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Foreword

When developing machine learning (ML) models, I am sure all of you have asked
the questions: Oh, how did it get that right? or That’s weird, why would it predict
that? As software engineers, our first instinct is to trace through the code to find
the answers. Unfortunately, this does not get us very far with ML models because
their “code” is automatically generated, not human-readable, and may span a vast
number (sometimes billions!) of parameters. One needs a special set of tools to
understand ML models. Explainable AI (XAI) is a field of machine learning focused
on developing and analyzing such tools.

Model explanations are not just a nice-to-have feature to satisfy our curiosities about
how a model works. For practitioners, it is a must-have to ensure that they are not
flying blind. Machine learning models are notorious for being right for the wrong
reason. A classic example of this, discussed in this book, is that of a medical imaging
model where explanations revealed that the model relied on “pen marks” on X-ray
images to make disease predictions.

The rise of ML models in high-stakes decision-making has sparked a surge in the field
of XAI with a plethora of techniques proposed across a variety of data modalities.
The vast number of available techniques has been both a blessing and a curse for
practitioners. At the heart of this issue is that there is no such thing as a perfect
explanation. A good explanation must balance faithfulness to the model with human
intelligibility and must offer meaningful insights. Achieving this is nontrivial. For
instance, an explanation that translates the model into a giant mathematical formula is
faithful but not intelligible, and hence not useful. Different explanation methods strike
a different trade-off between faithfulness, human intelligibility, and computational
efficiency. Furthermore, for any ML-based decision-making system, there are several
stakeholders interested in explanations from different perspectives. For instance, end
users may seek explanations to understand the factors behind the decisions they
receive, while regulators may seek explanations to assess whether the model’s reason‐
ing is sound and unbiased. All these nuances leave practitioners struggling to set up
the appropriate explanation framework for their system. This book fills that gap.
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This book first equips the reader with the landscape and taxonomy of explainabil‐
ity methods and all the involved stakeholders. Michael and David then tap into
their extensive experience in developing, productionizing, and applying explainabil‐
ity techniques at Google, and present some of the key battle-tested methods. The
techniques are organized by the data modalities that they are best suited to. For each
technique, they convey the intuition for how the technique works, and walk through
how it is implemented and applied. Through a number of sidebars sprinkled across
the book, they also elegantly convey a number of complex and nuanced aspects of
each technique, e.g., the importance of the sampling Kernel for LIME, the importance
of choosing the right baseline for Integrated Gradients.

A distinguishing aspect of this book is its emphasis on the human factors in XAI.
Explanations are not a silver bullet to making models more transparent or to improve
them. Appropriate visualization of explanation and human interpretation play an
equally important (if not larger) role. To that end, instead of assessing explanations
in isolation, one must assess the effectiveness of the model + explanation + human
trio. Human involvement naturally brings with it a suite of biases. I have witnessed
this firsthand in my own research, where in a clinical study on assessing the impact of
explanations for a diabetic retinopathy model, we noticed how doctors were prone to
“over-relying” on explanations, and accepting inaccurate model predictions. Michael
and David devote an entire chapter to discuss such issues, and the various pitfalls that
come with human involvement.

Explainability is an indispensable requirement for all ML models, and therefore, this
book is a must-read for all ML practitioners. This book helps practitioners unpack
what explainability means in practice, and build a toolkit of explainability methods.
My advice to readers is to not be discouraged by the lack of a single “magic method,”
and instead appreciate the unique strengths of different methods. I am confident that
this book will help you identify the right explainability approach for your model and
stakeholders.

— Ankur Taly
Staff Research Scientist, Google

August 2022
Sunnyvale, California
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Preface

The use of AI as a tool to solve real-world challenges has experienced rapid growth,
making these systems ubiquitous in our lives. More and more, machine learning (ML)
is being used to support high-stakes decisions and being used in applications from
healthcare to autonomous driving. With this growth, the need to be able to explain
these opaque AI systems has become even more urgent and, in many cases, the lack of
explainability is a barrier for applications where interpretability is essential.

This book is a collection of some of the most effective and commonly used techni‐
ques for explaining why an ML model makes the predictions it does. We discuss the
many aspects of Explainable AI (XAI), including the challenges, metrics for success,
and use case studies to guide best practices. Ultimately, the goal of this book is to
bridge the gap between the vast amount of work that has been done in XAI and
provide a quick reference for practitioners that aim to implement XAI into their ML
workflow.

Who Should Read This Book?
Modern ML and AI have been used to solve very complex real-world problems,
and model explainability is important for anyone who interacts with or develops
those models, from the engineers and the product owners that build these systems
to the business stakeholders and the individuals that use them. This book is for
anyone wishing to incorporate the best practices of Explainable AI into their ML
solutions. Anyone with an interest in model explainability and model interpretability
will benefit from the discussions in this book.

That being said, our primary focus is on practitioners; that is, engineers and data
scientists who are tasked with building ML models and methods for incorporating
explainability into their current workflows. This book will introduce you to a catalog
of ideas concerning model explainability and enable users to quickly get up to speed
on this increasingly important and quickly evolving field of AI. We will discuss best
practices for implementing these techniques and help you make informed decisions
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about which technique to use and when. We’ll also look at the big picture and discuss
how XAI can be used throughout the entire ML workflow to assist you in building
more robust ML solutions.

This book is not meant to be a foundational reference on machine learning, and as
such, we won’t spend time discussing specific model architectures or details of model
building. We assume that you are already somewhat familiar with the basics of ML
and data processing. We’ll review these concepts as they arise, but refer you to the
plethora of other resources to fill in any remaining gaps.

What Is and What Is Not in This Book?
Explainability is one of the core tenets of Responsible AI. Responsible AI is a broad
and emerging field encompassing topics such as ML fairness, AI ethics, governance,
and privacy and security. We won’t go into these other areas in this book, although
they may come up in context. Explainability has become increasingly important in
recent years, with a deep and very active area of academic research focused on
model explainability and advancing cutting-edge techniques. While we will at times
reference some of this research, that is not the goal of this book, and we will not dive
deep into active research topics. All of the techniques discussed here are grounded
in some mathematical theory, be it game theory or mathematical optimization, and
while it’s helpful at times to understand these theoretical underpinnings, that is
not the focus of this book. Furthermore, although these methods may have sound
theoretical groundings, their application and benefits are far from well understood.
Our goal is to help you, the practitioner, quickly get up to speed in the field, learn
common techniques of XAI, and get some insight into this tricky gray area of how to
apply these tools in your ML systems.

This is a book for ML engineers working in the industry with a focus on practical
implementation intended for real-world applications. The book is not intended for
research scientists in industry labs or academia, though early researchers may find it
to be a valuable reference. In general, we do not explore the theory behind different
techniques but do detail the mathematics and reference papers so you can investigate
further if you desire.

For example, in Chapter 4, when discussing Integrated Gradients, we don’t spend any
time reviewing how line integrals are defined and mathematically computed, but try
to lend some intuition that explains how the formulas are being used. In doing so,
we’ll see how this intuition can help guide the best practices for the implementation
of Integrated Gradients, such as how varying the number of subintervals when
approximating the integral affects the outcome.

In this book, we show you how to effectively implement and use explainability as an
ML practitioner—an individual who is already familiar with machine learning, perhaps
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as a data scientist or ML engineer. We assume you are familiar with common ML
architectures, but may not know the exact implementation details, and are comfortable
with a moderate degree of coding, as some explainability techniques do not have a
good off-the-shelf implementation. Our goal in this book is to give you the ability in
your day-to-day ML work to generate explanations of why a model behaves and how a
dataset influences that model. To accomplish this, we will teach you three concepts:

• Understand the field of Explainable AI so you have the necessary background to•
make decisions about how, why, and where to use explainability, along with how
to tailor explanations for different audiences (Chapters 2 and 7).

• Give you a toolbox of well-proven explainability techniques for different situa‐•
tions (Chapters 3 through 5). Although many explainability techniques can be
used in a variety of ways, we find it is easiest to organize these tools by the model
modality (e.g., structured data, image, text).

• Understand where Explainable AI is heading in the future and what to keep in•
mind as you start to reach the edge of the map of known explainability (Chapters
6 and 8).

This book is pragmatic. Our goal is not to give rigorous proofs for a given technique.
Instead, we try to lend some intuition as to how a specific technique works, with
a focus on the hands-on implementation considerations that you, as an ML practi‐
tioner, may have. So, there may be formulas but only insofar as they help in illustrat‐
ing an idea or justifying why one might choose a specific set of hyperparameters
for a specific technique over another. Where possible, we reference well-established
implementations for techniques. If that is not possible, we provide a reference imple‐
mentation you can reuse or adapt to your situation, along with a GitHub repository
for code and notebook samples.

Pragmatism requires distinguishing between what is best for a given scenario, so
we are also opinionated on the techniques we have chosen for your toolbox. Our
selection does not represent the entire set of options available in Explainable AI. In
choosing techniques for this toolbox, we used the following heuristics in deciding
what to cover:

• Has this technique been sufficiently used in industry that we understand its•
benefits and shortcomings? We give priority to techniques that have been in use
for at least a few years and for which there are many case studies available to
demonstrate their utility.

• How much expertise in Explainable AI is required to correctly use or implement•
this technique? Generally, we favor techniques that require less expertise, as
we assume you are reading this book to understand how to use explainability
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rather than building up a deep expertise in explainability (for which many other
excellent books exist already).

• How brittle and/or resilient is the technique? We place an emphasis on techni‐•
ques that can be used in more situations and are less prone to easily breaking if
not configured correctly.

As you read this book, you may notice that we also cover many techniques that
explain how the dataset and its structure influenced the behavior of the model. This
can seem counterintuitive: why are we concerned with datasets, and aren’t models
what we want to better understand? There are two reasons for this approach. The first
is what is under the control of the ML practitioner and can be easily changed: it is
usually far easier to manipulate a dataset than rebuild or change a model architecture.
The second is that we find many of the techniques that focus on the model itself
to generate explanations; while intriguing, these are ultimately not actionable. For
example, some explainability techniques seek to explain the behavior of CNN image
classification models by creating artificial images that show how the model is perceiv‐
ing an image at different layers. While this type of technique creates fascinating
explanations that lead to a vigorous discussion about the way CNNs may work, we
have yet to see the technique be consistently applied in industry to achieve one of the
goals of explainability we listed above.

Code Samples
In this book, ML practitioners will learn techniques and best practices for incorpo‐
rating explainability into their models and ML solutions. To aid in this pursuit, we
provide code examples for many of the techniques we discuss in the book. Models
are built using common machine learning libraries, like Keras/TensorFlow, PyTorch
or scikit-learn, and when possible we’ll use open source libraries to show how these
techniques are implemented in practice. All the code that is referenced in the book
is part of our GitHub repository. We strongly encourage you to try out those code
samples.

The code is secondary in importance to the concepts and techniques being covered.
Our aim has been that the topic and principles should remain relevant regardless of
changes to TensorFlow or Keras or any specific library. Some of the libraries we use
may be newer than others and thus be updated or improved in the future.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
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from this book does not require permission. Selling or distributing examples from
O’Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Explainable AI for
Practitioners by Michael Munn and David Pitman (O’Reilly). Copyright 2023 Michael
Munn, David Pitman, and O’Reilly Media, Inc., 978-1-098-11913-3.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Navigating This Book
The initial chapters of the book give a high-level overview of the principles concern‐
ing model explainability, setting up the framework for the following chapters. The
middle chapters focus more on specific techniques and implementations. The later
chapters focus on how to interact with explainability, keeping in mind stakeholders,
end users, and others; and how explainability can be used to enhance the entire ML
workflow. We’ve arranged these middle technical chapters according to model data
type or use case. So, one chapter focuses on explainability techniques for tabular data
(Chapter 3) while another focuses on techniques for computer vision (Chapter 4) or
natural language (Chapter 5).

The reason for this data modality-focused structure is not because the techniques in
these chapters can only be applied in that setting. Although some of the techniques
do lend themselves more to a specific data type (e.g., XRAI for image data models
or individual conditional expectation plots for tabular data models), many of the
techniques can work as is or with some slight modification for all different data
modalities (e.g., LIME and Integrated Gradients). Instead, we’ve chosen this structure
because we anticipate that most readers will approach this book with a use case–
driven mindset. That is, you likely have a problem and dataset already in mind that
you have been working with and know well; and the easiest and quickest entry point
into this potentially new domain is via that context.

This way, you can easily jump right to a technique for a specific use case in which you
are interested. Of course, not all techniques align themselves with a single use case,
and when possible we’ll indicate cross-references between the chapters for where and
how that technique could be used for a different type of data modality or to provide
an alternate perspective.

This is all to say that we encourage the reader to explore other techniques in other
chapters, even if they do not directly relate to the problem you currently have in
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mind. You’ll likely still find some useful and relevant information. XAI is a rapidly
developing field with new techniques constantly being introduced. Our goal is that
after reading this book you’ll be able to take part in that ongoing conversation and, at
the same time, be equipped to apply these ideas in your current or future ML projects.

This book is organized as follows:

• Chapter 1 provides an introduction to the main concepts and principles sur‐•
rounding explainability in machine learning. We’ll discuss the motivations
behind explainability and how different people benefit from explainability, from
the engineers and developers to the business stakeholders and end users.

• Chapter 2 gives a high-level taxonomy of various explainability techniques to act•
as a mental road map for how these methods can be categorized and understood.

• Chapters 3 through 6 focus on specific explainability techniques and are•
arranged according to a specific use case, from tabular data to computer vision
and natural language. In particular, Chapter 6 focuses on advanced techniques
and new and emerging perspectives on XAI. Each chapter covers a handful of
techniques, their pros and cons, and implementation considerations.

• Chapter 7 focuses on human interaction aspects of explainability, such as com‐•
mon pitfalls and how best to create actionable outcomes from an explainability
technique.

• In Chapter 8, we give a summary and road map for how to apply this XAI toolkit•
of the various techniques covered in the book throughout the entire ML workflow.

The GitHub repository for this book also contains all of the figures in full color for
readers of the print version.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

This element signifies a general note.
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This element indicates a warning or caution.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
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CHAPTER 1

Introduction

Explainable AI, also known as XAI, is a field of machine learning (ML) consisting of
techniques that aim to give a better understanding of model behavior by providing
explanations as to how a model made a prediction. Knowing how a model behaves,
and how it is influenced by its training dataset, gives anyone who builds or uses
ML powerful new abilities to improve models, build confidence in their predictions,
and understand when things go awry. Explainable AI techniques are especially useful
because they do not rely on a particular model—once you know an Explainable AI
method, you can use it in many scenarios. This book is designed to give you the ability
to understand how Explainable AI techniques work so you can build an intuition for
when to use one approach over another, how to apply these techniques, and how to
evaluate these explanations so you understand their benefits and limitations, as well as
communicate them to your stakeholders. Explanations can be very powerful and are
easily able to convey a new understanding of why a model makes a certain prediction,
as Figure 1-1 demonstrates, but they also require skill and nuance to use correctly.

Figure 1-1. An explanation using Blur-IG (described in Chapter 4) that shows what
pixels influenced an image classification model to predict that the animal on the cover of
this book is a parrot.
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Why Explainable AI
In 2018, data scientists built a machine learning (ML) model to identify diseases from
chest X-rays. The goal was to allow radiologists to be able to review more X-rays per
day with the help of AI. In testing, the model achieved very high, but not perfect,
accuracy with a validation dataset. There was just one problem: the model performed
terribly in real-world settings. For months, the researchers tried to find why there was
a discrepancy. The model had been trained on the same type of chest X-rays shown in
Figure 1-2, and the X-rays had any identifying information removed. Even with new
data, they kept encountering the same problem: fantastic performance in training,
only to be followed by terrible results in a hospital setting. Why was this happening?

Figure 1-2. An example of the chest X-rays used to train the model to recognize diseases.
Can you identify what led the model astray?1

A few years later, another research group, this time eye doctors in the UK, embarked
on a mission to train a model to identify diseases from retinal scans of a patient’s
eye (see Figure 1-3). After they had trained the model, they encountered an equally
surprising, but very different result. While the model was very good at identifying
diseases, it was uncannily accurate at also predicting the sex of the patient.
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Figure 1-3. An example of retinal fundus images, which show the interior of an eye and
can be used to predict diseases such as diabetes.

There were two fascinating aspects of this prediction. First, the doctors had not
designed the ML to predict the patient’s sex; this was an inadvertent output of their
model architecture and ML experiments. Second, if these predictions were accurate,
this correlation between the interior of our eyes and our sex was a completely
new discovery in ophthalmology. Had the ML made a brand-new discovery, or was
something flawed in the model or dataset such that information about a patient’s sex
was leaking into the model’s inference?

In both cases of the chest X-ray and the retinal images, the opaque nature of machine
learning had turned on its users. Modern machine learning has succeeded precisely
because computers could teach themselves how to perform many tasks using an
approach of consuming vast amounts of information to iteratively tune a large num‐
ber of parameters. However, the large quantities of data involved in training these
models have made it pragmatically impossible for a human to directly examine and
understand the behavior of a model or how a dataset influenced the model. While any
machine learning model can be inspected by looking at individual weights or specific
data samples used to train the model, this examination rarely yields useful insights.

In the first example we gave, the X-ray model that performed well in testing and was
useless in practice, the data scientists who built the model did all the right things.
They removed text labels from the images to prevent the model from learning how
to read and predict a disease based on ancillary information. They properly divided
their training, testing, and validation datasets, and used a reasonable model architec‐
ture that built upon an existing process (radiologists examining X-rays) that already
proved it was feasible to identify diseases from a patient’s X-ray. And yet, even with
these precautions and expertise, their model was still a failure. The eye doctors who
built an ML model for classifying eye disease were world-class experts in their own
field who understood ophthalmology but were not machine learning experts. If their
discovery that our eyes, which have been exhaustively studied for hundreds of years,
still held secrets about human biology, how could they perform a rigorous analysis
of the machine learning model to be certain their discovery was real? Fortunately,
Explainable AI provides new ways for ML practitioners, stakeholders, and end users
to answer these types of questions.
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What Is Explainable AI?
At Explainable AI’s core is the creation of explanations, or to create explainability
for a model. Explainability is the concept that a model’s actions can be described
in terms that are comprehensible to whoever is consuming the predictions of the
ML model. This explainability serves a variety of purposes, from improving model
quality to building confidence, and even providing a pathway for remediation when
a prediction is not one you were expecting. As we have built increasingly complex
models, we have discovered that a high-performing model is not sufficient to be
acceptable in the real world. It is necessary that a prediction also has a reasonable
explanation and, overall, the model behaves in the way its creators intended.

Imagine an AI who is your coworker on a project. Regardless of how well your AI
coworker performs any task you give them, it would be incredibly frustrating if your
entire collaboration with the AI consisted of them vanishing after taking on a task,
suddenly reappearing with the finished work, and then vanishing again as soon as
they delivered it to you. If their work was superb, perhaps you would be accepting of
this transactional relationship, but the quality of your AI coworker’s results can vary
considerably. Unfortunately, the AI never answers your questions or even tells you
how they arrived at the result.

As AI becomes our coworkers, colleagues, and more responsible for decisions affect‐
ing many aspects of our life, the feedback is clear that having AI as a silent partner is
unsatisfying. We want (and in the future, will have a right) to expect we can have a
two-way dialogue with our machine learning model to understand why it performed
the way it did. Explainable AI represents the beginning of this dialogue, by opening
up a new way for an ML system to convey how it works instead of simply delivering
the results of a task.

Who Needs Explainability?
To understand how explainability aided the researchers in our two examples of where
conventional ML workflows failed to address the issues encountered, it is also neces‐
sary to talk about who uses explainability and why. In our work on Explainable AI for
Google Cloud, we have engaged with many companies, data scientists, ML engineers,
and business executives who have sought to understand how a model works and
why. From these interactions, we have found that there are three distinct groups of
people who are seeking explanations, and each group has distinct but overlapping
motivations and needs. Throughout the book, we will refer to all of these groups as
explainability consumers because they are the recipient of an explanation and act upon
that explanation. Our consumers can be divided into three roles:
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Practitioners
Data scientists and engineers who are familiar with machine learning

Observers
Business stakeholders and regulators who have some familiarity with machine
learning but are primarily concerned with the function and overall performance
of the ML system

End users
Domain experts and affected users who may have little-to-no knowledge of ML
and are also recipients of the ML system’s output

A person can simultaneously assume multiple roles as an ML consumer. For example,
a common pattern we see is that data scientists start as ML practitioners, but over
time build up an understanding of the field they are serving and eventually become
domain experts themselves, allowing them to act as an end user in evaluating a
prediction and explanation.

In our chest X-ray case study, the ML practitioners built the model but did not have
domain expertise in radiology. They understood how the ML system works and how
it was trained but did not have a deep understanding of the practice of radiology.
In contrast, in the retina images case study, the ophthalmologist researchers with
domain expertise who built the model found the ML had discovered a new correla‐
tion between the appearance of the interior of our eyes and our sex, but they lacked
the expertise of ML practitioners to be confident the model was functioning correctly.

Each group had very different needs for explaining why the model acted the way it
did. The ML practitioners were looking for precise and accurate explanations that
could expose the step at which the ML had failed. The ophthalmologists, as end users,
were looking for an explanation that was more conceptual and would help them
construct a hypothesis for why the classification occurred and also allow them to
build trust in the model’s predictions.

Challenges in Explainability
How we use Explainable AI for a model depends on the goals of those consuming the
explanations. Suppose, based on just the information we have given about these indi‐
viduals, their ML, and their challenges, we asked you to implement an Explainable AI
technique that will generate explanations of how the model arrived at its predictions.
You toil away and implement a way to generate what you think are good explanations
for these ML models by using Integrated Gradients (Chapter 4) to highlight pixels
that were influential in the prediction. You excitedly deliver a set of predictions
with relevant pixels highlighted in the image, but rather than being celebrated as the
person who saved the day, you immediately get questions like:
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• How do I know this explanation is accurate?•
• What does it mean that one pixel is highlighted more than another?•
• What happens if we remove these pixels?•
• Why did it highlight these pixels instead of what we think is important over here?•
• Could you do this for the entire dataset?•

In trying to answer one question, you inadvertently caused five more questions to
be asked! Each of these questions are valid and worth asking, but may not help
your audience in their original goal to understand the model’s behavior. However,
as explainability is a relatively new field in AI, it is likely you will encounter these
questions, for which there are no easy answers. In Explainable AI, there are several
outstanding challenges:

• Demonstrating the semantic correctness of explanation techniques above and•
beyond the theoretical soundness of the underlying mathematics

• Combining different explanation techniques in an easy and safe way that enhan‐•
ces understanding rather than generating more confusion

• Building tools that allow consumers to easily explore, probe, and build richer•
explanations

• Generating explanations that are computationally efficient•
• Building a strong framework for determining the robustness of explanation•

techniques

Promising research is being conducted in all of these areas; however, none have yet
achieved acceptance within the explainability community to the level that we would
feel confident in recommending them. Additionally, many of these questions have led
to research papers that investigate how explanation techniques may be fundamentally
broken. This is a very promising line of research but, as we discuss in Chapter 7,
may be better viewed as research that probes how susceptible XAI techniques are to
adversarial attacks or are brittle and unable to generate good explanations outside of
their original design parameters. Many of these questions are sufficiently interesting that
we recommend caution when using explanations for high-risk or safety-critical AIs.

Evaluating Explainability
Let’s return to our two case studies to see how they fared after using explainability.
For the chest X-ray, the ML practitioners had been unable to discover why the model
performed very well in training and testing, but poorly in the real world. One of
the researchers used an explainability technique, Integrated Gradients, to highlight
pixels in the chest X-ray that were influential in the prediction. Integrated Gradients
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(covered in more depth in Chapter 4) evaluates the prediction by starting with a
baseline image—for example, one that is all black, and progressively generating new
images with pixels that are closer to the original input. These intermediate images
are then fed to the model to create new predictions. The predictions are consolidated
into a new version of the input image where pixels that were influential to the model’s
original prediction are shown in a new color, which is known as a saliency map. The
intensity of the coloring reflects how strong the pixels influenced the model. At first
glance, the explanations were as baffling as the original problem.

Figure 1-4. The explanation for which pixels, highlighted in red, the model thought
indicated a disease in the chest X-ray. For readability, the area of the image containing
the most attributed pixels is outlined by the blue box. (Print readers can see the color
image at https://oreil.ly/xai-fig-1-4.)

An example of one of these images is shown in Figure 1-4, and it may appear that no
pixels were used in the prediction. However, if you look at the lower left of this image,
you will notice a smattering of red pixels among the black and white of the chest
X-ray. These appear to be quite random as well. It’s not until one closely looks at this
area of the image that you can barely perceive what appear to be scratch marks on the
X-ray. However, these are not random scratches, but the pen marks of a radiologist
who had drawn where the disease was in the X-ray, as we can see in Figure 1-5. The
model then became trained to associate pen markings with a disease being present.
However, in the real-world setting, the X-rays had no pen markings on them because
the raw X-ray images were fed to the model before being shown to a radiologist who
could have marked them up.
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2 Edward Korot et al., “Predicting Sex from Retinal Fundus Photographs Using Automated Deep Learning,”
Scientific Reports 11, article no. 10286 (May 2021), https://oreil.ly/Le50t.

Figure 1-5. Example of the pen markings in a chest X-ray within the training dataset.

Once the researchers figured out the cause of their performance mismatch, that pen
markings had leaked information to the model about whether to classify the X-ray as
showing disease or not, they could build a new dataset that had not been annotated
by radiologists. The model’s subsequent performance was not noticeably worse in
training than the original model and performed better in the real-world setting.

Let’s turn to the retina study. How did ophthalmologists use Explainable AI to
become confident that their ML model could predict the sex of a patient based
on their retinal fundus images? The researchers used a technique known as XRAI
(discussed in Chapter 4; no relation to X-rays) to highlight regions of the eye image
that influenced the model’s prediction. The explanations, seen in Figure 1-6, showed
that the model was attentive to the optic nerve (the large blob to one side of the
retina) and the blood vessels radiating out from the optic nerve.

Figure 1-6. XRAI used to highlight what pixels influenced the model’s prediction of
a patient’s sex based on a photograph of the interior of their eye, from an article by
Korot et al.2
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4 Daniel Qiu and Yucheng Qian, “Relevance Debugging and Explaining at LinkedIn,” LinkedIn, 2019, https://
oreil.ly/cSFhj.

By seeing that the model had become influenced by such specific parts of the eye’s
anatomy, the researchers were convinced that the model was indeed making correct
predictions. This work was also sufficient to convince the broader scientific commu‐
nity, as the results were eventually published as a paper in Scientific Reports.

How Has Explainability Been Used?
The two examples we gave focused on explainability for image models in medical
research and healthcare. You may often find that examples of explainability involve
an image model because it is easier to understand the explanation for an image than
the relative importance of different features in structured data or the mapping of
influential tokens in a language model. In this section, we look at some other case
studies of how Explainable AI has been used beyond image models.

How LinkedIn Uses Explainable AI
Since 2018, LinkedIn has successfully used Explainable AI across many areas of
its business, from recruiting to sales, and ML engineering. For example, in 2022
LinkedIn revealed that Explainable AI was key to the adoption of a ranking and
recommendation ML system used by their sales team to prioritize which customers
to engage with based on the ML’s prediction of how likely it was that the customer
would stop using existing products (also known as churn), or their potential to be
sold new ones (known as upselling). While the ML performed well, the AI team at
LinkedIn quickly discovered that the system was not going to be used by their sales
teams unless it included a rationale for the predictions:

While this ML-based approach was very useful, we found from focus group studies
that ML-based model scores alone weren’t the most helpful tool for our sales represen‐
tatives. Rather, they wanted to understand the underlying reasons behind the scores—
such as why the model score was higher for Customer A but lower for Customer B
—and they also wanted to be able to double-check the reasoning with their domain
knowledge.3

Similar to our chest X-ray example, LinkedIn has also used Explainable AI to
improve the quality of their ML models. In this case, their ML team productionized
the use of explainability across many models by building a tool that allows LinkedIn
data scientists and engineers to perturb features (see Chapter 3) to generate alterna‐
tive scenarios for predictions to understand how a model may behave with a slightly
different set of inputs.4
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LinkedIn has gone a step further to create an app, CrystalCandle,5 that translates
raw explanations for structured data, which are often just numbers, into narrative
explanations (we discuss narrative explanations further in Chapter 7). An example of
the narrative explanations they have built are shown in Table 1-1.

Table 1-1. LinkedIn’s CrystalCandle comparison of raw explanations versus the
corresponding narrative explanations

Model prediction and interpretation
(nonintuitive)

Narrative insights (user-friendly)

Propensity score: 0.85 (top 2%)
Top important features (with importance score):

• paid_job_s4: 0.030•
• job_view_s4: 0.013•
• hire_cntr_s3: 0.011•
• conn_cmp_s4: 0.009•

This account is extremely likely to upsell. Its upsell likelihood is larger
than 98% of all accounts, which is driven by:

• Paid job posts changed from 10 to 15 (+50%) in the last month.•
• Views per job changed from 200 to 300 (+50%) in the last month.•

PwC Uses Explainable AI for Auto Insurance Claims
Working with a large auto insurer, PricewaterhouseCoopers (PwC) built an ML
system to estimate the amount of an insurance claim. In building the system, PwC
clearly highlights how Explainable AI was not an optional addition to their core
project, but a necessary requirement for the ML to be adopted by the insurance
company, their claims adjusters, and customers. They call out four different benefits
from using explainability in their ML solution:

The company’s explainable AI model was a game changer as it enabled the following:

• empowered auto claim estimators to identify where to focus attention during an•
assessment

• provided approaches for sharing knowledge among the estimator team to accu‐•
rately determine which group should handle specific estimates

• identified 29% efficiency savings possible with full implementation of proof of•
concept models across the estimator team

• reduced rework and improved customer experience through reduced cycle times6•

In our work with customers at Google Cloud, we have also seen similar benefits to
many customers who have built explainability into their AI.

10 | Chapter 1: Introduction

https://arxiv.org/abs/2105.12941
https://oreil.ly/3vMUr


7 Roy McGrath et al., “Interpretable Credit Application Predictions with Counterfactual Explanations,” arXiv,
2018, https://arxiv.org/abs/1811.05245.

8 Dr. Matt Turek, “Explainable Artificial Intelligence (XAI),” DARPA.

Accenture Labs Explains Loan Decisions
The experience of receiving a loan from a bank can be a confusing experience. The
loan applicant is asked to fill in many forms and provide evidence of their financial
situation and history in order to apply for a loan, often only asking for approval
for the broad terms of the loan and the amount. In response, consumers are either
approved, often with an interest rate decided by the bank, or they are denied with
no further information. Accenture Labs demonstrated how even a common loan,
the Home Equity Line of Credit (HELOC), could benefit from providing positive
counterfactual explanations (covered in Chapter 2) as part of an ML’s prediction for
whether to approve or deny a loan application. These counterfactual explanations
focused on creating a “what-if ” scenario for what aspects of the applicant’s credit
history and financial situation would have resulted in the loan being approved or
denied. In this case study, Accenture focused on understanding how explainability
could be used across different ML systems,7 demonstrating the value of how using
Explainable AI allowed for explanations to still be generated, while the underlying
model was changed to different model architectures.

DARPA Uses Explainable AI to Build “Third-Wave AI”
The Defense Advanced Research Projects Agency (DARPA), an arm of the US
Department of Defense, conducted a five-year program8 with many projects to
investigate the use of Explainable AI. DARPA’s goals in using Explainable AI are
to “produce more explainable models, while maintaining a high level of learning
performance” and “enable human users to understand, appropriately trust, and effec‐
tively manage the emerging generation of artificially intelligent partners.” DARPA
believes explainability is a key component of the next generation of AI systems, where
“machines understand the context and environment in which they operate, and over
time build underlying explanatory models that allow them to characterize real-world
phenomena.” Over the past few years, the program has had several annual workshops
demonstrating the feasibility of building explainability into many different types of
ML, from data analysis to autonomous systems and assistive decision-making tools.

Summary
In this chapter, we introduced the concept of Explainable AI, a set of techniques
that can be applied to ML models, after they have been built, to explain their
behavior for one or more predictions made by the model. We also explored why
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Explainable AI is needed by different groups who work with ML models, such as
ML practitioners, observers, and end users. Each of these types of users has different
needs for explainability, ranging from improving the quality of a model to building
confidence in the model’s effectiveness. To demonstrate this, we looked at several case
studies of how explainability has been used. We started by contrasting two real-world
examples in medicine, where one set of ML practitioners was trying to debug a poorly
performing model used for classifying diseases from chest X-rays, while another
group, ophthalmologists, needed to understand why their model had made a novel
discovery about the inside of our eyes. To provide an introduction to other ways
Explainable AI has been used, we also looked at other use cases across sales, fintech,
and the defense industry. This introduction should help show you the variety of ways
that explainability can be used, from different types of data and explanations, to the
universal need for explainability regardless of the specific domain you are working in
and the problem that ML is solving for your business.

In the rest of this book, we will discuss in more detail the tools and frameworks you
need to effectively use Explainable AI as part of your day-to-day work in building
and deploying ML models. We will also give you a background in explainability so
you can reason about the trade-offs between different types of techniques and give
you a guide to developing responsible, beneficial interactions with explainability for
other ML users. Our toolbox covers the three most popular data modalities in ML:
tabular, image, and text, with an additional survey of more advanced techniques,
including example- and concept-based approaches to XAI and how to frame XAI for
time-series models. Throughout this book, we try to give an opinionated perspective
on which tools are best suited for different use cases, and why, so you can be more
pragmatic in your choices about how to employ explainability.

In Chapter 2, we give you a framework for how different explainability methods
can be categorized and evaluated, along with a taxonomy of how to describe who is
ultimately using an explanation to help clarify the goals you will have in developing
an Explainable AI for your ML model.
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CHAPTER 2

An Overview of Explainability

Explainability has been a part of machine learning since the inception of AI. The
very first AIs, rule-based chain systems, were specifically constructed to provide
a clear understanding of what led to a prediction. The field continued to pursue
explainability as a key part of models, partly due to a focus on general AI but
also to justify that the research was sane and on the right track, for many decades
until the complexity of model architectures outpaced our ability to explain what was
happening. After the introduction of ML neurons and neural nets in the 1980s,1

research into explainability waned as researchers focused on surviving the first AI
winter by turning to techniques that were “explainable” because they relied solely
on statistical techniques, such as Bayesian inference, that were well-proven in other
fields. Explainability in its modern form (and what we largely focus on in this book)
was revived, now as a distinct field of research, in the mid-2010s in response to the
persistent question of This model works really well…but how?

In just a few years, the field has gone from obscurity to one of intense interest
and investigation. Remarkably, many powerful explainability techniques have been
invented, or repurposed from other fields, in the short time since. However, the
rapid transition from theory to practice, and the increasing need for explainability
from users who interact with ML, such as end users and business stakeholders,
has led to growing confusion about the capability and extent of different methods.
Many fundamental terms of explainability are routinely used to represent different,
even contradictory, ideas; it is easy for explanations to be misunderstood due to
practitioners rushing to provide assurance that ML is working as expected. Even
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the terms explainability and interpretability are routinely swapped, despite having
very different focuses. For example, while writing this book, we were asked by a
knowledgeable industry organization to describe explainable and interpretable capa‐
bilities of a system, but the definitions of explainability and interpretability were
flipped in comparison to how the rest of industry defines the terms! Recognizing the
confusion over explainability, the purpose of this chapter is to provide a background
and common language for future chapters.

What Are Explanations?
When a model makes a prediction, Explainable AI (XAI) methods generate an
explanation that gives insight into the model’s behavior as to how it arrived at that
prediction. When we seek explanations, we are trying to understand, Why did X hap‐
pen? As an example, if we had a weather model that predicted when it rains, and we
wanted to know why the model suddenly gave a 90% chance of precipitation, a useful
explanation would be, 90% precipitation was predicted because the sky was overcast.
Figuring out this why can help us build a better comprehension of what influences
a model, how that influence occurs, and where the model performs (or fails). As
part of building our own mental models, we often find a pure explanation to be
unsatisfactory, so we are also interested in explanations that provide a counterfactual,
or foil, to the original situation. Counterfactuals are scenarios that seek to provide an
opposing, plausible, scenario of why X did not happen. If we are seeking to explain,
Why did it rain today? we may also try to find the counterfactual explanation for,
Why did it not rain today [in a hypothetical world]? While our primary explanation
for why it rained might include temperature, barometric pressure, and humidity, it
may be easier to explain that it did not rain because there were no clouds in the sky,
implying that clouds are part of an explanation for why it does rain.

