lead to a structure
that is self-consistent and therefore realisable. Certain conditions have to apply for the field to be
self-consistent.

What conditions make a Markov random field self-consistent?

A Markov random field is self-consistent and equivalent to a Gibbs distribution if it is below its
critical temperature, and if its neighbourhood structure can be expressed in terms of cliques. The
concept of critical temperature will be dealt with at the end of the section on Gibbs distributions
(see Example 3.163).

What is a clique in a neighbourhood structure?

A clique is a set of pixels that are neighbours of each other according to the neighbourhood
scheme we have adopted. Figure 3.145 shows the cliques that correspond to the neighbourhoods
of Figure 3.116a,b,c. Below each neighbourhood structure, we have first the individual pixels:
each pixel is neighbour of itself! Then, we have pairs of pixels that are neighbours of each other.
The second-order Markov neighbourhood allows also triplets of pixels that are neighbours of each
other, as well as a quadruple of such pixels. The third-order Markov neighbourhood allows a few
more triplets and quartets of pixels that are neighbours of each other, and in addition a quintet of
such pixels.

Example 3.130

Construct the cliques of the neighbourhoods shown in Figure 3.117.
Two pixels form a clique if they are neighbours of each other. In Figure 3.146 we mark with
different symbols the neighbourhoods of the neighbours of the central pixel for neighbourhoods
(a) and (b) of Figure 3.117. We can then see whether two pixels belong to the neighbourhood of
each other and decide whether they form a clique or not. The cliques identified this way, for the

(Continued)
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(a) (b) (c)

Figure 3.145 The cliques that correspond to the Markov neighbourhoods shown in the first row.

Example 3.130 (Continued)

three neighbourhoods of Figure 3.117, are shown in Figure 3.147. We have three cliques for the
first Markov random field neighbourhood, four for the second and five for the third.

(a) (b)

Figure 3.146 We mark with a different symbol the neighbourhood of each pixel in the original
neighbourhood.
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(a) (b) (c)

Figure 3.147 The cliques that correspond to the Markov neighbourhoods shown in the first row.

3.7 Gibbs Distributions

What is a Gibbs distribution?

A Gibbs distribution is a function that specifies, in terms of clique potentials, the joint probability
density function of a particular combination X of values to exist over the whole grid. In general it
has the form

p(X) = 1
Z

e
∑

all types of clique
∑

all cliques of this typexi1 xi2 ...xick
Uk(xi1 xi2 ...xick

)
(3.396)

where ck is the number of pixels in clique of type k, xij
is the value of the ijth pixel in the clique,

and Uk(xi1
xi2

...xick
) is the potential of clique of type k. The normalising constant Z is called the

partition function and it ensures that p(X) is a probability density, i.e. upon integration over all
possible combinations of values X it sums to 1, and its value for any particular combination is in
the range [0, 1].

What is a clique potential?

A clique potential is a function of the pixel values that make up the clique. It specifies the interaction
between the members of a clique. Its functional form and the numerical parameters on which it
depends may be different for different clique types.

Example 3.131

Write the form of the Gibbs distribution for an N × N image and the neighbourhood
structure of Figure 3.145a for the simplest clique potentials you can think of.
There are only three types of clique for such a neighbourhood: singletons, next-door neighbours
along the horizontal direction, and next-door neighbours along the vertical direction. Let us call
the corresponding potentials for these cliques U0, U1 and U2, respectively. In the simplest case
these will be just some numerical constants. Then upon application of (3.396) we have:

p(X) = p(x11, x12,… , x1N , x21,… , x2N ,… , xN1,… , xNN )

(Continued)
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Example 3.131 (Continued)

= 1
Z

e
∑

i
∑

jxijU0+
∑

i
∑

jxijxi+1,jU1+
∑

i
∑

jxijxi,j+1U2 . (3.397)

In the expression above we have used xij to indicate the grey value of pixel (i, j).
The partition function Z is given by:

Z =
∑

X
e
∑

i
∑

jxijU0+
∑

i
∑

jxijxi+1,jU1+
∑

i
∑

jxijxi,j+1U2 . (3.398)

The summation here is over all configurations X, i.e. all possible images of size N × N with
pixel values in the legitimate range.

The summations of the binary cliques in (3.397) involve pixels that might be at the boundary
of the image and therefore they may not have neighbours. There are two ways to deal with these
pixels: we either omit them from the sums, i.e. we consider only pixels in the image that have neigh-
bours inside the image, or we assume that the image repeats itself periodically in both directions,
so that the boundary pixels have as neighbours the wrapped around pixels from the other end of
the image. This is perfectly legitimate, since we assume the texture to be stationary, i.e. we assume
that the same pattern fills up the whole image.

Example 3.132

Consider an image of size 4 × 4 with 3-bit pixels, i.e. pixels that take grey values in the
range [0, 7]. Compute how many different configurations X you will have appearing
in the summation on the right-hand side of Equation (3.398).
If we have 16 pixels, and if each pixel can take one of 8 possible values, then we have 816 possible
combinations, since each value taken by the first pixel may be combined with each value taken
by the second pixel, and each value taken by the third pixel, and so on. This number is 248 which
is approximately equal to 281 475 billion configurations!

Example 3.133

How many different binary images of size 3 × 3 can we have?
A 3 × 3 image has nine pixels, each of which may take two values. So, the total number of com-
binations we can have is 29 = 512 different images.

Example B3.134

Assume that pixel (1, 1) in a 3 × 3 binary image has value 1, and pixel (3, 2) has value 0.
The other pixels are allowed to take either value 0 or 1. Draw all the different images
that are possible.
Since we have seven free pixels each of which may take any one of two values, we may have 27 =
128 different combinations. These are shown in Figure 3.148.
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Figure 3.148 All possible binary 3 × 3 images we can have when the grey pixels carry fixed values.

Grey marks the two pixels with the fixed values. These configurations were constructed accord-
ing to the following logic.

1. There is only one configuration with all seven pixels 0.

(Continued)
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Example B3.134 (Continued)

2. If we replace one of those 0s by 1, there are seven different places where we can put that 1,
so there must be seven configurations with six 0s and one 1.

3. For every configuration with one 1, we can add another 1 in one of the remaining six posi-
tions to create a configuration with two 1s and five 0s. However, to avoid counting the same
configuration twice, we follow a sequential order of the free pixels, from top left to bottom
right in a raster scan. We may place the second 1 in a position after the first 1, but never
before. So, from the first configuration with one 1, we can create six configurations with
two 1s, from the second configuration with one 1, we can create five configurations with
two 1s, from the third four, and so on. The total number of distinct configurations with two
1s and five 0s we may create is 6 + 5 + 4 + 3 + 2 + 1 = 21.

4. For every configuration with two 1s, we may create a configuration with three 1s by placing
the third 1 in one of the remaining five places. However, we shall have multiple configura-
tions, unless we follow the sequential numbering of pixels as above, and avoid placing the
third 1 in a position before the two positions already occupied by 1s. As for every one of
the 21 configurations with two 1s we have five options to place the third 1, we may have
21 × 5 options in total. However, not all of them will be distinct because one cannot dis-
tinguish between a 1 that was there originally and a 1 that was added to make the total
number of 1s three. As each one of the 1s could be considered to be the added 1, we must
divide this number by 3 to deduce the total number of distinct configurations. This leads to
21 × 5∕3 = 35 configurations with three 1s and four 0s.

5. If now we duplicate the configurations we created and make all 1s 0 and all 0s 1, we shall
have the remaining configurations as follows: 35 configurations with four 1s and three
0s. 21 configurations with five 1s and two 0s. 7 configurations with six 1s and one 0. 1
configuration with seven 1s.

Can we have a Markov random field with only singleton cliques?

If a field has only singleton cliques, it may still be a Markov field, in the sense that it may still be
described by a Gibbs distribution where, however, the neighbours do not exert any influence on the
value of a pixel. Nevertheless, there may still be bias in the “coin” with which we create it, although
the coin will not be biased by the values of the neighbours, but by some other “external” to the field
factor. This bias may make some configurations more probable than others. This is in contrast to
a field which has no Gibbs structure, for which all configurations are equally likely. See Examples
3.135 and 3.136.

Example B3.135

Assume that a 3 × 3 binary image is an uncorrelated random field. Compute the joint
probability density function for pixel (1, 1) to have value 1 and pixel (3, 2) to have
value 0. Confirm your answer by referring to the answer of Example 3.134 shown
in Figure 3.148.
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Since the random field is uncorrelated, the probability of pixel (1, 1) to take value 1 is 1∕2, and
the probability of pixel (3, 2) to take value 0 is also 1∕2. The joint probability of these two values
to arise in these two positions is, therefore, 1∕2 × 1∕2 = 1∕4.

Figure 3.148 shows all possible configurations for which pixel (1, 1) has value 1 and pixel (3, 2)
has value 0. One can have three other similar lots of configurations where the fixed values of the
two pixels marked by grey are 1 and 1, 0 and 1, or 0 and 0, respectively. Thus, the configurations
shown in Figure 3.148 constitute one quarter of all possible configurations. This means that if
we pick a 3 × 3 binary image at random, the prior probability of picking an image with pixel
(1, 1) having value 1 and pixel (3, 2) having value 0 is one in four, which is in agreement with the
previous calculation.

Example B3.136

Assume that a 3 × 3 binary image is a Markov random field with cliques consisting
of singletons only. The clique potential is U0 = 1. Use the Gibbs distribution of
Equation (3.397) to compute the joint probability density function of pixel (1, 1)
to have value 1 and pixel (3, 2) to have value 0. Compare your answer with that of
Example 3.135.
In Equation (3.397) we set U0 = 1, U1 = U2 = 0. Then the joint probability density function of
any 3 × 3 binary image is given by

p(x11, x12, x13, x21, x22, x23, x31, x32, x33) =
1
Z

e
∑

ijxij (3.399)

where

Z =
∑

all configurations
e
∑

ijxij . (3.400)

Let us compute Z first. The summat is equal to eM where M is the number of 1s in each con-
figuration. Let us make use of Figure 3.148 and work out the number of 1s in each possible
configuration, by assigning different values to the grey pixels and counting each time the 1s in
each configuration we create.

For x11 = 0 and x32 = 0 we have
1 configuration with zero 1s

7 configurations with one 1

21 configurations with two 1s

35 configurations with three 1s

35 configurations with four 1s

21 configurations with five 1s

7 configurations with six 1s

1 configuration with seven 1s.

(Continued)
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Example B3.136 (Continued)

For x11 = 1 and x32 = 0 or for x11 = 0 and x32 = 1 we have

1 configuration with one 1

7 configurations with two 1s

21 configurations with three 1s

35 configurations with four 1s

35 configurations with five 1s

21 configurations with six 1s

7 configurations with seven 1s

1 configuration with eight 1s.

For x11 = 1 and x32 = 1 we have

1 configuration with two 1s

7 configurations with three 1s

21 configurations with four 1s

35 configurations with five 1s

35 configurations with six 1s

21 configurations with seven 1s

7 configurations with eight 1s

1 configuration with nine 1s.

So, over all, we have

1 configuration with zero 1s

9 configurations with one 1

36 configurations with two 1s

84 configurations with three 1s

126 configurations with four 1s

126 configurations with five 1s

84 configurations with six 1s

36 configurations with seven 1s

9 configurations with eight 1s

1 configuration with nine 1s.
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So,

Z = 1 × e0 + 9 × e1 + 36 × e2 + 84 × e3 + 126 × e4+
126 × e5 + 84 × e6 + 36 × e7 + 9 × e8 + 1 × e9

⇒ Z = 135, 856.59878. (3.401)

The joint probability density function p(x11 = 1, x32 = 0) may be computed by integrating the
Gibbs distribution over all possible values of all other variables:

p(x11 = 1, x32 = 0) =∑
x12

∑
x13

∑
x21

∑
x22

∑
x23

∑
x31

∑
x33

p(x11, x12, x13, x21, x22, x23, x31, x32, x33) =

1
Z

∑
all_configurations_with clamped_values_of x11 and x32

e
∑

ijxij. (3.402)

This sum may be computed by using the table of values we extracted earlier. We obtain:

p(x11 = 1, x32 = 0) =
1

135856.59878
[1 × e1 + 7 × e2 + 21 × e3 + 35 × e4+

35 × e5 + 21 × e6 + 7 × e7 + 1 × e8] = 0.1966. (3.403)

Note that this value is different from that obtained in Example 3.135, which was 0.25. This is
because in this case, there is an external bias that influences the value a single pixel takes, even
though in both cases neighbouring pixels do not influence the values of each other directly.

Example B3.137

For a 3 × 3 binary image compute the joint probability density function p(x11 = 1, x32 =
0) if the image structure is described by the Gibbs distribution of Equation (3.397)
with U0 = 0 and U1 = 1 and U2 = −1. Assume that the image is repeated ad infinitum
in all directions.
The joint probability density function p(x11 = 1, x32 = 0) can be found by integrating the Gibbs
distribution over all possible values of all other variables:

p(x11 = 1, x32 = 0) =∑
x12

∑
x13

∑
x21

∑
x22

∑
x23

∑
x31

∑
x33

p(x11, x12, x13, x21, x22, x23, x31, x32, x33) =

1
Z

∑
all_configurations_with clamped_values_of x11 and x32

e
∑

ij(xijxi+1,jU1+xijxi,j+1U2). (3.404)

We note that unless both pixels in a clique have value 1, the corresponding term in the exponent
of the above equation will be 0.

We count, therefore, first the number of cliques we have consisting of two 1s next to each other
along the horizontal direction. To ensure that all pixels have horizontal neighbours to the right,
we must imagine that the first column of the image is repeated once more to the right of the image.

(Continued)
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Example B3.137 (Continued)

Table 3.33 shows the number of horizontal cliques (1, 1) found in the configurations of
Figure 3.148. The entries of the table correspond to the spatial arrangement of the different
configurations in the figure.

Table 3.33 The number of horizontal pairs
(1, 1) in the configurations of Figure 3.148.
The spatial arrangement of these numbers
follows the spatial arrangement of the images
in the figure.

x11 = 1, x32 = 0

0 1 1 0 0 0 0 0
3 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
0 0 1 1 1 3 3 3
3 3 2 1 1 1 1 1
1 2 2 2 2 1 1 1
1 1 1 2 2 2 1 1
1 1 1 1 1 1 1 3
4 3 3 3 3 3 3 4
4 4 2 2 2 2 2 2
2 2 2 4 2 2 2 2
2 2 2 2 2 4 2 2
2 3 3 4 4 4 4 4
4 4 4 4 6 3 3 3
4 4 3 3 3 4 4 4
5 5 5 6 6 5 5 7

Table 3.34 The number of vertical pairs
(1, 1) in the configurations of Figure 3.148.
The spatial arrangement of these numbers
follows the spatial arrangement of the images
in the figure.

x11 = 1, x32 = 0

0 0 0 1 0 1 0 0
0 1 1 1 1 0 1 0
1 0 1 1 3 1 1 1
1 0 1 1 0 1 1 1
1 1 2 3 2 1 2 3
1 2 1 1 1 3 1 2
1 1 1 1 2 1 3 2
1 3 3 1 2 1 1 1
2 3 2 2 2 3 2 2
2 2 4 4 2 4 3 2
4 2 3 2 3 2 2 3
4 2 2 2 2 2 4 3
2 3 2 4 4 3 4 4
3 4 3 4 3 6 4 4
4 4 4 4 3 4 3 4
6 5 5 5 5 6 5 7

Then we count the number of cliques that consist of two 1s along the vertical direction. To ensure
that all pixels have vertical neighbours below them, we repeat the first row of each image at its
bottom, so that pixels at the bottom row have neighbours below them as well.

The number of vertical (1, 1) pairs for each configuration of Figure 3.148 are shown in the
corresponding position of Table 3.34.

Tables 3.35–3.40 show the numbers of vertical and horizontal cliques consisting of pixels both
of which have value 1 for all remaining possible images.

To compute the joint probability density function using Equation (3.404) we compute first the
numerator. This is the sum of as many exponentials as we have possible configurations with
values x11 = 1 and x32 = 0, i.e. all the entries of Figure 3.148. Since U1 = 1 and U2 = −1, each
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Table 3.35 The number of horizontal pairs
(1, 1) in the configurations of Figure 3.148 if
the two grey pixels have both value 0.

x11 = 0, x32 = 0

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 1 1 1 1 1
1 1 1 0 0 0 0 0
0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1
1 1 1 1 1 1 1 3
2 1 1 1 1 1 1 2
2 2 1 1 1 1 1 1
1 1 1 3 1 1 1 1
1 1 1 1 1 3 2 2
2 3 3 2 2 2 2 2
2 2 2 2 4 2 2 2
3 3 2 2 2 3 3 4
3 3 3 4 4 4 4 5

Table 3.36 The number of vertical pairs
(1, 1) in the configurations of Figure 3.148 if
the two grey pixels have both value 0.

x11 = 0, x32 = 0

0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0
0 0 1 0 1 0 0 0
1 0 0 0 0 0 1 0
1 1 1 1 1 0 1 3
1 1 0 1 0 1 0 1
0 1 1 0 1 1 1 1
0 1 1 0 1 0 1 0
1 1 1 1 1 3 2 1
1 2 2 3 1 2 1 1
3 1 3 1 1 1 1 1
2 1 1 1 2 1 2 1
1 1 1 2 3 2 2 2
2 3 2 4 2 4 2 3
2 3 2 2 2 2 2 2
4 3 4 3 4 4 3 5

exponential has the form eH−V , where H and V are the counts of the horizontal and vertical
pairs in the configuration, respectively, in which both pixels have value 1. We use the entries of
Tables 3.33 and 3.34 together, reading the value of H from the first table and the value of V from
the second, and compute this numerator to be 254.45889.

To compute the denominator of (3.404), we use Equation (3.398). We observe that this is going
to be a sum of as many exponentials as we have possible configurations (i.e. 512). Each exponen-
tial has the same form as before, only now we have to make use of the remaining tables in pairs.
Tables 3.35 and 3.36 will be used together, to produce all those terms that come from configura-
tions in which both pixels of interest have value 0. Tables 3.37 and 3.38 will be used together, to
produce all those terms that come from configurations in which both pixels of interest have value
1. Finally, Tables 3.39 and 3.40 will be used together, to produce all those terms that come from
configurations in which the two pixels of interest have exchanged values.

If we do that, we find that Z = 917.44455.
Therefore, the joint probability density function we had to compute is: p(x11 = 1, x32 = 0) =

254.45889∕917.44455 = 0.2774.

(Continued)



�

� �

�

310 3 Stationary Grey Texture Images

Example B3.137 (Continued)

Table 3.37 The number of horizontal pairs
(1, 1) in the configurations of Figure 3.148 if
the two grey pixels have both value 1.

x11 = 1, x32 = 1

0 1 1 1 1 0 0 0
3 2 2 1 1 1 2 2
1 1 1 3 1 1 1 1
1 1 1 1 1 4 4 3
3 3 4 2 2 2 2 2
2 2 2 2 4 2 2 2
2 2 2 2 2 2 3 3
3 2 2 2 2 2 2 3
6 4 4 4 4 4 4 4
4 4 4 4 4 3 3 3
3 3 3 4 4 4 4 3
3 3 3 3 3 4 4 4
4 4 4 6 6 6 5 5
5 5 5 5 6 5 5 5
5 5 5 5 5 5 5 6
7 7 7 7 7 7 7 9

Table 3.38 The number of vertical pairs
(1, 1) in the configurations of Figure 3.148 if
the two grey pixels have both value 1.

x11 = 1, x32 = 1

0 0 1 1 0 1 0 1
1 1 1 1 1 1 2 1
2 1 3 1 3 1 2 1
1 1 1 2 1 2 2 2
2 3 2 3 2 2 2 3
2 2 2 2 2 4 2 4
2 2 3 2 4 3 3 2
2 3 4 2 2 2 2 2
3 4 3 4 3 4 4 3
4 4 4 4 3 4 4 3
4 3 4 3 4 3 4 4
6 4 3 4 4 4 4 4
3 4 3 5 5 5 5 6
5 5 5 6 5 6 5 5
5 5 5 6 5 6 5 5
7 7 7 7 7 7 7 9

Table 3.39 The number of horizontal pairs
(1, 1) in the configurations of Figure 3.148 if
the grey pixels exchange their values.

x11 = 0, x32 = 1

0 0 0 1 1 0 0 0
1 1 1 0 0 0 1 1
0 0 0 3 1 1 1 1
1 1 1 1 1 2 2 1
1 1 3 1 1 1 1 1
1 1 1 1 3 1 1 1
1 1 1 1 1 1 3 3
3 2 2 2 2 2 2 3
4 2 2 2 2 2 2 2
2 2 3 3 3 2 2 2
2 2 2 3 3 3 3 2
2 2 2 2 2 3 4 4
4 4 4 4 4 4 3 3
3 3 3 3 4 4 4 4
4 4 4 4 4 4 4 6
5 5 5 5 5 6 6 7

Table 3.40 The number of vertical pairs
(1, 1) in the configurations of Figure 3.148 if
the grey pixels exchange their values.

x11 = 0, x32 = 1

0 0 1 0 0 0 0 1
1 0 1 0 1 1 1 1
1 1 3 0 1 0 1 0
1 1 0 1 1 1 2 1
2 3 1 1 1 1 1 3
2 1 1 2 1 2 1 3
1 2 3 1 3 3 1 1
1 1 2 1 1 1 2 1
2 2 2 3 2 4 4 2
3 4 2 3 2 2 2 2
3 2 4 2 2 2 3 2
4 3 2 3 4 3 2 2
2 2 2 3 4 4 3 4
4 4 4 6 4 4 3 4
3 4 3 4 4 4 4 3
5 5 6 5 6 5 5 7
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Example B3.138

For a 3 × 3 binary image compute the joint probability density function p(x11 = 1, x32 =
0) if the image structure is described by the Gibbs distribution of Equation (3.397)
with U0 = −1, U1 = 1 and U2 = −1. Assume that the image is repeated ad infinitum in
all directions.
The joint probability density function p(x11 = 1, x32 = 0) now has the form:

p(x11 = 1, x32 = 0) =∑
x12

∑
x13

∑
x21

∑
x22

∑
x23

∑
x31

∑
x33

p(x11, x12, x13, x21, x22, x23, x31, x32, x33) =

1
Z

∑
all_configurations_with clamped_values_of x11 and x32

e
∑

ijxij(U0+xi+1,jU1+xi,j+1U2). (3.405)

The only difference with Example 3.137 is that now we have to take into consideration the single
pixels that have non-zero value as well. Table 3.41 gives for each configuration of Figure 3.148
the number of pixels with value 1. Tables 3.42–3.44 give the number of pixels with value 1 for all
other possible configurations. Note that Table 3.44 is the same as Table 3.41 since here the relative
position of the pixels does not matter; we only count the number of 1s in each configuration.

Table 3.41 The number of single pixels in
each configuration of Figure 3.148 with
value 1.

x11 = 1, x32 = 0

1 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3
3 3 3 3 3 4 4 4
4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5
5 5 5 6 6 6 6 6
6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 8

Table 3.42 The number of single pixels with
value 1 in each configuration produced from
Figure 3.148 by setting both highlighted
pixels to 0.

x11 = 0, x32 = 0

0 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 3 3 3
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4
4 4 4 5 5 5 5 5
5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 7

(Continued)
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Example B3.138 (Continued)

Table 3.43 The number of single pixels with
value 1 in each configuration produced from
Figure 3.148 by setting both highlighted
pixels to 1.

x11 = 1, x32 = 1

2 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4
4 4 4 4 4 5 5 5
5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6
6 6 6 7 7 7 7 7
7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 9

Table 3.44 The number of single pixels with
value 1 in each configuration produced from
Figure 3.148 by exchanging the values of the
highlighted pixels.

x11 = 0, x32 = 1

1 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3
3 3 3 3 3 4 4 4
4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5
5 5 5 6 6 6 6 6
6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 8

To compute the joint probability density function now we have to add terms of the form e−S+H−V

where S counts the number of 1s in each configuration and its value must be read from Tables
3.41–3.44, and H and V count the number of pairs of 1s in the horizontal and vertical directions
respectively, and their values must be read from Tables 3.33–3.40. For the numerator we must use
only Tables 3.33 and 3.34, while for the denominator all possible configurations must be taken
into consideration. We find that in this case p(x11 = 1, x32 = 0) = 5.73381∕24.94446 = 0.229863.

Example B3.139

For the Gibbs distribution of Equation (3.397) identify the most probable configura-
tion of a binary 3 × 3 image that repeats periodically in all directions, for the following
sets of clique potentials:
U0 = 1 U1 = 0 U2 = 0
U0 = 0 U1 = 1 U2 = 2
U0 = −1 U1 = 1 U2 = −1
U0 = 0 U1 = 1 U2 = −1
U0 = 0 U1 = −1 U2 = 1.
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We use the entries of Tables 3.33–3.44 to compute the numerator of Equation (3.397) for each
set of clique potentials. We do not need to compute the denominator if we are simply interested
in identifying the most probable configuration. However, if we want to know how probable a
configuration is, we do need the value of Z too. Table 3.45 presents the results of these calculations,
and the most probable configurations identified in each case.

In the case U0 = 0,U1 = 1,U2 = 2 both vertical and horizontal cliques of pixels with
identical values are encouraged, producing a flat image consisting of 1s only. In the case
U0 = 0,U1 = 1,U2 = −1 horizontal cliques of pixels with identical values are encour-
aged, but the vertical cliques are encouraged to consist of pixels with different values. Six
equally probable configurations were identified in this case. Note the difference with the case
U0 = −1,U1 = 1,U2 = −1 which is only different in the value of U0: the non-zero value of this
parameter creates a bias that makes the black flat configuration the most probable one. The case
U0 = 0,U1 = −1,U2 = 1 has also six equiprobable configurations with vertical stripes instead
of horizontal. The reason of the existence of six equiprobable configurations is the toroidal
boundary conditions we use, which make all these configurations equivalent. These probabilities
should be compared with 1∕512 = 0.00195 which is the probability of picking a particular image
if the configuration space were totally unstructured, i.e. if all images were equally probable.
Table 3.45 Most probable configurations for different sets of clique potentials. The values of the
numerator and the probability p correspond to the most probable configuration which is shown in the
last column. In the last two cases, six configurations are equally probable, due to the toroidal
boundary conditions we use.

Clique potentials Z Numerator p Most probable configuration

U0 = 1,U1 = U2 = 0 135 856.6 8100 0.060 111
111
111

U0 = 0,U1 = 1,U2 = 2 544 × 109 532 × 109 0.978 111
111
111

U0 = −1,U1 = 1,U2 = −1 24.94 1 0.040 000
000
000

U0 = 0,U1 = 1,U2 = −1 917.44 20.09 0.022 111 000 000
000 111 000
000 000 111
111 111 000
111 000 111
000 111 111

U0 = 0,U1 = −1,U2 = 1 917.44 20.09 0.022 100 010 001
100 010 001
100 010 001
110 101 011
110 101 011
110 101 011
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Example B3.140

Consider the most probable configurations identified in Example 3.139 shown in
Table 3.45. For each one of them compute the joint probability density function
p(xij = 1, xi+2,j+1 = 0) assuming periodic boundary conditions. Compare the values you
compute with those computed in Examples 3.136, 3.137 and 3.138. Comment on the
answers you get.
The joint probability density function we compute here is spatial, i.e. computed from a single
image, i.e. computed over all pairs of pixels in the image with values 1 and 0 in the same relative
position from each other. The joint probability density function we computed in Examples 3.136,
3.137 and 3.138 was in the ensemble sense. The two values that correspond to the same set of clique
potentials would have been the same if the images were ergodic. (For the concept of ergodicity, see
Book I [75].)

Table 3.46 Values of probability p(xij = 1, xi+2,j+1 = 0) for the most probable configurations of
example 3.139. In the last column the values computed using the method of examples 3.136, 3.137
and 3.138.

Clique potentials p(xij = 1, xi+2,j+1 = 0) Ensemble calculation

U0 = 1, U1 = 0 U2 = 0 0 0.1966
U0 = 0, U1 = 1, U2 = 2 0 0.0026
U0 = −1, U1 = 1, U2 = −1 0 0.2299
U0 = 0, U1 = 1, U2 = −1 1/3 0.2774
U0 = 0, U1 = −1, U2 = 1 1/3 0.2774

What is the relationship between Gibbs distributions and co-occurrence matrices?

A co-occurrence matrix may be thought of as a marginal of the joint probability of the whole con-
figuration of grey values to arise, like for example the marginal computed in Example 3.140. That
marginal may be computed in two ways: in Examples 3.136–3.138 it was computed over the ensem-
ble of all versions of the image. In Example 3.140, it was computed over the same image, allowing
the pair of pixels to scan the whole image. It is this version that corresponds to the co-occurrence
matrix, as it captures the properties of the specific texture pattern, which is assumed stationary.

What is the relationship between the clique potentials and the Markov parameters?

This relationship emerges naturally when one works out the equivalence of Gibbs distributions
and MRFs. This equivalence is known as the Hammersley–Clifford theorem. For its proof see
Example 3.141 and Box 3.26. Then Example 3.145 shows that the Markov parameters are the same
as the clique potentials, when the latter are considered to be constants.
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Example B3.141

Prove that if we have a Gibbs distribution defined over a configuration of pixel values
we may describe the same configuration by a Markov random field model.
Let us first imagine that all pixels are labelled sequentially, so that we avoid having double indices.
This is only for convenience of notation and it has no other implication for the proof. Let us call
the total number of pixels M and let us denote the joint configuration of their values x1, x2,… , xM,
by X.

We assume that we know the joint probability density function of all pixels p(X) =
p(x1, x2,… , xM) and that this is a Gibbs distribution as defined by Equation (3.396). Let us
consider one pixel, xi. Its conditional probability density function is p(xi|x1,… , xi−1, xi+1,… , xM).
To prove that we are dealing with an Markov random field this conditional probability density
function must depend only on the neighbours of pixel i and not on all other pixels in the image.
From Bayest́heorem we know that p(A,B) = p(A|B)p(B), so

p(x1, x2,… , xM) = p(xi|x1,… , xi−1, xi+1,… , xM) × p(x1,… , xi−1, xi+1,… , xM)

⇒ p(xi|x1,… , xi−1, xi+1,… , xM) = p(x1 ,x2 ,…,xM )
p(x1 ,…,xi−1 ,xi+1 ,…,xM )

.

(3.406)

We also know that p(A) =
∑

all_values_of_Bp(A,B). So, we may re-introduce xi in the denominator
of the above expression, provided we sum over all possible values of it:

p(xi|x1,… , xi−1, xi+1,… , xM) =
p(x1, x2,… , xM)∑

xi
p(x1,… , xi−1, xi, xi+1,… , xM)

. (3.407)

Now let us substitute the joint probability density function that appears in the numerator and
the denominator of the above equation from the Gibbs formula (3.396):

p(xi|x1,… , xi−1, xi+1,… , xM) =

1
Z

e
∑

all types of clique
∑

all cliques of this typexi1 xi2 ...xick
Uk

1
Z

∑
xi

e
∑

all types of clique
∑

all cliques of this typexi1 xi2 ...xick
Uk

. (3.408)

Note that the quantities that appear in the numerator and the denominator are products of
exponentials. Each such factor contains the values of some pixels that belong to the same clique.
All those factors that do not involve pixel xi will cancel, and we shall have left in the numer-
ator and the denominator only those factors that refer to cliques that contain pixel xi, i.e. the
neighbourhood of xi. This shows that the conditional probability on the left-hand side of (3.408)
depends only on the neighbours of pixel xi, i.e. that the lattice possesses the Markovian property
and thus it is a Markov random field.
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Example B3.142

Consider a joint probability density function p(x1, x2,… , xM). Show that you may write

p(X)
p(Y )

=
M∏

i=1

p(xi|x1,… , xi−1, yi+1,… , yM)
p(yi|x1,… , xi−1, yi+1,… , yM)

(3.409)

where X stands for x1,… , xM and Y stands for y1,… , yM .
From Bayest́heorem we may write

p(X) = p(x1,… , xM) = p(xM|x1,… , xM−1) × p(x1,… , xM−1). (3.410)

Let us apply this formula for xM = yM:

p(x1,… , xM−1, yM) = p(yM|x1,… , xM−1) × p(x1,… , xM−1). (3.411)

Solving for p(x1,… , xM−1) yields:

p(x1,… , xM−1) =
p(x1,… , xM−1, yM)
p(yM|x1,… , xM−1)

. (3.412)

Substitute from (3.412) into (3.410) to obtain:

p(X) =
p(xM|x1,… , xM−1)
p(yM|x1,… , xM−1)

× p(x1,… , xM−1, yM). (3.413)

Next, apply Bayest́heorem again, to write:

p(x1,… , xM−1, yM) = p(xM−1|x1,… , xM−2, yM) × p(x1,… , xM−2, yM). (3.414)

Apply this formula for xM−1 = yM−1

p(x1,… , yM−1, yM) = p(yM−1|x1,… , xM−2, yM) × p(x1,… , xM−2, yM) (3.415)

which yields

p(x1,… , xM−2, yM) =
p(x1,… , yM−1, yM)

p(yM−1|x1,… , xM−2, yM)
. (3.416)

Substitute from (3.416) into (3.414) to obtain:

p(x1,… , xM−1, yM) =
p(xM−1|x1,… , xM−2, yM)
p(yM−1|x1,… , xM−2, yM)

× p(x1,… , yM−1, yM). (3.417)

Then substitute from (3.417) into (3.413):

p(X) =
p(xM|x1,… , xM−1)
p(yM|x1,… , xM−1)

×
p(xM−1|x1,… , xM−2, yM)
p(yM−1|x1,… , xM−2, yM)

× p(x1,… , yM−1, yM). (3.418)

This process may be repeated until the last factor on the right-hand side of (3.418) contains
only yi variables, i.e. until the last factor is p(Y ). Then, by dividing both sides of the equation with
p(Y ), we obtain (3.409).
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Example B3.143

We define a function Q(X) as

Q(X) ≡ ln
p(X)
p(O)

(3.419)

where X is configuration x1,… , xM , as defined in Example 3.141, O is a particular real-
isation of this configuration where all pixels take value 0, and it is assumed that such
a configuration has non-zero probability of existing, i.e. p(O) ≠ 0. Prove that

eQ(X)−Q(Xi) =
p(xi|x1,… , xi−1, xi+1,… , xM)
p(0|x1,… , xi−1, xi+1,… , xM)

(3.420)

where Xi is the configuration where all pixels have the same value as in configuration
X , except pixel i which now has value 0.
We start by re-arranging Equation (3.419) and applying it for configuration Xi:

eQ(X) =
p(X)
p(O)

eQ(Xi) =
p(Xi)
p(O)

. (3.421)

We divide the above two equations by parts to obtain:

eQ(X)−Q(Xi) =
p(X)
p(Xi)

. (3.422)

We then substitute p(X) and p(Xi) from the result proven in Example 3.142, i.e. from
Equation (3.409). All factors, except the factors that have as conditioned variable xi in the
numerator and 0 in the denominator, cancel. Equation (3.420) then follows.

Example B3.144

Show that function Q(X) of Example 3.143 may be expanded in a unique way as fol-
lows:

Q(X) =
∑

1≤i≤M
xiGi(xi) +

∑∑
1≤i<j≤M

xixjGij(xi, xj) +
∑∑∑
1≤i<j<k≤M

xixjxkGijk(xi, xj, xk)

+… + x1x2 … xMG12…M(x1, x2,… , xM). (3.423)

Consider first the state (x1, 0,… , 0), where x1 ≠ 0, and apply Equation (3.423). We obtain:

Q(x1, 0,… , 0) = x1G1(x1). (3.424)

This expression uniquely determines the unknown function G1(x1). Consider then all config-
urations where all pixels have value 0, except one pixel. This way you can define uniquely all
functions Gi(xi). Then consider all configurations for which only two sites have values different
from 0. You will be able to define uniquely all functions Gij(xi, xj), and so on.
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Box 3.26 Prove the equivalence of Markov random fields and Gibbs distributions
(Hammersley–Clifford theorem).

Step 1: Proof that a Gibbs distribution implies a Markov random field
To prove this, we must show that the conditional probability that appears on the right-hand

side of (3.420) is conditioned only on the neighbours of xi and it is independent of the values
of the pixels that are not in the cliques that involve xi. This was shown in Example 3.141.
However, we would like also to identify the correspondence between clique potentials and
Markov parameters in the most general form. So, we prove it again here in a different way.

Without loss of generality, let us concentrate on pixel x1. Let us consider the expansion of
Q(X) given by Equation (3.423) and write it for configuration X1, i.e. the configuration where
all pixels have identical values with those in X , except x1 which has value 0: 0, x2,… , xM . Then
all terms in the expansion that contain x1 will be zero, and the terms that remain will be those
that do not depend on x1. So, if we subtract the expansion of Q(X1) from that of Q(X), we shall
be left with only those terms that include x1:

Q(X) − Q(X1) = x1

[
G1(x1) +

∑
2≤j≤M

xjG1j(x1, xj)+

∑∑∑
2≤j<k≤M

xjxkG1jk(x1, xj, xk) +… + x2x3 … xMG12…M(x1, x2,… , xM)

]
. (3.425)

Let us consider now a pixel l that is not a neighbour of pixel 1. In Example 3.141 it was shown
that the conditional probabilities that appear on the right-hand side of Equation (3.420) do not
depend on non-neighbours of x1, so Q(X) − Q(X1) should not depend on them either. Therefore,
the left-hand side of (3.425) does not depend on pixel l, so all terms on the right-hand side
that include l must also vanish. We can show that each one of the corresponding G functions
that depends on xl must be zero. For example, by writing (3.425) for the configuration where
all pixels have values 0 except x1 and xl, we shall be left on the right-hand side with the term
x1xlG1l(x1, xl) only, which will have to be 0.

So, we have just shown that all G functions on the right-hand side of (3.425) will be zero
unless the pixels that are involved in them form cliques with pixel 1. On the other hand, if
a G function depends on a pixel l, so will Q(X) − Q(X1), and from (3.420) we infer that the
conditional probability for the value of x1 should also depend on it. In other words, the pixels
on which the G functions depend define the neighbourhood structure of p(x1|x2,… , xM). This
realisation helps us prove the second part of the theorem, namely:

Step 2: Proof that a Markov random field implies a Gibbs distribution.
If in the expansion of Equation (3.423) we consider a finite set of non-zero G functions, the

expansion is legitimate. From this expansion and with the help of the first of Equations (3.421)
we may infer the joint probability density function of configuration X , p(X), i.e. the Gibbs
distribution. Note that the denominator p(O) should not bother us as it is a constant.

Example B3.145

For the Gibbs distribution of Equation (3.397) work out the Markov parameters it
implies.
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First we repeat here Equation (3.397):

p(X) = 1
Z

e
∑

i
∑

jxijU0+
∑

i
∑

jxijxi+1,jU1+
∑

i
∑

jxijxi,j+1U2 . (3.426)

We start by computing function Q(X) of Equation (3.419). If we set all pixels equal to 0, we
have p(O) = 1∕Z, so:

Q(X) =
∑

i

∑
j

xijU0 +
∑

i

∑
j

xijxi+1,jU1 +
∑

i

∑
j

xijxi,j+1U2. (3.427)

We pick up a particular pixel (k, l) and separate it from the rest:

Q(X) =
∑∑

ij,(i,j)≠(k,l)
{

xij
(

U0 + xi+1,jU1 + xi,j+1U2
)}

+ xkl
(

U0 + xk+1,lU1 + xk,l+1U2
)
. (3.428)

If we set the value of (k, l) to 0, we shall have a configuration we call Xkl, for which:

Q(Xkl) =
∑∑

ij,(i,j)≠(k,l)
{

xijU0 + xijxi+1,jU1 + xijxi,j+1U2
}
. (3.429)

By subtracting (3.429) from (3.428) we obtain:

Q(X) − Q(Xkl) = xklU0 + xklxk+1,lU1 + xklxk,l+1U2. (3.430)

By comparison with expansions (3.423) and (3.425) we deduce that:

Gi(xi) ↔ Gkl(xkl) = U0 for every (k, l)
Gij(xi, xj) ↔ Gkl,mn(xkl, xmn) = U1 if (m,n) = (k + 1, l)

Gkl,mn(xkl, xmn) = U2 if (m,n) = (k, l + 1)
Gkl,mn(xkl, xmn) = 0 otherwise

while all other G functions are 0.
We may then use Equation (3.420) to work out the conditional probability density function for

pixel (k, l):

p(xkl|all_other_pixels) = p(xkl|all_nbring_pixels_in_1st_order_Markov_nbrhd)
= p(0|all other pixels)eQ(Xkl)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

normalising constant

exkl[U0+xk+1,lU1+xk,l+1U2] (3.431)

This expansion shows that the Markov parameters are U0, U1 and U2.

Example B3.146

For the auto-binomial Markov random field model given by Equation (3.360) with
function s given by (3.361), work out the corresponding Gibbs potentials.
We start by working out Q(X) − Q(Xi) as it appears in Equation (3.420). The right-hand side of
this equation expresses the probability of a pixel i to take a certain value xi, over the probability

(Continued)
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Example B3.146 (Continued)

to take value 0. First we revert back to pixels being identified by two indices, as it is customary for
2D images, i.e. we identify a particular pixel by its indices (i, j) in the grid:

eQ(X)−Q(Xij) =
p(xij|values_of_all_other_pixels)
p(0|𝑣alues_of_all_other_pixels)

(3.432)

Because of the Markovian property, the probabilities on the right-hand side may be replaced
by those conditioned on the neighbouring pixels only:

eQ(X)−Q(Xij) =
p(xij|values_of_nbrs)
p(0|𝑣alues of nbrs)

(3.433)

We then re-write Equation (3.360) with function s given by (3.361) using the usual pixel nota-
tion

p(xij|xi−1,j, xi+1,j, xi,j−1, xi,j+1) =
n!

xij!(n − xij)!
eaxij(xi−1,j+xi+1,j)+bxij(xi,j−1+xi,j+1)

D
(3.434)

where here D ≡ [1 + eaxij(xi−1,j+xi+1,j)+bxij(xi,j−1+xi,j+1)
]n. We note that p(0|xi−1,j, xi+1,j, xi,j−1, xi,j+1) =

n!
0!n!

e0

D
. If we substitute then into the right-hand side of (3.433), we obtain:

eQ(X)−Q(Xij) = n!
xij!(n − xij)!

eaxij(xi−1,j+xi+1,j)+bxij(xi,j−1+xi,j+1). (3.435)

We deduce, therefore, that

Q(X) − Q(Xij) = ln n!
xij!(n − xij)!

+ axij(xi−1,j + xi+1,j) + bxij(xi,j−1 + xi,j+1)

= xij

{
1
xij

ln n!
xij!(n − xij)!

+ a(xi−1,j + xi+1,j)

+b(xi,j−1 + xi,j+1) .
}

(3.436)

By comparison with expansions (3.423) and (3.425) we deduce that the clique potentials of the
corresponding Gibbs distribution are

Gi(xi) ↔ Gij(xij) = U0 = 1
xij

ln n!
xij!(n−xij)!

Gij(xi, xj) ↔ Gij,i+1,j(xij, xi+1,j) = U1 = a
Gij,i,j+1(xij, xi,j+1) = U2 = b

while all other G functions are 0.

Example B3.147

Imagine that a particular 3 × 3 binary image from those of Example 3.136 was created
by flipping a coin to decide the value of each pixel (1 for heads, 0 for tails). What is
the probability 𝜃 for the coin we used of obtaining heads in a single throw?
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We assume that for this image the Gibbs model of Equation (3.397) applies, with U0 = 1 and U1 =
U2 = 0. So, in this case function s of Equation (3.359) is s = 1 × xij. For xij = 1, s = 1. Therefore,
𝜃 = e1∕(1 + e1) = 0.731. This result shows that the coin is strongly biased towards the value 1
(heads). This is in agreement with the result of Example 3.139 where we found that the most
probable configuration consists of 1s only.

Example B3.148

For the Gaussian (auto-normal) Markov random field model given by Equation (3.359)
with the first order neighbourhood structure shown in Figure 3.116a work out the
corresponding Gibbs potentials.
We proceed as in Example 3.146, only now we use (3.365) to work out the probabilities that appear
on the right-hand side of Equation (3.433):

p(xij|xi−1,j, xi+1,j, xi,j−1, xi,j+1) =

1√
2𝜋𝜎

exp
⎧⎪⎨⎪⎩−
(

xij −
[
a1(xi−1,j + xi+1,j) + a2(xi,j−1 + xi,j+1)

])2
2𝜎2

⎫⎪⎬⎪⎭ . (3.437)

We note that:

p(0|xi−1,j, xi+1,j, xi,j−1, xi,j+1) =

1√
2𝜋𝜎

exp
⎧⎪⎨⎪⎩−
[
a1(xi−1,j + xi+1,j) + a2(xi,j−1 + xi,j+1)

]2
2𝜎2

⎫⎪⎬⎪⎭ . (3.438)

If we substitute then into the right-hand side of (3.433), we obtain:

eQ(X)−Q(Xij) = exp
{
− 1

2𝜎2

(
x2

ij − 2xij
[
a1(xi−1,j + xi+1,j) + a2(xi,j−1 + xi,j+1

])}
. (3.439)

We deduce, therefore, that

Q(X) − Q(Xij) = − 1
2𝜎2

(
x2

ij − 2xij
[
a1(xi−1,j + xi+1,j) + a2(xi,j−1 + xi,j+1

])
(3.440)

which may be written as:

Q(X) − Q(Xij) = xij

{
−

xij

2𝜎2 +
a1

𝜎2 (xi−1,j + xi+1,j) +
a2

𝜎2 (xi,j−1 + xi,j+1)
}

. (3.441)

By comparison with expansions (3.423) and (3.425) we deduce that the clique potentials are

Gi(xi) ↔ Gij(xij) = U0 = − xij

2𝜎2

Gij(xi, xj) ↔ Gij,i+1,j(xij, xi+1,j) = U1 = a1

𝜎2

Gij,ij+1(xij, xij+1) = U2 = a2

𝜎2

while all other G functions are 0.
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How can we use the Gibbs distribution to create textures?

We may do that by iteratively relaxing a random field with the help of a greedy or single-minded
algorithm. Such an algorithm always moves forward towards a solution, without worrying whether
this solution is the best solution.

Step 0: Choose the functional form and the clique potential values of the Gibbs distribution from
which you want to create a sample image.
Choose the histogram of the image you wish to create.

Step 1: Set counters m = 0 and c = 0.
Set N equal to the total number of pixels in the image you wish to create.
Set M equal to the maximum number of iterations you wish to allow.

Step 2: Start from a configuration of pixel values X , constructed so that it has the desirable his-
togram.

Step 3: Set m = m + 1.
If m ≥ M exit the algorithm, producing as output X .
If m < M proceed to step 4.

Step 4: Set c = c + 1.
If c ≥ N, set c = 0 and go to step 3.
If c < N, pick at random two pixels and proceed to step 5.

Step 5: If the two pixels have the same grey value, go to step 4.
If the two pixels do not have the same value, proceed to step 6.

Step 6: Exchange the values of the two pixels, thus creating a new configuration Y .
Step 7: Use Equation (3.409) to compute the relative probability q ≡ p(Y )∕p(X) of the two config-

urations.
Step 8: If q ≥ 1 accept the exchange. Set X = Y and go to step 4.

If q < 1 keep the old configuration X intact and go to step 4.

This algorithm is constructed in such a way that an iteration consists of picking up as many pairs
of pixels as we have pixels in the image, irrespective of whether they have identical or different val-
ues. So, counter m counts the iteration steps, while counter c counts the pairs of pixels we choose
and it is set back to 0 every time it reaches N, the total number of pixels. The algorithm termi-
nates when the total number of iterations is M. Alternative termination criteria might be used. For
example, at the end of each iteration step, one may estimate the parameters of the created image
and check how close they are to the desired parameters. If they are close within a certain tolerance,
the algorithm may be terminated. In the examples we present later the algorithm was terminated
when the probability of existence of the created configuration was not changing much from one
update to the next, i.e. when q ≃ 1.

In step 7, q is the ratio of the two Gibbs distributions. Of course, it may be computed by computing
separately p(X) and p(Y ) using the Gibbs distribution formula. This, however, is wasteful, as the
two distributions differ only in the positions of the two pixels, the values of which were exchanged.
So, the use of formula (3.409) allows one to consider only the cliques that were affected by the
exchange.
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The above algorithm will create an image which may be described by the model used. However,
if we are interested in constructing the most probable image according to the chosen probability
density function, we must use a variation of the simulated annealing algorithm. This algorithm
consists of the following steps.

Step 0: Choose the functional form and the clique potential values of the Gibbs distribution from
which you want to create a sample image.
Choose the histogram of the image you wish to create.

Step 1: Set counters m = 0, c = 0 and l = 0.
Set T0 = 1 or another value of similar order of magnitude.
Set 𝛼 = 0.99 or a similar number smaller than 1, but close to 1.
Set N equal to the total number of pixels in the image you wish to create.
Set M equal to the maximum number of iterations you wish to allow.

Step 2: Start from a configuration of pixel values X , constructed so that it has the desirable his-
togram.
Set Xold = X .

Step 3: Set m = m + 1.
If m ≥ M exit the algorithm, producing as output Xold.
If m < M, set Tm = 𝛼Tm−1 and proceed to step 4.

Step 4: Set c = c + 1.
If c ≥ N, set c = 0 and go to step 3.
If c < N, pick at random two pixels and proceed to step 5.

Step 5: If the two pixels have the same grey value, go to step 4.
If the two pixels do not have the same value, proceed to step 6.

Step 6: Exchange the values of the two pixels, thus creating a new configuration Y .
Step 7: Use Equation (3.409) to compute the relative probability q ≡ p(Y )∕p(X) of the two config-

urations.
Step 8: If q ≥ 1 accept the exchange. Set X = Y , l = 0, Xold = Y and go to step 4.

If q < 1 proceed to step 9.
Step 9: Set l = l + 1.

If l ≥ L terminate and exit the algorithm producing as output Xold.
If l < L, draw a random number 𝜉 in the range [0, 1] and proceed to step 10.

Step 10: If 𝜉 < q1∕Tm , accept the exchange. Set X = Y and go to step 4.
Step 11: If 𝜉 ≥ q1∕Tm keep the old configuration X intact and go to step 4.

The core of this algorithm is step 10: this step allows one to accept unfavourable changes with
decreasing probability. The unfavourable changes allow one to escape from local optima of the
configuration space, i.e. allow one to take some “bad” steps in order to find a better route to the
target configuration: moving always forward is not usually the best way to reach our destination.
Note that as m → ∞, Tm → 0, 1∕Tm → ∞ and q1∕Tm → 0, since q < 1. So, as iterations proceed, it
becomes less and less likely to accept changes that decrease the probability of drawing a random
number 𝜉 smaller than q1∕Tm , i.e. it becomes less and less likely to accept a configuration that is
less probable than the previous one. The algorithm terminates either when the total number of
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iterations is M, or when in L successive updates the only accepted updates were those that were
reducing the probability of the current configuration to exist. The algorithm exits by going back to
the last update that produced a more probable configuration than the previous one.

This algorithm is a variation of the non-linear optimisation method of simulated annealing. The
reason for this terminology is parameter Tm, which is called the temperature parameter. As its
value drops, we say that the system cools. The whole process corresponds to the annealing process
used in physics to produce, among other things, crystal configurations on a large scale. Parameter 𝛼
is the cooling parameter and equation Tm = 𝛼Tm−1 is called the cooling schedule. The algorithm
is designed to produce the most probable configuration according to the adopted probability density
function, and so it is useful when we are trying to solve inverse problems, like, for example, trying
to answer the question: “what is the most probable configuration of pixel values that are consistent
with the data, the model of degradation suffered by the data and the constraints that we know apply
to the data?” Then the algorithm has to be applied with a carefully chosen cooling schedule. Note
that the particular version of the simulated annealing algorithm we presented here, as well as the
greedy algorithm presented earlier, are designed to preserve the histogram of grey values of the
image, because the total number of pixels with a certain grey value does not change.

Example B3.149

Use expression (3.409) proven in Example 3.142 to construct a 64 × 64 Markov random
field with a given Gibbs distribution and with the same number of pixels at all grey
levels. Assume that the number of grey levels is G = 2, 4 and 64. The Gibbs distribution
of configuration X is given by Equation (3.397) with U0 = 1, U1 = 1 and U2 = −1.
We can easily compute the number of pixels for each grey level as given by the first two columns
of Table 3.47.

We start by creating arrays of size 64 × 64 with the same number of pixels for each grey value.
The starting configurations are shown in the first row of Figure 3.149. For visualisation purposes,
the grey values of each image have been stretched to be integers in the range [0, 256). For example,
the image with G = 2, instead of having values 0 and 1, has values 0 and 255, and the image with
G = 4, instead of having values 0, 1, 2, 3, has values computed by

Scaled_value =
⌊ g

G − 1
× 255

⌋
(3.442)

where g is the original pixel value in the range [0,G − 1], and ⌊x⌋means integer part of x. How-
ever, in all the algorithmic computations, pixel values x are chosen to be in the range [0, 1].
Variable g as appears in Equation (3.442) is computed for each pixel from its x value, by using
g = Gx. Then in order to allow the pattern to emerge, we apply the greedy algorithm. The third
column of Table 3.47 gives the total number of iterations performed.
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G = 2 G = 4 G = 64

1 iteration 1 iteration 1 iteration

10 iterations 10 iterations 10 iterations

58 iterations 84 iterations 556 iterations

Figure 3.149 Results of the greedy algorithm applied to a starting configurations consisting of
vertical stripes with the same number of pixels, for G = 2, G = 4, and G = 64, when the Gibbs
potentials were fixed to be U0 = 1, U1 = 1 and U2 = −1. These parameters favour the creation of
horizontal stripes. Source: Maria Petrou.

(Continued)
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Example B3.149 (Continued)
Table 3.47 Number of iterations required for the greedy algorithm to converge using different
numbers of grey levels. The number of pixels per grey level and the figure that shows the results are
also shown.

G Pixels per grey level Iterations to converge

Figure that
shows
the result

2 2048 58 3.149 first column
4 1024 84 3.149 second column
64 64 556 3.149 third column

Example B3.150

Repeat Example 3.149 where the starting configurations are not striped images but
the pixels of the different grey values are randomly mixed, keeping still the same
number of pixels per grey level. Comment on the results in comparison with those
obtained in Example 3.149.
The results are shown in Figure 3.150. It is clear that although the starting images are totally
different from those in example 3.149, the final images are very similar.

In general, fewer updates are needed now in order to reach convergence than in Example
3.149. This is because in Example 3.149, the starting configuration had some order. “En-
ergy” had to be pumped into the system to destroy the old order before new order was
imposed.



�

� �

�

3.7 Gibbs Distributions 327

G = 2 G = 4 G = 64

1iteration 1 iteration 1 iteration

10 iterations 10 iterations 10 iterations

48 iterations 70 iterations 507 iterations

Figure 3.150 Results of the greedy algorithm applied to random images with the same number of
pixels per grey level, for G = 2, G = 4 and G = 64, when the Gibbs potentials were fixed to be U0 = 1,
U1 = 1 and U2 = −1. Source: Maria Petrou.

Example B3.151

Apply the greedy algorithm to produce texture images of size 64 × 64 with the number
of pixels in each grey value given by the equation N(g) = 𝛼g where a is some constant
you must first specify, and g = 0, 1,… ,G − 1.
The total number of pixels must be 642 = 4096. So

∑G−1
g=0 N(g) = 4096 or 𝛼

∑G−1
g=0 g = 4096. The

second column of Table 3.48 gives the value of 𝛼 for each value of G. To create the starting config-
urations we take N(g) = ⌊𝛼g⌋ for various values of g, up to G − 2. We give to all remaining pixels
value G − 1.

The results are shown in Figure 3.151.

(Continued)
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Example B3.151 (Continued)

G = 4 G = 8 G = 64

62 iterations 134 iterations 407 iterations

Figure 3.151 Results of the greedy algorithm applied to starting configurations consisting of vertical
stripes with the number of pixels per grey level given by N(g) = 𝛼g, for G = 4, G = 8 and G = 64, when
the Gibbs potentials were fixed to be U0 = 1, U1 = 1 and U2 = −1. Source: Maria Petrou.

Table 3.48 Value of 𝛼 for number of
grey levels G = 4, 8, 16, 32, 64.

G 𝜶

4 682.67
8 146.29
16 34.13
32 8.26
64 2.03
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How can we create an image compatible with a Gibbs model if we are not interested
in fixing the histogram of the image?

If we are not interested in preserving the number of pixels per grey value, we have to modify the
algorithms described earlier, so instead of exchanging the values of two pixels, we allow each pixel
to choose freely its new value. The modified greedy algorithm is as follows.

Step 0: Choose the functional form and the clique potential values of the Gibbs distribution from
which you want to create a sample image.

Step 1: Set counters m = 0 and c = 0.
Set M equal to the maximum number of iterations you wish to allow.
Set C equal to the number of different sets of pixels identified by the coding scheme applicable
to the MRF neighbourhood structure of your model.
Denote by Sc, where c = 1, 2,… ,C, the cth set of pixels identified by the coding you use.

Step 2: Start from configuration of pixel values X , chosen at random, or in any other way. Create
an output array Y and set Y = X .

Step 3: Set X = Y
Set m = m + 1.
If m ≥ M, exit the algorithm, producing as output Y .
If m < M, set c = c + 1.
If c > C, set c = 1 and proceed to step 4. If c ≤ C, proceed to step 4.

Step 4: If you have scanned all pixels in set Sc go to step 3.
If you have not scanned all pixels in set Sc, pick the next pixel from set Sc and proceed to step 5.

Step 5: Choose a new value for the current pixel to create a new configuration Ytemp.
Step 6: Use Equation (3.409) to compute the relative probability q ≡ p(Ytemp)∕p(X) of the two con-

figurations.
Step 7: If q ≥ 1, update the value of the pixel in Y and go to step 4.

If q < 1, keep the old configuration Y intact and go to step 4.
The above algorithm will give us a configuration drawn from the defined probability density

function of configurations. If we want the most probable configuration, we must use the simulated
annealing algorithm that follows.

Step 0: Choose the functional form and the clique potential values of the Gibbs distribution from
which you want to create a sample image.

Step 1: Set counters m = 0, c = 0 and l = 0.
Set T0 = 1 or another value of similar order of magnitude.
Set 𝛼 = 0.99 or a similar number smaller than 1, but close to 1.
Set M equal to the maximum number of iterations you wish to allow.
Set C equal to the number of different sets of pixels identified by the coding scheme applicable
to the Markov random field neighbourhood structure of your model.
Denote by Sc, where c = 1, 2,… ,C, the cth set of pixels identified by the coding you use.

Step 2: Start from configuration of pixel values X , chosen at random, or in any other way.
Create an output array Y and set Y = X .
Set Yold = Y .
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Step 3: Set X = Y . Set m = m + 1.
If m ≥ M, exit the algorithm, producing as output Yold.
If m < M, set c = c + 1.
If c > C, set c = 1 and proceed to step 4.
If c ≤ C, proceed to Step 4.

Step 4: Set Tm = 𝛼Tm−1 and proceed to step 5.
Step 5: If you have scanned all pixels in set Sc go to step 3.

If you have not scanned all pixels in set Sc, pick the next pixel from set Sc and proceed to step 6.
Step 6: Choose a new value for the current pixel to create a new configuration Ytemp.
Step 7: Use Equation (3.409) to compute the relative probability q ≡ p(Ytemp)∕p(X) of the two con-

figurations.
Step 8: If q ≥ 1, update the value of the pixel in Y , set l = 0, Yold = Y and go to step 5.

If q < 1 proceed to step 9.
Step 9: Set l = l + 1.

If l ≥ L terminate and exit the algorithm producing as output Yold.
If l < L, draw a random number 𝜉 in the range [0, 1] and proceed to step 10.

Step 10: If 𝜉 < q1∕Tm , update the value of the pixel in Y and go to step 5.
Step 11: If 𝜉 ≥ q1∕Tm , keep the old configuration Y intact and go to step 5.

In both the above algorithms, for simplicity, the grey values of all pixels should be chosen to be
real numbers in the range [0, 1]. At the end the output values y should be quantised to the desired
number of grey levels G by using g = yG and Equation (3.442).

In step 6 the new value of a pixel is chosen from a uniform distribution in the range [0, 1]. So
this algorithm uses a Metropolis sampler. (For alternative samplers, see Book I .) Note that the
difference from the previous algorithms is that an iteration here is equivalent to the updating of all
pixels in the same coding set, as opposed to picking up as many pairs of pixels as number of pixels
in the image. The pixels now are visited in a systematic way, and because their values are updated
by taking into consideration the values of the neighbours in the configuration of the previous step,
all pixels in the set may be updated in parallel in each iteration step.

Example B3.152

Use the modified greedy algorithm that works with totally free number of pixels per
grey value and repeat the experiments of Example 3.150, for G = 2, 32 and 256.
The results are shown in Figure 3.152. Note that due to the external field, and because we are not
trying to preserve the histogram of the original image, as the iterations progress, the constructed
image tends to a flat white image.
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G = 2 G = 32 G = 256

2 iterations 2 iterations 2 iterations

20 iterations 20 iterations 20 iterations

54 iterations 212 iterations 980 iterations

Figure 3.152 Results of the modified greedy algorithm applied to a random image, for G = 2, G = 32
and G = 256, when the Gibbs potentials were fixed to be U0 = 1, U1 = 1 and U2 = −1. Source: Maria
Petrou.

Example B3.153

Repeat the experiment of Example 3.152 using the following clique potentials: U0 = 0,
U1 = 1, and U2 = −1.
The results are shown in Figure 3.153. Now as the external field has been switched off (by setting
U0 = 0), the pattern is allowed to emerge.

(Continued)
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Example B3.153 (Continued)

G = 2 G = 32 G = 256

2 iterations 2 iterations 2 iterations

20 iterations 20 iterations 20 iterations

90 iterations 398 iterations 978 iterations

Figure 3.153 Results of the modified greedy algorithm applied to a random image, for G = 2, G = 32
and G = 256, when the Gibbs potentials were fixed to be U0 = 0, U1 = 1 and U2 = −1. Note the
difference from Figure 3.152 where there is an external bias (U0 ≠ 0) that dominates the outcome.
Source: Maria Petrou.

What is the temperature of a Gibbs distribution?

The term temperature comes from physics where Gibbs distributions were first used. It is a param-
eter that multiplies the exponent of Equation (3.396). Its effect is twofold:
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● It determines how strong the correlations between distant pixels are (see Example 3.163).
● It determines how sharp the joint probability density function is in discriminating between dif-

ferent configurations.

How does the temperature parameter of the Gibbs distribution determine how
distinguishable one configuration is from another?

Let us redefine the exponent of Equation (3.396) as

p(X) = 1
Z

e−
1
T

H(X) (3.443)

where H(X) is called the energy or cost function of configuration X and it contains the sum over
all cliques in the configuration. In (3.443), H(X) would be

H(X) = −
∑

ij
xij

(
1 + xi+1,j

U1

U0
+ xi,j+1

U2

U0

)
(3.444)

where we have identified 1∕T with U0 and without loss of generality we have assumed U0 to be
positive. (If U0 were negative, we could have defined 1∕T ≡ |U0| and changed the definition of
H(X) accordingly.)

Consider two different possible pixel configurations X1 and X2, and compute their relative prob-
ability of arising:

p(X1)
p(X2)

= e−
1
T
[H(X1)−H(X2)]. (3.445)

Let us assume that H(X1) > H(X2), without loss of generality. (If this is not true, we can always
rename the two configurations, so that X1 is always the one with the highest energy.) Then, if
T → ∞, i.e. if U0 = 1∕T → 0, the exponent on the right-hand side of (3.445) tends to zero, i.e. the
exponential tends to 1, i.e. p(X1) ∼ p(X2), i.e. the two configurations are almost equally probable,
no matter how different they are. If, on the contrary, T → 0, i.e. if U0 = 1∕T → ∞, the exponent
on the right-hand side of (3.445) tends to negative infinity, i.e. the exponential tends to 0, i.e.
p(X1) << p(X2), i.e. the two configurations have very different probabilities of arising, with the
lowest energy one being the most probable.

Example B3.154

For each of the possible configurations of a 3 × 3 binary image compute the average
grey value.
The results are shown in Tables 3.49–3.52.

(Continued)
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Example B3.154 (Continued)

Table 3.49 Average grey value of each
configuration of Figure 3.148.

x11 = 1, x32 = 0

1/9 2/9 2/9 2/9 2/9 2/9 2/9 2/9
3/9 3/9 3/9 3/9 3/9 3/9 3/9 3/9
3/9 3/9 3/9 3/9 3/9 3/9 3/9 3/9
3/9 3/9 3/9 3/9 3/9 4/9 4/9 4/9
4/9 4/9 4/9 4/9 4/9 4/9 4/9 4/9
4/9 4/9 4/9 4/9 4/9 4/9 4/9 4/9
4/9 4/9 4/9 4/9 4/9 4/9 4/9 4/9
4/9 4/9 4/9 4/9 4/9 4/9 4/9 4/9
5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9
5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9
5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9
5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9
5/9 5/9 5/9 6/9 6/9 6/9 6/9 6/9
6/9 6/9 6/9 6/9 6/9 6/9 6/9 6/9
6/9 6/9 6/9 6/9 6/9 6/9 6/9 6/9
7/9 7/9 7/9 7/9 7/9 7/9 7/9 8/9

Table 3.50 Average grey value of each
configuration of Figure 3.148 if the two
highlighted pixels have value 0.

x11 = 0, x32 = 0

0/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9
2/9 2/9 2/9 2/9 2/9 2/9 2/9 2/9
2/9 2/9 2/9 2/9 2/9 2/9 2/9 2/9
2/9 2/9 2/9 2/9 2/9 3/9 3/9 3/9
3/9 3/9 3/9 3/9 3/9 3/9 3/9 3/9
3/9 3/9 3/9 3/9 3/9 3/9 3/9 3/9
3/9 3/9 3/9 3/9 3/9 3/9 3/9 3/9
3/9 3/9 3/9 3/9 3/9 3/9 3/9 3/9
4/9 4/9 4/9 4/9 4/9 4/9 4/9 4/9
4/9 4/9 4/9 4/9 4/9 4/9 4/9 4/9
4/9 4/9 4/9 4/9 4/9 4/9 4/9 4/9
4/9 4/9 4/9 4/9 4/9 4/9 4/9 4/9
4/9 4/9 4/9 5/9 5/9 5/9 5/9 5/9
5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9
5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9
6/9 6/9 6/9 6/9 6/9 6/9 6/9 7/9

Table 3.51 Average grey value of each
configuration of Figure 3.148 if the two
highlighted pixels have value 1.

x11 = 1, x32 = 1

2/9 3/9 3/9 3/9 3/9 3/9 3/9 3/9
4/9 4/9 4/9 4/9 4/9 4/9 4/9 4/9
4/9 4/9 4/9 4/9 4/9 4/9 4/9 4/9
4/9 4/9 4/9 4/9 4/9 5/9 5/9 5/9
5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9
5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9
5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9
5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9
6/9 6/9 6/9 6/9 6/9 6/9 6/9 6/9
6/9 6/9 6/9 6/9 6/9 6/9 6/9 6/9
6/9 6/9 6/9 6/9 6/9 6/9 6/9 6/9
6/9 6/9 6/9 6/9 6/9 6/9 6/9 6/9
6/9 6/9 6/9 7/9 7/9 7/9 7/9 7/9
7/9 7/9 7/9 7/9 7/9 7/9 7/9 7/9
7/9 7/9 7/9 7/9 7/9 7/9 7/9 7/9
8/9 8/9 8/9 8/9 8/9 8/9 8/9 9/9

Table 3.52 Average grey value of each
configuration of Figure 3.148 if the two
highlighted pixels exchange their values.

x11 = 0, x32 = 1

1/9 2/9 2/9 2/9 2/9 2/9 2/9 2/9
3/9 3/9 3/9 3/9 3/9 3/9 3/9 3/9
3/9 3/9 3/9 3/9 3/9 3/9 3/9 3/9
3/9 3/9 3/9 3/9 3/9 4/9 4/9 4/9
4/9 4/9 4/9 4/9 4/9 4/9 4/9 4/9
4/9 4/9 4/9 4/9 4/9 4/9 4/9 4/9
4/9 4/9 4/9 4/9 4/9 4/9 4/9 4/9
4/9 4/9 4/9 4/9 4/9 4/9 4/9 4/9
5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9
5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9
5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9
5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9
5/9 5/9 5/9 6/9 6/9 6/9 6/9 6/9
6/9 6/9 6/9 6/9 6/9 6/9 6/9 6/9
6/9 6/9 6/9 6/9 6/9 6/9 6/9 6/9
7/9 7/9 7/9 7/9 7/9 7/9 7/9 8/9
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Example B3.155

For each of the possible configurations of a 3 × 3 binary image compute its prior prob-
ability of arising when this is given by a Gibbs distribution with sets of clique poten-
tials:

U0 = 1, U1 = 0, U2 = 0
U0 = 0, U1 = 1, U2 = 1
U0 = 0, U1 = 1, U2 = −1
U0 = −1, U1 = 1, U2 = −1
U0 = 1, U1 = 1, U2 = −1.

These probabilities may be computed using Equation (3.397), repeated here:

p(X) = 1
Z

e
∑

i
∑

jxijU0+
∑

i
∑

jxijxi+1,jU1+
∑

i
∑

jxijxi,j+1U2 . (3.446)

As an indicative example, we present in Tables 3.53–3.56 the results that correspond to the first
case only, i.e. the case with U0 = 1,U1 = U2 = 0. This case represents a situation where “order”
in the configuration space is imposed by an external field, since the pixels are not allowed to
influence each other (U1 = U2 = 0).

Table 3.53 Probability of each configuration in Figure 3.148 arising,
when expressed by a Gibbs distribution with clique potentials U0 = 1,
U1 = U2 = 0. All values must be multiplied with 10−6.

x11 = 1, x32 = 0

20.0 54.4 54.4 54.4 54.4 54.4 54.4 54.4
147.8 147.8 147.8 147.8 147.8 147.8 147.8 147.8
147.8 147.8 147.8 147.8 147.8 147.8 147.8 147.8
147.8 147.8 147.8 147.8 147.8 401.9 401.9 401.9
401.9 401.9 401.9 401.9 401.9 401.9 401.9 401.9
401.9 401.9 401.9 401.9 401.9 401.9 401.9 401.9
401.9 401.9 401.9 401.9 401.9 401.9 401.9 401.9
401.9 401.9 401.9 401.9 401.9 401.9 401.9 401.9

1092.4 1092.4 1092.4 1092.4 1092.4 1092.4 1092.4 1092.4
1092.4 1092.4 1092.4 1092.4 1092.4 1092.4 1092.4 1092.4
1092.4 1092.4 1092.4 1092.4 1092.4 1092.4 1092.4 1092.4
1092.4 1092.4 1092.4 1092.4 1092.4 1092.4 1092.4 1092.4
1092.4 1092.4 1092.4 2969.5 2969.5 2969.5 2969.5 2969.5
2969.5 2969.5 2969.5 2969.5 2969.5 2969.5 2969.5 2969.5
2969.5 2969.5 2969.5 2969.5 2969.5 2969.5 2969.5 2969.5
8072.0 8072.0 8072.0 8072.0 8072.0 8072.0 8072.0 21941.9

(Continued)
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Example B3.155 (Continued)
Table 3.54 Probability of each configuration in Figure 3.148 arising if the two highlighted
pixels have value 0. This probability is modelled by a Gibbs distribution with clique
potentials U0 = 1, U1 = U2 = 0. All values must be multiplied with 10−6.

x11 = 0, x32 = 0

7.4 20.0 20.0 20.0 20.0 20.0 20.0 20.0

54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4

54.4 54.4 54.4 54.4 54.4 54.4 54.4 54.4

54.4 54.4 54.4 54.4 54.4 147.8 147.8 147.8

147.8 147.8 147.8 147.8 147.8 147.8 147.8 147.8

147.8 147.8 147.8 147.8 147.8 147.8 147.8 147.8

147.8 147.8 147.8 147.8 147.8 147.8 147.8 147.8

147.8 147.8 147.8 147.8 147.8 147.8 147.8 147.8

401.9 401.9 401.9 401.9 401.9 401.9 401.9 401.9

401.9 401.9 401.9 401.9 401.9 401.9 401.9 401.9

401.9 401.9 401.9 401.9 401.9 401.9 401.9 401.9

401.9 401.9 401.9 401.9 401.9 401.9 401.9 401.9

401.9 401.9 401.9 1092.4 1092.4 1092.4 1092.4 1092.4

1092.4 1092.4 1092.4 1092.4 1092.4 1092.4 1092.4 1092.4

1092.4 1092.4 1092.4 1092.4 1092.4 1092.4 1092.4 1092.4

2969.5 2969.5 2969.5 2969.5 2969.5 2969.5 2969.5 8072.0

Table 3.55 Probability of each configuration in Figure 3.148 arising if the two highlighted
pixels have value 1. This probability is modelled by a Gibbs distribution with clique
potentials U0 = 1, U1 = U2 = 0. All values must be multiplied with 10−6.

x11 = 1, x32 = 1

54.4 147.8 147.8 147.8 147.8 147.8 147.8 147.8

401.9 401.9 401.9 401.9 401.9 401.9 401.9 401.9

401.9 401.9 401.9 401.9 401.9 401.9 401.9 401.9

401.9 401.9 401.9 401.9 401.9 1092.4 1092.4 1092.4

1092.4 1092.4 1092.4 1092.4 1092.4 1092.4 1092.4 1092.4

1092.4 1092.4 1092.4 1092.4 1092.4 1092.4 1092.4 1092.4

1092.4 1092.4 1092.4 1092.4 1092.4 1092.4 1092.4 1092.4

1092.4 1092.4 1092.4 1092.4 1092.4 1092.4 1092.4 1092.4

2969.5 2969.5 2969.5 2969.5 2969.5 2969.5 2969.5 2969.5

2969.5 2969.5 2969.5 2969.5 2969.5 2969.5 2969.5 2969.5

2969.5 2969.5 2969.5 2969.5 2969.5 2969.5 2969.5 2969.5

2969.5 2969.5 2969.5 2969.5 2969.5 2969.5 2969.5 2969.5

2969.5 2969.5 2969.5 8072.0 8072.0 8072.0 8072.0 8072.0

8072.0 8072.0 8072.0 8072.0 8072.0 8072.0 8072.0 8072.0

8072.0 8072.0 8072.0 8072.0 8072.0 8072.0 8072.0 8072.0

21941.9 21941.9 21941.9 21941.9 21941.9 21941.9 21941.9 59644.4
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Table 3.56 Probability of each configuration in Figure 3.148 arising if
the two highlighted pixels exchange their values (i.e. x11 takes value 0
and x32 takes value 1). This probability is modelled by a Gibbs
distribution with clique potentials U0 = 1, U1 = U2 = 0. All values must
be multiplied with 10−6.

x11 = 0, x32 = 1

20.0 54.4 54.4 54.4 54.4 54.4 54.4 54.4
147.8 147.8 147.8 147.8 147.8 147.8 147.8 147.8
147.8 147.8 147.8 147.8 147.8 147.8 147.8 147.8
147.8 147.8 147.8 147.8 147.8 401.9 401.9 401.9
401.9 401.9 401.9 401.9 401.9 401.9 401.9 401.9
401.9 401.9 401.9 401.9 401.9 401.9 401.9 401.9
401.9 401.9 401.9 401.9 401.9 401.9 401.9 401.9
401.9 401.9 401.9 401.9 401.9 401.9 401.9 401.9

1092.4 1092.4 1092.4 1092.4 1092.4 1092.4 1092.4 1092.4
1092.4 1092.4 1092.4 1092.4 1092.4 1092.4 1092.4 1092.4
1092.4 1092.4 1092.4 1092.4 1092.4 1092.4 1092.4 1092.4
1092.4 1092.4 1092.4 1092.4 1092.4 1092.4 1092.4 1092.4
1092.4 1092.4 1092.4 2969.5 2969.5 2969.5 2969.5 2969.5
2969.5 2969.5 2969.5 2969.5 2969.5 2969.5 2969.5 2969.5
2969.5 2969.5 2969.5 2969.5 2969.5 2969.5 2969.5 2969.5
8072.0 8072.0 8072.0 8072.0 8072.0 8072.0 8072.0 21941.9

Example B3.156

Plot the normalised histogram of the mean grey values you produced in Example
3.154 for the case when all configurations are equally likely to arise and the cases
when the prior probability of each configuration is as computed in Example 3.155.
This is the same as computing the probability of having an image with a given average grey value.

When the image space does not have a Gibbs structure, to produce this histogram we simply
count how many images have a particular mean value and then divide each number by the total
number of possible images, i.e. 512 in this case.

When, however, each image has a different prior probability of arising, given by the Gibbs dis-
tribution, in order to produce this histogram we add up the probabilities of all configurations that
have a particular mean value. In other words, the probability of getting an image with average

(Continued)
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Example B3.156 (Continued)

grey value M must be given by the sum of the Gibbs distribution over all configurations that have
average grey value M:

p(M) =
∑

all_configurations_with_average_grey_value_M
p(X)

= 1
Z

∑
all_configurations_with_average_grey_value_M

e
∑

ijxij(U0+U1xi+1,j+U2xi,j+1) (3.447)

In our example, the average grey value is determined by the number of 1s in the image. As
we can have, 0, 1,… , 9 1s, and we have nine pixels in all, the only possible values of M are
0, 1∕9, 2∕9,… , 1.

Table 3.57 gives the value of p(M) for each possible value of M.
Figure 3.154 shows the plots of these functions.

Table 3.57 Probability of having an image with average grey level M for different sets of clique
potentials, and when there is no Gibbs structure. The numbers in each column have to sum up to 1. If
they do not, it is because of the truncation to three decimal points only. Note that no 0 entry is exactly
0. The numbers in the last column were computed by simply counting the number of configurations
with a certain number of 1s and dividing the result by the total number of possible 3 × 3 binary
configurations, i.e. by 512.

p(M)

Number of U0 = 1 U0 = 0 U0 = 0 U0 = −1 U0 = 1

M images U1 = 0 U1 = 1 U1 = 1 U1 = 1 U1 = 1 No Gibbs

U2 = 0 U2 = 1 U2 = −1 U2 = −1 U2 = −1 structure

0 1 0.000 0.000 0.001 0.040 0.000 0.002
1/9 9 0.000 0.000 0.010 0.133 0.000 0.018
2/9 36 0.002 0.000 0.050 0.248 0.002 0.070
3/9 84 0.012 0.000 0.172 0.315 0.016 0.164
4/9 126 0.051 0.000 0.267 0.180 0.066 0.246
5/9 126 0.138 0.000 0.267 0.066 0.180 0.246
6/9 84 0.249 0.003 0.172 0.016 0.315 0.164
7/9 36 0.291 0.019 0.050 0.002 0.248 0.070
8/9 9 0.197 0.138 0.010 0.000 0.133 0.018
1 1 0.060 0.840 0.001 0.000 0.040 0.002
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Figure 3.154 Probability density function for having an image with average grey level M for different
sets of clique potentials and when there is no Gibbs structure.
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Example B3.157

Physicists define a quantity called mean free energy, F(M), as follows:

e−F(M) ≡ ∑
all_configurations_with_average_grey_value_M

Zp(X) (3.448)

where M is the average grey value of a configuration. What is the meaning of F(M)
for an image? Compute its value for the images of Example 3.156.
For the particular Gibbs distribution we have been using, this equation takes the form:

e−F(M) =
∑

all_configurations_with_average_grey_value_M
e
∑

ijxij(U0+U1xi+1,j+U2xi,j+1) (3.449)

We notice that the right-hand side of this equation is the numerator of Equation (3.447) which
determines how likely it is to find a configuration with mean grey value M. Given that the denom-
inator is constant, this quantity then determines how probable a particular average grey value is,
how “stable” our system is in the following sense: if something changes in the image, how likely
it is that its overall appearance, as expressed by its average grey value, will remain the same. As
search engines often retrieve images according to their mean colour, the concept of mean free
energy is related to such tasks. When there is no Gibbs structure, F(M) = − ln NM, where NM is
the number of images that have mean value M.

Table 3.58 shows the values of F(M) for the different sets of clique potentials we have been using.
Figure 3.155 shows the plots of these functions versus M.

Table 3.58 Free energy F(M) for different structures of the configuration space.

F(M)

Number of U0 = 1 U0 = 0 U0 = 0 U0 = −1 U0 = 1

M images U1 = 0 U1 = 1 U1 = 1 U1 = 1 U1 = 1 No Gibbs

U2 = 0 U2 = 1 U2 = −1 U2 = −1 U2 = −1 structure

0 1 0.000 0.000 0.000 0.000 0.000 0.000
1/9 9 −3.197 −2.197 −2.197 −1.197 −3.197 −2.197
2/9 36 −5.584 −4.204 −3.824 −1.824 −5.824 −3.584
3/9 84 −7.431 −6.195 −5.062 −2.062 −8.062 −4.431
4/9 126 −8.836 −8.164 −5.501 −1.501 −9.501 −4.836
5/9 126 −9.836 −10.164 −5.501 −0.501 −10.501 −4.836
6/9 84 −10.431 −12.195 −5.062 0.938 −11.062 −4.431
7/9 36 −10.584 −14.204 −3.824 3.176 −10.824 −3.584
8/9 9 −10.197 −16.197 −2.197 5.803 −10.197 −2.197
1 1 −9.000 −18.000 0.000 9.000 −9.000 0.000
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Figure 3.155 Free energy F(M) as a function of the mean grey value M.

What is the critical temperature of a Markov random field?

The critical temperature of an MRF is the value of parameter T for which the MRF behaves like a
fractal. At that parameter value, the autocorrelation function of the MRF implies correlation among
the pixels at all scales, i.e. at all distances from each other (see Example 3.163).
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Example B3.158

Show that for the Gibbs model of Equation 3.397 applied to a binary image with clique
potentials U2 = U1 = −U0∕2 and U0 > 0, the probability of a configuration X existing
depends on the number of cliques of the form (0, 1) and (1, 0) present in the configu-
ration.
Let us first make a transformation so that the pixels take values −1 and 1 instead of 0 and 1

xij =
nij + 1

2
⇒ nij = 2xij − 1 (3.450)

where xij is the old value of a pixel (being either 0 or 1) and nij is the new value, which may be
either 1 or −1.

Function H(X) then, which appears in the exponent of the numerator of p(X), defined here so
that p(X) ≡ 1

Z
e−H(X), is:

H =
∑

ij
U0

nij + 1
2

+ U1
nij + 1

2
×

ni+1,j + 1
2

+ U2
nij + 1

2
×

ni,j+1 + 1
2

=

{
U0

2
∑

ij
nij +

U0

2
∑

ij
1 +

U1

4
∑

ij
nijni+1,j +

U1

4
∑

ij
nij +

U1

4
∑

ij
ni+1,j

+
U1

4
∑

ij
1 +

U2

4
∑

ij
nijni,j+1 +

U2

4
∑

ij
nij +

U2

4
∑

ij
ni,j+1 +

U2

4
∑

ij
1

}
.

(3.451)

First we note that since the sums run over all possible values of the pixels, we have∑
ij

nij =
∑

ij
ni+1,j =

∑
ij

ni,j+1 = N1 − N−1 (3.452)

where N1 is the number of pixels with value 1 in the image and N−1 is the number of pixels with
value −1 (or 0 originally) in the image. In addition, if the total number of pixels in the image is
N,
∑

ij1 = N. Then Equation (3.451) is simplified as follows:

H = −
(U0

2
+ 2

U1

4
+ 2

U2

4

)∑
ij

nij −
U1

4
∑

ij
nijni+1,j −

U2

4
∑

ij
nijni,j+1

−
(U0

2
+

U1

4
+

U2

4

)∑
ij

1

= −
(U0

2
+ 2

U1

4
+ 2

U2

4

)
(N1 − N−1) −

U1

4
∑

ij
nijni+1,j −

U2

4
∑

ij
nijni,j+1

−
(U0

2
+

U1

4
+

U2

4

)
N. (3.453)

Upon substitution of U1 = U2 = −U0∕2, the coefficient of the first term becomes 0 and we
obtain:

H =
U0

4
∑

ij

{
nijni+1,j + nijni,j+1

}
−

U0N
4

. (3.454)

Let us call C the total number of cliques in the image, vertical or horizontal, and let us call Co
the number of odd cliques, i.e. cliques of the form (1,−1) or (−1, 1) and Ce the number of even
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cliques, i.e. cliques of the form (1, 1) or (−1,−1). The odd cliques will produce nijni+1,j or nijni,j+1
equal to −1, while the even cliques will make the same products equal to 1. So, the sum in (3.454)
will be equal to the number of even cliques minus the number of odd cliques

H =
U0

4
(Ce − Co) −

U0N
4

=
U0

4
(C − 2Co) −

U0N
4

= −
U0

2
Co +

U0(C − N)
4

(3.455)

where we used C = Co + Ce.
Note that the last term on the right-hand side of (3.455) is a constant and, when we use this

expression in the calculation of p(X), the exponential factor it will produce in the numerator of the
expression will cancel with an identical factor of the normalising constant in the denominator.
In other words, a constant in H does not affect the probability of a configuration to exist. So, the
probability of a configuration X with the particular model parameters is given by

p(X) = 1
Z

e
U0
2

Co (3.456)

which is a function only of the number of transitions in the image, from a black pixel to a white
one or vice versa.

Example B3.159

Show that the result of Example 3.158 is also valid for clique potentials that do not
necessarily obey the condition U1 = U2 = −U0∕2, as long as the average grey value of
the image is fixed.
In this case the coefficient of the first term on the right-hand side of Equation (3.453) will not

vanish. This coefficient multiplies factor N1 − N−1 which is the total number of 1s and −1s in the
image. This number divided with the total number N of pixels in the image is the average grey
value of the image, which is assumed fixed. Then the first term on the right-hand side of (3.453)
is another constant term that does not affect the probability of the configuration existing, which
in this case will be given by

p(X) = 1
Z

e
U1
2

CHo+
U2
2

CVo (3.457)

where CHo
is the number of odd cliques in the horizontal direction and CVo

is the number of odd
cliques in the vertical direction.

Example B3.160

Use a 10 × 10 binary texture image to demonstrate that the number of odd cliques in
both the vertical and horizontal directions is equal to the length of the loops which
isolate “islands” of pixels with grey value 0 from pixels with grey value 1, if each pixel
is treated like a tile of size l × l and lengths are measured with unit l.

(Continued)
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Example B3.160 (Continued)

With reference to Figure 3.156a we see that the total length of the perimeter of the three islands
of 0s is 16 + 14 + 6 = 36. The horizontal odd cliques, highlighted in 3.156b, are counted to be 16,
while the vertical such cliques, highlighted in 3.156c, are 20. Their sum is 36.

(a) (b) (c)

Figure 3.156 (a) A texture binary image. The circles indicate pixels with grey value 0, while the
blank pixels have grey value 1. Grey is used to highlight the horizontal cliques of (1, 0) and (0, 1) in
(b), and the vertical ones in (c).

Example B3.161

Show that there are at most r(L) = 4L23L different islands of 0s with perimeter L.
Consider an internal point O of such an island. The furthest point of an island with perimeter
L from O may be at most L∕2 pixels away. So, all islands of perimeter L that contain O must be
restricted in an L × L square around O. Any point inside that square may be used as a starting
point for drawing an island. Once we choose the starting point, we have the freedom to move in
one of four possible directions. Once we reach the next point, we cannot go back, so we have the
freedom to choose one of three possible directions. The same for each succeeding point. So, the
total number of islands we can draw is:

Number of starting points × Number of options for the first step ×
Number of options for the second step ×
Number of options for the third step ×… = L2 × 4 × 3L

.
The fact that this formula is an over-estimate is demonstrated in Figure 3.157 where we show

all possible islands of perimeter 8 that may be constructed around a pixel. They are only 26, much
fewer than the upper limit predicted by the formula, which is 4 × 82 × 38 = 1, 679, 616! The upper
limit predicted by the formula becomes much tighter for higher values of L.
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Figure 3.157 All islands of perimeter 8 one can draw around a pixel.

Example B3.162

Show that series
∑

nn2xn converges if x < 1.
For a series to converge the ratio of two successive terms must be less than 1 as n → ∞. Let us call
an ≡ n2xn. We must show that an+1∕an < 1:

an+1

an
= (n + 1)2xn+1

n2xn =
(

1 + 1
n

)2
x. (3.458)

For n → ∞ the factor in the bracket tends to 1, and the ratio will be less than 1 if x is less than
1. Therefore,

∑
nn2xn converges to a finite number if x < 1.
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Example B3.163

Show that for a configuration with probability density function given by
Equation (3.456) it is possible to choose parameter U0 so that the image behaves like
a fractal in the sense that the value of a pixel is influenced by the values of all other
pixels, no matter how far away they are.
Consider a finite square image and assume that the boundary around it consists of pixels with
grey value 1. We shall show that for certain values of U0, the probability of the pixel in the centre
of the image taking a certain value will be affected by this boundary, irrespective of the size of the
image, i.e. even when the boundary is placed very far away.

Let us consider the probability of the central pixel xc having value 0. Since all boundary pixels
around the image have value 1, for this pixel to have value 0 it must be part of, or form by itself,
an island of 0s. Let us call the length of the perimeter of this island L. Let us denote by X any
configuration that has the same island in the middle. For every such configuration X there exists
a configuration X ′ which is identical to X, but it does not contain the central island. Figure 3.158
shows some examples of configurations X, and their corresponding configurations X ′.

Let us call an island of this particular shape, island A. The probability of having a configura-
tion with such an island in the middle is given by

p(island A) =
∑

X e
U0
2

Co(X)∑
X e

U0
2

Co(X)
(3.459)

where we make explicit that the number of odd cliques Co that appears in Equation (3.456) is
different for different configurations.

If we reduce the number of configurations over which we sum in the denominator, we may
obtain an upper limit for this probability. We achieve this by summing over configurations X ′

only, instead of summing over all possible configurations:

p(island A) ≤
∑

X e
U0
2

Co(X)∑
X ′e

U0
2

Co(X ′)
. (3.460)

However, for each configuration X we have a corresponding configuration X ′ that has L fewer
odd cliques since their only difference is the removal of island A of perimeter L (see Figure 3.158).
So,

Co(X) = Co(X ′) + L. (3.461)

Upon substitution in (3.460) we obtain:

p(island A) ≤
∑

X e
U0
2

Co(X)∑
X e

U0
2
(Co(X)−L)

= e
U0
2

L
. (3.462)
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Figure 3.158 On the left some configurations X with the same island of 0s in the middle and on the
right their corresponding configurations X ′ without the island. Note that in all cases all border pixels
have value 1 (indicated by blank here).

The probability of the central pixel having value 0 is the same as the probability of having
around it an island of 0s of whatever perimeter. If there are r(L) different ways to draw an island
of perimeter L, then the probability of the central pixel having value 0 is:

p(xc = 0) =
∑

L
r(L)p(island_with_perimeter L) ≤∑

L
r(L)e

U0
2

L
. (3.463)

(Continued)
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Example B3.163 (Continued)

If we make use of the result of Example 3.160, we have

p(xc = 0) ≤∑
L

4L23Le
U0
2

L = 4
∑

L
L2
(

3e
U0
2

)L
. (3.464)

According to the result of Example 3.161 the sum on the right-hand side of the above expres-
sion is a finite number if we choose U0 small enough so that the expression in the bracket is less
than 1 (remember that U0 is assumed to be positive). Let us say that we choose U0∕2 so that the
right-hand side of (3.464) has value 𝛼 < 0.5. Then p(xc = 0) < 𝛼 while p(xc = 1) > 𝛼.

Now assume that the border pixels all around the image had 0 value instead of 1. Following
exactly the same procedure, we would have found that in this case p(xc = 1) < 𝛼 while p(xc =
0) > 𝛼. In other words, when the border pixels had value 1, the probability of the central pixel to
be 1 was more than 𝛼, while when the border pixels had value 0, the probability of the central
pixel to be 1 was less than 𝛼. So, the central pixel “feels” the effect of the boundary no matter how
far that boundary is. This shows that for the particular choice of U0, the Markov random field no
longer possesses the Markovian property. Instead, it behaves more like a fractal with long-range
correlations present. This behaviour can be observed when U0 is sufficiently small, i.e. its inverse,
which corresponds to the temperature parameter in the terminology borrowed from physics, is
sufficiently high. The value of 1∕U0 for which this happens is the critical temperature of the
image model. An MRF has to be below its critical temperature in order to correspond to a Gibbs
distribution.

3.8 Texture Repair

What is texture repair?

Texture repair is the process of restoring part of a texture image. It involves filling up gaps in the
image so that the gap, or the place where the gap was, is no longer discernible by eye.

How can we perform texture repair?

There are three broad approaches:

i) Statistical methods, where the missing texture is filled-in while preserving some statistical
property of the texture image; an example of such an approach is Kriging.

ii) Filtering methods, where the values of neighbouring pixels are propagated to the gaps through
some filtering process; examples of such methods are inpainting, normalised convolution
and error correction methods.

iii) Non-parametric MRF methods; examples of such approaches are the Efros and Leung algo-
rithm and all its variations.

In general, filtering based methods are only appropriate for filling in small parts of the texture.
They are excellent for non-textured images with relatively flat regions, as they are actually interpo-
lation methods relying on the assumption of smoothness, rather than on the idea of replicating
a pattern. Statistical methods are appropriate mostly for random textures. The non-parametric
Markov random field methods are the most powerful ones for generic textures.
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What is Kriging?

Kriging assigns to a pixel in the gap a value that is a weighted linear combination of the values
of the available pixels, with the weights chosen so that the covariance of the image is preserved.
Kriging belongs to the type of estimator known as the best linear unbiased estimator or BLUE.

How does Kriging work?

Let us assume that we have values for the following pixels, indexed here with a single index for
simplicity: P1,P2,… ,PN . Let us assume that their mean grey value is 𝜇 and their variance is 𝜎2. Let
V(Pi) be the grey value of pixel Pi. Finally, let us denote by P0 the pixel for which we do not have a
value. Our problem is to assign a grey value to pixel P0, so that the overall appearance of the texture
is not affected.

According to Kriging, the value of P0 should be

V̂(P0) =
N∑

i=1
𝑤i(P0)V(Pi) (3.465)

with the weights 𝑤i chosen so that the variance of error between the estimated value V̂(P0) and the
true (unknown) value V(P0) is minimised. The residual error is defined as

R(P0) ≡ V̂(P0) − V(P0). (3.466)

If we treat the image as a random field, V(P0) is a random variable and so is R(P0). We may
then define the variance of the error and choose weights 𝑤i so that the variance of error R(P0) is
minimised.

It can be shown (see Example 3.164) that the variance 𝜎2
R of error R(P0) is given by

𝜎2
R =

N∑
i=1

N∑
j=1

𝑤i𝑤jCij − 2
N∑

i=1
𝑤iCi0 + 𝜎2 + 𝜇2 (3.467)

where Cij is the correlation between random variables V(Pi) and V(Pj) and Ci0 is the correlation
between random variables V(Pi) and V(P0).

It turns out (see Example 3.165) that the weights may be estimated from:

W = C−1D (3.468)

where C is an (N + 1) × (N + 1) matrix, of the form

C =

⎛⎜⎜⎜⎜⎝
C11 … C1N 1
· · · · · · · · · · · ·
CN1 … CNN 1

1 … 1 0

⎞⎟⎟⎟⎟⎠
(3.469)
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D is an (N + 1) × 1 vector:

D =

⎛⎜⎜⎜⎜⎝
2C10
· · ·

2CN0
1

⎞⎟⎟⎟⎟⎠
(3.470)

and W is the (N + 1) × 1 vector of the unknowns,

W =

⎛⎜⎜⎜⎜⎝
𝑤1(P0)
· · ·

𝑤N (P0)
𝜆

⎞⎟⎟⎟⎟⎠
. (3.471)

The value of 𝜆, which is an extra unknown introduced in the process, is disregarded after the
solution has been obtained.

Example B3.164

Starting from Equations (3.465) and (3.466) prove Equation (3.467).
Let us start from Equation (3.466) and substitute on the right-hand side the estimate V̂(P0) from
(3.465):

R(P0) ≡ V̂(P0) − V(P0) =
N∑

i=1
𝑤i(P0)V(Pi) − V(P0). (3.472)

Treating R(P0) as a random variable allows us to write a formula for its variance with the help
of the expectation operator E{ }:

𝜎2
R ≡ E

{(
R(P0) − R(P0)

)2
}

. (3.473)

Here R(P0) is the mean value of R(P0). First, we shall show that this is 0, as long as the weights
we choose sum up to 1, i.e.

∑N
i=1 𝑤i = 1:

R(P0) ≡ E

{ N∑
i=1

𝑤i(P0)V(Pi) − V(P0)

}

=
N∑

i=1
𝑤iE
{

V(Pi)
}
− E
{

V(P0)
}

=
N∑

i=1
𝑤i𝜇 − 𝜇 = 𝜇

N∑
i=1

𝑤i − 𝜇 = 𝜇 − 𝜇 = 0. (3.474)

Here we made use of the fact that the expectation operator is applied only to the random variables,
and that the expectation value at each pixel position is the same, equal to 𝜇. This assumption is
based on the fact that we are dealing with stationary textures and we may invoke the assumption
of ergodicity. For more on ergodicity the reader is referred to Book I [75].
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Then:

𝜎2
R = E

{(
R(P0)

)2}
= E

{( N∑
i=1

𝑤i(P0)V(Pi) − V(P0)

)( N∑
j=1

𝑤j(P0)V(Pj) − V(P0)

)}

= E

{ N∑
i=1

𝑤i(P0)V(Pi)
N∑

j=1
𝑤j(P0)V(Pj) − V(P0)

N∑
i=1

𝑤i(P0)V(Pi)−

V(P0)
N∑

j=1
𝑤j(P0)V(Pj) + V(P0)2

}

=
N∑

i=1

N∑
j=1

𝑤i(P0)𝑤j(P0)E
{

V(Pi)V(Pj)
}
−

N∑
i=1

𝑤i(P0)E
{

V(Pi)V(P0)
}
−

N∑
j=1

𝑤j(P0)E
{

V(Pj)V(P0)
}
+ E
{

V(P0)2}
=

N∑
i=1

N∑
j=1

𝑤i(P0)𝑤j(P0)Cij −
N∑

i=1
𝑤i(P0)Ci0 −

N∑
j=1

𝑤j(P0)Cj0 + E
{

V(P0)2}
=

N∑
i=1

N∑
j=1

𝑤i(P0)𝑤j(P0)Cij − 2
N∑

i=1
𝑤i(P0)Ci0 + E

{
V(P0)2} . (3.475)

The last equation was derived by observing that j was a dummy index and so it could be
renamed i. We also have for the variance of the grey values:

𝜎2 ≡ E
{(

V(P0) − 𝜇
)2}

= E
{

V(P0)2 − 2V(P0)𝜇 + 𝜇2}
= E
{

V(P0)2} − 2𝜇E
{

V(P0)
}
+ 𝜇2

= E
{

V(P0)2} − 2𝜇2 + 𝜇2 ⇒

E
{

V(P0)2} = 𝜎2 + 𝜇2. (3.476)

After substitution in (3.475), we obtain (3.467).
In (3.475) Cij is the correlation matrix between positions Pi and Pj, while Ci0 is the correlation

matrix between position Pi and P0. Assuming isotropy and stationarity, the value of Cij depends
only on the relative distance between pixels Pi and Pj, while the value of Ci0 also depends only
on the relative distance between positions Pi and P0. So, both values may be computed from the
available data. The same goes for 𝜎2 and 𝜇: they are both estimated from the available pixel
values. Note that a good practice would be to remove the mean of the image before we perform
Kriging, so that 𝜇 = 0 and the correlation matrix is the same as the covariance matrix. The mean
may always be added at the end.
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Example B3.165

Work out the weights that will minimise the variance of the estimation error, as
expressed by Equation (3.467), and at the same time they will sum up to 1.
This is a constrained optimisation problem. We shall use the method of Lagrange multipliers.
According to this method, we create a linear combination of the original function that has to be
minimised and the constraint, and then we choose the weights to minimise this linear combina-
tion. In this particular problem, the linear combination we create is

�̃�2
R ≡

N∑
i=1

N∑
j=1

𝑤i(P0)𝑤j(P0)Cij − 2
N∑

i=1
𝑤i(P0)Ci0 + 𝜎2 + 𝜇2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

original function to be minimised

+ 𝜆

( N∑
i=1

𝑤i(P0) − 1

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0(constraint)

(3.477)

where 𝜆 is the so called Lagrange multiplier. We have (N + 1) unknowns now, the N weights
plus 𝜆. We must differentiate �̃�2

R with respect to the N + 1 unknowns and set these first partial
derivatives to zero, to obtain a system of linear equations for the unknowns.

First we must work out the derivative of �̃�2
R with respect to one of the weights. Differentiating

both sides of (3.477) with respect to 𝑤i(P0), we obtain:

𝜕�̃�2
R

𝜕𝑤i(P0)
=

N∑
j=1

𝑤j(P0)Cij − 2Ci0 + 𝜆. (3.478)

Let us set the right-hand side equal to 0:

𝑤1(P0)Ci1 +𝑤2(P0)Ci2 + · · · +𝑤N (P0)CiN + 𝜆 = 2Ci0. (3.479)

We can produce one such equation for each value of i, that is we shall have N such equations
for the N unknown weights.

Let us next differentiate �̃�2
R with respect to 𝜆:

𝜕�̃�2
R

𝜕𝜆
=

N∑
i=1

𝑤i(P0) − 1. (3.480)

Setting the right-hand side of this expression equal to 0 yields:

𝑤1(P0) +𝑤2(P0) + · · · +𝑤N (P0) = 1. (3.481)

Equations (3.479), for i = 1,… ,N, and Equation (3.481) constitute a system of N + 1 linear
equations for the N + 1 unknowns, which may be written as

CW = D (3.482)

with C given by (3.469), W given by (3.471) and D given by (3.470).

How can we estimate the correlation matrix of the data?

This is done via the variogram (see Example 3.75. To reduce the effect of noise, we use first a para-
metric model to fit the variogram (see Examples 3.75 and 3.76) and then work out the correlation
matrix from the variogram model as

C(d) = 𝜎2 − 𝛾(d) (3.483)
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where 𝜎2 is the variance of the grey values of the pixels of the image.

How do we perform Kriging interpolation in practice?

We apply the following algorithm.

Step 0: Decide the number of neighbours you will use to fill in a missing pixel value. Let us call
this number N.

Step 1: Calculate the mean 𝜇 of the pixels with correct grey values and remove it from all pixel
values of the image.

Step 2: From the part of the image that is not damaged, compute the variogram of the image using
the algorithm in the section How do we compute the variogram of an image in practice?

Step 3: Fit the variogram with a chosen model, using the algorithm in the section How can we fit
automatically a model to a variogram?

Step 4: From the variogram work out the covariance C(d) of the image using Equation (3.483).
(Note that since we have removed the mean, correlation and covariance is the same.)

Step 5: For each pixel with no value, consider the N nearest neighbours it has. For neighbour i, work
out its distance di0 in order to set Ci0 = C(di0). For neighbours i and j work out their distance dij,
so you may set Cij = C(dij).

Step 6: Use Equation (3.468) to work out the weights for this particular pixel.
Step 7: Use Equation (3.465) to work out the grey value of the pixel as the linear combination of

the values of the N nearest neighbours you selected.
Step 8: Repeat the process for each pixel without grey value, using as pixels with known values also

the pixels to which you have already assigned values.
Step 9: At the end add the mean 𝜇 to all pixel values.

Can we use another statistic to guide us in selecting the missing pixel values?

Yes, we may select any statistic we believe expresses best the appearance of the texture, and
then select the values of the damaged pixels so that the particular statistic is preserved. Kriging
uses the covariance of the texture as it is believed that the human visual system is sensitive up
to second order statistics of the image. However, second order statics may also be expressed by
the use of co-occurrence matrices. So, one may devise a texture interpolation method where the
co-occurrence matrix is preserved (see Example 3.166).

How can we repair a texture while preserving its co-occurrence matrices?

We have first to capture the texture characteristics by constructing the appropriate co-occurrence
matrices and then use them to repair the texture. So, first we do the following.

Step 1: Decide upon the co-occurrence matrices you wish to preserve.
Step 2: Construct the co-occurrence matrices you wish to preserve by using the undamaged part

of the image.
Step 3: Normalise each co-occurrence matrix by dividing all its elements with the number of pairs

you used to construct it.

These normalised co-occurrence matrices will be used as lookup tables. Each such co-occurrence
matrix gives the probability of occurrence of a pair of grey level values at the particular relative
position.
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Let us say that we decided to construct all directional co-occurrence matrices that correspond
to all pairs of relative positions one may create by pairing the central pixel of an M × M window
with all other pixels inside the window. This way one will have M2 − 1 different co-occurrence
matrices. When we want then to interpolate the texture image, we scan the image again. Around
each pixel with no value, we identify all pixels with valid values inside an M × M window. For each
one of these pixels we consult the corresponding lookup table, according to its relative position
with respect to the pixel under repair, in order to infer the possible values of the pixel in the centre
and the probabilities with which these values are possible. As we may have as many as M2 − 1
co-occurrence matrices to consult, in principle, for each possible grey value, we may have up to
M2 − 1 probabilities read from these co-occurrence matrices. We then sum up the probabilities
that correspond to each possible grey value and so we end up with a list of possible grey values
for each pixel and a corresponding sum of probabilities for each value. Because we are interested
in relative probabilities for each grey value for the pixel under consideration, we normalise these
sums of probabilities by dividing them with their sum. Thus, every pixel now has associated with
it a list of possible grey values and a relative probability for each grey value to arise. We may create
a first reconstruction of the image by assigning to each pixel the value with the highest probability.
This reconstruction is expected to be quick.

We apply this algorithm starting from the points around the border of the area to be repaired, so
the damaged pixels have enough neighbours with valid values.

The reconstruction may be performed according to the following algorithm, which we call
co-occurrence mode algorithm.

Step 1: Visit every pixel that does not have a value, but it has neighbours with valid values inside
its M × M neighbourhood.

Step 2: Go through the corresponding lookup table for each neighbour with a valid value, according
to its relative location with respect to the focal pixel, and compile a list of possible values for the
focal pixel, with their corresponding probabilities. You will have at most M2 − 1 probabilities for
each possible grey value, from the M2 − 1 lookup tables.

Step 3: Compute the sum of probabilities for each possible grey value.
Step 4: Assign to the focal pixel the grey value with the maximum probability.
Step 5: Pixels with assigned values may be treated as neighbours with valid values when the M × M

neighbourhoods of other pixels are considered. This way, the pattern will grow inwards in the
damaged area.

One may alternatively use a more sophisticated algorithm, where the probabilities of all possible
grey values of an image are taken into consideration. We call this algorithm co-occurrence prob-
abilistic algorithm. The following steps have to be used after step 3 of the co-occurrence mode
algorithm.

Step 4: Divide the probability of each possible grey value by the sum of probabilities of all grey
values, i.e. normalise the probabilities of all possible grey values of the focal pixel, so they sum
up to 1.

Step 5: Create for each pixel a list of possible grey values with their corresponding normalised
probabilities and the cumulative distribution from them, like the one shown in Table 3.59. This
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Table 3.59 All possible grey values gi of a pixel, their corresponding
probabilities Pi and their cumulative distribution needed for drawing a
random number according to the probabilities listed in the second
column.

g1 P1 [0,P1)

g2 P2 [P1,P1 + P2)
g3 P3 [P1 + P2,P1 + P2 + P3)
· · · · · · · · ·
gN PN [

∑N−1
i=1 Pi, 1]

Sum 1

list assigns to each possible grey value a range of real numbers, all in the interval [0, 1]. The more
probable a grey value is, the larger the range of values it is assigned.

Step 6: Draw a number uniformly distributed in the range [0, 1].
Step 7: Assign to the focal pixel the grey value that corresponds to the interval inside which this

random number happens to fall. In other words, we assign to the focal pixel a grey value accord-
ing to the probabilities dictated by the co-occurrence matrices. The more probable a grey value
is, the larger the range of values it is assigned, the more likely it is for a random number from a
uniform distribution between 0 and 1 to fall in its interval, without excluding the option to fall
in the interval of one of the other possible grey values.

Step 8: Pixels with assigned values may be treated as neighbours with valid values when the M × M
neighbourhoods of other pixels are considered. This way, the pattern will grow inwards in the
damaged area.

Finally, we may use an iterative scheme, according to which the values of the damaged pixels are
constantly updated, so that the co-occurrence matrices of the reconstructed image become more
and more similar to the co-occurrence matrices of the undamaged pixels we had to begin with. In
order to measure the similarity between an original co-occurrence matrix and the corresponding
one of the reconstructed image, we may use the 𝜒2 statistic defined in the section What is the 𝜒2

test? So, we define the cost function U, for a particular type of co-occurrence matrix corresponding
to a fixed relative location of pixels, as:

U ≡
255∑
i=0

255∑
j=0

[
m1 × Cafter(i, j) − m2 × Cdata(i, j)

]2
Cafter(i, j) + Cdata(i, j)

(3.484)

where

m1 =

√√√√√√√√√√√
255∑
i=0

255∑
j=0

Cdata(i, j)

255∑
i=0

255∑
j=0

Cafter(i, j)

(3.485)
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and

m2 =

√√√√√√√√
∑255

i=0
∑255

j=0Cafter(i, j)
255∑
i=0

255∑
j=0

Cdata(i, j)

(3.486)

with Cdata being the co-occurrence matrix constructed from the undamaged pairs of pixels and
Cafter the corresponding co-occurrence matrix constructed by using all pairs of pixels in the repaired
image.

The iterative algorithm one may then use starts with the output of one of the previous algorithms
and tries to improve it. We call this algorithm co-occurrence iterative. One single pass of M × M
non-overlapping windows of the image constitutes one phase. At each phase, we consider only the
pixels that do not have M × M overlapping neighbourhoods. This is so that if we update the value
of a pixel to agree with the value its neighbours tell it to have, we must avoid then changing imme-
diately the values of the neighbours according to their own neighbours and destroy any benefit we
had achieved. Several phases constitute one iteration. An iteration consists of the number of nec-
essary passes so that all pixels we have to reconstruct are visited once each, and a proposed value is
considered by using the M × M neighbourhood of each one of them, provided of course this neigh-
bourhood contains at least one pixel with known value. This algorithm has the same steps as the
co-occurrence probabilistic algorithm up and including step 6. Then one should use the following
steps.

Step 7: The new value of the pixel is checked first whether it reduces the cost function or not. We
denote the value of the cost function before updating the value of the pixel by Ubefore. Uafter is
computed by using the proposed new value of the pixel under consideration. The new value of
the reconstructed pixel is accepted only if Uafter < Ubefore, for all co-occurrence matrices.

Step 8: Perform all passes and do all iterations needed to visit once all pixels under repair.
Step 9: If the cost function converges to zero or reaches a steady state, i.e. if there are no points

updated in, say, 5 successive iterations, then exit.

All these algorithms rely on adequate statistical representation of the co-occurrence properties
of the image. It is possible that an image with 256 grey levels does not supply sufficient statistics for
the construction of the co-occurrence matrices. One way to deal with the problem is to reduce the
number of grey levels. For example, we may use grey levels in the range [0, 85], by appropriately
re-quantising the grey values. After the reconstruction of the texture, we may restore the values of
the original pixels and stretch the values of the repaired pixels to the range [0, 255] by appropriate
scaling. To avoid having missing grey levels in the repaired region of the image, we may choose at
random one of the following three numbers to add to the grey value of a repaired pixel: {−1, 0,+1}.
A pixel with grey value 1 when the range [0, 85] was used, would have acquired value 1 × 255∕85 =
3 when scaled to the range [0, 255], while a pixel with grey value 2 when the range [0, 85] was used,
would have acquired value 2 × 255∕85 = 6 when scaled to the range [0, 255]. This would leave gaps
in the grey levels, as no pixels will have grey value 1, 2, 4 or 5. When we randomly add one of the
three numbers {−1, 0,+1} to a repaired pixel value, we repopulate the empty grey levels. We can
do this without noticeable change in the appearance of the texture, as the human eye can hardly
discern differences in grey values smaller than 3 levels.
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Example 3.166

Use the three co-occurrence algorithms to reconstruct the damaged image of
Figure 3.159, by setting M = 5.

Figure 3.159 The damaged image to be reconstructed. Source:
Maria Petrou.

To facilitate our work, let us encode the 24 neighbours of a pixel with the letters shown in
Figure 3.160.

Let us denote the co-occurrence matrices we construct according to the paired letters in
Figure 3.160, as CAB, CAC, CAD, etc. To create these matrices we follow this algorithm.

Step 1: Create 24, 256 × 256 arrays and set all their elements to 0.
Step 2: Initialise counters: NAB = 0, NAD = 0, etc.
Step 3: Scan the image. At every non-empty pixel A you find, check if its neighbour B is non-empty.

If non-empty, set
NAB = NAB + 1
CAB(I(A), I(B)) = CAB(I(A), I(B)) + 1
where CAB is the co-occurrence matrix for the pairs of pixels that are at relative position A and
B, and I(A) and I(B) represent the grey values of A and B, respectively.

Step 4: Check if neighbour C is non-empty. If non-empty set
NAC = NAC + 1
CAC(I(A), I(C)) = CAC(I(A), I(C)) + 1.
Repeat this for all 24 relative positions around pixel A.

Step 5: After all pixels have been processed, replace
C𝜁𝜉(i, j) with C𝜁𝜉 (i,j)

N𝜁𝜉

for all (i, j) and for all (𝜁, 𝜉) ∈ {(A, B), (A, D),… , (A, Y)}

This way we have constructed the look up tables we need for the next stage. We calculate the
CAB as shown in Figure 3.161

Figure 3.160 Each position, encoded here with a
letter, in this 5 × 5 neighbourhood, will be paired
with position A to define a co-occurrence matrix.

(Continued)
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Example 3.166 (Continued)
Figure 3.161 The feature map of co-occurrence matrix CAB.
Source: Maria Petrou.

What is in-painting?

It is a method that fills-in the damaged region of an image by propagating inwards the lines that
end up at the border of that region, as well as the grey values of the surrounding region. It may be
used to fill in small damaged patches of a texture, like, for example, the gaps created if we mask out
some scratches or some text written over the texture. There are several variations of the approach.
We give here the steps of the original basic algorithm.

Step 0: Use a binary mask to identify the damaged region.
Step 1: Consider the mask that identifies the damaged region and dilate it with a 3 × 3 structuring

element.
Step 2: Fill in the damaged region with the mode grey value of the part of the image that is in the

augmented minus the initial mask that marks the damaged region.
Step 3: Inside the augmented region compute the Laplacian of each pixel using

L(i, j) = I(i + 1, j) + I(i − 1, j) + I(i, j + 1) + I(i, j − 1) − 4I(i, j) (3.487)

where I(i, j) is the grey value of pixel (i, j).
Step 4: For each pixel inside the region that is to be repaired, compute the gradient of the Laplacian

as 𝛅L(i, j) = (𝛿Lx(i, j), 𝛿Ly(i, j)), with:

𝛿Lx(i, j) = L(i + 1, j) − L(i − 1, j) 𝛿Ly(i, j) = L(i, j + 1) − L(i, j − 1). (3.488)

Step 5: For each pixel inside the region that is to be repaired, compute the normal n(i,j) =
(nx(i, j),ny(i, j)) to the gradient vector (gx(i, j), gy(i, j)) = (I(i + 1, j) − I(i − 1, j), I(i, j + 1) − I(i, j −
1)), as follows:

nx(i, j) = −gy(i, j) = I(i, j − 1) − I(i, j + 1) ny(i, j) = gx(i, j) = I(i + 1, j) − I(i − 1, j).
(3.489)

Step 6: For each pixel inside the region that is to be repaired, compute:

𝛾(i, j) ≡ 𝛿L(i, j) ⋅ n(i,j). (3.490)

Step 7: If 𝛾(i, j) ≠ 0, compute:

𝛽(i, j) ≡ 𝛾(i, j)√
nx(i, j)2 + ny(i, j)2

. (3.491)

Step 8: If 𝛾(i, j) > 0, set:

|𝛻I(i, j)| = [[min {I(i, j) − I(i − 1, j), 0}
]2 + [max {I(i + 1, j) − I(i, j), 0}

]2
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+
[
min {I(i, j) − I(i, j − 1), 0}

]2 + [max {I(i, j + 1) − I(i, j), 0}
]2] 1

2
. (3.492)

If 𝛾(i, j) < 0, set:

|𝛻I(i, j)| = [[max {I(i, j) − I(i − 1, j), 0}
]2 + [min {I(i + 1, j) − I(i, j), 0}

]2
+
[
max {I(i, j) − I(i, j − 1), 0}

]2 + [min {I(i, j + 1) − I(i, j), 0}
]2] 1

2
. (3.493)

Step 9: Update the value of each pixel in the damaged region according to

In+1(i, j) = In(i, j) + Δt𝛽n(i, j) |𝛻In(i, j)| (3.494)

where superscript n indicates the values in the previous iteration step and Δt is an updating
coefficient that might be set to 1.

The philosophy behind each step of the algorithm is as follows. The algorithm wants to prop-
agate the smoothness of the image along the lines of constant intensity. As the gradient vector
indicates the direction of maximum change of the image, the direction of constant intensity (or
least change) is expected to be locally orthogonal to that. This is the direction of the local isophote
(curve of constant brightness). So, the isophote vector we compute in step 5 n(i,j) when denoted
with the gradient vector g(i,j) yields 0, i.e. it is orthogonal to it. Now, we have the direction of the
local isophote and we want to propagate along this direction some measure of smoothness of the
image. The smoothness of the image may be expressed by the local value of the Laplacian, which
is the sum of the second differences of the image. This is given by Equation (3.487) used in step
3. However, we need to know how much this local smoothness varies locally, so we compute its
gradient in step 4. Note that as we need to take differences of the Laplacian to compute its gradient
inside a local window of size 3 × 3, we must have the value of the Laplacian in pixels just outside
the region we have to repair. Thus, in step 2 we enlarge the mask of the damaged region by a pixel
all around, in order to compute the Laplacian inside that region. In addition, as the calculation of
the Laplacian itself requires the use of a 3 × 3 neighbourhood, we need to have a 2-pixel thick layer
all around the region we wish to repair. In steps 6 and 7, we project the change of the measure of
smoothness, i.e. the Laplacian, along the direction of the local isophote. Then we scale it according
to the strength of the local gradient. Now this could have been done by simply omitting the denom-
inator in Equation (3.491), since that denominator is actually the magnitude of the local gradient
vector. However, the proponents of this algorithm observed that this leads to numerical instabil-
ities, so they proposed to use instead, as a measure of the local gradient magnitude, the quantity
calculated in step 9, which is called the slope-limited norm of the gradient vector. See Example
3.167 for an intuitive understanding of definitions (3.492) and (3.493).

Finally, in step 9, we update the value of the pixel, increasing it if the Laplacian increases in
the direction of the isophote, and decreasing it if the Laplacian decreases in the direction of the
isophote (see Example 3.168).

Example 3.167

Consider formulae ((3.492)) and ((3.493)). Explain their logic with the help of the
image patch shown in Figure 3.162.

(Continued)
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Example 3.167 (Continued)
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Figure 3.162 (a) An image patch that is to be repaired, by giving values to the white pixels. (b) The
initial assignment of values according to the mode of the surrounding pixels. (c) Neighbourhood of a
pixel that determines how much its value will change according to the value of |𝛻I(i, j)| computed
with the help of (3.492) and (3.493).

We have to initialise this algorithm by giving to the masked pixels in 3.162a the mode value
of the surrounding pixels. This creates the first approximation of the repaired image shown in
Figure 3.162b. Now we have to update the values of the pixels that were masked in 3.162a. Let us
consider the updating of pixels A, B, D and F. At the bottom of Figure 3.162 we show the directions
of the key vectors associated with these pixels: the gradient vector (that points always towards the
brightest neighbour in the direction of maximum change), the isophote vector (that is defined so
its horizontal component is minus the vertical component of the gradient vector and its vertical
component is the same as the horizontal component of the gradient vector) and the gradient of the
Laplacian (that points in the direction of maximum dissimilarity of a pixel and its four nearest
neighbours).

For pixels A and F, for which the gradient of the Laplacian points in the same direction as the
isophote vector (𝛾 > 0), we must use formula (3.492) to compute |𝛻I(i, j)|. We may express this
formula in terms of the values of the neighbouring pixels of the pixel under consideration, if we
encode the values of the relevant neighbours as shown in Figure 3.162c:|𝛻I(i, j)| = [(min {a − d, 0})2 + (max {b − a, 0})2

+(min {a − c, 0})2 + (max {e − a, 0})2] 1
2 . (3.495)

Then for pixel A:

a = c = b = e > d ⇒ |𝛻I(i, j)| = |min {a − d, 0}| = 0. (3.496)

For pixel F:

a = c = d = e > b ⇒ |𝛻I(i, j)| = |max {b − a, 0}| = 0. (3.497)

For pixels B and D, the direction of the gradient of the Laplacian is opposite the direction of the
isophote (𝛾 < 0) and so we must use formula (3.493), which takes the form:|𝛻I(i, j)| = [(max {a − d, 0})2 + (min {b − a, 0})2
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+(max {a − c, 0})2 + (min {e − a, 0})2] 1
2 . (3.498)

Then for pixel B:

a = c = e = d > b ⇒ |𝛻I(i, j)| = |min {b − a, 0}| = |b − a|. (3.499)

For pixel D:

a = c = e = b > d ⇒ |𝛻I(i, j)| = |max {a − d, 0}| = |a − d|. (3.500)

In other words, pixels B and D will have their values reduced, while pixels A and F will have
their values unchanged. If we were computing |𝛻I(i, j)| from the central difference, for all four
pixels it would have the same value, equal to the contrast between the horizontal dark stripe and
the side regions. This would serve as a factor by which the values of pixels A and F would have been
increased, while the values of B and D would have been decreased, something clearly undesirable.

Example 3.168

By looking at Figure 3.162, justify why the value of a pixel should increase if the Lapla-
cian changes along the same direction as the isophote, and it should be decreased if
the Laplacian changes along the opposite direction of the isophote.
To understand what we have to do, let us fix our attention on a pixel, the value of which we want to
update, and its right neighbour as we move along the direction of the isophote vector. The question
is: in which circumstances do we want to make this pixel more similar or less similar to its right
neighbour?

We understand that an increasing Laplacian implies an increasing dissimilarity. Also, from
the way the isophote vector is defined, we understand that when we move along the isophote, the
neighbour on the right is always darker than the pixel under consideration. So, if the direction of
increasing Laplacian coincides with the direction of the isophote, we want to increase the dissim-
ilarity of the pixel with its right neighbour, so we want to make it even brighter by increasing its
value. If the direction of increasing Laplacian is opposite the direction of the isophote, we want
to increase the similarity of the pixel with its right neighbour, so we want to make it darker.

Example 3.169

Apply the in-painting algorithm to assign values to the empty pixels of image 3.163.

Figure 3.163 A 2-bit image that needs repair.
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Example 3.169 (Continued)

Figure 3.164 shows the detailed steps of the first iteration of the algorithm. This way we construct
the image after the first iteration shown at the top left of Figure 3.165.
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Figure 3.164 The first iteration of the
in-painting algorithm.
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Figure 3.165 The second iteration of
the in-painting algorithm.

What is normalised convolution?

It is a very simple interpolating algorithm with the following steps.

Step 0: Assign to pixels with damaged or missing values the value 0.
Step 1: Convolve the image with a low pass filter.
Step 2: Give to the pixels with known values the value 1, while the pixels with the unknown values

value 0, thus creating the so-called sampling mask of the image.
Step 3: Convolve the sampling mask of the image with the low pass filter you used in step 1.
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Figure 3.166 The third iteration of the
in-painting algorithm.

Step 4: Divide the output of step 1 by the output of step 2, point by point, to obtain the interpolated
image.

Example 3.170

Repair the image of Figure 3.163 using normalised convolution. For a low pass filter
use one of the masks shown in Figure 3.167, the one which, according to your opinion,
is the most appropriate.
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Figure 3.167 Two low pass filters that may be
used in normalised convolution.

Clearly, the size of the filter we use has to be larger than the size of the gaps we wish to fill, otherwise
we shall have to use more than one pass, and it is not certain even then that the information will
propagate correctly from the rim of the damaged region inwards. So, we select to use the 5 × 5
filter.

Since we decided to use a 5 × 5 convolution filter, we must consider the minimum enclosing
rectangle of the area we wish to repair and augment it by a band two-pixels wide all around.
Then we must convolve the augmented sub-image with the filter to produce the first convolution
output. Subsequently, we must use the same sub-image but replace all known pixel values with 1
to create the sampling mask. Next, we must convolve this sampling mask with the low pass filter
to produce the second convolution output. Finally, we must divide the first output with the second
one, pixel by pixel, and round the result to the nearest integer. All stages of this process are shown
in Figure 3.165. Frame 3.165f should be inserted in place of the 0s in frame 3.165a to produce the
repaired image.

What is the error correction method?

It is an interpolation method that relies on the assumption of image stationarity. The algorithm
consists of the following steps.

Step 0: Consider the minimum enclosing rectangle of the damaged region, with a strip of at least
one pixel wide all around it, consisting of pixels with valid values.

Step 1: Create the sampling mask S such that it is the same size as the sub-image you constructed in
step 1 and it has value 1 at the positions where valid pixel values exist and value 0 at the positions
where pixel values have to be assigned.

Step 2: Interpolate the sub-image you identified in step 1 by using any simple interpolation method,
e.g. nearest neighbour interpolation. You can do that by considering each point marked with 0
in mask S and computing its distance from all points in the mask marked with 1, keeping track
of the smallest distance so far. At the end, assign to the selected pixel the value of the pixel at the
site with the smallest distance. Call the interpolated sub-image you create this way I0.

Step 3: Take the DFT of I0. Call it Î0.
Step 4: Set the amplitudes of all frequencies above a certain pair of cut-off frequency indices (m0,n0)

equal to 0. Call the result Ĩ0.
Step 5: Take the inverse DFT of Ĩ0. Call it I1.
Step 6: Compare I1 with I0 point by point, only at the places where the sampling mask has value 1.

Thus, create array E0, with elements E0(i, j) = S(i, j)[I0(i, j) − I1(i, j)].
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Figure 3.168 (a) The image that is to be repaired with 0 values assigned to the damaged pixels. The black
frame identifies the sub-image that is to be convolved with the low pass filter. (b) The sampling mask of the
image, with 1 indicating the places with valid pixel values. (c) The result of convolving the subimage
indicated by the thick black frame in (a) with mask 3.167b. (d) The result of convolving the sub-image
indicated by the thick black frame in (b) with mask 3.167b. (e) The result of dividing (c) with (d) point by
point. (f) The result of rounding (e) to the nearest integer.

Step 7: Interpolate the error array E0, using the same interpolation method you used in step 2, to
assign values to the elements of E0 marked with 0 in sampling mask S, and thus create array E1.

Step 8: Use array E1 to correct array I1 and form array I2 = I1 + E1.
Step 9: Take the DFT of I2. Call it Î2.
Step 10: Set the amplitudes of all frequencies above a certain pair of cut-off frequency indices

(m1,n1) equal to 0. Call the result Ĩ2.
Step 11: Take the inverse DFT of Ĩ2. Call it I3.
Step 12: Compare I3 with I2 point by point, only at the places where the sampling mask has value

1. Thus, create array E2, with elements E2(i, j) = S(i, j)[I0(i, j) − I2(i, j)].
Step 13: Use array E2 to correct array I3 and form array I4 = I2 + E2.

You can carry on this way until the error array you compute has all its elements below a certain
threshold, in which case you may consider that the algorithm has converged. After the algorithm
has converged, you should round the pixel values to the nearest integer.

The philosophy of this algorithm is the following. In step 2, where we perform the nearest neigh-
bour interpolation, we effectively know that we mess up the high frequencies of the image, as we
actually create our 0th order estimate from flat patches. So, when we take its DFT, we know that
the high frequency content of this estimate is wrong, and we set it to 0 in step 4. This way, however,
we damage also the pixels that had correct values to begin with. We work out how much the error
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is in those locations (step 6), and we interpolate the error (step 7) in order to correct the estimates
in the other locations (step 8). This loop is repeated until convergence.

The key parameters of this algorithm is the cut-off frequency pairs (m0,n0), (m1,n1), etc. This
might have to be determined by trial and error, or by considering the spectrum of an undamaged
window of the image from which the highest image frequency is inferred.

What is the non-parametric Markov random field method for texture repair?

It is a family of methods inspired by the Efros and Leung algorithm, and its variations. We give
here the original algorithm, on which many subsequent algorithms are based.

Step 1: Select the size of the Markov neighbourhood you will use for a pixel. Let us call it M × M.
Step 2: Consider a pixel without value, which, however, has a valid Markov neighbourhood, even

if it is incomplete.
Step 3: Scan the part of the image with valid values, using an M × M window, and compute the

similarity of the Markov neighbourhood of the pixel with every such window. As a measure of
similarity use a weighted sum of square differences, with the weights computed from a Gaussian
function (see Example 3.171).

Step 4: Assign to the pixel the grey value of the focal pixel of the most similar M × M image patch
you found.

Step 5: When a pixel has been assigned a value, treat it as one of the original pixels, so that the
pattern grows inwards from the borders of the region under repair.

In subsequent versions, the most important improvements of this algorithm have been the fol-
lowing:

i) Once the best partial neighbourhood of the pixel being repaired has been identified, the values
of a whole patch (possibly the full missing neighbourhood) are copied and not just the value
of the focal pixel.

ii) The order of treating the damaged pixels is selected so that damaged pixels that border valid pix-
els forming the endings of image lines or edges are treated first, for the continuity of those lines
or edges to be preserved when valid values are propagated towards the centre of the damaged
region.

Example 3.171

Figure 3.169a shows the incomplete Markov neighbourhood of a pixel that is to be
restored. Figure 3.169b shows the mask that identifies the pixels with and without
grey values. Figure 3.169c shows an image patch of the same size, where there are
no missing values. Use a Gaussian window to work out the distance between neigh-
bourhoods (a) and (c).