We also often seek explanations that are causal, or in the form of “X was predicted
because of Y.” These explanations are attractive because they give an immediate sense
of what a counterfactual prediction would be: remove X and presumably the predic‐
tion will no longer be Y. It certainly sounds more definitive to say, “It rains because
there are clouds in the sky.” However, this is not always true; rain can occur even with
clear skies in some circumstances. Establishing causality with data-focused explana‐
tions is extremely difficult (even for time-series data), and no causal techniques have
been proposed that are both useful in practice and have a high level of guarantee in
their analysis. Instead, if you want to establish causal relationships within your model
or data, we recommend you explore the field of interpretable, causal models.

Interpretability and Explainability
As one begins discussing XAI, a common question to ask is, What is the difference
between explainability and interpretability? There is not yet an official definition for
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Jain and Byron Wallace as an example of how interpretability does not necessarily result in explanations.

either term, although a draft standard from the International Organization for Stand‐
ardization (ISO) is in the early stages (which we will discuss more in “AI Regulations
and Explainability” on page 237). As we show in Figure 2-1, think of interpretability
and explainability as two ends of a spectrum of explanation techniques for ML.

Figure 2-1. Explainability and interpretability are two ends of a spectrum. Here we show
key characteristics of techniques at each end of the spectrum, and show some examples of
where techniques fall along this spectrum.

At one end is interpretability, and interpretable techniques are inherently part of
the model’s architecture; removing the parts from the model that generate the
interpretable explanations would result in the breaking of the model (either its
predictive power or even its ability to generate a prediction at all). The raw results
of interpretability methods can also be thought of as side outputs of the model, and
they are often calculated as part of the inference process, so they account for little
additional computation overhead. Interpretability is powerful because the techniques
rely directly on the inner workings of the model, and as such, are supposed to provide
explanations that more faithfully describe the behavior of the model.

However, these techniques may not result in explanations that are more understand‐
able and may only be a narrow window into a single aspect of a complex system.2

Another downside of interpretable models is that they are unique to each model
architecture, and interpretability results cannot be compared between different archi‐
tectures. One significant benefit of interpretable techniques is that they can be used
in absence of inputs and predictions. This means that one can use interpretability
techniques to gain an understanding of a model’s behavior before it is deployed and
used by others.

In contrast and at the other end of the spectrum, XAI techniques are designed to
be used independently of the model itself. The techniques are often derived from
observing how the ML model behaves in use, and then deriving an explanation from
those observed predictions. This approach allows the most robust XAI techniques
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(those at the farthest along the XAI end of the spectrum) to be derived from the
theory that is independent of a particular model architecture, giving them a stronger
argument that the technique generates a meaningful and accurate description of the
model’s behavior, rather than just exposing a single aspect of the model’s internal
processes. Since these techniques also rely on actual data and predicted values, they
are also derived from the actual execution of the model (and its environment),
meaning that XAI explanations have a basis in a set of feature values, prediction, and
execution rather than being a conjecture about the supposed behavior of the model.

A downside of XAI techniques is that because they rely on predictions (and often
calculate many variations of a prediction), they are almost always computationally
more intensive than interpretability. However, one of the most attractive aspects of XAI
techniques is their independence from a particular model architecture. As long as your
model satisfies the prerequisites for a technique, you can almost always compare the
explanations (from the same technique) between different model architectures. This is
an incredibly powerful trait because it allows you to swap out different models without
having to rework your explanations. You can then compare explanations from the
previous model to the current one, or even to a completely different model in the field.

As we have said, interpretability and explainability are two ends of a spectrum, and
the techniques are not mutually exclusive, nor is one approach always better than the
other. As we present techniques in Chapters 3 through 6, you will see that some fall
closer to the middle of the spectrum (for example, TCAVs discussed in Chapter 6),
while others, such as sampled Shapley (discussed in Chapter 3), are at the XAI end of
the spectrum.

Explainability Consumers
Understanding and using the results of XAI can look very different depending on
who is receiving the explanation. As a practitioner, for example, your needs from an
explanation are very different from those of a nontechnical individual who may be
receiving an explanation as part of an ML system in production that they may not
even know exists!

Understanding the primary types of users, or personas, will be helpful as you learn
about different techniques so you can assess which will best suit your audience’s
needs. In Chapter 7, we will go into more detail about how to build good experiences
for these different audiences with explainability.

More broadly, we can think of anyone as a consumer of an explanation. The ML
system is presenting additional information to help a human perceive what is unique
about the circumstances of a prediction, comprehend how the ML system behaves,
and, ultimately, be able to extrapolate to what could influence a future prediction.
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Currently, a key limitation of XAI is that most techniques are a one-way descrip‐
tion; the ML system communicates an explanation to the human, with no ability to
respond to any follow-on requests by the user. Put another way, many XAI methods
are talking at users rather than conversing with users. However, while these techniques
are explaining an ML system, none would be considered to be machine learning algo‐
rithms. Although very sophisticated, these techniques are all “dumb” in the sense that
we cannot interact with them in a two-way dialogue. A smart explainability technique
could adapt to our queries, learning how to guide us toward the best explanation,
or answer the question we didn’t know we were asking. For now, if we want to try
and obtain more information about a prediction, the best we can do is to change the
parameters of our explanation request, or try a different explainability technique. In
Chapter 8, we outline how this will change in the future, but in the meantime, most
explainability techniques represent a process closer to submitting a requisition form
to an opaque bureaucracy to get information rather than going to your doctor and
engaging in a conversation to understand why you have a headache. In our work with
Explainable AI, we have found that it is useful to group explainability consumers into
three broad groups based on their needs: practitioners, observers, and end users.

Practitioners—Data Scientists and ML Engineers
ML practitioners predominantly use explainability as they are building and tuning a
model. Their primary goal is to map an explanation to actionable steps that can be
taken to improve the model’s performance, such as changing the model architecture,
training data, or even the structure of the dataset itself before the model is deployed.
The goal of this process is often to improve the training loss and validation set
performance, but there are times when accuracy may not be the primary concern. For
example, a data scientist may be concerned that the model has become influenced by
data artifacts not present in the real-world data (for example, a doctor’s pen marks
on an X-ray for a diagnosis model, as discussed in Chapter 1) or that the model is
generating outcomes that are unfairly biased toward certain individuals.

However, an ML engineer may be asking, How can we improve the performance
of our data pipeline? Certain features may be costly to obtain, or computationally
expensive to transform into a usable form. If we find that the model rarely uses
those features in practice, then it is an easy decision to remove them to improve
the system overall. Practitioners may also be interested in explainability once the
system is deployed, but their interest still remains in understanding the underlying
mechanisms and performance. Explainability has proven to be a robust and power‐
ful tool for monitoring deployed models for drift and skew in their predictions,
indicating when a model should be retrained (see also the discussion on how XAI
can be incorporated in the entire ML workflow in Chapter 8). And of course, you
may simply be interested in an explanation because, like any practitioner, you’ve
encountered a situation when the model made you squint and say “What the...?”
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Observers—Business Stakeholders and Regulators
Another group of explainability consumers is observers. These are individuals, com‐
mittees, or organizations who are not involved in the research, design, and engineer‐
ing of the model, but also are not using the model in deployment. They often fall into
two categories: stakeholders, who are within the organization building the model, and
regulators, who are outside the organization.

Stakeholders often prefer a nontechnical explanation, instead seeking information
that will allow them to build trust that the model is behaving as is expected, and in
the situation it was designed for. Stakeholders often come to an explanation with a
broader, business-focused question they are trying to answer: Do we need to invest in
more training data? or How can I trust that this new model has learned to focus on
the right things so we’re not surprised later?

Regulators are often from a public organization or industry body, but they may also
come from another part of a company, (i.e., Model Risk Management) or be an audi‐
tor from another company, such as an insurance company. Regulators seek to validate
and verify that a model adheres to a specific set of criteria, and will continue to do so
in the future. Unlike stakeholders, a regulator’s explainability needs can range from
quite technical to vague, depending on the regulation. A common example of this
conundrum is in the needs of many regulators to assess evidence that a model is
not biased toward a specific category of individuals (e.g., race, gender, socioeconomic
status) while also determining that the model behaves fairly in practice, with no
further definition given for what entails fairness. Since regulators may routinely audit
a model, explanations that require less human effort to produce or understand, and
can be generated efficiently and reliably, are often more useful.

End Users—Domain Experts and Affected Users
Individuals or groups who use, or are impacted by, a model’s predictions are known
as end users. Domain experts have a sophisticated understanding of the environment
the model is operating in, but may have little to no expertise in machine learning,
or even the features used by the model if they are derived, or new to the profession.
Domain experts often use explanations as part of a decision support tool. For exam‐
ple, if an image model predicts manufacturing defects in parts on an assembly line, a
quality control inspector may use an explanation highlighting where the model found
the defect in the machined part to help make a decision about which part of the
manufacturing process is broken.

Affected users often have little or no understanding of how the model works, the
data it uses, or what that data represents. We refer to these users as affected because
they may not directly use the model, but the model prediction results in a tangible
impact on them. Examples of affected individuals include people receiving credit
offers, where a model has predicted their ability to repay loans, or a community
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receiving increased funding for road maintenance. In either case, the affected users
primarily want to understand and assess if the prediction was fair and that it was
based on correct information. As a follow-up, these users seek explanations that can
give them the ability to understand how they could alter factors within their control
to meaningfully change a future prediction. You may be unhappy that you were given
a loan with a very, very high interest rate, but understand that it is fair because
you have a poor history of repaying loans on time. After understanding the current
situation, you might reasonably ask, How long of a history of on-time loan payments
would I need to establish in order to get a lower interest rate?

Types of Explanations
Modern-day machine learning solutions are often complex systems incorporating
many components from data processing and feature engineering pipelines, to model
training and development to model serving, monitoring, and updating. As a result,
there are many factors that contribute to explaining why and how a machine learning
system makes the predictions it does, and explainability methods can be applied at
each step of the ML development pipeline. In addition, the format of an explanation
can depend on the data modality of the model (e.g., whether it is a tabular, image, or
text model). Explanations can also range from being very specific by being generated
for a single prediction or based upon a set of predictions to give a broader insight
into the model’s overall behavior. In the following sections, we’ll give a high-level
description of the various types of explanations that can be used to better understand
how ML solutions work.

Premodeling Explainability
Machine learning models rely on data and although many Explainable AI techniques
rely on interacting with a model, the insights they create are often focused on the
dataset and features. Thus, one of the most critical stages of developing model
explanations begins before any modeling takes place and is purely data focused.
Premodeling explainability3 is focused on understanding the data or any feature
engineering that is used to train the ML model.

As an example, consider a machine learning model that takes current and past atmos‐
pheric information (like humidity, temperature, cloud cover, etc.) and predicts the
likelihood of rain. An example of an explainable prediction that is model dependent
would be, “The model predicted a 90% chance of rain because, among the data
inputs, humidity is 80% and cloud cover is 100%.” This type of explanation relies
on feature attribution for that model prediction. On the other hand, premodeling
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explanations focus only on the properties of a dataset and are independent of any
model, such as “The standard deviation of the chance of rain is +/– 18%, with an
average of 38%.” Inherently explainable models, such as linear and statistical models,
may blur this distinction, with explanations such as “For each 10% increase in the
cloud cover, there is a 5% increase in the chance of rain.” Given the extensive availa‐
bility of resources available on more “classical” statistical and linear modeling, we will
only briefly discuss here commonly used premodeling explainability techniques.

Explanations that focus solely on the dataset are often referred to as exploratory data
analysis (EDA). EDA is a collection of statistical techniques and visualizations that are
used to gain more insight into a dataset. There are many techniques for summarizing
and visualizing datasets, and there are quite a few useful tools that are commonly
used such as Know Your Data, Pandas Profiling, and Facets. These tools allow you
to quickly get a sense of the statistical properties of the features in your dataset such
as the mean, standard deviation, range, and percentage of missing samples as well
as the feature dimensionality and presence of any outliers. From the perspective of
explainability, this knowledge of the data distribution and data quality is important
for understanding model behavior, interpreting model predictions, and exposing any
biases that might exist within the dataset.

In addition to these summary univariate statistics, explanations in the form of EDA
can also take the form of multivariate statistics that describe the relationship between
two or more variables or features in your dataset. Multivariate analysis is a useful tool
to compute statistics that show the interaction between features and the target. This
type of correlation analysis is useful not just for helping to explain model behavior
but can also be beneficial for improving model performance. If two features are
highly correlated, this could indicate an opportunity to simplify the feature space,
which can improve interpretability of the machine learning model. Also, knowledge
of these interdependencies is important when analyzing your model using other
explainability techniques; for example, see in Chapter 3 where we discuss the effect
highly correlated features have on interpreting the results of techniques like partial
dependence plots or related techniques for tabular datasets. There are a number of
visualization tools that can assist in this type of correlation analysis such as pair plots,
heatmaps, biplots, projection plots (t-SNE, MDS, etc.), and parallel coordinate plots.

Intrinsic Versus Post Hoc Explainability
When and how do we receive an explanation for a prediction? Explanations that
are part of the model’s prediction itself are known as intrinsic explanations, while
explanations that are performed after the model has been trained and rely on the
prediction to create the explanation are called post hoc explanations. Most of the
techniques we discuss in this book are post hoc explanations because they are more
portable and can be decoupled from the model itself. By contrast, generating intrinsic
explanations often requires modifications to the model or an inherently interpretable
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model. Often, intrinsic explanations are based on inherent properties of the model or
are by-products of the model’s internal calculations for generating a prediction.

To make this more concrete, let’s look at the difference between an intrinsic explana‐
tion and a post hoc explanation of how much a linear regression model relied on
three different features in a dataset for making its prediction:

Pred y = 0.1 · featureA + 0.7 · featureB + 0.4 · featureC

Given an input example where featureA = 10, featureB = 20, featureC = 40, the model
will predict (Pred y ) a value of 31. If we wanted an explanation of how the model
worked, we could create an explanation that describes which feature most influenced
the model’s prediction. For a linear model, an intrinsic explanation for this would
simply be the coefficients, or weights, for each feature, with the largest coefficient
0.7 being for Feature B. So, our intrinsic explanation is “Feature B had the greatest
influence on the model’s prediction.” In this case, we relied on the fact that linear
regressions are inherently interpretable models, so we could use that interpretable
trait to easily generate the explanation.

However, most ML models are not inherently interpretable and, based on the com‐
plexity of the model, it may be very difficult to generate an intrinsic explanation.
We could still generate a post hoc explanation for our linear regression model in a
variety of ways. However, since post hoc explanations have little or no visibility into
the internal workings of the model, we will use Shapley values (covered later in the
chapter and in depth in Chapter 3) to simulate many predictions by the model, but
with various combinations of the features (A, B, C) for the given inputs (10, 20, 40)
and predicted value (31). Combining the results from these simulations leads us to
the same explanation: that Feature B most influenced the model’s behavior.

You may notice that some libraries are set up to provide an
explanation with the prediction—this does not necessarily mean
the explanation is intrinsic, as it may be that the service first gen‐
erates the prediction, then the explanation, before returning both
together.

Within the group of post hoc explainability techniques, another factor to group tech‐
niques is whether the method is model agnostic or model specific. A model-agnostic
technique does not rely on the model’s architecture, or some inherent property of the
model, so it can be used universally across many different types of models, datasets,
and scenarios. As you might imagine, it is also more useful to become more familiar
with these techniques because you will have more opportunities to reuse them than a
technique that only works on a specific type of model architecture.
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How can a technique not know anything about the model, and yet still generate
useful explanations? Most of these techniques rely on changing inputs to the model,
correlating similar predictions, or running multiple simulations of a model. By com‐
parison, a technique that relies on the model itself will leverage some internal aspect
of the model’s architecture to aid in generating the explanation. For example, an
explanation for tree-based models may look at the weights of specific nodes within
the tree to extract the most influential decision points within the tree to explain a
prediction.

Does this mean that opaque, or black box, models4 always use model-agnostic techni‐
ques, while explainability for transparent, or interpretable, models is always model
specific? Not necessarily; there are many unique explanation techniques for deep
neural networks (DNNs) that are considered opaque models, and a linear regression
model could be explained using Shapley values, a model-agnostic technique.

Local, Cohort, and Global Explanations
Explanations themselves can cover a wide variety of topics, but one of the most
fundamental is whether the explanation is local, cohort, or global with respect to the
range of predictions the explanation covers. A local explanation seeks to provide
context and understanding for a single prediction. A global explanation provides
information about the overall behavior of the model across all predictions. Cohort
explanations lie in between, providing an understanding for a subset of predictions
made by the model.

Local explanations may be similar for comparable inferences, but this is not an absolute
and depends on the technique, model, and dataset. Put another way, it is rarely safe to
assume that an explanation for one set of inputs and inference is blindly applicable to
a similar set of inputs and/or prediction. Consider, for example, a decision tree model
that predicts expected rainfall with a decision node that strictly checks whether the
humidity is greater than 80%. Such a model can lead to very different predictions and
explanations for two days when the humidity is 80% versus 81%.

Global explanations can come in many forms, and because they are not directly
representative of any individual prediction, they likely represent more of a survey, or
summary statistic, about the model’s behavior. How global explanations are generated
is highly dependent on the technique, but most approaches rely either on generating
explanations for all predictions (usually in the training or validation dataset) and then
aggregating these explanations together, or on perturbing the inputs or weights of the
model across a wide range of values.
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Global explanations are typically useful for business stakeholders, regulators, or for
serving as a guide to compare the deployed model’s behavior against its original
performance.

Global explanations are not a set of rules describing the boundaries
of a model’s behavior, but instead only what has been observed
based on the original training data. Once a model is deployed and
is exposed to new data examples not seen during training, it is
possible that during inference local explanations can differ from or
even directly contradict global explanations.

Explainable methods for cohorts are usually the same techniques as what is used
to calculate global explanations, just applied to a smaller set of data. One powerful
aspect of cohort explanations is that one cohort can be compared against another
cohort to provide insights about the global behavior of the model that may not be
apparent if we just sought a global explanation. These comparisons are useful enough
in their own right to serve as the underpinnings for another pillar of responsible AI:
testing and evaluating the fairness of a model.

Fairness techniques seek to evaluate how a model performs for one cohort of predic‐
tions compared to another, with the goal of ensuring that the model generates similar
predictions based on relevant factors rather than discriminating on characteristics
that are deemed to be unimportant or may not even be desirable to use in the first
place. A classic example is how an AI that seeks to determine whether an individual
should be approved for a loan may be trained on historical data in the US, which
contains prevalent discrimination against people of different races. Scrutinizing the
ML for fairness would tell us whether the model learned this racial discrimination,
or whether it is basing its decisions solely on the relevant financial background of
the individual, such as their income and history of on-time loan payments. Although
explainability and fairness share many of the same underpinnings, how to apply and
understand fairness, as well as the techniques themselves, are sufficiently distinct
from explainability and we do not cover them in this book.

Attributions, Counterfactual, and Example-Based Explanations
Explanations can come in many forms depending on the type of information they
use to convey an understanding of the model. When asked, many of us think of
attribution-based explanations that are focused on highlighting relevant properties of
the system, e.g., “It is raining because there are clouds in the sky.” In this case, the sky’s
contents are a feature in our weather model, and clouds are an attribute of that feature.

In Explainable AI, example-based, or similarity, explanations are those that focus on
providing a different scenario that is analogous to the prediction being explained. For
example, in our previous explanation, we could have also said, “It is raining because
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the weather is mostly like the conditions when it rains in Rome.” To ease the burden
of understanding why similar predictions are relevant, example-based explanation
techniques typically include secondary information to help highlight the similarities
and differences in the dataset and/or how the model acted between the two predictions.
We will cover example-based explanations in more depth in Chapter 6.

Earlier when we said it was raining because of clouds, we could have also explained
this by providing a counterfactual explanation: “It does not rain when it is sunny.”
Proponents and opponents are part of counterfactual explanations, which humans
often find more satisfying than pure attribution-based explanations because they rely
on offering other examples of inputs and predictions to compare and contrast model
behavior. Following our weather-based example, “clouds” would be the proponent of
our counterfactual explanation, while “sunny” is the opponent to our explanation.5

Counterfactuals are often portrayed as negations (e.g., “It does not rain when it is
sunny.”), but this is not a requirement of counterfactual explanations. We could have
just as easily found a counterfactual to a weather prediction for cold weather with
the counterfactual “It is hot when it is sunny.” Finding and understanding the causes
behind proponents and opponents can be difficult depending on the modality of the
dataset. An opponent value that is negative in a structured dataset is much easier to
comprehend than why a texture in an image is considered an opponent by the model.

Next we will look at most common types of explanations that are used today, provid‐
ing a general overview of each type, so you can understand, broadly, your options for
explainability techniques.

Themes Throughout Explainability
Explainability is a broad and multidisciplinary area of machine learning that brings
together ideas in various fields from game theory to social sciences. As a result, there
is a large and continually growing number of explainability methods and techniques
that have been introduced. In this section, we’ll give an overview of some common
themes that have been introduced and further developed in the field.

Feature Attributions
Methods based on attributing model behavior to features in the dataset are common
throughout XAI. What does it mean to attribute a prediction to an individual feature
in your dataset? Formally, a feature attribution represents the influence of that feature
(and its value for a local explanation) on the prediction. Feature attributions can be

24 | Chapter 2: An Overview of Explainability



absolute, for example, if a predicted temperature is 24°C, a feature could be attributed
8°C of that predicted value, or even a negative value like –12°C, meaning it lowered the
final predicted value.

In this book, we describe features as influencing a model, while the
specific amount of influence is the attribution. In practice, “feature
influence” and “feature attribution” are often used interchangeably.

If the idea of a feature having influence that is relative seems strange to you, then
you’re in good company. Understanding what feature attributions convey as explana‐
tions, and what they don’t, is rife with confusion and it is often difficult for end users
to build an understanding of feature attributions’ true mechanism. For a more intu‐
itive feel of how feature attributions work, let’s walk through an imaginary scenario
of an orchestra playing music. Within this orchestra, there are a variety of musicians
(which we will treat as features) that contribute to the overall performance of how
well the orchestra plays a musical composition. For Explainable AI, let’s imagine
that the orchestra is going to participate in ExplainableVision, a competition where
a judge (the ML model) tries to predict how well an orchestra performs music by
listening to the music played by each individual musician in the orchestra. In our
analogy, we can use feature attributions to understand how each musician influenced
the overall rating of the orchestra given by the judge.

Each feature attribution represents how a musician sways the judge toward the most
accurate prediction of the overall musical talent of the orchestra. Some musicians
may be useful to the judge in determining an accurate score of the overall orchestra’s
performance, so we would assign them a high value for their feature attribution.
Perhaps it is because they are close to the average talent of the orchestra, or the
amount of time they spend playing in any given performance is very high. However,
other musicians may not be as helpful and cause the judge to give an inaccurate score,
in which case we would give them a small feature attribution. This low score could
be for a number of reasons. For example, it could be because those musicians are
just bad at playing music, which is distracting to the judge. Or perhaps, they’re fine
musicians but they play out of harmony with the rest of the orchestra. Or maybe
they’re fantastic musicians and cause the judge to give a very positive assessment of
the orchestra’s talent, even though the rest of the orchestra is really bad. In any of
these cases, the feature attribution of that musician should be given a smaller value
because their contribution negatively affects the judge’s ability to provide an accurate
score of the orchestra’s overall skill. For either high- or low-feature attribution scores,
the assessment to determine the attribution of a single musician to the judge’s overall
prediction of the orchestra’s talent is still “How much did that musician influence the
judge’s rating?”

Themes Throughout Explainability | 25



Choosing an appropriate feature attribution technique is not just a matter of finding
the latest or most accurate state-of-the-art method. Techniques can vary wildly,
or even be completely opposed in the attribution they give to different features.
Figure 2-2 shows an example of this by comparing seven different feature attribution
techniques for the same dataset and model.

Figure 2-2. Feature attributions across seven different techniques for a PyTorch model
trained on the Boston Housing dataset. (Print readers can see the color image at https://
oreil.ly/xai-fig-2-2.)

In this example, the Integrated Gradients (IG), SmoothGrad, and DeepLIFT techniques
closely agree in their feature attribution values, even though DeepLIFT is conceptu‐
ally a different approach from IG and SmoothGrad. Conversely, the GradientSHAP
technique strongly diverges from its sibling techniques, Sampled SHAP and Kernel
SHAP, despite all three using the same underlying theory. Finally, we can see how
feature ablation, which is not similar to any of the other methods, sometimes has very
similar attributions to other techniques (i.e., for the features RM and PTRATIO), but has
attributed influence to the features B and TAX, unlike any other method.

Feature attributions can also be relative, representing a percentage of influence com‐
pared to other features used by the model. For our temperature prediction model,
instead of attributing absolute values like 8°C of the predicted value of 24°C, we
could instead say that a feature was responsible for 21% of the predicted value, with
other features being responsible for 18%, 42%, and more. However, many of the
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assumptions usually held about working with relative values and percentages do not
necessarily hold for these types of feature attributions: percentages may not sum up to
100%, and negative percentages are equally difficult to reason about. We discuss more
about how to avoid confusion when working with feature attributions in Chapter 7.

Feature attributions may still seem abstract, which is okay because they rely on the
modality of the dataset. For example, in Chapter 3, “Explainability for Tabular Data,”
we will discuss feature attributions as numerical values because the inputs are scalar.
By comparison, in Chapter 4, “Explainability for Image Data,” feature attributions are
the contribution by individual pixels in the image to the prediction. In Chapter 5,
which is focused on natural language processing (NLP), the feature attributions are
typically prescribed to tokenized words.

Shapley values
One commonly used method to determine feature attribution is Shapley values.
Shapley values use game theory to determine a feature’s influence on a prediction.
Unlike a technique such as feature permutation (see Chapter 3 where we discuss
permutation feature importance), which relies on changing the values of features
to estimate their impact, Shapley values are purely observational, instead inferring
feature attributions through testing combinations with different groups of features.

A Shapley value is calculated using cooperative game theory; Lloyd Shapley published
the technique in 1951, and it contributed to his 2012 Nobel Prize in Economics. It is
useful to understand the core idea behind Shapley values in order to decide if they’re
worth it for your use case and be able to use them effectively with your ML model.
Shapley values rely on examining how each feature influences the predicted value of
a model by generating many predictions based on a partial set of the features used by
the model and comparing the results of the predicted values.

We can describe how Shapley values are computed in two ways: coalitions and paths.
With coalitions, Shapley values are represented by grouping the features of a dataset
into multiple, overlapping subsets, which are the coalitions. For each coalition, a
prediction value is generated using only the features in that coalition and compared
against the prediction for a coalition that includes one additional feature. With paths,
calculating Shapley values can also be framed as a dynamic programming problem,
where a series of steps, or paths, are generated. Each step in a path represents
incrementally, including another feature from the dataset to generate the prediction.
We generate many different paths to represent the different permutations of the order
in which features could be included.

More concretely, imagine we had a weather dataset, and we wanted to predict the
amount of rain (in inches). In this example, we’ll refer to this prediction function
as P(), which takes any subset of features, e.g., {feature_1, feature_2, …} as its
input. For the purposes of explaining how Shapley values are calculated, it is not
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6 Also, P() is not a probability function, so you may encounter combinations of inputs that violate assumptions
about probability function notation.

7 To make this equation easier to use as you compare different implementations of Shapley values, we use the
same notation as this 2020 article in arXiv, “The Many Shapley Values for Model Explanation” by Mukund
Sundararajan and Amir Najmi, although we have moved the denominator out of the summation to make it
easier to compare with the path formulation.

important to understand how P() determined the predicted values.6 The ability to
explain an opaque model, while not knowing how it works internally, is one of the
advantages of many explainability techniques.

The Math of Shapley Values
Originally, Shapley values were formulated as a way to divide up the value of some
payoff fairly across all players using cooperative game theory. In the context of ML,
we think of the payoff as the output of the learned model function v and the set of
all model input features N  as the players.7 Calculating the Shapley value relies on
examining the value of v for coalitions of features, which are essentially subsets of N
denoted as S . Within a cohort S , we denote the Shapley value attributed to a feature i
as si. The formula for calculating an individual Shapley value of i via coalitions is:

si = 1
N ! ∑

S⊆ N∖i
S ! · N − S − 1 ! v S ∪ i − v S

To demystify this formula a bit, the Shapley value is a marginal calculation of the
contribution of a coalition with i and without i (i.e., v S ∪ i − v S ) summed up over
all coalitions that don’t have i (i.e., S ⊆ N ∖ i). Each of those marginal calculations is
weighted by all the possible ways that we could have gotten that marginal calculation
(i.e., S ! N − S − 1 !) divided by all the possible coalitions (i.e., N !). In total,
the sum of all feature attributions, s1...N , will be equal to v N .

Alternatively, we can also calculate the Shapley values using a path formulation, which
is more common for Explainability, by defining an ordering of features (the path) as
R, and Pi

R, which is the set of features in N , or partial path, that precedes i in the
order of R. We then use this formula to calculate the Shapley value of i via paths:

si = 1
N ! ∑R v Pi

R ∪ i − v Pi
R

Implementations of Shapley values differ in how v S  is defined, with the most basic
implementation, but highly inefficient, version being v S = f xS  where f xS  is the
function for a model to calculate a prediction for an individual feature input.
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8 For larger coalition sizes, the average is weighed by the number of coalitions of that size. See the formal
definition of Shapley values for details.

In the simplest version of our weather dataset, we just have two features, temperature
and cloud_cover. To calculate the Shapley values for each of the individual features
temperature and cloud_cover, we first compute four individual predictions for
different combinations of features in the dataset:

• P({}) = 0 // initially no features, also known as a null baseline•
• P(temperature) = 2 inches•
• P(cloud_cover) = 5 inches•
• P({temperature, cloud_cover}) = 6 inches•

For now, don’t worry about how we arrived at these predicted values using only a
subset of features—we’ll discuss that later in this chapter, as well as in Chapter 3
where we talk about baselines.

Our prediction that uses all of the features in the dataset is P({temperature,
cloud_cover}), which gives us an estimated 6 (inches) of rain. To determine the
Shapley value individually for temperature, we first remove our P(cloud_cover)
prediction (5) from the overall P({temperature, cloud_cover}) (6), leading to a
contribution of 1. However, this is only part of the Shapley value; to compute the
entire path, we also need to move backward from P(temperature) to P({}), leading
to a contribution of 2. We then average the contributions from each step on the path
to arrive at a Shapley value of 1.5 for temperature.8 Using the same approach, we can
calculate that the Shapley value for cloud_cover is 4.5 (by averaging 6 – 2 and 5 – 0).

This reveals a useful property of Shapley values, efficiency, meaning that the entire
prediction is equal to the sum of the Shapley values of individual features. In our pre‐
ceding example, our combined contributions (Shapley values) of 1.5 (temperature)
and 4.5 (cloud_cover) summed to 6 (our original prediction, which included all of
the features).

In this example, we have two paths, one to calculate the contribution of temperature
and another to calculate the contribution of cloud_cover:

• P({}) → P({temperature}) → P({temperature, cloud_cover})•
• P({}) → P({cloud_cover}) → P({temperature, cloud_cover})•

What happens if we have more than two features? To accomplish this, we begin
computing the Shapley paths, or unordered, incremental groupings of features. A
path represents a way to go from no features in our prediction to the full set of
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features we used in our model. Each step in the path represents an additional feature
in our coalition.

Let’s expand our weather dataset to include a humidity feature, for an overall predic‐
tion that is P({temperature, cloud_cover, humidity}).

Our Shapley paths, shown in Figure 2-3, are now:

• P({}) → P({temperature}) → P({temperature, cloud_cover}) →•
P({cloud_cover, temperature, humidity})

• P({}) → P({temperature}) → P({humidity, temperature}) →•
P({cloud_cover, temperature, humidity})

• P({}) → P({cloud_cover}) → P({temperature, cloud_cover}) →•
P({cloud_cover, temperature, humidity})

• P({}) → P({cloud_cover}) → P({cloud_cover, humidity}) →•
P({cloud_cover, temperature, humidity})

• P({}) → P({humidity}) → P({humidity, temperature}) → P({cloud_cover,•
temperature, humidity})

• P({}) → P({humidity}) → P({cloud_cover, humidity}) → P({cloud_cover,•
temperature, humidity})

You may have noticed that we have repeated parts in our paths, such as P({humidity,
temperature}) or P({cloud_cover, humidity}). The ordering of the features does
not matter for how Shapley values are computed either using the paths or the coa‐
litions frameworks. In fact, the computation can be sped up by saving the values
along the path to avoid recomputation. This is an important property, and the one
most misunderstood, as we’ll discuss in further detail later regarding a common
misconception with Shapley values and causality.
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Figure 2-3. The Shapley paths for constructing Shapley values for our weather model
using the features temperature, cloud_cover, and humidity.

Themes Throughout Explainability | 31



Returning to our weather dataset, how would we calculate the Shapley value for
our humidity feature? First, we need to know the predicted value for our different
combinations of features:

• P({}) = 3•
• P(temperature) = 2•
• P(cloud_cover) = 4•
• P(humidity) = 5•
• P({temperature, cloud_cover}) = 6•
• P({temperature, humidity}) = 8•
• P({cloud_cover, humidity}) = 10•
• P({cloud_cover, temperature, humidity}) = 15•

In our earlier example when we only considered temperature and cloud cover, we
did not need to calculate the indirect contribution of any feature. Now with multiple
intermediate steps in our path, we need to determine how much each feature contrib‐
uted along the path to the final predicted value. For the first path, we expand each
step in the path to include the contribution made by the new feature added to the
coalition. To calculate the attributions, we take the difference of the predicted value
before and after the step occurs:

• Step 1 (base case): P({}) → P({temperature}•
Intermediate_Attribution_temperature = P({temperature}) - P({}) 
= 2 - 3 = -1

• Step 2: P({temperature}) → P({temperature, cloud_cover})•
Intermediate_Attribution_cloud_cover = P({temperature, cloud_cover}) - 
P({temperature}) = 6 - 2 = 4

• Step 3: P({temperature, cloud_cover}) → P({cloud_cover, temperature,•
humidity})

Intermediate_Attribution_humidity = P({cloud_cover, temperature, 
humidity}) - P({temperature, cloud_cover}) = 15 - 6 = 9

Why are these intermediate attributions? We have more than one Shapley path, so we
must continue to compute the partial attributions across all paths. To obtain the final
feature attribution, we take the average of all of the intermediate attributions for that
feature.
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9 The actual number of predictions could be even higher if you did not optimize and save the results of
predictions to be reused between different paths.

What About Classification Models?
Although it is not immediately obvious, using Shapley values with classification mod‐
els is perfectly okay, and not as hard as it seems. This is because almost all modern
classification models represent classes not as a set of labels, but in some vector form
(for example, either through embeddings, or one-hot encoding). In this case, our
mental representation of how Shapley values push an inference toward or away from
the final prediction value may not be as accurate. Rather than thinking of the Shapley
value as pushing toward one class and away from another, envision a Shapley value
as strengthening or weakening the predicted score for that individual class. For a
multiclass classification model, the Shapley values are doing this strengthening and
weakening for each class. A typical way to calculate Shapley values for multiclass
classification is to independently calculate the Shapley values for each possible class,
rather than just the predicted class.

Sampled Shapley technique
In a world with infinite time, you would calculate intermediate attributions for every
possible path, representing every possible coalition of features. However, this quickly
becomes computationally infeasible—for a dataset with 10 features, we would need
to get predictions for 210 combinations9 (or 1,023 additional predictions!). So, almost
every feature attribution technique you encounter that relies on Shapley values will
use an optimized method known as sampled Shapley.

The idea behind sampled Shapley is that you can approximate these paths by either
skipping steps in the path for some features where there does not appear to be a large
contribution, sampling random coalitions and averaging the results using Monte
Carlo methods via repeated samplings, or following gradients. The trade-off to using
sampling is that we now have an approximation of the true attribution values, with an
associated approximation error. Due to this approximation error, our Shapley values
may not sum up to the predicted result. There is no universal way to calculate the
approximation error, or a “good” range for the approximation error, but generally you
will want to try tuning the number of sampled paths to get the best trade-off between
computation performance and error; a higher number of sampled paths will decrease
the error but increase runtime, and vice versa.

Baselines
The explanations provided by Shapley values are contrastive, meaning they try to
account for deviations from a baseline prediction. In our examples of Shapley paths,
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10 Other options include conditional expectations and RBShap. See also Mukund Sundararajan and Amir Najmi,
“The Many Shapley Values for Model Explanation,” PMLR, 2020, which provides an excellent breakdown of
these different approaches, including trade-offs and real-world examples.

we repeatedly referred to model prediction values using only a subset of the features
our model was built for (e.g., P{temperature, cloud_cover} when our model took
temperature, cloud_cover, and also humidity as inputs). There are several ways to
compute these “partial” predictions, but for the purposes of this book we will focus
on Shapley techniques, which use baselines.10

The main concept behind baselines is that if one can find a neutral, or uninformative,
value for a feature, that value will not influence the prediction and therefore not
contribute to the Shapley value. We can then use these uninformative values as
placeholders in our model input when calculating the Shapley value for different
feature coalitions. In our rainfall example, our partial prediction of P({cloud_cover
= 0.8, humidity = 0.9}) = 10 may actually be fed to the model with a baseline
value for temperature of temperature = 22 (Celsius), or P({cloud_cover = 0.8,
humidity = 0.9, temperature = 22}) = 10

Baselines can vary; there may be an uninformative baseline that is best for different
groups of predictions, or a carefully crafted baseline that is uninformative across
your entire training dataset. We discuss the best way to craft baselines in Chapter 3
through Chapter 6, which are focused on explanations for different modalities.

Which Way to Calculate Shapley Values?
Calculating Shapley values as originally intended (by entirely removing features and
observing the result) is rarely feasible in ML because most datasets are historical—it
is not feasible to “rerun” or re-create the environment of the dataset without a certain
feature, or combination of features, and observe what a new predicted value would
be. Due to this, a variety of techniques have been invented over time to overcome
these limitations by addressing how to treat the removed features and combinations
in intermediate steps of the path. Many involve creating a synthetic value for the
removed feature(s) that allows the model to be used as is with minimal contribution
from the removed features, rather than trying to alter the model architecture or final
predicted value, and often assuming that the ordering of features in the intermediate
path steps does not matter. For example, the open source SHAP library has four dif‐
ferent implementations for efficiently calculating Shapley values based on the model
architecture. For a deeper discussion of the different Shapley value techniques, see the
very well-written “The Many Shapley Values for Model Explanation” by Sundararajan
and Najmi.
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You will often see Shapley values referenced as a method for explanations or forming
the basis behind others. As they have seen many decades of use across a variety of
fields, and been very well studied in academia, they represent one of the most proven
techniques for explainability. However, as we saw in discussing sampled Shapley, true
Shapley values are computationally infeasible for most datasets, so there are trade-offs
to this technique due to the lack of precision. Likewise, although superficially it is
easier to understand feature attributions based on Shapley values, it can be quite
difficult to explain the game theory concepts to stakeholders to build trust in the use
of these techniques.

Gradient-based techniques
Gradient-based approaches toward explainability are some of the most powerful and
commonly used techniques in the field. Deep learning models are differentiable by
construction, and the derivative of a function contains important information about
the local behavior of the function. Furthermore, since gradients are needed to fuel the
gradient descent process that most machine learning models are trained upon, the
tools of autodifferentiation for computing gradients are robust and well established in
computing libraries.

A gradient is a high-dimensional analog of the derivative of a function in one variable.
Just as the derivative measures the rate of change of a function at a point, the gradient
of a real-valued function is a vector indicating the direction of the steepest ascent.
Gradient descent relies on the gradient in the parameter space to find the parameters
that minimize the loss. Similarly, measuring the gradient of a model function with
respect to its inputs gives valuable information as to how the model predictions may
change if the inputs change as well. This, in turn, is very useful for explainability. The
gradient contains exactly the information we need to say, “If the input changed this
much in this way, the model’s prediction would change (or not) as well.” Many of
the explainability techniques we discuss in this book are based on evaluating how the
value of predictions change as the values of features are changing as well.

Gradient-based methods are particularly common for image-based models (see
Chapter 4), and they provide an intuitive picture of how these methods are typically
applied. Given some example input image, to measure the gradient of how the model
arrives at its prediction for that example, the image is varied along a path in feature
space from some baseline to the values of the original input image.

But what exactly is a path in feature space? For images, we can think of a picture
that is 32 x 32 pixels, like the images in the CIFAR-10 dataset, with three channels
for RGB values as a vector in 3,072-dimensional space. Modifying the elements of
that vector modifies the picture it represents. For gradient-based techniques, you
start with a baseline image (similar in spirit to the role of the baseline in computing
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11 As we’ll explore further in the chapter, the exact way of calculating how to combine these steps is a key
differentiating factor between techniques.

Shapley values) and construct a path in that 3,072-dimensional space that connects
the baseline with the vector representing the input image.

Gradient-based techniques for images make a lot of sense because they take advan‐
tage of the intrinsic property of an image, namely that it represents an array of
uniform features with a fixed, linear scale (e.g., from 0.0 to 1.0 or 0 to 255). This
allows these techniques to rapidly evaluate multiple versions, or steps, of an image
as they move along the gradient. The technique will then combine its observations
from these steps to calculate an attribution value for each pixel,11 and in some cases,
segment these attributions into regions. Gradient-based techniques are also used for
tabular (Chapter 3) and text (Chapter 5) models, but the type of baseline you use for
those cases will vary.

If this technique of determining attribution values sounds similar to the discussion of
Shapley values in this chapter, and sampled Shapley (covered in depth in Chapter 3),
that’s because it is! Both Integrated Gradients and Shapley values are techniques that
measure the individual influence of individual features in the model, and they do
that by measuring how the model’s prediction changes as new information of the
input example is introduced. For Shapley values, this is done combinatorially by
adding features individually or in coalitions to determine which features or coalitions
have the strongest influence in comparison to a baseline prediction. However, with
images, this approach is a bit naive as it rarely makes sense to entirely remove
“features” (or substitute with a baseline value) given that a pixel’s location in the
image is relevant. Furthermore, the pixel’s value relative to its neighbors also gives
us important information, such as whether it constitutes the edge of an object. The
idea of “dropping out” entire regions of an image to understand pixel influence has
not yet been well explored and given the computational complexity of exhaustively
generating all (or random) regions, it is likely this type of technique will be more used
in interpretable models in the future, rather than as a standalone, model-agnostic
explainability technique.

Saliency maps and feature attributions
Saliency maps arise in various contexts in machine learning but are probably most
familiar in computer vision. Saliency maps, broadly, refer to any technique that aims
to determine particular regions or pixels of an image that are somehow more impor‐
tant than others. For example, saliency maps can be used to highlight the regions in
an image to better understand where and how a human first focuses their attention
by tracking eye movements. The MIT/Tuebingen Saliency Benchmark dataset is a
benchmark dataset for eye movement tasks. The saliency maps in this dataset indicate
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12 Zoya Bylinskii et al., “MIT Saliency Benchmark,” 2015.

important regions in an image from tracking human eye movements and areas of
fixation (see Figure 2-4).

Figure 2-4. Examples from the MIT/Tuebingen Saliency Benchmark dataset.12

In the context of explainability and feature attributions, saliency methods serve a
similar purpose; that is, they emphasize the regions or pixels of an image that indicate
where a trained model focuses its attention to arrive at a given prediction. For
example, in Chapter 4 we’ll see how the method of Integrated Gradients can be used
to produce a mask or overlay highlighting the pixels that contributed most to the
model’s prediction. We’ll see precisely how the mechanics of Integrated Gradients and
other gradient-based techniques lead to this kind of attribution mask as well as a host
of other saliency-based explainability techniques that can be applied to image models.

Surrogate Models
Another form of explaining a model’s behavior is to use a simplified version of the
model, the surrogate, to give more explanatory power directly from observing the
architecture of the model (also known as model distillation). In this sense, surrogate
models represent a halfway point between post hoc explainability and intrinsic inter‐
pretable models. While this may sound like the best of both worlds, the trade-off
is that a surrogate model almost always has worse performance than the original
model, and usually cannot guarantee that all predictions are accurately explained,
particularly in edge cases or areas of the dataset that were underrepresented during
training.

Surrogate models usually have a linear, decision tree, or rule-based architecture.
Where possible, we try to highlight the ability to use a surrogate model, but the
field of automated model distillation still resides more in research labs than industry.
What this usually means is that you must build your own techniques, or adapt
proofs-of-concept, to make your surrogate models.

Themes Throughout Explainability | 37



Activation
Rather than explaining model behavior by which features influenced the model’s pre‐
diction, activation methods provide insight into what parts of the model’s architecture
influenced the prediction. In a DNN, this may be the layers that were most pivotal in
the model’s classification, or an individual neuron’s contribution to the final output.
Going even further, some techniques seek to explain through concepts learned by the
model, driven by what was activated within the architecture for a given input.

Likewise, during training, an individual data point may be active in only certain
circumstances, and strongly contribute to a certain set of labels, or range of predicted
values. This is typically referred to as training influence but is analogous to activations
within the model architecture.

Activation methods are among the most recently proposed explainability techniques
in machine learning and provide an intriguing approach to leveraging the internal
state of a complex model to better understand the model behavior. However, these
techniques haven’t yet been widely adopted among practitioners in the community,
and so you will see less applications of them in this book (although concept activation
vectors are discussed in Chapter 6).

Putting It All Together
While we may think of explanations as being primarily about their utility, meaning,
and accuracy, understanding the ways in which explanations can vary is the first step
in choosing the right tool for the job. By understanding what type of explanation
will be most useful to your audience, you can go straight to using the best technique.
Choosing an explanation method by simply trying many different techniques until an
explanation looks good enough is similar to asking 10 strangers you find on the street
for investment advice. You may get a lot of interesting opinions, but it is unlikely
most of them will be valid.

Start with asking yourself about who is receiving the explanation, what is it that
needs to be explained, and what will happen after the explanation? For example,
an end user receiving an explanation about being denied a loan will not find a
global explanation focused on understanding the model’s architecture to be relevant
or actionable. Better to use a technique that is local and focused on the features in
order to center the explanation on factors in the user’s control. You may even add
a technique that provides a counterfactual explanation; for example, that the loan
would likely have been approved if their credit score and finances were more similar
to other consumers who had requested the same loan amount.

Business stakeholders, on the other hand, want to see the big picture. What types
of features are globally influential in this model? Why should this more complex,
opaque model be trusted over the previous linear model that’s been in use for years?
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A global feature attribution technique that is post hoc and model agnostic could be
used to compare how both models behave.

Summary
In this chapter, we gave a high-level overview of the main ideas you are likely
to consider as a practitioner developing explainable ML solutions. We started by
discussing what the explanations are and how an explanation may change depending
on the audience (e.g., ML engineers versus business stakeholders versus end users).
Each of these groups have distinct needs and thus will interact with explanations in
their own way.

We then discussed the different types of common explainability techniques, provid‐
ing a simple taxonomy that we can use to frame the methods we will discuss in
the later chapters of the book. Lastly, we covered some of the recurring themes that
arise throughout explainability, like the idea of feature attribution, gradient-based
techniques, saliency maps, and more recent developments like surrogate models and
activation maps.

In the following chapters, we will dive into explainability for different types of data,
starting with tabular datasets in Chapter 3. As you will see in Chapter 3, all the back‐
ground and terminology in this chapter is immediately put into practice now that we
have given you the knowledge to understand and distinguish between different types
of techniques.
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CHAPTER 3

Explainability for Tabular Data

Much of the success of deep learning has focused on unstructured data like images,
text, audio, and video; however, the vast majority of machine learning models in
production are built with tabular data in mind. Think of all the data contained in rela‐
tional databases and spreadsheets composed of numeric and categorical feature sets.
These are examples of structured data and make up the vast majority of real-world
AI use cases. In this chapter, we’ll examine explainability techniques that are most
often used when working with tabular data, like Shapley values, permutation feature
importance, tree interpreters, and various versions of partial dependence plots.

Permutation Feature Importance
Here’s what you need to know about permutation feature importance:

• Once a model has been fit to the training data, the permutation importance for a•
single feature measures the decrease in a model score when that feature value is
randomly shuffled.

• By shuffling the values of a given feature, you destroy the model’s ability to make•
meaningful predictions using that feature. If the model predictions suffer and the
model score is much worse, then the information provided by that feature must
have been important to the model when making predictions. On the other hand,
if the change in the model score is negligible then that feature isn’t as important.
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Pros Cons

• It’s easy to implement. Scikit-learn provides•
a nice, easy-to-use library for computing
permutation feature importance.

• The result is intuitive. The method of•
permutation feature importance is easy to
explain and understand.

• Permutation-based methods work equally well•
for mixed modes of tabular data (e.g., numeric
and categorical features).

• Results can be misleading when features are highly correlated.•
This method has an underlying assumption that features are
independent.

• The results of permutation importances do not reflect the intrinsic•
predictive value of a feature by itself, but instead reflect how
important a feature is for a particular model.

• The computation of permutation importances is heavily dependent•
on the feature shuffling, and different shuffles may produce different
results. Multiple runs may be necessary to get a more accurate
picture.

Permutation feature importance is a perturbation-based feature attribution technique
commonly used for tabular datasets (see Chapter 2 for discussion on feature attribu‐
tions and perturbation techniques). The common pattern is that the model features
are perturbed or modified in some way and then predictions are made on these
new examples. Using the model predictions from this collection of new, perturbed
examples, you can then determine the impact each feature has on predictions by
seeing how the model’s predictions vary.

For example, for permutation feature importance, once a model has been fit to the
training data, the importance of a feature is determined by measuring the prediction
error after permuting the values of a given feature in the validation set. By shuffling
the values of a given feature, you destroy the model’s ability to make meaningful
predictions using that feature.

When you measure the resulting change in the validation error, if the decrease is
negligible, then the information provided by that feature wasn’t very important or
useful in determining the model predictions. That is to say, your model can still do
a pretty good job without that feature. If, on the other hand, the model predictions
suffer and the validation error is much worse, then the information provided by that
feature must have been important to the model when making predictions.

In summary, the permutation feature importance of a model is the decrease in a
model score when a single feature value is randomly shuffled. It’s particularly helpful
for nonlinear or hard-to-interpret models since it only relies on a fitted estimator and
the model score could be any evaluation metric that makes sense, such as the mean
square error or R2 for a regression task or accuracy for a classification model. As
such, using the taxonomy discussed in Chapter 2, permutation feature importance is
a post hoc, global, model-agnostic explainability technique.
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1 R. Kelley Pace and Ronald Barry, “Sparse Spatial Autoregressions,” Statistics and Probability Letters 33 (1997):
291–97.

Permutation Feature Importance from Scratch
Let’s implement permutation feature importance in an example. We’ll use the Califor‐
nia Housing dataset.1 This dataset was collected from the 1990 US census and each
row represents one census block group (each block group typically has a population
of 600 to 3,000 people). Each example contains eight feature attributes like the
average number of bedrooms per home or the median income of block residents. The
target label for this dataset is MedianHouseVal, the median value of houses within
each block expressed in hundreds of thousands of dollars. A small sample of this
dataset is shown in Table 3-1, and Table 3-2 gives a description of each of the features
and the label.

Table 3-1. The California Housing dataset contains feature attributes of houses at different
locations around California suburbs.

MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude Longitude MedianHouseVal
8.3252 41 6.984127 1.02381 322 2.555556 37.88 –122.23 4.526
8.3014 21 6.238137 0.97188 2,401 2.109842 37.86 –122.22 3.585
7.2574 52 8.288136 1.073446 496 2.80226 37.85 –122.24 3.521
5.6431 52 5.817352 1.073059 558 2.547945 37.85 –122.25 3.413
3.8462 52 6.281853 1.081081 565 2.181467 37.85 –122.25 3.422

Table 3-2. The label variable MedianHouseVal represents the median values of the houses
within each block, measured in hundreds of thousands of dollars ($100,000).

Feature name Feature
MedInc Median income in block group (in $10,000)
HouseAge Median house age in block group in years
AveRooms Average number of rooms per household
AveBedrms Average number of bedrooms per household
Population Block group population
AveOccup Average number of household members
Latitude Block group latitude
Longitude Block group longitude
MedianHouseVal Median house value (in $100,00)—target
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To start, we’ll build and train a simple neural network in TensorFlow (the full code
for this example can be found in the GitHub repository for this book):

  model = tf.keras.Sequential([
     tf.keras.layers.Dense(40, activation=tf.nn.relu, 
                           input_shape=[len(X_train[0])]),
                           tf.keras.layers.Dense(20, activation=tf.nn.relu),
                           tf.keras.layers.Dense(1)
  ])

  model.compile(optimizer='adam', loss='mse', metrics=['mse'])
  model.fit(X_train, y_train, epochs=30)

Once the model is trained, we measure the root mean squared error on the holdout
test set. For this model the test error is 0.51, which represents an error of about
$51,000. To compute the importance score for a given feature, we’ll shuffle those
feature values in the holdout set and see how much it affects our model perfor‐
mance. For important features, we’d expect the difference in model error to be large,
whereas for less important features, shuffling the feature values won’t have as much of
an effect.

Suppose we want to measure the importance of median income (MedInc). First,
we permute the feature values for that feature, then recompute the test error, and
compare with the test error 0.51 we measured before (without shuffling MedInc):

model_rmse = 0.51
df_perturb['MedInc'] = df_perturb['MedInc'].sample(frac=1.0).values
preds = model.predict(df_perturb.values)
feature_rmse = np.sqrt(compute_mse(preds, y_test))
permutation_feature_importance = model_rmse - feature_rmse

This indicates that the importance score for MedInc (median household income) is
about –0.44. Repeating this process for each feature in our dataset, we get a table of
importance scores for each feature, as shown in Table 3-3.

It’s important to note that the scores computed in Table 3-3 are only relative, meaning
they can only be interpreted in relation to one another. On their own, the importance
score for a single feature doesn’t mean much. Even though the permutation impor‐
tance score is based on the mean squared error loss, it doesn’t directly translate to
the home’s value. For example, we can’t say that on average $44,000 of a home’s value
is determined by the neighborhood’s median income. However, we can use these
numeric scores to indicate which feature has more or less of an impact on a model’s
prediction values in relation to each other.
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Table 3-3. The importance score of each feature measures how much the model error
is affected when those feature values are shuffled and predictions are made against the
validation set.

Feature Score
Latitude –1.272
Longitude –1.162
AveRooms –0.852
AveBedrms –0.731
MedInc –0.443
AveOccup –0.295
HouseAge –0.079
Population –0.036

According to Table 3-3, the latitude and longitude are the most important features for
determining house value because they have the largest score in absolute value while
the median house age and block population are the least important.

This method of permutation feature importance relies on inde‐
pendence of the different features. If two features, say feature_A
and feature_B, are highly correlated, then when we shuffle the
values of feature_A, the model may still be able to do well since
feature_B essentially contains the same information. Similarly,
for shuffling the values of feature_B when we compute its fea‐
ture importance. So, although these features may individually be
very important for the model to make accurate predictions, you
wouldn’t be able to catch that relationship using permutation fea‐
ture importance because the two features are highly correlated.
In the example with the California Housing dataset, we could (and
should!) examine this kind of multicollinearity in our dataset dur‐
ing our routine data exploration, but this can be particularly tricky
to catch when you are working with a large number of features.

Permutation Feature Importance in scikit-learn
In practice, you’d want to shuffle and measure more than once since each shuffling
introduces some randomness, which could affect the final result. Here, the shuffling
is a kind of sampling without replacement; we’re truly just reordering the values for
a given feature. However, different shuffles may produce different results. By the law
of large numbers (LLN), with repeated samplings we’ll ultimately approach the true
value of the feature importances, so multiple runs are necessary to get a more accu‐
rate picture. When building models in scikit-learn, there is a nice implementation of
permutation feature importance that can be used for any fitted estimator.
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Let’s take another look at the California Housing dataset and fit a neural network in
scikit-learn. The features of this dataset include numeric and categorical features, so
we’ll use the ColumnTransformer and Pipeline in scikit-learn to create and train our
model. The notebook on permutation feature importance in the GitHub repository
for this book contains the full code for this example.

Once the model is trained, we can use the permutation_importance function in
scikit-learn to calculate the feature importance by passing the fitted estimator, the
data and targets on which the permutation importance will be computed, the number
of times to permute features and calculate the scores, and the scoring metric to use.
We’ll take n_repeats to be 30 to get a reasonable sample size, and we’ll use R2 as the
evaluation metric when scoring the model. The following code block shows how to
implement this in the scikit-learn library:

r = permutation_importance(mlp_pipeline, X_test, y_test,
                           n_repeats=30,
                           scoring=['r2'],
                           random_state=0)

How Many Repeats Is Enough?

Determining the right number of repeats for feature permutation
may take a bit of experimentation. In the scikit-learn implementa‐
tion, the default for the number of times to permute a feature is
n_repeats=5. However, you might find that for your dataset, you
need more. The larger number of repeats you choose, the more sta‐
ble the result will be. However, this also increases the computation
cost, which can become quite large with larger datasets. It is worth
exploring and experimenting a bit with values ranging from 5 to
30 to get an idea of what value works best for your use case and
dataset.

In this example, the permutation feature importance is calculated by first evaluating
the model baseline using R2 on the dataset on X_test. Then for each feature in
the dataset, that feature column is permuted and the R2 score is computed. The
permutation importance is then the difference between the baseline R2 score and the
R2 score using the permuted features. This process is repeated again and again; in
our case, 30 times. The mean and standard deviation of the importance values are
returned, so we can inspect the distribution of the importance scores for each feature:

for i in r['r2'].importances_mean.argsort()[::-1]:
    print(f'{cal_features[i]:<8}'
          f"{r['r2'].importances_mean[i]:.3f}"
          f" +/- {r['r2'].importances_std[i]:.3f}")

which returns:
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Latitude: 1.842 +/- 0.033
Longitude: 1.758 +/- 0.024
MedInc: 0.673 +/- 0.014
HouseAge: 0.045 +/- 0.003
AveOccup: 0.003 +/- 0.001
AveBedrms: 0.003 +/- 0.001
Population: 0.002 +/- 0.001
AveRooms: 0.002 +/- 0.001

Perhaps not surprisingly we (re)learn a basic rule of real estate: house values depend
most on location.

Using the Test Set or the Training Set
Permutation feature importances are a global explainability technique and rely on
a batch of data to compute feature importances. In the example here, we used the
test set X_test but we could easily have substituted the training set X_train instead.
By using the test set, it’s possible to pinpoint those features that have the greatest
importance when generalizing to new data, which is ultimately what we care about in
practice. Using the training set to determine importances might cause you to believe
that those features are important for unseen data as well at the time of inference.
However, it is possible the model was overfitting and those features aren’t actually that
important. In fact, any features that are deemed important for the training set but not
on the test set are precisely those features that are most likely to cause the model to
suffer at generalization.

As noted in the documentation for scikit-learn’s permutation_
importance function, the permutation importance of a feature does
not reflect the intrinsic predictive value of a feature by itself but
how important this feature is for a particular model. Even though
a feature may have low importance for a bad model, that same
feature could have high importance for a good model. Thus, you
should always evaluate a model using a holdout set before comput‐
ing any feature importances.

Shapley Values
Here’s what you need to know about Shapley values:

• Derived from game theory to explain how a feature influences a predicted value•
• Commonly implemented explainability technique available in several open•

source packages as well as cloud-based options
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Pros Cons

• Shapley values can be used for individual predictions,•
cohorts, and to globally explain the model.

• Attributions sum to the total predicted value.•
• The values provide an intuitive understanding for•

stakeholders.

• Feature influence is often conflated with causality by•
practitioners, end users, and stakeholders.

• These values are computationally intensive and difficult to use•
with models with more than ~100 features.

• Choosing a good baseline can be difficult.•

In Chapter 2, we discussed how Shapley values are computed and, broadly, how they
are used in machine learning. In the past several years, Shapley values have become
one of the most popular explainability methods for tabular datasets and models. They
offer a lucrative way to say “this feature mattered, and this one didn’t” with relatively
little effort up front given several OSS and cloud-based solutions for computing
them. However, this ease of use also hides some of the more difficult implications of
incorrectly computing Shapley values.

SHAP (SHapley Additive exPlanations)
The terms Shapley values and SHAP values are often used interchangeably. However,
this is not technically correct. Shapley values represent the theory, and SHAP values
are a specific implementation for calculating Shapley values. You may also see refer‐
ence to sampled Shapley, which is an approximation method of an exact Shapley
value. Because SHAP values adhere to the four axioms of Shapley values (see the
sidebar “The Axioms of Fairness”), it is pragmatically okay to use either term. For
continuity, we will continue to use the term Shapley values here to refer to the SHAP
values.

The Axioms of Fairness
Shapley values are considered a “favorable and fair” attribution method since they
satisfy the four axioms of fairness: efficiency, symmetry, null player, and additivity/
linearity:

• The efficiency axiom states that the total attribution is distributed in a lossless•
manner among all the model features. That is to say, the sum of all feature
attributions determined when applying Shapley valuesequals the total attribution
of the model.

• The symmetry axiom says that if two features play equal roles, then their Shapley•
values must be equal. This means that only the role of a play matters; the labels or
specific names are irrelevant. Changing feature names won’t change the Shapley
value.

• The null player axiom says that if the marginal importance of a feature is always•
zero, then the baseline value of that feature is zero.
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• The axiom of additivity/linearity ensures consistency among feature attributions•
with respect to linear combinations of models.

These four axioms provide a unique characterization of the Shapley value. Let’s
discuss what these axioms state in the context of machine learning explainability. See
also the discussion on the axiomatic approach to evaluating explainability techniques
in Chapter 6.

SHAP is the most popular OSS implementation of Shapley values. It builds upon
the core idea of Shapley values and extends it to support multiple ML frameworks,
along with providing a variety of useful visualization methods. SHAP has several
implementations for different types of ML models and architectures, as shown in
Table 3-4.

Table 3-4. An overview of different implementations within the SHAP library and their uses

SHAP class ML model /architectures Notes
TreeExplainer Tree models, XGBoost,

scikit-learn
High performance when computing Shapley values

DeepExplainer DNNs, TensorFlow Based on DeepLIFT, approximate Shapley values, difficult to
configure

GradientExplainer Differentiable models,
TensorFlow

Slower than DeepExplainers, also approximates Shapley values

LinearExplainer Linear regression Computes the exact Shapley value; i.e., weights multiplied by
feature values

KernelExplainer Model agnostic More difficult to configure, and slowest SHAP Explainer in terms
of computation time

SHAP can also be used for other data modalities, such as images and text. See
“Explaining Tree-Based Models” on page 63, which is where you’ll find more infor‐
mation on how to use TreeExplainer.

Open Source Implementations of Shapley Values
There are other open source implementations of Shapley values that you might find
useful. Captum is an OSS framework from Meta for using Explainable AI with
PyTorch models. Captum offers a wide range of explainability algorithms, with a
flexible approach that makes it easy to swap between different feature attribution
techniques by changing only a few lines of code.

Captum supports many feature attribution techniques including sampled Shapley,
DeepLIFT, DeepLiftSHAP (SHAP based on DeepLIFT, similar to SHAP’s Deep
Explainer), feature ablation, feature permutation, Integrated Gradients, SmoothGrad,
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KernelSHAP, and GradientSHAP. For differences between these implementations,
and their limitations, see Captum’s excellent Algorithm Comparison Matrix.

Captum does not have any built-in capabilities for visualizing feature attributions for
structured data. Instead, attributions are returned as a tensor (or multiple tensors
if more than one data sample was provided) of feature attribution (or in this case,
Shapley values) that maps to the original organization of the inputs for the model
(e.g., the first value in the tensor corresponds to the first feature).

Next, we will see how to use the SHAP library to compute Shapley values for a model
trained on the California Housing dataset again. The following code block creates
and trains an XGBoost model, then creates an Explainer object to compute feature
attributions using SHAP. Providing the Explainer with an individual prediction
returns the calculated Shapley values for that example:

model = xgboost.XGBRegressor(objective='reg:squarederror',
                             n_estimators=500)
model.fit(X_train, y_train)

explainer = shap.Explainer(model)
shap_values = explainer(X_test)

This approach of creating an explainer by calling shap.Explainer(model) works
regardless of the model architecture or ML framework used. See the SHAP notebook
in the GitHub repository for this book for the full code for this example. There is also
an example there using a TensorFlow model.

The shap_values is an enumerable corresponding to all the data samples given to
explainer to predict. In the previous code snippet, we’re passing all the examples
from the test set X_test to explainer. The following code block takes an individual
value (i.e., the first value) in shap_values and extracts the model’s prediction for that
example, the baseline value, and Shapley values for each feature in the dataset:

first_row_shap = shap_values[0]
shapley_values = first_row_shap.values

print(f'Predicted Value: {first_row_shap.base_values + sum(shapley_values)}\n')
print(f'Baseline: {first_row_shap.base_values}\n')

print('Shapley values for features:')
for i, shapley_value in enumerate(shapley_values):
    print(f'{shap_values.feature_names[i]}: {shapley_value}')

print('\nMost to least influential features:')
most_influential_ordering = np.argsort(-np.abs(shapley_values))
for i in range(len(shapley_values)):
    print(f'{shap_values.feature_names[most_influential_ordering[i]]}: 
            {shapley_values[most_influential_ordering[i]]}')
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For the California Housing dataset, this code block returns:

Predicted Value: 1.889114398509264

Baseline: 2.063443660736084

Shapley values for features:
MedInc: 0.370290607213974
HouseAge: 0.03518122434616089
AveRooms: 0.15876026451587677
AveBedrms: 0.036185089498758316
Population: -0.06795859336853027
AveOccup: -0.10934144258499146
Latitude: -1.0922733545303345
Longitude: 0.49482694268226624

Most to least influential features:
Latitude: -1.0922733545303345
Longitude: 0.49482694268226624
MedInc: 0.370290607213974
AveRooms: 0.15876026451587677
AveOccup: -0.10934144258499146
Population: -0.06795859336853027
AveBedrms: 0.036185089498758316
HouseAge: 0.03518122434616089

Let’s unpack this a bit and see how we should interpret this output. For this example
instance, i.e., the first example of the test set, the feature values are:

MedInc: 3.5625
HouseAge: 43.0
AveRooms: 5.64741641337386
AveBedrms: 1.0486322188449848
Population: 1054.0
AveOccup: 3.2036474164133737
Latitude: 34.11
Longitude: -118.01

and the model predicts 1.889, or a median house value of $1,889,000. We also see
that the baseline prediction for our model is 2.06, or median house value $2,060,000.
The baseline prediction is just the expected value of the model output; that is, the
average of the model predictions on all values in the test set. One of the fundamental
properties of Shapley values is that the SHAP values of all the input features will sum
up to the difference between the baseline model output and the model prediction for
that example. This is also demonstrated visually using the waterfall plot in the next
section. In fact, this is exactly what we see in the preceding example. If we compute
np.mean(xgb_reg.predict(X_test)), we see that the average predicted value for the
model is 2.06. And summing the baseline value with the Shapley values for each
feature in this example gives exactly the model prediction 1.889. The rest of the
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output lists the individual Shapley values for each feature in this example instance
and simply arranges them in increasing order.

Visualizing Local Feature Attributions
To visualize these feature attributions, we can use one of SHAP’s many plotting
methods. The waterfall plot, shown in Figure 3-1, is one of the most popular. Note
that the SHAP values of all the input features sum up to the difference between the
baseline model output, in this case 2.063, and the model’s prediction for that example,
here 1.889:

shap.plots.waterfall(shap_values[0])

Figure 3-1. Feature attributions for a single prediction in the California Housing dataset
using SHAP’s waterfall visualization.

The waterfall visualization contains many pieces of information to give context to the
feature attributions. The y-axis lists all features, with the feature’s value to the left of
the feature label (i.e., AveRooms = 6.401 for this example). Each feature attribution
is represented as a row in the waterfall, color coded with an arrow for whether the
feature contributed positively or negatively toward the final prediction value. Red
bars pointing right indicate a positive contribution, while blue bars pointing left
indicate a negative contribution. The rows in the visualization are ordered from top
to bottom by the greatest to smallest contribution to the predicted score.

As you can imagine, if your model has more than eight features this visualization can
become quite unwieldy and hard to read, and likely the less important features have
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very small attribution values. Shapley feature attributions are additive, meaning we
can sum them together to represent the overall contribution by a group of features.
To make the plot more readable, SHAP aggregates the lowest influence features into a
single bar (with the label “4 other features,” for example).

Remember, positive and negative feature attributions simply indi‐
cate how the feature contributed to the numerical value of the
prediction, not more or less. The feature attribution’s magnitude of
influence is the absolute value of the attribution.

The visualization also helpfully displays the predicted value with a label of f(x)=...
along with a gray line through all rows. Likewise, the baseline predicted value is
shown along the x-axis with a label E[f(X)] =... (E is used to indicate this is the
expected value of a prediction, although SHAP uses baseline scores internally).

There are two ways to read the waterfall chart. Starting at the top will tell you which
features had the greatest influence in the model’s prediction. Starting at the bottom
and reading toward the top will demonstrate how each feature contribution moved
from the baseline toward or away from the predicted value.

Be careful not to infer causality from how Shapley values are dis‐
played, and to caution your stakeholders to avoid making the same
mistake. This is much easier to do than it may seem at first, and
we even found ourselves making these associations while writing
this book.
Most solutions for displaying Shapley values will use bars to indi‐
cate the magnitude of the feature’s influence, and stack those bars
together to make the chart easier to understand. However, in
making these visualizations easier to understand, it is also easy
to fall prey to constructing a narrative of “Because of Feature A,
Feature B’s attribution is…” or “Feature A first contributed to the
predicted score, then Feature B built on that…” However, Shapley
values simply indicate relative influence by a feature, not a causal
relation between features. See Chapter 7 for further discussion on
displaying and understanding XAI.

A force plot, like the one in Figure 3-2, is similar to a waterfall plot but puts all the
feature attributions displayed on a single axis. It’s just a different visual representation
of the same information but can be used in conjunction with a waterfall plot to
illustrate how features push a prediction value toward (or away) from the baseline
prediction. The code snippet that follows shows how to produce such a plot:

shap.initjs()
shap.plots.force(shap_values[0])
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Figure 3-2. The SHAP force plot for an individual prediction showing positive contribu‐
tions on the left, and negative contributions on the right.

The x-axis of these charts are the range of the values for the feature (with a histogram
showing the distribution of values in light gray above the x-axis), while the left y-axis
is the feature’s Shapley value for each individual prediction of the dataset. SHAP
also includes a second measure in these visualizations, which is based on what it
determines is the feature with the most cross-interaction with the primary feature
you visualized. The values of this secondary feature are shown using a heatmap,
coloring each point in the chart according to the value for the secondary feature.

Red and blue colors are used indiscriminately in SHAP’s visualiza‐
tions, and do not necessarily represent a feature’s influence on a
prediction. SHAP visualizations for individual predictions use red
and blue to indicate a positive or negative Shapley value, but other
visualizations in SHAP will use red and blue for other purposes,
like to distinguish between two feature values. For example, in Fig‐
ure 3-4, the red and blue colors are used to represent the value of
the AveOccup feature across the entire dataset, while in Figure 3-1,
the colors represent whether the SHAP value for a particular fea‐
ture was positive or negative.

Visualizing Global Feature Attributions
There are other ways that SHAP can visualize Shapley values. In our opinion, one
of the most useful for explanation analysis is the scatter plots. With the scatter plot,
SHAP can also be used to generate visualizations that look at the impact of a feature’s
contribution as the value of that feature changes in the dataset.

To generate a scatter plot, we provide SHAP with the column of data we’d like to
visualize. In the code snippet here, we’ll look at the Shapley values for the median
income:

shap.plots.scatter(shap_values[:,"MedInc"])
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Figure 3-3 shows the Shapley values for the feature MedInc in the plot on the left. We
see an upward trend for the feature influence as the value of MedInc increases. This
suggests that census blocks with higher median income are more likely to positively
contribute to the prediction of the median house value away from the baseline, while
smaller MedInc values influence the model more back toward the baseline prediction
score. Compare this with the plot on the right in the figure. The Shapley values
for HouseAge don’t show such a recognizable trend. At the bottom of the plot is a
histogram in light gray showing the distribution of data values.

Figure 3-3. The SHAP scatter plot displays all Shapley values against a given feature
value. On the left is the feature MedInc (the median income of families in the census
block) while on the right is the scatter plot for HouseAge (the median age of houses in the
census block).

Looking at the scatter plot for HouseAge in Figure 3-3, notice that there is quite a
large vertical dispersion of points for any given value of the median house age. This
indicates that there must be a strong nonlinear effect between HouseAge and the other
model features. Otherwise, we’d see a trend more similar to that for MedInc.

By passing the entire Explanation object to the scatter plot, we can show which
feature is most driving that interaction effect. This is demonstrated in the following
code snippet, and the resulting graphic is shown in Figure 3-4. SHAP picks out
the feature that has the strongest interaction with HouseAge, in this case, for this
model, it is AveOccup (the average number of households in the census block), and
plots the two features together. The points represent HouseAge and the color of the
points indicate Shapley values for AveOccup. If there is an interaction between the
two features, it should show up visually and may indicate that there is collinearity
between these features in our dataset that influence the model:

shap.plots.scatter(shap_values[:,"HouseAge"], color=shap_values)
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Figure 3-4. SHAP scatter plot for all Shapley values of HouseAge and AveOccup in
the California Housing dataset. (Print readers can see the color image at https://oreil.ly/
xai-fig-3-4.)