(Continued)
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Example 3.171 (Continued)
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Figure 3.169 The incomplete neighbourhood in (a) has to be compared with the image patch in (c).
In (b), the mask identifying the overlapping part of the two neighbourhoods.
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Figure 3.170 (a) The distances from the centre of all positions of the neighbourhood. (b) The value
of the Gaussian function at each position. (c) The integer valued weights constructed from the values
in (b).

First we must create the Gaussian weights we shall use to work out the weighted difference between
the two neighbourhoods. We are dealing with a 5 × 5 neighbourhood, so the Gaussian mask
should also be of the same size. It will be created by sampling function e−

x2

2𝜎2 . The standard devi-
ation 𝜎 of this Gaussian function determines the relative importance we give to the matching of
the various neighbours. Let us say that we would like neighbours that are at distance 1 from the
focal pixel to weigh twice as much as neighbours that are at distance 2. So, we want:

e−
12

2𝜎2

e−
22

2𝜎2

= 2 ⇒ e
3

2𝜎2 = 2 ⇒
3

2𝜎2 = ln 2 ⇒ 𝜎2 = 3
2 ln 2

= 2.164 (3.501)

Figure 3.170a shows the value of x to be used in the exponent of e−
x2

2𝜎2 for each position of the
5 × 5 grid. The corresponding value of the Gaussian mask is shown in 3.170b. To avoid having to
deal with real numbers, we multiply the weights with 100 and round them to the nearest integer,
as shown in 3.170c.

Let us denote by (i0, j0) the index of the pixel under repair. Let us also denote by (k, l) the centre of
the patch with which we compare its neighbourhood. Let us call g(i, j) the weight of the Gaussian
mask at the (i, j) position, assuming that these indices take values in the range [−2, 2]. Finally, let
us call m(i, j) the value of the mask, as given in 3.169b, which tells us whether position (i, j) has a
value assigned (m(i, j) = 1), or not (m(i, j) = 0). We may then compute the distance between the
two neighbourhoods as follows:

D((i0, j0), (k, l)) ≡
∑2

i=−2
∑2

j=−2 m(i0 + i, j0 + j)g(i, j)
[
I(i0 + i, j0 + j) − I(k + i, l + j)

]2∑2
i=−2
∑2

j=−2 m(i0 + i, j0 + j)g(i, j)
. (3.502)
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Here I(i, j) is the grey value of the image in position (i, j). Note that the use of the mask, which
indicates which pixels have values and which not, avoids the contribution of pixels with damaged
values. The use of the mask and of partial neighbourhoods allows us also to deal with pixels near
the border of the image. For example, we may augment the image with a strip of 2 pixels all
around, so even border pixels have geometrically complete neighbourhoods, and give to the pixels
we add any value we like, as long as we also augment the corresponding mask that marks the
pixels with valid values, and give to the added pixels value 0 in the mask.

In this example, the distance of the two neighbourhoods is:(
12 × 40 + 32 × 79 + 32 × 31 + 11 × 63 + 12 × 79 + 22 × 63

+12 × 16 + 12 × 31 + 12 × 40 + 42 × 31 + 12 × 16
)
∕

(40 + 79 + 31 + 63 + 79 + 63 + 16 + 31 + 40 + 31 + 16) = 2023
489

= 4.13. (3.503)

What is the “take home” message of this chapter?

This chapter has described some methods used for characterising textures. It was concerned with
texture samples that were isolated, i.e. it assumed that the whole image (or texture sample) was
filled with the same texture pattern.

Some of the methods discussed are also appropriate for creating texture patters. These are, for
example, the Markov random field method and the Gibbs distribution method. However, it was
shown that the parameters that control these methods are not robust enough to allow one-to-one
mapping between patterns and parameter sets. There are many reasons for that.

1. The parameters computed rely on the model assumed, e.g. the size of the Markovian neighbour-
hood. This is not always easy to determine a priori.

2. The neighbourhood used must not be self-contradictory. We saw examples where it was not
possible to get repeatable patterns because the neighbourhoods we used were not expressible
in terms of clique potentials, i.e. the “Markov random fields” they supposingly defined did not
correspond to any Gibbs distribution. A neighbourhood is self-consistent when pixels which are
neighbours of each other in a particular relative position always interact in the same way. This
was not the case in some of the examples we discussed in the section on Markov random fields.

3. The methods used to estimate the parameters rely on the number of samples available for each
combination of neighbourhoods. Given that the samples of textures we use are limited in size,
we are forced to re-quantise the grey values in order to increase the number of distinct neigh-
bourhood structures and thus compute reliable statistics from them.

In short, no model fits the observed textures perfectly, and so no model parameters are perfect in
capturing all characteristics of a texture pattern. However, one has to remember that the estimated
parameters do not have to be adequate for reproducing the pattern in order for these parameters to
allow the discrimination of different textures. All one needs is to compute some numbers that rep-
resent a texture without necessarily capturing all aspects of the pattern for its reproduction. Fractal
features are far from unique descriptors of textures, but in conjunction with other descriptors they
may help solve problems of texture discrimination.

On the contrary, non-parametric methods, such as co-occurrence matrices, tend to be more suc-
cessful. In particular, several studies have shown that the use of the elements of the co-occurrence
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matrix itself and in particular ratios of element values are excellent texture discriminators. Features
defined from the co-occurrence matrix, such as contrast, homogeneity, etc. are popular because of
the perceptual meaning they have. However, they are not adequate for texture and object discrimi-
nation as they throw away most of the information conveyed by the co-occurrence matrices. Often
people identify the use of co-occurrence matrices with the use of such features and thus draw the
wrong conclusions about the usefulness of co-occurrence matrices to texture discrimination.

Finally, we discussed methods of repairing damaged textures. We saw that by far the most pow-
erful such methods are those based on the use of non-parametric random fields, while statistical
methods, like Kriging, are suitable for random textures.
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4

Non-stationary Grey Texture Images

What is a non-stationary texture image?

A non-stationary texture image is a texture image that contains more than one type of texture in
it. The problem we are interested in then is that of texture segmentation, i.e. the division of the
image into regions each of which is occupied by a single texture type.

What is this chapter about?

This chapter is about the development of methodology that allows the extraction of localised tex-
ture information that may be used to characterise an image locally and so allow the identification
of different texture patches in it.

Why can’t we use the methods developed in the previous chapter here?

The methods developed in the previous chapter are global methods assuming that the whole image
is filled up by a single texture. Some of those methods may be applied locally. In such a case, we
simply choose local image windows and treat the parts of the image inside the windows as sepa-
rate images, with supposedly uniform texture, to which the methodology developed for stationary
textures is applicable.

How can we be sure that the texture inside an image window is stationary?

We cannot be sure. To minimise the risk of having windows that contain two or more different
textures, we have to choose windows as small as possible. However, texture is a spatial property,
so we need to have windows large enough to capture the texture characteristics by the performed
analysis. This contradiction in requirements is known as the uncertainty principle in image
processing and it is related to the well known uncertainty principle in signal processing.

4.1 The Uncertainty Principle and its Implications in Signal
and Image Processing

What is the uncertainty principle in signal processing?

In plain language, the uncertainty principle in signal processing tells us that we cannot simul-
taneously know “what happens when”. Something “happens” when something changes: for
example, we hear something if something vibrates. “What happens”, therefore, is associated with

Image Processing: Dealing with Texture, Second Edition. Maria Petrou and Sei-ichiro Kamata.
© 2021 John Wiley & Sons Ltd. Published 2021 by John Wiley & Sons Ltd.
Companion Website: www.wiley.com/go/kamataText2

http://www.wiley.com/go/kamataText2
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frequencies that indicate motion, change, variation, vibration, etc. Of course, in order to have a
complete picture, we need to know the exact time this event is happening. However, if we know
the exact time, we cannot measure frequency, i.e. change, i.e. “what happens”. If we allow for a
time duration, we can measure frequency, i.e. we can identify “what happened”, but we do not
know exactly when it happened since all we know is that it happened during the particular time
interval we considered. Formally this is expressed as

(Δt)2(Δ𝜔)2 ≥ 1
4

(4.1)

where Δt is the duration of the signal we consider and Δ𝜔 is its bandwidth in the frequency
domain. The uncertainty principle then says: the product of the spectral bandwidth multiplied
with the time duration of a signal cannot be less than a certain minimum value.

Note that here the definition of bandwidth we use is not the classical definition used in signal
processing, where the bandwidth of the signal is defined as Δ𝜈 where 𝜈 = 𝜔∕(2π). This is no prob-
lem, as long as we are consistent in our notation and definitions. Obviously, in terms of 𝜈, the
uncertainty principle is stated as

(Δt)2(Δ𝜈)2 ≥ 1
16π2 . (4.2)

Example B4.1

Show that if F(𝜔) is the Fourier transform of a function f (t), the Fourier transform of
the derivative of the function, f ′(t), is j𝜔F(𝜔).
By definition:

F(𝜔) ≡ ∫
∞

−∞
f (t)e−j𝜔tdt. (4.3)

The inverse Fourier transform allows us to write:

f (t) = 1
2π ∫

∞

−∞
F(𝜔)ej𝜔td𝜔. (4.4)

To differentiate an integral with respect to a parameter, we use Leibniz’s rule. Assume that we
have the integral

I(𝜆) ≡ ∫
𝛽(𝜆)

𝛼(𝜆)
f (x; 𝜆)dx (4.5)

and we need its derivative with respect to 𝜆. Leibniz’s rule says that this is given by:

dI(𝜆)
d𝜆

= d𝛽(𝜆)
d𝜆

f (𝛽(𝜆); 𝜆) − d𝛼(𝜆)
d𝜆

f (𝛼(𝜆); 𝜆) + ∫
𝛽(𝜆)

𝛼(𝜆)

𝜕f (x; 𝜆)
𝜕𝜆

dx. (4.6)

If we differentiate both sides of (4.4) with respect to t, by applying Leibniz’s rule, we obtain
df (t)

dt
= 1

2π ∫
∞

−∞
F(𝜔)j𝜔ej𝜔td𝜔 (4.7)

or after some rearrangement:

f ′(t) = 1
2π ∫

∞

−∞
[F(𝜔)j𝜔]ej𝜔td𝜔. (4.8)

For this equation to be right, the quantity inside the square brackets must be the Fourier transform
of f ′(t). This proves the theorem.



�

� �

�

4.1 The Uncertainty Principle and its Implications in Signal and Image Processing 373

Example B4.2

Show that if F(𝜔) is the Fourier transform of f (t), then the Fourier transform of the
complex conjugate of f (t), f ∗(t), is F∗(−𝜔).
Take the complex conjugate of both sides of Equation (4.4):

f ∗(t) = 1
2π ∫

∞

−∞
F∗(𝜔)e−j𝜔td𝜔. (4.9)

We may define a new variable of integration �̃� as �̃� ≡ −𝜔, so we may write

f ∗(t) = 1
2π ∫

−∞

∞
F∗(−�̃�)ej�̃�t(−d�̃�) (4.10)

which upon changing the order of the limits of integration and dropping the tilde from the dummy
variable �̃�, becomes:

f ∗(t) = 1
2π ∫

∞

−∞
F∗(−𝜔)ej𝜔td𝜔. (4.11)

This equation is only valid if F∗(−𝜔) is the Fourier transform of f ∗(t). This proves the theorem.

Example B4.3

If F(𝜔) is the Fourier transform of f (t), show that the Fourier transform of f (t)f ∗(t) is
1

2π
∫ ∞
−∞ F(u)F∗(u − 𝜔)du.

From the result of Example 4.2 we have:

f (t) = 1
2π ∫

∞

−∞
F(𝜔)ej𝜔td𝜔 f ∗(t) = 1

2π ∫
∞

−∞
F∗(−𝜔)ej𝜔td𝜔. (4.12)

To prove the conjecture we must show that the inverse Fourier transform of

1
2π ∫

∞

−∞
F(u)F∗(u − 𝜔)du (4.13)

is f (t)f ∗(t).
Let us consider the inverse Fourier transform of (4.13):

1
2π ∫

∞

−∞

[
1

2π ∫
∞

−∞
F(u)F∗(u − 𝜔)du

]
ej𝜔td𝜔. (4.14)

We define a new variable of integration 𝑣 ≡ 𝜔 − u. Then 𝜔 = u + 𝑣, d𝜔 = d𝑣 and the above
expression takes the form:

1
2π ∫

∞

−∞

[
1

2π ∫
∞

−∞
F(u)F∗(−𝑣)du

]
ej(u+𝑣)td𝑣.

Since ej(u+𝑣)t = ejutej𝑣t , we may easily separate the double integral into a product of two single
integrals:{

1
2π ∫

∞

−∞
F(u)ejutdu

}{
1

2π ∫
∞

−∞
F∗(−𝑣)ej𝑣td𝑣

}
. (4.15)

By comparison with Equations (4.12) we recognise that the above expression is the product
f (t)f ∗(t), which proves the conjecture.
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Example B4.4

IfF(𝜔) is the Fourier transform of a function f (t), show that

∫
∞

−∞
|f (t)|2dt = 1

2π ∫
∞

−∞
|F(𝜔)|2d𝜔. (4.16)

(Parseval’s theorem).
Example 4.3 showed that if F(𝜔) is the Fourier transform of f (t), the Fourier transform of f (t)f ∗(t)
is 1

2π
∫ ∞
−∞ F(u)F∗(u − 𝜔)du. Let us write this explicitly:

∫
∞

−∞
f (t)f ∗(t)e−j𝜔tdt = 1

2π ∫
∞

−∞
F(u)F∗(u − 𝜔)du. (4.17)

This equation is valid for any value of 𝜔. If we set 𝜔 = 0 we obtain the result we wish to prove.

Example B4.5

Prove that

∫
∞

−∞
f (t)2dt ∫

∞

−∞
g(t)2dt ≥ |||∫ ∞

−∞
f (t)g(t)dt|2 (4.18)

where f (t) and g(t) are some real functions (Schwartz’s inequality).
Let us consider the expression m(x) defined as

m(x) ≡ ∫
∞

−∞
[f (t) + xg(t)]2dt (4.19)

where x is a real variable. If we expand the square in the above definition we may write:

m(x) = ∫
∞

−∞
f (t)2dt + 2x ∫

∞

−∞
f (t)g(t)dt + x2 ∫

∞

−∞
g(t)2dt. (4.20)

Let:

a ≡ ∫
∞

−∞
g(t)2dt b ≡ 2∫

∞

−∞
f (t)g(t)dt c ≡ ∫

∞

−∞
f (t)2dt. (4.21)

Since m(x) is the integral of a square function, m(x) must always be real and positive for all real
values of x:

m(x) = ax2 + bx + c > 0. (4.22)

This is only true if the discriminant of the quadratic expression is non-positive:

b2 − 4ac ≤ 0 ⇒ ac ≥ 1
4

b2. (4.23)

Substituting the expressions for a, b and c from (4.21) in the last expression proves Schwartz’s
inequality.
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Box 4.1 Prove the uncertainty principle in signal processing

Let f (t) be a function and F(𝜔) its Fourier transform, defined by Equation (4.3).
The energy content of the signal is defined as:

E∞ ≡ ∫
∞

−∞
f (t)2dt. (4.24)

From Parseval’s theorem (see Example 4.4), this may be written as:

E∞ = 1
2π ∫

∞

−∞
|F(𝜔)|2d𝜔. (4.25)

The time dispersion of the signal is given by

(Δt)2 ≡ 1
E∞ ∫

∞

−∞
(t − t)2f (t)2dt (4.26)

where t is the centre of gravity of the signal defined as:

t ≡ 1
E∞ ∫

∞

−∞
tf (t)2dt. (4.27)

We may shift the origin of t so that t = 0, in which case:

(Δt)2 = 1
E∞ ∫

∞

−∞
t2f (t)2dt. (4.28)

In an analogous way, the spectral bandwidth of the signal is given by

(Δ𝜔)2 ≡ 1
2πE∞ ∫

∞

−∞
(𝜔 − 𝜔)2|F(𝜔)|2d𝜔 (4.29)

where 𝜔 is the spectral centre of gravity of the signal defined as:

𝜔 ≡ 1
E∞ ∫

∞

−∞
𝜔|F(𝜔)|2d𝜔. (4.30)

For 𝜔 = 0:

(Δ𝜔)2 ≡ 1
2πE∞ ∫

∞

−∞
𝜔2|F(𝜔)|2d𝜔 (4.31)

If f ′(t) is the derivative of the function, its Fourier transform is j𝜔F(𝜔) (see Example 4.1).
By applying Parseval’s theorem to the Fourier pair f ′(t) ↔ j𝜔F(𝜔) we obtain:

∫
∞

−∞
𝜔2|F(𝜔)|2d𝜔 = 2π∫

∞

−∞
f ′(t)2dt. (4.32)

By substituting in Equation (4.31), we have:

(Δ𝜔)2 = 1
E∞ ∫

∞

−∞
f ′(t)2dt (4.33)

(Continued)
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Box 4.1 (Continued)

We use Equations (4.28) and (4.33) to calculate:

(Δt)2(Δ𝜔)2 = 1
E2
∞ ∫

∞

−∞
t2f (t)2dt ∫

∞

−∞
f ′(t)2dt. (4.34)

If we apply Schwartz’s inequality (see Example 4.5), for the integrals on the right-hand side of
(4.34), we obtain:

∫
∞

−∞
t2f (t)2dt ∫

∞

−∞
f ′(t)2dt ≥ |||∫ ∞

−∞
tf (t)f ′(t)dt|2. (4.35)

We may integrate by parts the integral on the right-hand side of (4.35):

∫
∞

−∞
tf (t)f ′(t)dt = 1

2
tf (t)2|||∞−∞ − 1

2 ∫
∞

−∞
f (t)2dt. (4.36)

If limt→∞tf (t)2 = 0, the first term on the right-hand side of (4.36) vanishes and from Equation
(4.24) we have

∫
∞

−∞
tf (t)f ′(t)dt = −1

2
E∞. (4.37)

If we use this in (4.35) and then in (4.34), we obtain:

(Δt)2(Δ𝜔)2 ≥ 1
4
. (4.38)

This is the mathematical statement of the uncertainty principle in signal processing.

Example B4.6

Compute the time dispersion of the Gaussian signal

g(t) = e−
t2

2𝜎2 . (4.39)

This signal is symmetric, so its centre of gravity, t, defined by Equation (4.27) is zero. Therefore,
we may compute its time dispersion by using Equation (4.28). However, first we must compute
the total energy of the signal, using Equation (4.24)

E∞ = ∫
∞

−∞
g(t)2dt = ∫

∞

−∞
e−

(
t
𝜎

)2

dt = 𝜎 ∫
∞

−∞
e−x2 dx =

√
π𝜎 (4.40)

where we changed the variable of integration from t to x ≡ t∕𝜎 and made use of the result of
Example 3.36.

Next we compute the time dispersion of the signal using Equation (4.28)

(Δt)2 = 1√
π𝜎 ∫

∞

−∞
t2e−

(
t
𝜎

)2

dt = 1√
π𝜎
𝜎3 ∫

∞

−∞
x2e−x2 dx = 𝜎2√

π

√
π

2
= 𝜎2

2
(4.41)

where we made the substitution x ≡ t∕𝜎 and used the result of Example 3.37 with
a = 1.



�

� �

�

4.1 The Uncertainty Principle and its Implications in Signal and Image Processing 377

Example B4.7

Compute the spectral bandwidth of the Gaussian signal given by Equation (4.39).
We shall use formula (4.29) with𝜔 = 0 since the signal is real, which implies a symmetric Fourier
spectrum. We shall also make use of the results stated by Equations (4.40) and (3.311):

(Δ𝜔)2 = 1
2π
√
π𝜎 ∫

∞

−∞
𝜔22π𝜎2e−𝜎2𝜔2 d𝜔 = 𝜎√

π
1
𝜎3 ∫

∞

−∞
x2e−x2 dx = 1

2𝜎2 . (4.42)

Here we made the substitution x ≡ 𝜔𝜎 and used the result of Example 3.37.

Example B4.8

Use the results of Examples 4.6 and 4.7 to show that the Gaussian signal has the min-
imal joint uncertainty in terms of being localised in time and having its frequency
content estimated.
By making use of Equations (4.41) and (4.42), we obtain:

(Δt)2(Δ𝜔)2 = 1
4
. (4.43)

Therefore, the Gaussian achieves the minimum in the uncertainty inequality (4.38) of signal pro-
cessing.

Does the window we choose in order to extract local information influence the result?

Yes. We have already seen that the size of the window affects the accuracy of what we compute. The
shape as well as the shift of the window do as well. For example, let us consider a signal g(t) with
Fourier transform G(𝜔). Let us assume that we observe only part of the signal through a window
𝑤(t), with Fourier transform W(𝜔), centred at t0:

h(t) = g(t)𝑤(t − t0). (4.44)

Due to the shifting property of the Fourier transform, the Fourier transform of the window is
e−j𝜔t0 W(𝜔). Since the window multiplies the signal, the Fourier transform of the window is con-
volved with the Fourier transform of the signal. Therefore, the Fourier transform of what we
observe is given by:

H(𝜔) = ∫
∞

−∞
G(𝜔 − u)e−jut0 W(u)du. (4.45)

In general, H(𝜔) is expected to be different from G(𝜔) (which we actually wish to observe), and
depends on the locality of the window t0.

Example B4.9

Compute the Fourier transform of the delta function.
We insert the delta function into the definition formula of the Fourier transform

Δ(𝜔) = ∫
∞

−∞
𝛿(t)e−j𝜔tdt = e−j𝜔t|t=0 = 1 (4.46)

(Continued)
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Example B4.9 (Continued)

where we made use of the following property of the delta function: when the delta function is
integrated with another function from −∞ to ∞, it picks up the value of the other function at the
point where the argument of the delta function is zero. In this particular case, the argument of
the delta function is t and it is zero at t = 0.

Example B4.10

Prove that:

𝛿(x) = 1
2π ∫

∞

−∞
ejxydy. (4.47)

If we take the inverse Fourier transform of (4.46), we have 𝛿(t) = 1
2π
∫ ∞
−∞ 1ej𝜔td𝜔, which proves

the conjecture if we replace t by x and 𝜔 by y.

Example 4.11

Consider a signal g(t) = A sin𝜔0t, where A is a positive constant, and a window 𝑤(t)
defined as:

𝑤(t) =
{

1 if t1 ≤ t ≤ t2
0 elsewhere

. (4.48)

Compute the estimate of the Fourier transform of the signal obtained when seen
through this window and compare it with the true Fourier transform of the signal.
We start by computing first the true Fourier transform of the signal. The signal may be written as:

g(t) = A sin𝜔0t = A
2j
(ej𝜔0t − e−j𝜔0t). (4.49)

Then its Fourier transform is given by

G(𝜔) = ∫
∞

−∞
g(t)e−j𝜔tdt

= A
2j ∫

∞

−∞
(ej𝜔0t − e−j𝜔0t)e−j𝜔tdt

= A
2j ∫

∞

−∞
ej(𝜔0−𝜔)tdt − A

2j ∫
∞

−∞
e−j(𝜔0+𝜔)tdt

= A
2j

2π𝛿(𝜔0 − 𝜔) −
A
2j

2π𝛿(𝜔0 + 𝜔)

= −jAπ𝛿(𝜔0 − 𝜔) + jAπ𝛿(𝜔0 + 𝜔) (4.50)

where we made use of the result of Example 4.10, the property of delta function 𝛿(−t) = 𝛿(t), and
the fact that 1∕j = −j.

Next we compute the Fourier transform of the windowed signal

H(𝜔) = ∫
t2

t1

A sin𝜔0te−j𝜔tdt
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= A∫
t2

t1

sin𝜔0t cos𝜔tdt − jA∫
t2

t1

sin𝜔0t sin𝜔tdt

= A
2 ∫

t2

t1

sin(𝜔0 + 𝜔)tdt + A
2 ∫

t2

t1

sin(𝜔0 − 𝜔)tdt

−j A
2 ∫

t2

t1

cos(𝜔0 − 𝜔)tdt + j A
2 ∫

t2

t1

cos(𝜔0 + 𝜔)tdt (4.51)

where we have used the trigonometric identities:

sin A cos B = 1
2

sin(A + B) + 1
2

sin(A − B)

sin A sin B = 1
2

cos(A − B) − 1
2

cos(A + B). (4.52)

Upon integration we obtain:

H(𝜔) =
[
−A

2
cos(𝜔0 + 𝜔)t
𝜔0 + 𝜔

− A
2

cos(𝜔0 − 𝜔)t
𝜔0 − 𝜔

|||t2

t1

+
[
−j A

2
sin(𝜔0 − 𝜔)t
𝜔0 − 𝜔

+ j A
2

sin(𝜔0 + 𝜔)t
𝜔0 + 𝜔

|||t2

t1

= −A
2

[cos(𝜔0 + 𝜔)t2

𝜔0 + 𝜔
−

cos(𝜔0 + 𝜔)t1

𝜔0 + 𝜔
+

cos(𝜔0 − 𝜔)t2

𝜔0 − 𝜔
−

cos(𝜔0 − 𝜔)t1

𝜔0 − 𝜔
+

j
sin(𝜔0 − 𝜔)t2

𝜔0 − 𝜔
− j

sin(𝜔0 − 𝜔)t1

𝜔0 − 𝜔
− j

sin(𝜔0 + 𝜔)t2

𝜔0 + 𝜔
+ j

sin(𝜔0 + 𝜔)t1

𝜔0 + 𝜔

]
.

(4.53)

If we use the trigonometric identities

cos A − cos B = 2 sin A + B
2

sin B − A
2

sin A − sin B = 2 cos A + B
2

sin A − B
2

(4.54)

we may re-write this result as

H(𝜔) = −A
2

[
2

𝜔0 + 𝜔
sin

(𝜔0 + 𝜔)t2 + (𝜔0 + 𝜔)t1

2
sin

(𝜔0 + 𝜔)t1 − (𝜔0 + 𝜔)t2

2

+ 2
𝜔0 − 𝜔

sin
(𝜔0 − 𝜔)t2 + (𝜔0 − 𝜔)t1

2
sin

(𝜔0 − 𝜔)t1 − (𝜔0 − 𝜔)t2

2

+j 2
𝜔0 − 𝜔

cos
(𝜔0 − 𝜔)t2 + (𝜔0 − 𝜔)t1

2
sin

(𝜔0 − 𝜔)t2 − (𝜔0 − 𝜔)t1

2

−j 2
𝜔0 + 𝜔

cos
(𝜔0 + 𝜔)t2 + (𝜔0 + 𝜔)t1

2
sin

(𝜔0 + 𝜔)t2 − (𝜔0 + 𝜔)t1

2

]
= A
𝜔0 + 𝜔

sin(𝜔0 + 𝜔)
t1 + t2

2
sin(𝜔0 + 𝜔)

t2 − t1

2

+ A
𝜔0 − 𝜔

sin(𝜔0 − 𝜔)
t1 + t2

2
sin(𝜔0 − 𝜔)

t2 − t1

2

−j A
𝜔0 − 𝜔

cos(𝜔0 − 𝜔)
t2 + t1

2
sin(𝜔0 − 𝜔)

t2 − t1

2

+j A
𝜔0 + 𝜔

cos(𝜔0 + 𝜔)
t2 + t1

2
sin(𝜔0 + 𝜔)

t2 − t1

2
. (4.55)

(Continued)
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Example 4.11 (Continued)

This expression makes explicit the dependence of the result on the length of the window,
t2 − t1 ≡ 2𝜏 , and on the locality of the window (t2 + t1)∕2 ≡ t0:

H(𝜔) = A
𝜔0 + 𝜔

sin(𝜔0 + 𝜔)t0 sin(𝜔0 + 𝜔)𝜏

+ A
𝜔0 − 𝜔

sin(𝜔0 − 𝜔)t0 sin(𝜔0 − 𝜔)𝜏

−j A
𝜔0 − 𝜔

cos(𝜔0 − 𝜔)t0 sin(𝜔0 − 𝜔)𝜏

+j A
𝜔0 + 𝜔

cos(𝜔0 + 𝜔)t0 sin(𝜔0 + 𝜔)𝜏. (4.56)

Figures 4.1–4.3 demonstrate this result for a signal with 𝜔0 = 5 and A = 2. Figure 4.1 shows
the continuous signal and its Fourier transform in the form of real and imaginary parts, and
magnitude and phase. Figure 4.2 shows various windowed parts of the signal and their corre-
sponding Fourier transforms in the form of real and imaginary parts. Figure 4.3 is the same as
Figure 4.2, but it shows the magnitude and phase of each Fourier transform. These Fourier trans-
forms should be compared with their counterparts in Figure 4.1 in order to appreciate the effect
of both the size of the window and the locality of the window. In all cases the main peaks, which
correspond to delta function impulses at 𝜔 = ±5 in the continuous case, are preserved, but they
are blunt, with secondary peaks appearing even when a reasonably long part of the signal is win-
dowed. In a real situation, when the signal is more complicated than a simple sinusoid, and when
we do not know its true nature, we may have difficulty in separating the true peaks from the false
secondary ones.
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Figure 4.1 A continuous function (a), and the real part (b), imaginary part (c), magnitude (d) and
phase (e) of its Fourier transform.
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Figure 4.2 The effects of a rectangular window: windowed parts of the signal (first column) and the
corresponding real and imaginary parts of their Fourier transforms (second and third columns). From
top to bottom: (𝜏 = 1, t0 = 0), (𝜏 = 1, t0 = 1.6), (𝜏 = 1.5, t0 = 0), (𝜏 = 1.5, t0 = 1.6), (𝜏 = 2.5, t0 = 0),
(𝜏 = 2.5, t0 = 1.6), respectively.
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Figure 4.3 The effects of a rectangular window: windowed parts of the signal (first column) and the
corresponding magnitude and phase of their Fourier transforms (second and third columns). From top
to bottom: (𝜏 = 1, t0 = 0), (𝜏 = 1, t0 = 1.6), (𝜏 = 1.5, t0 = 0), (𝜏 = 1.5, t0 = 1.6), (𝜏 = 2.5, t0 = 0),
(𝜏 = 2.5, t0 = 1.6), respectively.
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Example 4.12

Repeat Example 4.11 using a Gaussian instead of a rectangular window.
A Gaussian window is infinite in extent, so it is characterised by its locality t0 and its standard
deviation, which in this context is called “spread” and is denoted by 𝜏:

𝑤(t) = e
(t−t0 )2

2𝜏2 . (4.57)

Equation (4.51) now takes the form:

H(𝜔) = ∫
∞

−∞
A sin𝜔0te−

(t−t0 )2

2𝜏2 e−j𝜔tdt

= A
2j ∫

∞

−∞
(ej𝜔0t − e−j𝜔0t)e−

(t−t0 )2

2𝜏2 e−j𝜔tdt

= A
2j ∫

∞

−∞
e−

(t−t0 )2

2𝜏2 +j(𝜔0−𝜔)tdt − A
2j ∫

∞

−∞
e−

(t−t0 )2

2𝜏2 −j(𝜔0+𝜔)tdt

= A
2j ∫

∞

−∞
e−

t2+t20−2tt0
2𝜏2 +j(𝜔0−𝜔)tdt

−A
2j ∫

∞

−∞
e−

t2+t20−2tt0
2𝜏2 −j(𝜔0+𝜔)tdt

= A
2j ∫

∞

−∞
e−

(
t√
2𝜏

)2
+t
(

t0
𝜏2 +j(𝜔0−𝜔)

)
−

t20
2𝜏2 dt

−A
2j ∫

∞

−∞
e−

(
t√
2𝜏

)2
+t
(

t0
𝜏2 −j(𝜔0+𝜔)

)
−

t20
2𝜏2 dt. (4.58)

We may compute this integral by completing the square in the exponent:

H(𝜔) =
A
2j ∫

∞

−∞
e−

(
t√
2𝜏

)2
+2

(
t√
2𝜏

)
1
2

√
2𝜏
(

t0
𝜏2 +j(𝜔0−𝜔)

)
−
(

t0√
2𝜏
+ 𝜏j(𝜔0−𝜔)√

2

)2
+
(

t0√
2𝜏
+ 𝜏j(𝜔0−𝜔)√

2

)2
−

t20
2𝜏2 dt

−A
2j ∫

∞

−∞
e−

(
t√
2𝜏

)2
+2

(
t√
2𝜏

)
1
2

√
2𝜏
(

t0
𝜏2 −j(𝜔0+𝜔)

)
−
(

t0√
2𝜏
− 𝜏j(𝜔0+𝜔)√

2

)2
+
(

t0√
2𝜏
− 𝜏j(𝜔0+𝜔)√

2

)2
−

t20
2𝜏2 dt =

A
2j

e
(

t0√
2𝜏
+ 𝜏j(𝜔0−𝜔)√

2

)2
−

t20
2𝜏2 ∫

∞

−∞
e−

(
t√
2𝜏
−
(

t0√
2𝜏
+ 𝜏j(𝜔0−𝜔)√

2

))2

dt

−A
2j

e
(

t0√
2𝜏
− 𝜏j(𝜔0+𝜔)√

2

)2
−

t20
2𝜏2 ∫

∞

−∞
e−

(
t√
2𝜏
−
(

t0√
2𝜏
− 𝜏j(𝜔0+𝜔)√

2

))2

dt.

(4.59)

(Continued)
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Example 4.12 (Continued)

Then, by changing variables of integration and making use of the result of Example 3.36, we
obtain:

H(𝜔) = A
2j

e
(

t0√
2𝜏
+ 𝜏j(𝜔0−𝜔)√

2

)2
−

t20
2𝜏2
√

2𝜏 ∫
∞

−∞
e−x2 dx

−A
2j

e
(

t0√
2𝜏
− 𝜏j(𝜔0+𝜔)√

2

)2
−

t20
2𝜏2
√

2𝜏 ∫
∞

−∞
e−x2 dx

= A
2j

e
(

t0√
2𝜏
+ 𝜏j(𝜔0−𝜔)√

2

)2
−

t20
2𝜏2
√

2𝜏
√
π

−A
2j

e
(

t0√
2𝜏
− 𝜏j(𝜔0+𝜔)√

2

)2
−

t20
2𝜏2
√

2𝜏
√
π. (4.60)

Remembering that j2 = −1 and that 1∕j = −j, we may re-arrange this result:

H(𝜔) = −j
A𝜏

√
π√

2
e−

𝜏2 (𝜔0−𝜔)2

2
+jt0(𝜔0−𝜔)

+j
A𝜏

√
π√

2
e−

𝜏2 (𝜔0+𝜔)2

2
−jt0(𝜔0+𝜔). (4.61)

We may separate the real and the imaginary parts by expanding the complex exponentials:

H(𝜔) = −j
A𝜏

√
π√

2
e−

𝜏2 (𝜔0−𝜔)2

2 (cos t0(𝜔0 − 𝜔) + j sin t0(𝜔0 − 𝜔))

+j
A𝜏

√
π√

2
e−

𝜏2 (𝜔0+𝜔)2

2 (cos t0(𝜔0 + 𝜔) − j sin t0(𝜔0 + 𝜔))

=
A𝜏

√
π√

2

(
e−

𝜏2 (𝜔0−𝜔)2

2 sin t0(𝜔0 − 𝜔) + e−
𝜏2 (𝜔0+𝜔)2

2 sin t0(𝜔0 + 𝜔)
)

−j
A𝜏

√
π√

2

(
e−

𝜏2 (𝜔0−𝜔)2

2 cos t0(𝜔0 − 𝜔) − e−
𝜏2 (𝜔0+𝜔)2

2 cos t0(𝜔0 + 𝜔)
)
.

(4.62)

Figures 4.4 and 4.5 show the corresponding results to those shown in Figures 4.2 and 4.3 for the
rectangular window, respectively. Comparing these two sets of results we see that the shape of the
window we use to estimate the Fourier transform of the signal does affect our estimate. The use of
the Gaussian window eliminated all secondary peaks in the Fourier transform of the windowed
signal.
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Figure 4.4 The effects of a Gaussian window: windowed parts of the signal (first column) and the
corresponding real and imaginary parts of their Fourier transforms (second and third columns). From
top to bottom: (𝜏 = 1, t0 = 0), (𝜏 = 1, t0 = 1.6), (𝜏 = 1.5, t0 = 0), (𝜏 = 1.5, t0 = 1.6), (𝜏 = 2.5, t0 = 0),
(𝜏 = 2.5, t0 = 1.6), respectively.

(Continued)
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Example 4.12 (Continued)
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Figure 4.5 The effects of a Gaussian window: windowed parts of the signal (first column) and the
corresponding magnitude and phase of their Fourier transforms (second and third columns). From top
to bottom: (𝜏 = 1, t0 = 0), (𝜏 = 1, t0 = 1.6), (𝜏 = 1.5, t0 = 0), (𝜏 = 1.5, t0 = 1.6), (𝜏 = 2.5, t0 = 0),
(𝜏 = 2.5, t0 = 1.6), respectively.
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How can we estimate “what is happening where” in a digital signal?

The simplest way is to consider segments of the signal and compute the discrete Fourier transform
(DFT) of each segment. This is called short time Fourier transform. If we consider a window of
odd size and associate the DFT we compute inside it with the sample at the centre of the window,
we shall be associating with each sample of the signal a “small” Fourier transform (“small” in this
case means equal in length to the length of the window used).

The problem with this method is that by taking a piece of the signal at a time is equivalent to using
a rectangular window. Such a window has sharp edges. When we compute the Fourier transform of
a discrete signal, we make the implicit assumption that the signal is repeated periodically outside
the window. This immediately introduces this repetition frequency. If the starting part of the win-
dowed signal is different from the ending part, when the two parts are placed next to each other,
a sudden jump is created. This induces high frequencies in the Fourier domain. In the continuous
case this manifests itself in the form of side ripples appearing in the computed Fourier transform
(see for example Figures 4.2 and 4.3).

This is shown schematically in Figure 4.6 where we show an infinitely long windowed signal and
the signals for which DFT is computed for six different positions of the same window.

Example 4.13

Use the short time Fourier transform to compute local features of the signal
defined by

g(n) = A sin 2πn
N

for n = 0, 1, 2, ...,T (4.63)

where N = 10, T = 127 and A = 5.
Let us consider a window of length 2M + 1. The first sample on which we can place the centre of
the window is sample number M, and the last is sample number T − M, as otherwise part of the

(Continued)

Figure 4.6 At the top an infinitely long signal
with parts of it seen through six different
positions of the same rectangular window
explicitly shown. Below that we can see the
signals which DFT “sees” for each different
location of the window. The variety of the signals
will be reflected in the variety of DFTs that will
be computed, and ultimately in the variability of
the features that will be extracted to characterise
the signal locally.
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Example 4.13 (Continued)

window will “stick out” of the signal. At each position n of the window we compute the short time
Fourier transform

F(k;n) = 1√
2M + 1

M∑
m=−M

A sin 2π(n + m)
N

e−j 2πkm
2M+1

= A√
2M + 1

M∑
m=−M

sin 2π(n + m)
N

cos 2πkm
2M + 1

−j A√
2M + 1

M∑
m=−M

sin 2π(n + m)
N

sin 2πkm
2M + 1

(4.64)

for n = M,… ,T − M.
This way, each sample n is associated with 2 × (2M + 1) numbers, the values of the real and

imaginary parts of the short time Fourier transform computed when the centre of the window
is placed at n. This is schematically shown in Figure 4.7 for some values of n and for M = 8.
Each one of these numbers may be thought of as a feature of the signal computed locally. We may
plot the value of each feature as a function of n, remembering that due to border effects the first
and the last M samples do not have feature values associated with them. Figure 4.8 shows all
34(= 2 × (2 × 8 + 1)) feature sequences computed from the original signal, which is shown at the
top of each panel. Figure 4.8a shows the real parts of the Fourier transforms, while Figure 4.8b
shows the corresponding imaginary parts.

Often, instead of the raw values of the real and imaginary parts of the Fourier transform at
different frequencies, we use the magnitude and phase of the computed Fourier transform. In
Chapter 3 we saw that one cannot extract useful features from the wrapped phase. So, we use
only the magnitude information here. The corresponding 34 sequences of features produced this
way are shown in Figure 4.9. In all these figures the first and last eight samples, which do not
have a feature value computed for them, are given value 0.

A B

Imaginary
part of the
Short DFT

Real part
of the

Short DFT

Imaginary
part of the
Short DFT

Real part
of the

Short DFT

Imaginary
part of the
Short DFT

Real part
of the

Short DFT

Figure 4.7 At the bottom an original signal with three different positions of the same rectangular
window shown explicitly. At the central sample of each window we assign the real and imaginary
parts of the short time Fourier transform we compute inside the window. If we read the numbers
inside the corresponding panels along line AB and plot them as functions of the position of the
window, we create feature sequences of the original signal, two for each frequency, coming from the
real and the imaginary parts of the Fourier transform. By changing the position of line AB we can
create different feature sequences.
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Figure 4.8 Feature sequences obtained from the real (a) and the imaginary (b) part of the short time
Fourier transform. The original signal is shown at the top.

Figure 4.9 Feature sequences obtained from the
magnitude of the short time Fourier transform. The
original signal is shown at the top of the figure.
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How can we deal with the variability of the values of a feature?

From the results of Example 4.13 we notice that most of the 34 features show great variability in
the values they take from one location to the other, in spite of the fact that they are supposed to
characterise the same signal. Such variability is undesirable because we wish to have features that
change value only when the signal changes, so that we can detect this change. If we use a window of
length 2M + 1, there are 2M + 1 different positions inside the window at which a particular sample
may find itself, as the window is shifted across the signal. Thus, there will be 2M + 1 different
signals the DFT algorithm “sees” when it is applied. Figure 4.6 demonstrates some of these different
signals for a particular example. Due to this effect, if we use the components of the power spectrum
associated with each sample to characterise the signal locally, these components will exhibit a lot of
variation from one location to the next, in spite of the fact that they refer to the same signal. To have
features that are invariant to the relative position of the sample inside the window, we may average
over all relative positions of the particular sample. This is equivalent to taking the average value of
the particular feature over the neighbouring 2M + 1 samples around the sample of interest. This is
schematically shown in Figure 4.10.

Example 4.14

Plot signal

g(n) =
⎧⎪⎨⎪⎩

A sin 2πn
N1

for n = 0, 1, 2, ...,T1

A sin 2πn
N2

for n = T1 + 1,… ,T
(4.65)

Figure 4.10 This figure shows a digital signal scanned by a
window 15 samples long. The black vertical line inside the
window marks the centre of the window. If we fix our attention to
a particular sample of the signal, highlighted with the grey
vertical strip, as the window is shifted along the signal, this
sample finds itself in all possible relative positions with respect
to the centre of the window. Therefore, to have features invariant
to this relative position, we may average the values of a
particular feature as computed over ±7 neighbouring samples
around the highlighted sample.
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where N1 = 10, N2 = 20, T1 = 63, T = 127 and A = 5, and explain how an ideal feature,
which can help us segment the signal, should behave.
The signal is plotted at the top of Figure 4.11. The ideal feature should be such that it has the same
value for samples 0,… ,T1, and changes to a different value for samples T1 + 1,… ,T. Such a
behaviour is shown schematically at the bottom of Figure 4.11. Such a feature can help us segment
this composite signal into its constituent parts by using simple thresholding.

Figure 4.11 Top: the signal of Equation (4.65). Bottom:
an ideal feature that characterises the signal locally and is
useful in segmenting it into its constituent parts by
simple thresholding.

Feature

Signal

0 20 40 60 80 100 120

Example 4.15

Use the short time Fourier transform with a window of size 2M + 1 = 25 to segment
the signal of Example 4.14.
For M = 12 we compute for n = 12,… , 115 the following function:

F(k;n) = 1√
2M + 1

M∑
m=−M

g(n + m)e−j 2πkm
2M+1

= 1√
2M + 1

M∑
m=−M

g(n + m) cos 2πkm
2M + 1

−j 1√
2M + 1

M∑
m=−M

g(n + m) sin 2πkm
2M + 1

≡ FR(k;n) + jFI(k;n). (4.66)

In Figure 4.12a we plot the real part FR(k;n) of this function against n for all 25 values of k, while
the imaginary part FI(k;n) is plotted in Figure 4.12b. In Figure 4.13a we plot the magnitude,
S(k;n) against n for all values of k, one under the other, computed as:

S(k;n) =
√

FR(k;n)2 + FI(k;n)2. (4.67)

Note that we gave value 0 to the first and the last 12 samples, for which no feature values were
computed.

We observe that none of these 75 features of Figures 4.12 and 4.13a behaves as the ideal feature
at the bottom of Figure 4.11. However, features M10, M11, M12, M14, M15 and M16 could be used

(Continued)
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Example 4.15 (Continued)

for segmentation, as the amplitude of the fluctuations they show is less than that of the sudden
change they show when the signal changes.

To reduce the fluctuation within the same part of the composite signal, we average the value of
every feature over 25 successive samples and assign it to the central sample. Note that this intro-
duces yet another boundary leaving the first and last 12 samples at either end with non-averaged
values. We can either ignore those samples, or assign to them values that are not the average
over 25 samples, but of as many samples as happen to be inside the averaging window and have
computed feature values. This is the strategy we follow here to produce Figure 4.13b from the
magnitude of the Fourier transform.

Now features AvM10, AvM11, AvM12, AvM14, AvM15 and AvM16 appear to have behaviour
that approaches that of an ideal feature. By thresholding any one of them, one may obtain a rea-
sonable segmentation of the signal. Due to the averaging we performed, the step edges we wished
to observe in the plots of these features, when the signal changes, are not sharp. However, even
blurred, these ramp edges allow us to segment the signal by the appropriate choice of a threshold.
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R13
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R09
R08
R07
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R05
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R01

Signal

0 20 40 60 80 100 120
n

I25
I24
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I16
I15
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I13
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I08
I07
I06
I05
I04
I03
I02
I01

Signal

0 20 40 60 80 100 120
n

(a) (b)

Figure 4.12 Feature sequences obtained from the real (a) and imaginary (b) part of the short time
Fourier transform. The original signal is shown at the top of each panel.
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(a) (b)

Figure 4.13 (a) Feature sequences obtained from the magnitude of the short time Fourier transform.
(b) Averaged feature sequences obtained from the magnitude of the short Fourier transform. The
original signal is shown at the top of each panel.

Example 4.16

Repeat Example 4.15 with a window of size 5.
We now use formula (4.66) with M = 2. The features computed from the power spectrum are
shown in Figure 4.14, while Figure 4.15 shows the same features after smoothing. We observe
that the best features now are only marginally appropriate for segmenting the signal (e.g. features
AvM02 and AvMo4). This is because this time the window we used was too small and it did not
capture effectively the different characteristics of the different parts of the signal.

(Continued)
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Figure 4.14 Feature sequences obtained
from the magnitude of the short Fourier
transform using M = 2. The original signal
is shown at the top of the figure.

AvM05

AvM04

AvM03

AvM02

AvM01

Signal

0 20 40 60 80 100 120
n

Figure 4.15 Averaged feature sequences
obtained from the magnitude of the short
Fourier transform using M = 2. The
original signal is shown at the top of the
figure.

How do we know which size window we should use?

We do not know! There are two issues we should deal with. (1) First of all, we must make sure that
we search all frequencies in the frequency domain of the signal, because we do not know a priori
which is the characteristic frequency of the signal that will allow us to pick it up. For example, in
Example 4.16, the use of a very small window implied that we were looking for very high frequen-
cies. This is not immediately obvious, but it can be understood in terms of Figure 4.6. We note from
Figure 4.6 that, in spite of the distorted version of the original signal seen by the DFT algorithm,
DFT basically sees a signal that has the same fundamental period as the original signal. This is
because the window used was large enough to capture that basic variation of the original signal.
If, however, the window used was much smaller than the typical wavelength of the original signal,
then the fundamental frequency of the original signal would have been totally washed out by the
periodicity of the window itself. This is demonstrated in Figure 4.16 where the window used is
about one third the size of the window used in Figure 4.6.
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Figure 4.16 The original signal of Figure 4.6 scanned by a narrow window. If the discrete Fourier
transform is applied at the signal inside the window, depending on the locality of the window, the
algorithm “sees” different signals that have no relevance to the true signal. Some example such signals are
shown here for eight different locations of the small window.

(2) Even when the window is large enough to capture the fundamental periodicity of a signal, it
may not be large enough to correspond to a small enough window in the frequency domain that will
allow one to resolve two parts of the signal that have similar frequencies. If two nearby frequencies
are present in the same signal, the convolution of the Fourier transform of the window with the
Fourier transform of the signal may result in the two frequencies being totally swamped by the
spectrum of the window. This situation is exacerbated by the use of a rectangular window that has
strong side lobes. To reduce this effect, the use of a Gaussian window is preferable over the use of
a rectangular window. This is demonstrated schematically in Figure 4.17.

Further, a systematic search of all possible frequencies that might be present in a signal is neces-
sary, to make sure that no frequency is overlooked. This can be achieved by expanding the spectrum
of the signal in terms of Gabor functions. This is nothing other than the use of a local Gaussian
window before computing the Fourier transform.
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Figure 4.17 Suppose that we are seeing a signal with fundamental frequency 𝜔0 using a sufficiently large
window. The spectrum of what we see will look like the graph in the top left if the window is rectangular:
the fundamental frequency of the original signal is preserved but the details of the original signal vary due
to interference of the high frequencies of the two components of the spectrum. This is the situation in
Figure 4.6. If we use a too narrow window, its spectrum is very broad and the interference between the two
branches of the spectrum is such that the fundamental frequency of the original signal is totally lost
(top-right panel). This is the situation in Figure 4.16. If we use a Gaussian window, there is improvement in
both cases because the spectrum of such a window does not have side lobes (bottom panels).

How is the uncertainty principle generalised to 2D?

For each spatial dimension we introduce, we have a new frequency dimension. So, for variables
x and y we have the corresponding frequencies 𝜔x and 𝜔y. If we have a function f (x, y), we may
compute three different second-order dispersions for it, namely (Δx)2, (Δy)2 and ΔxΔy, defined as

(Δx)2 ≡ 1
E∞ ∫

∞

−∞ ∫
∞

−∞
(x − x)2f (x, y)f ∗(x, y)dxdy

(Δy)2 ≡ 1
E∞ ∫

∞

−∞ ∫
∞

−∞
(y − y)2f (x, y)f ∗(x, y)dxdy

ΔxΔy ≡ 1
E∞ ∫

∞

−∞ ∫
∞

−∞
(x − x)(y − y)f (x, y)f ∗(x, y)dxdy (4.68)

where

E∞ ≡ ∫
∞

−∞ ∫
∞

−∞
f (x, y)f ∗(x, y)dxdy (4.69)

and

x ≡ 1
E∞ ∫

∞

−∞ ∫
∞

−∞
xf (x, y)f ∗(x, y)dxdy

y ≡ 1
E∞ ∫

∞

−∞ ∫
∞

−∞
yf (x, y)f ∗(x, y)dxdy. (4.70)

We may assume that axes x and y are chosen in such a way that dispersion ΔxΔy is zero. Then
axes x and y are the principal axes of the signal function f (x, y). If this is not the case, we can
always define a new set of axes in which the cross-dispersion ΔxΔy is zero (see Example 4.17).
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The spectral bandwidths Δ𝜔x and Δ𝜔y of the signal are defined as

(Δ𝜔x)2 ≡ 1
4π2E∞ ∫

∞

−∞ ∫
∞

−∞
(𝜔x − 𝜔x)2F(𝜔x, 𝜔y)F∗(𝜔x, 𝜔y)d𝜔xd𝜔y

(Δ𝜔y)2 ≡ 1
4π2E∞ ∫

∞

−∞ ∫
∞

−∞
(𝜔y − 𝜔y)2F(𝜔x, 𝜔y)F∗(𝜔x, 𝜔y)d𝜔xd𝜔y (4.71)

where F(𝜔x, 𝜔y) is the Fourier transform of signal f (x, y) and

𝜔x ≡ 1
E∞ ∫

∞

−∞ ∫
∞

−∞
𝜔xF(𝜔x, 𝜔y)F∗(𝜔x, 𝜔y)d𝜔xd𝜔y

𝜔y ≡ 1
E∞ ∫

∞

−∞ ∫
∞

−∞
𝜔yF(𝜔x, 𝜔y)F∗(𝜔x, 𝜔y)d𝜔xd𝜔y. (4.72)

Then the signal satisfies a separate uncertainty principle for each coordinate/frequency pair:

(Δx)2(Δ𝜔x)2 ≥ 1
4

(Δy)2(Δ𝜔y)2 ≥ 1
4
. (4.73)

The joint uncertainty of the 2D signal is the product of these two uncertainties:

(Δx)2(Δ𝜔x)2(Δy)2(Δ𝜔y)2 ≥ 1
16
. (4.74)

Example B4.17

Assume that the cross-dispersion of a function f (x, y) as defined by the third of
Equations (4.68) is not zero. Define a new coordinate system (x̃, ỹ) in which the
cross-dispersion is zero.
Let us assume that the new axes (x̃, ỹ) can be obtained from the old ones by rotation by an
angle 𝜃:

x̃ = x cos 𝜃 + y sin 𝜃
ỹ = −x sin 𝜃 + y cos 𝜃. (4.75)

Our purpose is to define angle 𝜃. Let us start by computing the cross-dispersion of the function in
the new coordinate system and setting it to 0:

Δx̃Δỹ ≡ 1
E∞ ∫

∞

−∞ ∫
∞

−∞
(x̃ − x̃)(ỹ − ỹ)f (x̃, ỹ)f ∗(x̃, ỹ)dx̃dỹ = 0. (4.76)

We use Equations (4.75) to express Δx̃Δỹ in terms of the old coordinates x and y. We observe that

dx̃dỹ =

||||||||
𝜕x̃
𝜕x

𝜕x̃
𝜕y

𝜕ỹ
𝜕x

𝜕ỹ
𝜕y

|||||||| dxdy =
||||| cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

||||| dxdy = (cos2𝜃 + sin2
𝜃)dxdy = dxdy. (4.77)

Then
1

E∞ ∫
∞

−∞ ∫
∞

−∞
(x cos 𝜃 + y sin 𝜃 − x cos 𝜃 − y sin 𝜃) ×

(−x sin 𝜃 + y cos 𝜃 + x sin 𝜃 − y cos 𝜃)f (x, y)f ∗(x, y)dxdy = 0

⇒
1

E∞ ∫
∞

−∞ ∫
∞

−∞
[(x − x) cos 𝜃 + (y − y) sin 𝜃] ×

[−(x − x) sin 𝜃 + (y − y) cos 𝜃)]f (x, y)f ∗(x, y)dxdy = 0

(Continued)
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⇒
1

E∞ ∫
∞

−∞ ∫
∞

−∞

[
−(x − x)2 cos 𝜃 sin 𝜃 + (x − x)(y − y)cos2𝜃

−(y − y)(x − x)sin2
𝜃 + (y − y)2 sin 𝜃 cos 𝜃

]
f (x, y)f ∗(x, y)dxdy = 0

⇒ − cos 𝜃 sin 𝜃 1
E∞ ∫

∞

−∞ ∫
∞

−∞
(x − x)2f (x, y)f ∗(x, y)dxdy

+(cos2𝜃 − sin2
𝜃) 1

E∞ ∫
∞

−∞ ∫
∞

−∞
(x − x)(y − y)f (x, y)f ∗(x, y)dxdy

+ sin 𝜃 cos 𝜃 1
E∞ ∫

∞

−∞ ∫
∞

−∞
(y − y)2f (x, y)f ∗(x, y)dxdy = 0

⇒ − cos 𝜃 sin 𝜃(Δx)2 + (cos2𝜃 − sin2
𝜃)ΔxΔy + sin 𝜃 cos 𝜃(Δy)2 = 0 (4.78)

where we made use of the definitions of (Δx)2, (Δy)2 and ΔxΔy as given by Equations (4.68).
We also observe that sin 𝜃 cos 𝜃 = 1

2
sin(2𝜃) and that cos2𝜃 − sin2

𝜃 = cos(2𝜃). Then we have
an equation for angle 2𝜃:

1
2

sin(2𝜃)[−(Δx)2 + (Δy)2] + cos(2𝜃)ΔxΔy = 0 ⇒ tan(2𝜃) =
2ΔxΔy

(Δx)2 − (Δy)2 . (4.79)

This equation allows us to define the angle by which we have to rotate the coordinate system, so
that we define axes which coincide with the principal axes of the signal, i.e. axes in which the
signal has zero cross-dispersion.

Example B4.18

Find the principal axes of function

f (x, y) ≡
{√

a1x2 + a2y2 + a3xy + a4 for |x| ≤ 1 and |y| ≤ 1
0 elsewhere

. (4.80)

We have to use Equation (4.79) in conjunction with Equations (4.68)–(4.70). By applying
Equations (4.70) we may easily show that x = y = 0. We also note from Equation (4.79) that
E∞, which appears in equations (4.68), cancels out. So we need not compute it. Then we must
compute the double integrals that appear in equations (4.68):

(Δx)2 = 1
E∞ ∫

1

−1 ∫
1

−1
(a1x4 + a2x2y2 + a3x3y + a4x2)dxdy = 1

E∞

(
4a1

5
+

4a2

9
+

4a4

3

)
.

The result for (Δy)2 can be computed by exchanging the roles of a1 and a2. So, it is expected to be
(Δy)2 = 1

E∞

(
4a2

5
+ 4a1

9
+ 4a4

3

)
. Also:

ΔxΔy = 1
E∞ ∫

1

−1 ∫
1

−1
(a1x3y + a2xy3 + a3x2y2 + a4xy)dxdy = 1

E∞

4a3

9
. (4.81)

Using all these results in Equation (4.79), yields:

tan(2𝜃) =
5a3

2(a1 − a2)
⇒ 𝜃 = 1

2
tan−1

( 5a3

2(a1 − a2)

)
. (4.82)

This means that the first principal axis of the function is at angle 𝜃 with respect to the x axis, and
the second principal axis is at angle 𝜃 + 90∘ with respect to the same axis.
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4.2 Gabor Functions

What is a Gabor function?

A Gabor function in 1D is defined as:

G(t; t0, 𝜔0, 𝜎) ≡ e−
(t−t0 )2

2𝜎2 +j𝜔0t
. (4.83)

The Fourier transform of the Gabor function is:

Ĝ(𝜔; t0, 𝜔0, 𝜎) =
√

2π𝜎e−j(𝜔−𝜔0)t0 e−
𝜎2 (𝜔−𝜔0 )2

2 . (4.84)

Gabor showed that this function is the most general function that obtains the minimum in the
uncertainty principle for signal processing.

Example B4.19

Prove that the Fourier transform of the Gabor function is given by Equation (4.84).
The Fourier transform of the Gabor function may be computed as follows:

Ĝ(𝜔; t0, 𝜔0, 𝜎) = ∫
∞

−∞
e−

(t−t0 )2

2𝜎2 +j𝜔0te−j𝜔tdt. (4.85)

If we multiply the integrand by ej(𝜔−𝜔0)t0 e−j(𝜔−𝜔0)t0 , we may write:

Ĝ(𝜔; t0, 𝜔0, 𝜎) = ∫
∞

−∞
e−

(t−t0 )2

2𝜎2 −j(𝜔−𝜔0)(t−t0)dt e−j(𝜔−𝜔0)t0 . (4.86)

We change variable of integration from t to x ≡ t − t0 and for brevity we define �̃� ≡ 𝜔 − 𝜔0:

Ĝ(𝜔; t0, 𝜔0, 𝜎) = e−j�̃�t0 ∫
∞

−∞
e−

x2

2𝜎2 −j�̃�xdx. (4.87)

This integral is similar to that of Equation (3.303) and we may make use of Equation (3.311) to
obtain

Ĝ(𝜔; t0, 𝜔0, 𝜎) = e−j�̃�t0
√

2π𝜎e−
𝜎2 �̃�2

2 (4.88)

which upon re-arrangement yields (4.84).

Example B4.20

Prove that the Gabor function achieves the minimum of the uncertainty inequality
(4.38).
We note that in order to compute the time dispersion and the spectral bandwidth of a signal
we need expressions G(t; t0, 𝜔0, 𝜎)2 and Ĝ(𝜔; t0, 𝜔0, 𝜎)2 which appear in equations (4.24), (4.26),
(4.27) and (4.29). These expressions are given by

G(t; t0, 𝜔0, 𝜎)2 = G(t; t0, 𝜔0, 𝜎)G∗(t; t0, 𝜔0, 𝜎)

= e−
(t−t0 )2

2𝜎2 +j𝜔0(t−t0)e−
(t−t0 )2

2𝜎2 −j𝜔0(t−t0)

= e−
(t−t0 )2

𝜎2 (4.89)

(Continued)
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and

Ĝ(𝜔; t0, 𝜔0, 𝜎)2 = Ĝ(𝜔; t0, 𝜔0, 𝜎)Ĝ∗(𝜔; t0, 𝜔0, 𝜎)

=
√

2π𝜎e−
𝜎2 (𝜔−𝜔0 )2

2 e−j(𝜔−𝜔0)t0
√

2π𝜎e−
𝜎2 (𝜔−𝜔0 )2

2 ej(𝜔−𝜔0)t0

= 2π𝜎2e−𝜎2(𝜔−𝜔0)2 . (4.90)

Using (4.89) we may compute the time dispersion of this signal following the steps of Example 4.6.
The only adaptation we have to make is to change the variable of integration from t to t̃ ≡ t − t0,
with everything else remaining the same.

Using (4.90) we may compute the spectral bandwidth of the signal following the steps of
Example 4.7. Again, the only adaptation we have to make is to change the variable of integration
from 𝜔 to �̃� ≡ 𝜔 − 𝜔0, with everything else remaining the same. So, the Gabor function has
the same time dispersion and spectral bandwidth as the Gaussian function, and therefore it
minimises their product just as the Gaussian function does, as it was shown in Example 4.8.

Why are Gabor functions useful in analysing a signal?

Gabor functions allow us to represent a signal in time and frequency domain simultaneously. Notice
that G(t; t0, 𝜔0, 𝜎) may be thought of as a family of functions of t for different pairs of values of t0
and 𝜔0. A schematic representation of this family of functions is shown in Figure 4.18. This family
of functions covers the (t, 𝜔) space completely, so we must be able to represent any signal function
g(t) in terms of this family of functions.

In a similar way, Ĝ(𝜔; t0, 𝜔0, 𝜎) may be thought of as a family of functions of 𝜔 for different pairs
of values of t0 and𝜔0. A schematic representation of this family of functions is shown in Figure 4.19.
This family of functions also covers the (t, 𝜔) space completely, so we must be able to represent any
function ĝ(𝜔) in terms of this family of functions.

So, we may think of the family of G(t; t0, 𝜔0, 𝜎) functions as forming a set of basis functions in
terms of which any function g(t)may be expanded. Each basis function expresses a different answer
to the question “what is where?”. Each coefficient of the expansion of a signal in terms of these
elementary functions tells us how much of the particular type of “what” is at each locality of the
original function. To compute this coefficient for a particular basis function, all we have to do is to
project function g(t) onto the basis function. If we are dealing with digital functions, we can think
of them as vectors and projecting one digital function onto another is nothing more than projecting
one vector onto another, which is nothing more than taking the dot product of the two vectors, i.e.
multiplying them component by component and adding the results. For continuous functions the
process is the same: we multiply them point by point and integrate over all points. If the functions
are complex, we must take the complex conjugate of one of them. So, to find how much of the
particular “what”, expressed by 𝜔 = 𝜔1, is present at the particular “where”, expressed by t = t1, in
function g(t), we must project g(t) onto the particular basis function G(t; t0 = t1, 𝜔0 = 𝜔1, 𝜎), i.e. we
must simply compute the integral:

a(t1, 𝜔1) ≡ ∫
∞

−∞
g(t)G∗(t; t0 = t1, 𝜔0 = 𝜔1, 𝜎)dt

= ∫
∞

−∞
g(t)e−

(t−t1 )2

2𝜎2 −j𝜔1tdt. (4.91)
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Figure 4.18 Gabor function G(t; t0, 𝜔0, 𝜎) may be used to create elementary signals in terms of which any
arbitrary signal g(t) may be represented in a joint time–frequency representation. This figure shows
schematically some of these elementary signals. The real part of each elementary signal is shown in (a) and
its imaginary part in (b).
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Figure 4.19 Gabor function Ĝ(𝜔; t0, 𝜔0, 𝜎) may be used to create elementary signals in terms of which an
arbitrary signal ĝ(𝜔) may be represented in a joint time–frequency representation. This figure shows
schematically some of these elementary signals. The real part of each elementary signal is shown in (a) and
its imaginary part in (b).

If we substitute G(t; t0, 𝜔0, 𝜎) from its definition, it becomes obvious that the above integral is
nothing other than the original function g(t), multiplied with a Gaussian window to give preference
to some part of it only (i.e. to answer the “where” part of the question), and then taking the Fourier
transform, concentrating at a particular frequency 𝜔1, to answer the “what” part of the question
as well.

In a similar way, we may think of the family of Ĝ(𝜔; t0, 𝜔0, 𝜎) functions as forming a set of
basis functions in terms of which any function ĝ(𝜔) may be expanded. Again, each basis function
expresses a different answer to the question “what is where?”. So, we may analyse function ĝ(𝜔) in
terms of this basis and compute the coefficients of this expansion. Each coefficient will tell us how
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much of the particular basis function is present in the original function. These coefficients may
again be computed by projecting function ĝ(𝜔) onto each basis function in turn:

b(t1, 𝜔1) ≡ ∫
∞

−∞
ĝ(𝜔)Ĝ∗(𝜔; t0 = t1, 𝜔0 = 𝜔1, 𝜎)df

= 1
2π ∫

∞

−∞
ĝ(𝜔)Ĝ∗(𝜔; t0 = t1, 𝜔0 = 𝜔1, 𝜎)d𝜔

= 𝜎√
2π ∫

∞

−∞
ĝ(𝜔)ej(𝜔−𝜔1)t1 e−

𝜎2 (𝜔−𝜔1 )2

2 d𝜔

= 𝜎√
2π

e−j𝜔1t1 ∫
∞

−∞
ĝ(𝜔)ej𝜔t1 e−

𝜎2 (𝜔−𝜔1 )2

2 d𝜔. (4.92)

This integral is nothing more than multiplying function ĝ(𝜔) with a Gaussian window centred at
𝜔1, and then taking the inverse Fourier transform, apart from some constant factor and a phase
coefficient.

As both these expansions answer the question “what is where?” in a signal, if ĝ(𝜔) is the Fourier
transform of g(t), either expansion should give the same result. This is indeed the case as it is shown
in Example 4.21.

It is important to note that neither of the two sets of basis functions is orthogonal. Each Gaussian
window is infinite in extent and, therefore, each segment of either function we isolate, inevitably
contains information from all other parts of the function due to the infinite tails of the Gaussian
window. The expansion of a function, therefore, in terms of Gabor functions contains redundant
information, which, in the particular case of frequency band segmentation, plays the role of inter-
ference from all bands to all other bands. In practice this is not a problem because the tails of the
Gaussian die out quite fast.

Example B4.21

Prove that a(t1, 𝜔1) defined by Equation (4.91) and b(t1, 𝜔1) defined by Equation (4.92)
are identical, if functions g(t) and ĝ(𝜔) form a Fourier transform pair.
Since functions g(t) and ĝ(𝜔) form a Fourier transform pair, we may write:

ĝ(𝜔) = ∫
∞

−∞
g(t)e−j𝜔tdt g(t) = 1

2π ∫
∞

−∞
ĝ(𝜔)ej𝜔td𝜔. (4.93)

We start from Equation (4.92) and substitute ĝ(𝜔) from (4.93):

b(t1, 𝜔1) =
𝜎√
2π

e−j𝜔1t1 ∫
∞

−∞

{
∫

∞

−∞
g(t)e−j𝜔tdt

}
ej𝜔t1 e−

𝜎2 (𝜔−𝜔1 )2

2 d𝜔

= 𝜎√
2π

e−j𝜔1t1 ∫
∞

−∞
g(t)

{
∫

∞

−∞
e−

𝜎2 (𝜔−𝜔1 )2

2
−j𝜔(t−t1)d𝜔

}
dt. (4.94)

We shall compute separately the integral inside the curly brackets

∫
∞

−∞
e−

𝜎2 (𝜔−𝜔1 )2

2
−j𝜔(t−t1)d𝜔 =

∫
∞

−∞
e−

(
𝜎𝜔√

2

)2
−
(
𝜎𝜔1√

2

)2
+𝜎2𝜔𝜔1−j𝜔(t−t1)d𝜔 =

e−
(
𝜎𝜔1√

2

)2

∫
∞

−∞
e−

(
𝜎𝜔√

2

)2
+𝜔(𝜎2𝜔1−j(t−t1))d𝜔 =

(Continued)
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Example B4.21 (Continued)

e−
(
𝜎𝜔1√

2

)2

∫
∞

−∞
e−

(
𝜎𝜔√

2

)2
+2

(
𝜎𝜔√

2

)
1
2

√
2
𝜎
(𝜎2𝜔1−j(t−t1))d𝜔 =

e−
(
𝜎𝜔1√

2

)2

∫
∞

−∞
e−

(
𝜎𝜔√

2

)2
+2

(
𝜎𝜔√

2

)(
𝜎𝜔1√

2
−j (t−t1 )√

2𝜎

)
−
(
𝜎𝜔1√

2
−j (t−t1 )√

2𝜎

)2
+
(
𝜎𝜔1√

2
−j (t−t1 )√

2𝜎

)2

=

e−
(
𝜎𝜔1√

2

)2

e
(
𝜎𝜔1√

2
−j (t−t1 )√

2𝜎

)2

∫
∞

−∞
e−

(
𝜎𝜔√

2
− 𝜎𝜔1√

2
+j (t−t1 )√

2𝜎

)2

=

e−
(
𝜎𝜔1√

2

)2

e
(
𝜎𝜔1√

2
−j (t−t1 )√

2𝜎

)2
√

2
𝜎 ∫

∞

−∞
e−x2 dx =

e−
(
𝜎𝜔1√

2

)2

e
(
𝜎𝜔1√

2

)2

e−
(

(t−t1 )√
2𝜎

)2

e−2j 𝜎𝜔1√
2

(t−t1 )√
2𝜎

√
2
𝜎

√
π =

e−
(t−t1 )2

2𝜎2 e−j𝜔1(t−t1)

√
2π
𝜎

(4.95)

where we made the substitution x ≡ 𝜎𝜔√
2
− 𝜎𝜔1√

2
+ j (t−t1)√

2𝜎
and used the result of Example (3.36).

Upon substitution in (4.94) we obtain:

b(t1, 𝜔1) =
𝜎√
2π

e−j𝜔1t1 ∫
∞

−∞
g(t)e−

(t−t1 )2

2𝜎2 e−j𝜔1(t−t1)

√
2π
𝜎

dt

= ∫
∞

−∞
g(t)e−

(t−t1 )2

2𝜎2 e−j𝜔1tdt

= a(t1, 𝜔1). (4.96)

The last result was produced by direct comparison with (4.91).

Example B4.22

Show that the set of G(t; t0 = t1, 𝜔0 = 𝜔1, 𝜎) functions is not an orthogonal set.
A set of functions is orthogonal if the projection of one of them onto any other is zero. In the discrete
domain, projection means dot product between the two signals (vectors), while in the continuous
domain projection means the integral of the product of the two functions. When the functions are
complex, the product must be computed between one function and the complex conjugate of the
other function. This is so because the projection of the imaginary unit function on itself must be
1 (jj∗ = j(−j) = 1). To show that the set of G(t; t0 = t1, 𝜔0 = 𝜔1, 𝜎) functions is not an orthogonal
set, we must show that for t1 ≠ t2 and 𝜔1 ≠ 𝜔2:

∫
∞

−∞
G(t; t0 = t1, 𝜔0 = 𝜔1, 𝜎)G∗(t; t0 = t2, 𝜔0 = 𝜔2, 𝜎)dt ≠ 0. (4.97)

We start by trying to compute this integral, which for convenience we call I(t1, t2, 𝜔1, 𝜔2, 𝜎):

I(t1, t2, 𝜔1, 𝜔2, 𝜎) =

∫
∞

−∞
e−

(t−t1 )2

2𝜎2 +j𝜔1te−
(t−t2 )2

2𝜎2 −j𝜔2tdt =

∫
∞

−∞
e−

(t−t1 )2+(t−t2 )2

2𝜎2 +j(𝜔1−𝜔2)tdt =

∫
∞

−∞
e−

2t2−2(t1+t2 )t+t21+t22
2𝜎2 +j(𝜔1−𝜔2)tdt. (4.98)
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After we re-arrange the terms in the exponent:

I(t1, t2, 𝜔1, 𝜔2, 𝜎) = ∫
∞

−∞
e−

t2

𝜎2 +2t t1+t2+j𝜎2𝜔1−j𝜎2𝜔2
2𝜎2 −

t21+t22
2𝜎2 dt =

e−
t21+t22
2𝜎2 ∫

∞

−∞
e
−
(

t
𝜎

)2
+2

(
t
𝜎

)(
t1+t2+j𝜎2𝜔1−j𝜎2𝜔2

2𝜎

)
dt (4.99)

we add and subtract from the exponent (t1 + t2 + j𝜎2𝜔1 − j𝜎2𝜔2)2∕(2𝜎)2:

I(t1, t2, 𝜔1, 𝜔2, 𝜎) =

e−
t21+t22
2𝜎2 ∫

∞

−∞
e
−
(

t
𝜎

)2
+2

(
t
𝜎

)(
t1+t2+j𝜎2𝜔1−j𝜎2𝜔2

2𝜎

)
×

e
−
(

t1+t2+j𝜎2𝜔1−j𝜎2𝜔2
2𝜎

)2

+
(

t1+t2+j𝜎2𝜔1−j𝜎2𝜔2
2𝜎

)2

dt =

e−
t21+t22
2𝜎2 e

(
t1+t2+j𝜎2𝜔1−j𝜎2𝜔2

2𝜎

)2

∫
∞

−∞
e
−
(

t
𝜎
− t1+t2+j𝜎2𝜔1−j𝜎2𝜔2

2𝜎

)2

dt. (4.100)

We make the substitution x ≡ t
𝜎
− t1+t2+j𝜎2𝜔1−j𝜎2𝜔2

2𝜎
:

I(t1, t2, 𝜔1, 𝜔2, 𝜎) = e−
t21+t22
2𝜎2 e

(
t1+t2+j𝜎2𝜔1−j𝜎2𝜔2

2𝜎

)2

𝜎 ∫
∞

−∞
e−x2 dx. (4.101)

We use the result of Example 3.36 to obtain:

I(t1, t2, 𝜔1, 𝜔2, 𝜎) = e−
t21+t22
2𝜎2 e

(
t1+t2+j𝜎2𝜔1−j𝜎2𝜔2

2𝜎

)2

𝜎
√
π. (4.102)

The last expression is not equal to zero, so the basis consisting of the elementary functions G(t; t0 =
t1, 𝜔0 = 𝜔1, 𝜎) is not orthogonal.

How can we use the Gabor functions in practice?

In practice, we analyse a signal in terms of Gabor functions by taking the Fourier transform of the
signal, multiplying it with a Gaussian window centred at various frequencies, and taking the inverse
Fourier transform of the result. We make the choice of the central frequency of each Gaussian in
a systematic way, so that all frequency bands of the signal are covered. This way we obtain several
versions of the original signal. Each version expresses the frequency content of the original signal at
a particular band. Thus, a single sample of the original signal is now characterised by as many num-
bers as bands we considered, i.e. as many numbers as the number of different Gaussians we used.

Example 4.23

Expand in terms of Gabor functions the signal of Example 4.14.
First we compute the Fourier transform of the signal

G(k) =
T∑

n=0
g(n)e−j 2πnk

T+1 (4.103)

where k takes values from −(T + 1)∕2 to (T − 1)∕2.

(Continued)
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Example 4.23 (Continued)

For T = 127, k takes values from −64 to 63 for this signal. At the top of Figure 4.20a we plot
the real and imaginary parts of G(k) as functions of k.

Let us say that the Gaussian window we shall use in the frequency domain is given
by

WI(k) = e
− (k−kI )2

2Σ2
k (4.104)

where kI is the central index of each window. Let us say that we shall place the windows 2Σk apart.
This way, at the places of transition between different bands, i.e. when k = kI ± Σk, the value of
each window is exp

(
− Σ2

k
2Σ2

k

)
= e−0.5, i.e. it is equal to 0.607 (= e−0.5) times the value of the window

at the central point kI.
Note that the width of the bands we choose is 2Σk which is different from the bandwidth of

the Gaussian we use. The latter, according to Equation (4.42), is Δ𝜔 = 1∕(2𝜎2), with 𝜎 = 1∕Σ
and Σ = Σk(T + 1)∕(4π2), since Σ is the standard deviation when the independent variable
is 𝜔 and Σk is the standard deviation when the independent variable is just k. (Remember
that 𝜔 = 2πk∕(T + 1).) If the bands we choose had widths equal to the bandwidth of the
corresponding Gaussians, there would have been significant overlap between neighbouring
bands, preventing the discrimination of the different frequencies that may be present in the
signal.

When we multiply the Fourier transform of the original signal with any one of these windows
and take the inverse Fourier transform, we wish to obtain a real signal. This may only be achieved
if the inverse transform we compute is the inverse transform of a symmetric function. So, each
Gaussian window is placed at symmetric frequencies about k = 0, i.e. centred at positions kI
and −kI.

Figure 4.20a shows all these windows for Σk = 9. The centres of the windows are at k0 = 0,
k1 = 18, k2 = 36 and k3 = 54.

Next we multiply the Fourier transform of the original signal with each one of the four windows.
The functions produced that way are shown in Figure 4.20b. Then we take the inverse Fourier
transform of each one of these functions using

gI(n) =
1

128

63∑
k=−64

𝑤I(k)e
j 2πnk

128 for n = 0,… , 127 (4.105)

where 𝑤I(k) = G(k)WI(k).
These inverse functions are plotted in Figure 4.21. Each one of these functions tells us how

much of each frequency band is present at each position.
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Figure 4.20 (a) At the top the real and imaginary
parts of G(k), the Fourier transform of the original
signal. Below them, the four symmetric Gaussian
windows to be used for windowing the Fourier
transform of the signal. (b) The real and imaginary
parts of G(k) multiplied with the four Gaussian
windows, plotted pairwise one under the other.

k1 = 18

k2 = 36

k3 = 54

k0 = 0

GI(k)

GR(k)

−32 0 32

(a)

GR(k)W0(k)

GI(k)W0(k)

GR(k)W18(k)

GI(k)W18(k)

GR(k)W36(k)

GI(k)W36(k)

GR(k)W54(k)

GI(k)W54(k)
−32 0 32

(b)
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Example 4.24

Segment with the help of Gabor functions the signal of Example 4.14.
The original signal is shown at the top of Figure 4.11. To produce features out of its Gabor
representation, shown in Figure 4.21, we compute the local average energy of each sequence of
Figure 4.21, either by using a Gaussian window, or by using a rectangular window. Figure 4.22
shows the features produced when the values of every 11 successive samples are squared
and averaged and assigned to the central sample. Figure 4.23 shows the features produced
when the squared signals of Figure 4.21 are convolved with a truncated Gaussian window
of standard deviation 𝜎 = 5.5. This value of 𝜎 was chosen so that the Gaussian window was
roughly equal in width to the uniform window (2𝜎 = 11). The size of the window was chosen
so that when the Gaussian was truncated, the discontinuity created was about 0.1 of its peak
value:

e−
x2

2𝜎2 = 0.1 ⇒ − x2

2𝜎2 = ln 0.1 ⇒ x =
√
−2𝜎2 ln 0.1 ≃ 11.8. (4.106)

So, this window was chosen to be 25 samples wide, defined for indices in the range
[−12, 12].

We can see that if we threshold the features plotted either in Figure 4.22 or in Figure 4.23 we
shall segment the signal.

gR0(n)

gR18(n)

gR36(n)

gR54(n)

−32 0 32

Figure 4.21 Inverse Fourier transform of all windowed Fourier transforms of the signal
(functions 𝑤I(k) of Equation (4.105)). In all cases only the real part is shown as the imaginary part
is zero.
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Avg0(n)

Avg18(n)

Avg36(n)

Avg54(n)

−32 0 32

Figure 4.22 Gabor features produced by squaring and convolving the functions plotted in
Figure 4.21 with a rectangular window of size 11.

−32 0 32

Avg0(n)

Avg18(n)

Avg36(n)

Avg54(n)

Figure 4.23 Gabor features produced by squaring and convolving the functions plotted in
Figure 4.21 with a Gaussian window of size 25 and 𝜎 = 5.5.
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How is a Gabor function generalised in 2D?

A 2D Gabor function is defined as:

G(x, y; x0, 𝜔x0
, 𝜎x, y0, 𝜔y0

, 𝜎y) ≡ e
− (x−x0 )2

2𝜎2
x

− (y−y0 )2

2𝜎2
y ej𝜔x0 x+j𝜔y0 y. (4.107)

The Fourier transform of this function is:

Ĝ(𝜔x, 𝜔y; x0, 𝜔x0
, 𝜎x, y0, 𝜔y0

, 𝜎y) =

2π𝜎x𝜎ye−
𝜎2

x (𝜔x−𝜔x0 )2

2
−
𝜎2

y (𝜔y−𝜔y0 )2

2 e−j(𝜔y−𝜔y0 )y0−j(𝜔x−𝜔x0 )x0 . (4.108)

Example B4.25

Prove that (4.108) is the Fourier transform of function (4.107).
TheFourier transform of function (4.107) is given by:

Ĝ(𝜔x, 𝜔y; x0, 𝜔x0
, 𝜎x, y0, 𝜔y0

, 𝜎y) ≡
∫

∞

−∞ ∫
∞

−∞
G(x, y; x0, 𝜔x0

, 𝜎x, y0, 𝜔y0
, 𝜎y)e−j𝜔xx−j𝜔yydxdy =

∫
∞

−∞
e
− (x−x0 )2

2𝜎2
x ej𝜔x0 xe−j𝜔xxdx ∫

∞

−∞
e
− (y−y0 )2

2𝜎2
y ej𝜔y0 ye−j𝜔yydy =

∫
∞

−∞
e
− (x−x0 )2

2𝜎2
x

−j(𝜔x−𝜔x0 )(x−x0)dxe−j(𝜔x−𝜔x0 )x0×

∫
∞

−∞
e
− (y−y0 )2

2𝜎2
y

−j(𝜔y−𝜔y0 )(y−y0)dye−j(𝜔y−𝜔y0 )y0 . (4.109)

Let us use the auxiliary variables �̃�x ≡ 𝜔x − 𝜔x0
, �̃�y ≡ 𝜔y − 𝜔y0

, x̃ ≡ x − x0 and ỹ ≡ y − y0.
Then:

Ĝ(𝜔x, 𝜔y; x0, 𝜔x0
, 𝜎x, y0, 𝜔y0

, 𝜎y) =

e−j�̃�xx0 e−j�̃�yy0 ∫
∞

−∞
e
− x̃2

2𝜎2
x
−j�̃�x x̃

dx̃ ∫
∞

−∞
e
− ỹ2

2𝜎2
y
−j�̃�yỹ

dỹ =

e−j�̃�xx0 e−j�̃�yy0
√

2π𝜎xe−
�̃�2

x𝜎
2
x

2

√
2π𝜎ye−

�̃�2
y𝜎

2
y

2 =

2π𝜎x𝜎ye−j(𝜔x−𝜔x0 )x0 e−j(𝜔y−𝜔y0 )y0 e−
(𝜔x−𝜔x0 )2𝜎2

x
2 e−

(𝜔y−𝜔y0 )2𝜎2
y

2 . (4.110)

This expression after re-arrangement is exactly the right-hand side of Equation (4.108). In this
calculation we made use of the result of computing the integral of Equation (3.303), i.e. Equation
(3.311), since each one of the two integrals we have to compute is identical to function Ĝ(𝜔) of
Example 3.99.
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Example B4.26

Show that the cross-dispersion of the Gabor function defined by Equation (4.107)
is zero.
First we compute the energy of the function

E∞ = ∫
∞

−∞ ∫
∞

−∞
G(x, y; x0, 𝜔x0

, 𝜎x, y0, 𝜔y0
, 𝜎y)G∗(x, y; x0, 𝜔x0

, 𝜎x, y0, 𝜔y0
, 𝜎y)dxdy

= ∫
∞

−∞ ∫
∞

−∞
e
− (x−x0 )2

𝜎2
x

− (y−y0 )2

𝜎2
y dxdy

= ∫
∞

−∞
e
− (x−x0 )2

𝜎2
x dx ∫

∞

−∞
e
− (y−y0 )2

𝜎2
y dy

= 𝜎x𝜎y ∫
∞

−∞
e−x̃2 dx̃ ∫

∞

−∞
e−ỹ2 dỹ

= 𝜎x𝜎yπ (4.111)

where we used new variables of integration x̃ and ỹ defined as x̃ ≡ (x − x0)∕𝜎x and
ỹ ≡ (y − y0)∕𝜎y, respectively, and made use of the result of Example 3.36. The coordinates
(x, y) of the centre of gravity of the 2D Gabor function are computed as

x = 1
𝜎x𝜎yπ ∫

∞

−∞ ∫
∞

−∞
xe

− (x−x0 )2

𝜎2
x

− (y−y0 )2

𝜎2
y dxdy

= 1
𝜎x𝜎yπ ∫

∞

−∞ ∫
∞

−∞
(x − x0)e

− (x−x0 )2

𝜎2
x

− (y−y0 )2

𝜎2
y dxdy +

x0

𝜎x𝜎yπ ∫
∞

−∞ ∫
∞

−∞
e
− (x−x0 )2

𝜎2
x

− (y−y0 )2

𝜎2
y dxdy

= 1
𝜎x𝜎yπ

𝜎2
x ∫

∞

−∞

x − x0

𝜎x
e
− (x−x0 )2

𝜎2
x d

(x − x0

𝜎x

)
∫

∞

−∞
e
− (y−y0 )2

𝜎2
y dy +

1
𝜎x𝜎yπ

𝜎x𝜎yx0 ∫
∞

−∞
e
− (x−x0 )2

𝜎2
x d

(x − x0

𝜎x

)
∫

∞

−∞
e
− (y−y0 )2

𝜎2
y d

(y − y0

𝜎y

)
=

𝜎x

𝜎yπ ∫
∞

−∞
x̃e−x̃2 dx̃ ∫

∞

−∞
e
− (y−y0 )2

𝜎2
y dy +

1
π

x0 ∫
∞

−∞
e−x̃2 dx̃ ∫

∞

−∞
e−ỹ2 dỹ

= 0 + 1
π

x0
√
π
√
π = x0 (4.112)

where we again used the same substitution for the variables of integration, and made use of the
results of Examples 3.36 and 3.37, and the fact that ∫ ∞

−∞ x̃e−x̃2 dx̃ = 0 because this is the integral
of an antisymmetric function over a symmetric interval of integration.

(Continued)
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Example B4.26 (Continued)

Similarly, we can show that y = y0. Then the cross-dispersion of the Gabor function is given by

ΔxΔy = 1
𝜎x𝜎yπ ∫

∞

−∞ ∫
∞

−∞
(x − x0)(y − y0)e

− (x−x0 )2

𝜎2
x

− (y−y0 )2

𝜎2
y dxdy

= 1
𝜎x𝜎yπ

𝜎2
x𝜎

2
y ∫

∞

−∞

x − x0

𝜎x
e
− (x−x0 )2

𝜎2
x d

(x − x0

𝜎x

)
×

∫
∞

−∞

y − y0

𝜎y
e
− (y−y0 )2

𝜎2
y d

(y − y0

𝜎y

)
=
𝜎x𝜎y

π ∫
∞

−∞
x̃e−x̃2 dx̃ ∫

∞

−∞
ỹe−ỹ2 dỹ = 0 (4.113)

since ∫ ∞
−∞ x̃e−x̃2 dx̃ = ∫ ∞

−∞ ỹe−ỹ2 dỹ = 0.
So, the way Gabor function is defined by Equation (4.107) implies that axes x and y are the

principal axes of the function.

Example B4.27

Derive the dispersion of the Gabor function defined by Equation (4.107) along the
x and y axes.
Making use of the calculation of E∞ and x and y in Example 4.26, we proceed to compute the first
two dispersions defined by Equation (4.68). We shall make use of the auxiliary variables x̃ and ỹ,
defined here as x̃ ≡ (x − x0)∕𝜎x and ỹ ≡ (y − y0)∕𝜎y:

(Δx)2 = 1
𝜎x𝜎yπ ∫

∞

−∞ ∫
∞

−∞
(x − x0)2e

− (x−x0 )2

𝜎2
x

− (y−y0 )2

𝜎2
y dxdy

= 1
𝜎x𝜎yπ

𝜎3
x𝜎y ∫

∞

−∞

(x − x0)2

𝜎2
x

e
− (x−x0 )2

𝜎2
x d

(x − x0

𝜎x

)
∫

∞

−∞
e
− (y−y0 )2

𝜎2
y d

(y − y0

𝜎y

)
=
𝜎2

x

π ∫
∞

−∞
x̃2e−x̃2 dx̃ ∫

∞

−∞
e−ỹ2 dỹ

=
𝜎2

x

π

√
π

2
√
π =

𝜎2
x

2
. (4.114)

Here we used ∫ ∞
−∞ x̃2e−x̃2 dx̃ =

√
π∕2 from Example 3.37 and ∫ ∞

−∞ e−ỹ2 dỹ =
√
π from

Example 3.36.
Similarly:

(Δy)2 = 1
𝜎x𝜎yπ ∫

∞

−∞ ∫
∞

−∞
(y − y0)2e

− (x−x0 )2

𝜎2
x

− (y−y0 )2

𝜎2
y dxdy

= 1
𝜎x𝜎yπ

𝜎x𝜎
3
y ∫

∞

−∞
e
− (x−x0 )2

𝜎2
x d

(x − x0

𝜎x

)
∫

∞

−∞

(y − y0)2

𝜎2
y

e
− (y−y0 )2

𝜎2
y d

(y − y0

𝜎y

)
=
𝜎2

y

π ∫
∞

−∞
e−x̃2 dx̃ ∫

∞

−∞
ỹ2e−ỹ2 dỹ

=
𝜎2

y

π

√
π

2
√
π =

𝜎2
y

2
. (4.115)
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Therefore:

Δx =
𝜎x√

2
Δy =

𝜎y√
2
. (4.116)

Example B4.28

Derive the spectral bandwidth of the Gabor function defined by Equation (4.108)
along the axes 𝜔x and 𝜔y.
We use definitions (4.71) and (4.108) to compute (Δ𝜔x)2 and (Δ𝜔y)2, making also use of the result
E∞ = π𝜎x𝜎y:

(Δ𝜔x)2 =
4π2𝜎2

x𝜎
2
y

4π3𝜎x𝜎y ∫
∞

−∞ ∫
∞

−∞
(𝜔x − 𝜔x0

)2e−𝜎
2
x (𝜔x−𝜔x0 )

2−𝜎2
y (𝜔y−𝜔y0 )

2
d𝜔xd𝜔y

=
𝜎x𝜎y

π ∫
∞

−∞
(𝜔x − 𝜔x0

)2e−𝜎
2
x (𝜔x−𝜔x0 )

2
d𝜔x ∫

∞

−∞
e−𝜎

2
y (𝜔y−𝜔y0 )

2
d𝜔y

=
𝜎x𝜎y

π
1

𝜎3
x𝜎y ∫

∞

−∞
𝜎2

x (𝜔x − 𝜔x0
)2e−𝜎

2
x (𝜔x−𝜔x0 )

2
d(𝜎x(𝜔x − 𝜔x0

)) ×

∫
−∞

−∞
e−𝜎

2
y (𝜔y−𝜔y0 )

2
d(𝜎y(𝜔y − 𝜔y0

))

= 1
π𝜎2

x ∫
−∞

−∞
�̃�2

xe−�̃�2
x d�̃�x ∫

−∞

−∞
e−�̃�

2
y d�̃�y

= 1
π𝜎2

x

√
π

2
√
π = 1

2𝜎2
x
. (4.117)

Here we used auxiliary variables �̃�x ≡ 𝜎x(𝜔x − 𝜔x0
) and �̃�y ≡ 𝜎y(𝜔y − 𝜔y0

), and the results of
Examples 3.36 and 3.37.

Similarly, we may compute:

(Δ𝜔y)2 = 1
2𝜎2

y
. (4.118)

Therefore:

Δ𝜔x = 1√
2𝜎x

Δ𝜔y =
1√
2𝜎y

. (4.119)

Example B4.29

Prove that the 2D Gabor function as defined by Equations (4.107) and (4.108) satisfies
the uncertainty principle with an equality.
If we substitute from Equations (4.116) and (4.119) into equation (4.74), we obtain the equality.
Therefore, the 2D Gabor function has the minimum uncertainty in specifying what is where in
an image.
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How may we use the 2D Gabor functions to analyse an image?

To analyse an image into Gabor functions, we proceed as in the 1D case. We take the DFT of the
image, we multiply it with the appropriate Gaussian window, and take the inverse Fourier trans-
form of the result. To make sure we consider all possible frequencies that might be present in the
image, we tessellate the frequency space into rectangular bands and place Gaussian windows in all
of them in turn.

A possible tessellation of the 2D frequency domain is shown in Figure 4.24. At the places marked
by crosses (the centres of the frequency bands/tiles) we place the centres of the windows. Then we
create Gaussian envelopes centred at each band using the magnitude of expression (4.108). We use
each one of them to multiply the Fourier transform of the whole image (which occupies the whole
frequency plane) point by point. This process effectively kills all frequencies outside the chosen
frequency band, and keeps the frequencies inside the chosen band. We then Fourier transform
back this product. The result is an “image” that contains only frequencies in the chosen band.
This “image”, therefore, tells us which parts of the original image contain frequencies in this band.
(The parts which do not contain such frequencies will be very dark and structureless.) We repeat
this process for all frequency bands we have created. So, at the end we have a stack of “images”.
For each pixel now we have as many values as frequency bands we used, one value per output
“image”. The set of these values is the “frequency signature” of the pixel. We can obtain texture
segmentation by using clustering in an N-dimensional space, where N is the number of bands
we used. However, these values are often too oscillatory to constitute good local texture features.
That is why we often consider around each pixel a small local window and inside that window

ωy

ωx

+ + + + +

+

+

+

++

+

+

+ + +

+

+

++

+

++

+

+

+

Figure 4.24 A schematic tessellation of the 2D frequency domain. The crosses mark the centres of the
frequency bands where we may place the 2D Gaussian windows.
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we compute the “energy” of the “image”. This is nothing other than the sum of the squares of the
“image” values, but according to Parseval’s theorem, it represents the local image energy inside the
relevant frequency band. It is these local energies that are considered as “frequency signatures” of
the pixels and are used for performing pixel by pixel classification and thus image segmentation.

Note that in order for the “image” obtained by the inverse Fourier transform to be real, its Fourier
transform must be symmetric about the origin of the axes. This means that when we choose a
band specified by spatial frequencies𝜔x and𝜔y such that𝜔1 < 𝜔x < 𝜔2 and𝜔3 < 𝜔y < 𝜔4, we must
also include the band where −𝜔1 > 𝜔x > −𝜔2 and −𝜔3 > 𝜔y > −𝜔4, on which a window function
should also be placed. (Here we have assumed 𝜔1, 𝜔2, 𝜔3, 𝜔4 > 0.)

The whole process is schematically shown in Figure 4.25.
In practice, however, we often use tessellations of the frequency space different from that of

Figure 4.24.
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Figure 4.25 A schematic representation of the analysis of an image into contents of its frequency bands.
Here we assume that we have chosen four pairs of frequency bands. In each band we have placed a window.
We multiply the Fourier transform of the image with each one of the windows in turn, and Fourier transform
the result back to obtain an “image” that contains only frequencies in the chosen band. Note: we use pairs
of bands symmetric about the origin in order to have real outputs.
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Example B4.30

Prove that the DFT F(k, l) of an image f (m,n) of size M × N, where both M and N are
odd, and m ∈ [0,M − 1], n ∈ [0,N − 1], does not change if we shift the image so that its
indices take values in the range

[
−M−1

2
,

M−1
2

]
and

[
−N−1

2
,

N−1
2

]
respectively.

We start from the conventional definition of DFT

F(k, l) =
M−1∑
m=0

N−1∑
n=0

f (m,n)e−2πj
(

km
M
+ ln

N

)
(4.120)

where k ∈ [0,M − 1] and l ∈ [0,N − 1]. Let us split the double sum as follows:

F(k, l) =

M−1
2∑

m=0

N−1∑
n=0

f (m,n)e−2πj
(

km
M
+ ln

N

)
+

M−1∑
M+1

2

N−1∑
n=0

f (m,n)e−2πj
(

km
M
+ ln

N

)
. (4.121)

In the second sum we define some new variable of summation m̃, such that:

m̃ = m − M ⇒ m = m̃ + M and
[M + 1

2
,M − 1

]
→

[
−M − 1

2
,−1

]
. (4.122)

Then:

F(k, l) =

M−1
2∑

m=0

N−1∑
n=0

f (m,n)e−2πj
(

km
M
+ ln

N

)
+

−1∑
m̃=− M−1

2

N−1∑
n=0

f (m̃ + M,n)e−2πj
(

km̃
M
+k+ ln

N

)
. (4.123)

We remember that DFT assumes that an image is repeated periodically in all directions. So, we
may say that f (m̃ + M,n) = f (m̃,n). Also, e±j(2πk+𝜙) = e±j𝜙. So, the above expression may be writ-
ten as

F(k, l) =

M−1
2∑

m=0

N−1∑
n=0

f (m,n)e−2πj
(

km
M
+ ln

N

)
+

−1∑
m̃=− M−1

2

N−1∑
n=0

f (m̃,n)e−2πj
(

km̃
M
+ ln

N

)
(4.124)

which upon replacing the dummy variable m̃ by m and combining the two sums may be written
as:

F(k, l) =

M−1
2∑

m=− M−1
2

N−1∑
n=0

f (m,n)e−2πj
(

km
M
+ ln

N

)
. (4.125)

Next we define for the inner sum a new variable of summation ñ, such that

ñ = n − N ⇒ n = ñ + N and
[N + 1

2
,N − 1

]
→

[
−N − 1

2
,−1

]
(4.126)

and working as for the sum over m, we prove the conjecture:

F(k, l) =

M−1
2∑

m=− M−1
2

N−1
2∑

n=− N−1
2

f (m,n)e−2πj
(

km
M
+ ln

N

)
for k ∈ [0,M − 1], l ∈ [0,N − 1]. (4.127)
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Example B4.31

Prove that an image f (m,n) of size M × N, where both M and N are odd does not
change, if its DFT F(k, l) is written so that the dc component is in the middle of
the axes.

Due to the duality property of the Fourier transform, f (m,n) is the Fourier transform of F(k, l).
We saw in Example 4.30 that the Fourier transform of an image does not change if we shift the
origin of the axes to the image centre. Therefore, f (m,n) will not change if we shift the origin of
the axes of F(k, l) to its centre, i.e. we may write

f (m,n) = 1
MN

M−1∑
k=0

N−1∑
l=0

F(k, l)e2πj
(

km
M
+ ln

N

)

= 1
MN

M−1
2∑

k=− M−1
2

N−1
2∑

l=− N−1
2

F(k, l)e2πj
(

km
M
+ ln

N

)
(4.128)

where m ∈ [0,M − 1] and n ∈ [0,N − 1], or m ∈
[
−M−1

2
,

M−1
2

]
and n ∈

[
−N−1

2
,

N−1
2

]
.

Example B4.32

Prove that if F(k, l) is the DFT of a real image f (m,n) of size M × N, where M and N are
odd, then |F(k, l)| = |F(−k,−l)|.

From Equation (4.127), we have:

F(−k,−l) =

M−1
2∑

m=− M−1
2

N−1
2∑

n=− N−1
2

f (m,n)e2πj
(

km
M
+ ln

N

)
= F∗(k, l) ⇒ |F(k, l)| = |F(−k,−l)|. (4.129)

Example B4.33

Show that if the DFT F(k, l) of an image f (m,n) of size M × N, where M and N are odd,
has the property F(−k,−l) = F∗(k, l), then the image is real.
The inverse DFT of f (m,n) according to Equation (4.128) may be written as:

f (m,n) = 1
MN

M−1
2∑

k=− M−1
2

N−1
2∑

l=− N−1
2

F(k, l) cos
[

2π
(

km
M

+ ln
N

)]

+j 1
MN

M−1
2∑

k=− M−1
2

N−1
2∑

l=− N−1
2

F(k, l) sin
[

2π
(

km
M

+ ln
N

)]
. (4.130)

(Continued)
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Example B4.33 (Continued)

We must show that the imaginary part of this expression is zero. If F(k, l) = FR(k, l) + jFI(k, l), the
imaginary part of f (m,n), which we may call FI(m,n), is:

FI(m,n) =
1

MN

M−1
2∑

k=− M−1
2

N−1
2∑

l=− N−1
2

FI(k, l) cos
[

2π
(

km
M

+ ln
N

)]

+ 1
MN

M−1
2∑

k=− M−1
2

N−1
2∑

l=− N−1
2

FR(k, l) sin
[

2π
(

km
M

+ ln
N

)]
. (4.131)

Note that in the above expression there is no term k = l = 0, because sin 0 = 0 and because rela-
tion F(−k,−l) = F∗(k, l) implies that F(0, 0) must be real, i.e. FI(0, 0) = 0. We split each double
sum into four sums plus the terms with either k = 0 or l = 0, as follows:

FI(m,n) =
⎧⎪⎨⎪⎩

−1∑
k=− M−1

2

−1∑
l=− N−1

2

+
−1∑

k=− M−1
2

N−1
2∑

l=1
+

M−1
2∑

k=1

−1∑
l=− N−1

2

+

M−1
2∑

k=1

N−1
2∑

l=1

⎫⎪⎬⎪⎭
FI(k, l) cos

[
2π

(
km
M

+ ln
N

)]

+
−1∑

k=− M−1
2

FI(k, 0) cos
[

2πkm
M

]
+

M−1
2∑

k=1
FI(k, 0) cos

[
2πkm

M

]

+
−1∑

l=− N−1
2

FI(0, l) cos
[

2π ln
N

]
+

N−1
2∑

l=1
FI(0, l) cos

[
2π ln

N

]
+

⎧⎪⎨⎪⎩
−1∑

k=− M−1
2

−1∑
l=− N−1

2

+
−1∑

k=− M−1
2

N−1
2∑

l=1
+

M−1
2∑

k=1

−1∑
l=− N−1

2

+

M−1
2∑

k=1

N−1
2∑

l=1

⎫⎪⎬⎪⎭
FR(k, l) sin

[
2π

(
km
M

+ ln
N

)]

+
−1∑

k=− M−1
2

FR(k, 0) sin
[

2πkm
M

]
+

M−1
2∑

k=1
FR(k, 0) sin

[
2πkm

M

]

+
−1∑

l=− N−1
2

FR(0, l) sin
[

2π ln
N

]
+

N−1
2∑

l=1
FR(0, l) sin

[
2π ln

N

]
. (4.132)

There are 16 sums in this expression. Let us enumerate them sequentially, from left to right
and top to bottom. In sums 1, 2, 5, 7, 9, 10, 13 and 15 we introduce new summation variables:
k̃ = −k ⇒ k = −k̃ and l̃ = −l ⇒ l = −l̃. Then:

FI(m,n) =
⎧⎪⎨⎪⎩

1∑
k̃= M−1

2

1∑
l̃= N−1

2

+
1∑

k̃= M−1
2

− N−1
2∑

l̃=−1

⎫⎪⎬⎪⎭FI(−k̃,−l̃) cos
[

2π
(
− k̃m

M
− l̃n

N

)]
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+
⎧⎪⎨⎪⎩

M−1
2∑

k=1

−1∑
l=− N−1

2

+

M−1
2∑

k=0

N−1
2∑

l=1

⎫⎪⎬⎪⎭FI(k, l) cos
[

2π
(

km
M

+ ln
N

)]

+
1∑

k̃= M−1
2

FI(−k̃, 0) cos
[
−2π k̃m

M

]
+

M−1
2∑

k=1
FI(k, 0) cos

[
2πkm

M

]

+
1∑

l̃= N−1
2

FI(0,−l̃) cos
[
−2π l̃n

N

]
+

N−1
2∑

l=1
FI(0, l) cos

[
2π ln

N

]

+
⎧⎪⎨⎪⎩

1∑
k̃= M−1

2

1∑
l̃= N−1

2

+
1∑

k̃= M−1
2

− N−1
2∑

l̃=−1

⎫⎪⎬⎪⎭FR(−k̃,−l̃) sin
[

2π
(
− k̃m

M
− l̃n

N

)]

+
⎧⎪⎨⎪⎩

M−1
2∑

k=1

−1∑
l=− N−1

2

+

M−1
2∑

k=1

N−1
2∑

l=1

⎫⎪⎬⎪⎭FR(k, l) sin
[

2π
(

km
M

+ ln
N

)]

+
1∑

k̃= M−1
2

FR(−k̃, 0) sin
[
−2π k̃m

M

]
+

M−1
2∑

k=1
FR(k, 0) sin

[
2πkm

M

]

+
1∑

l̃= N−1
2

FR(0,−l̃) sin
[
−2π l̃n

N

]
+

N−1
2∑

l=1
FR(0, l) sin

[
2π ln

N

]
. (4.133)

We observe that cos(−𝜙) = cos𝜙, sin(−𝜙) = − sin𝜙, and that if F(−k,−l) = F∗(k, l), then
FR(−k,−l) + jFI(−k,−l) = FR(k, l) − jFI(k, l), which implies that FR(−k,−l) = FR(k, l)
and FI(−k,−l) = −FI(k, l). Obviously, we have the special cases FR(−k, 0) = FR(k, 0),
FR(0,−l) = FR(0, l), FI(−k, 0) = −FI(k, 0) and FI(0,−l) = −FI(0, l). We also note that in a
sum the order in which we add the various terms does not matter, so we may exchange the
upper and lower limits of each summation with no further consequences. We just choose to start
summing from the lower index and stop at the highest index value. Then:

FI(m,n) = −
⎧⎪⎨⎪⎩

M−1
2∑̃

k=1

N−1
2∑̃

l=1

+

M−1
2∑̃

k=1

−1∑
l̃=− N−1

2

⎫⎪⎬⎪⎭FI(k̃, l̃) cos
[

2π
(

k̃m
M

+ l̃n
N

)]

+
⎧⎪⎨⎪⎩

M−1
2∑

k=1

−1∑
l=− N−1

2

+

M−1
2∑

k=1

N−1
2∑

l=1

⎫⎪⎬⎪⎭FI(k, l) cos
[

2π
(

km
M

+ ln
N

)]

−

M−1
2∑̃

k=1

FI(k̃, 0) cos
[

2π k̃m
M

]
+

M−1
2∑

k=1
FI(k, 0) cos

[
2πkm

M

]

−

N−1
2∑̃

l=1

FI(0, l̃) cos
[

2π l̃n
N

]
+

N−1
2∑

l=1
FI(0, l) cos

[
2π ln

N

]

(Continued)
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Example B4.33 (Continued)

−
⎧⎪⎨⎪⎩

M−1
2∑̃

k=1

N−1
2∑̃

l=1

+

M−1
2∑̃

k=1

−1∑
l̃=− N−1

2

⎫⎪⎬⎪⎭FR(k̃, l̃) sin
[

2π
(

k̃m
M

+ l̃n
N

)]

+
⎧⎪⎨⎪⎩

M−1
2∑

k=1

−1∑
l=− N−1

2

+

M−1
2∑

k=1

N−1
2∑

l=1

⎫⎪⎬⎪⎭FR(k, l) sin
[

2π
(

km
M

+ ln
N

)]

−

M−1
2∑̃

k=1

FR(k̃, 0) sin
[

2π k̃m
M

]
+

M−1
2∑

k=1
FR(k, 0) sin

[
2πkm

M

]

−

N−1
2∑̃

l=1

FR(0, l̃) sin
[

2π l̃n
N

]
+

N−1
2∑

l=1
FR(0, l) sin

[
2π ln

N

]
. (4.134)

We may drop the tildes from the dummy summation indices without causing any confusion. Then
we can see that the sums cancel each other to yield 0. This proves the theorem.

Can we have alternative tessellations of the frequency domain?

Yes, in fact when using Gaussian windows, most commonly the frequency plane is tessellated using
polar coordinates. This is shown schematically in Figure 4.26. This choice is biologically inspired.
It has been observed that the 2D receptive field profiles of simple cells in the mammalian visual
cortex may be modelled by 2D Gabor functions defined at various orientations and various radial
frequencies.

Alternatively, we often use bands that are narrower for higher frequencies and broader for low
frequencies because texture is associated with high frequencies rather than low frequencies, and
so, if we wish to discriminate texture better, we must tessellate more finely the high frequencies.
Such a tessellation is shown schematically in Figure 4.27. Alternative schemes may also be devised.

How can we define a Gaussian window in polar coordinates in the frequency domain?

Let us denote by 𝜌 the polar radius, and and 𝜙 the polar angle in frequency space, so that:

𝜌 ≡
√
𝜔2

x + 𝜔2
y cos𝜙 ≡ 𝜔x

𝜌
sin𝜙 ≡ 𝜔y

𝜌
. (4.135)

Let us assume that we choose the Gaussian windows to be centred at points (𝜌I, 𝜙j), with standard
deviation along the polar radius Σ𝜌I

and along the orthogonal direction Σ𝜙I
.

If we define a local coordinate system (�̃�x;ij, �̃�y;ij), centred at (𝜌I, 𝜙j) and rotated with respect to the
original one by angle 𝜙j, the coordinate positions of a point (𝜔x;ij, 𝜔y;ij) in terms of its coordinates
in this new coordinate system are (see Figure 4.28):

𝜔x;ij = (𝜌I + �̃�x;ij) cos𝜙j − �̃�y;ij sin𝜙j

𝜔y;ij = (𝜌I + �̃�x;ij) sin𝜙j + �̃�y;ij cos𝜙j. (4.136)

If we multiply the first equation with cos𝜙j and the second with sin𝜙j and add them, we can solve
this system for 𝜌I + �̃�x;ij and if we multiply the first equation with − sin𝜙j and the second with
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Figure 4.26 A polar coordinates-based tessellation of the frequency domain. Each ellipse represents a
Gaussian window placed at that location. For the creation of real texture features, windows symmetrically
placed about the centre of the axes (the dc component) should be simultaneously activated. Such pairs of
windows are marked with the same shading.

cos𝜙j and add them, we can solve this system for �̃�y;ij:

�̃�x;ij = 𝜔x;ij cos𝜙j + 𝜔y;ij sin𝜙j − 𝜌I

�̃�y;ij = −𝜔x;ij sin𝜙j + 𝜔y;ij cos𝜙j. (4.137)

In the (�̃�x;ij, �̃�y;ij) coordinate system the equation of a Gaussian is:

G̃(�̃�x;ij, �̃�y;ij) = exp

{
−
�̃�2

x;ij

2Σ2
𝜌I

−
�̃�2

y;ij

2Σ2
𝜙I

}
. (4.138)

If we express (�̃�x;ij, �̃�y;ij) in terms of (𝜔x;ij, 𝜔y;ij), using (4.137), we obtain:

G̃(𝜔x;ij, 𝜔y;ij) = exp

{
−
(𝜔x;ij cos𝜙j + 𝜔y;ij sin𝜙j − 𝜌I)2

2Σ2
𝜌I

−
(−𝜔x;ij sin𝜙j + 𝜔y;ij cos𝜙j)2

2Σ2
𝜙I

}
.

(4.139)

This definition depends on some parameters that have to be specified, otherwise the definition
is not complete.
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Figure 4.27 A tessellation of the frequency domain where higher frequencies are more finely tessellated.
For the creation of real texture features, windows symmetrically placed about the centre of the axes should
be simultaneously activated. Such windows are marked with the same shading.

Py

P2

Py

P

ϕ

Px

Px P1

ωx
~

~

~

ωy
~

ωy

O

O

ϕ ωx

Figure 4.28 The coordinates of point P in the large coordinate system are (OPx ,OPy), and in the rotated
coordinate system are (O′P̃x ,O

′P̃y). It is obvious that OPx = OP1 − PxP1 = OP̃x cos𝜙 − PP̃x sin𝜙 = (OO′

+ O′P̃x) cos𝜙 − O′P̃y sin𝜙. Also, OPy = OP2 + P2Py = OP̃x sin𝜙 + PP̃x cos𝜙 = (OO′ + O′P̃x) sin𝜙 + O′P̃y cos𝜙.
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As Gabor functions are biologically inspired, we often use the convention of choosing the param-
eters in accordance with the parameters used by the human visual system. It has been shown that
the human visual system has filters similar to Gabor filters which have central frequency responses
one octave apart. Thus, frequencies 𝜌I are measured in octaves.

What is an octave?

An octave is the bandwidth between two frequencies, one of which is double the other.

How do we express a frequency in octaves?

This is better explained in conjunction with the diagram of Figure 4.29. Let us say that two frequen-
cies f1 and f2 are one octave apart. This means that f2 = 2f1. If a third frequency f3 is one octave away
from f2, it must be f3 = 2f2 = 2 × 2f1 = 22f1. Frequencies f1 and f3 are two octaves apart. A fourth
frequency, f4, which is one octave away from f3, is f4 = 2f3 = 2 × 2f2 = 2 × 2 × 2f1 = 23f1. We say
that f2 is one octave away, f3 is two octaves away and f4 is three octaves away from f1, or that there
are three octaves between frequencies f4 and f1. It is evident from this that the number of octaves
between two frequencies is given by:

log2
fmax

fmin
. (4.140)

For an unknown frequency fx, we may say that it is 𝛼 octaves away from frequency f1 and compute
𝛼 in the same way:

𝛼 ≡ log2
fx

fmin
. (4.141)

Example B4.34

If a frequency band is Δ𝛼 octaves wide, what is its width Δ𝜔 in cycles per unit length?
If the central frequency of the band is𝜔, the upper limit of the band is𝜔 + Δ𝜔

2
and the lower limit

is 𝜔 − Δ𝜔
2

. This width in octaves, Δ𝛼, is given by:

Δ𝛼 = log2

𝜔 + Δ𝜔
2

𝜔 − Δ𝜔
2

. (4.142)

(Continued)

fmin

fmin

8 fmin

fmin

fmin

f

2fmin

23 fmin21 fmin

3210

fmaxfx

log2

f1 f2 f4f3

4fmin

22 fmin

Figure 4.29 An octave is the interval between a frequency and its double. The bottom row of numbers
counts the number of octaves starting from frequency f1 = fmin .
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Example B4.34 (Continued)

This equation may be re-arranged as follows:
𝜔+ Δ𝜔

2

𝜔− Δ𝜔
2

= 2Δ𝛼

⇒ 𝜔2Δ𝛼 − Δ𝜔
2

2Δ𝛼 = 𝜔 + Δ𝜔
2

⇒ 𝜔(2Δ𝛼 − 1) = Δ𝜔
2
(2Δ𝛼 + 1)

⇒ Δ𝜔 = 2𝜔 2Δ𝛼−1
2Δ𝛼+1

. (4.143)

From this expression we may compute the width of a frequency band in cycles per unit length if
we know its width in octaves and its central frequency.

How may we choose the parameters of the Gaussian window in the frequency space?

We have the following parameters to choose:

● The positions of the centres of the functions in the frequency space, so that we cover the whole
of space with the minimum number of functions.

● The standard deviations of each Gaussian along its principal axes.

Let us consider Figure 4.26. The circular band placed in the middle represents the low-frequency
component, as it is centred at zero frequency. Texture attributes are really measured by the Gabor
functions outside that circle. Let us call 𝜔0 the limit of the low-frequency band.

The maximum possible frequency of an image along the x or y axes is defined by the size of
the image. If the image is N × M in size, the frequency domain is also N × M in size, with the
fundamental frequency along the x axis being 2π∕N and along the y axis 2π∕M. The maximum fre-
quency along each axis is π(N − 1)∕N and π(M − 1)∕M, respectively when N and M are both odd (in
which case the indices along the frequency axes vary in the ranges

[
−N−1

2
,

N−1
2

]
and

[
−M−1

2
,

M−1
2

]
,

respectively). If N and M are both even, the ranges of the frequency indices are
[
−N

2
,

N
2
− 1

]
and[

−M
2
,

M
2
− 1

]
, respectively. In this case, the maximum frequency along each axis is π(N − 2)∕N and

π(M − 2)∕M, respectively. In either case, let us call the maximum of these two frequencies 𝜔max .
First we want to see how many octaves we can fit between frequencies 𝜔0 and 𝜔max . This is easily
computed as:

K̃ ≡ log2
𝜔max

𝜔0
. (4.144)

This number tells us how many radial bands we need in order to cover the whole frequency space.
In general, this is not an integer, so we may round it up to the nearest integer, say K. Each radial
band must be one octave in width. From the definition of an octave, we infer that the width of each
band is equal to the lower frequency boundary of the band. If𝜔1 is the upper limit of the first band,
since 𝜔1 = 2𝜔0, the width of the first band is:

Δ𝜔1 = 𝜔1 − 𝜔0 = 𝜔0. (4.145)

We choose Σx1 so that at the boundary of the band the value of the Gaussian is 0.5. (At the centre
of the band the value of the Gaussian is 1.) This means that:

e
− (𝜔0∕2)2

2Σ2
x1 = 0.5 ⇒ −

(𝜔0∕2)2

2Σ2
x1

= ln 0.5 = − ln 2 ⇒ Σx1 =
𝜔0

2
√

2 ln 2
. (4.146)
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The centre of the first band is at polar radius:

𝜌1 =
𝜔1 + 𝜔0

2
=

3𝜔0

2
. (4.147)

If 𝜔2 is the upper limit of the second band, we have:

𝜔2 = 2𝜔1 = 22𝜔0. (4.148)

The width of the second band, therefore, is

Δ𝜔2 = 𝜔2 − 𝜔1 = 𝜔1 = 2𝜔0 (4.149)

and its centre is at:

𝜌2 =
𝜔2 + 𝜔1

2
=

3𝜔1

2
= 3𝜔0. (4.150)

In general, the upper limit of band i is

𝜔I = 2i𝜔0 (4.151)

and so the bandwidth of band i is

Δ𝜔I = 𝜔I − 𝜔i−1 = 2i𝜔0 − 2i−1𝜔0 = 2i−1𝜔0. (4.152)

and the corresponding standard deviation is:

Σxi =
2i−2𝜔0√

2 ln 2
(4.153)

The centre of band i is at:

𝜌I =
𝜔I + 𝜔i−1

2
= 1

2
(2i𝜔0 + 2i−1𝜔0) = 2i−23𝜔0. (4.154)

Let us decide that we are going to use L filters along the tangential direction. Then the bandwidth
ΔΦ in the tangential direction is ΔΦ = 360∘∕L. In practice this means that the centre of the first
filter is placed at 𝜙 = 0∘, the centre of the second at ΔΦ, the centre of the next at 2ΔΦ, and so on,
until the last one at (L − 1)ΔΦ degrees with respect to the positive 𝜔x axis.

Let us consider the Gaussian window shown in Figure 4.30. It is rotated by an angle 𝜙j with
respect to the 𝜔x axis and centred at point A. Length AB is equal to half the spectral bandwidth of
the filter along the 𝜔y axis (i.e. AB = Δ𝜔y;i∕2). Length OA is equal to 𝜌I. Then we have:

tan ΔΦ
2

= AB
OA

=
Δ𝜔y;i

2𝜌I
⇒ Δ𝜔y;i = 2𝜌I tan ΔΦ

2
. (4.155)

Figure 4.30 The ellipse represents an
isocontour of a Gaussian window in the
frequency space, such that length AB is equal to
half the bandwidth of the function. B

A

C

ΔΦ

φj

ωy

ωx

O

2
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We choose then:

Σyi =
𝜌I√
2 ln 2

tan ΔΦ
2
. (4.156)

How do we perform the analysis of an image in terms of Gabor functions in practice?

We use the following algorithm.

Step 0: Select the radius 𝜔0 of the frequencies you will treat as low. Select also the number L of
azimuth bands you will use.

Step 1: Assuming that your image I is N × M in size, calculate the highest frequency present in the
image along each axis, as follows.
If N is odd, set 𝜔x = π(N−1)

N
.

If N is even, set 𝜔x = π(N−2)
N

.
If M is odd, set 𝜔y =

π(M−1)
M

.
If M is even, set 𝜔y =

π(M−2)
M

.
Step 2: Select the maximum frequency in the image: 𝜔max = max {𝜔x, 𝜔y}.
Step 3: Calculate the number of filters you will use along the radial direction:

K =
⌈

log2
𝜔max

𝜔0

⌉
. (4.157)

Step 4: Calculate the positions of the centres of the bands along the radial direction:

𝜌k = 2k−23𝜔0 for k = 1,… ,K. (4.158)

Step 5: Calculate the standard deviation of the Gaussian filters along the radial direction:

Σ𝜌k
=

2k−2𝜔0√
2 ln 2

. (4.159)

Step 6: Calculate the positions of the centres of the bands along the azimuthal direction:

ΔΦ = 360∘
L

𝜙l = (l − 1)ΔΦ for l = 1,… ,L. (4.160)

Step 7: Calculate the standard deviation of the Gaussian filters along the azimuthal direction:

Σ𝜙lk =
𝜌k√
2 ln 2

tan ΔΦ
2

for k = 1,… ,K, ∀l. (4.161)

Note that this standard deviation is the same for all values of l and simply varies with the radial
position of the centre of the Gaussian.

Step 8: If L is odd, set T ≡ KL, while if L is even, set T ≡ KL∕2 and create T + 1 arrays the same
size as the image. Call them Ft, for t = 0, 1,… ,T. Define the elements of these arrays as follows.

F0(u, 𝑣) =

⎧⎪⎪⎨⎪⎪⎩
1 if

(
2πu
N

)2
+
(

2π𝑣
M

)2 ≤ 𝜔2
0

0 if
(

2πu
N

)2
+
(

2π𝑣
M

)2
> 𝜔2

0

(4.162)

Ft(u, 𝑣) = exp
⎧⎪⎨⎪⎩−

(
2πu
N

cos𝜙l +
2π𝑣
M

sin𝜙l − 𝜌k

)2

2Σ2
𝜌k

−

(
− 2πu

N
sin𝜙l +

2π𝑣
M

cos𝜙l

)2

2Σ2
𝜙lk

⎫⎪⎬⎪⎭
+ exp

⎧⎪⎨⎪⎩−
(
− 2πu

N
cos𝜙l −

2π𝑣
M

sin𝜙l − 𝜌k

)2

2Σ2
𝜌k

−

(
2πu
N

sin𝜙l −
2π𝑣
M

cos𝜙l

)2

2Σ2
𝜙lk

⎫⎪⎬⎪⎭ . (4.163)
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Figure 4.31 (a) When the number of azimuthal bands is even (e.g. L = 8), pairing the bands in order to
obtain a real function in the image domain means that we may consider only values of l = 1,… , 4 to cover
the frequency space. (b) When the number of bands is odd (e.g. L = 9), the second band we pair with the
originally chosen one (l = 2) strands two half bands (l = 5 and l = 6), so we have to consider all values of
l = 1, 2,… , 9. This means that the frequency spaced will be covered twice with densely overlapping pairs of
bands.

Here t = kl and t = 1, 2,… ,T. The addition of the two terms guarantees that Ft is symmetric
about the origin. Indeed, the second term in (4.163) was produced from the first by replacing 𝜙l
with 𝜙l + 180∘, to create a Gaussian window in a symmetrically opposite location from the first
Gaussian, with respect to position (0, 0). If L is even, these two Gaussians are placed in exactly two
chosen bands, and that is why in that case we need only consider L∕2 azimuthal bands. If L is odd,
however, the second Gaussian does not cover a chosen band, but it strands across two azimuthal
bands, and that is why we need to consider all L azimuthal bands (see Figure 4.31). In that case,
of course, we have better coverage of the azimuthal frequencies, as there is a twofold redun-
dancy. As the Gaussians give different weights to the different frequencies, all these redundant
representations may turn out to be useful since they will cover the frequency space more densely.
Indices u and 𝑣 take the following values.

u ∈
[
−N−1

2
,

N−1
2

]
𝑣 ∈

[
−M−1

2
,

M−1
2

]
if N,M odd

u ∈
[
−N−1

2
,

N−1
2

]
𝑣 ∈

[
−M

2
,

M
2
− 1

]
if N odd, M even

u ∈
[
−N

2
,

N
2
− 1

]
𝑣 ∈

[
−M

2
,

M
2
− 1

]
if N,M even

u ∈
[
−N

2
,

N
2
− 1

]
𝑣 ∈

[
−M−1

2
,

M−1
2

]
if N even, M odd.

(4.164)

Step 9: Take the DFT of the image. Call it Î. Make sure the indices of Î take values in the ranges
defined in (4.164).

Step 10: Set the dc component of Î to 0. Call the result Î0. Create the products: Ǐt = Î0Ft, where the
matrices are multiplied point by point.

Step 11: Take the inverse DFT of each Ǐt, to create It. These matrices are the Gabor components
of the original image. From here we have various options. If we want to create some form of
reconstruction of the original image, we have to add the following steps.

Step 12: Create the product Ǐ0 = ÎF0, where the matrices are multiplied point by point.
Step 13: Take the inverse DFT of Ǐ0. Call it I0.
Step 14: Create a reconstruction of the image as Ĩ =

∑T
t=0 It, if L is even and only half of the azimuth

bands have been used, or as Ĩ = 1
2

∑T
t=0 It, if L is odd and the frequency space has been covered

with redundancy.
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Step 15: You may compute the error of this reconstruction by summing up the squares of the values
of matrix Ĩ − I.

Note that the reconstruction is not expected to be perfect, as the different frequencies of the image
have been multiplied with different weights.

If you want to create texture features from the Gabor expansion of the image, you have to compute
the local energy around each pixel in representations It. When we compute local energy, we find the
sum of the squares of the values of the pixels in the local neighbourhood of each pixel and assign
it to the focal pixel. However, some researchers have found that better results may be obtained by
first applying the following transformation to the values of representations It:

𝜓(g) =
||||1 − e−2𝛼g

1 + e−2𝛼g

|||| . (4.165)

Here 𝛼 > 0 is some parameter and g is the value of a pixel in representation It. If g → ±∞, 𝜓(g) → 1
and if g = 0, 𝜓(g) = 0. Figure 4.32 shows a plot of one cycle of a sinusoid, which is assumed to
represent how g changes with distance x, and superimposed upon it, the corresponding values of
𝜓(g) for 𝛼 = 1.25, 2.50 and 5.00. We note that the effect of this transformation is to rectify the wave,
by making both its lobes positive, and to broaden them into stripes.

Care should be taken when choosing a value for the processing of the real data, as Figure 4.32
refers to g values in the range [−1, 1], while real data will be in a totally different range. We have
the choice either to scale each It separately in the range [−1, 1] before taking its 𝜓 transform, or to
scale all It together in the range [−1, 1] before taking their 𝜓 transforms. The former is appropriate
for visualisation. However, individual scaling loses all information on the relative strength of the
values a pixel has in the different representations It, i.e. in the different bands, and it will cause
problems when we need that information for segmentation. That is why, in order to compute the
local energy from these representations, we scale all of them together in the range [−1, 1] before
taking their 𝜓 transform.

Then in order to compute the local energy we average the 𝜓(g) values inside a local window
around each pixel. It is better if we perform this averaging using a Gaussian window, the size of
which is related to the central frequency of the band we are analysing.

We know that the standard deviation of a Gaussian in the frequency domain is the inverse of
the standard deviation of the corresponding Gaussian in the image domain. So, a Gaussian that
has standard deviation Σ𝜌k

along the radial direction in the frequency domain, corresponds to a
Gaussian with standard deviation 𝜎k = 1∕Σ𝜌k

in the image space. Using (4.159), we obtain

𝜎k =
√

2 ln 2
2k−2𝜔0

=
3
√

2 ln 2
𝜌k

= 3.532
𝜌k

(4.166)

where we replaced 2k−2𝜔0 from (4.158).
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x

Figure 4.32 Function 𝜓(g(x)) for 𝛼 = 1.25,
2.5, and 5.0, from bottom to top respectively,
when g(x) = sin x, versus x. The sine wave is
the plot of g(x).
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A difference between the filters we use in the frequency domain and those we use in the real
domain for smoothing is that the filters in the frequency domain must have value 1 in their centres
and, therefore, their weights do not sum up to 1. This is because they have to preserve certain fre-
quencies intact. However, the weights of the smoothing convolution filters we use here to compute
local averages, must sum up to 1. So the values of the truncated Gaussian filter we create have to
be divided with their sum to fulfil this condition.

So, to produce texture features from representations It, we have to perform the following steps.

Step 16: Scale all representations It to have values in the range [−1, 1]. Call the resultant represen-
tations Ĩt.

Step 17: Take the 𝜓 transform of every Ĩt, using Equation (4.165), applied to each pixel value, and
thus produce representations I𝜓 t.

Step 18: For each value of k, work out the Gaussian weights you will use to compute the local
energy, using e−(x2+y2)∕(2𝜎2

k ) with 𝜎k given by (4.166). To decide the size of such a window, let us
consider it to be (2S + 1) × (2S + 1). To specify the value of S, we accept that at x = ±S and y = 0,
the value of the window must be 0.1. Then:

e
− S2

2𝜎2
k = 0.1 ⇒ − S2

2𝜎2
k

= ln 0.1 ⇒ S = 𝜎k

√
−2 ln 0.1 = 2.146𝜎k. (4.167)

Compute the values of the (2S + 1) × (2S + 1) mask by allowing x and y in e−(x2+y2)∕(2𝜎2
k ) to take all

possible integer values in the range [−S, S]. At the end, add all elements of the mask you created
and divide each element by this sum, so that the mask is normalised to consist of elements that
sum up to 1. Create one such mask for every value of k and call it Gk.

Step 19: Square each element of each representation I𝜓 t. Call the results It2.
Step 20: Each t value corresponds to a particular pair of indices (k, l). Convolve image It2 with

the corresponding Gk mask, to work out the weighted local energy values for each pixel in each
representation It2. Call the resultant representations Et. These are the feature maps of the original
image.

Step 21: To create the feature vector for each pixel, read the sequence of values it has in the feature
maps Et, thus creating a T-dimensional feature vector for each pixel of the original image.