The scatter plot shown in Figure 3-5 is for the block population feature, denoted by
Population in the dataset. For the most part, the Shapley values for this feature hover
between 0.2 and negative 0.2.

Figure 3-5. SHAP scatter plot for all Shapley values of the Population feature in the
California Housing dataset.
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However, there are two interesting aspects of the model that are revealed on closer
examination:

• Population values less than approximately 250 can have a much larger influence•
on the model’s prediction.

• There is a large spread in the Shapley values for a Population value near zero.•

For the first observation, we could hypothesize that the model has learned an edge
case where a very low population within a census block is very informative to the
prediction.

Interpreting SHAP Scatter Plots

Recall that Shapley values are additive, so we need to view them
in the context of Shapley values for other features to understand
their relative contribution to the overall prediction. For example,
in the scatter plot in Figure 3-5, it could simply be that the overall
predicted value is much larger, or even so large that the relative
influence of Population at the lower values is even less!

Our second observation reveals an area where the Population feature is likely not
reliably contributing to the model, or it could be that the overall predicted score
varies quite a bit due to other features. A useful technique is to normalize the
Shapley values for all features in a prediction to the range of –1 to 1 (relative to
the prediction score), which allows one to reliably understand an individual feature’s
influence without having to constantly reference other features. An important caveat
for normalization is that your Shapley values may not cleanly add up to the overall
predicted score due to the use of sampled Shapley values, so be sure any code written
to handle these normalized values does not assume a strict range or summation to
zero. As of writing this chapter, SHAP does not support the ability to normalize
Shapley values across predictions.

SHAP can also display global feature attributions. When given all predictions to the
force() plot function (i.e., shap.plots.force(shap_values)), SHAP will render an
interactive chart (shown in Figure 3-6) of all attributes across all predictions. This can
appear quite intimidating at first.
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Figure 3-6. An interactive plot of Shapley values across all features and predictions for
the test dataset. (Print readers can see the color image at https://oreil.ly/xai-fig-3-6.)

However, the real power in this visualization is to explore the global feature attribu‐
tion values for an individual feature (as in Figure 3-7), or how two features compare
(as shown in Figure 3-8). For Figure 3-7, we chose MedInc as the sample selector on
the top and specify MedInc effects for the y-axis. This shows how various values of the
median income push the model predictions toward (or away) from the baseline.

Figure 3-7. Shapley values for the MedInc feature across the entire test dataset show how
the feature influences the model’s prediction as the value of the feature changes.

In Figure 3-8, we swap the output MedInc on the left with Population to see how the
two features compare.
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Figure 3-8. Comparing the Shapley value of MedInc to the Population feature shows
that the influence on the model by the median income does not change in a meaningful
way as the population changes.

For visualizing the global attributions of features, it may be more palatable to use
SHAP’s beeswarm plot (shown in Figure 3-9). These features are split into individual
rows, with each row plotting all of the individual Shapley values along the x-axis,
for all values of that feature. Each value of a feature is rendered as a point, so larger
clusters of points (the beeswarm) show where many feature values had a similar
Shapley value. SHAP also colors each point with a normalized heat mapping from the
feature’s lowest to highest values:

shap.plots.beeswarm(shap_values)

Figure 3-9. Beeswarm plot of Shapley values for all values of all features in a dataset.
Note that the x-axis is the Shapley value while the heatmap color of points is related
to the values in the dataset. (Print readers can see the color image at https://oreil.ly/
xai-fig-3-9.)
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Finally, SHAP can also display the average Shapley value for each feature with a bar
plot, as shown in Figure 3-10, using the command shap.plots.bar(shap_values).
This is often referred to as global feature attributions because it gives insight into the
most influential features in the model, regardless of the specific input values.

Figure 3-10. Bar plot of the average Shapley value for all features of the model.

Interpreting Feature Attributions from Shapley Values
Once you have Shapley values, what do they actually mean? Attributing the influence
of features in the model with Shapley value gives three pieces of information:

• The numerical contribution to the prediction’s score•
• Whether the feature contributed in the model moving from the baseline predic‐•

tion score toward the predicted score, or away from it
• The relative magnitude of the feature’s contribution compared to other features•

in the dataset

What is meant by “toward” or “away”? Feature attribution values may be positive
or negative, but that does not necessarily mean a positive attribution contributed to
the model’s prediction in a positive way. It may be that this feature was actually influ‐
encing the model toward a different prediction value but had less impact than other
features. For a model with a prediction score that was –100 with a baseline prediction
score of 0, then negative feature attributions would be contributing “toward” the
final predicted score, and positive attributions away from it. Likewise, for a baseline
prediction score that is greater than the predicted value, a negative attribution value
would be contributing toward the final predicted value.
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Managed Shapley Values
Many of the largest ML platforms offer a service for generating Shapley values to
understand feature influence, and there are a number of open source libraries as well.
Broadly, managed Shapley offerings fall into two groups: those that offer a hosted
version of SHAP, and those that have built their own Shapley value library. Given
our focus on the SHAP library so far, you may ask what the advantage is of going
with a different implementation. While SHAP has become broadly popular, it is only
one way of calculating Shapley values, and may not be the most accurate. For the
purposes of demonstrating how to work with a managed Explainable AI service, we’ll
focus on using Google Cloud’s Vertex AI Python SDK since that is what we are most
familiar with.

Google Cloud Platform (GCP)—Explainable AI
Google Cloud’s Explainable AI product supports calculating feature attributions
based on Shapley values. While the implementation is proprietary, Google claims it
provides faster sampled Shapley value calculations than other implementations and is
more robust than many other tabular feature attribution techniques. The framework
is model-agnostic and has native support for TensorFlow, PyTorch, XGBoost, and
scikit-learn, and the ability to explain any model through the use of Vertex Custom
Containers.

There are several ways to use Google Cloud’s Explainable AI, as shown in Table 3-5.

Table 3-5. How to access GCP’s Explainable AI

Access Useful for
CLI (gCloud SDK) Easy testing from the command line
REST API Incorporating into an existing workflow
Vertex AI Python SDK Generating cloud-based explanations from a notebook
Vertex AI Notebooks and Workbench Computing explanations locally within the notebook’s VM

If you already (or plan to) use other products in GCP’s Vertex AI platform, an added
advantage is that their Explainable AI product is built into several other products,
such as AutoML, online and batch predictions, and Model Monitoring. Since all of
these products rely on the same Explainable AI technology, this gives the flexibility
of having portability in your explanations. For example, an AutoML model’s global
feature attribution values will be valid for understanding any feature attribution
values calculated as part of an online prediction request when your model is served in
production.

The Explainable AI framework is designed to offer flexibility with your model and
your explanation technique. For most DNN models, it is easiest to use the Vertex
AI SDK, which will try to infer the input and outputs of your model and generate
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a metadata configuration for you that we can augment to specify the technique we
want (in this case, sampled Shapley) and the number of sample paths to compute. For
the purposes of this example, we’ll assume you already have a trained TensorFlow 2
model uploaded to Vertex AI (although Explainable AI works with TensorFlow and
other frameworks):

from google.cloud import aiplatform
from google.cloud.aiplatform.explain.metadata.tf.v2 import 
     saved_model_metadata_builder

explainable_ai_builder = saved_model_metadata_builder.SavedModelMetadataBuilder
(path_to_my_model)

explainable_ai_metadata = explainable_ai_builder.get_metadata()

explanations_parameters = aiplatform.explain.ExplanationParameters({
"sampled_shapley_attribution": {"path_count": 20}})

endpoint = model.deploy(machine_type="n1-standard-2",
             explanation_metadata=explainable_ai_metadata,
             explanation_parameters=explanations_parameters)

When a model is deployed to a prediction endpoint, we also (optionally) pass
along the information needed to both tell Explainable AI how to understand our
model’s inputs and outputs (the metadata) and the parameters regarding what type of
explainability we want.

To get an explanation, we then make a normal prediction call as shown in the
following code. If we wanted to, we could also override some of our Explainable
AI configuration for a particular prediction to change the number of paths, use a
different baseline, or return the top K features by Shapley value:

instances = [{'dense_31_input': test_data.iloc[0].values.tolist()}]
explanation_spec_override = {"parameters":{"sampled_shapley_attribution": 

{"path_count": 5}}
endpoint.explain({"instances": instances, "explanation_spec_override": 

explanation_spec_override})

As part of the prediction response, Vertex will also return a payload with the feature
attribution values (Shapley values in this case) and an approximation error, which
represents how accurate the values were. We can then visualize these feature attribu‐
tions with the included visualization widget using the following code snippet:

m = explainable_ai_sdk.load_model_from_vertex(my_project, 'us-central1', 
model_endpoint_id)

explanations = m.explain(instances)
explanations[0].visualize_attributions()
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See “Sampled Shapley technique” on page 33 for a discussion of the
trade-off between the number of sampled Shapley paths and the
attribution error.

Microsoft Azure and AWS SageMaker
Of course, there are other cloud providers that provide model explainability, most
notably Microsoft Azure and AWS SageMaker, both of which also use a version
of SHAP. SageMaker’s Clarity tool uses SHAP’s KernelSHAP to generate feature
attributions (as shown in this guide), allowing the number of sampled paths, how
to aggregate Shapley values, and baselines to be configured. Baselines can either be
manually provided as a list or automatically sampled and calculated from a provided
dataset.

Azure offers an Explainability service with support for TreeExplainer, Deep
Explainer, LinearExplainer, and KernelExplainer. The service also has a Tabular
Explainer that is intended to be a high-performance improvement on SHAP, choos‐
ing the correct type of Explainer based on the model. TabularExplainer can also
generate synthetic explanations based on extracting summary statistics from the
training dataset. Likewise, TabularExplainer can sample explanations from the vali‐
dation dataset. The explanation results can be visualized in Azure’s ML Studio.

Explaining Tree-Based Models
Here’s what you need to know about explanations for tree-based models:

• Decision trees are intrinsically explainable since each prediction can be described•
as a series of decision points for the model features, ultimately leading to the final
prediction.

• For ensemble tree methods, like random forest, the explanation of the prediction•
is simply the average of the bias terms plus the average of the contributions of
each feature within each tree in the forest.

Tree-based models can be anything from simple decision trees to gradient-boosted
trees and random forests. Here are some general pros and cons to consider when
thinking about explainability for these types of models.
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Pros Cons

• Explainability for decision trees is intuitive and easy to•
communicate to nontechnical audiences.

• treeinterpreter is an easy-to-implement library•
that can be used to determine feature contributions for
many of scikit-learn’s tree-based models.

• Although inherently explainable, simple decision trees•
often do not perform as well as more complicated tree
models, like random forest or gradient-boosted trees.

• At this time, the treeinterpeter library does not•
support multilabel classification.

Decision trees are a popular tool for regression and classification problems and
provide the epitome of interpretability, provided they don’t go too deep. A decision
tree consists of a series of nodes, each providing a split, or decision point, for
various features that ultimately leads to the model output. The features and decision
boundary points are determined by the training data in a way to minimize the mixing
of class labels in the final leaves of the tree. This mixing is typically measured using
entropy in the form of information gain, the Gini index, or the weighted mean square
error in the case of a regression task.

The Gini index is a number between 0 and 1, which represents
the purity of the classification split. It’s computed by subtracting
the sum of the square probabilities of each class from one. A
Gini index of 0 represents absolute purity of the classification; that
is, each class is perfectly separated. A Gini index of 1 indicates
a random distribution among the classes; that is, the classes are
evenly split across subsets. Ideally, you want to split the examples
in your dataset according to a feature that yields a low Gini index.
Thus, when training a decision tree, the features and cutoff values
to use at each split are chosen so that the Gini index of each split is
minimized.

The process starts at the root node of the tree and each subsequent nonleaf node
splits the data so that when you reach the leaf node, you have a predicted outcome. In
this way, it’s possible to follow the precise decision splits through the tree and explain
how the features ultimately contributed to a certain prediction. Furthermore, because
of this structure, decision trees easily allow for counterfactual analysis in that a user
is able to ask (and answer!) what-if questions regarding how the model makes its
decisions.

Looking again at the California Housing dataset and training a simple decision tree
with a maximum depth of three nodes, we can visualize the final model, as shown
in Figure 3-11. The full code can be found in the GitHub repository for this book.
Notice that a feature might be used for more than one split, as in the two nodes that
use the MedInc feature, or a feature might not be used at all, like the Population,
HouseAge, or AveBedrms features:
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dt_reg = DecisionTreeRegressor(max_depth=3)
dt_reg.fit(X_train, y_train)

dot_data = export_graphviz(dt_reg, out_file="ca_housing.dot",
                           feature_names=cal_features,
                           filled=True, rounded=True,
                           special_characters=True,
                           leaves_parallel=False)
graph = pydotplus.graphviz.graph_from_dot_file("CA_housing.dot")
Image(graph.create_png())

Figure 3-11. Each node of the decision tree indicates a decision cutoff for the features of
the given instance.

With a maximum depth of only three nodes, the final model isn’t difficult to visualize.
From Figure 3-11, we see that the root node for this decision tree has MedInc ≤ 5.132
and each subsequent node is determined by a similar feature cutoff. If the condition
of a node is met, the decision path moves to the left; otherwise, the decision path goes
to the right. Figure 3-12 traces the decision path for a given instance in the test set.
For this particular instance, following through each step of the decision tree, since
MedInc ≤ 5.132, MedInc ≥ 3.074, and AveOccup ≥ 2.344, the predicted median house
value is $190,400.

Figure 3-12. The decision path for a given instance can be traced through the decision
tree according to the feature values for the instance and the learned decision cutoff of the
tree.
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The value of the root node is the mean of the labels taken from the training data.
This is the initial bias of the model. To explain the prediction for this or any given
instance, we start at the root node and add or subtract the feature contributions
for each node in the decision path. Looking again at Figure 3-12 and the example
instance there, we see that the prediction is given by 1.904 = 2.065 (the bias) –
0.32 (because MedInc ≤ 5.132) + 0.357 (because MedInc ≥ 3.074) – 0.198 (because
AveOccup ≥ 2.344).

Each decision split is determined by a feature, sometimes a feature may be used more
than once (as MedInc is), and each split either adds or subtracts from the current
value until the final prediction outcome is returned. This gives the contributions of
each decision split as in the example in Figure 3-12. By adding the contributions for
each feature, we can see exactly how much each feature contributed to the prediction.

From Decision Trees to Tree Ensembles
Of course, the story becomes a bit more complicated once we move from simple
decision trees to ensemble techniques like random forest and gradient-boosted trees.
Ensemble methods are meta-algorithms that combine several machine learning mod‐
els as a technique to decrease the bias and/or variance to improve model perfor‐
mance. By building several models, with different inductive biases, and aggregating
their outputs, we hope to get a model with better performance.

Random forests use a bagging ensemble technique where many decision trees are
trained in parallel and then their predictions are aggregated to create the final model
prediction. Gradient-boosted trees and adaptive boosting algorithms build individual
decision trees sequentially. The idea behind gradient boosting is to iteratively build an
ensemble of models where each successive model focuses on learning the examples
the previous model got wrong, ultimately taking a weighted average of those predic‐
tions to produce the final model.

Tree-Based Models and Extrapolation
Tree-based models like random forest and boosted trees are widely popular among
ML practitioners and have become the go-to model, particularly for structured data.
They can be used in regression, classification, or ranking problems, and they’re easy
to implement with packages available in scikit-learn and TensorFlow. However, as
with any technique, this family of models does have its drawbacks that you should be
aware of. Namely, they don’t do well when predicting values that lie outside the range
of the training data.

This is an artifact of how these models split up the input space of a given problem.
Whether it’s a random forest of decision trees, or an ensemble of decision trees
with gradient-boosting framework, these models are trained to find partitions in the
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feature sets of inputs sometimes many levels deep to bucket each instance into its
corresponding label value. More formally, a decision tree with L leaves divides the
features space into L regions and determines a set of rules from the training data so
that it can output a value to leaves based on averages. These models are inherently
noncontinuous functions and thus they can struggle to extrapolate to unseen or
uncommon labels.

For example, since the California Housing dataset only has examples with the median
values of homes between $15,000 and $500,000, our model will likely not do well
when presented for predicting an instance that has the label $1,000,000. Naturally,
this is less of a problem for classification tasks as the label is either 0 or 1, but for
regression tasks it is something to keep in mind.

Ensemble tree models are a favorite among machine learning practitioners and
data scientists in industry because they are easy to train and yield very powerful
models. In fact, for structured data, boosted tree algorithms are often considered the
go-to model and you’ll often see it show up on the leaderboard for many Kaggle
competitions. However, due to their ensembled nature, these models often trade
explainability for performance. In fact, even a single tree of depth 10 can already
have thousands of nodes, meaning that using it as an explanatory model is almost
impossible.

The main idea behind explainability of decision trees is that any prediction outcome
can be traced from the root node, through the various node decision points, and ulti‐
mately to the leaf that determines the prediction. To explain why a certain prediction
was made, you can trace through the decision path starting at the root node, either
adding or subtracting the contribution at each node depending on the feature value
and the learned decision cutoff. For random forests, since the prediction is the aver‐
age of the predictions of all the trees in the forest, the explanation of the prediction
is simply the average of the bias terms plus the average of the contributions of each
feature within each tree.

The treeinterpeter package has a nice Python implementation and can be
used on scikit-learn’s DecisionTreeRegressor, DecisionTreeClassifier, Random
ForestRegressor, RandomForestClassifier, ExtraTreeRegressor, ExtraTreeClas
sifier, ExtraTreesRegressor, and ExtraTreesClassifier.

For a given element of the test set, calling predict with the tree interpreter returns the
trained models:

from treeinterpreter import treeinterpreter as ti
prediction, bias, contributions = ti.predict(rf_reg,
                                             X_test.iloc[[0]].values)
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Recall, the bias is the average of the bias for each of the trees in the model. The
contributions is a vector of size equal to the number of features in the dataset; in
this case, 2.07. We can parse these values to get the following:

Bias term (training set mean): [2.06854048]
Feature contributions:
MedInc -0.96
Population 0.61
AveBedrms 0.12
AveRooms -0.11
AveOccup -0.06
Longitude -0.05
Latitude 0.02
HouseAge -0.02

This is a post hoc, local interpretation of the trained random forest for the given
instance.

So far we have discussed how to use the treeinterpeter library for
regression and single label classification tasks. But what about mul‐
tilabel classification tasks? Unlike normal classification tasks where
the label consists of mutually exclusive labels over a collection of
two or more potential classes, multilabel classification tasks have
a label that consists of more than one nonmutually exclusive class
label. For example, an image may contain both a dog and a cat in
it, or a toxic comment might be both insulting and threatening, or
a movie might be both action and adventure, or a patient might be
at risk for heart disease as well as stroke. At the time of writing, the
treeinterpeter library does not support multilabel classification.

SHAP’s TreeExplainer
TreeSHAP is an algorithm that can also be used to compute Shapley values for
tree-based models. The TreeExplainer library is built on the same principles for
computing Shapley values as described in the previous section and optimized for
tree-based models like XGBoost, LightGBM, CatBoost, PySpark, and most other
tree-based scikit-learn models.

To use the TreeExplainer, we’ll first train a simple XGBoost model using the same
California Housing dataset as before. The full code for this example can be found in
the treeinterpreter notebook in the GitHub repository accompanying this book:

import xgboost as xgb
xgb_reg = xgb.XGBClassifier(max_depth=3,
                            n_estimators=300,
                            learning_rate=0.05)
xgb_reg.fit(X_train, y_train)
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Just as before, we’ll create an Explainer class, passing it to our trained XGBoost
model, only this time instead of using Explainer, we’ll call TreeExplainer:

explainer = shap.TreeExplainer(xgb_reg)

Using this explainer object, we can then get explanations for an individual predic‐
tion, just as we did before. The following code block indicates how to create a “force”
plot using the SHAP library; the resulting plot is shown in Figure 3-13:

shap_values = explainer.shap_values(X_train)
shap.force_plot(explainer.expected_value[1],
                shap_values[1][0,:],
                X_train.iloc[0,:])

Figure 3-13. SHAP’s TreeExplainer is optimized for tree-based models. This graph
shows the result of an explanation from an individual prediction from an XGBoost
model.

Partial Dependence Plots and Related Plots
Partial dependence plots (PDPs), individual conditional expectation (ICE) plots, and
accumulated local effects (ALE) plots are a closely related family of explainability
tools that allow for visualizing the causal interaction between features and model
predictions. These methods are related in that ICE and ALE plots are variations of
PDPs and meant to address some of the shortcomings that PDPs may exhibit. We’ll
outline how each of these techniques works and highlight some of the pitfalls you
should be aware of when using these techniques, particularly how ICE and ALE aim
to be improvements over PDPs.

As you’ll see in the sections to follow, this family of techniques is applied to a
model after it has been fully trained and used to visualize the interaction between
one or two features of the entire training dataset of the model and the output label.
Using the taxonomy outlined in Chapter 2, these techniques are considered post
hoc, model-agnostic explainability methods. As we’ll see, partial dependence plots
are global, whereas individual conditional expectations and accumulated local effects
plots are local. In fact, since these methods aim to provide some insight into the
causal relationship between feature and the predicted label, they are often thought of
as interpretability methods. We’ll start by discussing partial dependence plots since
they are a bit more easily understood and a simpler entry point to these methods.
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Partial Dependence Plots (PDPs)
Here’s what you need to know about partial dependence plots:

• PDPs are a useful technique to visualize the marginal effect a specific feature has•
on a model’s predictions.

Pros Cons

• PDPs are easy to implement and have•
simple-to-understand interpretation.

• When a feature is not correlated to•
other features, it is possible to infer
a causal relationship between that
feature and the model predictions.

• There is an underlying assumption of independence of features.•
• PDPs naively substitute feature values to measure feature dependence. When•

two features are correlated, the fake data points that are created are not a
good representative of the true data distribution.

• Sparsity of feature values in the distribution for a given feature (i.e.,•
areas where a feature value lacks good representation) cause the partial
dependence plot to be less reliable.

• A PDP is really only useful for visualizing at most two features at a time.•

PDPs are a useful tool to show how individual input features of a model contribute
to the model’s predicted outcome variable. This is done by measuring the marginal
effect that a specific feature has on the label and plotting the result. By examining
the resulting plot, one can easily visualize the causal relationship between the input
feature and the label.

When we say we measure the marginal effect, this just means that we measure how
the expected value of the model output changes with respect to the feature value.
That is, given a trained model f , for any feature, we compute the corresponding
partial dependence function as a function over the input feature values by taking the
expected value, or average value, over the entire dataset. For example, suppose there
are k features in a dataset consisting of n examples. Then we can write each example
xi as xi1,xi2,⋯,xik . For a regression model, the partial dependence function of the
first feature x1 is given by:

fpdp
1

x = 1
n

∑
i=1

n
f x,xi2,⋯,xik

where the values of xi2 through xik are all the remaining feature values taken from
all the n examples in the dataset. Similarly, the partial dependence function for the
second feature x2 is:

fpdp
2

x = 1
n

∑
i=1

n
f xi

1,x,xi
3⋯,xik
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and for the third feature x3 is:

fpdp
3

x = 1
n

∑
i=1

n
f xi

1,xi2,x,xi4,⋯,xik

and so on.

In this way, for any feature we can create and plot the function fpdp
v  for any feature

v. This plot describes precisely how the predicted output variable changes on average
with respect to the given feature. If there is a monotonic relationship between the
feature and model predictions, it is immediately apparent.

Of course, in practice you’ll use a library to implement this technique, and scikit-
learn has a nice implementation called PartialDependenceDisplay in the class of
inspection tools. As an example, let’s look again at the California Housing dataset.
This is a regression problem where the task is to develop a model that predicts
the median house price MedianHouseVal using as input eight features of the census
block. We’ll build a model in scikit-learn using a neural network; see the following
code block (the full code for this example is available in the notebook for partial
dependence plots in the GitHub repository for this book):

mlp_reg = MLPRegressor(hidden_layer_sizes=[30, 20, 10],
                       max_iter=500)

# Create pipeline
transformer = ColumnTransformer([
    ('numerical', MinMaxScaler(feature_range=(-1,1)), cal_features),
])

mlp_pipeline = Pipeline(steps=[
    ('transform', transformer),
    ('model', mlp_reg)
])

Once the model is trained, to create the partial dependence plots, we’ll use the
from_estimator method of PartialDependenceDisplay specifying the model pipe‐
line, the dataset, and which feature we want to visualize:

PartialDependenceDisplay.from_estimator(
    mlp_pipeline, X_train, features=['MedInc']
)
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For the feature MedInc, the median income for the families within the census block,
the partial dependence plot tells a very clear story. As shown in Figure 3-14, there
appears to be a positive correlation between MedInc and the target value, the median
house value: as median income increases, the median home value increases as well.
Also note the similar trend we see represented for MedInc in Figure 3-3 as well. This
makes sense with what we’d expect our model to learn.

Figure 3-14. The partial dependence plot for the feature MedInc shows that as the
median family income increases, so does the median home value. The tick marks on the
x-axis represent the deciles of the MedInc features values.

In fact, for most features in this dataset, the relationship appears fairly straightfor‐
ward. However, the feature representing the median house age HouseAge is more
interesting. Figure 3-15 shows the partial dependence plot for the HouseAge feature.
For houses less than 40 years old, the relationship is nearly constant, with a slight
downward trend. However, for very old homes the median house value starts to
increase dramatically. Furthermore, these examples only account for about 10% of the
training data.
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Figure 3-15. The HouseAge feature appears to have a quadratic relationship with the
model predictions.

Working with classification models
For classification models, the partial dependence function is defined in exactly the
same way. In the case of binary classification, the model predicts a probability that
a given example belongs to the positive class. So, the partial dependence function
returns the marginal effect a feature has on the predicted probabilities.

What about multiclass classification? So far, we’ve described how to apply partial
dependence plots for regression tasks and binary classification tasks; but what if our
model is multiclass? In this case, you can plot the partial dependence for a feature
against each of the possible output labels. Take, for example, the Wine Quality dataset
from the UCI ML Repository. This dataset can be viewed as a classification task
to predict the quality of the wine on a scale from 0 to 10 using physicochemical
properties like acidity, citric acid, chlorides, and pH as features.

When building a multiclass model like this, we’ll use the OnevsRestClassifier in
scikit-learn as shown in the following code block (the full code for this example is
contained in this book’s GitHub repository):

from sklearn.multiclass import OneVsRestClassifier
multi_clf = OneVsRestClassifier(
    MLPClassifier(
        hidden_layer_sizes=[256, 128, 64, 32],
        max_iter=500)
    ).fit(X, y)
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To visualize the partial dependence plots, we must create a plot for each target class.
In this dataset, the target values are 3, 4, 5, 6, 7, and 8; the corresponding partial
dependence plots are shown in Figure 3-16.

Figure 3-16. For multiclass classification, create a partial dependence plot for each target
class.

We have to take extra care in interpreting the causal relationship between different
target labels. For the wine quality dataset, we see that the “citric acid” feature is
negatively correlated with the labels 3, 4, and 5, positively correlated with target labels
7 and 8 and somewhere in between for target label 6.

But what does this mean? One interpretation is that there is some tipping point
for citric acid amounts when assessing the quality of red wines. However, as with
all explainability techniques, this information should be viewed in relation to the
other features. More likely, the concentration of citric acid interacts with other physi‐
cochemical properties of the wine that together influence the target quality label.

Assumption of independence
Partial dependence plots are a simple and intuitive way to explain how model features
influence model predictions. When a feature is not correlated to other features,
the partial dependence plot provides a direct causal connection by showing how
model values change on average as the feature value changes. However, as with all
explainability methods, the visualizations provided by partial dependence must be
taken in context, especially because it’s highly likely that some input features are at
least somewhat correlated.
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Look at the partial dependence plots for AveRooms and AveBedrms from the California
Housing dataset side by side in Figure 3-17. In this dataset, AveRooms represents
the average number of rooms per census block and AveBedrms indicates the average
number of bedrooms per census block. Not surprisingly, their partial dependence
plots are nearly identical.

Figure 3-17. The partial dependence plots for AveRooms and AveBedrms are both posi‐
tively correlated with expected median house value. However, these features are highly
correlated.

Figure 3-18. The features AveRooms and AveBedrms are very highly correlated.

However, these two features are positively correlated, as shown in Figure 3-18, with
a Pearson correlation coefficient of 0.847. So, when it comes to explaining our model
and interpreting how these features influence the model’s predictions, it’s unclear how
much the AveRooms feature alone is affecting median house values or if AveBedrms is
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really a confounding variable between AveRooms and the target variable. The lack of
independence distorts the causal interpretation of the partial dependence plot when
attempting to explain our model predictions. One way to address this problem is to
use a conditional distribution instead of the marginal distribution. We’ll see how this
is done in “Accumulated Local Effects (ALE)” on page 81.

Dealing with Highly Correlated Features in ML Models

In general, it is best practice to exclude highly correlated features
when building classic machine learning models. For linear mod‐
els, this is a must since multicolinearity can yield solutions that
vary wildly and are possibly numerically unstable. When there
are multiple highly correlated features, the weight vector from the
regression normal equation has high variance. This means that
the model weights differ greatly depending on the training data
causing numerically unstable solutions that don’t generalize well.
In addition, extraneous features typically only add noise to models
during training and can lead to longer convergence times.
More generally, while correlated features might not harm your
model, they certainly won’t improve it either. So, while deep neural
networks may not actually suffer too much with highly correlated
features, it’s still a good idea to remove extraneous features to
assist in model training convergence. Ultimately, a simpler model
is best when considering correlated features, both for training and
especially when taking explainability into account. This is partic‐
ularly true for partial dependence plots that assume features are
uncorrelated.

Understanding feature distributions
Another concern for partial dependence plots is sparsity of feature values in the
distributions for a given feature. In areas where a feature value lacks good representa‐
tion, the partial dependence plot is less reliable. Take, for example, the MedInc feature
again. As shown in Figure 3-19, the majority of feature values (about 97%) for the
median income are less than $80,000 per year. However, when computing the partial
dependence, we explore values in the entire range of the feature for median incomes
as high as double that at $160,000.
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Figure 3-19. The majority of feature values, about 95%, are less than 7.5. When plotting
partial dependence plots, it’s helpful to plot the feature distributions as well.

These extreme values for the median income don’t accurately represent the distri‐
bution of our training dataset. This can cause our model to make unreliable or
unrealistic predictions that lead to unreliable or unrealistic partial dependence plots
for those values. Remember, when computing the partial dependence function for
a given feature value, say m = 0.8, the MedInc feature value is set to 0.8 for each
training example and the model’s average prediction is computed. In a way, it doesn’t
make sense to assign an outlier to apply such an outlier value to an arbitrary training
example in the dataset. Our model may return an unrealistic prediction for such an
unrealistic example.

One way this problem can be ameliorated is to plot the feature distribution on the
same axes as the partial dependence plot, as shown in Figure 3-20. This can be
done using the rugplot function in seaborn, a well-known Python data visualization
library:

PartialDependenceDisplay.from_estimator(
    mlp_pipeline, X_train, features=['MedInc'])
sns.rugplot(data=X_train, x='MedInc')
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Figure 3-20. It is important to understand the feature value distribution when interpret‐
ing the partial dependence plot.

Looking at Figure 3-20, you’re likely more inclined to trust the portions of the partial
dependence plot where the feature distribution is denser as opposed to those areas
where there are fewer feature values, e.g., above $80,000 per year.

Partial dependence plots provide a nice intuitive visualization that helps to explain
how a feature is related to the model’s target predictions. However, a partial depend‐
ence plot is really only useful for one feature at a time. It’s not uncommon for some
ML models to have tens or hundreds of input features, and each partial dependence
feature plot must be examined individually. This quickly becomes intractable.

It is possible to plot two features at once, as in Figure 3-21, but visualizing three or
more features in a meaningful way is not possible. To plot two features together, we
simply specify a feature as an ordered pair, as in the following code block:

PartialDependenceDisplay.from_estimator(
    mlp_pipeline, X_train, features=[('HouseAge', 'MedInc')])
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Figure 3-21. The partial dependence plot for two features in the California Housing
dataset, HouseAge and MedInc. As HouseAge and MedInc increase together, the median
house value also increases gradually. Decreasing MedInc and keeping HouseAge constant
decreases median house value; however, the median house value is more stable with
changes in HouseAge alone.

Individual Conditional Expectation Plots (ICEs)
Here’s what you need to know about individual conditional expectation plots:

• ICE plots extend partial dependence plots by visualizing the dependence on a•
feature for each instance in the dataset.

Pros Cons

• ICE plots address some of the shortcomings of partial dependence•
plots.

• They illustrate the dependence of features for each example,•
giving a more holistic view in lieu of an aggregate.

• They allow the user to see heterogeneity in a relationship•
between feature and model prediction, which is lost when
averaging.

• ICE plots have many of the same issues as partial•
dependence plots, namely an assumption of feature
independence.

• Graphs quickly become overcrowded and noisy; it’s•
only feasible to plot (at most) one feature at a time.
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ICE plots can be thought of as an extension of partial dependence plots. While partial
dependence plots graph the overall average of a specific feature value across the
entire dataset, individual conditional expectations instead visualize the dependence
on a feature for each individual instance. In this way, partial dependence plots are a
global explainability technique while ICE plots are considered a local explainability
technique. In short, for any feature, the partial dependence plot is an average of
the model prediction values obtained from the ICE plot. One line in the ICE plot
represents the predictions for a single instance in our dataset mapped as a function of
varying feature value for the feature in question.

Partial dependence plots give aggregated information, but ICE plots allow you to
visualize feature contributions on the individual example level. This can be really
helpful, because aggregations can lose vital information. Take, for example, the House
Age feature in the California Housing dataset, which represents the median age of the
houses in the census block. Looking at the partial dependence plot, note the left plot
in Figure 3-22: when the median house age is greater than 40 years, there is a strong
positive correlation with the predicted target. This may be somewhat justifiable since
older, historic homes could increase in value. However, that isn’t always the case and
it’s important to not deduce a causal relationship that might not exist. Certainly, there
are older housing blocks that do not have high median value.

Figure 3-22. For the HouseAge feature, there are a few examples where an increase in the
median age of houses after 40 years indicates a decrease in the median house value for
that block. Note the range of the difference in the range of the y-axis in the two plots.
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Using a partial dependence plot could hide the heterogeneous relationship between
the houses’ age and the median house value. However, looking at the ICE lines,
we can see the overall trend and also note that there are some exceptions. We can
see this in the individual conditional expectation plot on the right in Figure 3-22.
Although the majority of lines do curve up (in fact, in the overwhelming majority),
once HouseAge is greater than 40, there are a few examples where the median house
value is decreasing.

Accumulated Local Effects (ALE)
Here’s what you need to know about accumulated local effects plots:

• ALE plots improve upon partial dependence plots by taking into account the•
conditional dependence of correlated features and by computing the marginal
effect by taking differences instead of averages.

Pros Cons

• There are nice open source libraries that•
can be used to implement ALE plots.

• ALE plots can still yield useful results•
when features are correlated.

• The implementation of ALE plots is much less intuitive than PDPs or ICE•
plots and they can be difficult to explain to nontechnical audiences.

• Although ALE plots can handle correlated features, you should still be•
careful when interpreting results in this setting because strongly correlated
features will vary together.

Similar to partial dependence plots, ALE plots visualize the relationship between the
features of a model and the model’s predictions. However, ALE plots improve upon
partial dependence plots in two important ways:

• They take into account the conditional dependence of correlated features.•
• They measure the marginal effect of a feature value by computing differences•

instead of averages.

These improvements allow ACE plots to represent a feature’s influence more accu‐
rately without the confounding effects of correlated features. Take, for example, the
first point. One of the biggest faults of partial dependence plots is that they handle
correlated features in a very naive way. Recall that the algorithm for producing a
partial dependence plot for a feature simply varies the value of that feature over a
range of values in the feature space and measures the average model prediction value.
When two features are correlated, this approach becomes problematic because the
fake data points that are created when sampling the feature space are not a true
representative of the data distribution.

Suppose you have a dataset that indicates the presence of heart disease in a patient
from various patient features including sex, age, smoking history, height, and weight,
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among others. There is a positive correlation between a person’s height and weight,
so the partial dependence plot for either of these features would be very misleading.
When computing the partial dependence plot for height, an entire range of height
values are naively substituted into the dataset and their predictions are averaged to
get a single value. However, for a sample feature value height of 5 ft., when you
naively replace the height of all training examples to be 5 ft. then there could be some
examples with height of 5 ft. and weight of 300 lb. Generally speaking, this would
be considered an outlier for the dataset and not an accurate representation of the
training dataset. As a result, the model that was trained on the training distribution,
without examples like this, will have a very skewed prediction on this outlier and
have a negative effect on the resulting PDP.