Step 22: To visualise the feature maps, scale either each one individually or all together using the
same scale, to the range [0,255], rounding the scaled values to the nearest integer.

Steps 16 and 17 are optional. One may not wish to apply the 𝜓 transform to representations It,
but take the local energy of them directly. In that case, step 19 should be applied to representations
It and not I𝜓 t.

One may also wish to avoid using a Gaussian weighting to compute the local energy. In that case,
step 18 may be omitted and when performing step 20 one may use a flat averaging window instead
of a Gaussian window.

Example B4.35

Work out the value mask Ft, defined by Equation (4.163), has at the centre of each of
the two Gaussians it consists of.
The centre of the Gaussian represented by the first term of (4.163) is at (𝜌k, 𝜙l). The components of
the radial frequency 𝜌k along the two axes are (𝜌k cos𝜙l, 𝜌k sin𝜙l). We have to use these values in

(Continued)
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Example B4.35 (Continued)

place of (2πu∕N, 2π𝑣∕M) in (4.163) to work out the value of Ft at the centre of the first Gaussian:

Ft(𝜌k, 𝜙l) = exp

{
−
(𝜌kcos2𝜙l + 𝜌ksin2

𝜙l − 𝜌k)2

2Σ2
𝜌k

−
(−𝜌k cos𝜙l sin𝜙l + 𝜌k sin𝜙l cos𝜙l )2

2Σ2
𝜙lk

}

+ exp

{
−
(−𝜌kcos2𝜙l − 𝜌ksin2

𝜙l − 𝜌k )2

2Σ2
𝜌k

−
(𝜌k cos𝜙l sin𝜙l − 𝜌k sin𝜙l cos𝜙l )2

2Σ2
𝜙lk

}

= 1 + exp

{
−
𝜌2

k

Σ2
𝜌k

}
. (4.168)

The centre of the second Gaussian is at (𝜌k, 𝜙l + 180∘). So, the radial frequency along the two
axes has components (−𝜌k cos𝜙l,−𝜌k sin𝜙l). If we substitute into (4.163), we shall eventually
work out a value equal to Ft(𝜌k, 𝜙l).

So, if we want the Ft mask to have value 1 at the central frequency of each Gaussian, we shall
have to divide all its values with Ft(𝜌k, 𝜙l) given by (4.168).

Example 4.36

How will you modify step 8 of the algorithm so that Ft has 0 value outside the band
of its definition?
We must follow these sub-steps.

Step 9.0: Identify the k and l indices to which the t index of Ft corresponds. Set all elements of Ft
equal to 0.

Step 9.1: For u ∈ [umin ,umax ], where umin and umax are defined according to (4.164), and for
each 𝑣 ∈ [𝑣min , 𝑣max ], where 𝑣min and 𝑣max are defined according to (4.164), compute:

𝜌 =
√

u2 + 𝑣2 �̃� = tan−1 |𝑣|
𝜌
. (4.169)

The use of the absolute value in the calculation of �̃� ensures that the computed value is in the
range [0, 90∘]. So, we must then put it in the range [0, 360∘] using the following rules.

If u ≥ 0 and 𝑣 ≥ 0 Set 𝜙 = �̃�

If u ≥ 0 and 𝑣 < 0 Set 𝜙 = 360∘ − �̃�
If u < 0 and 𝑣 ≥ 0 Set 𝜙 = 180∘ − �̃�
If u < 0 and 𝑣 < 0 Set 𝜙 = 180∘ + �̃�. (4.170)

Step 9.2: If {2k−1𝜔0 < 𝜌 < 2k𝜔0 and l > 1 and ΔΦ(l − 1.5) < 𝜙 < ΔΦ(l − 0.5)}, or {2k−1𝜔0 <

𝜌 < 2k𝜔0 and l = 1 and 0 < 𝜙 < 0.5ΔΦ}, or {2k−1𝜔0 < 𝜌 < 2k𝜔0 and l = 1 and 360o −
0.5ΔΦ < 𝜙 < 360∘}, set

Ft(u, 𝑣) = exp
⎧⎪⎨⎪⎩−

(
2πu
N

cos𝜙l +
2π𝑣
M

sin𝜙l − 𝜌k

)2

2Σ2
𝜌k

−

(
− 2πu

N
sin𝜙l +

2π𝑣
M

cos𝜙l

)2

2Σ2
𝜙lk

⎫⎪⎬⎪⎭ .
(4.171)
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If 2k−1𝜔0 < 𝜌 < 2k𝜔0 and ΔΦ(l − 1.5) + 180∘ < 𝜙 < ΔΦ(l − 0.5) + 180∘, set

Ft(u, 𝑣) = exp
⎧⎪⎨⎪⎩−

(
− 2πu

N
cos𝜙l −

2π𝑣
M

sin𝜙l − 𝜌k

)2

2Σ2
𝜌k

−

(
2πu
N

sin𝜙l −
2π𝑣
M

cos𝜙l

)2

2Σ2
𝜙lk

⎫⎪⎬⎪⎭ . (4.172)

Example 4.37

Use Gabor functions to compute feature maps for the image of Figure 4.33a.
This image is 640 × 480 in size. So, the frequency indices that are present in it are in the ranges
[−320,319] and [−240,239].

The basic frequencies along the two axes are 2π∕640 and 2π∕480 respectively. Let us say that
we choose 𝜔0 to be 10 × 2π∕480, that is, 𝜔0 = 0.131.

The highest frequencies along the two axes are π638∕640 and π478∕480. The highest of these
two is π638∕640, and so we set 𝜔max = π638∕640 = 3.132.

Next, we compute:

K =
⌊

log2
𝜔max

𝜔0

⌋
=
⌊

log2
3.132
0.131

⌋
= ⌈4.58⌉ = 5. (4.173)

From these values and by making use of Equations (4.152) and (4.158), we obtain the values of
Δ𝜔k and 𝜌k for all the radial bands, shown under the corresponding columns of Table 4.1. The
values for Σ𝜌k

and Σ𝜙lk are computed from Equations (4.159) and (4.161), respectively.
Let us choose L = 8 orientations for our directional filters. Then ΔΦ = 360∘∕8 = 45∘ =

0.785 rad. Table 4.2 shows the orientations along which the centre of each Gaussian window
is placed. The parameters of Tables 4.1 and 4.2 are then used in equation (4.163) to construct
the Gaussian masks. Note, that as we consider pairs of masks in symmetric positions about the
centre, in reality we use only L∕2 = 4 inverse Fourier transforms to extract the local frequency
content of the image.

An important detail concerns the symmetric placement of the windows about the origin (0, 0).
The image is of even size along each axis, so there is no central point. It is of size 640 × 480 pixels,
i.e. the ranges of indices used are [−320,319] and [−240,239]. To make sure that the reconstructed
images are real (as opposed to complex), the pairs of filters used for each band should be sym-
metric and therefore row −320 and column −240 are not considered.

Table 4.1 Values of 𝜌k , Δ𝜔k , Σ
𝜌k

, and Σ
𝜙lk

used to segment the
image in Figure 4.33.

Radial band 𝝆k 𝚫𝝎k 𝚺
𝝆k

𝚺
𝝓l k

1 0.196 0.131 0.055 0.070
2 0.393 0.262 0.111 0.139
3 0.785 0.524 0.223 0.277
4 1.571 1.047 0.445 0.553
5 3.142 2.094 0.890 1.107

(Continued)
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Example 4.37 (Continued)

Table 4.2 Orientations of the angular
bands of the Gaussian masks.

Angular band 𝝓l

l = 1 0∘

l = 2 45∘

l = 3 90∘

l = 4 135∘

(a) (b)

Figure 4.33 (a) A Girona pavement to be segmented and
(b) the magnitude of its Fourier transform (appropriately
scaled for visualisation purposes). Source: Maria Petrou.

The top rows of Figures 4.34–4.38 show the results of multiplying the Gaussian masks with the
Fourier transform of the original image shown in Figure 4.33b. Note that, the same scaling to the
range [0,255] has been used for all the results to allow visual comparison between the different
panels. The second rows of the same figures show the inverse Fourier transforms of the filtered
data. A strong visual characteristic of each reconstructed image shown in Figures 4.34–4.38 is its
ripple-like appearance. This indicates the presence of positive and negative values, both of which
should contribute to the image energy. When we compute the energy we take the square of the
values, so we take care of the fluctuations in sign. However, we choose to apply the 𝜓 transform
first, given by Equation (4.165) with 𝛼 = 2.50. Figures 4.34–4.38 show the 𝜓(g) transforms of
the reconstructed images, each one scaled separately for visualisation purposes. These are the
uniformly scaled versions of representations I𝜓 t of step 17 of the algorithm. Then we apply steps
18 and 19 of the same algorithm to the unscaled representations I𝜓 t .

Finally, to visualise all these local energy representations, we scale them all together in the
range [0,255], so that grey values in different panels may be compared. The results are shown in
the bottom rows of Figures 4.34–4.38.

Now, we have 20 feature maps. The most useful ones are those with the most energy.
We may find the total energy of each representation It, by squaring and adding all its

values.
One way of identifying which channels should be retained is to reconstruct the original image

from the retained channels. To avoid having pixels with negative values, we include in all recon-
structions the reconstruction produced by taking the inverse Fourier transform of the frequencies
inside the central disk of radius𝜔0, shown in Figure 4.40. This central band is not used for texture
analysis. Figures 4.41–4.42 show the reconstructions obtained by simply adding an extra channel
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0° 45° 90° 135°

0° 45° 90° 135°

0° 45° 90° 135°

0° 45° 90° 135°

(a)

(b)

(c)

(d)

Figure 4.34 Top row: magnitude of the Fourier transform of image 4.33a multiplied with the
Gaussian masks for 𝜌1. Second row: inverse Fourier transforms of the panels above. Third row: the
𝜓(g) transforms of the panels above. Fourth row: local energy feature maps computed from the panels
above. Source: Maria Petrou.

(Continued)
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Example 4.37 (Continued)

0° 45° 90° 135°
(a)

0° 45° 90° 135°
(b)

0° 45° 90° 135°
(c)

0° 45° 90° 135°
(d)

Figure 4.35 Top row: magnitude of the Fourier transform of image 4.33a multiplied with the
Gaussian masks for 𝜌2. Second row: inverse Fourier transforms of the panels above. Third row: the
𝜓(g) transforms of the panels above. Fourth row: local energy feature maps computed from the panels
above. Source: Maria Petrou.
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0° 45° 90° 135°
(a)

0° 45° 90° 135°
(b)

0° 45 90 135°
(c)

0° 45° 90° 135°
(d)

Figure 4.36 Top row: magnitude of the Fourier transform of image 4.33a multiplied with the
Gaussian masks for 𝜌3. Second row: inverse Fourier transforms of the panels above. Third row: the
𝜓(g) transforms of the panels above. Fourth row: local energy feature maps computed from the panels
above. Source: Maria Petrou.

(Continued)
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Example 4.37 (Continued)

0° 45° 90 135°
(a)

0° 45° 90° 135°
(b)

0° 45° 90° 135°
(c)

0° 45° 90° 135°
(d)

°

Figure 4.37 Top row: magnitude of the Fourier transform of image 4.33a multiplied with the
Gaussian masks for 𝜌4. Second row: inverse Fourier transforms of the panels above. Third row: the
𝜓(g) transforms of the panels above. Fourth row: local energy feature maps computed from the panels
above. Source: Maria Petrou.



�

� �

�

4.2 Gabor Functions 437

0° 45° 90° 135°
(a)

0° 45° 90° 135°
(b)

0° 45° 90° 135°
(c)

0° 45° 90° 135°
(d)

Figure 4.38 Top row: magnitude of the Fourier transform of image 4.33a multiplied with the
Gaussian masks for 𝜌5. Second row: inverse Fourier transforms of the panels above. Third row: the
𝜓(g) transforms of the panels above. Fourth row: local energy feature maps computed from the panels
above. Source: Maria Petrou.

(Continued)
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Example 4.37 (Continued)

at a time in the order they appear along the horizontal axis of Figure 4.39. These cumulative
reconstructions are produced by simply adding the reconstructions we created by taking the
inverse Fourier transforms of the individual channels. To evaluate how good each reconstruction
is, we may compute the sum of the squares of the differences of the values of individual pixels
in the reconstructed image and in the original image. Figure 4.43a shows the value of this
reconstruction error as a function of the number of channels used, always ranking the channels
in order of decreasing energy. Note that this error cannot possibly be zero due to the distortions
created by multiplying the various frequency amplitudes with the corresponding values of the
Gaussian windows we use. The values of the reconstruction errors are also shown in the second
column of Table 4.3. The results of this study indicate that the first 10 channels are adequate in
describing the textures in this image.

0

20

40

60

80

100

120

ρ3L2 ρ4L2 ρ2L2 ρ1L2 ρ3L3 ρ3L1 ρ2L3 ρ2L1 ρ3L0 ρ2L0 ρ4L3 ρ5L2 ρ4L1 ρ1L3 ρ1L1 ρ1L0 ρ4L0 ρ5L3 ρ5L1 ρ5L0

Figure 4.39 Energies of the 20 bands used in the Gabor expansion of the image, ranked in
decreasing order. Abscissa 𝜌ILj means the ith radial and jth angular band.

Figure 4.40 The central band containing the dc component of the image and the reconstruction
obtained by retaining only those frequencies. Source: Maria Petrou.
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n = 1 n = 2

n = 3 n = 4

n = 5 n = 6

n = 7 n = 8

n = 9 n = 10

Figure 4.41 For each pair of panels: on the left the Gaussian filters that correspond to the n channels
with the highest energy, plus the low pass channel, and on the right the image reconstruction
produced by summing up the inverse Fourier transforms of these channels. Values of n from 1 to 10.
Source: Maria Petrou.

(Continued)



�

� �

�

440 4 Non-stationary Grey Texture Images

Example 4.37 (Continued)

n = 11 n = 12

n = 13 n = 14

n = 15 n = 16

n = 17 n = 18

n = 19 n = 20

Figure 4.42 For each pair of panels: on the left the Gaussian filters that correspond to the n channels
with the highest energy, plus the low pass channel, and on the right the image reconstruction
produced by summing up the inverse Fourier transforms of these channels. Values of n from 11 to 20.
Source: Maria Petrou.
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Figure 4.43 Reconstruction error as a function of the channels used for the images in Figures (a)
4.41 and 4.42, and (b) 4.45 and 4.46.

Example 4.38

Reconstruct the image of 4.33a from its bands with the most energy, using the
same bands as those used in Example 4.37, but with the Gaussians truncated
beyond the limits of the bands. Show the error of the reconstruction as a function
of the number of channels used and compare it with the corresponding error in
Example 4.37.
In Figure 4.44 we plot the channel energies in decreasing order. We note that there is no change
in the order of the first 10 channels from Example 4.37.

The results of the reconstructions are shown in Figures 4.45 and 4.46. The errors of the
reconstruction are given in the third column of Table 4.3, next to the errors produced when
the tails of the Gaussians outside the bands are not truncated. These errors are plotted in
Figure 4.43b.
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Figure 4.44 Energies of the 20 bands created by truncating the Gaussian masks beyond the band
limits, ranked in decreasing order.

(Continued)
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Example 4.38 (Continued)

n = 1 n = 2

n = 3 n = 4

n = 5 n = 6

n = 7 n = 8

n = 9 n = 10

Figure 4.45 For each pair of panels: on the left the truncated Gaussian filters that correspond to the
n channels with the highest energy, plus the low pass channel, and on the right the image
reconstruction produced by summing up the inverse Fourier transforms of these channels. Values of n
from 1 to 10. Source: Maria Petrou.
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n = 11 n = 12

n = 13 n = 14

n = 15 n = 16

n = 17 n = 18

n = 19 n = 20

Figure 4.46 For each pair of panels: on the left the truncated Gaussian filters that correspond to the
n channels with the highest energy, plus the low pass channel, and on the right the image
reconstruction produced by summing up the inverse Fourier transforms of these channels. Values of n
from 11 to 20. Source: Maria Petrou.
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Example 4.39

Use the same process as in Example 4.37 to extract feature maps from the image of
Figure 4.33a, except now truncate the tails of the Gaussians outside the bands, and
keep only the 10 bands with the most energy.
The results of the features constructed from the 10 bands with the highest energy values are shown
in Figure 4.47, next to the corresponding𝜓 transformed bands. All I𝜓 t representations are shown
here scaled globally to the range [0,255], so that cross-panel comparisons may be made. The same
is true for all energy feature maps.

Figure 4.47 Truncated Gaussian windows. The 𝜓(g) and the corresponding local energy maps
extracted for the 10 channels with the highest energy, presented as pairs in decreasing energy order,
from top to bottom and left to right. Source: Maria Petrou.



�

� �

�

4.2 Gabor Functions 445

Example 4.40

Reconstruct the image of 4.33a from its bands with the most energy, using the same
bands as those used in Example 4.37, but with flat windows that have value 1 inside
their bands and 0 beyond the limits of their bands. Show the error of the recon-
struction as a function of the number of channels used and compare it with the
corresponding error in Examples 4.37 and 4.38.
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Figure 4.48 Energies of the 20 bands into which the Fourier transform of the image was divided,
ranked in decreasing order.

The energy of each channel in decreasing order is shown in Figure 4.48.
We note that the first 10 most significant channels are in the same order as in the case of the

Gaussian masks, but this is not true for the remaining channels. This is because the use of the
Gaussian masks obviously distorts the computed local energies.

The results of the reconstructions are shown in Figures 4.50 and 4.51.
The errors of the reconstruction are given in the fourth column of Table 4.3, next to the errors

produced when the tails of the Gaussians outside the bands are truncated. These errors are also
shown in Figure 4.49a. We can see that when no Gaussian window is used, the reconstruction
error tends to 0 as more bands are included.

Figure 4.49b shows all three reconstruction errors plotted together (i.e. bands created by mul-
tiplying the Fourier transform of the image with Gaussian masks, bands created by multiplying
the Fourier transform of the image with truncated Gaussian masks, and bands created by using
flat masks).

From this example, and Examples 4.37 and 4.38, we conclude that only the bands with
significant energy contain reliable information. In all three examples the image could be
adequately reproduced from the first 10 bands only. In fact in Example 4.37 the quality of the
image worsened when information beyond the 12th band was included in the reconstruction.
This may be used as a rule of thumb to select which channels to keep for image segmentation:
the minimum error of reconstruction in the second column of Table 4.3 is at the 12th chan-
nel, indicating that only the 12 channels with the most energy should be used to construct
features.

(Continued)
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Example 4.40 (Continued)
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Figure 4.49 (a) Reconstruction error as a function of the channels used for the images in
Figures 4.50 and 4.51. (b) Reconstruction errors as functions of the channels used for the three studied
cases: complete Gaussian masks, truncated Gaussian masks and flat masks.

Table 4.3 Reconstruction errors for the three studied cases:
complete Gaussian masks, truncated Gaussian masks, and flat masks.

Number of
channels

Complete
Gaussians

Truncated
Gaussians

Flat
masks

1 442.65 517.59 504.59
2 335.51 437.83 414.13
3 263.79 377.86 346.41
4 236.30 340.50 304.39
5 193.18 304.71 262.53
6 154.58 272.97 225.83
7 136.72 243.40 191.07
8 120.29 218.04 161.70
9 98.39 195.88 136.04
10 90.42 174.02 110.57
11 85.24 158.57 92.20
12 74.34 144.01 74.55
13 75.28 128.66 57.15
14 76.59 113.99 40.07
15 78.15 100.85 24.54
16 81.39 87.69 9.05
17 84.66 82.75 3.24
18 90.11 81.60 1.83
19 95.75 80.47 0.46
20 98.94 80.31 0.25
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n = 1 n = 2

n = 3 n = 4

n = 5 n = 6

n = 7 n = 8

n = 9 n = 10

Figure 4.50 For each pair of panels: on the left the flat filters that correspond to the n channels with
the highest energy, plus the low pass channel, and on the right the image reconstruction produced by
summing up the inverse Fourier transforms of these channels. Values of n from 1 to 10. Source: Maria
Petrou.

(Continued)
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Example 4.40 (Continued)

n = 11 n = 12

n = 13 n = 14

n = 15 n = 16

n = 17 n = 18

n = 19 n = 20

Figure 4.51 For each pair of panels: on the left the flat filters that correspond to the n channels with
the highest energy, plus the low pass channel, and on the right the image reconstruction produced by
summing up the inverse Fourier transforms of these channels. Values of n from 11 to 20. Source: Maria
Petrou.
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Example 4.41

Use the same process as in Example 4.37 to extract feature maps from the image of
Figure 4.33a, except now use flat windows to isolate the 10 bands with the highest
energies.
The results are shown in 4.52. As in the previous example, all I𝜓 t representations have been scaled
together and the same is true for all local energy feature maps.

Figure 4.52 Flat windows: The 𝜓(g) and the corresponding local energy maps extracted for the 10
channels with the highest energy, presented as pairs in decreasing energy order, from top to bottom
and left to right. Source: Maria Petrou.
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4.3 Prolate Spheroidal Sequence Functions

Is it possible to have a window with sharp edges in one domain that has minimal side
ripples in the other domain?

Yes, provided that we do not insist on the window being flat. Let us say that we are interested in
a band-limited window and that we allow its Fourier transform to take any values inside its sharp
edges. We want to determine these values so that in the real domain the window is maximally
concentrated with minimum energy in its side ripples. Solving this problem leads to the prolate
spheroidal sequence functions which may be used as windows.

Example B4.42

Show that
n2∑

n=n1

e−2Ajn = e−Aj(n1+n2)
sin(A(n2 − n1 + 1))

sin A
(4.174)

where A is a constant.
We start by changing summation variable on the left-hand side of this expression to
ñ ≡ n − n1 + 1:

n2∑
n=n1

e−2Ajn =
n2−n1+1∑

ñ=1
e−2Aj(ñ+n1−1). (4.175)

The sum on the right-hand side is a geometric progression, with first term

a ≡ e−2Ajn1 (4.176)

and ratio:

q ≡ e−2Aj. (4.177)

The sum of the first N terms of a geometric progression is given by:
N∑

k=1
aqk−1 =

a(qN − 1)
q − 1

for q ≠ 1. (4.178)

If we apply this formula for a and q given by (4.176) and (4.177), respectively, we obtain:
n2∑

n=n1

e−2Ajn = e−2Ajn1 (e−2Aj(n2−n1+1) − 1)
e−2Aj − 1

. (4.179)

As q must not be 1, this expression is valid only if A ≠ 0.
Equation (4.179) may further be written as:

n2∑
n=n1

e−2Ajn = e−2Ajn1
e−Aj(n2−n1+1)(e−Aj(n2−n1+1) − eAj(n2−n1+1))

e−Aj(e−Aj − eAj)
. (4.180)

Upon simplification, we have
n2∑

n=n1

e−2Ajn = e−Aj(2n1+n2−n1+1−1) e−Aj(n2−n1+1) − eAj(n2−n1+1)

e−Aj − eAj (4.181)
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which further may be simplified to
n2∑

n=n1

e−2Ajn = e−Aj(n1+n2)
−2j sin(A(n2 − n1 + 1))

−2j sin A
(4.182)

which yields (4.174) as long as A ≠ 0.
If A = 0, the sum is:

n2∑
n=n1

e−2Ajn =
n2∑

n=n1

1 = n2 − n1 + 1. (4.183)

If we set A = 0 on the right-hand side of (4.182), the exponential factor becomes 1, and we have
to take the limit of the trigonometric factor using de L’Hospital’s rule:

lim
A→0

sin(A(n2 − n1 + 1))
sin A

= lim
A→0

(n2 − n1 + 1) cos(A(n2 − n1 + 1))
cos A

= n2 − n1 + 1. (4.184)

If this result is substituted into (4.182) we obtain again (4.183). Therefore, we may say that
Equation (4.174) is valid even when A = 0, provided we realise that in this case the ratio of the
two trigonometric factors is equal to n2 − n1 + 1.

Box 4.2 Of all the band-limited sequences one can define, which sequence has the maximum
energy concentration between a given set of indices?

Let us say that the unknown sequence we wish to identify consists of numbers 𝑤(n). The
Fourier transform of this sequence is given by:

W(𝜔) =
∞∑

n=−∞
𝑤(n)e−j𝜔n. (4.185)

The inverse Fourier transform of W(𝜔) is given by:

𝑤(n) = 1
2π ∫

∞

−∞
W(𝜔)ej𝜔nd𝜔. (4.186)

Even if we assume that W(𝜔) is band-limited with bandwidth 2Ω, in which case
𝑤(n) = 1

2π
∫ Ω
−Ω W(𝜔)ej𝜔nd𝜔, 𝑤(n) may be defined for any value of n in (−∞,∞). So sequence

𝑤(n) is infinite. Its total energy is given by

E∞ ≡
∞∑

n=−∞
|𝑤(n)|2 = 1

2π ∫
Ω

−Ω
|W(𝜔)|2d𝜔 (4.187)

where we made use of Parseval’s theorem (see Example 4.4.
The energy between two specific indices n1 and n2 is obviously equal to:

En1,n2
≡

n2∑
n=n1

|𝑤(n)|2. (4.188)

The idea is to choose the values of 𝑤(n) (or W(𝜔)) so that the energy between indices n1 and
n2 is as large a fraction of the total energy of the sequence as possible. Choose W(𝜔) so that

(Continued)
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Box 4.2 (Continued)

we maximise:

R ≡ En1 ,n2

E∞
. (4.189)

Upon substitution from (4.187) and (4.188), we obtain

R =
∑n2

n=n1
|𝑤(n)|2∑∞

n=−∞ |𝑤(n)|2 =
∑n2

n=n1
𝑤(n)𝑤∗(n)

1
2π

∫ Ω
−Ω |W(𝜔)|2d𝜔

(4.190)

where 𝑤∗(n) means the complex conjugate of 𝑤(n). We may substitute 𝑤(n) and 𝑤∗(n) in the
numerator from Equation (4.186)

R =
∑n2

n=n1
∫ Ω
−Ω W(𝜔)ej𝜔nd𝜔 ∫ Ω

−Ω W∗(𝜔′)e−j𝜔′nd𝜔′

2π ∫ Ω
−Ω |W(𝜔)|2d𝜔

(4.191)

where we changed the variable of integration in the second integral of the numerator so that
there is no confusion with the variable of integration in the first integral.

We notice that in the numerator the factors that depend on the summed index are only the
two exponentials. So, we may write:

R =
∫ Ω
−Ω ∫ Ω

−Ω W(𝜔)W∗(𝜔′)
∑n2

n=n1
ej(𝜔−𝜔′)nd𝜔d𝜔′

2π ∫ Ω
−Ω |W(𝜔)|2d𝜔

. (4.192)

Here we make use of (4.174) with A ≡ π(f − f ′), to substitute for the sum in the numerator. We
obtain

R =
∫ f0
−f0

∫ f0
−f0

W(f )W∗(f ′)e−πj(f−f ′)(n1+n2) sin(π(f−f ′)(n2−n1+1))
sin(π(f−f ′))

df df ′

∫ f0
−f0

|W(f )|2df
(4.193)

where we also replaced integration over 𝜔 with integration over f ≡ 𝜔∕(2π), and defined
f0 ≡ Ω∕(2π).

Let us define:

𝜓(f ) ≡ W(f )e−πjf (n1+n2). (4.194)

Then

𝜓∗(f ) = W∗(f )eπjf (n1+n2) (4.195)

and upon multiplication we deduce that:

𝜓(f )𝜓∗(f ) = |W(f )|2. (4.196)

Using (4.194)–(4.196) in (4.193), we obtain:

R =
∫ f0
−f0

∫ f0
−f0
𝜓(f )𝜓∗(f ′) sin(π(f−f ′)(n2−n1+1))

sin(π(f−f ′))
df ′df

∫ f0
−f0

|𝜓(f )|2df
. (4.197)

Let us call:

g(f ) ≡ ∫
f0

−f0
𝜓∗(f ′)

sin(π(f − f ′)(n2 − n1 + 1))
sin(π(f − f ′))

df ′. (4.198)
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Then:

R =
∫ f0
−f0
𝜓(f )g(f )df

∫ f0
−f0

|𝜓(f )|2df
. (4.199)

Our problem now is to choose 𝜓(f ) so that R is maximal. This type of optimisation problem,
where we have an integral in the numerator and an integral in the denominator, both with the
same limits, is called an isoperimetric problem. We may find the extreme value of the ratio of
the two integrals by trying to extremise one of the integrals while keeping the other constant.

Our problem then may be expressed as: minimise ∫ f0
−f0

|𝜓(f )|2df with the constraint that

∫ f0
−f0
𝜓(f )g(f )df is a constant.

This problem can be solved with Euler’s method of Lagrange multipliers: define a function
z ≡ |𝜓|2 + 𝜇𝜓g; the solution of the constrained minimisation problem then is given by the
solution of the partial differential equation

𝜕z
𝜕𝜓

= 0 ⇒ 2𝜓∗ + 𝜇g = 0 ⇒ g = −2
𝜇
𝜓∗ ⇒ g = 𝜆𝜓∗ (4.200)

where for simplicity we called −2∕𝜇 ≡ 𝜆.
If we substitute into (4.199), we obtain:

R =
𝜆 ∫ f0

−f0
𝜓(f )𝜓∗(f )df

∫ f0
−f0

|𝜓(f )|2df
= 𝜆. (4.201)

And if we substitute from (4.198) into (4.200) we obtain:

∫
f0

−f0
𝜓∗(f ′)

sin(π(f − f ′)(n2 − n1 + 1))
sin(π(f − f ′))

df ′ = 𝜆𝜓∗(f ). (4.202)

The solutions of this equation are called prolate spheroidal wave functions. This is an eigen-
value type problem, with as many solutions as the length of the index sequence n2 − n1 + 1,
each one of them corresponding to a different value of 𝜆. Let us order these eigenvalues 𝜆 in
decreasing order. The first one of them will be the largest and as we see from (4.201) it will
maximise R.

Therefore, the solution of our problem is as follows.

Step 1: From (4.202) find the 𝜓(f ) that corresponds to the largest eigenvalue.
Step 2: From (4.194) find the corresponding W(f ).
Step 3: From (4.186) compute the weights 𝑤(n) of the window in the image domain.
Step 4: The window produced this way is exactly band limited and in the image domain has

side-lobes of minimum amplitude outside the range of the chosen indices [n1,n2], so that
it may be truncated with minimum error to produce a finite window of size n2 − n1 + 1.

Box 4.3 Do prolate spheroidal wave functions exist in the digital domain?

Yes, and they are called prolate spheroidal sequence functions.
Let us consider a digital signal𝑤(n), where n takes values in the range

[
−N−1

2
,… , 0,… ,

N−1
2

]
,

with N being odd and indicating the total number of samples of the signal. If W(k) is the

(Continued)
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Box 4.3 (Continued)

discrete Fourier transform of the signal, then we may write

W(k) =

N−1
2∑

n=− N−1
2

𝑤(n)e−j 2π
N

kn (4.203)

and

𝑤(n) = 1
N

N−1
2∑

k=− N−1
2

W(k)ej 2π
N

kn
. (4.204)

The total energy of this signal, after making use of Parseval’s theorem, may be written as:

E∞ =

N−1
2∑

n=− N−1
2

|𝑤(n)|2 = 1
N

N−1
2∑

k=− N−1
2

|W(k)|2. (4.205)

The energy of the signal between two indices n1 and n2 is

En1n2
=

n2∑
n=n1

|𝑤(n)|2 =
n2∑

n=n1

𝑤(n)𝑤∗(n) (4.206)

where 𝑤∗(n) is the complex conjugate of signal 𝑤(n) and by using Equation (4.204) it may be
written as:

𝑤∗(n) = 1
N

N−1
2∑

k=− N−1
2

W∗(k)e−j 2π
N

kn
. (4.207)

The fraction of the energy of the signal between indices n1 and n2 is:

R ≡
∑n2

n=n1
𝑤(n)𝑤∗(n)

1
N

∑ N−1
2

k=− N−1
2

|W(k)|2
=

∑n2
n=n1

1
N

∑ N−1
2

k=− N−1
2

W(k)ej 2π
N

kn 1
N

∑ N−1
2

l=− N−1
2

W∗(l)e−j 2π
N

ln

1
N

∑ N−1
2

k=− N−1
2

|W(k)|2
=

∑ N−1
2

k=− N−1
2

∑ N−1
2

l=− N−1
2

W(k)W∗(l)
∑n2

n=n1
ej 2π

N
(k−l)n

N
∑ N−1

2

k=− N−1
2

|W(k)|2 . (4.208)

We may make use of (4.174) with A ≡ π
N
(k − l) in order to substitute for sum

∑n2
n=n1

ej 2π
N
(k−l)n:

R =

∑ N−1
2

k=− N−1
2

∑ N−1
2

l=− N−1
2

W(k)W∗(l)ej π
N
(k−l)(n1+n2)

sin
(

π
N
(k−l)(n2−n1+1)

)
sin

(
π
N
(k−l)

)
N
∑ N−1

2

k=− N−1
2

|W(k)|2 . (4.209)
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We define next

𝜓(k) ≡ W(k)ej π
N

k(n1+n2) (4.210)

and as a consequence:

𝜓∗(k) = W∗(k)e−j π
N

k(n1+n2). (4.211)

We observe that 𝜓(k)𝜓∗(k) = W(k)W∗(k) = |W(k)|2. Then:

R =

∑ N−1
2

k=− N−1
2

∑ N−1
2

l=− N−1
2

𝜓(k)𝜓∗(l)
sin

(
π
N
(k−l)(n2−n1+1)

)
sin

(
π
N
(k−l)

)
N
∑ N−1

2

k=− N−1
2

|𝜓(k)|2 . (4.212)

Let us call:

g(k) ≡
N−1

2∑
l=− N−1

2

𝜓∗(l)
sin

(
π
N
(k − l)(n2 − n1 + 1)

)
sin

(
π
N
(k − l)

) . (4.213)

Then:

R =

∑ N−1
2

k=− N−1
2

𝜓(k)g(k)

N
∑ N−1

2

k=− N−1
2

|𝜓(k)|2
⇒ RN

N−1
2∑

k=− N−1
2

𝜓(k)𝜓∗(k) =

N−1
2∑

k=− N−1
2

𝜓(k)g(k)

⇒

N−1
2∑

k=− N−1
2

𝜓(k)[RN𝜓∗(k) − g(k)] = 0. (4.214)

This is true for all 𝜓(k) only if:

g(k) = RN𝜓∗(k). (4.215)

If we substitute g(k) from (4.213) into (4.215), we derive:
N−1

2∑
l=− N−1

2

𝜓∗(l)
sin

(
π
N
(k − l)(n2 − n1 + 1)

)
sin

(
π
N
(k − l)

) = RN𝜓∗(k). (4.216)

We may eliminate the asterisk from this expression by taking its complex conjugate and observ-
ing that, apart from 𝜓(k), all other quantities involved are real. Let us define:

S(k, l) ≡ sin
(

π
N
(k − l)(n2 − n1 + 1)

)
sin

(
π
N
(k − l)

) . (4.217)

Then in order to define 𝜓(k), and as a consequence W(k), we must solve the equation:
N−1

2∑
l=− N−1

2

𝜓(l)S(k, l) = RN𝜓(k) ⇒ S𝝍 = RN𝝍 . (4.218)

(Continued)
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Box 4.3 (Continued)

This is an eigenvalue problem: 𝜓(k), which maximises R, is the eigenvector 𝜓 of matrix S,
which corresponds to the largest eigenvalue RN . The solutions of this equation constitute the
prolate spheroidal sequence functions.

Note that matrix S is much smaller than the ranges of values of indices k and l indicate
above: as we wish to examine the local frequency content of a signal in a particular band,
we fix W(k) to be 0 for all other indices k, apart from those that correspond to the band of
interest. Then we try to specify the values of W(k) (i.e. 𝜓(k)) only inside the band of interest.
So, in practice, the range of values of k and l is not from −(N − 1)∕2 to (N − 1)∕2, but from,
say, k1 to k2, and, therefore, matrix S is of size (k2 − k1 + 1) × (k2 − k1 + 1). So, the equation
we have to solve is

k2∑
l=k1

𝜓(l)
sin

(
π
N
(k − l)(n2 − n1 + 1)

)
sin

(
π
N
(k − l)

) = RN𝜓(k) (4.219)

with k ∈ [k1, k2].
We also observe that in the calculation of 𝜓 , all that matters is the length of the

sub-sequence (i.e. n2 − n1 + 1) that has most of the energy and it does not really matter
where exactly within the whole sequence this sub-sequence is. So, as long as the length
of the sub-sequence with the most energy is fixed, the value of 𝜓 is also fixed. The exact
location of the sub-sequence enters only in the calculation of W(k) from the values of
𝜓 (see factor (n1 + n2) in the exponent of Equation (4.210)). The exact location of the
sub-sequence, therefore, appears as phase change of the DFT of the sequence. This is as
expected, since shifting the sub-sequence should indeed result in a phase shift of its Fourier
transform.

The implication of the above observation is that we may compute W(k), and from it 𝑤(n),
only once, truncate 𝑤(n) by keeping only the sub-sequence with the most energy, and use it
as a convolution filter with any other sequence, in order to extract the local frequency content
of the input signal within the chosen band.

In summary: to construct a band-limited digital filter in the frequency range [k1, k2], with
most of its energy in indices in the range [n1,n2], suitable for the analysis of a digital signal
of length N , with N being odd, we follow these steps.

Step 1: Construct matrix S using Equation (4.217), for k, l ∈ [k1, k2].
Step 2: Find the largest eigenvalue of S.
Step 3: Compute the corresponding eigenvector 𝜓 , with elements 𝜓(k).
Step 4: Use Equation (4.210) to compute W(k).
Step 5: Use Equation (4.204) to compute 𝑤(n).
Step 6: Sequence 𝑤(n) is a digital convolution filter, the same size as the signal. If an unknown

signal is convolved with it, the DFT of the signal will be multiplied point by point with the
DFT (W(k)) of this filter. The result will be the frequency content of the signal in the band
where W(k) is non-zero. To reduce the computational cost, we may truncate the filter and
keep only its values in the range [n1,n2].
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Example B4.43

Consider a sequence 𝑤(−5), 𝑤(−4),… , 𝑤(5), and its discrete Fourier transform
W(−5),W(−4),… ,W(5). Assume that W(0),W(1),… ,W(4) are free to take any val-
ues, and that W(−5) = W(−4) = W(−3) = W(−2) = W(−1) = W(5) = 0. What values
W(0),W(1),… ,W(4) should be taken so that sequence 𝑤(−5), 𝑤(−4),… , 𝑤(5) has most
of its energy in indices −4, −3 and −2?
Here N = 11, n1 = −4, n2 = −2, k1 = 0 and k2 = 4. Therefore n2 − n1 + 1 = 3, and Equation
(4.219) takes the form:

4∑
l=0
𝜓(l)

sin
(

3π
11
(k − l)

)
sin

(
π

11
(k − l)

) = 11R𝜓(k). (4.220)

We may write this equation more explicitly as:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 sin(3π∕11)
sin(π∕11)

sin(6π∕11)
sin(2π∕11)

sin(9π∕11)
sin(3π∕11)

sin(12π∕11)
sin(4π∕11)

sin(3π∕11)
sin(π∕11)

3 sin(3π∕11)
sin(π∕11)

sin(6π∕11)
sin(2π∕11)

sin(9π∕11)
sin(3π∕11)

sin(6π∕11)
sin(2π∕11)

sin(3π∕11)
sin(π∕11)

3 sin(3π∕11)
sin(π∕11)

sin(6π∕11)
sin(2π∕11)

sin(9π∕11)
sin(3π∕11)

sin(6π∕11)
sin(2π∕11)

sin(3π∕11)
sin(π∕11)

3 sin(3π∕11)
sin(π∕11)

sin(12π∕11)
sin(4π∕11)

sin(9π∕11)
sin(3π∕11)

sin(6π∕11)
sin(2π∕11)

sin(3π∕11)
sin(π∕11)

3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜓(0)

𝜓(1)

𝜓(2)

𝜓(3)

𝜓(4)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 11R

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜓(0)

𝜓(1)

𝜓(2)

𝜓(3)

𝜓(4)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.221)

The above matrix turns out to have only three non-zero eigenvalues, which are 𝜆1 = 10.236,
𝜆2 = 4.479 and 𝜆3 = 0.285. The eigenvector that corresponds to the largest eigenvalue is: 𝜓 =
(0.348, 0.485, 0.536, 0.485, 0.348)T.

Having computed 𝜓(k), we use now Equation (4.210) to compute W(k):

W(k) = 𝜓(k)ej π
11

6k
. (4.222)

We obtain: W(k) = (0.0, 0.0, 0.0, 0.0, 0.0, 0.348,−0.069 + 0.480j,−0.514 − 0.151j, 0.201 −
0.441j, 0.293 + 0.188j, 0.0).
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Example B4.44

Verify that in Example 4.43 sequence𝑤(−5),… , 𝑤(5)has indeed the predicted fraction
of its energy in indices −4, −3 and −2.
Using the derived values of W(k) and Equation (4.204) we derive first sequence 𝑤(n):

𝑤(n) = 1
11

5∑
k=−5

W(k)e
2π
11

kn for n = −5,−4,… , 5. (4.223)

We obtain:
𝑤(n) = (−0.316 − 0.365j, 0.682 − 1.493j, 2.202, 0.682 + 1.493j,−0.316 + 0.365j, 0.260 +
0.076j, 0.028 + 0.196j, 0.161 − 0.103j, 0.161 + 0.103j, 0.028 − 0.196j, 0.260 − 0.076j).

The total energy of this sequence is

E−5,5 = 𝑤(−5)𝑤∗(−5) +𝑤(−4)𝑤∗(−4) +… +𝑤(5)𝑤∗(5) = 11. (4.224)

The energy in indices −4, −3 and −2 is

E−4,−2 = 𝑤(−4)𝑤∗(−4) +𝑤(−3)𝑤∗(−3) +𝑤(−2)𝑤∗(−2) = 10.236. (4.225)

Therefore, the fraction of the total energy in these indices is

R =
E−4,−2

E−5,5
= 0.931. (4.226)

Note that the largest eigenvalue of matrix S, which we computed in Example 4.43, was
𝜆1 = 10.236, and it is equal to 11R. From this we derive R = 10.236∕11 = 0.931 which verifies
the above result.

Example B4.45

Consider a sequence 𝑤′
−5, 𝑤

′
−4,… , 𝑤′

5, and its discrete Fourier transform W ′(−5),
W ′(−4),… ,W ′(5). Assume that W ′(0),W ′(1),… ,W ′(4) are free to take any values and
that W ′(−5) = W ′(−4) = W ′(−3) = W ′(−2) = W ′(−1) = W ′(5) = 0. What values should
W ′(0),W ′(1),… ,W ′(4) take so that sequence 𝑤′

−5, 𝑤
′
−4,… , 𝑤′

5 has most of its energy
in indices 2, 3 and 4? Compute sequence 𝑤′

n and compare it with the sequence of
Example 4.44.
This problem is very similar to that of Example 4.43, except here we are interested in having most
of the energy of the constructed sequence in indices 2, 3 and 4 instead of −4, −3 and −2. The
lengths of the two sub-sequences are identical, so nothing changes in the calculation of 𝜓 . The
change comes in the calculation of W ′(k), which now is given by

W ′(k) = 𝜓(k)e−j π
11

6k (4.227)

since we have to set in (4.210) n1 + n2 = 6, instead of −6 we used in Example 4.44.
We obtain:

W ′(k) = (0.0, 0.0, 0.0, 0.0, 0.0, 0.348,−0.069 − 0.480j,−0.514 + 0.151j, 0.201 + 0.441j, 0.293 −
0.188j, 0.0). From this we derive sequence 𝑤′

n using Equation (4.223) as: 𝑤′
n = (0.260 + 0.076j,

0.028 + 0.196j, 0.161 − 0.103j, 0.161 + 0.103j, 0.028 − 0.196j, 0.260 − 0.076j,−0.316 − 0.365j,
0.682 − 1.493j, 2.202, 0.682 + 1.493j,−0.316 + 0.365j).
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In Figure 4.53 we plot this sequence and the one derived in Example 4.44, one under the other,
as well as their corresponding energies. The new sequence is simply a shifted version of the previ-
ous one. By looking at Equations (4.222) and (4.227) we observe that:

W ′(k) = 𝜓(k)e−j π
11

6k

= 𝜓(k)ej π
11

6k

⏟⏞⏞⏟⏞⏞⏟

W(k)

e−j π
11

12k

= W(k)e−j 2π
11

6k
. (4.228)

This result is as expected, according to the shifting property of DFT. Indeed, when we shifted
the sequence from starting at index −4 to starting at index 2, i.e. by 6(= 2 − (−4)) positions to the
right (see Figure 4.53), its DFT was multiplied with e−j 2π

11
6k.

This example shows that once we fix the band we are interested in and the size of the fil-
ter we want to construct, we may solve the problem of filter construction only once, and not
separately for each range of indices in the signal domain. This is as expected, according to the
convolution theorem (see Book I [75]): when we select a frequency band inside which we want
to examine the signal contents, we imply that we multiply the DFT of the signals with the win-
dow that isolates this band; multiplication in the frequency domain corresponds to convolution
in the signal domain. So, sequence 𝑤(n), which corresponds to frequency filter W(k), is a convo-
lution filter. By construction, it has the same size as the signal we wish to analyse, with most of
its energy within a certain range of indices. When used for convolution, this range shifts along
the signal, each time picking up the frequency content in the corresponding band at a different
locality.

Figure 4.53 Top three lines: real part,
imaginary part and energy of sequence 𝑤(n)
derived in Example 4.44. Bottom three lines:
real part, imaginary part and energy of sequence
𝑤(n) derived in this example. The latter is a
shifted version of the former.

ωR1(n)

ωI1(n)

E1(n)

ωR2(n)

ωI2(n)

E2(n)
−4 −2 0 2 4
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Example B4.46

Use the method of Examples 4.43 and 4.45 to construct an approximate convolution
filter of size 3, appropriate for extracting the frequency content of a signal of 11 sam-
ples, in the band with indices 0, 1, 2, 3 and 4.
First we construct a sequence that is 11 samples long and has most of its energy in the
middle three indices, namely indices −1, 0 and 1. The Fourier transform of this sequence is
given by

W(k) = 𝜓(k) (4.229)

since n1 + n2 = −1 + 1 = 0. Function 𝜓(k) is what was computed in Example 4.43.
From this we derive sequence𝑤(n) using Equation (4.223) as𝑤(n) = (0.161 + 0.103j, 0.028 −

0.196j, 0.260 − 0.076j,−0.316 − 0.365j, 0.682 − 1.493j, 2.202, 0.682 + 1.493j,−0.316 + 0.365j,
0.260 + 0.076j, 0.028 + 0.196j, 0.161 − 0.103j), with corresponding energies En = (0.037, 0.039,
0.073, 0.233, 2.694, 4.849, 2.694, 0.233, 0.073, 0.039, 0.037).

We note that this sequence has its highest energy values in the middle three indices. We truncate
it by keeping only those three coefficients and thus we derive an approximate convolution filter:
(0.682 − 1.493j, 2.202, 0.682 + 1.493j).

Example B4.47

Use the approximate convolution filter derived in Example 4.46 on signal

2,−2, 2,−2, 2, 0,−2, 0, 2, 0,−2 (4.230)

and show that the output signal contains the frequency content of the input signal
in the band defined by indices 0-4.
Care should be taken here when performing the convolution, as the filters we use are not
symmetric. Remembering the definition of convolution of a signal with a filter of length
2M + 1 as

output(i) =
M∑

k=−M
input(i − k) × filter(k) (4.231)

we note that to obtain the output at, say, position 5, using a filter of length 3 (M = 1), we must
use

output(5) = input(6) × filter(−1) + input(5) × filter(0) + input(4) × filter(1)
= input(4) × filter(1) + input(5) × filter(0) + input(6) × filter(−1)

i.e. the filter is read back to front before we slide it across the signal to perform the necessary
multiplications and additions.

Figure 4.54 shows the original signal, its Fourier transform, the signal convolved with the fil-
ter of Example 4.46, and the discrete Fourier transform of the output signal. We note that the
convolved signal has indeed most of its energy in the chosen frequency band.
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Signal

FTR(k)

FTI(k)

FTM(k)

ConvolR(k)

ConvolI(k)

ConvolM(k)

FTRConvol(k)

FTIConvol(k)

FTMConvol(k)
−5 0 5

Figure 4.54 Top line: original signal. Next
three lines: Fourier transform of the original
signal (real part, imaginary part and
magnitude). Next three lines: signal
convolved with the approximate filter derived
in Example 4.46 (real part, imaginary part and
magnitude). Three bottom lines: Fourier
transform of the convolved signal (real part,
imaginary part and magnitude).

Example B4.48

Consider a sequence 𝑤(−5), 𝑤(−4),… , 𝑤(5), and its discrete Fourier transform
W(−5),W(−4),… ,W(5). Assume that W(−5),W(−4),… ,W(−1) are free to take
any values and that W(0) = W(1) = W(2) = W(3) = W(4) = W(5) = 0. What values
W(−5),W(−4),… ,W(−1) should take so that sequence 𝑤(−5), 𝑤(−4),… , 𝑤(5) has most
of its energy in indices −1, 0, and 1?
Here N = 11, n1 = −1, n2 = 1, k1 = −5 and k2 = −1. Therefore n2 − n1 + 1 = 3, and the
equation we have to solve is:

−1∑
l=−5

𝜓(l)
sin

(
3π
11
(k − l)

)
sin

(
π

11
(k − l)

) = 11R𝜓(k). (4.232)

Note that this equation is similar to Equation (4.221) of Example 4.43, except that there
the unknown vector 𝜓 was called (𝜓(0), 𝜓(1), 𝜓(2), 𝜓(3), 𝜓(4)), while here it has to
be called (𝜓(−5), 𝜓(−4), 𝜓(−3), 𝜓(−2), 𝜓(−1)). So, the solution of Equation (4.232) is:
𝜓 = (0.348, 0.485, 0.536, 0.485, 0.348, 0, 0, 0, 0, 0, 0)T.

From this we compute W(k)using Equation (4.229), which corresponds to n1 = −1 and n2 = 1,
and which obviously is identical to 𝜓(k) since n1 + n2 = 0.

Example B4.49

Use the result of Example 4.48 to construct an approximate convolution filter that
returns the local frequency content of a signal in the frequency band [−5,−1].

(Continued)
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Example B4.49 (Continued)

Using W(k) computed in Example 4.48 in Equation (4.223) we derive sequence𝑤(n) = (−0.125 +
0.145j,−0.167 − 0.107j,−0.112 + 0.246j,−0.463 − 0.136j,−0.234 + 1.624j, 2.202,−0.234 −
1.624j,−0.463 + 0.136j,−0.112 − 0.246j,−0.167 + 0.107j,−0.125 − 0.145j) which we truncate
by keeping its central three elements only, to form the approximate convolution filter we need:
(−0.234 + 1.624j, 2.202,−0.234 − 1.624j).

Example 4.50

What is the relationship of two band-limited functions, the Fourier transforms of
which are given by functions F(𝜔x, 𝜔y), and F∗(−𝜔x,−𝜔y), respectively?
Let us say that F(𝜔x, 𝜔y) is the Fourier transform of function f1(x, y), and F∗(−𝜔x,−𝜔y) is the
Fourier transform of function f2(x, y).

We may express the two functions in terms of their Fourier transforms as follows:

f1(x, y) =
1

2π ∫
∞

−∞ ∫
∞

−∞
F(𝜔x, 𝜔y)ej(𝜔xx+𝜔yy)d𝜔xd𝜔y (4.233)

f2(x, y) =
1

2π ∫
∞

−∞ ∫
∞

−∞
F∗(−𝜔x,−𝜔y)ej(𝜔xx+𝜔yy)d𝜔xd𝜔y. (4.234)

We change variables of integration in the last integral, from (𝜔x, 𝜔y), to (�̃�x, �̃�y), defined as �̃�x ≡
−𝜔x and �̃�y ≡ −𝜔y, respectively. Then (4.234) may be written as:

f2(x, y) =
1

2π ∫
∞

−∞ ∫
∞

−∞
F∗(�̃�x, �̃�y)e−j(�̃�xx+�̃�yy)d�̃�xd�̃�y. (4.235)

Comparison of (4.233) and (4.235) yields that f2(x, y) = f ∗1 (x, y). So, two band-limited functions,
with Fourier transforms symmetric about the origin of the frequency axes, are complex conjugate
of each other.

How can we construct a filter that is band-limited in two bands that are symmetrically
placed about the origin of the axes in the frequency domain?

Figure 4.55 shows schematically two such frequency bands. We are interested in having a single
filter that has non-zero response in those two bands only.

ωy

O ωx

Figure 4.55 We wish to have a filter with non-zero values inside the two
marked bands.
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If f (x, y) is a filter with frequency response in one of the two bands given by function F(𝜔x, 𝜔y),
then f ∗(x, y) will have non-zero frequency response in the other band, given by F∗(−𝜔x,−𝜔y)
(see Example 4.50). The sum of the two functions will be equal to 2Real[f (x, y)] and it will have
non-zero frequency response inside the pair of these two bands. So, if we want to construct a filter
with non-zero frequency response inside a pair of bands, such as those shown in Figure 4.55, we
must construct a filter with non-zero frequency response in one of the bands, discard its imaginary
component, and multiply its real part with 2. Since usually these filters (or their outputs) are
scaled before making any use of them, this multiplication with 2 is superfluous. Alternatively, if
we have constructed a filter with frequency response in one of the bands, we do not need to repeat
the process of constructing a filter with frequency response in the other band. All we have to do is
to take the complex conjugate of the filter we have already constructed. Given that these filters are
used to process real signals, the outputs of the convolution of the signal with these two filters will
also form a complex conjugate pair.

Example B4.51

Use the method of Examples 4.43 and 4.45 to construct an approximate convolution
filter of size 3, appropriate for extracting the frequency content of a sequence of 11
samples, in the bands with indices −5, −4, −3, and 3, 4 and 5.
We shall first construct a filter with Fourier transform W(−5) = W(−4) = … = W(2) = 0. The
filter will be a sequence that is 11 samples long with most of its energy in the middle three indices,
namely indices −1, 0 and 1. We have here N = 11, n1 = −1, n2 = 1, k1 = 3 and k2 = 5. Therefore
n2 − n1 + 1 = 3. The Fourier transform of this sequence is given by

W(k) = 𝜓(k) (4.236)

since n1 + n2 = 0 in Equation (4.210). Function 𝜓(k) is the first eigenvector of matrix:⎡⎢⎢⎢⎢⎢⎢⎣

3 sin(3π∕11)
sin(π∕11)

sin(6π∕11)
sin(2π∕11)

sin(3π∕11)
sin(π∕11)

3 sin(3π∕11)
sin(π∕11)

sin(6π∕11)
sin(2π∕11)

sin(3π∕11)
sin(π∕11)

3

⎤⎥⎥⎥⎥⎥⎥⎦
. (4.237)

The eigenvalues of this matrix are 𝜆1 = 7.818, 𝜆2 = 1.170 and 𝜆3 = 0.013. The eigenvector that
corresponds to the largest eigenvalue is: 𝜓 = (0.556, 0.619, 0.556)T. The corresponding sequence
𝑤(n) is given by Equation (4.204):

𝑤(n) = 1
11

5∑
k=3

W(k)ej 2π
11

kn for n = −5,−4,… , 4, 5. (4.238)

This sequence should be used as a convolution filter. To construct an approximate convolution
filter, of size 3, from this, we keep only the central three values that contain most of the energy.
We then keep only the real part, multiply it with 2, and so we have filter (−2.034, 3.460,−2.034)
which has most of its non-zero frequency response in bands [−5,−3] and [3, 5]. (Note that trun-
cation reduced the concentration of the filter in the frequency domain, so the truncated filter has
some energy even in frequencies outside the originally defined band.)
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Example B4.52

Use the method of Examples 4.43 and 4.45 to construct an approximate convolution
filter of size 3, appropriate for extracting the frequency content of a signal of 11 sam-
ples in the band with indices −2, −1, 0, 1, 2.
Since the bandwidth of the sequence is five samples long, and the sequence is 11 samples long with
most of its energy in the middle three indices, W(k) = 𝜓(k) where 𝜓(k) is what was computed
in Example 4.43. From this we derive convolution filter 𝑤(n) using Equation (4.223) as: (0.191,
−0.198,−0.271, 0.482, 1.641, 2.202, 1.641, 0.482,−0.271,−0.198, 0.191). The three central values
of this filter may be used as an approximate convolution filter to extract the frequency content of
the signal in the band [−2, 2].

Example B4.53

Use the approximate convolution filters derived in Examples 4.46 and 4.49 to segment
the signal of Example 4.47.

Signal

ConvolR(k)

ConvolI(k)

ConvolM(k)

Energy

AvEnergy
−5 0 5

Signal

ConvolR(k)

ConvolI(k)

ConvolM(k)

Energy

AvEnergy
−5 0 5

(a) (b)

Figure 4.56 (a) Results after applying the filter obtained in Example 4.46 (frequency band [0, 4]).
(b) Results after applying the filter obtained in Example 4.49 (frequency band [−5,−1]).

Figure 4.56 shows the original sequence and the two outputs, obtained by convolving it with the
two filters. The real and imaginary parts of the convolved signal are shown in each case, as well
as the magnitude, the energy, and the energy averaged over every three successive samples. For
the purpose of convolution, and in order to avoid boundary effects, the signal was assumed to be
repeated periodically in both directions.

We note that by thresholding the local energy output produced by using the first filter, we may
segment the signal. These two filters do not really perform a good tessellation of the frequency
space: the first contains all positive frequencies, apart from frequency 5, plus the dc component,
while the second contains all negative frequencies. The right part of the signal, which is of lower
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frequency than the left part, clearly shows up in the output of the first filter which contains the low
frequencies. The second filter is a very broad band filter and so it does not allow the differentiation
of the two components of the signal: it produces a more or less flat response.

Example B4.54

Use the approximate convolution filters derived in Examples 4.51 and 4.52 to segment
the signal of Example 4.47.
The results are shown in Figure 4.57. One may achieve a segmentation by thresholding either of
these outputs, although it is easier to select a good threshold for the output of the first filter. This
is not surprising: the first filter is a high pass filter, while the second is a low pass filter. The first
part of the signal is of higher frequency than the second part, so it has more energy in the output
of the high pass filter, as expected. This is obvious from the shape of the average energy graph. The
second half of the signal is of lower frequency and its average energy is higher than that of the left
part of the signal when the low pass filter is used.

Signal

Convol

Energy

AvEnergy
−5 0 5

Signal

Convol

Energy

AvEnergy
−5 0 5

(a) (b)

Figure 4.57 (a) Results after applying the filter obtained in Example 4.51 (high pass). (b) Results after
applying the filter obtained in Example 4.52 (low pass).

Example B4.55

Use the approximate convolution filters derived in Examples 4.51 and 4.52 to segment
signal (2,−2, 2,−2, 2,−1, 1,−1, 1,−1, 1).
Figure 4.58 shows similar plots to those shown in Figure 4.56. We see that by thresholding the
energy produced by the first filter we may segment the signal reasonably well. Both parts of the
signal now are of the same high frequency, and both produce responses when processed by the
high pass filter, but the left part has higher amplitude, i.e. more energy, than the right part, and

(Continued)
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Example B4.55 (Continued)

this allows us to perform the segmentation. Neither of the two parts of the signal has significant
energy in the low frequencies, so the output of the second filter is more or less flat and low, not
suitable for segmentation.

Signal

Convol

Energy

AvEnergy
−5 0 5

Signal

Convol

Energy

AvEnergy−5 0 5

(a) (b)

Figure 4.58 (a) Results after applying the filter obtained in Example 4.51 (high pass). (b) Results after
applying the filter obtained in Example 4.52 (low pass).

Example 4.56

Segment with the help of prolate spheroidal sequence functions the signal of
Example 4.14.
This signal is 128 samples long. All the theory we have developed refers to odd-sized signals. To
avoid complications, we add a 0 at the end of the signal, and make it 129 samples long. Then
we apply the methodology we have used so far to perform the segmentation. Note that due to
the wrap-round boundary conditions we assume, there will always be a problem at the edges of
the signal we segment, and we shall always have to ignore a few boundary samples on either
side when producing the final result.

We must first decide upon the bands we wish to use. Let us say that we shall use a low fre-
quencies band, corresponding to indices in the range [−10, 10], a medium frequencies band,
corresponding to indices in the ranges [11, 30] and [−30,−11], and a high frequencies band,
corresponding to indices in the ranges [31, 64] and [−64,−31].

First we have to construct the three filters we want to use. Let us say that we wish the filters to
be five samples long. So, we shall construct them with indices n1 = −2 and n2 = 2. The signal is
129 samples long, and so in this case N = 129.

For the low frequencies filter, the largest eigenvalue of matrix S is 𝜆1 = 89.235, yielding eigen-
vector: 𝜓 = (0.187, 0.196, 0.204, 0.211, 0.218, 0.223, 0.228, 0.231, 0.234, 0.236, 0.236, 0.236,
0.234, 0.231, 0.228, 0.223, 0.218, 0.211, 0.204, 0.196, 0.187)T. From this, we construct sequence
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W(k) and, using it, we compute sequence 𝑤(n), shown in Figure 4.59, which, upon truncation,
yields the low pass convolution filter: (3.864, 4.387, 4.570, 4.387, 3.864). We normalise this filter
so that the sum of its weights is 1. (Remember that low pass convolution filters should have their
weights sum up to 1 so that they do not alter a flat input signal, while high pass convolution filters
should have their weights sum up to 0 so that they do not respond to flat signals.) We do that by
dividing each weight with the sum of all weights. As shown in Table 4.4, the final filter we shall
use is: (0.183, 0.208, 0.217, 0.208, 0.183).

Figure 4.59 Sequence 𝑤(n) for the low pass
convolution filter.

Magnitude

Imag.

Real

64320−32−64

Low pass filter

For the medium frequencies filter, the largest eigenvalue of matrix S is 𝜆1 = 86.202, yielding
eigenvector: 𝜓 = (0.194, 0.203, 0.211, 0.218, 0.224, 0.230, 0.234, 0.237, 0.239, 0.240, 0.240,
0.239, 0.237, 0.234, 0.230, 0.224, 0.218, 0.211, 0.203, 0.194)T. From this, we construct sequence
W(k) and, using it, we compute sequence 𝑤(n), shown in Figure 4.60, which, upon truncation,
yields the band pass convolution filter (−1.583 − 3.488j, 2.328 − 3.613j, 4.462, 2.328 + 3.613j,
−1.583 + 3.488j). We consider only the real part of this filter. Note that we do not really need to
multiply it with 2, as this is only a scaling factor that plays no role in the feature construction
and segmentation process. So, the real filter with frequency response in the symmetric bands
is: (−1.583, 2.328, 4.462, 2.328,−1.583). To remove any bias introduced by the process of
truncation, we normalise it so that its weights sum up to 0. We may achieve this by finding the
sum of its values, dividing it with 5, and subtracting the result from every single filter value.
The filter we obtain this way is: (−2.7734, 1.1376, 3.2716, 1.1376,−2.7734). Finally, we may
scale the filter so that its positive weights sum up to +1 and its negative ones sum up to −1:
(−0.500, 0.205, 0.590, 0.205,−0.500).

Figure 4.60 Sequence 𝑤(n) for the band pass
convolution filter.

Real

Imag.

Magnitude
−64 −32 0 32 64

Band pass filter

(Continued)
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For the high frequencies filter, the largest eigenvalue of matrix S is 𝜆1 = 116.013, yielding eigen-
vector: 𝜓 = (0.109, 0.119, 0.128, 0.137, 0.146, 0.154, 0.162, 0.169, 0.176, 0.182, 0.188, 0.192,
0.196, 0.200, 0.202, 0.204, 0.205, 0.205, 0.204, 0.202, 0.200, 0.196, 0.192, 0.188, 0.182, 0.176,
0.169, 0.162, 0.154, 0.146, 0.137, 0.128, 0.119, 0.109)T. From this, we construct sequence W(k)
and, using it, we compute sequence𝑤(n), shown in Figure 4.61, which, upon truncation, yields the
high pass convolution filter: (−0.324 + 3.788j,−3.521 − 3.834j, 5.737,−3.521 + 3.834j,−0.324 −
3.788j). To include also the band with the negative frequencies, we consider only the real part of
the filter, that is: (−0.324,−3.521, 5.737,−3.521,−0.324). Again we remove its bias so that the
sum of its weights is zero, and we obtain: (0.0666,−3.1304, 6.1276,−3.1304, 0.0666)T. Finally,
we may scale the filter so that its positive weights sum up to +1 and its negative ones sum up to
−1: (0.010,−0.500, 0.980,−0.500, 0.010).

Real

Imag.

Magnitude
−64 −32 0 32 64

High pass filter

Figure 4.61 The 𝑤(n) sequence that
corresponds to the high pass convolution filter.

Figures 4.62a, 4.63a and 4.64a show the results obtained using the low pass, band pass and
high pass filters, respectively. Note that we used the same scale for each signal in all three graphs,
except for the averaged energies which were scaled independently. We can see that the averaged
energies obtained allow the correct segmentation of the signal in all cases.

Table 4.4 Normalised values obtained for the low,
band and high pass filters.

n Low Band High

−2 0.183 −0.500 0.010
−1 0.208 0.205 −0.500

0 0.218 0.590 0.980
1 0.208 0.205 −0.500
2 0.183 −0.500 0.010

It is obvious from these figures that the filters we constructed are not very concentrated. This
is particularly obvious for the low pass and the bands pass filters: there is still significant energy
left in the signal outside the designated bands, as one can see from Figures 4.62a and 4.63a. This
should not be surprising. The eigenvalue for the low pass filter is 89.235 which yields a concentra-
tion factor of R = 89.235∕129 = 0.696. (We used here equation 𝜆 = RN where N is the length of
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the signal.) For the band pass filter the concentration factor is R = 86.202∕129 = 0.668, which is
equally low. For the high pass filter the concentration is much higher, R = 116.013∕129 = 0.899
and this manifests itself in the strong suppression of the frequencies between the vertical lines of
Figure 4.64a. This point is further demonstrated by Figures 4.62b, 4.63b and 4.64b, which were
produced by truncating the constructed filters so that nine instead of five of their values were
retained: we have much better suppression of the unwanted frequencies in each case now.

Signal

FTR(k)

FTI(k)

FTM(k)

Convol(k)

FTRConvol(k)

FTIConvol(k)

FTMConvol(k)

AvEnergy
−64 −30 −10 10 30 64

AvEnergy

FTMConvol(k)

FTIConvol(k)

FTRConvol(k)

Convol(k)

FTM(k)

FTI(k)

FTR(k)

Signal

643010−10−30−64

(a) (b)

Figure 4.62 (a) Results obtained for the segmentation of the signal defined in Example 4.14 using a
low pass filter of size 5 designed to pick up the frequencies between the two vertical dotted lines.
From top to bottom: original signal; real part, imaginary part and magnitude of the Fourier transform
of the original signal; signal convolved with the low pass filter; real part, imaginary part and
magnitude of the Fourier transform of the convolved signal; average energy of the convolved signal,
using an averaging window of 11 pixels long. (b) The same as (a) but now nine filter values have been
retained. We have better suppression of the frequencies outside the chosen band now.

Signal

FTR(k)

FTI(k)

FTM(k)

ConvolR(k)

FTRConvol(k)

FTIConvol(k)

FTMConvol(k)

AvEnergy
−64 −30 −10 10 30 64

AvEnergy

FTMConvol(k)

FTIConvol(k)

FTRConvol(k)

ConvolR(k)

FTM(k)

FTI(k)

FTR(k)

Signal

643010−10−30−64

(a) (b)

Figure 4.63 As Figure 4.62, but this figure concerns the band pass filter designed to have non-zero
response between the two pairs of vertical dotted lines.

(Continued)
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Signal

FTR(k)
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FTIConvol(k)
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AvEnergy
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Figure 4.64 (a) Results obtained for the segmentation of the signal defined in Example 4.14 using a
high pass filter of size 5 designed to have non-zero response outside the two vertical dotted lines.
From top to bottom: original signal; real part, imaginary part and magnitude of the Fourier transform
of the original signal; signal convolved with the high pass filter; real part, imaginary part and
magnitude of the Fourier transform of the convolved signal; average energy of the convolved signal,
using an averaging window of 11 pixels long. (b) The same as (a) but now nine filter values have been
retained.

Box 4.4 How may we generalise the prolate spheroidal sequence functions to 2D?

Let us consider a 2D digital function 𝑤(n,m), where n takes values in the range[
−N−1

2
,… , 0,… ,

N−1
2

]
, and m takes values in the range

[
−M−1

2
,… , 0,… ,

M−1
2

]
, and

N × M is the size of the domain of the function, with N and M being odd. If W(k, l) is the DFT
of the function, we may write

W(k, l) =

N−1
2∑

n=− N−1
2

M−1
2∑

m=− M−1
2

𝑤(n,m)e−j 2π
N

kn−j 2π
M

ml (4.239)

and

𝑤(n,m) = 1
NM

N−1
2∑

k=− N−1
2

M−1
2∑

l=− M−1
2

W(k, l)ej2π
(

kn
N
+ ml

M

)
. (4.240)

The problem is: specify W(k, l) so that the energy function𝑤(n,m) has between indices n1 and
n2, and m1 and m2 is maximised.

Let us call, for simplicity:

N0 ≡ N − 1
2

M0 ≡ M − 1
2

. (4.241)
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The total energy of this function, after making use of Parseval’s theorem, may be written as:

E∞ =
N0∑

n=−N0

M0∑
m=−M0

|𝑤(n,m)|2 = 1
NM

N0∑
k=−N0

M0∑
l=−M0

|W(k, l)|2. (4.242)

The energy of the function between indices n1 and n2, and m1 and m2 is

En1n2 ,m1m2
=

n2∑
n=n1

m2∑
m=m1

|𝑤(n,m)|2 =
n2∑

n=n1

m2∑
m=m1

𝑤(n,m)𝑤∗(n,m) (4.243)

where 𝑤∗(n,m) is the complex conjugate of function 𝑤(n,m) and by using Equation (4.240) it
may be written as:

𝑤∗(n,m) = 1
NM

N0∑
k=−N0

M0∑
l=−M0

W∗(k, l)e−j2π
(

kn
N
+ ml

M

)
. (4.244)

The fraction of the energy of the function between indices n1 and n2, and m1 and m2 is:

R ≡
∑n2

n=n1

∑m2
m=m1

𝑤(n,m)𝑤∗(n,m)
1

NM

∑N0

k=−N0

∑M0

l=−M0
|W(k, l)|2 =

1
1

NM

∑N0

k=−N0

∑M0

l=−M0
|W(k, l)|2 ×

n2∑
n=n1

m2∑
m=m1

1
NM

N0∑
k=−N0

M0∑
l=−M0

W(k, l)ej2π
(

kn
N
+ ml

M

)
×

1
NM

N0∑
k̃=−N0

M0∑
l̃=−M0

W∗(k̃, l̃)e−j2π
(

k̃n
N
− l̃m

M

)
=

1

NM
∑N0

k=−N0

∑M0

l=−M0
|W(k, l)|2 ×

N0∑
k=−N0

M0∑
l=−M0

N0∑
k̃=−N0

M0∑
l̃=−M0

W(k, l)W∗(k̃, l̃)
n2∑

n=n1

ej 2π
N
(k−k̃)n

m2∑
m=m1

ej 2π
M
(l−l̃)m

. (4.245)

We make use of (4.174) with A = π
N
(k − k̃) and A = π

M
(l − l̃) in order to substitute for sums∑n2

n=n1
ej 2π

N
(k−k̃)n and

∑m2
m=m1

ej 2π
M
(l−l̃)m, respectively

R = 1

NM
∑N0

k=−N0

∑M0

l=−M0
|W(k, l)|2 ×

N0∑
k=−N0

M0∑
l=−M0

N0∑
k̃=−N0

M0∑
l̃=−M0

W(k, l)W∗(k̃, l̃)ej π
N
(k−k̃)(n1+n2)×

ej π
M
(l−l̃)(m1+m2)

sin
(

π
N
(k − k̃)n0

)
sin

(
π
N
(k − k̃)

) sin
(

π
M
(l − l̃)m0

)
sin

(
π
M
(l − l̃)

) (4.246)

(Continued)



�

� �

�

472 4 Non-stationary Grey Texture Images

Box 4.4 (Continued)

where for simplicity we defined:

n0 ≡ n2 − n1 + 1 m0 ≡ m2 − m1 + 1. (4.247)

We define next

𝜓(k, l) ≡ W(k, l)ej π
N

k(n1+n2)+j π
M

l(m1+m2) (4.248)

and as a consequence:

𝜓∗(k, l) = W∗(k, l)e−j π
N

k(n1+n2)−j π
M

l(m1+m2). (4.249)

We observe that 𝜓(k, l)𝜓∗(k, l) = W(k, l)W∗(k, l) = |W(k, l)|2. Then:

R =

∑N0

k=−N0

∑M0

l=−M0

∑N0

k̃=−N0

∑M0

l̃=−M0
𝜓(k, l)𝜓∗(k̃, l̃)

sin
(

π
N
(k−k̃)n0

)
sin

(
π
M
(l−l̃)m0

)
sin

(
π
N
(k−k̃)

)
sin

(
π
M
(l−l̃)

)
NM

∑N0

k=−N0

∑M0

l=−M0
|𝜓(k, l)|2 . (4.250)

Let us call:

g(k, l) ≡
N0∑

k̃=−N0

M0∑
l̃=−M0

𝜓∗(k̃, l̃)
sin

(
π
N
(k − k̃)(n2 − n1 + 1)

)
sin

(
π
M
(l − l̃)(m2 − m1 + 1)

)
sin

(
π
N
(k − k̃)

)
sin

(
π
M
(l − l̃)

) . (4.251)

Then:

R =
∑N0

k=−N0

∑M0
l=−M0

𝜓(k,l)g(k,l)

NM
∑N0

k=−N0

∑M0
l=−M0

|𝜓(k,l)|2
⇒ RNM

N0∑
k=−N0

M0∑
l=−M0

𝜓(k, l)𝜓∗(k, l) =
N0∑

k=−N0

M0∑
l=−M0

𝜓(k, l)g(k, l)

⇒
N0∑

k=−N0

M0∑
l=−M0

𝜓(k, l)[RNM𝜓∗(k, l) − g(k, l)] = 0. (4.252)

This is true for all 𝜓(k, l) only if:

g(k, l) = RNM𝜓∗(k, l). (4.253)

If we substitute g(k, l) from (4.251) we derive:

N0∑
k̃=−N0

M0∑
l̃=−M0

𝜓∗(k̃, l̃)
sin

(
π
N
(k − k̃)n0

)
sin

(
π
M
(l − l̃)m0

)
sin

(
π
N
(k − k̃)

)
sin

(
π
M
(l − l̃)

) = RNM𝜓∗(k, l). (4.254)

We may drop the asterisk from this expression, by taking the complex conjugate of both sides.
Let us go back to the original variables by replacing the auxiliary variables n0, m0, N0 and M0,
and define

S(k, l, k̃, l̃) ≡ sin
(

π
N
(k − k̃)(n2 − n1 + 1)

)
sin

(
π
M
(l − l̃)(m2 − m1 + 1)

)
sin

(
π
N
(k − k̃)

)
sin

(
π
M
(l − l̃)

) . (4.255)
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Then in order to work out 𝜓(k, l), and from it W(k, l), we must solve equation:
N−1

2∑
k̃=− N−1

2

M−1
2∑

l̃=− M−1
2

𝜓(k̃, l̃)S(k, l, k̃, l̃). = RNM𝜓(k, l) (4.256)

Once we know W(k, l), we can work out 𝑤(n,m), which may be used as a 2D convolution
filter to process an image and extract its frequency content in the band inside which W(k, l) is
non-zero. As 𝑤(n,m) will have its energy concentrated within some range of its indices, it will
be possible to truncate it and form a much smaller approximate convolution filter.

Matrix S in this case is a four-dimensional matrix, and this makes the solution of the above
equation somehow awkward. We can reduce the problem to that we solved for the 1D signals,
if we express the 2D function 𝜓(k, l) as a 1D vector, by writing its columns one under the other.
Matrix S then is also reduced to 2D and the steps of solving the problem become identical to
those we used to deal with the 1D signals. All these become much clearer in Example 4.57.
However, later on (see Box 4.6) we shall see that this problem may actually be solved in a
much simpler way than that of Example 4.57.

Example B4.57

Use Equation (4.256) to construct an approximate convolution filter of size 3 × 3 that
may be used to extract local information for a band of size 5 × 5, from an image of size
15 × 15.
In this problem N = M = 15. We choose n1 = m1 = −1 and n2 = m2 = 1, so that the convolution
filter we construct has most of its energy in a window of size (n2 − n1 + 1) × (m2 − m1 + 1) =
3 × 3, and so it is possible to truncate it to create an approximate convolution filter of size 3 × 3.
We also choose k1 = l1 = −2 and k2 = l2 = 2, so that the size of the band we choose to concentrate
on is (k2 − k1 + 1) × (l2 − l1 + 1) = 5 × 5.

To construct this filter we must first solve Equation (4.256), which in this case has the form:
7∑

k̃=−7

7∑
l̃=−7

𝜓(k̃, l̃)S(k, l, k̃, l̃) = 225R𝜓(k, l) for k, l ∈ {−7,−6,… , 6, 7}. (4.257)

As our filter is band limited, only the values of 𝜓 in the chosen band will be non-zero, so this
equation is further simplified to:

2∑
k̃=−2

2∑
l̃=−2

𝜓(k̃, l̃)S(k, l, k̃, l̃) = 225R𝜓(k, l) for k, l ∈ {−2,−1, 0, 1, 2}. (4.258)

The above equation is an eigenvalue problem for a 4D array, namely matrix S. We may reduce it
to an eigenvalue problem for a 2D array, if we read the columns of matrix 𝜓(k̃, l̃) one under the
other to form a 1D vector. To identify the elements of this vector, we introduce a single index K̂
defined as:

K̂ ≡ (k̃ − k1)(l2 − l1 + 1) + l̃ − l1. (4.259)

The convention we use is that if we write 𝜓(k̃, l̃) as an image, index k̃ increases along the hori-
zontal direction and index l̃ increases along the vertical direction. For the particular case we are

(Continued)
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dealing with here, we have:

K̂ = (k̃ + 2)5 + l̃ + 2 = 5k̃ + l̃ + 12. (4.260)

For example, element 𝜓(−1, 2) will appear as having index: K̂ = 9.
The minimum value of K̂ is obtained for the element 𝜓(k1, l1), i.e. for k̃ = k1 and l̃ = l1, and it

is K̂min = 0. The maximum value is obtained for k̃ = k2 and l̃ = l2, and it is:

K̂max = (k2 − k1)(l2 − l1 + 1) + l2 − l1

= (k2 − k1)(l2 − l1 + 1) + l2 − l1 + 1 − 1
= (k2 − k1 + 1)(l2 − l1 + 1) − 1.

So, in our particular example, K̂ takes values in the range [0, 24]. We would like it to take values
in the range [−12, 12], and so we define from it an index

K̃ ≡ K̂ −
K̂max

2
. (4.261)

So, in our example, element (−1, 2), with K̂ = 9, will have index K̃ = 9 − 12 = −3.
There is a one-to-one correspondence between pair (k̃, l̃) and index K̂, as Equation (4.259) is

invertible:

l̃ = K̂modulo (l2−l1+1) + l1

k̃ =
K̂ − K̂modulo (l2−l1+1)

l2 − l1 + 1
+ k1. (4.262)

For example, for K̂ = 9, l1 = k1 = −2 and l2 = 2, we obtain l̃ = 9modulo 5 − 2 = 4 − 2 = 2 and
k̃ = (9 − 9modulo 5)∕5 − 2 = 5∕5 − 2 = −1, i.e. index 9 corresponds to element (−1, 2).

By replacing K̂ in terms of K̃ from (4.261) we may write these equations directly in terms of K̃,
i.e. the index we shall be using for the calculations:

l̃ =

(
K̃ +

K̂max

2

)
modulo (l2−l1+1)

+ l1

k̃ =

(
K̃ + K̂max

2

)
−
(

K̃ + K̂max
2

)
modulo (l2−l1+1)

l2 − l1 + 1
+ k1. (4.263)

Therefore, wherever pair (k̃, l̃) appears, it may be replaced by index K̃ and vice versa. For our
particular example, these formulae have the form:

l̃ = (K̃ + 12)modulo 5 − 2

k̃ =
(K̃ + 12) − (K̃ + 12)modulo 5

5
− 2. (4.264)

For example, index K̃ = −3, yields l̃ = 9modulo 5 − 2 = 2 and k̃ = 9−9modulo 5

5
− 2 = −1.

Similarly, we define

K ≡ (k − k1)(l2 − l1 + 1) + l − l1 −
K̂max

2
(4.265)
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and its inverse:

l =

(
K +

K̂max

2

)
modulo (l2−l1+1)

+ l1

k =

(
K + K̂max

2

)
−
(

K + K̂max
2

)
modulo (l2−l1+1)

l2 − l1 + 1
+ k1. (4.266)

The minimum and maximum values of both K̃ and K are −12 and +12, respectively.
In view of the above, Equation (4.258) may be written as

12∑
K̃=−12

𝜓(K̃)S(K, K̃) = 225R𝜓(K) for K = −12,… , 12 (4.267)

where the elements of matrix S(K, K̃) are given by (4.255) which in this case takes the form

S(K, K̃) =
sin

(
π

15
(k − k̃)3

)
sin

(
π

15
(l − l̃)3

)
sin

(
π

15
(k − k̃)

)
sin

(
π

15
(l − l̃)

) =
sin

(
π
5
(k − k̃)

)
sin

(
π
5
(l − l̃)

)
sin

(
π

15
(k − k̃)

)
sin

(
π

15
(l − l̃)

) (4.268)

with the understanding that for each pair (K, K̃)we have to compute the corresponding quadruple
(k, l, k̃, l̃) using Equations (4.263) and (4.266), in order to compute the right-hand side of (4.268).

The non-zero eigenvalues of matrix S are: 𝜆1 = 145.220, 𝜆2 = 𝜆3 = 34.595, 𝜆4 = 8.241,
𝜆5 = 𝜆6 = 0.946, 𝜆7 = 𝜆8 = 0.225 and 𝜆9 = 0.006.

The eigenvector that corresponds to the largest eigenvalue is: (0.155, 0.185, 0.196, 0.185, 0.155,
0.185, 0.221, 0.234, 0.221, 0.185, 0.196, 0.234, 0.247, 0.234, 0.196, 0.185, 0.221, 0.234, 0.221, 0.185,
0.155, 0.185, 0.196, 0.185, 0.155)T.

In matrix form this is:⎡⎢⎢⎢⎢⎢⎣

0.155 0.185 0.196 0.185 0.155
0.185 0.221 0.234 0.221 0.185
0.196 0.234 0.247 0.234 0.196
0.185 0.221 0.234 0.221 0.185
0.155 0.185 0.196 0.185 0.155

⎤⎥⎥⎥⎥⎥⎦
. (4.269)

From this we can compute the non-zero elements of W(k, l) using Equation (4.248), which in this
case takes the form

W(k, l) =
{
𝜓(k, l) for k, l ∈ {−2,… , 2}
0 otherwise

(4.270)

since n1 + n2 = m1 + m2 = 0.
From Equation (4.240) then we may construct the 15 × 15 matrix:

𝑤(n,m) = 1
225

7∑
k=−7

7∑
l=−7

W(k, l)ej 2π
15
(kn+ml) = 1

225

2∑
k=−2

2∑
l=−2

W(k, l)ej 2π
15
(kn+ml)

. (4.271)

(Continued)
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Example B4.57 (Continued)

This matrix turns out to be:

𝑤 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.088 −0.006 −0.109 −0.110 0.045 0.310 0.559 0.661
−0.006 0.000 0.007 0.008 −0.003 −0.021 −0.038 −0.045
−0.109 0.007 0.135 0.136 −0.055 −0.383 −0.691 −0.817
−0.110 0.008 0.136 0.138 −0.056 −0.388 −0.700 −0.827

0.045 −0.003 −0.055 −0.056 0.023 0.157 0.284 0.335
0.310 −0.021 −0.383 −0.388 0.157 1.091 1.967 2.324
0.559 −0.038 −0.691 −0.700 0.284 1.967 3.548 4.193
0.661 −0.045 −0.817 −0.827 0.335 2.324 4.193 4.954
0.559 −0.038 −0.691 −0.700 0.284 1.967 3.548 4.193
0.310 −0.021 −0.383 −0.388 0.157 1.091 1.967 2.324
0.045 −0.003 −0.055 −0.056 0.023 0.157 0.284 0.335

−0.110 0.008 0.136 0.138 −0.056 −0.388 −0.700 −0.827
−0.109 0.007 0.135 0.136 −0.055 −0.383 −0.691 −0.817
−0.006 0.000 0.007 0.008 −0.003 −0.021 −0.038 −0.045

0.088 −0.006 −0.109 −0.110 0.045 0.310 0.559 0.661

0.559 0.310 0.045 −0.110 −0.109 −0.006 0.088
−0.038 −0.021 −0.003 0.008 0.007 0.000 −0.006
−0.691 −0.383 −0.055 0.136 0.135 0.007 −0.109
−0.700 −0.388 −0.056 0.138 0.136 0.008 −0.110

0.284 0.157 0.023 −0.056 −0.055 −0.003 0.045
1.967 1.091 0.157 −0.388 −0.383 −0.021 0.310
3.548 1.967 0.284 −0.700 −0.691 −0.038 0.559
4.193 2.324 0.335 −0.827 −0.817 −0.045 0.661
3.548 1.967 0.284 −0.700 −0.691 −0.038 0.559
1.967 1.091 0.157 −0.388 −0.383 −0.021 0.310
0.284 0.157 0.023 −0.056 −0.055 −0.003 0.045

−0.700 −0.388 −0.056 0.138 0.136 0.008 −0.110
−0.691 −0.383 −0.055 0.136 0.135 0.007 −0.109
−0.038 −0.021 −0.003 0.008 0.007 0.000 −0.006

0.559 0.310 0.045 −0.110 −0.109 −0.006 0.088

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Figure 4.65 shows the corresponding energies as a grey image.
We notice that its most significant elements are the central 3 × 3, so we truncate 𝑤 to form the

approximate convolution filter:⎡⎢⎢⎣
3.548 4.193 3.548
4.193 4.954 4.193
3.548 4.193 3.548

⎤⎥⎥⎦ . (4.272)

Finally, we normalise this by dividing each element with the sum of all elements:⎡⎢⎢⎣
0.099 0.117 0.099
0.117 0.138 0.117
0.099 0.117 0.099

⎤⎥⎥⎦ .
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Figure 4.65 The squared values of 𝑤(n,m), shown as a grey image.
Source: Maria Petrou.

Example B4.58

Use the result of Example 4.57 to construct a set of orthogonal basis functions that
fully span the frequency domain of a 15 × 15 image.

The Fourier domain of a 15 × 15 image is also 15 × 15 in size, and it looks like the grid in
Figure 4.66. It can be divided into nine distinct bands of size 5 × 5 each, as shown in Figure 4.66.

The filter constructed in Example 4.57 spans the grey band in the middle. We may use Equation
(4.271) to construct similar filters that span the other bands. All we have to do is to shift the
non-zero values of 𝜓(k, l) so that they cover a different band each time. This is shown schemat-
ically in Figure 4.67, where in each case the grey part of the frequency domain is filled with the
5 × 5 matrix (4.269) while the white part is filled with zeros.

Explicitly, these frequency domain masks are defined as:

W11(k, l) =
{
𝜓(k, l) for k ∈ [−7,−3], l ∈ [−7,−3]
0 elsewhere

(4.273)

W 12(k, l) =
{
𝜓(k, l) for k ∈ [−2, 2], l ∈ [−7,−3]
0 elsewhere

(4.274)

W 13(k, l) =
{
𝜓(k, l) for k ∈ [3, 7], l ∈ [−7,−3]
0 elsewhere

(4.275)

W 21(k, l) =
{
𝜓(k, l) for k ∈ [−7,−3], l ∈ [−2, 2]
0 elsewhere

(4.276)

W 22(k, l) =
{
𝜓(k, l) for k ∈ [−2, 2], l ∈ [−2, 2]
0 elsewhere

(4.277)

W 23(k, l) =
{
𝜓(k, l) for k ∈ [3, 7], l ∈ [−2, 2]
0 elsewhere

(4.278)

W 31(k, l) =
{
𝜓(k, l) for k ∈ [−7,−3], l ∈ [3, 7]
0 elsewhere

(4.279)

W 32(k, l) =
{
𝜓(k, l) for k ∈ [−2, 2], l ∈ [3, 7]
0 elsewhere

(4.280)

W 33(k, l) =
{
𝜓(k, l) for k ∈ [3, 7], l ∈ [3, 7]
0 elsewhere

. (4.281)

(Continued)
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Example B4.58 (Continued)

Note that these functions cover the whole frequency space. In addition, if we multiply any two of
them point by point and add the results, we get 0. So, they constitute a complete and orthogonal
set of basis functions, in terms of which the full frequency content of the sub-image of size 3 × 3,
which sits in the middle of a 15 × 15 image, may be expressed.

Figure 4.66 A tessellation of the 2D frequency domain of a
15 × 15 image into frequency bands of size 5 × 5. The zero
frequency point is in the middle of the grid.

31 32 33

22 2321

11 12 13

Figure 4.67 We shift the non-zero values of array (4.269) in the grey area of the frequency domain,
setting all other values to zero, in order to create filters that respond to each one of the identified
bands separately.
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Figure 4.68 The tessellation of the 2D frequency domain of a 15 × 15 image shown in Figure 4.66
allows us to produce nine different arrays of size 15 × 15, which may be approximated by setting all
their elements outside their central 3 × 3 patch equal to 0. The central parts with the non-zero values
of the nine filters are given by Equations (4.282)–(4.290). If we multiply an input 15 × 15 image with
each of the approximated 15 × 15 filters, point by point, and add the 225 products (only 9 of which
will be non-zero), we shall obtain information about the frequency content of the grey patch of the
image shown here in each of the frequency bands identified in Figure 4.67. This amounts to projecting
the image on each one of the 9 constructed arrays.

Each of these functions corresponds to a different filter defined in the image space. We
may compute these filters by using Equation (4.240) with the appropriate Wf (k, l), where
f ∈ {11, 12, 13, 21, 22, 23, 31, 32, 33}. Figure 4.68 shows schematically the image space, with the
region where these filters have most of their energy highlighted in grey.

After the filters are truncated to size 3 × 3, to produce smaller approximate convolution filters,
they have to be normalised. Normalisation for the low pass filter (𝑤22) means that its weights are
scaled so they sum up to 1. The weights of the high pass filters have to sum up to 0. To achieve
that, we consider each filter in turn. We first add all its elements and produce a complex number
a + jb, remembering that the high pass filters have complex weights. The elements of the filter are
nine (a 3 × 3 filter). We divide a + jb by 9. This way we produce a number, say, c + jd for the filter
under consideration. We subtract c + jd from all elements of the filter, so its weights now sum up
to 0. We also scale these filters by the same scaling factor used to scale the low pass filter, just for
consistency. In reality, no scaling is necessary, as the results have meaning only in relative and
not in absolute terms. The filters obtained this way are listed below:

𝑤11 =
⎡⎢⎢⎣
−0.050 − 0.086j −0.059 + 0.101j 0.098
−0.059 + 0.101j 0.138 −0.059 − 0.101j

0.098 −0.059 − 0.101j −0.050 + 0.086j

⎤⎥⎥⎦ (4.282)

𝑤12 =
⎡⎢⎢⎣
−0.056 + 0.086j −0.065 + 0.101j −0.056 + 0.086j

0.110 0.132 0.110
−0.056 − 0.086j −0.065 − 0.101j −0.056 − 0.086j

⎤⎥⎥⎦ (4.283)

𝑤13 =
⎡⎢⎢⎣

0.098 −0.059 + 0.101j −0.050 − 0.086j
−0.059 − 0.101j 0.138 −0.059 + 0.101j
−0.050 + 0.086j −0.059 − 0.101j 0.098

⎤⎥⎥⎦ (4.284)

𝑤21 =
⎡⎢⎢⎣
−0.056 + 0.086j 0.110 −0.056 − 0.086j
−0.065 + 0.101j 0.132 −0.065 − 0.101j
−0.056 + 0.086j 0.110 −0.056 − 0.086j

⎤⎥⎥⎦ (4.285)

(Continued)
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Example B4.58 (Continued)

𝑤22 =
⎡⎢⎢⎣
0.099 0.117 0.099
0.117 0.138 0.117
0.099 0.117 0.099

⎤⎥⎥⎦ (4.286)

𝑤23 =
⎡⎢⎢⎣
−0.056 − 0.086j 0.110 −0.056 + 0.086j
−0.065 − 0.101j 0.132 −0.065 + 0.101j
−0.056 − 0.086j 0.110 −0.056 + 0.086j

⎤⎥⎥⎦ (4.287)

𝑤31 =
⎡⎢⎢⎣

0.098 −0.059 − 0.101j −0.050 + 0.086j
−0.059 + 0.101j 0.138 −0.059 − 0.101j
−0.050 − 0.086j −0.059 + 0.101j 0.098

⎤⎥⎥⎦ (4.288)

𝑤32 =
⎡⎢⎢⎣
−0.056 − 0.086j −0.065 − 0.101j −0.056 − 0.086j

0.110 0.132 0.110
−0.056 + 0.086j −0.065 + 0.101j −0.056 + 0.086j

⎤⎥⎥⎦ (4.289)

𝑤33 =
⎡⎢⎢⎣
−0.050 + 0.086j −0.059 − 0.101j 0.098
−0.059 − 0.101j 0.138 −0.059 + 0.101j

0.098 −0.059 + 0.101j −0.050 − 0.086j

⎤⎥⎥⎦ . (4.290)

We note that 𝑤11 = 𝑤33∗, 𝑤12 = 𝑤32∗, 𝑤13 = 𝑤31∗ and 𝑤21 = 𝑤23∗. This is in accordance with
the discussion on the relationship between two functions that have Fourier transforms non-zero
at bands symmetric about the dc component (see Example 4.50).

From these filters we may produce real valued filters that may return the frequency content of a
15 × 15 image in pairs of bands symmetric about the centre. Obviously, there are only five distinct
such real filters, the low pass filter 𝑤22 and the four high pass ones. After normalisation, so that
the positive weights sum up to +1 and the negative weights to −1, these filters are:

𝑤11
R =

⎡⎢⎢⎣
−0.148 −0.176 0.294
−0.176 0.412 −0.176

0.294 −0.176 −0.148

⎤⎥⎥⎦𝑤12
R =

⎡⎢⎢⎣
−0.158 −0.184 −0.158

0.313 0.374 0.313
−0.158 −0.184 −0.158

⎤⎥⎥⎦
𝑤13

R =
⎡⎢⎢⎣

0.294 −0.176 −0.148
−0.176 0.412 −0.176
−0.148 −0.176 0.294

⎤⎥⎥⎦𝑤21
R =

⎡⎢⎢⎣
−0.158 0.313 −0.158
−0.184 0.374 −0.184
−0.158 0.313 −0.158

⎤⎥⎥⎦ . (4.291)

Example B4.59

Use the results of Example 4.57 to construct a set of functions that cover fully the
space of an image of size 15 × 15.

A 15 × 15 image may be divided into 25 disjoint sets of 3 × 3 sub-images. We may use the𝜓(k, l)
function constructed in Example 4.53 to construct functions each of which focuses in a different
such sub-image. The 25 sub-images correspond to different values of indices n1, n2, m1 and m2.
Table 4.5 lists the ranges of indices n and m for all 25 sub-images.

These functions cover the whole 15 × 15 image space, in the sense that each function has its
energy concentrated in a different 3 × 3 sub-image. Two of the 25 functions derived this way are:
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.548 4.193 3.548 1.967 0.284 −0.700 −0.691 −0.038
4.193 4.954 4.193 2.324 0.335 −0.827 −0.817 −0.045
3.548 4.193 3.548 1.967 0.284 −0.700 −0.691 −0.038
1.967 2.324 1.967 1.091 0.157 −0.388 −0.383 −0.021
0.284 0.335 0.284 0.157 0.023 −0.056 −0.055 −0.003

−0.700 −0.827 −0.700 −0.388 −0.056 0.138 0.136 0.008
−0.691 −0.817 −0.691 −0.383 −0.055 0.136 0.135 0.007
−0.038 −0.045 −0.038 −0.021 −0.003 0.008 0.007 0.000

0.559 0.661 0.559 0.310 0.045 −0.110 −0.109 −0.006
0.559 0.661 0.559 0.310 0.045 −0.110 −0.109 −0.006

−0.038 −0.045 −0.038 −0.021 −0.003 0.008 0.007 0.000
−0.691 −0.817 −0.691 −0.383 −0.055 0.136 0.135 0.007
−0.700 −0.827 −0.700 −0.388 −0.056 0.138 0.136 0.008

0.284 0.335 0.284 0.157 0.023 −0.056 −0.055 −0.003
1.967 2.324 1.967 1.091 0.157 −0.388 −0.383 −0.021

0.559 0.559 −0.038 −0.691 −0.700 0.284 1.967
0.661 0.661 −0.045 −0.817 −0.827 0.335 2.324
0.559 0.559 −0.038 −0.691 −0.700 0.284 1.967
0.310 0.310 −0.021 −0.383 −0.388 0.157 1.091
0.045 0.045 −0.003 −0.055 −0.056 0.023 0.157

−0.110 −0.110 0.008 0.136 0.138 −0.056 −0.388
−0.109 −0.109 0.007 0.135 0.136 −0.055 −0.383
−0.006 −0.006 0.000 0.007 0.008 −0.003 −0.021

0.088 0.088 −0.006 −0.109 −0.110 0.045 0.310
0.088 0.088 −0.006 −0.109 −0.110 0.045 0.310

−0.006 −0.006 0.000 0.007 0.008 −0.003 −0.021
−0.109 −0.109 0.007 0.135 0.136 −0.055 −0.383
−0.110 −0.110 0.008 0.136 0.138 −0.056 −0.388

0.045 0.045 −0.003 −0.055 −0.056 0.023 0.157
0.310 0.310 −0.021 −0.383 −0.388 0.157 1.091

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.292)

Figure 4.69 Left: tessellation of the 2D
15 × 15 image into sub-images of size 3 × 3.
The highlighted sub-images are those that
correspond to the two example functions.
Right: the low-frequency band where the
example functions have non-zero response.

Image domain Frequency domain

(Continued)
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.110 0.008 0.136 0.138 −0.056 −0.388 −0.700 −0.827
0.045 −0.003 −0.055 −0.056 0.023 0.157 0.284 0.335
0.310 −0.021 −0.383 −0.388 0.157 1.091 1.967 2.324
0.559 −0.038 −0.691 −0.700 0.284 1.967 3.548 4.193
0.661 −0.045 −0.817 −0.827 0.335 2.324 4.193 4.954
0.559 −0.038 −0.691 −0.700 0.284 1.967 3.548 4.193
0.310 −0.021 −0.383 −0.388 0.157 1.091 1.967 2.324
0.045 −0.003 −0.055 −0.056 0.023 0.157 0.284 0.335

−0.110 0.008 0.136 0.138 −0.056 −0.388 −0.700 −0.827
−0.109 0.007 0.135 0.136 −0.055 −0.383 −0.691 −0.817
−0.006 0.000 0.007 0.008 −0.003 −0.021 −0.038 −0.045

0.088 −0.006 −0.109 −0.110 0.045 0.310 0.559 0.661
0.088 −0.006 −0.109 −0.110 0.045 0.310 0.559 0.661

−0.006 0.000 0.007 0.008 −0.003 −0.021 −0.038 −0.045
−0.109 0.007 0.135 0.136 −0.055 −0.383 −0.691 −0.817

−0.700 −0.388 −0.056 0.138 0.136 0.008 −0.110
0.284 0.157 0.023 −0.056 −0.055 −0.003 0.045
1.967 1.091 0.157 −0.388 −0.383 −0.021 0.310
3.548 1.967 0.284 −0.700 −0.691 −0.038 0.559
4.193 2.324 0.335 −0.827 −0.817 −0.045 0.661
3.548 1.967 0.284 −0.700 −0.691 −0.038 0.559
1.967 1.091 0.157 −0.388 −0.383 −0.021 0.310
0.284 0.157 0.023 −0.056 −0.055 −0.003 0.045

−0.700 −0.388 −0.056 0.138 0.136 0.008 −0.110
−0.691 −0.383 −0.055 0.136 0.135 0.007 −0.109
−0.038 −0.021 −0.003 0.008 0.007 0.000 −0.006

0.559 0.310 0.045 −0.110 −0.109 −0.006 0.088
0.559 0.310 0.045 −0.110 −0.109 −0.006 0.088

−0.038 −0.021 −0.003 0.008 0.007 0.000 −0.006
−0.691 −0.383 −0.055 0.136 0.135 0.007 −0.109

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.293)

These functions are versions of the same 2D convolution filter placed at two different positions
of the image, since they both have been designed to have non-zero DFTs in the same frequency
band. As they are the same size as the image, they may be thought of as basis functions on which
the image may be projected to yield one projection coefficient per function. Such a projection is
performed by point by point multiplication and addition of the results to obtain the projection
coefficient. The basis these functions constitute is not orthogonal, since, if we multiply any two
of them point by point and add the results, we shall not get 0. If each one of these functions is
truncated by setting equal to 0 all its values outside the 3 × 3 partition where most of its energy
is concentrated, they will constitute an orthogonal basis, since they have been constructed so that
each has its maximum energy in a different 3 × 3 partition of the image grid. Clearly, we can
create one such set of functions for each one of the different frequency bands of example 4.58, if
we use the corresponding 𝜓(k, l) for its construction.
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Table 4.5 If we use these ranges of indices in Equation (4.248) with
N = M = 15 and the values of 𝜓(k, l) as derived in Example 4.57, we may derive
the DFTs of the 25 functions, each of which peaks in a separate sub-image, and
may be used to return the frequency content of that image in a 5 × 5 low
frequency band centred around the dc component. From these DFTs and by using
Equation (4.240) we may derive the corresponding functions in the image space.

Sub-image n1 n2 m1 m2

1 −7 −5 −7 −5
2 −4 −2 −7 −5
3 −1 1 −7 −5
4 2 4 −7 −5
5 5 7 −7 −5
6 −7 −5 −4 −2
7 −4 −2 −4 −2
8 −1 1 −4 −2
9 2 4 −4 −2

10 5 7 −4 −2
11 −7 −5 −1 1
12 −4 −2 −1 1
13 −1 1 −1 1
14 2 4 −1 1
15 5 7 −1 1
16 −7 −5 2 4
17 −4 −2 2 4
18 −1 1 2 4
19 2 4 2 4
20 5 7 2 4
21 −7 −5 5 7
22 −4 −2 5 7
23 −1 1 5 7
24 2 4 5 7
25 5 7 5 7

The approximate convolution filter that all functions constructed in this example correspond
to is: ⎡⎢⎢⎣

3.548 4.193 3.548
4.193 4.954 4.193
3.548 4.193 3.548

⎤⎥⎥⎦ . (4.294)

The set of orthogonal basis functions we can create from them has the above 3 × 3 matrix placed
in all tessellated 3 × 3 patches of the image space.

(Continued)
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Example B4.59 (Continued)

Matrix (4.294) may be used as a convolution filter to extract the frequency content of any 3 × 3
image patch in the 5 × 5 low frequency band centred around the dc component of the image.
As the filter was truncated, its response will not be exactly zero outside the 5 × 5 band, so some
leakage is expected. Before use, this filter must be normalised so that its elements add up to 1. The
sum of the elements of (4.294) is 35.702. Once we divide the elements of (4.294) with 35.702, we
recover again filter 𝑤22 we constructed in example 4.58.

Box 4.5 What is the difference between projection onto basis functions and convolution with
the corresponding filters?

A projection is performed by point by point multiplication of the basis function/image and the
image we wish to analyse, and summation of the results. So, to perform the projection, the
basis function on which we project the signal has to be of the same size as the signal. The
information on different localities is extracted by having a different basis function for each
locality. This is shown schematically in Figure 4.70. If the localities that interest us are not
non-overlapping, but rather dense, shifted by a single sample one from the other, then we can
replace the idea of projection with the idea of pseudo-convolution; from the basis function
we cut off the parts that are 0 or nearly 0, and use the remaining part as a convolution filter.
To preserve the idea of projection, we do not read the values of the filter backwards when we
perform the convolution, but we simply place the centre of the filter at every sample, multiply
the corresponding values and add (see Figure 4.70).

(a)

(d)

(b)

(c)

Figure 4.70 (a) Basis functions on which the signal shown in (b) can be projected to yield its content in
a particular frequency band, at non-overlapping localities. (c) If we are interested in the frequency
content of the signal at the vicinity of each sample, the basis functions are more, with the significant
(non-zero) part of each one densely placed. (d) In such a case, we may cut off the parts of these
functions that are near 0 and create an approximate convolution filter that we can use to process the
signal so its frequency content in the particular band is extracted (approximately) at the locality of each
sample. Note that as convolution uses the filter back to front, we reverse it before using it for
convolution, so the two reversals cancel each other and the results of projection and convolution are the
same. Alternatively, we may perform pseudo-convolution, i.e. we neither reverse the filter beforehand,
nor during convolution.
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Alternatively, from a convolution filter one may construct projection functions by reversing
the filter, padding it with 0s, to make it the same size as the signal, and shifting its non-zero
part to start from different sample positions. In Figure 4.70 this corresponds to going from
(d) to (c). Set of functions (c) constitutes an over-complete and non-orthogonal basis for
expanding signal (b). If the filter is placed in non-overlapping sub-segments of the signal,
we may construct a complete and orthogonal basis. In Figure 4.70 this corresponds to going
from (d) to (a).

Example B4.60

Use the nine 3 × 3 filters constructed in Example 4.58 as convolution filters to con-
struct feature maps for the image of Figure 4.71.

(a) (b)

Figure 4.71 An image consisting of two different textures. (a) The pixel values. (b) The grey image.
Source: Maria Petrou.

We convolve the image with each one of the filters of Equations (4.282)–(4.290). We assume
that the image is repeated ad infinitum in all directions, so that we avoid boundary problems.
Figures 4.72–4.74 show the magnitude, real part and imaginary part, respectively, of the nine
outputs we produce this way. From each output we may compute the local energy of the image in
each band. The averaged energies inside windows of size 3 × 3 around each pixel are shown in
Figure 4.75.

We note that the feature maps constructed from the eight high pass filter outputs are pairwise
identical, as expected. So, we need only half of them. From these results we can see that the two
textures are easily distinguished, particularly from the outputs of filters 11 (or 33) and 23 (or 21).

Identical results (apart from a multiplicative factor arising due to the normalisation of the
filters) would have been obtained if we were using the real part of each of the four pairs of filters.

(Continued)
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Example B4.60 (Continued)

Filter 11 Filter 12 Filter 13

Filter 21 Filter 22 Filter 23

Filter 31 Filter 32 Filter 33

Figure 4.72 Magnitude of the outputs of the nine convolution filters designed in Example 4.58 when
applied to the image of Figure 4.71. A one-pixel wide border of pixels with unreliable and discarded
values exists around each output. Source: Maria Petrou.



�

� �

�

4.3 Prolate Spheroidal Sequence Functions 487

Filter 11 Filter 12 Filter 13

Filter 21 Filter 22 Filter 23

Filter 31 Filter 32 Filter 33

Figure 4.73 Real part of the outputs of the
nine convolution filters designed in Example
4.58, when applied to the image of
Figure 4.71. Source: Maria Petrou.

Figure 4.74 Imaginary part of the outputs
of the nine convolution filters designed in
Example 4.58, when applied to the image of
Figure 4.71. Source: Maria Petrou.

Filter 11 Filter 12 Filter 13

Filter 21 Filter 22 Filter 23

Filter 31 Filter 32 Filter 33

(Continued)
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Example B4.60 (Continued)

Filter 11 Filter 12 Filter 13

Filter 21 Filter 22 Filter 23

Filter 31 Filter 32 Filter 33

Figure 4.75 Averaged energies inside a window of size 3 × 3 of the outputs of the nine filters
designed in Example 4.58, when applied to the image of Figure 4.71. A two-pixel wide border of
unprocessed pixels exists around each output. Source: Maria Petrou.

Example B4.61

Show that the necessary and sufficient conditions for a 3 × 3 filter 𝑤, with weights
𝑤ij, to be separable are:

𝑤11

𝑤12
=
𝑤21

𝑤22
=
𝑤31

𝑤32
𝑤12

𝑤13
=
𝑤22

𝑤23
=
𝑤32

𝑤33
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𝑤11

𝑤21
=
𝑤12

𝑤22
=
𝑤13

𝑤23
𝑤21

𝑤31
=
𝑤22

𝑤32
=
𝑤23

𝑤33
. (4.295)

An M × M filter is separable if it can be written as the outer product of two M × 1 vectors. Let us
call these vectors u and v, and let us set M = 3. The outer product of vectors u and v is:

uvT =
⎛⎜⎜⎝

u1
u2
u3

⎞⎟⎟⎠
(
𝑣1 𝑣2 𝑣3

)
=
⎛⎜⎜⎝
u1𝑣1 u1𝑣2 u1𝑣3
u2𝑣1 u2𝑣2 u2𝑣3
u3𝑣1 u3𝑣2 u3𝑣3

⎞⎟⎟⎠ . (4.296)

We shall prove first that the satisfaction of conditions (4.295) is necessary for a 3 × 3 filter𝑤 to be
separable.

If a 3 × 3 filter 𝑤 is separable, there must exist two vectors u and v so that we may write:⎛⎜⎜⎝
𝑤11 𝑤12 𝑤13
𝑤21 𝑤22 𝑤23
𝑤31 𝑤32 𝑤33

⎞⎟⎟⎠ =
⎛⎜⎜⎝
u1𝑣1 u1𝑣2 u1𝑣3
u2𝑣1 u2𝑣2 u2𝑣3
u3𝑣1 u3𝑣2 u3𝑣3

⎞⎟⎟⎠ . (4.297)

By equating the corresponding elements, we obtain:

𝑤11 = u1𝑣1 𝑤12 = u1𝑣2 𝑤13 = u1𝑣3

𝑤21 = u2𝑣1 𝑤22 = u2𝑣2 𝑤23 = u2𝑣3

𝑤31 = u3𝑣1 𝑤32 = u3𝑣2 𝑤33 = u3𝑣3. (4.298)

By simple inspection, we see that from these expressions by pairwise divisions we may obtain:
𝑤11

𝑤12
=
𝑤21

𝑤22
=
𝑤31

𝑤32
=
𝑣1

𝑣2
𝑤12

𝑤13
=
𝑤22

𝑤23
=
𝑤32

𝑤33
=
𝑣2

𝑣3
𝑤11

𝑤21
=
𝑤12

𝑤22
=
𝑤13

𝑤23
=

u1

u2
𝑤21

𝑤31
=
𝑤22

𝑤32
=
𝑤23

𝑤33
=

u2

u3
. (4.299)

So if the filter is separable, conditions (4.295) are fulfilled. Now we shall show that these conditions
are also sufficient, i.e. we shall show that if conditions (4.295) are fulfilled, the filter is separable.

Let us start by setting the right-hand sides of Equations (4.295) equal to some constants, a, b,
c and d, from top to bottom, respectively. Then we may write:

𝑤11 = a𝑤12 𝑤21 = a𝑤22 𝑤31 = a𝑤32
𝑤12 = b𝑤13 𝑤22 = b𝑤23 𝑤32 = b𝑤33
𝑤11 = c𝑤21 𝑤12 = c𝑤22 𝑤13 = c𝑤23

𝑤21 = d𝑤31 𝑤22 = d𝑤32 𝑤23 = d𝑤33. (4.300)

From the first two lines of the above expressions we infer that 𝑤11 = ab𝑤13, 𝑤21 = ab𝑤23 and
𝑤31 = ab𝑤33. So, we may write:⎛⎜⎜⎝

𝑤11 𝑤12 𝑤13
𝑤21 𝑤22 𝑤23
𝑤31 𝑤32 𝑤33

⎞⎟⎟⎠ =
⎛⎜⎜⎝
ab𝑤13 b𝑤13 𝑤13
ab𝑤23 b𝑤23 𝑤23
ab𝑤33 b𝑤33 𝑤33

⎞⎟⎟⎠ =
⎛⎜⎜⎝
𝑤13
𝑤23
𝑤33

⎞⎟⎟⎠
(

ab b 1
)
. (4.301)

This concludes the proof of the theorem.
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Example B4.62

Show that filter (4.272) is separable and write it as a vector outer product. Is your
answer unique?
We must check first whether conditions (4.295) are fulfilled. We note that this filter has the fol-
lowing structure:⎡⎢⎢⎣

A B A
B C B
A B A

⎤⎥⎥⎦ . (4.302)

Here A = 3.548, B = 4.193 and C = 4.954. It is obvious then that the conditions are fulfilled if
A∕B = B∕C. In the particular case 3.548∕4.193 = 4.193∕4.954 = 0.846 and indeed the filter is
separable, with ratios a, b, c and d, as defined in Example 4.61 equal to a = 0.846, b = 1.182,
c = 0.846 and d = 1.182. So, substituting into (4.301), we may write the filter as⎛⎜⎜⎝

3.548
4.193
3.548

⎞⎟⎟⎠
(
1 1.182 1

)
. (4.303)

In general, this answer is not unique (see also Example 4.63). For example, if in Example 4.61 we
had used the expressions in the last two rows of (4.300), we would have deduced that⎛⎜⎜⎝

𝑤11 𝑤12 𝑤13
𝑤21 𝑤22 𝑤23
𝑤31 𝑤32 𝑤33

⎞⎟⎟⎠ =
⎛⎜⎜⎝
cd𝑤13 cd𝑤13 cd𝑤13
d𝑤23 d𝑤23 d𝑤23
𝑤33 𝑤33 𝑤33

⎞⎟⎟⎠ =
⎛⎜⎜⎝
cd
d
1

⎞⎟⎟⎠
(
𝑤31 𝑤32 𝑤33

)
. (4.304)

In our case, because of the symmetric structure of the filter, c = a and d = b, the two vectors
deduced this way are the same vectors deduced by applying (4.301), but used in reverse order.

Box 4.6 Could we construct the 2D prolate spheroidal sequence filters as separable filters?

Yes, because we may write matrix S(k, l, k̃, l̃), defined by Equation (4.255) as the product of two
matrices, one of which depends on k and k̃, and one which depends on l and l̃:

S1(k, k̃) ≡
sin

(
π
N
(k − k̃)(n2 − n1 + 1)

)
sin

(
π
N
(k − k̃)

)
S2(l, l̃) ≡

sin
(

π
M
(l − l̃)(m2 − m1 + 1)

)
sin

(
π
M
(l − l̃)

) . (4.305)

Note that the term “product” above does not mean the matrix product of S1 and S2, but rather
their product when they are considered as simple functions. Then Equation (4.256) may be
written as:

N−1
2∑

k̃=− N−1
2

M−1
2∑

l̃=− M−1
2

𝜓(k̃, l̃)S1(k, k̃)S2(l, l̃) = RNM𝜓(k, l)

⇒

N−1
2∑

k̃=− N−1
2

S1(k, k̃)
M−1

2∑
l̃=− M−1

2

𝜓(k̃, l̃)S2(l, l̃) = RNM𝜓(k, l). (4.306)
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According to Examples 4.63 and 4.64, the solution 𝜓(k, l) of the above equation is the outer
product of the eigenvectors of matrices S1 and S2. The solution then of Equation (4.256) may
be found by solving two 1D eigenvalue problems

M−1
2∑

l̃=− M−1
2

S2(l, l̃)𝜓(k̃, l̃) = 𝜇𝜓(k̃, l) (4.307)

and
N−1

2∑
k̃=− N−1

2

S1(k, k̃)𝜓(k̃, l) =
RNM
𝜇

𝜓(k, l) (4.308)

to produce two 1D filters, the vector outer product of which is the same as the 2D filter produced
by solving Equation (4.256) directly.

Example B4.63

Show that if the outer product of 3 × 1 vectors u and v is equal to the outer product
of vectors a and b, vector u is equal to vector a and vector v is equal to vector b apart
from some scaling factors.
Equating the outer products uvT and abT we obtain:⎛⎜⎜⎝

u1
u2
u3

⎞⎟⎟⎠
(
𝑣1 𝑣2 𝑣3

)
=
⎛⎜⎜⎝

a1
a2
a3

⎞⎟⎟⎠
(

b1 b2 b3
)

⇒
⎛⎜⎜⎝

u1𝑣1 u1𝑣2 u1𝑣3
u2𝑣1 u2𝑣2 u2𝑣3
u3𝑣1 u3𝑣2 u3𝑣3

⎞⎟⎟⎠ =
⎛⎜⎜⎝

a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

⎞⎟⎟⎠ . (4.309)

By equating the corresponding elements of the two matrices and taking appropriate ratios from
them, we can easily verify that

u1

a1
=

u2

a2
=

u3

a3
and

𝑣1

b1
=
𝑣2

b2
=
𝑣3

b3
(4.310)

which yield (u1,u2,u3)T = 𝜆(a1, a2, a3)T and (𝑣1, 𝑣2, 𝑣3)T = 𝜇(b1, b2, b3)T where 𝜆 and 𝜇 are
some scaling constants.

Example B4.64

Show that Equation (4.306) implies that the eigenfunctions 𝜓(k, l) of matrix S(k, l, k̃, l̃)
may be obtained by taking the vector outer products of the eigenvectors of matrices
S1(k, k̃) and S2(l, l̃).
We start by writing Equation (4.306) in matrix form, representing function𝜓(k, l) as a 2D matrix
Ψ and noticing that the inner sum on the left-hand side of (4.306) is nothing else than the matrix

(Continued)



�

� �

�

492 4 Non-stationary Grey Texture Images

Example B4.64 (Continued)

product of matrix Ψ and the transpose of matrix S2

S1ΨST
2 = 𝛽Ψ (4.311)

where we used 𝛽 to represent all scaling constants on the right-hand side of the equation.
In Book I [75] it was shown that any matrix Ψ may be analysed by performing singular value

decomposition (SVD) into the sum of the vector outer products of the eigenvalues of two matri-
ces, U ≡ ΨΨT and V ≡ ΨTΨ. These two matrices were shown to have the same eigenvalues, the
square roots of which are the so-called singular values of matrix Ψ. Let us call these eigenvalues
𝜆I and the corresponding eigenvectors uI and vI. So, according to the SVD theory, we may write:

Ψ =
∑

i

√
𝜆IuIvI

T . (4.312)

We substitute this expansion into (4.311) to obtain:

S1
∑

i

√
𝜆IuIvI

TST
2 = 𝛽

∑
i

√
𝜆IuIvI

T

⇒
∑

i

√
𝜆IS1uI(S2vI)T = 𝛽

∑
i

√
𝜆IuIvI

T

⇒
∑

i

√
𝜆I(S1uI(S2vI)T − 𝛽uIvI

T) = 0. (4.313)

The last equation is valid if all elements of the sum are equal to zero, i.e. if the outer product of
vectors S1uI and S2vI is equal to the outer product of vectors 𝛽uI and vI. According to Example
4.63 this is true when vector S1uI is equal to vector 𝛽uI, and vector S2vI is equal to vector vI apart
from some scaling constants

S1uI = 𝜇1uI S2vI = 𝜇2vI (4.314)

where 𝜇1 and 𝜇2 are some scalars. These two equations tell us that vectors uI and vI are the
eigenvectors of matrices S1 and S2 respectively, and so Equation (4.312) tells us that matrix Ψ (i.e.
function 𝜓(k, l)) can be expressed as the vector outer product of these eigenvectors. If we choose
vectors uI and vI to correspond to the largest eigenvalues of matrices S1 and S2, respectively, then
Ψ = uIvI

T will correspond to the first eigenvector of S. Substituting in (4.311), we get

S1ΨST
2 = S1uIvI

TST
2 = S1uI(S2vI)T = 𝜇1maxuI𝜇2maxvI

T = 𝛽uIvI
T (4.315)

which makes 𝛽 maximum.

Example B4.65

Produce the separable form of filters (4.282)–(4.290) by solving the 1D eigenvalue
problem.
For the 1D case we have N = 15, n1 = −1, n2 = 1, while (k1, k2) ∈ {(−7,−3), (−2, 2), (3, 7)}. We
derive the following three filters, presented here as vectors, rather than as sequences of numbers:

w1 ≡ (−0.942 + 1.631j, 2.226,−0.942 − 1.631j)T

w2 ≡ (1.884, 2.226, 1.884)T

w3 ≡ (−0.942 − 1.631j, 2.226,−0.942 + 1.631j)T . (4.316)
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We take all possible vector outer products of them to produce:

w1w1
T =

⎡⎢⎢⎣
−1.773 − 3.073j −2.097 + 3.631j 3.548
−2.097 + 3.631j 4.955 −2.097 − 3.631j

3.548 −2.097 − 3.631j −1.773 + 3.073j

⎤⎥⎥⎦ (4.317)

w1w2
T =

⎡⎢⎢⎣
−1.775 + 3.073j −2.097 + 3.631j −1.775 + 3.073j

4.194 4.955 4.194
−1.775 − 3.073j −2.097 − 3.631j −1.775 − 3.073j

⎤⎥⎥⎦ (4.318)

w1w3
T =

⎡⎢⎢⎣
3.548 −2.097 + 3.631j −1.773 − 3.073j

−2.097 − 3.631j 4.955 −2.097 + 3.631j
−1.773 + 3.073j −2.097 − 3.631j 3.548

⎤⎥⎥⎦ (4.319)

w2w1
T =

⎡⎢⎢⎣
−1.775 + 3.073j 4.194 −1.775 − 3.073j
−2.097 + 3.631j 4.955 −2.097 − 3.631j
−1.775 + 3.073j 4.194 −1.775 − 3.073j

⎤⎥⎥⎦ (4.320)

w2w2
T =

⎡⎢⎢⎣
3.549 4.194 3.549
4.194 4.955 4.194
3.549 4.194 3.549

⎤⎥⎥⎦ (4.321)

w2w3
T =

⎡⎢⎢⎣
−1.775 − 3.073j 4.194 −1.775 + 3.073j
−2.097 − 3.631j 4.955 −2.097 + 3.631j
−1.775 − 3.073j 4.194 −1.775 + 3.073j

⎤⎥⎥⎦ (4.322)

w3w1
T =

⎡⎢⎢⎣
3.548 −2.097 − 3.631j −1.773 + 3.073j

−2.097 + 3.631j 4.955 −2.097 − 3.631j
−1.773 − 3.073j −2.097 + 3.631j 3.548

⎤⎥⎥⎦ (4.323)

w3w2
T =

⎡⎢⎢⎣
−1.775 − 3.073j −2.097 − 3.631j −1.775 − 3.073j

4.194 4.955 4.194
−1.775 + 3.073j −2.097 + 3.631j −1.775 + 3.073j

⎤⎥⎥⎦ (4.324)

w3w3
T =

⎡⎢⎢⎣
−1.773 + 3.073j −2.097 − 3.631j 3.548
−2.097 − 3.631j 4.955 −2.097 + 3.631j

3.548 −2.097 + 3.631j −1.773 − 3.073j

⎤⎥⎥⎦ . (4.325)

These filters after normalisation become identical to the filters given by equations (4.282)–(4.290).

Example B4.66

Show how you will use the 1D filters given by (4.316) to construct 2D separable filters
that, if used to convolve the image, will produce its frequency output in pairs of bands
symmetrically placed about the dc component.
We know that to have the frequency content of the image in a pair of bands symmetrically placed
about the dc component is enough to use for the convolution the real part only of the filters we con-
struct. For this purpose, we may use the real parts of the filters given by equations (4.317)–(4.325).
However, these filters are not separable. Let us say that one such filter was constructed by taking

(Continued)



�

� �

�

494 4 Non-stationary Grey Texture Images

Example B4.66 (Continued)

the vector outer product of the 1D filters (a1 + jb1, a2 + jb2)T and (a3 + jb3, a4 + jb4)T:(
a1 + jb1
a2 + jb2

) (
a3 + jb3 a4 + jb4

)
=
(

a1a3 − b1b3 + j(a1b3 + b1a3) a1a4 − b1b4 + j(a1b4 + b1a4)
a2a3 − b2b3 + j(a2b3 + b2a3) a2a4 − b2b4 + j(a2b4 + b2a4)

)
. (4.326)

If we take only the real part of the filter, we shall have:(
a1a3 − b1b3 a1a4 − b1b4
a2a3 − b2b3 a2a4 − b2b4

)
=

(
a1a3 a1a4
a2a3 a2a4

)
−
(

b1b3 b1b4
b2b3 b2b4

)
=

(
a1
a2

)(
a3 a4

)
−
(

b1
b2

)(
b3 b4

)
. (4.327)

So, to construct the separable 2D filters we need, we must use the following two sets of filters:

w1R ≡ (−0.942, 2.226,−0.942)T

w2R ≡ (1.884, 2.226, 1.884)T

w3R ≡ (−0.942, 2.226,−0.942)T (4.328)

w1I ≡ (1.631, 0,−1.631)T

w2I ≡ (0, 0, 0)T

w3I ≡ (−1.631, 0, 1.631)T . (4.329)

What we have to do, therefore, is to convolve the image with all possible combinations of filters
(4.328) in a cascaded way, using one filter along the horizontal axis and one along the vertical, do
the same with filters (4.329), and then subtract the second lot of outputs from the corresponding
first ones.

Note that there will be only five distinct outputs this way, due to the regularities presented by
the filters. This is shown schematically in Figure 4.76.

1 2 3 1 2 3

1

2

3

1

2

3

A

AA C

D 0

A

D B

C

00

0

0E

D B

C

D

C

−E

E−E A+E A–E

A+EA−E

Figure 4.76 The numbers on the top and left of the grids identify the indices i and j of the filters
wiRwjR

T or wiIwjI
T that are multiplied to produce the result that is denoted by a capital letter (or a 𝟎, if

it is a matrix made up from 0s) in the corresponding cell. The distinct outcomes in each case are
depicted with different letters. For example, outer product w1Iw1I

T is the same as outer product
w3Iw3I

T , depicted with the letter E. It is noted that in the final output, when the results of the two 2D
separable convolutions are combined, there are only 5 distinct outputs, out of the possible 9.
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Box 4.7 What is the advantage of using separable filters?

The convolution of an image with an M × M filter implies M2 operations per pixel. If the filter
can be written as the outer product of two vectors of size M × 1 each, these two vectors may
be used as two 1D filters applied one after the other to the image, in a cascaded way, along
two orthogonal directions, to produce the same output as the 2D filter would have produced.
This means that the M2 operations per pixel are replaced by 2M operations: a very significant
gain for large filters.

How do we perform the analysis of an image using prolate spheroidal sequence
functions in practice?

The algorithm that follows is for a square image of size N × N, with N being odd.

Step 1: Specify the size of the convolution filters you wish to use. Call it (2M + 1) × (2M + 1). Specify
also the size K of the bands along each axis in the frequency domain, that should be selected by
each filter. It is more convenient if K is odd.

Step 2: In the frequency domain, the indices along each axis will take values in the range[
−N−1

2
,

N−1
2

]
. Divide this range in non-overlapping sub-ranges of length K each. Make sure that

one of the ranges is
[
−K−1

2
,

K−1
2

]
so it includes the 0 index that corresponds to the dc component.

We expect to have an odd number of ranges, one containing the 0 frequency index and the
others being in pairs of positive and negative indices. Let us say that there are 2V + 1 ranges
along one of the axes. We shall use all bands along one axis in combination with all positive
bands (V of them) of the other axis (i.e. (2V + 1) × V 2D bands), plus the 0 frequency band of
the second axis in combination with all the positive bands of the first axis (V of them) and the 0
frequency band of the first axis. This means that the distinct 2D filter bands we shall use will be
(2V + 1)V + V + 1 (see Figure 4.76, which corresponds to the case K = 3). Let us say that they
are L distinct 2D bands in total (L ≡ (2V + 1)V + V + 1).

Step 3: Construct a matrix S of size N × N, with elements

S(k, k̃) =
sin π(k−k̃)(2M+1)

N

sin π(k−k̃)
N

(4.330)

where k and k̃ take all integer values in the range
[
−K−1

2
,

K−1
2

]
.

Step 4: Work out the largest eigenvalue of S and the corresponding eigenvector. Call its elements
𝜓(k), for k ∈

[
−K−1

2
,

K−1
2

]
.

Step 5: Compute

𝑤(n) = 1
N

K−1
2∑

k=− K−1
2

𝜓(k)ej 2π
N

kn (4.331)

for n ∈
[
−N−1

2
,

N−1
2

]
.

Step 6: Keep only the values of 𝑤(n) for n = −M,−M + 1,… , 0,… ,M − 1,M. Normalise them by
dividing them with their sum to create the 1D low pass filter of size 2M + 1, the elements of
which sum up to 1. Call this filter f0.
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Step 7: For each of the positive ranges of indices you constructed in step 2, construct matrix S
using (4.330) allowing k to take values in the selected range, but k̃ to take values in

[
−K−1

2
,

K−1
2

]
.

For each such matrix S constructed, compute its largest eigenvector. Call its elements 𝜓(k), for
k ∈

[
−K−1

2
,

K−1
2

]
. From each 𝜓(k) compute 𝑤(n) using Equation (4.331). Truncate each 𝑤(n) to

keep only its central 2M + 1 values. Call the results ã(n) + jb̃(n), where n = −M,… , 0,… ,M, and
ã(n) and b̃(n) are real. Sum up all the values of ã(n) + jb̃(n) and divide them with 2M + 1. Call
the result c + jd. Subtract c + jd from all values of ã(n) + jb̃(n). Call the result a(n) + jb(n). The
result will be the convolution band pass filter designed to pick up frequencies in the image in the
corresponding frequency band. We are going to have 2V + 1 such filters. To distinguish between
them, and between their real and imaginary parts, let us denote them in a systematic way: f𝑣R,
for 𝑣 = −V ,… , 0,… ,V , identifies the real parts of the filters (a(n)) for the various bands, and
f𝑣I , for 𝑣 = −V ,… , 0,… ,V , identifies the corresponding imaginary parts of the filters (b(n)) for
the same bands.

Step 8: Convolve the image with filters f𝑣R, for 𝑣 ∈ [−V ,V], along the horizontal direction and
each output with all filters f𝑣R, for 𝑣 ∈ [1,V], along the vertical direction. In addition, convolve
the outputs of the horizontal convolutions with filters f𝑣R, for 𝑣 ∈ [0,V], with filter f0R along the
vertical direction. This way, you will have L distinct outputs.

Step 9: Repeat step 8 using filters f𝑣I this time. Due to symmetries of the filters you may be able
to make this step even faster by omitting certain convolutions, but this may be confusing (see
Figure 4.76, for the case K = 3, where only one pair of convolutions (horizontal followed by
vertical) is necessary).

Step 10: Subtract the results of step 9 from the corresponding results of step 8. What you produce
this way is the expansion of the image in terms of the prolate spheroidal sequence functions.
From these expansions feature maps may be produced.

Step 11: Square the values of all L output matrices you produced in step 10.
Step 12: Convolve the arrays you produced in step 11 with a flat averaging window. The outputs

will be the local energy feature maps of the original input image. To visualise these maps you
may scale them collectively or individually to have values in the range [0,255].

Step 13: The sequence of values a pixel has in each one of the feature maps (without any scaling
done for visualisation) constitutes the feature vector of the pixel and it may be used to classify
the pixel.

Note that steps 1–7 are independent of the image. They concern the construction of the filters
that will pick up different frequencies in the image. So, the constructed filters may be used for any
image of the same size.

Example 4.67

Use prolate spheroidal sequence functions to construct 9 × 9 convolution filters with
which to analyse the frequency content of a 255 × 255 image.

The problem only specifies the size of the convolution filters but not the size of the frequency
band inside which each filter will be designed to have non-zero response. We choose to tessel-
late the frequency space into nine areas of size 85 × 85 each. The corresponding 1D problem we
have to solve is for N = 255, n1 = −42, n2 = 42 and (k1, k2) ∈ {(−127,−43), (−42, 42), (43, 127)}.
The filters we construct this way are:

w1 = (−0.618 + 1.070j, 3.146,−2.721 − 4.712j,−3.668 + 6.353j, 8.070,
−3.668 − 6.353j,−2.721 + 4.712j, 3.146,−0.618 − 1.070j)T
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w2 = (1.236, 3.146, 5.441, 7.335, 8.070, 7.335, 5.441, 3.146, 1.236)T

w3 = (−0.618 − 1.070j, 3.146,−2.721 + 4.712j,−3.668 − 6.353j, 8.070,
−3.668 + 6.353j,−2.721 − 4.712j, 3.146,−0.618 + 1.070j)T . (4.332)

If we take all vector outer products of these filters in all possible pairs, we shall obtain the nine
2D convolution filters shown in Figures 4.77 (real part) and 4.78 (imaginary part), arranged
according to the frequency band in which they have their maximum response.

Figure 4.77 Real part of the nine
filters designed. Each filter is of size
9 × 9 and it was designed to cover an
area of size 85 × 85 in the Fourier
domain. Source: Maria Petrou.

These filters are rather gross. In effect all they do is to measure the strength of horizontal lines
and edges (filter 𝑤21 or 𝑤23), of vertical lines and edges (filter 𝑤12 or 𝑤31), and of round blobs.

We may try to characterise the image content in a little more detail if we tessellate the fre-
quency space into 25 bands instead of nine only. Then each band will be of size 51 × 51. To divide
the frequency space into 25 bands, we must choose for the 1D problem (k1, k2) ∈ {(−127,−77),
(−76,−26), (−25, 25), (26, 76), (77,127)}. The filters we derive this way are:

w1 = (−2.273 − 1.651j, 1.326 + 4.080j, 1.733 − 5.333j,−5.273 + 3.831j,
6.842,−5.273 − 3.831j, 1.733 + 5.333j, 1.326 − 4.080j,−2.273 + 1.651j)T

w2 = (0.868 − 2.672j,−3.471 − 2.522j,−4.537 + 3.296j, 2.014 + 6.198j,
6.842, 2.014 − 6.198j,−4.537 − 3.296j,−3.471 + 2.522j, 0.868 + 2.672j)T

w3 = (2.810, 4.290, 5.608, 6.517, 6.842, 6.517, 5.608, 4.290, 2.810)T

w4 = (0.868 + 2.672j,−3.471 + 2.522j,−4.537 − 3.296j, 2.014 − 6.198j,
6.842, 2.014 + 6.198j,−4.537 + 3.296j,−3.471 − 2.522j, 0.868 − 2.672j)T

w5 = (−2.273 + 1.651j, 1.326 − 4.080j, 1.733 + 5.333j,−5.273 − 3.831j, 6.842,
−5.273 + 3.831j, 1.733 − 5.333j, 1.326 + 4.080j,−2.273 − 1.651j)T . (4.333)

(Continued)
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Example 4.67 (Continued)

Figure 4.79 shows the real parts and Figure 4.80 the imaginary parts of the filters constructed by
taking the vector outer products of these 1D filters, scaled individually to the range [0,255] each,
so they can be presented as images.

Figure 4.78 Imaginary part of the
nine filters designed. Each filter is of
size 9 × 9 and it was designed to
cover an area of size 85 × 85 in the
Fourier domain. Source: Maria Petrou.

Figure 4.79 Real part of the 25 filters designed. Each filter is of size 9 × 9 and it was designed to
cover and area of size 51 × 51 in the Fourier domain. Source: Maria Petrou.
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Figure 4.80 Imaginary part of the 25 filters designed. Each filter is of size 9 × 9 and it was designed
to cover and area of size 51 × 51 in the Fourier domain. Source: Maria Petrou.

Example 4.68

Use the filters you constructed in Example 4.67 to construct feature maps for the
image of Figure 4.81.
The outputs of the filters are shown in Figures 4.82–4.87. Figures 4.82 and 4.87 show the features
constructed by either taking the magnitude of the complex filter outputs or by using the real filters
directly. The empty panels in Figure 4.82 are put there to emphasise that filters tuned to those
bands would have produced the same features as those already presented. We may see that vertical
and horizontal edges and lines are emphasised as we move along the axial directions starting
from the central panel, with the amplitude of the detected ripples becoming finer and finer as we
move towards higher frequencies (see the details shown in Figure 4.88).

Figure 4.81 The Girona pavement in size 255 × 255. We wish to
construct features that might be used for its segmentation. Source:
Maria Petrou.

(Continued)
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Example 4.68 (Continued)
Figure 4.82 Magnitude of the outputs of the
nine-filter bank. Source: Maria Petrou.

Figure 4.83 Real part of the outputs of the nine-filter bank. Source: Maria Petrou.



�

� �

�

4.3 Prolate Spheroidal Sequence Functions 501

Figure 4.84 Imaginary part of the outputs of the nine-filter bank. Source: Maria Petrou.

Figure 4.85 Real part of the outputs of the 25-filter bank. Source: Maria Petrou.

(Continued)



�

� �

�

502 4 Non-stationary Grey Texture Images

Example 4.68 (Continued)

Figure 4.86 Imaginary part of the outputs of the 25-filter bank. Source: Maria Petrou.

Figure 4.87 Magnitude of the outputs of the 25-filter bank. The two empty panels and the ten
missing ones are omitted because they are identical to those shown. Source: Maria Petrou.
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Figure 4.88 The last two panels of Figure 4.87. They correspond to low frequencies along the vertical
axis and moderate and high frequencies, from left to right respectively, along the horizontal axis. Note
how finer vertical details are picked as we move towards the high frequencies. Source: Maria Petrou.

4.4 Local Phase Features

Can we use the phase of the DFT to compute from it texture features?

Yes, but not in a straightforward way. The problem is that the phase of the signal tends to be wrapped
to the range [0, 2π] and it does not take continuous values. Phase unwrapping is an option, but
algorithms that use phase unwrapping are not very robust (see Figure 4.139). So, phase tends to
be estimated in an indirect way, by projecting the signal onto an orthonormal basis made up from
two filters that constitute a Hilbert transform pair. Phase then is estimated from the ratio of these
projections.

What is a Hilbert transform pair?

Two functions f (x) and g(x), with Fourier transforms f̂ (𝜔) and ĝ(𝜔), respectively, constitute a Hilbert
transform pair, if both have 0 dc component and ĝ(𝜔) = sign(𝜔)j f̂ (𝜔). In other words, the Fourier
transform of one is equal to the Fourier transform of the other times j, with a positive sign for
positive frequencies and with a negative sign for negative frequencies. This is shown schematically
in Figure 4.89.

Why may two filters that constitute a Hilbert transform pair be used for local phase
estimation?

To answer this question we must first understand what the physical meaning of the local phase
of a signal is. A purely symmetric function has real Fourier transform, so all its harmonics have
phase 0∘. A purely antisymmetric function has imaginary Fourier transform, so all its harmonics
have phase 90∘. A function that is neither symmetric nor antisymmetric will have harmonics with
phases in between these two values. So, the phase of the Fourier transform of a function is related
to the degree of symmetry of the function.
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Real axis Imaginary axis

ωω

(b)(a)

00

f(ω) g(ω)ˆ ˆ

Figure 4.89 (a) The Fourier transform of a symmetric band limited filter. (b) The Fourier transform of its
Hilbert transform pair.

If we project a function on an orthogonal basis, made up from a symmetric and an antisymmetric
function, from the ratio of the two projections we can tell how symmetric or antisymmetric the
function is. This statement may be rephrased as: if we project a function on an orthogonal basis
made up from a function with purely real Fourier transform and a function with purely imaginary
Fourier transform, from the ratio of the two projections we may assign a nominal phase to the
function. We may use a Hilbert transform pair of functions to construct the basis we need: if one of
the functions is symmetric, it will have a purely real Fourier transform, and its Hilbert pair will be
antisymmetric (see Figure 4.89), as it will have a purely imaginary Fourier transform. Indeed if we
multiply two such functions point by point and add the results, we shall get 0, either we perform
the multiplication in the signal or in the frequency domain. So, the two functions constitute an
orthogonal basis. If further we normalise the first function so the sum of the squares of its values
is 1, this will be the case for the sum of the squares of the values of the other function too, and thus
the basis will be orthonormal.

What if the harmonics of a non-symmetric and non-antisymmetric function all have
different phases?

It is true that the harmonics of a function that is neither symmetric nor antisymmetric will all have
different phases. The phase computed from the projection of the signal on the two basis signals is
only a nominal phase that is meaningful when the phases of all harmonics tend to agree. When this
happens, we say that we have phase congruency (see Book I [75]). Phase congruency really means
that there is a specific structural characteristic of the signal at that point, that may be a line, a stripe,
an edge, or something similar. If phase congruence is low, the calculation of phase information is
meaningless, as the signal is almost flat and amorphous at that locality. So, before we pay attention
to the local phase, we examine first the local energy content of the signal. This can be computed
very easily: we simply square and add the two projections to have the local energy content. Once
this is above a certain threshold, we realise that the signal has a structural feature there, and we can
calculate the local phase to characterise the feature. This is shown schematically in Figure 4.90.

How can we construct two filters so they constitute a Hilbert transform pair?

We can always select the symmetric filter and then from it construct its Hilbert transform pair by
simply taking its Fourier transform, multiplying it with sign(𝜔)j and taking the inverse Fourier
transform (see Book I [75]). However, the key idea is that we would like the filter to be at the same
time frequency selective. In other words, we would like our filter to:

i) Return local information
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Figure 4.90 A local window may isolate part of a signal. If the isolated segment has high energy, it
represents some structural feature of the signal. This feature may be treated like a function that is
approximately symmetric or antisymmetric. To decide whether it is approximately symmetric or
antisymmetric, we may examine the phase of the isolated signal. As the phase is different for the different
harmonics of the isolated signal, we project the isolated signal onto two basis functions, one symmetric and
one antisymmetric and work out an “effective” phase, from the ratio of the two projections.

ii) Return information that concerns the detection of signal characteristics in a pre-selected fre-
quency band

iii) Allow the detection of significant local features by allowing the calculation of the local energy
iv) Allow us to decide whether the feature manifested by a high level of local energy is locally

symmetric or antisymmetric, through the estimation of the local signal phase.

All the above requirements are fulfilled if we use the

i) Monogenic signal computed with the help of the Riesz transform, which is discussed in
Book I [75]; or

ii) Use the prolate spheroidal sequence filters. From the monogenic signal one may compute the
local phase, local orientation and local energy of the image. The prolate spheroidal sequence
filters are oriented filters, from which local energy and phase may be estimated for each selected
band and orientation.
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How do we compute the Riesz transform of an image?

Step 0: Call the image you wish to analyse f (x, y).
Step 1: Select a filter that is defined in the frequency domain, so that it has non-zero response in

a selected band, and it is even with respect to the frequencies 𝜔x and 𝜔y along the x and y axes,
respectively, of the image. Call this filter H(𝜔x, 𝜔y). An example such filter is

H(𝜔x, 𝜔y) = log
(cos2(𝜔x − 𝜔0x)

cos2𝜔1x

)
log

(
cos2(𝜔y − 𝜔0y)

cos2𝜔1y

)
(4.334)

for |𝜔x − 𝜔0x| < 𝜔1x and |𝜔y − 𝜔0y| < 𝜔1y

which is non-zero in the pair of positive and negative frequency bands defined for frequencies
in the ranges [𝜔0x − 𝜔1x, 𝜔0x + 𝜔1x] and 𝜔0y − 𝜔1y, 𝜔0y + 𝜔1y].

Step 2: Define functions:

H1(𝜔x, 𝜔y) ≡ j
𝜔x√
𝜔2

x + 𝜔2
y

H2(𝜔x, 𝜔y) ≡ j
𝜔y√
𝜔2

x + 𝜔2
y

. (4.335)

Step 3: Take the DFT of the image, f̂ (𝜔x, 𝜔y).
Step 4: Multiply the DFT of the image with the DFT of filter H(𝜔x, 𝜔y) point by point, and take the

inverse DFT of the product, to produce fH(x, y).
Step 5: Take the inverse DFT of f̂ (𝜔x, 𝜔y)H(𝜔x, 𝜔y)H1(𝜔x, 𝜔y) to produce fH1

(x, y).
Step 6: Take the inverse DFT of f̂ (𝜔x, 𝜔y)H(𝜔x, 𝜔y)H2(𝜔x, 𝜔y) to produce fH2

(x, y).
The output (fH(x, y), fH1

(x, y), fH2
(x, y)) is the monogenic signal of the image.

How can the monogenic signal be used?

The monogenic signal (fH(x, y), fH1
(x, y), fH2

(x, y)), at a pixel position (x, y), may be used to compute
the local image energy as:

E(x, y) ≡ √
fH(x, y)2 + fH1

(x, y)2 + fH2
(x, y)2. (4.336)

Local maxima of this quantity identify the locations of image features.
The local feature symmetry (i.e. how symmetric or antisymmetric the feature is) may be mea-

sured as:

Φ(x, y) ≡
||||||||tan−1 fH(x, y)√

fH1
(x, y)2 + fH2

(x, y)2

|||||||| . (4.337)

Here we assume that function tan−1 yields values in the range [−π∕2, π∕2]. If the feature is purely
symmetric, the numerator of this fraction is maximal and the denominator is minimal. So the cal-
culated angle will tend to be either close to 90∘ or to −90∘. If we do not want to distinguish the
two, we take the absolute value of the result. If the feature is mostly antisymmetric, the numerator
approaches 0 while the denominator is large, and Φ(x, y) is close to 0. So, Φ(x, y) is a measure of
local symmetry, taking values in the range [0, π∕2], with higher values indicating higher symmetry.

The local feature orientation may be computed as:

Θ(x, y) ≡ tan−1
fH2

(x, y)
fH1

(x, y)
+ 𝛿

(
1 + sign

[
tan−1

fH2
(x, y)

fH1
(x, y)

])
π. (4.338)
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This number varies between 0 and π, as factor π is added only to negative angles computed by tan−1,
to put them in the range [π∕2, π].

How can we select the even filter we use in the Riesz transform?

To make sure that we capture features that may manifest themselves in different frequency bands,
we tessellate the frequency space of the image in a systematic way, like we do when we use Gabor
functions or prolate spheroidal sequence functions. We note that the filters used by these two meth-
ods are symmetric functions of the two frequencies. So, we may use any of the two approaches in
combination with the Riesz transform to produce for each band not just the local energy, like we
usually do, but also the local orientation and a measure of the local symmetry.

Can we tessellate the frequency space using polar coordinates like we did for the
Gabor functions?

There is no point in doing that. The use of polar coordinates in the frequency domain in conjunction
with Gabor functions has as purpose to create filters along different orientations, so that we can
detect image structure along the selected orientations. The Riesz transform allows us to work out
the orientation of each feature from the outputs of the filters that are in terms of the Cartesian
coordinates in the frequency domain. So, an appropriate tessellation of the frequency domain is
like the one shown in figure 4.24 or in Figure 4.27.

Example 4.69

Apply the Riesz transform to the 15 × 15 image of Figure 4.71 with the frequency
domain tessellated according to Figure 4.66. Use a Gaussian function as the even
filter.
First we shall define the Gaussian filter. Let us call the indices in the frequency domain (k, l). Each
takes values in the range [−7, 7]. The centres of the Gaussian filters associated with each band are
at coordinates (k0, l0) ∈ {(0, 0), (5, 0), (−5, 0), (0, 5), (0,−5), (5, 5), (5,−5), (−5, 5), (−5,−5)} (see
Figure 4.66, assuming that the (0, 0) point is in the middle of the grid). The Gaussian filter then
is defined as

H(k, l; k0, l0) = exp
⎧⎪⎨⎪⎩−

(
2π(k−k0)

15

)2
+
(

2π(l−l0)
15

)2

2Σ2

⎫⎪⎬⎪⎭
+ exp

⎧⎪⎨⎪⎩−
(

2π(k+k0)
15

)2
+
(

2π(l+l0)
15

)2

2Σ2

⎫⎪⎬⎪⎭ for (k0, l0) ≠ (0, 0). (4.339)

The two terms ensure that we place one Gaussian in each of the paired bands symmetrically
positioned about the centre of the axes, so that the inverse DFT of H is real. For (k0, l0) = (0, 0)
the second term is not needed, so we define:

H(k, l; 0, 0) = exp
⎧⎪⎨⎪⎩−

(
2πk
15

)2
+
(

2πl
15

)2

2Σ2

⎫⎪⎬⎪⎭ . (4.340)

(Continued)
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Example 4.69 (Continued)

Let us select Σ so that at point k = k0 + 2 and l = l0, the value of the filter is 0.5:

0.5 = exp
⎧⎪⎨⎪⎩−

(
2π2
15

)2

2Σ2

⎫⎪⎬⎪⎭ ⇒ ln 0.5 = −
16π2

225

2Σ2 ⇒ 2Σ2 =
16π2

225

ln 2
⇒ 2Σ2 = 1.01254. (4.341)

For each filter H(k, l; k0, l0) we must calculate the corresponding antisymmetric filters

H̃1(k, l; k0, l0) = j
2πk
15√(

2πk
15

)2
+
(

2πl
15

)2
H(k, l; k0, l0) = j k√

k2 + l2
H(k, l; k0, l0)

H̃2(k, l; k0, l0) = j
2πl
15√(

2πk
15

)2
+
(

2πl
15

)2
H(k, l; k0, l0) = j l√

k2 + l2
H(k, l; k0, l0). (4.342)

Next, we take the DFT of the image and make sure that its dc component is at index (k, l) = (0, 0),
i.e. that indices (k, l) take values in the range [−7, 7]. Let us call it Î(k, l).

Then for every set of filters (H(k, l; k0, l0), H̃1(k, l; k0, l0), H̃2(k, l; k0, l0)), we take the point by
point products:

Îek0l0
(k, l) = H(k, l; k0, l0)Î(k, l)

Îo1k0l0
(k, l) = H̃1(k, l; k0, l0)Î(k, l)

Îo2k0l0
(k, l) = H̃2(k, l; k0, l0)Î(k, l). (4.343)

Finally, we take the inverse DFT of Îek0l0
, Îo1k0l0

and Îo2k0l0
, to produce Iek0l0

, Io1k0l0
and Io2k0l0

, respec-
tively. The triplet (Iek0l0

, Io1k0l0
, Io2k0l0

) is the monogenic signal of the original image.

Example 4.70

Use the monogenic signal computed in Example 4.69, to produce the local energy,
local symmetry and local orientation of the original image.
We have five frequency bands, and for each band we shall have to compute the local energy as:

E(k, l; k0, l0) =
√

Iek0l0
(k, l)2 + Io1k0l0

(k, l)2 + Io2k0l0
(k, l)2. (4.344)

For each band we may also compute the local orientation using:

Θ(k, l; k0, l0) = tan−1
Io2k0l0

(k, l)
Io1k0l0

(k, l)
+ 𝛿

(
1 + sign

[
tan−1

Io2k0l0
(k, l)

Io1k0l0
(k, l)

])
π. (4.345)

Here function tan is assumed to produce values in the range [−π∕2, π∕2], and the delta function
is used so that a π is added when the angle computed by function tan is negative, in order to make
the range of orientations computed to be [0, π]. For visualisation purposes, this range is scaled to
the range [0,255], for each panel separately.
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Finally, we may compute the local symmetry of the image using:

Φ(k, l; k0, l0) =

||||||||tan−1
Iek0l0

(k, l)√
Io1k0l0

(k, l)2 + Io2k0l0
(k, l)2

|||||||| . (4.346)

Function tan is assumed to produce values in the range [−π∕2, π∕2]. If the detected feature is sym-
metric, Iek0l0

(k, l) >> max {Io1k0l0
(k, l), Io2k0l0

(k, l)} and the calculated angle will be near −π∕2 or
π∕2, depending on whether it represents a darker or brighter than its surroundings stripe. We use
the absolute value so we do not distinguish between the two polarities. If the local feature is anti-
symmetric, Iek0l0

(k, l) << max {Io1k0l0
(k, l), Io2k0l0

(k, l)} and the calculated angle will be near 0. So,
the range of the local symmetry measure is [0, π∕2].

Can we use prolate spheroidal sequence functions instead of the monogenic signal
to extract local symmetry and local orientation?

Yes. Let us consider the filter we construct for a particular band. It is complex (see the section How
do we perform the analysis of an image using prolate spheroidal sequence functions in practice?).
We saw that if we take only its real part, we construct a filter that has response in a paired set of
bands, symmetrically placed about the dc component. It turns out that the imaginary part is the
Hilbert transform pair of the real part of such a filter, and so if we use the real and the imaginary
parts as a pair of filters, they will provide us local information for the selected frequency band and
the option to compute from their outputs local energy and local phase.

Example 4.71

Examine whether the real and the imaginary parts of the filter constructed in
Example 4.46 constitute a Hilbert transform pair.
The real and the imaginary parts of this filter are: 𝑤R(n) = (0.161, 0.028, 0.260,−0.316, 0.682,
2.202, 0.682,−0.316, 0.260, 0.028, 0.161), 𝑤I(n) = (0.103,−0.196,−0.076,−0.365,−1.493, 0,
1.493, 0.365, 0.076, 0.196,−0.103), We note that the elements of 𝑤R(n) do not sum up to 0, so
it does not have 0 dc component. So, first we remove the average value from all elements of
𝑤R(n). The sum of its elements is

∑
n𝑤R(n) = 3.832 and this divided with 11 yields 0.348. After

removing this value from all elements of 𝑤R(n) we obtain: 𝑤′
R(n) = (−0.187,−0.32,−0.088,

−0.664, 0.334, 1.854, 0.334,−0.664,−0.088,−0.32,−0.187 ).
To show that 𝑤′

R(n) and 𝑤I(n) constitute a Hilbert transform pair, we shall compute their
Fourier transforms �̂�′

R(k) and �̂�I(k) and show that �̂�I(k) = sign(k)j�̂�′
R(k).

�̂�′
R(k) =

5∑
n=−5

𝑤′
R(n)e

−j 2π
11

nk

= −0.187ej 2π
11

5k − 0.32ej 2π
11

4k − 0.088ej 2π
11

3k − 0.664ej 2π
11

2k + 0.334ej 2π
11

k

+1.854 + 0.334e−j 2π
11

k − 0.664e−j 2π
11

2k − 0.088e−j 2π
11

3k − 0.32e−j 2π
11

4k

−0.187e−j 2π
11

5k

(Continued)
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Example 4.71 (Continued)

= −0.187 × 2 cos 2π5k
11

− 0.32 × 2 cos 2π4k
11

− 0.088 × 2 cos 2π3k
11

−0.664 × 2 cos 2π2k
11

+ 0.334 × 2 cos 2πk
11

+ 1.854

= −0.374 cos 10πk
11

− 0.64 cos 8πk
11

− 0.176 cos 6πk
11

− 1.328 cos 4πk
11

+0.668 cos 2πk
11

+ 1.854 (4.347)

�̂�I(k) =
5∑

n=−5
𝑤I(n)e

−j 2π
11

nk

= 0.103ej 2π
11

5k − 0.196ej 2π
11

4k − 0.076ej 2π
11

3k − 0.365ej 2π
11

2k − 1.493ej 2π
11

k

+1.493e−j 2π
11

k + 0.365e−j 2π
11

2k + 0.076e−j 2π
11

3k + 0.196e−j 2π
11

4k − 0.103e−j 2π
11

5k

= 0.103 × 2j sin 2π5k
11

− 0.196 × 2j sin 2π4k
11

− 0.076 × 2j sin 2π3k
11

−0.365 × 2j sin 2π2k
11

− 1.493 × 2j sin 2πk
11

= 0.206j sin 10πk
11

− 0.392j sin 8πk
11

− 0.152j sin 6πk
11

− 0.730j sin 4πk
11

−2.986j sin 2πk
11

. (4.348)

Allowing k then to take values in the range [−5, 5], we obtain:

�̂�R(k) = (0.001, 1.914, 2.668, 2.948, 2.667, 0.000,−2.667,−2.948,−2.668,−1.914,−0.001)
�̂�I(k) = j(−1.856, 0.062, 0.813, 1.092, 0.813,−1.850, 0.813, 1.092, 0.813, 0.062,−1.856)

(4.349)

We can see that the two functions constitute a Hilbert transform pair.

Example 4.72

Show how you may use the Hilbert pair filters 𝑤′
R(n) and 𝑤I(n) of Example 4.71 to

estimate the local energy and phase of an 11-sample long signal.
Filters 𝑤′

R(n) and 𝑤I(n) are convolution filters. In order to be able to use them to estimate local
energy and phase, each should have energy equal to 1. We observe that:∑

n
𝑤′

R(n)
2 = 1.8542 + 2(0.3342 + 0.6642 + 0.0882 + 0.322 + 0.1872) = 4.832∑
n
𝑤I(n)2 = 2(1.4932 + 0.3652 + 0.0762 + 0.1962 + 0.1032) = 4.834. (4.350)

So, within the accuracy of the calculation, the two filters have the same square magnitude, i.e.
the same energy. This was expected, since their Fourier transforms differ by a sign only and by
a factor j, i.e. they differ only in the phase, so Parseval’s theorem guarantees that the sum of the
squares of their values in the signal domain will be the same.
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So, to create an orthonormal basis out of these two functions, we divide the elements of both
of them by

√
4.833 = 2.198. We obtain: �̃�R(n) = (−0.085,−0.146,−0.04,−0.302, 0.152, 0.843,

0.152,−0.302,−0.04,−0.146,−0.085 ) �̃�I(n) = (−0.047, 0.089, 0.035, 0.166, 0.679, 0,−0.679,
−0.166,−0.035,−0.089, 0.047)

Now if we have an 11-sample long signal, we shall have to convolve it with each one of these
filters. The ratio of the two outputs at each sample will be the tangent of the local signal phase.

Example 4.73

Construct three-sample long filters that will allow you to estimate local signal phase
starting from the prolate spheroidal filter of Example 4.46.
The real and the imaginary parts of the truncated original convolution filters are:
𝑤R(n) = (0.682, 2.202, 0.682)
𝑤I(n) = (−1.493, 0, 1.493).

The dc component of the first filter is 1.189. Subtracting it from all elements of 𝑤R(n) yields:
𝑤′

R(n) = (−0.507, 1.013,−0.507).
The sum of the squares of these values is 1.540, while the sum of the squares of 𝑤I(n) is 4.458.

To be able to normalise both filters together, we select the values of 𝑤I(n) so their squares sum
up to 1.540. Indeed, if we set �̃�I(n) = (−0.878, 0, 0.878) both filters will have the squares of their
elements sum up to 1.540. So, if we divide both of them by

√
1.540 = 1.241, we obtain:

FR(n) = (−0.408, 0.816,−0.408)
FI(n) = (−0.707, 0, 0.707).

The DFTs of these two filters are:

f̂ R(k) = −0.408 × 2 cos 2πk
3

+ 0.816 = (1.225, 0, 1.225)

f̂ I(k) = −0.707 × 2 sin 2πk
3

= j(1.225, 0,−1.225). (4.351)

So, these two filters constitute a Hilbert pair and an orthonormal basis for the symmetry/
antisymmetry space. To demonstrate how we can use them, let us analyse the signal:
s(n) = (1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 3, 3, 3,−2, 3, 3, 3, 3), for n = 1,… , 19.

This signal has a symmetric feature at position n = 5, an antisymmetric one at n = 11 and
another symmetric at n = 15. Its convolution with the two filters yields:

(., 0, 0,−0.816, 1.632,−0.816, 0, 0, 0,−0.408, 0, 0.408, 0, 2.04,−4.08, 2.04, 0, 0, .)
(., 0, 0,−1.414, 0, 1.414, 0, 0, 0,−0.707,−1.414,−0.707, 0, 3.535, 0,−3.535, 0, 0, .).

Note that we used a dot to represent the border samples for which there is no output.
The local energy at each sample is given by the sum of the squares of the two outputs:

(., 0, 0, 2.666, 2.663, 2.666, 0, 0, 0, 0.666, 1.999, 0.666, 0, 16.658, 16.646, 16.658, 0, 0, .).

At the places where the local energy is non-zero, we compute the local phase, as the angle of
the inverse tangent of the ratio of the second output over the first. An angle close to 90∘ indicates
local antisymmetry, while an angle close to 0∘ indicates local symmetry:

(., ., ., 60∘, 0∘,−60∘, ., ., ., 60∘,−90∘,−60o, ., 60∘, 0∘,−60∘, ., ., .).

(Continued)
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Example 4.73 (Continued)

We note that there are clear symmetric features indicated at positions n = 5 and n = 15,
where the phase is 0, and an antisymmetric feature is indicated at n = 11, where the phase
is −90o.

Example B4.74

Show that the filters constructed by the prolate spheroidal sequence functions have
their real part symmetric and their imaginary part antisymmetric.
The Fourier transform of the constructed filter W(k) is given by Equation (4.210). In this equation
𝜓(k) is the eigenvector of a real and symmetric matrix. So, 𝜓(k) is real. The factor n1 + n2 in the
complex exponential comes from the centre of the band to which the filter we are constructing
refers. When the band is selected to contain the centre of the signal axis, i.e. when n1 = −n2, the
complex exponential is 0 and W(k) = 𝜓(k), i.e. it is real. Since the filter we are constructing is a
convolution filter, it does not really matter how we choose n1 and n2. So, we might as well stick
to n1 + n2 = 0 for convenience. We shall show now that filter𝑤(n) obtained by taking the inverse
DFT of W(k) is the complex conjugate of𝑤(−n). Let us say that the function has non-zero response
in the band with indices in the range [k1, k2]. We may write:

𝑤(n) = 1
N

k2∑
k=k1

W(k)ej 2π
N

kn
. (4.352)

Then:

𝑤(−n) = 1
N

k2∑
k=k1

W(k)e−j 2π
N

kn
. (4.353)

Since W(k) is real, obviously 𝑤(n) = 𝑤∗(−n). Let us write 𝑤(n) explicitly in terms of its real and
imaginary parts: 𝑤(n) ≡ a(n) + jb(n). We shall have:

a(n) + jb(n) = a(−n) − jb(−n) ⇒ a(n) = a(−n)and b(n) = −b(−n). (4.354)

So, the convolution filters constructed by the prolate spheroidal sequence functions method are:
(i) Complex
(ii) The real part is symmetric about its centre
(iii) The imaginary part is antisymmetric about its centre.

Example B4.75

Show that the real and the imaginary parts of the filters constructed from the prolate
spheroidal sequence functions constitute a Hilbert transform pair.
From the way we select the bands, and since the filter we construct is complex, we may assume that
it has non-zero response either to only positive or to only negative frequencies. Let us assume for
simplicity that it has non-zero response for positive frequencies only. Let us assume that the filter
may be written as 𝑤(n) = a(n) + jb(n).
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In Example 4.74 it was shown that a(n) is symmetric and b(n) is antisymmetric. This means
that the DFT â(k) of a(n) is real and the DFT b̂(k) of b(n) is imaginary. Let us call it jb̃(k), where
b̃(k) is real. The DFT of 𝑤(n) obviously must be W(k) = â(k) + jb̂(k) = â(k) − b̃(k)

We know that W(k) = 0 for k ≤ 0. So, for negative frequencies, â(k) = b̃(k) = −jb̂(k).
Now let us consider the complex conjugate of 𝑤(n), 𝑤∗(n) = a(n) − jb(n). We know from

Example 4.50 that two functions that are complex conjugate of each other have their DFTs
in bands that are symmetric about the origin of the frequency axes. In other words, the DFT
of 𝑤∗(n) will be non-zero in the corresponding negative frequencies band of that in which
W(k) is non-zero. The DFT of 𝑤∗(n) will be â(k) − jb̂(k) and for k > 0 it will be 0. In other
words, â(k) = jb̂(k) for k > 0. Combining the two results, we may write â(k) = sign(k)jb̂(k),
i.e. that the real and the imaginary parts of filter 𝑤(n) constitute a Hilbert transform
pair.

Example B4.76

Show that the 2D DFT of the (2N + 1) × (2N + 1) matrix created by taking the vector
outer product of two vectors of length 2N + 1 is equal to the product of the 1D DFTs
of the individual vectors.
Consider vectors a and b, which will be treated as signals with 2N + 1 elements each:
(a(−N), a(−N + 1),… , a(0),… , a(N − 1), a(N))
(b(−N), b(−N + 1),… , b(0),… , b(N − 1), b(N))
Their DFTs are given by:

â(k) =
N∑

n=−N
a(n)e−j 2πkn

2N+1 b̂(l) =
N∑

n=−N
b(n)e−j 2πln

2N+1 . (4.355)

Their vector outer product is:

A ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a(−N)b(−N) · · · a(−N)b(0) · · · a(−N)b(N)
a(−N + 1)b(−N) · · · a(−N + 1)b(0) · · · a(−N + 1)b(N)

⋮ ⋮ ⋮ ⋮ ⋮

a(0)b(−N) · · · a(0)b(0) · · · a(0)b(N)
⋮ ⋮ ⋮ ⋮ ⋮

a(N − 1)b(−N) · · · a(N − 1)b(0) · · · a(N − 1)b(N)
a(N)b(−N) · · · a(N)b(0) · · · a(N)b(N)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.356)

The DFT of this array, when treated as a 2D function, is:

Â(k, l) =
N∑

n=−N

N∑
m=−N

A(n,m)e−j 2π(kn+lm)
2N+1 =

N∑
n=−N

N∑
m=−N

a(n)b(m)e−j 2π(kn+lm)
2N+1

=
N∑

n=−N
a(n)e−j 2πkn

2N+1

N∑
m=−N

b(m)e−j 2πlm
2N+1 = â(k)b̂(l). (4.357)



�

� �

�

514 4 Non-stationary Grey Texture Images

Example B4.77

Assume that we have two 1D complex filters, such that the real and the imaginary
parts of each one constitute a Hilbert pair. We create a 2D filter by taking their vector
outer product. Work out the relationship between the real and the imaginary parts
of the 2D filter you create this way.
Let us call the two 1D filters a1(n) + jb1(n) and a2(n) + jb2(n). Their DFTs are â1(k) + jb̂1(k) and
â2(k) + jb̂2(k), and they obey the following relation:

â1(k) =
⎧⎪⎨⎪⎩
−jb̂1(k) for k < 0
b̂1(k) = 0 for k = 0
jb̂1(k) for k > 0

â2(k) =
⎧⎪⎨⎪⎩
−jb̂2(k) for k < 0
b̂2(k) = 0 for k = 0
jb̂2(k) for k > 0

. (4.358)

The filter we create by taking the vector outer product of these two filters is s(n,m) + jt(n,m), with:

s(n,m) = a1(n)a2(m) − b1(n)b2(m) t(n,m) = a1(n)b2(m) + b1(n)a2(m). (4.359)

The DFT of this function, according to Example 4.76, is ŝ(k, l) + jt̂(k, l), with:

ŝ(k, l) = â1(k)â2(l) − b̂1(k)b̂2(l) t̂(k, l) = â1(k)b̂2(l) + b̂1(k)â2(l). (4.360)

Let us use (4.358) to express ŝ(k, l) and t̂(k, l) in terms of the independent functions b̂1(k) and b̂2(l).

ŝ(k, l) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−jb̂1(k)(−1)jb̂2(l) − b̂1(k)b̂2(l) = −2b̂1(k)b̂2(l) for k < 0, l < 0
−jb̂1(k)jb̂2(l) − b̂1(k)b̂2(l) = 0 for k < 0, l > 0
0 for k = 0 or l = 0
jb̂1(k)(−1)jb̂2(l) − b̂1(k)b̂2(l) = 0 for k > 0, l < 0
jb̂1(k)jb̂2(l) − b̂1(k)b̂2(l) = −2b̂1(k)b̂2(l) for k > 0, l > 0

(4.361)

t̂(k, l) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−jb̂1(k)b̂2(l) + b̂1(k)(−1)jb̂2(l) = −2jb̂1(k)b̂2(l) for k < 0, l < 0
−jb̂1(k)b̂2(l) + b̂1(k)jb̂2(l) = 0 for k < 0, l > 0
0 for k = 0 or l = 0
jb̂1(k)b̂2(l) + b̂1(k)(−1)jb̂2(l) = 0 for k > 0, l < 0
jb̂1(k)b̂2(l) + b̂1(k)jb̂2(l) = 2jb̂1(k)b̂2(l) for k > 0, l > 0

. (4.362)

We observe that:

ŝ(k, l) =
⎧⎪⎨⎪⎩

−jt̂(k, l) for k < 0, l < 0
jt̂(k, l) for k > 0, l > 0
t̂(k, l) = 0 otherwise

. (4.363)

Example B4.78

Consider the 2D filter given by Equation (4.319). Construct from it two filters that
will allow you to work out the local symmetry of the image feature enhanced by this
filter.
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The real and the imaginary parts of this filter are:

𝑤13R ≡
⎡⎢⎢⎣

3.548 −2.097 −1.773
−2.097 4.955 −2.097
−1.773 −2.097 3.548

⎤⎥⎥⎦ (4.364)

𝑤13I ≡
⎡⎢⎢⎣

0 3.631 −3.073
−3.631 0 3.631

3.073 −3.631 0

⎤⎥⎥⎦ . (4.365)

We note that these filters are oriented so that they will enhance features that are oriented from
top left to bottom right. The first of the two will enhance symmetric such features, while the sec-
ond will enhance antisymmetric features. Starting from these filters, we would like to create an
orthonormal basis for the symmetry/antisymmetry space, which will allow us to assign a phase
to the feature that will be picked up by these filters. First, we need to remove the dc component
from the first filter. The sum of the values of 𝑤13R is 0.117. This divided by 9 yields 0.013, which
when subtracted from all values of 𝑤13R yields:

𝑤′
13R =

⎡⎢⎢⎣
3.535 −2.110 −1.786

−2.110 4.942 −2.110
−1.786 −2.110 3.535

⎤⎥⎥⎦ . (4.366)

Further, the sum of the squares of each filter should be 1. The sum of the squares of𝑤13I is 71.623.
So, we divide all its elements by

√
71.623 = 8.463:

�̃�13I =
⎡⎢⎢⎣

0 0.429 −0.363
−0.429 0 0.429

0.363 −0.429 0

⎤⎥⎥⎦ . (4.367)

The sum of the squares of𝑤′
13R is 73.604. So, we divide all elements of𝑤′

13R with
√

73.604 = 8.579:

�̃�13R =
⎡⎢⎢⎣

0.412 −0.246 −0.208
−0.246 0.576 −0.246
−0.208 −0.246 0.412

⎤⎥⎥⎦ . (4.368)

Note that if these filters were not approximate due to truncation, they would have had the same
sum of squared values. Truncation makes them approximate, and the normalisation of each one
with a slightly different value damages somehow their relationship as Hilbert pair.

If we convolve an image with these two filters, we can detect the places where some features
oriented along the axis of symmetry/antisymmetry of the filters exists, by squaring and summing
the two outputs at each pixel to compute the local energy, which is expected to be high only in
the places where such features are present. Then, from the ratio of the two outputs, we shall be
able to assign a value of phase to each pixel, to express the local symmetry or antisymmetry of the
detected feature.

Example 4.79

Use the filters you developed in Example 4.78 to detect the features of image 4.91 and
characterise their symmetry.

(Continued)
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Example 4.79 (Continued)
Figure 4.91 An image that contains a
symmetric and an antisymmetric feature
at 45∘.

The outputs of the two convolutions are:

oI =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.363 −0.858 0 0.858 −0.363 0 0
0 0.363 −0.858 0 0.858 −0.363 0

−0.182 0 0.363 −0.858 0 0.858 −0.363
0.066 −0.182 0 0.363 −0.858 0 0.858
0.495 0.066 −0.182 0 0.363 −0.858 0
0.066 0.495 0.066 −0.182 0 0.363 −0.858

−0.182 0.066 0.495 0.066 −0.182 0 0.363

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.369)

oR =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.208 −0.492 1.4 −0.492 −0.208 0 0
0 −0.208 −0.492 1.4 −0.492 −0.208 0

−0.104 0 −0.208 −0.492 1.4 −0.492 −0.208
−0.454 −0.104 0 −0.208 −0.492 1.4 −0.492

0 −0.454 −0.104 0 −0.208 −0.492 1.4
0.454 0 −0.454 −0.104 0 −0.208 −0.492
0.104 0.454 0 −0.454 −0.104 0 −0.208

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.370)

The local energy, computed as the sum of the squares of the two outputs is:

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.175 0.978 1.96 0.978 0.175 0 0
0 0.175 0.978 1.96 0.978 0.175 0

0.175 0 0.175 0.978 1.96 0.978 0.175
0.735 0.175 0 0.175 0.978 1.96 0.978
0.735 0.735 0.175 0 0.175 0.978 1.96
0.175 0.735 0.735 0.175 0 0.175 0.978

0 0.175 0.735 0.735 0.175 0 0.175

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.371)
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The estimated local phase of the detected feature at places where the energy is non-zero, rounded
to the nearest integer, is:

p =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−60∘ 60∘ 0∘ −60∘ 60∘
−60∘ 60∘ 0∘ −60∘ 60∘

60∘ −60∘ 60∘ 0∘ −60∘ 60∘
−8∘ 60∘ −60∘ 60∘ 0∘ −60∘
90∘ −8∘ 60∘ −60∘ 60∘ 0∘

8∘ 90∘ −8∘ 60∘ −60∘ 60∘
−60∘ 8∘ 90∘ −8∘ 60∘ −60∘

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.372)

Example 4.80

Use the 2D filters constructed in Example 4.65 to construct filters that will allow you
to estimate in each band the local image phase. Use these filters then to process image
4.71.
We use the following algorithm.

Step 1: Split the filters given by Equations (4.317)–(4.320) into their real and imaginary parts.
There is no need to do the same with the other filters as they are identical. Also, there is no need
to do anything with the w2w2

T filter, as it is real and it captures the low frequency components
of the image. So, at the end of this step you will have four pairs of filters.

Step 2: Remove the mean from all elements of each one of the filters you constructed from the
real part of a complex filter. This way, all eight filters will have 0 mean.

Step 3: Find the sum of the squares of the elements of each filter. Divide the elements of each filter
by the square root of the sum of its squared elements. This way, each filter will have the sum of
squares of its elements equal to 1.

Step 4: Convolve the image with each one of the eight filters. You will have 8 outputs.
Step 5: Combine the outputs of each pair of filters: the sum of the squares of their values at each

pixel position will give the local energy. This way you will produce four outputs. These outputs
correspond to those of Figure 4.72. However, they are not identical, as the filters here have been
subjected to different normalisation.

Step 6: For the pixels where the local energy is above 0, compute the local phase feature from each
pair of outputs, using:

phase =
||||tan−1 output_antisymmetric_filter

output_symmetric_filter
|||| . (4.373)

Make sure that the result is in the range [0∘, 90∘]. The higher the value, the more locally anti-
symmetric the image is around the corresponding pixel. This way you will have four more
outputs.
To pixels with local energy 0, assign a nominal phase computed, say, as the average of the
phases of their neighbours. This is so that all pixels have a meaningful phase feature that will
allow you to perform step 7.

Step 7: In total you have produced 8 feature maps: four local energy ones and four local phase
ones. You can read the value a pixel has in each one of the outputs to produce the feature vector
of the pixel. You may then cluster these feature vectors to produce the segmentation of the image.
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4.5 Wavelets

Is there a way other than using Gabor functions to span the whole spatio-frequency
space?

Yes, by using wavelets. Gabor functions may be thought of as modulated and translated versions
of the Gaussian function used to cover the whole spatio-frequency domain. In wavelet analysis a
basic function is scaled and translated in order to cover the spatio-frequency domain. This makes
use of the shifting and scaling properties of the Fourier transform.

The shifting property of the Fourier transform tells us that if Ψ(𝜔) is the Fourier transform of
a function 𝜓(t), the Fourier transform of the shifted function 𝜓(t − b) is Ψ(𝜔)e−jb𝜔 (see Example
4.81). So, shifting a function results in changing only the phase of the Fourier transform of the
function.

The scaling property of the Fourier transform tells us that the Fourier transform of the scaled
function 𝜓(t∕a) is aΨ(a𝜔) (see Example 4.82).

So, scaling a function changes its frequency bandwidth and shifts the centre of the band away
from its original position. Note that if we want to use this property to span the whole of the fre-
quency axis with non-overlapping bands, we must choose a function 𝜓(t) such that the zero fre-
quency is not included in its frequency band, since 0 cannot be scaled (and thus it cannot be shifted
away from its original position; see Example 4.86).

Example 4.81

If F(𝜔) is the Fourier transform of f (t), show that the Fourier transform of f (t − b) is
F(𝜔)e−jb𝜔.
The Fourier transform F̂(𝜔) of f (t − b) is:

F̂(𝜔) = ∫
∞

−∞
f (t − b)e−j𝜔tdt. (4.374)

We define a new variable of integration t̃ ≡ t − b, so that t = t̃ + b and dt = dt̃. Then:

F̂(𝜔) = ∫
∞

−∞
f (t̃)e−j𝜔(t̃+b)dt̃

= e−jb𝜔 ∫
∞

−∞
f (t̃)e−j𝜔t̃dt̃

= e−jb𝜔F(𝜔). (4.375)

Example 4.82

If F(𝜔) is the Fourier transform of f (t), show that the Fourier transform of f (t∕a) is
aF(a𝜔).
The Fourier transform of f (t) is:

F(𝜔) = ∫
∞

−∞
f (t)e−j𝜔tdt (4.376)
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The Fourier transform F̃(𝜔) of f (t∕a) is:

F̃(𝜔) = ∫
∞

−∞
f
( t

a

)
e−j𝜔tdt. (4.377)

We define a new variable of integration t̃ ≡ t∕a in (4.377), so that t = at̃ and dt = adt̃:

F̃(𝜔) = ∫
∞

−∞
f (t̃)e−j𝜔at̃adt̃ = a∫

∞

−∞
f (t̃)e−j(𝜔a)t̃dt̃. (4.378)

We recognise the integral on the right-hand side of (4.378) as the Fourier transform F(𝜔) of
Equation (4.376) computed at frequency a𝜔. So the conjecture has been proven.

Example 4.83

Consider a function 𝜓(t) with Fourier transform Ψ(𝜔) defined as follows:

Ψ(𝜔) =
{

1 for 5 < 𝜔 < 10
0 otherwise

. (4.379)

Find the frequency band inside which the Fourier transform of function 𝜓(t∕2) is
non-zero.
The Fourier transform of 𝜓(t∕2) is 2Ψ(2𝜔). According to definition (4.379), this function is
non-zero when its argument is in the range (5, 10), i.e. when:

5 < 2𝜔 < 10 ⇒ 2.5 < 𝜔 < 5. (4.380)

Note that, although at first glance function Ψ(2𝜔) appears to refer to higher frequencies than
function Ψ(𝜔), this is deceptive: we have to examine the range of the independent variable
𝜔 rather than the argument of the function to decide whether the frequency band is shifted to
higher or lower frequencies by scaling.

Example 4.84

Consider a function 𝜙(t) with Fourier transform Φ(𝜔) defined as follows:

Φ(𝜔) =
{

1 for − 10 < 𝜔 < 10
0 otherwise

. (4.381)

Find the frequency band inside which the Fourier transform of function 𝜙(t∕2) is
non-zero.
The Fourier transform of 𝜙(t∕2) is 2Φ(2𝜔). This function is non-zero when its argument is in the
range (−10, 10), i.e. when:

−10 < 2𝜔 < 10 ⇒ −5 < 𝜔 < 5. (4.382)
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Example 4.85

Consider a band-limited function 𝜓(t) defined in the range [𝜔1, 𝜔2] with central
frequency 𝜔0 ≡ (𝜔1 + 𝜔2)∕2 and bandwidth 𝜔2 − 𝜔1. Compute the corresponding
quantities for 𝜓(t∕a), a > 0.
The argument of the Fourier transform of the scaled function will be a𝜔 and it will take
values in the range [a𝜔1, a𝜔2]. This Fourier transform is non-zero if its argument a𝜔 is in the
range [𝜔1, 𝜔2]. We must, therefore, have 𝜔1 < a𝜔 < 𝜔2 ⇒ 𝜔1∕a < 𝜔 < 𝜔2∕a. So, the scaled
function, 𝜓(t∕a), will be non-zero over the frequency range [𝜔1∕a, 𝜔2∕a], with central frequency
(𝜔1∕a + 𝜔2∕a)∕2 = 𝜔0∕a, and bandwidth 𝜔2∕a − 𝜔1∕a = (𝜔2 − 𝜔1)∕a.

Example 4.86

Show that if the 0 frequency belongs to the band [𝜔1, 𝜔2] of Example 4.85, it is impos-
sible to use function 𝜓(t) to create non-overlapping frequency bands by scaling it.
The frequency bands we shall create will always be nested, i.e. if a1 > a2 > 0 are two
values of a used in 𝜓(t∕a), the frequency band inside which the Fourier transform of
𝜓(t∕a1) is non-zero will be contained in the frequency band inside which the Fourier
transform of 𝜓(t∕a2) is non-zero.
According to Example 4.85, the frequency band inside which the Fourier transform of 𝜓(t∕a1)
is non-zero is [𝜔1∕a1, 𝜔2∕a1], and the frequency band inside which the Fourier transform of
𝜓(t∕a2) is non-zero is [𝜔1∕a2, 𝜔2∕a2]. To show that the first is contained inside the second if
0 is contained in [𝜔1, 𝜔2], it is enough to show that always 𝜔1∕a1 ≥ 𝜔1∕a2 and 𝜔2∕a1 ≤ 𝜔2∕a2.
We observe that since a1 > a2 > 0, 1∕a1 < 1∕a2. There are three possible cases:

Case 1: 𝜔1 = 0, 𝜔2 > 0: Then 𝜔2∕a1 < 𝜔2∕a2, and obviously [0, 𝜔2∕a1] is contained in
[0, 𝜔2∕a2].

Case 2: 𝜔2 = 0, 𝜔1 < 0: Then 𝜔1∕a1 > 𝜔1∕a2, and obviously [𝜔1∕a1, 0] is contained in
[𝜔1∕a2, 0].

Case 3:𝜔1 < 0, 𝜔2 > 0: Then𝜔1∕a1 > 𝜔1∕a2 and𝜔2∕a1 < 𝜔2∕a2, and obviously [𝜔1∕a1, 𝜔2∕a1]
is contained inside [𝜔1∕a2, 𝜔2∕a2].

Therefore, if we want to use the scaling property of the Fourier transform to span the whole
of the frequency axis with non-overlapping bands, we must choose a function 𝜓(t) such that the
zero frequency is not included inside its frequency band, since 0 cannot be scaled (and thus shifted
away from its original position).

What is a wavelet?

A wavelet𝜓ab(t) is a function produced by shifting by b and scaling by a a basic function𝜓(t) called
mother wavelet:

𝜓ab(t) ≡ 1√
a
𝜓

(
t − b

a

)
. (4.383)

The Fourier transform of this function is

Ψab(𝜔) =
√

aΨ(a𝜔)e−jb𝜔 (4.384)

where Ψ(𝜔) is the Fourier transform of the mother wavelet.
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Example 4.87

By direct calculation show that Ψab(𝜔) given by Equation (4.384) is the Fourier trans-
form of function 𝜓ab(t) defined by Equation (4.383).
The Fourier transform of 𝜓ab(t) is:

Ψab(𝜔) = ∫
∞

−∞

1√
a
𝜓

(
t − b

a

)
e−j𝜔tdt. (4.385)

We define a new variable of integration t̃ ≡ (t − b)∕a, so that t = at̃ + b and dt = adt̃. Then:

Ψab(𝜔) =
1√
a ∫

∞

−∞
𝜓(t̃)e−j𝜔(at̃+b)adt̃

=
√

a∫
∞

−∞
𝜓(t̃)e−j(𝜔a)t̃dt̃e−j𝜔b

=
√

aΨ(a𝜔)e−jb𝜔. (4.386)

Example 4.88

Using the results of Examples 4.81 and 4.82, prove that Ψab(𝜔) given by Equation
(4.384) is the Fourier transform of function 𝜓ab(t) defined by Equation (4.383).
A confusing point is the order in which we apply scaling and shifting to the independent variable t.

Let us try shifting first and scaling afterwards, as it appears to be the order indicated by
(t − b)∕a. We start by stating that the Fourier transform of function𝜓(t) is Ψ(𝜔). Then according
to Example 4.81, the Fourier transform of 𝜓(t − b) is Ψ(𝜔)e−jb𝜔, and according to Example
4.82, the Fourier transform of 𝜓((t − b)∕a) is aΨ(a𝜔)e−jba𝜔. Therefore, the Fourier trans-
form of 𝜓((t − b)∕a)∕

√
a appears to be

√
aΨ(a𝜔)e−jba𝜔. This is clearly the wrong result (see

Example 4.87).
So, let us try scaling first and shifting afterwards. Then according to Example 4.82, the

Fourier transform of 𝜓(t∕a) is aΨ(a𝜔), and according to Example 4.81 the Fourier transform of
𝜓((t − b)∕a) is aΨ(a𝜔)e−jb𝜔 which leads to the correct answer.

To avoid confusion as to which operation has to be applied first and which second, we must
always remember that we scale or shift the independent variable t and not the argument
of function 𝜓 . When we did the shifting first and the scaling afterwards, we scaled the whole
argument of 𝜓 , which was t − b, and not just t. If we had scaled only t, as we should have done,
we would have not created function 𝜓((t − b)∕a), which we wanted, but function 𝜓(t∕a − b), the
Fourier transform of which is indeed aΨ(a𝜔)e−jba𝜔.

How can we use wavelets to analyse a signal?

By changing a and b in Equations (4.383) and (4.384) we can produce two families of functions that
constitute two equivalent sets of elementary answers to the fundamental question “what is where”
in a signal. If we wish to know how much of each elementary “what is where” answer is conveyed
by the signal, we must project that signal onto each one of the elementary functions of the set in
turn. Projection in the continuous domain is achieved by multiplication of the signal, f (t), with the
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complex conjugate of the wavelet function and integration over all values of t:

𝑤f (a, b) ≡ ∫
∞

−∞
𝜓∗

ab(t)f (t)dt. (4.387)

This is the wavelet transform of the signal.
Alternatively, we may obtain the same answer if we project the Fourier transform F(𝜔) of the

signal on the elementary basis made up from functions (4.384):

Wf (a, b) ≡ ∫
∞

−∞
Ψ∗

ab(2π𝜈)F(2π𝜈)d𝜈 =
1

2π ∫
∞

−∞
Ψ∗

ab(𝜔)F(𝜔)d𝜔. (4.388)

Note that 𝜔 ≡ 2π𝜈.

Example B4.89

Prove that 𝑤f (a, b) and Wf (a, b), as defined by Equations (4.387) and (4.388), respec-
tively, are equal.
We start from Equation (4.388) and substitute Ψab(𝜔) from (4.384):

Wf (a, b) =
1

2π ∫
∞

−∞

√
aΨ∗(a𝜔)ejb𝜔F(𝜔)d𝜔. (4.389)

From the definition of the Fourier transform we have

Ψ(𝜔) = ∫
∞

−∞
𝜓(t)e−j𝜔tdt (4.390)

and:

F(𝜔) = ∫
∞

−∞
f (t)e−j𝜔tdt. (4.391)

Upon substitution into (4.389) we obtain

Wf (a, b) =
√

a
2π ∫

∞

−∞

{
∫

∞

−∞
𝜓∗(t)eja𝜔tdt

}
ejb𝜔

{
∫

∞

−∞
f (t̃)e−j𝜔t̃dt̃

}
d𝜔 (4.392)

where in the second internal integral we changed the dummy variable of integration to t̃ so that
there is no confusion with the variable of integration t of the first integral. We may integrate first
over 𝜔:

Wf (a, b) =
√

a
2π ∫

∞

−∞ ∫
∞

−∞
𝜓∗(t)f (t̃)

{
∫

∞

−∞
ej𝜔(at+b−t̃)d𝜔

}
dtdt̃. (4.393)

We use Equation (4.47) with y ≡ 𝜔 and x ≡ at + b − t̃ to compute the integral over 𝜔 as
2π𝛿(at + b − t̃) and then perform the integration over t̃:

Wf (a, b) =
√

a∫
∞

−∞

{
∫

∞

−∞
f (t̃)𝛿(at + b − t̃)dt̃

}
𝜓∗(t)dt. (4.394)

The integral over t̃ yields f (at + b):

Wf (a, b) =
√

a∫
∞

−∞
𝜓∗(t)f (at + b)dt. (4.395)

We define a new variable of integration x ≡ at + b ⇒ t = (x − b)∕a and dt = dx∕a, so

Wf (a, b) =
1√
a ∫

∞

−∞
𝜓∗

(
x − b

a

)
f (x)dx = ∫

∞

−∞
𝜓∗

ab(x)f (x)dx (4.396)
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where we used the definition of𝜓ab of Equation (4.383) to obtain the last equality. If we change the
dummy variable of integration from x to t, we deduce, upon comparison with Equation (4.387),
that:

Wf (a, b) = 𝑤f (a, b). (4.397)

In other words, the two bases of the space “what is where” defined by the sets of functions𝑤f (a, b)
and Wf (a, b), respectively, are equivalent, but the first one is appropriate for the expansion of the
signal itself, while the second one is appropriate for the expansion of the Fourier transform of the
signal.

Box 4.8 How should we choose the mother wavelet?

First of all, since we scale the frequencies over which Ψ(𝜔) is defined, and since number 0
cannot be scaled, it is obvious that the bandwidth of Ψ(𝜔) should not contain 0, i.e. Ψ(𝜔)
should have zero dc (direct component).

One of the drawbacks of the Gabor functions is that the expansion of a signal in terms of
them is not invertible. To improve upon this, we require here the wavelet transform expressed
by Equation (4.387) to be invertible. This means that from the knowledge of 𝑤f (a, b) we want
to be able to recover function f (t).

Let us start by multiplying both sides of Equation (4.387) with 𝜓ab(s) and integrating over
all scales and all shifts of the independent variable. As 𝜓ab(s) = 𝜓((s − b)∕a), the scaling factor
is 1∕a and the shifting parameter is b. So, in order to integrate over the scale-shift space, we
must multiply both sides of the equation with the elementary area in that space, which is|d(1∕a)db| = dadb∕a2. Therefore:

∫
∞

−∞ ∫
∞

0
𝜓ab(s)𝑤f (a, b)

dadb
a2

= ∫
∞

−∞ ∫
∞

0
𝜓ab(s)∫

∞

−∞
𝜓∗

ab(t)f (t)dt dadb
a2

. (4.398)

On the right-hand side let us express 𝜓ab(s) and 𝜓ab(t) in terms of their Fourier transforms

∫
∞

−∞ ∫
∞

0

𝜓ab(s)
a2

𝑤f (a, b)dadb =

∫
∞

−∞ ∫
∞

0 ∫
∞

−∞

1
a2

f (t)×{
1
2π ∫

∞

−∞

√
aΨ(a�̃�)e−jb�̃�ej�̃�sd�̃�

}{
1
2π ∫

∞

−∞

√
aΨ∗(a𝜔)ejb𝜔e−j𝜔td𝜔

}
dtdadb

(4.399)

where we used �̃� instead of 𝜔 in one of the two Fourier integrals in order to avoid confusion.
Let us integrate first over b:

∫
∞

−∞ ∫
∞

0

𝜓ab(s)
a2

𝑤f (a, b)dadb =

1
(2π)2 ∫

∞

0 ∫
∞

−∞ ∫
∞

−∞ ∫
∞

−∞

1
a

f (t)Ψ(a�̃�)ej�̃�sΨ∗(a𝜔)e−j𝜔t∫
∞

−∞
ejb(𝜔−�̃�)db

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

2π𝛿(𝜔−�̃�)

d𝜔d�̃�dtda.

(4.400)

(Continued)
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Box 4.8 (Continued)

Next we integrate over �̃�:

∫
∞

−∞ ∫
∞

0

𝜓ab(s)
a2

𝑤f (a, b)dadb =

1
2π ∫

∞

0 ∫
∞

−∞ ∫
∞

−∞

1
a

f (t)Ψ∗(a𝜔)e−j𝜔t∫
∞

−∞
Ψ(a�̃�)ej�̃�s𝛿(𝜔 − �̃�)d�̃�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Ψ(a𝜔)ej𝜔s

d𝜔dtda. (4.401)

Let us define a new variables of integration u instead of a:

u ≡ a𝜔⇒ a = u
𝜔

⇒
1
a
= 𝜔

u
and da = du

𝜔
. (4.402)

Then:

∫
∞

−∞ ∫
∞

0

𝜓ab(s)
a2

𝑤f (a, b)dadb =

1
2π ∫

∞

−∞ ∫
∞

0 ∫
∞

−∞

1
u

f (t)Ψ∗(u)Ψ(u)ej𝜔(s−t)dtdud𝜔. (4.403)

Next we integrate over 𝜔:

∫
∞

−∞ ∫
∞

0

𝜓ab(s)
a2

𝑤f (a, b)dadb =

1
2π ∫

∞

0 ∫
∞

−∞

1
u

f (t)Ψ(u)Ψ∗(u)∫
∞

−∞
ej𝜔(s−t)d𝜔

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

2π𝛿(s−t)

dtdu. (4.404)

Then we integrate over t:

∫
∞

−∞ ∫
∞

0

𝜓ab(s)
a2

𝑤f (a, b)dadb = ∫
∞

0

1
u
Ψ(u)Ψ∗(u)∫

∞

−∞
f (t)𝛿(s − t)dt

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

f (s)

du. (4.405)

And finally:

∫
∞

−∞ ∫
∞

0

𝜓ab(s)
a2

𝑤f (a, b)dadb = f (s)∫
∞

0

|Ψ(u)|2
u

du. (4.406)

Let us define:

C𝜓 ≡ ∫
∞

0

|Ψ(𝜔)|2
𝜔

d𝜔. (4.407)

For the inverse transformation to exist, this integral must exist and must have a finite value.
This is the admissibility condition. If this condition is fulfilled, then:

f (t) = 1
C𝜓

∫
∞

−∞ ∫
∞

0

𝜓ab(t)
a2

𝑤f (a, b)dadb. (4.408)

This equation is called the resolution of identity. It expresses the original function as a linear
superposition of the wavelet functions.

We notice that the integrand in (4.407) would have been singular for 𝜔 = 0, unless Ψ(0) = 0.
This confirms the intuitive understanding we had earlier when we deduced that the mother
wavelet should have no direct component.

So, the mother wavelet has to be chosen so that it has zero mean and it obeys the admissi-
bility condition expressed by the existence of the integral of Equation (4.407).
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Example B4.90

Prove that the wavelet transform obeys Parseval’s relation:

C𝜓 ∫
∞

−∞
| f (t)|2dt = ∫

∞

−∞ ∫
∞

0
|𝑤f (a, b)|2 dadb

a2 . (4.409)

Let us write explicitly the right-hand side of this expression and manipulate it so that we bring it
into the form of the left-hand side

∫
∞

−∞ ∫
∞

0
|𝑤f (a, b)|2 1

a2 dadb =

∫
∞

−∞ ∫
∞

0
𝑤∗

f (a, b)𝑤f (a, b)
1
a2 dadb =

∫
∞

−∞ ∫
∞

0

{
∫

∞

−∞
𝜓ab(t)f (t)dt

}{
∫

∞

−∞
𝜓∗

ab(s)f (s)ds
}

1
a2 dadb (4.410)

where we substituted for𝑤f (a, b) from Equation (4.387) and used a different dummy variable of
integration for the two integrals in order to avoid confusion. Let us next substitute 𝜓ab(t) in terms
of its Fourier transform given by (4.384):

∫
∞

−∞ ∫
∞

0
|𝑤f (a, b)|2 1

a2 dadb =

∫
∞

−∞ ∫
∞

0 ∫
∞

−∞ ∫
∞

−∞

{
1

2π ∫
∞

−∞

√
aΨ(a𝜔)e−jb𝜔ej𝜔td𝜔

}
×{

1
2π ∫

∞

−∞

√
aΨ∗(a�̃�)ejb�̃�e−j�̃�sd�̃�

}
f (t)f (s) 1

a2 dtdsdadb. (4.411)

We re-arrange and perform the integration over b first, making use of Equation (4.47):

∫
∞

−∞ ∫
∞

0
|𝑤f (a, b)|2 dadb

a2 =

1
(2π)2 ∫

∞

0 ∫
∞

−∞ ∫
∞

−∞ ∫
∞

−∞ ∫
∞

−∞
Ψ(a𝜔)Ψ∗(a�̃�)f (t)f (s)ej𝜔te−j�̃�s 1

a
dtdsd𝜔d�̃�×

∫
∞

−∞
ejb(�̃�−𝜔)db

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

2π𝛿(�̃�−𝜔)

da =

1
2π ∫

∞

0 ∫
∞

−∞ ∫
∞

−∞ ∫
∞

−∞ ∫
∞

−∞
Ψ(a𝜔)Ψ∗(a�̃�)f (t)f (s)ej𝜔te−j�̃�s 1

a
𝛿(�̃� − 𝜔)dtdsd𝜔d�̃�da.

We re-arrange and perform the integration over �̃� next:

∫
∞

−∞ ∫
∞

0
|𝑤f (a, b)|2 dadb

a2 =

1
2π ∫

∞

0 ∫
∞

−∞ ∫
∞

−∞ ∫
∞

−∞
Ψ(a𝜔)f (t)f (s)ej𝜔t 1

a∫
∞

−∞
Ψ∗(a�̃�)e−j�̃�s𝛿(�̃� − 𝜔)d�̃�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Ψ∗(a𝜔)e−j𝜔s

dtdsd𝜔da.

(Continued)
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Example B4.90 (Continued)

Before we proceed, we replace integration over variable a with integration over a new variable u,
defined as:

u ≡ a𝜔⇒ a = u
𝜔

⇒
1
a
= 𝜔

u
and da = du

𝜔
. (4.412)

Then:

∫
∞

−∞ ∫
∞

0
|𝑤f (a, b)|2 dadb

a2 =

1
2π ∫

∞

0 ∫
∞

−∞ ∫
∞

−∞ ∫
∞

−∞
Ψ(u)f (t)f (s)ej𝜔t𝜔

u
Ψ∗(u)e−j𝜔sdtdsd𝜔du

𝜔
. (4.413)

We perform next the integration over 𝜔 and group together the factors that have to be integrated
over u:

∫
∞

−∞ ∫
∞

0
|𝑤f (a, b)|2 dadb

a2 =

1
2π ∫

∞

−∞ ∫
∞

−∞
f (t)f (s)∫

∞

0
Ψ(u)Ψ∗(u) 1

u
du

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

C𝜓

∫
∞

−∞
ej𝜔(t−s)d𝜔

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

2π𝛿(t−s)

dtds =

C𝜓 ∫
∞

−∞
f (t)∫

∞

−∞
f (s)𝛿(t − s)ds

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

f (t)

dt =

C𝜓 ∫
∞

−∞
|f (t)|2dt. (4.414)

The last result is exactly the left-hand side of Equation (4.409), which we had to prove.

Example B4.91

Prove that the wavelet transform preserves the energy over different scales, i.e. prove
that

∫
∞

−∞
|𝜓ab(t)|2dt ≡ ∫

∞

−∞

1
a

|||||𝜓
(

t − b
a

)|||||
2

dt (4.415)

is independent of the scaling factor a.
We change the variable of integration to t̃ ≡ (t − b)∕a in the integral on the right-hand side of this
equation. Then:

∫
∞

−∞
|𝜓ab(t)|2dt = ∫

∞

−∞

1
a
|𝜓(t̃)|2adt̃ = ∫

∞

−∞
|𝜓(t)|2dt. (4.416)

We observe that the right-hand side is independent of the scaling parameter a and so the energy
of 𝜓ab(t) is the same for all values of a, i.e. at all scales.
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Example B4.92

Identify the conditions under which the centre of gravity of a mother wavelet is zero.
The centre of gravity of a signal is given by Equation (4.27). For the mother wavelet this becomes

t = 1
E∞ ∫

∞

−∞
t|𝜓(t)|2dt (4.417)

where

E∞ ≡ ∫
∞

−∞
|𝜓(t)|2dt. (4.418)

If𝜓(t) is chosen to be a symmetric (𝜓(t) = 𝜓(−t)) or an antisymmetric (𝜓(t) = −𝜓(−t)) function,
the integral in (4.417) is an integral of an antisymmetric integrand over a symmetric range of
integration, so it must be zero. If 𝜓(t) is neither symmetric nor antisymmetric, t ≠ 0.

Example B4.93

Show that the centre of gravity of function 𝜓ab(t) under certain conditions is b.
We use Equation (4.27) to compute the centre of gravity of 𝜓ab(t)

tab ≡ 1
E∞ ∫

∞

−∞
t|𝜓ab(t)|2dt (4.419)

where E∞ is given by (4.418).
We substitute in (4.419) from Equation (4.383):

tab = 1
E∞ ∫

∞

−∞
t 1
a

|||||𝜓
(

t − b
a

)|||||
2

dt. (4.420)

We define a new variable of integration, t̃ ≡ (t − b)∕a, so that t = at̃ + b and dt = adt̃. Then:

tab =
1

E∞ ∫
∞

−∞
(at̃ + b)1

a
|𝜓(t̃)|2adt̃

= 1
E∞

a∫
∞

−∞
t̃|𝜓(t̃)|2dt̃ + 1

E∞
b∫

∞

−∞
|𝜓(t̃)|2dt̃. (4.421)

If 𝜓(t) is chosen to be a symmetric or an antisymmetric function, the first integral will vanish
because it will be the integral of an antisymmetric integrand over a symmetric range of inte-
gration. The second integral is recognised to be E∞. This will result in tab = b. If 𝜓(t) is neither
symmetric nor antisymmetric, tab = at + b, where t is the centre of gravity of the mother wavelet.

Example B4.94

Compute the spectral centre of gravity 𝜔ab of function Ψab(𝜔) in terms of the spectral
centre of gravity 𝜔 of Ψ(𝜔).
The spectral centre of gravity of a function is given by Equation (4.30):

𝜔ab ≡ 1
E∞ ∫

∞

−∞
𝜔|Ψab(𝜔)|2d𝜔. (4.422)

(Continued)
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Example B4.94 (Continued)

Upon substitution of Ψab(𝜔) from Equation (4.384)we obtain:

𝜔ab ≡ 1
E∞ ∫

∞

−∞
𝜔|√aΨ(a𝜔)e−jb𝜔|2d𝜔. (4.423)

In the last integral we define a new variable of integration, �̃� ≡ a𝜔. Then 𝜔 = �̃�∕a and
d𝜔 = d�̃�∕a:

𝜔ab =
1

E∞ ∫
∞

−∞

�̃�

a
aΨ(�̃�)2 1

a
d�̃�

= 1
a

1
E∞ ∫

∞

−∞
�̃�Ψ(�̃�)2d�̃�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

centre of gravity of Ψ(𝜔)

= 1
a
𝜔. (4.424)

Box 4.9 Does the wavelet function minimise the uncertainty inequality?

In general it does not. We can compute the left-hand side of the uncertainty inequality (4.38)
for the wavelet function to answer this question more precisely.

We start by computing the time dispersion of function 𝜓ab(t) first. We use the result of
Example 4.93 and Equation (4.26):

(Δtab)2 = 1
E∞ ∫

∞

−∞
(t − at − b)2 1

a

|||||𝜓
(

t − b
a

)|||||
2

dt. (4.425)

We define a new variable of integration t̃ ≡ (t − b)∕a, so that t = at̃ + b and dt = adt̃

(Δtab)2 = a2 1
E∞ ∫

∞

−∞
(t̃ − t)2|𝜓(t̃)|2dt̃

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(Δt𝜓 )2

= a2(Δt𝜓 )2 (4.426)

where (Δt𝜓 )2 is the time dispersion of the mother wavelet.
The spectral bandwidth of 𝜓ab(t) can be computed from Equation (4.29). The Fourier trans-

form of 𝜓ab(t) is given by expression (4.384) and its spectral centre of gravity was computed
in Example 4.94:

(Δ𝜔ab)2 =
1

2πE∞ ∫
∞

−∞
(𝜔 − 𝜔ab)2|Ψab(𝜔)|2d𝜔

= 1
2πE∞ ∫

∞

−∞

(
𝜔 − 𝜔

a

)2

a|Ψ(a𝜔)|2d𝜔. (4.427)
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In the last expression we introduce a new variable of integration, �̃� ≡ a𝜔 so that 𝜔 = �̃�∕a and
d𝜔 = d�̃�∕a, and obtain

(Δ𝜔ab)2 =
1
a2

1
2πE∞ ∫

∞

−∞
(�̃� − 𝜔)2|Ψ(�̃�)|2d�̃�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(Δ𝜔𝜓 )2

= 1
a2

(Δ𝜔𝜓 )2 (4.428)

where (Δ𝜔𝜓 )2 is the spectral bandwidth of the mother wavelet.
Combining the results of Equations (4.426) and (4.428) we obtain the joint uncertainty with

which the wavelet function 𝜓ab(t) answers the question “what is where”:

(Δtab)2(Δ𝜔ab)2 = (Δt𝜓 )2(Δ𝜔𝜓 )2. (4.429)

We observe that this uncertainty depends only on the mother wavelet and, therefore, it is the
same for all functions 𝜓ab(t) irrespective of the values of a and b. So, if the mother wavelet
minimises the uncertainty inequality, so does the wavelet function𝜓ab(t). Note that the product
of the time and frequency resolutions of all cells is the same, but scaled by factor a between
time and frequency, proportionally and inversely proportionally, respectively. So, the scaling
factor a allows one to trade off resolution in the time domain with resolution in the frequency
domain and vice versa.

Example B4.95

The function plotted in Figure 4.92 is the second derivative of a Gaussian with
changed sign:

𝜓(t) = (1 − t2)e−
t2

2 . (4.430)

Show that its Fourier transform is given by:

Ψ(𝜔) =
√

2π𝜔2e−
𝜔2

2 . (4.431)

Let us consider the Gaussian function g(t) given by Equation (4.39) computed for 𝜎 = 1:

g(t) = e−
t2

2 . (4.432)

In Example 3.99 it was shown that its Fourier transform is given by:

G(𝜔) =
√

2πe−
𝜔2

2 . (4.433)

The first derivative of function g(t) is:

g′(t) = −te−
t2

2 (4.434)

(Continued)
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Example B4.95 (Continued)

According to Example 4.1 the Fourier transform of g′(t) is j𝜔G(𝜔). The second derivative of g(t)
is:

g′′(t) = −e−
t2

2 + t2e−
t2

2 = −(1 − t2)e−
t2

2 . (4.435)

If we apply once more the result of Example 4.1, we deduce that the Fourier transform of g′′(t)
is −𝜔2G(𝜔). Function 𝜓(t) of Equation (4.430) is the negative of g′′(t), so its Fourier transform
must be 𝜔2G(𝜔), which, upon substitution from (4.433), leads to (4.431).

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−4 −2 0 2 4

−g
′′(

t)

t

Figure 4.92 The negative of the second
derivative of a Gaussian with 𝜎 = 1. In Example
4.96 it is shown that it may be used as a
mother wavelet.

Example B4.96

Show that the function defined by Equation (4.430) has zero direct component and
fulfils the admissibility condition so that it may be used as a mother wavelet.
The Fourier transform of this function is given by Equation (4.431). We observe that Ψ(0) = 0, so
the function has zero direct component. We use Equation (4.431) in Equation (4.407), which is
the admissibility condition:

C𝜓 = ∫
∞

0

|Ψ(𝜔)|2
𝜔

d𝜔 = 2π∫
∞

0
𝜔3e−𝜔2 d𝜔

= π∫
∞

0
𝜔2e−𝜔2 d(𝜔2) = −π∫

∞

0
𝜔2d(e−𝜔2 )

= −π𝜔2e−𝜔2 |||∞0
⏟⏞⏞⏟⏞⏞⏟

=0

+ π∫
∞

0
e−𝜔2 d(𝜔2) = − πe−𝜔2 |||∞0 = π. (4.436)

So, C𝜓 is finite, and therefore function (4.430) fulfils the admissibility condition.

Example B4.97

Show that:

∫
∞

−∞
x4e−x2 dx = 3

4
√
π. (4.437)
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We integrate by parts:

∫
∞

−∞
x4e−x2 dx = −1

2 ∫
∞

−∞
x3d(e−x2 )

= −1
2

x3e−x2 ||||∞−∞
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=0

+ 1
2 ∫

∞

−∞
e−x2 3x2dx

= 3
4
√
π. (4.438)

Here we made use of Equation (3.81).

Example B4.98

Compute the total energy of the mother wavelet given by Equation (4.430).
The total energy of the mother wavelet may be computed from Equation (4.416):

E∞ = ∫
∞

−∞
|𝜓(t)|2dt = ∫

∞

−∞
(1 − t2)2e−t2 dt. (4.439)

Therefore

E∞ = ∫
∞

−∞
(1 + t4 − 2t2)e−t2 dt =

√
π + 3

4
√
π −

√
π = 3

4
√
π (4.440)

where we made use of the results of Examples 3.36, 3.37 and 4.97.

Example B4.99

Show that:

∫
∞

−∞
x6e−x2 dx = 15

8
√
π. (4.441)

We integrate by parts:

∫
∞

−∞
x6e−x2 dx = −1

2 ∫
∞

−∞
x5d(e−x2 ) = −1

2
x5e−x2 ||||∞−∞

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=0

+ 1
2 ∫

∞

−∞
e−x2 5x4dx = 15

8
√
π. (4.442)

Here we made use of Equation (4.437).

Example B4.100

Compute the time dispersion of the mother wavelet given by Equation (4.430).
This mother wavelet is a symmetric function, so according to Example 4.92 its centre of grav-
ity is at t = 0. For t = 0 the time dispersion is given by Equation (4.28), which for this case has

(Continued)
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Example B4.100 (Continued)

the form:

(Δt𝜓 )2 = 1
E∞ ∫

∞

−∞
t2(1 − t2)2e−t2 dt = 1

E∞ ∫
∞

−∞
(t2 + t6 − 2t4)e−t2 dt. (4.443)

If we make use of the results of Examples 4.98, 3.37, 4.97 and 4.99, we obtain:

(Δt𝜓 )2 = 4
3
√
π

(1
2
√
π + 15

8
√
π − 3

2
√
π
)
= 7

6
. (4.444)

Example B4.101

Compute the spectral bandwidth of the mother wavelet given by Equation (4.430).
Since Ψ(𝜔) is a symmetric function, 𝜔 = 0. We use Equation (4.431) in the definition of the spec-
tral bandwidth given by Equation (4.29) to write:

(Δ𝜔𝜓 )2 = 1
2πE∞ ∫

∞

−∞
2π𝜔6e−𝜔2 d𝜔. (4.445)

Making use of the results of Examples 4.98 and 4.99 we obtain:

(Δ𝜔𝜓 )2 = 4
3
√
π

15
8
√
π = 5

2
. (4.446)

Example B4.102

Show that the wavelets produced by the mother wavelet of Equation (4.430) are
sub-optimal in the joint resolution with which they cover the time-frequency
domain.
The joint resolution of any wavelet produced by the mother wavelet 𝜓(t) is the same as the joint
resolution of the mother wavelet itself (see Equation (4.429)). Using the results of Examples 4.100
and 4.101, we compute the joint resolution of the mother wavelet as:

(Δt𝜓 )2(Δ𝜔𝜓 )2 = 7
6
× 5

2
= 35

12
≃ 3. (4.447)

This number is much larger than the minimum value the joint resolution may take, which
was shown to be 1∕4 (see Equation (4.38)). So, the set of wavelets produced by the mother
wavelet of Equation (4.430) do not answer the question “what is where” with the maximum
possible joint accuracy. However, the scaling parameter “a” allows us to construct wavelets
that share the available joint resolution in a chosen way between the time and the frequency
component.
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Example B4.103

Produce a wavelet that has better time resolution than the Gabor function with 𝜎 = 1.
According to Equation (4.41) the Gabor function with 𝜎 = 1 has time dispersion 1∕2. If we use
as the mother wavelet that of Equation (4.430) and produce a wavelet with scaling parameter a,
its time dispersion, according to Equation (4.426) and the result of Example 4.100, will be a27∕6.
Therefore, for its time resolution to be better than that of the Gabor function with 𝜎 = 1, we must
have:

a2 7
6
<

1
2
⇒ a <

√
3
7
≃ 0.65. (4.448)

If, for example, we choose a = 0.5, the wavelet will have better time resolution than the corre-
sponding Gabor function.

Example B4.104

Produce a wavelet that has better spectral resolution than the Gabor function with
𝜎 = 1.
According to Equation (4.42) the Gabor function with 𝜎 = 1 has a spectral bandwidth of 1∕2.
If we use as the mother wavelet that of Equation (4.430) and produce a wavelet with scaling
parameter a, its spectral bandwidth, according to Equation (4.428) and the result of Example
4.101, will be 5∕(2a2). Therefore, for its frequency resolution to be better than that of the Gabor
function with 𝜎 = 1, we must have:

5
2a2 <

1
2
⇒ a >

√
5 ≃ 2.2. (4.449)

If, for example, we choose a = 4, the wavelet will have better frequency resolution than the corre-
sponding Gabor function.

Example B4.105

Use the mother wavelet of Equation (4.430) to produce the wavelet transform of the
signal:

f (t) = e−
t2

2𝜎2 . (4.450)

First, from the mother wavelet (4.430) we produce function 𝜓ab(t) using Equation (4.383):

𝜓ab(t) =
1√
a

[
1 −

(
t − b

a

)2
]

e−
(t−b)2

2a2 . (4.451)

(Continued)



�

� �

�

534 4 Non-stationary Grey Texture Images

Example B4.105 (Continued)

Then we use 𝜓ab(t) and the definition of f (t) into the definition of the wavelet transform given by
Equation (4.387) to write:

𝑤f (a, b) =
1√
a ∫

∞

−∞

[
1 −

(
t − b

a

)2
]

e−
(t−b)2

2a2 e−
t2

2𝜎2 dt. (4.452)

To calculate this integral we must complete the square in the exponent:
𝑤f (a, b) =

1√
a ∫

∞

−∞

[
1 − b2

a2 − t2

a2 + 2bt
a2

]
e−

t2

2a2 −
b2

2a2 +
bt
a2 −

t2

2𝜎2 dt =

1√
a ∫

∞

−∞

[
1 − b2

a2 − t2

a2 + 2bt
a2

]
e−t2

(
1

2a2 +
1

2𝜎2

)
+ bt

a2 −
b2

2a2 dt =

1√
a ∫

∞

−∞

[
1 − b2

a2 − t2

a2 + 2bt
a2

]
×

e
−t2 a2+𝜎2

2a2𝜎2 +2
(

t
√

a2+𝜎2√
2a𝜎

)( √
2a𝜎

2
√

a2+𝜎2
b

a2

)
−
( √

2a𝜎

2
√

a2+𝜎2
b

a2

)2
+
( √

2a𝜎

2
√

a2+𝜎2
b

a2

)2
− b2

2a2 dt =

1√
a

e

(
b𝜎√

2a
√

a2+𝜎2

)2

− b2

2a2

∫
∞

−∞

[
1 − b2

a2 − t2

a2 + 2bt
a2

]
e
−
(

t
√

a2+𝜎2√
2a𝜎

− b𝜎√
2a
√

a2+𝜎2

)2

dt. (4.453)

We define a new variable of integration

t̃ ≡
√

a2 + 𝜎2√
2a𝜎

t − b𝜎√
2a
√

a2 + 𝜎2
⇒ t =

√
2a𝜎√

a2 + 𝜎2
t̃ + 𝜎2b

a2 + 𝜎2 . (4.454)

When substituting t in the square bracket, we note that all terms with odd powers of t̃ will yield
zero upon integration with e−t̃2

, as odd integrands integrated over a symmetric range of integra-
tion. So, for simplicity, we omit them in the formulae that follow:

𝑤f (a, b) =

1√
a

e−
b2

2(a2+𝜎2 )

√
2a𝜎√

a2 + 𝜎2
×

∫
∞

−∞

⎡⎢⎢⎣1 − b2

a2 − 1
a2

( √
2a𝜎√

a2 + 𝜎2

)2

t̃2 − 1
a2

(
𝜎2b

a2 + 𝜎2

)2

+ 2b
a2

𝜎2b
a2 + 𝜎2

⎤⎥⎥⎦ e−t̃2
dt̃ =

e−
b2

2(a2+𝜎2 )

√
2a𝜎√

a2 + 𝜎2 ∫
∞

−∞

[
1 − b2a2

(a2 + 𝜎2)2 − 2𝜎2

a2 + 𝜎2 t̃2
]

e−t̃2
dt̃. (4.455)

To compute these integrals we make use of the results of Examples 3.36, 3.37 and 4.97:

𝑤f (a, b) = e−
b2

2(a2+𝜎2 )

√
2a𝜎√

a2 + 𝜎2

√
π
[

1 − b2a2

(a2 + 𝜎2)2 − 2𝜎2

a2 + 𝜎2
1
2

]
= e−

b2

2(a2+𝜎2 )

√
2πa𝜎a2

(a2 + 𝜎2)3∕2

[
1 − b2

a2 + 𝜎2

]
. (4.456)

This is the wavelet transform of f (t) given by Equation (4.450).
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Example B4.106

Recover the original signal f (t) starting from its wavelet transform given by Equation
(4.456).
To recover the original signal f (t) we apply the inverse wavelet transform given by Equation
(4.408) in conjunction with Equation (4.451) for 𝜓ab(t), and make use of Equation (4.436) for
the value of C𝜓 for this particular wavelet:

f (t) = 1
π ∫

∞

0 ∫
∞

−∞

1
a2

1√
a

[
1 −

(
t − b

a

)2
]

e−
(t−b)2

2a2 ×

e−
b2

2(a2+𝜎2 )

√
2πa𝜎a2

(a2 + 𝜎2)3∕2

[
1 − b2

a2 + 𝜎2

]
dbda

=
√

2𝜎√
π ∫

∞

0 ∫
∞

−∞

[
1 −

(
t − b

a

)2
][

1 − b2

a2 + 𝜎2

]
1

(a2 + 𝜎2)3∕2 ×

e−
(t−b)2

2a2 − b2

2(a2+𝜎2 ) dbda. (4.457)

We define an auxiliary variable s2 ≡ a2 + 𝜎2, so that the above expression becomes:

f (t) =
√

2𝜎√
π ∫

∞

0 ∫
∞

−∞

[
1 −

(
t − b

a

)2
][

1 − b2

s2

]
1
s3 e−

(t−b)2

2a2 − b2

2s2 dbda

=
√

2𝜎√
π ∫

∞

0 ∫
∞

−∞

[
1 − t2

a2 − b2

a2 + 2bt
a2

] [
1 − b2

s2

]
1
s3 e−

(t−b)2

2a2 − b2

2s2 dbda

=
√

2𝜎√
π ∫

∞

0 ∫
∞

−∞

[
1 − t2

a2 − b2

a2 + 2bt
a2 − b2

s2 + t2b2

a2s2 + b4

a2s2 − 2tb3

a2s2

]
×

1
s3 e−

(t−b)2

2a2 − b2

2s2 dbda. (4.458)

Let us perform first the integration over b. We observe that in order to compute the integral we
must complete first the square in the exponent. We notice that the exponent is identical to that of
Equation (4.453) provided we exchange the roles of b and t and we identify s with 𝜎. So, we may
write

f (t) =
√

2𝜎√
π ∫

∞

0 ∫
∞

−∞

[
1 − t2

a2 − b2

a2 + 2bt
a2 − b2

s2 + t2b2

a2s2 + b4

a2s2 − 2tb3

a2s2

]
×

1
s3 e−b̃2

√
2as√

a2 + s2
db̃e

(
ts√

2a
√

a2+s2

)2

− t2

2a2 da (4.459)

where we defined:

b̃ ≡
√

a2 + s2√
2as

b − ts√
2a
√

a2 + s2
⇒ b =

√
2as√

a2 + s2
b̃ + s2t

a2 + s2 . (4.460)

(Continued)
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Example B4.106 (Continued)

When substituting b in the square bracket, we note that all terms with odd powers of b̃ will yield
zero upon integration with e−b̃2

, as odd integrands integrated over a symmetric range of integra-
tion. So, for simplicity, we omit them in the formulae that follow:

f (t) = 2𝜎√
π ∫

∞

0

1
s3

as√
a2 + s2

e−
t2

2(a2+s2 )

∫
∞

−∞

⎡⎢⎢⎣1 − t2

a2 + t2 − s2 − a2

a2s2

( √
2as√

a2 + s2

)2

b̃2 + t2 − s2 − a2

a2s2

(
s2t

a2 + s2

)2

+ 2t
a2

s2t
a2 + s2 + 1

a2s2

( √
2as√

a2 + s2

)4

b̃4

+ 1
a2s2 6

( √
2as√

a2 + s2

)2(
s2t

a2 + s2

)2

b̃2 + 1
a2s2

(
s2t

a2 + s2

)4

− 2t
a2s2 3

( √
2as√

a2 + s2

)2
s2t

a2 + s2 b̃2 − 2t
a2s2

(
s2t

a2 + s2

)3⎤⎥⎥⎦ e−b̃2
db̃da. (4.461)

We make use of the results of Examples 3.36 and 3.37, and of Equation (4.437) to obtain:

f (t) = 2𝜎√
π ∫

∞

0

a
s2
√

a2 + s2
e−

t2

2(a2+s2 ) ×

√
π
[

1 − t2

a2

+ t2 − s2 − a2

a2s2

( √
2as√

a2 + s2

)2
1
2
+ t2 − s2 − a2

a2s2

(
s2t

a2 + s2

)2

+ 2t
a2

s2t
a2 + s2 + 1

a2s2

( √
2as√

a2 + s2

)4
3
4

+ 1
a2s2 6

( √
2as√

a2 + s2

)2(
s2t

a2 + s2

)2 1
2
+ 1

a2s2

(
s2t

a2 + s2

)4

− 2t
a2s2 3

( √
2as√

a2 + s2

)2
s2t

a2 + s2
1
2
− 2t

a2s2

(
s2t

a2 + s2

)3⎤⎥⎥⎦ da

= 2𝜎 ∫
∞

0

a
s2
√

a2 + s2
e−

t2

2(a2+s2 ) ×[
3s2a2

(a2 + s2)2 − 6s2a2t2

(a2 + s2)3 + s2a2t4

(a2 + s2)4

]
da

= 2𝜎 ∫
∞

0

a3

(a2 + s2)5∕2 e−
t2

2(a2+s2 )

[
3 − 6t2

a2 + s2 + t4

(a2 + s2)2

]
da. (4.462)

We define a new variable of integration x > 0, as:

x2 ≡ 1
a2 + s2 = 1

2a2 + 𝜎2 ⇒ 2a2 + 𝜎2 = 1
x2 ⇒ 4ada = −2 1

x3 dx ⇒ ada = − 1
2x3 dx. (4.463)
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The limits of x are from 1∕𝜎 for a = 0, to 0 for a → ∞. Then:

f (t) = −2𝜎 ∫
0

1∕𝜎

(
1

2x2 − 𝜎2

2

)
x5e−

t2x2

2 [3 − 6t2x2 + t4x4] 1
2x3 dx

= 1
2
𝜎 ∫

1∕𝜎

0
(1 − x2𝜎2)e−

t2x2

2 [3 − 6t2x2 + t4x4]dx

= 𝜎

2 ∫
1∕𝜎

0
(3 − 6t2x2 + t4x4 − 3x2𝜎2 + 6t2𝜎2x4 − 𝜎2t4x6)e−

t2x2

2 dx. (4.464)

Let us define a new variable y ≡ tx∕
√

2 ⇒ x =
√

2y∕t and dx =
√

2dy∕t. Upon substitution in
the above expression we obtain

f (t) = 𝜎√
2t ∫

t∕(
√

2𝜎)

0

(
3 − 12y2 + 4y4 − 6𝜎

2

t2 y2 + 24𝜎
2

t2 y4 − 8𝜎
2

t2 y6
)

e−y2 dy

= 3𝜎√
2t

erf

(
t√
2𝜎

) √
π

2

+ 𝜎√
2t

[
−12 − 6𝜎

2

t2

]
∫

t∕(
√

2𝜎)

0
y2e−y2 dy

+ 𝜎√
2t

[
4 + 24𝜎

2

t2

]
∫

t∕(
√

2𝜎)

0
y4e−y2 dy

− 𝜎√
2t

8𝜎
2

t2 ∫
t∕(

√
2𝜎)

0
y6e−y2 dy (4.465)

where we have made use of the definition of the error function:

erf(z) ≡ 2√
π ∫

z

0
e−y2 dy (4.466)

Next we compute the integrals we need:

∫
z

0
y2e−y2 dy = −1

2 ∫
z

0
yd(e−y2 )

= −1
2

ye−y2 ||||z0 + 1
2 ∫

z

0
e−y2 dy = − z

2
e−z2 + 1

2

√
π

2
erf(z) (4.467)

∫
z

0
y4e−y2 dy = −1

2 ∫
z

0
y3d(e−y2 )

= −1
2

y3e−y2 ||||z0 + 3
2 ∫

z

0
y2e−y2 dy

= −z3

2
e−z2 + 3

2

[
− z

2
e−z2 + 1

2

√
π

2
erf(z)

]

= −z3

2
e−z2 + 3z

4
e−z2 +

3
√
π

8
erf(z). (4.468)

(Continued)
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Example B4.106 (Continued)

Here we made use of Equation (4.467).

∫
z

0
y6e−y2 dy = −1

2 ∫
z

0
y5d(e−y2 )

= −1
2

y5e−y2 ||||z0 + 5
2 ∫

z

0
y4e−y2 dy

= −z5

2
e−z2 + 5

2

[
−z3

2
e−z2 + 3z

4
e−z2 +

3
√
π

8
erf(z)

]

= −z5

2
e−z2 − 5z3

4
e−z2 − 15z

8
e−z2 +

15
√
π

16
erf(z). (4.469)

Here we made use of Equation (4.468). If we substitute now from Equations (4.467), (4.468) and
(4.469) with z = t∕(

√
2𝜎) into Equation (4.465), we obtain:

f (t) =
3
√
π𝜎

2
√

2t
erf

(
t√
2𝜎

)

− 12𝜎√
2t

[
− t

2
√

2𝜎
e−

t2

2𝜎2 +
√
π

4
erf

(
t√
2𝜎

)]

− 6𝜎3√
2t3

[
− t

2
√

2𝜎
e−

t2

2𝜎2 +
√
π

4
erf

(
t√
2𝜎

)]

+ 4𝜎√
2t

[
− t3

4
√

2𝜎3
e−

t2

2𝜎2 − 3t
4
√

2𝜎
e−

t2

2𝜎2 +
3
√
π

8
erf

(
t√
2𝜎

)]

+ 24𝜎3√
2t3

[
− t3

4
√

2𝜎3
e−

t2

2𝜎2 − 3t
4
√

2𝜎
e−

t2

2𝜎2 +
3
√
π

8
erf

(
t√
2𝜎

)]

− 8𝜎3√
2t3

[
− t5

8
√

2𝜎5
e−

t2

2𝜎2 − 5t3

8
√

2𝜎3
e−

t2

2𝜎2 − 15t
8
√

2𝜎
e−

t2

2𝜎2 +
15
√
π

16
erf

(
t√
2𝜎

)]

= erf

(
t√
2𝜎

)[
3
√
π𝜎

2
√

2t
−

12𝜎
√
π√

2t4
−

6𝜎3
√
π√

2t34
+

4𝜎3
√
π√

2t8
+

24𝜎33
√
π√

2t38
−

8𝜎315
√
π√

2t316

]

+e−
t2

2𝜎2

[
6𝜎t√

2t
√

2𝜎
+ 3𝜎3t√

2t3
√

2𝜎
− 𝜎t3√

2t
√

2𝜎3
− 3𝜎t√

2t
√

2𝜎
− 6𝜎3t3√

2t3
√

2𝜎3

− 18𝜎3t√
2t3

√
2𝜎

+ 𝜎3t5√
2t3

√
2𝜎5

+ 5𝜎3t3√
2t3

√
2𝜎3

+ 15𝜎3t√
2t3

√
2𝜎

]
= e−

t2

2𝜎2

[
3 + 3𝜎2

2t2 − t2

2𝜎2 − 3
2
− 3 − 9𝜎2

t2 + t2

2𝜎2 + 5
2
+ 15𝜎2

2t2

]
= e−

t2

2𝜎2 . (4.470)

So, after all this algebra, we recovered the original signal from its wavelet transform. This example
demonstrated that the continuous wavelet transform performed with mother wavelet (4.430) is
invertible.
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How is the wavelet transform adapted for digital signals?

The continuous wavelet transform is not very useful in practical applications. That is why a
discrete version of it had to be introduced. To discretise the wavelet transform, we have to discre-
tise its two parameters, namely a and b. It is conventional to let a take values 2l and thus create
the so-called dyadic wavelets. Note that a is a scaling parameter, so it does not have any units. On
the contrary, b is a shifting parameter, so it must be measured in the same units as the independent
variable t. Since we are going to sample the wavelet, we must choose first the sampling step
Δ𝜏. We agree to sample each wavelet at the integer values of the independent variable t, so that
Δ𝜏 = 1. Further, we observe that for the argument of the scaled and shifted wavelet 𝜓ab((t − b)∕a)
to remain integer, b must be an integer multiple of a, i.e. b = (k − 1)a = (k − 1)2l for k = 1, 2,….
These wavelets are identified by indices l and k, and they are denoted by 𝜓lk. In addition, since the
time variable t is sampled at discrete points, all integrals used to compute the wavelet coefficients
of a discrete signal are replaced by sums (see Example 4.107).

Example 4.107

Use the Haar function defined as

h(t) =

{
−A for 0 ≤ t < 1

2
A for 1

2
≤ t < 1

(4.471)

to construct a wavelet basis for the analysis of an eight-sample long signal. In the
above definition, A is a positive constant the value of which must be chosen so that
the wavelet is normalised, i.e. its total energy is 1.
First we choose the value of A. The total energy of the mother wavelet is:

∫
1

0
h(t)2dt = (−A)2 ∫

1
2

0
dt + A2 ∫

1

1
2

dt = A2 = 1 ⇒ A = 1. (4.472)

For l = 1, i.e. a = 21 = 2, function h(t∕a) is:

h
( t

2

)
=
{

−1 for 0 ≤ t < 1
1 for 1 ≤ t < 2

. (4.473)

There are only two integer values in the definition range of the wavelet, so the simplest wavelet we
may construct is:

H =

(
− 1√

2
,

1√
2

)
. (4.474)

Note that the 1∕
√

2 factor corresponds to factor 1∕
√

a of Equation (4.383) and it is there in order
to make the wavelet have energy 1, i.e. the sum of the squares of its values to be 1.

For an eight-sample signal, the time axis consists of eight points, and this wavelet has to be
used to cover this axis by shifts that are multiples of 2, i.e. at positions (k − 1)2 for k = 1, 2, 3, 4.
So, for the first wavelet vector, the filter function is placed at the first position (zero shift) and it is:

𝝍𝟏𝟏 =

(
− 1√

2
,

1√
2
, 0, 0, 0, 0, 0, 0

)
. (4.475)

(Continued)
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Example 4.107 (Continued)

The remaining three wavelets at this scale are:

𝝍𝟏𝟐 =

(
0, 0,− 1√

2
,

1√
2
, 0, 0, 0, 0

)

𝝍𝟏𝟑 =

(
0, 0, 0, 0,− 1√

2
,

1√
2
, 0, 0

)

𝝍𝟏𝟒 =

(
0, 0, 0, 0, 0, 0,− 1√

2
,

1√
2

)
. (4.476)

At scale l = 2, i.e. a = 22 = 4, the scaled mother wavelet is:

h
( t

4

)
=
{

−1 for 0 ≤ t < 2
1 for 2 ≤ t < 4

. (4.477)

There are only four integer values in the definition range of the wavelet, so the simplest wavelet
we may construct is:

H̃ =
(
−1

2
,−1

2
,

1
2
,

1
2

)
. (4.478)

This wavelet may be placed so that it starts with shift 0 or 4, corresponding to values of k = 1 and
k = 2, to produce:

𝝍𝟐𝟏 =
(
−1

2
,−1

2
,

1
2
,

1
2
, 0, 0, 0, 0

)
𝝍𝟐𝟐 =

(
0, 0, 0, 0,−1

2
,−1

2
,

1
2
,

1
2

)
. (4.479)

For l = 3, i.e. a = 23 = 8, the scaled mother wavelet is:

h
( t

8

)
=
{

−1 for 0 ≤ t < 4
1 for 4 ≤ t < 8

. (4.480)

The normalised and discretised version of this wavelet is eight samples long, so there is no need
to shift it to cover the time axis, since it already covers it fully:

𝝍𝟑𝟏 =

(
− 1√

8
,− 1√

8
,− 1√

8
,− 1√

8
,

1√
8
,

1√
8
,

1√
8
,

1√
8

)
. (4.481)

Example 4.108

Assume that we have a sequence (x1, x2,… , x8). Use the wavelets we constructed in
Example 4.107 to expand this signal in the wavelet basis. Can you recover the original
sequence if you know only these wavelet coefficients?
To calculate the wavelet coefficients of the digital signal we must project it onto each wavelet in
turn, by taking the dot product between the signal and the wavelet. If we write the wavelets as
the rows of a matrix that operates on the signal written as a column vector, the output vector will
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consist of the wavelet coefficients of the signal:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑤11
𝑤12
𝑤13
𝑤14
𝑤21
𝑤22
𝑤31

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1√
2

1√
2

0 0 0 0 0 0

0 0 − 1√
2

1√
2

0 0 0 0

0 0 0 0 − 1√
2

1√
2

0 0

0 0 0 0 0 0 − 1√
2

1√
2

− 1
2

− 1
2

1
2

1
2

0 0 0 0
0 0 0 0 − 1

2
− 1

2
1
2

1
2

− 1√
8

− 1√
8

− 1√
8

− 1√
8

1√
8

1√
8

1√
8

1√
8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6
x7
x8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.482)

We deduce that:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑤11
𝑤12
𝑤13
𝑤14
𝑤21
𝑤22
𝑤31

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−x1+x2√
2

−x3+x4√
2

−x5+x6√
2

−x7+x8√
2

−x1−x2+x3+x4

2
−x5−x6+x7+x8

2
−x1−x2−x3−x4+x5+x6+x7+x8√

8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.483)

We notice that the wavelet coefficients are seven linear combinations of the original values of
the input signal. To recover eight values, we need eight independent linear equations, i.e. eight
pieces of information. So, from the wavelet coefficients alone we cannot reconstruct the original
signal. This is because the set of wavelets by themselves do not constitute a complete basis for
the eight-dimensional space of an eight-sample digital signal: they are all high pass filters.

How do we compute the wavelet coefficients in practice?

The coefficients of the expansion of the signal in terms of wavelets are obtained by the projection of
the signal on each wavelet vector in turn (see Example 4.108). The wavelet vectors at a fixed scale
are created by placing a basic filter, the discrete version of the scaled mother wavelet, at successive
positions shifted by a fixed number with respect to each other. For example, for the first scale, this
operation can be expressed as the cross-correlation between the signal and the wavelet filter (given
by Equation (4.474) in Example 4.107)

s(𝜏) ≡ ∑
i

H(ti)f (ti + 𝜏) (4.484)

and allowing 𝜏 to take only values 0, 2, 4,…. Alternatively, we allow 𝜏 to take all its possible values
and then we remove from the output the values at the intermediate locations where they are not
needed (see Example 4.110).

Many people refer to these operations as “convolution followed by decimation”. This is wrong.
The operation expressed by (4.484) is not a convolution. If it were a convolution, factor f (ti + 𝜏)
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would have been replaced by factor f (𝜏 − ti). That is, convolution reverses one of the functions
before multiplying it point by point with the other function and summing the products. At best,
we may say that we convolve the signal with the reverse of the wavelet filter, to counter-balance
this intrinsic reversal a convolution imposes. For clarity, in the rest of this section we shall call this
convolution pseudo-convolution, to make sure we do not confuse it with convolution proper.

For the dyadic wavelets, where the shifting is done in powers of 2, the sub-sampling is also done
in powers of 2 (see Example 4.110).

Example B4.109

Show that the Fourier transform of the cross-correlation of two real functions is
equal to the product of the Fourier transform of one of the functions times the com-
plex conjugate of the Fourier transform of the other function.
Let us consider functions f (t)and h(t), with Fourier transforms F(𝜔)and H(𝜔), respectively. Their
cross-correlation is:

s(𝜏) ≡ ∫
∞

−∞
h(t)f (t + 𝜏)dt. (4.485)

Taking the Fourier transform of both sides, we obtain:

S(𝜔) = ∫
∞

−∞ ∫
∞

−∞
h(t)f (t + 𝜏)e−j𝜔𝜏dtd𝜏

= ∫
∞

−∞
h(t)

{
∫

∞

−∞
f (t + 𝜏)e−j𝜔𝜏d𝜏

}
dt

= ∫
∞

−∞
h(t)ej𝜔tdtF(𝜔)

= F(𝜔)H∗(𝜔). (4.486)

Example 4.110

Produce the Haar wavelet coefficients for level l = 1 of the signal of Example 4.108 by
using pseudo-convolution and sub-sampling of the result.
We note that the filter function used to produce wavelets 𝜓1k is given by Equation (4.474). If we
pseudo-convolve the signal of Example 4.108 with this filter, we obtain:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−x1+x2√
2

−x2+x3√
2

−x3+x4√
2

−x4+x5√
2

−x5+x6√
2

−x6+x7√
2

−x7+x8√
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.487)
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This is equivalent of having projected the original signal on vectors:(
− 1√

2
,

1√
2
, 0, 0, 0, 0, 0, 0

)
(

0,− 1√
2
,

1√
2
, 0, 0, 0, 0, 0

)
(

0, 0,− 1√
2
,

1√
2
, 0, 0, 0, 0

)
(

0, 0, 0,− 1√
2
,

1√
2
, 0, 0, 0

)
(

0, 0, 0, 0,− 1√
2
,

1√
2
, 0, 0

)
(

0, 0, 0, 0, 0,− 1√
2
,

1√
2
, 0

)
(

0, 0, 0, 0, 0, 0,− 1√
2
,

1√
2

)
. (4.488)

We observe that only the first, third, fifth and last of these vectors are the wavelet vectors of scale
l = 1. So, if we keep only every other sample in output (4.487), we shall have the coefficients of the
expansion of the signal on the wavelet basis at this scale:⎡⎢⎢⎢⎢⎢⎢⎢⎣

−x1+x2√
2

−x3+x4√
2

−x5+x6√
2

−x7+x8√
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (4.489)

Example 4.111

Show that the seven wavelets constructed in Example 4.107 constitute an orthonor-
mal basis.
The wavelets in the discrete domain are actually vectors, the same size as the signal we wish to
analyse. To show that they constitute an orthonormal basis, it is enough to show that the dot
product of any two of them is 0, and the magnitude of any one of them is 1. From their definitions
in Example 4.107 this is obviously true.

Example 4.112

The seven wavelets constructed in Example 4.107 constitute an orthonormal basis
for the eight-dimensional space of any digital signal that consists of eight samples.
This basis is obviously incomplete. Define an extra vector which, when considered

(Continued)
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Example 4.112 (Continued)

with the seven wavelets, will form a complete and orthonormal basis. Is such a vector
defined uniquely?
Let us call the missing vector e ≡ [e1, e2, e3, e4, e5, e6, e7, e8]. For the complete basis to be orthonor-
mal, the values of e1,… , e8 have to be defined so that the dot product of this vector with all wavelet
vectors is zero, and the magnitude of the vector is 1. Let us consider first the dot product of the
unknown vector with each wavelet in turn, and set it to zero. We shall have a linear system of
seven equations for the eight unknowns. From the first four of these equations we deduce that:

− 1√
2

e1 +
1√
2

e2 = 0 ⇒ e2 = e1

− 1√
2

e3 +
1√
2

e4 = 0 ⇒ e4 = e3

− 1√
2

e5 +
1√
2

e6 = 0 ⇒ e6 = e5

− 1√
2

e7 +
1√
2

e8 = 0 ⇒ e8 = e7. (4.490)

Using these results into the next two equations, we obtain

−1
2

e1 −
1
2

e2 +
1
2

e3 +
1
2

e4 = 0 ⇒ e3 + e4 = e1 + e2

⇒ 2e3 = 2e1 ⇒ e3 = e1

−1
2

e5 −
1
2

e6 +
1
2

e7 +
1
2

e8 = 0 ⇒ e5 + e6 = e7 + e8

⇒ 2e7 = 2e5 ⇒ e7 = e5 (4.491)

and from the last one:

− 1√
8

e1 −
1√
8

e2 −
1√
8

e3 −
1√
8

e4 +
1√
8

e5 +
1√
8

e6 +
1√
8

e7 +
1√
8

e8 = 0 ⇒

e5 + e6 + e7 + e8 = e1 + e2 + e3 + e4 ⇒ 4e5 = 4e1 ⇒ e5 = e1. (4.492)

Therefore:

e2 = e3 = e4 = e5 = e6 = e7 = e8 = e1. (4.493)

This vector should have length 1, so:

e2
1 + e2

2 + e2
3 + e2

4 + e2
5 + e2

6 + e2
7 + e2

8 = 1 ⇒ 8e2
1 = 1 ⇒ e1 = ± 1√

8
. (4.494)

There are, therefore, two possible vectors with which we may complete the orthonormal basis:
either

e =

(
1√
8
,

1√
8
,

1√
8
,

1√
8
,

1√
8
,

1√
8
,

1√
8
,

1√
8

)
(4.495)

or (
− 1√

8
,− 1√

8
,− 1√

8
,− 1√

8
,− 1√

8
,− 1√

8
,− 1√

8
,− 1√

8

)
. (4.496)
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By convention we would choose the first vector with the positive components. When the digital
signal is projected onto this vector, we obtain a number proportional to its average (or, as it is
otherwise known, to its direct component (dc)).

The answer, therefore, to the question whether the missing vector needed to make the basis
complete is uniquely defined or not, is that this vector is unique, up to a sign.

Example 4.113

Using vector “e” defined in Example 4.112, re-write Equation (4.482) of the wavelet
transform, so that it is invertible. Then invert it to recover the original signal from
the knowledge of the vector on the left-hand side of this equation.
The augmented version of Equation (4.482) is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑤11
𝑤12
𝑤13
𝑤14
𝑤21
𝑤22
𝑤31
s31

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1√
2

1√
2

0 0 0 0 0 0

0 0 − 1√
2

1√
2

0 0 0 0

0 0 0 0 − 1√
2

1√
2

0 0

0 0 0 0 0 0 − 1√
2

1√
2

− 1
2

− 1
2

1
2

1
2

0 0 0 0

0 0 0 0 − 1
2

− 1
2

1
2

1
2

− 1√
8

− 1√
8

− 1√
8

− 1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6
x7
x8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.497)

where we denoted by s31 the projection of the signal on vector e, appearing in the last row of the
transformation matrix. Obviously:

s31 =
x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8√

8
. (4.498)

The transformation matrix now is square 8 × 8, and orthogonal: all its rows are orthogonal
to each other, so its inverse is its transpose. The original signal, therefore, may be recovered as
follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6
x7
x8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1√
2

0 0 0 − 1
2

0 − 1√
8

1√
8

1√
2

0 0 0 − 1
2

0 − 1√
8

1√
8

0 − 1√
2

0 0 1
2

0 − 1√
8

1√
8

0 1√
2

0 0 1
2

0 − 1√
8

1√
8

0 0 − 1√
2

0 0 − 1
2

1√
8

1√
8

0 0 1√
2

0 0 − 1
2

1√
8

1√
8

0 0 0 − 1√
2

0 1
2

1√
8

1√
8

0 0 0 1√
2

0 1
2

1√
8

1√
8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑤11
𝑤12
𝑤13
𝑤14
𝑤21
𝑤22
𝑤31
s31

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.499)

(Continued)
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Example 4.113 (Continued)

If we substitute the values of the wavelet coefficients from (4.483) and the value of s31 from (4.498),
the right-hand side of the above equation becomes:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1√
2

0 0 0 − 1
2

0 − 1√
8

1√
8

1√
2

0 0 0 − 1
2

0 − 1√
8

1√
8

0 − 1√
2

0 0 1
2

0 − 1√
8

1√
8

0 1√
2

0 0 1
2

0 − 1√
8

1√
8

0 0 − 1√
2

0 0 − 1
2

1√
8

1√
8

0 0 1√
2

0 0 − 1
2

1√
8

1√
8

0 0 0 − 1√
2

0 1
2

1√
8

1√
8

0 0 0 1√
2

0 1
2

1√
8

1√
8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−x1+x2√
2

−x3+x4√
2

−x5+x6√
2

−x7+x8√
2

−x1−x2+x3+x4

2
−x5−x6+x7+x8

2
−x1−x2−x3−x4+x5+x6+x7+x8√

8
x1+x2+x3+x4+x5+x6+x7+x8√

8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.500)

This is equal to⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−−x1+x2
2

− −x1−x2+x3+x4

4
− −x1−x2−x3−x4+x5+x6+x7+x8

8
−x1+x2

2
− −x1−x2+x3+x4

4
− −x1−x2−x3−x4+x5+x6+x7+x8

8

−−x3+x4

2
+ −x1−x2+x3+x4

4
− −x1−x2−x3−x4+x5+x6+x7+x8

8
−x3+x4

2
+ −x1−x2+x3+x4

4
− −x1−x2−x3−x4+x5+x6+x7+x8

8

−−x5+x6

2
− −x5−x6+x7+x8

4
+ −x1−x2−x3−x4+x5+x6+x7+x8

8
−x5+x6

2
− −x5−x6+x7+x8

4
+ −x1−x2−x3−x4+x5+x6+x7+x8

8

−−x7+x8
2

+ −x5−x6+x7+x8

4
+ −x1−x2−x3−x4+x5+x6+x7+x8

8
−x7+x8

2
+ −x5−x6+x7+x8

4
+ −x1−x2−x3−x4+x5+x6+x7+x8

8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1+x2+x3+x4+x5+x6+x7+x8

8
x1+x2+x3+x4+x5+x6+x7+x8

8
x1+x2+x3+x4+x5+x6+x7+x8

8
x1+x2+x3+x4+x5+x6+x7+x8

8
x1+x2+x3+x4+x5+x6+x7+x8

8
x1+x2+x3+x4+x5+x6+x7+x8

8
x1+x2+x3+x4+x5+x6+x7+x8

8
x1+x2+x3+x4+x5+x6+x7+x8

8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6
x7
x8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.501)

where we have simply split the array into two in order to fit it into the width of the page.
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Example 4.114

Assume that we wish to use only the wavelets at scales l = 1 and l = 2 to analyse
an eight-sample signal. These wavelets constitute an incomplete basis of six vectors
with which we can span the eight-dimensional space of the signal. Define two more
vectors so that with the six wavelet vectors they constitute a complete and orthonor-
mal basis. Is the answer unique?
Let us call one of the two unknown vectors (e1, e2, e3, e4, e5, e6, e7, e8). This vector must be orthog-
onal to the first six wavelet vectors, so its components must satisfy Equations (4.490) and (4.491),
from which we deduce that:

e2 = e3 = e4 = e1 and e6 = e7 = e8 = e5. (4.502)

The normality constraint implies that:

e2
1 + e2

2 + e2
3 + e2

4 + e2
5 + e2

6 + e2
7 + e2

8 = 1 ⇒ 4e2
1 + 4e2

5 = 1. (4.503)

Let us choose for simplicity e5 = 0. Then e6 = e7 = e8 = 0 as well, and from the normality con-
straint we obtain e1 = 1∕2.

Alternatively, we may choose e1 = 0. Then e2 = e3 = e4 = 0 as well, and the normality condi-
tion leads to e6 = e7 = e8 = e5 = 1∕2. Therefore, the two vectors, which we can use to span the
sub-space left over by the use of the six wavelet vectors of l = 1 and 2, may be

v1 =
(1

2
,

1
2
,

1
2
,

1
2
, 0, 0, 0, 0

)
(4.504)

and

v2 =
(

0, 0, 0, 0, 1
2
,

1
2
,

1
2
,

1
2

)
. (4.505)

Note that these two vectors are not only orthogonal to the six wavelet vectors, but also to each other,
as they should be. This necessity to have the two unknown vectors orthogonal to each other implies
that once we fix one of the two, the second is also fixed (up to a sign), because its eight unknown
components have to obey 6 + 1 linear equations plus the normality constraint. However, we have
a lot of freedom in choosing the first unknown vector. For example, we could have chosen e5 = 1∕3.
Then from (4.503) we would have had 4e2

1 = 1 − 4∕9 = 5∕9 ⇒ e2
1 = 5∕36 ⇒ e1 = ±

√
5∕6. In this

case our first vector would have been:

ṽ𝟏 =

(√
5

6
,

√
5

6
,

√
5

6
,

√
5

6
,

1
3
,

1
3
,

1
3
,

1
3

)
. (4.506)

The second vector should have been chosen to satisfy Equations (4.502) and to be orthogonal to
ṽ𝟏: √

5
6

e1 +
√

5
6

e2 +
√

5
6

e3 +
√

5
6

e4 +
1
3

e5 +
1
3

e6 +
1
3

e7 +
1
3

e8 = 0 ⇒

4
√

5
6

e1 + 4 1
3

e5 = 0 ⇒ e5 = −
√

5
2

e1. (4.507)

(Continued)
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Example 4.114 (Continued)

From the normality constraint we would have had:

4e2
1 + 4 5

4
e2

1 = 1 ⇒ 9e2
1 = 1 ⇒ e1 = ±1

3
. (4.508)

If we choose the positive sign, the last vector needed to complete the basis is:

ṽ𝟐 =

(
1
3
,

1
3
,

1
3
,

1
3
,−

√
5

6
,−

√
5

6
,−

√
5

6
,−

√
5

6

)
. (4.509)

Vectors ṽ𝟏 and ṽ𝟐 could have been chosen instead of vectors v𝟏 and v𝟐 to form a com-
plete and orthonormal basis with the wavelet vectors. So, the answer to this problem is not
unique.

Example 4.115

Using vectors v𝟏 and v𝟐 defined in Example 4.114 and the wavelet vectors for scales
l = 1 and l = 2 only, re-write Equation (4.482) of the wavelet transform, so that it is
invertible. Then invert it to recover the original signal from the knowledge of the
vector on the left-hand side of this equation.
In this case, we make no use of the wavelet vector at scale l = 3. Instead, we use the two new
vectors, which, with the first six wavelet vectors, constitute a complete and orthonormal basis for
the eight-sample signal:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑤11
𝑤12
𝑤13
𝑤14
𝑤21
𝑤22
s21
s22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1√
2

1√
2

0 0 0 0 0 0

0 0 − 1√
2

1√
2

0 0 0 0

0 0 0 0 − 1√
2

1√
2

0 0

0 0 0 0 0 0 − 1√
2

1√
2

− 1
2

− 1
2

1
2

1
2

0 0 0 0

0 0 0 0 − 1
2

− 1
2

1
2

1
2

1
2

1
2

1
2

1
2

0 0 0 0

0 0 0 0 1
2

1
2

1
2

1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6
x7
x8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.510)

Here we denoted by s21 the projection of the signal onto vector v𝟏 and by s22 the projection
of the signal onto vector v𝟐, appearing in the last two rows of the transformation matrix.
Obviously:

s21 =
x1 + x2 + x3 + x4

2
s22 =

x5 + x6 + x7 + x8

2
. (4.511)
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The transformation matrix is square 8 × 8, and orthogonal: all its rows are orthogonal to each
other, so its inverse is its transpose. The original signal, therefore, may be recovered as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6
x7
x8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1√
2

0 0 0 − 1
2

0 1
2

0
1√
2

0 0 0 − 1
2

0 1
2

0

0 − 1√
2

0 0 1
2

0 1
2

0

0 1√
2

0 0 1
2

0 1
2

0

0 0 − 1√
2

0 0 − 1
2

0 1
2

0 0 1√
2

0 0 − 1
2

0 1
2

0 0 0 − 1√
2

0 1
2

0 1
2

0 0 0 1√
2

0 1
2

0 1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑤11
𝑤12
𝑤13
𝑤14
𝑤21
𝑤22
s21
s22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.512)

If we substitute the values of the wavelet coefficients from (4.483) and the values of s21 and s22
from (4.511), the right-hand side of the above equation becomes:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1√
2

0 0 0 − 1
2

0 1
2

0
1√
2

0 0 0 − 1
2

0 1
2

0

0 − 1√
2

0 0 1
2

0 1
2

0

0 1√
2

0 0 1
2

0 1
2

0

0 0 − 1√
2

0 0 − 1
2

0 1
2

0 0 1√
2

0 0 − 1
2

0 1
2

0 0 0 − 1√
2

0 1
2

0 1
2

0 0 0 1√
2

0 1
2

0 1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−x1+x2√
2

−x3+x4√
2

−x5+x6√
2

−x7+x8√
2

−x1−x2+x3+x4

2
−x5−x6+x7+x8

2
x1+x2+x3+x4

2
x5+x6+x7+x8

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−−x1+x2
2

− −x1−x2+x3+x4

4
+ x1+x2+x3+x4

4
−x1+x2

2
− −x1−x2+x3+x4

4
+ x1+x2+x3+x4

4

−−x3+x4

2
+ −x1−x2+x3+x4

4
+ x1+x2+x3+x4

4
−x3+x4

2
+ −x1−x2+x3+x4

4
+ x1+x2+x3+x4

4

−−x5+x6

2
− −x5−x6+x7+x8

4
+ x5+x6+x7+x8

4
−x5+x6

2
− −x5−x6+x7+x8

4
+ x5+x6+x7+x8

4

−−x7+x8
2

+ −x5−x6+x7+x8

4
+ x5+x6+x7+x8

4
−x7+x8

2
+ −x5−x6+x7+x8

4
+ x5+x6+x7+x8

4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6
x7
x8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.513)
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Example 4.116

Assume that we wish to use only the wavelets at scale l = 1 to analyse an eight-sample
signal. These wavelets constitute an incomplete basis of four vectors with which we
can span the eight-dimensional space of the signal. Define four more vectors so that
with the four wavelet vectors they constitute a complete and orthonormal basis. Is
the answer unique?
Let us call one of the four unknown vectors (e1, e2, e3, e4, e5, e6, e7, e8). This vector must be orthog-
onal to the first four wavelet vectors, so these variables must satisfy equations (4.490), from which
we deduce that:

e2 = e1 e4 = e3 e6 = e5 and e8 = e7. (4.514)

The normality constraint implies that:

e2
1 + e2

2 + e2
3 + e2

4 + e2
5 + e2

6 + e2
7 + e2

8 = 1 ⇒ 2e2
1 + 2e2

3 + 2e2
5 + 2e2

7 = 1. (4.515)

Let us choose e3 = e5 = e7 = 0. Then e2 = e1 = 1∕
√

2. Thus we deduce the first such vector:

z𝟏 =

(
1√
2
,

1√
2
, 0, 0, 0, 0, 0, 0

)
. (4.516)

If we choose e1 = e5 = e7 = 0, we obtain a different vector:

z𝟐 =

(
0, 0, 1√

2
,

1√
2
, 0, 0, 0, 0

)
. (4.517)

If we choose e1 = e3 = e7 = 0, we obtain a third vector:

z𝟑 =

(
0, 0, 0, 0, 1√

2
,

1√
2
, 0, 0

)
. (4.518)

Finally, if we choose e1 = e3 = e5 = 0, we obtain a fourth vector:

z𝟒 =

(
0, 0, 0, 0, 0, 0, 1√

2
,

1√
2

)
. (4.519)

Note that these four vectors are orthogonal to each other and so with the four wavelet vectors they
constitute a complete and orthonormal basis in terms of which an eight-sample signal may be
analysed. Note also that the solution is not unique, as we could have chosen different values for
three of the unknowns in the first step, and so produce a different first vector. Then to construct
the second vector we would have the additional constraint that it should be orthogonal not only to
the original four wavelet vectors, but also to the newly constructed vector. This would have meant
that we could have chosen freely the values of only two of its components. For the construction
of the third vector we would have had the free choice of only one component, while our choice in
the construction of the fourth vector would have been restricted only to the choice of a sign. This
shows that there is an infinite number of ways in which we may choose the four extra vectors with
which to complete the orthonormal basis of the four wavelets of scale l = 1.



�

� �

�

4.5 Wavelets 551

Example 4.117

Using vectors z𝟏, z𝟐, z𝟑 and z𝟒, defined in Example 4.116 and the wavelet vectors for
scale l = 1 only, re-write Equation (4.482) of the wavelet transform, so that it is invert-
ible. Then invert it to recover the original signal from the knowledge of the vector on
the left-hand side of this equation.
In this case, we make no use of the wavelet vectors at scales l = 2 and l = 3. Instead, we use the
four new vectors, which, with the first four wavelet vectors, constitute a complete and orthonormal
basis for the eight-sample signal

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑤11
𝑤12
𝑤13
𝑤14
s11
s12
s13
s14

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1√
2

1√
2

0 0 0 0 0 0

0 0 − 1√
2

1√
2

0 0 0 0

0 0 0 0 − 1√
2

1√
2

0 0

0 0 0 0 0 0 − 1√
2

1√
2

1√
2

1√
2

0 0 0 0 0 0

0 0 1√
2

1√
2

0 0 0 0

0 0 0 0 1√
2

1√
2

0 0

0 0 0 0 0 0 1√
2

1√
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6
x7
x8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.520)

where we denoted by s11 the projection of the signal on vector z𝟏, by s12 the projection of the signal
on vector z𝟐, by s13 the projection of the signal on vector z𝟑 and by s14 the projection of the signal
on vector z𝟒, appearing in the last four rows of the transformation matrix. Obviously:

s11 =
x1 + x2√

2
s12 =

x3 + x4√
2

s13 =
x5 + x6√

2
s14 =

x7 + x8√
2

. (4.521)

The transformation matrix is square 8 × 8, and orthogonal: all its rows are orthogonal to each
other. So its inverse is its transpose. The original signal, therefore, may be recovered as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6
x7
x8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1√
2

0 0 0 1√
2

0 0 0
1√
2

0 0 0 1√
2

0 0 0

0 − 1√
2

0 0 0 1√
2

0 0

0 1√
2

0 0 0 1√
2

0 0

0 0 − 1√
2

0 0 0 1√
2

0

0 0 1√
2

0 0 0 1√
2

0

0 0 0 − 1√
2

0 0 0 1√
2

0 0 0 1√
2

0 0 0 1√
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑤11
𝑤12
𝑤13
𝑤14
s11
s12
s13
s14

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.522)

(Continued)
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Example 4.117 (Continued)

If we substitute the values of the wavelet coefficients from (4.483) and the values of s11, s12, s13 and
s14 from (4.521), the right-hand side of the above equation becomes:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1√
2

0 0 0 1√
2

0 0 0
1√
2

0 0 0 1√
2

0 0 0

0 − 1√
2

0 0 0 1√
2

0 0

0 1√
2

0 0 0 1√
2

0 0

0 0 − 1√
2

0 0 0 1√
2

0

0 0 1√
2

0 0 0 1√
2

0

0 0 0 − 1√
2

0 0 0 1√
2

0 0 0 1√
2

0 0 0 1√
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−x1+x2√
2

−x3+x4√
2

−x5+x6√
2

−x7+x8√
2

x1+x2√
2

x3+x4√
2

x5+x6√
2

x7+x8√
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−−x1+x2
2

+ x1+x2
2

−x1+x2
2

+ x1+x2
2

−−x3+x4

2
+ x3+x4

2
−x3+x4

2
+ x3+x4

2

−−x5+x6

2
+ x5+x6

2
−x5+x6

2
+ x5+x6

2

−−x7+x8
2

+ x7+x8
2

−x7+x8
2

+ x7+x8
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

x7

x8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.523)

Example 4.118

Show that the space spanned by vector “e” of Example 4.112 is a sub-space of that
spanned by vectors “v” of Example 4.114 and the sub-space spanned by vectors “v” is
a sub-space of that spanned by vectors “z” of Example 4.116.
There are two ways to show this. The first one is to observe that the conditions that vector e in
Example 4.112 had to fulfil are a superset of the conditions vectors v had to fulfil. So any basis
vector chosen for the space of vector e automatically fulfils the constraints of space v, and so not
only does it belong to it, but it may also serve as a basis vector for it. Similarly, the constraints that
vectors v had to fulfil are a superset of the conditions vectors z had to fulfil. So any basis vector
chosen for the space of vectors v automatically fulfils the constraints of space z, and so not only
does it belong to it, but it may also serve as a basis vector for it.