One way to address this issue of correlated features is to take into account the
conditional distribution of one feature with respect to another so that these unlikely
examples, like the patient that is 5 ft. tall and weighs 300 lb., are weighted less when
computing the average of model predictions. This allows you to de-emphasize those
examples that wouldn’t normally occur in the dataset that would ultimately throw off
the model predictions and ultimately the resulting partial dependence plot.

However, this approach still suffers from combining the effects of correlated features.
Accumulated local effects plots go a step further, as described in the second point
at the beginning of this section. That is, ALE plots mitigate this issue by taking the
differences of model predictions in place of averages. By measuring the differences
instead of the averages or conditional averages, the ACE plot is better able to gauge
the effect of the given feature value on the model prediction.

So, for our height feature, to measure the local effect at a height of 5 ft., we’ll compute
the local effect by taking in the model’s predictions for each example, first setting
the height to be 4.9 ft. and then taking the height to be 5.1 ft. and computing the
difference. In this way, the ALE technique separates out the effect of the height being
5 ft. without being influenced by the weight, or other correlated features. These local
effects are then accumulated and plotted to produce the ALE plot for height.

To create ALE plots for our dataset and model, we’ll use an open source Python
library called Alibi. This library has implementations of various local and global
explainability methods and its interface is similar to that of scikit-learn, in that there
are distinct initialize, fit, and explain steps. We’ll look again at the California Housing
dataset.

To get some intuition about how ALE plots work, we’ll start by looking at a linear
regression model. By definition, linear models are intrinsically explainable, so it
will be a nice toy model to verify the behavior we see in the plots. There are
eight features in the dataset including the latitude, longitude, the average number
of rooms, and average number of bedrooms per house in the block, as well as
others. If we were to train a linear model on this dataset, it would have the form
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y x = w0 +w1x1 +⋯ +w8x8, and since the model is linear, there are no interactions
between the various features. In fact, the effect of any feature would simply be the
learned coefficient of that input feature value. So, if x1 represents MedInc, the median
income of a housing block in tens of thousands of US dollars, then the sign and
magnitude of the coefficient w1 indicates the positive or negative effect that the
median income has on the predicted median house value for a given block.

We’ll train a simple linear regression and examine that model’s predictions with
respect to the MedInc variable. Not surprisingly, there is a strong linear relationship:
as median income increases, so does the median value of homes. For each example
in the training dataset, Figure 3-23 plots the median income of each example on the
x-axis and the model’s prediction for that example on the y-axis. This is done using
the following code block (see the ALE notebook in the GitHub repository for this
book for the full code):

lr_reg = LinearRegression()
lr_reg.fit(X_train, y_train)

feature_names = data.feature_names
index = feature_names.index('MedInc')

fig, ax = plt.subplots()
ax.scatter(X_train[:, index], lr_reg.predict(X_train))

Figure 3-23. There is a strong positive correlation between the MedInc feature and the
model predictions. As the median home income increases, so does the median value of
homes.
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We can print the learned coefficients from the linear model and find that the weight
for the MedInc feature is about 0.439. This is approximately the slope of the line fit to
the points in Figure 3-23. So, for each unit increase in the median income, the model’s
prediction for the median home value increases by a factor of 0.439. Of course, this
doesn’t take into account any effects with other, possibly correlated, features in the
dataset. Using this simple linear regression as a model, we can see a bit more how
ALE works “under the hood.”

To start, we initialize the ALE object by passing it a predictor function from our
trained linear regression model, a list of the feature names of the dataset, and the
target variable name. We can then call the explain method, which returns an Explan
ation object that we can inspect and use for displaying the ALE plots. Since ALE
plots are a global explainability technique, the explain method takes as an argument
a batch of data on which to compute the ALE values. We’ll use the entire training
dataset X_train:

lr_ale = ALE(lr_reg.predict,
             feature_names=feature_names,
             target_names=['MedianHouseVal'])
lr_exp = lr_ale.explain(X_train)

Using the lr_exp Explanation object, we can visualize the effect of the MedInc
feature by plotting the ALE values with plot_ale(lr_exp, features=['MedInc']),
as shown in Figure 3-24. The feature deciles are also plotted on the x-axis.

Figure 3-24. The ALE plot for MedInc shows the effect of median income on the linear
regression’s predicted value for median house value across the training dataset. When
MedInc is less than 4, the effect is negative; i.e., lower median income causes the
predicted value of down with respect to the average prediction.
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The plot in Figure 3-24 is a line of slope approximately 0.43, which we would expect
because our model is a linear regression and the learned weight coefficient for MedInc
is 0.43. In fact, lr_exp contains a numpy array of ALE values for each feature in the
dataset, so we can use plot_ale to plot any feature we request with the features
argument. Calling the plot_ale function without arguments will plot the effects of
every feature. Doing so, you’ll see that the slopes of the ALE plots are precisely the
coefficients of the linear regression model.

Remember how the algorithm for ALE works: first the feature MedInc is partitioned
into a set of intervals covering the range of those feature values. For each interval, the
feature value for MedInc for the data points within the interval are replaced with the
upper and lower interval endpoints, and the difference in the model predictions are
averaged across the examples. Since we have a linear model, all of the features (other
than MedInc) nicely cancel each out in the difference and the only term remaining is
the learned weight value taken across the interval.

Take, for example, the case when MedInc=12 in Figure 3-24. The y-axis represents
the local effect of the median income; in this case, the ALE value is about 3.47,
corresponding to an increase of about $3,500 for the predicted median house value
solely due to the MedInc feature. The interpretation is that for neighborhoods where
the median household income is about $120,000 per year, the model predicts an
uplift of about $3,500 due to this median income feature when compared against the
average model prediction.

We can explore this a bit deeper in the data by taking the examples in X_train that
have MedInc values close to 12 and measuring the total expected uplift for median
house value for neighborhoods in this range. In this example, the feature values are
partitioned so that this corresponds to all training examples with MedInc between
11.78 and 13.39. We compute the average of the model predictions on this subset and
compare against the average prediction on the entire dataset; this is the zeroth order
effect of the linear model. See the notebook in the GitHub repository for the full code
for this example:

subset = X_train[(X_train[:, index] > 11.78)
                 & (X_train[:, index] < 13.39)]
lr_reg.predict(subset).mean() - lr_reg.predict(X_train).mean()

We get that the difference is about 3.7. This is the total expected uplift for housing
blocks with median income close to $120,000.

Of course, for nonlinear models the story is a bit more complicated in that the model
will learn more complicated relationships between different features and, as a result,
the ALE plots are no longer linear. For example, when training a random forest
model, the corresponding ALE plot for MedInc is nonlinear and nonmonotonic, as
shown in Figure 3-25.
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Figure 3-25. Since a random forest model is not linear, the ALE plots should not be
expected to be linear either.

We can interpret the plot in Figure 3-25 in the same way as before. Namely, the ALE
value at a point is the relative feature effect with respect to the mean feature effect
of the random forest model. For example, in the plot, the ALE value for MedInc=8 is
about 2.0. This means that for neighborhoods where the median household income is
about $80,000 per year, the model predicts an uplift of about $2,000 for the median
house value due to the median income feature with respect to the average model
prediction.

Visualizing the ALE plots for each of the features together, as in Figure 3-26, we see
that the features that have the largest influence on median house value are MedInc
(the median income for households within a neighborhood, measured in hundreds
of thousands of US dollars), AveOccup (average number of household members), and
the Latitude and Longitude.
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Figure 3-26. For the random forest model, the features that have the largest influence on
median house value are the median income, the average number of household members,
and the location.
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Comparing the Effect of Features Across Different Models
We’ve seen how the behavior of ALE plots differs for linear versus nonlinear models.
Namely, for linear models the ALE plots are linear, whereas for nonlinear models like
a random forest, the ALE plots are not necessarily linear or even monotonic. But the
differences don’t stop there. For example, if we compare the effect of the AveRooms
feature, we see that the models treat this feature quite differently.

From Figure 3-27, we can see that the random forest model puts a large emphasis
on the AveRooms feature while the linear regression model doesn’t. It’s also interesting
to note that the feature effects for the linear regression model are strongly negatively
correlated while for the random forest there is a slight positive correlation. Also, not
only is the feature effect for the random forest nonmonotonic, the effect becomes
slightly negative for low values of AveRooms.

Figure 3-27. The effect of the AveRooms feature, average number of rooms per household,
differs for the linear regression and the random forest model.
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Summary
In this chapter, we saw a collection of explainability techniques that can be used
for models trained on tabular datasets. We started with a discussion of feature
importances for machine learning models and how they can be measured using
permutation feature importance. As the name suggests, this is a perturbation-based
explainability technique where the importance of a feature is determined by measur‐
ing the change in the model score after permuting the values of a given feature in
the dataset. We then dove into Shapley values, starting first with SHapley Additive
exPlanations (SHAP), an optimized way to compute Shapley values, and the impor‐
tance of baselines. The main idea behind baselines is that if one can find a neutral
value for a feature, that value will not influence the prediction and therefore not
contribute to the Shapley value. The baseline then acts as a kind of placeholder in our
model input so we can calculate the Shapley value across different coalitions.

Next, we looked at explainability methods for tree-based models, like decision trees
and random forest. Although decision trees lend themselves well to interpretation
and are intrinsically explainable for random forest and other more complex tree-
based models, we saw how the treeinterpreter library could be used to shed light
on explaining model predictions. Lastly, we looked at a family of closely related tech‐
niques including partial dependence plots (PDPs), individual conditional expectation
(ICE) plots, and accumulated local effects (ALE) plots. Each of these techniques
visualizes how certain model features contribute to the model predictions. ALE plots
address many of the problems associated with PDPs and ICE plots. Namely, they are
unbiased and still work well when features are correlated.

In the next chapter, we’ll shift our focus to explainability techniques for image use
cases. Some techniques we’ve covered in this chapter, like SHAP, are useful for images
with slight modification, but we’ll focus on a collection of other techniques designed
with computer vision in mind.
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CHAPTER 4

Explainability for Image Data

Introduced in the 1980s, convolutional neural networks (CNNs), like DNNs,
remained unused until the advent of modern ML, at which point they quickly became
the backbone of contemporary solutions for computer vision problems. Since then,
deep learning models based on CNNs have enabled unprecedented breakthroughs in
many computer vision tasks ranging from image classification and semantic segmen‐
tation to image captioning and visual question answering, at times achieving near
human-level performance. Nowadays, you can find sophisticated computer vision
models being used to design smart cities, monitor livestock or crop development,
build self-driving cars, or identify eye disease or lung cancer.

As the number of these intelligent systems relying on image models continues to
grow, the role of explainability in analyzing and understanding these systems has
become more important than ever. Unfortunately, when these highly complex sys‐
tems fail, they can do so without any warning or explanation and sometimes with
unfortunate consequences. Explainability AI (XAI) techniques are essential to build
trust not only in the users of these systems but especially for the practitioners putting
these models into production.

In this chapter, we’ll focus on explainability methods you can use to build more
reliable and transparent computer vision ML solutions. Computer vision tasks differ
from other ML tasks in that the base features (i.e., pixels) are rarely influential
individually. Instead, what is important is how these pixel-level features combine to
create higher-level features like edges, textures, or patterns that we recognize. This
requires special care when discussing and interacting with explainability methods
for computer vision tasks. We’ll see how many of these tools have been adapted to
address those concerns. Just as CNNs were developed with images in mind, many of
the explainability techniques we cover in this chapter were also developed for images
or even CNNs.
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Broadly speaking, most explainability methods for image models can be classified
as either backpropagation methods, perturbation methods, methods that utilize the
internal state, or some combination of these approaches. The techniques that we’ll
discuss in this chapter are representative of those groups. LIME’s algorithm uses
perturbed input examples to approximate an interpretable model. Like the name
suggests, Integrated Gradients and XRAI depend on backpropagation, while Guided
Backpropagation, Grad-CAM, and their relatives utilize the model’s internal state.

Integrated Gradients (IG)
Here’s what you need to know about Integrated Gradients:

• IG was one of the first successful approaches to model explainability.•
• IG is a local attribution method, meaning it provides an explanation for a model’s•

prediction for a single example image.
• It produces an easy-to-interpret saliency mask that highlights the pixels or•

regions in the image that contribute most to the model’s prediction.

Pros Cons

• IG was one of the first successful and most commonly used
approaches to model explainability.

• IG can be applied to any differentiable model for any data
type: images, text, tabular, etc.

• Implementation is easy and intuitive; even novice
practitioners can apply it. In addition, there are easy-to-use
implementations in many XAI libraries.

• IG is better for low-contrast images or images taken in
nonnatural environments such as X-rays.

• IG requires differentiability of the model and access to
the gradients, so it does not apply well to tree-based
models.

• The results can be sensitive to hyperparameters or
choice of baseline.

Suppose you were asked to classify the image in Figure 4-1. What would your
answer be? How would you explain how you made that decision? If you answered
“bird,” what exactly made you think that? Was it the beak, the wings, the tail? If you
answered “cockatoo,” was it because of the crest and the white plumage? Maybe you
said it was a “sulfur-crested cockatoo” because of the yellow in the crest.
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1 This is analogous to many loss-based functions for training DNNs that measure the gradient and perfor‐
mance change of the model in the loss space.

Figure 4-1. What features tell us this is a sulfur-crested cockatoo? Is it the beak and
wings? The white plumage? The yellow crest? Or all of the above?

Regardless of your answer, you made a decision based on certain features of the
image, more specifically, because of the arrangement and values of certain pixels and
pixel regions in the image. Perhaps the beak and wings indicate to you that this is a
picture of a bird, while the crest and coloring tell you it is a cockatoo. The method
of Integrated Gradients provides a means to highlight those pixels which are more or
less relevant for a model’s (in this case, your own brain’s) prediction.

Using gradients to determine attribution of model features makes intuitive sense.
Remember that the gradient of a function tells us how the function values change
when the inputs are changed slightly. For just one dimension, if the derivative is
positive (or negative), that shows the function is increasing (or decreasing) with
respect to the input. Since the gradient is a vector of derivatives, the gradient tells
us for each input feature if the model function prediction will increase or decrease
when you take a tiny step in some direction of the feature space.1 The more the model
prediction depends on a feature, the higher the attribution value for that feature.

For linear models, this relationship between gradients and attribu‐
tion is even more explicit since the sign of a coefficient indicates
exactly positive or negative relationships between the model output
and the feature value. See also the discussion and examples in
“Gradient x Input” on page 151.
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However, relying on gradient information alone can be problematic. Gradients only
give local information about the model function behavior, but this linear interpreta‐
tion is limiting. Once the model is confident in its prediction, small changes in
the inputs won’t make much difference. For example, when given an image of a
cockatoo, if your model is robust and has a prediction score of 0.88, modifying a
few pixels slightly (even pixels that pertain to the cockatoo itself) likely won’t change
the prediction score for that class. For example, once the model fully learns how the
value of a specific pixel affects the model’s predicted class, the gradient of the model
prediction for that pixel will become smaller and smaller, and eventually go to zero.
The gradient for the model’s prediction with respect to that pixel has saturated.

This notion of saturation of the gradient of the model prediction
function with respect to a pixel value shouldn’t be confused with
the more general concept of neuron gradient saturation that may
arise in training neural networks, though the two address a similar
concept. In neural networks, activation functions like sigmoid or
tanh map the set of real numbers into a range between 0 and 1
(or between –1 and 1 in the case of tanh). A neuron is said to
be saturated when extremely large weights cause the neuron to
produce values that are very close to the range boundary and thus
have very small gradients.
In the context of measuring feature attribution via gradients of the
model function, the idea of saturation with respect to a pixel is
similar but now with respect to the model’s prediction. Once the
model has “learned” the predicted label, the gradient of the model
prediction with respect to that pixel information will become very
small. See, for example, Figure 4-3 where the model’s prediction for
the target class eventually becomes very flat.

To address this issue, the Integrated Gradients technique examines the model gradi‐
ents along a path in feature space, summing up the gradient contributions along the
path. At a high level, Integrated Gradients determine the salient inputs by gradually
varying the network input from a baseline to the original input and aggregating the
gradients along the path. We’ll discuss how to choose a baseline in the next section.
For now, all you need to know is that the ideal baseline should contain no pertinent
information to the model’s prediction, so that as we move along the path from the
baseline to the image, we introduce information (i.e., features) to the model. As the
model gets more information, the prediction score changes in a meaningful way. By
accumulating gradients along the path, we can use the model gradient to see which
input features contribute most to the model prediction. We’ll start by discussing how
to choose an appropriate baseline and then describe how to accumulate the gradients
effectively to avoid this issue of saturated gradients.
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Choosing a Baseline
To be able to objectively determine which pixels are important to our predicted label,
we’ll use a baseline image as comparison. As you saw in Chapter 2, baselines show
up across different explainability techniques, and our baseline image serves a similar
purpose to the baseline for Shapley values. Similarly for images, a good baseline is
one that contains neutral or uninformative pixel feature information, and there are
different baselines that you can use. When working with image models, the most
commonly used baseline images are black image, white image, or noise, as shown in
Figure 4-2. However, it can also be beneficial to use a baseline image that represents
the status quo in the images. For example, a computer vision model for classifying
forms may use a baseline of the form template, or a model for quality control in a
factory may include a baseline photo of the empty assembly line.

Figure 4-2. Commonly used baseline images for image models are a black image, a white
image, and an image of Gaussian noise.

Other Baselines for Images
The easiest baseline and resulting feature path to understand for images is one that
varies the brightness of the image. For brightness scaling, you can naively apply
uniform scaling for all the values of all channels in the pixel from 0 to 100%, but this
does not uniformly vary the perceived brightness in natural images.

Other common methods to create path in feature space include:

• Luminosity: using a color space for the image that has a separate channel for•
brightness and only changing the value of that channel

• Saturation: varying the intensity of colors in the image from desaturated (gray) to•
fully saturated (original colors)

• Blur: starting with a blurred version of the original image and then progressively•
applying less blur until arriving at the original, sharp image
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While some gradient techniques are better suited for natural, real-world images, in
principle any gradient-based method should work on an image that has a continuous
scale for the values of its channels, even synthetic images such as LiDAR (light
detection and ranging) depth maps or X-rays.

We’ll start with using a simple baseline that consists of a completely black image (i.e.,
no pixel information) and consider the straight line path from the baseline to the
input image, and then examine the model’s prediction score for its predicted class,
as shown in Figure 4-3. A linear interpolation between two points x, y is given by
αy + 1 − α x where the values of α range from 0 to 1.

Figure 4-3. At some point in the straight line path from the baseline to the full input
image, around when α = 0.1, the model becomes very confident in the prediction
“sulfur-crested cockatoo.”

We can achieve this straight line path in Python with the interpolate_images func‐
tion described here (see the Integrated Gradients notebook in the GitHub repository
for the full code example):

def interpolate_images(baseline,
                       image,
                       alphas):
    alphas_x = alphas[:, tf.newaxis, tf.newaxis, tf.newaxis]
    baseline_x = tf.expand_dims(baseline, axis=0)
    input_x = tf.expand_dims(image, axis=0)
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    images = alphas_x * input_x + (1 - alphas_x) * baseline_x
    return images

The interpolate_images function produces a series of images as the values of the α’s
vary, starting from the baseline image when α = 0 and ending at the full input image
when α = 1, as shown in Figure 4-4.

Figure 4-4. As the value of α varies from 0 to 1, we obtain a series of images creating a
straight line path in image space from the baseline to the input image.

As α increases and more information is introduced to our baseline image, the signal
sent to the model and our confidence in what is actually contained in the image
increases. When α = 0, at the baseline, there is, of course, no way for the model (or
anyone, really) to be able to make an accurate prediction. There is no information
in the image! However, as we increase α and move along the straight line path,
the content of the image becomes clearer and the model can make a reasonable
prediction.

If we think of this mathematically, the confidence of the model’s prediction is quan‐
tified in the value of the final softmax output layer. By calling prediction with
our trained model on the interpolated images, we can directly examine the model’s
confidence in the label “sulfur-crested cockatoo”:

LABEL = 'sulfur-crested cockatoo'
pred = model(interpolated_images)

idx_cockatoo = np.where(imagenet_labels==LABEL)[0][0]
pred_proba = tf.nn.softmax(pred, axis=-1)[:, idx_cockatoo]

Not surprisingly, at some point before the α = 1 the model has an aha moment and
the model prediction determined to be “cockatoo,” as demonstrated in Figure 4-3
when α ≈ .15.

We can also see here the importance of our choice of baseline. How would our mod‐
el’s predictions have changed if we started with a white baseline? Or a baseline from
random noise? If we create the same plot as in Figure 4-3 but using the white baseline
and noise baselines, we get different results. In particular, for the white baseline, the
model’s confidence in the predicted class jumps somewhere around α ≈ 0.25, while
for the Gaussian noise baseline, the aha moment doesn’t happen until α ≈ 0.9, as seen
in Figure 4-5. The full code to create these examples is in the repository for the book.
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Figure 4-5. When using a white baseline (top) or a baseline based on Gaussian noise
(bottom), the model takes longer to achieve the same confidence in the true label.

Accumulating Gradients
The last step for applying Integrated Gradients is then determining a way to use
these gradients to decide which pixels or regions of pixels were the ones that most
effectively contributed to that aha moment that we saw in Figure 4-3 when α was
approximately 0.15 and the model’s confidence was over 0.98. We want to know how
the network went from predicting nothing to eventually knowing the correct label.
This is where the gradient part of the Integrated Gradients technique comes into play.
The gradient of a scalar valued function measures the direction of steepest ascent
with respect to the function inputs. In this context, the function we are considering is
the model’s final output for the target class, and the inputs are the pixel values.

We can use TensorFlow’s tf.GradientTape for automatic differentiation to compute
the gradient of our model function. We simply need to tell TensorFlow to “watch”
the input image tensors during the model computation. Note that here we are using
TensorFlow, but any library for performing automatic differentiation for other ML
frameworks will work equally well:

def compute_gradients(images, target_class_idx):
    with tf.GradientTape() as tape:

98 | Chapter 4: Explainability for Image Data

https://oreil.ly/uXw83


        tape.watch(images)
        logits = model(images)
        probs = tf.nn.softmax(logits, axis=-1)[:, target_class_idx]
    return tape.gradient(probs, images)

Note that since the model returns a (1,1001)-shaped tensor with logits for each predic‐
ted class, we’ll slice on target_class_idx, the index of the target class, so that we get
only the predicted probability for the target class. Now, given a collection of images, the
function compute_gradients will return the gradients of the model function.

Unfortunately, using the gradients directly is problematic because they can saturate;
that is, the probabilities for the target class plateau well before the value for α reaches
1. If we look at the average value of the magnitudes of the pixel gradients, we see that
the model learns the most when the value of alpha is lower, right around that aha
moment at α ≈ 0.1. After that, when α is greater than 0.2, the gradients go to zero, so
nothing new is being learned, as seen in Figure 4-6.

Figure 4-6. The model learns the most when the value of alpha is lower. After that, once
α > 0.2, the pixel gradients go to zero.

We want to know which pixels contributed most to the model’s predicting the correct
output class. By integrating over a path, Integrated Gradients avoids the problem of
local gradients being saturated. The idea is that we accumulate the pixels’ local gradi‐
ents as we move along the straight line path from the baseline image to the input image.
This way we accumulate a pixel’s local gradients adding or subtracting its importance
score to the model’s overall output class probability. Formally, the importance value of
the i-th pixel feature value of an image x for the model f  is defined as:

IGi f ,x,x′ = ∫α=0

α=1
xi − xi′

∂ f x′ + α x − x′
∂xi

dα
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Here x′ denotes the baseline image. It may not look like it right away, but this is pre‐
cisely the line integral of the gradient with respect to the i-th feature on the straight line
path from the baseline image to the input image. To compute this in code, we’d need to
use a numeric approximation with Riemann sums (see “Approximating Integrals with
Riemann Sums” later in this chapter) summing over m steps. This number of steps
parameter m is important, and there is a trade-off to consider when choosing the right
value. If it’s too small, then the approximation will be inaccurate. If the number of steps
is too large, the approximation will be near perfect but the computation time will be
long. You will likely want to experiment with the number of steps.

When choosing the number of steps to use for the integral approximation, the origi‐
nal paper2 suggests to experiment in the range between 20 and 300 steps. However,
this may vary depending on your dataset and use case. For example, a good place to
start for natural images like those found in ImageNet is m = 50. In practice, for some
applications, it may be necessary to have an integral approximation within 5% error
(or less!) of the actual integral. In these cases, a few thousand steps may be needed,
though visual convergence can generally be achieved with far fewer steps. In practice,
we have found that 10 to 30 steps is a good range to start with.

Once you have computed the approximations, you can check the quality of the
approximation by comparing the attribution score obtained from using Integrated
Gradients with the difference of the input image’s attribution score and the baseline
image’s attribution score. The following code block shows how to do just that:

# The baseline's prediction and attribution score
baseline_prediction = model(tf.expand_dims(baseline, 0))
baseline_score = tf.nn.softmax(tf.squeeze(baseline_prediction))[target_class_idx]

# Your model's prediction and attribution score
input_prediction = model(tf.expand_dims(input, 0))
input_score = tf.nn.softmax(tf.squeeze(input_prediction))[target_class_idx]

# Compare with the attribution score from Integrated Gradients
ig_score = tf.math.reduce_sum(attributions)
delta = ig_score - (input_score - baseline_score)

If the absolute value of delta is greater than 0.05, then you should increase the
number of steps in the approximation. For the full code, see the code for the
check_convergence function in the Integrated Gradients notebook accompanying
this book.

Many of the large cloud providers offer managed implementations of various XAI
techniques. For custom-trained models and for models trained via AutoML, Google
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Cloud offers explanations via sampled Shapley, Integrated Gradients, and XRAI (see
“XRAI” on page 108). When requesting explanations for an instance, Google Cloud’s
implementation of Integrated Gradients calculates the approximation error for you as
well and returns this error along with the explanations.

A high approximation error (for example, in excess of 0.05) indicates the quality
of the explanation might not be reliable and you might need to adjust the XAI
configurations. In particular, when you are working with custom-trained models, you
can configure specific parameters to improve your explanations and decrease the
approximation error by changing the following inputs:

• Increasing the number of integral steps•
• Changing the input baseline(s)•
• Adding more input baselines•

Approximating Integrals with Riemann Sums
Riemann sums are a foundational tool in integral calculus and can be used to find
an approximation of the value of a definite integral. When implementing Integrated
Gradients, you use Riemann sums to approximate the actual value of the integral.
This approximation is made by summing up many, many rectangles whose height is
defined by the value of the curve, as in Figure 4-7. There are various implementations
when computing Riemann sums; you can use a left endpoint to determine the height
of the rectangle, the right endpoint, the midpoint, and you can even use more
complicated polygons like trapezoids to get more accurate approximations.

For each technique, though, one important parameter is the number of partitions
or rectangles you sum up to make the approximation. Formally, for well-behaved
functions, as the number of partitions goes to infinity, the error between the Riemann
sum approximation and the true area under the curve goes to zero. This presents a
trade-off: with more rectangles the approximation is more accurate, but the computa‐
tion cost also increases.
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Figure 4-7. Formally, for reasonably well-behaved functions, as the number of rectangles
goes to infinity, the error between the Riemann sum approximation and the true area
under the curve goes to zero. This presents a trade-off when using Riemann sums to
approximate continuous integrals.

Using the hyperparameter m for the number of steps, we can approximate the
integral for computing Integrated Gradients in the following way:

IGi
approx

f ,x,x′ = xi − xi′ ∑
k=1

m 1
m

∂ f x
∂xi x = interpolated images

In the notebook discussing Integrated Gradients in the GitHub repository for this
book, you can see how each component of this sum is computed directly in Python
and TensorFlow in the integrated_gradients function. First, the α’s are created and
the gradients are collected along the straight line path in batches. Here the argument
num determines the number of steps to use in the integral approximation:

  # Generate alphas.
  alphas = tf.linspace(start=0.0, stop=1.0, num=m_steps+1)

  # Collect gradients.    
  gradient_batches = []

  # Iterate alphas range and batch speed, efficiency, and scaling
  for alpha in tf.range(0, len(alphas), batch_size):
    from_ = alpha
    to = tf.minimum(from_ + batch_size, len(alphas))
    alpha_batch = alphas[from_:to]

    gradient_batch = one_batch(baseline, image, alpha_batch, target_class_idx)
    gradient_batches.append(gradient_batch)
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Then those batch-wise gradients are combined into a single tensor and the integral
approximation is computed, as shown in the following code. The number of gradients
is controlled by the number of steps m_steps:

  # Concatenate path gradients.
  total_gradients = tf.concat(gradient_batches, axis=0)

  # Compute Integral approximation of all gradients.
  avg_gradients = integral_approximation(gradients=total_gradients)

Finally, we scale the approximation and return the integrated gradient results:

  # Scale Integrated Gradients with respect to input.
  integrated_gradients = (image - baseline) * avg_gradients

You can visualize these attributions and overlay them on the original image. The
following code sums the absolute values of the Integrated Gradients across the color
channels to produce an attribution mask:

  attributions = integrated_gradients(baseline=black_baseline,
                                      image=input_image,
                                      target_class_idx=target_class_idx,
                                      m_steps=m_steps)
  attribution_mask = tf.reduce_sum(tf.math.abs(attributions), axis=-1)

You can then overlay the attribution mask with the original image, as shown in
Figure 4-8. See the notebook in the GitHub repository to see the full code for this
example.

Figure 4-8. After computing feature attributions from the Integrated Gradients techni‐
que, overlaying the attribution mask over the original shows which parts of the image
most contributed to the model’s class prediction.

Baselines Matter
It’s interesting to compare the result of applying Integrated Gradients on our cockatoo
example when using a black baseline versus a white baseline. Remember the intuition
when choosing a baseline is that the baseline should have “no information” and, typi‐
cally, you can think that an all-white or all-black baseline as having no information.
But in the example of a cockatoo, this isn’t the case. The cockatoo is predominantly
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white, so a white baseline actually contains a lot of information of the features of
a cockatoo. Not surprisingly, when we compare the result of applying Integrated
Gradients with these two baselines, they look quite different, as shown in Figure 4-9
(see the notebook in the GitHub repository for the full code for this example).

There are also alternatives to using constant color baselines, such as using a maxi‐
mum distance baseline, a blurred baseline (discussed later in the “Blur Integrated
Gradients” section), a uniform baseline, or a Gaussian baseline (shown in Figure 4-2).
Yet another option would be to average over multiple baselines.

Any baseline has its own pros and cons and, ultimately, choosing the right baseline
remains a challenge. As a practitioner, it’s important to be aware of the bias that is
present when using a specific baseline and how certain baselines might affect your
results. Therefore, we encourage you to experiment with multiple baselines to see
which works best for your dataset and use case.

Figure 4-9. The results of applying Integrated Gradients with a white baseline versus a
black baseline are quite different for a predominantly white image, like a sulfur-crested
cockatoo.

The code and discussion in this section show what’s really happening “under the
hood” when implementing Integrated Gradients for model explainability. There are
also more high-level libraries that can be leveraged and have easy-to-use implemen‐
tations. In particular, the saliency library developed by the People + AI Research
(PAIR) group at Google contains easy-to-use implementations of Integrated Gradi‐
ents, its many variations, and other explainability techniques. See the notebook in
the book’s GitHub repository to see how the saliency library can be used to find
attribution masks via Integrated Gradients.
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Improvements on Integrated Gradients
The method of Integrated Gradients is one of the most widely used and well-known
gradient-based attribution techniques for explaining deep networks. However, for
some input examples, this method can produce spurious or noisy pixel attributions
that aren’t related to the model’s predicted class. This is partly due to the accumu‐
lation of noise from regions of correlated, high-magnitude gradients for irrelevant
pixels that occur along the straight line path that is used when computing Integrated
Gradients. This is also closely related to the choice of baseline that is used when
computing Integrated Gradients for an image.

Various techniques have been introduced to address the problems that may arise
when using Integrated Gradients. We’ll discuss two variations on the classic Integra‐
ted Gradients approach: Blur Integrated Gradients and Guided Integrated Gradients.

Blur Integrated Gradients (Blur-IG)
In the section “Choosing a Baseline,” you saw that when implementing Integrated
Gradients, the choice of baseline is very important and can have significant effects on
the resulting explanations. Blur Integrated Gradients (Blur-IG) specifically addresses
the issues that arise with choosing a specific baseline. In short, Blur-IG removes the
need to provide a baseline as a parameter and instead advocates to use the blurred
input image as the baseline when implementing Integrated Gradients.

This is done by applying a Gaussian blur filter parameterized by its variance α. We
then compute the Integrated Gradients along the straight line path from this blurred
image to the true, unblurred image. As σ increases, the image becomes more and
more blurred, as shown in Figure 4-10. The maximum scale σmax should be chosen
so that the maximally blurred image is information-less, meaning the image is so
blurred it wouldn’t be possible to classify what is in the image.

Figure 4-10. With no blur, the model predicts “goldfinch” with 97.5% confidence, but
with σ = 6.7, the model’s top prediction becomes “safety pin.”

The idea is that for different scale values of σ, different features are preserved or
destroyed depending on the scale of the feature itself. The smaller the variation of
the feature, the smaller the value of σ at which it is destroyed, as seen in the detail
in the wing patterns of the goldfinch in Figure 4-10. When σ is less than 3, the
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black-and-white pattern on the wings is still recognizable. However, for larger values
of σ, the wings and head are just a blur.

We can compare the saliency maps produced from using regular Integrated Gradients
versus Blur Integrated Gradients (shown in Figure 4-11). Using the saliency library,
this can be done in only a few lines of code:

# Construct the saliency object.
integrated_gradients = saliency.IntegratedGradients()
blur_ig = saliency.BlurIG()

# Baseline is a black image.
baseline = np.zeros(im.shape)

# Compute the IG mask and the Blur IG mask.
integrated_gradients_mask_3d = integrated_gradients.GetMask(
  im, call_model_function, call_model_args, x_steps=25, x_baseline=baseline, 
  batch_size=20)
blur_ig_mask_3d = blur_ig.GetMask(
  im, call_model_function, call_model_args, batch_size=20)

In this code block, the call_model_function is a generic function that tells how
to pass inputs to a given model and receive the outputs necessary to compute the
saliency masks. It can be used with any ML framework. See the notebook on Integra‐
ted Gradients for the full code for this example. For this example of an image of an
American goldfinch, Blur-IG produces much more convincing attributions than the
vanilla Integrated Gradients.

Figure 4-11. The saliency map for Blur-IG does a much better job of recognizing the
parts of the image that make up the goldfinch.

Guided Integrated Gradients (Guided IG)
Guided Integrated Gradients (Guided IG) attempts to improve upon Integrated Gra‐
dients by modifying the straight line path that is used in the implementation. Instead
of using a straight line path from the baseline to the input image, Guided IG uses
an adapted path to create saliency maps that are better aligned with the model’s
prediction. Instead of moving pixel intensities in a fixed straight line direction from
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the baseline to the input, we make a choice at every step. More precisely, Guided IG
moves in the direction where features (i.e., pixels) have the smallest absolute value of
partial derivatives. As the intensity of the pixels becomes equal to those of the input
image, they are ignored.

The idea is that the typical straight line path that is used by previous integrated
gradient techniques we’ve discussed so far could potentially travel through points in
the feature space where the gradient norm is large and not pointing in the direction
of the integration path. As a result, the naive straight line path leads to noise and
gradient accumulation in saturated regions that causes spurious pixels or regions to
be attributed at too high of an importance when computing saliency maps. Guided
IG avoids this problem by instead navigating along an adapted path in feature space,
taking into account the geometry of the model surface in feature space. Figure 4-12
compares the result of applying vanilla Integrated Gradients with that of Guided
Integrated Gradients. See the Integrated Gradients notebook in this book’s GitHub
repository for the full code for this example.

For the example image in Figure 4-12, the saliency map for the
Guided IG example seems to focus on the goldfinch in the image
more than the saliency map for Integrated Gradients, but both
methods don’t seem to do a particularly great job of producing
convincing explanations. This may indicate that our model needs
more training, or more data. Or maybe that both Integrated Gra‐
dients and Guided IG just aren’t well suited for this task or this
dataset and another method would work better. There is no one-
size-fits-all XAI technique. This is why it’s important to have a
well-stocked toolkit of techniques that you can use when analyzing
your model predictions.