The second way to answer this question is to show that a basis vector chosen for the space of
vector e may be expressed as a linear combination of the basis vectors of space v. Indeed, we may
easily see that e = v𝟏∕

√
2 + v𝟐∕

√
2. Similarly, vectors v may be expressed as linear combinations

of vectors z: v𝟏 = z𝟏∕
√

2 + z𝟐∕
√

2 and v𝟐 = z𝟑∕
√

2 + z𝟒∕
√

2. If the basis vectors of a space A can
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be expressed as linear combinations of the basis vectors of another space B, then any vector of
space A can be expressed as a linear combination of the basis vectors of space B, and so it belongs
to it. Therefore, space A is a sub-space of space B.

Why is the continuous wavelet transform invertible and the discrete wavelet
transform non-invertible?

In the discrete case there is a finite part of the “what happens when” space, around the dc compo-
nent, which contains part of the signal and without which the full signal cannot be reconstructed.
In the continuous case, this part becomes vanishingly small, and so the full signal may be recovered.
Indeed, when the scaling variable a takes continuous values, we allow it to take values in the range
(0,∞). Although a cannot really take the value ∞, it may become arbitrarily large. The frequency
band covered by the scaled function is scaled to be non-zero in the range Δ𝜔∕a (see Examples
4.83–4.86). As a → ∞, this band goes arbitrarily close to zero and so at the limit it picks up the dc
component of the signal. The ability of the continuous transform to allow the scaling variable to
become arbitrarily large allows the full representation of the signal. On the contrary, the discrete
transform has a finite maximum value for the scaling parameter a. The largest value a can take
determines the coarsest detail of the signal that may be captured by the wavelet function, i.e. the
coarsest band pass filter used. The longer the filter in the time domain, the more it approaches the
zero frequency in the frequency domain. Since there is an upper limit on the size of the filter in the
time domain, there must be a lower limit on the frequencies that may be captured by the filter used
to probe the signal. And since all these filters are band pass filters, there will always be a part of the
signal that corresponds to low frequencies, which resides in that part of the “what happens when”
space that should be spanned by wavelets with values of a above the maximum value allowed by
the discretisation process. When seen that way, the discretisation process effectively carves the con-
tinuous “what happens when” space into sub-spaces of different resolutions. For each maximum
value of a, we carve away part of the sub-space that is not spanned by the wavelets. The larger the
maximum value of a, the more we restrict that sub-space. Thus, we may think of the successive
ranges of allowed values of a as creating a nested set of sub-spaces, each one of which goes closer
and closer to the direct component of the signal. The projections of the signal on the sub-spaces left
out by the successive maximum values of a are called the smooths of the signal, while the com-
ponents of the signal in the sub-space spanned by the allowed values of a constitute the roughs of
the signal.

How can we span the part of the “what happens when” space that contains the direct
component of the signal?

The “what” part may be achieved by scaling a function with non-zero dc component. The “when”
part may be achieved by shifting the same function along the time axis. If we scale such a function,
we simply change its bandwidth, which will always contain the 0 frequency (see Example 4.84). In
the case of wavelets, scaling meant shifting also the centre of the band. Here the centre of the band
is 0, so it remains 0 even when it is divided by a and it is not shifted when changing the scaling
parameter. This becomes more explicit with the help of Figure 4.93.

In the discrete case, this implies the creation of nested sub-spaces of reducing resolution as a
increases. Note that the cells created for a fixed resolution are expected to be orthogonal to each
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y "what happens when" space

low frequencies, large filters, very few of them,
coarse resolution (resolution level l=2)

high frequencies, small filters, more of them,
fine resolution (resolution level l=0)

moderate frequencies, medium size filters, fewer of them,
moderate resolution (resolution level l = 1)

Figure 4.93 The “what happens when” space. Consider a function that contains the 0 frequency (i.e. it has
non-zero direct component). Use it to span the “what happens when” space by scaling and shifting it. The
frequency bands we create by scaling the time variable will be nested because their centre (being at 0
frequency) cannot be shifted. Larger values of the scaling parameter will simply cover narrower frequency
bands centred about the 0 frequency. The rectangles here represent schematically the resolution cells we
create by shifting and scaling the scaling function 𝜙(t). The different shades of grey represent nested
frequency bands created with different values of the scaling parameter a. The darker the shade of grey, the
more bands overlap there. The time axis is covered by shifting the function.

other (they are not overlapping). However, the cells that correspond to different resolutions are
nested, so they cannot possibly be orthogonal.

Let us call the basic function we use, with non-vanishing direct component, scaling function
𝜙(t). The scaled and translated versions of it are:

𝜙ab(t) =
1√
a
𝜙

(
t − b

a

)
. (4.524)

We can use the scaling function 𝜙(t) to cover the discretised “what is where” space in the same
way we used the mother wavelet, i.e. by choosing discrete values for the scaling and shifting param-
eters a and b, respectively: a should vary as 2l, in accordance to the scale used for the mother
wavelet, which is used to complete the coverage of the “what is where” space, and b should take as
values integer multiples of a, i.e. (k − 1)2l. So, we create functions

𝜙lk(t) =
1√
2l
𝜙

(
t
2l

− k
)
. (4.525)

For fixed resolution the scaling function may be sampled at integer values of the independent
variable t, to create a series of vectors that span the smooth space of a signal and thus complement
the wavelet basis. Scaling such a function creates a nested sequence of sub-spaces.

Functions 𝜓lk and 𝜙lk are used to create the multi-resolution representation of a signal, so
that the contents of the signal at a coarse resolution may be extracted from the contents of the



�

� �

�

4.5 Wavelets 555

signal at finer resolutions. Note that when we want to treat these sampled functions as vectors, we
represent them with bold face. Here, as we refer to them as functions, we do not use bold face to
represent them.

Example B4.119

Starting from Equation (4.525), derive the two scale equation:

𝜙lk(t) =
√

2𝜙l+1,k(2t). (4.526)

By definition:

𝜙l+1,k(t) =
1√
2l+1

𝜙

( t
2l+1

− k
)

= 1√
2

1√
2l
𝜙

(
t

2 × 2l
− k

)
= 1√

2
1√
2l
𝜙

(
t∕2
2l

− k
)

= 1√
2
𝜙lk

( t
2

)
⇒ 𝜙lk

( t
2

)
=
√

2𝜙l+1,k(t). (4.527)

Then by redefining the independent variable t, i.e. by setting t̃ ≡ t∕2 and then dropping the tilde,
we obtain (4.526).

In a similar way, one can prove a corresponding equation for the wavelet function:

𝜓lk(t) =
√

2𝜓l+1,k(2t). (4.528)

Can we span the whole “what is where” space by using only the scaling function?

Yes. This is shown schematically in Figure 4.93. This leads to the highly redundant representation of
a signal by a pyramid of signals, if sub-sampling takes place, or a tower of signals, if no sub-sampling
takes place. Often the scaling function used is a digital Gaussian and then we get the so-called
Gaussian pyramid. The layers of the pyramid are versions of the signal with higher and higher
levels of smoothing, and they constitute the scale-space representation of the signal (see Book I
[75]). As the signal is smoothed, more and more of its details disappear. The more significant a
detail is, the more the scales of smoothing over which it survives. This way, the significance of
signal characteristics may be expressed as a function of the scale up to which the characteristic is
still discernible.

If before sub-sampling we subtract one layer of the tower of signals we created from the next one,
we create the so-called Laplacian pyramid (see the section What is the Laplacian pyramid?).

How can we extract the coarse resolution content of a signal from its content at a
finer resolution?

Let us call Sl the sub-space spanned by basis vectors𝜙lk. As can be seen schematically in Figure 4.93,
S2 ⊂ S1 ⊂ S0. As the scale increases (a ↑, l ↑), the corresponding sub-space shrinks, and the space
that has to be covered by the mother wavelet function expands. This is shown schematically in
Figure 4.94. Let us call the sub-space spanned by the wavelet function 𝜓lk, Dl. From the schematic
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Figure 4.94 The “what happens when” space. As the sub-space spanned by the scaling function expands
(from bottom to top), the sub-space spanned by the mother wavelet shrinks. As the scale doubles, the
sub-space spanned by the scaling function splits into a sub-space spanned by the scaling function at the
new level, plus a sub-space covered by the mother wavelet also at the new level of resolution (from top to
bottom). Negative frequencies are not shown here.

representation of Figure 4.94 we can easily see that between two successive scales, sub-space Sl is
replaced by sub-spaces Sl+1 and Dl+1. We may indicate this by writing

Sl = Sl+1 ⊕ Dl+1 (4.529)

where⊕ indicates the addition of two sub-spaces. This expression implies that Sl+1 ⊂ Sl and Dl+1 ⊂

Sl. Now, if a sub-space is included inside another sub-space, all the vectors of the first sub-space
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belong to the second, including the basis vectors. The basis vectors for sub-space Sl+1 are functions
𝝓(l+1)k(t) and the basis vectors of sub-space Dl+1 are functions 𝝍 (l+1)k(t). We conclude, therefore,
that these two sets of functions also belong to sub-space Sl. If they belong to sub-space Sl, it must
be possible to express them as linear combinations of the basis vectors of this sub-space, namely
functions 𝝓lk(t). So, we must be able to write

𝝓(l+1)k̃(t) =
∑

k
gk̃k𝝓lk(t)

𝝍 (l+1)k̃(t) =
∑

k
hk̃k𝝓lk(t) (4.530)

where gk̃k and hk̃k are some linear coefficients. We used k̃ to indicate the integer translates at level
l + 1 in order to avoid confusion with the integer translates at level l.

Let us consider now a signal f(t) that we wish to project on the basis vectors of sub-space Sl+1.
Let us take the dot product of both sides of Equations (4.530) with this signal:

𝝓(l+1)k̃(t) ⋅ f(t) =
∑

k
gk̃k𝝓lk(t) ⋅ f(t)

𝝍 (l+1)k̃(t) ⋅ f(t) =
∑

k
hk̃k𝝓lk(t) ⋅ f(t). (4.531)

We observe that by definition, 𝜙(l+1)k̃(t) ⋅ f (t) is the k̃th coefficient of the expansion of signal f (t) in
terms of the basis of sub-space Sl+1. Let us call it s(l+1)k̃. Similarly,𝜓(l+1)k̃(t) ⋅ f (t) is the k̃th coefficient
of the expansion of signal f (t) in terms of the basis of sub-space Dl+1. Let us call it 𝑤(l+1)k̃. Also,
𝜙lk(t) ⋅ f (t) is the kth coefficient of the expansion of signal f (t) in terms of the basis of sub-space Sl.
Let us call it slk. Expressions (4.531) then become:

s(l+1)k̃ =
∑

k
gk̃kslk

𝑤(l+1)k̃ =
∑

k
hk̃kslk. (4.532)

These two equations show that we may compute the coefficients of the expansion of signal f (t) at a
coarser level of resolution from its expansion coefficients at the previous (finer) level of resolution,
if we know the coefficients gk̃k and hk̃k for all shifts k.

Example 4.120

Show that the wavelet and scaling vectors for level l = 2 in Example 4.115 may be
expressed as linear combinations of the scaling vectors at level l = 1.
The wavelet vectors at level l = 2 are given by Equation (4.479):

𝝍𝟐𝟏 =
(
−1

2
,−1

2
,

1
2
,

1
2
, 0, 0, 0, 0

)
𝝍𝟐𝟐 =

(
0, 0, 0, 0,−1

2
,−1

2
,

1
2
,

1
2

)
. (4.533)

The scaling vectors at level l = 2 were defined in Example 4.118. They are:

𝝓𝟐𝟏 =
(1

2
,

1
2
,

1
2
,

1
2
, 0, 0, 0, 0

)
𝝓𝟐𝟐 =

(
0, 0, 0, 0, 1

2
,

1
2
,

1
2
,

1
2

)
. (4.534)

(Continued)
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Example 4.120 (Continued)

The scaling vectors at level l = 1 were defined in Example 4.116. They are:

𝝓𝟏𝟏 =

(
1√
2
,

1√
2
, 0, 0, 0, 0, 0, 0

)

𝝓𝟏𝟐 =

(
0, 0, 1√

2
,

1√
2
, 0, 0, 0, 0

)

𝝓𝟏𝟑 =

(
0, 0, 0, 0, 1√

2
,

1√
2
, 0, 0

)

𝝓𝟏𝟒 =

(
0, 0, 0, 0, 0, 0, 1√

2
,

1√
2

)
. (4.535)

We can easily verify that:

𝝍𝟐𝟏 = − 1√
2
𝝓𝟏𝟏 +

1√
2
𝝓𝟏𝟐

𝝍𝟐𝟐 = − 1√
2
𝝓𝟏𝟑 +

1√
2
𝝓𝟏𝟒

𝝓𝟐𝟏 =
1√
2
𝝓𝟏𝟏 +

1√
2
𝝓𝟏𝟐

𝝓𝟐𝟐 =
1√
2
𝝓𝟏𝟑 +

1√
2
𝝓𝟏𝟒. (4.536)

These equations show that the wavelet vectors,𝝍𝟐𝟏 and𝝍𝟐𝟐, and the scaling vectors,𝝓𝟐𝟏 and𝝓𝟐𝟐,
of level 2, are linear combinations of the scaling vectors, 𝝓𝟏𝟏, 𝝓𝟏𝟐, 𝝓𝟏𝟑 and 𝝓𝟏𝟒, of level 1.

Example 4.121

Show that the wavelet and the scaling vectors for level l = 3 in Example 4.117 may be
expressed as linear combinations of the scaling vectors at level l = 2.
The wavelet vector for level l = 3 is given by:

𝝍𝟑𝟏 =

(
− 1√

8
,− 1√

8
,− 1√

8
,− 1√

8
,

1√
8
,

1√
8
,

1√
8
,

1√
8

)
. (4.537)

The scaling vector at level l = 3 is given by Equation (4.495):

𝝓𝟑𝟏 =

(
1√
8
,

1√
8
,

1√
8
,

1√
8
,

1√
8
,

1√
8
,

1√
8
,

1√
8

)
. (4.538)

The scaling vectors at level l = 2 are given by Equations (4.534). Then we observe that:

𝝍𝟑𝟏 = − 1√
2
𝝓𝟐𝟏 +

1√
2
𝝓𝟐𝟐

𝝓𝟑𝟏 =
1√
2
𝝓𝟐𝟏 +

1√
2
𝝓𝟐𝟐. (4.539)
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How can we choose the scaling function?

The scaling function should be such that when scaled and discretised it produces vectors that are
orthogonal to the wavelet vectors.

Let us concentrate on scale l = 1. Let us say that we are interested in analysing signals that are
N samples long. The wavelet vectors are created by shifting the basic wavelet filter at positions
2(k − 1). Let us say that the wavelet filter is M samples long. At each wavelet vector, M positions
are covered by the filter values H1,H2,… ,HM and the rest are zero. Let us say that the scaling filter
consists of the unknown values G1,G2,… ,GM . The scaling vector for a particular value of k should
be orthogonal to the wavelet vector for the same shift. This is shown schematically in Figure 4.95.
Then the dot product between the scaling vector and the wavelet vector should be 0, so:

G1H1 + G2H2 +…+ GM−1HM−1 + GMHM = 0. (4.540)

If we choose G to be the quadrature mirror of H, i.e. the elements of H are read in reverse order
and every second element is multiplied with −1, the above equation is satisfied. For filters of length
M, this means:

Gp = (−1)p−1HM−p+1 for p = 1,… ,M. (4.541)

If we substitute in (4.540) we have:

(−1)0HMH1 + (−1)1HM−1H2 +…
+(−1)M−2HM−M+1+1HM−1 + (−1)M−1HM−M+1HM = 0. (4.542)

If M is even, the above equation is obviously true. At least for the dyadic wavelet analysis, i.e.
the case where the scaling parameter a takes values 2l and the shifting parameter b takes values
(k − 1)2l, wavelet filters are always chosen to be of even length.

If we have to compute filter H from filter G, we start from Equation (4.541) and multiply both
sides with (−1)p+1:

(−1)p+1Gp = (−1)p+1(−1)p−1HM−p+1 ⇒

(−1)p+1Gp = (−1)2pHM−p+1 ⇒

HM−p+1 = (−1)p+1Gp. (4.543)

If we define a new variable q ≡ M − p + 1, then p = M − q + 1, and we have

Hq = (−1)M−q+2GM−q+1 ⇒ Hq = (−1)M−qGM−q+1 (4.544)

which allows us to obtain filter H from filter G, by reading the elements of G backwards and chang-
ing the sign of every first one, with q taking values 1, 2,… ,M.

H 1 H 2 H 3 H 4 H 5 H 6

G 1 G 2 G 3 G 4

0 0 0

00000

000

0G 6G 5

Figure 4.95 A wavelet vector for a 12-sample long signal, for shifting parameter k = 2 at the top, and the
corresponding scaling vector for the same shifting value k at the bottom. Their dot product must be 0.
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Example 4.122

Define a scaling function appropriate for the Haar wavelet.
For the Haar wavelet, H = (− 1√

2
,

1√
2
). Therefore, by applying formula (4.541) we obtain G =

( 1√
2
,

1√
2
).

Example B4.123

Consider a wavelet filter of length M = 6. Show that all scaling vectors produced by
shifting are orthogonal to all wavelet vectors, if the scaling vectors are constructed
using Equation (4.541).

The case when the non-zero elements of one vector correspond to the zero elements of the other
vector is trivially true: the dot product of the two vectors in this case will always be zero no matter
what values the non-zero elements have. The problem arises when non-zero elements of one vector
correspond to non-zero elements of the other. For a filter six taps long, and for the dyadic wavelet
case, there are four possible cases, shown in Figure 4.96.

H 1 H 2 H 3 H 4 H 5 H 60 0 0

0 0

000

0 0 H 1 H 2 H 3 H 4 H 5 H 6

0 0 0 0 H 1 H 2 H 3 H 4 H 5 H 6

G 1 G 2 G 3 G 4 G 6G 5

0 0 G 1 G 2 G 3 G 4 G 6G 5

00 0 0 0 G 1 G 2 G 3 G 4 G 6G 5

0 0

0 0

00

00

000 0

0 0

0

ϕ

ψ

ψ

ϕ

ψ1k

1(k+1)

1(k+2)

1k

1(k+1)

1(k+2)ϕ

Figure 4.96 Wavelet and scaling vectors constructed from a six-tap long filter for three successive
values of the shifting parameter k at resolution l = 1. The dot product of any two of them must be 0,
in order for them to constitute an orthogonal basis.

First we remember that by construction, the wavelet vectors constitute an orthonormal (but
incomplete) basis. So, by construction, we know that the following equations are valid:

𝜓1k𝜓1(k+1) = 0 ⇒ H3H1 + H4H2 + H5H3 + H6H4 = 0
𝜓1k𝜓1(k+2) = 0 ⇒ H5H1 + H6H2 = 0. (4.545)

From Equation (4.541) we deduce that:

G1 = H6 G2 = −H5 G3 = H4 G4 = −H3 G5 = H2 G6 = −H1. (4.546)
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We want to prove that:

𝜙1k𝜙1(k+1) = 0
𝜙1k𝜙1(k+2) = 0
𝜙1k𝜓1(k+1) = 0
𝜙1k𝜓1(k+2) = 0. (4.547)

With the help of Figure 4.96 and Equations (4.546), the equations we have to prove become:

H4H6 + (−H3)(−H5) + H2H4 + (−H1)(−H3) = 0
H2H6 + (−H1)(−H5) = 0

H4H1 + (−H3)H2 + H2H3 + (−H1)H4 = 0
H2H1 + (−H1)H2 = 0. (4.548)

The first two of these equations are true because of Equations (4.545). The last two are trivially
true as well.

So, although when we constructed filter G we only ensured that the vectors produced by it were
orthogonal to the wavelet vectors of the same value of the shifting parameter (the same k), it turns
out that the scaling vectors are also orthogonal to each other and to all other wavelet vectors. In
addition, they all have length 1 (since if H has length 1, by construction G will have too), and
therefore they constitute an orthonormal basis for scale l = 1.

Example 4.124

Demonstrate that in the dyadic wavelet scheme with orthogonal wavelet vectors, it
is not possible to have an odd length wavelet filter.
For simplicity, let us assume that we have a wavelet filter H of length 5. All wavelet vectors pro-
duced by placing it in shifted positions (k − 1)2 at resolution level l = 1 must be orthogonal to
each other. Let us consider the wavelet vectors that have non-zero overlapping elements. These are
shown schematically in Figure 4.97. The orthogonality between vectors 𝜓1k and 𝜓1(k+2) implies
that H5H1 = 0, i.e. either H1 or H5 must be zero. Either way the implication is that the filter is
four samples long and not five.

0 0

0 00 0 0 0

H 1 H 2 H 3 H 4 H 5

H 1 H 2 H 3 H 4 H 5

H 1 H 2 H 3 H 4 H 5

0 0

ψ

ψ

ψ1k

1(k+1)

1(k+2)

0 000 0

0 000

00

0

Figure 4.97 A filter of odd length used to produce wavelet vectors for the dyadic wavelet case.
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How do we perform the multi-resolution analysis of a signal in practice?

Let us consider Figure 4.94. Let us assume that we are given a signal f (t). We assume that the given
signal is at level l = 0, i.e. it is at full resolution. We wish first to analyse it into its projections onto the
sub-spaces represented in Figure 4.94a, by creating its components in resolution level l = 1. Let us
assume that we choose two filters, a high pass one called H, and a low pass one called G so that they
constitute a mirror filter pair, i.e. they obey Equation (4.541). We may process the signal by expand-
ing it into the basis vectors that may be created from shifts of these filters to positions (k − 1)2. We
saw earlier that we can achieve this projection onto sub-space D1 spanned by the wavelet vectors,
by pseudo-convolving the original signal with filter H and keeping only every other output sample.
In a similar way, we may pseudo-convolve the original signal with filter G and keep every other
output sample, in order to obtain its projection onto sub-space S1. These pseudo-convolutions are
a little different from the conventional ones: in conventional digital convolutions we usually have
to deal with odd-sized filters with a central sample. The output of the multiplication of the filter
weights with the corresponding signal samples and the subsequent summation of these products is
assigned to the sample at which the centre of the filter is placed. In the case of wavelets, the filters
are of even size, and there is no central sample. In addition, the pseudo-convolution outputs rep-
resent projections on the wavelet (or scaling) vectors, which are created by shifting the filter along
a sequence of the same size as the original signal, i.e. by placing its starting sample at positions
1, 3, 5, etc. (see Examples 4.108 and 4.110). The output of each pseudo-convolution, therefore, is
assigned to the first sample of the filter.

Now, once we have found the projection of the signal on the two sub-spaces S1 and D1, we may
replace the original N-sample long signal by these two N∕2 projections, because the two sub-spaces
fully cover the original space over which the signal is defined. The only difference is that each
sample of this new representation of the signal tells us how much the elementary answer to the
question “what happens when”, expressed by the corresponding wavelet or scaling vector, is present
in the signal. This information was hidden in the original data implicitly only, and the projections
we performed made it explicit.

We can take now the S1 component of the signal and treat it as a new signal in its own right.
It will be N∕2 samples long and its frequency band will be [0,Ω∕2] if the frequency band of the
original signal were [0,Ω]. (It will reside at the bottom half of the “what happens when” space of
Figure 4.94a.) We can therefore project it again onto its own two sub-spaces, call them D2 and S2,
by pseudo-convolving it with filters H and G, respectively, and sub-sampling as before. This split is
represented by the splitting of the bottom half of the space “what happens when” of Figure 4.94a
into its two halves, as shown in Figure 4.94b. This time we create two new versions of the S1 compo-
nent of the original signal, N∕4 samples long each. Again, each of these versions may be treated as
a new signal in its own right and the low-frequency one may be further analysed into two compo-
nents by applying the same process. This analysis is represented by Figure 4.94c where the bottom
quarter of the original space has been split into two parts, one spanned by the wavelet vectors and
one by the scaling function.

The whole process of multi-resolution analysis of the original signal is shown schematically in
Figure 4.98. This representation is known as the tree wavelet representation of the signal. This
process may be continued for as many levels as the length of the signal allows it. We note that the
original signal may be fully represented by the components associated with the leaves of this tree
expansion. The corresponding algorithm, known as the fast wavelet transform algorithm, is as
follows.

Step 1: Select wavelet filter H or scaling filter G. If the selected filter is H, construct filter G by read-
ing the elements of H backwards and changing the sign of every second one (Equation (4.541)).
If the selected filter is G, construct filter H by reading the elements of G backwards and changing
the sign of every first one (Equation (4.544)).
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Figure 4.98 Schematic representation of the multi-resolution analysis of a signal using tree wavelet
analysis. An arrow with number 2 next to it symbolises sub-sampling by a factor of 2.

Step 2: Pseudo-convolve (i.e. no filter reversal, unless you use a pre-programmed convolution func-
tion of some software package, in which case you should reverse the filter) the signal with filter
H, assigning the output value to the first sample that is overlapped by the filter.

Step 3: Decimate the output by removing every second sample. Call the output H.
Step 4: Pseudo-convolve the signal with filter G, assigning the output value to the first sample that

is overlapped by the filter.
Step 5: Decimate the output by removing every second sample. Call the output L.
Step 𝟔tree: You may apply steps 2–5 to L again.

Why in tree wavelet analysis do we always analyse the part of the signal that contains
the low frequencies only?

Because wavelet theory was developed with the aim of avoiding signal representation with redun-
dancy. If we are not interested in this aspect of the analysis, we may not analyse only the low pass
component of the signal, but other components as well, creating redundancy in the representation.

We note from Figure 4.98 that if the original signal were N samples long, its multi-resolution
analysis also consists of N samples, made up by the N∕2 samples of the high frequency compo-
nent of the first level of analysis, plus the N∕4 samples of the high frequency component of the
second level of analysis, plus the N∕8 samples of the high frequency component of the third level
of analysis, plus the N∕8 samples of the low frequency component of the third level of analysis.
Tree wavelets were developed with the purpose of replacing the original N samples of the signal
with N new samples, each of which had a particular meaning in terms of “what happens when”. In
other words, each of the new replacement samples quantifies the relevance to the original signal
of each elementary answer to the question “what happens when”. We have constructed this set of
elementary answers so that it covers the “what happens when” space with no gaps or overlaps.
So, the new replacement samples constitute a compact signal representation, i.e. they contain no
redundancy, since each sample gives different from any other sample information concerning the
signal, and so its value cannot be predicted by the knowledge of the values of the other samples.

If we are not interested in such a compact representation of the signal, there is no reason not to
analyse the high-frequency components as well at each level of resolution. For example, we note
that the cells with which we cover the “what happens when” space are very broad along the 𝜔
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Figure 4.99 Schematic representation of the multiresolution analysis of a signal using packet wavelet
analysis. An arrow with number 2 next to it symbolises sub-sampling by a factor of 2.

axis at high frequencies. We may wish to zoom into these high frequencies by analysing further
those components of the signal, in the same way as we analyse the low-frequency components.
This means that step 6 of the fast wavelet transform algorithm is replaced with:

Step 𝟔packet: Apply steps 2–5 to L and H.

Such a representation is called multi-resolution analysis in terms of packet wavelets and it is
shown schematically in Figure 4.99.

Example 4.125

Find the wavelet and scaling coefficients for l = 1 for an 8-sample long signal using a
wavelet filter with weights h1, h2, h3, h4.
First we must construct the wavelet vectors. These must be as long as the signal itself, i.e. eight
components long. For level l = 1, these vectors are created by placing the start of the wavelet filter
with shifts (k − 1)2 for k = 1, 2, 3, 4, and filling the remaining positions of the eight-sample long
vector with zeros:

k = 1 ∶ (h1, h2, h3, h4, 0, 0, 0, 0)
k = 2 ∶ (0, 0, h1, h2, h3, h4, 0, 0)
k = 3 ∶ (0, 0, 0, 0, h1, h2, h3, h4)
k = 4 ∶ (h3, h4, 0, 0, 0, 0, h1, h2). (4.549)

Note the way we wrapped round the filter for the construction of the last wavelet vector, so that
we have four vectors which have to span the four-dimensional sub-space that corresponds to the
upper half of the “what happens when” space of Figure 4.94a. Note also, that for these vectors to
form an orthogonal basis, the dot product of any two of them must be zero. This condition holds
if:

h3h1 + h4h2 = 0. (4.550)
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Next we must construct the vectors with which we will span the bottom half of the “what happens
when” space of Figure 4.94a. These may be constructed by shifting in a similar way the scaling
filter. Once we have the wavelet filter, the scaling filter is fully defined by using Equation (4.541):
h4,−h3, h2,−h1. The scaling vectors are:

k = 1 ∶ (h4,−h3, h2,−h1, 0, 0, 0, 0)
k = 2 ∶ (0, 0, h4,−h3, h2,−h1, 0, 0)
k = 3 ∶ (0, 0, 0, 0, h4,−h3, h2,−h1)
k = 4 ∶ (h2,−h1, 0, 0, 0, 0, h4,−h3). (4.551)

Now we are ready to expand an eight-sample long signal (x1, x2,… , x8) into this vector basis, by
taking the dot product of the signal with each one of these vectors in turn:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑤11
𝑤12
𝑤13
𝑤14
s11
s12
s13
s14

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1 h2 h3 h4 0 0 0 0
0 0 h1 h2 h3 h4 0 0
0 0 0 0 h1 h2 h3 h4

h3 h4 0 0 0 0 h1 h2
h4 −h3 h2 −h1 0 0 0 0
0 0 h4 −h3 h2 −h1 0 0
0 0 0 0 h4 −h3 h2 −h1

h2 −h1 0 0 0 0 h4 −h3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6
x7
x8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑤11
𝑤12
𝑤13
𝑤14
s11
s12
s13
s14

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1x1 + h2x2 + h3x3 + h4x4
h1x3 + h2x4 + h3x5 + h4x6
h1x5 + h2x6 + h3x7 + h4x8
h3x1 + h4x2 + h1x7 + h2x8
h4x1 − h3x2 + h2x3 − h1x4
h4x3 − h3x4 + h2x5 − h1x6
h4x5 − h3x6 + h2x7 − h1x8
h2x1 − h1x2 + h4x7 − h3x8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.552)

The first four coefficients constitute the high pass component of the signal, while the second four
coefficients constitute the low-frequency component of the signal.

Example 4.126

You are given the following signal: 1, 2, 4, 1,−1,−2,−1, 1. Use the scaling filter

0.4830, 0.8365, 0.2241,−0.1294

to construct the tree wavelet expansion of this signal. Present your answer in a graph
similar to that of Figure 4.98.
We shall solve this problem using the fast wavelet transform algorithm, i.e. we shall solve it
by using pseudo-convolutions. First we note that the filter we are given is for extracting the
low-frequency component of the signal. (If it were a high pass filter, its values would have
summed up to 0.) From this filter we define the wavelet filter using Equation (4.544):

0.1294, 0.2241,−0.8365, 0.4830.

(Continued)
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Example 4.126 (Continued)

We can compute the coefficients of the expansion of the signal into the wavelet basis defined by
the above filter using pseudo-convolution and sub-sampling. We start by pseudo-convolving the
signal with the wavelet filter. We remember that the pseudo-convolution is done with the filter not
reversed and used in a wrap round way, and that the result at each step is assigned to the first
filter position:

(0.1294 × 1 + 0.2241 × 2 − 0.8365 × 4 + 0.4830 × 1,
0.1294 × 2 + 0.2241 × 4 − 0.8365 × 1 + 0.4830 × (−1),

0.1294 × 4 + 0.2241 × 1 − 0.8365 × (−1) + 0.4830 × (−2),
0.1294 × 1 + 0.2241 × (−1) − 0.8365 × (−2) + 0.4830 × (−1)

0.1294 × (−1) + 0.2241 × (−2) − 0.8365 × (−1) + 0.4830 × 1,
0.1294 × (−2) + 0.2241 × (−1) − 0.8365 × 1 + 0.4830 × 1

0.1294 × (−1) + 0.2241 × 1 − 0.8365 × 1 + 0.4830 × 2,
0.1294 × 1 + 0.2241 × 1 − 0.8365 × 2 + 0.4830 × 4) =

(−2.285,−0.164, 0.612, 1.095, 0.742,−0.836, 0.224, 0.612). (4.553)

The wavelet coefficients are derived by removing every second number from the above sequence,
so we obtain the sequence (−2.285, 0.612, 0.742, 0.224).

For the scaling coefficients we pseudo-convolve the signal with the given scaling filter, and we
obtain the sequence (2.923, 4.666, 2.803,−0.672,−2.510,−1.708, 0.319, 1.250). We remove every
second coefficient to obtain the low pass component of the signal as (2.923, 2.803,−2.510, 0.319).

For the next level of resolution we process the low pass sequence (2.923, 2.803,−2.510, 0.319)
by pseudo-convolution again with the two filters. The output of the pseudo-convolution with
the wavelet filter is (3.260, 0.945,−1.344,−2.861), which upon down-sampling produces (3.260,
−1.344). The output of the pseudo-convolution with the scaling filter is (3.153,−1.052,−0.653,
3.552), which upon down-sampling produces (3.153,−0.653).

Note that the last two sequences, which consist of two components each, constitute the high-
and low-frequency component of the signal at level l = 2. This is the final level of resolution we
can use as the sequences are now shorter than the filters themselves and they cannot be subjected
into further analysis. The tree wavelet analysis of this signal is presented in Figure 4.100.

2 2

High pass

(−2.285, 0.612, 0.742, 0.224)

2 2

Low pass

(2.923, 2.803, −2.510, 0.319)

Low pass

(3.153, −0.653)

High pass

(3.260, −1.344)

Full resolution signal

(1, 2, 4, 1, −1, −2, −1, 1)

Figure 4.100 The tree wavelet analysis of a digital signal.
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Example 4.127

Use the approach of Example 4.125 to compute the low and high pass components
of the signal of Example 4.126 for level l = 1 and compare your answer with that
obtained in Example 4.126.
We must apply the derived formulae on the right-hand side of (4.552) for:

x1 = 1, x2 = 2, x3 = 4, x4 = 1, x5 = −1, x6 = −2, x7 = −1, x8 = 1
h1 = 0.1294, h2 = 0.2241, h3 = −0.8365, h4 = 0.4830.

(4.554)

These formulae yield

𝑤11 = −2.285, 𝑤12 = 0.612, 𝑤13 = 0.742, 𝑤14 = 0.224
s11 = 2.923, s12 = 2.803, s13 = −2.510, s14 = 0.319 (4.555)

which are exactly the numbers we deduced in Example 4.126 by applying the fast wavelet trans-
form.

Example 4.128

Perform the packet wavelet analysis of the signal of Example 4.126 using the same
filter as the one used in Example 4.126. Present your answer in a graph similar to
that of Figure 4.99.

To perform the packet wavelet analysis of the signal, we must also expand the high-frequency
component at each level of resolution in terms of its low- and high-frequency components, in
addition to expanding the low-frequency component.

This is done by pseudo-convolving the high-frequency component with the two filters and
sub-sampling.

Convolution of (−2.285, 0.612, 0.742, 0.224) with the wavelet and the scaling filters produces
sequences (−0.671,−1.046, 2.354,−0.637) and (−0.454, 1.262,−0.045,−1.762), respectively.
These, upon down-sampling produce (−0.671, 2.354) and (−0.454,−0.045), respectively. The
packet wavelet analysis of this signal is presented in Figure 4.101.

2 2

2 2 2 2

Low pass

(2.923, 2.803, −2.510, 0.319)

High pass

(−2.285, 0.612, 0.742, 0.224)

Low pass

(3.153, −0.653)

High pass

(3.260, −1.344)

Low pass

(−0.454, −0.045)

High pass

(−0.671, 2.354)

Full resolution signal

(1, 2, 4, 1, −1, −2, −1, 1)

Figure 4.101 The packet wavelet analysis of a digital signal.
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Example B4.129

Starting from the knowledge of vector C ≡ (𝑤11, 𝑤12, 𝑤13, 𝑤14, s11, s12, s13, s14)T , recover
the original signal in Example 4.125.
Let us start by calling the matrix made up by the wavelet and scaling vectors matrix A:

A ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1 h2 h3 h4 0 0 0 0
0 0 h1 h2 h3 h4 0 0
0 0 0 0 h1 h2 h3 h4

h3 h4 0 0 0 0 h1 h2
h4 −h3 h2 −h1 0 0 0 0
0 0 h4 −h3 h2 −h1 0 0
0 0 0 0 h4 −h3 h2 −h1

h2 −h1 0 0 0 0 h4 −h3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.556)

If X stands for the signal vector, the expansion of the signal expressed in Example 4.125 may be
written in matrix form as C = AX.

The rows of matrix A are orthogonal to each other, so this is an orthogonal matrix. The inverse,
therefore, of A is its transpose, and the inverse of the expansion is ATC = X. So, to recover the sig-
nal we must multiply the coefficients of the expansion with the matrix made up from the wavelet
and scaling vectors written next to each other as the columns of matrix AT:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1 0 0 h3 h4 0 0 h2
h2 0 0 h4 −h3 0 0 −h1
h3 h1 0 0 h2 h4 0 0
h4 h2 0 0 −h1 −h3 0 0
0 h3 h1 0 0 h2 h4 0
0 h4 h2 0 0 −h1 −h3 0
0 0 h3 h1 0 0 h2 h4
0 0 h4 h2 0 0 −h1 −h3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1x1 + h2x2 + h3x3 + h4x4
h1x3 + h2x4 + h3x5 + h4x6
h1x5 + h2x6 + h3x7 + h4x8
h3x1 + h4x2 + h1x7 + h2x8
h4x1 − h3x2 + h2x3 − h1x4
h4x3 − h3x4 + h2x5 − h1x6
h4x5 − h3x6 + h2x7 − h1x8
h2x1 − h1x2 + h4x7 − h3x8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

(4.557)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1(h1x1 + h2x2 + h3x3 + h4x4) + h3(h3x1 + h4x2 + h1x7 + h2x8)+
h4(h4x1 − h3x2 + h2x3 − h1x4) + h2(h2x1 − h1x2 + h4x7 − h3x8)

h2(h1x1 + h2x2 + h3x3 + h4x4) + h4(h3x1 + h4x2 + h1x7 + h2x8)−
h3(h4x1 − h3x2 + h2x3 − h1x4) − h1(h2x1 − h1x2 + h4x7 − h3x8)

h3(h1x1 + h2x2 + h3x3 + h4x4) + h1(h1x3 + h2x4 + h3x5 + h4x6)+
h2(h4x1 − h3x2 + h2x3 − h1x4) + h4(h4x3 − h3x4 + h2x5 − h1x6)

h4(h1x1 + h2x2 + h3x3 + h4x4) + h2(h1x3 + h2x4 + h3x5 + h4x6)−
h1(h4x1 − h3x2 + h2x3 − h1x4) − h3(h4x3 − h3x4 + h2x5 − h1x6)

h3(h1x3 + h2x4 + h3x5 + h4x6) + h1(h1x5 + h2x6 + h3x7 + h4x8)+
h2(h4x3 − h3x4 + h2x5 − h1x6) + h4(h4x5 − h3x6 + h2x7 − h1x8)

h4(h1x3 + h2x4 + h3x5 + h4x6) + h2(h1x5 + h2x6 + h3x7 + h4x8)−
h1(h4x3 − h3x4 + h2x5 − h1x6) − h3(h4x5 − h3x6 + h2x7 − h1x8)

h3(h1x5 + h2x6 + h3x7 + h4x8) + h1(h3x1 + h4x2 + h1x7 + h2x8)+
h2(h4x5 − h3x6 + h2x7 − h1x8) + h4(h2x1 − h1x2 + h4x7 − h3x8)

h4(h1x5 + h2x6 + h3x7 + h4x8) + h2(h3x1 + h4x2 + h1x7 + h2x8)−
h1(h4x5 − h3x6 + h2x7 − h1x8) − h3(h2x1 − h1x2 + h4x7 − h3x8)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(h2
1 + h2

3 + h2
4 + h2

2) + x2(h1h2 + h3h4 − h4h3 − h2h1)+
x3(h1h3 + h4h2) + x4(h1h4 − h4h1) + x7(h3h1 + h2h4) + x8(h3h2 − h2h3)

x1(h2h1 + h4h3 − h3h4 − h1h2) + x2(h2
2 + h2

4 + h2
3 + h2

1)+
x3(h2h3 − h3h2) + x4(h1h4 + h3h1) + x7(h4h1 − h1h4) + x8(h4h2 + h1h3)

x1(h3h1 + h2h4) + x2(h3h2 − h2h3) + x3(h2
3 + h2

1 + h2
2 + h2

4)+
x4(h3h4 + h1h2 − h2h1 − h4h3) + x5(h1h3 + h4h2) + x6(h1h4 − h4h1)

x1(h4h1 − h1h4) + x2(h4h2 + h1h3) + x3(h4h3 + h2h1 − h1h2 − h3h4)+
x4(h2

4 + h2
2 + h2

1 + h2
3) + x5(h2h3 − h3h2) + x6(h2h4 + h3h1)

x3(h3h1 + h2h4) + x4(h3h2 − h2h3) + x5(h2
3 + h2

1 + h2
2 + h2

4)+
x6(h3h4 + h1h2 − h2h1 − h4h3) + x7(h1h3 + h4h2) + x8(h1h4 − h4h1)

x3(h4h1 − h1h4) + x4(h4h2 + h1h3) + x5(h4h3 + h2h1 − h1h2 − h3h4)+
x6(h2

4 + h2
2 + h2

1 + h2
3) + x7(h2h3 − h3h2) + x8(h2h4 + h3h1)

x5(h3h1 + h2h4) + x6(h3h2 − h2h3) + x7(h2
3 + h2

1 + h2
2 + h2

4)+
x8(h3h4 + h1h2 − h2h1 − h4h3) + x1(h1h3 + h4h2) + x2(h1h4 − h4h1)

x5(h4h1 − h1h4) + x6(h4h2 + h1h3) + x7(h4h3 + h2h1 − h1h2 − h3h4)+
x8(h2

4 + h2
2 + h2

1 + h2
3) + x1(h2h3 − h3h2) + x2(h2h4 + h3h1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6
x7
x8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(4.558)

The last equality comes from the following properties of the filter we use: (i) shifted versions of it
are orthogonal to each other, so h1h3 + h4h2 = 0 (see Equation (4.550)); (ii) the filter weights are
normalised, so that the total energy of the filter is 1, i.e. h2

1 + h2
2 + h2

3 + h2
4 = 1.

Box 4.10 How do we recover the original signal from its wavelet coefficients in practice?

This is done by the fast inverse wavelet transform. To understand how it works, let us examine
the recovery of the original signal from its expansion in Example 4.129. We write here explicitly
the equation ATC = X and place partitions in the reconstruction matrix and in the vector of
coefficients, to differentiate their parts that refer to the wavelet sub-space from the parts that
refer to the scaling sub-space:

(Continued)



�

� �

�

570 4 Non-stationary Grey Texture Images

Box 4.10 (Continued)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1 0 0 h3 h4 0 0 h2
h2 0 0 h4 −h3 0 0 −h1
h3 h1 0 0 h2 h4 0 0
h4 h2 0 0 −h1 −h3 0 0
0 h3 h1 0 0 h2 h4 0
0 h4 h2 0 0 −h1 −h3 0
0 0 h3 h1 0 0 h2 h4
0 0 h4 h2 0 0 −h1 −h3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑤11
𝑤12
𝑤13
𝑤14

s11
s12
s13
s14

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6
x7
x8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.559)

We note, therefore, that the reconstructed signal consists of two components: one obtained by
the left half of the reconstruction matrix operating upon the wavelet coefficients,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1 0 0 h3
h2 0 0 h4
h3 h1 0 0
h4 h2 0 0
0 h3 h1 0
0 h4 h2 0
0 0 h3 h1
0 0 h4 h2

|||||||||||||||||||

⎡⎢⎢⎢⎢⎣
𝑤11
𝑤12
𝑤13
𝑤14

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1𝑤11 + h3𝑤14
h2𝑤11 + h4𝑤14
h3𝑤11 + h1𝑤12
h4𝑤11 + h2𝑤12
h3𝑤12 + h1𝑤13
h4𝑤12 + h2𝑤13
h3𝑤13 + h1𝑤14
h4𝑤13 + h2𝑤14

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.560)

and one obtained by the right half of the reconstruction matrix operating upon the scaling
coefficients:|||||||||||||||||||

h4 0 0 h2
−h3 0 0 −h1

h2 h4 0 0
−h1 −h3 0 0

0 h2 h4 0
0 −h1 −h3 0
0 0 h2 h4
0 0 −h1 −h3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
s11
s12
s13
s14

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h4s11 + h2s14
−h3s11 − h1s14

h2s11 + h4s12
−h1s11 − h3s12

h2s12 + h4s13
−h1s12 − h3s13

h2s13 + h4s14
−h1s13 − h3s14

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.561)

We know (see Book I [75]) that convolution of a signal with a filter may be obtained by creating
a matrix made up from columns formed by the filter placed in successive positions inside a
vector that is the same length as the signal, with the vacant positions filled with 0s. So, we may
perform the operation indicated by (4.560) by convolution, if we notice that in the operation
matrix we have, the filter is placed at every second position, and fill in the missing columns of
the operation matrix with the filter placed at the in-between positions. At the same time, as we
do not want the inserted columns to produce numbers that will interfere with the real result,
we place zeros between the wavelet coefficients, so that the effect of the inserted columns is
annulled:
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1 𝟎 0 𝟎 0 h𝟒 h3 h𝟐
h2 h𝟏 0 𝟎 0 𝟎 h4 h𝟑
h3 h𝟐 h1 𝟎 0 𝟎 0 h𝟒
h4 h𝟑 h2 h𝟏 0 𝟎 0 𝟎
0 h𝟒 h3 h𝟐 h1 𝟎 0 𝟎
0 𝟎 h4 h𝟑 h2 h𝟏 0 𝟎
0 𝟎 0 h𝟒 h3 h𝟐 h1 𝟎
0 𝟎 0 𝟎 h4 h𝟑 h2 h𝟏

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑤11
𝟎
𝑤12
𝟎
𝑤13
𝟎
𝑤14
𝟎

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1𝑤11 + h3𝑤14
h2𝑤11 + h4𝑤14
h3𝑤11 + h1𝑤12
h4𝑤11 + h2𝑤12
h3𝑤12 + h1𝑤13
h4𝑤12 + h2𝑤13
h3𝑤13 + h1𝑤14
h4𝑤13 + h2𝑤14

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.562)

Note that the inserted elements, marked in bold, do not affect the net result, because the
elements of the inserted columns in the matrix are multiplied with the inserted 0s in the
vector. We observe that, because of the wrap-round boundary condition we use, the above
multiplication remains the same if we take the last three columns of the reconstruction matrix
and place them in the front and at the same time we take the last three elements of the wavelet
coefficient vector and place them at the top:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h𝟒 h3 h𝟐 h1 𝟎 0 𝟎 0
𝟎 h4 h𝟑 h2 h𝟏 0 𝟎 0
𝟎 0 h𝟒 h3 h𝟐 h1 𝟎 0
𝟎 0 𝟎 h4 h𝟑 h2 h𝟏 0
𝟎 0 𝟎 0 h𝟒 h3 h𝟐 h1

h𝟏 0 𝟎 0 𝟎 h4 h𝟑 h2
h𝟐 h1 𝟎 0 𝟎 0 h𝟒 h3
h𝟑 h2 h𝟏 0 𝟎 0 𝟎 h4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝟎
𝑤14
𝟎
𝑤11
𝟎
𝑤12
𝟎
𝑤13

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h3𝑤14 + h1𝑤11
h4𝑤14 + h2𝑤11
h3𝑤11 + h1𝑤12
h4𝑤11 + h2𝑤12
h3𝑤12 + h1𝑤13
h4𝑤12 + h2𝑤13
h1𝑤14 + h3𝑤13
h2𝑤14 + h4𝑤13

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.563)

In a similar way, we augment multiplication (4.561):

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h4 𝟎 0 𝟎 0 −h1 h2 −h3
−h3 h𝟒 0 𝟎 0 𝟎 −h1 h𝟐

h2 −h3 h4 𝟎 0 𝟎 0 −h1
−h1 h𝟐 −h3 h𝟒 0 𝟎 0 𝟎

0 −h1 h2 −h3 h4 𝟎 0 𝟎
0 𝟎 −h1 h𝟐 −h3 h𝟒 0 𝟎
0 𝟎 0 −h1 h2 −h3 h4 𝟎
0 𝟎 0 𝟎 −h1 h𝟐 −h3 h𝟒

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s11
𝟎
s12
𝟎
s13
𝟎
s14
𝟎

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h4s11 + h2s14
−h3s11 − h1s14

h2s11 + h4s12
−h1s11 − h3s12

h2s12 + h4s13
−h1s12 − h3s13

h2s13 + h4s14
−h1s13 − h3s14

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.564)

and with the wrapped round rearrangement:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−h1 h2 −h3 h4 𝟎 0 𝟎 0
𝟎 −h1 h𝟐 −h3 h𝟒 0 𝟎 0
𝟎 0 −h1 h2 −h3 h4 𝟎 0
𝟎 0 𝟎 −h1 h𝟐 −h3 h𝟒 0
𝟎 0 𝟎 0 −h1 h2 −h3 h4

h𝟒 0 𝟎 0 𝟎 −h1 h𝟐 −h3
−h3 h4 𝟎 0 𝟎 0 −h1 h2

h𝟐 −h3 h𝟒 0 𝟎 0 𝟎 −h1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝟎
s14
𝟎
s11
𝟎
s12
𝟎
s13

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h2s14 + h4s11
−h1s14 − h3s11

h2s11 + h4s12
−h1s11 − h3s12

h2s12 + h4s13
−h1s12 − h3s13

h4s14 + h2s13
−h3s14 − h1s13

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.565)

By examining expressions (4.563) and (4.565) we may then deduce the following procedure
for recovering the original signal from its tree wavelet expansion with a filter of length M.

(Continued)
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Box 4.10 (Continued)

Step 1: Add zeros after each element of the wavelet coefficients vector of the signal at the
coarsest level of resolution, and after every element of the scaling coefficients vector of the
signal at the same level of resolution.

Step 2: Remove the last M − 1 elements of the augmented vectors you created in the previous
step and place them at the beginning of the corresponding vector.

Step 3: Convolve each vector you created with the corresponding filter. (Note that this is a
proper convolution, not a pseudo-convolution, so the multiplications of the successive sam-
ples have to be done with the weights of the filters read in reverse order.) The result of
convolution at each step is assigned to the position where the first element of the convolv-
ing filter is placed.

Step 4: Add the results of the two convolutions.
Step 5: Treat the result obtained at the previous step as the scaling coefficients vector of the

signal at the next level up, that of the finer resolution. Combine it with the vector of wavelet
coefficients at the same finer resolution level. Use these two vectors to repeat the process
from step 1.

Example B4.130

Recover the original signal from its tree wavelet expansion of Example 4.126.
The initial vectors we have are

w𝟏 = (−2.285, 0.612, 0.742, 0.224)T

w𝟐 = (3.260,−1.344)T

s𝟐 = (3.153,−0.653)T .

We apply the algorithm for l = 2, that is, using vectors w𝟐 and s𝟐:

Step 1: Add zeros after each element:

(3.260, 0,−1.344, 0)T (4.566)

(3.153, 0,−0.653, 0)T . (4.567)

Step 2: Put the last M − 1 elements at the beginning. In this case the filter is four taps long, so
M = 4, and we transfer the last three elements of each sequence at the beginning of the
sequence:

(0,−1.344, 0, 3.260)T (4.568)

(0,−0.653, 0, 3.153)T . (4.569)

Step 3: Convolve the sequences created in step 2 with the wavelet and scaling filter respectively.
This is equivalent to saying: pseudo-convolve the sequences created in step 2 with the reverse
of the wavelet filter and the reverse of the scaling filter respectively. Remember to assign
the computed value to the first position of placement of the convolution filter. The wavelet
filter we used was (0.1294, 0.2241,−0.8365, 0.4830) and the scaling filter we used was
(0.4830, 0.8365, 0.2241,−0.1294).
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The reverse filters are (0.4830,−0.8365, 0.2241, 0.1294) and (−0.1294, 0.2241, 0.8365, 0.4830),
respectively.
The outputs of these pseudo-convolutions are:

(1.546, 0.081,−2.901, 1.273)T (4.570)

(1.377, 2.722, 0.391,−0.954)T . (4.571)

Step 4: Add the results of the two convolutions:

(2.923, 2.803,−2.510, 0.319)T .

Step 5: Treat the result as the scaling coefficients vector for level l = 1:

s𝟏 = (2.923, 2.803,−2.510, 0.319)T .

Next, apply the algorithm again for l = 1, that is, using vectors w𝟏 and s𝟏:

Step 1: Add zeros after each element:

(−2.285, 0, 0.612, 0, 0.742, 0, 0.224, 0)T

(2.923, 0, 2.803, 0,−2.510, 0, 0.319, 0)T .

Step 2: Put the last three elements at the beginning:

(0, 0.224, 0,−2.285, 0, 0.612, 0, 0.742)T

(0, 0.319, 0, 2.923, 0, 2.803, 0,−2.510)T .

Step 3: Convolve the sequences created in step 2 with the wavelet filter and the scaling filter respec-
tively:

(−0.483,−0.404, 1.991,−0.967,−0.416, 0.462,−0.592, 0.409)T

(1.483, 2.404, 2.009, 1.967,−0.584,−2.462,−0.408, 0.591)T.

Step 4: Add the results of the two convolutions:

(1.000, 2.000, 4.000, 1.000,−1.000,−2.000,−1.000, 1.000)T.

Step 5: Treat the result as the scaling coefficients vector at level l = 0:

s0 = (1, 2, 4, 1,−1,−2,−1, 1)T .

This is exactly the original signal of Example 4.126.

Example B4.131

Reconstruct the original signal from its tree wavelet expansion of Example 4.126
without the wavelet coefficients of level l = 2 which are supposed to represent
only noise. Plot the reconstructed signal to show the effect of omitting the wavelet
coefficients of level l = 2 in the reconstruction.
When we wish to reconstruct a signal without its content in a particular frequency band, we
simply set all those coefficients to zero, and apply the same procedure as for the full reconstruction.

(Continued)
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Example B4.131 (Continued)

In this example, this means that steps 1, 2 and 3 of the reconstruction process are identical to steps
1, 2 and 3 of Example 4.130, apart from the fact that sequences (4.566), (4.568) and (4.570) consist
of zeros only. Then sequence s𝟏 of step 5 is identical to sequence (4.571). The remaining steps are
straightforward repetition of the reconstruction algorithm.

The reconstructed signal is:

s0 = (−0.032, 0.871, 3.614, 1.132, 0.383, 0.437,−0.965,−0.440)T. (4.572)

In Figure 4.102 we plot the original and the approximated signal side by side.
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Figure 4.102 (a) Original signal. (b) Reconstructed signal after setting the wavelet coefficients of
level l = 2 to zero.

Example B4.132

Reconstruct the original signal from its tree wavelet expansion of Example 4.126
without the weakest half coefficients, which are supposed to represent noise. Plot
the reconstructed signal.
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Figure 4.103 The signal of Figure 4.102a
reconstructed from only the strongest half
coefficients of the multi-resolution representation of
the original signal.

The four weakest coefficients of the signal are identified by inspecting vectors w𝟏, w𝟐 and s𝟐 of the
expansion of the signal of Example 4.126. They are: s22 = −0.653,𝑤12 = 0.612,𝑤13 = 0.742, and
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𝑤14 = 0.224. We set these coefficients to 0 and then reconstruct the signal. The reconstructed sig-
nal is (1.381, 1.943, 3.913, 0.773,−0.450,−2.187,−0.074, 1.008)T and is plotted in Figure 4.103.
We observe that it looks quite similar to the original signal shown in Figure 4.102a, in spite of the
fact that it was reconstructed from only half the coefficients of the multi-resolution representation
of the original signal.

Example B4.133

Show that if a function is produced by the cross-correlation (pseudo-convolution) of
a signal with a filter, the signal may be recovered if the function is convolved with
the filter, as long as the filter has unit energy at the desired frequencies.
From Example 4.109 we know that if a signal f (t), with Fourier transform F(𝜔), is cross-correlated
with filter h(t), with Fourier transform H(𝜔), to produce function s(𝜏), with Fourier transform
S(𝜔), their Fourier transforms obey:

S(𝜔) = F(𝜔)H∗(𝜔). (4.573)

Let us multiply both sides of this equation with H(𝜔):

S(𝜔)H(𝜔) = F(𝜔)H∗(𝜔)H(𝜔) = F(𝜔)|H(𝜔)|2 ≃ F(𝜔). (4.574)

The last result is because the power of the filter at the frequencies of interest is assumed to be 1.
So, in those frequencies, the signal may be recovered by multiplying the Fourier transforms of the
given function s(𝜏) with the Fourier transform of the filter, point by point and taking the inverse
Fourier transform. However, multiplication in the frequency domain is equivalent to convolution
in the time domain, so from the knowledge of coefficients s(𝜏) one may recover the original signal
by convolution with the filter used to produce the coefficients.

Example B4.134

In view of Equations (4.530), the algorithm in Box 4.10 and Example 4.133, show that
the two scale equations given by (4.526) and (4.528) can be written as

𝜙(t) =
√

2
∑

n
G(n)𝜙(2t − n) (4.575)

𝜓(t) =
√

2
∑

n
H(n)𝜓(2t − n) (4.576)

where G(n) and H(n) are the low pass and the high pass filters that correspond to
the scaling function and the associated mother wavelet. A function that obeys an
equation like Equation (4.575) is called refinable function, while an equation of this
type is known as refinable equation.
First, we have to remember the conclusion we drew from Equations (4.532) that the coefficients
of the expansion of a signal in a space with scaling parameter l + 1 are extracted from the low
pass version of the same signal in the space with scale l. We also remember that this is done by

(Continued)
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Example B4.134 (Continued)

cross-correlating (pseudo-convolving) the low pass version of the signal at scale l with the two
filters we have, in order to produce its scaling and wavelet coefficients at level l + 1. In Example
4.133 we show that the inverse of cross-correlation is convolution. So, the signal at level l may be
recovered from the coefficients at level l + 1 by convolution with the filter used to produce level l + 1
from l in the first place. Then we observe that the right-hand sides of (4.575) and (4.576) represent
convolutions of the scaling or wavelet functions in, say, level l + 1, with the corresponding filters.
Realising then that the sums on the right-hand sides of (4.575) and (4.576) are actually 𝜙l+1,k(2t)
and 𝜓l+1,k(2t), respectively, we appreciate that (4.575) and (4.576) are equivalent to Equations
(4.526) and (4.528), respectively.

How many different wavelet filters exist?

There is no limit on how many wavelet filters one may construct. However, there are a few filters
that are often used in image processing. They are listed in Table 4.6.

Example 4.135

Let us consider a scaling four-tap filter g1, g2, g3, g4 that is appropriate for the wavelet
expansion of a signal. Show that the sum of the filter weights is

√
2, i.e.

∑
igi =

√
2.

Since this filter is appropriate for wavelet analysis, a vector created by shifting it by two positions
to the right should be orthogonal to the original scaling vector. Therefore, its weights must satisfy:

g1g3 + g2g4 = 0 (4.577)

In addition, this filter is used to form a unit vector of expansion, so its norm is 1:

g2
1 + g2

2 + g2
3 + g2

4 = 1. (4.578)

Finally, from this scaling filter we must be able to construct a wavelet filter which must have 0 dc.
The corresponding wavelet filter is g4,−g3, g2,−g1, and it must satisfy:

g4 − g3 + g2 − g1 = 0. (4.579)

If we multiply Equation (4.577) with 2 and add it to Equation (4.578), we obtain:

g2
1 + g2

2 + g2
3 + g4 + 2g1g3 + 2g2g4 = 1 ⇒ (g1 + g3)2 + (g2 + g4)2 = 1. (4.580)

From Equation (4.579) we have that g4 + g2 = g3 + g1. If we use this in (4.580) we obtain:

(g1 + g3)2 + (g2 + g4)2 = 2(g1 + g3)2 = 2(g2 + g4)2 = 1 ⇒ g1 + g3 = g2 + g4 = 1√
2
. (4.581)

Therefore

g1 + g2 + g3 + g4 = 2√
2
=
√

2. (4.582)
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Table 4.6 Some commonly used scaling filters. These filters are appropriate for image
reconstruction. If the filters are to be used for texture feature extraction, all values of the
Haar and Daubechies filters have to be divided by

√
2 so that the sum of the coefficients

of each filter is 1 (see Example 4.135). The reason is that smoothing filters should leave
unaltered a flat signal. This is only possible if

∑
igi = 1. The Coiflet filters already have

values that sum up to 1. From these scaling filters one may easily work out the
corresponding wavelet filters using Equation (4.544)

Haar Daubechies 4 Daubechies 6 Daubechies 8

0.707107 0.482963 0.332671 0.230378
0.707107 0.836516 0.806892 0.714847

0.224144 0.459877 0.630881
−0.129410 −0.135011 −0.027984

−0.085441 −0.187035
0.035226 0.030841

0.032883
−0.010597

Daubechies 20 Coiflet 12 Coiflet 18 Coiflet 24
0.026670 0.011588 −0.002682 0.000631
0.188177 −0.029320 0.005503 −0.001152
0.527201 −0.047640 0.016584 −0.005195
0.688459 0.273021 −0.046508 0.011362
0.281172 0.574682 −0.043221 0.018867

−0.249846 0.294867 0.286503 −0.057464
−0.195946 −0.054086 0.561285 −0.039653

0.127369 −0.042026 0.302984 0.293667
0.093057 0.016744 −0.050770 0.553126

−0.071394 0.003968 −0.058196 0.307157
−0.029458 −0.001289 0.024434 −0.047113

0.033213 −0.000510 0.011229 −0.068038
0.003607 −0.006370 0.027814

−0.010733 Coiflet 6 −0.001820 0.017736
0.001395 −0.051430 0.000790 −0.010756
0.001992 0.238930 0.000330 −0.004001

−0.000686 0.602859 −0.000050 0.002653
−0.000116 0.272141 −0.000024 0.000896

0.000094 −0.051430 −0.000417
−0.000013 −0.011070 −0.000184

0.000044
0.000022

−0.000002
−0.000001
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How may we use wavelets to process images?

Images are two-dimensional signals. So, for an image we may create four different combinations of
a low and a high pass filters: use the low pass filter along both axes, use the high pass filter along
both axes, and use the low pass filter along one axis and the high pass filter along the other axis.
Therefore, at each level of resolution, instead of splitting the signal into two components, we split
the image into four. Further, image processing is all about presenting redundant information in
several different ways, something that adds robustness to the system and at the same time allows
different image characteristics to become obvious by different representations. So, for texture anal-
ysis, we are not interested in image reconstruction from the minimum number of bits, so we do not,
in general, use tree wavelet expansion, but packet wavelet expansion. A schematic representation
of such analysis is shown in Figure 4.104. Packet wavelets allow the option to zoom in on some
high frequencies if we like, by analysing at each level only the band with the highest energy. The
tree we construct this way is called a structure tree. Figure 4.105 shows an example tessellation
of the frequency space which corresponds to the structure tree shown in Figure 4.106.

Image

High−HighLow−Low Low−High High–Low

HH

HLLH

HHHHHHLL

HLLH

LL

HLLH

LL

HLLH

LL

Figure 4.104 The packet wavelet representation of an image.

ωx

ωy

Figure 4.105 The tessellation of the frequency
space that corresponds to the structure tree of
Figure 4.106. The increasing darkness of the grey
shade used to identify the analysed bands
corresponds to the increasing level of zooming in.
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E = 82 × 105 E = 179 × 105

E = 33 × 104 E = 86 × 104 E = 36 × 104 E = 69 × 104

E = 13 × 105 E = 44 × 105 E = 6 × 105 E = 26 × 105

E = 24 × 105 E = 50 × 105

E = 78 × 106 E = 43 × 106 E = 12 × 106 E = 8 × 106

Original image

LL LH HL HH

LL LH HL HH

HL HHLL LH

HHHLLHLL

Figure 4.106 Zooming into a frequency band with the packet wavelet transform may be achieved by
preferentially expanding a chosen band at each level of resolution. We usually choose the band with the
most energy. The energy of a band is computed by adding the squares of the values of the individual pixels.

Example 4.136

The image of Figure 4.81 is 255 × 255 in size. Consider its 256 × 256 version and con-
struct its tree wavelet representation for three levels of resolution, using the four-tap
wavelet filter of Table 4.6.
First we pseudo-convolve the image in one direction with low pass filter (0.4830, 0.8365, 0.2241,
−0.1294), and the result with the same filter in the other direction, assigning the output of each
convolution step to the first position of the filter each time. (This clearly creates a shift of the
whole image, but we do it here just to be consistent with the concepts we developed for 1D sig-
nals. In general, we assign the output to one of the two central pixels of the filter.) Then we
remove from the output every second line and every second column, to produce the LL band for
level 1. If we pseudo-convolve with filter (0.1294, 0.2241,−0.8365, 0.4830) in the second direc-
tion and sub-sample in the same way, we shall produce band LH for level 1. To produce band
HL we use the two filters in reverse order, and to produce band HH we use the high pass filter
(0.1294, 0.2241,−0.8365, 0.4830) in both directions.

We repeat the process using as input image band LL to produce in the same way the corre-
sponding bands for level 2, and then again for level 3. The final result is shown in Figure 4.107.

(Continued)
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Example 4.136 (Continued)

Original image

HHHLLHLL

LL LH HL HH

HHHLLHLL

Figure 4.107 Tree wavelet representation of the image shown in Figure 4.81.

Example 4.137

Consider the image of Figure 4.81 and construct its packet wavelet representation for
two levels of resolution, using the four-tap wavelet filter of Table 4.6.

Original image

HHHLLHLL

LH

LL

HL

HH

LH

LL

HL

HH

LH

LL

HL

HH

LH

LL

HL

HH

Figure 4.108 Packet wavelet representation of the image shown in Figure 4.81.
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The only difference between this case and the previous one is that here we also expand bands LH,
HL and HH in addition to expanding band LL. The results are shown in Figure 4.108.

Example 4.138

Construct the structure tree for the image of Figure 3.1f for four levels of analysis and
show the corresponding tessellation of the frequency space.
Figure 4.109 shows the structure tree. The number under each band is the corresponding energy
of the band.

The tessellation of the frequency space is shown in Figure 4.110.

E = 15 × 103

E = 18 × 106

E = 23 × 105 E = 18 × 105 E = 20 × 105 E = 13 × 105

E = 20 × 104 E = 29 × 104 E = 31 × 104 E = 40 × 104

E = 39 × 103 E = 28 × 103 E = 182 × 103

Original image

HL HHLL LH

E = 4 × 106

LH HL HHLL

LH HL HHLL

HHHLLHLL

E = 6 × 106 E = 1 × 106

Figure 4.109 The structure tree for the texture image fabric 2.

Figure 4.110 The tessellation of the frequency
space that corresponds to the structure tree of
Figure 4.109.

ωx

ωy
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How may we use wavelets to construct texture features?

First we use the wavelet and scaling filters to construct the structure tree of the image. So that all
bands produced this way have the same size as the original image, we do not perform sub-sampling
for the bands we retain, and we perform four-fold sub-sampling and interlacing for the bands we
split. Sub-sampling in 2D would have meant that only a quarter of the original pixels are kept, since
every second row and every second column of the original grid is omitted. However, this way, there
is an asymmetry with which the samples are treated. Why should we keep every first sample and
discard every second and not vice versa? Four-fold sub-sampling and interlacing restores parity
among the pixels. This is the so-called maximum overlap algorithm. So in this approach there is
a large amount of redundancy built in. One crucial point is to be able to decide the number of levels
of resolution we must use. This is usually data-driven. For example, a threshold might be chosen,
and all bands with energy higher than the threshold are split further.

Just as in the case of Gabor coefficients, the wavelet coefficients are not used as texture fea-
tures because they exhibit great variability within the same texture. Features are extracted from
the wavelet coefficients by using the local energy value.

What is the maximum overlap algorithm?

Figure 4.111 shows the steps of this algorithm for up to three levels of analysis. If only one level
of analysis is used, the process is trivial: we filter the original image to produce the four bands LL,
LH, HL and HH and without sub-sampling them we exit the algorithm.

If two levels of analysis are used, we follow these steps.

Step 1: Filter the original image to produce bands LL, LH, HL and HH.
Step 2: Choose the band with the maximum energy for further analysis and output the remaining

three bands. Let us say that the chosen band is band XX.
Step 3: Sub-sample XX in four different ways to produce XX1, XX2, XX3 and XX4, each a quarter

the size of the original image.
Step 4: Process each of these four bands with the two filters, so from each one of them you pro-

duce four bands. Call them bands XX1LL, XX1LH, XX1HL, XX1HH, XX2LL, XX2LH, XX2HL,
XX2HH, XX3LL, XX3LH, etc.

Step 5: Interlace bands XX1LL, XX2LL, XX3LL and XX4LL to produce band XXLL which has the
same size as the original image. Also, interlace bands XX1LH, XX2LH, XX3LH and XX4LH to
produce band XXLH, and so on, to produce bands XXHL and XXHH.

This algorithm is schematically shown in Figure 4.112.
For three levels of analysis, one has to perform all 16 combinations of two-stage sub-sampling

and interlacing. However, in practice one may implement this algorithm in a much more efficient
way. See Examples 4.139–4.145 for that.



�

� �

�

4.5 Wavelets 583
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out 1 level of
analysis
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interlace
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)
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4 4
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16 bands
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Figure 4.111 Three levels of analysis with the maximum overlap algorithm. The analyses up to one, two
or three levels of resolution are identified within frames drawn with different styles of line.
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Bands in level 2 produced by interlacing

A band
in level 1

subsamplingsubsampling

sub... sub...

filtering filtering filtering filtering

interlacing

LL

HL HH HHHHHH

LL LL

HL HL HL

LL2 LH2 HL2 HH2

LLLH LH LHLH

Figure 4.112 At the top, a band that has to be analysed. It is sub-sampled in four different ways, with each
sub-sampled band made up from the pixels marked with the same symbol in the top band. Each
sub-sampled band is processed by the low and high pass wavelet filters. The corresponding bands produced
by the four sub-sampled bands are interleaved to produce the bands for the next level of analysis, which
have the same size as the original band.

Example 4.139

Use the maximum overlap algorithm to produce features for the image of Figure 4.81.
As we did in all previous examples of texture analysis, the mean value of the image is removed
before the analysis starts, i.e. the image has 0 value for 0 frequency. We use the Daubechies 4 and
Daubechies 20 scaling filters of Table 4.6. First, we construct the maximum overlap structure tree
of this image which for filter Daubechies 4 is shown in Figure 4.113. In this figure the values of
each channel were scaled independently to the range [0,255] for better visualisation. The energy
of each band is given under it. We can see that for this image the band with the maximum energy
for both levels of resolution happens to be the LL band. This indicates that the image has strong
low-frequency components.
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Next, we compute the local energy for each pixel in each band. To do this we may either use
a square flat window and find the straight average of the squared values of the wavelet coef-
ficients inside the window, or use a Gaussian window. When we use a Gaussian window care
should be taken so that its weights sum up to 1. The standard deviation of the Gaussian is cho-
sen so that its weights at the edges of the window are reasonably close to 0. Then we use those
weights to compute the weighted average of the squared values of the wavelet coefficients inside the
window.

In either case, the value we compute is assigned to the central pixel of the window and it serves
as an estimate of the local energy of the image at the particular band, in the vicinity of that pixel.
The values of these local energies of the same pixel across the different bands constitute the feature
vector of the pixel.

By considering the various filtered outputs we created and various ways of estimating the local
energy, we may produce various trees of features for this image.

An example of such a tree of features is shown in Figure 4.114 for filter Daubechies 20 and
a Gaussian averaging window of size 25 × 25. Here each band was scaled independently to the
range [0,255] for better visualisation.

E = 53 × 105

E = 10 × 105

E = 17 × 106 E = 52 × 105

E = 42 × 106 E = 12 × 106 E = 54 × 105 E = 77 × 105

LL

Original image

LH HL HH

LL LH HL HH

LH HL HHLL

E = 65 × 106 E = 98 × 105 E = 21 × 105

E = 53 × 106

Figure 4.113 Maximum overlap structure tree of the image shown in Figure 4.81, constructed using
filter Daubechies 4.

(Continued)
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Example 4.139 (Continued)

E = 54 × 105E = 11 × 105E = 74 × 105E = 67 × 105

E = 50 × 105E = 48 × 105E = 18 × 106E = 54 × 106

E = 86 × 105E = 55 × 105E = 12 × 106E = 43 × 106

LL

Original image

LH HL HH

LL LH HL HH

LL LH HL HH

Figure 4.114 Averaged energies of the coefficients of the maximum overlap analysis with filter
Daubechies 20 of the image in Figure 4.81a.

Example B4.140

Can you perform the process of sub-sampling by a factor of 2, by multiplying an image
with a matrix?
Let us say that an image B is of size N × N. Its sub-sampled version by a factor of 2 will be an
image of size N∕2 × N∕2. It is not possible to perform sub-sampling by simply multiplying image
B with a matrix, because such a matrix should be of size N∕2 × N in order to be appropriate
for multiplication with B, and it will produce a result also of size N∕2 × N, not the desirable
N∕2 × N∕2. To reduce both dimensions of matrix B, we must multiply it from both sides, left and
right with matrices of size N∕2 × N and N × N∕2, respectively.

Example B4.141

For an 8 × 8 image construct appropriate matrices which, when used to multiply the
original image from left and right, will sub-sample it by a factor of 2 in four differ-
ent ways.
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Let us say that the original image is:

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11 b12 b13 b14 b15 b16 b17 b18
b21 b22 b23 b24 b25 b26 b27 b28
b31 b32 b33 b34 b35 b36 b37 b38
b41 b42 b43 b44 b45 b46 b47 b48
b51 b52 b53 b54 b55 b56 b57 b58
b61 b62 b63 b64 b65 b66 b67 b68
b71 b72 b73 b74 b75 b76 b77 b78
b81 b82 b83 b84 b85 b86 b87 b88

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.583)

The four sub-sampled versions of this image are:

B1 =

⎡⎢⎢⎢⎢⎣
b11 b13 b15 b17
b31 b33 b35 b37
b51 b53 b55 b57
b71 b73 b75 b77

⎤⎥⎥⎥⎥⎦
B2 =

⎡⎢⎢⎢⎢⎣
b12 b14 b16 b18
b32 b34 b36 b38
b52 b54 b56 b58
b72 b74 b76 b78

⎤⎥⎥⎥⎥⎦
B3 =

⎡⎢⎢⎢⎢⎣
b21 b23 b25 b27
b41 b43 b45 b47
b61 b63 b65 b67
b81 b83 b85 b87

⎤⎥⎥⎥⎥⎦
B4 =

⎡⎢⎢⎢⎢⎣
b22 b24 b26 b28
b42 b44 b46 b48
b62 b64 b66 b68
b82 b84 b86 b88

⎤⎥⎥⎥⎥⎦
. (4.584)

Let us define two matrices Sa and Sb as follows:

Sa ≡
⎡⎢⎢⎢⎢⎣
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎦
Sb ≡

⎡⎢⎢⎢⎢⎣
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎦
. (4.585)

We may easily verify then that:

B1 = SaBST
a B2 = SaBST

b B3 = SbBST
a B4 = SbBST

b . (4.586)

Example B4.142

Write down a formula that will allow you to reconstruct image B of Example 4.141
from its sub-sampled versions, with the help of matrices (4.585).
By simple inspection, we can verify that the upsampling formula is:

B = ST
a B1Sa + ST

a B2Sb + ST
b B3Sa + ST

b B4Sb. (4.587)

Example B4.143

Write down two matrices that can be used to filter a 4 × 4 image with a low pass filter
(g1, g2) and a high pass filter (h1, h2) and produce the LL, LH, HL and HH versions of it.

(Continued)
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Example B4.143 (Continued)

We create the matrices we need by writing the scaling and wavelet vectors of size 1 × 4 one under
the other:

G =

⎡⎢⎢⎢⎢⎣
g1 g2 0 0
0 g1 g2 0
0 0 g1 g2
g2 0 0 g1

⎤⎥⎥⎥⎥⎦
H =

⎡⎢⎢⎢⎢⎣
h1 h2 0 0
0 h1 h2 0
0 0 h1 h2

h2 0 0 h1

⎤⎥⎥⎥⎥⎦
. (4.588)

We may easily then verify that the LL, LH, HL and HH bands of a 4 × 4 image A may be pro-
duced by operating upon A from left and right with combinations of matrices G and H and their
transpositions:

ALL = GAGT ALH = GAHT AHL = HAGT AHH = HAHT . (4.589)

Example B4.144

Using the results of Examples 4.141–4.143, write down matrix formulae that express
the sequence of four-fold sub-sampling of an 8 × 8 matrix B, its four-band filtering
and the subsequent interlacing to produce matrices in bands LL, LH, HL and HH of
the same size as the original image B.
We have first to sub-sample matrix B to produce matrices B1, B2, B3 and B4 as shown in Example
4.141. Each one of these matrices is of size 4 × 4, and it may be filtered with matrices G and H of
Example 4.143 to produce the following matrices:

B1LL = GB1GT = GSaBST
a GT

B1LH = GB1HT = GSaBST
a HT

B1HL = HB1GT = HSaBST
a GT

B1HH = HB1HT = HSaBST
a HT (4.590)

B2LL = GB2GT = GSaBST
b GT

B2LH = GB2HT = GSaBST
b HT

B2HL = HB2GT = HSaBST
b GT

B2HH = HB2HT = HSaBST
b HT (4.591)

B3LL = GB3GT = GSbBST
a GT

B3LH = GB3HT = GSbBST
a HT

B3HL = HB3GT = HSbBST
a GT

B3HH = HB3HT = HSbBST
a HT (4.592)

B4LL = GB4GT = GSbBST
b GT

B4LH = GB4HT = GSbBST
b HT
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B4HL = HB4GT = HSbBST
b GT

B4HH = HB4HT = HSbBST
b HT . (4.593)

The next step is to interlace the corresponding matrices to create matrices of size 8 × 8. We do that
by using the formula of Example 4.142:

BLL = ST
a B1LLSa + ST

a B2LLSb + ST
b B3LLSa + ST

b B4LLSb

= ST
a GSaBST

a GTSa + ST
a GSaBST

b GTSb +
ST

b GSbBST
a GTSa + ST

b GSbBST
b GTSb

= (ST
a GSa)B(ST

a GSa)T + (ST
a GSa)B(ST

b GSb)T +
(ST

b GSb)B(ST
a GSa)T + (ST

b GSb)B(ST
b GSb)T

BLH = ST
a B1LHSa + ST

a B2LHSb + ST
b B3LHSa + ST

b B4LHSb

= ST
a GSaBST

a HTSa + ST
a GSaBST

b HTSb +
ST

b GSbBST
a HTSa + ST

b GSbBST
b HTSb

= (ST
a GSa)B(ST

a HSa)T + (ST
a GSa)B(ST

b HSb)T +
(ST

b GSb)B(ST
a HSa)T + (ST

b GSb)B(ST
b GSb)T

BHL = ST
a B1HLSa + ST

a B2HLSb + ST
b B3HLSa + ST

b B4HLSb

= ST
a HSaBST

a GTSa + ST
a HSaBST

b GTSb +
ST

b HSbBST
a GTSa + ST

b HSbBST
b GTSb

= (ST
a HSa)B(ST

a GSa)T + (ST
a HSa)B(ST

b GSb)T +
(ST

b HSb)B(ST
a GSa)T + (ST

b HSb)B(ST
b GSb)T

BHH = ST
a B1HHSa + ST

a B2HHSb + ST
b B3HHSa + ST

b B4HHSb

= ST
a HSaBST

a HTSa + ST
a HSaBST

b HTSb +
ST

b HSbBST
a HTSa + ST

b HSbBST
b HTSb

= (ST
a HSa)B(ST

a HSa)T + (ST
a HSa)B(ST

b HSb)T +
(ST

b HSb)B(ST
a HSa)T + (ST

b HSb)B(ST
b HSb)T . (4.594)

We see that in order to perform sub-sampling, filtering and interlacing, we must operate on the
original matrix B from left and right with combinations of only four distinct matrices:

G̃1 ≡ ST
a GSa G̃2 ≡ ST

b GSb

H̃1 ≡ ST
a HSa H̃2 ≡ ST

b HSb. (4.595)

By direct substitution from the definitions of matrices G, H, Sa and Sb, we can easily work out
matrices G̃1, G̃2, H̃1 and H̃2. We simply derive here the result for matrix G̃1:

G̃1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
g1 g2 0 0
0 g1 g2 0
0 0 g1 g2
g2 0 0 g1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎦

(Continued)
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Example B4.144 (Continued)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
g1 0 g2 0 0 0 0 0
0 0 g1 0 g2 0 0 0
0 0 0 0 g1 0 g2 0
g2 0 0 0 0 0 g1 0

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1 0 g2 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 g1 0 g2 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 g1 0 g2 0
0 0 0 0 0 0 0 0
g2 0 0 0 0 0 g1 0
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.596)

Example B4.145

Use the results of Example 4.144 to show how the maximum overlap algorithm may
be applied in practice.

We can see from the formula of matrix G̃1 and the corresponding formulae for G̃2, H̃1 and
H̃2 (which are not shown in Example 4.144), that the steps of sub-sampling and filtering may
be performed by convolving the original image with the scaling and wavelet filters we are using,
padded with 0s so they pick up the pixels that are at the desired positions according to the type
of desired sub-sampling each time. The results of the four-fold sub-samplings will simply then
have to be added to produce the bands we require. So, although the maximum overlap algorithm
appears at first sight to require a lot of storage space to maintain all possible combinations of
sub-samplings at all levels, in practice it can be performed efficiently by using sparse convolution
filters. Such filters may be thought of as having “holes”, so such algorithms are called à trous
algorithms, which in French means “with holes”.

Example 4.146

Construct the maximum overlap structure tree for the image of Figure 3.1c for four
levels of analysis.
This maximum overlap structure tree is shown in Figure 4.115.
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E = 39 × 106 E = 38 × 106

E = 81 × 106 E = 29 × 106E = 44 × 106 E = 33 × 106

E = 40 × 106 E = 27 × 106

E = 30 × 106 E = 13 × 106 E = 37 × 106

E = 15 × 106 E = 23 × 106

LL

Original image

LH HL HH

LL LH HL HH

LH HL HHLL

LH HL

E = 39 × 106

HHLL

E = 8 × 106

E = 9 × 106

Figure 4.115 The maximum overlap structure tree for the texture image food. The number under
each band is the corresponding energy of the band.

Example 4.147

Use the structure tree constructed in Example 4.146 to construct the tessellation of
the frequency domain of Figure 3.1c and in it identify the band with the maximum
energy.
Figure 4.116 shows the tessellation of the frequency domain and the grey squares identify the
band with the maximum energy.

(Continued)
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Example 4.147 (Continued)

ωx

ωy
Figure 4.116 The tessellation of the frequency
space that corresponds to the structure tree of
Figure 4.115. The leftmost leaf of the bottom level
of the tree has the most energy at that level and it
corresponds to the shaded bands identified in this
diagram.

What is the relationship between Gabor functions and wavelets?

Both these approaches try to answer the question “what is where” in an image. Each of them con-
siders the whole answer space (which is the spatio-frequency four-dimensional domain with two
spatial axes and two frequency axes) and creates a basis in terms of which any answer to the above
question may be expressed as a linear combination of them.

The Gabor basis functions are generated by modulation and translation of the Gaussian func-
tion. The spatial dispersion and bandwidth of these functions are constant and independent of the
modulation and translation parameters. This is shown schematically in Figure 4.117 for 1D signals
(for which the answer space to the question “what is where” is 2D only). Figure 4.118 shows some
of these functions for an 1D signal.

The wavelet basis is created by scaling and translating the mother wavelet and the scaling
function. The time dispersion and bandwidth of the wavelet functions are not constant, but one may

ω 3

2 Δt

2 Δω

ω 2

ω 1

0 τ 1 τ 2 τ 3

ω

τ

Figure 4.117 Time–frequency space showing schematically the resolution cells for Gabor functions. Each
resolution cell is an elementary answer to the fundamental question “what is where” in the signal. Any
answer concerning any signal of the same size may be expressed as a linear superposition of these
elementary answers.
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Figure 4.118 Gabor basis functions in the time and frequency domains for 𝜔0 = 1, 𝜔0 = 2, and 𝜔0 = 3. The
different modulations of the Gaussian function shift its frequency bands, but they do not change their
bandwidths.

be increased at the expense of the other. Figure 4.119 shows schematically the resolution cells in
terms of which a wavelet basis expands the answer to the question “what is where” for an 1D signal.
Some elementary wavelet functions are shown in Figure 4.120. Figure 4.119 should be compared
with Figure 4.117 and Figure 4.120 should be compared with Figure 4.118.

The basis created by the Gabor functions is not orthogonal, i.e. each of the elementary answers
to the question “what is where” is not orthogonal to all other possible answers, and in a sense it
contains part of the other answers too. If we choose the widths of the bands we use to tessellate the
frequency space to be equal to the bandwidths of the Gaussian filters we use, there is significant
leakage between the different bands. In practice, however, we tessellate first the frequency space
in the bands we want, and then we choose the standard deviations of the Gaussian windows so
that the value of a Gaussian tail that enters in the neighbouring band is about half the peak value
of the Gaussian. This still causes significant leakage. On the contrary, the basis in terms of which
wavelets express the answer to the question “what is where” is designed to be orthogonal.

Figure 4.119 Time–frequency space showing
schematically the resolution cells for a wavelet
function for an 1D signal. Each resolution cell is
an elementary answer to the fundamental
question “what is where” in the signal. Any
answer concerning any signal of the same size
can be expressed as a linear superposition of
these elementary answers. In reality the cells
are chosen so that they tile the whole space
without gaps. Here they are shown sparsely
placed for clarity.

τ1 τ2
0

2

0

0

4 ω

2 ω

ω

0

τ

ω



�

� �

�

594 4 Non-stationary Grey Texture Images

a=2

a=1

a=0.5

si
g
n
al

sample

a=2

a=1

a=0.5

F
T

 o
f 

si
g
n
al

frequency

Time domain Frequency domain

Figure 4.120 Some wavelet basis functions in the time and frequency domains. The different scalings of
the original function shift its frequency bands and also change their bandwidths.

4.6 The Dual Tree Complex Wavelet Transform

What is the dual tree complex wavelet transform?

The dual tree complex wavelet transform is the expansion of a signal using two different wavelet
bases, one of which is approximately the Hilbert pair of the other (see the section What is a Hilbert
transform pair?).

Why was the dual tree complex wavelet transform developed?

It was developed in order to solve two drawbacks of the wavelet expansions:

(i) The wavelet coefficients are not shift invariant (see Examples 4.148 and 4.149).
(ii) In 2D the wavelets are not very good in orientation selection. For example, in Figure 4.110 we

can see that working with real wavelets we picked up features in the image that manifest them-
selves in the highlighted bands. However, we cannot tell whether these features are orientated
along the 45∘–225∘ axis or along the 135∘–315∘ axis, since the four highlighted bands express
such features jointly.

The latter problem can be overcome if we use prolate spheroidal sequence expansions that allow
the use of complex filters, which respond only to positive or only to negative frequencies, and thus
have good orientation selectivity (see the section Is it possible to have a window with sharp edges
in one domain which has minimal side ripples in the other domain? and Figures 4.79 and 4.80).
However, prolate spheroidal sequence expansions do not have the property of perfect reconstruc-
tion required in some signal processing applications. If we are only interested in extracting features
useful for texture segmentation, we are not interested in that property and we might as well stick
to the use of prolate spheroidal sequence expansions.

Example 4.148

Consider the pulse signals:

s1 = (0, 0, 1, 1, 1, 0, 0, 0)
s2 = (0, 0, 0, 0, 1, 1, 1, 0).
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Consider also the Haar wavelet basis formed by keeping only the first, third, fifth
and seventh wavelet functions shown in (4.488). Project the two signals on this basis
and compare the two outputs. Are the computed wavelet coefficients the same irre-
spective of where the pulse of the signal is? Consider also the wavelet basis formed
by keeping the second, fourth and sixth of the wavelet vectors shown in (4.488), with
the addition of vector:(

1√
2
, 0, 0, 0, 0, 0, 0,− 1√

2

)
.

Does the result change?

Projecting s𝟏 on the first wavelet basis we obtain:
(

0, 0,− 1√
2
, 0
)

.

Projecting s𝟐 on the first wavelet basis we obtain:
(

0, 0, 0,− 1√
2

)
.

Projecting s𝟏 on the second wavelet basis we obtain:
(

1√
2
, 0, 0, 0

)
.

Projecting s𝟐 on the second wavelet basis we obtain:
(

0, 1√
2
, 0, 0

)
.

We observe that once the wavelet basis is fixed, the wavelet coefficients have the same value at
the locality of the signal pulse, even if the pulse is shifted. When we change basis the result changes
because the non-overlapping segments with which we cover the time axis of the signal are differ-
ent, and so the pulse is marked in shifted localities by the two bases. Nevertheless, the value with
which the presence of the pulse is indicated is the same irrespective of the location of the pulse. We
may say, therefore, that in this case, the wavelet we used exhibits the property of shift-invariance.

Example 4.149

Consider the following signals which contain the same pulse, but in slightly shifted
positions:

s1 = (0, 0, 0, 1, 1, 0, 0, 0)
s2 = (0, 0, 0, 0, 0, 1, 1, 0)
s3 = (0, 0, 0, 0, 1, 1, 0, 0).

Compute the first level wavelet coefficients for each signal using the Daubechies 4
wavelet filter, listed in Table 4.6. Are the values of the wavelet coefficients in response
to the presence of the pulse the same, irrespective of where the pulse is?

The filter given in Table 4.6 is the scaling filter: (0.483, 0.8365, 0.2241,−0.1294). From (4.544)
we know that we can construct the wavelet filter from the scaling filter by reading the elements
back to front and changing the sign of every first element. So, the Daubechies 4 wavelet filter is
(0.1294, 0.2241,−0.8365, 0.483). By assuming that each signal repeats itself along both directions
and performing pseudo-convolution of the signals with this filter, while assigning the result to the
first sample covered by the filter each time, we obtain:

o𝟏 = (0.483,−0.3535,−0.6124, 0.3535, 0.1294, 0, 0, 0)
o𝟐 = (0, 0, 0.483,−0.3535,−0.6124, 0.3535, 0.1294, 0)
o𝟑 = (0, 0.483,−0.3535,−0.6124, 0.3535, 0.1294, 0, 0).

(Continued)
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Example 4.149 (Continued)

After decimation, we obtain the wavelet coefficients for each signal:

𝑤1 = (0.483,−0.6124, 0.1294, 0)
𝑤2 = (0, 0.483,−0.6124, 0.1294)
𝑤3 = (0,−0.3535, 0.3535, 0).

In Figure 4.121 we plot two of the signals and the corresponding outputs of the convolution, as
well as the wavelet coefficients.

s1

s3

o1

o3

1

3

(c)(b)(a)

si
gn

al
si

gn
al

time

time

sample

sample

sample

sample

w

w

Figure 4.121 (a) A signal containing a pulse and its shifted version by one sample. (b) The outputs of
the pseudo-convolutions of the signal with the Daubechies 4 wavelet filter. Note that the shape of the
non-zero part of each output is the same, irrespective of the shifting of the pulse. So, we have shift
invariance of the computed projection values. (c) The wavelet coefficients after removing every second
sample of the output of the pseudo-convolution. The shift invariance has been lost.

We note that, depending on the amount by which the pulse is shifted, we may get the same or
different wavelet coefficients for the same pulse. So, in this case the wavelet coefficients we get are
not shift-invariant. On the contrary, if we were not decimating the pseudo-convolution outputs,
we would have identical values irrespective of the shifting of the pulse. Not decimating the outputs
is equivalent to projecting the signal on the over-complete basis made up by the following vectors:

(0.1294, 0.2241,−0.8365, 0.483, 0, 0, 0, 0)
(0, 0.1294, 0.2241,−0.8365, 0.483, 0, 0, 0)
(0, 0, 0.1294, 0.2241,−0.8365, 0.483, 0, 0)
(0, 0, 0, 0.1294, 0.2241,−0.8365, 0.483, 0)
(0, 0, 0, 0, 0.1294, 0.2241,−0.8365, 0.483)
(0.483, 0, 0, 0, 0, 0.1294, 0.2241,−0.8365)
(−0.8365, 0.483, 0, 0, 0, 0, 0.1294, 0.2241)
(0.2241,−0.8365, 0.483, 0, 0, 0, 0, 0.1294).

How do we select the filters used by the dual tree complex wavelet transform?

The corresponding filters of the two wavelet bases have to constitute Hilbert pairs. This is impossi-
ble to achieve, as designing such filters requires the satisfaction of many constraints:
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(i) The filters of the same wavelet basis have to be quadrature mirror filters so perfect recon-
struction of the original signal, from the knowledge of its wavelet and scaling coefficients, is
achievable.

(ii) The wavelet filters selected have to obey the admissibility condition (see Box 4.8).
(iii) The corresponding filters of the two different wavelet bases have to be Hilbert pairs. It turns

out that these conditions can only approximately be satisfied simultaneously.

How can we select two wavelet filters that form a Hilbert transform pair?

It can be shown that one filter should be shifted by half a sample with respect to the other
(see Box 4.11). This is not possible in the digital domain, so approximations are used in practice.

Example 4.150

You are given the scaling four-tap filter h0 = (𝛼0, 𝛼1, 𝛼2, 𝛼3), with the index n that iden-
tifies the individual elements of the filter taking values −2,−1, 0, 1. The shifted by 2k
versions of this filter are orthogonal to each other:∑

n
h0(n)h0(n + 2k) = 𝛿(k). (4.597)

Derive the relationships scalars 𝛼i have to obey for this to be correct.
For k = 0, we have:

𝛼2
0 + 𝛼

2
1 + 𝛼

2
2 + 𝛼

2
3 = 1. (4.598)

For k = 1 we have:

h0(−2)h0(0) + h0(−1)h0(1) + h0(0)h0(2) + h0(1)h0(3) = 0
⇒ 𝛼0𝛼2 + 𝛼1𝛼3 + 𝛼2𝛼0 + 𝛼3𝛼1 = 0

⇒ 𝛼0𝛼2 + 𝛼1𝛼3 = 0. (4.599)

Example 4.151

Construct the corresponding wavelet filter h1 from the scaling filter h0 of Example
4.150, using Equation (4.541).
The formula is applied using M = 4 and p = 1,… , 4 to identify the elements of each filter. We
work out that: h1 = (−𝛼3, 𝛼2,−𝛼1, 𝛼0).

Example B4.152

The z-transform of a digital signal h(n) is defined as:

H(z) ≡
∞∑

n=−∞
h(n)zn. (4.600)

(Continued)
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Example B4.152 (Continued)

Show that the z-transforms of the filters h1 and h0 of Examples 4.151 and 4.150,
respectively, obey the equations:

H0(z)H0

(
1
z

)
+ H0(−z)H0

(
−1

z

)
= 2

H1(z) =
1
z

H0

(
−1

z

)
. (4.601)

Index n for these filters ranges from −2 to 1. Then, by applying formula (4.600), we obtain:

H0(z) =
𝛼0

z2 +
𝛼1

z
+ 𝛼2 + 𝛼3z

H0

(
−1

z

)
= z2𝛼0 − z𝛼1 + 𝛼2 −

𝛼3

z

H1(z) = −
𝛼3

z2 +
𝛼2

z
− 𝛼1 + 𝛼0z. (4.602)

Then, by direct substitution into (4.601), and by making use of (4.598) and (4.599), we can see
that Equations (4.601) are valid.

Example B4.153

When we know the z-transform H(z) of a digital signal h(n), its frequency response
Ĥ(𝜔) is given by H(ej𝜔). Starting from the second of equations (4.601), show
that:

Ĥ1(𝜔) = e−j𝜔Ĥ∗
0 (𝜔 − π). (4.603)

If we substitute z = ej𝜔 in the second of Equations (4.601), we obtain:

H1(ej𝜔) = e−j𝜔H0(−e−j𝜔)
⇒ Ĥ1(𝜔) = e−j𝜔H0(ejπe−j𝜔)

= e−j𝜔H0(e−j(𝜔−π))
= e−j𝜔H∗

0 (e
j(𝜔−π))

= e−j𝜔Ĥ∗
0 (𝜔 − π). (4.604)

Example B4.154

For the filters h1 and h0 of Examples 4.151 and 4.150, respectively, verify Equation
(4.603).
By substituting z = ej𝜔 into equations (4.602), we obtain:

Ĥ0(𝜔) = 𝛼0e−j2𝜔 + 𝛼1e−j𝜔 + 𝛼2 + 𝛼3ej𝜔

Ĥ1(𝜔) = −𝛼3e−j2𝜔 + 𝛼2e−j𝜔 − 𝛼1 + 𝛼0ej𝜔. (4.605)
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Then:

Ĥ0(𝜔 − π) = 𝛼0e−j2𝜔 ej2π
⏟⏟⏟

=1

+ 𝛼1e−j𝜔 ejπ
⏟⏟⏟

=−1

+ 𝛼2 + 𝛼3ej𝜔 e−jπ
⏟⏟⏟

=−1

⇒ Ĥ∗
0 (𝜔 − π) = 𝛼0ej2𝜔 + 𝛼1ej𝜔 + 𝛼2 + 𝛼3e−j𝜔. (4.606)

By substituting then from (4.606) and the second of Equations (4.605) into (4.603), we can verify
the latter.

Example 4.155

Plot the magnitude frequency responses of the quadrature mirror filters:

h0(n) = (1, 2, 3, 3, 2, 1) h1(n) = (−1, 2,−3, 3,−2, 1) for n = 0,… , 5.. (4.607)

These filters have even length, so the centre of each filter is in between its two central elements,
which are shifted by 0.5 away from the nearest integer position. If N is the number of elements,
the first N∕2 elements correspond to negative values of the indices, with the sampling points
placed at locations −0.5,−1.5,… ,−N∕2 + 0.5. The second N∕2 samples are at locations
0.5, 1.5,… ,N∕2 − 0.5. The DFT of such a filter is given by:

H(k) =
N−1∑
n=0

h(n)e−j 2π
N

(
n− N−1

2

)
k
. (4.608)

In this example N = 6. The DFTs of the two filters are:

H0(k) =
5∑

n=0
h0(n)e

−j 2π
6
(n−2.5)k

= 1 × e−j 2π
6
(−2.5)k + 2 × e−j 2π

6
(−1.5)k + 3 × e−j 2π

6
(−0.5)k

+3 × e−j 2π
6

0.5k + 2 × e−j 2π
6

1.5k + 1 × e−j 2π
6

2.5k

= ej 2π
6

2.5k + e−
2π
6

2.5k + 2
(

ej 2π
6

1.5k + e−j 2π
6

1.5k
)
+ 3

(
ej 2π

6
0.5k + e−j 2π

6
0.5k

)
= 2 cos 5πk

6
+ 4 cos 3πk

6
+ 6 cos πk

6
(4.609)

H1(k) =
5∑

n=0
h1(n)e

−j 2π
6
(n−2.5)k

= 1 × e−j 2π
6
(−2.5)k − 2 × e−j 2π

6
(−1.5)k + 3 × e−j 2π

6
(−0.5)k

−3 × e−j 2π
6

0.5k + 2 × e−j 2π
6

1.5k − 1 × e−j 2π
6

2.5k

= ej 2π
6

2.5k − e−
2π
6

2.5k − 2
(

ej 2π
6

1.5k − e−j 2π
6

1.5k
)
+ 3

(
ej 2π

6
0.5k − e−j 2π

6
0.5k

)
= 2j sin 5πk

6
− 4j sin 3πk

6
+ 6j sin πk

6
. (4.610)

Figure 4.122 shows the two filters and the magnitudes of their Fourier transforms.

(Continued)
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Example 4.155 (Continued)
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Figure 4.122 In both panels, the black dots and the solid line corresponds to the original low pass
filter, while the crosses and the dashed line correspond to its quadrature mirror filter. (a) The two
filters. (b) The magnitudes of their Fourier components.

Example B4.156

Compute the Fourier transforms of filters (4.607) using the z-transform and compare
your results with those of Example 4.155.
The filters are

h0(n) = (1, 2, 3, 3, 2, 1)
h1(n) = (−1, 2,−3, 3,−2, 1). (4.611)

We compute their z-transforms assuming that index n takes values n = −3,−2,−1, 0, 1, 2:

H0(z) = z−3 + 2z−2 + 3z−1 + 3 + 2z + z2

H1(z) = −z−3 + 2z−2 − 3z−1 + 3 − 2z + z2. (4.612)

The Fourier transforms of these filters then are:

Ĥ0(𝜔) = H0(ej𝜔) = e−3j𝜔 + 2e−2j𝜔 + 3e−j𝜔 + 3 + 2ej𝜔 + e2j𝜔

Ĥ1(𝜔) = H1(ej𝜔) = −e−3j𝜔 + 2e−2j𝜔 − 3e−j𝜔 + 3 − 2ej𝜔 + e2j𝜔. (4.613)

Figure 4.123 shows the magnitude plots of these Fourier transforms for 𝜔 ∈ [−π, π].
We observe that the results are in agreement with those of Example 4.155. The difference is

that here we allowed the frequency variable to take continuous values, while in Example 4.155 it
was allowed to take only discrete values. If we make the connection 2πk∕6 = 𝜔, the discrete and
continuous spectra of each filter are identical.
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Figure 4.123 The magnitude plots of these Fourier transforms.

Example B4.157

Consider the filters of Example 4.156. Construct from it the following two filters:

hn(n) = jnh0(n) hp(n) = jnh1(n). (4.614)

Show that hp(n) has most of its energy in the positive frequencies, while hn(n) has
most of its energy in the negative frequencies.
We observe that jn =

(
ej π

2

)n
= ej πn

2 . Equations (4.613) then take the form:

Ĥn(𝜔) = Hn (ej𝜔) = e−3j
(
𝜔+ π

2

)
+ 2e−2j

(
𝜔+ π

2

)
+ 3e−j

(
𝜔+ π

2

)
+ 3 + 2ej

(
𝜔+ π

2

)
+ e2j

(
𝜔+ π

2

)
Ĥp(𝜔) = Hp (ej𝜔) = −e−3j

(
𝜔+ π

2

)
+ 2e−2j

(
𝜔+ π

2

)
− 3e−j

(
𝜔+ π

2

)
+ 3 − 2ej

(
𝜔+ π

2

)
+ e2j

(
𝜔+ π

2

)
.

(4.615)

Note that multiplication with jn rotates each harmonic either by π∕2 or by −π∕2.

Example B4.158

Starting from the two scale Equations (4.576) show that

Φ(𝜔) = 1√
2

Ĥ0

(
𝜔

2

)
Φ
(
𝜔

2

)
(4.616)

Ψ(𝜔) = 1√
2

Ĥ1

(
𝜔

2

)
Φ
(
𝜔

2

)
(4.617)

(Continued)



�

� �

�

602 4 Non-stationary Grey Texture Images

Example B4.158 (Continued)

where Φ(𝜔), Ψ(𝜔), Ĥ0(𝜔) and Ĥ1(𝜔) are the Fourier transforms of 𝜙(t), 𝜓(t), h0(n) and
h1(n), respectively, with h0(n) being the low pass filter and h1(n) its corresponding
quadrature mirror wavelet filter.
For these filters, the two scales equations are written as:

𝜙(t) =
√

2
∑

n
h0(n)𝜙(2t − n)

𝜓(t) =
√

2
∑

n
h1(n)𝜙(2t − n). (4.618)

If Φ(𝜔) is the Fourier transform of 𝜙(t), then the Fourier transform of 𝜙(2t) is Φ(𝜔∕2)∕2 (scaling
property of the Fourier transform). Equations (4.618) are convolutions between functions
𝜙(2t) and h0(n) or h1(n). However, convolutions in the time domain correspond to point by
point multiplications of the corresponding Fourier transforms in the frequency domain. The
Fourier transforms of filters h0(n) and h1(n) are Ĥ0(𝜔) and Ĥ1(𝜔), respectively, and these
have to be computed at the frequencies of function 𝜙(2t), i.e. at 𝜔∕2. Then (4.616) and (4.617)
follow.

Example B4.159

Starting from Equations (4.616) and (4.617) prove that

Φ(𝜔) = Φ(0)
∞∏

k=1

[
1√
2

Ĥ0

(
𝜔

2k

)]
(4.619)

Ψ(𝜔) = Φ(0)
∞∏

k=1

[
1√
2

Ĥ1

(
𝜔

2k

)]
(4.620)

where Φ(𝜔), Ψ(𝜔), Ĥ0(𝜔) and Ĥ1(𝜔) are the Fourier transforms of 𝜙(t), 𝜓(t), h0(n) and
h1(n), respectively. Such equations are known as the infinite product formula of the
Fourier transform obeyed by a refinable function.
Let us prove Equation (4.619). The proof of (4.620) is similar. Let us apply Equation (4.616) N
times, recursively:

Φ(𝜔) = 1√
2

Ĥ0

(
𝜔

2

)
Φ
(
𝜔

2

)
= 1√

2
Ĥ0

(
𝜔

2

) 1√
2

Ĥ0

(
𝜔

4

)
Φ
(
𝜔

4

)
= 1√

2
Ĥ0

(
𝜔

2

) 1√
2

Ĥ0

(
𝜔

4

) 1√
2

Ĥ0

(
𝜔

8

)
Φ
(
𝜔

8

)
· · · · · ·

= 1√
2

Ĥ0

(
𝜔

2

)
· · · 1√

2
Ĥ0

(
𝜔

2N

)
Φ
(
𝜔

2N

)
. (4.621)

Then letting N → ∞, Equation (4.619) follows.
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Example B4.160

Two scaling filters g0 and h0 have Fourier transforms Ĝ0(𝜔) and Ĥ0(𝜔), respectively,
related by

Ĝ0(𝜔) = Ĥ0(𝜔)ej𝜃(𝜔) (4.622)

where 𝜃(𝜔) is a 2π periodic function. Show that the Fourier transforms of the corre-
sponding scaling functions are related by:

Φg(𝜔) =
Φg(0)
Φh(0)

Φh(𝜔)e
j
∑∞

k=1𝜃
(

𝜔

2k

)
. (4.623)

We start by applying Equation (4.619) for scaling functionΦg and its corresponding filter Ĝ0, and
then substitute filter Ĝ0 from (4.622):

Φg(𝜔) = Φg(0)
∞∏

k=1

[
1√
2

Ĝ0

(
𝜔

2k

)]

=Φg(0)
∞∏

k=1

[
1√
2

Ĥ0

(
𝜔

2k

)
ej𝜃

(
𝜔

2k

)]

=Φg(0)
∞∏

k=1

[
1√
2

Ĥ0

(
𝜔

2k

)] ∞∏
k=1

ej𝜃
(

𝜔

2k

)

=Φg(0)
∞∏

k=1

[
1√
2

Ĥ0

(
𝜔

2k

)]
ej
∑∞

k=1𝜃
(

𝜔

2k

)
. (4.624)

Then we apply Equation (4.619) for scaling function Φh and its corresponding filter Ĥ0:

Φh(𝜔) = Φh(0)
∞∏

k=1

[
1√
2

Ĥ0

(
𝜔

2k

)]

⇒
∞∏

k=1

[
1√
2

Ĥ0

(
𝜔

2k

)]
=

Φh(𝜔)
Φh(0)

. (4.625)

Substituting then from (4.625) into (4.624), we obtain (4.623).

Example B4.161

Two scaling filters g0 and h0 have Fourier transforms Ĝ0(𝜔) and Ĥ0(𝜔), respectively,
related by (4.622). Show that the Fourier transforms of the corresponding wavelet
filters are related by:

Ĝ1(𝜔) = Ĥ1(𝜔)e−j𝜃(𝜔−π). (4.626)

First we apply (4.603) for filter Ĝ1 and substitute Ĝ0 from (4.622):

Ĝ1(𝜔) = e−j𝜔Ĝ∗
0(𝜔 − π)

= e−j𝜔Ĥ∗
0 (𝜔 − π)e−j𝜃(𝜔−π). (4.627)

(Continued)
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Example B4.161 (Continued)

Then we apply (4.603) for filter Ĥ1

Ĥ1(𝜔) = e−j𝜔Ĥ∗
0 (𝜔 − π) ⇒ Ĥ∗

0 (𝜔 − π) = ej𝜔Ĥ1(𝜔) (4.628)

and substitute into (4.627) to obtain (4.626).

Example B4.162

Two scaling filters g0 and h0 have Fourier transforms Ĝ0(𝜔) and Ĥ0(𝜔), respectively,
related by (4.622). Show that the Fourier transforms of the corresponding wavelet
functions are related by:

Ψg(𝜔) =
Φg(0)
Φh(0)

Ψh(𝜔)e
−j
[
𝜃

(
𝜔

2
−π

)
−
∑∞

k=2𝜃
(

𝜔

2k

)]
. (4.629)

We start by applying Equation (4.617) for the two wavelet functions and their corresponding
filters Ĥ1 and Ĝ1:

Ψh(𝜔) =
1√
2

Ĥ1

(
𝜔

2

)
Φh

(
𝜔

2

)
(4.630)

Ψg(𝜔) =
1√
2

Ĝ1

(
𝜔

2

)
Φg

(
𝜔

2

)
. (4.631)

In (4.631) we substitute Ĝ1 from (4.626) and Φg from (4.623):

Ψg(𝜔) =
1√
2

Ĥ1

(
𝜔

2

)
e−j𝜃

(
𝜔

2
−π

)
Φg

(
𝜔

2

)
= 1√

2
Ĥ1

(
𝜔

2

)
e−j𝜃

(
𝜔

2
−π

)Φg(0)
Φh(0)

Φh

(
𝜔

2

)
ej
∑∞

k=1𝜃
(

𝜔

2k+1

)

=
Φg(0)
Φh(0)

1√
2

Ĥ1

(
𝜔

2

)
Φh

(
𝜔

2

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

e−j
[
𝜃

(
𝜔

2
−π

)
−
∑∞

k=1𝜃
(

𝜔

2k+1

)]
. (4.632)

This, upon changing the summation variable k in the exponent and substituting the underbraced
expression from (4.630), yields (4.629).

Example B4.163

If 𝜃(𝜔) = 𝜔∕2, for |𝜔| < π, and 𝜃(𝜔) is periodic with period 2π, show that

𝜃

(
𝜔

2
− π

)
=
⎧⎪⎨⎪⎩
−π

2
+ 𝜔

4
for 0 < 𝜔 < 4π

π
2
+ 𝜔

4
for − 4π < 𝜔 < 0

. (4.633)
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Function 𝜃(𝜔∕2 − π) is equal to 𝜔∕4 − π∕2 for:|||𝜔2 − π||| < π

⇔ −π < 𝜔

2
− π < π

⇔ 0 < 𝜔

2
< 2π

⇔ 0 < 𝜔 < 4π. (4.634)

At the same time, 𝜃(𝜔) is 2π periodic, i.e. 𝜃(𝜔 + 2π) = 𝜃(𝜔). So, 𝜃(𝜔∕2 − π) = 𝜃(𝜔∕2 − π + 2π)
= 𝜃(𝜔∕2 + π). So, we must also have:|||𝜔2 + π||| < π

⇔ −π < 𝜔

2
+ π < π

⇔ −2π < 𝜔

2
< 0

⇔ −4π < 𝜔 < 0. (4.635)

In this case, 𝜃(𝜔∕2 − π) = 𝜃(𝜔∕2 + π) = 𝜔∕4 + π∕2. This completes the proof of (4.633).

Example B4.164

If 𝜃(𝜔) = 𝜔∕2, for |𝜔| < π, and 𝜃(𝜔) is periodic with period 2π, and 𝛽(𝜔) is defined as

𝛽(𝜔) ≡ −
∞∑

k=2
𝜃

(
𝜔

2k

)
(4.636)

show that:

𝛽(𝜔) =
⎧⎪⎨⎪⎩
−𝜔

4
for |𝜔| < 4π

𝛽(𝜔 − 4π) for 4π < 𝜔

𝛽(𝜔 + 4π) for 𝜔 < −4π
. (4.637)

By definition:

𝛽(𝜔) = −
∞∑

k=2

𝜔

2k+1
= −𝜔

4

∞∑
k=2

1
2k−1

= −𝜔
4

[1
2
+ 1

4
+ 1

8
+ · · ·

]
= −𝜔

4
. (4.638)

The last result was obtained by applying the geometric series formula
∞∑

k=0
ark = a + ar + ar2 + · · · = a

1 − r
(4.639)

to the sum inside the square brackets, for a = r = 1∕2.
We note that to obtain this result, we substituted the expression of 𝜃

(
𝜔

2k

)
which is only valid

for the argument of the function being in the range [−π, π]. So, we must check the range of values

(Continued)
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Example B4.164 (Continued)

of 𝜔 for which the above result is valid. For every value of k, we must have:

−π < 𝜔

2k
< π ⇔ −π2k < 𝜔 < π2k. (4.640)

We note that:

For k = 2 −4π < 𝜔 < 4π
For k = 3 −8π < 𝜔 < 8π
· · · · · · · · ·
For k −2kπ < 𝜔 < 2kπ.

We note that if the first of these conditions is satisfied, all of them will be satisfied too. So, the
first branch of Equation (4.637) has been proven.

In order to prove the other branches of the equation, let us start by writing the definition of 𝜃(𝜔)
explicitly for −3π < 𝜔 < 3π:

𝜃(𝜔) =
⎧⎪⎨⎪⎩

𝜔

2
−π < 𝜔 < π

𝜔−2π
2

π < 𝜔 < 3π
𝜔+2π

2
−3π < 𝜔 < −π

. (4.641)

Then, let us consider each term of the sum that appears in the definition of 𝛽(𝜔), in turn, starting
by setting k = 2, 3,…. In each case we use (4.641):

𝜃

(
𝜔

4

)
=
⎧⎪⎨⎪⎩

𝜔

8
−4π < 𝜔 < 4π

𝜔∕4−2π
2

4π < 𝜔 < 12π
𝜔∕4+2π

2
−12π < 𝜔 < −4π

𝜃

(
𝜔

8

)
=
⎧⎪⎨⎪⎩

𝜔

16
−8π < 𝜔 < 8π

𝜔∕8−2π
2

8π < 𝜔 < 24π
𝜔∕8+2π

2
−24π < 𝜔 < −8π

· · · · · ·

𝜃

(
𝜔

2k

)
=
⎧⎪⎨⎪⎩

𝜔

2k+1 −2kπ < 𝜔 < 2kπ
𝜔∕2k−2π

2
2kπ < 𝜔 < 3 × 2kπ

𝜔∕2k+2π
2

−3 × 2kπ < 𝜔 < −2kπ
. (4.642)

Now, let us try to form the sum that appears in the definition of 𝛽(𝜔). To sum functions that are
only piecewise continuous, we must consider the union of the points of discontinuity of all terms
and sum freely only in between successive discontinuity points. We note that as the value of k
increases, the branches over which the function is continuous are broader. So, the subdivisions
we need are dictated by the first terms of the sum and actually they go in steps of 4π. For clarity,
we redefine here only the first two terms in the form we need them:

𝜃

(
𝜔

4

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜔

8
−4π < 𝜔 < 4π

𝜔∕4−2π
2

4π < 𝜔 < 8π
𝜔∕4−2π

2
8π < 𝜔 < 12π

𝜔∕4+2π
2

−8π < 𝜔 < −4π
𝜔∕4+2π

2
−12π < 𝜔 < −8π
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𝜃

(
𝜔

8

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜔

16
−4π < 𝜔 < 4π

𝜔

16
4π < 𝜔 < 8π

𝜔∕8−2π
2

8π < 𝜔 < 12π
𝜔∕8−2π

2
12π < 𝜔 < 16π

𝜔∕8−2π
2

16π < 𝜔 < 20π
𝜔∕8−2π

2
20π < 𝜔 < 24π

𝜔

16
−8π < 𝜔 < −4π

𝜔∕8+2π
2

−12π < 𝜔 < −8π
𝜔∕8+2π

2
−16π < 𝜔 < −12π

𝜔∕8+2π
2

−20π < 𝜔 < −16π
𝜔∕8+2π

2
−24π < 𝜔 < −20π

. (4.643)

Now let us sum these two functions for the first few ranges of continuity:

𝜃

(
𝜔

4

)
+ 𝜃

(
𝜔

8

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜔

8
+ 𝜔

16
−4π < 𝜔 < 4π

𝜔∕4−2π
2

+ 𝜔

16
4π < 𝜔 < 8π

𝜔∕4−2π
2

+ 𝜔∕8−2π
2

8π < 𝜔 < 12π
𝜔∕4+2π

2
+ 𝜔

16
−8π < 𝜔 < −4π

𝜔∕4+2π
2

+ 𝜔∕8+2π
2

−12π < 𝜔 < −8π

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜔

8
+ 𝜔

16
−4π < 𝜔 < 4π

𝜔

8
+ 𝜔

16
− π 4π < 𝜔 < 8π

𝜔

8
+ 𝜔

16
− 2π 8π < 𝜔 < 12π

𝜔

8
+ 𝜔

16
+ π −8π < 𝜔 < −4π

𝜔

8
+ 𝜔

16
+ 2π −12π < 𝜔 < −8π

. (4.644)

We know that if we consider all terms of the sum, the sum in the first branch is equal to 𝜔∕4.
So, we realise that, in the full sum, we shall have 𝜔∕4 instead of 𝜔∕8 + 𝜔∕16 we have in (4.644).
Then, we may write:

∞∑
k=2
𝜃

(
𝜔

2k

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜔

4
−4π < 𝜔 < 4π

𝜔

4
− π 4π < 𝜔 < 8π

𝜔

4
− 2π 8π < 𝜔 < 12π

𝜔

4
+ π −8π < 𝜔 < −4π

𝜔

4
+ 2π −12π < 𝜔 < −8π

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜔

4
−4π < 𝜔 < 4π

𝜔−4π
4

4π < 𝜔 < 8π
𝜔−8π

4
8π < 𝜔 < 12π

𝜔+4π
4

−8π < 𝜔 < −4π
𝜔+8π

4
−12π < 𝜔 < −8π

. (4.645)

We can see then how the recursive relation that appears in (4.637) emerges: the value of the sum
in the second branch of (4.645) can be computed from the first by replacing 𝜔 with 𝜔 − 4π. The
third branch from the second, again by replacing𝜔with𝜔 − 4π, and so on. Similarly, the value in
the range (−8π,−4π) can be calculated from the value in the range (−4π, 4π) by replacing 𝜔 with
𝜔 + 4π, while the value in the range (−12π,−8π) can be calculated from the value in the range
(−8π,−4π) by again replacing 𝜔 with 𝜔 + 4π.
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Box 4.11 How should two scaling filters be chosen so that the corresponding wavelets they
generate form a Hilbert transform pair?

Let us call the two scaling filters g0 and h0, corresponding to scaling functions 𝜙g and 𝜙h,
respectively. The corresponding wavelet filters are g1 and h1, corresponding to mother wavelets
𝜓g and 𝜓h, respectively. The Fourier transforms of functions 𝜙g, 𝜙h, 𝜓g and 𝜓h, are Φg, Φh, Ψg
and Ψh, respectively. The Fourier transforms of filters g0, h0, g1 and h1 are Ĝ0(𝜔), Ĥ0(𝜔), Ĝ1(𝜔)
and Ĥ1(𝜔), respectively.

Let us assume that the two scaling filters are related by

Ĝ0(𝜔) = Ĥ0(𝜔)e−j𝜃(𝜔) (4.646)

where 𝜃(𝜔) is a 2π periodic function.
We want to choose function 𝜃(𝜔) so the Fourier transforms of the corresponding mother

wavelets, Ψg and Ψh, constitute a Hilbert transform pair.
It can be shown (see Examples 4.160–4.162) that Ψg and Ψh are related by:

Ψg(𝜔) =
Φg(0)
Φh(0)

Ψh(𝜔)e
−j
[
𝜃

(
𝜔

2
−π

)
−
∑∞

k=2𝜃

(
𝜔

2k

)]
. (4.647)

Assuming that Φg(0) = Φh(0), we realise that Ψg and Ψh will constitute a Hilbert pair if the
quantity in the square bracket of the exponent in (4.647) has the right behaviour (see the
section What is a Hilbert transform pair?):

𝜃

(
𝜔

2
− π

)
−

∞∑
k=2

𝜃

(
𝜔

2k

)
=

{
−π

2
𝜔 > 0

π
2

𝜔 < 0
. (4.648)

If we now assume that 𝜃(𝜔) is defined so that 𝜃(𝜔) = −𝜔∕2 for |𝜔| < π, and make use of the
results of Examples 4.163 and 4.164, we can see that (4.648) is valid. In other words, if the two
scaling filters are defined to have the same magnitude but a phase difference of half a sample,
then the corresponding wavelets constitute a Hilbert pair. In the digital domain half a sample
phase different is not possible, and so we cannot really construct two wavelet bases that are
Hilbert transform pairs exactly.

How do we construct the filters we use in the dual tree complex wavelet transform?

As these filters can only approximately fulfil the necessary conditions, there have been several
ways by which such filters have been constructed, each time sacrificing one of more of the exact
properties they have to have. Some of the first attempts were involving the construction of pairs of
filters with one having most of its energy in the positive and the other in the negative frequencies
(see Examples 4.607–4.157). Such filters had significant defects and they are not used in the dual
tree complex wavelet transform. The most popular filters have been constructed with the so-called
q-shift method, where the letter q stands for “quarter” (see Box 4.12). Once we construct a filter
with its centre of symmetry 0.25 sampling distance away from the centre of the axis, if we read
its elements backwards, we shall have a filter with its centre of symmetry 0.25 sampling distance
away from the centre of the axis but in the other direction. So, the centres of symmetries of the two
filters will be 0.5 sampling distance away from each other. As the original filter was symmetric,
the fact that we read its elements backwards does not change it much. This way we shall have two
filters that are almost identical but shifted away from each other by 0.5, as required. Filter h0(n) in
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Table 4.7 Two sets of wavelet filters that can be used in the dual tree complex
wavelet transform, after the first level of analysis

h0(n) g0(n) h1(n) g1(n)

0.03516384 0 0 −0.03516384
0 0 0 0

−0.08832942 −0.11430184 0.11430184 0.08832942
0.23389032 0 0 0.23389032
0.76027237 0.58751830 −0.58751830 −0.76027237
0.58751830 0.76027237 0.76027237 0.58751830
0 0.23389032 −0.23389032 0

−0.11430184 −0.08832942 0.08832942 0.11430184
0 0 0 0
0 0.03516384 −0.03516384 0

Table 4.7 was constructed by the q-shift method. Filter g0(n) in the same table is the same filter with
its elements read backwards. From these two scaling filters we can then construct the correspond-
ing wavelet filters by reading their elements backwards and changing the sign of every first one.
That is how filters h1(n) and g1(n) were constructed from filters h0(n) and g0(n), respectively. This
set of filters may be used for the dual tree complex wavelet transform, after the first level of analysis.
At the first level of analysis it was found that using an ordinary set of wavelet filters, followed by
decimation done in two ways (once decimating every second sample and once decimating every
first sample) was adequate for shift invariance (see Example protohronia201).

Box 4.12 The quarter shift idea

Consider a scaling filter h0(n) defined for n = 0, 1,… ,N − 1. Define another scaling filter g0(n)
as:

g0(n) = h0(N − 1 − n). (4.649)

If we take the Fourier transform of both sides of this equation, we shall have (see Example
4.165)

Ĝ0(𝜔) = Ĥ∗
0(𝜔)e

−j(N−1)𝜔 (4.650)

where the complex conjugation comes from the reversal of the sign of n and the exponential
factor from the shifting property of the Fourier transform. According to this equation:

Phase[Ĝ0(𝜔)] = −Phase[Ĥ0(𝜔)] − (N − 1)𝜔. (4.651)

If we want, therefore, g0(n) and h0(n) to differ in phase by 𝜔∕2 so they create wavelets that
are Hilbert pairs, we must have:

Phase[Ĥ0(𝜔)] −
𝜔

2
= −Phase[Ĥ0(𝜔)] − (N − 1)𝜔

⇒ Phase[Ĥ0(𝜔)] = −N − 1
2

𝜔 + 𝜔

4
. (4.652)

(Continued)
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Box 4.12 (Continued)

The term 𝜔∕4 in the phase of this filter is the one that gives the name to this method. This rela-
tionship says that filter h0(n) should be symmetric about point (N − 1)∕2 − 1∕4 (see Example
4.168). So, the problem now becomes one of designing a low pass filter h0(n) that is approxi-
mately symmetric about this point and approximately satisfies all other constraints a scaling
filter should satisfy. One way of doing this is to construct an even filter of size 2N and then
sub-sample it by keeping every first element (see Example 4.170). Figure 4.124 shows a filter
constructed this way. It is filter h0(n) of Table 4.7. We can see that it is approximately symmetric
about a point to the right of the vertical axis.

h0(n)

−0.5 0.5 2.5 4.5−4.5 −2.5

800

600

400

200

−200

n

Figure 4.124 Filter h0(n) × 1000 plotted against the
real distance of its elements from the centre of the
axis. The values of this filter are given in the first
column of Table 4.7.

Example B4.165

You are given a real filter h0(n) = (𝛼1, 𝛼2, 𝛼3, 𝛼4). Construct filter g0(n) using Equation
(4.649). Then demonstrate that Equation (4.650) holds.
Here N = 4. Then by applying (4.649) for n = 0, 1, 2, 3, we obtain:

g0(n) = (𝛼4, 𝛼3, 𝛼2, 𝛼1). (4.653)

The Fourier transforms of h0(n) and g0(n) are:

Ĥ0(𝜔) = 𝛼1 + 𝛼2e−j𝜔 + 𝛼3e−j2𝜔 + 𝛼4e−j3𝜔 (4.654)

Ĝ0(𝜔) = 𝛼4 + 𝛼3e−j𝜔 + 𝛼2e−j2𝜔 + 𝛼−j3𝜔
1 . (4.655)

We calculate next the right-hand side of (4.650):

Ĥ∗
0 (𝜔)e

−j3𝜔 = [𝛼1 + 𝛼2ej𝜔 + 𝛼3ej2𝜔 + 𝛼4ej3𝜔]e−j3𝜔

= 𝛼1e−j3𝜔 + 𝛼2e−j2𝜔 + 𝛼3e−j𝜔 + 𝛼4. (4.656)

By direct comparison with Equation (4.655) we verify (4.650).
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Example B4.166

For the filters of Example 4.165, show that |Ĥ0(𝜔)| = |Ĝ0(𝜔)|.
From Equations (4.656) we can compute the magnitude for each harmonic component of these
filters (i.e. assuming that 𝜔 is fixed):|Ĥ0(𝜔)|2 = Ĥ0(𝜔)Ĥ∗

0 (𝜔)
= [𝛼1 + 𝛼2e−j𝜔 + 𝛼3e−j2𝜔 + 𝛼4e−j3𝜔]
[𝛼1 + 𝛼2ej𝜔 + 𝛼3ej2𝜔 + 𝛼4ej3𝜔]

= 𝛼2
1 + 𝛼1𝛼2ej𝜔 + 𝛼1𝛼3ej2𝜔 + 𝛼1𝛼4ej3𝜔

+𝛼2𝛼1e−j𝜔 + 𝛼2
2 + 𝛼2𝛼3ej𝜔 + 𝛼2𝛼4ej2𝜔

+𝛼3𝛼1e−j2𝜔 + 𝛼3𝛼2e−j𝜔 + 𝛼2
3 + 𝛼3𝛼4ej𝜔

+𝛼4𝛼1e−j3𝜔 + 𝛼4𝛼2e−j2𝜔 + 𝛼4𝛼3e−j𝜔 + 𝛼2
4

= 𝛼2
1 + 𝛼

2
2 + 𝛼

2
3 + 𝛼

2
4

+2𝛼1𝛼2 cos𝜔 + 2𝛼1𝛼3 cos(2𝜔) + 2𝛼1𝛼4 cos(3𝜔)
+2𝛼2𝛼3 cos𝜔 + 2𝛼2𝛼4 cos(2𝜔) + 2𝛼3𝛼4 cos𝜔 (4.657)

|Ĝ0(𝜔)|2 = Ĝ0(𝜔)Ĝ∗
0(𝜔)

= [𝛼4 + 𝛼3e−j𝜔 + 𝛼2e−j2𝜔 + 𝛼1e−j3𝜔]
[𝛼4 + 𝛼3ej𝜔 + 𝛼2ej2𝜔 + 𝛼1ej3𝜔]

= 𝛼2
4 + 𝛼4𝛼3ej𝜔 + 𝛼4𝛼2ej2𝜔 + 𝛼4𝛼1ej3𝜔

+𝛼3𝛼4e−j𝜔 + 𝛼2
3 + 𝛼3𝛼2ej𝜔 + 𝛼3𝛼1ej2𝜔

+𝛼2𝛼4e−j2𝜔 + 𝛼2𝛼3e−j𝜔 + 𝛼2
2 + 𝛼2𝛼1ej𝜔

+𝛼1𝛼4e−j3𝜔 + 𝛼1𝛼3e−j2𝜔 + 𝛼1𝛼2e−j𝜔 + 𝛼2
1

= 𝛼2
4 + 𝛼

2
3 + 𝛼

2
2 + 𝛼

2
1

+2𝛼4𝛼3 cos𝜔 + 2𝛼4𝛼2 cos(2𝜔) + 2𝛼4𝛼1 cos(3𝜔)
+2𝛼3𝛼2 cos𝜔 + 2𝛼3𝛼1 cos(2𝜔) + 2𝛼2𝛼1 cos𝜔. (4.658)

By direct comparison between the two results, we confirm the relationship.

Example B4.167

Starting from Equation (4.654) show that, if filter h0(n) is symmetric, its natural point
of symmetry is point (N − 1)∕2.
For N = 4, we must show that the natural point of symmetry is point 3∕2. Symmetry means that
if we shift the origin of the time axis at this point, the Fourier transform of the signal will become
real. According to the shifting property of the Fourier transform, such a shifting will result in the
Fourier transform of the unshifted signal to be multiplied with ej3𝜔∕2. We shall multiply now both

(Continued)
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Example B4.167 (Continued)

sides of Equation (4.654) with this factor, knowing that what we shall have on the left will be the
Fourier transform of the shifted function, and what we shall get on the right must be real if the
filter is symmetric:

Ĥ0(𝜔)e
j 3𝜔

2 = 𝛼1ej 3𝜔
2 + 𝛼2ej 𝜔

2 + 𝛼3e−j 𝜔
2 + 𝛼4e−j 3𝜔

2 . (4.659)

We note that if the filter is symmetric, 𝛼1 = 𝛼4 and 𝛼2 = 𝛼3 and all the imaginary parts on the
right-hand side of (4.659) will cancel.

Example B4.168

Show that Equation (4.652) implies that filter h0(n) is symmetric about point
(N − 1)∕2 − 1∕4.
Equation (4.652) implies that the left-hand side of Equation (4.654), for example, has the form|Ĥ0(𝜔)|ej

(
− N−1

2
+ 1

4

)
𝜔. This means that if we multiply both sides of the equation with e−j

(
− N−1

2
+ 1

4

)
𝜔,

the left-hand side will be real and so the right-hand side will be real too. Such a multiplication
is equivalent to shifting the centre of the function to point N−1

2
− 1

4
. So, when we shift the

centre of the function at this point, the Fourier transform of the function becomes real. This
means that the function is symmetric about its new centre. So, this point is the point of its
symmetry.

Example B4.169

You are given an eight-tap symmetric filter h̃(n): (𝛼1, 𝛼4, 𝛼2, 𝛼3, 𝛼3, 𝛼2, 𝛼4, 𝛼1). Show that
its z-transform H̃(z) may be written as

H̃(z) = H(z2) + z−1H(z−2). (4.660)

By definition:

H̃(z) = 𝛼1z−4 + 𝛼4z−3 + 𝛼2z−2 + 𝛼3z−1 + 𝛼3 + 𝛼2z + 𝛼4z2 + 𝛼1z3

= 𝛼1z−4 + 𝛼2z−2 + 𝛼3 + 𝛼4z2 + 𝛼4z−3 + 𝛼3z−1 + 𝛼2z + 𝛼1z3

= 𝛼1(z2)−2 + 𝛼2(z2)−1 + 𝛼3 + 𝛼4(z2)1

+z−1(𝛼4z−2 + 𝛼3 + 𝛼2z2 + 𝛼1z4)
= H(z2) + z−1[𝛼4(z−2)1 + 𝛼3 + 𝛼2(z−2)−1 + 𝛼1(z−2)−2]
= H(z2) + z−1H(z−2) (4.661)

where we defined:

H(z) ≡ 𝛼1z−2 + 𝛼2z−1 + 𝛼3 + 𝛼4z. (4.662)
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Example B4.170

Assume that we wish to construct a four-tap filter that is low pass and approximately
symmetric about a point 0.25 distance from the centre of the axis. Demonstrate that if
you construct an eight-tap filter h̃(n) that is low pass and symmetric, and sub-sample
it, you will have a filter that is low pass and approximately symmetric about a point
0.25 distance from the centre of the axis.
Consider the filter of Example 4.169. We shall show that filter h(n) = (𝛼1, 𝛼2, 𝛼3, 𝛼4) with
z-transform H(z) given by (4.662) is the filter we need.

Let us assume now that we start by constructing filter h̃(n), so it is symmetric, low pass, of even
size, with bandwidth half of that we want. When we sub-sample it by a factor of 2, the bandwidth
will be doubled, so it will become what we want. As the filter is low pass and symmetric, it will
be somehow bell-shaped. This is schematically shown in Figure 4.125. As long as the filter is rel-
atively smooth, sub-sampling will not change its smooth shape much. These approximations are
better as the filter is larger, and that is one of the reasons the filters we use in the dual tree complex
wavelet transform tend to be large. Note that because of the symmetry and the even size, the centre
of symmetry of the filter is between the fourth and the fifth elements. When we sub-sample, we keep
the third and the fifth elements, the distance of which is two sampling spaces. The sub-sampled
filter, however, halves all distances in terms of the continuous variable, so the distance of these
points will be treated as 1, which means that the distance of the fifth element (which in the new
filter is its third element) from the centre of symmetry will also be halved, i.e. it will be 0.25. This is
the way the filter shown in Figure 4.124 and listed in the first column of Table 4.7 was constructed.

sought filter
auxiliary filter

Figure 4.125 An eight-tap symmetric low pass filter, when sub-sampled by keeping the elements
marked with the black dots creates a four-tap low pass filter, approximately symmetric about a point
0.25 away from the original point of symmetry. This filter then can be used to construct a second filter
that will have approximately 0.5𝜔 phase difference from it, so the two filters can be used as the
scaling filters of two wavelet bases that are approximately the Hilbert transform pair of each other.

How do we apply the dual tree complex wavelet transform to analyse 1D signals?

We apply the following algorithm.

Step 1: Select an ordinary wavelet basis you wish to use. For example, any of the scaling filters of
Table 4.6 will do.

Step 2: Convolve the input signal with the selected scaling and wavelet filters.
Step 3: Decimate every second sample, to produce bands L2 and H2.
Step 4: Decimate every first sample, to produce bands L1 and H1.
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Figure 4.126 The signal may be fully reconstructed from the scaling and wavelet coefficients of each tree
separately. One tree consists from bands H0

g , LH1
g , LLH2

g , LLL2
g and the other from bands H0

h , LH1
h , LLH2

h , LLL2
h .

The two reconstructions may be averaged to yield the recovered signal. Bands in level 0 have half the
samples of the original signal, bands in level 1 have half the samples of the bands in level 0 and the bands
in level 2 have half the samples of those in level 1. If the original signal consisted of N samples, this
representation consists of 2N samples. Note that the two way decimation happens only at the first stage.
The rest are two ordinary wavelet trees.

Step 5: Consider band L1. Treat it as the input signal for tree wavelet expansion using the pair of
scaling/wavelet filters g0 and g1 of the selected set of dual tree filters.

Step 6: Consider band L2. Treat it as the input signal for tree wavelet expansion using the pair of
scaling/wavelet filters h0 and h1 of the selected set of dual tree filters.

It is important to note that the first level of analysis achieves shift invariance by simply perform-
ing two different decimations. This is in accordance to our understanding that shift invariance
could be achieved if we did not use decimation (see Example 4.149). So, by doing two complemen-
tary decimations, we effectively keep all samples. The need of special filters that satisfy the Hilbert
pair conditions is necessary from level 2 onwards.

This analysis is schematically shown in Figure 4.126.

How do we use the dual tree complex wavelet transform to analyse images?

Figure 4.127 shows the frequency domain of a band and how one step of using two different wavelet
filters may analyse it. Let us examine which bands are selected by the use of which filter. We shall
use suffixes g and h to separate the outputs obtained with the g and h sets of filters.

Band Eh is extracted by using along both the x and the y axes the low pass filter h0.
Band Eg is extracted by using along both the x and the y axes the low pass filter g0.
Bands Bh and Hh are extracted by using along the x axis filter h0 and along the y axis filter h1.
Bands Bg and Hg are extracted by using along the x axis filter g0 and along the y axis filter g1.
Bands Dh and Fh are extracted by using along the x axis filter h1 and along the y axis filter h0.
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Figure 4.127 The different grey tones identify the bands to which the 2D frequency domain of an image is
split in conventional wavelet analysis, by applying combinations of low and high pass filters along the x
and y axes. When we use a dual tree wavelet transform, we use two sets of filters, indicated here by indices
h and g. The + sign in bands B and H refers to the sub-bands with the positive frequencies along the x axis
and the − sign to the sub-bands with the negative frequencies along the same axis. The + sign in bands D
and F refers to the sub-bands with the positive frequencies along the y axis and the − sign to the
sub-bands with the negative frequencies along the same axis. The issue here is how to combine the bands
of the two different wavelet expansions so we extract useful information about the structure of the image.

Bands Dg and Fg are extracted by using along the x axis filter g1 and along the y axis filter g0.
Bands Ah, Ch, Gh and Ih are extracted by using along both axes filter h1.
Bands Ag, Cg, Gg and Ig are extracted by using along both axes filter g1.

In the dual tree complex wavelet transform, the corresponding filters are chosen to be approxi-
mate Hilbert transform pairs. This means that:

h0 + jg0 picks up only positive frequencies.
h0 − jg0 picks up only negative frequencies.
h1 + jg1 picks up only positive frequencies.
h1 − jg1 picks up only negative frequencies.

In the following, we shall indicate the positive frequencies of a band with a + next to the symbol
of the band and the negative frequencies with a −. So:

If we apply filter h0 + jg0 along the x axis and filter h1 + jg1 along the y axis, we shall pick band
B+ only.

If we apply filter h0 − jg0 along the x axis and filter h1 + jg1 along the y axis, we shall pick band
B− only.

If we apply filter h0 + jg0 along the x axis and filter h1 − jg1 along the y axis, we shall pick band
H+ only.

If we apply filter h0 − jg0 along the x axis and filter h1 − jg1 along the y axis, we shall pick band
H− only.

If we apply filter h1 + jg1 along the x axis and filter h0 + jg0 along the y axis, we shall pick band
F+ only.

If we apply filter h1 + jg1 along the x axis and filter h0 − jg0 along the y axis, we shall pick band
F− only.

If we apply filter h1 − jg1 along the x axis and filter h0 + jg0 along the y axis, we shall pick band
D+ only.

If we apply filter h1 − jg1 along the x axis and filter h0 − jg0 along the y axis, we shall pick band
D− only.



�

� �

�

616 4 Non-stationary Grey Texture Images

If we apply filter h1 + jg1 along both axes, we shall pick band C only.
If we apply filter h1 + jg1 along the x axis and filter h1 − jg1 along the y axis, we shall pick band

I only.
If we apply filter h1 − jg1 along the x axis and filter h1 + jg1 along the y axis, we shall pick band

A only.
If we apply filter h1 − jg1 along both axes, we shall pick band G only.

Let us consider each of the above cases in turn, so we separate the real and the imaginary parts
of the outputs. In the following, we shall use suffixes R and I to indicate the real and the imaginary
parts of the output for each band. An extra bonus of the dual tree complex wavelet transform will be
to be able to work out the symmetry of the local feature, from the ratio of the real and the imaginary
parts of the two filter outputs.

Band B+:

(h0 + jg0)(h1 + jg1) = (h0h1 − g0g1) + j(h0g1 + g0h1).
Apply h0 along the x axis and h1 along the y axis. Output: LHhh.
Apply g0 along the x axis and g1 along the y axis. Output: LHgg.
Apply h0 along the x axis and g1 along the y axis. Output: LHhg.
Apply g0 along the x axis and h1 along the y axis. Output: LHgh.

Combine outputs:

LHhh − LHgg ≡ B+R and LHhg + LHgh ≡ B+I.

Band B−:

(h0 − jg0)(h1 + jg1) = (h0h1 + g0g1) + j(h0g1 − g0h1).

Combine outputs:

LHhh + LHgg ≡ B−R and LHhg − LHgh ≡ B−I

Band H+:

(h0 + jg0)(h1 − jg1) = (h0h1 + g0g1) + j(−h0g1 + g0h1).

Combine outputs:

LHhh + LHgg ≡ H+R = B−R and −LHhg + LHgh ≡ H+I = −B−I

Band H−:

(h0 − jg0)(h1 − jg1) = (h0h1 − g0g1) + j(−h0g1 − g0h1).

Combine outputs:

LHhh − LHgg ≡ H−R = B+R and −LHhg − LHgh ≡ H−I = −B+I

Band F+:

(h1 + jg1)(h0 + jg0) = (h1h0 − g1g0) + j(h1g0 + g1h0).
Apply h1 along the x axis and h0 along the y axis. Output: HLhh.
Apply g1 along the x axis and g0 along the y axis. Output: HLgg.
Apply h1 along the x axis and g0 along the y axis. Output: HLhg.
Apply g1 along the x axis and h0 along the y axis. Output: HLgh.
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Combine outputs:

HLhh − HLgg ≡ F+R and HLhg + HLgh ≡ F+I.

Band F−:

(h1 + jg1)(h0 − jg0) = (h1h0 + g1g0) + j(−h1g0 + g1h0).

Combine outputs:

HLhh + HLgg ≡ F−R and −HLhg + HLgh ≡ F−I.

Band D+:

(h1 − jg1)(h0 + jg0) = (h1h0 + g1g0) + j(h1g0 − g1h0).

Combine outputs:

HLhh + HLgg ≡ D+R = F−R and HLhg − HLgh ≡ D+I = −F−I.

Band D−:

(h1 − jg1)(h0 − jg0) = (h1h0 − g1g0) + j(−h1g0 − g1h0).

Combine outputs:

HLhh − HLgg ≡ D−R = F+R and −HLhg − HLgh ≡ D−I = −F+I.

Band C:

(h1 + jg1)(h1 + jg1) = (h1h1 − g1g1) + j(h1g1 + g1h1).
Apply h1 along the x axis and h1 along the y axis. Output: HHhh.
Apply g1 along the x axis and g1 along the y axis. Output: HHgg.
Apply h1 along the x axis and g1 along the y axis. Output: HHhg.
Apply g1 along the x axis and h1 along the y axis. Output: HHgh.

Combine outputs:

HHhh − HHgg ≡ CR and HHhg + HHgh ≡ CI.

Band I:

(h1 + jg1)(h1 − jg1) = (h1h1 + g1g1) + j(−h1g1 + g1h1).

Combine outputs:

HHhh + HHgg ≡ IR and −HHhg + HHgh ≡ II.

Band A:

(h1 − jg1)(h1 + jg1) = (h1h1 + g1g1) + j(h1g1 − g1h1).

Combine outputs:

HHhh + HHgg ≡ AR = IR and HHhg − HHgh ≡ AI = −II.

Band G:

(h1 − jg1)(h1 − jg1) = (h1h1 − g1g1) + j(−h1g1 − g1h1).

Combine outputs:

HHhh − HHgg ≡ GR = CR and −HHhg − HHgh ≡ GI = −CI.

This process is schematically shown in Figure 4.128.
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Figure 4.128 The application of the dual tree complex wavelet transform to an image. For simplicity
operations like downsampling are not shown explicitly. Results for other bands for which the difference is
in the sign of the shown outputs are not shown either. Symbol ⊕ implies addition of the input bands, while
⊖ implies subtraction. Next to each such symbol is the symbol of the produced band. Suffixes R and I
indicate real and imaginary parts. Combining the real and the imaginary part of the same band allows the
calculation of local energy and local symmetry.

How do we apply the dual tree complex wavelet transform to images in practice?

The answer depends on whether we wish to analyse the image and then re-synthesise it without
certain bands, or we simply want to extract image features. If we simply want to extract image
features, we may proceed as follows.

Step 0: Select the filters you will use for the two wavelet trees you will construct. Let us call them
filters h0 and h1, and g0 and g1. These filters could be those listed in Table 4.7.

Step 1: Convolve the input image with the following filter combinations of these four filters, one
applied along the x axis and the other along the y axis. The code we use to represent these outputs
is as follows: L means that a filter with suffix 0 was used. H means a filter with suffix 1 was
used. The distinction of the filter used is by suffixes h and g. In all cases, the first letter refers
to convolution along the x axis, while the second letter refers to a subsequent convolution along
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the y axis. So, we produce the following outputs: LLgg, LLhh, LHgg, LHhh, LHgh, LHhg, HLgg, HLhh,
HLgh, HLhg, HHgg, HHhh, HHgh, HHhg.

Step 2: Combine these outputs as follows:
BR ≡ LHhh − LHgg, BI ≡ LHgh + LHhg. It corresponds to band B+ in Figure 4.127.
HR ≡ LHhh + LHgg, HI ≡ LHgh − LHhg. It corresponds to band H+ in Figure 4.127.
FR ≡ HLhh − HLgg, FI ≡ HLgh + HLhg. It corresponds to band F+ in Figure 4.127.
DR ≡ HLhh + HLgg, DI ≡ HLgh − HLhg. It corresponds to band F− in Figure 4.127.
CR ≡ HHhh − HHgg, CI ≡ HHgh + HHhg. It corresponds to band C in Figure 4.127.
IR ≡ HHhh + HHgg, II ≡ HHgh − HHhg. It corresponds to band I in Figure 4.127.

Step 3: Compute the following features. Local energies per pixel (i, j)

EX (i, j) ≡ XR(i, j)2 + XI(i, j)2 (4.663)

where X stands for one of the letters {B,H,F,D,C, I}. Local symmetry features per pixel:

ΦX (i, j) ≡ tan−1 |XR(i, j)||XI(i, j)| . (4.664)

If the feature is purely symmetric, the numerator of this fraction is maximal and the denom-
inator is minimal. So the calculated angle will tend to be close to 90∘. If the feature is mostly
antisymmetric, the numerator approaches 0 while the denominator is large, and ΦX (i, j) is close
to 0. So, ΦX (i, j) is a measure of local symmetry of features in band X , taking values in the range
[0, π∕2], with higher values indicating higher symmetry. Note that the value of ΦX (i, j) is really
meaningful only for pixels with energy EX (i, j) above a certain threshold. In other words, if both
the numerator and the denominator in (4.664) are small, (i, j) is probably in a region that does
not have any features in the particular band and what we calculate is dominated by noise.

If now we are interested in reconstructing the image from its wavelet components, then for the
analysis we must follow the next algorithm.

Step 0: Select the ordinary wavelet and scaling filter you will use for the first level. For example,
you may select a filter from Table 4.6. Call them H and G, respectively. Select also the dual tree
complex wavelet transform filters you will select for the subsequent levels. For example, you may
use the filters listed in Table 4.7. Call h0 and g0, and h1 and g1, the scaling and wavelet filters,
respectively.

Step 1: Using cascaded convolutions along the x and y axes with filters H and G, produce bands
LL, LH, HL, HH.

Step 2: Decimate each of these bands in four different ways, as shown in Figure 4.112, to produce
bands LL1, LH1, HL1, HH1, LL2, LH2, HL2, HH2, LL3, LH3, HL3, HH3, LL4, LH4, HL4 and
HH4.

Step 3: Treat each of the bands LL1, LL2, LL3 and LL4 as follows.
Convolve the band with the following pairs of filters h0 and h1, and g0 and g1, one applied along
the x axis and the other along the y axis. The code we use to represent these outputs is as follows: L
means that a filter with suffix 0 was used. H means a filter with suffix 1 was used. The distinction
of the filter used is by suffixes h and g. In all cases, the first letter refers to convolution along the
x axis, while the second letter refers to a subsequent convolution along the y axis. So for each one
of the four input bands, we produce the following outputs:
LLhh, LHhh, HLhh, HHhh
LLgg, LHgg, HLgg, HHgg.
There will be in total 32 such output bands, eight for each input band.
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Step 4: Decimate the bands you produced in step 2. This decimation now is ordinary decimation
where we omit every second row and every second column.

Step 5: Each band you produce in step 3 may further be analysed by applying step 2. Stop when
you have applied all levels of analysis you wanted.

If you want now to re-synthesise the original image, you have to use the following algorithm. Note
that in the synthesis, you may omit any of the bands you like by simply setting all its coefficients
to 0. This way you may clean the image from interference of certain frequencies and/or reduce
noise. The algorithm that follows assumes that only one level of dual tree analysis was applied.

Step 0: Consider a band XYnn you produced in step 2 of the previous algorithm. Here X and Y
take values from the set {L,H}, while n stands either for h or for g. We remember that letter L
indicates the use of the filter with suffix 0 (low pass scaling filter), while letter H indicates the
use of the filter with suffix 1 (high pass, wavelet filter).

Step 1: Augment the band by adding rows of 0s along the y axis, after every existing row of pixels.
Step 2: Convolve the augmented band with filter n along the y axis.
Step 3: Augment the output by adding columns of 0s along the x axis, after every existing column

of pixels.
Step 4: Convolve the augmented band with filter n along the x axis. Call the output you produce

this way X̃Y nn.
Step 5: Add all bands that refer to the same filter n and come from the same original input band:

A ≡ LLhh + LHhh + HLhh + HHhh
B ≡ LLgg + LHgg + HLgg + HHgg.
Bands A and B are the two independent reconstructions of the corresponding band of the first
level of analysis, recovered by using the two independent wavelet trees.

Step 6: Average bands A and B to recover the corresponding band of the first level of analysis,
denoted as LL1, LL2, LL3 or LL4. Note that we do not use any suffixes here because these bands
were the output of the first level, eg the output of using the ordinary wavelets. Having recovered
these bands we are now out of the dual tree analysis. Let us call these recovered bands ̃LL1, ̃LL2,
̃LL3 and ̃LL4, to distinguish them from those we created during the analysis stage.

Step 7: Interlace bands ̃LL1, ̃LL2, ̃LL3 and ̃LL4, to form band LL the same size as the input image.
Step 8: Interlace bands LH1, LH2, LH3 and LH4, to form band LH the same size as the input image.
Step 9: Interlace bands HL1, HL2, HL3 and HL4, to form band HL the same size as the input image.
Step 10: Interlace bands HH1, HH2, HH3 and HH4, to form band HH the same size as the input

image.
Step 11: Sum up the bands you produced in steps 7–10 to recover the original image.

It may appear futile sub-sampling and then interlacing bands that are not processed at all. This
indeed is the case. However, the same way as we treat the sub-sampled versions of band LL of the
first level of analysis, we may treat any other of the sub-sampled bands with the help of the dual tree
complex wavelet transform. In the reconstruction, we may also omit any bands from the frequency
contents of which we wish to clean the image.

Example 4.171

Use the dual tree complex wavelet transform to construct feature maps for the image
of Figure 4.71.
Figure 4.129 shows the results of feature maps for the image 4.71 using the dual tree complex
wavelet transform.
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LL1 LH1 HL1 HH1

LL2 LH2 HL2 HH2

LL3 LH3 HL3 HH3

LL4 LH4 HL4 HH4

Figure 4.129 The feature maps for the image 4.71 using the dual tree complex wavelet transform.
Source: Maria Petrou.

What are the drawbacks of wavelets in image processing?

Wavelets have been developed to catch optimally point singularities, e.g. spikes that might be
present in a signal. In images, the type of high frequency structural characteristics we have are
line-like, e.g. edges that have some elongation and specific orientation. That is the reason various
derivatives of the wavelet transform have been developed, appropriate for catching the type of
singularities relevant to images. One such development is the ridgelet transform, which makes
use of the wavelet transform.

4.7 Ridgelets and Curvelets

What is a ridgelet?

A ridgelet is a function that is constant along straight lines and has a wave-like cross-section. For
example, the following function is a ridgelet:

r(x1, x2) = e−
(x1 cos 𝜃+x2 sin 𝜃−𝜏)2

2𝜎2 cos(x1 cos 𝜃 + x2 sin 𝜃 − 𝜏). (4.665)

Here 𝜏, 𝜃 and 𝜎 are some constants.
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x2

x1θ
O

τ

Figure 4.130 The length 𝜏 of the normal from the centre of the
axes to the line and the angle 𝜃 this normal forms with the
horizontal axis uniquely define the line. (𝜃, 𝜏) are the Radon
parameters of the line.

What is the continuous ridgelet transform?

The continuous ridgelet transform RIDf (a, b, 𝜃) of a function f (x1, x2) is defined as

RIDf (a, b, 𝜃) ≡ ∫
∞

−∞ ∫
∞

−∞
𝜓ab𝜃(x1, x2)f (x1, x2)dx1dx2 (4.666)

where

𝜓ab𝜃(x1, x2) ≡ 1√
a
𝜓

(
x1 cos 𝜃 + x2 sin 𝜃 − b

a

)
(4.667)

with a being a scaling constant, b a shifting parameter and 𝜓(x) a mother wavelet function, like for
example:

𝜓(x) = e−x2 cos x. (4.668)

How do we calculate the continuous ridgelet transform?

We calculate it in two stages:
(i) First we calculate the continuous Radon transform of the function

(ii) Then we apply the 1D wavelet transform to the Radon transform, with respect to its displace-
ment parameter (see Example 4.172).

What is the Radon transform of a function?

The Radon transform of a function f (x1, x2) is defined as a function of the parameters that charac-
terise the lines that trace the domain of the function and returns the integral of the function along
each such line:

RADf (𝜃, 𝜏) ≡ ∫
∞

−∞ ∫
∞

−∞
f (x1, x2)𝛿(x1 cos 𝜃 + x2 sin 𝜃 − 𝜏)dx1dx2 (4.669)

Figure 4.130 shows the definition of parameters (𝜃, 𝜏) that uniquely characterises each line that
traces the function domain. Parameter 𝜃 defines the orientation of the line, while 𝜏 is the displace-
ment of the line away from the origin of the axes.

Example B4.172

Show that if you apply the 1D wavelet transform to the Radon transform, with respect
to parameter 𝜏, you will obtain the ridgelet transform of function f (x1, x2).
The wavelet transform of a function is defined by (4.387).

Let us use this definition in conjunction with (4.383) to work out the wavelet transform of
RADf (𝜃, 𝜏):

𝑤RADf
(a, b) = ∫

∞

−∞
RADf (𝜃, 𝜏)𝜓ab(𝜏)d𝜏
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= ∫ ∫ ∫
∞

−∞
f (x1, x2)𝛿(x1 cos 𝜃 + x2 sin 𝜃 − 𝜏) 1√

a
𝜓

(
𝜏 − b

a

)
dx1dx2d𝜏

= 1√
a ∫ ∫ f (x1, x2)

{
∫ 𝜓

(
𝜏 − b

a

)
𝛿(x1 cos 𝜃 + x2 sin 𝜃 − 𝜏)d𝜏

}
dx1dx2

= 1√
a ∫

∞

−∞ ∫
∞

−∞
f (x1, x2)𝜓

(
x1 cos 𝜃 + x2 sin 𝜃 − b

a

)
dx1dx2

= RIDf (a, b, 𝜃). (4.670)

Here we made use of (4.669) and (4.666).

What exactly does the ridgelet transform do to the function?

To answer this question we have to understand what each of the two stages of the calculation of
the ridgelet transform achieves.
(i) In the first stage, the Radon transform uses batches of parallel lines (fixed 𝜃) along which it

τ
θ = 106 o θ = 113o θ = 118o

θ = 126 o θ = 131o θ = 135o

τ

τ

τ

τ

τ

τ

τθ = 90o θ = 98o

Figure 4.131 At the top left, an image containing a line-like structure. The Radon transform uses batches
of parallel lines (a few of which are shown here) to project the image along an axis orthogonal to them,
parametrised by variable 𝜏 . If an image has a line-like structure along a certain direction, this structure will
create a sharp peak along the 𝜏 axis when the orientation of the lines coincides with the orientation of the
structure. Thus, a line-like discontinuity in the image is converted into a point discontinuity, to be detected
at a further stage, by processing the signals we create along the 𝜏 axes.
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projects the function. By allowing 𝜃 to take all possible values, we effectively consider all possible
lines that criss-cross the domain of the function. Let us consider one such batch of parallel lines
(fixed 𝜃). Let us also assume that the function happens to have a structure, parallel to these lines. As
the function is integrated along these lines, there will be a line that will coincide with this structure
and it will create a sharp peak in the signal along the 𝜏 axis. The structure of the image will also
affect the projection of the image along many other orientations. However, in all other orientations,
the structure will create a more or less flat bump rather than a sharp peak. This is schematically
shown in Figure 4.131.
(ii) When we take the wavelet transform with respect to parameter 𝜏 in the second stage of the
calculation, it is the sharp peak in the preferred orientation we expect to detect. We use the wavelet
transform, since it is ideal for identifying pulse-like discontinuities in signals.

Thus, the ridgelet transform converts the line-like discontinuities of a 2D function into point
discontinuities and subsequently detects them using wavelets.

Can the second stage of the ridgelet transform be performed with the help of a
transform other than the wavelet transform?

Possibly, as long as the transform is appropriate for the detection of point discontinuities. However,
the wavelet transform remains ideal for the job. For example, we might use Gabor functions instead
of wavelets, as they also extract local information. We could not use the Fourier transform as that
is a global transform inappropriate for the job. If the Fourier transform is used, all we do is taking
a slice through the 2D Fourier transform of the original image, something that is not particularly
helpful in the representation of 2D linear structures of the image (see Example 4.173).

Example B4.173

Show that if you apply the 1D Fourier transform to the Radon transform RADf (𝜃, 𝜏) of
a function f (x1, x2), with respect to parameter 𝜏, the result is a cross-section of the 2D
Fourier transform of the function, along the line that is at an angle 𝜃 with respect to
the frequency axis that corresponds to coordinate x1. This is known as the projection
slice theorem.
The Fourier transform of RADf (𝜃, 𝜏), given by Equation (4.669), is

∫
∞

−∞
RADf (𝜃, 𝜏)e−j𝜔𝜏d𝜏 = ∫ ∫ ∫

∞

−∞
f (x1, x2)𝛿(x1 cos 𝜃 + x2 sin 𝜃 − 𝜏)e−j𝜔𝜏dx1dx2d𝜏

= ∫ ∫ f (x1, x2)
{
∫ 𝛿(x1 cos 𝜃 + x2 sin 𝜃 − 𝜏)e−j𝜔𝜏d𝜏

}
dx1dx2

= ∫
∞

−∞ ∫
∞

−∞
f (x1, x2)e−j𝜔(x1 cos 𝜃+x2 sin 𝜃)dx1dx2

= ∫
∞

−∞ ∫
∞

−∞
f (x1, x2)e−j(𝜔 cos 𝜃)x1−j(𝜔 sin 𝜃)x2 dx1dx2

= F(𝜔 cos 𝜃, 𝜔 sin 𝜃) (4.671)

where F(𝜔1, 𝜔2) is the 2D Fourier transform of f (x1, x2).
Figure 4.132 shows schematically the relationship between the Radon and the Fourier

transforms.
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of f along each

1D FT

f(x1 , x2)

x2

x1

ω2

ω1

θθ

F(ω1, ω2)

Take the integral

l

of these lines

along this line

τ changes

Figure 4.132 For fixed 𝜃, Radon transform considers a batch of parallel lines tracing the domain of
the 2D function. The function is integrated along each one of these lines. This is equivalent to
collapsing the function on a line l, orthogonal to these lines, to create a 1D signal, consisting of the
values of the integral of the function along each tracing line. Parameter 𝜏 varies along line l. Taking
the 1D Fourier transform of the 1D signal we created that way, as a function of 𝜏 , gives us the
cross-section of the Fourier transform of the function along a line that forms angle 𝜃 with respect to
frequency axis 𝜔1.

How can we apply the ridgelet transform to digital images?

This is done with the help of the finite Radon transform. In particular, we obtain the so called
finite ridgelet transform by applying the 1D wavelet transform to the finite Radon transform,
along the axis of the displacement parameter.

What is the finite Radon transform?

The finite Radon transform considers sets of pixels that form straight lines in an image. It then
sums up the values of the pixels that make up each line. If the indices of a pixel are (i, j), we may
say that for the pixels that make up a line, j = ki + l, where k is the slope of the line and l is its
intersection with the j axis. Let us denote such a line with Lkl. The finite Radon transform then is
given by

FRAD(k, l) ≡ 1√
N

∑
(i,j)∈Lkl

I(i, j) (4.672)

where N × N is the size of image I(i, j). In particular, the lines we use are defined as the following
sets of pixels:

Lkl ≡ {(i, j) ∶ j = ki + l modulo N, i = 0, 1,… ,N − 1} (4.673)

LNl ≡ {(l, j) ∶ j = 0, 1,… ,N − 1}. (4.674)

Equation (4.674) defines the set of vertical lines, i.e. those that have k = N, which corresponds to
infinite slope.
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How do we form the lines that we use in the finite Radon transform?

Only lines with slops from a discrete set of slopes are considered, as the requirement is to form lines
made up from pixels with their centres exactly on the line. The bottom right panel of Figure 4.133
shows all possible lines that can be formed when starting from the bottom left pixel of a 7 × 7
image and joining its centre with the centres of the pixels in the column next to it and the pixel
directly above it. The other panels of the same figure show all straight lines that can be formed for
each of the permissible slopes. The pixels that make up the same line are marked with the same
symbol. Figure 4.134 shows how the lines of a particular slope are formed. The image is considered
to be repeated ad infinitum in all directions, so the lines are wrapped back to the same original
image. Note that although the pixels are read in a certain order to form the line, at the end of the
day, as we simply sum the values of these pixels, the order by which the pixels are read does not
matter.

It can be shown that for N being a prime number, the lines of each slope exactly fill the image,
i.e. all image pixels belong to a line of that slope, and that each image pixel belongs to exactly one
line for each different slope.

k = 0 k = 1 k = 2

k = 3 k = 4

k = 6 k = 7

k = 5

Figure 4.133 All lines that can be formed in a 7 × 7 image. Each panel shows the lines of a different slope.
In each panel, pixels marked with the same symbol belong to the same line. In each panel, an arrow shows
the direction of the line by joining its first two pixels. See Figure 4.134 to see how the lines of a certain
slope are created. The bottom right panel shows all line directions considered.
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Why N has to be prime for the lines of a certain slope to fill the image?

Figure 4.135 shows an attempt to construct the lines of a certain slope for an 8 × 8 image. Compare
this with Figure 4.134. To make up such a line, we connect a pixel with the pixel that is 2 places up
in the next column. Number 2 divides exactly number 8, the size of the image, so when we wrap the
line back in the original image, the pixel goes again at the bottom row of the image (8 modulo 2 = 0)
and so there is no way to cover the pixels of the second row from the bottom of the image by shifting
a line of this particular slope. So, N has to be prime. Only in that case number N modulo x, where x
is any number between 2 and N − 1, is not 0 and so each time wrapping round happens, the pixels
of a row, other than the original row, are considered.

How many lines made up from pixels can we have in an N × N image?

We can have N(N + 1) different lines, forming N + 1 batches of parallel lines consisting of N lines
each. In Figures 4.133 and 4.134, in order to construct the lines, we started from the bottom left

l = 0 l = – 2

l = – 1 l = – 3 l = – 5

l = – 4 l = – 6

Figure 4.134 All lines of a certain fixed slope, made up from pixels, that can be formed by shifting their
abscissae in a 7 × 7 image. The pixels that make up each line are marked with the same symbol. The image
is assumed to be repeated in all directions. The thick horizontal and vertical lines separate these
repetitions. The bottom right panel shows all lines of this particular slope which have been constructed.
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Figure 4.135 Lines of a certain slope created in an image with size not a prime number fail to pass
through all the pixels of the image, because when the vertical shift from the first pixel to the next divides
exactly the height of the image, the line wraps round to the pixels of the same row. In this example, the
height of the image is 8 and the vertical shift of the lines we are constructing is 2, so it is impossible for
lines of this slope to pass through pixels of the second, fourth, sixth and eighth row of the image.
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pixel and we joined it with the pixel above it and with all pixels in the column on its right to form
lines of different slopes. This gave us N + 1 lines, all of different slopes. Then we shifted the origin
of each one of these lines to all N pixels of the bottom row of the image, so we constructed N parallel
lines for each slope.

How many pixels does each line in the finite Radon transform consist of?

For an N × N image, with N being a prime number, each line is made up from N pixels. We can see
that from Equation (4.673) where i takes up only N distinct values and to each i corresponds only
one j.

If the lines we use are made up from pixels, how sure are we that all pixels are used
in an unbiased way?

It can be shown that each pixel belongs exactly to one line only from each batch of parallel lines (see
Example 4.175). Also, that between any two pixels only one line of the N(N + 1) lines we construct
passes (see Example 4.174). So, there are no pixels left out and each pixel belongs to N + 1 different
lines, one from each batch of parallel lines.

Example 4.174

Show that with the method of constructing lines demonstrated in Figures 4.133 and
4.134, each pair of points belongs only to a single line.
First of all, we can consider any pair of pixels in Figure 4.133 and observe that only in a single
panel these two pixels have the same symbol. So, it is obvious that only a line of a particular slope
is defined from these two pixels.

To show this with the help of equations, let us consider two pixels (iA, jA) and (iB, jB), with
0 ≤ iA, iB, jA, jB < N. We must remember that any set of such coordinates represents an infinite
number of points, as we can add as many Ns as we like to each one of them, since the image
is assumed to be repeated ad infinitum in all directions. We can then assume that if necessary,
we add N to jA and/or to iA, so that jA ≥ jB and iA ≥ iB. Let us assume that the line that passes
through these two points has slope k and intercept l. Then obviously:

jA = kiA + l
jB = kiB + l

||||| ⇒ jA − jB = k(iA − iB) ⇒ k =
jA − jB

iA − iB
. (4.675)

Note that if jA − jB < iA − iB, we can always add another N to jA − jB (it is as if we added 2 Ns to
jA to begin with) so that jA − jB ≥ iA − iB. Once we know k, we can substitute in one of the original
equations to work out l:

l = jA − kiA (4.676)

If this number is negative, we may add N to make it positive, so we may place it along the vertical
axis in the panels of Figure 4.133, with l = 0 being at the bottom left corner.

Consider, for example, pixels (2, 3) and (1, 4) in the 7 × 7 grid of Figure 4.133. We have iA = 2,
jA = 3, iB = 1 and jB = 4. We add 7 to jA, so jA = 10 > jB. Then k = (10 − 4)∕(4 − 2) = 6. To
work out l we use (4.676): l = 10 − 6 × 2 = −2. We add 7, so l = 5. We can check that jA = 6iA +
5 modulo 7 and jB = 6iB + 5 modulo 7 hold, by direct substitution of the values iA = 2, jA = 3,

(Continued)
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Example 4.174 (Continued)

iB = 1 and jB = 4. In Figure 4.133 lines with slope k = 6 are those shown in the bottom left panel.
The line with ordinate 5 is marked with symbol −. We note that pixels (2, 3) and (1, 4) indeed
belong to this line.

Example 4.175

Show that every pixel in the image belongs to a line from each batch of slopes, i.e.
show that each pixel is crossed by lines of all possible slopes.
First, we can see that from Figure 4.133, where if we focus on a specific pixel, we notice that in
each panel it belongs to exactly one of the lines.

Consider a pixel (i0, j0). Let us consider all possible line slopes we use, in turn. For line slope
k, we can solve the equation that defines the pixel coordinates that make up the line as follows:
l = j0 − ki0. To prove that the pixel is crossed by one line from each considered slope, we must
show that for each legitimate k, the value of l is also a legitimate ordinate, i.e. it is in the range
[−N + 1, 0]. This range may be mapped to the range [1,N], by adding N to l. Note that
the range [1,N] is the same as the range [0,N − 1], since Nmodulo N = 0, and so numbers
[1, 2,… ,N]modulo N become numbers [0, 1,… ,N − 1]. So, we shall show that l takes values
in the range [0,N − 1]. Note also that, as j0, k and i0 take values in the range [0,N − 1], the
maximum value l can take is N − 1. So, as long as l turns out to be positive, it is unique and
acceptable. The minimum value l can take is −(N − 1)2. However, when l is negative, we can add
as many Ns as required to make it positive. So, if l = −(N − 1)2, we can add (N − 1)N to have
l = −(N − 1)2 + (N − 1)N = N − 1 ∈ [0,N − 1].

In general, since −(N − 1)2 ≤ l ≤ N − 1, when l turns out to be negative and different from
−(N − 1)2, it will be equal to −(N − 1)2 + A = −N2 − 1 + 2N + A, where A is a positive inte-
ger (0 < A < (N − 1)2). Given that l is computed modulo N, we can omit from this sum terms
N2 and 2N since they are multiples of N. Therefore, in all cases l = A − 1 ≥ 0, which can be
made to be modulo N, so l will be unique and in the range [0,N − 1]. Therefore, for every k
there will be a unique value of ordinate l which will make the corresponding line pass through
pixel (i0, j0).

How do we compute the finite Radon transform?

We apply the following algorithm.

Step 0: Make sure the image is of size N × N, with N being a prime number. Remove the mean of
the image.

Step 1: Create an array FRAD of size (N + 1) × N, and set all its elements to 0.
Step 2: Consider all combinations (k, l), where k, l = 0, 1,… ,N − 1. For each combination (k, l), and

for each i = 0, 1,… ,N − 1, work out j = ki + l modulo N and set FRAD(k, l) = FRAD(k, l) + I(i, j).
Step 3: Set FRAD(N, l) =

∑N−1
j=0 I(N, j).

Step 4: Divide all elements of FRAD by
√

N.
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Example 4.176

Demonstrate the finite Radon transform using the following image:

g =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

255 255 255 255 255 255 255
255 255 100 100 100 255 255
255 100 150 150 150 100 255
255 100 150 200 150 100 255
255 100 150 150 150 100 255
255 255 100 100 100 255 255
255 255 255 50 255 255 255

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.677)

This is a 7 × 7 image. So, we can use the coding of the pixels in Figure 4.133 to work out the
values of RADkl, for each slope k and each ordinate l. First of all, we have to remove the mean
of the image. The mean is 194.59. There are 49 values we have to work out, but we give here the
working out of just a few of them. In particular, we sum the values of the pixels marked with an
“X” in the top right panel of Figure 4.133 and form line L2,−2, and the pixels marked with a black
square in the central panel, which form line L40:

FRAD(4, 0) =
3 × 255 + 3 × 100 + 150 − 7 × 194.59

7
= −21.02

FRAD(2,−2) = 5 × 255 + 2 × 150 − 7 × 194.59
7

= 1.12. (4.678)

The full FRAD of this image is:

FRAD =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

60.41 −6.02 −28.88 −51.02 −28.88 −6.02 60.41
−13.88 1.12 16.12 −13.16 1.12 −13.88 22.55

1.12 30.41 8.26 1.12 1.12 −21.02 −21.02
−21.02 30.41 30.41 −50.31 1.12 8.26 1.12

1.12 8.26 1.12 −50.31 30.41 30.41 −21.02
−21.02 −21.02 1.12 1.12 8.26 30.41 1.12
22.55 −13.88 1.12 −13.16 16.12 1.12 −13.88
60.41 −6.02 −28.88 −21.73 −28.88 −6.02 31.12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.679)

For the Radon transform, k takes values from 0 to 7 and l from -6 to 0.

Is the finite Radon transform invertible?

Yes, as long as the image has zero mean value (see Examples 4.177 and 4.178).

Example 4.177

Show that if the image has 0 mean, when we sum up all the values of the finite Radon
transform for a fixed slope, we get 0.
The proof is obvious since lines of a certain orientation cover the image fully, with each pixel
belonging to only one of these lines, as shown in Figure 4.133. Then summing up the sums of the
individual lines, we effectively sum up the values of all pixels, which yields 0 since the image is
assumed to be zero-mean.
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Example 4.178

Show that the image can be fully reconstructed from the values of its FRAD, given by
(4.672) provided it is zero-mean.
Let us sum up the values of all lines that pass through pixel (i, j). First of all, we know from
Example 4.174 that this pixel forms only one line with every other pixel in the image. So, every
pixel in the image belongs to exactly one line passing through pixel (i, j), except pixel (i, j) itself
that belongs to N + 1 lines, i.e. to all lines passing through it. Let us call Pij the set of lines that
pass through pixel (i, j). Let us then sum all values of FRAD along these lines, and divide with

√
N:

1√
N

∑
(k,l)∈Pij

FRAD(k, l) =
1
N

∑
(k,l)∈Pij

∑
(i′ ,j′)∈Lkl

I(i′, j′)

= 1
N

(∑
(i′ ,j′)

I(i′, j′) + NI(i, j)

)
. (4.680)

This is because summing over all lines that pass through pixel (i, j) will sum over all pixels of the
image and it will include pixel (i, j) N + 1 times. Since the image has zero mean, the first term
inside the brackets of (4.680) is zero, so:

1√
N

∑
(k,l)∈Pij

FRAD(k, l) = I(i, j). (4.681)

This is the inverse finite Radon transform, also known as the back projection operator, as
it allows one to reconstruct the image from its projections.

How do we compute the inverse finite Radon transform?

We apply the back projection operator as follows.

Step 1: Create an array J, N × N, the same size as the original image, and set all its elements equal
to 0.

Step 2: For each pixel (i, j), and for each k = 0, 1,… ,N − 1, work out l = j − ki modulo N. Set
J(i, j) = J(i, j) + FRAD(k, l) + FRAD(N, i).

Step 3: Divide all elements of J with
√

N.
Step 4: Add the mean of the original image to all elements.

Can we perform the finite Radon transform using matrix multiplications?

Yes (see Examples 4.179–4.183). The matrix we need is very large, but it is sparse with a very
well defined partition structure, that allows it to be used easily, both for the direct and the inverse
transform.
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Example 4.179

For an image of size 7 × 7 work out a matrix which, when used to multiply the
image from the left, written as a column vector, it will produce its finite Radon
transform.
Let us construct a vector 𝚽kl so that its elements have value 1 if the pixels they multiply belong
to line Lkl and they have value 0 if they do not belong. Let us do that for k = 4 and l = 0, using
Figure 4.133. Pixels that make up line L40 are marked with the black squares in the central panel
of this figure, and have coordinates:

(0, 0), (1, 4), (2, 1), (3, 5), (4, 2), (5, 6), (6, 3). (4.682)

When the image is written in vector form, its columns are stuck one under the other. We remember
that in conventional image representations, the coordinates change from top left to bottom right,
while in Figure 4.133 we put the (0, 0) element at the bottom left. So, when we stuck the image,
we must stuck the second column above the first, the third above the second, and so on, and then
turn this column upside down to form vector:

g =
(

g00, g01, g02, g03, g04, g05, g06, g10, g11, g12,

g13, g14, g15, g16, g20, g21, g22, g23, g24, g25,

g26, g30, g31, g32, g33, g34, g35, g36, g40, g41,

g42, g43, g44, g45, g46, g50, g51, g52, g53, g54,

g55, g56, g60, g61, g62, g63, g64, g65, g66
)T
. (4.683)

So,

𝚽𝟒𝟎 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0). (4.684)

Similarly, we can work out 𝚽𝟒𝟏:

𝚽𝟒𝟏 = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0). (4.685)

Now, let us consider that we do this for all values of k and all values of l, and write these row
vectors one under the other to form matrix Φ: first all vectors for k = 0, then all vectors for k = 1,
etc., finishing with all vectors for k = 7. We shall get the following matrix:

(Continued)



�

� �

�

634 4 Non-stationary Grey Texture Images

Example 4.179 (Continued)

Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(Continued)
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Example 4.179 (Continued)

We note that Φ may be partitioned into 49 matrices of size 7 × 7 each, as follows.

Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I I I I I I I
I A B C D E F
I B D F A C E
I C F B E A D
I D A E B F C
I E C A F D B
I F E D C B A
I1 I2 I3 I4 I5 I6 I7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.686)

where I is the unit 7 × 7 matrix, Ij is a matrix with all its elements 0 except those in row j which
are all 1, and

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.687)

Example 4.180

You are given the following matrix A

A =

⎡⎢⎢⎢⎢⎢⎣

𝛼1 𝛼2 𝛼3 𝛼4
𝛽1 𝛽2 𝛽3 𝛽4
−− −− −− −−
𝛾1 𝛾2 𝛾3 𝛾4
𝛿1 𝛿2 𝛿3 𝛿4

⎤⎥⎥⎥⎥⎥⎦
(4.688)
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where the vertical and horizontal lines indicate partitions of the matrix into four
submatrices defined as:

A1 =
[
𝛼1 𝛼2
𝛽1 𝛽2

]
A2 =

[
𝛼3 𝛼4
𝛽3 𝛽4

]
A3 =

[
𝛾1 𝛾2
𝛿1 𝛿2

]
A4 =

[
𝛾3 𝛾4
𝛿3 𝛿4

]
. (4.689)

Show that

AAT =
[

A1AT
1 + A2AT

2 A1AT
3 + A2AT

4
A3AT

1 + A3AT
2 A3AT

3 + A4AT
4

]
. (4.690)

First, we calculate AAT by direct substitution:

AAT =

⎡⎢⎢⎢⎢⎣
𝛼1 𝛼2 𝛼3 𝛼4
𝛽1 𝛽2 𝛽3 𝛽4
𝛾1 𝛾2 𝛾3 𝛾4
𝛿1 𝛿2 𝛿3 𝛿4

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝛼1 𝛽1 𝛾1 𝛿1
𝛼2 𝛽2 𝛾2 𝛿2
𝛼3 𝛽3 𝛾3 𝛿3
𝛼4 𝛽4 𝛾4 𝛿4

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
𝛼2

1 + 𝛼
2
2 + 𝛼

2
3 + 𝛼

2
4 𝛼1𝛽1 + 𝛼2𝛽2 + 𝛼3𝛽3 + 𝛼4𝛽4

𝛼1𝛽1 + 𝛼2𝛽2 + 𝛼3𝛽3 + 𝛼4𝛽4 𝛽2
1 + 𝛽2

2 + 𝛽2
3 + 𝛽2

4
𝛼1𝛾1 + 𝛼2𝛾2 + 𝛼3𝛾3 + 𝛼4𝛾4 𝛽1𝛾1 + 𝛽2𝛾2 + 𝛽3𝛾3 + 𝛽4𝛾4
𝛼1𝛿1 + 𝛼2𝛿2 + 𝛼3𝛿3 + 𝛼4𝛿4 𝛽1𝛿1 + 𝛽2𝛿2 + 𝛽3𝛿3 + 𝛽4𝛿4

𝛼1𝛾1 + 𝛼2𝛾2 + 𝛼3𝛾3 + 𝛼4𝛾4 𝛼1𝛿1 + 𝛼2𝛿2 + 𝛼3𝛿3 + 𝛼4𝛿4
𝛽1𝛾1 + 𝛽2𝛾2 + 𝛽3𝛾3 + 𝛽4𝛾4 𝛽1𝛿1 + 𝛽2𝛿2 + 𝛽3𝛿3 + 𝛽4𝛿4

𝛾2
1 + 𝛾2

2 + 𝛾2
3 + 𝛾2

4 𝛾1𝛿1 + 𝛾2𝛿2 + 𝛾3𝛿3 + 𝛾4𝛿4
𝛾1𝛿1 + 𝛾2𝛿2 + 𝛾3𝛿3 + 𝛾4𝛿4 𝛿2

1 + 𝛿
2
2 + 𝛿

2
3 + 𝛿

2
4

⎤⎥⎥⎥⎥⎦
. (4.691)

Next, let us calculate product AAT by considering the partitions of A and treating them as if they
were the elements of the matrix:

AAT =
[

A1 A2
A3 A4

] [
AT

1 AT
3

AT
2 AT

4

]
=
[

A1AT
1 + A2AT

2 A1AT
3 + A2AT

4
A3AT

1 + A3AT
2 A3AT

3 + A4AT
4

]

=

⎡⎢⎢⎢⎢⎣

(
𝛼2

1 + 𝛼
2
2 𝛼1𝛽1 + 𝛼2𝛽2

𝛼1𝛽1 + 𝛼2𝛽2 𝛽2
1 + 𝛽2

2

)
+
(

𝛼2
3 + 𝛼

2
4 𝛼3𝛽3 + 𝛼4𝛽4

𝛼3𝛽3 + 𝛼4𝛽4 𝛽2
3 + 𝛽2

4

)
(
𝛼1𝛾1 + 𝛼2𝛾2 𝛽1𝛾1 + 𝛽2𝛾2
𝛼1𝛿1 + 𝛼2𝛿2 𝛽1𝛿1 + 𝛽2𝛿2

)
+
(
𝛾1𝛼3 + 𝛾2𝛼4 𝛾1𝛽3 + 𝛾2𝛽4
𝛼3𝛿1 + 𝛼4𝛿2 𝛽3𝛿1 + 𝛽4𝛿2

)
(
𝛼1𝛾1 + 𝛼2𝛾2 𝛼1𝛿1 + 𝛼2𝛿2
𝛽1𝛾1 + 𝛽2𝛾2 𝛽1𝛿1 + 𝛽2𝛿2

)
+
(
𝛼3𝛾3 + 𝛼4𝛾4 𝛼3𝛿3 + 𝛼4𝛿4
𝛽3𝛾3 + 𝛽4𝛾4 𝛽3𝛿3 + 𝛽4𝛿4

)
(

𝛾2
1 + 𝛾2

2 𝛾1𝛿1 + 𝛾2𝛿2
𝛿1𝛾1 + 𝛿2𝛾2 𝛿2

1 + 𝛿
2
2

)
+
(

𝛾2
3 + 𝛾2

4 𝛾3𝛿3 + 𝛾4𝛿4
𝛾3𝛿3 + 𝛾4𝛿4 𝛿2

3 + 𝛿
2
4

)
⎤⎥⎥⎥⎥⎦
. (4.692)

By comparing the right-hand sides of (4.691) and (4.692) we confirm (4.690).

Example 4.181

By using the method demonstrated in Example 4.180, work out the product ΦTΦ,
where matrix Φ is given by (4.686).

(Continued)
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Example 4.181 (Continued)

ΦTΦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

IT IT IT IT IT IT IT IT
1

IT AT BT CT DT ET FT IT
2

IT BT DT FT AT CT ET IT
3

IT CT FT BT ET AT DT IT
4

IT DT AT ET BT FT CT IT
5

IT ET CT AT FT DT BT IT
6

IT FT ET DT CT BT AT IT
7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I I I I I I I
I A B C D E F
I B D F A C E
I C F B E A D
I D A E B F C
I E C A F D B
I F E D C B A
I1 I2 I3 I4 I5 I6 I7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.693)

Obviously IT = I. Also, from the definitions of matrices A–F given by Equations (4.687) we observe
that:

D = CT E = BT F = AT . (4.694)

Then (4.693) takes the form:

ΦTΦ =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I I I I I I I IT
1

I AT BT CT C B A IT
2

I BT C A AT CT B IT
3

I CT A BT B AT C IT
4

I C AT B BT A CT IT
5

I B CT AT A C BT IT
6

I A B C CT BT AT IT
7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I I I I I I I
I A B C CT BT AT

I B CT AT A C BT

I C AT B BT A CT

I CT A BT B AT C
I BT C A AT CT B
I AT BT CT C B A
I1 I2 I3 I4 I5 I6 I7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

(4.695)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

7I + IT
1 I1

I + AT + BT + CT + C + B + A + IT
2 I1

I + BT + C + A + AT + CT + B + IT
3 I1

I + CT + A + BT + B + AT + C + IT
4 I1

I + C + AT + B + BT + A + CT + IT
5 I1

I + B + CT + AT + A + C + BT + IT
6 I1

I + A + B + C + CT + BT + AT + IT
7 I1

I + A + B + C + CT + BT + AT + IT
1 I2

I + ATA + BTB + CTC + CCT + BBT + AAT + IT
2 I2

I + BTA + CB + AC + ATCT + CTBT + BAT + IT
3 I2

I + CTA + AB + BTC + BCT + ATBT + CAT + IT
4 I2

I + CA + ATB + BC + BTCT + ABT + CTAT + IT
5 I2

I + BA + CTB + ATC + ACT + CBT + BTAT + IT
6 I2

I + AA + BB + CC + CTCT + BTBT + ATAT + IT
7 I2

I + B + CT + AT + A + C + BT + I1I3
I + ATB + BTCT + CTAT + CA + BC + ABT + IT

2 I3
I + BTB + CCT + AAT + ATA + CTC + BBT + IT

3 I3
I + CTB + ACT + BTAT + BA + ATC + CBT + IT

4 I3
I + CB + ATCT + BAT + BTA + AC + CTBT + IT

5 I3
I + BB + CTCT + ATAT + AA + CC + BTBT + IT

6 I3
I + AB + BCT + CAT + CTA + BTC + ATBT + IT

7 I3

(4.696)
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I + C + AT + B + BT + A + CT + IT
1 I4

I + ATC + BTAT + CTB + CBT + BA + ACT + IT
2 I4

I + BTC + CAT + AB + ATBT + CTA + BCT + IT
3 I4

I + CTC + AAT + BTB + BBT + ATA + CCT + IT
4 I4

I + CC + ATAT + BB + BTBT + AA + CTCT + IT
5 I4

I + BC + CTAT + ATB + ABT + CA + BTCT + IT
6 I4

I + AC + BAT + CB + CTBT + BTA + ATCT + IT
7 I4

I + BT + C + A + AT + CT + B + IT
1 I5

I + ATCT + BTA + CTBT + CB + BAT + AC + IT
2 I5

I + BTCT + CA + ABT + ATB + CTAT + BC + IT
3 I5

I + CTCT + AA + BTBT + BB + ATAT + CC + IT
4 I5

I + CCT + ATA + BBT + BTB + AAT + CTC + IT
5 I5

I + BCT + CTA + ATBT + AB + CAT + BTC + IT
6 I5

I + ACT + BA + CBT + CTB + BTAT + ATC + IT
7 I5

I + BT + C + A + AT + CT + B + IT
1 I6

I + ATBT + BTC + CTA + CAT + BCT + AB + IT
2 I6

I + BTBT + CC + AA + ATAT + CTCT + BB + IT
3 I6

I + CTBT + AC + BTA + BAT + ATCT + CB + IT
4 I6

I + CBT + ATC + BA + BTAT + ACT + CTB + IT
5 I6

I + CBT + CTC + ATA + AAT + CCT + BTB + IT
6 I6

I + ABT + BC + CA + CTAT + BTCT + ATB + IT
7 I6

I + AT + BT + CT + C + B + A + IT
1 I7

I + ATAT + BTBT + CTCT + CC + BB + AA + IT
2 I7

I + BTAT + CBT + ACT + ATC + CTB + BA + IT
3 I7

I + CTAT + ABT + BTCT + BC + ATB + CA + IT
4 I7

I + CAT + ATBT + BCT + BTC + AB + CTA + IT
5 I7

I + BAT + CTBT + ATCT + AC + CB + BTA + IT
6 I7

I + AAT + BBT + CCT + CTC + BTB + ATA + IT
7 I7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.697)

Example 4.182

From the definitions of matrices A, B and C, we can easily work out the following
relationships:

AA = B BA = C CA = CT

AB = C BB = CT CB = BT

AC = CT BC = BT CC = AT

ACT = BT BCT = AT CCT = I
ABT = AT BBT = I CBT = A

AAT = I BAT = A CAT = B

(Continued)
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Example 4.182 (Continued)

ATA = I BTA = AT CTA = BT

ATB = A BTB = I CTB = AT

ATC = B BTC = A CTC = I
ATCT = C BTCT = B CTCT = A

ATBT = CT BTBT = C CTBT = B
ATAT = BT BTAT = CT CTAT = C. (4.698)

We also observe that

I + A + B + C + AT + BT + CT = W (4.699)

where

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.700)

Finally, we observe that

IT
1 I1 = IT

2 I2 = IT
3 I3 = IT

4 I4 = IT
5 I5 = IT

6 I6 = IT
7 I7 = W (4.701)

and that

IT
i Ij = 𝟎7×7 for i ≠ j (4.702)

where 𝟎7×7 is the zero matrix of size 7 × 7. Taking all these equations into consideration, we finally
obtain

ΦTΦ = W49×49 + 7I49×49 (4.703)

where W49×49 is the flat matrix of size 49 × 49 and I49×49 is the unit matrix of the same size.

Example 4.183

Show that
1
N
ΦTFRAD = Image (4.704)

where Φ is as defined by (4.686) and FRAD is defined by (4.672). Note that Image here
means the input image G, of size N × N, with its dc component removed, written as a
column vector, as described in Example 4.179.
Matrix Φ has been constructed in Example 4.179, so that

Φg = FRAD (4.705)
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where g is the vectorised image given by (4.683). We multiply both sides of this equation
with ΦT:

ΦTΦg = ΦTFRAD. (4.706)

Let us substitute ΦTΦ from Equation (4.703), dropping the subscripts that indicate the size of
each matrix, for the sake of simplicity:

(W + 7I)g = ΦTFRAD ⇔ Wg + 7Ig = ΦTFRAD. (4.707)

Note that matrix W is a flat matrix. Then, when one of its rows multiplies column vector g, it
simply sums up all the elements of g, i.e. all pixel values of the input image, which we know sum
up to 0. So, we obtain:

7Ig = ΦTFRAD ⇔ g = 1
7
ΦTFRAD. (4.708)

Example B4.184

Work out the eigenvalues of matrix ΦTΦ.
This is a circulant matrix (see Box 4.13) with the elements of a column produced from the elements
of the previous column shifted down by one position and the element that sticks out at the bottom
placed at the top. It can be shown (see Book I [75]) that the eigenvalues of such a matrix are given
by Equation (4.713). Applying this formula for M = 49, d(0) = 8 and all other elements equal to
1, we obtain:

𝜆(k) = 8 +
48∑

m=0
e

2πj
49

mk
. (4.709)

We may use the following formula (see Book I [75]) to work out the sum in (4.709):
S−1∑
m=0

e
2πj
S

mt =
{

S if t = 0
0 if t ≠ 0

. (4.710)

Applying this formula for S = 49, we can easily work out that

𝜆(0) = 56 𝜆(1) = 𝜆(2) = … = 𝜆(48) = 7. (4.711)

Box 4.13 Circulant matrices

An M × M matrix D is called circulant if it has the form:

D =

⎛⎜⎜⎜⎜⎜⎝

d(0) d(M − 1) d(M − 2) … d(1)
d(1) d(0) d(M − 1) … d(2)
d(2) d(1) d(0) … d(3)
⋮ ⋮ ⋮ ⋮ ⋮

d(M − 1) d(M − 2) d(M − 3) … d(0)

⎞⎟⎟⎟⎟⎟⎠
. (4.712)

(Continued)
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Box 4.13 (Continued)

The eigenvalues of such a matrix are given by

𝜆(k) = d(0) + d(M − 1)e
2πj
M

k + d(M − 2)e
2πj
M

2k + · · · + d(1)e
2πj
M
(M−1)k (4.713)

for k = 0, 1, 2,… ,M − 1, and the corresponding eigenvectors are:

w(k) = 1√
M

(
1, e

2πj
M

k
, e

2πj
M

2k
,… , e

2πj
M
(M−1)k

)T
. (4.714)

Example B4.185

Let
a ≡ Fb (4.715)

where a is an M-dimensional vector, b is an N-dimensional vector and F is an M × N
matrix. Show that the square magnitude (norm) of vector a is given by:

||a||2 ≡
M∑

m=1
a2

m = bTFTFb. (4.716)

Obviously:
M∑

m=1
a2

m = aTa = (Fb)TFb = bTFTFb. (4.717)

Example B4.186

If x is an eigenvector of matrix F with eigenvalue 𝜆, show that:

xTFTFx = 𝜆2xTx. (4.718)

By definition:

Fx = 𝜆x ⇒ xTFT = 𝜆xT . (4.719)

Multiplying these two equations by parts, and remembering that𝜆 is a scalar and so it may change
position in a matrix/vector equation, we obtain:

xTFTFx = xT𝜆2x. (4.720)

Example B4.187

If
xTFx = xT𝜆x (4.721)

show that 𝜆 is an eigenvalue of matrix F.



�

� �

�

4.7 Ridgelets and Curvelets 643

Multiply both sides of Equation (4.721) from the left with (xT)−1 to show that Fx = 𝜆x, i.e. that 𝜆
is an eigenvalue of F and x the corresponding eigenvector.

Box 4.14 Elements of frame theory

Consider a set of M vectors 𝝓m, of size N × 1. We say that these vectors constitute a frame if
for any vector x of the same size, we may write

A||x||2 ≤
M∑

m=1

|x ⋅ 𝝓m|2 ≤ B||x||2 (4.722)

where A and B are some positive constants with B finite, known as frame bounds, and ||x|| is
the magnitude of vector x. If A = B the frame is said to be tight.

Imagine now that we write vectors 𝝓m one under the other, as row vectors, to form a matrix
F of size M × N . Equation (4.722) may then be written as:

xTAx ≤ xTFTFx ≤ xTBx. (4.723)

From Example 4.187, it is obvious that the eigenvalues of FTF are between A and B. So,
the tightest possible frame bounds A and B we may have are the minimum and maximum
eigenvalues of FTF. Obviously, the tightest frame we may have then is when all eigenvalues
of FTF are equal to A = B. This will happen when FTF = AI, where I is the unit matrix. In turn,
this means that matrix F is a unitary matrix, i.e. its transpose is its inverse within a scaling
factor. If F is a real matrix, the term we use is that it is an orthogonal matrix in this case.
An orthogonal matrix is made up from rows that are vectors orthogonal to each other. Such
matrices are discussed extensively in Book I [75]. We may say, therefore, that the expansion of
a vector in terms of a set of orthogonal basis vectors is a special case of the expansion of the
vector in terms of a set of vectors that constitute a frame.

Example B4.188

Show that if a matrix has all its eigenvalues identical, it may be written as the unit
matrix times a constant.
First of all, it is obvious that matrix AI where A is a scalar, has eigenvalues equal to A, since for
any vector x, we have AIx = Ax.

We know from linear algebra that if P is the matrix made up from the eigenvectors of F, written
next to each other as its columns, and Λ is a diagonal matrix made up from the eigenvalues
written along the diagonal in the same column as the corresponding eigenvectors, we may write:
F = PTΛP (see Book I [75]). If all eigenvalues of F are equal to A, matrix Λ is the unit matrix
times A. Since the unit matrix plays no role in matrix multiplication, and since a scalar may
also change place in matrix multiplication, we may write: F = APTP. Now, P being made from
columns that are orthogonal to each other and each one being an eigenvector of magnitude 1,
implies that PTP = I. This proves the assertion.
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Example B4.189

Work out the tightest frame bounds for matrix ΦTΦ.
The eigenvalues of this matrix have been worked out in Example 4.184 to be 7 and 56. So, the
tightest frame bounds are A = 7 and B = 56. This means that the sum of the squares of the pro-
jections of any 49-dimensional vector on the columns of this matrix will be between 7 and 56
times the square magnitude of the vector.

Example B4.190

Calculate the eigenvector of matrix ΦTΦ that corresponds to eigenvalue 𝜆(0) = 56.
This is given by (4.714) for k = 0. We observe that this leads to w(0) = (1, 1, 1,… , 1)T, which, if
treated like a wrapped image, is a flat image.

Example B4.191

Show that if you omit the flat images, the FRAD transform constitutes a tight frame.
The space spanned by the FRAD transform is the space spanned by the eigenvectors of matrixΦTΦ.
We note that this matrix has only one eigenvalue equal to 56 and it has 48 eigenvalues equal to 1.
We also note that eigenvalue 56 corresponds to the sub-space of the flat image (see Example 4.190).
If we omit that sub-space, the remaining space is spanned by eigenvectors, all of which have the
same eigenvalue, equal to 1. So, the lower and upper limit of the sum of squares of the projections
of any image on the columns of matrix Φ will be equal to each other and equal to the sum of the
squares of the pixel values of the image, i.e. A = B = 1 in (4.723) and the frame will be tight.

This shows that the finite Radon transform is an orthogonal transform, easily invertible, as
long as the image has zero mean, i.e. the image can be represented without the flat basis image.

Does the order in which we consider the tracing lines in the finite Radon transform
matter?

For the Radon transform itself it does not matter. However, if the Radon transform is the first stage
of some further processing, as is the case of the ridgelet transform, then the order in which we
consider the lines matters.

What determines the order in which we consider the lines in the finite Radon
transform?

This is largely determined by the way we parametrise the lines.

How may a line be parametrised?

The normal form of the equation of a line is i cos𝜙 + j sin𝜙 − t = 0, where (cos𝜙, sin𝜙) is the
normal vector to the line, having unit length. The standard form of the equation of a line is ai +
bj − t = 0, where (a, b) is a vector normal to the line.
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Example 4.192

Work out the relationship between parameters (k, l) of the line as defined by (4.673)
and parameters (a, b, t), of the standard form of the equation of a line.

ai + bj − t = 0
⇒ j = − a

b
i + t

b

⇒ t
b
↔ l and − a

b
↔ k. (4.724)

Example 4.193

The coordinates of the foot of the normal from the centre of the coordinate axes to a
line are (a, b). Work out the equation of the line.

Figure 4.136 A line and the normal to the line from the centre
of the axes.

x

y

0

(a,b)

(x,y)

Figure 4.136 shows the line perpendicular to position vector (a, b)T at point (a, b). Any point (x, y)
of the line has position vector (x, y)T. Then the position vector of the same point with respect to
the foot of the normal is (x − a, y − b). Vectors (a, b)T and (x − a, y − b)T are orthogonal to each
other, so their dot product is 0:

(x − a)a + (y − b)b = 0 ⇒ ax + by − (a2 + b2) = 0. (4.725)

This is the equation of the line in its standard form.

Example 4.194

By looking at the bottom right panel of Figure 4.133 work out the directional vectors
of each of the constructed lines and from them the normal vector of each line.
We note that the directional vectors are:

(1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (0, 1). (4.726)

These vectors correspond to vectors (x − a, y − b) of Example 4.193. The normal vector of a line
should be such that its dot product with the directional vector of the line is 0 and it has unit length.
So, from the above directional vectors we work out that the corresponding orthogonal vectors to

(Continued)
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Example 4.194 (Continued)

these lines are:

(0, 1), (−1, 1), (−2, 1), (−3, 1), (−4, 1), (−5, 1), (−6, 1), (1, 0). (4.727)

These vectors may be normalised to have unit length, so they become the normal vectors of the
lines (as opposed to being vectors normal to the lines):

(0, 1),

(
− 1√

2
,

1√
2

)
,

(
− 2√

5
,

1√
5

)
,

(
− 3√

10
,

1√
10

)
,

(
− 4√

17
,

1√
17

)
,(

− 5√
26
,

1√
26

)
,

(
− 6√

37
,

1√
37

)
, (−1, 0).

(4.728)

Example 4.195

Using Equation (4.725) work out vector (a, b) for each line represented by the equation
j = ki + l for a 7 × 7 image.
Equation (4.725) in (i, j) coordinates may be written as

a
b

i + j − a2 + b2

b
= 0 ⇒ j = −a

b
i + a2 + b2

b
. (4.729)

We observe that

k = −a
b

l = a2 + b2

b
. (4.730)

Solving the first equation for a and substituting in the second, we obtain:

a = −kb l = k2b2 + b2

b
⇒ l = (k + 1)b. (4.731)

So,

a = − kl
k + 1

b = l
k + 1

. (4.732)

Let us apply this for the line with k = 4 and l = 1. We obtain a = −0.8 and b = 0.2. If we consider
all values of k, we obtain:

l = 1 k = 0 (0, 1)

l = 1 k = 1
(
−1

2
,

1
2

)
l = 1 k = 2

(
−2

3
,

1
3

)
l = 1 k = 3

(
−3

4
,

1
4

)
l = 1 k = 4

(
−4

5
,

1
5

)
l = 1 k = 5

(
−5

6
,

1
6

)
l = 1 k = 6

(
−6

7
,

1
7

)
. (4.733)

Note that if we normalise these vectors to have unit length, we recover the normal vectors we
worked out in Example 4.194.
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What is the best way to parametrise the Radon lines for use in the ridgelet transform?

A line used by the finite Radon transform corresponds to a line in the frequency domain of the
image (see Examples 4.196–4.202). As most of the information in images is contained in the low
frequency components, ideally we select the ordering of the lines so that they capture as best as
possible the low frequency information.

Example 4.196

Using the standard form of the equation for a line, the finite Radon transform of an
N × N image is defined as

FRAD;a,b(t) ≡ 1√
N

∑
(i,j)∈La,b,t

I(i, j) (4.734)

where

La,b,t = {(i, j) ∈ Image ∶ ai + bj − t = 0 modulo N}. (4.735)

Show that the 1D Fourier transform of FRAD;a,b(t) with respect to t is identical to the
2D DFT G(q1, q2) of I(i, j), evaluated along a discrete slice through the origin and in
direction (a, b). This is the Discrete projection-slice theorem.
The DFT of FRAD;a,b(t) is

F̂RAD;a,b(𝜔) =
1
N
∑

t
FRAD;a,b(t)e

− 2πj
N
𝜔t

= 1
N
√

N

∑
t

∑
(i,j)∈La,b,t

⏟⏞⏞⏟⏞⏞⏟

all points in the image

I(i, j)e−
2πj
N
𝜔t

= 1
N
√

N

∑
(i,j)∈ Image
⏟⏞⏟⏞⏟

all points in the image

I(i, j)e−
2πj
N
𝜔(ai+bj) (4.736)

where we made use of the equation of a line ai + bj − t = 0 ⇒ t = ai + bj.
The DFT of I(i, j) is:

G(q1, q2) =
1

N2

∑
(i,j)∈ Image

I(i, j)e−
2πj
N
(q1i+q2j)

. (4.737)

By comparing with (4.736) we can see that F̂RAD;a,b(𝜔) =
√

NG(a𝜔, b𝜔).

Example B4.197

For a 7 × 7 image, compute FRAD(4, l) for l = 0, 1,… , 6 and then take the 1D Fourier
transform of it.
This is the case of lines with slope k = 4, depicted in the central panel of Figure 4.133. Let us
assume that the i index of the elements of the image changes from left to right, and the j index
changes from bottom to top, both taking values from 0 to 6. Let us also call the elements of the
image gij. Looking at the lines marked in Figure 4.133, we can easily work out the following values

(Continued)
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Example B4.197 (Continued)

for FRAD(4, l). Note that l takes values along the vertical axis, with 0 being at the bottom left.

FRAD(4, 0) =
1√
7
(g00 + g14 + g21 + g35 + g42 + g56 + g63)

FRAD(4, 1) =
1√
7
(g50 + g01 + g22 + g43 + g64 + g15 + g36)

FRAD(4, 2) =
1√
7
(g30 + g51 + g02 + g23 + g44 + g65 + g16)

FRAD(4, 3) =
1√
7
(g10 + g31 + g52 + g03 + g24 + g45 + g66)

FRAD(4, 4) =
1√
7
(g60 + g11 + g53 + g32 + g04 + g25 + g46)

FRAD(4, 5) =
1√
7
(g40 + g61 + g12 + g33 + g54 + g05 + g26)

FRAD(4, 6) =
1√
7
(g20 + g41 + g62 + g13 + g34 + g55 + g06). (4.738)

The Fourier transform F̂RAD(4; q) of this string of numbers with respect to its second argument is:

F̂RAD(4; q) =
[

FRAD(4, 0) + FRAD(4, 1)e
− 2πj

7
q + FRAD(4, 2)e

− 2πj
7

2q + FRAD(4, 3)e
− 2πj

7
3q

+FRAD(4, 4)e
− 2πj

7
4q + FRAD(4, 5)e

− 2πj
7

5q + FRAD(4, 6)e
− 2πj

7
6q
]

1
7
. (4.739)

Here q is the frequency index, taking values from 0 to 6.
We may then substitute from (4.738) into (4.739) to work out F̂RAD(4; q) as a function of the

pixel values:
F̂RAD(4; q) = 1

7
√

7

[
g00 + g14 + g21 + g35 + g42 + g56 + g63

+(g50 + g01 + g22 + g43 + g64 + g15 + g36)e
− 2πj

7
q

+(g30 + g51 + g02 + g23 + g44 + g65 + g16)e
− 2πj

7
2q

+(g10 + g31 + g52 + g03 + g24 + g45 + g66)e
− 2πj

7
3q

+(g60 + g11 + g53 + g32 + g04 + g25 + g46)e
− 2πj

7
4q

+(g40 + g61 + g12 + g33 + g54 + g05 + g26)e
− 2πj

7
5q

+(g20 + g41 + g62 + g13 + g34 + g55 + g06)e
− 2πj

7
6q
]
. (4.740)

Applying this for the different values of q, we obtain, for example:

F̂RAD(4; 0) = 1
7
√

7

[
g00 + g14 + g21 + g35 + g42 + g56 + g63

+g50 + g01 + g22 + g43 + g64 + g15 + g36

+g30 + g51 + g02 + g23 + g44 + g65 + g16

+g10 + g31 + g52 + g03 + g24 + g45 + g66

+g60 + g11 + g53 + g32 + g04 + g25 + g46

+g40 + g61 + g12 + g33 + g54 + g05 + g26

+g20 + g41 + g62 + g13 + g34 + g55 + g06
]

(4.741)
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F̂RAD(4; 1) = 1
7
√

7

[
g00 + g14 + g21 + g35 + g42 + g56 + g63

+(g50 + g01 + g22 + g43 + g64 + g15 + g36)e
− 2πj

7

+(g30 + g51 + g02 + g23 + g44 + g65 + g16)e
− 2πj

7
2

+(g10 + g31 + g52 + g03 + g24 + g45 + g66)e
− 2πj

7
3

+(g60 + g11 + g53 + g32 + g04 + g25 + g46)e
− 2πj

7
4

+(g40 + g61 + g12 + g33 + g54 + g05 + g26)e
− 2πj

7
5

+(g20 + g41 + g62 + g13 + g34 + g55 + g06)e
− 2πj

7
6
]
. (4.742)

In the same way we may compute F̂RAD(4; 2),… , F̂RAD(4; 6). We must remember that:

e−
2πj
N

m = e−
2πj
N
(m modulo N)

. (4.743)

This means that every time the number that multiplies 2πj∕7 in these formulae becomes larger
than or equal to 7, it may be replaced with the residual it leaves when it is divided by 7. So:

e−
2πj
7

8 = e−
2πj
7 e−

2πj
7

12 = e−
2πj
7

5 e−
2πj
7

36 = e−
2πj
7 , etc. (4.744)

To save space, we show in Figure 4.137 the factors that multiply 2πj∕7 in the exponent of the expo-
nential thata multiplies the corresponding pixel value of the image. We omit the case of F̂RAD(4; 0),
where this factor is trivially 0 for all pixels.
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Figure 4.137 The numbers that have to multiply exponent −2πj∕7 to produce the complex
exponential with which the corresponding pixel of the image is multiplied to produce F̂RAD(4; q) for
q = 1, 2,… , 6.

Example B4.198

For the image of Example 4.197, calculate explicitly the 49 components of its 2D
Fourier transform.

(Continued)
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Example B4.198 (Continued)

The 2D Fourier transform of the image is:

G(q1, q2) ≡ 1
49

6∑
i=0

6∑
j=0

gije
− 2πj

7
(q1i+q2j)

. (4.745)

Indices (q1, q2) are the frequency domain indices and they take values from 0 to 6.
If we apply this for all combinations of values of (q1, q2), we shall produce 49 outputs. Instead

of writing them explicitly, we decide to give only the numbers that have to multiply −2πj∕7 to
produce the complex exponential with which the corresponding pixel of the image is multiplied
to produce G(q1, q2). To produce these numbers we make use of (4.743) and (4.744).

We note that for q1 = q2 = 0,

G(0, 0) = 1√
7

F̂RAD(4; 0). (4.746)
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Figure 4.138 These numbers have to multiply −2πj∕7 to form the exponent of the factor with which
the corresponding pixel has to be multiplied to contribute to the creation of the indicated Fourier
component of the image. The first 12 components of the Fourier transform of the image.
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Figure 4.139 As Figure 4.138, but for components 13–24 of the Fourier transform of the image.
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Example B4.198 (Continued)
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Figure 4.140 As Figure 4.138, but for components 25–36 of the Fourier transform of the image.
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Figure 4.141 As Figure 4.138, but for components 37–49 of the Fourier transform of the image.

Example B4.199

Identify the line that the Fourier transform of FRAD(4, l) for l = 0, 1,… , 6 of Example
4.197 defines in the Fourier transform of the full image worked out in Example 4.198.
Using the results of Examples 4.197 and 4.198, we can see that:

F̂RAD(4; 0) =
√

7G(0, 0)

F̂RAD(4; 1) =
√

7G(3, 1)

F̂RAD(4; 2) =
√

7G(6, 2)

F̂RAD(4; 3) =
√

7G(2, 3)

(Continued)
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Example B4.199 (Continued)

F̂RAD(4; 4) =
√

7G(5, 4)

F̂RAD(4; 5) =
√

7G(1, 5)

F̂RAD(4; 6) =
√

7G(4, 6). (4.747)

We can see that, if we ignore factor
√

7, the FT of the Radon lines with slope k = 4, and all possible
intercepts l along the vertical axis, cut a slice through the 2D Fourier transform of the image,
identified by the black cells in Figure 4.142.

q 2

q 1

Repetitions of
the DFT of the
7x7 image

Figure 4.142 The thick black frame identifies the 2D DFT of the image. The dc component is the
bottom left cell. The black pixels within this frame identify the coordinates of G(q1, q2) listed in
(4.747). As this frame is repeated ad infinitum in all directions, we may say that these pixels form the
line indicated by the dashed line. The arrow shows the position of the first point of this digital
line.

Example B4.200

Repeat the process of Example 4.197 to work out the Fourier transforms of the lines
with slope k = 0, 1, 2, 3, 5, 6, 7 and in each case identify the pixels in the 2D Fourier
space that make up the Fourier transform of each batch of lines with the same
slope k.
For each value of k we work out FRAD(k; l) and then take its Fourier transform with respect to
l. We may represent these Fourier transform like matrices indicating the factor in the exponent
for each pixel, like we did in Figure 4.137. By comparing then these panels with the panels in
Figures 4.138–4.141, we can identify which G(q1, q2) corresponds to which FRAD(k; l). The result
is shown in Figure 4.143, where the pixels that make up each line are marked with the same
number, namely the slope k of the line.
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Figure 4.143 The numbers below the grid are the values of
frequency index q1. The numbers on the left are the values of
frequency index q2. The bottom left pixel belongs to all slices
(digital lines) that have been formed in the 2D Fourier
domain. Each such line is identified with the value of k, i.e.
the value of the slope of the batch of Radon lines from which
it was created. The first point of each line is identified with a
black frame.
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Example B4.201

The Fourier slices (lines) in the 2D Fourier transform of a 7 × 7 image are shown in
Figure 4.143, where the dc component of the image is at the bottom left. Show how
the same lines will appear if we use the Fourier space with the dc component in the
middle of the grid.
The Fourier transform of the image is repeated ad infinitum in all directions. To construct the
Fourier grid with the dc component in the middle, we repeat the existing grid four times and then
we use a frame of size 7 × 7, centred on the dc component to extract the Fourier space we desire.
This is shown in Figure 4.144
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Figure 4.144 The original Fourier frame of Figure 4.143 is repeated in all directions. We identify the
Fourier domain with the dc component in the middle by cutting out a frame of size 7 × 7 centred at
the dc point.
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Example B4.202

Working like in Example 4.173 and using the (k, l) parametrisation of the discrete
lines, prove the projection slice theorem in the discrete domain. Verify it using the
results of Example 4.199.
Let us take the DFT of FRAD as defined by equations (4.672) and (4.673):

F̂RAD(k; q) = 1
N

N−1∑
l=0

FRAD(k, l)e
− 2πj

N
ql

= 1
N
√

N

N−1∑
l=0

∑
(i,j)∈Lkl

I(i, j)e−
2πj
N

ql

= 1
N
√

N

N−1∑
l=0

N−1∑
i=0

N−1∑
j=0
𝛿(j − (ki + l)modulo N )I(i, j)

= 1
N
√

N

N−1∑
i=0

N−1∑
j=0

(N−1∑
l=0
𝛿(j − (ki + l)modulo N )e

− 2πj
N

ql

)
I(i, j). (4.748)

To perform the summation inside the large parenthesis, we must solve

j − (ki + l)modulo N = 0 (4.749)

for l and substitute in the exponent of the exponential factor. We note that this equation may be
written as

ki + l = nN + j ⇒ l = nN + j − ki (4.750)

where n is some integer number. If we substitute from (4.750) into (4.748) we obtain:

F̂RAD(k; q) = 1
N
√

N

N−1∑
i=0

N−1∑
j=0

I(i, j)e−
2πj
N

q(nN+j−ki)

= 1
N
√

N

N−1∑
i=0

N−1∑
j=0

I(i, j)e−
2πj
N

qnN

⏟⏟⏟

=1

e−
2πj
N

q(j−ki)

=
√

NG(−kq, q). (4.751)

Applying this for N = 7 and k = 4, we obtain: F̂RAD(4; q) =
√

7G(−4q, q). For q = 1, we obtain
that F̂RAD(4; 1) ↔ G(−4, 1). Due to the periodic repetition of the image and its DFT, we may add
7 to any of the arguments of G without making a mistake. So, G(−4, 1) = G(3, 1), which is con-
firmed by the empirical result (4.747).

Let us consider next FRAD as defined by Equations (4.672) and (4.674) and let us take its DFT:

F̂RAD(N; q) = 1
N
√

N

N−1∑
l=0

N−1∑
i=0

N−1∑
j=0
𝛿(i − l)e−

2πj
N

qlI(i, j)

= 1
N
√

N

N−1∑
i=0

N−1∑
j=0

(N−1∑
l=0
𝛿(i − l)e−

2πj
N

ql

)
I(i, j)

=
√

NG(q, 0). (4.752)

So, the projection slice theorem is valid in all cases.
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Figure 4.145 The two slices one may consider
as being cut in the 2D Fourier domain by the 1D
DFT of the batch of parallel lines that have slope
k = 4. The numbers identify the slices cut by
other values of slope k. The dark square marks
the zero frequency point. The isolated line
segments represent wrapped back parts of the
corresponding lines. 6
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How can we select the tracing lines so low frequency information is captured best?

The order of the lines is also dictated by the order of the pixels that make up the line. Let us con-
sider for example the lines with k = 5 in Figure 4.133 and in particular the first line, formed by
the black squares. We constructed it as a line with direction from bottom left to top right (as the
arrow that connects its first two pixels shows). Nothing stops us, however, from considering it
as a line that goes from top left to bottom right. In fact, this way seems more natural as the pix-
els that make it up are closer to each other. The order of the pixels makes no difference for the
Radon transform, as all we do is to sum their values. If, however, we consider the line to be from
top left to bottom right, the order of the lines of the same slope changes. When we align the pix-
els according to their shorter distance, we also capture better low frequency information, since
pixels closer to each other have more chance to be similar. Indeed, one way of selecting the best
order of the lines is to look at the frequency domain as each batch of lines creates a line in the
frequency domain passing through the (0, 0) frequency point. Let us consider the right panel of
Figure 4.144 where each line created by a batch of parallel lines is marked with the value of the
corresponding k parameter (the slope parameter of the lines). Figure 4.145 shows the two lines
that may be constructed in the Fourier space from the samples that make up the Fourier trans-
form of the batch of lines with slope k = 4. The black rectangle indicates the first frequency point
that has to be joined with the dc component to form the slice through the Fourier space when the
1D DFT is taken according to displacement parameter l. This is line AB. Line CD is formed if we
connect the dc component with the sample that represents the smallest frequency from among
all samples marked with 4 (the slope of the batch of lines we are currently considering). Each of
the two lines is made up from a sequence of frequencies. Line CD captures lower frequencies than
line AB.

As shown in Figure 4.146, we can see that if we consider as lines those formed by connecting
the central sample (the dc sample) with the nearest sample of each line, the lines we shall create
in the frequency domain will have nicely spread round orientations and they will be capturing
low frequency information better, as they will be made up from samples closer to each other (see
Examples 4.203 and 4.204).
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(b) (c)(a)

Figure 4.146 (a) All lines with the same slope (k = 5), as in Example 4.203, for a 7 × 7 image. (b) If we
follow the original method of constructing the lines using parameters (k, l), the orientation of the line is
marked here by the thick lines that join two successive pixels of it. (c) If we join the pixels according to their
proximity, the line we form has the direction shown here by the thick black lines.

Example 4.203

From Figure 4.144 work out the normal vectors of the lines and compare them with
the normal vectors of the same lines worked out in Example 4.194. From all vectors
(a, b) normal to a line, we select the one that is closest to the dc component of the
image and, to avoid ambiguity, we select the one that has b > 0.
The selected (a, b) vectors of the lines are those with the minimum value of

√
a2 + b2, since the dc

component coincides with the origin of the axes. Using also the convention b > 0, we conclude that
the list of vectors (a, b), as shown in Figure 4.147, and their corresponding normalised versions
that are the normal vectors to the line, are:

k = 0 (0, 1) (0, 1)

k = 1 (−1, 1)

(
− 1√

2
,

1√
2

)

k = 2 (−2, 1)

(
− 2√

5
,

1√
5

)

k = 3 (1, 2)

(
1√
5
,

2√
5

)

k = 4 (−1, 2)

(
− 1√

5
,

2√
5

)

k = 5 (2, 1)

(
2√
5
,

1√
5

)

k = 6 (1, 1)

(
1√
2
,

1√
2

)
k = 7 (1, 0) (1, 0). (4.753)
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Figure 4.147 The (a, b) vectors of the digital Radon lines as originally constructed on the left (see (4.727))
and as defined from the Fourier domain, on the right.

Example 4.204

Work out the order of the lines for the case k = 4 in Figure 4.133 when the parametri-
sation of the lines is in terms of (a, b, t) instead of (k, l), with vector (a, b) defined from
the Fourier domain as in Example 4.203, and the standard form of the equation of the
line is used.
The standard form of the equation of the line is

ai + bj − t = 0 (4.754)

where t is the displacement parameter, taking values 0, 1,… , 6. For slope k = 4, vector (a, b) has
been worked out to be (−1, 2) in Example 4.203. So, we may write:

−i + 2j = t ⇒ j = t + i
2

fort, i = 0, 1,… , 6. (4.755)

The order of the lines will be determined by the values of t. So, for every value of i, we must work
out the corresponding value of j in order to see which pixels make up each line. We must remember
that each line has to be made from 7 pixels, the value of j has to be integer, and so the values we
select for i have to lead to integer values of j, and that all coordinates are modulo 7.

For t = 0
For i = 0 ⇒ j = 0. Pixel (0, 0)
For i = 2 ⇒ j = 1. Pixel (2, 1)
For i = 4 ⇒ j = 2. Pixel (4, 2)
For i = 6 ⇒ j = 3. Pixel (6, 3)
For i = 8 ⇒ j = 4. Pixel (1, 4)
For i = 10 ⇒ j = 5. Pixel (3, 5)
For i = 12 ⇒ j = 6. Pixel (5, 6).

For t = 1
For i = 1 ⇒ j = 1. Pixel (1, 1)
For i = 3 ⇒ j = 2. Pixel (3, 2)
For i = 5 ⇒ j = 3. Pixel (5, 3)
For i = 7 ⇒ j = 4. Pixel (0, 4)
For i = 9 ⇒ j = 5. Pixel (2, 5)
For i = 11 ⇒ j = 6. Pixel (4, 6)
For i = 13 ⇒ j = 7. Pixel (6, 0).

(Continued)
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Example 4.204 (Continued)

For t = 2
For i = 0 ⇒ j = 1. Pixel (0, 1)
For i = 2 ⇒ j = 2. Pixel (2, 2)
For i = 4 ⇒ j = 3. Pixel (4, 3)
For i = 6 ⇒ j = 4. Pixel (6, 4)
For i = 8 ⇒ j = 5. Pixel (1, 5)
For i = 10 ⇒ j = 6. Pixel (3, 6)
For i = 12 ⇒ j = 7. Pixel (5, 0).

For t = 3
For i = 1 ⇒ j = 2. Pixel (1, 2)
For i = 3 ⇒ j = 3. Pixel (3, 3)
For i = 5 ⇒ j = 4. Pixel (5, 4)
For i = 7 ⇒ j = 5. Pixel (0, 5)
For i = 9 ⇒ j = 6. Pixel (2, 6)
For i = 11 ⇒ j = 7. Pixel (4, 0)
For i = 13 ⇒ j = 8. Pixel (6, 1)

For t = 4
For i = 0 ⇒ j = 2. Pixel (0, 2)
For i = 2 ⇒ j = 3. Pixel (2, 3)
For i = 4 ⇒ j = 4. Pixel (4, 4)
For i = 6 ⇒ j = 5. Pixel (6, 5)
For i = 8 ⇒ j = 6. Pixel (1, 6)
For i = 10 ⇒ j = 7. Pixel (3, 0)
For i = 12 ⇒ j = 8. Pixel (5, 1).

For t = 5
For i = 1 ⇒ j = 3. Pixel (1, 3)
For i = 3 ⇒ j = 4. Pixel (3, 4)
For i = 5 ⇒ j = 5. Pixel (5, 5)
For i = 7 ⇒ j = 6. Pixel (0, 6)
For i = 9 ⇒ j = 7. Pixel (2, 0)
For i = 11 ⇒ j = 8. Pixel (4, 1)
For i = 13 ⇒ j = 9. Pixel (6, 2).

For t = 6
For i = 0 ⇒ j = 3. Pixel (0, 3)
For i = 2 ⇒ j = 4. Pixel (2, 4)
For i = 4 ⇒ j = 5. Pixel (4, 5)
For i = 6 ⇒ j = 6. Pixel (6, 6)
For i = 8 ⇒ j = 7. Pixel (1, 0)
For i = 10 ⇒ j = 8. Pixel (3, 1)
For i = 12 ⇒ j = 9. Pixel (5, 2).

Figure 4.148 shows the lines as marked in the central panel of Figure 4.133 and the sequence
of lines created with parametrisation (k, l) and (a, b, t), with each line identified by a different
symbol.
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Figure 4.148 The lines with slope k = 4,
all marked with different symbols. Sorting
them according to parameter l and sorting
them according to parameter t creates two
different line sequences. l t

k = 4

How do we use the finite Radon transform to calculate the finite ridgelet transform?

The finite ridgelet transform, FRID, is obtained from the finite Radon transform FRAD, by tak-
ing the 1D discrete wavelet transform of each column of FRAD, characterised by a particular line
orientation. So the wavelet transform is with respect to displacement parameter t, which identifies
the different versions of the line with a particular slope scanning the image. As there are as many
values of t as pixels in an image row, the total number of different samples with respect to which
we take the wavelet transform is a prime number.

How do we create a wavelet basis for a signal that is not a power of 2 in length?

In general, if N is a prime number and we wish to take the wavelet transform of a N-sample long
signal, we can do that as follows. First, we find the largest power of 2, say 2m which is lower than
N. We set n ≡ N − 2m. Then we use the wavelet filters for a 2m-sample long signal and augment
them by adding n 0s at the end. This way we shall have 2n − 1 basis vectors for the N-sample long
signal. We add to these vectors the following ones:

eo = (1, 1,… , 1
⏟⏞⏞⏟⏞⏞⏟

N 1s

)∕s0

e𝟏 = (1, 1,… , 1
⏟⏞⏞⏟⏞⏞⏟

N−1 1s

,−N + 1)∕s1

e𝟐 = (1, 1,… , 1
⏟⏞⏞⏟⏞⏞⏟

N−2 1s

,−N + 2, 0)∕s2

· · ·
en = (1, 1,… , 1

⏟⏞⏞⏟⏞⏞⏟

N−n 1s

,−N + n, 0, 0,… , 0
⏟⏞⏞⏟⏞⏞⏟

n 0s

)∕sn (4.756)

where s0, s1,…,sn are normalising constants to ensure that the magnitude of each vector is 1.

Example 4.205

Show how you may take the 1D wavelet transform of an 11-sample long signal, using
the Haar wavelets.

(Continued)
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Example 4.205 (Continued)

For an 11-sample long signal, the nearest power of 2 that is lower than 11 is 23 = 8. For an
8-sample long signal, the basis vectors are:

ẽo =

(
1

2
√

2
,

1
2
√

2
,

1
2
√

2
,

1
2
√

2
,

1
2
√

2
,

1
2
√

2
,

1
2
√

2
,

1
2
√

2

)

w̃1 =

(
− 1√

2
,

1√
2
, 0, 0, 0, 0, 0, 0

)

w̃2 =

(
0, 0,− 1√

2
,

1√
2
, 0, 0, 0, 0

)

w̃3 =

(
0, 0, 0, 0,− 1√

2
,

1√
2
, 0, 0

)

w̃4 =

(
0, 0, 0, 0, 0, 0,− 1√

2
,

1√
2

)
w̃5 =

(
−1

2
,−1

2
,

1
2
,

1
2
, 0, 0, 0, 0

)
w̃6 =

(
0, 0, 0, 0,−1

2
,−1

2
,

1
2
,

1
2

)
w̃7 =

(
− 1

2
√

2
,− 1

2
√

2
,− 1

2
√

2
,− 1

2
√

2
,

1
2
√

2
,

1
2
√

2
,

1
2
√

2
,

1
2
√

2

)
. (4.757)

From this we construct a wavelet basis for the 11-sample long signal as:

e𝐨 =

(
1√
11
,

1√
11
,

1√
11
,

1√
11
,

1√
11
,

1√
11
,

1√
11
,

1√
11
,

1√
11
,

1√
11
,

1√
11

)

e𝟏 =

(
1√
110

,
1√
110

,
1√
110

,
1√
110

,
1√
110

,
1√
110

,
1√
110

,
1√
110

,
1√
110

,
1√
110

,− 10√
110

)

e𝟐 =

(
1√
90
,

1√
90
,

1√
90
,

1√
90
,

1√
90
,

1√
90
,

1√
90
,

1√
90
,

1√
90
,− 9√

90
, 0

)

e𝟑 =

(
1√
72
,

1√
72
,

1√
72
,

1√
72
,

1√
72
,

1√
72
,

1√
72
,

1√
72
,− 8√

72
, 0, 0

)

w𝟏 =

(
− 1√

2
,

1√
2
, 0, 0, 0, 0, 0, 0, 0, 0, 0

)

w𝟐 =

(
0, 0,− 1√

2
,

1√
2
, 0, 0, 0, 0, 0, 0, 0

)

w𝟑 =

(
0, 0, 0, 0,− 1√

2
,

1√
2
, 0, 0, 0, 0, 0

)

w𝟒 =

(
0, 0, 0, 0, 0, 0,− 1√

2
,

1√
2
, 0, 0, 0

)
w𝟓 =

(
−1

2
,−1

2
,

1
2
,

1
2
, 0, 0, 0, 0, 0, 0, 0

)
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w𝟔 =
(

0, 0, 0, 0,−1
2
,−1

2
,

1
2
,

1
2

)
w𝟕 =

(
− 1

2
√

2
,− 1

2
√

2
,− 1

2
√

2
,− 1

2
√

2
,

1
2
√

2
,

1
2
√

2
,

1
2
√

2
,

1
2
√

2
, 0, 0, 0

)
.

(4.758)

What are the basis images in terms of which the finite Radon transform expands an
image?

They are the images formed by wrapping into images the rows of matrix Φ as defined in Example
4.179 for the case of a 7 × 7 image (see Example 4.206). However, the rows of this matrix simply
identify the pixels that make up the lines used by the Radon transform. So, the basis images are
binary images, one basis image for each line used. In each such basis image only the pixels that
make up the corresponding line are white, and all others are black. For a 7 × 7 image, and as there
are 56 lines used, we expect to have 56 basis images.

Example 4.206

You are given a 3 × 3 image

g̃ =
⎛⎜⎜⎝

3 2 1
2 3 1
2 2 2

⎞⎟⎟⎠ . (4.759)

Work out matrix Φ you need in order to compute its finite Radon transform, and use
it to compute the expansion of the image in terms of the basis images of the finite
Radon transform.

First, we must remove the mean of the image. The mean is 2. So, we construct image:

g =
⎛⎜⎜⎝

1 0 −1
0 1 −1
0 0 0

⎞⎟⎟⎠ . (4.760)

Figure 4.149 shows the lines that have to be used by the Radon transform, and the notation we
use for the image elements.

Figure 4.149 At the top, the digital lines we shall use
for the Radon transform. At the bottom, the convention
of pixel notation.

g
11

g
12

g
13

g
21

g
22

g
23

g
31

g
32

g
33

(Continued)
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Example 4.206 (Continued)

By mere inspection, we see that matrix Φ is:

Φ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 1
0 0 1 0 1 0 1 0 0
1 0 0 0 1 0 0 0 1
0 1 0 0 0 1 1 0 0
0 0 1 1 0 0 0 1 0
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.761)

Let us compute the finite Radon transform of this image by simply summing up the values iden-
tified by the same symbol in the lines shown at the top of Figure 4.149:

FRAD = (0, 0, 0, 0, 0, 0, 2,−1,−1, 1, 1,−2)T

≡ (f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12)T . (4.762)

According to Equation (4.704) we have
1
3
ΦTFRAD = (g11, g21, g31, g12, g22, g32, g13, g23, g33)T (4.763)

where we have written the finite Radon transform in bold to stress that in this equation it has
to be written as a column vector, following the same convention as the convention we used for
writing the input image as a vector, on the right-hand side of the equation. Equation (4.763) may
be written as:

3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g11
g21
g31
g12
g22
g32
g13
g23
g33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 1 0 0
0 0 1 0 0 1 0 0 1 1 0 0
1 0 0 0 1 0 0 0 1 0 1 0
0 1 0 0 0 1 1 0 0 0 1 0
0 0 1 1 0 0 0 1 0 0 1 0
1 0 0 0 0 1 0 1 0 0 0 1
0 1 0 1 0 0 0 0 1 0 0 1
0 0 1 0 1 0 1 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1
f2
f3
f4
f5
f6
f7
f8
f9
f10
f11
f12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= f1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
1
0
0
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ f2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
0
1
0
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ f3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
0
1
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ f4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
1
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ f5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
1
0
0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ f6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
1
0
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
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f7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
1
0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ f8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
0
0
1
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ f9

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
1
0
0
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ f10

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ f11

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1
1
1
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ f12

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.764)

We can now write the column representations of the various images in the ordinary 2D image
format:

3
⎡⎢⎢⎣
g11 g12 g13
g21 g22 g23
g31 g32 g33

⎤⎥⎥⎦ = f1

⎡⎢⎢⎣
1 1 1
0 0 0
0 0 0

⎤⎥⎥⎦ + f2

⎡⎢⎢⎣
0 0 0
1 1 1
0 0 0

⎤⎥⎥⎦ + f3

⎡⎢⎢⎣
0 0 0
0 0 0
1 1 1

⎤⎥⎥⎦
+f4

⎡⎢⎢⎣
1 0 0
0 0 1
0 1 0

⎤⎥⎥⎦ + f5

⎡⎢⎢⎣
0 1 0
1 0 0
0 0 1

⎤⎥⎥⎦ + f6

⎡⎢⎢⎣
0 0 1
0 1 0
1 0 0

⎤⎥⎥⎦
+f7

⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦ + f8

⎡⎢⎢⎣
0 0 1
1 0 0
0 1 0

⎤⎥⎥⎦ + f9

⎡⎢⎢⎣
0 1 0
0 0 1
1 0 0

⎤⎥⎥⎦
+f10

⎡⎢⎢⎣
1 0 0
1 0 0
1 0 0

⎤⎥⎥⎦ + f11

⎡⎢⎢⎣
0 1 0
0 1 0
0 1 0

⎤⎥⎥⎦ + f12

⎡⎢⎢⎣
0 0 1
0 0 1
0 0 1

⎤⎥⎥⎦ . (4.765)

We can now substitute the values we have, to verify the result:

3
⎡⎢⎢⎣
1 0 −1
0 1 −1
0 0 0

⎤⎥⎥⎦ = 2
⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦ −
⎡⎢⎢⎣
0 0 1
1 0 0
0 1 0

⎤⎥⎥⎦ −
⎡⎢⎢⎣
0 1 0
0 0 1
1 0 0

⎤⎥⎥⎦
+
⎡⎢⎢⎣
1 0 0
1 0 0
1 0 0

⎤⎥⎥⎦ +
⎡⎢⎢⎣
0 1 0
0 1 0
0 1 0

⎤⎥⎥⎦ − 2
⎡⎢⎢⎣
0 0 1
0 0 1
0 0 1

⎤⎥⎥⎦ . (4.766)

This equation is exactly right.

Is the finite ridgelet transform invertible?

Yes, since both its stages are invertible. The finite Radon transform is invertible. The 1D wavelet
transform we apply to the columns of the Radon transform is also invertible, since we make sure
we use a complete and orthonormal basis for it.

What are the basis images in terms of which the finite ridgelet transform expands an
image?

Let us start from Equation (4.704), which may be written as
1
N
ΦTFRAD = g (4.767)
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where g is the input image, written in a column vector form, and FRAD is its finite Radon transform
written in the same way. Note that matrix Φ is N(N + 1) × N2, and so matrix ΦT is N2 × N(N + 1).
Vector FRAD is N(N + 1)-samples long, made up from the sums of the grey values of the image
along all N lines of the same slope, then the N lines of the second slope, and so on, until all N + 1
slopes have been considered. When we take the wavelet transform, we take it with respect to the
displacement parameter of all lines of the same slope. So, what we actually do is to project the first
N elements of FRAD on the wavelet vector basis, then the next N elements, then the next, and so on.
In other words, we need the matrix that is appropriate for the wavelet analysis of an N-sample long
signal. Let us call this matrix WN . The matrix that has to operate on the full column vector FRAD to
produce the ridgelet transform coefficients of the full N × N image then must have the form

W =

⎛⎜⎜⎜⎜⎝
WN 0N … 0N
0N WN … 0N
… … … …
0N 0N … WN

⎞⎟⎟⎟⎟⎠
(4.768)

where 0N is an N × N matrix made up from zeros.
We note that matrix WN is orthogonal by construction (see the section How do we create a wavelet

basis for a signal that is not a power of 2 in length? and Example 4.205). Then, we know that the
inverse of the matrix is its transpose, and so, every successive N elements of FRAD may be recovered
by multiplying the vector of the coefficients of this expansion with matrix W T . In other words, we
may write

FRAD =

⎛⎜⎜⎜⎜⎝
W T

N 0N … 0N
0N W T

N … 0N
… … … …
0N 0N … W T

N

⎞⎟⎟⎟⎟⎠
FRID = W TFRID (4.769)

where FRID are the coefficients of the finite ridgelet transform of the image written as a column
vector. We may now substitute from (4.769) into (4.767):

1
N
ΦTW TFRID = g ⇒ g = 1

N
(WΦ)TFRID. (4.770)

This equation expresses the expansion of image g in terms of the basis images of the ridgelet trans-
form. The basis images are formed by the columns of matrix (WΦ)T , i.e. the rows of matrix WΦ,
wrapped round to form images. The coefficients of the expansion are the elements of vector FRID.

Example 4.207

Work out the expansion of image (4.759) in terms of the basis functions of the ridgelet
transform. For the wavelet basis use the Haar wavelet.
The image without its mean value is given by (4.760). This is the image we shall be using in the
expansion. We have first to calculate the wavelet basis for a three-sample long signal, as here N =
3. The power of 2 that is smaller than 3 is 2. The Haar wavelet for such a signal is (−1∕

√
2, 1∕

√
2).

Following the process described in the section How do we create a wavelet basis for a signal that
is not a power of 2 in length?, we construct the basis we need as follows:

e0 =

(
1√
3
,

1√
3
,

1√
3

)

e𝟏 =

(
1√
6
,

1√
6
,− 2√

6

)
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w =

(
− 1√

2
,

1√
2
, 0

)
. (4.771)

Matrix W3 is:

W3 =

⎛⎜⎜⎜⎜⎝
1√
3

1√
3

1√
3

1√
6

1√
6
− 2√

6

− 1√
2

1√
2

0

⎞⎟⎟⎟⎟⎠
. (4.772)

Matrix W then is:

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
3

1√
3

1√
3

0 0 0 0 0 0 0 0 0
1√
6

1√
6

− 2√
6

0 0 0 0 0 0 0 0 0

− 1√
2

1√
2

0 0 0 0 0 0 0 0 0 0

0 0 0 1√
3

1√
3

1√
3

0 0 0 0 0 0

0 0 0 1√
6

1√
6

− 2√
6

0 0 0 0 0 0

0 0 0 − 1√
2

1√
2

0 0 0 0 0 0 0

0 0 0 0 0 0 1√
3

1√
3

1√
3

0 0 0

0 0 0 0 0 0 1√
6

1√
6

− 2√
6

0 0 0

0 0 0 0 0 0 − 1√
2

1√
2

0 0 0 0

0 0 0 0 0 0 0 0 0 1√
3

1√
3

1√
3

0 0 0 0 0 0 0 0 0 1√
6

1√
6

− 2√
6

0 0 0 0 0 0 0 0 0 − 1√
2

1√
2

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.773)

We may use now this matrix to operate on FRAD, given by (4.762) to work out FRID:

FRID = WFRAD =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
3

1√
3

1√
3

0 0 0 0 0 0 0 0 0
1√
6

1√
6

− 2√
6

0 0 0 0 0 0 0 0 0

− 1√
2

1√
2

0 0 0 0 0 0 0 0 0 0

0 0 0 1√
3

1√
3

1√
3

0 0 0 0 0 0

0 0 0 1√
6

1√
6

− 2√
6

0 0 0 0 0 0

0 0 0 − 1√
2

1√
2

0 0 0 0 0 0 0

0 0 0 0 0 0 1√
3

1√
3

1√
3

0 0 0

0 0 0 0 0 0 1√
6

1√
6

− 2√
6

0 0 0

0 0 0 0 0 0 − 1√
2

1√
2

0 0 0 0

0 0 0 0 0 0 0 0 0 1√
3

1√
3

1√
3

0 0 0 0 0 0 0 0 0 1√
6

1√
6

− 2√
6

0 0 0 0 0 0 0 0 0 − 1√
2

1√
2

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
2

−1
−1

1
1

−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(Continued)



�

� �

�

668 4 Non-stationary Grey Texture Images

Example 4.207 (Continued)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0

3√
6

− 3√
2
0

6√
6
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(4.774)

Next, we work out matrix WΦ, with Φ given by (4.761):⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
3

1√
3

1√
3

0 0 0 0 0 0 0 0 0
1√
6

1√
6
− 2√

6
0 0 0 0 0 0 0 0 0

− 1√
2

1√
2

0 0 0 0 0 0 0 0 0 0

0 0 0 1√
3

1√
3

1√
3

0 0 0 0 0 0

0 0 0 1√
6

1√
6
− 2√

6
0 0 0 0 0 0

0 0 0 − 1√
2

1√
2

0 0 0 0 0 0 0

0 0 0 0 0 0 1√
3

1√
3

1√
3

0 0 0

0 0 0 0 0 0 1√
6

1√
6
− 2√

6
0 0 0

0 0 0 0 0 0 − 1√
2

1√
2

0 0 0 0

0 0 0 0 0 0 0 0 0 1√
3

1√
3

1√
3

0 0 0 0 0 0 0 0 0 1√
6

1√
6
− 2√

6
0 0 0 0 0 0 0 0 0 − 1√

2
1√
2

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 1
0 0 1 0 1 0 1 0 0
1 0 0 0 1 0 0 0 1
0 1 0 0 0 1 1 0 0
0 0 1 1 0 0 0 1 0
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
3

1√
3

1√
3

1√
3

1√
3

1√
3

1√
3

1√
3

1√
3

1√
6

1√
6
− 2√

6
1√
6

1√
6
− 2√

6
1√
6

1√
6
− 2√

6
− 1√

2
1√
2

0 − 1√
2

1√
2

0 − 1√
2

1√
2

0
1√
3

1√
3

1√
3

1√
3

1√
3

1√
3

1√
3

1√
3

1√
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The basis images are the columns of the transpose of this matrix, wrapped around to form images,
by writing their first three elements as the first column, the next three elements as the second col-
umn, and so on, in a way analogous to the one we used to extract the basis images from Equation
(4.764). So, the elementary images this transform uses are:⎡⎢⎢⎢⎣
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We note that these basis images are really ridgelets, i.e. ridge-like ripples along the diagonal and
the main directions of the image. There is clearly redundancy, as the flat image appears four
times. This is expected as we have 9 pixel values and we use 12 expansion coefficients.

We can verify now the expansion of the original image in terms of them by observing that FRID
has only three non-zero values that correspond to the second, fourth and fifth from the end of
these basis images. We may then write:
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This equation may easily be verified.
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Does the finite ridgelet transform extract local image information?

No. The Radon transform we apply first is a global transform. It is clear then that this transform in
the form discussed so far cannot be used to characterise an image locally. We may, however, apply
the transform locally, using non-overlapping windows of prime size. For example, if an image is
of size 35 × 35, we may consider it that it consists of 49 windows of size 5 × 5 or of 25 windows of
size 7 × 7. Each of these windows may be expanded in terms of the basis images of size 5 × 5 and
7 × 7, respectively, with the coefficients of the expansion forming the finite ridgelet transform of
the window and playing the role of local image features. This is the curvelet transform, as curves
may locally be approximated by straight line segments. So, the ridgelet transform applied locally is
the known as the curvelet transform.

Example 4.208

Apply the curvelet transform to the image of Figure 4.71 using the finite ridgelet
transform with the Haar wavelet.
This image is of size 15 × 15. So, we can divide it into 9 windows of size 5 × 5 and into 25 windows
of size 3 × 3.

The basis vectors for the Haar wavelet transform of a five-sample long signal are:

e𝟎 =

(
1√
5
,

1√
5
,

1√
5
,

1√
5
,

1√
5

)

e𝟏 =

(
1√
20
,

1√
20
,

1√
20
,

1√
20
,− 4√

20

)

w𝟏 =

(
− 1√

2
,

1√
2
, 0, 0, 0

)

w𝟐 =

(
0, 0,− 1√

2
,

1√
2
, 0

)
w𝟑 =

(
−1

2
,−1

2
,

1
2
,

1
2
, 0
)
. (4.778)

Figure 4.150 shows the nine finite ridgelet transforms of the corresponding windows, obtained by
projecting the columns of each finite Radon transform on vectors (4.778). This can be obtained
by multiplying from the left each column with matrix:
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Figure 4.150 The nine finite ridgelet transforms of the corresponding 5 × 5 windows.

How do we apply the curvelet transform in practice?

First we must create the masks that will identify the pixels that make up each line we shall use. We
can do that by using the following algorithm.

Step 1: Select the size of the window you will use, N × N, where N must be a prime number.
Step 2: For k = 0, 1,… ,N, consider the set of locations (−kq, q), allowing q to take values in the

range
[
−N−1

2
,

N−1
2

]
. These locations are modulo N. For example, if −kq < −N−1

2
, you add N until

it is in the range
[
−N−1

2
,

N−1
2

]
. If −kq > N−1

2
, you subtract N until it is in the range

[
−N−1

2
,

N−1
2

]
.

Make a list of these locations. Call it Tk.
Step 3: If (m,n) is an element of Tk, compute dmn ≡ √

m2 + n2. Identify the pairs (m,n) for which
this value is the smallest, for fixed k, without considering the (m,n) = (0, 0) value. If there are
several such pairs, select the pair that has n > 0. Call the selected pair (ak, bk). You will have one
such pair for each k.

Step 4: For each pair (ak, bk), construct an array N × N. Call it Mk.
If bk ≠ 0, consider j̃ = t−akĩ

bk
. For each t = 0, 1,… ,N − 1, allow ĩ to take values 0, 1, 2,…, checking

every time whether t−aki
bk

is exactly an integer, until you find N such integer values of j̃. Form pairs
(ĩ, j̃). Reduce each such pair to (i, j), where i = ĩmodulo N and j = j̃modulo N , so that indices i and j take
values in the range 0, 1,… ,N − 1. Set Mk(i, j) = t. If bk = 0, it will be ak = 1. Consider i = t. For
each t = 0, 1,… ,

N − 1, set Mk(i, j) = t, for j = 0, 1,… ,N − 1.
Step 5: For each (ak, bk), consider the angle

𝜙k = tan−1 bk

ak
(4.780)

allowing it to take values in the range [0, 180∘).
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Figure 4.151 The numbers in each panel identify the pixels that make up the same line. The indices are
the values of parameter t with respect to which the values of the Radon transform have to be written within
each column, i.e. the sum of pixels marked with 0 will be written at the top, next the sum of the pixels
marked with 1 and so on. The columns should be arranged next to each other, starting from the top left and
working our way towards the bottom right in lexicographic order.

Step 6: Rank angles 𝜙k, in increasing order. Let us call k̃(k) the rank of angle 𝜙k.
Step 7: Rename arrays Mk, so that Mk = Mk̃(k). These are the masks that identify the pixels that

make up each line, in the desired order, i.e. so that the digital lines are arranged so they capture
low frequency information best, and the order of the batches of parallel lines is such that the
angles are well spread.

Figure 4.151 shows the lines for windows of size 7 × 7.
These masks can be used for any image, so they are constructed just once. Having the masks then

we proceed to take the curvelet transform of an image as follows.

Step 1: Select the size of window you are going to use. Call it N. It must be a prime number. For
example, you may consider windows of size 5 × 5, 7 × 7, 11 × 11 or 13 × 13. You either trim or
augment your image so it can be tiled exactly with non-overlapping windows of the selected
size.

Step 2: Use the masks of the selected size to compute the finite Radon transform of each tiling
window. The values of the Radon transform should be arranged so that each column corresponds
to a different batch of parallel lines (different slope) and within each column, the sums of the
pixels with identical label in the mask are given one under the other, with increasing value of
label.

Step 3: Construct the wavelet basis for signals of length N, following the procedure described in
the section How do we create a wavelet basis for a signal that is not a power of 2 in length?. By
writing the basis vectors one under the other, form matrix WN .

Step 4: Multiply from the left with matrix WN each local Radon transform, to produce the ridgelet
transform of each window.

Step 5: Tile all ridgelet transforms together to form the curvelet transform of the full image.
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4.8 Where Image Processing and Pattern Recognition Meet

Why in wavelet analysis do we always split the band with the maximum energy?

If an image does not contain components within a certain frequency band, there is no point in split-
ting it any further. A band with low energy most likely contains noise only. However, concentrating
on the band with the most energy does not necessarily mean that we concentrate on the band that
will allow us to differentiate better the different textures present in the image. Ideally we want to
identify separate sub-bands inside which the different textures manifest themselves. A band may
have high energy but it may correspond to a single texture. It is therefore useful, when we decide
which band (or bands) to split further, not only to identify a band with high energy, but also to
examine whether the coefficient values in that band indicate the presence of more than one tex-
tures. This may be done by examining the histogram of the values of the band. If it is smooth and
monomodal or it has an inflexion point hinting at the presence of a secondary peak, and at the same
time it is of high energy, it may be worth splitting the band further. If the histogram of the band is
bimodal, the band may contain more than one class and if it is replaced by its own sub-bands the
clusters of the different textures may be fragmented unnecessarily. We may earmark such a band
as one that might yield a good feature.

This is a special case of a process called feature selection. In this case, we are dealing with only
one feature and we wish to assess its potential to discriminate the different textures present in the
image. In general, most texture analysis methods tend to produce a large number of features, not
all of which are expected to be useful for texture segmentation. The issue then is to select a subset
of them that is most useful for the task at hand.

What is feature selection?

Feature selection is the process by which we identify the best subset of features for the discrimina-
tion of the classes that are present in an image. Feature selection is the subject of pattern recogni-
tion. In order to be able to identify the best subset of features, we must have a way of assessing the
quality of a subset of features in terms of their discriminating power. We shall discuss here only one
method of assessing the quality of a feature set, namely the one based on histogramming. We must
emphasise that feature selection is not the same as feature reduction, where we simply wish to
reduce the number of features we are dealing with. An example of feature reduction is what we are
doing in wavelet analysis when we select the band with the maximum energy for further splitting,
without worrying whether it is the band with the maximum potential for texture discrimination.
When we also examine whether the band contains distinct clusters or not, then we introduce the
concept of feature selection. Later on (Example 4.230), we shall see another example of feature
reduction, where we select features that are linear combinations of the original features but have
greater spread in their values than the original features. Such a selection is performed by principal
component analysis (PCA). However, larger spread in values, just like higher energy, does not nec-
essarily imply better discriminating ability. That is why principal component analysis is a method
of feature reduction and not feature selection.

Example 4.209

Compute the histogram of the values of the wavelet coefficients for each band you
created in the first level of analysis in Example 4.139 for the filter Daubechies 20.

(Continued)
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Example 4.209 (Continued)

Comment on the smoothness of these histograms and on whether you could use them
in an automated way to decide which band should be split further.
Since the features we construct from each band are energy features, we must compute the his-
togram of the absolute values of the wavelet coefficients of each band. Figure 4.152 shows the
histograms constructed by using 30 bins for each band. We see that the histogram of the LL band
hints at the presence of a second peak. This band should be split further because there is no clear
separation between the two peaks. These histograms are quite smooth so we can envisage a fully
automated process that could decide which band to split further by examining the number of
local maxima of each histogram and the depth of the valleys that separate them.
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Figure 4.152 Histograms of the absolute values of the wavelet coefficients for the four bands of the
first level of analysis in Example 4.139 for filter Daubechies 20. The range of real values of the
coefficients in each band was divided into 30 bins.

How can we visualise the histogram of more than one feature in order to decide
whether they constitute a good feature set?

One may use the histogram of distances of the data points in the feature space in order to assess
whether a certain set of features may be used to identify the separate textures of an image.
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What is the feature space?

Once each pixel has been assigned a set of feature values, we may consider that the image has been
transformed into the feature space. The dimensionality of the feature space is equal to the number
of features. The value of each feature may be measured along a separate axis. Thus, each pixel
becomes a point in the feature space, with its coordinate position determined by its feature values.
Points that belong to the same type of texture are expected to be plotted near each other and form a
cluster. The idea here is to assess whether clusters exist or not in the feature space without having
to identify them first.

What is the histogram of distances in a feature space?

Suppose that we consider pairs of points in the feature space, picked at random. The “distance” of
these points is measured using an appropriate metric, say the Euclidean metric. Then we may plot
the histogram of the distances we found. Let us first consider the case of a single feature (i.e. 1D
feature space). If the histogram of the feature values were bimodal, we should see two peaks in this
histogram of distances, one created by picking both members of the pair from the same population
of the data, and one created by picking one member of the pair from one population and the other
from the other. This is better demonstrated in Figure 4.153. Obviously, for 1D it is futile to construct
the histogram of distances, because we may use the histogram of the feature values directly. The
histogram of distances becomes useful for cases when more than one or two features are to be used
together.

This is demonstrated in Figure 4.154. Let us say that we use two features, i.e. the feature space is
2D. If the points (pixels) in this feature space are uniformly distributed, the feature space will look
like Figure 4.154a. If there are clusters present in it, the feature space may look like Figure 4.154b.
Suppose now that we choose pairs of pixels at random, and we create the histogram of the number
of pairs of pixels versus their distance. Note: the pairs of pixels may be chosen directly from the
image, but the word “distance” here refers to the feature space, i.e. it means the difference in their
feature values. The histogram that will be created from Figure 4.154a will look like 4.154c. If there
are two clusters in the feature space, this histogram is expected to be bimodal: the first peak will
be created when we pick pairs of pixels, both of which belong to the same cluster (small relative
distances in feature space); the second peak will be created from pairs of pixels that belong to two
different clusters (large relative distances in feature space). The histograms are constructed from
many pairs of pixels, but not all pairs because that would make the process computationally too

Figure 4.153 At the top, data points along the axis of a
feature. In the middle, the histogram of the values of
these points. It reflects the fact that the points are
clustered around two distinct values. At the bottom, the
distance histogram of pairs of points. It reflects the fact
that we have a large number of pairs created by points
that are tightly together, forming a single cluster, and
also points that are far apart because they belong to two
different clusters. The location of the first peak indicates
the intra-cluster mean distance, while the location of the
second peak indicates the inter-cluster mean distance.
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Figure 4.154 If the features we are using are not good for class discrimination, even if the data belong to
two different classes, they will be uniformly distributed in the feature space. Such is the case shown in (a). If
the features we are using are good for discriminating the two classes, the data will form distinct clusters in
the feature space. This is the case shown in (b). We may assess whether the feature space contains clumps of
points or not, without viewing it, by using the histogram of the number of pairs of points we find at a certain
distance r from each other. In the first case, this histogram will look like (c) because all relative distances
may arise. In the second case, this histogram will look like (d) because it will be dominated by pairs of
points that belong to the same cluster, and therefore they are at small distances from each other, and by
pairs of points which belong to two separate clusters, and therefore are at large distances from each other.

intensive. Due to the large number of possible pairs one may choose, such histograms tend to be
smoother than histograms constructed from the values of individual features. So, it is relatively
easy to automate the process of assessing whether they are monomodal or bimodal.

Is it possible that the histogram of distances does not pick up the presence of clusters,
even though clusters are present?

Yes. For example if one population is much larger than the other, the histogram of distances will
fail. Also, if the clusters are not very tight, the histogram of distances may appear monomodal.

Example 4.210

Compute the histograms of relative distances for the bands you created in the first
level of analysis in Example 4.139 for filter Daubechies 20. Compare them with the
histograms you constructed in Example 4.209.
The histograms of the relative distances of the absolute values of the wavelet coefficients of
the bands of the first level of analysis of Example 4.139 for filter Daubechies 20 are shown in
Figure 4.155.

We note that although the LL band according to the histogram in Example 4.209 hints at the
presence of more than one cluster, this does not appear to be the case according to the distance his-
togram presented here. This indicates that the distance histogram is less sensitive to the presence
of clusters than the histogram of the original values.
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Figure 4.155 Histograms of the relative distances between the absolute values of the wavelet
coefficients for the four bands in the first level of analysis of Example 4.139 for filter Daubechies 20.
The range of real values for each band was divided into 100 bins. In total 429 496 pairs of pixels were
used, corresponding to 10−4 of the total number of pairs one may construct from a 256 × 256 image.

Example 4.211

Assess the quality of one of the feature spaces produced in Example 4.139 with the
help of the histogram of distances.
We select the feature space produced with the Haar wavelet and with the 25 × 25 Gaussian win-
dow for calculating the local energy features. The feature space is 10D, as 10 energy features were
computed for each pixel. These came from channels HH1, HH2, HH3, HL1, HL2, HL3, LH1, LH2,
LH3 and LL3. The range of values of these features was [0,104], [0,386], [0,518], [0,313], [0,593],
[0,576], [0,701], [0, 1207], [0, 1051] and [0, 3526], respectively.

In order to create the histogram of distances we must decide upon the number of bins we shall
use. The length of the main diagonal of the hyper-parallelepiped defined by the above features in
the 10D feature space is 4086. If we decide to use 100 bins, the width of each bin should be 40.86.
The image is 256 × 256 in size, so it contains 655 36 pixels. There are 655 362 = 4 294 967 000
possible pairs of pixels. We decide to pick at random only a fraction of 0.0001 of them, i.e. the his-
togram is constructed using 429 496 pairs of pixels picked at random. This histogram of distances
is shown in Figure 4.156a.

(Continued)
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Example 4.211 (Continued)

When we use the Euclidean metric, we must bear in mind that all features are treated as equiv-
alent. So, if a feature takes values on a much larger scale than the other features, it tends to
dominate the calculation. In Figure 4.156b we show the histogram of relative feature distances
computed after the features were scaled to take values in roughly the same range. The scaling
factors used were 1, 3, 5, 3, 5, 5, 7, 10, 10 and 30, for bands HH1, HH2, HH3, HL1, HL2, HL3,
LH1, LH2, LH3 and LL3, respectively. These scaling factors were used to divide all feature values
computed from the corresponding band before the Euclidean metric was used. Such a process
is sometimes referred to a whitening of the data. It means that we make all bands of roughly
equal energy, just like the white light theoretically has equal energy in all frequencies. We note that
while histogram 4.156a clearly indicates the presence of clusters, histogram 4.156b does not. This
shows that accentuating bands with low energies may destroy the structure of the feature space
by drowning it in the enhanced noise. The process of whitening is only a good idea if we have
reasons to believe that the structure we are trying to identify is hidden in the low energy bands.
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Figure 4.156 Histogram of the relative distances in the 10D feature space of 429 496 pairs of pixels
picked at random from the image in Figure 4.81. (a) Unscaled feature values. The width of each bin is
40.86. (b) Scaled feature values. The width of each bin is 3.55.

How do we segment the image once we have produced a set of features for each pixel?

Once the pixels have been assigned feature values, the problem of image segmentation is trans-
formed into a problem of clustering in the feature space. There are many clustering techniques,
usually presented in pattern recognition books. We shall present here a commonly used method,
the K-means algorithm and a more sophisticated version of it, called deterministic annealing.

What is the K-means algorithm?

Let us assume that we have K clusters, i.e. we expect to find in the image K different types of
texture. Each pixel (i, j) is represented by an L-dimensional vector xij, consisting of the values of
the L features we computed for it. Let us also say that yk is the position vector of the centre of cluster
k, in the L-dimensional feature space. Let us call d(xij, yk) the distance of point xij from the centre
of cluster k. The algorithm consists of the following steps.
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Step 0: Choose the number of clusters K.
Step 1: Choose at random the centres of the K clusters.
Step 2: Compute the distance of each pixel from each cluster centre and assign the pixel to the

cluster from which its distance is minimal. Exit if no pixel changes cluster.
Step 3: Compute each cluster centre as the average of the pixels assigned to the cluster, and go to

step 2.

This algorithm is very popular because of its simplicity, but it has many drawbacks: the distance of
a pixel from the cluster centre is computed using the Euclidean metric. This means that all features
are treated as equivalent. As we saw in Example 4.211, this is fine as long as the features are energy
features in frequency bands. If, however, the features are of diverse nature and they genuinely are
expected to take values in different ranges, one should make sure that all features are scaled so
that they take values roughly in the same range. This way the distances will not be dominated by
the features that take large numbers as values. One way to do that is to scale the value of every
feature by dividing it with the standard deviation of the values this feature takes over the whole
image.

The second major drawback of this algorithm is that it often gets stuck in sub-optimal solutions
because it is a greedy algorithm. One way to overcome this problem is to run it with several different
initialisations and use as final values of the cluster centres some consensus of the various answers
received.

What is deterministic annealing?

Deterministic annealing is an algorithm that assigns every pixel to every cluster with a certain
degree of confidence. The fact that it keeps all options open until the final step goes some way to
overcome the drawbacks of the K-means algorithm.

We assume again that we have K clusters. Each point xij may be associated with each cluster k,
with various degrees of confidence. Let us say that point xij belongs to cluster k with probability
pk(xij), given by

pk(xij) =
1

Zij
e−

1
T

d(xij,yk) (4.781)

where T is a temperature parameter, and Zij is a normalising constant computed so that pk(xij) is a
probability, i.e.:

Zij ≡
K∑

k=1
e−

1
T

d(xij ,yk). (4.782)

The centre of cluster k is defined by:

yk =
∑

i
∑

jxijpk(xij)∑
i
∑

jpk(xij)
. (4.783)

The algorithm then is as follows.

Step 0: Choose parameter values 𝛼, Tmax and Tmin . Set T = Tmax .
Step 1: Choose at random the centres of the K clusters.
Step 2: Use Equation (4.781) to compute the initial values of pk(xij).
Step 3: Use Equation (4.783) to compute the centre of each cluster.
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Step 4: Use Equation (4.781) to update the values of pk(xij) for all pixels.
Step 5: Set T = 𝛼T, and if T > Tmin , go to step 3. Else exit.