Figure 4-12. The saliency map for the Guided IG example focuses on the goldfinch in
the image more than the saliency map for Integrated Gradients, but both methods don’t
seem to do a particularly great job of producing convincing explanations.
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XRAI
Here’s what you need to know about XRAI:

• XRAI is a region-based attribution method that builds upon Integrated Gradients.•
• XRAI determines regions of importance by segmenting the input image into like•

regions based on a similarity metric and then determines attribution scores for
those like regions.

• XRAI is a local explainability method that can be applied to any DNN-based•
model as long as there is a way to cluster the input features into segments
through some similarity metric.

Pros Cons

• XRAI improves upon other gradient-based techniques like vanilla•
Integrated Gradients.

• XRAI can be faster than perturbation-based methods like LIME•
that require multiple queries to the model.

• It performs best on natural images, like a picture of an animal or•
an object, similar to those found in the benchmark ImageNet and
CIFAR datasets.

• XRAI is only useful for image models.•
• There is less granularity than a technique like•

Integrated Gradients that provides pixel-level
attribution.

• XRAI is not recommended for low-contrast images•
or images taken in nonnatural environments such as
X-rays.

The saliency maps obtained from applying Integrated Gradients provide an easy-to-
understand tool to visually see which pixels contribute most to a model’s prediction
for a given image. XRAI builds upon the method of Integrated Gradients by join‐
ing pixels into regions. So instead of highlighting individual pixels that were most
important, the saliency maps obtained by XRAI highlight pixel regions of interest in
the image.

A key component and the first step of the XRAI algorithm is the segmentation of the
image to determine those regions of interest. Image segmentation is a popular use
case in computer vision that aims to partition an image into multiple regions that are
conceptually similar, as illustrated in Figure 4-13.

Figure 4-13. Image segmentation is a process of assigning a class to each pixel in an
image. Here are some examples from the Common Objects in Context (COCO) dataset.
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3 Pedro F. Felzenszwalb and Daniel P. Huttenlocher, “Efficient Graph-Based Image Segmentation,” International
Journal of Computer Vision 59.2 (2004): 167–81.

Image segmentation is a well-studied problem in computer vision, and deep learning
architectures like U-Net, Fast R-CNNs, and Mask R-CNNs have been developed to
specifically address this challenge and can produce state-of-the-art results. One of the
key steps of the XRAI algorithm uses an algorithm called Felzenszwalb’s algorithm to
segment an input image into similar regions, much in the same way as a nearest neigh‐
bors clustering algorithm. The Felzenszwalb algorithm doesn’t rely on deep learning.3

Instead, it is a graph-based approach based on Kruskal’s minimum spanning tree
algorithm and provides an incredibly efficient means to image segmentation. The
key advantage of Felzenszwalb’s algorithm is that it captures the important nonlocal
regions of an image that are globally relevant and, at the same time, is computationally
efficient with time complexity O n log n  where n is the number of pixels.

The idea is to represent an image as a connected graph G = V ,E  of vertices V
and edges E  where each pixel is a vertex in the graph and the edges connect neigh‐
boring pixels. The segmentation algorithm then iteratively tests the importance of
each region and refines the graph partitions, coalescing smaller regions into larger
segments until an optimal segmentation is found, resulting in a segmentation shown
in Figure 4-14.

Figure 4-14. The Felzenszwalb segmentation algorithm realizes an image as a weighted
undirected graph and then partitions the graph so that the variation across two different
components is greater than the variation across either component individually.
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The sensitivity to the within group and between group differences is handled by a
threshold function. The strictness of this threshold is determined by the parameter
k. You can think of this k as setting the scale of observation for the segmentation
algorithm. Figure 4-15 shows the resulting image segmentations for various values of
k. These images were created using the segmentation package of the scikit-image
library. The code for this example is available in this book’s GitHub repository. As you
can see there, a larger value of k causes a preference for larger components, while a
smaller value of k allows for smaller regions. It’s important to note that k does not
guarantee a minimum component size. Smaller components would still be allowed,
they just require a stronger difference between neighboring components.

Figure 4-15. The parameter k controls the threshold function for Felzenszwalb segmenta‐
tion algorithm. A larger value of k causes a preference for larger components while a
smaller value of k allows for smaller regions.

How XRAI Works
XRAI combines the output from applying Integrated Gradients to an input image
with the image segmentation provided by Felzenszwalb’s algorithm described in the
previous section. Intuitively, Integrated Gradients provides pixel-level attributions,
so by aggregating these local feature attributions over the globally relevant segments
produced from the image segmentation, XRAI is able to rank each segment and order
the segments that contribute most to the given class prediction.

If one segment, for example the segment consisting of the body and crest of the
cockatoo in Figure 4-14, contains a lot of pixels that are considered salient via
Integrated Gradients, then that segment would also be ranked as highly salient via
XRAI as well. However, a much smaller region, such as the segment representing
the eye of the cockatoo, even if the pixels have high saliency measures according to
the output from applying Integrated Gradients, XRAI would not rank that region as
highly. This helps protect against individual pixels or small pixel segments that have
spuriously high saliency from applying Integrated Gradients alone.

One thing to keep in mind, however, is the sensitivity of the segmentation result
and how a certain choice of hyperparameters might bias the result. To address this,
the image is segmented multiple times using different values (50, 100, 150, 250, 500,
1200) for the scale parameter k. In addition, segments smaller than 20 pixels are
ignored entirely. Since for a single parameter the union of segments gives the entire

110 | Chapter 4: Explainability for Image Data



image, the union of all segments obtained from all the parameters yields an area equal
to about six times the total image area and with multiple segments overlapping. Each
of the regions from this oversegmentation is used when aggregating the lower-level
attributions.

So, bringing it all together, when implementing XRAI, first the method of Integrated
Gradients is applied using both a black and white baseline to determine pixel-level
attributions, as shown in Figure 4-16. Concurrently, Felzenszwalb’s graph-based seg‐
mentation algorithm is applied multiple times using a range of scale parameter values
for k = 50, 100, 150, 250, 500, 1200. This produces an oversegmentation of the
original image. XRAI then aggregates the pixel-level attributions by summing the
values from the integrated gradient output within each of the resulting segments
and ranks each segment from most to least salient. The result is a heatmap that
highlights the areas of the original image that contribute most strongly to the model’s
class prediction. Overlaying this heatmap over the original image, we can see which
regions most strongly contribute to the prediction of “sulfur-crested cockatoo.”

Figure 4-16. XRAI combines the results from the method of Integrated Gradients with
the oversegmentation regions obtained from multiple applications of Felzenszwalb’s seg‐
mentation algorithm. The pixel-level attributions are then aggregated over the overseg‐
mented regions and ranked to determine which regions are most salient for the model.

Implementing XRAI
XRAI is a post hoc explainability method and can be applied to any DNN-based
model. Let’s look at an example of how to implement XRAI using the saliency
library developed by the People + AI Research (PAIR) group at Google. In the
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following code block, we load a VGG-16 model pretrained on the ImageNet dataset
and modify the outputs so that we can capture the model prediction m.output as well
as one of the convolution block layers block5_conv3. The full code for this example
can be found in the XRAI for Image Explainability notebook in this book’s GitHub
repository:

m = tf.keras.applications.vgg16.VGG16(weights='imagenet', include_top=True)
conv_layer = m.get_layer('block5_conv3')
model = tf.keras.models.Model([m.inputs], [conv_layer.output, m.output])

To get the XRAI attributions, we construct a saliency object for XRAI and call the
method GetMask passing in a few key arguments:

xrai_object = saliency.XRAI()
xrai_attributions = xrai_object.GetMask(image,
                                        call_model_function,
                                        call_model_args,
                                        batch_size=20)

The image argument is fairly self-explanatory: it’s the image on which we want to
obtain the XRAI attributions passed in as a numpy array. Let’s discuss the other argu‐
ments: the call_model_function and call_model_args. The call_model_function
is how we pass inputs to our model and receive the outputs necessary to compute a
saliency mask. It calls the model so it expects input images. Any arguments needed
when calling and running the model are handled by call_model_args. The last
argument, expected_keys, tells the function the list of keys expected in the output.
We’ll use the call_model_function defined in the following code, and we’ll either
get back gradients with respect to the inputs or the gradients with respect to the
intermediate convolution layer:

class_idx_str = 'class_idx_str'
def call_model_function(images, call_model_args=None, expected_keys=None):
    target_class_idx = call_model_args[class_idx_str]
    images = tf.convert_to_tensor(images)
    with tf.GradientTape() as tape:
        if expected_keys==[saliency.base.INPUT_OUTPUT_GRADIENTS]:
            tape.watch(images)
            _, output_layer = model(images)
            output_layer = output_layer[:,target_class_idx]
            gradients = np.array(tape.gradient(output_layer, images))
            return {saliency.base.INPUT_OUTPUT_GRADIENTS: gradients}
        else:
            conv_layer, output_layer = model(images)
            gradients = np.array(tape.gradient(output_layer, conv_layer))
            return {saliency.base.CONVOLUTION_LAYER_VALUES: conv_layer,
                    saliency.base.CONVOLUTION_OUTPUT_GRADIENTS: gradients}

You may recall that when implementing Integrated Gradients, one hyperparameter
you could adjust is the number of steps used to compute the line integral. Since XRAI
relies on the output from Integrated Gradients, you may be wondering where and
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how you adjust that hyperparameter for XRAI. In the saliency library, those kinds
of hyperparameters are controlled with a subclass called XRAIParameters. The default
number of steps is set to 100. To change the number of steps to 200, you simply create
an XRAIParameters object and pass it to the GetMask function as well:

xrai_params = saliency.XRAIParameters()
xrai_params.steps = 200

xrai_attributions_fast = xrai_object.GetMask(im,
                                             call_model_function,
                                             call_model_args,
                                             extra_parameters=xrai_params,
                                             batch_size=20)

Finally, we can plot the xrai_attributions object returned from calling GetMask to
obtain a heatmap of attributions for the image, as shown in Figure 4-17.

Figure 4-17. XRAI produces a heatmap of attributions for a given input image. For this
image of a sulfur-crested cockatoo, the more relevant regions correspond to the body of
the bird, its beak, and its distinct crest.

In order to see which regions of the original image were most salient, the following
code focuses only on the most salient 30% and creates a mask filter overlaid on the
original image. This results in Figure 4-18:

mask = xrai_attributions > np.percentile(xrai_attributions, 60)
im_mask = np.array(im_orig)
im_mask[~mask] = 0
ShowImage(im_mask, title='Top 30%', ax=P.subplot(ROWS, COLS, 3))
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Figure 4-18. Filtering the XRAI attributions, we can overlay the heatmap on the original
image to highlight only the most salient regions.

Grad-CAM
Here’s what you need to know about Grad-CAM:

• Grad-CAM is short for Gradient-weighted Class Activation Mapping. Grad-•
CAM was one of the first explainability techniques; it generalizes CAM that
could only be used for certain model architectures.

• Grad-CAM works by examining the gradient information flowing through the•
last (or any) convolution layer of the network.

• It produces a localization heatmap highlighting the regions in an image most•
influential for predicting a given class label.

Pros Cons

• Grad-CAM only requires a forward pass of the model, so it’s
computationally efficient and easy to implement by hand or
with open source libraries.

• Grad-CAM is applicable to a wide variety of CNN models and
tasks, for example, CNNs with fully connected layers (used
in classification tasks), CNNs with multimodal inputs (used
in visual question answering), or CNNs for text outputs
(used in image captioning).

• Grad-CAM can be combined with other pixel-space
visualizations to create high-resolution class discriminative
visualizations (see “Guided Backpropagation and Guided
Grad-CAM” on page 129).

• Grad-CAM produces low-resolution heatmaps that can
have incorrect or misleading results by attributing
regions in the image that were not influential for the
model. Take caution when interpreting the results from
Grad-CAM.

• Grad-CAM doesn’t perform as well as other XAI methods
for multiclass classification models with a large number
of class labels.

• Grad-CAM fails to properly localize objects in an image
if the image contains multiple occurrences of the same
class; e.g., an image classifier for recognizing cat that is
given an image with two cats will produce an unreliable-
heat map.
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Grad-CAM is one of the original explainability techniques developed for image mod‐
els and can be applied to any CNN-based network. Grad-CAM is a post hoc explan‐
ation technique and doesn’t require any architecture changes or retraining. Instead,
Grad-CAM accesses the internal convolutions layers of the model to determine
regions that are most influential for the model’s predictions. Because Grad-CAM
only relies on forward passes through the model, with no backpropagation, it is also
computationally efficient.

How Grad-CAM Works
To understand how Grad-CAM works, let’s first start with what Class Activation
Map (CAM) is and how it works, since Grad-CAM is essentially a generalization of
CAM. Typically, when building an image model, your model architecture is likely to
consist of a stack of convolutional and pooling layers. For example, think about the
classic VGG-16 model architecture shown in Figure 4-19. There are five convolution
plus pooling blocks that act as feature extractors, followed by three fully connected
layers (FC) before the final softmax prediction layer. CAM is a localization map of
the image that is computed as a weighted activation map. This is done by taking a
weighted sum of the activation maps of the final convolution layer in the model.

More precisely, and to illustrate with an example, suppose we take the final convolu‐
tion layer (just before the last pooling layer) of the VGG-16 model in Figure 4-19
trained on the ImageNet dataset. The dimension of this final convolution layer is
7×7×512. So, there are 512 feature maps mapping to 1,000 class labels; that is, the
labels corresponding to ImageNet.

Figure 4-19. VGG-16 consists of blocks of convolution and pooling layers. CAM is a
weighted activation map applied to the final convolution layer.

Each feature map is indexed by i and j representing the width and height of the
convolution layer (in this case i = j = 7). Notationally, Aij

k  denotes the activation at
location i,j  of the feature map Ak. Those feature maps are then pooled using global
average pooling and CAM computes a final score Y c for each class c by taking a
weighted sum of the pooled feature maps, where the weights are given by the weights
connecting the k-th feature map with the c-th class:

Y c = ∑
k
wk
c∑
i,j
Aij
k

Grad-CAM | 115



4 Ramprasaath R. Selvaraju et al., “Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based
Localization,” Computer Vision Foundation, https://oreil.ly/cU9sG.

If you then take the gradient of Y c, that is, the score for class c, with respect to the
feature maps, you can separate out the weight term wkc, so that (after a bit of math4)
you get:

wk
c = ∑

i,j

∂Y c

∂Aij
k

This weight value is almost exactly the same as the neuron importance weight that
is used in Grad-CAM! For Grad-CAM, you also pull out the activations Ak from the
final convolution layer and compute the gradient of the class score Y c with respect
to these Ak. In some sense, these gradients capture the information flowing through
the last convolution layer; you want to use this to assign importance values to each
neuron for a particular class c. This importance weight is computed (similarly to
CAM) as:

αk
c = 1

Z
∑
i,j

∂Y c

∂Aij
k

The last step of Grad-CAM is to then take a weighted combination of the activation
maps using these αkc as weights and apply a ReLU to that linear combination, as
shown in Figure 4-20. So,

LGrad‐CAM
c = ReLU ∑

k
αk
cAk

You use a ReLU here because we only care about the pixels whose intensity should
be increased in order to increase the class score Y c. Remember ReLU maps negative
values to zero, so by applying ReLU after the weighted sum we only capture the
positive influence on the class score. Because the shape of Ak is the same shape as
the final convolution layer; it produces a coarse heatmap that can then be overlaid
on the original image to indicate which regions were most influential in the model
predicting class c. Also, due to the averaging and pooling of these feature maps,
Grad-CAM works best at representing regions of influence in the image rather than
exact pixels. An overview of the Grad-CAM process is shown in Figure 4-20.
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Figure 4-20. An overview of Grad-CAM. The final activation maps Ak are used to
compute a weighted sum that is then passed through a ReLU layer.

The coarse heatmap created by Grad-CAM is problematic and can
generate misleading results. Because the heatmap has the same
dimensions as the final convolutional feature maps Ak, it is usually
upsampled to fit the shape of the original image. For example, the
last convolutional layer of VGG-16 is 7×7×512, so the heatmap
determined from the weighted sum of the activation maps will have
dimension 7×7, which then has to be upsampled to overlay on the
original image that has shape 224×224. This upsampling has the
strong potential for causing misleading results, particularly if your
dataset consists of large images whose shape is much larger than
the internal activation map or contains image patterns and artifacts
that are not properly sampled by a convolution.

You may be wondering how exactly Grad-CAM improves upon CAM, especially if
they are essentially using the same importance weights. The advantage of Grad-CAM
is that the construction for CAM is very limiting. It requires feature maps to directly
precede softmax layers. So, CAM only works for certain kinds of CNN model archi‐
tectures, i.e., ones that have their final layers to be a convolution feature mapped to
a global average pooling layer mapped to a softmax prediction layer. The problem is
that this may not be architecture with best performance. By taking a gradient and
rearranging terms, Grad-CAM is able to generalize CAM and works just as well for
a wide range of architectures for other image-based tasks, like image captioning or
visual question answering.

In the description of Grad-CAM, we only discussed taking the
CAM from the final convolution layer. As you may have already
guessed, the technique we described is quite general and can be used
to explain activations for any layer of the deep neural network.
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Implementing Grad-CAM
The Grad-CAM algorithm outlined in Figure 4-20 is fairly straightforward and can
be implemented directly by hand, assuming you have access to the internal layers of
your CNN model. However, there is an easy-to-use implementation available from
the saliency library. Let’s see how it works with an example. You start by creating
a TensorFlow model. In the following code block, we load a pretrained VGG-16
model architecture that has been trained on the ImageNet dataset. We also select
the penultimate convolution layer block5_3 that we’ll use to obtain the activation
maps. Note that when we build the actual model it returns both the convolution layer
output and the VGG-16 outputs, so we can still make predictions. For the full code
for this example, see the Grad-CAM notebook in the GitHub repository for this book:

vgg16 = tf.keras.applications.vgg16.VGG16(
    weights='imagenet', include_top=True)
conv_layer = m.get_layer('block5_conv3')
model = tf.keras.models.Model(
    [vgg16.inputs], [conv_layer.output, vgg16.output])

To apply Grad-CAM, you then construct a saliency object, calling the Grad-
CAM method and then apply GetMask passing the example image, and the
call_model_function. The following code block shows how this is done. The
call_model_function interfaces with a model to return the convolution layer infor‐
mation and the gradients of the model. This returns a Grad-CAM mask that can be
used to plot a heatmap indicating influential regions in the image:

# Construct the saliency object. This alone doesn't do anything.
grad_cam = saliency.GradCam()

# Compute the Grad-CAM mask.
grad_cam_mask_3d = grad_cam.GetMask(im, call_model_function, 
call_model_args)

Historically, Grad-CAM is an important technique. It was one of
the first techniques to leverage the internal convolution layers of a
CNN model to derive explanations for model prediction. However,
you should take caution when implementing and interpreting the
results from Grad-CAM. Because of the upsampling and smooth‐
ing step from the convolution layer, some regions of the heatmap
may seem important when in fact they were not influential for the
model at all. There have been improvements to address these con‐
cerns (see the next section, “Improving Grad-CAM,” and the later
section “Guided Grad-CAM”), but the results should be viewed
critically and in comparison with other techniques.
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5 The Grad-CAM paper was revised and updated in 2019.
6 Defenders of Grad-CAM claim that this upscaling is acceptable because it mirrors the downsampling

performed by the model’s CNNs, but this argument does not have any strong theoretical grounding or
evaluations to substantiate this claim.

Improving Grad-CAM
After publication of the original paper in 2017,5 it was discovered that Grad-CAM
could inaccurately attribute model attention to regions of the image that were not
actually influential in the prediction. Grad-CAM applies a natural smoothing, or
interpolation, to its original heatmaps in enlarging them to the size of the original
dimensions of the input image. Figure 4-21 shows an example of what the Grad-
CAM output looks like with and without smoothing.

Figure 4-21. Grad-CAM upsamples from the feature map size to the size of the original
image and applies a natural smoothing. This can cause misleading results and inaccur‐
ately attribute model attention to regions that weren’t influential.

The smoothing results in a more visually pleasing image, with seamless changes in
the colors of the heatmap, but can also be very misleading. Since the original region
was focused on a much smaller image size, we can’t say that the pixels that were
lost would have had the same influence on the model as those remaining around it.6

In response, researchers developed Grad-CAM++ and HiResCAM to address these
issues. Figure 4-22 shows an example of how the outputs of Grad-CAM and Grad-
CAM++ differ. These newer techniques helped to address these concerns and can
produce more accurate attribution maps. However, even with the regional inaccuracy
fixed, Grad-CAM remains a flawed technique due to how it upsamples from the
original size of the feature maps to the size of the input image.
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Figure 4-22. A heatmap from applying Grad-CAM and Grad-CAM++ for the classifica‐
tion of a healthy blueberry leaf. In the Grad-CAM image, the heatmap is most attentive
in the center of the leaf but also highlights some influence from the background. For
Grad-CAM++, the activated pixels are more evenly distributed throughout the leaf,
although a highly influential region is still attributed to the background in the lower left.
(Print readers can see the color image at https://oreil.ly/xai-fig-4-22.)

LIME
Here’s what you need to know about LIME:

• LIME stands for local interpretable model-agnostic explanations. It is a post hoc,•
perturbation-based explainability technique.

• LIME can be used for regression or classification models, though in practice•
LIME is used primarily for classification models.

• LIME works by changing regions of an image, turning them on or off and•
rerunning inferences to see which regions are most influential to the model’s
prediction.

• LIME uses an inherently interpretable model to measure influence or importance•
of input features.

Pros Cons

• LIME is a very popular technique for producing
pixel-level attributions.

• It is easy to implement and has a well-maintained
Python implementation (see GitHub repository).

• It has an intuitive and easy-to-explain algorithm
and implementation.

• There are a wide variety of visualization options.

• Explanations are brittle and may not be accurate. Because LIME
is a local interpretation of a complex model, explanations can be
particularly bad for highly nonlinear models.

• LIME is prone to misidentifying background regions as influential.
• Explanations can be very slow to generate, depending on the

complexity of your model, since it queries the model multiple
times on perturbations of the input.

Due to its age, LIME is one of the more popular explainability techniques. It can also
be used for tabular and text data, and the algorithm is similar for each of these data
modalities albeit with some modifications. We discuss the details of implementing
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LIME with images here because it gives a nice visual intuition of how LIME works in
general (see Chapter 5 for a discussion of how LIME works with text).

How LIME Works
LIME is a post hoc, model-agnostic, perturbation-based explainability technique.
That means it can be applied to any machine learning model (e.g., neural networks,
SVM, random forest, etc.) and is applied after the model has been trained. In essence,
LIME treats the trained model like an API, taking an example instance and producing
a prediction value. To explain why the model makes a certain prediction for a given
input instance, the LIME algorithm works by passing lots and lots of slightly pertur‐
bed examples of the original input to the model and then measures how the model
predictions change with these small input changes. The perturbations occur at the
feature level of the input instance; i.e., images, pixels, and pixel regions are modified
to create a new perturbed input. In this way, those pixels or pixel regions that most
influence the model’s prediction are highlighted as being more or less influential to
the model’s predicted output for the given input instance.

To go into a little more detail, let’s further explain two of the key components of
implementing LIME: first, how to generate a perturbation of an image and second,
what it means to measure how the model prediction changes on these perturbations.

For a given prediction, the input image is subdivided into interpretable components,
or regions, of the image. LIME segments the image into regions called superpixels.
A superpixel is a similarity-based grouping of the individual pixels of an image into
similar components (see the discussion of Felzenszwalb’s algorithm in the earlier
section “XRAI”). For example, Figure 4-23 shows how the image of the sulfur-crested
cockatoo can be segmented into superpixels. The superpixel regions represent the
interpretable components of the image.

Figure 4-23. When implementing LIME, the original image is segmented into superpixel
regions that represent the interpretable components of the image.
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The superpixel regions in Figure 4-23 were created using the quickshift segmenta‐
tion algorithm from the scikit-image library. This is the default segmentation
algorithm used in the widely used, open source Python package LIME (see the
next section, “Implementing LIME”), although other segmentation functions could
be used. Quickshift is based on an approximation of kernelized mean-shift and
computes hierarchical segmentation at multiple scales simultaneously. Quickshift has
two main parameters: the parameter sigma determines the scale of the local density
approximation, and max_dist determines the level of the hierarchical segmentation.
There is also a parameter ratio that controls the ratio between the distance in
color space and the distance in image space when comparing the similarity of two
pixels. The following code produces the segmentation in Figure 4-23. See the LIME
notebook in the GitHub repository for this book for the full code example:

from skimage.segmentation import quickshift

segments = quickshift(im_orig, kernel_size=4,
                      max_dist=200, ratio=0.2)

LIME then perturbs these interpretable components by changing the values of the
pixels in each superpixel region to be gray. This creates multiple new variations, or
perturbations, of the input image. Each of these new perturbed instances is then
given to the model to generate new prediction values for the class that was originally
predicted. For example, in Figure 4-24 the original image is modified by graying out
certain superpixel regions. Those perturbed examples are then passed to the trained
model (in this case a deep neural network), and the model returns the probability
that the image contains a sulfur-crested cockatoo. These new predictions create a
dataset that is used to train LIME’s linear model to determine how much each
interpretable component contributes to the original prediction.
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Figure 4-24. The model’s confidence in the predicted class “sulfur-crested cockatoo” for
the original image is 0.833. As certain superpixels are removed (by graying out the
region), the model’s top class prediction changes. For regions that are influential, the
change is larger than for regions that are less important.

In the LIME implementation, superpixels are turned “on” or “off ”
by changing the pixel values of a segment to gray. This creates a
collection of perturbed images that are passed to the model for pre‐
diction. It is also possible to instead change the superpixel regions
to the mean of the individual pixel values in the superpixel region,
as shown in Figure 4-25.
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7 Marco Tulio Ribeiro et al., “‘Why Should I Trust You?’ Explaining the Predictions of Any Classifier,” Proceed‐
ings of the 22nd SIGKDD International Conference on Knowledge Discovery and Data Mining (August
2016).

Figure 4-25. It is also possible to perturb images by setting the values of superpixel
regions to be the average of the individual pixel regions in the image.

Let’s now discuss how LIME quantitatively measures the contributions of the super‐
pixel feature inputs. This is done by training a smaller, interpretable model to provide
explanations for the original model. This smaller model can be anything, but the
important aspect is that it is inherently interpretable. In the original paper,7 the
authors use the example of a linear model. Linear models are inherently interpretable
because the weights of each feature directly indicate the importance of that feature for
the model’s prediction.

This interpretable, linear model is then trained on a dataset consisting of the pertur‐
bed examples and the original model’s predictions, as shown in Figure 4-24. These
perturbations are really just simple binary representations of the image indicating the
“presence” or “absence” of each superpixel region. Since we care about the perturba‐
tions that are closest to the original image, those examples with the most superpixels
present are weighted more than examples that have more superpixels absent. This
proximity can be measured using any distance metric for images. The idea is that
even though your trained model might be highly complex, for example a deep neural
network or an SVM, the locally weighted, linear model can capture the local behavior
at a given input instance. The more sensitive the complex model is to a given input
feature, the more of an influence that feature will have on the linear, interpretable
model as well.
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Implementing LIME
There is a nice, easy-to-use Python package for applying LIME to tabular, image,
and text classifiers that works for any classifier with at least two label classes. As
an example, let’s see how to implement LIME on the Inception v3 image classifica‐
tion model. The following code shows how to load the image in TensorFlow and
make a prediction on an image. Note that when we load the incepton model, we
specify include_top=True to get the final prediction layer of the model and we set
weights='imagenet' to get the weights pretrained on the ImageNet dataset:

inception = tf.keras.applications.InceptionV3(
    include_top=True, weights='imagenet')
model = tf.keras.models.Model(inception.inputs, inception.output)

Now, given an image, we can create explanations for the Inception model’s prediction
by creating a LimeImageExplainer object and then calling the explain_instance
method. The following code block shows how to do this:

explainer = lime_image.LimeImageExplainer()
explanation = explainer.explain_instance(image.astype('double'),
                                         inception.predict,
                                         top_labels=20,
                                         hide_color=0,
                                         num_features=5)

Most of the parameters in this code block are self-explanatory. The last two, however,
are worth mentioning. Firstly, the parameter hide_color indicates that we’ll turn off
superpixel regions by replacing them with gray pixels. The parameter num_features
indicates how many features to use in the explanation. Fewer features lead to more
simple, understandable explanations. However, for more complex models it may be
necessary to keep this value large (the default is num_features=100000).

To visualize the explanations for this example, we then call get_image_and_mask on
the resulting explanation. This is shown in the following code block; see the LIME
notebook in the book repository for the full code for this example:

temp, mask = explanation.get_image_and_mask(explanation.top_labels[0],
                                            positive_only=True,
                                            num_features=20,
                                            hide_rest=True)
plt.imshow(mark_boundaries(temp, mask))
plt.show()

The result is shown in Figure 4-26, which highlights the superpixel regions that most
positively contributed to the prediction “sulfur-crested cockatoo.”
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Figure 4-26. LIME uses a linear model trained on perturbations of the original input
image to determine which superpixel regions were most influential for the complex
model’s prediction.

It is also possible to see which superpixel regions provide a negative contribution
as well. To do this, set positive_only to False. This produces the output image as
shown in Figure 4-27. The regions that positively contribute to the prediction are in
green, while the regions that negatively influence the prediction are in red.

Figure 4-27. A LIME explanation. Regions that influenced the model are shown as a
heatmap, with more influential regions having a deeper color, where green contributed
positively to the classification, and red contributed negatively. (Print readers can see the
color image at https://oreil.ly/xai-fig-4-27.)
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This results in a segmented map of the image that is weighted according to how
strongly that region influenced the model’s prediction. Unlike Shapley values, there
are no bounds or guarantees on the values of the region. For example, LIME could
conceivably weight multiple regions as highly influential.

Unfortunately, LIME’s elegance in generating weightings by turning regions of the
image on and off is also its downfall. Since the perturbed images remove entire areas
from the prediction, it effectively is shifting the model’s attention to what remains
visible in the image. In effect, LIME is asking the model not to do a “limited”
prediction of the original image, but to look at an entirely new image. However, by
not holistically perturbing the entire image, like Integrated Gradients, it is possible
that learned concepts in the model are no longer activated. We are asking the model
to tell us how it would predict the image by looking at how predictions change
only with respect to one feature value and assuming that comparing across different
features will result in something akin to how the model made its original prediction.
This can sometimes lead to nonsensical explanations, as shown in Figure 4-28.

Figure 4-28. An example of how LIME’s perturbation approach can lead to what seem
to be nonsensical explanations. In the image of the goldfinch, there is a large portion
of the background (nearly as much as the bird itself) contributing to the prediction. In
the image of the cockatoo, we also see the background having a positive influence on the
model, while parts of the bird have a negative influence as well. (Print readers can see
the color image at https://oreil.ly/xai-fig-4-28.)

LIME | 127

https://oreil.ly/xai-fig-4-28


One way to address this problem is to adjust the parameters of the segmentation
step: with more fine-grained segments, the less likely those superpixels will contribute
to the image prediction. Ultimately, as with all implementations, it’s important to
be aware of this artifact both when implementing LIME as a technique and when
interpreting the results.

As a further example of this, we used LIME on a nonnatural dataset, the PlantVillage
dataset, which contains images of plant leaves with disease and tries to predict the
type of disease. These images feature a combination of a very natural image (plant
leaves) within a much more structured environment (interior lighting, monochrome
background). The model used, Schuler, was highly accurate, with an overall predic‐
tion accuracy of 99.8%. We also compared the LIME explanations to another, slightly
less accurate model, Yosuke.

Figure 4-29. Examples of using LIME to explain the classifications between two different
models. (Print readers can see the color image at https://oreil.ly/xai-fig-4-29.)

As you can see in the examples in Figure 4-29, LIME has determined that the
backgrounds of the images are some of the most influential areas in the prediction.
Given that the background is the same for all images in the dataset, this seems highly
unlikely to be what is the cause for predictions!
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Guided Backpropagation and Guided Grad-CAM
Here’s what you need to know about Guided Backprop (often abbreviated this way)
and Guided Grad-CAM:

• Guided Backprop builds on DeConvNets, which examines the interior layers of a•
convolution network.

• Guided Backprop corresponds to the gradient explanation, setting negative gra‐•
dient entries to zero while backpropagating through a ReLU unit.

• Guided Grad-CAM combines the output of Grad-CAM and Guided Backprop•
through element-wise product to produce sharper visualizations in the saliency
maps.

Pros Cons

• Guided Backprop creates a sharper and more fine-grained
visualization of saliency attribution maps.

• Guided Grad-CAM saliency maps localize relevant regions
but also highlight fine-grained pixel detail.

• Some evidence suggests that Guided Backprop and its
variants fail basic “sanity” checks and show minimal
sensitivity to model parameter randomization tests and
data randomization tests.a

a Julius Adebayo et al., “Sanity Checks for Saliency Maps,” arXiv, 2020, https://arxiv.org/pdf/1810.03292.pdf.

As we’ve seen throughout this chapter, the gradients of a neural network are a useful
tool for measuring how information propagates through a model to eventually create
a prediction. The idea is that by measuring the gradients through backpropagation,
you can highlight those pixels or pixel regions that contributed most to the model’s
decision. Despite this intuitive approach, in practice the results of saliency maps
that rely solely on gradient information can be very noisy and difficult to interpret.
Guided Backprop also relies on model gradients to produce a saliency map but
modifies the backpropagation step slightly in how it handles the ReLU nonlinearities.

Guided Backprop and DeConvNets
The technique of Guided Backprop is closely related to an earlier explainability
method called DeConvNets. We’ll start by describing how DeConvNets work first,
then see how Guided Backprop improves upon that approach. As the name suggests,
DeConvNets are built upon deconvolution layers, also known as transposed convo‐
lutions. You can think of a deconvolution as an inverse of a convolution layer, its
job is to “undo” the operation of a convolution layer. Figure 4-30 shows the typical
architecture of a DeConvNet.
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Figure 4-30. A typical deconvolution network with a VGG-16 backbone. The DeConv‐
Net architecture starts with the usual convolution and max pooling layers, followed by
deconvolution and unpooling layers.

As you can see from the figure, the DeConvNet architecture starts with a usual con‐
volution network. Each convolutional layer passes a kernel over the input channels
and calculates an output based on the weights of the filter. The size of the output of
a convolution layer is determined by the kernel size, the padding, and the stride. For
example, if you have an input tensor with shape (5,5) and a convolution layer with
kernel size 3×3, stride set to 2, and zero padding, the output will be a tensor of shape
(2,2), as shown on the left in Figure 4-31. The nine values in the base (5,5) tensor are
aggregated as a linear combination to produce the single value in the resulting (2,2)
tensor. If the input has multiple channels, the convolution is applied to each channel.

The second part of the DeConvNet is the deconvolution (or transposed convolu‐
tion) layers. DeConvNets are similar to convolutional networks but work in reverse
(reversing filters, reversing pooling, etc.) so that they reconstruct the spatial resolu‐
tion of the original input tensor. There are two components to the DeConvNet: the
deconvolution and the unpooling layers. We’ll discuss how the deconvolution layers
work first. The deconvolution also uses a convolution filter but enforces additional
padding both outside and within the input values to reconstruct the tensor with
larger shape. For the convolution step we just described, the deconvolution maps the
(2,2) tensor back to a tensor of shape (5,5), as shown in the image on the right in
Figure 4-31. The deconvolution filter has size 3×3. In order to upsample the (2,2)
tensor to a tensor of shape (5,5), we add additional padding on the outside and
between input values (in red in Figure 4-31).
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Figure 4-31. A deconvolution layer, shown on the right, reconstructs the original spatial
resolution of the input to a convolution layer, shown on the left.

The next component of the DeConvNet to discuss are the unpooling layers. The max
pooling layers of a convolution network pass a filter over the input and record only
the maximum of all values in the filter as the output. By nature, max aggregation loses
a lot of information. To perform unpooling, we need to remember the position where
the maximum value occurred in the original max pooling filter. These locations are
called switch variables. When performing unpooling, we place the max value from
max pooling back in its original position and leave the rest of the values in the filter
as zero, as shown in Figure 4-32.
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Figure 4-32. When reversing a max pooling layer using “unpooling,” the switch variable
keeps track of where the max value was located.

The idea of using DeConvNets as an explainability method is to visualize the internal
activation layers of a trained CNN by “undoing” the convolution blocks of a CNN
using deconvolution layers block by block. Ultimately, the DeConvNet maps the filter
of an activation layer back to the original image space, allowing you to find patterns
in the images that caused that given filter activation to be high.

Applying a convolution and max pooling causes some information
of the original input tensor to be lost. This is because the convolu‐
tion filter is aggregating values and the max pooling returns only
one value from the entire filter, dropping the rest. The deconvo‐
lution reverses the convolutions step but it is an imperfect recon‐
struction of the original tensor.

The method of Guided Backpropagation is similar to DeConvNets. The difference
is in how Guided Backprop handles backpropagation of the gradient through the
ReLU activation functions. A DeConvNet only backpropagates positive signals; that
is, it sets all negative signals from the backward pass to zero. The idea is that we are
only interested in what image features an activation layer detects, not the rest, so we
only focus on positive values. This is done by multiplying the backward pass by a
binary mask so that only positive values are preserved. In Guided Backprop, you also
restrict just the positive values of the input to a layer. So, a binary mask is applied
both for the backward pass and the forward pass. This means there are more zero
values in the final output, but it leads to sharper saliency maps and more fine-grained
visualizations.
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Here the name “Guided” indicates that this method uses informa‐
tion from the forward pass in addition to the backward pass to
create a saliency map. The forward pass information helps to guide
the deconvolution. This is similar in spirit to how Guided Integra‐
ted Gradients differs from vanilla Integrated Gradients in that it
uses information about the baseline and the input to guide the path
when computing a line integral.

Guided Grad-CAM
Guided Grad-CAM combines the best of both Grad-CAM and Guided Backprop.
As we saw in the section on Grad-CAM, one of the problems with Grad-CAM was
that the coarse heatmap produced from the activation layers must be upsampled so
that it can be compared against the original input image. This upsampling and the
subsequent smoothing leads to a lower-resolution heatmap. The original authors of
Grad-CAM proposed Guided Grad-CAM as a way to combine the high-resolution
output from Guided Backprop with the class-specific gradient information obtained
from Grad-CAM alone. This doesn’t alleviate all of the concerns with Grad-CAM
since it still relies on the output of the Grad-CAM technique, which has some funda‐
mental concerns (see “Grad-CAM” on page 114 for more in-depth discussion on
this), but it is an improvement. Guided Grad-CAM combines Grad-CAM and Guided
Backprop by taking an element-wise product of both outputs, as shown in Figure 4-33.

Figure 4-33. Guided Grad-CAM combines the output of Grad-CAM and Guided Back‐
propagation by taking the element-wise product. This produces a visualization.

Both Guided Backprop and Guided Grad-CAM have easy-to-use implementations
available in the Captum library. Let’s look at an example to see how these techniques
are implemented in code. Captum is built on PyTorch, so let’s start by loading an
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Inception v3 model that has been pretrained on the ImageNet dataset. This is done in
the following code block (see the Guided Backprop notebook in this book’s GitHub
repository for the full code for these examples):

import torch
model = torch.hub.load('pytorch/vision:v0.10.0',
                       'inception_v3',
                       pretrained=True)
model.eval()

In this code block, model.eval() tells PyTorch that we’re using the model for infer‐
ence (i.e., evaluation), not for training. To create attributions using Guided Backprop,
only a couple lines of code are required. First, we create our GuidedBackProp attribu‐
tion object by passing the Inception model we previously created, then we call the
attribute method passing the input example (as a batch of one) and the target class
ID that we want to create explanations for. Here we set target=top5_catid[0] to
use the top predicted class for the given input image, as shown in the following
code block:

gbp = GuidedBackprop(model)
# Computes Guided Backprop attribution scores for class 89 (cockatoo)
gbp_attribution = gbp.attribute(input_batch, target=top5_catid[0])

This returns an attribution mask that we can then visualize using Captum’s visualiza‐
tion library. The result is shown in Figure 4-34.

Figure 4-34. Guided Grad-CAM combines the output of Grad-CAM and Guided Back‐
prop by taking an element-wise product of the output of the two methods.

You can implement Grad-CAM using the Captum library in a very similar way.
Remember, Grad-CAM works by creating a coarse heatmap from the internal activa‐
tion layers of the CNN model. These internal activations can be taken from any of
the convolution layers of the model. So, when implementing Grad-CAM you specify
which convolution layer to use for creating the heatmap. Similarly, for Guided Grad-
CAM you specify which layer of the model as well. This is shown in the following
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code block. When creating the GuidedGradCam object, we pass the model as well as
the layer model.Mixed_7c; this is the last convolution layer of the Inception v3 model:

from captum.attr import GuidedGradCam

guided_gc = GuidedGradCam(model, model.Mixed_7c)
ggc_attribution = guided_gc.attribute(
input_batch, target=top5_catid[0])

Once we have the attributions, we can visualize the result using Captum’s visualiza‐
tion library as before. See the Guided Backprop notebook in the GitHub repository
for the full code for this example.

Summary
Computer vision models have critical applications in a wide range of contexts, from
healthcare and security to manufacturing and agriculture. Explainability is essential
for debugging a model’s predictions and assuring a model isn’t learning spurious cor‐
relations in the data. In this chapter, we looked into various explainability techniques
that are used when working with image data.

Loosely speaking, explanation and attribution methods for computer vision models
can be fit into a few broad categories: backpropagation methods, perturbation meth‐
ods, methods that leverage the internal state of the model, and methods that combine
different approaches. The explainability techniques we discussed in this chapter are
representative examples of these categories, and each method has their own pros
and cons.

Integrated Gradients and its many variations fall in the category of back-propagation
techniques. XRAI combines Integrated Gradients with segmentation-based masking
to determine regions of the image that are most important in the model’s prediction.
By oversegmenting the image and aggregating smaller regions of importance into
larger regions based on attribution scores, this produces more human-relatable sali‐
ency maps instead of pixel-level attributions obtained via Integrated Gradients alone.
Methods like Grad-CAM and Grad-CAM++ also rely on gradients, but they leverage
the internal state of the model. More specifically, Grad-CAM uses the class-activation
maps of the internal convolutional layers of the model to create a heatmap of influen‐
tial regions for an input image.

LIME is a model-agnostic approach that treats the model as opaque and determines
pixels that are relevant to the model’s prediction by perturbing input pixel values.
These methods use gradients of the model to create saliency maps (also called sen‐
sitivity maps or pixel attribution maps) to represent regions of an image that are
particularly important for the model’s final classification. Lastly, we discussed Guided
Backpropagation and Guided Grad-CAM, which combine different approaches. Gui‐
ded Grad-CAM combines Guided Backprop and Grad-CAM using an element-wise
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product, getting the best of both methods, and addresses some of the problems that
arise when using Grad-CAM.

In the next chapter, we’ll look into explainability techniques that are commonly used
for text-based models and how some of the techniques that we’ve already seen can be
adapted to work in the domain of natural language.
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1 Ashish Vaswani et al., “Attention Is All You Need,” Advances in Neural Information Processing Systems 30
(2017).

2 For more information on GLUE, see https://gluebenchmark.com.

CHAPTER 5

Explainability for Text Data

Language models play a central role in modern-day deep learning use cases and the
field of natural language processing (NLP) has advanced rapidly, especially over the
last few years. NLP is focused on understanding how human language works and
is at the heart of applications such as machine translation, information retrieval,
sentiment analysis, text summarization, and question answering. The models built
for these applications rely on text data to understand how human language works,
and many of the deep learning architectures commonly used today, like LSTMs
(long short-term memory), attention, and transformer networks, were developed
specifically to handle the nuances and difficulties that arise when working with text.

Perhaps the most significant of these advances is the transformer architecture,
introduced in the paper “Attention Is All You Need.”1 Transformers rely on the
attention mechanism and are particularly well-equipped for handling sequential text
data. This is partly because of their computational efficiencies and because they
are better able to maintain context since text is processed as a whole rather than
sequentially. Soon after transformers hit the scene, BERT, which stands for Bidir‐
ectional Encoder Representations from Transformers, was introduced and it beat
all the GLUE2 (General Language Understanding Evaluation) benchmarks for NLU
(natural language understanding) tasks ranging from sentiment classification, textual
entailment, text similarity, and grammatical correctness. Since BERT, other record-
breaking, transformer-based models have emerged, leading to better and better (and
increasingly larger and larger) language models such as OpenAI’s GPT2 and GPT3,
Google’s T5, DeepMind’s Gopher, and more recently PaLM, a 540 billion parameter
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3 See “Pathways Language Model (PaLM): Scaling to 540 Billion Parameters for Breakthrough Performance” on
the Google AI blog.

4 See this recent tweet from Hugging Face cofounder and CEO Clement Delangue.

dense decoder transformer model that is capable of mathematical reasoning, code
writing, and even explaining jokes.3

With these impressive developments, there is an increased desire to better explain
how these models work. Explainable NLP has become a strong focus in the current
research community aimed at better understanding how these large language models
work and what they are learning. Of course, there is an important distinction to be
made between standard, day-to-day text models used by the typical ML practitioner
and these state-of-the-art (SOTA) models like T5, GPT3, or PaLM. Models like T5,
GPT3, and PaLM are the AI equivalent of a Formula One racing car,4 and indeed,
many of these models are outside the realm of the typical practitioner. These models
train for weeks on end and require compute resources that the average practitioner or
business does not have access to.

However, their underlying technology has become commonplace and, with easy-to-
use implementations available in the Hugging Face library, many of these advanced
architectures aren’t so out of reach. In fact, it’s likely model architectures like BERT,
XLNet, and GPT2 will find their way into your day-to-day toolkit, if they haven’t
already. Just as we have seen when training image models, there is immense value
in leveraging a pretrained version of the large language models either directly or for
fine-tuning on a more task-specific use case.

The focus of this chapter is to discuss commonly used explainability techniques and
understand how they are applied when working with text data. The goal here is not to
explain how complex architectures like T5 or transformers work in general; instead,
we’ll focus more on text models more closely aligned with the general ML practitioner.
In this chapter, we’ll introduce some new techniques but also revisit some of the
techniques that we saw in previous chapters, such as LIME and Integrated Gradients.
We’ll show how these familiar methods can be adapted to work for text data due to the
unique constraints of building language models. We’ll also look into some of the tools
that have been developed by the community to help explain text models.

Overview of Building Models with Text
In a way, natural language models are no different than models built on tabular or
image data. As when building any machine learning model, features are extracted
from the data and preprocessed for training. Oftentimes a deep neural network or
some other advanced model architecture is used. The model’s output prediction is
compared against the true label and the weights are updated via a variant of gradient
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descent through backpropagation. When it comes to natural language models, how‐
ever, the raw data is text, so special tricks and techniques are needed to handle the
nuances of a textual dataset. In fact, because the techniques for working with text
are so specialized, NLP is an active research area in its own right and there are a
number of courses and specializations designed to specifically address how to work
with natural language models.

In this section, we’ll discuss at a high level the main ideas and key aspects to have
in mind when building text models. This will also allow us to set up common
terminology and introduce concepts that we’ll need later. As we proceed through the
chapter, we’ll introduce other more advanced treatments, but it’s important to keep
these initial steps in mind because they can affect the explainability of the model
downstream.

Tokenization
The first step to building a text-based model is to preprocess the text data into a for‐
mat that can be used by the model. Machine learning models are numeric machines
so, one way or another, text needs to be converted into a numeric quantity. Perhaps
the most basic or naive way to convert a word into a vector is through one-hot
encoding. One-hot encoding is a preprocessing step in which categorical variables
are converted into a sparse vector consisting of a single one as a placeholder for a
given categorical value, with all other indices set to zero (e.g., [0,0,1,0,0,0]). In the
text setting, the words are the categorical variables. This poses a problem because our
vocabulary could easily be on the order of tens or hundreds of thousands of words.
This means that one-hot encoding maps a word like cockatoo to a vector of shape
100,000 with all zeros and a single one representing the word cockatoo. Figure 5-1
shows an example of one-hot encoding to a sentence of words.

Figure 5-1. Transforming the sentence “The cockatoo is loud” into a sequence of one-hot
encoded vectors. Here, the one-hot encoding is for a vocabulary of just those four words;
in reality, the vocabulary could easily be on the order of tens or hundreds of thousands of
words.

For some simple models and use cases, taking a vocabulary to be the 10,000 most
frequently used words in a corpus and an “out-of-vocabulary” bucket for everything
else works well enough. But more sophisticated models, in particular transformer
models, require a more comprehensive vocabulary. There is a bit of a trade-off.
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The larger the vocabulary, the more expressive the model can be in learning the
relationship between a wide variety of words. However, a larger vocabulary also leads
to more sparse one-hot encoded vectors.

So, what should our vocabulary be? There are more than 500,000 words in the
English language. The goal is to find the most meaningful, and preferably the small‐
est, representation that will make sense for our model. Should we include punctua‐
tion? Should we include rarely used words like crapulous or ostensibly? Should we
include words from Old English like ye Olde Worlde? Or more recently, how do
we deal with emoticons and emojis, like “¯\_(ツ)_/¯” and “ ”? Should we split
up word pairs like Costa Rica into two separate words Costa and Rica, or does
it deserve its own token? How do we treat two words with a common root, like
chirp and chirping? What about misspellings that are bound to arise, like recieve
instead of receive? Or words that are spelled correctly but used in context incorrectly,
like affect versus effect or surreptitious versus serendipitous. What if our model is
multilingual? How do we incorporate the vocabulary of all the languages we want our
model to accommodate? Should our vocabulary now include all languages and their
idiosyncrasies? Surely there is a sweet spot.

This is where tokenization comes in. Given a character sequence (e.g., a sentence)
and a defined document unit (e.g., a movie review), tokenization is the task of
splitting up the character sequence into essential pieces, called tokens, and discarding
irrelevant characters. Tokenization is at the forefront of any NLP pipeline when
preprocessing text for machine learning. It is the translator from human-readable
text into a numeric categorical representation that the machine learning model can
use. If you’ve had experience working with natural language models, it’s likely you
are already familiar with tokenization. If not, or if you’ve forgotten the details,
we’ll quickly discuss the basics here. As we’ll see in this chapter, the artifacts of
tokenization often appear in the final explanations we may receive and even affect
how some techniques are implemented. Let’s begin by discussing what tokens are and
how they’re used in natural language processing.

Tokens are integer representations of a word or word piece and can be used to split
a sentence into words or subwords. A subword is obtained by breaking down a word
into smaller meaningful words. For example, the word cockatoos or let’s is broken
down into the subwords cockatoo and s or let and ’s, respectively. You train a tokenizer
just as you might train a large neural network. Of course, instead of learning parame‐
ter weights, you’re passing over the entire dataset to determine which tokens to use
and how to split words or sentences in your dataset. There are a number of popular
tokenization algorithms, and determining an efficient and effective tokenization is an
active area of current research.
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To illustrate the general approach to tokenization, we’ll discuss one of the most com‐
mon algorithms: byte pair encoding (BPE), which builds a tokenizer vocabulary from
an alphabet of bytes. Other commonly used tokenization algorithms are WordPiece,
Unigram, and SentencePiece.

To train a BPE tokenizer, you start by tokenizing all characters in the entire training
corpus. Then, passing over the dataset, you identify common pairs of tokens and
merge the pairs into a single token. For example, after seeing m, o, v, i, and e enough
times, the tokenizer will merge these five tokens into a single token movie. You
iteratively repeat this process until the number of tokens in the vocabulary reaches
the size you want. As with most things in machine learning, there is a trade-off
when choosing the size of the vocabulary. If the vocabulary size is too small, then
the vocabulary is too coarse, and different words may end up being tokenized as the
same. However, increasing the vocabulary size too much increases the computational
cost unnecessarily. A BPE tokenizer is nice because you don’t have to pre-prescribe
words in your vocabulary, and you don’t need special tokens for unknown words.
Word tokens are learned by passing through the data, and BPE ensures that the most
common words are represented as a single token, while rare words are broken down
into subwords.

Transfer learning is a technique that allows you to take advantage of the learned
embeddings of a model that was trained on a large dataset. It provides an advantage
over training from scratch. Just as transfer learning leverages pretrained weights of
a model, pretrained tokenizers are a useful resource for the average practitioner.
The quality of your model is heavily dependent on the quality of your tokenizer
vocabulary, so it’s to your benefit to take advantage of a tokenizer that was pretrained
on a corpus likely much larger than yours. Luckily, Hugging Face has an entire
library of pretrained tokenizers that can easily be loaded and incorporated into your
ML workflows. For example, the BERT tokenizer is a class inside the Hugging Face
transformer library and can be loaded with just a few lines of code:

from transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")

BERT was trained using the WordPiece tokenization algorithm. With the tokenizer
loaded, we can then easily tokenize a sample text using the tokenize method and
convert the tokens to integer IDs, as shown in the following code block and illustra‐
ted in Figure 5-2. These IDs can then be used to create embeddings for training the
model, which we’ll discuss in the next section:

sample_text = "If you like the original, you'll love this movie."
tokens = tokenizer.tokenize(sample_text)
ids = tokenizer.convert_tokens_to_ids(tokens)
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Figure 5-2. The BERT tokenizer is our translator from human-readable text into a
numerical encoding that our machine learning model can use. Words and word pieces
are first tokenized, then converted to integer IDs before being passed to the model.

Word Embeddings and Pretrained Embeddings
After tokenization, the words of our text dataset can be represented by an integer ID,
and sentences can be represented as sequences of integers. This is only half the battle,
however. The next step is to convert these tokens into a meaningful representation.
Although the tokens are numeric, they don’t have meaningful magnitude; the tokens
are merely numeric placeholders. Converting each token into a vector creates a
meaningful numeric representation of the word that can be processed by the model.

Essentially, the IDs are categorical features. Each ID represents a single token in
our vocabulary. As with any categorical feature, these IDs must be encoded before
being passed to the model. If the features don’t have any relationship with one
another, then one-hot encoding is a common approach. However, these categorical
IDs represent words in our corpus (or, more specifically, tokens in our vocabulary),
and there are close relations between some words. So, a naive one-hot encoding won’t
work. Another issue with one-hot encoding is the high cardinality of our vocabulary.
Our tokenizer vocabulary could consist of tens or hundreds of thousands of tokens.
One-hot encoding the token IDs would lead to very sparse tensors and really inhibit
the learning process.

Instead, you typically use an embedding layer to encode token IDs. A word token
embedding converts the categorical ID representing a given word token into a dense
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vector. This essentially turns the sequence of token IDs into a sequence of dense vec‐
tors. First, the sentence is broken down into word tokens, then tokens are converted
into categorical IDs, and finally the IDs are mapped to an embedding space, as shown
in Figure 5-3. The embeddings are a mathematical vector representation that captures
different aspects of the data so that similar words are mapped to points that are
close to each other. For example, in Figure 5-3, each word is mapped to a vector in
8-dimensional Euclidean space. The sequence of IDs is just a placeholder for each
word token. This sequence of dense vectors in the embedding space is ultimately
what is passed to the model during training.

Figure 5-3. The movie review text is tokenized, then converted into token IDs, then
passed through an embedding layer. The resulting sequence of dense vectors is then
passed to the model for training.

To add an embedding layer in Keras, for example, you specify the embedding dimen‐
sion for the output vector space, as shown in the following code. This makes the
embedding layer a component of the network, and the weights for mapping from
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the categorial token IDs to the word embedding is then learned during the training
process (see the notebook in this book’s GitHub repository for the full code):

model = tf.keras.models.Sequential()
model.add(
    tf.keras.layers.Embedding(input_dim=vocabulary_size,
              output_dim=embedding_dim,
              input_length=MAX_SEQUENCE_LENGTH)
)

As usual with deep learning, it’s a good idea to leverage a pretrained embedding
whenever possible. TensorFlow makes this easy with TensorFlow Hub, where there
are many pretrained text embeddings that can be used. We can load Google’s neu‐
ral network language model (NNLM) architecture that has been pretrained on the
English Google News 7B corpus with just a couple lines of code:

import tensorflow_hub as hub
embedding = "https://tfhub.dev/google/nnlm-en-dim50/2"
hub_layer = hub.KerasLayer(embedding, input_shape=[], 
                           dtype=tf.string, trainable=True)

Given a string of text, this hub_layer outputs a 50-dimensional dense vector that
can be used for training a text classification model. In fact, we use this embedding to
train a sentiment analysis classifier on the IMDB movie review dataset. See this book’s
GitHub repository for the full code. We’ll use the trained model to illustrate some of
the explainability methods we discuss in this chapter.

Now that we’ve reviewed some of the basics of working with text data, let’s now turn
our attention to explainability methods. Since explainability methods rely on model
features and feature importances, it’s helpful to keep in mind these tokenization and
embedding preprocessing steps when interpreting the results of an explainability
technique. Also, we’ll see how some techniques we’ve already discussed, like LIME
and Integrated Gradients, are applied in the context of text data.

LIME
What you need to know about LIME:

• LIME stands for local interpretable model-agnostic explanations.•
• When working with given text, LIME perturbs a given example text by randomly•

removing words.
• The cosine distance is used to compute proximity measure between the input•

instance and the sampled perturbations.
• LIME performs better with around 1,000 perturbations, especially for longer•

inputs. Beyond that, there isn’t much improvement.
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Pros Cons

• LIME is model agnostic, so it can be•
applied to any machine learning model
in any framework.

• This is an easy-to-implement•
Python package with easy-to-interpret
visualizations.

• LIME is available in the Language•
Interpretability Tool (LIT).

• The proximity measure uses a kernel smoothing that can be very sensitive to•
the kernel width. Slight modifications to the kernel width can lead to quite
different explanations.

• LIME provides an explanation based on a linear approximation of the local•
behavior of a model. It does not work as well for highly nonlinear models.

• LIME doesn’t take into account the sequential nature of the text data, and•
repeated words in a sentence are treated as a single feature.

• The publicly available Python package implementation lime is only for text•
classification.

We already saw how to use LIME for image data in Chapter 4. One useful aspect of
this technique is that it can also be applied to text (or tabular) data. However, it’s
important to understand how the LIME algorithm changes when working with text
as opposed to images. LIME is a post hoc, local perturbation technique, so it provides
interpretability for a trained model’s prediction on a specific example by measuring
how the model’s predictions change with small perturbations to the feature inputs. By
measuring how the predictions change under these local perturbations, LIME reflects
the contribution of each feature of a data sample. More (or less) important feature
values will have more (or less) influence on changing the model’s predictions.

For images or tabular data, this process is fairly straightforward. Afterall, an image
is represented by RGB pixel values, so we can perturb the feature of an image by
turning pixel values on or off. In fact, the input image is segmented into interpretable
regions or superpixels, and these components are changed to be gray. Similarly in
tabular data, for continuous feature values, we can sample values nearby to any given
feature value. But the features for a text model are words. How does one perturb or
add noise to a word? In fact, this could be achieved in a few ways.

How LIME Works with Text
As we discussed in “Overview of Building Models with Text” on page 138 the
word pieces of a sentence are represented by a token, which is then mapped to
some embedding space. This embedding space essentially represents each word as a
k-dimensional vector that can then be perturbed just as a continuous feature value as
before by sampling other vectors nearby in the embedding space.

However, this formulation is problematic. LIME uses an exponential smoothing
kernel to define a neighborhood of a data instance. The smoothing kernel defines the
size of a neighborhood by measuring the proximity of points in relation to the given
data instance. The smaller the kernel width, the closer points need to be in order to
be considered within the neighborhood, whereas a larger kernel width will include
instances farther away in the neighborhood.
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However, when working with text, just because a vector is “close” to another in the
vector space, this doesn’t mean that the perturbed vector also actually represents
another word “close” to the input. In fact, most likely it does not! Also, it’s known
that LIME is very sensitive to the kernel width. It is a subtle but very important
hyperparameter when implementing LIME, since modifying the kernel width to be
larger or smaller can result in completely different explanations.

Instead, we must go a bit further “upstream” and modify the words directly in a way
more akin to the kind of example perturbations that are made when implementing
LIME on images. That is, individual words are turned “on” or “off ” to create a new,
nearby example for inference.

Let’s take as an illustration this snippet from an example in the IMDB dataset of
50K movie reviews: “If you like the original, you’ll like this movie.” This is the
beginning of a positive review from the dataset. When passing this example text
to the LimeTextExplainer, it is modified by replacing words with empty spaces,
creating a distribution of nearby examples to pass to the model for prediction (see
Figure 5-4).

Figure 5-4. Given an input text for explanation, LIME creates new text to test the model
predictions by randomly replacing words with spaces.

The next thing to consider when applying the LIME algorithm is how to measure
the proximity of the perturbed inputs with the original example instance in question.
This proximity is used to weight the generated samples to measure the influence of
the features on the model’s predictions. The public implementation of LIME uses as
default an exponential smoothing kernel that takes the distance of two data instances
and returns a proximity measure defined by:

proximityκ xi,xj = e−d xi,xj
2

/κ2
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5 See https://github.com/marcotcr/lime for more information on LIME.

where κ is the kernel width and d represents a distance metric; e.g., d xi,xj  could be
the Euclidean distance between the vectors xi and xj.

Choosing the Kernel Width in LIME

One of the most sensitive hyperparameters in applying LIME is the
choice of the proximity measure. This is true when applying LIME
with text or with images or tabular data as well. This proximity is
used to weight the generated samples, so the more nonlinear your
model function is, the smaller you want the kernel width to be.
The default for text classification takes the distance to be the cosine
distance and sets the kernel width at 25. However, the Python
package for LIME5 allows for users to modify the distance function
d and the kernel width κ. You’ll probably want to experiment with
different values, though, and compare LIME explanations across
different hyperparameters.

In the field of text mining there are various ways to measure the distance between
two sentences; for example, the Euclidean distance, the cosine distance, Jaccard
similarity, or a measure related to the proportion of words missing from the original.
The default distance in LIME is the cosine distance that computes the cosine of the
angle between the two sentences expressed as vectors. The cosine distance of two
sentences will range from 0 to 1; the larger the cosine similarity, the more words
in common the two sentences have and the more similar they are. It is possible
to change the distance metric when implementing LIME, and just as kernel width
impacts the LIME explanations, so can the distance metric.

LIME then trains an interpretable model such as a logistic regression on these exam‐
ples weighted by the proximity measure of the sampled instances. The weights of
this linear model indicate the feature importance for each word. One nice thing
about LIME is that it can be used as an interpretability technique for any model. The
implementation treats the model as an opaque box.

Let’s see how this works in practice for a text classification model trained on the
IMDB dataset. Each example in this dataset is a movie review, not preprocessed in
any way, and the corresponding label. The label is an integer value where 0 is a
negative review, and 1 is a positive review. We’ll train a TensorFlow model and use the
LimeTextExplainer to explain a prediction by calling the explain_instance method
as shown in the following code (see the notebook in this book’s GitHub repository for
the full code):
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from lime.lime_text import LimeTextExplainer
explainer = LimeTextExplainer(class_names=['negative', 'positive'])
sample_text = "If you like the original, you will love this movie."
exp = explainer.explain_instance(text_instance=sample_text,
                                 classifier_fn=predict_prob,
                                 num_features=10)

The argument num_features indicates how many features (i.e., words) we’ll use for
the explanation and the classifier_fn is LIME’s entry point to our model function.
The classifier function must take a list of strings and output a two-dimensional
array with prediction probabilities for each class. Since our TensorFlow model was
built as a binary classification, we’ll wrap our model in a function so that it has the
appropriate signature:

def predict_prob(texts):
    preds = imdb_model.predict(texts)
    return np.concatenate((preds, 1-preds), axis=1)

Since 0 indicates a negative review and 1 indicates a positive review, for a given
prediction pred for an example instance we return a tuple (preds, 1-preds). The
following code snippet calls predict_prob on the sample text “If you like the
original, you will love this movie.”, followed by the model’s prediction:

predict_prob(["If you like the original, you will love this movie."])
> array([[0.04230487, 0.9576951 ]], dtype=float32)

Our model is 95% confident that this sample text is a positive review. We can then
examine the output of the explainer as a list by calling exp.as_list(label=1) to see
which words most contributed to the model’s prediction with the target class 1:

[('you', 0.184102135),
 ('love', 0.177897292),
 ('will', 0.135323892),
 ('movie', -0.043178052),
 ('original', 0.0382655165),
 ('this', -0.0227692068),
 ('the', 0.01647684757),
 ('If', 0.0088829997),
 ('like', 0.0060883934)]

Here the numbers represent the attribution score for each of the features, in this
case, words. The absolute value of each score informally represents their relative
importance to the model prediction or performance. The positive or negative sign
indicates their positive or negative influence on the target class.
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For example, the word love has an attribution score of 0.178 and the model predicts
the target class of 1, that is, a positive movie review. This means the word love has a
relatively large positive influence on the model predicting this statement as a positive
review. On the other hand, the word movie has an attribution score of –0.04, which
indicates this word has a negative, though relatively small, influence on the model
predicting this statement as a positive review.

When calling the method as_list(...), we include the argument label=1 to tell
the explainer that we want attribution scores that contributed to the positive label.
This is because our model predicted the positive class for this input. If instead we
wanted to list attribution scores for the negative label class, we would have used
exp.as_list(label=0).

In the way LIME is implemented for text data, each word in a sen‐
tence is treated as an individual feature. LIME itself does not take
into account the sequential nature of the words in a sentence. This
means that repeated words have a single feature importance. For
example, in the sentence “If you like the original, you will
love this movie.”, the word you appears twice in the sentence.
However, their importance is measured in aggregate just once. Be
aware as this can cause misleading results.

Here we see that you has the strongest positive influence on the model, followed by
love. The attribution for you is perhaps a bit misleading, but the positive attribution
for love makes sense. Overall, the top three features with positive influence are you,
will, love, which, when viewed together, makes sense.

There are also visualizations that can be used to represent the feature attributions,
and we can display these in the notebook as well. For example, the method
as_pyplot_figure(label=1) visualizes the attributions for each feature of the local
example as green and red bars on a bar plot. Green indicates a positive influence for
the model prediction, and red indicates negative influence on the model prediction.
The result for this example is shown in Figure 5-5.
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Figure 5-5. Local explanations can be visualized as a pyplot figure with green bars
indicating positive influence for the model prediction (in this case the positive class) and
red bars indicating negative influence for the model prediction.

We can also visualize these results within the notebook using exp.show_in_note
book() to see the influence of each feature value, as in Figure 5-6, both as a bar chart
and as a heatmap overlaid on the original text.

Figure 5-6. For this text example, the model predicts a positive sentiment. The LIME vis‐
ualizations show that the words in the text that most contributed to this prediction are
you, will, and love. (Print readers can see the color image at https://oreil.ly/xai-fig-5-6.)
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6 Bastings et al., “Will You Find These Shortcuts? A Protocol for Evaluating the Faithfulness of Input Salience
Methods for Text Classification,” arXiv, 2021, https://arxiv.org/abs/2111.07367.

7 Pepa Atanasova et al., “A Diagnostic Study of Explainability Techniques for Text Classification,” arXiv, 2020,
https://arxiv.org/pdf/2009.13295.pdf.

Gradient x Input
Here’s what you need to know about Gradient x Input:

• It’s one of the simplest attribution methods, relying on gradients of the machine•
learning model. Gradient x Input can be referred to as “Grad cross Input,” “Grad
times input,” or “Grad dot Input.”

• Grad x Input is a saliency method and produces saliency scores proportional to•
the dot product of the gradient and the input.

• Saliency scores for word tokens can be positive or negative, indicating the influ‐•
ence that token had on the model prediction.

• Grad x Input was initially proposed as a technique to improve the sharpness of•
attribution maps generated by sensitivity analysis.

• Some studies suggest Grad x Input works better for BERT than it does for LSTM,•
based on its ability to find shortcuts in text classification tasks.6

Pros Cons

• Easy and fast to implement for machine learning•
libraries like TensorFlow, PyTorch, and JAX; it can be
applied to any differentiable model.

• Gradient x Input has been shown to be the best•
performing explainability technique for transformers.

• It is available in the Language Interpretability Tool.•

• The gradients of a deep neural network can be, and typically•
are, noisy and sensitive to functions inputs.

• Gradient x Input should be used in conjunction with•
other gradient-based techniques and especially sensitivity
methods, like Grad L2-norm (also discussed in this section).

• It requires differentiability of the ML model.•

Gradients x Input (often referred to simply as Grad x Input) is a type of gradient-
based attribution method. It’s a favorite among practitioners because it’s fast, easy to
implement, and, particularly for transformers, known to perform well across various
text classification datasets.7

More specifically, Grad x Input is a saliency method of explainability (later in this
section, we discuss the difference between saliency and sensitivity methods). When
working with text models, the salience scores for a certain word are proportional
to the dot product of the word embeddings and the gradient of the model function
with respect to that input. This gives a directional score for each input feature (i.e.,
word token). A positive score can be interpreted as that token having a positive
influence on the prediction, while a negative score indicates that the prediction would
be stronger if that token was not present.
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Intuition from Linear Models
Suppose we have a simple linear model to estimate a baby’s weight y in pounds based
on two input variables: the mother’s age x1 and the duration of the pregnancy in days
x2. Using a linear regression model, we would learn a function:

y = w0 +w1x1 +w2x2 + ϵ

where the wi’s are the model weights and bias and ϵ is the residual error. If we learn
through the data model parameters w1 = 0.1 and w2 = 0.02, then we have a clear
explanation of the model’s predictions using these model weights (to keep things
simple, we’ll take a zero bias w0 = 0). The attribution for each input feature is simply
the partial derivative of the target variable y with respect to the input feature xi:

feature attribution for mother’s age = ∂y
∂x1

= w1 = 0.1

feature attribution for gestation days = ∂y
∂x2

= w2 = 0.02

Since the feature attribution for the mother’s age is substantially larger than that
of gestation days, you might think it’s obvious that the mother’s age plays a more
important role when predicting baby weight using our model.

But let’s take an explicit example. Suppose we had a 30-year-old mother who had
carried the baby for 40 weeks. In this case, our model would predict a baby weight of
8.6 pounds. Due to the linearity of the model, we can see that the final prediction for
the baby weight is explained as the sum of the effect from the two input variables: 3
pounds from the mother’s age and 5.6 pounds from the gestation period. That is to
say, for this local explanation, we get the following feature attributions:

feature attribution for mother’s age = x1 · ∂y
∂x1

= 30 0.1 = 3

feature attribution for gestation days = x2 · ∂y
∂x2

= 280 0.02 = 5.6

The feature attributions have flipped. Now the more important feature is the gesta‐
tion period for the pregnancy. We have two possible explanations for the model’s
prediction and both are based on the gradient of the model function. One involves
the gradient alone, and the other involves multiplication of the gradient at the input
value.
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Both methods described in the example are valid. They illustrate the differences
between sensitivity and saliency methods. The first approach involving just the gradi‐
ent is a sensitivity method. The second method, involving the gradient and the input
value, is a saliency method and illustrates exactly the intuition behind the Grad x
Input explainability technique we’ll discuss in this section.

From Linear to Nonlinear and Text Models
Using the intuition from linear models, we can better appreciate how Grad x Input is
defined. The attribution for a feature input is computed by taking the signed gradient
of the model prediction function at a given input and multiplying component-wise
with the (embedded) input itself.

To make this more precise with an example, suppose we have a text classification
model to predict the sentiment of a given review from the IMDB dataset of movie
reviews. Let’s take the review “If you like the original, you'll love this
movie.” and suppose our model predicts (correctly) a positive sentiment for this
input instance. After tokenizing and embedding the words in the review, we have a
sequence of vector embeddings we’ll represent by x1:n where n = 10 since there are
10 words in the review. If we let f  represent the model function, the attribution for
the i-th word in the review is given by:

∇xi f x1:n · xi

The dot product of these two vectors will give a scalar value. This scalar can be
positive or negative, depending on the influence the input word embedding xi has on
the model prediction function f .

Grad L2-norm
Grad L2-norm is closely related to Grad x Input. The idea is that we want a single
scalar value to provide a relevance score for each feature (word) input. Taking the dot
product between the gradient and the input produces such a scalar value. However,
there are, of course, other ways to obtain a scalar value. Another commonly used
approach is to take the L2-norm. Just as with Grad x Input, we compute the gradient
of the neural network with respect to the inputs (note the subscript x in the gradient).

Just as we use auto differentiation for backpropagation during training to update the
parameter weights, we can also compute the gradient with respect to the inputs. Thus
the Gradient L2-norm indicates how much a change in a word’s embedding affects the
output of the model. The smaller the gradient, the less sensitive the model function is to
small changes in the input. The larger the gradient, the steeper the model function and
the more sensitive it is. Figure 5-7 illustrates this idea in one dimension.
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Figure 5-7. In this one-dimensional example, we see that the larger the gradient, the
steeper the function. The smaller the gradient, the flatter the function, indicating the
function is less sensitive at that input value.