At the end, assign each pixel to the cluster with which it is associated with maximum probability.
Typical values for the cooling parameter 𝛼 are 0.99 or 0.999 and typical values of Tmax are of order 10,
while typical values of Tmin are of order 1. We may also use an alternative criterion of termination:
the algorithm stops when no pixel changes its previous assignment and the centres of the clusters
do not move from their positions in the previous iteration. The algorithm is similar to the simulated
annealing algorithm we used in Chapter 3, but it does not have any stochastic step that allows one
to worsen the solution in order to escape from local optima. So, it is very easy for this algorithm
to lead to bad solutions, by collapsing, for example, two clusters into a single one when this is not
appropriate. To avoid such situations, we may add an extra stochastic step to the algorithm, between
steps 3 and 4:

Step 3.5: If the centres of two clusters come closer to each other than a certain threshold distance,
one of the two is moved at random in another part of the feature space.

This way the algorithm outputs exactly the number of regions the user originally specified, and
it produces very satisfactory results.

It can be shown that the algorithm of deterministic annealing chooses probabilities pk(xij) so that
it maximises an entropy criterion (see Box 4.15).

Box 4.15 Maximum entropy clustering

A pixel (i, j) is associated with cluster k with probability pk(xij). We require the sum of all these
probabilities to be 1:

K∑
k=1

pk(xij) = 1 for all pixels (i, j). (4.784)

If we were to replace the feature vector of pixel (i, j) with the feature vector that represents
the centre of cluster k, we would have committed an error measured by the distance of points
xij and yk, i.e. d(xij, yk). However, if pixel (i, j) belongs to cluster k only with probability pk(xij),
we may say that the error we commit is only pk(xij)d(xij, yk). Then the total error we commit
is given by:

E =
∑

i

∑
j

∑
k

pk(xij)d(xij, yk). (4.785)

There is a minimum value of this error, intrinsic to the data. No matter how we choose proba-
bilities pk(xij), we cannot go below that minimum value. Let us call it E0.

The entropy of the probability density function pk(xij) is given by

H = −
∑

i

∑
j

∑
k

pk(xij) log pk(xij). (4.786)

The idea is to choose values of pk(xij), for all pixels and for all clusters, so that the entropy
H is maximised, the energy E is minimised, and condition (4.784) is obeyed. We can express
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these requirements by defining a composite entropy function

Hc ≡ H + 𝜆1

( K∑
k=1

pk(xij) − 1

)
+ 𝜆2

(
E0 −

∑
i

∑
j

∑
k

pk(xij)d(xij, yk)

)
(4.787)

where 𝜆1 and 𝜆2 are some positive constants. Hc will have to be maximised to yield the optimal
assignment of pk(xij) values.

Let us compute the first derivative of Hc with respect to pk(xij):

𝜕Hc

𝜕pk(xij)
= − log pk(xij) − log pk(xij)

1
log pk(xij)

+ 𝜆1 − 𝜆2d(xij, yk)

= − log pk(xij) − 1 + 𝜆1 − 𝜆2d(xij, yk). (4.788)

We set the last expression to 0 to compute the value of pk(xij) that corresponds to the
extremum of Hc:

− log pk(xij) − 1 + 𝜆1 − 𝜆2d(xij, yk) = 0 ⇒

log pk(xij) = −1 + 𝜆1 − 𝜆2d(xij, yk)⇒

pk(xij) = e−(1−𝜆1+𝜆2d(xij,yk)). (4.789)

We know that these probabilities should sum up to 1 for each pixel. Then:
K∑

k=1

e−(1−𝜆1+𝜆2d(xij ,yk)) = 1 ⇒ e−(1−𝜆1) = 1∑K
k=1 e−𝜆2d(xij,yk)

. (4.790)

We may substitute e−(1−𝜆1) from (4.790) into (4.789) to obtain

pk(xij) =
e−𝜆2d(xij,yk)∑K

k=1 e−𝜆2d(xij,yk)
(4.791)

which upon the substitution 1∕𝜆2 ≡ T yields Equation (4.781) with definition (4.782).
So, Equation (4.781) gives the probability pk(xij) that maximises the composite entropy func-

tion Hc. The deterministic annealing algorithm performs iterations with ever-decreasing values
of T. As T decreases, 𝜆2 increases. As 𝜆2 increases, the last term in the composite entropy
expression (4.787) is given more importance than the other two terms of the expression. Since
this term is non-positive, as T decreases, its value should go closer to 0 in order to maximise
Hc, i.e. the total error E should go closer to its minimum value E0.

Example 4.212

Use the features you produced in Example 4.139 to segment the image of Figure 4.81.
Each pixel of the original image is represented by a 10D feature vector, the elements of which
are read from the 10 leaf bands of the wavelet expansion performed in Example 4.139. We
shall use the deterministic annealing algorithm to segment the image. The results are shown in
Figure 4.157, where we used a Gaussian window to compute the local energy features.

(Continued)
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Example 4.212 (Continued)

11 × 11 15 × 15 25 × 25

Haar

Daubechies 4

Daubechies 8

Daubechies 20

Figure 4.157 Segmentation results for K = 6 using a Gaussian window to compute the local
energies. The features were constructed using the Haar, Daubechies 4, Daubechies 8 and Daubechies
20 filters, from top to bottom, respectively. The averaging window was of size 11 × 11, 15 × 15 and
25 × 25, from left to right, respectively. Source: Maria Petrou.

How may we assess the quality of a segmentation?

This is a difficult question. The standard way to proceed is to compare the produced segmentation
with one produced manually. Ideally one would like to have objective measures of the quality of
results, so full automation may be achieved. There are some functions which may be used to assess
the quality of the clusters identified in the feature space after the clusters have been produced.
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Note that the distance histogram we discussed at the beginning of this section was for assessing the
quality of a set of features before the clusters had been identified. A commonly used measure of
cluster separability is the Bhattacharyya distance. The Bhattacharyya distance may be used to
measure the distance between two clusters only. So, if more than two clusters have been identified,
it has to be applied for all pairs of identified clusters. Its smallest value computed over all pairs of
clusters may be used to characterise the whole segmentation result.

How is the Bhattacharyya distance defined?

Let us say that we have two clusters k1 and k2, with means 𝝁𝟏 and 𝝁𝟐, and covariance matrices Σ1
and Σ2, respectively. Their Bhattacharyya distance is given by

d(k1, k2) ≡ 1
8
(𝝁𝟏 − 𝝁𝟐)T

(Σ1 + Σ2

2

)−1

(𝝁𝟏 − 𝝁𝟐) +
1
2

ln
|||Σ1+Σ2

2
|||√|Σ1||Σ2| (4.792)

where |Σi| means the determinant of matrix Σi.

How can we compute the Bhattacharyya distance in practice?

Let us say that each pixel is characterised by L features. The value of feature l for pixel (i, j) is given
by fl(i, j). Let us also say that cluster k1 (i.e. segmented region with label k1) consists of N1 pixels,
and segmented region with label k2 consists of N2 pixels. We first compute the mean feature for
each region. The lth component of each of the mean vectors 𝝁𝟏 and 𝝁𝟐 is given by:

𝜇1l =
1

N1

∑
all_pixels_labelled k1

fl(i, j) 𝜇2l =
1

N2

∑
all_pixels_labelled k2

fl(i, j). (4.793)

The (m,n) element of each of the covariance matrices we need is given by

Σ1(m,n) =
1

N1

∑
all_pixels_labelled k1

(fm(i, j) − 𝜇1m)(fn(i, j) − 𝜇1n)

Σ2(m,n) =
1

N2

∑
all_pixels_labelled k2

(fm(i, j) − 𝜇2m)(fn(i, j) − 𝜇2n). (4.794)

After the inverse of matrix Σ1 + Σ2 is calculated and the determinants of matrices Σ1 and Σ2
computed, formula (4.792) may be readily applied.

Example 4.213

Apply the formula of the Bhattacharyya distance for a 1D feature space and discuss
the meaning of its two terms.

When we have only one feature, 𝝁𝟏 and 𝝁𝟐 are not vectors but scalars. They are the averages
of the feature values of the regions labelled k1 and k2, respectively. Further, Σ1 and Σ2 are not
matrices but the variances 𝜎2

1 and 𝜎2
2 of the same regions. Then formula (4.792) takes the form:

d(k1, k2) =
1
8

2(𝜇1 − 𝜇2)2

𝜎2
1 + 𝜎2

2
+ 1

2
ln
𝜎2

1 + 𝜎2
2

2𝜎1𝜎2
. (4.795)

(Continued)
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Example 4.213 (Continued)

The first term in the above expression measures the difference of the means of the two regions (clus-
ters) weighed by the mean variance of the two regions. The tighter the clusters are, i.e. the smaller
their variances, the more significant a certain difference in their means becomes. If the clusters
are very diffuse and their spreads are extensive, even a large difference in their means may be
insignificant if it is comparable with the average spread of the clusters. The second term measures
the difference of the two clusters in terms of their spreads. Note that this term becomes 0 only if
𝜎1 = 𝜎2. For all other values of 𝜎1 and 𝜎2, it takes values greater than 0 because (𝜎2

1 + 𝜎2
2 )∕(2𝜎1𝜎2)

is always greater than 1. So, two regions/clusters may be considered as having non-zero distance
even when they have identical mean values, but distinct variances.

How may we assess the quality of a segmentation using a manual segmentation
as reference?

The first step is to identify which region in one segmentation corresponds to which region in the
other. Let us say that the manual segmentation had labels {m1,m2,… ,mJ} and the automatic seg-
mentation produced labels {k1, k2,… , kI}. First we have to establish a correspondence between
these labels. We do that following this procedure:

• For a region in the hand-segmented result with label mj we check the labels of the same pixels in
the automatic result.

• We count how many of the pixels of region mj have label k1, k2, etc. in the automatic result.
• The label that is most represented among the pixels of hand-segmented region mj is considered

to be the corresponding label to mj.

Once we have established such a correspondence, we may proceed to measure the committed
errors. There are two ways to go about that: producing a confusion matrix, or defining the
over-detection and under-detection errors. The latter are also known as commission and
omission errors, respectively.

What is a confusion matrix?

This method is most appropriate when both segmentations have the same number of regions. The
method may be best explained with an example. Let us say that the hand segmentation had three
distinct regions with labels m1, m2 and m3, and the automatic segmentation produced three distinct
regions with labels k1, k2 and k3. Let us also say that we established that label m1 corresponds to
label k2, label m2 corresponds to label k1 and label m3 corresponds to label k3. Figure 4.158 shows
two such segmentations.

The confusion matrix is a double-entry matrix with the corresponding labels arranged along the
horizontal and the vertical axes as shown in Figure 4.158c. Each element of the matrix shows the
number of pixels that according to the hand segmentation belong to class mj and according to
the automatic segmentation belong to class kl. The larger the numbers along the main diagonal
of the matrix in comparison with the off-diagonal entries, the better the result. The off-diagonal
elements tell us exactly which class/region has been confused with which and that is why this
structure is called confusion matrix.
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Figure 4.158 (a) The reference hand segmentation of an
image. (b) The result of an automatic segmenter. (c) The
confusion matrix of the segmentation achieved. Along the
left-most column we put the labels of the reference hand
segmentation (HS). Along the top row we put the labels of
the automatic segmentation (AS) in order of
correspondence to the reference segmentation labels. Each
entry of the matrix shows the number of pixels that in the
reference segmentation had a particular label mj and in the
automatic segmentation had label ki . The higher the
numbers along the main diagonal with respect to the
off-diagonal numbers, the better the segmentation.
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Figure 4.159 A region (A+B) in the reference segmentation
partly overlaps with a region (A+C) in the automatic
segmentation. Parts B constitute the under-detected parts of
the region, while parts C constitute the over-detected parts.

A

C

C

B

B

What are the over- and under-detection errors?

This is better explained with the help of Figure 4.159. Let us say that a region in the reference
segmentation is made up of parts A and B. The corresponding region in the automatic segmentation
is the one with which this region has the maximum overlap, and consists of parts A and C. Let us
say that parts A, B and C consist of NA, NB and NC pixels, respectively. Then the over-detection,
OD, and under-detection, UD, errors are defined as:

OD ≡ NC

NA + NC
UD ≡ NB

NA + NB
. (4.796)

These errors may be computed for all regions of the segmentation and summed up to yield an
overall segmentation error.

Example 4.214

Calculate the over-detection and under-detection errors for segmentation 4.158b.
What is the average over-detection and under-detection error for this segmentation?

(Continued)
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Example 4.214 (Continued)

From the confusion matrix 4.158c we can see that region k1 overlaps with region m2 with 27
pixels and it has 3 extra pixels. So, for this region, NA = 27 and NC = 3. At the same time,
its corresponding region in the reference segmentation, region m2, has one extra pixel, so
NB = 1. Applying, therefore, formulae (4.796), we obtain for k1: OD1 = 3∕30 = 0.10 and UD1 =
1∕28 = 0.04. For region k2 we have OD2 = 1∕(23 + 1) = 0.04 and UD = 1∕(23 + 1) = 0.04.
For region k3 we have OD3 = 1∕(9 + 1) = 0.10 and UD3 = 3∕(9 + 3) = 0.25. So, the average
over-detection error is (OD1 + OD2 + OD3)∕3 = 0.08 and the average under-detection error is
(UD1 + UD2 + UD3)∕3 = 0.11.

How can we search for a pattern in an image?

The obvious way is to scan the image and check where the pattern fits best. So, we need to have a
way to measure the similarity of the pattern with the sub-image with which we compare it. There
are three such measures we may use. (i) If we believe that the pattern and the image were cap-
tured under similar imaging conditions, with possibly the only difference a global change in the
level of illumination, we may use the cross-correlation coefficient between the pattern and the
sub-image we compare. (ii) If we think that the pattern and the image have been captured by dif-
ferent instruments, or under different imaging conditions, but we expect this difference only to
have caused some more or less one-to-one mapping between the grey values in the pattern and the
grey values in the image, then we may use either the mutual information or the matching by
tone mapping (MTM) method.

How do we compute the cross-correlation between two image patches?

The cross-correlation between two (sub-)images I1(i, j) and I2(i, j) is defined as

𝜌(I1, I2) =
∑

i
∑

j(I1(i, j) − 𝜇1)(I2(i, j) − 𝜇2)
NM𝜎1𝜎2

(4.797)

where N × M is assumed to be the size of the compared (sub-)images, and 𝜇1 and 𝜇2, and 𝜎1 and 𝜎2
are the mean and standard deviations of the two (sub-)images, respectively. Note that if one image
is 𝛼 times brighter than the other, this will not affect the result because of the normalisation made
by the division with the standard deviations of the two images.

How do we compute the mutual information between two images?

Assume that we place one (sub-)image on top of the other. We construct a 2D histogram, where a
cell Pgig2

contains the number of pixels which have in one image grey value gi and in the other image
grey value g2. Once we construct this 2D histogram, we may divide its entries with the number of
pixels and treat it like the joint probability density function pI1I2

(g1, g2) of the grey values of the two
images. We also construct the histogram of each image separately, and normalise it by dividing by
the total number of pixels. Let us call these two normalised histograms pI1

(g1) and pI2
(g2). Then the

mutual information is computed as

M(I1, I2) =
∑

g1

∑
g2

pI1I2
(g1, g2) log

pI1I2
(g1, g2)

pI1
(g1)pI2

(g2)
. (4.798)

In this expression the basis of the logarithm we use does not matter, as long as we are consistent
when we make comparisons. Often base 2 is used, inspired by the information theory.
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Example 4.215

Show that when the two images we compare are a toned mapped version of each
other, the two images have the same entropy and their mutual information is equal
to that entropy.
By definition, the entropies of the two images will be:

H1 = −
∑

g1

pI1
(g1) log pI1

(g1) H2 = −
∑

g2

pI2
(g2) log pI2

(g2). (4.799)

If the two images differ only by a tone mapping, it means that there is a one-to-one correspondence
between grey levels g1 and g2. Then for every value of pI1

(g1) there is one and only one value of
pI2

(g2) with which it is equal. As in the calculation of the entropy the order by which we sum the
various terms does not matter, H1 = H2.

In addition, pI1I2
(g1, g2) = pI1

(g1) = pI2
(g2), since the probability of finding a pair (g1, g2) will

be the same as the probability for finding a grey value g1 in the first image and a probability of
finding a grey value g2 in the second image due to the one-to-one correspondence. So, we may
write:

M(I1, I2) =
∑

g1

∑
g2

pI1
(g1) log

pI1
(g1)

p2
I1
(g1)

= −
∑

g1

∑
g2

pI1
(g1) log pI1

(g1) = H1. (4.800)

Example 4.216

Show that when the two images we compare are independent, their mutual infor-
mation is 0.
When the two images are independent, pI1I2

(g1, g2) = pI1
(g1)pI2

(g2). Then the fraction on the
right-hand side of (4.798) is 1, its logarithm will be 0, and as a result M(I1, I2) = 0.

How do we perform matching by tone mapping between two images?

In order to match a pattern I1 to a sub-image I2 of a larger image, assuming that the pattern and
the sub-image differ by a tone mapping, i.e. a non-linear one-to-one transformation between their
grey values, we measure the distance D(I1, I2) as the minimum distance between all tone mapped
transforms of I1 from I2

D(I1, I2) ≡ min
h1

||S(I1)h𝟏 − I𝟐||2
NM𝜎2

I2

(4.801)

where S(I1) is the slice transform of pattern I1 (see Box 3.23), h𝟏 is a sequence of the grey values of
pattern I1 written as a vector, I𝟐 is sub-image I2 written as a vector, N × M is the size of the pattern
and the sub-image, and 𝜎I2

is the standard deviation of the grey values of sub-image I2.
It can be shown that this distance may be computed as

D(I1, I2) =
1

NM𝜎2
I2

[||I𝟐||2 −∑
i

pi ⋅ I𝟐|pi|
]

(4.802)

where pi is one of the columns of the slice transform S(I1) and |pi| is the sum of its elements, i.e. the
number of pixels in pattern I1 that have the particular grey value to which this column corresponds.
It is obvious from this formula that we omit from the slice transform any columns that correspond
to missing grey values, i.e. any columns made up from 0s only, i.e. any columns with |pi| = 0.
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Example B4.217

Show that Equation (4.801) may be written as:

D(I1, I2) =
||S(I1)[S(I1)TS(I1)]−1S(I1)TI𝟐 − I𝟐||2

NM𝜎2
I2

. (4.803)

The numerator of (4.801) is a non-negative number, so its possible minimum value is 0. If we
set S(I1)h𝟏 − I𝟐 = 0, it is as if we have a system of linear equations with unknowns h𝟏 to solve
for h𝟏. Matrix S is not a square matrix, so we can only solve this system by considering the least
squares error solution, that will minimise the difference between its left and right hand, i.e. it will
minimise the numerator of (4.801). The sequence h𝟏 that will minimise the numerator of (4.801)
can be computed by taking the pseudo-inverse of matrix S. In the following we drop the explicit
dependence of S on I1, for simplicity:

Sh𝟏 = I𝟐
⇒ STSh𝟏 = STI𝟐
⇒ h𝟏 = (STS)−1STI𝟐. (4.804)

So, the sequence of grey values that minimises the numerator of (4.801) is given by (4.804). Note
that the denominator is independent of h𝟏, so if we substitute in (4.801) we shall obtain (4.803).

Example B4.218

Show that the numerator of (4.803) may be written as||I𝟐||2 − ||G−1∕2STI𝟐||2 (4.805)

where G is a diagonal matrix, with values along its diagonal the number of pixels of
pattern I1 that have a particular grey value. If pi is the ith column of the slice trans-
form S of pattern I1, the ith element of matrix G along its diagonal will be denoted as|pi| and be equal to the sum of the elements of vector pi.
First, we observe that the columns of matrix S are vectors orthogonal to each other (see Box 3.23).
We also note that when one of these column vectors is dotted with itself, the result will be the
square of the sum of its values, i.e. the square of the number of pixels that have as grey value the
value that corresponds to that column vector. So, we may define STS ≡ G, where G is a diagonal
matrix with elements along the diagonal equal to the square of the number of pixels in I1 that
have a particular grey value.

Let us try to calculate the numerator of (4.803) dropping the explicit dependence of S on I1:||S(STS)−1STI𝟐 − I𝟐||2
= ||SG−1STI𝟐 − I𝟐||2
= [SG−1STI𝟐 − I𝟐]T[SG−1STI𝟐 − I𝟐]
= [SG−1STI𝟐]T[SG−1STI𝟐] − [SG−1STI𝟐]TI𝟐 − I𝟐T[SG−1STI𝟐] + I𝟐TI𝟐
= I𝟐TSG−1STSG−1STI𝟐 − I𝟐TSG−1STI𝟐 − I𝟐TSG−1STI𝟐 + ||I𝟐||2
= I𝟐TSG−1GG−1STI𝟐 − 2I𝟐TSG−1STI𝟐 + ||I𝟐||2
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= −I𝟐TSG−1STI𝟐 + ||I𝟐||2
= −I𝟐TSG−1∕2G−1∕2STI𝟐 + ||I𝟐||2
= [G−1∕2STI𝟐]T[G−1∕2STI𝟐] + ||I𝟐||2
= ||I𝟐||2 − ||G−1∕2STI𝟐||2. (4.806)

Example B4.219

Making use of result (4.806), and starting from (4.801), prove Equation (4.802).
We note that result (4.806) concerns the minimisation of the numerator of (4.801), while the
denominator does not change. We also note that STI𝟐 is the projection of vector I𝟐 on the rows
of matrix ST, i.e. the columns of matrix S, the slice transform of pattern I1. If we denote the ith
column of S by pi, we may write for STI𝟐 =

∑
ipi ⋅ I𝟐. Matrix G1∕2 is a diagonal matrix with ele-

ments along the diagonal the number of pixels of I1 that have a particular grey value, i.e. the ith
nelement along the diagonal of G1∕2 is the sum of elements of the ith column of S, which we call|pi|. If we substitute then into (4.801), (4.802) follows.

Example 4.220

Identify whether the pattern given on the left of Figure 3.113 is present, and, if yes,
where, in image 4.160, using the tone mapping method.

Figure 4.160 An image in which we search to identify
the 3 × 3 pattern shown on the left of Figure 3.113.

The slice transform S of the searched pattern is given by the 9 × 4 matrix of Equation (3.353). The
columns of this matrix are the following vectors:

p𝟏 = (1, 1, 0, 1, 0, 0, 0, 0, 0)T

p𝟐 = (0, 0, 1, 0, 1, 0, 0, 0, 0)T

p𝟑 = (0, 0, 0, 0, 0, 1, 1, 1, 0)T

p𝟒 = (0, 0, 0, 0, 0, 0, 0, 0, 1)T . (4.807)

Obviously:|p𝟏| = 3 |p𝟐| = 2 |p𝟑| = 3 |p𝟒| = 1. (4.808)

There are three sub-images in the image where the given pattern may match. If we write them as
vectors, they are:

(Continued)
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Example 4.220 (Continued)

w𝟏 = (1, 1, 1, 0, 2, 2, 3, 3, 2)T

w𝟐 = (0, 2, 2, 3, 3, 2, 3, 2, 1)T

w𝟑 = (3, 3, 2, 3, 2, 1, 1, 1, 0)T . (4.809)

The average of each one of these sub-images is:

𝜇1 = 15
9

≃ 1.7 𝜇2 = 18
9

= 2 𝜇3 = 16
9

≃ 1.8. (4.810)

Using these average values, we compute the variance of each sub-image as:

𝜎2
1 = 8

9
𝜎2

2 = 8
9

𝜎2
3 = 9.55

9
. (4.811)

We can also work out the magnitude square of each sub-image vector as:||w𝟏||2 = 33 ||w𝟐||2 = 44 ||w𝟑||2 = 38. (4.812)

The dot product of each vector sub-image with each one of the columns of matrix S is:

p𝟏 ⋅ w𝟏 = 2 p𝟐 ⋅ w𝟏 = 3 p𝟑 ⋅ w𝟏 = 8 p𝟒 ⋅ w𝟏 = 2
p𝟏 ⋅ w𝟐 = 5 p𝟐 ⋅ w𝟐 = 5 p𝟑 ⋅ w𝟐 = 7 p𝟒 ⋅ w𝟐 = 1

p𝟏 ⋅ w𝟑 = 9 p𝟐 ⋅ w𝟑 = 4 p𝟑 ⋅ w𝟑 = 3 p𝟒 ⋅ w𝟑 = 0. (4.813)

Now we are ready to apply formula (4.802) to work out the distance of each sub-image from the
reference pattern:

D(I1,w𝟏) =
1

9 × 8
9

[
33 −

(4
3
+ 9

2
+ 64

3
+ 4

1

)]
= 1

8

[
33 − 187

6

]
= 0.229

D(I1,w𝟐) =
1

9 × 8
9

[
44 −

(25
3

+ 25
2

+ 49
3

+ 1
1

)]
= 1

8

[
44 − 229

6

]
= 0.729

D(I1,w𝟑) =
1

9 × 9.55
9

[
38 −

(81
3

+ 16
2

+ 9
3
+ 0

1

)]
= 1

9.55

[
38 − 228

6

]
= 0. (4.814)

We can see that the searched for pattern is present in the given image in the last three columns of
it, as the distance is minimum between that sub-image and the given pattern. The tone mapping
between the pattern and the sub-image was:

0 → 3 1 → 2 2 → 1 3 → 0. (4.815)

Example 4.221

Identify whether the pattern given on the left of Figure 3.113 is present, and, if yes,
where, in image 4.160, using mutual information.
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The normalised histogram of the reference pattern is given by: p0 = 1
9
(3, 2, 3, 1). The histograms of

the three possible sub-images where the reference pattern might be present are: p1 = 1
9
(1, 3, 3, 2),

p2 = 1
9
(1, 1, 4, 3), p3 = 1

9
(1, 3, 2, 3). The joint normalised histograms between the reference pat-

tern and each one of the image windows are:
p01(0, 0) = 1∕9 p02(0, 0) = 1∕9 p03(0, 0) = 0
p01(0, 1) = 2∕9 p02(0, 1) = 0 p03(0, 1) = 0
p01(0, 2) = 0 p02(0, 2) = 1∕9 p03(0, 2) = 0
p01(0, 3) = 0 p02(0, 3) = 1∕9 p03(0, 3) = 3∕9
p01(1, 0) = 0 p02(1, 0) = 0 p03(1, 0) = 0
p01(1, 1) = 1∕9 p02(1, 1) = 0 p03(1, 1) = 0
p01(1, 2) = 1∕9 p02(1, 2) = 1∕9 p03(1, 2) = 2∕9
p01(1, 3) = 0 p02(1, 3) = 1∕9 p03(1, 3) = 0
p01(2, 0) = 0 p02(2, 0) = 0 p03(2, 0) = 0
p01(2, 1) = 0 p02(2, 1) = 0 p03(2, 1) = 3∕9
p01(2, 2) = 1∕9 p02(2, 2) = 2∕9 p03(2, 2) = 0
p01(2, 3) = 2∕9 p02(2, 3) = 1∕9 p03(2, 3) = 0
p01(3, 0) = 0 p02(3, 0) = 0 p03(3, 0) = 1∕9
p01(3, 1) = 0 p02(3, 1) = 1∕9 p03(3, 1) = 0
p01(3, 2) = 1∕9 p02(3, 2) = 0 p03(3, 2) = 0
p01(3, 3) = 0 p02(3, 3) = 0 p03(3, 3) = 0.

Then we can use these values in (4.798) in order to compute the mutual information between
the reference pattern and each one of the three sub-images:

M01 = p01(0, 0) log
p01(0, 0)

p0(0)p1(0)
+ p01(0, 1) log

p01(0, 1)
p0(0)p1(1)

+ p01(1, 1) log
p01(1, 1)

p0(1)p1(1)

+p01(1, 2) log
p01(1, 2)

p0(1)p1(2)
+ p01(2, 2) log

p01(2, 2)
p0(2)p1(2)

+ p01(2, 3) log
p01(2, 3)

p0(2)p1(3)

+p01(3, 2) log
p01(3, 2)

p0(3)p1(2)

= 1
9

log
1
9

3
9
× 1

9

+ 2
9

log
2
9

3
9
× 3

9

+ 1
9

log
1
9

2
9
× 3

9

+ 1
9

log
1
9

2
9
× 3

9

+ 1
9

log
1
9

3
9
× 3

9

+2
9

log
2
9

3
9
× 2

9

+ 1
9

log
1
9

1
9
× 3

9

= 2
9

log 3 = 0.318. (4.816)

In a similar way, we work out that the mutual information with the second sub-image is M02 =
0.210 and with the third M03 = 0.569. So, the reference pattern has most similarity with the third
sub-image. However, we cannot tell that this is the maximum possible similarity the pattern would
have with a sub-image, unless we calculate its own entropy and check how close the value of 0.569
is to the maximum possible value the mutual information can take. The entropy of the reference
image is:

H0 = −3
9

log 3
9
− 2

9
log 2

9
− 3

9
log 3

9
− 1

9
log 1

9
= 0.569. (4.817)

(Continued)
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Example 4.221 (Continued)

So, the mutual information between the reference pattern and the third sub-image is the maxi-
mum possible, indicating that indeed the third sub-image is identical to the reference image apart
from a tone transformation.

Example 4.222

Identify whether the pattern given on the left of Figure 3.113 is present, and, if yes,
where, in image 4.160, using correlation.

To apply formula (4.797) we have first to remove the mean from each image. The mean of the
reference image is 1.2, while the mean of each of the three sub-images with which we shall com-
pare it is 1.7, 2 and 1.8, respectively. Figure 4.161 shows the reference pattern and three sub-images
after the mean has been removed. Note that the rounding to one decimal point was done so that
the sum of the values of each of these images is 0. The standard deviation of the reference image
is 1.036, while that of the three sub-images is 0.920, 0.943 and 1.036, respectively. Note that these
numbers do not exactly agree with the corresponding values we calculated in other examples
involving the same sub-images, because here we make use of the approximate values given in
Figure 4.161, for consistency when we use formula (4.797).

−1.2 −1.2 0.8

−1.2 −0.3 0.8

−0.3 0.8 1.8

Reference

−0.6 −1.7 1.3

−0.6 0.3 1.3

−0.6 0.3 0.3

Subimage 1

−2 1 1

1 0

0 −1

0

0

Subimage 2

1.2 1.2

0.3

−0.8

−0.8

−0.8 −1.8

1.2

0.3

Subimage 3

Figure 4.161 The reference image and the three sub-images with which it has to be compared after
their means have been removed.

Applying then formula (4.797) for the reference and the first sub-image we obtain:

𝜌(I0, I1) =
1

9 × 1.036 × 0.920
(1.2 × 0.6 + 1.2 × 1.7 + 0.8 × 1.3 + 1.2 × 0.6

−0.3 × 0.3 + 0.8 × 1.3 + 0.3 × 0.6 + 0.8 × 0.3 + 1.8 × 0.3)

= 6.43
8.58

= 0.75

𝜌(I0, I2) =
1

9 × 1.036 × 0.943
(1.2 × 2 − 1.2 × 1 + 0.8 × 1 − 0.3 × 1 − 1.8 × 1)

= −0.10
8.79

= −0.01

𝜌(I0, I3) =
1

9 × 1.036 × 1.036
(−1.2 × 1.2 − 1.2 × 1.2 − 0.8 × 0.8 − 1.2 × 1.2

−0.3 × 0.3 − 0.8 × 0.8 − 0.3 × 0.3 − 0.8 × 0.8 − 1.8 × 1.8)

= −9.66
9.66

= −1. (4.818)

We note that the largest value of the correlation is between the reference pattern and the first
sub-image. This method shows that the reference image and the third sub-image, which is a tone
transform of it, are strongly anticorrelated. In general, correlation is only appropriate for search-
ing for patterns that differ by a uniform change in brightness level.
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Box 4.16 Fast tone matching algorithm

Step 0: The size of the reference pattern P is N × M, where N and M are preferably odd, and
we wish to search for it inside an image I, with size K × L, so that N << K and M << L.
Set N0 = N−1

2
and M0 = M−1

2
.

Step 1: Convolve the input image with a window of size N × M, with all its elements equal
to 1. This will sum all pixel values around each pixel, inside a window equal in size with the
reference pattern. Call the result W1

Step 2: Raise to the power of 2 every pixel value of W1 and divide it by NM. Call the result W2.
Step 3: Raise to the power of 2 every pixel value of image I. Call the result I2.
Step 4: Convolve I2 with a window of size N × M, with all its elements equal to 1. This will

sum all square pixel values around each pixel, inside a window equal in size to that of the
reference pattern. Call the result W3

Step 5: Compute D2 ≡ W3 − W2. This is the denominator of Equation (4.802).
Step 6: Create the slices of the reference pattern as binary images of size N × M, each one of

which identifies with 1 the pixels of the pattern that have a particular grey value and with
0 all other pixels. Call these slices Pi. There will be as many as the number of different grey
levels in the pattern.

Step 7: Sum up the elements of each Pi, to compute numbers Ni.
Step 8: Create an array of size K × L, and set all its elements equal to 0. Call it D1.
Step 9: For all slices Pi, do the following:
Step 9.1: Pseudo-convolve (no filter reversal) image I with Pi. Do not process the boundary

pixels, i.e. all pixels in the first and last N0 columns of the image and all pixels in the first
and last M0 rows of the image. Instead, give to all those pixels a very large value, say 106 or
the largest number the bits you allocated to the output array of this step allows you, so that
these pixels do not interfere with the final result when you are looking for local minima in
the output array of the algorithm. Produce result Ai.

Step 9.2: Raise to the power of 2 the elements of Ai, and divide them by Ni. Call the result Bi.
Step 9.3: Add Bi to D1: D1 = D1 + Bi.
Step 10: Compute D3 = W3 − D1.
Step 11: Divide element by element D3 by D2, to produce an output array D, the same size as

the input image. The values of this array tell us how different the sub-image around each
pixel is from the reference image. The minima in D identify the possible locations of the
presence of the pattern.

Box 4.17 From mutual information to a point similarity measure

In the definition of mutual information given by Equation (4.798), we realise that pI1I2
(g1, g2) is

actually the ratio of pairs of pixels with values (g1, g2) in the two images that are being com-
pared, over the number of pixels of each image. This ratio may be written as: N(g1, g2)∕(NM),
assuming that the images are of size N × M. Then we realise that the summation over grey
values in (4.798) may be replaced by summation over spatial coordinates, with the definition
of mutual information now taking the form:

M(I1, I2) =
1

NM
∑

i

∑
j

log
pI1I2

(g1(i, j), g2(i, j))
pI1

(g1(i, j))pI2
(g2(i, j))

(4.819)

(Continued)
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Box 4.17 (Continued)

This allows us to interpret mutual information as the average similarity measure over all pixels
positions, by defining the point similarity as:

S(i, j) ≡ log
pI1I2

(g1(i, j), g2(i, j))
pI1

(g1(i, j))pI2
(g2(i, j))

. (4.820)

We may define the point similarity function as:

T(g1, g2) ≡ log
pI1I2

(g1, g2)
pI1

(g1)pI2
(g2)

. (4.821)

By definition, we set T(i, j) = 0 if pI1I2
(g1, g2) = 0.

Point similarity measures are useful in:

(i) Registering images.
(ii) Assessing the similarity of small image regions (by averaging them over their extent).

(iii) Identifying anomalies in images at locations where the similarity is unusually high (in
absolute terms).

(iv) Identifying changes in images of the same scene captured at different times, e.g. remote
sensing images captured before an after a natural disaster.

Example B4.223

Compute the mutual information between the pattern given on the left of
Figure 3.113 and the 3 × 3 left-most sub-image of image 4.160 using formula
4.819.

In Figure 4.162 we repeat the two images for convenience.

0 0 2

0 1 2

1 2 3

1

2

3

1

1

0

2

2

3

Figure 4.162 We must compute the mutual
information of these two images by using
summation over the spatial coordinates only.

In order to apply formula (4.819) we must make use of p0, p1 and p01 values listed in Example
4.221. We have:

M(I0, I1) =
1
9

[
log

p01(0, 1)
p0(0)p1(1)

+ log
p01(0, 0)

p0(0)p1(0)
+ log

p01(2, 3)
p0(2)p1(3)

+ log
p01(0, 1)

p0(0)p1(1)
+ log

p01(1, 2)
p0(1)p1(2)

+ log
p01(2, 3)

p0(2)p1(3)

+ log
p01(1, 1)

p0(1)p1(1)
+ log

p01(2, 2)
p0(2)p1(2)

+ log
p01(3, 2)

p0(3)p1(2)

]
= 1

9

[
log

2
9

3
9
× 3

9

+ log
1
9

3
9
× 1

9

+ log
2
9

3
9
× 2

9

+ log
2
9

3
9
× 3

9

+ log
1
9

2
9
× 3

9

+ log
2
9

3
9
× 2

9

+ log
1
9

2
9
× 3

9

+ log
1
9

3
9
× 3

9

+ log
1
9

1
9
× 3

9

]
= 2

3
log 3 = 0.318. (4.822)
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This is the same value we obtained when we applied the original formula of mutual information
in Example 4.221.

Example B4.224

Compute the point similarity function between the images in Figure 4.162. Use it to
work out the value of the point similarity measure between the two central pixels of
the two images.
We shall make use of formula (4.821) and the values listed in Example 4.221 for p0, p1 and p01.

T(0, 0) = log
1
9

3
9
× 1

9

= log 3

T(0, 1) = log
2
9

3
9
× 3

9

= log 2

T(1, 1) = log
1
9

2
9
× 3

9

= log 3 − log 2

T(1, 2) = log
1
9

2
9
× 3

9

= log 3 − log 2

T(2, 2) = log
1
9

3
9
× 3

9

= 0

T(2, 3) = log
2
9

3
9
× 2

9

= log 3

T(3, 2) = log
1
9

1
9
× 3

9

= log 3

T(0, 2) = T(0, 3) = T(1, 0) = T(1, 3) = T(2, 0) = T(2, 1) = T(3, 0) = T(3, 1) = T(3, 3) = 0.

If we place the two images one on the top of the other, the central pixel will have the pair of
values (1, 2). According to the table above, The point similarity measure between these two values
is S(1, 2) = log 3 − log 2 = 0.176.

Example B4.225

Explain how you may use the point similarity measure to work out a change in a
scene imaged at two different occasions, under similar imaging conditions.
When an anomaly appears in an image, unexpected pairs of grey values appear, having very
low probability p01. Then the value of the point similarity measure at that location becomes very
small, signaling the presence of something unexpected at that location.

How can we compare two histograms?

We may use

(i) the 𝜒2 test or
(ii) the earth mover’s distance.

What is the 𝝌2 test?

There are various versions of it, appropriate for different situations. Let us say that we have two
histograms H1 and H2, with N identical bins each. The 𝜒2 is defined as:

𝜒2 ≡
N∑

i=1

(H1(i) − H2(i))2

H1(i) + H2(i)
. (4.823)
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Then we select the confidence level 𝛼 at which we wish to assert that these two histograms represent
the same population (usually 𝛼 = 0.95 or 𝛼0.99), and look up in tables the threshold for the value
of 𝜒2 that corresponds for the N bins. If 𝜒2 is greater than the threshold value, we may say that the
two histograms are different at the 95% or 99% confidence level, depending on the value of 𝛼 we
chose. If 𝜒2 is lower than the threshold, we may say that the data are consistent as coming from
the same population.

It is important to note that no bin of either of the two histograms should contain less than 5 items.
If any bin does that, we combine neighbouring bins to avoid it.

What is the earth mover’s distance?

The earth mover’s distance is a measure of the distance between two histograms, measuring the
minimum amount of mass that has to be moved between the bins of the one histogram in order to
make it as similar as the other (see Box 4.18). When the histograms are normalised, this measure
is a metric and it is known as the Mallows distance. We distinguish two cases:
(i) When the histograms are 1D, we may use the so-called Hungarian algorithm to compute their
Mallows distance.
(ii) When the histograms are of higher dimensions, other more elaborate algorithms have to be
used, which, however, are beyond the scope of this book.

What is the Hungarian algorithm?

The Hungarian algorithm computes the Mallows distance between two sets of feature values. It
does not use histograms to bin the data, but rather works with the raw values. Let us call the two
sets of data h1(i) and h2(i), for i = 1,… ,N. We sort each one of the sequences of numbers we have
and call them: h1(i) and h2(i), respectively. Then the value of Mallows distance between the two
sequences is:

Mp(h1, h2) =

(
1
N

N∑
i=1

|h1(i) − h2(i)|p
)1∕p

(4.824)

where usually p = 1 or p = 2.
If the two sequences consist of different number of values each, say h1(i) consists of N numbers

and h2(i) consists of M numbers, then we find the minimum common multiple of N and M, say K,
and replicate each sample of h1(i) as many times as needed to make it of length K, and each sample
of h2(i) as many times as needed to make it also of length K, before we apply (4.824).

Box 4.18 The formal definition of earth mover’s distance

Let us consider two normalised histograms H1 and H2 of the same number of bins, with iden-
tical bin borders. Let us define fij;kl to be the amount by which bin (i, j) of H1 may be reduced
and bin (k, l) of H1 may be increased. If we define such a function between any pair of bins in
the histogram, we say we have a flow function over the histogram. The idea is that there are
many flows one can define between the bins of H1 that will make it more similar to H2. We
want to select the flow that moves the minimum “material” for the smallest possible distance
between the bins of H1 to achieve this similarity. Then the earth mover’s distance between H1



�

� �

�

4.9 Laws’ Masks and the “What Looks Like Where” Space 697

and H2 is defined as

DEM ≡ min
all flows fij;kl

∑
(i,j);(k,l)

fij;kldij; kl (4.825)

where dij; kl is the distance between bins (i, j) and (k, l), measured, for example by the
Euclidean metric.
This minimisation has to fulfil certain conditions:
All the flow that leaves bin (i, j), including self-flow, i.e. flow that goes back to the bin itself,
must sum up to the original value this bin had in the first histogram:∑

(k,l)
fij;kl = H1(i, j). (4.826)

All the flow that arrives to bin (k, l), including self-flow, i.e. flow that arrived from (k, l) itself,
must sum up to the original value this bin had in the second histogram:∑

(i,j)
fij;kl = H2(k, l). (4.827)

There are no negative flows:

fij;kl ≥ 0 for all (i, j) and (k, l) (4.828)

This minimisation problem can be solved with the help of the simplex algorithm and linear
programming. However, for the case the distance used between the bins is

dij; kl = |i − k| + |j − l| (4.829)

there is an elegant reformulation of the problem that can be solved using trees. It replaces
the flow fij;kl with a sequence of flows only between neighbouring bins. Let us define gij;kl to
be a flow that moves material only from bin (i, j) to bin (k, l), that is one of its four nearest
neighbours. Then it can be shown that

DEM = min
all flo𝑤s gij;kl

∑
(i,j);(k,l)

gij;kl (4.830)

subject to the conditions:∑
(k,l) nbr of (i,j)

gij;kl − gkl;ij − H1(i, j) − H2(i, j) for all (i, j)

gij;kl ≥ 0 for all (i, j) and (k, l). (4.831)

4.9 Laws’ Masks and the “What Looks Like Where” Space

Is it possible to extract image features without referring to the frequency domain?

Yes, if we abandon the idea of representing a signal in the joint spatio-frequency domain. Wavelet
filters were designed to span the joint spatio-frequency domain in an optimal way. They were not
designed to extract image information that adheres to any perceptual local signal characteristic. So,
if we concentrate on the spatial domain only, we shall have to stop being concerned with identifying
“what happens where” in the signal (or image) and rather concentrate on the appearance of the
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2 11L3 =Level 3

Edge 3 0 1−1E3 =

S3 = −1 2 −1Spot 3

Figure 4.163 Laws’ masks of size 3. On the left their
names and on the right their shapes, drawn to scale.

image or signal in the real domain alone. We may define then the “what looks like where” space
in conjunction with human perception.

This space will have to be spanned by filters that try to capture some local image structure that
may be linguistically described. For this purpose people often use filters that have been heuristically
defined, but that have been designed to capture local image characteristics such as local edges,
corners, bars etc. Laws’ masks are filters of this type.

How are Laws’ masks defined?

Laws’ 1D masks and their corresponding names and shapes are shown in Figures 4.163, 4.164 and
4.165 for neighbourhood sizes 3, 5 and 7, respectively. They are used as convolution filters. For a 2D
image, and for a fixed size neighbourhood, they may be combined in all possible ways to produce 9,

−1 −2 0 2 1

−1

−1

1 6 1–4 –4

−22 10

0 2 0 −1

1 4 6 4 1

W5 =

R5 =

S5 =

Ripple 5

Wave 5

Spot 5

E5 =

L5 =

Edge 5

Level 5

Figure 4.164 Laws’ masks of size 5. On the left their names and on the right their shapes, drawn to scale.
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1 6 15 20 15 6 1

−1 −4 −5 0 5 4 1

41 1–2

–2 –2–1

–1 –1–15 –156 6

–1

–2–1 –1

−1

1 14

−30 0 0 13

20

L7 =

E7 =

S7 =

W7 =

R7 =

O7 =Oscillation 7

Ripple 7

Wave 7

Spot 7

Edge 7

Level 7

Figure 4.165 Laws’ masks of size 7. On the left their names and on the right their shapes, drawn to scale.

25 or 36 local features respectively, by convolving with one filter along one axis and with the other
along the other in a cascaded way (i.e. the second filter is applied to the output of the first).

When we perform convolution, it is always advisable to scale the masks so that they leave unal-
tered a flat input signal. This may be achieved by making sure that the sum of the weights of the
low pass filter (the so-called “level” mask) is 1, and the sum of the weights of all other filters is 0.
All high pass Laws’ masks have weights summing up to 0, but the weights of the low pass masks do
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not sum up to 1. So, the outputs of L3, L5 and L7 filters must be divided by 4, 16 and 64 respectively,
to ensure that a flat input signal is left unchanged.

Usually we do not use the filter outputs as features, but we may produce from them features by
taking the local standard deviation, or local average, or local absolute average within some local
window around each pixel, i.e. some sort of local energy estimate. These features may be used for
texture segmentation.

Note that it is not necessary to use masks of only a single size. If more than one size masks
is used, we have a multi-resolution approach. These features may turn out to be too many, as
many as 9 + 25 + 36 = 70. Feature reduction may take place by performing principal component
analysis (see Book I [75] and Example 4.230) and keeping only the first few principal components
as features.

Note also that the three-tap Laws’ masks constitute a complete basis for three-sample long sig-
nals. The same goes for the five-tap masks. However, the set of seven-tap masks does not constitute
a complete basis. Laws’ masks were defined guided by human intuition and not in a mathematically
consistent way.

Example B4.226

Show that the sets of three- and five-tap Laws’ masks constitute complete bases while
the seven-tap masks do not.
To show that the three-tap Laws’ masks constitute a complete basis we must show that any 3 × 1
vector may be expanded in terms of these masks treated as vectors, and that it may be fully recov-
ered from the coefficients of its expansion. Let us consider such a vector (x1, x2, x3)T and let us
write it as⎛⎜⎜⎝

x1
x2
x3

⎞⎟⎟⎠ = a1

⎛⎜⎜⎝
1
2
1

⎞⎟⎟⎠ + a2

⎛⎜⎜⎝
−1
0
1

⎞⎟⎟⎠ + a3

⎛⎜⎜⎝
−1

2
−1

⎞⎟⎟⎠⇒
⎛⎜⎜⎝
x1
x2
x3

⎞⎟⎟⎠ =
⎛⎜⎜⎝

1 −1 −1
2 0 2
1 1 −1

⎞⎟⎟⎠
⎛⎜⎜⎝
a1
a2
a3

⎞⎟⎟⎠ (4.832)

where a1, a2 and a3 are the coefficients of the expansion of vector (x1, x2, x3)T in terms of the three
basis vectors.

For the last set of equations to be invertible, the determinant of the 3 × 3 matrix should be
non-zero, so that the inverse of this matrix exists. If the inverse exists, any vector (x1, x2, x3)T may
be represented in a unique way by the coefficients of its expansion in terms of the basis vectors.
Indeed, this determinant is 1 × (0 − 2) + 1 × (−2 − 2) − 1 × (2 − 0) = −8.

In a similar way we may show that the determinant of the 5 × 5 matrix, created by writing the
five-tap masks as columns, is non-zero, and actually it is equal to −1024.

The seven-tap set of masks does not constitute a complete basis because there are only six
of them. For a complete basis there should have been seven of them and the determinant
of the matrix created by writing them next to each other, as columns, should have been
non-zero.
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Example 4.227

Use the 1 × 3 Laws’ masks of Figure 4.163 to filter the image of Figure 4.81. Then com-
pute features from the filtered outputs by estimating in each output the local energy
of each pixel using a Gaussian window of size 29 × 29. Segment the image using the
deterministic annealing algorithm for number of clusters K = 6 and K = 8.

L3-L3 E3-L3 S3-L3

L3-E3 E3-E3 S3-E3

L3-S3 E3-S3 S3-S3

Figure 4.166 Outputs of the Laws’ masks of size 3. The 2% extreme values of each panel were
saturated and the rest were scaled to the range [0,255] for visualisation. Each panel X–Y represents
the output obtained when filter X is applied to the rows of the original image and filter Y is applied to
the columns of the output. Source: Maria Petrou.

Figure 4.167 Segmentation results. Source:
Maria Petrou.

K = 6 K = 8
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Example 4.228

Use the Laws’ masks of Figure 4.164 of size 5 × 5 to compute features for the image of
Figure 4.81 and segment it using the deterministic annealing algorithm.

L5-L5 E5-L5 S5-L5 W5-L5 R5-L5

L5-E5 E5-E5 S5-E5 W5-E5 R5-E5

L5-S5 E5-S5 S5-S5 W5-S5 R5-S5

L5-W5 E5-W5 S5-W5 W5-W5 R5-W5

L5-R5 E5-R5 S5-R5 W5-R5 R5-R5

Figure 4.168 Outputs of the Laws’ masks of size 5. The 2% extreme values of each panel were
saturated and the rest were scaled to the range [0,255] for visualisation. Each panel X–Y represents
the output obtained when filter X is applied to the rows of the original image and filter Y is applied to
the columns of the output.
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Figure 4.169 Segmentation results obtained
using the deterministic annealing algorithm for
the energy features produced from the filtered
outputs shown in Figure 4.168, using a Gaussian
window of size 29 × 29 with standard deviation
𝜎 = 7. The deterministic annealing algorithm
was run for two different values of the expected
number K of distinct clusters. Source: Maria
Petrou.

K = 6 K = 8

Example 4.229

Use the Laws’ masks of Figure 4.165 of size 7 × 7 to compute features for the image of
Figure 4.81 and segment it using the deterministic annealing algorithm.
The segmentation result is shown in Figure 4.170.

Figure 4.170 Segmentation results obtained
using the deterministic annealing algorithm for
the energy features computed from the filtered
image outputs derived by convolving the image
with the 7 × 7 Laws’ masks. The energy features
were constructed using a Gaussian window of
size 29 × 29 with standard deviation 𝜎 = 7. K is
the number of clusters specified for running the
deterministic annealing algorithm. Source:
Maria Petrou. K = 6 K = 8

Example 4.230

Use all features you extracted in Examples 4.227- 4.229 to segment the image of
Figure 4.81. Reduce the number of features first by performing principal component
analysis and keeping only the first three principal components.
To perform principal component analysis, we consider that each pixel is a point in the
70-dimensional feature space. Let us denote the value of the lth feature at pixel (i, j) by Fl(i, j).
Values Fl(i, j) for all values of l constitute the feature vector of pixel (i, j) and define its position in
the 70-dimensional feature space. Let us say that the image is of size M × N. Then the MN pixels
of the image form a cloud of points in the feature space. The idea is to use this cloud to identify
axes centred in it so that the location of each pixel with respect to the cloud centre may be defined
by using fewer numbers than 70.

(Continued)
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Example 4.230 (Continued)

First we identify the centre of the cloud by computing the average value of each feature over all
pixels in the image:

Fl =
1

MN

M∑
i=1

N∑
j=1

Fl(i, j). (4.833)

Next we compute the covariance matrix of the data points that form the cloud. This is a 70 × 70
matrix, expressing the correlation, if any, between any pair of features. An element C(k, l) of this
matrix is defined as follows:

C(k, l) = 1
MN

M∑
i=1

N∑
j=1

[Fk(i, j) − Fk][Fl(i, j) − Fl]. (4.834)

We compute the eigenvalues𝜆m of this matrix, arrange them in decreasing order (see Figure 4.171)
and choose to keep the largest three of them. Then we compute the corresponding eigenvectors
𝑣1, 𝑣2 and 𝑣3. Each such vector is 70 components long. The three principal components are the
projections of each feature vector on the directions of the three eigenvectors:

P1(i, j) = 𝑣1 ⋅ [F(i, j) − F]T =
70∑

l=1
𝑣1(l)[Fl(i, j) − Fl]

P2(i, j) = 𝑣2 ⋅ [F(i, j) − F]T =
70∑

l=1
𝑣2(l)[Fl(i, j) − Fl]

P3(i, j) = 𝑣3 ⋅ [F(i, j) − F]T =
70∑

l=1
𝑣3(l)[Fl(i, j) − Fl]. (4.835)

These values are now the features in terms of which image segmentation will take place in the
new 3D feature space. Note that these features take positive and negative real values.
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Figure 4.171 (a) The first six eigenvalues of matrix C(k, l). (b) All eigenvalues of matrix C(k, l) plotted
in logarithmic scale.



�

� �

�

4.9 Laws’ Masks and the “What Looks Like Where” Space 705

First Second Third

Fourth Fifth Sixth

Figure 4.172 First six feature maps obtained using PCA. Each principal component map was
individually scaled to the range [0,255] for presentation. Source: Maria Petrou.

Figure 4.173 Segmentation results obtained
using the first three features constructed with
PCA, shown in Figure 4.172, for two different
values of the expected number K of distinct
clusters. Source: Maria Petrou.

K = 6 K = 8

Is there a systematic way to construct features that span the “what looks like where”
space completely?

Yes, one may use the Walsh functions for that job. For an introduction to Walsh functions the reader
is referred to Book I [75]. The Walsh functions may be used to construct a complete and orthonor-
mal basis in terms of which any matrix of a certain size may be expanded. The Walsh matrices
consist of only 1s and−1s, so they capture the binary characteristics of an image in terms of contrast
of the local structure, depending on the size of the window we use to define what “local” means.
For example, if “local” means a 3 × 3 neighbourhood around each pixel, the Walsh filters we must
use must correspond to the three-sample long discrete versions of the Walsh function. If “local”



�

� �

�

706 4 Non-stationary Grey Texture Images

means a 5 × 5 neighbourhood, the Walsh filters we must use must correspond to the five-sample
long discrete versions of the Walsh function, and so on. Each set of these filters expands the 3 × 3 or
the 5 × 5 image patch in terms of a complete basis of elementary images. These elementary images
may be constructed as the outer vector products of the discrete versions of the Walsh function. The
discrete versions of the Walsh function of any order may be constructed by using the definition of
the Walsh function by the recursive equation

W2j+q(t) = (−1)⌊ j
2
⌋+q[Wj(2t) + (−1)j+qWj(2t − 1)] (4.836)

where
⌊

j
2

⌋
means the integer part of j∕2, q is either 0 or 1, j = 0, 1, 2,…, and

W0(t) =
{

1 for 0 ≤ t < 1
0 elsewhere

. (4.837)

In Book I [75] it was shown that the first three Walsh functions that may be computed from this
equation are

W1(t) =

{
−1 for 0 ≤ t < 1

2
1 for 1

2
≤ t < 1

(4.838)

W2(t) =
⎧⎪⎨⎪⎩
−1 for 0 ≤ t < 1

4
1 for 1

4
≤ t < 3

4
−1 for 3

4
≤ t < 1

(4.839)

W3(t) =

⎧⎪⎪⎨⎪⎪⎩

1 for 0 ≤ t < 1
4

−1 for 1
4
≤ t < 1

2
1 for 1

2
≤ t < 3

4
−1 for 3

4
≤ t < 1

. (4.840)

Each of these functions may be appropriately scaled and sampled to produce a vector which may be
used to span the “what looks like where” space. These vectors are combined by outer vector product
multiplication to form 2D elementary neighbourhoods, some examples of which are presented in
Figures 4.174a and 4.175.

Example 4.231

Use the Walsh functions defined by equations (4.837)-(4.839) to construct basis vec-
tors three samples long.
Since we are interested in three-sample long vectors, we scale the independent variable t in
Equations (4.837)–(4.839) by multiplying it by 3, so we obtain:

W0(t) =

{
1 for 0 ≤ t < 3
0 elsewhere

(4.841)

W1(t) =

{
−1 for 0 ≤ t < 3

2
1 for 3

2
≤ t < 3

(4.842)

W2(t) =
⎧⎪⎨⎪⎩
−1 for 0 ≤ t < 3

4
1 for 3

4
≤ t < 9

4
−1 for 9

4
≤ t < 3

. (4.843)
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We then sample each function at the integer points only, so we produce the following vectors:

W T
0 = (1, 1, 1)

W T
1 = (−1,−1, 1)

W T
2 = (−1, 1, 1). (4.844)

Example 4.232

Combine the vectors produced in Example 4.231 in all possible ways in order to pro-
duce basis images of size 3 × 3 in terms of which you can analyse any 3 × 3 image
neighbourhood. Present the elementary images you will construct in a numerical as
well as in a pictorial way, as binary images.

W0W T
0 =

⎛⎜⎜⎝
1
1
1

⎞⎟⎟⎠ (1, 1, 1) =
⎛⎜⎜⎝

1 1 1
1 1 1
1 1 1

⎞⎟⎟⎠
W0W T

1 =
⎛⎜⎜⎝

1
1
1

⎞⎟⎟⎠ (−1,−1, 1) =
⎛⎜⎜⎝
−1 −1 1
−1 −1 1
−1 −1 1

⎞⎟⎟⎠
W0W T

2 =
⎛⎜⎜⎝

1
1
1

⎞⎟⎟⎠ (−1, 1, 1) =
⎛⎜⎜⎝
−1 1 1
−1 1 1
−1 1 1

⎞⎟⎟⎠ (4.845)

W1W T
0 =

⎛⎜⎜⎝
−1
−1

1

⎞⎟⎟⎠ (1, 1, 1) =
⎛⎜⎜⎝
−1 −1 −1
−1 −1 −1

1 1 1

⎞⎟⎟⎠
W1W T

1 =
⎛⎜⎜⎝
−1
−1

1

⎞⎟⎟⎠ (−1,−1, 1) =
⎛⎜⎜⎝

1 1 −1
1 1 −1

−1 −1 1

⎞⎟⎟⎠
W1W T

2 =
⎛⎜⎜⎝
−1
−1

1

⎞⎟⎟⎠ (−1, 1, 1) =
⎛⎜⎜⎝

1 −1 −1
1 −1 −1

−1 1 1

⎞⎟⎟⎠ (4.846)

W2W T
0 =

⎛⎜⎜⎝
−1

1
1

⎞⎟⎟⎠ (1, 1, 1) =
⎛⎜⎜⎝
−1 −1 −1

1 1 1
1 1 1

⎞⎟⎟⎠
W2W T

1 =
⎛⎜⎜⎝
−1

1
1

⎞⎟⎟⎠ (−1,−1, 1) =
⎛⎜⎜⎝

1 1 −1
−1 −1 1
−1 −1 1

⎞⎟⎟⎠
W2W T

2 =
⎛⎜⎜⎝
−1

1
1

⎞⎟⎟⎠ (−1, 1, 1) =
⎛⎜⎜⎝

1 −1 −1
−1 1 1
−1 1 1

⎞⎟⎟⎠ . (4.847)

Figure 4.174a shows these images as binary shapes, with black corresponding to −1 and white
to 1.

(Continued)
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Example 4.232 (Continued)

C1C1 C2C1 C3C1

C1C2 C2C2 C3C2

C1C3 C2C3 C3C3

W0 W

W

W

W

1 W2

1

2

0

(b)(a)

Figure 4.174 (a) If we process a 3 × 3 image with the inverse of the Walsh matrix, we expand it in
terms of the nine elementary images shown here. Black means −1 and white means 1. These images
were produced by taking the vector outer product of the Walsh vectors indicated above and on the left
of the arrangement. Each of these images represents a particular type of local structure, which we
may easily describe in linguistic terms. That is why we say that they constitute a basis for the “what
looks like where” space for a 3 × 3 neighbourhood. (b) The coefficients of the expansion of an image
neighbourhood in terms of these basis images may also be produced by pseudo-convolving the
images with the filters indicated in the corresponding positions (i.e. applying them as they are, i.e.
without reading them in reverse order), using the first one for horizontal pseudo-convolution and the
second one for vertical pseudo-convolution. Here Ci stands for the ith column of the inverse of the
Walsh matrix, i.e. matrix (4.874).

Example 4.233

Use Equations (4.836)–(4.839) to define the Walsh function W4(t).
To derive function W4(t), we must apply Equation (4.836) for j = 2 and q = 0:

W4(t) = (−1)⌊ 2
2
⌋+0[W2(2t) + (−1)2+0W2(2t − 1)] = −[W2(2t) + W2(2t − 1)] (4.848)

To decide what values W2(2t) and W2(2t − 1) take, we must examine the values of their argu-
ments, in conjunction with the definition of function W2(t) given by Equation (4.839):

For 0 ≤ t < 1
8
⇒ 0 ≤ 2t < 1

4
and − 1 ≤ 2t − 1 < −3

4
⇒ W2(2t) = −1 and W2(2t − 1) = 0 ⇒ W4(t) = 1 (4.849)

For 1
8
≤ t < 1

4
⇒

1
4
≤ 2t < 1

2
and − 3

4
≤ 2t − 1 < −1

2
⇒ W2(2t) = 1 and W2(2t − 1) = 0 ⇒ W4(t) = −1 (4.850)

For 1
4
≤ t < 3

8
⇒

1
2
≤ 2t < 3

4
and − 1

2
≤ 2t − 1 < −1

4
⇒ W2(2t) = 1 and W2(2t − 1) = 0 ⇒ W4(t) = −1 (4.851)
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For 3
8
≤ t < 4

8
⇒

3
4
≤ 2t < 1 and − 1

4
≤ 2t − 1 < 0

⇒ W2(2t) = −1 and W2(2t − 1) = 0 ⇒ W4(t) = 1 (4.852)

For 1
2
≤ t < 5

8
⇒ 1 ≤ 2t < 5

4
and 0 ≤ 2t − 1 < 1

4
⇒ W2(2t) = 0 and W2(2t − 1) = −1 ⇒ W4(t) = 1 (4.853)

For 5
8
≤ t < 6

8
⇒

5
4
≤ 2t < 6

4
and 1

4
≤ 2t − 1 < 1

2
⇒ W2(2t) = 0 and W2(2t − 1) = 1 ⇒ W4(t) = −1 (4.854)

For 6
8
≤ t < 7

8
⇒

6
4
≤ 2t < 7

4
and 1

2
≤ 2t − 1 < 3

4
⇒ W2(2t) = 0 and W2(2t − 1) = 1 ⇒ W4(t) = −1 (4.855)

For 7
8
≤ t < 1 ⇒

7
4
≤ 2t < 2 and 3

4
≤ 2t − 1 < 1

⇒ W2(2t) = 0 and W2(2t − 1) = −1 ⇒ W4(t) = 1. (4.856)

Therefore, we conclude that:

W4(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 for 0 ≤ t < 1
8

−1 for 1
8
≤ t < 3

8
1 for 3

8
≤ t < 5

8
−1 for 5

8
≤ t < 7

8
1 for 7

8
≤ t < 1

. (4.857)

Example 4.234

Use Equations (4.837)–(4.840) and (4.857) to construct a set of elementary images in
terms of which any 5 × 5 neighbourhood of an image may be expanded in the “what
looks like where” space.
To construct these images, we multiply the independent variable by 5 and sample the functions
at integer positions only. We obtain the following functions:

W0(t) =

{
1 for 0 ≤ t < 5
0 elsewhere

(4.858)

W1(t) =

{
−1 for 0 ≤ t < 5

2
1 for 5

2
≤ t < 5

(4.859)

W2(t) =
⎧⎪⎨⎪⎩
−1 for 0 ≤ t < 5

4
1 for 5

4
≤ t < 15

4
−1 for 15

4
≤ t < 5

(4.860)

(Continued)
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Example 4.234 (Continued)

W3(t) =

⎧⎪⎪⎨⎪⎪⎩

1 for 0 ≤ t < 5
4

−1 for 5
4
≤ t < 5

2
1 for 5

2
≤ t < 15

4
−1 for 15

4
≤ t < 5

(4.861)

W4(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 for 0 ≤ t < 5
8

−1 for 5
8
≤ t < 15

8
1 for 15

8
≤ t < 25

8
−1 for 25

8
≤ t < 35

8
1 for 35

8
≤ t < 5

. (4.862)

We then sample each function at the integer points only (i.e. at t = 0, 1, 2, 3, 4), to produce the
following vectors:

W T
0 = (1, 1, 1, 1, 1)

W T
1 = (−1,−1,−1, 1, 1)

W T
2 = (−1,−1, 1, 1,−1)

W T
3 = (1, 1,−1, 1,−1)

W T
4 = (1,−1, 1, 1,−1). (4.863)

These vectors may be combined in all possible pairs to produce 2D basis images for the “what
looks like where” space for 5 × 5 neighbourhoods. There are 25 such images:

W0W T
0 =

⎡⎢⎢⎢⎢⎢⎣

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎦
W0W T

1 =

⎡⎢⎢⎢⎢⎢⎣

−1 −1 −1 1 1
−1 −1 −1 1 1
−1 −1 −1 1 1
−1 −1 −1 1 1
−1 −1 −1 1 1

⎤⎥⎥⎥⎥⎥⎦
W0W T

2 =

⎡⎢⎢⎢⎢⎢⎣

−1 −1 1 1 −1
−1 −1 1 1 −1
−1 −1 1 1 −1
−1 −1 1 1 −1
−1 −1 1 1 −1

⎤⎥⎥⎥⎥⎥⎦
W0W T

3 =

⎡⎢⎢⎢⎢⎢⎣

1 1 −1 1 −1
1 1 −1 1 −1
1 1 −1 1 −1
1 1 −1 1 −1
1 1 −1 1 −1

⎤⎥⎥⎥⎥⎥⎦
W0W T

4 =

⎡⎢⎢⎢⎢⎢⎣

1 −1 1 1 −1
1 −1 1 1 −1
1 −1 1 1 −1
1 −1 1 1 −1
1 −1 1 1 −1

⎤⎥⎥⎥⎥⎥⎦
W1W T

0 =

⎡⎢⎢⎢⎢⎢⎣

−1 −1 −1 −1 −1
−1 −1 −1 −1 −1
−1 −1 −1 −1 −1

1 1 1 1 1
1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎦
W1W T

1 =

⎡⎢⎢⎢⎢⎢⎣

1 1 1 −1 −1
1 1 1 −1 −1
1 1 1 −1 −1

−1 −1 −1 1 1
−1 −1 −1 1 1

⎤⎥⎥⎥⎥⎥⎦
W1W T

2 =

⎡⎢⎢⎢⎢⎢⎣

1 1 −1 −1 1
1 1 −1 −1 1
1 1 −1 −1 1

−1 −1 1 1 −1
−1 −1 1 1 −1

⎤⎥⎥⎥⎥⎥⎦
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W1W T
3 =

⎡⎢⎢⎢⎢⎢⎣

−1 −1 1 −1 1
−1 −1 1 −1 1
−1 −1 1 −1 1

1 1 −1 1 −1
1 1 −1 1 −1

⎤⎥⎥⎥⎥⎥⎦
W1W T

4 =

⎡⎢⎢⎢⎢⎢⎣

−1 1 −1 −1 1
−1 1 −1 −1 1
−1 1 −1 −1 1

1 −1 1 1 −1
1 −1 1 1 −1

⎤⎥⎥⎥⎥⎥⎦
W2W T

0 =

⎡⎢⎢⎢⎢⎢⎣

−1 −1 −1 −1 −1
−1 −1 −1 −1 −1

1 1 1 1 1
1 1 1 1 1

−1 −1 −1 −1 −1

⎤⎥⎥⎥⎥⎥⎦
W2W T

1 =

⎡⎢⎢⎢⎢⎢⎣

1 1 1 −1 −1
1 1 1 −1 −1

−1 −1 −1 1 1
−1 −1 −1 1 1

1 1 1 −1 −1

⎤⎥⎥⎥⎥⎥⎦
W2W T

2 =

⎡⎢⎢⎢⎢⎢⎣

1 1 −1 −1 1
1 1 −1 −1 1

−1 −1 1 1 −1
−1 −1 1 1 −1

1 1 −1 −1 1

⎤⎥⎥⎥⎥⎥⎦
W2W T

3 =

⎡⎢⎢⎢⎢⎢⎣

−1 −1 1 −1 1
−1 −1 1 −1 1

1 1 −1 1 −1
1 1 −1 1 −1

−1 −1 1 −1 1

⎤⎥⎥⎥⎥⎥⎦
W2W T

4 =

⎡⎢⎢⎢⎢⎢⎣

−1 1 −1 −1 1
−1 1 −1 −1 1

1 −1 1 1 −1
1 −1 1 1 −1

−1 1 −1 −1 1

⎤⎥⎥⎥⎥⎥⎦
W3W T

0 =

⎡⎢⎢⎢⎢⎢⎣

1 1 1 1 1
1 1 1 1 1

−1 −1 −1 −1 −1
1 1 1 1 1

−1 −1 −1 −1 −1

⎤⎥⎥⎥⎥⎥⎦
W3W T

1 =

⎡⎢⎢⎢⎢⎢⎣

−1 −1 −1 1 1
−1 −1 −1 1 1

1 1 1 −1 −1
−1 −1 −1 1 1

1 1 1 −1 −1

⎤⎥⎥⎥⎥⎥⎦
W3W T

2 =

⎡⎢⎢⎢⎢⎢⎣

−1 −1 1 1 −1
−1 −1 1 1 −1

1 1 −1 −1 1
−1 −1 1 1 −1

1 1 −1 −1 1

⎤⎥⎥⎥⎥⎥⎦
W3W T

3 =

⎡⎢⎢⎢⎢⎢⎣

1 1 −1 1 −1
1 1 −1 1 −1

−1 −1 1 −1 1
1 1 −1 1 −1

−1 −1 1 −1 1

⎤⎥⎥⎥⎥⎥⎦
W3W T

4 =

⎡⎢⎢⎢⎢⎢⎣

1 −1 1 1 −1
1 −1 1 1 −1

−1 1 −1 −1 1
1 −1 1 1 −1

−1 1 −1 −1 1

⎤⎥⎥⎥⎥⎥⎦
W4W T

0 =

⎡⎢⎢⎢⎢⎢⎣

1 1 1 1 1
−1 −1 −1 −1 −1

1 1 1 1 1
1 1 1 1 1

−1 −1 −1 −1 −1

⎤⎥⎥⎥⎥⎥⎦
W4W T

1 =

⎡⎢⎢⎢⎢⎢⎣

−1 −1 −1 1 1
1 1 1 −1 −1

−1 −1 −1 1 1
−1 −1 −1 1 1

1 1 1 −1 −1

⎤⎥⎥⎥⎥⎥⎦
W4W T

2 =

⎡⎢⎢⎢⎢⎢⎣

−1 −1 1 1 −1
1 1 −1 −1 1

−1 −1 1 1 −1
−1 −1 1 1 −1

1 1 −1 −1 1

⎤⎥⎥⎥⎥⎥⎦
W4W T

3 =

⎡⎢⎢⎢⎢⎢⎣

1 1 −1 1 −1
−1 −1 1 −1 1

1 1 −1 1 −1
1 1 −1 1 −1

−1 −1 1 −1 1

⎤⎥⎥⎥⎥⎥⎦
W4W T

4 =

⎡⎢⎢⎢⎢⎢⎣

1 −1 1 1 −1
−1 1 −1 −1 1

1 −1 1 1 −1
1 −1 1 1 −1

−1 1 −1 −1 1

⎤⎥⎥⎥⎥⎥⎦
. (4.864)

(Continued)
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Example 4.234 (Continued)

Figure 4.175 shows these 25 images in binary form.

W0 W1

W0

W1

W2

W3

W4

W2 W3 W4

Figure 4.175 If we process a sub-image of size 5 × 5 with the inverse Walsh matrix of the same size,
the numbers we compute are the coefficients of the expansion of the original sub-image in terms of
these elementary images. We may say that these 25 elementary neighbourhoods span the 5 × 5 “what
looks like where” space. Black means −1 and white means 1. These images were produced by taking
the vector outer product of the Walsh vectors indicated above and on the left.

How can we expand a local image neighbourhood in terms of the Walsh elementary
images?

When we wish to expand an image or a sub-image in terms of Walsh elementary functions of
even size, all we have to do is to write the Walsh vectors we derived one under the other as rows
of a transformation matrix W , and multiply the image (or sub-image) f from left with it and from
right with its transpose:

g = Wf W T . (4.865)

In this expression, the transformation matrix W , the input image neighbourhood f and the output
transform g are all of the same size, say N × N, where N is even. An even size transformation matrix
constructed from Walsh functions is orthogonal and so its inverse is its transpose. Then the original
image f may be recovered from its Walsh transform g very easily, by multiplying both sides of the
above equation with W T from the left and W from the right:

W TgW = f . (4.866)

In Book I [75] it was shown that this equation may be written as

f = gijWiW T
j (4.867)
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where gij is the ij element of transform g, and it is the coefficient that multiplies the elementary basis
image formed by the outer product of Walsh vectors Wi and W T

j . These coefficients may be thought
of as local features of the image computed from its sub-image (= neighbourhood) f . The trouble
is, however, that if this neighbourhood is of even size, it does not have a centre, and so there is an
ambiguity as to which pixel the constructed features actually refer to. Usually some convention is
adopted as to which pixel will be endowed with the computed features. On the other hand, if we
insist on using image windows of odd size, such as 3 × 3 or 5 × 5, we must use odd-sized Walsh
vectors, which yield an odd-sized Walsh transformation matrix. This matrix is produced by writing
the Walsh vectors one under the other as rows. For example, for the case of a 5 × 5 neighbourhood,
this matrix is produced by writing vectors (4.863) one under the other:

W =

⎡⎢⎢⎢⎢⎢⎣

1 1 1 1 1
−1 −1 −1 1 1
−1 −1 1 1 −1

1 1 −1 1 −1
1 −1 1 1 −1

⎤⎥⎥⎥⎥⎥⎦
. (4.868)

Such a matrix, however, is no longer orthogonal. We may check that very easily. For a matrix to be
orthogonal, the dot product of any two of its row vectors must be zero. Only in that case the product
of the matrix with its transpose will produce the unit matrix. This is not the case if we multiply two
odd-sized vectors that consist of −1s and 1s only: we shall never have an equal number of −1s and
+1s to cancel out. So, the transformation matrix created by writing those vectors one under the
other as rows is not orthogonal, and in order to invert Equation (4.865), we must make use of the
inverse of matrix W , which has to be worked out. Then we shall have:

W−1g(W T)−1 = f . (4.869)

Note that this inversion leads to the representation of image f as a linear superposition of elemen-
tary images created by the columns of the inverse of matrix W , and not the rows of matrix W .
Such elementary images do not necessarily have any meaning in terms of local image structure as
we perceive it and as we would like to express it. On the other hand, the elementary images cre-
ated by the rows of matrix W (examples of which are shown in Figures 4.174a and 4.175), can be
seen to express perceptually identifiable structures: contrast between left and right of the image,
cornerness, contrast between top and bottom of the image, stripiness, and so on. So, to circumvent
this problem, we may use the inverse of matrix W , i.e. matrix W−1, or (W−1)T to process the image.
Then we have:

g = (W−1)Tf W−1. (4.870)

Let us multiply now this equation from the left with ((W−1)T)−1 and from the right with W , to
obtain:

((W−1)T)−1gW = ((W−1)T)−1(W−1)Tf W−1W = f . (4.871)

Note that W−1W = I ⇒ (W−1W)T = IT = I ⇒ W T(W−1)T = I. In other words, the inverse of the
transpose of a matrix is the transpose of its inverse. So, the inverse of the transpose of W−1, i.e. the
inverse of (W−1)T , is the transpose of W . This means that Equation (4.871) may be written as

f = W TgW . (4.872)

This is the same as Equation (4.866) which implies that the neighbourhood f by this transformation
has been expanded in terms of the vector outer products created by the Walsh vectors in all possible
combinations. These are the elementary images we wanted to use because they make sense to us
as to what sort of local structure they represent (see Figures 4.174a and 4.175). The coefficients of
this expansion, i.e. the elements of matrix g, are features that characterise the central pixel of the
neighbourhood.
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Example 4.235

Derive the inverse of transformation matrix W for the case of image patches of size
3 × 3.
From Equations (4.844) we have that the 3 × 3 Walsh transformation matrix is

W =
⎛⎜⎜⎝

1 1 1
−1 −1 1
−1 1 1

⎞⎟⎟⎠ . (4.873)

The determinant of this matrix is 1 × [(−1) × 1 − 1 × 1] − 1 × [(−1) × 1 − 1 × (−1)] + 1 ×
[(−1) × 1 − (−1) × (−1)] = −2 − 2 = −4. Therefore, by applying the formula for matrix inver-
sion, we obtain:

W−1 = 1
−4

⎛⎜⎜⎝
−2 0 −2

0 2 −2
2 −2 0

⎞⎟⎟⎠
T

⇒ W−1 =
⎛⎜⎜⎝

0.5 0 −0.5
0 −0.5 0.5

0.5 0.5 0

⎞⎟⎟⎠ . (4.874)

Example 4.236

Derive the inverse of transformation matrix W for the case of image patches of size
5 × 5.
The determinant of the Walsh matrix W of size 5 × 5 given by Equation (4.868) is 32.

The inverse matrix is:

W−1 =

⎡⎢⎢⎢⎢⎢⎣

0 0 −0.5 0 0.5
0.25 −0.25 0.25 0.25 −0.5
0.25 −0.25 0.25 −0.25 0
0.25 0.25 0.25 0.25 0
0.25 0.25 −0.25 −0.25 0

⎤⎥⎥⎥⎥⎥⎦
. (4.875)

Example 4.237

Derive the elementary images in terms of which an original 3 × 3 image is expanded
if it is processed by matrix W according to Equation (4.865).
These elementary images are the vector outer products of the columns of the matrix that multi-
plies the transformation matrix from the left in Equation (4.869), i.e. matrix W−1. Matrix W−1 is
given by Equation (4.874). So, the elementary images are:⎛⎜⎜⎝

0.5
0

0.5

⎞⎟⎟⎠ (0.5, 0, 0.5) =
⎛⎜⎜⎝

0.25 0 0.25
0 0 0

0.25 0 0.25

⎞⎟⎟⎠⎛⎜⎜⎝
0.5

0
0.5

⎞⎟⎟⎠ (0,−0.5, 0.5) =
⎛⎜⎜⎝

0 −0.25 0.25
0 0 0
0 −0.25 0.25

⎞⎟⎟⎠⎛⎜⎜⎝
0.5

0
0.5

⎞⎟⎟⎠ (−0.5, 0.5, 0) =
⎛⎜⎜⎝
−0.25 0.25 0

0 0 0
−0.25 0.25 0

⎞⎟⎟⎠
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⎛⎜⎜⎝
0

−0.5
0.5

⎞⎟⎟⎠ (0.5, 0, 0.5) =
⎛⎜⎜⎝

0 0 0
−0.25 0 −0.25

0.25 0 0.25

⎞⎟⎟⎠⎛⎜⎜⎝
0

−0.5
0.5

⎞⎟⎟⎠ (0,−0.5, 0.5) =
⎛⎜⎜⎝

0 0 0
0 0.25 −0.25
0 −0.25 0.25

⎞⎟⎟⎠
⎛⎜⎜⎝

0
−0.5

0.5

⎞⎟⎟⎠ (−0.5, 0.5, 0) =
⎛⎜⎜⎝

0 0 0
0.25 −0.25 0

−0.25 0.25 0

⎞⎟⎟⎠⎛⎜⎜⎝
−0.5

0.5
0

⎞⎟⎟⎠ (0.5, 0, 0.5) =
⎛⎜⎜⎝
−0.25 0 −0.25

0.25 0 0.25
0 0 0

⎞⎟⎟⎠⎛⎜⎜⎝
−0.5

0.5
0

⎞⎟⎟⎠ (0,−0.5, 0.5) =
⎛⎜⎜⎝

0 0.25 −0.25
0 −0.25 0.25
0 0 0

⎞⎟⎟⎠⎛⎜⎜⎝
−0.5

0.5
0

⎞⎟⎟⎠ (−0.5, 0.5, 0) =
⎛⎜⎜⎝

0.25 −0.25 0
−0.25 0.25 0

0 0 0

⎞⎟⎟⎠ . (4.876)

These elementary images are shown in Figure 4.176a, where black stands for negative, grey for 0
and white for positive.

W2

W2

W1W1 W1

W0W0 W1W0 W0

W0W1 W2

W2W1W2W2W0

(b)(a)

Figure 4.176 (a) The nine elementary neighbourhoods in terms of which the 3 × 3 Walsh transform
expands the “what looks like where” space. Black means −0.25, grey means 0 and white means 0.25.
These images were produced by taking the vector outer product of the column vectors of the inverse
Walsh matrix. The local structure expressed by these images does not correspond to the local
elementary structure we would probably choose intuitively. (b) The coefficients of the expansion of an
image neighbourhood in terms of these basis images may also be produced by pseudo-convolving the
images with the filters indicated in the corresponding positions, using the first one for horizontal
pseudo-convolution and the second one for vertical pseudo-convolution. Here Wi stands for the ith
Walsh filter given by Equation (4.844). (Reminder: pseudo-convolution means that the filter is applied
as read, not inverted first.)



�

� �

�

716 4 Non-stationary Grey Texture Images

Example 4.238

Derive the elementary images in terms of which an original 5 × 5 image is expanded
if it is processed by matrix W according to Equation 4.865.

(a)

(b)

Figure 4.177 (a) The 25 elementary neighbourhoods in terms of which the 5 × 5 Walsh transform
expands the “what looks like where” space. These images were produced by taking the vector outer
product of the column vectors of the inverse Walsh matrix. (b) Grey level code used. From left to right:
−0.25, −0.125, −0.0625, 0, 0.0625, 0.125 and 0.25.

To do that we take the columns of the inverse of matrix W computed in Example 4.236 and treat
them as vectors. Each vector is combined with all other vectors to produce their vector outer prod-
uct. The 25 elementary images produced that way are presented in Figure 4.177, where the values
of the pixels are grey level coded.
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Can we use convolution to compute the coefficients of the expansion of a sub-image
in terms of a set of elementary images?

Yes, we can. The convolution filters we must use should be the columns of the expansion matrix.
This is best demonstrated with an example. Let us consider a 6 × 6 image:

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

g11 g12 g13 g14 g15 g16
g21 g22 g23 g24 g25 g26
g31 g32 g33 g34 g35 g36
g41 g42 g43 g44 g45 g46
g51 g52 g53 g54 g55 g56
g61 g62 g63 g64 g65 g66

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (4.877)

Let us consider the 3 × 3 neighbourhood patch around pixel g44, and let us expand it in terms of the
Walsh basis images of Figure 4.174a. We must process it from the right with matrix W−1 given by
Equation (4.874) and from the left by the transpose of the same matrix:

⎛⎜⎜⎝
0.5 0 −0.5

0 −0.5 0.5
0.5 0.5 0

⎞⎟⎟⎠
T ⎛⎜⎜⎝

g33 g34 g35
g43 g44 g45
g53 g54 g55

⎞⎟⎟⎠
⎛⎜⎜⎝

0.5 0 −0.5
0 −0.5 0.5

0.5 0.5 0

⎞⎟⎟⎠ =
⎛⎜⎜⎝

0.5 0 0.5
0 −0.5 0.5

−0.5 0.5 0

⎞⎟⎟⎠
⎛⎜⎜⎝
0.5g33 + 0.5g35 −0.5g34 + 0.5g35 −0.5g33 + 0.5g34
0.5g43 + 0.5g45 −0.5g44 + 0.5g45 −0.5g43 + 0.5g44
0.5g53 + 0.5g55 −0.5g54 + 0.5g55 −0.5g53 + 0.5g54

⎞⎟⎟⎠ =
⎛⎜⎜⎝

0.25g33 + 0.25g35 + 0.25g53 + 0.25g55 −0.25g34 + 0.25g35 − 0.25g54 + 0.25g55
−0.25g43 − 0.25g45 + 0.25g53 + 0.25g55 0.25g44 − 0.25g45 − 0.25g54 + 0.25g55
−0.25g33 − 0.25g35 + 0.25g43 + 0.25g45 0.25g34 − 0.25g35 − 0.25g44 + 0.2.5g45

−0.25g33 + 0.25g34 − 0.25g53 + 0.25g54
0.25g43 − 0.25g44 − 0.25g53 + 0.25g54
0.25g33 − 0.25g34 − 0.25g43 + 0.25g44

⎞⎟⎟⎠ . (4.878)

We notice that the first multiplication we perform produces results that could have been produced
by pseudo-convolving the image horizontally with the columns of matrix W−1 (i.e. treating each
column as a filter applied as read, without inverting its order). The second set of results could
have been produced if we were pseudo-convolving the output of the previous convolution with
the columns again of matrix W−1, using the same convention, but this time vertically. So, the
coefficients of the expansion of each image patch in terms of the elementary images produced
by the Walsh functions, may be extracted by pseudo-convolving the image horizontally and then
vertically with the columns of the inverse of the Walsh transformation matrix, used as filters. Which
convolution filters must be used in what order to produce the coefficients of the expansion of a local
image neighbourhood in terms of the elementary images of Figure 4.174a, is shown schematically
in Figure 4.174b.
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Example 4.239

Verify that the coefficients of the expansion computed in Equation (4.878) are indeed
the coefficients of the expansion of the original patch in terms of the images shown
in Figure 4.174a.
Each element of matrix (4.878) is the coefficient with which we must multiply the correspond-
ing basis image in order to recover the original sub-image. The basis images were computed in
Example 4.232 and they are shown pictorially in Figure 4.174. Synthesising the image from this
expansion yields:

(0.25g33 + 0.25g35 + 0.25g53 + 0.25g55)
⎛⎜⎜⎝

1 1 1
1 1 1
1 1 1

⎞⎟⎟⎠
+(−0.25g34 + 0.25g35 − 0.25g54 + 0.25g55)

⎛⎜⎜⎝
−1 −1 1
−1 −1 1
−1 −1 1

⎞⎟⎟⎠
+(−0.25g33 + 0.25g34 − 0.25g53 + 0.25g54)

⎛⎜⎜⎝
−1 1 1
−1 1 1
−1 1 1

⎞⎟⎟⎠
+(−0.25g43 − 0.25g45 + 0.25g53 + 0.25g55)

⎛⎜⎜⎝
−1 −1 −1
−1 −1 −1

1 1 1

⎞⎟⎟⎠
+(0.25g44 − 0.25g45 − 0.25g54 + 0.25g55)

⎛⎜⎜⎝
1 1 −1
1 1 −1

−1 −1 1

⎞⎟⎟⎠
+(0.25g43 − 0.25g44 − 0.25g53 + 0.25g54)

⎛⎜⎜⎝
1 −1 −1
1 −1 −1

−1 1 1

⎞⎟⎟⎠
+(−0.25g33 − 0.25g35 + 0.25g43 + 0.25g45)

⎛⎜⎜⎝
−1 −1 −1

1 1 1
1 1 1

⎞⎟⎟⎠
+(0.25g34 − 0.25g35 − 0.25g44 + 0.25g45)

⎛⎜⎜⎝
1 1 −1

−1 −1 1
−1 −1 1

⎞⎟⎟⎠
+(0.25g33 − 0.25g34 − 0.25g43 + 0.25g44)

⎛⎜⎜⎝
1 −1 −1

−1 1 1
−1 1 1

⎞⎟⎟⎠
=
⎛⎜⎜⎝
g33 g34 g35
g43 g44 g45
g53 g54 g55

⎞⎟⎟⎠ . (4.879)
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Example 4.240

Identify the elementary images in terms of which each 3 × 3 neighbourhood of an
image is expanded when the image is convolved with the three-tap Laws’ masks.
The convolution of an image by all nine combinations of the three-tap Laws’ filters, applied in the
vertical and horizontal dimensions, produces for each pixel nine numbers. These numbers are the
coefficients of the expansion of the 3 × 3 neighbourhood, around the pixel, in terms of elementary
images that may be constructed as follows. The transformation matrix that corresponds to the
Laws’ masks used is created by writing the masks one under the other:⎛⎜⎜⎝

1 2 1
−1 0 1
−1 2 −1

⎞⎟⎟⎠ . (4.880)

The inverse of this matrix is:⎛⎜⎜⎝
0.25 −0.5 −0.25
0.25 0 0.25
0.25 0.5 −0.25

⎞⎟⎟⎠ . (4.881)

The elementary images in terms of which the convolutions with Laws’ masks expand each local
neighbourhood are formed by the vector outer products of the columns of the above matrix:⎛⎜⎜⎝

0.25
0.25
0.25

⎞⎟⎟⎠
(

0.25 0.25 0.25
)
=
⎛⎜⎜⎝

0.0625 0.0625 0.0625
0.0625 0.0625 0.0625
0.0625 0.0625 0.0625

⎞⎟⎟⎠⎛⎜⎜⎝
0.25
0.25
0.25

⎞⎟⎟⎠
(
−0.5 0 0.5

)
=
⎛⎜⎜⎝
−0.125 0 0.125
−0.125 0 0.125
−0.125 0 0.125

⎞⎟⎟⎠⎛⎜⎜⎝
0.25
0.25
0.25

⎞⎟⎟⎠
(
−0.25 0.25 −0.25

)
=
⎛⎜⎜⎝
−0.0625 0.0625 −0.0625
−0.0625 0.0625 −0.0625
−0.0625 0.0625 −0.0625

⎞⎟⎟⎠⎛⎜⎜⎝
−0.5

0
0.5

⎞⎟⎟⎠
(
0.25 0.25 0.25

)
=
⎛⎜⎜⎝
−0.125 −0.125 −0.125

0 0 0
0.125 0.125 0.125

⎞⎟⎟⎠⎛⎜⎜⎝
−0.5

0
0.5

⎞⎟⎟⎠
(
−0.5 0 0.5

)
=
⎛⎜⎜⎝

0.25 0 −0.25
0 0 0

−0.25 0 0.25

⎞⎟⎟⎠
⎛⎜⎜⎝
−0.5

0
0.5

⎞⎟⎟⎠
(
−0.25 0.25 −0.25

)
=
⎛⎜⎜⎝

0.125 −0.125 0.125
0 0 0

−0.125 0.125 −0.125

⎞⎟⎟⎠⎛⎜⎜⎝
−0.25

0.25
−0.25

⎞⎟⎟⎠
(
0.25 0.25 0.25

)
=
⎛⎜⎜⎝
−0.0625 −0.0625 −0.0625

0.0625 0.0625 0.0625
−0.0625 −0.0625 −0.0625

⎞⎟⎟⎠⎛⎜⎜⎝
−0.25

0.25
−0.25

⎞⎟⎟⎠
(
−0.5 0 0.5

)
=
⎛⎜⎜⎝

0.125 0 −0.125
−0.125 0 0.125

0.125 0 −0.125

⎞⎟⎟⎠
(Continued)
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Example 4.240 (Continued)⎛⎜⎜⎝
−0.25

0.25
−0.25

⎞⎟⎟⎠
(
−0.25 0.25 −0.25

)
=
⎛⎜⎜⎝
−0.0625 0.0625 −0.0625

0.0625 −0.0625 0.0625
−0.0625 0.0625 −0.0625

⎞⎟⎟⎠ . (4.882)

These elementary images are shown pictorially in Figure 4.178a.

E3L3

L3E3 E3E3

S 3L3

S 3E3

L3S 3 E3S 3 S 3S3

L3L3

0.0625

0

0.125

0.25

−0.0625

−0.125

−0.25

(a) (b)

Figure 4.178 (a) Convolution of an image along the vertical and horizontal directions with all
combinations of three-tap Laws’ masks produces nine outputs that are the coefficients of the
expansion of each image 3 × 3 patch in terms of these basis images. (b) The coefficients of the
expansion of an image neighbourhood in terms of these basis images may also be produced by
pseudo-convolving the images with the filters indicated in the corresponding positions, using the first
one for horizontal convolution and the second one for vertical convolution. These are Laws’ masks as
defined in Figure 4.163.

Example 4.241

Use the three-tap Laws’ masks to produce nine elementary images.
These elementary images are computed as follows:

L3L3T =
⎛⎜⎜⎝

1
2
1

⎞⎟⎟⎠ (1, 2, 1) =
⎛⎜⎜⎝

1 2 1
2 4 2
1 2 1

⎞⎟⎟⎠
L3E3T =

⎛⎜⎜⎝
1
2
1

⎞⎟⎟⎠ (−1, 0, 1) =
⎛⎜⎜⎝
−1 0 1
−2 0 2
−1 0 1

⎞⎟⎟⎠
L3S3T =

⎛⎜⎜⎝
1
2
1

⎞⎟⎟⎠ (−1, 2,−1) =
⎛⎜⎜⎝
−1 2 −1
−2 4 −2
−1 2 −1

⎞⎟⎟⎠ (4.883)

E3L3T =
⎛⎜⎜⎝
−1

0
1

⎞⎟⎟⎠ (1, 2, 1) =
⎛⎜⎜⎝
−1 −2 −1

0 0 0
1 2 1

⎞⎟⎟⎠
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E3E3T =
⎛⎜⎜⎝
−1

0
1

⎞⎟⎟⎠ (−1, 0, 1) =
⎛⎜⎜⎝

1 0 −1
0 0 0

−1 0 1

⎞⎟⎟⎠
E3S3T =

⎛⎜⎜⎝
−1

0
1

⎞⎟⎟⎠ (−1, 2,−1) =
⎛⎜⎜⎝

1 −2 1
0 0 0

−1 2 −1

⎞⎟⎟⎠ (4.884)

S3L3T =
⎛⎜⎜⎝
−1

2
−1

⎞⎟⎟⎠ (1, 2, 1) =
⎛⎜⎜⎝
−1 −2 −1

2 4 2
−1 −2 −1

⎞⎟⎟⎠
S3E3T =

⎛⎜⎜⎝
−1

2
−1

⎞⎟⎟⎠ (−1, 0, 1) =
⎛⎜⎜⎝

1 0 −1
−2 0 2

1 0 −1

⎞⎟⎟⎠
S3S3T =

⎛⎜⎜⎝
−1

2
−1

⎞⎟⎟⎠ (−1, 2,−1) =
⎛⎜⎜⎝

1 −2 1
−2 4 −2

1 −2 1

⎞⎟⎟⎠ . (4.885)

They are shown pictorially in Figure 4.179a.

LI3LI3 EI3LI3 SI3LI3

LI3EI3 EI3EI3 SI3EI3

LI3SI3 EI3SI3 SI3SI3

(b)

4

1

0

2

−1

−2

S3

L3 E3 S3

(a)

E3

L3

Figure 4.179 (a) Laws’ masks of size 3 may be combined in all possible ways to form 3 × 3 basis
images in terms of which any 3 × 3 image patch may be expanded. The 1D masks indicated on the left
are combined with the 1D masks indicated along the top to form the corresponding elementary
image. The pixel values of these elementary images are coded in tones of grey. (b) The coefficients of
the expansion of an image neighbourhood in terms of these basis images may also be produced by
pseudo-convolving the images with the filters indicated in the corresponding positions, using the first
one for horizontal convolution and the second one for vertical convolution. These are the masks given
by Equation (4.886).

Example 4.242

Derive the filters you should use in order to express each 3 × 3 image patch as a linear
superposition of the elementary images shown in Figure 4.179a.
The elementary images in Figure 4.179a were created from the three-tap Laws’ masks. The trans-
formation matrix formed by these masks is matrix (4.880). The inverse of this matrix is (4.881). If

(Continued)
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Example 4.242 (Continued)

we want to expand each 3 × 3 image neighbourhood in terms of the basis images of Figure 4.179a,
we must pseudo-convolve the images using as filters the columns of matrix (4.881), in all possible
combinations along the vertical and horizontal directions, as indicated in Figure 4.179b:

LI3 ≡ (0.25, 0.25, 0.25)
EI3 ≡ (−0.5, 0, 0.5)

SI3 ≡ (−0.25, 0.25,−0.25). (4.886)

Example 4.243

Expand the 3 × 3 neighbourhoods of the image of Figure 4.81 in terms of the basis
images shown in Figure 4.174a.

C1-C1 C2-C1 C3-C1

C1-C2 C2-C2 C3-C2

C1-C3 C2-C3 C3-C3

Figure 4.180 The expansion of each 3 × 3 neighbourhood of the image in Figure 4.81 using
pseudo-convolutions. Each panel X-Y represents the output obtained when filter X is applied to the
rows of the original image and filter Y is applied to the columns of the output. Each panel had its
extreme 2% values saturated and the rest of its values scaled to the range [0,255] for visualisation.
Source: Maria Petrou.
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C1-C1 C2-C1 C3-C1

C1-C2 C2-C2 C3-C2

C1-C3 C2-C3 C3-C3

Figure 4.181 Energies of the outputs of Figure 4.180 computed using a Gaussian mask of size
29 × 29 with standard deviation 𝜎 = 7. Source: Maria Petrou.

Example 4.244

Use the expansion of Example 4.243 to segment the image of Figure 4.81.

Figure 4.182 Segmentation results obtained
using the deterministic annealing algorithm over
the energy features shown in Figure 4.181, for two
different values of the expected number K of
distinct clusters. Source: Maria Petrou.

K = 6 K = 8

Example 4.245

Expand the 5 × 5 neighbourhoods of the image of Figure 4.81 in terms of the basis
images shown in Figure 4.175.

(Continued)



�

� �

�

724 4 Non-stationary Grey Texture Images

Example 4.245 (Continued)

C1-C1 C2-C1 C3-C1 C4-C1 C5-C1

C1-C2 C2-C2 C3-C2 C4-C2 C5-C2

C1-C3 C2-C3 C3-C3 C4-C3 C5-C3

C1-C4 C2-C4 C3-C4 C4-C4 C5-C4

C1-C5 C2-C5 C3-C5 C4-C5 C5-C5

Figure 4.183 Expanding the 5 × 5 neighbourhoods of the image in Figure 4.81 in terms of the 5 × 5
Walsh basis images. Each panel X–Y represents the output obtained when filter X is applied to the
rows of the original image and filter Y is applied to the columns of the output. The 2% extreme values
of each panel were saturated and the rest scaled to the range [0,255] for visualisation. Source: Maria
Petrou.
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Example 4.246

Use the expansion of Example 4.245 to segment the image of Figure 4.81.

Figure 4.184 Segmentation results obtained using the
deterministic annealing algorithm over the 5 × 5 Walsh
energy features, for two different values of the expected
number K of distinct clusters. Source: Maria Petrou.

K = 6 K = 8

Example 4.247

Expand the 3 × 3 neighbourhoods of the image of Figure 4.81 in terms of the basis
images shown in Figure 4.179a.

Figure 4.185 Expanding the 3 × 3
neighbourhoods of the image of
Figure 4.81 in terms of the basis images
created from Laws’ masks. Each panel X–Y
represents the output obtained when filter
X was applied to the rows of the original
image and filter Y was applied to the
columns of the output. Source: Maria
Petrou.

LI3-LI3 EI3-LI3 SI3-LI3

LI3-EI3 EI3-EI3 SI3-EI3

LI3-SI3 EI3-SI3 SI3-SI3

All panels in Figures 4.185 and 4.186 have been individually scaled to the range [0,255]. This
means that comparing intensity values between panels is meaningless. For further processing,

(Continued)



�

� �

�

726 4 Non-stationary Grey Texture Images

Example 4.247 (Continued)

such scaling should not be used, as really what matters is the relative values of the various coeffi-
cients of the local expansion, that tell us by how much each pattern in Figure 4.179a contributes
locally. The energy features of Figure 4.186 were created from unscaled values and then scaled for
visualisation. Note that patterns involving SI3 do not have 0 dc, so they capture part of the mean
value of the image, and that is evident from Figure 4.185. Figure 4.187 shows enlarged versions
of two such panels.

LI3-LI3 EI3-LI3 SI3-LI3

LI3-EI3 EI3-EI3 SI3-EI3

LI3-SI3 EI3-SI3 SI3-SI3

Figure 4.186 Energies of the outputs of
Figure 4.185 computed using a Gaussian
window of size 29 × 29 with standard
deviation 𝜎 = 7. Source: Maria Petrou.

Figure 4.187 Panels LI3–SI3 (left) and SI3–SI3 (right) of Figure 4.185, enlarged. Source: Maria
Petrou.

Example 4.248

Use the expansion you did in Example 4.247 to segment the image of Figure 4.81.
The result is shown in Figure 4.188.
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K = 6 K = 8

Figure 4.188 Segmentation results obtained using the deterministic annealing algorithm over the
energy features shown in Figure 4.186, for two different values of the expected number K of distinct
clusters. Note that the energies depicted in Figure 4.186 are scaled to the range [0,255], but for
segmentation the unscaled energy features were used, as what matters is the relative energy for each
one of the local patterns. Source: Maria Petrou.

Is there any other way to express the local structure of the image?

All methods we have discussed so far have been linear methods. There are some non-linear meth-
ods that may also be used to express the local image structure. For example, the local structure of
the image may be expressed by the local symmetry of the image. An implicit way of expressing the
local image symmetry is through the phase of the local Fourier transform. We know that the Fourier
transform allows us to expand a signal in terms of sines and cosines. The sine components express
the antisymmetric part of the signal, while the cosine components express the symmetric part. If
a signal is purely symmetric, it has zero sine components, i.e. its Fourier transform is real, i.e. its
phase is either 0∘ or 180∘. If a signal is antisymmetric, it is expressed purely in terms of the sine
components, i.e. its Fourier transform is purely imaginary, i.e. its phase is either 90∘ or 270∘. So, we
may say that the phase measures the degree of symmetry a function exhibits about the origin, as
it expresses the balance of the antisymmetric and symmetric parts of the function. However, it is
difficult to extract the phase of the Fourier transform, due to the problems mentioned in Chapter
3. Nevertheless, it is possible to use a particular signal representation, which encodes implicitly
the phase information, and which may be thought of as an alternative way to represent the local
structure of the image. This is the Wigner distribution.

Another way to express the local image structure is to try to encode the local neighbourhoods
after they have been maximally simplified, i.e. binarised. This leads to the method of local binary
patterns (LBP).

4.10 Local Binary Patterns

What is the local binary pattern approach to texture representation?

The basic idea of this approach is demonstrated in Figure 4.189. We consider a 3 × 3 neighbour-
hood around each pixel. All neighbours that have values higher than the value of the central pixel
are given value 1 and all those that have values lower than or equal to the value of the central pixel
are given value 0. The eight binary numbers associated with the eight neighbours are then read
sequentially in the clockwise direction to form a binary number. This binary number (or its equiv-
alent in the decimal system) may be assigned to the central pixel and it may be used to characterise
the local texture.



�

� �

�

728 4 Non-stationary Grey Texture Images

0

1

0

1 1 1

1

1

10011111 = 159

11001111 = 207

11100111 = 231

11110011 = 24300111111 = 63

(a) (c)(b)

01111110 = 126

11111100 = 252

11111001 = 249

Figure 4.189 The pixels around the central pixel in (a) are given value 1 if they are brighter than the
central pixel and value 0 otherwise. These values are shown in (b). If we read these values sequentially in
the clockwise direction, depending which pixel is the starting pixel, we may form the binary numbers and
their decimal equivalents shown in (c).

This is equivalent to assigning weights to the eight neighbouring pixels according to their relative
position with respect to the central pixel. These weights are 27, 26, 25, 24, 23, 22, 21 and 20, with the
first assigned to the neighbour that contributes the most significant digit, the second assigned to
the neighbour that contributes the second most significant digit, and so on. Obviously, then, some
neighbours are given more significance than others and this makes this representation sensitive
to rotation, i.e. sensitive to which neighbour we consider to be the first. Another drawback of this
approach is that it captures only the very local structure of the texture, and therefore it is appropriate
only for micro-textures, but not macro-textures.

How can we make this representation rotationally invariant?

If we consider all possible binary numbers we can create from the local binary pattern, by start-
ing the sequence from all eight neighbours in turn, and choose the smallest of the constructed
numbers, we shall have a rotation-invariant representation. In the example of Figure 4.189, this
number is 63, i.e. the number constructed by starting the sequence from the top left corner of the
3 × 3 neighbourhood.

How can we make this representation appropriate for macro-textures?

We can achieve this by applying the methodology to circular neighbourhoods of increasing radii.
This leads to a multi-resolution representation of the local texture pattern, as for each radius a differ-
ent binary pattern will be produced and therefore a different number representing it. As the radius
of the neighbourhood increases, the number of neighbours increases and this may lead to pro-
hibitively large values of the local binary pattern. This may be avoided by selecting only neighbours
that are at the chosen radius and at a certain angular distance from each other. This is demonstrated
in Figure 4.190.
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Figure 4.190 Two circular neighbourhoods with radii 1 and 2 are considered around the central pixel in
(a). Each neighbour in these neighbourhoods is given value 1 if it is brighter than the central pixel and
value 0 otherwise, as shown in (b). From each neighbourhood we construct the smallest binary number. For
the neighbourhood with radius 1 this number is 00111111 = 63. For the neighbourhood with radius 2 this
number is 011011111111 = 1791. In both cases this number is constructed by reading the digits in the
clockwise direction starting from the digit marked by the circle. In the neighbourhood of radius 2 we may
choose to consider only every other neighbour. Then the smallest binary number that we can construct is
011111 = 31.

Example 4.249

Compute the LBP for each pixel of the image of Figure 4.81, for radii 1 and 2.
For radius 1 there are 8 neighbours of each pixel, so the range of values of LBP is from 0 to 28 − 1,
i.e. [0,255]. For radius 2 there are 12 neighbours, so the range of values is [0, 4095]. Because of
the way we construct the rotationally invariant numbers, there is an overpopulation of the lower
values in each range. So, in order to visualise the LBP “images”, we histogram equalise them first.
The results are shown in Figure 4.191.

Figure 4.191 Local binary pattern maps for the
image of Figure 4.81. Source: Maria Petrou.

radius = 1 radius = 2
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How can we use the local binary patterns to characterise textures?

The local binary pattern approach may be used to characterise stationary textures, or segment
non-stationary textures. The texture patch around a pixel may be characterised by the histogram of
the LBP values of the pixels in a window around the central pixel. Such a histogram may be treated
as the signature of the local texture of the image. To compare two textures then or two pixel neigh-
bourhoods, we have to compare their corresponding histograms of LBP values using an appropriate
metric or pseudo-metric.

What is a metric?

A metric is a function d(A,B) that allows us to measure the distance from A to B. A function may
only be used as a metric, if it obeys the following properties for all A, B and C:

d(A,A) = 0
d(A,B) ≥ 0
d(A,B) = d(B,A)
d(A,B) ≤ d(A,C) + d(C,B). (4.887)

The last one of the above properties is known as the triangle inequality. The most commonly
used metric is the Euclidean metric, which allows us to measure the distance between two points.

What is a pseudo-metric?

A pseudo-metric is a function d(A,B) that does not always obey the triangle inequality, but it may
be used to measure the distance from A to B.

Why should one wish to use a pseudo-metric and not a metric?

Sometimes it is very difficult to define a proper metric, or it is very difficult to prove that the function
we have adopted to measure distances obeys the triangle inequality. So sometimes we use a function
that makes sense intuitively and it exhibits the right behaviour for most values of its arguments.
Such a function is the one we use here to measure the “distance” between two distributions or
histograms.

How can we measure the difference between two histograms?

There are a number of functions we may use. We shall present here one commonly used in image
processing. It is based on the extension of the definition of the Kullback–Leibler divergence
so that it obeys the property of symmetry (the third of properties (4.887)). Suppose that the his-
tograms we wish to compare have been normalised so they may be treated as probability density
functions. Let us call them f1(i) and f2(i), where i is the ith bin of each histogram. The two his-
tograms are assumed to have an identical number of bins N and bins with identical widths. Then
we may measure the distance of the two histograms as:

d(f1, f2) ≡
N∑

i=1
f1(i) log f1(i) +

N∑
i=1

f2(i) log f2(i) −
N∑

i=1
(f1(i) + f2(i)) log(f1(i) + f2(i)) + 2 log 2.

(4.888)
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Example B4.250

Prove that function (4.888) obeys the property d(f1, f1) = 0.
We apply definition (4.888) for f2 = f1

d(f1, f1) = 2
N∑

i=1
f1(i) log f1(i) − 2

N∑
i=1

f1(i) log(2f1(i)) + 2 log 2

= 2
N∑

i=1
f1(i) log f1(i) − 2

N∑
i=1

f1(i) log 2 − 2
N∑

i=1
f1(i) log f1(i) + 2 log 2

= 0 (4.889)

where we made use of the property of logarithms that log(ab) = log a + log b and the fact that
the histograms are normalised, so

∑N
i=1 f1(i) = 1.

Example B4.251

Prove that function (4.888) obeys the property d(f1, f2) ≥ 0.
We observe that

∑N
i=1 f1(i) =

∑N
i=1 f2(i) = 1. So, factor 2 in the last term of definition (4.888) may

be replaced by
∑N

i=1 f1(i) +
∑N

i=1 f2(i):

d(f1, f2) =
N∑

i=1
f1(i) log f1(i) +

N∑
i=1

f2(i) log f2(i) −

N∑
i=1

(f1(i) + f2(i)) log(f1(i) + f2(i)) +

( N∑
i=1

f1(i) +
N∑

i=1
f2(i)

)
log 2

=
N∑

i=1

{
f1(i) log f1(i) + f2(i) log f2(i)−

(f1(i) + f2(i)) log(f1(i) + f2(i)) + (f1(i) + f2(i)) log 2.
}

(4.890)

In order to prove that d(f1, f2) ≥ 0 it is enough to prove that each term of the above sum is
non-negative. A term in the above sum has the form

f (a, b) ≡ a log a + b log b − (a + b) log(a + b) + (a + b) log 2 (4.891)

where 1 ≥ a, b ≥ 0. If we take the partial derivatives of this function with respect to a and b and
set them to 0 we shall be able to identify its extreme values. Differentiation with respect to a yields:

𝜕f
𝜕a

= log a + a
a
− log(a + b) − a + b

a + b
+ log 2 = log 2a

a + b
. (4.892)

So the two partial derivatives are:
𝜕f
𝜕a

= log 2a
a + b

𝜕f
𝜕b

= log 2b
a + b

. (4.893)

(Continued)
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Example B4.251 (Continued)

An extremum should be sought among the roots of the system 𝜕f
𝜕a

= 𝜕f
𝜕b

= 0. These equations are
satisfied only when a = b. So, function f (a, b) takes its extreme value for a = b. For all pairs of
values (a, b) with a ≠ b, function f (a, b) must take values either larger than its value at a = b, or
lower than its value at a = b. The value at a = b is f (a, a) = 0. The value at a randomly picked
point with a ≠ b, say at point (1, 0), will then tell us whether the function is always positive or
always negative. We can easily verify that f (1, 0) = log 2 > 0, so f (a, b) is either 0 (when a = b) or
positive (when a ≠ b). Then by extension the same is true for the sum of N such functions, which
proves the non-negativity of pseudo-metric (4.888).

Example B4.252

Prove that function (4.888) obeys the property d(f1, f2) = d(f2, f1).
This is trivial. We observe that definition (4.888) remains the same if we exchange the roles of f1(i)
and f2(i).

Example B4.253

Consider a 25 × 25 neighbourhood around each pixel of image 4.81. For each pixel
construct the normalised histogram of the LBP values for radius 1. Then pick up at
random 1000 triplets of pixels, A, B and C, and use function (4.888) to measure the
distances between A and B, A and C, and C and B. Comment on the fraction of these
triplets for which the triangle inequality (4.887) is obeyed. Repeat for radius 2.
It was found that in 99.4% of the cases the triangle inequality was obeyed for radius 1 and in
100% of the cases for radius 2. These percentages did not change when 10000 triplets were used.
So, this pseudo-metric is almost a perfect metric.

How can we use the local binary patterns to segment textures?

So far, when we clustered pixels in the feature space using the deterministic annealing algorithm,
we measured their distances using the Euclidean metric. This need not be the case. We may mea-
sure pixel distances using any other metric or pseudo-metric that is appropriate for the type of
feature we have. So, in this case, as the features are whole histograms of LBP values, all we have to
do is to apply the deterministic annealing algorithm using function (4.888) instead of the Euclidean
metric.

We may have some savings in memory space if we realise that a large number of bins of these
histograms are empty, due to the way the LBP numbers are constructed. For example, for radius 1,
only bins 0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 37, 39, 43, 45, 47, 51, 53, 55, 59, 61,
63, 85, 87, 91, 95, 111, 119, 127, 255 are non-empty. This means that for this case each histogram is
36 bins long.

Figure 4.192 shows some segmentation results obtained for image 4.81. The histograms were
constructed using windows of size 25 × 25. We can see that these results are not at all satisfactory.
This example demonstrates some other shortcomings of the LBP approach.
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Figure 4.192 Segmentation of image 4.81 using the LBP histograms for radius 1 (left) and 2 (right) and six
clusters in the deterministic annealing algorithm. Source: Maria Petrou.

How can we overcome the shortcomings of the LBP segmentation?

There are two points of improvement.
First, it is easy to realise that due to the way the LBP numbers are created, they are very sensitive

to noise. The slightest fluctuation above or below the value of the central pixel is treated the same
way as a major contrast between the central pixel and its surroundings. If we were using tertiary
numbers instead of binary (i.e. we were allowing three distinct values), we might have been able
to cope with this, by saying, for example, that any neighbour with value ±𝛿 different from the
central pixel is considered as having value equal to the central pixel. Then we would have been
able to have the neighbouring pixels take value 0 if they were darker than the central pixel, value
1 if they had value equal to the central pixel (within the chosen threshold) and value 2 if they
were brighter than the central pixel. The unique number we would be creating then would have
not been in the binary system, but in the system with base 3. This is an option that we shall not
discuss any further here. If we wish to stick with the binary system, we may try to avoid noisy
patterns by simply ignoring them: a noisy pattern due to its randomness will create neighbours
that fluctuate above and below the value of the central pixel, with the 0s and the 1s frequently
succeeding each other. So, one improvement we may make is to consider from each histogram
only the so-called stable patterns, defining them as the patterns that have all their 1s in succession.
These patterns are shown in Figure 4.193. We may see that these patterns correspond to some sort
of corners of various angles having their vertices at the central pixel. If we consider only these
patterns, it means that only nine bins of the histogram of LBP values are of relevance, namely
those with values 0, 1, 3, 7, 15, 31, 63,127 and 255. The result of segmenting the image of Figure 4.81
using only the rotation-invariant stable patterns for radius 1 with a 25 × 25 window used for the
calculation of the local histogram is shown in Figure 4.194a. Reducing the window to size 15 × 15 in
order to improve localisation yields the result shown in 4.194b. This shows that the 15 × 15 window
is too small for the reliable calculation of the histogram. Finally, if we do not try to make the stable
patterns rotation-invariant (after all directionality is an important texture characteristic) and use a
window of size 25 × 25 for computing the histogram, we obtain the result shown in Figure 4.194c. It
is even more important for the window to be large when we retain the directionality of the features,
because the histogram consists of more bins than in the case of rotationally invariant features, so a



�

� �

�

734 4 Non-stationary Grey Texture Images

0 0 0 0 0 1 0 0 1

00000000

0000000

000000

000000

000

0

0

0

1

00

1

1

111

1

111

1

1

111

1

1 0

0

1 1

1 0

1

1

1 1

11

1

1

1

1

111

1

Figure 4.193 The stable patterns in a 3 × 3
neighbourhood. All rotational variations of them are also
accepted as stable.

(a) (b) (c)

Figure 4.194 (a) Segmentation result using the LBP histograms of only the rotation-invariant stable
patterns for radius 1, computed inside a 25 × 25 local window. (b) As in (a), but with a 15 × 15 window used.
(c) As in (a) but the directionality of the stable points retained. In all cases the deterministic annealing
algorithm was run for K = 6. Source: Maria Petrou.

larger number of pixels is needed for its reliable calculation. We see that the last result shows some
improvement over the previous segmentations.

The second important correction we can make to recover the loss of information created by com-
puting the LBP value is to compute the local contrast of each pattern. This can be very easily done.
We calculate the average of the grey values of the pixels labelled with 1 and the average of the
grey values of the pixels labelled with 0 and find the difference between these two numbers. The
result of the segmentation we can achieve by using only these contrast pixel values is shown in
Figure 4.195. We can immediately see that this segmentation result is much better than any of the
results obtained by LBP alone. The results did not differ much either we used the stable patterns
only or all patterns to compute the contrast values.

Finally, we may combine the contrast values with the LBP values to perform segmentation.
These results are shown in Figure 4.196. These segmentation results are comparable with what
we obtained by other methods. It is clear, however, that most of the information came from the
contrast feature rather than the value of LBP. This is perhaps because LBP over-simplifies the local
structure. It is also noticeable that the use of radius 2 is preferable. When we use LBP and contrast
we have 2D histograms, with even more bins than when we use either of these features alone. Using
a radius larger than 1 necessitates then the use of a subset of neighbours at that distance, placed at
selected orientations, so that we have fewer histogram bins and the pixels inside the local windows
are enough to populate them reliably.
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Figure 4.195 Segmentation results using the
contrast values only for radius 1 (left) and 2 (right)
and six clusters in the deterministic annealing
algorithm. In both cases the histograms of the
contrast values were computed inside a 25 × 25
window. Source: Maria Petrou.

(a) (b) (c)

Figure 4.196 (a) Segmentation result using the LBP histograms of the stable directional patterns and the
contrast values for radius 1 with a local window of size 25 × 25. (b) As in (a) but rotation invariant LBP
patterns used. (c) As in (b) with the features computed for radius 2. In all cases six clusters were specified in
the deterministic annealing algorithm. Source: Maria Petrou.

4.11 The Wigner Distribution

What is the Wigner distribution?

Consider a signal f (t). At a fixed point t0, construct the following function:

r(t0; 𝛼) ≡ f
(

t0 +
𝛼

2

)
f ∗
(

t0 −
𝛼

2

)
. (4.894)

Take the Fourier transform of this function with respect to 𝛼:

W(t0;u) = ∫
∞

−∞
r(t0; 𝛼)e−j𝛼ud𝛼 = ∫

∞

−∞
f
(

t0 +
𝛼

2

)
f ∗
(

t0 −
𝛼

2

)
e−j𝛼ud𝛼. (4.895)

This is the Wigner distribution of the signal at point t0. In general, the Wigner distribution is
computed at all points of the signal, so it is a 2D representation of the signal. This function assigns
to each signal point a “spectrum”, the Wigner spectrum, W(t;u), which represents the signal
fully, unlike the Fourier spectrum. Indeed, if we know the Fourier spectrum of a signal, we cannot
recover the original signal because the phase information is missing. For a real signal, on the other
hand, the Wigner distribution is a reversible transform, allowing one to recover the original signal
up to a sign (see Examples 4.255 and 4.257). That is why we say that the Wigner distribution encodes
implicitly the phase information of the signal.
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Example B4.254

Show that if F(𝜔) is the Fourier transform of a signal f (t), then the Wigner distribution
of the signal may be expressed in an equivalent way as:

W(𝜏;𝜔) = 1
2π ∫

∞

−∞
F
(
𝜔 + 𝜉

2

)
F∗

(
𝜔 − 𝜉

2

)
ej𝜉𝜏d𝜉. (4.896)

Let us start from the definition of the Fourier transform of f (t)

F(𝜔) = ∫
∞

−∞
f (t)e−jt𝜔dt (4.897)

and let us substitute this into the right-hand side of (4.896):

1
2π ∫

∞

−∞
F
(
𝜔 + 𝜉

2

)
F∗

(
𝜔 − 𝜉

2

)
ej𝜉𝜏d𝜉 =

1
2π ∫

∞

−∞ ∫
∞

−∞
f (t)e−jt

(
𝜔+ 𝜉

2

)
dt ∫

∞

−∞
f ∗(t̃)ejt̃

(
𝜔− 𝜉

2

)
dt̃ej𝜉𝜏d𝜉 =

1
2π ∫

∞

−∞ ∫
∞

−∞
f (t)e−jt𝜔f ∗(t̃)ejt̃𝜔

{
∫

∞

−∞
ej𝜉

(
− t

2
− t̃

2
+𝜏

)
d𝜉
}

dtdt̃. (4.898)

The integral inside the curly brackets is equal to 2π𝛿(− t
2
− t̃

2
+ 𝜏) according to the result of

Example 4.10. If we perform the integral over t̃ next, we have:

1
2π ∫

∞

−∞
F
(
𝜔 + 𝜉

2

)
F∗

(
𝜔 − 𝜉

2

)
ej𝜉𝜏d𝜉 =

∫
∞

−∞
f (t)e−jt𝜔

{
∫

∞

−∞
f ∗(t̃)ejt̃𝜔𝛿

(
− t

2
− t̃

2
+ 𝜏

)
dt̃
}

dt. (4.899)

We introduce a new variable of integration y ≡ − t
2
− t̃

2
+ 𝜏 ⇒ t̃ = 2𝜏 − t − 2y ⇒ dt̃ = −2dy:

1
2π ∫

∞

−∞
F
(
𝜔 + 𝜉

2

)
F∗

(
𝜔 − 𝜉

2

)
ej𝜉𝜏d𝜉 =

−2∫
∞

−∞
f (t)e−jt𝜔

{
∫

−∞

∞
f ∗(2𝜏 − t − 2y)ej(2𝜏−t−2y)𝜔𝛿(y)dy

}
dt =

2∫
∞

−∞
f (t)e−jt𝜔f ∗(2𝜏 − t)ej(2𝜏−t)𝜔dt =

2∫
∞

−∞
f (t)f ∗(2𝜏 − t)ej2(𝜏−t)𝜔dt. (4.900)

Let us define a new variable of integration again, z ≡ 2(t − 𝜏) ⇒ t = 𝜏 + z
2

and dt = 1
2

dz:

1
2π ∫

∞

−∞
F
(
𝜔 + 𝜉

2

)
F∗

(
𝜔 − 𝜉

2

)
ej𝜉𝜏d𝜉 =

∫
∞

−∞
f
(
𝜏 + z

2

)
f ∗
(
𝜏 − z

2

)
e−j𝜔zdz =

W(𝜏;𝜔). (4.901)

The last equality was obtained by direct comparison with the definition of the Wigner distribution,
given by Equation (4.895). This is the result we had to prove.
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Example B4.255

Given the Wigner distribution W(t;u) of a real signal f (t), recover the original
signal.
The Wigner distribution is the Fourier transform of function r(t; 𝛼) = f

(
t + 𝛼

2

)
f
(

t − 𝛼

2

)
. So, if

we take the inverse Fourier transform of W (t;u) we shall obtain function r(t; 𝛼). By setting then
𝛼 = 0, we have r(t; 0) = f (t)2, which means that we may recover the original signal f (t) up to a
sign, by taking the square root of r(t; 0): f (t) = ±

√
r(t; 0).

Example B4.256

Compute the Wigner distribution of the signal

g(t) = e−
t2

2𝜎2 (4.902)

where 𝜎 is some positive constant.
By definition, for a real signal:

Wg(t;u) = ∫
∞

−∞
g
(

t + 𝛼

2

)
g
(

t − 𝛼

2

)
e−ju𝛼d𝛼

= ∫
∞

−∞
e−

1
2𝜎2

(
t+ 𝛼

2

)2

e−
1

2𝜎2

(
t− 𝛼

2

)2

e−ju𝛼d𝛼

= ∫
∞

−∞
e−

1
2𝜎2

(
t2+ 𝛼2

4
+ 2t𝛼

2
+t2+ 𝛼2

4
− 2t𝛼

2
+ju𝛼2𝜎2

)
d𝛼

= e−
t2

𝜎2 ∫
∞

−∞
e−

1
2𝜎2

(
𝛼2

2
+ju𝛼2𝜎2

)
d𝛼. (4.903)

To compute this integral we have to complete the square in the exponent of the integrand:

Wg(t;u) = e−
t2

𝜎2 ∫
∞

−∞
e
− 1

2𝜎2

((
𝛼√

2

)2
+2 𝛼√

2
(
√

2ju𝜎2)−(
√

2u𝜎2)2+(
√

2u𝜎2)2
)

d𝛼

= e−
t2

𝜎2 e−
1

2𝜎2 (
√

2u𝜎2)2 ∫
∞

−∞
e−

1
2𝜎2

(
𝛼√

2
+
√

2ju𝜎2
)2

d𝛼. (4.904)

We define a new variable of integration y ≡ 1√
2𝜎

(
𝛼√

2
+ j

√
2u𝜎2

)
, which leads to dy = 1

2𝜎
d𝛼 or

d𝛼 = 2𝜎dy. Then

Wg(t;u) = e−
t2

𝜎2 e−u2𝜎2 2𝜎 ∫
∞

−∞
e−y2 dy

= 2𝜎e−
t2

𝜎2 e−u2𝜎2√π (4.905)

where we made use of the result of Example 3.36.
So, we may say that the Wigner distribution of the Gaussian signal (4.902) is:

Wg(t;u) = 2
√
π𝜎e−

t2

𝜎2 e−𝜎2u2
. (4.906)
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Example B4.257

The Wigner distribution of a real signal is given by Equation (4.906). Recover the
original signal.
Let the original signal be g(t). To recover it, we shall first take the inverse Fourier transform of the
Wigner distribution, to recover function r(t; 𝛼) ≡ g

(
t + 𝛼

2

)
g
(

t − 𝛼

2

)
:

r(t; 𝛼) = 1
2π ∫

∞

−∞
Wg(t;u)eju𝛼du

= 1
2π ∫

∞

−∞
2
√
π𝜎e−

t2

𝜎2 e−𝜎2u2 eju𝛼du

= 1
2π

2
√
π𝜎e−

t2

𝜎2 ∫
∞

−∞
e−𝜎2u2 eju𝛼du. (4.907)

To compute this integral we must first complete the square in the exponent of the integrand:

r(t; 𝛼) = 𝜎√
π

e−
t2

𝜎2 ∫
∞

−∞
e
−
(
(𝜎u)2−2𝜎u

(
1

2𝜎
j𝛼
)
−
(

1
2𝜎
𝛼

)2
+
(

1
2𝜎
𝛼

)2
)

du

= 𝜎√
π

e−
t2

𝜎2 ∫
∞

−∞
e−

(
𝜎u− 1

2𝜎
j𝛼
)2

e−
(

1
2𝜎
𝛼

)2

du

= 𝜎√
π

e−
t2

𝜎2 e−
(

1
2𝜎
𝛼

)2

∫
∞

−∞
e−

(
𝜎u− 1

2𝜎
j𝛼
)2

du. (4.908)

We define a new variable of integration y ≡ 𝜎u − 1
2𝜎

j𝛼, which means that dy = 𝜎du, or du =
dy∕𝜎. Then:

r(t; 𝛼) = 1√
π

e−
t2

𝜎2 e−
𝛼2

4𝜎2 ∫
∞

−∞
e−y2 dy

= 1√
π

e−
t2

𝜎2 e−
𝛼2

4𝜎2
√
π

= e−
t2

𝜎2 e−
𝛼2

4𝜎2 . (4.909)

Here we made use of the result of Example 3.36.
To recover the original signal, we set 𝛼 = 0 in r(t; 𝛼):

g(t)2 = r(t; 0) ⇒ g(t) = ±
√

r(t; 0) ⇒ g(t) = ±e−
t2

2𝜎2 . (4.910)

So, we see that the original signal was recovered up to a sign.

Example B4.258

Compute the Wigner distribution of the signal

g(t) = e−
t2

2𝜎2 −jt (4.911)

where 𝜎 is some positive constant.
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Now the signal is complex, and we must remember to use also the complex conjugate of the signal
where appropriate. By definition:

Wg(t;u) = ∫
∞

−∞
g
(

t + 𝛼

2

)
g∗
(

t − 𝛼

2

)
e−ju𝛼d𝛼

= ∫
∞

−∞
e−

1
2𝜎2

(
t+ 𝛼

2

)2
−j
(

t+ 𝛼

2

)
e−

1
2𝜎2

(
t− 𝛼

2

)2
+j
(

t− 𝛼

2

)
e−ju𝛼d𝛼

= ∫
∞

−∞
e−

1
2𝜎2

(
t2+ 𝛼2

4
+ 2t𝛼

2
+2𝜎2jt+2𝜎2j 𝛼

2
+t2+ 𝛼2

4
− 2t𝛼

2
−2𝜎2jt+2𝜎2j 𝛼

2
+ju𝛼2𝜎2

)
d𝛼

= e−
t2

𝜎2 ∫
∞

−∞
e−

1
2𝜎2

(
𝛼2

2
+j(u+1)𝛼2𝜎2

)
d𝛼. (4.912)

To compute this integral we must complete the square in the exponent of the integrand:

Wg(t;u) = e−
t2

𝜎2 ∫
∞

−∞
e
− 1

2𝜎2

((
𝛼√

2

)2
+2 𝛼√

2
(
√

2j(u+1)𝜎2)−(
√

2(u+1)𝜎2)2+(
√

2(u+1)𝜎2)2
)

d𝛼

= e−
t2

𝜎2 e−
1

2𝜎2 (
√

2(u+1)𝜎2)2 ∫
∞

−∞
e−

1
2𝜎2

(
𝛼√

2
+
√

2j(u+1)𝜎2
)2

d𝛼. (4.913)

We define a new variable of integration y ≡ 1√
2𝜎

(
𝛼√

2
+ j

√
2(u + 1)𝜎2

)
, which leads to dy = 1

2𝜎
d𝛼

or d𝛼 = 2𝜎dy. Then

Wg(t;u) = e−
t2

𝜎2 e−(u+1)2𝜎2 2𝜎 ∫
∞

−∞
e−y2 dy

= 2𝜎e−
t2

𝜎2 e−(u+1)2𝜎2√π (4.914)

where we made use of the result of Example 3.36.
So, we may say that the Wigner distribution of signal (4.911) is

Wg(t;u) = 2
√
π𝜎e−

t2

𝜎2 e−𝜎2(u+1)2 . (4.915)

Example B4.259

The Wigner distribution of a signal is given by Equation (4.915). Compute the original
signal.
Let the original signal be g(t). Since we are not told that it is real, we must assume that it is
complex. To recover it, we shall first take the inverse Fourier transform of the Wigner distribution,
to recover function r(t; 𝛼) ≡ g

(
t + 𝛼

2

)
g∗
(

t − 𝛼

2

)
:

r(t; 𝛼) = 1
2π ∫

∞

−∞
Wg(t;u)eju𝛼du

= 1
2π ∫

∞

−∞
2
√
π𝜎e−

t2

𝜎2 e−𝜎2(u+1)2 eju𝛼du

= 𝜎√
π

e−
t2

𝜎2 ∫
∞

−∞
e−𝜎2u2−𝜎2−2𝜎2u+ju𝛼du

(Continued)
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Example B4.259 (Continued)

= 𝜎√
π

e−
t2

𝜎2 e−𝜎2

∫
∞

−∞
e−𝜎2u2−u(2𝜎2−j𝛼)du

= 𝜎√
π

e−
t2

𝜎2 e−𝜎2

∫
∞

−∞
e
−
(
(𝜎u)2+2𝜎u 2𝜎2−j𝛼

2𝜎
+
(

2𝜎2−j𝛼
2𝜎

)2
−
(

2𝜎2−j𝛼
2𝜎

)2)
du

= 𝜎√
π

e−
t2

𝜎2 e−𝜎2

∫
∞

−∞
e−

(
𝜎u+ 2𝜎2−j𝛼

2𝜎

)2

due
(

2𝜎2−j𝛼
2𝜎

)2

. (4.916)

We define a new variable of integration y ≡ 𝜎u + 2𝜎2−j𝛼
2𝜎

, which means that dy = 𝜎du, or
du = dy∕𝜎. Then:

r(t; 𝛼) = 1√
π

e−
t2

𝜎2 e−𝜎2 e
(

2𝜎2−j𝛼
2𝜎

)2

∫
∞

−∞
e−y2 dy

= 1√
π

e−
t2

𝜎2 e−𝜎2 e
4𝜎4−𝛼2−4𝜎2 j𝛼

4𝜎2
√
π

= e−
t2

𝜎2 e−
𝛼2

4𝜎2 e−j𝛼. (4.917)

Here we made use of the result of Example 3.36.
Since the signal is assumed complex, we may assume that it has the form g(t) ≡ M(t)ejΦ(t)

where M(t) and Φ(t) are real functions which we must define. Then from the definition of r(t; 𝛼),
we have

r(t; 𝛼) = M
(

t + 𝛼

2

)
ejΦ

(
t+ 𝛼

2

)
M
(

t − 𝛼

2

)
e−jΦ

(
t− 𝛼

2

)
= e−

t2

𝜎2 e−
𝛼2

4𝜎2 e−j𝛼 (4.918)

from which we deduce that

M
(

t + 𝛼

2

)
M
(

t − 𝛼

2

)
= e−

t2

𝜎2 e−
𝛼2

4𝜎2 (4.919)

and

Φ
(

t + 𝛼

2

)
− Φ

(
t − 𝛼

2

)
= −𝛼. (4.920)

By setting 𝛼 = 0 in (4.919), we deduce that M(t) = ±e−
t2

2𝜎2 .
To recover function Φ(t) we rewrite Equation (4.920) in the form

Φ
(

t + 𝛼

2

)
− Φ

(
t − 𝛼

2

)
𝛼

= −1. (4.921)

This equation is valid for all values of 𝛼, so it must also be valid for the limit when 𝛼 → 0. For this
limit we recognise on the left-hand side of (4.921) the derivative of Φ(t), so we have:

dΦ(t)
dt

= −1 ⇒ Φ(t) = −t + C (4.922)

where C is any real constant.
We may say, therefore, that Wigner distribution (4.915) was produced from signal:

g(t) = ±e−
t2

2𝜎2 e−jt+jC. (4.923)

This shows that the original complex signal may be recovered from its Wigner distribution up to
a factor ±ejC.
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Example B4.260

Show that all functions of the form (4.923) have the same Wigner distribution,
irrespective of the value of real constant C.
To compute the Wigner distribution of function (4.923) we must first construct function r(t; 𝛼):

r(t; 𝛼) ≡ g
(

t + 𝛼

2

)
g∗
(

t − 𝛼

2

)
. (4.924)

Upon substitution, we obtain:

r(t; 𝛼) = (±)2e−
1

2𝜎2

(
t+ 𝛼

2

)2

e−j
(

t+ 𝛼

2

)
ejCe−

1
2𝜎2

(
t− 𝛼

2

)2

ej
(

t− 𝛼

2

)
e−jC

= e−
1

2𝜎2

(
t+ 𝛼

2

)2

e−
1

2𝜎2

(
t− 𝛼

2

)2

e−j𝛼. (4.925)

The last expression is the same function r(t; 𝛼) as in Example 4.258. So it will lead to the same
Wigner distribution as the one we computed for function g(t) = e−

t2

2𝜎2 e−jt . So, all functions (4.923)
have the same Wigner distribution, namely that of (4.915). Since sign ± in front of Equation
(4.923) may also be expressed as a phase factor of the form ejπk for k = 0 or k = 1, we may say
that this example demonstrates that the Wigner distribution defines the original function fully, up
to a constant in the phase of the function. Note that this phase has nothing to do with the phase we
talked about earlier when we demonstrated that phase represents the symmetry of the function.
That phase was referring to the phase of the Fourier transform of the function, which somehow
measures the balance between the real and the imaginary parts of its Fourier transform, i.e. the
balance between the symmetric and the antisymmetric part of the function, while here the word
“phase” refers to the function itself, which is assumed complex. (Due to duality, the phase of the
signal measures the symmetry or antisymmetry of the Fourier transform of the signal.) In image
processing we do not deal with complex signals, so we may ignore this detail according to which
the Wigner distribution defines the original signal up to a factor ejC. As far as image processing
is concerned, we may safely assume that the Wigner distribution defines the original signal fully,
up to a sign.

Example B4.261

Compute the ambiguity function of a signal f (t) that is defined as the Fourier trans-
form of the Wigner distribution of the signal.
Let us call the Fourier transform of the Wigner distribution A(𝜉; 𝜏). The Wigner distribution of
the signal is by definition:

W(t;u) ≡ ∫
∞

−∞
f
(

t + 𝛼

2

)
f ∗
(

t − 𝛼

2

)
e−j𝛼ud𝛼. (4.926)

This is a 2D function, the first argument of which is either a spatial coordinate, or time, and
the second is a frequency. When we compute its Fourier transform, therefore, we must treat each
independent variable accordingly, so we are consistent with the conventions of Fourier analysis.
This means that the exponent of the kernel used for the frequency variable will be positive, while
for the time variable it will be negative, and we shall have a 1∕(2π) factor in front coming from

(Continued)
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Example B4.261 (Continued)

the frequency variable:

A(𝜉; 𝜏) =
1

2π ∫
∞

−∞ ∫
∞

−∞
W(t;u)e−jt𝜉eju𝜏dtdu =

1
2π ∫

∞

−∞ ∫
∞

−∞ ∫
∞

−∞
f
(

t + 𝛼

2

)
f ∗
(

t − 𝛼

2

)
e−j𝛼ue−jt𝜉eju𝜏d𝛼dtdu =

1
2π ∫

∞

−∞ ∫
∞

−∞
f
(

t + 𝛼

2

)
f ∗
(

t − 𝛼

2

)
e−jt𝜉

{
∫

∞

−∞
ej(𝜏−𝛼)udu

}
d𝛼dt. (4.927)

The integral inside the curly brackets by Example 4.10 is 2π𝛿(𝜏 − 𝛼). Then

A(𝜉; 𝜏) =

∫
∞

−∞
e−jt𝜉

{
∫

∞

−∞
f
(

t + 𝛼

2

)
f ∗
(

t − 𝛼

2

)
𝛿(𝜏 − 𝛼)d𝛼

}
dt =

∫
∞

−∞
e−jt𝜉 f

(
t + 𝜏

2

)
f ∗
(

t − 𝜏

2

)
dt. (4.928)

This is the ambiguity function of the signal, which was defined as the Fourier transform of
the Wigner distribution with respect to both its arguments. We can see from (4.928) that it is the
Fourier transform of function r(t; 𝛼) ≡ f

(
t + 𝛼

2

)
f ∗
(

t − 𝛼

2

)
with respect to its first argument

only. The Wigner distribution is the Fourier transform of the same function with respect to its
second argument. The ambiguity function takes its name from radar applications where it repre-
sents a wave travelling forward and backward while Doppler shifted due to the relative movement
of the wave source and the target. In A(𝜉; 𝜏), frequency parameter 𝜉 is associated with the Doppler
shift, while parameter 𝜏 with the time delay of the wave, i.e. with the target range.

How is the Wigner distribution used for the analysis of digital signals?

The Wigner distribution as defined by Equation (4.895) is not applicable to digital signals. To use
it for the analysis of digital signals we have first to adapt it for them. The version of the Wigner
distribution appropriate for digital signals is called pseudo-Wigner distribution.

What is the pseudo-Wigner distribution?

The most important use of the Wigner distribution for the analysis of digital signals is the extraction
of local signal information. Locality implies the use of a window, so the first modification is that
the Wigner spectrum is computed from a windowed part of the signal. A commonly used window
for that is the Kaiser window. However, any other window might also be used. In the simplest
of cases the rectangular window may be used. The second adaptation is that instead of computing
the continuous Fourier transform of the signal, we compute the discrete Fourier transform. The
third adaptation is that we cannot have shifts in the argument of the signal 𝛼∕2 since the signal is
defined at integer positions only. So, the pseudo-Wigner distribution for a 2N + 1 long 1D digital
signal f (n), where n = −N,−N + 1,… ,−1, 0, 1,… ,N − 1,N, is defined as

PWD(m; p) =
N∑

k=−N
h(k)f (m + k)f ∗(m − k)e−j 2π

2N+1
pk (4.929)

where h(k) is a window.
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The use of the discrete Fourier transform has significant implications. For a start, the use of the
rectangular window causes the creation of extra frequencies that are due to the window and nothing
else. We have seen examples of such distortions in Chapter 3. The use of other than the rectangular
window may ameliorate this problem. The other implication concerns the sampling frequency of
the signal. When we deal with digital signals, we know that we have sampled them with certain
frequency. The signals are band-limited and the sampling frequency is such that aliasing is avoided.
To compute the Wigner distribution we form first function r(t; 𝛼) defined by Equation (4.894). This
is essentially a multiplication of the original signal with itself. When two signals are multiplied,
their Fourier transforms are convolved, so the Fourier transform of r(t; 𝛼) is the result of convolv-
ing the Fourier transform of the original signal with itself. This means that function r(t; 𝛼) has
bandwidth double that of the original signal. Doubling the bandwidth may create aliasing, unless
the original signal had been sampled twice as densely as it was necessary to avoid aliasing, i.e. at
twice the Nyquist frequency.

What is the Kaiser window?

The Kaiser window is defined as

hN (k) =
⎧⎪⎨⎪⎩

I0

[
𝛼

√
1−

(
k
N

)2
]

I0(𝛼)
for |k| ≤ N

0 otherwise
(4.930)

where I0(x) is the modified Bessel function of the first kind and of zero order, and 𝛼 is a parame-
ter that allows us to trade between the central and the side lobes of the window. This window is
appropriate for isolating segments of signals 2N + 1 long.

Bessel function I0(x) may be approximated by a polynomial, with error less than 1.9 × 10−7, as
follows:

I0(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 + 3.5156229t2 + 3.0899424t4 + 1.2067492t6

+0.2659732t8 + 0.0360768t10 + 0.0045813t12 for −3.75 ≤ x ≤ 3.75

1√
x
ex (0.39894228 + 0.01328592t−1 + 0.00225319t−2

−0.00157565t−3 + 0.00916281t−4 − 0.02057706t−5

+0.02635537t−6 − 0.01647633t−7 + 0.00392377t−8) for 3.75 ≤ x <∞

.

(4.931)

In these formulae t ≡ x∕3.75.
Figure 4.197 shows the Kaiser window for various values of 𝛼 and for N = 31.

Figure 4.197 Kaiser window for 𝛼 = 1, 3, 6, 11, 31, from
top to bottom, respectively. 1

0.5

0
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Example B4.262

Compute the complex Fourier series of a train of delta functions defined as:

𝛿T(t) =
∞∑

n=−∞
𝛿(t − nT) for − T

2
< t < T

2
. (4.932)

This may be considered as a periodic function with period T as shown in Figure 4.198, defined
as:

f (t) = 𝛿(t) for − T
2
< t < T

2
. (4.933)

Then its complex Fourier series is

𝛿T(t) =
∞∑

n=−∞
cnejn𝜔0t (4.934)

where 𝜔0 = 2π∕T and the coefficients cn are by definition equal to:

cn ≡ 1
T ∫

T∕2

−T∕2
f (t)e−jn𝜔0tdt = 1

T ∫
T∕2

−T∕2
𝛿(t)e−jn𝜔0tdt = 1

T
. (4.935)

So, the Fourier series of a train of delta functions is:

𝛿T(t) =
1
T

∞∑
n=−∞

ejn 2π
T

t
. (4.936)

−4T −3T −2T T 2T 3T 4T−T

one
period

T

t

f(t)

Figure 4.198 A train of delta functions T distance apart may be thought of as a periodic function
consisting of a single 𝛿 function and having period T .

Example B4.263

Compute the Fourier transform of a train of delta functions defined by (4.932).
Let us take the Fourier transform of both sides of (4.936):

∫
∞

−∞
𝛿T(t)e−j𝜔tdt = 1

T

∞∑
n=−∞∫

∞

−∞
ejn 2π

T
te−j𝜔tdt

= 1
T

∞∑
n=−∞∫

∞

−∞
ejt

(
2πn

T
−𝜔

)
dt
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= 1
T

∞∑
n=−∞

2π𝛿
(2πn

T
− 𝜔

)
= 2π

T

∞∑
n=−∞

𝛿

(
𝜔 − 2πn

T
.

)
(4.937)

Here we made use of the result of Example 4.10 and of the fact that the 𝛿 function is an even
function. So, the Fourier transform of a train of delta functions at a distance T apart is also a
train of delta functions at frequency 2π∕T apart.

What is the Nyquist frequency?

The Nyquist frequency is the minimum frequency with which a band-limited function should be
sampled so that it can be fully recovered from its sampled values.

This is better explained with the help of Figure 4.199. Let us consider the band-limited continuous
signal f (t) shown in 4.199a. Its Fourier spectrum is shown in 4.199b. Let us also consider the comb
(or train) of delta functions shown in 4.199c. The Fourier spectrum of this comb is also a comb of
delta functions shown in 4.199d. Note that if the teeth of the comb are at a distance T apart, the
teeth of the comb in the Fourier domain are 2π∕T apart, i.e. the denser the teeth are in the real
space, the further apart they are in the frequency space. If we multiply function f (t) with the comb,
we convert it from a continuous function to a sampled digital function, as shown in Figure 4.199e.
Multiplication of two functions in the real domain is equivalent to convolution of their Fourier
spectra. The result of convolving the band-limited spectrum of the original function f (t) with the
comb of Figure 4.199c produces the spectrum of Figure 4.199f. So, if we assume that in practice we
have at our disposal only the sampled function 4.199c, we shall be able to have full information
about the continuous function, only if the teeth of the comb in the Fourier space were far enough
apart for the repetitions of the Fourier spectrum of the original function not to overlap. If the teeth
of the comb in the frequency domain were too close, the replicas of the spectrum would overlap
as shown in Figure 4.200b. Then the high frequencies of the original signal would be destroyed.
This is intuitively obvious. Imagine that we sample the function very sparsely, i.e. imagine that
the teeth of the comb in the real domain are very far apart. Then we shall miss the details of the
function, and the sampled function will not be identical with the continuous one. Not only will
the details of the continuous function be missing, but in addition false details may appear, since
points which in reality were well separated may come next to each other due to undersampling.
This is equivalent to saying that the sampled function does not capture the high frequencies of
the continuous function correctly, and in signal processing terms it is expressed by saying that the
function has been aliased because the teeth of the sampling comb in the frequency domain were
too close to each other. When the teeth of the sampling comb in the real domain are exactly as far
apart as they should be for the repeated spectra of the function just to touch, without any overlap
(see Figure 4.199f), we say that we have sampled the signal with the Nyquist interval or with the
Nyquist frequency. Referring to Figure 4.199, we see that the Nyquist frequency corresponds to
the case when the distance between the teeth of the sampling comb in the frequency space is equal
to the bandwidth of the signal:

2π
T

= 2𝜔0 ⇒
2π
T

= 4πf0 ⇒
1
T

= 2f0 ⇒ fN = 2f0. (4.938)

So, the Nyquist frequency fN is twice the highest frequency present in the signal. If the signal is
sampled with the Nyquist frequency we say that it is critically sampled. It is best when the signal
is sampled at higher frequencies, as shown in Figure 4.200a. Sampling at lower frequencies leads
to aliasing, i.e. destruction of high-frequency details of the signal.
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f(t−nT) = f(t) δ(t−nT)

Figure 4.199 (a) A continuous band-limited signal and its Fourier spectrum shown in (b). When
sampled with the comb in (c) its Fourier spectrum is convolved with the Fourier spectrum of the comb
shown in (d). The result is shown in (f). In this example the teeth of the sampling comb have been chosen to
be close enough, for the teeth of the comb in the frequency space to be exactly as far apart as is necessary
for the repeated spectra of the function not to overlap. This is the case of sampling at the Nyquist
frequency.

Why does the use of the pseudo-Wigner distribution require signals that have been
sampled at twice their Nyquist frequency?

Let us consider a band-limited signal f (t) with bandwidth 2𝜔0. Let us say that its Fourier transform
is  (𝜔), and its Fourier spectrum is F(𝜔). Then the Fourier transform of f (t − a) will be  (𝜔)eja.
The Fourier transform of f (t + a) will be  (𝜔)e−ja. So, both f (t − a) and f (t + a) will have the same
Fourier spectrum as f (t), namely F(𝜔). Since we multiply these two functions in order to compute
the pseudo-Wigner distribution, their Fourier spectra are convolved, i.e. the Fourier spectrum of
f (t − a)f (t + a) is F(𝜔)★F(𝜔). F(𝜔)★F(𝜔), however, will have double the bandwidth of F(𝜔), i.e. its



�

� �

�

4.11 The Wigner Distribution 747

Figure 4.200 If the teeth of the sampling comb in the
real domain are closer than the Nyquist interval, the
repeated spectra of the function in the frequency space
are well separated, as shown in (a). If the teeth of the
sampling comb in the real domain are further apart
than the Nyquist interval, the repeated spectra of the
function in the frequency space overlap, causing
aliasing, as shown in (b).

2 π n)
T

(b)
ω

(a)
ω

F(ω)  * δ (ω −

2 π n)
T

F(ω)  * δ (ω −

bandwidth will be 4𝜔0. This means that when this function is sampled, unless it is sampled at twice
the Nyquist frequency of f (t), there will be aliasing. This is shown in Figure 4.201.

Should we worry about aliasing when we use the pseudo-Wigner distribution
for texture analysis?

Aliasing is always a problem. However, if we are not really interested in reproducing the signal,
but simply computing some numbers that characterise it, even if these numbers characterise its
aliased version, they may still be appropriate for distinguishing the signal from other signals (i.e.
one texture from other textures). Aliasing may become a problem only if the aliased versions of two
textures are identical. Then, of course, the features we shall compute from them will not be able to
distinguish the two textures. It is rather unlikely that the data will contrive in such a way that the
two aliased textures will become the same, so aliasing may not be of too much concern when using
the Wigner distribution for texture segmentation.

How is the pseudo-Wigner distribution defined for the analysis of images?

To use the pseudo-Wigner distribution for images we must first define it in 2D:

PWD(m,n; p, q) =
M∑

k=−M

N∑
l=−N

h(k, l)f (m + k,n + l)f (m − k,n − l)e−j 2π
2N+1

pk−j 2π
2M+1

ql
. (4.939)

Here h(k, l) is a 2D window, for example a 2D Kaiser window consisting of two 1D Kaiser windows
multiplied with each other. The sub-image this function is applied to is supposed to be of size
(2M + 1) × (2N + 1).

How can the pseudo-Wigner distribution be used for texture segmentation?

We can compute the Wigner spectrum for each point in the image by considering a window around
each pixel. The components of the Wigner spectra then may be used to construct features. It is even
possible to perform feature reduction by using principal component analysis.



�

� �

�

748 4 Non-stationary Grey Texture Images
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T
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T
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t
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ωt
T
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Frequency Domain

Figure 4.201 (a) A continuous band-limited signal f (t) and its Fourier spectrum in (b). Function
f (t − a)f (t + a) in (c) and its Fourier spectrum in (d). The sampling comb in (e) and its Fourier spectrum in (f).
The sampled function f (t − a)f (t + a) and its aliased Fourier spectrum if the sampling comb used is at the
Nyquist frequency of the original signal. If the sampling comb used were at twice the Nyquist frequency of
the original signal, no aliasing would have arisen.

Example 4.264

Prove that

PWD(m,n; p, q) = PWD(m,n; −p,−q). (4.940)
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Let us start from the definition of the pseudo-Wigner distribution (4.939) and use it to compute
PWD(m,n; −p,−q):

PWD(m,n; −p,−q) =
M∑

k=−M

N∑
l=−N

h(k, l)f (m + k,n + l)f (m − k,n − l)ej 2π
2N+1

pk+j 2π
2M+1

ql
. (4.941)

We define new variables of summation in (4.941), k̃ ≡ −k and l̃ ≡ −l. Then:

PWD(m,n; −p,−q) =
−M∑̃

k=M

−N∑̃
l=N

h(k, l)f (m + k,n + l)f (m − k,n − l)e−j 2π
2N+1

pk̃−j 2π
2M+1

ql̃
. (4.942)

Variables k̃ and l̃ are dummy, and the result of a summation does not depend on the order in
which we sum the terms, so the double sum on the right-hand side of (4.942) is the same as the
double sum on the right-hand side of (4.939), which proves property (4.940).

Example 4.265

Use features constructed from the Wigner distribution to segment the image of
Figure 4.81.
Figure 4.202 In (a) the 2D Kaiser window created
by multiplying two 1D Kaiser windows of size 11
with 𝛼 = 6, shown in (b). Source: Maria Petrou.

(a)

1

0.5

0
−4 −2 0 2 4

h 5
(k

)

k
(b)

(Continued)
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Example 4.265 (Continued)

Figure 4.202 shows the 2D Kaiser window used in the experiments. Its size is 11 × 11 and 𝛼 = 6.
Since the window we use is 11 × 11, each Wigner spectrum we use to characterise a pixel consists
of 121 components. We may use one component at a time to create feature maps that represent
the image in 121 different ways. However, because of the symmetry of the Wigner spectrum, 60
of those maps are identical to the remaining 60, so we have only 61 independent feature maps.
These are shown in Figure 4.203. Figure 4.204 shows the segmentation result obtained by using
all 61 features to segment the image.

q = − 5

p = − 5

p = − 4

p = − 3

p = − 2

p = − 1

p = 0

p = 1

q = − 4 q = − 3 q = − 2 q = − 1 q = 0 q = 1 q = 2 q = 3 q = 4 q = 5

Figure 4.203 Wigner feature maps obtained for the image of Figure 4.81 using the Kaiser window
shown in Figure 4.202. Each frame has been produced by keeping for each pixel a single value for its
Wigner spectrum, identified by the values of p and q. Because of property (4.940) only half of the
frames are shown. For displaying purposes alone, the 2% extreme values of each feature were
mapped either to 0 or 255 and the remaining values were linearly scaled to the range [0,255].
The empty frames indicate that they are not displayed because they are identical with the frames at
symmetric positions about the last frame displayed, the one that corresponds to p = 0 and q = 0.
Source: Maria Petrou.

K = 6 K = 8

Figure 4.204 Segmentation results obtained
using the deterministic annealing algorithm for
the 61 Wigner features shown in Figure 4.203,
for two different values of the expected number
K of distinct clusters. Source: Maria Petrou.
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We may use principal component analysis (see Example 4.230) to achieve feature reduction.
Figure 4.203 shows the feature maps produced from the first six eigenvectors of the covariance
matrix of the pixels in the 61-dimensional feature space. Figure 4.206 shows the segmentation
result obtained if we use only the first three of these PCA features. Figure 4.207 shows the seg-
mentation result obtained if no Kaiser window were used, i.e. if the 11 × 11 Wigner spectrum
were computed using just a rectangular 11 × 11 neighbourhood around each pixel. Figure 4.208
shows the segmentation result obtained for this case if we perform PCA and use only the first three
eigen-features.

First Second Third

Fourth Fifth Sixth

Figure 4.205 First six feature maps constructed using principal component analysis of the 61 Wigner
features shown in Figure 4.203. Source: Maria Petrou.

Figure 4.206 Segmentation results obtained using
the deterministic annealing algorithm for the first
three feature maps shown in Figure 4.205, for two
different values of the expected number K of distinct
clusters. Source: Maria Petrou.

K = 6 K = 8

Figure 4.207 Segmentation results obtained using
the deterministic annealing algorithm for the 61
Wigner features computed using a rectangular flat
window, for two different values of the expected
number K of distinct clusters. Source: Maria Petrou.

K = 6 K = 8

(Continued)
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Example 4.265 (Continued)

K = 6 K = 8

Figure 4.208 Segmentation results obtained
using the deterministic annealing algorithm
with the first three eigen-features computed
from the 61 Wigner features constructed using a
rectangular flat window around each pixel, for
two different values of the expected number K
of distinct clusters. Source: Maria Petrou.

Further, we may not use the Wigner features directly, but compute energies from them, by
averaging their values over a local neighbourhood around each pixel. The energy feature maps
created this way are shown in Figure 4.209. The segmentations obtained by using these features
are shown in Figure 4.210. We may again perform feature selection using PCA. The eigen-feature
maps obtained which correspond to the six largest eigenvalues are shown in Figure 4.209 and the
segmentation obtained from the first three eigen-features is shown in Figure 4.212.

q = − 5

p = − 5

p = − 4

p = − 3

p = − 2

p = − 1

p = 0

p = 1

q = − 4 q = − 3 q = − 2 q = − 1 q = 0 q = 1 q = 2 q = 3 q = 4 q = 5

Figure 4.209 Energy features constructed from the components of the Wigner spectrum of each
pixel, obtained by using the Kaiser window shown in Figure 4.202. The local energy values were
computed from the corresponding feature maps of Figure 4.203 by using a Gaussian window of size
29 × 29 with 𝜎 = 7. For displaying purposes alone, the 2% extreme values of each feature were
mapped either to 0 or 255 and the remaining values were linearly scaled to the range [0,255]. The
missing or empty panels are not shown because each of them is identical with a panel already on
display. Source: Maria Petrou.
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Figure 4.210 Segmentation results obtained using
the deterministic annealing algorithm with the 61
Wigner energy features shown in Figure 4.209, for two
different values of the expected number K of distinct
clusters. Source: Maria Petrou.

K = 6 K = 8

First Second Third

Fourth Fifth Sixth

Figure 4.211 The first six eigen-feature maps produced by PCA for the 61 Wigner energy features
shown in Figure 4.209. Source: Maria Petrou.

Figure 4.212 Segmentation results obtained using
the deterministic annealing algorithm for the first
three eigen-features, shown in Figure 4.211, produced
from the 61 Wigner energy features that were
computed with the help of a Kaiser window, for two
different values of the expected number K of distinct
clusters. Source: Maria Petrou.

K = 6 K = 8

Finally, we may compute energy features from Wigner features computed without the use
of Kaiser window. The segmentation result in this case is shown in Figure 4.213 when all
61 energy features were used, and in Figure 4.214 when only the first three eigen-features
were used.

(Continued)



�

� �

�

754 4 Non-stationary Grey Texture Images

Example 4.265 (Continued)

K = 8K = 6

Figure 4.213 Segmentation results obtained using
the deterministic annealing algorithm with the 61
Wigner energy features computed without the Kaiser
window, for two different values of the expected
number K of distinct clusters. Source: Maria Petrou.

K = 8K = 6

Figure 4.214 Segmentation results obtained using
the deterministic annealing algorithm with the first
three eigen-features of the Wigner energy features
computed without a Kaiser window, for two different
values of the expected number K of distinct clusters.
Source: Maria Petrou.

4.12 Convolutional Neural Networks for Textures Feature
Extraction

Why do we require convolutional neural networks for texture analysis?

With the rise of deep learning, there was a drastic change in research and development of computer
vision, in around 2010. It has brought higher levels of performance to classify big visual data at a
competition contest, the Imagenet Large Scale Visual Recognition Challenge (ILSVRC). Table 4.8
shows the performance of classification accuracy using the large-scale image dataset called Ima-
genet. At ILSVRC2010 and ILSVRC201, SIFT, LBP and SVM were traditional trends to use feature
extraction and classification tasks. However, in 2012, a methodology, so-called deep learning,
Alexnet, based on convolutionl neural networks (CNNs) achieved state-of-the- art accuracy, in
which error rate was 16.4%, in the object classification task. After three years, in 2015, the clas-
sification accuracy of Resnet was greatly improved to reach the error rate 3.5%, while the human
error rate was 5.1% [85]. Although the CNN is an extension of neural networks that developed in
the 1980s and 1990s, ILSVRC2012 should be deemed as a turning point for neural networks. In
addition, from 2013 onwards, the CNN-based methods greatly developed in the field of computer
vision, machine learning and their many applications. Therefore the CNN immediately became a
powerful tool for feature extraction of images, and in around 2013, several researchers began to
apply it for texture classification.

Although the analysis of several texture features has been developed continually so far, deep
learning innovation has also contributed to the development of texture analysis research. On
the other hand, deep learning performance is always dependent on the quality of the large-scale
dataset. Li mentioned that “the contest itself is made possible by the Imagenet database, an
immense collection of more than 14 million images that have been identified by humans” [85].
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Table 4.8 Classification results at ILSVRC (http://www.image-net.org/).

Conpetition Error rate Methods

ILSVRC2010 28.2% Combination of SIFT and LBP features
ILSVRC2011 25.8% High-dimensional image signatures, one-versus-all linear SVMs,

compression using product quantization
ILSVRC2012 16.4% Large-scale deep neural networks with 60 million parameters,
. hidden-unit dropout method
ILSVRC2013 11.7% Several large deep convolutional networks averaged together
ILSVRC2014 6.7% Improved CNN architecture,

multi-scale method from Hebbian theory
(allowed to use other CNN-training data that are not provided)

According to the contest reports, there are two kinds of contributions to international societies
in the following:

1. Precision improvement by learning deep neural networks
2. Construction of the large-scale data set.

Up to this section, we have introduced several feature extraction methods, a so-called a hand-
crafted approach that is made by explicit theories or logics. On the other hand, the CNN-based
methods are called a neural network-based approach that is an imitation of the human visual
system. While the former is visually explainable, the latter has a kind of blackbox property for
extracting features from images. In this section, we introduce some basic models on deep learning
or neural networks and several texture datasets. Firstly a neuron model, the Rosenblat learning
machine called Perceptron, Hebbian theory, and the back-propagation learning method will be
explained.

The basis of a neural network is the Mcculloch and Pitts neuron model

The human brain has approximately 86 billion neurons on average, which was estimated by
Herculano-Houzel in 2009[37]. In the 1940s, biophysical or psychological researchers put more
effort into research and development on modelling neurons in the brain as mathematical func-
tions. Through analysis of behavior, they recognised that there exists a gap between biological and
artificial neuron models. However, they set a target on modeling neurons and their connections
for analysing visual information processing in the brain. Unquestionably, an artificial neuron
model is based on the CNN. In 1943, Mcculloch and Pitts modelled a computation of neurons as
shown in Figure 4.215.

Figure 4.215 A neuron model: g(x). w1

w2

wN

fΣ

xN

𝜃

x1

x2

http://www.image-net.org/
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Box 4.19 Mcculloch and Pitts neuron model

Let us represent a mathematical model of the artificial neuron proposed by Mcculloch and Pitts
[65]. Starting from a linear combination of a weight vector w = (𝑤1, · · · , 𝑤i, · · · , 𝑤N )T and a
pattern vector x = (x1, · · · , xi, · · · , xN )T , we formulate the mathematical model as follows:

g(x) = f

( N∑
i=1

𝑤ixi + 𝜃

)
= f (w ⋅ x + 𝜃) (4.943)

where f is an activation function called a threshold logic unit, and 𝜃 is a threshold value.
There are several activation functions, which will be discussed later, but the simplest f (z) is a
function expressed as:

f (z) =
{

1 if z ≥ 0
0 otherwise

. (4.944)

The psychologist Hebb investigated the behaviour of neuron connections described in his book
published in 1936 [36]. His neuropsychological theory is called Hebbian theory or Hebb’s rule.
Many researchers commonly used the Hebbian theory for long-term potentiation.

Box 4.20 Hebbian theory

Hebbian theory and the basis learning models are based on the following assumption as seen
on page 67 of his book:

“When an axon of cell A is near enough to excite cell B and repeatedly or persistently takes part
in firing it, some growth process or metabolic change takes place in one or both cells such that A’s
efficiency, as one of the cells firing B, is increased”.

This neuron activation is the basis of memory occurring in the brain. If an activation occurred
at two neurons A and B, the connection with a synapse between A and B is strengthened. The
study of several learning machines and neural networks was pushed forward using the Hebbian
theory.

What is the Rosenblatt learning model: Perceptron?

In 1958, based on the Hebbian theory, a learning machine called the Perceptron was proposed by
Rosenblat [82]. The simple Perceptron is shown in Figure 4.216. A pattern vector x in a sensory

R OUTPUT SIGNAL
+1 OR −1

RETINA OF
S UNITS A UNITS

Figure 4.216 A simple Perceptron model [83].
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layer S is mapped to an association-layer A with randomly connected wires. That means each node
in A has a set of randomly located origin points in the retina. Although the connections between
the sensory layer S and the association layer A are random, we assume this mapping keeps a linear
separability property. The Perceptron excluded the analysis of these connections between S and A
from consideration in the learning process.

A receptive layer R consists of a categorical node with a linear combination between hidden nodes
values and their connection weights. The input pattern vector in a sensory layer is normalised to a
unit vector, and the output signal in the receptive layer has a value of −1 or 1. At first, the initial
values of all weights are set randomly.

The Perceptron is able to classify two pattern classes, C1 and C2. Let a set of L training sam-
ples (vectors) be X = {x1, x2, · · · , xL}, and a set of the corresponding labels be 𝜏 = {𝜏1, 𝜏2, · · · , 𝜏L},
where for any i:

𝜏i =
{

1 if xi ∈ C1
−1 if xi ∈ C2

. (4.945)

For training, we use X repeatedly to generate a set of training data {x(t), 𝜏 (t)|t = 1, 2, · · · }, where
x(1) = x1, x(2) = x2, · · ·, x(L) = xL, x(L+1) = x1, …, x(2L) = xL, …. For an input pattern vector x of the
network, we define an evaluation function of an error between the target 𝜏 and the output of the
network out for learning the weight vector w and the threshold 𝜃 as:

err = 𝜏 − out = 𝜏 − Sign(w ⋅ x + 𝜃). (4.946)

The learning procedure of the simple Perceptron is described as follows:

Step 1: Initialize the weight vector w and the threshold value 𝜃 at random.
Step 2: Set time t = 1.
Step 3: Repeat steps 4–6 at time t until it converges.
Step 4: Calculate the error using errt ← 𝜏 (t) − Sign(w ⋅ x(t) + 𝜃).
Step 5: if (errt ≠ 0), then update the parameters as follows:

w ← w + 𝜂 × err × x(t), and 𝜃 ← 𝜃 + 𝜂 × err.
Step 6: Set t ← t + 1.

The activation function in Perceptron uses a sign function Sign denoted as:

Sign(a) =
{

1 if a ≥ 0
−1 otherwise

. (4.947)

At step 3, “converge” means that if the weight vector w and the threshold value 𝜃 are unchanged
for all training samples X, then the procedure terminates. After training these parameters, w and
𝜃, the output signal for an unknown vector x is obtained as a classification result:

Out(x) = Sign(w ⋅ x + 𝜃) (4.948)

Finally the classification boundary is given by w ⋅ x + 𝜃 = 0.

Example 4.266

Let us consider two-dimensional samples of an AND gate, as shown in Table 4.9.
Describe the behavior of the simple Perceptron for learning the AND gate.

(Continued)
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Example 4.266 (Continued)
Table 4.9 AND gate in two dimensional data.

Number x1 x2 𝝉

1 −1 −1 −1
2 −1 1 −1
3 1 −1 −1
4 1 1 1

The learning process is described as follows:

Step 1: We set randomly the weight parameters and the threshold value:
𝑤1 = 0.405, 𝑤2 = 0.109, 𝜃 = 0.117

Step 2: Set t = 1.
Step 3: The network does not converge.
Step 4: We calculate the output of the network:

Out = 𝑤1 × x(1)1 +𝑤2 × x(1)2 + 𝜃 = 0.405 × (−1) + 0.109 × (−1) + 0.117 = −0.396,
The error is err = 𝜏 (1) − Sign(Out) = −1 − (−1) = 0.

Step 5: The weight vector and the threshold do not change.
Step 6: Set t = 2.
Step 3: The network does not converge.
Step 4: We calculate the output of the network:

Out = 0.405 × (−1) + 0.109 × (1) + 0.117 = −0.177,
The error is err = 𝜏 (2) − Sign(Out) = −1 − (−1) = 0.

Step 5: The weights and the threshold do not change.
Step 6: Set t = 3.
Step 3: The network does not converge.
Step 4: We calculate the output of the network,

Out = −0.195 × (1) + 0.709 × (−1) + (−0.482) = 0.412,
The error is err = 𝜏 (2) − Sign(Out) = −1 − (1) = −2

Step 5: The weight vector and the threshold value are updated:
w ← (0.405, 0.109) + 0.3 × (−2) × (1,−1) = (−0.195, 0.709),
𝜃 ← 0.117 + 0.3 × (−2) = −0.482.

Step 6: Set t = 4.
Step 3: The network does not converge.
Step 4: We calculate the output of the network,

Out = −0.195 × (1) + 0.709 × (1) + (−0.482) = 0.322,
The error is err = 𝜏 (2) − Sign(Out) = 1 − (1) = 0

Step 5: The weights and the threshold do not change.
Step 6: Set t = 5.
Step 3: The network does not converge.

Repeating this process, we obtain the classification result as shown in Table 4.10. Finally the
classification boundary is

1.005 × x1 + 0.709 × x2 − 0.482 = 0.
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Table 4.10 Perceptron training process (AND gate).

t (x1, x2) tau 𝒘1 𝒘2 𝜽 Out err

1 (−1,−1) −1 0.405 0.109 0.117 −0.396 0
2 (−1,1) −1 0.405 0.109 0.117 −0.177 0
3 (1,−1) −1 −0.195 0.709 −0.482 0.412 −2
4 (1,1) 1 −0.195 0.709 −0.482 0.322 0
5 (−1,−1) −1 −0.195 0.709 −0.482 −0.996 0
6 (−1,1) −1 0.405 0.109 −1.082 0.422 −2
7 (1,−1) −1 0.405 0.109 −1.082 −0.787 0
8 (1,1) 1 1.005 0.709 −0.482 −0.567 2
9 (−1,−1) −1 1.005 0.709 −0.482 −2.196 0

10 (−1,1) −1 1.005 0.709 −0.482 −0.777 0

Minsky and Papert pointed out that the simple Perceptron cannot solve exclusive OR (XOR) prob-
lem as shown in 4.14 published in 1969 [66]. This is a classical two-class classification problem, but
the XOR problem is not linearly separable, which will be discussed later. That means we cannot
draw a straight line as a boundary to classify the two classes in the two-dimensional space.

What is the Widrow and Hoff learning model?

In 1960, Widrow and Hoff proposed adaptive switching circuits as a learning method [97]. The
Widrow–Hoff model has a single layer in this circuit with ADAptive LInear NEuron (ADALINE).
The ADALINE is based on a two layers model, which have no hidden layers. After the proposal
of ADALINE, they also proposed three-layer models, called MADALINE (Many ADALINE) [98],
which is combined with several ADALINEs. Among them, the simple MADALINE is shown in
Figure 4.217.

Output

yAND

Input
Pattern
Vector

X
x1

x2

x0 = +1

x0 = +1

+1

–1
Σ

Σ
+1

–1

Figure 4.217 A two ADALINE model (three-layer MADALINE) [98].
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The MADALINE can also solve linear separable problems, but it cannot solve XOR problems. A
simple example of linear separable problem of an OR gate is shown in Table 4.11. The MADALINE
network used in this example as shown in Figure 4.217 has one single output node.

The MADALINE has two input nodes x1, x2, four weight parameters 𝑤11, 𝑤12, 𝑤21, 𝑤22 between
the input layer and the hidden layer, and two weight parameters 𝑣1, 𝑣2 between the hidden layer
and output layer. In this case, 𝑣1, 𝑣2 are fixed equal to 1 for network training. And there are two
threshold values, 𝜃1, 𝜃2, as the training parameters.

Using L training samples, X, we prepare a set of data sequence Z for network training as follows:

Z = { (x(1)
1 , x(1)

2 , 𝜏 (1)) = (1, 1,−1),

(x(2)
1 , x(2)

2 , 𝜏 (2)) = (1,−1, 1),

(x(3)
1 , x(3)

2 , 𝜏 (3)) = (−1, 1, 1),

(x(4)
1 , x(4)

2 , 𝜏 (4)) = (−1,−1,−1),

(x(5)
1 , x(5)

2 , 𝜏 (5)) = (1, 1,−1),

(x(6)
1 , x(6)

2 , 𝜏 (6)) = (1,−1, 1),

(x(7)
1 , x(7)

2 , 𝜏 (7)) = (−1, 1, 1),

(x(8)
1 , x(8)

2 , 𝜏 (8)) = (−1,−1,−1),

⋮

(x(t)
1 , x

(t)
2 , 𝜏

(t)) = (x(t+4)
1 , x(t+4)

2 , 𝜏 (t+4)),

⋮

}.

Given the data sequence Z, the MADALINE learning procedure is described as follows:

Step 1: Initialize the weight parameters𝑤11, 𝑤12, 𝑤21, 𝑤22 and the threshold values 𝜃1, 𝜃2 randomly.
Step 2: Set time t = 1.
Step 3: Repeat steps 4–7 at the time t until it converges.
Step 4: Given the input x(t)1 and x(t)2 , the output y is calculated as follows:

z′1 ← x(t)1 ×𝑤11 + x(t)2 ×𝑤12 + 𝜃1,

z′2 ← x(t)1 ×𝑤21 + x(t)2 ×𝑤22 + 𝜃2,

z1 ← Sign(z′1),
z2 ← Sign(z′2),
y ← z1 AND z2.

Step 5: Calculate the error as err ← 𝜏 (t) − y.
Step 6: If (err ≠ 0), then update the weight parameters by
𝑤11 ← 𝑤11 + 𝜂 × (𝜏 (t) − z′1) × x(t)1 ,
𝑤12 ← 𝑤12 + 𝜂 × (𝜏 (t) − z′1) × x(t)2 ,
𝑤21 ← 𝑤21 + 𝜂 × (𝜏 (t) − z′2) × x(t)1 ,
𝑤22 ← 𝑤22 + 𝜂 × (𝜏 (t) − z′2) × x(t)2 .
and also update the threshold values by
𝜃1 ← 𝜃1 + (𝜏 (t) − z′1).
𝜃2 ← 𝜃2 + (𝜏 (t) − z′2).

Step 7: Set t ← t + 1.
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Example 4.267

Let us consider two-dimensional samples of an OR gate as shown in Table 4.11. Here
L = 4. Describe the behavior of the MADALINE for learning the OR gate.

Table 4.11 OR gate in two-dimensional data.

Number x1 x2 𝝉

1 −1 −1 −1
2 −1 1 1
3 1 −1 1
4 1 1 1

Step 1: We set randomly the weight parameters𝑤11 = 0.221,𝑤12 = −0.393,𝑤21 = 0.153,𝑤22 =
−0.005 and the threshold value 𝜃1 = −0.021, 𝜃2 = −0.084.

Step 2: Set t = 1.
Step 3: The network does not converge.
Step 4: We calculate the output y as follows:

z′1 = 𝑤11 × x(1)1 +𝑤12 × x(1)2 + 𝜃1
= 0.221 × (−1) + (−0.393) × (−1) + (−0.021) = 0.151,
z′2 = 𝑤21 × x(1)1 +𝑤22 × x(1)2 + 𝜃2
= 0.153 × (−1) + (−0.005) × (−1) + (−0.084) = −0.232,
z1 = Sign(x′1) = 1, z2 = Sign(x′2) = −1, So y = z1 AND z2 = −1

Step 5: The error is err = 𝜏 (1) − y = −1 − (−1) = 0.
Step 6: So the weight parameters and the threshold values do not change.
Step 7: Set t = 2.
Step 3: The network does not converge.
Step 4: We calculate the output y as follows:

z′1 = 0.221 × (−1) + (−0.393) × (1) + (−0.021) = 0.635,
z′2 = 0.153 × (−1) + (−0.005) × (1) + (−0.084) = −0.244,
z1 = Sign(x′1) = 1, z2 = Sign(x′2) = −1, So y = z1 AND z2 = −1

Step 5: err = 𝜏 (2) − (−1) = 1 − (−1) = 2.
Step 6: The weight parameters and the threshold values are updated as follows:
𝑤11 ← 𝑤11 + 𝜂 × (𝜏 (2) − z′1) × x(2)1
= 0.221 + 0.3 × (1 − 0.635) × (−1) = −0.378,
𝑤12 ← 𝑤12 + 𝜂 × (𝜏 (2) − z′1) × x(2)2
= −0.393 + 0.3 × (1 − 0.635) × (1) = 0.206,
𝑤21 ← 𝑤21 + 𝜂 × (𝜏 (2) − z′2) × x(2)1
= 0.153 + 0.3 × (1 − (−0.244)) × (−1) = −0.446,
𝑤22 ← 𝑤22 + 𝜂 × (𝜏 (2) − z′2) × x(2)2
= −0.005 + 0.3 × (1 − (−0.244)) × (1) = 0.594,
𝜃1 ← 𝜃1 + (𝜏 (2) − z′1) = −0.021 + 0.3 × (1 − 0.635) = 0.579;
𝜃2 ← 𝜃2 + (𝜏 (2) − z′2) = −0.084 + 0.3 × (1 − (−0.244)) = 0.515.

(Continued)
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Example 4.267 (Continued)

Step 7: Set t = 3.
Step 3: The network does not converge.

After repeating this process, we obtain the classification result as shown in Table 4.12.

Table 4.12 OR training process.

t (x1, x2) 𝒘11 𝒘12 𝒘21 𝒘22 𝜽1 𝜽2 z′
1

z′
2

t − y

1 (−1,−1) 0.221 −0.393 0.153 −0.005 −0.021 −0.084 0.151 −0.232 0
2 (−1,1) 0.221 −0.393 0.153 −0.005 −0.021 −0.084 0.635 −0.244 2
3 (1,−1) −0.378 0.206 −0.446 0.594 0.579 0.515 −0.006 −0.525 2
4 (1,1) 0.221 −0.393 0.153 −0.005 1.179 1.115 1.007 1.263 0
5 (−1,−1) 0.221 −0.393 0.153 −0.005 1.179 1.115 1.351 0.967 −2
6 (−1,1) 0.821 0.206 0.753 0.594 0.579 0.515 −0.035 0.355 2
7 (1,−1) 0.221 0.806 0.153 1.194 1.179 1.115 0.593 0.746 0
8 (1,1) 0.221 0.806 0.153 1.194 1.179 1.115 2.207 2.462 0
9 (−1,−1) 0.221 0.806 0.153 1.194 1.179 1.115 0.151 −0.233 0

10 (−1,1) 0.221 0.806 0.153 1.194 1.179 1.115 1.764 2.155 0

Let us consider a two-class classification problem, which finds a boundary between C1 and C2
as well. The evaluation of the MADALINE is performed by Least Mean Square (LMS) algorithm
which is developed using a gradient steepest method. This learning approach is also called a delta
rule. The delta rule minimizes the LMS error between the output value and the target value, which
is also called the LMS error minimization rule.

We have two kinds of categorical data, X1 = {x|x ∈ C1} and X2 = {x|x ∈ C2}, where
X = X1

⋃
X2. Our target is to find the optimum weight parameters and threshold values by

the delta rule, which is applied for the parameter updates from time t to t + 1. This update rule is
based on the the small changes of the weight parameters 𝛿wt(x):

wt+1(x) = wt(x) + 𝛿wt(x). (4.949)

Let the LMS error function be F(w(t)). We approximate the changes of the function F from time t
to t + 1:

F(wt+1) = F(wt + Δwt) ∼ F(wt) + 𝛻F(wt) ⋅ Δwt. (4.950)

If 𝛻F(wt) ⋅ Δwt < 0, then we verify F(wt+1) < F(wt). In Equation (4.949), 𝛿wt(x) is a gradient
descent vector that is written as:

𝛿wt(x) = −𝜂𝛻F(x) and 𝛻F(w) =
(
𝜕F(w)
𝜕𝑤1

,
𝜕F(w)
𝜕𝑤2

, · · ·
)
. (4.951)

Finally the weight parameters are updated by the following rule:

wt+1 =
⎧⎪⎨⎪⎩

wt if x is correctly classified
wt − 𝜂 × 𝛻F(w) if x ∈ C1and wtx ≥ 0
wt + 𝜂 × 𝛻F(w) if x ∈ C2and wtx < 0

. (4.952)
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Box 4.21 Steepest descent method

We have a function F(w) with an N-dimensional vector w, in which exists the gradient 𝛻F(w).
Let us find the best solution with the function F by an iteration procedure starting from an
initial location w(0). The iteration procedure from t to t + 1 is expressed as:

w(t+1) ← w(t) − 𝜂 × 𝛻F(w(t)), for t = 0, 1, 2,… (4.953)

where 𝜂 is a learning rate of the step with the gradient.

Example 4.268

Let us consider a function F(𝑤1, 𝑤2) = (𝑤1 − a1)2 + (𝑤2 − a2)2 with a1 = 2, a2 = 1. When
the initial settings are 𝑤(0)

1 = 0, 𝑤(0)
2 = 0 and 𝜂 = 0.2, calculate Equation (4.953).

The gradient of F is given by 𝛻F(𝑤1, 𝑤2) = (2(𝑤1 − a1), 2(𝑤2 − a2)), and the iteration function
is calculated by:

(𝑤(t+1)
1 , 𝑤

(t+1)
2 ) ← (𝑤(t)

1 , 𝑤
(t)
2 ) − 𝜂 ⋅ 𝛻F(𝑤(t)

1 , 𝑤
(t)
2 ) for i = 1, 2, 3,… . (4.954)

We apply the initial location for this iteration. The result is shown in Table 4.13.

Table 4.13 The step by step caluclation of the gradient method. 𝜂 = 0.2.

t 𝒘
(t)
1

𝒘
(t)
2

F(𝒘(t)
1
, 𝒘

(t)
2
) 𝜵F(𝒘(t)

1
, 𝒘

(t)
2
)

0 0 0 5 (−2,−4)
1 0.4 0.8 1.8 (−1.2,−2.4)
2 0.64 1.28 0.648 (−0.72,−1.44)
3 0.784 1.568 0.233 (−0.432,−0.864)
4 0.870 1.741 0.084 (−0.259,−0.518)
5 0.922 1.844 0.03 (−0.155,−0.311)
6 0.953 1.906 0.011 (−0.093,−0.187)
7 0.972 1.944 0.004 (−0.056,−0.112)
8 0.983 1.966 0.001 (−0.033,−0.067)
9 0.989 1.979 0.0005 (−0.020,−0.040)

10 0.994 1.989 0.0001 (−0.012,−0.024)
⋮ ⋮

20 1.000 2.000 0.0 (0.0,0.0)

What are the findings from physiology?

Box 4.22 Hubel and Wiesel discoveries

Hubel and Wiesel discovered the existence of neurons that have a function of detecting
the contour of objects in the cerebral cortex of cat eyes, and modelled neuron behaviour

(Continued)
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Box 4.22 (Continued)

over 1959–1962 [38][39]. In 1965, they clarified hyper complex neurons that have a function
of detecting a certain length of lines in vision. This was called a hierarchical model from
simple neurons to complex neurons[39]. In 1981, Hubel and Wiesel received a Nobel Prize
in Physiology or Medicine for the contribution of their discoveries concerning information
processing in the visual system.

When looking at an object, humans can extract some information from it. However, it is
very difficult to describe what kind of information is extracted and how it is done. In the fields
of physiology, psychology, engineering, etc., with the development of computers and measuring
instruments, numerous achievements have been reported since 1950s. Ratriff and Hartline found
the lateral inhibitory effect in the eye of limulus [34]. Campbell and Robson revealed the presence
of multi-channel hypothesis for visibility of grating [10]. And Marr defined a tri-level hypothesis
that has computational, algorithmic and implementational levels in simple modelling of low-level
processing [64].

Modelling human information processing covers various physiological findings obtained so far.
Of course, the visual model in brain has not been elucidated. We need to construct a model that
might simulate visual information processing. In 1980,Fukushima proposed the Cognitron and the
Neocognitron for modelling the visual information process. This work has been referred to as a
basic framework on multi-layer convolutional neural networks [28].

What are local patterns: primitives and texton

In general, there are no explicit definitions of texture itself in computer vision, but textures and
color are two important features to describe a picture. Texture contains a clue of identifying or
segmenting patterns in an image. If we need to select and extract global or local features directly
that determine the quality of classification, we commonly use features include color, texture, shape
and spatial correlations.

The color represents as the features of spatial information of the image. Color features have char-
acteristics that are insensitive to changes in direction and size, and do not capture the local features
of objects in an image.

Texture is a ubiquitous visual phenomenon, which is a macroscopic visual scene that appears
by primitive patterns repeated in space. As for a visual feature describing the homomorphism in a
picture, it embodies the organization of the surface structure of the object that changes periodically.

Shape is one of the discriminative features for describing information on objects to be recognized
in the image. Several shape-based recognition methods effectively detect a target, but they all have
a common problem, that is, they are easily affected by deformation. When a target is deformed, the
detection result will be very unreliable.

The spatial relationship also represents a feature that the target to be identified has in spatial rela-
tionship. Spatial information expresses limited information. It is usually impossible to accurately
determine an image by virtue of spatial relationships. Therefore, it is necessary to combine other
feature information to effectively perform image classification and retrieval.

There are two main types of textures: the first one is regular texture, which is formed by a com-
bination of texture primitives in a regular and orderly manner. It is often called artificial texture, a
common weaving object in life, a plate roll, a brick wall all reflect the artificial texture. The second
one is quasi-regular texture, which is not formed by regular texture primitives, but is represented by
the grey scale of the pixel by presenting some form of distribution. The overall ruled and partially
messy nature is also known as natural texture.
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Box 4.23 Julesz texton

Julesz revealed the existence of grey level spatial dependency. Different from color features,
texture refers to the spatial information of a set of basic elements or primitives (i.e. textons), the
fundamental micro-structures in natural images and the atoms of pre-attentive human visual
perception [41]. Textures may range from purely stochastic to perfectly regular and every-
thing in between. Texture is an important characteristic of many types of images. Figure 4.218
describes pre-attentively distinguishable texture pairs based either on global statistics or local
conspicuous elements, or both: (a) with different first-order statistics and difference in element
size; (b) with different second-order statistics and different element orientation;

Figure 4.218 Pre-attentively
distinguishable texture pairs by Juletz [41].

What kind of information do we extract as local patterns or features?

When humans look at an object and instantly extract certain information about it, it is presumed
what is being estimated or identified. For example, when an apple is placed on a white floor, it is
clearly distinguishable by the color, white and red, and then something like an apple is recognised
from the red shape.

From the viewpoint of physiology, Mach effect phenomenon or Mach bands can be observed in
the visual system [78]. The edge parts in a visual scene are enhanced by suppression of the side
band. With differences of intensities, these parts make it easier to extract important components
of visual information. This characteristic is considered to reduce the amount of information. An
important finding is the existence of an edge extraction mechanism that is likely to have infor-
mation at the edge, but why this extraction mechanism was formed is an important issue when
considering pattern recognition.

To discuss with this problem, let us consider a feature extraction mechanism (model) from the
viewpoint of the amount of information. Here, the information is referred to as “event obtained
when the prediction is contrary to the expected assumption”. At this time, from the previous
example, the presence of a red object in a white background is interpreted as red being present
in some places, contrary to the assumption of the existence of a place that is all white. Assuming
uniformity, when this assumption is broken, we notice that there is information in that part. From
this fact, “prediction” would be reasonable to assume uniformity that no change would occur. For
an observation area, S, we simply define the amount of information using entropy. In this area
S, it is assumed that the quantised function f (x) is represented by B-level features. Let n𝛼 be the
number of pixels at feature level 𝛼 and M be the total number of pixels in region S. The normalized
histogram p𝛼 is expressed by p𝛼 =

n𝛼
M
, 𝛼 = 1, 2, · · · ,B. It could be regarded as a feature distribution.

Here p𝛼 ≥ 0 and
∑B

𝛼=1 p𝛼 = 1. Using this feature distribution, the average amount of information
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is defined by

H(p) = −1
log B

B∑
𝛼=1

p𝛼 log p𝛼, (4.955)

where 0 ≤ H(p) ≤ 1.
For example, when B = 2, there are two feature levels of −1 and 1. When a pattern f is uniform

for all points in S, i.e. f (x) = −1 or 1, the average information amount H(p) comes to 0. On the
other hand, in S, when the number of 1s is the same as the number of −1s, that is p1 = p2 = 1∕2,
the average information amount reaches to the maximum. Further, it is easy to guess that when
H(p) is maximized at the Bth level feature, pi = pj, i ≠ j holds for all i, j in S.

A visual discrimination model assumes a hierarchical mechanism. As we mentioned in 4.22,
hierarchy in a visual system can be seen in the Hubel and Wiesel model in [39]. The bottom layer
such as sensory layer deals with all pixels, but the next layer only has small regions with large
differential values, and so forth. The physiologists discussed the existence of such a function in the
model of the visual system.

If we implement low-level processing of this model, we need to clarify where the information
amount is the maximum in the local area S. A black/white character pattern has pixel intensities
of 0 (black) and 1 (white). A pattern with intensity 0 forms the shape of a group. The maximum
amount of information is located on the boundary in this binary pattern. Edge regions with sev-
eral orientations (vertical, horizonal, etc.) can be represented in the second layer. Representative
patterns are based on the frequency of occurrence of local patterns. We come to the next problem
arising as to what kind of local patterns should be selected.

It is required mathematically to introduce an evaluation measure. As a similar concept to dis-
tance, a similarity measure is defined by an inner product. This measure is widely used in pattern
recognition. If two patterns are similar, the similarity should be r = 1, and if they are dissimilar,
the similarity is r = −1. Edge regions are extracted from a set of images or patterns, and clustering
is performed to obtain M representative clusters. If we use principal component analysis (PCA),
what kind of primitive patterns appear in the local area.

Box 4.24 What is principal component analysis (PCA)?

We have L images. Let us denote each image vector xi = (xi1, xi2, · · · , xiN )T , i = 1, 2, · · · ,L.(L <

N). The images are normalised by subtracting the mean image:

x̃i = xi − x = xi −
1
L

L∑
i=1

xi.

We concatenate these vectors to make a matrix X̃ with size N × L, i.e. X̃ = (x̃1, x̃2, · · · , x̃L).
The covariance matrix with size N × N is calculated by Σ = X̃X̃T

. If we apply the PCA for the
covariance matrix, there exist L eigenvectors corresponding to non-zero eigenvalues.

We calculate the eigenvalues and the corresponding eigenvectors using ΣU = ΛU, where
U = (u1, u2, · · · , uL) and Λ = diag(𝜆1, 𝜆2, · · · , 𝜆L) (𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆L).

For training, we project each normalised image x̃i into the eigenspace using ỹi = UT x̃i,

i = 1, 2, · · · ,L. For testing, we project each normalised test image into the eigen space using

z̃j = zj − x = zj −
1
L

L∑
i=1

xi, j = 1, 2,…

and ṽj = UT z̃j, j = 1, 2,… .
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Example 4.269

If you apply an eigenspace projection for local pattern vectors, show what kind of
principal vectors appear in principal components. We have three training images and
one test image with size 2 × 2 as follows:

x1 ∶
(

20 15
20 5

)
, x2 ∶

(
30 10
15 20

)
, x3 ∶

(
10 5
25 10

)
, z1 ∶

(
15 15
15 5

)
.

Calculate the eigen images using the PCA.

The mean image of x1, x2, x3 is x =
(

20 10
20 15

)
, and these images are converted to the vector form:

x1 =

⎛⎜⎜⎜⎜⎝
20
15
20
5

⎞⎟⎟⎟⎟⎠
, x2 =

⎛⎜⎜⎜⎜⎝
30
10
15
30

⎞⎟⎟⎟⎟⎠
, x3 =

⎛⎜⎜⎜⎜⎝
10
5

25
10

⎞⎟⎟⎟⎟⎠
, z1 =

⎛⎜⎜⎜⎜⎝
15
15
15
5

⎞⎟⎟⎟⎟⎠
, x =

⎛⎜⎜⎜⎜⎝
20
10
20
15

⎞⎟⎟⎟⎟⎠
.

The normalised vectors and the corresponding matrix form are as follows:

x̃1 =

⎛⎜⎜⎜⎜⎝
0
5
0

−10

⎞⎟⎟⎟⎟⎠
, x̃2 =

⎛⎜⎜⎜⎜⎝
10
0
−5
15

⎞⎟⎟⎟⎟⎠
, x̃3 =

⎛⎜⎜⎜⎜⎝
−10
−5
5
−5

⎞⎟⎟⎟⎟⎠
, X̃ =

⎛⎜⎜⎜⎜⎝
0 10 −10
5 0 −5
0 −5 5

−10 15 −5

⎞⎟⎟⎟⎟⎠
.

The covariance matrix with size 4 × 4 is calculated by

Σ = X̃X̃T =

⎛⎜⎜⎜⎜⎝
200 50 −100 200
50 50 −25 −25

−100 −25 50 −100
200 −25 −100 350

⎞⎟⎟⎟⎟⎠
.

From the eigenvalue problem, ΣU = ΛU, we obtain:

U =

⎛⎜⎜⎜⎜⎝
0.562 0.522
0.033 0.641
−0.281 −0.261
0.777 −0.499

⎞⎟⎟⎟⎟⎠
,Λ =

⎛⎜⎜⎜⎜⎝
529.6 0 0 0

0 120.4 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎠
.

Mapping these vectors into the eigenspace, we get:

UTX̃ =

⎛⎜⎜⎜⎜⎝
0.562 0.522
0.033 0.641
−0.281 −0.261
0.777 −0.499

⎞⎟⎟⎟⎟⎠
×

⎛⎜⎜⎜⎜⎝
0 10 −10
5 0 −5
0 −5 5

−10 15 −5

⎞⎟⎟⎟⎟⎠
=
⎛⎜⎜⎝
−7.605 8.195
18.68 −0.96

−11.075 −7.235

⎞⎟⎟⎠
T

.

The test image z1 is normalised as follows:

z̃1 = z1 − x =

⎛⎜⎜⎜⎜⎝
15
15
15
5

⎞⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎝
20
10
20
15

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
−5
5
−5
−10

⎞⎟⎟⎟⎟⎠
.

(Continued)
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And it is mapped into the eigenspace:

ṽ1 = UT z̃1 =

⎛⎜⎜⎜⎜⎝
0.562 0.522
0.033 0.641
−0.281 −0.261
0.777 −0.499

⎞⎟⎟⎟⎟⎠
×

⎛⎜⎜⎜⎜⎝
−5
5
−5
−10

⎞⎟⎟⎟⎟⎠
=
(
−9.010
6.895

)
.

For each class, we compute a representative vector w̃j in eigenspace for classification:

UTX̃ = (w̃1, w̃2, w̃3) =
(
−7.605 18.68 −11.075
8.195 −0.96 −7.235

)
.

We recognise which class the test pattern z1 belongs to by calculating the similarity measure as
follows:

Class 1: The similarity measure is ṽ1⋅w̃1
∥ṽ1∥×∥w̃1∥

= 0.98.

Class 2: The similarity measure is ṽ1⋅w̃2
∥ṽ1∥×∥w̃2∥

= −0.82.

Class 3: The similarity measure is ṽ1⋅w̃3

∥ṽ1∥×∥w̃3∥
= 0.33. Therefore as z1 is similar to x1, the test image

belongs to class 1.

Next we calculate the covariance matrix with size 3 × 3:

Σ′ = X̃TX̃ =
⎛⎜⎜⎝

125 −150 25
−150 350 −200

25 −200 175

⎞⎟⎟⎠ .
From Σ′U ′ = Λ′U ′, we obtain

U ′ =
⎛⎜⎜⎝

0.331 0.747
−0.812 −0.087
0.481 −0.660

⎞⎟⎟⎠ ,Λ′ =
⎛⎜⎜⎝
529.6 0 0

0 120.4 0
0 0 0

⎞⎟⎟⎠
X̃U ′ =

⎛⎜⎜⎜⎜⎝
0 10 −10
5 0 −5
0 −5 5

−10 15 −5

⎞⎟⎟⎟⎟⎠
×
⎛⎜⎜⎝

0.331 0.747
−0.812 −0.087
0.481 −0.660

⎞⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝
−12.93 5.73
−0.75 7.035
6.465 −2.865

−17.895 −5.475

⎞⎟⎟⎟⎟⎠
.

If we normalise

⎛⎜⎜⎜⎜⎝
−12.93 5.73
−0.75 7.035
6.465 −2.865

−17.895 −5.475

⎞⎟⎟⎟⎟⎠
, then we obtain

⎛⎜⎜⎜⎜⎝
−0.562 0.507
−0.033 0.640
0.281 −0.260
−0.778 −0.498

⎞⎟⎟⎟⎟⎠
= U. Note that the first

column vector is the inverse vector (each sign of the element is changed).

Example 4.270
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Apply the PCA for local pattern vectors. What kind of principal component vectors
can we obtain as primitive patterns?
If you collect several texture images and extracted the local patterns, we use the PCA to generate
the principal component vectors. The results are shown in Figure 4.219.

(a) Original sample

Original image

5 × 5 PCA result 9 × 9 PCA result 15 × 15 PCA result

Original image

5 × 5 PCA result 9 × 9 PCA result 15 × 15 PCA result

(b) The principal components

(c) Original image (d) The principal components

Figure 4.219 The principal component vectors. For each PCA result with size 5 × 5, 9 × 9 and
15 × 15, the upper-left one corresponds to the primal component, the upper-right one to the second
component, and lower-right one to the eighth component, etc. Source: Maria Petrou.

How do we find primitive patterns?

Selection of primitive patterns depends on a property of input patterns. It is obvious that pat-
terns you always see are selected as primitive patterns, while patterns that rarely appear are not.
This dependency is based on the frequency of appearance of patterns. For example, a new-born cat
wears glasses and draws vertical bars on the glasses [39]. In the experiments, this cat is put in a
white room. When the cat only see the vertical bars, it has been discovered that the “vertical bar
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(a) (c)(b)

Figure 4.220 Similarity definition of edges.

(a) (c)(b)

Figure 4.221 Similarity definition of lines.

detection cells” found are many, but “horizontal bar detection cells” seldom appear. Also, if a char-
acter set is limited to Chinese characters, mainly vertical and horizontal edge patterns appeared,
while in the case of alphabets and numbers, many oblique edge patterns appear. Therefore the
problem is that we should clarify conceptually similar or dissimilar patterns as primitive patterns
corresponding to edges or lines.

For example, the pattern similarity to be considered is shown in Figure 4.220. Figures 4.220(a)
and (b) correspond to the relationship between −1 and 1 in terms of similarity, which is called a
dual pattern. Here, the pattern as in (c) is orthogonal to the one in (a). That is, the similarity r is
close to r = 0.

When the local area S described above is further enlarged (this is referred to as a larger area
S′), S ⊂ S′, where is the area S′ that mamimises the amount of information in the edge layer? The
locations of this kind are like straight line segments as shown in Figure 4.221. It is considered to be
equivalent to the locations where some changes occurred in the edge layer. From the observation
of whether or not they are the same, we would find the dual pattern as shown in figures 4.221(a)
and (b). And the pattern as in (c) is an orthogonal pattern (r = 0).

When you look at the results of the PCA in Figure 4.219, you can find a gaussian like pattern in
the primal component. And then edge patterns are appeared in the second and third components.

What is the back-propagation learning method?

Although it is quite difficult to define primitive patterns, an innovation that is called the
back-propagation (BP) learning method was advanced in 1986 [84]. At that time, many researchers
immediately implemented this BP method for several recognition applications. Among them,
Lecun proposed a character recognition method using the BP[52].

Box 4.25 Sigmoid function

Sig(x) is a sigmoid function as shown in Figure 4.222 expressed by

Sig(x) = 1
1 + e−x . (4.956)
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And the differential of this function is calculated by

dSig(x)
dx

= e−x

(1 + e−x)2
= Sig(x)(1 − Sig(x)). (4.957)

−6 −4 −2 0 2 4 6
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
ig

(x
)

Sig(x)
dSig (x)/dx

Figure 4.222 A sigmoid function and the first derivative.

Box 4.26 Three-layer neural networks

Runmelhart et al. proposed an extension of the delta rule called a generalized delta
rule[84]. Let us explain the three-layer neural networks (NNs) as shown in Figure 4.223.
For training, we prepare a set of training pattern vectors X = {(x1, x2, · · · , xL)}, and
xi = (xi1, xi2, · · · , xin, · · · , xiN ), i = 1, 2, · · · ,L.

A pattern vector xi is mapped to hidden nodes with h(xi) and then to output nodes with
c(xi). The target (teaching) vector is 𝜏(xi), which corresponds to c(xi). These parameters are
summarized as follows,

c(x) = (c1(x), c2(x), · · · , ck(x), · · · , cK(x)) (4.958)
h(x) = (h1(x), h2(x), · · · , hm(x), · · · , hM(x)) (4.959)
𝝉(x) = (𝜏1(x), 𝜏2(x), · · · , 𝜏K(x)) (4.960)

where

ck(x) = Sig

( M∑
m=1

𝑣mkhm(x) + 𝜃2
k

)
(4.961)

hm(x) = Sig

( N∑
n=1

𝑤nmxin + 𝜃1
m

)
. (4.962)

(Continued)
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Box 4.26 (Continued)

c1

h3

c2 cK

hM

xNx2x1

. . .

. . .

. . .

h1 h2

Figure 4.223 Three-layer neural networks.

The LMS error between the output c(xi) and the target 𝝉(xi) is defined by

S(X) = 1
2L

L∑
i=1

K∑
k=1

(ck(xi) − 𝜏k(xi))2. (4.963)

Let us derive partial derivatives of S with respect to 𝑣mk and 𝑤nm,

𝜕S(X)
𝜕𝑣mk

= 0, (4.964)

𝜕S(X)
𝜕𝑤nm

= 0. (4.965)

𝜕S(X)
𝜕𝑣mk

= 1
2L

𝜕

𝜕𝑣mk

L∑
i=1

K∑
k=1

(ck(xi) − 𝜏k(xi))2

= 1
L

L∑
i=1

K∑
k=1

(ck(xi) − 𝜏k(xi))
𝜕ck(xi)
𝜕𝑣mk

= 1
L

L∑
i=1

{
(

K∑
k=1

(ck(xi) − 𝜏k(xi))ck(xi)(1 − ck(xi))

}
hm(xi) (4.966)

𝜕S(X)
𝜕𝑤nm

= 1
L

L∑
i=1

K∑
k=1

(ck(xi) − 𝜏k(xi))
𝜕ck(xi)
𝜕𝑤nm

= 1
L

L∑
i=1

K∑
k=1

(ck(xi) − 𝜏k(xi))ck(xi)(1 − ck(xi))𝑣mk
𝜕hm(xi))
𝜕𝑤nm

= 1
L

L∑
i=1

{ K∑
k=1

(ck(xi) − 𝜏k(xi))ck(xi)(1 − ck(xi))𝑣mk

}
×hm(xi)(1 − hm(xi))xin. (4.967)
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We assume that the changes of these parameters in the time domain depend on the spatial
changes in the function S. Using the steepest descent method, we derive the generalized delta
rules as follows,

𝑣mk ← 𝑣mk − 𝜂
𝜕S(X)
𝜕𝑣mk

(4.968)

𝑤nm ← 𝑤nm − 𝜂 𝜕S(X)
𝜕𝑤nm

. (4.969)

The LMS error S can be decomposed into the error of each data, Si, in the following.

𝜕S(X)
𝜕𝑣mk

=
L∑

i=1

𝜕Si(xi)
𝜕𝑣mk

(4.970)

𝜕S(X)
𝜕𝑤nm

=
L∑

i=1

𝜕Si(xi)
𝜕𝑤nm

(4.971)

where Si is denoted by

Si(xi) =
1
2

K∑
k=1

(ck(xi) − 𝜏k(xi))2. (4.972)

The generalised delta rules for each data are derived in the following,

𝑣
(t+1)
mk ← 𝑣

(t)
mk − 𝜂

𝜕St mod L(x(t))
𝜕𝑣mk

= 𝑣
(t)
mk − 𝜂(ck(x

(t)
i ) − 𝜏k(x

(t)
i ))hm(x

(t)
i ) (4.973)

𝑤
(t+1)
nm ←𝑤

(t)
nm − 𝜂

𝜕St mod L(x(t))
𝜕𝑤nm

= 𝑤
(t)
nm − 𝜂(ck(x

(t)
i ) − 𝜏k(x

(t)
i ))𝑣(t)mk × hm(x

(t)
i )(1 − hm(x

(t)
i ))x(t)in (4.974)

𝜃
2,(t+1)
k ← 𝜃

2,(t)
k − 𝜂

𝜕St mod L(x(t))
𝜕𝜃2

k

= 𝜃
2,(t)
k − 𝜂(ck(x

(t)
i ) − 𝜏k(x

(t)
i )), (4.975)

𝜃
1,(t+1)
m ← 𝜃

1,(t)
m − 𝜂

𝜕St mod L(x(t))
𝜕𝜃1

m

= 𝜃
1,(t)
m − 𝜂(ck(x

(t)
i ) − 𝜏k(x

(t)
i ))𝑣(t)mk × hm(x

(t)
i )(1 − hm(x

(t)
i )). (4.976)

Example 4.271

Let us give as an example of three-layer NN as shown in Figure 4.224 This three-layer
NN can solve an XOR problem as shown in Table 4.14. As Perceptron and ADALINE
are linear classifierd, it is difficult to solve it.

The three-layer NN converges on a solution, as shown in Figure 4.225. In this figure, the vertical
axis is a learning error between the training signal and the target signal. The step by step calcu-
lation of the three-layer NN is shown in Tables 4.15 and 4.16. Here the number of total epochs is
up to 1000, and the learning rate is 𝜂 = 0.2

(Continued)
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Example 4.271 (Continued)

w22w21w12w11

v1

h1 h2

x1 x2

Out

v2

Figure 4.224 The three-layer NN.

Table 4.14 XOR problem.

Number x1 x2 𝝉

1 −1 −1 −1
2 −1 1 1
3 1 −1 1
4 1 1 −1

1.4

1.2

0.8

0.6

0.4

0.2

0
0 50 100 150 200 250 300

1

Figure 4.225 Error in the three-layer NN.
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Table 4.15 The step by step calculation of three-layer NN(1).

t 𝒘11 𝒘12 𝒘21 𝒘22 𝒗1 𝒗2 𝜽1 𝜽2 𝜽3 err out

0 0.200 0.800 −0.700 0.200 0.100 −0.100 1.000 0.800 −1.500
1 0.199 0.801 −0.701 0.201 0.138 −0.079 1.001 0.799 −1.454 0.107 −1.463
2 0.191 0.806 −0.692 0.196 0.265 0.054 1.009 0.794 −1.211 2.940 −1.425
3 0.197 0.808 −0.698 0.195 0.434 0.210 1.015 0.796 −1.017 1.877 −0.937
⋮ ⋮

100 −0.322 0.754 −0.765 0.330 0.624 0.323 0.968 0.826 −0.670 0.653 0.143
200 −0.814 0.787 −0.954 0.499 0.817 0.384 1.015 0.844 −0.789 0.521 0.021
300 −1.266 0.923 −1.231 0.777 1.094 0.610 1.253 0.907 −1.102 0.399 −0.106
400 −1.663 1.195 −1.572 1.185 1.431 1.020 1.588 1.089 −1.612 0.295 −0.232
500 −1.983 1.538 −1.897 1.592 1.784 1.511 1.888 1.382 −2.231 0.183 −0.395
600 −2.209 1.829 −2.139 1.888 2.085 1.932 2.102 1.653 −2.788 0.090 −0.576
700 −2.353 2.026 −2.298 2.075 2.304 2.228 2.239 1.841 −3.196 0.037 −0.727
800 −2.439 2.149 −2.396 2.184 2.450 2.416 2.323 1.958 −3.463 0.014 −0.832
900 −2.488 2.224 −2.456 2.247 2.540 2.531 2.373 2.027 −3.628 0.005 −0.899

1000 −2.516 2.269 −2.493 2.283 2.595 2.600 2.403 2.068 −3.727 0.002 −0.940

Table 4.16 The step by step calculation of three-layer NN(2).

t h1 h2 𝚫𝒗1 𝚫𝒗2 𝚫𝜽3 𝚫𝒘11 𝚫𝒘12 𝚫𝒘21 𝚫𝒘22 𝚫𝜽1 𝚫𝜽2

0
1 0.818 0.450 0.038 0.021 0.046 −0.001 0.001 −0.001 0.001 0.001 −0.001
2 0.525 0.550 0.127 0.133 0.242 −0.008 0.005 0.008 −0.005 0.008 −0.005
3 0.869 0.803 0.168 0.156 0.194 0.006 0.002 −0.006 −0.002 0.006 0.002
⋮ ⋮

100 0.485 0.873 −0.055 −0.100 −0.114 −0.019 −0.005 −0.019 −0.005 −0.019 −0.005
200 0.333 0.895 −0.034 −0.091 −0.102 −0.019 −0.005 −0.019 −0.005 −0.019 −0.005
300 0.233 0.932 −0.021 −0.083 −0.089 −0.018 −0.004 −0.018 −0.004 −0.018 −0.004
400 0.168 0.970 −0.013 −0.075 −0.077 −0.016 −0.002 −0.016 −0.002 −0.016 −0.002
500 0.124 0.989 −0.007 −0.060 −0.061 −0.012 −0.001 −0.012 −0.001 −0.012 −0.001
600 0.098 0.995 −0.004 −0.042 −0.042 −0.008 0.000 −0.008 0.000 −0.008 0.000
700 0.083 0.997 −0.002 −0.027 −0.027 −0.005 0.000 −0.005 0.000 −0.005 0.000
800 0.076 0.998 −0.001 −0.017 −0.017 −0.003 0.000 −0.003 0.000 −0.003 0.000
900 0.071 0.998 −0.001 −0.010 −0.010 −0.002 0.000 −0.002 0.000 −0.002 0.000

1000 0.069 0.999 0.000 −0.006 −0.006 −0.001 0.000 −0.001 0.000 −0.001 0.000

(Continued)
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Example 4.271 (Continued)

For initial setting, input data is x1 = −1, x2 = −1 and the target is y = −1. The network output
is out. Four weights and two thresholds between the first layer and the hidden layer are denoted
as 𝑤11 = 0.2, 𝑤12 = 0.8, 𝑤21 = −0.7, 𝑤22 = 0.2, 𝜃1 = 1.0, 𝜃2 = 0.8, and the hidden layer has two
nodes h1, h2. Two weights and one threshold between the hidden layer and the output layer are
denoted as 𝑣1 = 0.1, 𝑣2 = −0.1, 𝜃3 = −1.5, and the learning rate is 𝜂 = 0.1.

For forward propagation, we calculate node values in the hidden layer using the Sigmoid func-
tion:

neth1 = x1 ×𝑤11 + x2 ×𝑤21 + 𝜃1

= (−1) × 0.2 + (−1) × (−0.7) + 1.0 = 1.5,
neth2 = x1 ×𝑤12 + x2 ×𝑤22 + 𝜃2

= (−1) × 0.8 + (−1) × 0.2 + 0.8 = −0.2,

h1 =
1

(1 + exp(−neth1)
= 1

(1 + exp(−1.5)
= 0.817,

h2 =
1

(1 + exp(−neth2)
= 1

(1 + exp(−(−0.2))
= 0.450.

The output value is

out = h1 × 𝑣1 + h2 × 𝑣2 + 𝜃3 = 0.817 × 0.1 + 0.450 × (−0.1) + (−1.5) = −1.463.

For backward propagation, the square error is

Etotal =
1
2
(y − out)2 = 0.5 × (−1 − (−1.463))2 = 0.215.

For the parameter 𝑣1, we calculate the partial derivative of Etotal with respect to 𝑣1.
𝜕Etotal

𝜕𝑣1
=
𝜕Etotal

𝜕out
× 𝜕out
𝜕𝑣1

,

𝜕Etotal

𝜕out
= 2 × 1∕2(y − out) = y − out = 0.463

𝜕out
𝜕𝑣1

= h1 = 0.817.

Update the parameter value on 𝑣1 by

𝑣1 ← 𝑣1 + 𝜂 × (y − out) × h1 = 𝑣1 + 0.038 = −0.138.

In the same way, the parameter value on 𝑣2 by

𝑣2 ← 𝑣2 + 𝜂 × (y − out) × h2 = 𝑣2 + 0.021 = −0.079.

For 𝜃3 by

𝜃3 ← 𝜃3 + 𝜂 × (y − out) = 𝜃3 + 0.046 = −1.454.

For 𝑤11,
𝜕Etotal

𝜕𝑤11
=
𝜕Etotal

𝜕out
× 𝜕out
𝜕h1

×
𝜕h1

𝜕net1
×
𝜕net1

𝜕𝑤11
𝜕Etotal

𝜕out
= 2 × 1

2
(y − out) = y − out = 0.463.
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As out = h1 × 𝑣1 + h2 × 𝑣2, we obtain
𝜕net1

𝜕h1
= 𝑣1 = 0.1

As h1 = 1
1+exp(−neth1)

, we obtain

𝜕h1

𝜕net1
= h1(1 − h1) = 0.150.

As neth1 = x1 ×𝑤11 + x2 ×𝑤21, we obtain
𝜕net1

𝜕𝑤11
= x1 = −1.

Therefore
𝜕Etotal

𝜕𝑤11
= (y − out) × 𝑣1 × h1(1 − h1) × x1 = −0.001.

Renew the value in 𝑤11,

𝑤11 ← 𝑤11 + 𝜂 ×
𝜕Etotal

𝜕𝑤11
.

Update the parameters 𝑤11, 𝑤12, 𝑤21 and 𝑤22 as follows:

𝑤11 ← 𝑤11 + 𝜂 × (y − out) × 𝑣1 × h1(1 − h1) × x1 = 𝑤11 − 0.007 = 0.199,
𝑤12 ← 𝑤12 + 𝜂 × (y − out) × 𝑣2 × h2(1 − h2) × x1 = 𝑤12 + 0.001 = 0.801,
𝑤21 ← 𝑤21 + 𝜂 × (y − out) × 𝑣1 × h1(1 − h1) × x2 = 𝑤21 − 0.001 = −0.701,
𝑤22 ← 𝑤22 + 𝜂 × (y − out) × 𝑣2 × h2(1 − h2) × x2 = 𝑤22 + 0.001 = 0.201.

We also update 𝜃1 and 𝜃2 as follows:

𝜃1 ← 𝜃1 + 𝜂 × (y − out) × 𝑣1 × h1(1 − h1) = 𝜃1 + 0.001 = 1.001.
𝜃2 ← 𝜃2 + 𝜂 × (y − out) × 𝑣2 × h2(1 − h2) = 𝜃2 − 0.001 = 0.799.

How do we solve the vanishing gradient problem?

If we train a deep neural network, we suffer from a vanishing gradient problem, which is an
unstable behavior. In a deep neural network it is difficult to propagate gradient information
backward from the output nodes to the input nodes. Some specific activation functions such as the
sigmoid function make the input information in the small input space of [0,1] vanish. Therefore,
the big change in the input of the sigmoid function causes a small change in the output. And
then the derived function becomes small. If we check the first derivative of the sigmoid function
as shown in Figure 4.222, it is noticed that the output range of the first derivative turns into
[0,0.3).

There are several ways to fix this problem. Several researchers have proposed solving it by finding
effective methods, such as the alternative activation function, pre-training, and gradient descent
approaches, etc. The most common change is the use of the rectified linear activation function
Rect(x) = max (0, x), instead of the sigmoid activation function. When a layer using a specific acti-
vated function is added to a neural network, the gradients of the loss function become closer to
zero, and it turns out that the training of the network converges to the optimum.
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Difficulties in texture classification: intra-class variations and inter-class similarities

The difficulties in texture classification mainly involve large intra-class variations and inter-class
similarities. Since the size and color are not stable even in one structure, it is hard to define a
texton as mentioned in Box 4.23. The large intra-class appearance variations are caused by changes
in illumination, rotation, scale, blur, noise, occlusion, etc. For example, as shown in Figure 4.226,
these intra-class images have noticeably distinctive elements of “bubble” as: (a) toy balloon-like
bubbles with almost same size and rich colors, and (b) beer foam-like bubbles with huge diversity
in size and shape but all in yellow with a white foam background.

Inter-class images may also appear to have similar patterns due to the fuzzy definition of texture
species, thus making the cluster task difficult due to unclear boundaries between classes that result
in limited accuracy. Therefore, when dealing with the texture classification tasks, it is also required
to reduce the features enhancing inter-class similarities. For example, as shown in Figure 4.227, (a)
is woven, but the image has a similar pattern, (b) is from the braided class, and this kind of similar
sample may even be difficult for a human to discriminate, thus confusing or upsetting the texture
classification task.

(a) One example of bubbly texture (b) Another example of a bubbly class

Figure 4.226 Very large intra-class variations caused by changes in illumination, rotation, scale, blur,
noise, occlusion, etc. Source: Flickr.

(a) Woven texture example (b) Cross-hatched texture example

Figure 4.227 Inter-class images may also appear to have a similar pattern due to the fuzzy definition of
each texture species.
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What is Fisher’s discriminating feature space?

Texture features require a characteristic of discriminating classes. The problem is how to construct
the boundaries between classes. Let us introduce the famous Fisher’s amount of information, in
terms of Fisher mapping, which requires that the variance within classes should be reduced, while
the variance between classes should be increased.

Let X be an entire set of patterns, and Xi ⊂ X be the subset in the ith class. If we have K classes,
X = ∪K

i=1Xi. For the ith class, the mean vector, ui, and the covariance matrix, Σi, in RN are denoted
as:

ui = Ex∈Xi
[x] (4.977)

Σi = Ex∈Xi
[(x − ui)(x − ui)T]. (4.978)

Let us assume a linear mapping from an N-dimensional vector, x ∈ X, to the M-dimensional
vector, ‚x, (N > M):

‚x = Φ ⋅ x. (4.979)

Thus, the degenerated M-dimensional space is the discriminative feature space, which separates K
classes of patterns.

Let construct the discriminant feature space, where matching is performed using similarity. In
order to separate K classes, The Fisher mapping considers an intra-class covariance matrix and an
inter-class covariance matrix in distribution of class patterns. First, let the intra-class covariance
matrix be ΣW and the inter-class covariance matrix be ΣB in the following:

ΣW =
K∑

i=1
𝑤iΣi (4.980)

ΣB = 1
2

K∑
i=1

K∑
j=1
𝑤i𝑤j((ui − uj)TΣ−1

𝑤 (ui − uj)). (4.981)

After the linear mapping in Equation (4.979), the mean vector and the covariance matrix in R̂M are
denoted as:

ûi = ΦTui Σ̂i = ΦTΣiΦ.

We obtain the mapped intra- and inter-classes covariance matrices:

Σ̂W = ΦTΣWΦ, Σ̂B = ΦTΣBΦ.

As an evaluation criterion, we utilise the average Maharanobis distance MD[Φ] of K classes as:

MD[Φ] = 1
2

K∑
i=1

K∑
j=1
𝑤i𝑤j((ûi − ûj)TΣ̂−1

𝑤 (ûi − ûj)) (4.982)

where the probability of ith class pattern occurrence is 𝑤i, Let us find the mapping matrix Φ that
maximizes MD[Φ]. Since this is the maximum optimisation problem for Φ, we solve the following
generalised eigenvalue problem given by:

ΣBΦ = ΣWΦΛM (4.983)

where 𝜆i is the ith eigenvalue, and the eigen matrix is ΛM = diag[𝜆1, 𝜆2, · · · , 𝜆M].
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In order to investigate the meaning of this transformation, the normalized space from RN is R̂M
.

𝝃i is an eigenvector for the ith eigenvalue 𝜆i. Therefore, the mapping from x to ‚x is

PM = (𝝃1, 𝝃2, · · · , 𝝃M), (4.984)

where PM is an N × M matrix. From the equation (4.984), the following equation holds

ΛM = Σ−1∕2
W PM . (4.985)

It can be considered in two stages. Here, we map the pattern space into R̆M space. Then we apply
the intra-class covariance matrix in R̃M for this space:

x̆ = Σ−1∕2
W x, ‚x = PT

M
‚x. (4.986)

This means that the variance in each class should be constant. Therefore, R̆N is called a normalized
space. In this space, the scattering within each class is given by:

Σ̆W = Σ−1∕2
W ΣWΣ−1∕2

W = IM . (4.987)

Since each class variance is constant, the separation between classes is strengthened while keep-
ing this property. Specifically, we consider the discrimination between two classes based on the
Mahalanobis distance.

Example 4.272

At first, we have two classes that have 2D data:

C1 = {(3.5, 4.6), (4.2, 3.8), (3.2, 3.6), (3.1, 3.4), (4.5, 2.6)}
C2 = {(0.9, 1.5), (1.7, 3.0), (1.2, 1.9), (2.2, 2.9)}.

We illustrate the data as shown in Figure 4.228. Here “⋅” indicates class 1 and “★”
indicates class 2.

5

4

3

2

1

0
0 1 2 3 4 5 6

6

Figure 4.228 The data for Fisher discriminant analysis.
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Suppose two classes of observations have means 𝜇1, 𝜇2:

𝜇1 =
(1

5
(3.5 + 4.2 + 3.2 + 3.1 + 4.5), 1

5
(4.6 + 3.8 + 3.6 + 3.4 + 2.6)

)T
= (3.7, 3.6)T .

In the same way, we obtain 𝜇2 = (1.5, 2.325)T .

And we calculate the mean vector for all data:

𝜇 =
(1

9
(3.7 × 5 + 1.5 × 4), 1

9
(3.6 × 5 + 2.325 × 4)

)T
= (2.722, 3.033)T .

Let us derive the intra-class dispersion matrix S𝑤 ∶

S1 =
5∑

i=1
(C1,i − 𝜇1)T × (C1,i − 𝜇1) =

(
1.540 −0.780
−0.780 2.080

)
S2 =

4∑
i=1

(C2,i − 𝜇2)T × (C2,i − 𝜇2) =
(

0.980 1.160
1.160 1.648

)
S𝑤 =

5 × S1 + 4 × S2

9
=
(

1.291 0.082
0.082 1.888

)
.

And we calculate the inter-class dispersion matrix Sb ∶

Sb = 1
9
(5 × (𝜇 − 𝜇1)T ⋅ (𝜇 − 𝜇1) + 4 × (𝜇 − 𝜇2)T ⋅ (𝜇 − 𝜇2)) =

(
1.195 0.693
0.692 0.401

)
.

We find the maximum eigenvalue and eigenvector for:(
S𝑤 +

(
0.1 0
0 0.1

))−1

⋅ Sb =
(

0.841 0.487
0.314 0.182

)
.

We obtain the eigenvalues and eigenvectors:

𝜆1 = 1.022, 𝑣1 =
(

0.937
0.350

)
𝜆2 = −2.775, 𝑣2 =

(
−0.501
0.865

)
.

We only use the biggest eigenvalue. So the slope of the line is:

W = 𝑣1 =
(

0.937
0.350

)
k = 0.350

0.937
= 0.3732.

Newly mapped 1D data become:

C1,new = C1 ⋅ W = {4.887, 5.263, 4.257, 4.093, 5.125}
C2,new = C2 ⋅ W = {1.368, 2.642, 1.789, 3.075}.

We draw the data on the line as shown in Figure 4.229: Here “∗” indicates class 1 and “∘” indicates
class 2.

(Continued)
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Example 4.272 (Continued)

5
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1

0
0 1 2 3 4 5 6

6

Figure 4.229 The result for Fisher discriminant analysis.

How was texture analysis developed in the past?

Texture classification includes pre-processing, feature extraction, and learning and classification.
For training the neural networks, we need to collect a large number of texture images with classes,
and store them with labels as training and testing datasets. After pre-processing these images, we
extract typical discriminative features from them. Finally, we classify those texture images into
different classes.

The history of the development of traditional texture analysis methods is shown in Table 4.17.
Gibson investigated visual perception of wallpapers with different angles and proposed a concept
of texture gradients as shape-from-texture [30]. In his book, he mentioned, “In the retinal image ab,
there exists a gradient of texture from coarse to fine, · · ·”. Traditional methods include GLCM, the
MRF model, the Gabor filter, wavelet, fractal, SIFT, etc. Among these methods, the bags of features
(BoF) [68], a vector of locally aggregated descriptors (VLAD) [40], and Fisher vector (FV) encoding
[86] methods are three widely used traditional methods on texture recognition. BoF [68] is simply
using the k-means methods to cluster image features like scale-invariant feature transform (SIFT)
features and then replace the feature points with a clustering center close to the feature points.

VLAD [40], like BoF, only considers the cluster centre closest to the feature point, and VLAD
preserves the distance of each feature point to the nearest cluster centre; similar to the FV encoding,
VLAD takes into account the value of each dimension of the feature point, and has a more detailed
picture of the local information of the image; and the VLAD feature has no loss of information.

The Fisher vector [86] is obtained by modelling the feature points in a generative model
(e.g. Gaussian mixture model, GMM). Then the Fisher vector is input into a discriminant classifier
(e.g. SVM) to obtain an image classification result. The fisher vector is a representation of the
sample features in the fisher kernel that represents a picture as a vector, extending the BoF by
encoding higher order statistics (first and second order), retaining information about the fitting
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Table 4.17 Traditional methods for the development of
texture analysis.

1950 Shape from texture [30]
1962 Texture perception model (random texture) [42]
1973 Grey-level co-occurrence matrix [33]
1980 Laws’ filter masks [33]
1981 The texton theory [41]
1983 MRF texture model [17]
1985 Gaussian MRF [13]
1989 Gabor filter [27]
1997 Wavelet [58]
1999 Fractal model [45]
2000 Gabor Wavelets [4]
2001 Bag of Textons [79]
2002 Multi-scale LBP [59]
2004 SIFT [18]
2007 LBP for Facial Texture [102]
2009 Texton-boost [89]
2010 Improved Fisher Vector [55]

error of the best fit. We will introduce the concept of the Fisher information matrix which is the
basis of the Fisher vector.

The time-line introducing development of deep-learning based texture analysis methods are
shown as in Table 4.18. Generally, such a deep learning methodology learns network parameters
to reduce the least square error with an input signal and the target signal.

Since 2012, the CNN-based method has been greatly developed and has achieved the
state-of-the-art in many computer vision tasks. CNN network has powerful feature extrac-
tion for images, thus in 2015, researchers began to apply CNN in texture recognition. The
frameworks of two CNN based methods are shown as Figure 4.230.

Table 4.18 Time-line of deep-learning based
methods.

2012 Deep CNN for ImageNet [50]
2013 Scattering Convolution Network [8]
2014 DeCAF and IFV [15]
2015 CNN for Texture Synthesis [14]
2015 FV-CNN [14]
2016 Texture CNN [3]
2016 Bilinear CNN [56]
2017 Deep TEN [101]
2017 FASON [19]
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CONV

(C filters) CONV

(C filters)

Handcraft Local

Features

Average

Pooling

CONV

(D filters)

FC layers

Fisher Vector

Classifier

SoftMax

(a) Texture CNN (b) FV- CNN

Figure 4.230 The framework of TCNN and FV-CNN.

Andrearczyk et al. (2016) proposed texture CNN (T-CNN) [3], utilizing global average pooling
extracting an energy measure from the last convolution layer which is connected to a fully con-
nected layer.

Cimpoi et al. (2015) proposed FV-CNN [14] and Song et al. (2017) proposed LFV-CNN [93]. Stat-
ing the FV descriptor shows higher recognition performance than FC-CNN, even if the pre-trained
VGG-VD [90] model is fine-tuned on the texture dataset, and this method obtained a state-of-the-art
result. The convolutional layer using the pre-trained neural network extracted the depth features
and used the Fisher vector encoder to refresh the state-of-the-art (middle) at the time.

A method utilizing co-occurrence matrices in a CNN structure is a cascade model adding a
co-occurrence feature learning layer to the basic CNN framework [100]. The co-occurrence vec-
tors computed from CNN features of different layers are fused via a fully connected layer obtaining
the prediction results.

What is the Fisher information matrix (FIM)?

Let a probability density function be f (x, 𝜃) and a log-likelihood of this function be

log L(𝜃, x′) = log f (x′, 𝜃) (4.988)

where we have a sample x′. A score function, which is a partial derivative of the log-likelihood
function, is defined by

𝜕

𝜕𝜃
log L(𝜃, x′) = 1

L(𝜃, x′)
𝜕

𝜕𝜃
L(𝜃, x′). (4.989)

Note that the expectation of this score function is E
[
𝜕

𝜕𝜃
log L(𝜃, x′)

]
= 0. The Fisher information

amount is a variance of the score function which is denoted by

E
[(

𝜕

𝜕𝜃
log L(𝜃, x′)

)2]
= Var

[
𝜕

𝜕𝜃
log L(𝜃, x′)

]
. (4.990)
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And the Fisher information matrix is provided by FIM = [FIMij], which element is denoted by

FIMij = E

[(
𝜕

𝜕𝜃i
log L(𝜃, x′)

)(
𝜕

𝜕𝜃j
log L(𝜃, x′)

)]
= E[Gi × Gj] (4.991)

where we define a score vector by

G = (G1,G2, · · · ,GK)T ,Gi =
𝜕

𝜕𝜃i
log L(𝜃, x′).

Example 4.273

If the probability density function is

f (x, 𝜇, 𝜎) = 1
(2π)1∕2𝜎

exp
[
−(x − 𝜇)2

2𝜎2

]
calculate the Fisher information matrix of this function.
From Equation 4.273, we calculate the log-likelihood as follows,

log L(𝜇, 𝜎, x′) = −1
2

log(2π) − log 𝜎 − (x′ − 𝜇)2

2𝜎2

= −1
2

log(2π) − 1
2

log 𝜎2 − (x′ − 𝜇)2

2𝜎2

and derive two score functions, which take the derivative with 𝜇 and 𝜎2,

𝜕

𝜕𝜇
log L(𝜇, 𝜎, x′) = x′ − 𝜇

𝜎2

𝜕

𝜕𝜎2 log L(𝜇, 𝜎, x′) = − 1
𝜎2 + (x′ − 𝜇)2

2𝜎4 .

From Equation (4.990), the Fisher information amount is

E

[(
𝜕

𝜕𝜇
log L(𝜇, 𝜎, x′)

)2
]
= E

[
(x′ − 𝜇)2

𝜎4

]
= 1
𝜎2 ,

E
[(

𝜕

𝜕𝜎2 log L(𝜇, 𝜎, x′)
)2]

= E

[(
− 1
𝜎2 + (x′ − 𝜇)2

2𝜎4

)2
]
= 1

2𝜎4 .

E
[(

𝜕

𝜕𝜇
log L(𝜇, 𝜎, x′)

)(
𝜕

𝜕𝜎2 log L(𝜇, 𝜎, x′)
)]

= 0.

Finally, the Fisher information matrix is

FIM =

(
1
𝜎2 0
0 1

2𝜎4

)
.

How do we implement the co-occurrence matrix feature map?

Let us take up the basic method GLCM from the conventional methods, and consider the connec-
tion between the feature map and the CNN. For the construction of a co-occurrence matrix it is
required to consider all pairs of pixels that are at a fixed distance from each other. Irrespective of
the relative orientations, the line that joins them forms in the reference direction of the image.
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Figure 4.231 The calculation process of the co-occurrence matrix.

Such matrices are parametric by the distance d only, and the system may have as many matrices
as it chooses to use Equation 3.267. The calculation process of co-occurrence matrix is shown in
Figure 4.231.

As all pairs connect to one certain pixel, the network could construct a digital circle to repre-
sent all directions, for example, setting d = 4, the network may calculate GLCM in 16 directions.
According to Table 4.19, we have all the pairs of pixels as following offsets [-4,1], [-4,2], [-3,2], [-3,3],
[-2,3], [-2,4], [-1,4], [0,4], [1,4], [2,4], [2,3], [3,3], [3,2], [4,2], [4,2], [4,0]. By calculating the GLCM
inn all the directions with grey level k = 56, the network could get a 16 × 56 × 56 size feature map
for each texture image. Different angle 𝜃 features for a texture image of distance d = 1 are shown
in Figure 4.232.

The RGB to grey conversion is calculated by:

Grey = 0.299 ⋅ R + 0.587 ⋅ G + 0.114 ⋅ B (4.992)

where Grey indicates the computation result of grey image conversion, and R,G,B indicate the red,
green, blue channel colour numerical values of the original image, respectively.

Figure 4.233 shows the visualization of GLCM features with parameter d = 4, horizonal direction
𝜃 = 0∘, setting gray level k = 56 of banded, blotchy, bumpy, and gauzy texture images. Different tex-
tures show distinguishing features, thus proving the GLCM is an applicable descriptor for textures.
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(a) [0,1] 0° horizontal (b) [1,0] 90° vertical

(c) [1,1] 45° (d) [−1,1] 135°

Figure 4.232 Example of different angle 𝜃 features for a texture image of distance d = 1. Source:
Sei-ichiro Kamata.
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Banded Blotchy

Bumpy Gauzy

Figure 4.233 The visualization of GLCM features with parameter d = 4, horizontal direction 𝜃 = 0∘, setting
grey level k = 56 of banded, blotchy, bumpy, and gauzy texture images; different textures shows
distinguishing features, thus proving the GLCM is an applicable descriptor for textures. Source: Sei-ichiro
Kamata.

Table 4.19 The coordinates of the pixels that make
up the digital circle according to certain distance.

Distance d Direction 𝜽

d = 𝟏 [−1, 0], [−1, 1], [0, 1], [1, 1]
d = 𝟐 [−2, 0], [−2, 1], [−1, 2], [0, 2],

[1, 2], [2, 1], [1,−2], [0,−2],
[−1,−2], [−2,−1]

d = 𝟒 [−4, 1], [−4, 2], [−3, 2], [−3, 3],
[−2, 3], [−2, 4], [−1, 4], [0, 4],
[1, 4], [2, 4], [2, 3], [3, 3],
[3, 2], [4, 2], [4, 2], [4, 0]

In order to find the good parameter setting for GLCM feature extraction, the network set experi-
ment using distances respectively, with all the setting directions according to Table 4.19.

The GLCM approach is based on the statistics of pixel intensity distributions that express the
relative frequencies (or probabilities) P(i, j|d, 𝜃). Two pixels having relative polar coordinates (d, 𝜃)
appear with intensities i, j. The co-occurrence matrices provide raw numerical data on the texture.

Basebone CNN structure

VGG-Net explores the relationship between the depth of the convolutional neural network and its
performance by repeatedly stacking 3 × 3 small convolution kernels and 2 × 2 maximum pooling
layers (Figure 4.234). VGG-Net successfully constructed a 16–19-layer deep convolutional neural
network. VGGNet has a significantly lower error rate than the previous state-of-the-art network
architecture. The VGG-Net paper uses 3 × 3 small convolution kernels and 2 × 2 maximum pooling
cores to improve performance by continuously deepening the network structure [90].
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224 × 224 × 3 224 × 224 × 64
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Figure 4.234 The framework and feature map dimension of Vgg-16 Network[90].

The problem of degradation of deep networks at least indicates that deep networks are not easy
to train. The ResNet network is referenced to the VGG-19 network, modified on the basis of it, and
the residual unit is added through the short circuit mechanism. The change is mainly reflected in
the fact that ResNet directly uses the convolution of stride= 2 for down-sampling, and replaces the
fully connected layer with the global average pool layer. An important design principle of ResNet
is that when the feature map size is reduced by half, the number of feature maps is doubled, which
preserves the complexity of the network layer [35].

There are several texture datasets available

The network evaluate the result using three widely accepted texture and material datasets in texture
analysis: The Describable Textures Dataset (DTD) image database and the Flickr Material Database
(FMD), which are introduced as follows.

(1) DTD Dataset
The DTD [15] is an evolving collection of textural images in the wild, annotated with a series of

human-centric attributes, inspired by the perceptual properties of textures. This dataset is made
available to the computer vision community for research purposes. The DTD contains 120 images
for each of the 47 texture classes, 5640 images in total. It is considered as the most challenging data
set because it contains wild images. Using the protocol published with the dataset, the dataset is
divided into 10 splits randomly, and every split is divided into three parts, one is used for training,
one is used for verification, and final part is used for testing. Examples of the dataset are shown in
Figure 4.235.

(2) FMD Dataset
The FMD [88] was constructed with the specific purpose of capturing a range of real world

appearances of common materials (e.g. glass, plastic, etc.), ensuring a variety of illumination condi-
tions, compositions, colors, texture and material sub-types. The FMD data set contains 100 images
in each of 10 material classes, that is 1000 images in amount. During the experiment, the network
randomly select half dataset images for training, with one quarter of the training images set as
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(a) Braided (b) Bumpy (c) Cracked

Figure 4.235 Examples of the DTD dataset.

(a) Fabric (b) Foliage (c) Glass (d) Metal

Figure 4.236 Examples of the FMD dataset.

the validation set and the other half used for testing step. Examples of the dataset are shown in
Figure 4.236.

We set up several deep networks for texture classification

This example shows how to create a deep learning neural network with residual connections and
train it on DTD database. Residual connections are a popular element in convolutional neural net-
work architectures. Using residual connections improves gradient flow through the network and
enables training of deeper networks.

Environment
A test environment is utilised on Matlab 2019a using NVIDIA CUDA 10.2 and the Deep Learning

Toolbox: https://www.mathworks.com/products/deep-learning.html Hardware system includes:
CPU: AMD Ryzen 5 3600, and GPU: Nvidia GeForce GTX 1080Ti with 32 GB memory. We use
open dtd_dataset_tool and adjust the dataset path and save path in the file. Image sizes range from
300×300 to 640×640, and the images contain at least 90% of the surface representing the category
attribute. All the images in the dataset are resized into 224×224. Before running dtd_dataset_tool,
the program reads all the images and labels in the dataset, and all the images are divided into train,
validation and test subsets evenly. Each subset has 1880 images.

Define network architecture
The residual network architecture consists of three components: main branch with convolutional

units, batch normalization and ReLU functions. Residual connections bypass the convolutional
units in the main branch. The ResNHere “⋅” indicate class 1 and “★” indicate class 2. A flowchart
is shown in Figure 4.237.

https://www.mathworks.com/products/deep-learning.html
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Figure 4.237 ResNet flowchart.

Create main branch
The main branch contains five sections in the figure. The initial section includes image input

layer INPUT, initial convolution CONV, batch normalisation BN and ReLU function RELU. The
next three sections of convolutional layer have different size of features. Each section contains N
convolutional units. In this case, N = 2. Each convolutional unit contains two 3 × 3 convolutional
layers. The netWidth parameter is the network width, defined as the number of convolutional filters
in one convolutional layer. The netWidth is set to 64. In the figure, S1U1 means that the section
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number is 1 and the unit number is 1. The final section has global average pooling, fully connected,
softmax, and classification layers.

Create residual connections
The core idea of ResNet is the so-called “identity shortcut connection” that skips one or more

layers. We add residual connections around the convolutional units. Most residual connections
perform no operations and simply add element-wise to the outputs of the convolutional units.

Training networks
We train the network for 150 epochs. And we select the learning rate as 0.05, which is propor-

tional to the mini-batch size and we reduce the learning rate by a factor of 5 after 60 epochs. We
validate the network once per epoch using the validation data. miniBatchSize is set as 50 in this
example. Training the network takes about 1000 minutes. The error convergence for each epochs
is shown in Figure 4.238.

Evaluate trained networks
We compute the final accuracy of several networks using the datasets: DTD and FMD. The base-

line experiments are constructed on the “very deep VGG network” (VGG-16) [90]. The numbers of
gray level of the co-occurrence matrices are set to 56, thus the network can get a sized co-occurrence
feature for each image. The accuracy of several networks are shown in Table 4.20. Since the state of
art methods contain several steps that cannot be trained in single network. Results show the ResNet
achieves a little better performance than the baseline. All the networks do not include pre-trained
network parameters using Imagenet or other datasets.

What is the “take-home” message of this chapter?

Texture segmentation tries to answer the question “what is where” in an image. This question may
be answered by creating a basis of elementary answers in terms of which we express the full answer
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Figure 4.238 ResNet convergence.
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Table 4.20 Results compared with other methods.

Method datasets DTD FMD

Baseline[90] 15.96 31.67
Texture CNN[3] 15.80 32.00
GLCM+CNN 16.81 26.67
ResNet 30.72 45.00

a) The unit of accuracy is per cent.

to the problem. Both Gabor functions and wavelets produce such bases appropriate either for use
in conjunction with the image itself, or with its Fourier transform. The most appropriate of these
bases is the one produced by using the prolate spheroidal sequence functions, which are a type of
wavelets specifically designed for this purpose. The conventional wavelet bases have been primarily
designed to allow the most compact representation of a signal and they are not necessarily the most
appropriate for texture segmentation.

These techniques answer in a formal way the question “what is where” in the image without
trying to make sense of what the “what” part of the answer means. Alternative approaches try to
capture perceptually salient image characteristics. Such approaches do not refer to the frequency
domain at all, but they transform the image with the help of filters that capture something of the
local structure. Such filters are the masks developed by Laws and the coefficients of the expansion
of a local neighbourhood in terms of Walsh functions. Instead of linar filters, a non-linear approach
may be used, namely the one that extracts from the image local binary patterns to characterise the
texture.

A compromise between the two approaches is based on the use of the Wigner distribution, which
is also a non-linear approach. The Gabor and wavelet approaches answer the “what” part of the
question by considering the magnitude of the local Fourier transform of the signal. The magni-
tude, however, is known to convey much less information than the phase. The Wigner distribution
encodes implicitly local phase information that is nothing else than a measure of local image sym-
metry. So, the Wigner distribution offers a frequency as well as a structural image representation.
Finally, deep CNN tries to capture information on textures in some way, but it is quite hard to
figure out what information in the network is important in a texture image.
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Bibliographical Notes

There are parts of this book that constitute original work. However, most of it is based on material
contained in several other books and scientific papers. There are thousands of published papers
on texture analysis and no attempt has been made here to list them let alone to review them.
The material in the book constitutes the core of what is behind and beneath the majority of these
papers. The list that follows consists of the major sources used to develop this book, and some of
them are peripheral to image processing. For example, reference [1] is an invaluable source of for-
mulae used to calculate approximately certain functions, like the error function in Chapter 2 and
the Bessel function in Chapter 4. Reference [73] is irreplaceable for anybody who wants to under-
stand stochastic processes. In certain places reference to Book I is made. This is the book “Image
Processing, the Fundamentals” by M. Petrou and P. Bosdogianni [75].

Some bibliographical notes concerning individual chapters follow. The list of references given
is by no means complete. There are hundreds of books and publications from which the authors
have been benefited over the years in addition to this list. It would not be possible to identify and
include all of them. It is hoped that the list will serve as a springboard for the interested reader to
access the sources that are not listed.

Chapter 1: The algorithm on texture boundary detection described here was first published
in [71].

Chapter 2: The binary images used were scanned from the copyright-free book [103]. The algo-
rithm on Hilbert curves was kindly provided by Sei-ichiro Kamata and it is based on [44]. The
parameter estimation methods for the Boolean model are based on the excellent book on the sub-
ject by Ilya Molchanov [67]. Finally, the seminal book by Jean Serra [87] is a major source for the
subject of mathematical morphology.

Chapter 3: Images 3.1a,c,e,f,g were taken from [105], while images 3.1b,d,h were downloaded
from [104]. Significant sources for the section on fractals were the original work by Mandelbrot
[63], the excellent paper by Voss [95] and the books by Falconer [24] and Turner et al. [94]. The
Ransac algorithm used for robust estimation was taken from [26]. The use of Markov random fields
to texture creation and characterisation was pioneered by Cross and Jain [17]. For estimation of
the Markov parameters very useful references were [7] and [31]. The relationship between fractals
and Markov random fields was first drawn to the attention of the first author by Dr Sarah Bell,
at a meeting in London [5]. The proof about the significance of the critical temperature is taken
from the book by Kindermann and Snell [46] which is an excellent tutorial on MRFs. The proof of
the Hammersley–Clifford theorem is based on Besag’s seminal work [6]. Also, useful insight into
the subject was gained from references [12, 22] and [47]. The discussion on maximum likelihood
estimation is based on the excellent pattern recognition book by Duda et al [23]. The algorithm
of simulated annealing was first introduced to image processing by Geman and Geman [29]. The

Image Processing: Dealing with Texture, Second Edition. Maria Petrou and Sei-ichiro Kamata.
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algorithm described here for phase unwrapping was taken from [70]. For the original definition of
co-occurrence matrices and features constructed from them, the major source has been [32]. For
using ratios of co-occurrence matrix elements as features and generalised co-occurrence matrices
see [48] and [49]. Finally, for the use of co-occurrence matrices for illumination direction identifi-
cation the reader should look at [54].

Chapter 4: The section on uncertainty and 2D Gabor functions is largely based on the seminal
work by Daugman [20, 21]. The section on prolate spheroidal functions is based on the work pre-
sented in [91, 51] and [92]. In this respect [99] is also a useful reference. References [16] and [9]
were very useful in understanding the use of Gabor functions in texture segmentation. The𝜓 trans-
form for feature extraction from Gabor coefficients originated in [25] and was further investigated
in [77]. The book by Akansu and Haddad [2] proved to be an excellent textbook on wavelets, while
the book by Mallat [61] gives a comprehensive coverage of the subject. The idea of the structure
tree was first published in [11]. The idea of using a distance histogram for feature selection was first
published in [72]. The deterministic annealing algorithm is based on references [80] and [81]. Laws’
masks were first proposed in [53]. The rest of that section has not been published anywhere else.
The work on local binary patterns has been championed by the team at Oulu University in a series
of papers and a good web-based tutorial [60, 76, 106]. The use of Wigner distributions in texture
analysis has been pioneered by Wechsler [96], and the original reference for the Kaiser window is
[43]. Finally, the overview of several deep learning based classification methods was introduced in
the paper [57].
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autocovariance function 188

b
back-propagation learning method 770
basis, complete 541, 700
basis, incomplete 550
basis, function 400, 484
basis, orthogonal 261, 477, 485, 503, 643
basis, orthonormal 543
basis images 663, 707
Bayesian estimation 279
Bayes theorem 279
Bessel function 743
best linear unbiased estimator 349
Bhattacharyya distance 683
binary number 115
binomial distribution 171, 264
binomial multifractal 1D, 173
bit plane 85
bit-slicing 79
Blanket method 100, 101
BLUE 349
Boolean model 21, 26, 28, 36–39, 41–44, 48

1D 44
2D 21

border pixels 29, 31, 32, 101, 267, 294, 347–349
boundary

inner 67
outer 67
pixel 30, 31

boustrophedon scanning 51
box-counting method 107, 108, 114–116, 140, 141,

155, 162
Brownian motion 135, 137, 138, 141–145

c
centre of gravity 375, 376, 411, 527, 528, 531
circle

area of 30
continuous 30
digital 30

clique 299, 301, 305, 307, 312–315, 318, 320–323
clique potential 301, 305, 322, 323, 329
closing 53, 56, 59–62, 88–90
cluster 517, 675, 676, 678
Cholesky algorithm 147
Cholesky decomposition 146
coding 269, 270, 279–283, 631
Coiflet wavelet 577
commission error 648
commutative operation 60
commutativity 66
complement

of binary image 70
of grey image 89–95
of an object 66

concentration factor 468, 469
confusion matrix 684–686
connected fractal dimension 118
connectivity 4, 8
consensus set 127
continuous wavelet transform 538, 539, 553
contrast 223–227, 705, 713, 733–735
continuous circle 30, 218
convex grain 29
convolution 181, 246, 292–294, 363–365
convolutional neural networks 754
co-occurrence iterative 356
co-occurrence matrix 174, 215–217, 221–224

features form 785
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co-occurrence matrix (contd.)
of higher order 216

co-occurrence mode algorithm 354
co-occurrence probabilistic algorithm 354
cooling parameter 324, 680
cooling schedule 324
correlation 341, 349, 351–353, 541
correlation dimension 122
critical sampling 745
critical temperature 299, 341, 348
cross-dispersion 396–398, 411, 412
Curvelet transform 621, 670–672

d
Daubechies wavelet 577, 682
deep learning 754
delta function 377, 378, 380

Fourier transform of train 377, 744, 745
Describable Textures Dataset (DTD) 788
deterministic annealing 678–681, 701–703, 723
difference of Gaussians (DoG) filter 148, 293
digital circle 26, 30, 39, 41, 218, 219
digital square 41
dilation

binary 88
grey 97

dimension
fractal 104, 105, 107–109, 114, 115, 117–119, 121,

127–134, 138, 140, 141, 153, 155–158, 162, 163,
167, 169–170, 210, 215, 247, 248

Hurst 132, 141, 167
topological 134, 153

discrete Fourier transform (DFT) 148, 155, 228,
232–234, 236–238, 243–245, 247

of Gaussian 238
discrete wavelet transform 553, 661

fast, (AU:Not found)
fast, inverse, (AU:Not found)

dispersion 375, 396–400, 411
distance histogram 675, 676, 683
distribution 727, 735–743, 745–747
Doppler shift 742
duality 66, 417, 741
dual operation 61
dual tree 594
dual tree complex wavelet transform 596
dyadic wavelet 539, 559–561

e
earth mover’s distance 696
Efros and Leung algorithm 348, 367
eigenfunction 491
eigenvalue problem 456, 473, 492, 779
eigenvector 492, 495, 496, 512, 642
energy 673, 674, 677–681, 700
energy content 375
energy, local 508
entropy 122, 223, 680, 681, 687, 691, 765

ergodicity 314, 350
erosion, binary 53
erosion, grey 88
error, commission and omission 684
error correction 348
error function 24, 25, 537, 762
error, over-and under-detection 684
Euler’s method of Lagrange multipliers 453
event 37, 372, 765

f
fast inverse wavelet transform 569
fast tone matching algorithm 693
fast wavelet transform 562, 564, 567
feature, good or bad 673, 674
feature map 358, 785, 786, 788
feature reduction 673, 700, 747, 751
feature selection 673, 752, 796
feature space 674–678, 680, 682, 751
Flickr Material Database (FMD) dataset 788
filter

DoG (difference of Gaussians) 293
normalisation of 479, 485
separable 489

finite Radon transform 625
finite ridgelet transform 665
Fisher information matrix 783, 784
Fisher’s discriminating feature space 779
Fisher Vector CNN 783
fractal 104, 341, 782

autocorrelation of 153
Fourier transform of 152
non-deterministic 132
power spectrum of 132
self-affine 105
self-similar 105

fractal dimension 104, 105, 107–109, 114
from box-counting method 140
from pairs of pixels 127
from power spectrum 153
as texture descriptor 104

fractal surface 105, 109–112, 114, 134
fractional Brownian motion 135, 137, 138, 141–145
frame theory 643
Fourier transform 148, 152, 153, 197,

227
Gaussian 234, 235
magnitude of 228
scaling property of 518
shifting property of 518
texture features from 227
phase of 503

g
Gabor function 399–401, 410–413, 533

choice of parameters for 424
Gaussian distribution 269, 273, 284
Gaussian Markov random field 273, 289
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Gaussian probability density function 23, 25–28, 136,
280

Gaussian pyramid 292, 293, 295, 299, 555
Gaussian signal 376, 377, 737
Gaussian window 240, 245–247, 367, 383–386
generalised fractal dimensions 118
generalised Zipf distribution 204
germ process 28
germ 21, 28
Gibbs distribution 174, 175, 299, 301, 305
grain 29, 32, 33, 35–38, 42, 44

convex 29
primary 44
segment 44

granulometry
for binary image 64
for grey image 97

greedy algorithm for texture creation 324
with histogram preservation 329

h
Haar function 539
Haar wavelet 542, 560, 595, 666, 670, 677
Hammersley–Clifford theorem 314, 318
Hausdorff spectrum 167
Hebbian theory 756
Hibert curve 46
Hilbert scanning 47, 49, 795
Hilbert transform 503
histogram 322–324, 329, 330, 337, 673–678

of distances 674–677, 686
hit-or-miss algorithm 32, 77
hit-or-miss transform 32, 70–72, 74–76
homogeneity 158, 223, 224, 370
Holder exponent 164
Holder regularity 164
Hubel and Wiesel discoveries 763
Hungarian algorithm 696
Hurst dimension 132, 141, 167

i
ideal feature 391, 392
image binarisation

by bit-slicing 81–85
by thresholding 31

image histogram 174
image statistics 174
individual parameters 28, 36–43, 48–50, 78
information dimension 122
inner boundary 67
inpainting 348
inter-class similarities 778
interior boundary 29
intra-class variations 778
inverse wavelet transform

continuous 535
discrete 569

isoperimetric problem 453

j
Julesz texton 765

k
Kaiser window 742, 743, 747, 749–754
K-means clustering algorithm 678
Kriging interpolation 353
Kullback–Leibler divergence 730

l
lacunarity 158, 160, 161
Lagrange multipliers 352, 453
language 78, 371
Laplacian pyramid 291–293, 296–299, 555
Laws’ masks or filters 697
least square error (LSE) 247, 278, 288, 290

estimation 278, 284, 285
fitting 204–206, 210

Leibniz’s rule 372
likelihood 278–284, 784, 785
linear process 293
local binary pattern (LBP) 727–730, 732–735
local phase features 503
local potentials 204
log-likelihood 278, 279, 784, 785
look-up table 23, 25, 27, 267, 268
lower positive tangent 32

m
macro-texture 198, 201, 224, 245, 728
MADALINE 760
magnetic resonance image (MRI) 4
Mallows distance 696
manual segmentation 684
many-point statistics 174
marker 19
marking probability 44, 48, 52
Markovian property 263, 315, 320, 348
Markov neighbourhood 266, 281, 283, 288, 291
Markov parameter 265
Markov parameter estimation

with LSE 285
with MLE 280

Markov random field 265, 270, 273, 279, 281, 284, 288,
291, 329, 341

auto-binomial 276
auto-normal 273
Gaussian 273
self-consistent 299

Markov texture features 280
mathematical morphology 13, 53, 63, 66–68, 78, 88

binary 53
grey scale 88

maximum entropy clustering 680
maximum likelihood 278–281, 283, 284
maximum likelihood estimation (MLE) 278–281, 283,

284
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maximum overlap algorithm 582–584, 590
Mcculloch and Pitts neuron model 755, 756
mean free energy 340
metric 675, 678, 679, 696, 697
Metropolis sampler 330
Mexican hat 293
micro-texture 198, 202, 224, 289, 728
Minkowski subtraction 66
modulation 592, 794
monogenic signal 505
mother wavelet 520, 523, 524, 527–533
Multifractal 104
multifractal spectrum

of binary image 122
of grey image 162

multi-resolution analysis 564
multi-resolution representation 554

n
neural networks 754
non-deterministic fractals 132
normalised filter 479, 484
normalised histogram 337, 732
normalized convolution 363
nugget effect 192
Nyquist frequency 743, 745–748
Nyquist interval 745, 747

o
object, binary

complement of 66
definition of 66
dilation of 53
erosion of 54
reflection of 66
translation of 66

object, inner boundary of 67
object, outer boundary of 67
object, skeleton of 68
octave 423, 424
omission error 684
one-point statistics 174
one-to-one relationship 22
opening 53, 56, 58, 60–63
operation, associative 63
operation, commutative 60
operation, dual 61
optical image 4
orientation histogram 3D, 180
orthogonal matrix 568, 643
orthonormal basis 503, 511, 515, 543, 544
outer product 489
over-detection error 686

p
packet wavelet analysis 564
Parseval’s theorem 374, 375, 415, 451, 454, 471,

510

partition function 301, 302
pattern recognition 673, 678, 765, 766, 793–796
pattern spectrum

of binary image 97
of grey image 97–99

Perceptron 756
periodogram 228
phase congruency 504
phase unwrapping 255, 256, 258, 259, 503
placement rules 13, 78
point process 21, 26, 38, 44
point similarity 694
Poisson probability density function 25, 37
Poisson process 25–28, 36–38, 43, 78
polar coordinates 136, 179, 197, 247, 420
pore segment 44
power law models 207
power spectrum 132, 152–154, 197, 227–228

artifact of 232
fractal approximation of 152
visualisation of 232

primary grain 44
primitive pattern 13, 14, 19–21, 36, 198, 769
principal axes 396, 398, 412, 424
principal component analysis (PCA) 673, 700, 703,

705, 747, 751–753, 766
probability density function 21–23, 680, 686, 784, 785
projection of one function onto another 404
prolate spheroidal sequence

filters 490, 505
functions 450, 453, 507, 509, 512, 792

prolate spheroidal wave functions 453, 795, 797
pseudo-convolution 484, 542, 562, 565, 566, 572
pseudo-inverse of a matrix 286, 688
pseudo-metric 730, 732
pseudo-Wigner distribution 742, 746, 747, 749
psi transform 433

q
q-shift method 608
quadrature mirror filters 597, 599
quadrature mirror wavelet filter 602

r
Radon transform 622
random field 166, 194, 263–265, 793, 794
random number generator 23
rank-frequency plot 183
RanSac algorithm 127
raster scanning 47
reflection of an object 60
repair, texture 348
residue theorem 235
resolution of identity 524
Ridgelet 621
Riesz transform 505
robust fitting 127
rolling bins 175
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roughs 553
run-length matrix 184

s
sampling

comb for 745
critical 745
mask 363
at the Nyquist frequency 746
with train of delta functions 744

scale-space representation 555
scaling function 555, 559, 560, 562, 575
scanning

Hilbert 47
boustrophedon 47
raster 47

Schwartz’s inequality 374, 376
segmentation

error 685
manual 684

seismic section 4
self-affine

fractal 132, 141
scaling 132

self-similar fractal 105
semi-stochastic pattern 20, 21
semi-variogram 187
separable filters 490, 493, 495
shape grammar 13, 14
shape process 21, 25–28, 38, 44
short time Fourier transform 387–389, 391–393

features from 387
Sierpinski triangle 105
Sigmoid function 770
simulated annealing 210, 323, 324, 329, 680

with histogram preservation 324
sine rule 110, 111
single-minded algorithm for texture creation 322
singular value decomposition (SVD) 492
skeletonisation 77
slice transform 260
slope-limited norm of the gradient vector 359
smooths 553
Sobel filter 177
sombrero 293
specific boundary length 28–33, 35, 38

per unit area 33, 35
per unit length 32, 33

specific convexity 28, 32, 38, 76
spectral bandwidth 372, 375, 377, 399, 400
spectral centre of gravity 375, 527, 528
stable pattern 733, 734
steepest descent method 763
stochastic grammar 20
structure tree 578, 581, 582, 584, 585
structuring element 53–64, 67–70, 77

bias of 96
flat 88

non-flat 90
symmetric 101

subsampling matrices 586, 588
subspace 556
super-parameter 280, 283
symmetric Toeplitz matrix 149

t
tangent point 29, 39
temperature 299, 324, 332, 333, 341, 348, 679
terminal 13
tesselation of the frequency space 415
tetrahedron 105, 107, 111, 113
texture

anisotropic 194, 202, 225
classes of 11
classification 754, 778, 782, 789, 793
CNN 784
creation of 279, 421, 422
definition of 778
defect detection 5
descriptors of 369
directionality of 64, 733
features 732, 747, 754, 764
irregular 11, 13, 53
isotropic 49, 198, 201, 224
man-made 11, 78
natural 78, 764
non-stationary 158, 371, 730
periodicity of 198, 201, 227, 229
random 13, 39, 78, 204, 210, 783
region, isolation of 6
regular 11, 13, 20, 764
scale dependence of 5
segmentation 6, 371, 414, 594, 673
semi-regular 11
semi-stochastic 20, 78
stationary 79, 158, 350, 371, 730
synthesis by analysis 265

time dispersion 375, 376, 399, 400, 528
topological dimension 134, 153
translation of an object 66
tree wavelet analysis 563, 566
triangle inequality 730, 732
two-point statistics 174

u
unbiased estimator 32, 349
uncertainty principle 371–373, 375, 376, 396
under-detection error 684–686
uniform distribution 330, 355
upsampling matrices 587

v
vanishing gradient problem 777
vector outer product 490–492, 494, 513
Vgg-16 Network 788
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von Koch snowflake 104, 106–108,
132

w
Walsh functions 706, 717
Walsh elementary images 712
wavelet 782, 783, 792, 793, 796

Coiflet 577
Daubechies 577, 585, 595, 673
dyadic 542, 559, 561
Haar 542, 560, 595, 666, 670, 677

wavelet analysis
packet 564. 567
tree 615

wavelet coefficients 540–542, 546, 549, 593
wavelet transform

continuous 538, 539, 553
discrete 553, 661
discrete fast 562

inverse continuous 535
inverse discrete fast 569

Weibull distribution 174, 208
whitening 678
Wiener–Khinchine theorem 153, 227, 250
Widrow and Hoff learning model 759
Wigner distribution 727, 735–743, 745–747
Wigner spectrum 735, 742, 747, 750–752
window

effect of 380, 428
energy of 408, 429, 585
flat 445, 449
Gaussian 445, 585, 667, 681, 682, 701
Kaiser 472, 743, 747, 749
rectangular 382, 387, 395, 742
size of 377, 380, 394, 408, 671, 705

z
z-transform 598
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