Using the same notion as in the previous section, we can express the Gradient
L2-norm as:

∇xi f x1:n · xi

that is, the L2-norm of the gradient of the model function with respect to the inputs.
Recall, the xi here are the word embeddings. So, the Gradient L2-norm indicates how
much a change in a word’s embedding affects the output of the model. Note also,
in comparison with the Grad x Input, the L2-norm is essentially the dot product of
the gradient with itself and so lends itself to a similar interpretation. One caveat of
Grad L2-norm is that because it is a norm measure, the saliency value is unsigned
and always positive. However, it is still a common technique and often used when
working with text.

Comparing sensitivity and saliency methods
There are two broad categories of explainable attribution methods: sensitivity meth‐
ods and salience methods. A sensitivity method describes how the output of the
network changes when one or more input features are perturbed. For differentiable
models, this can be represented by the derivative or gradient of the prediction func‐
tion with respect to the input features. This gives a first order Taylor expansion of a
nonlinear function so, just as Taylor series are accurate within a small neighborhood

154 | Chapter 5: Explainability for Text Data



of an input, a sensitivity measure for a nonlinear function is only accurate within a
very small perturbation. Since Grad L2-norm depends only on the gradient of the
model function, it is a sensitivity method.

A saliency method, on the other hand, describes the marginal effect of a feature on
the model prediction. Grad x Input is a saliency method because the attribution is
computed by taking the (signed) partial derivatives of the output with respect to the
input and multiplying them feature-wise by the input itself. The saliency score that
is produced describes the contributions of the different input variables to the final
model output. Thus, saliency methods take into account the input as well as the
model gradient when computing the feature attributions.

As the example involving baby weights illustrates, the two methods are equally valid
but answer different questions and show that the two attribution methods cannot be
directly compared.

Layer Integrated Gradients
Here’s what you need to know about Layer Integrated Gradients:

• Layer Integrated Gradients (LIG) is a variation of Integrated Gradients, but it•
focuses on a single layer of the network instead of input features; LIG provides
attributions with respect to layers inputs or outputs.

• Similar to Integrated Gradients, LIG is a gradient-based attribution method.•
• The implementation is available using the Captum library.•

See also the pros and cons of Integrated Gradients in Chapter 4.

Pros Cons

• LIG is useful for text to isolate the embedding layer for•
computing Integrated Gradients.

• It can be applied to any differentiable model for any data type,•
images, text, tabular, etc.

• There is an easy and intuitive implementation that even novice•
practitioners can apply.

• LIG requires differentiability of the model and access•
to the gradients, so it does not apply well to tree-
based models.

• The results can be sensitive to hyperparameters or•
choice of baseline.

As stated above, LIG is a variation on the classic IG method. The need for variation
is in how text models are built. As we discussed in the beginning of this chapter,
when working with text data, the text must be preprocessed to be fed to a machine
learning model. The first step of preprocessing is tokenization. These tokens are then
converted to categorical IDs and passed to an embedding layer. These embeddings
are numeric vector representations of each word token.

Layer Integrated Gradients | 155



The issue that arises is the step from tokenization to categorical IDs. Integrated
Gradients is a gradient-based attribution method, but this step is not differentiable.
Of course, there is a natural solution. In order to explain text features via Integrated
Gradients, we need to compute the gradients with respect to the embeddings, not the
token indices. One solution is to use Layer Integrated Gradients.

A Variation on Integrated Gradients
In Chapter 4, we discussed how the method of Integrated Gradients works for
image-based models. At a high level, the method of Integrated Gradients determines
feature attributions for a model’s prediction by measuring how the model gradient
with respect to the feature inputs changes along an integral path in the input feature
space. More precisely, this integral path is a straight line from a given baseline to
the input example, and the gradients are cumulated (integrated) over the straight-line
path. This produces feature attributions for the input features, which in the case of
images, can be represented as a saliency map indicating which pixel most contributed
to the model’s prediction.

The main difference in LIG is that where IG assigns an importance score to the
model’s input features, Layer Integrated Gradients assigns an importance score to a
given layer’s inputs (or outputs); i.e., it allows us to apply Integrated Gradients on
the interior of the model. Layer Integrated Gradients is a layer attribution where
Integrated Gradients is a feature attribution method, as depicted in Figure 5-8.

Figure 5-8. Layer Integrated Gradients is a variation of classic Integrated Gradients.
They differ in where they measure attributions (the light shaded circles) of the model.
For Integrated Gradients, attribution of the model output (the dark shaded circles)
is assigned to the features, whereas for Layer Integrated Gradients, the attribution is
assigned to internal layers of the model.

The other consideration when implementing Integrated Gradients is the choice of
baseline. We saw in Chapter 4 that when using Integrated Gradients for images,
the baseline plays an important role. The same is true for text. When working with
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Machine Learning, PMLR, 2017.

text, a common baseline is just a sequence of the zero embedding vectors or, at the
word level, a sequence of zero tokens. The zero embedding vector is a vector of all
zeros with the same dimension of the embedding space. This is the baseline recom‐
mended in the original paper on Integrated Gradients.8 During training, unimportant
words tend to have small norms, and since the baseline is meant to represent an
information-less feature, the all-zero input vector is a natural choice, even though it
doesn’t actually represent a valid input for the model in the same way an all-black
image would for an image model.

The zero token represents any token or value you would use when padding a
sequence. This makes the zero token a good candidate to use as a baseline. For
example, when working with the BERT tokenizer, the pad token is simply a zero PAD.
Therefore, the baseline sequence for the text “If you like the original, you'll
love this movie.” would be [CLS, PAD, PAD, PAD, PAD, PAD, PAD, PAD, PAD,
PAD, PAD, SEP] or, when converted to integer tokens, [101, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 102].

There is a nice implementation of Layer Integrated Gradients (among many other
layer attribution methods) available in the PyTorch Captum library. One very useful
library built on top of Captum is the Transformer Interpret tool designed to work
specifically with the Hugging Face transformers package.

For example, suppose we want to use a BERT sentiment classifier to classify movie
reviews from the IMDB database. BERT is a transformer-based natural language
model released in 2018 by Google AI Language. The Transformers Interpret tool has
an easy-to-use interface to provide a saliency map built on top of Captum’s Layer
Integrated Gradients. As when building any text model, we start with tokenization.
To do this, we’ll use a pretrained tokenizer that was used for training the BERT
model. We can also use a pretrained BERT model. The following code block shows
how to load the pretrained BERT tokenizer and pretrained BERT model for sequence
classification. The predict function shows how to call this model to make classifica‐
tion predictions given an input text sequence:

from transformers import BertTokenizer

# load tokenizer
tokenizer = BertTokenizer.from_pretrained('./model')
# load model
model = BertForSequenceClassification.from_pretrained('./model')
def predict(inputs):
   return model(inputs)[0]
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To generate explanations of this model using Layer Integrated Gradients, we’ll use
the LayerIntegratedGradients class in Captum. This is done by specifying the layer
where you want to compute the attributions, as shown in the following code block.
Technically, we can use any layer in our model. Here, we’ll use the BERT embeddings
layer given by model.bert.embeddings:

from captum.attr import LayerIntegratedGradients
lig = LayerIntegratedGradients(custom_forward, model.bert.embeddings)

When instantiating the LayerIntegratedGradients class, we provide two arguments:
a forward pass of the model and the layer for which we want to compute attributions.
Here we set the forward pass of our model to be a custom function defined by:

def custom_forward(inputs):
    preds = model(inputs)[0]
    return torch.softmax(preds, dim = 1)[0][1].unsqueeze(-1)

This way, custom_forward takes as an argument the input IDs of a tokenized text
(e.g., a movie review) and returns the model prediction as a probability of positive
sentiment. We can then compute the attributions for the tokenized input text (see
the Layer Integrated Gradients notebook in this book’s GitHub repository for the full
code):

lig_attributions, delta = lig.attribute(inputs=input_ids,
                                        baselines=ref_input_ids,
                                        n_steps=700,
                                        internal_batch_size=3,
                                        return_convergence_delta=True)

Given the input text “If you like the original, you'll love this movie.,” our
model classifies that statement as having positive sentiment with probability 0.998.
We can also visualize the saliency map for the word importance for the model’s
prediction using the Transformers Interpret library. As shown in Figure 5-9, we
see that the words that most contribute to the positive sentiment prediction were love,
this, and movie.

Figure 5-9. The visualization provided by Transformers Interpret and Captum indi‐
cates the word importance for the model’s prediction. We see that phrases like love this
movie have positive influence, but also (confusingly) if and the. (Print readers can see
the color image at https://oreil.ly/xai-fig-5-9.)

However, the visualization also indicates a positive influence from the words if
and the, which is somewhat less convincing. Also, the model appears to give a
negative importance to you and like. Although this could indicate that there are more
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improvements to be made on our sentiment classification model, it’s also a good
reminder that explainability results should be taken in context. In Chapter 7, we’ll
discuss some of the considerations you should keep in mind as a human interacting
with explainability.

Conductance
Conductance is another notion of attribution that is often considered in conjunction
with feature attribution and layer attributions. The idea of conductance was intro‐
duced to extend the idea of attribution to better understand the importance of hidden
units. Conductance is meant to be a natural refinement of Integrated Gradients.
Instead of measuring the importance of a feature, conductance measures the impor‐
tance of a single hidden unit to a model’s prediction (see Figure 5-10).

Figure 5-10. The conductance at a specific neuron (the light shaded circle) in a hidden
layer is computed in a similar way to how Integrated Gradients compute attribution for
a feature input.

Layer-Wise Relevance Propagation (LRP)
Here’s what you need to know about Layer-Wise Relevance Propagation:

• LRP is a saliency method of explainability that measures the attributions of a•
given layer by backpropagating the contributions of all neurons in a layer to the
neurons of the previous layer.

• At each layer, a special backward pass backpropagates the top-level relevance•
given by the model prediction to the inputs to that layer. The relevance is
redistributed all the way back to the input layer.

• For models with only ReLU activations and max pooling nonlinearities, LRP is•
equivalent to the Gradient x Input method.
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Pros Cons

• The implementation is very modular. That is, each type of•
layer has its own propagation rules (there are different rules
for redistribution for feed-forward layers and LSTMs), and
different propagation rules can be applied for different layers
in the network.

• This can be applied to various data types (images, text, audio,•
video, etc.) and neural architectures (DNNs, CNNs, and LSTMs).

• LRP has been shown to work better than gradient-based•
methods on text classification tasks.

• LRP requires implementing a custom backward pass,•
and the relevance is redistributed differently for feed-
forward layers versus LSTMs.

• Attribution values tend to concentrate on only a•
few features, which can inhibit performance for less
common words.

• Depending on your use case, you may want to•
combine different propagation rules for the best
results. This can require some extra experimentation
and hyperparameter tuning.

LRP is one of the most commonly used explainability techniques because it can be
applied to various data types (not just text) and works well across various model
architectures, such as DNNs, CNNs, and LSTMs. The purpose of LRP is to provide an
explanation of any neural network’s output in the domain of its input.

LRP is similar in spirit to DeepLIFT (Deep Learning Important
FeaTures). DeepLIFT was introduced in 2016; it is a method for
decomposing the output prediction of a neural network by back‐
propagating the contributions of all neurons to every feature of the
input. The activation of each neuron is compared to its “reference
activation,” and the attribution scores for each neuron are deter‐
mined by the difference between the activation and the reference.
This allows for positive and negative contributions for any neuron.

How LRP Works
As the name suggests, LRP is considered a propagation explainability technique. This
means that the feature attributions are achieved by recursively propagating some
measure of the model’s relevance for a prediction back through the network and to
the instance’s input features. At each level of the network, the propagation procedure
must satisfy a conversation property so that whatever has been received by a neuron
from a higher layer has to be fully redistributed to the neurons of the previous layer.
This way the total relevance from upper-level layers to lower-level layers remains
constant (see Figure 5-11).
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Figure 5-11. The top-level relevance is redistributed to the lower layers of the model
so that whatever has been received by a neuron from a higher layer has to be fully
redistributed to the neurons of the previous layer.

In Figure 5-11, let Rj and Rk denote the relevance of the neurons j and k located
at layer l and l + 1, respectively. The relevance score for neuron j is determined by
propagating the relevance from every neuron in level k onto the neurons in level j
according to the rule:

Rj
l = ∑

k

zjk
∑jzjk

Rk
l + 1

The quantity zjk is a general contribution measure that measures how much neuron
j contributes to neuron k. When implementing LRP, you can determine how to
compute this quantity. Defining zjk can take some experimentation, though there are
commonly used implementations and formulas that you can use as a starting point, as
we’ll soon see. The important thing to note is that when summing both sides of the
equation with respect to j, a conservation property is satisfied; namely, the sum of the
relevance for all neurons in a layer is constant.

Let’s look at a familiar example from text classification. Suppose we had the input
text from the IMDB dataset of movie reviews, “If you like the original, you'll
love this movie.” Each word is mapped to an embedding layer to create a sequence
of n vectors x1:n. This is then passed to the model to determine the top-level
relevance f x1:n . The aim of LRP is to propagate this relevance score, the model’s
output, back through the individual neurons and layers of the model with the rule
that at each layer the total relevance is maintained, as in Figure 5-12.
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Figure 5-12. Each layer preserves the total relevance of the model’s prediction on the
input instance. This top-level relevance is propagated back through the network and
ultimately to the model inputs to assign feature attributions to each feature (i.e., word)
input.

The way that relevance of a neuron is distributed to its contributing neurons from the
previous layer (i.e., defining the contribution measure zjk) can be defined according
to different schemes. It’s even possible to have different propagation rules for different
layers. For deep neural networks with ReLU activation functions, the recommended
contribution measure is defined by zjk = xjwjk, where xj are the input values and
wjk are the parameter weights. In this setting, the basic rule for propagation then
becomes:

Rj
l = ∑

k

xjwjk
∑jxjwjk

Rk
l + 1

This is often referred to as the LRP-0 rule and is arguably the simplest rule you can
use for Layer-Wise Relevance Propagation (the reason for the zero in the name will
become evident in the next paragraph).

One way to improve upon LRP-0 is by incorporating a constant ϵ in the denominator.
This is done for two main reasons. First, adding a small constant to the denominator
helps in capturing the relevance when the contributions of an input neuron are
small. With larger values of ϵ, only the most important explanation factors still make
enough of a difference to be recognized. Second, from a computational perspective,
the ϵ helps make the fraction more stable. The LRP-ϵ rule is given by:

Rj
l = ∑

k

xjwjk
ϵ + ∑jxjwjk

Rk
l + 1
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Thus, when ϵ = 0, we have the original LRP-0 rule from before. The LRP-ϵ propaga‐
tion rule can help in creating explanations that are less noisy and sparser in terms of
input features.

One of the advantages of LRP is that the propagation rules can be implemented
efficiently and modularly. Different LRP rules can be applied at different levels of the
network. For example, at the upper layers it’s better to use the basic LRP rule (with
ϵ = 0) to have a propagation rule close to the function and its gradient. While in the
middle layers, it helps more to use LRP-ϵ for some positive ϵ value to help filter out
spurious variations within the network and highlight only the most salient features.
There are other propagation rules that are mentioned in the original paper,9 if you are
interested in exploring others, but LRP-0 and LRP-ϵ will get you pretty far.

The relationship between LRP and Grad x Input
It’s interesting to note that when all the activation functions of a deep neural network
are ReLU functions, the Layer-Wise Relevance Propagation method is equivalent to
Grad x Input.10

ReLU stands for Rectified Linear Unit and is a piecewise linear function that outputs
the input when the input is positive and returns zero otherwise (see the graph in
Figure 5-13).

Figure 5-13. When ReLU is inactive, Grad x Input is zero. When ReLU is active, Grad x
Input is equal to the output.
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As shown in the graph, for negative values, the ReLU activation is equal to zero and
the gradient is zero. So, when ReLU is inactive, the Grad x Input is zero and LRP
assigns zero signal to that unit. On the other hand, when ReLU is positive and the
unit is active, the gradient is equal to one and Grad x Input is equal to the output, and
LRP assigns full signal to the unit.

Deriving Explanations from Attention
Since the transformer architecture was introduced in 2017, attention mechanisms
have played an increasingly important role in natural language models and can
achieve state-of-the-art results for almost all NLP tasks. Attention mechanisms were
introduced to address the shortcoming that arose when training more traditional
encoder-decoder sequence models, particularly when decoding long sequences.

As the name suggests, a traditional encoder-decoder model consists of two compo‐
nents, the encoder and the decoder. The encoder steps through each time step of
the input sequence and encodes the input into a fixed-length context vector. The
decoder then takes that context vector and decodes it into a meaningful output
sequence, one time step at a time. Encoder-decoders are a useful architecture for
sequence-to-sequence models, but they struggle when decoding long sequences.
Attention addresses this issue by keeping track of the hidden state for each time
step of the input sequence, rather than encoding the entire input sequence into a
single context vector. With attention, the context vector plus all of the input sequence
hidden states are passed to the decoder at each time step during the decode step.
This way, attention allows the decoder model to focus on different parts of the input
sequence at each stage of decoding. This helps to preserve the input sequence context,
particularly when decoding long input sequences.

Attention now dominates the field of text processing and has even become popular in
computer vision tasks as well. Given their wide range of applications and impressive
results, there have also been attempts to crack open the attention mechanism of
transformers to derive some form of explanation into the model’s predictions.

The heart of the transformer is the self-attention block. Self-attention is similar to
the attention mechanism we just described for encoder-decoder models, but it also
applies attention to elements of the input sequence, allowing the encoder to look at
other words in the input sequence as it encodes a word at a certain time step. So,
attention is used by the decoder when decoding the context received by the encoder,
while self-attention is used by the encoder to create the context the encoder produces.

Self-attention layers assign a pair-wise attention value to every two words (or tokens)
in an input sequence. Since attention is ultimately a matrix of learned weights, it is
possible to visualize a transformer model by examining the learned relevancy score
for input features. A larger weight value indicates a stronger attribution for that
feature. As an example, consider the task of machine translation. Given our sample
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input sentence “If you like the original, you’ll love this movie.,” our model returns
the Spanish translation “Si te gusta la original, encantara esta pelicula.” The alignment
matrix between the input and target sentence, shown in Figure 5-14, illustrates which
part of the input sequence is more or less important at each decoding step. Each row
of the matrix indicates the learned weights associated with the annotations for that
hidden state. The (i, j)-th element of the matrix indicates the weight of the annotation
of the j-th input word for the i-th output word. Note that the alignment of words
between English and Spanish is almost perfectly aligned word for word with strong
weights along the diagonal of each matrix.

Figure 5-14. For machine translation, we can visualize how the model attends to differ‐
ent parts of the input and target sentence.

While we can visualize an alignment matrix for the single attention layer of an
encoder-decoder model (as in Figure 5-14), this is much more difficult for a typical
transformer. Transformers build on the idea of self-attention in an encoder-decoder,
and a typical transformer will have multiple self-attention layers (and multiple atten‐
tion heads) that are combined one after the other with nonlinearities in between,
much like the fully connected layers of a deep neural network.
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Be careful in trying to derive too much explanatory power from
visualizing alignment matrices from attention. A self-attention
head in a transformer model involves computation of queries,
keys, and values, and when attention is applied over hidden states,
there is inherently information about other time steps automati‐
cally mixed in. Any attempt to reduce self-attention to only values
learned in the attention matrix doesn’t capture the entire picture.
In fact, some research shows that the attention weights that are
learned through training can be uncorrelated with the results of
gradient-based methods for determining feature importances.11

So, although there has been some work in visualizing attention
weights to infer explainability or interpret which layers the model
was focusing on for certain predictions, these visualizations should
be taken with a grain of salt, and it’s better to rely on saliency
methods if you want quantitative importance scores.

One approach to deriving explanations for self-attention models is to borrow an idea
of Layer-Wise Relevance Propagation (LRP) to compute scores for each attention
head in each layer of the transformer. These scores can then be integrated throughout
the attention graph to provide a final feature attribution score.12

To see how this technique works in practice, let’s create a text classification model that
relies on transformer architecture and is trained using the IMDB movie review data‐
set. We’ll use the Hugging Face transformer library to load a pretrained BERT model
for sequence classification. Then, using the pretrained tokenizer, we can evaluate the
model on IMDB movie reviews to predict a positive or negative sentiment, shown in
the following code (the full code is available in the LRP notebook from this book’s
GitHub repository):

model = BertForSequenceClassification.from_pretrained("bert-base-uncased-SST-2")
tokenizer = AutoTokenizer.from_pretrained("textattack/bert-base-uncased-SST-2")
# initialize the explanations generator
explanations = Generator(model)

classifications = ["NEGATIVE", "POSITIVE"]

Here, Generator is a class that is instantiated using the pretrained BERT model.13

This class contains the methods we’ll use to generate explanations using LRP. Let’s
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take the sample review text “If you like the original, you'll love this

movie.” We can tokenize and pass to our explainer using layer-wise propagation:

sample_txt = ["If you like the original, you'll love this movie."]
encoding = tokenizer(sample_txt, return_tensors='pt')

# true class is positive - 1
true_class = 1

# generate an explanation for the input
expl = explanations.generate_LRP(input_ids=input_ids,
                                attention_mask=attention_mask,
                                 start_layer=0)[0]

Using Captum’s library for visualization, we can explore the explanations that were
generated (see Figure 5-15).

Figure 5-15. For this input example, the model predicts positive sentiment (the true
label), and the word importance score using LRP creates a saliency mask over the words
that contributed most to that prediction. (Print readers can see the color image at
https://oreil.ly/xai-5-15.)

Which Method to Use?
So far, you’ve seen a number of explainability techniques that can be used when
working with text data. You’re probably wondering which is the best method and
which one you should use for your next (or current) ML project. Of course, there is
no clear answer to that question. If anything, we’ve tried more to illustrate the what
and how of each technique and not claim to suggest that any one method beats out
all the rest. They each have their pros and cons and, moreover, the technique that is
best for you and your use case will depend heavily on your data, your model, and how
you plan to use the explanations (see Chapter 7 where we discuss in detail human
interaction aspects of explainability).

With that in mind, our advice would be to try various techniques and see which
explanations ring the truest for you given what you know about your data, your
model, and your use case. Of course, implementing even one of the techniques we
discuss in this chapter could be a lot of development time and effort. We’ll end
this chapter by discussing the Language Interpretability Tool (LIT) developed by
Google’s People + AI Research (PAIR) team. LIT is an incredibly useful tool for any
practitioner hoping to explain their NLP model and provides an easy-to-use interface
that you can use to help you decide which explainability method to use.
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Language Interpretability Tool
The Language Interpretability Tool (LIT)14 is a visual, interactive model-
understanding platform for NLP models developed by the PAIR group at Google.
LIT is similar in spirit to the What-If Tool that allows ML practitioners the ability
to analyze and debug their models and datasets without the need to write a lot of
code. However, LIT is focused on the specific challenges that arise when working with
NLP models and has an intuitive interface that allows you to explore and interact
with your dataset and model predictions. The main workspace contains modules for
exploration and analysis, including UMAP (uniform manifold approximation and
projection) and t-SNE (t-distributed stochastic neighbor embedding) embeddings
of your dataset, data tables, and editors to explore individual examples and a slicer
editor that allows you to create and examine slices of interest in your dataset. The
group-based workspaces can be set up to focus on performance, predictions, explana‐
tions, or counterfactuals; this is the workspace that we will primarily be focusing on.

Like LIT, the What-If Tool (WIT) was also developed by the PAIR
group at Google. It is designed to provide an easy-to-use interface
for exploring and understanding the predictions of classification
and regression ML models. The plugin allows you to apply infer‐
ence on a large subset of examples and visualize the result in a
number of different ways.
You can explore how your model prediction would change if a
feature value was different or examine how different features affect
each model’s prediction in relation to each other. You can examine
global statistics of your dataset to uncover hidden biases or correla‐
tions among features. You can even explore slices of your dataset
and evaluate model performance metrics on subgroups to check
for model fairness.

The LIT platform has an extensive list of capabilities to assist practitioners in explain‐
ing their model’s predictions, covering a wide range of NLP tasks from text classifica‐
tion to sequence generation. Many of the XAI techniques we discussed in this chapter
are also available in LIT along with nice visualizations. For example, there are built-in
modules for visualizing attention and saliency maps and features for aggregation
metrics for your text samples. There is also support for counterfactual generation for
model examples and side-by-side comparison for two different models to easily see
how they differ or agree. There is a wide range of features, and we highly encourage
you to go explore the functionality that is available. In terms of analyzing different
explainability techniques, one of the nicest properties is that LIT allows you to easily
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compare the results of different explainability methods without having to develop
and experiment with each one yourself.

There are a number of demos available that illustrate some of the capabilities of
LIT. For example, let’s look at the demo for sentiment analysis. This demo uses
the Stanford Sentiment Treebank consisting of movie reviews, similar to the IMDB
dataset we’ve seen already in this chapter. Let’s provide a test sentence: “If you
like the original, you'll love this movie.” Within the LIT UI, under the
Predictions tab, we see that the model predicts a positive sentiment for this example
with probability 0.979. There is a lot of functionality within the LIT platform that can
be explored, but let’s focus on the explanations for this input instance. LIT currently
supports a collection of explainability methods, including Grad x Input, Integrated
Gradients, LIME, and Grad L2-norm. Clicking on the Explanations tab, we can see
a visualization of the saliency maps for each of these methods (see Figure 5-16),
allowing for quick and easy comparison of the different techniques. This way you can
easily see which techniques most resonate with what you know about your data, your
model, and your use case. A large discrepancy between different techniques might
be cause for concern or suggest further analysis, whereas a similar consensus among
techniques sends a clearer signal on the current state of the model.

Figure 5-16. The Language Interpretability Tool allows for easy comparison of several
commonly used explainability techniques, including many that we discussed in this
chapter. The color intensity indicates salience with blue and purple, indicating positive
attribution, and red indicating negative. (Print readers can see the color image at https://
oreil.ly/xai-5-16.)

Summary
In this chapter, we focused on explainability methods for natural language models.
We started with a brief overview of the nuances of working with text data and the
role played by tokenizers and embedding layers. It’s important to be aware of these
preprocessing steps as their artifacts make their way downstream to explainability
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tasks later either directly or indirectly. We then turned to techniques, starting with
LIME. LIME is a common explainability method and can be used for images, tabular
data, and text; we saw in detail how LIME is implemented when working with text.

We then turned our attention to two related techniques: Grad x Input and Grad L2-
norm. These two techniques have been shown to work well with transformer models,
and they give a good comparison of sensitivity and saliency techniques in XAI. Next,
we discussed Layer Integrated Gradients, which is really just an extension of the
classic Integrated Gradients technique to provide layer attribution within a mode.
This approach is particularly useful when working with text since examining a model
on the input token ID level is problematic because integer IDs are not differentiable.
Instead, it’s necessary to evaluate the Integrated Gradients at the embedding layer of
the model.

Lastly, we looked at Layer-Wise Relevance Propagation, which provides a way to
distribute the relevance score of a model’s prediction to the internal neurons of
the network. By propagating the relevance through the network, we can ultimately
determine which input features contain more relevance for a given prediction. We
then explored the Language Interpretability Tool as a platform for exploring features
of NLP models and, in particular, explainability methods. LIT has a suite of capabili‐
ties and an interactive platform that can be run in a Jupyter notebook. It’s a great
way to apply the explainability techniques we discussed in this chapter to your own
NLP model.

In the next chapter, we’ll look at some other advanced techniques and recent trends in
explainability that you might also like to add to your explainability toolkit.
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CHAPTER 6

Advanced and Emerging Topics

with Sheeraz Ahmad

The focus of the book so far has been on well-established techniques, modalities, and
use cases. However, Explainable AI (XAI) continues to be an active area of research,
so that new techniques are continually being developed and existing techniques are
improved and scrutinized further. Feature-based explanations such as Shapley values
and Integrated Gradients introduced in the previous chapters can cover many use
cases, especially as applied to text, tabular, and image data. However, there are several
emerging techniques and topics that can be valuable in your explainability toolbox in
specific situations.

In this chapter, we will discuss three broad, emerging topics. First, we will introduce
alternative explanation techniques like attribution to inputs (as opposed to features)
and making models explainable by design. Second, we will briefly cover how some of
the previously introduced techniques can be more generally applied to data formats
that are not text, tabular, or image, specifically focusing on time-series and multimo‐
dal data (text + image). Third, we will discuss how explainability techniques can be
evaluated in a systematic way, as opposed to spot checks on a handful of data points.

Alternative Explainability Techniques
In this section, we will discuss two alternative explainability methods, namely, alter‐
nate input attribution, which is attribution to training data points or user-defined
concepts, as well as explainability by design, which involves intervening in the model‐
ing process to make it inherently more explainable.
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Alternate Input Attribution
Although reasoning based on an example’s features is a sensible way to approach
explainability, predictions can also be attributed to other inputs such as other
examples in the training data or examples in some supplementary data. Note that
feature attributions are also indirectly affected by the training data since after all,
training data is what the model uses to learn about a task, and feature attribution
techniques require querying the trained model in various ways. However, this indi‐
rect effect (training data → model → feature attribution) is hard to trace, making it
tricky for us to answer the question of which points in the training data a correct (or
erroneous) prediction should be attributed to.

We will now discuss techniques that allow us to directly attribute credit (or blame)
to individual data points in the training set, or to data in a supplementary set that
can be curated by a domain expert. We’ll discuss three broad types of alternate
input attribution methods: example-based explanations, influence functions, and
concept-based explanations. Example-based explanations provide insight into model
behavior by surfacing elements of the training dataset that the model treats as similar
(or different). Influence function-based explanations also utilize examples from the
dataset but focus on those examples that significantly affect model behavior. Here,
the influence of a training example is measured by how much the model parameters
or predictions change if that example were to be removed from the training dataset.
Lastly, concept-based explanations use the internal state of the model to compare how
high-level, abstract concepts compare with input instances and model predictions.
The advantage is that these concepts align better with human intuition than individ‐
ual features might.

Example-based explanations
Here’s what you need to know about example-based explanations:

• These provide insight into model behavior by surfacing approximate nearest•
neighbor-based explanations for model instances.

• They work equally well with different data modalities—image, text, and tabular.•
• Example-based explanations are primarily considered model agnostic and pro‐•

vide explanations based on elements of the datasets, not model features.
• Counterfactual explanations are a form of example-based explanations.•
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Pros Cons

• These explanations are useful for debugging models as•
well as closing the loop with stakeholders.

• They are a very intuitive, human-understandable•
representation of model behavior.

• Example-based explanations are helpful in building•
a mental model for understanding your ML model
predictions and give additional insight into complex data
distributions, surfacing hidden data issues or outliers.

• It’s quick to get started with generating example-based•
explanations using open source libraries like ScaNN.

• Example-based attribution does not offer guarantees•
in completeness—summing up the distances of each
training data point from a given test point doesn’t sum up
to anything meaningful.

• These explanations don’t offer any insights into the causal•
relationship between the test point and the corresponding
example-based explanations.

• It can be difficult to scale up example-based explanations•
beyond ~1–10K examples locally; beyond that, you’d
want to use a cloud service.

Example-based explanations are an intuitive way to communicate a model’s reason‐
ing. Akin to feature attribution where the objective is to assign partial responsibility
of the prediction to individual features, the objective for example-based explanations
is to do the same to individual points in the training data. For instance, the question
of why the leftmost image in Figure 6-1 was classified as a husky, a breed of dog, can
be answered in different ways. We can point to the contributing features, in this case
pixels (using a technique like Integrated Gradients) or regions (using a technique like
XRAI). Alternatively, we can point to other similar examples in the training data that
were huskies, as potential explanations.

Figure 6-1. Possible explanations for a prediction of “husky” (leftmost image). From left
to right: Integrated Gradients, XRAI, and example-based explanations.

Example-based explanations work by first transforming any given input into a mean‐
ingful representation using the learned internal state of the model, and then finding
the nearest neighbors in the training data for a query point, based on a predefined
notion of distance such as Euclidean or cosine distance. For deep learning models,
such representations are often called embeddings and are expected to capture seman‐
tics of the data distribution for a well-trained model.
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The term embeddings is used across various domains to mean
similar things. In essence, it is a vector representation (i.e., an
element of the latent space) of the data often learned by a model
as a by-product of performing its intended task. For example, in
case of text, we can think of it as capturing semantic properties
of the word like polarity (positiveness), gender, level of formality,
etc., each by one element of this embedding vector and from a
range of 0 to 1. A model might have learned this vector as it
tried to perform sentiment classification. Similarly for images, each
embedding vector element might capture saturation, humanness,
soft versus sharp contours, etc., which a model might have learned
as it tried to perform pedestrian detection. Of course, these are
made up of examples, and we can’t be sure a specific aspect is
clearly captured by an element of the embedding. In general, they
seem to be useful and often appear to capture meaningful aspects
of the data.

With the assumption that meaningful embeddings have been learned by the model,
example-based explanations return results often aligning with user intuition. Such
explanations can then be used for applications such as misprediction analysis—if the
example-based explanations for a mispredicted test point have labels that agree with
the predicted label and disagree with the true label, it might point to issues with data
quality. Figure 6-2 illustrates one such case where the explanations for a misclassified
bird are largely from the airplane class, and subsequent manual inspection reveals the
uniqueness of this bird image and how it indeed looks similar to an airplane. This in
turn points to a potential data sparsity for silhouetted birds.

Figure 6-2. Left: an image of a bird from the STL10 dataset that was misclassified as
a plane by a fine-tuned MobileNet model. Right: example-based explanations (using
the penultimate layer output as embeddings and Euclidean distance) that in fact look
similar to the query image but come from the airplane class.
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1 Have a look at this ScaNN demo using the GloVe dataset.

We saw how example-based explanations can be useful in some specific applications,
and to help you figure out whether they can be a good fit for your needs, let us look at
their pros and cons.

One of the primary advantages of example-based explanations is that they provide
very intuitive, human-understandable representation of model behavior. This makes
this method particularly useful for debugging models as well as closing the loop with
stakeholders. By surfacing related examples from the training dataset, example-based
explanations are helpful in building a mental model for understanding your ML
model predictions and give additional insight into complex data distributions that
can be useful in surfacing hidden data issues or outliers. Example-based applications
are uniquely useful for identifying issues with training data and pinpointing when
more data might need to be collected. In addition, it’s quick to get started1 with gener‐
ating example-based explanations thanks to the availability of open source libraries
like ScaNN.

On the other hand, unlike many feature attribution techniques, this simple example-
based attribution does not offer guarantees in completeness—if we compute distances
of each training data point from a given test point, they don’t sum up to anything
meaningful. This means that it does not point to or quantify a specific property of
an input or image. Instead, a data scientist has to fill the gap and determine what the
example-based attribution reveals, such as in Figure 6-2. In explanations that have
a completeness property, one can quantify how much something contributes to a
decision without much need to fill in the interpretability gap.

Another issue to keep in mind is scalability: it can be difficult to scale up example-
based explanations beyond ~1,000–10,000 examples using OSS solutions and local
processing power, and you will likely need to use a cloud service if your example
set is larger than that. Furthermore, example-based explanations don’t offer any
insights into the causal relationship between the test point and the corresponding
example-based explanations—how would the prediction of the test point change if
one of the explanation points was removed from the dataset? Intuitively, if the dataset
is rich enough, removing one of the explanation points for any test point would have
negligible effect on the model prediction. This goes somewhat against the idea from
feature attribution where high attribution generally implies high importance to the
prediction. Relatedly, a nonsimilar example can still be useful since it can impart
more discriminative power to the model.

One approach that has been proposed to address this issue and better consider the
perspective of individual data points is influence function-based explanations. We
discuss this technique in the next section.
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Influence function-based explanations
Here’s what you need to know about influence function-based explanations:

• Influence functions describe model behavior through the lens of the training data•
and influential examples. They are used to understand the relative importance of
different points in your training data.

• An influential training example is an example such that removing it from the•
training data would cause considerable changes to the model parameters or pre‐
dictions. Influence function-based explanations measure how model predictions
would change if that example was removed.

• Computing the influence of specific training data points requires computing•
second-order derivatives. The influence can be positive or negative, which indi‐
cates whether a particular data point helped or hurt the prediction.

Pros Cons

• This is a flexible technique that can be applied to debug•
models, detect dataset errors, and even create visually
indistinguishable adversarial examples.

• The explanations they offer align better with intuition—•
how important is a training data point to the model’s
prediction.

• They work well for small or moderately sized models.•

• They don’t scale well to large models or large datasets.•
• Influence functions lack a systematic way to account for•

correlated data points. The influence of a given data point
might appear low if there’s another data point that is
strongly correlated with it.

• These explanations require the model to be twice•
differentiable.

Using influence functions2 (IFs) to explain model predictions was proposed in a 2017
paper by Koh et al. and was inspired by a classical technique in the field of robust
statistics from 1974.3 In the context of explainability, IFs provide an alternate way to
assign attribution to training data points by asking the question of how would the loss
on a specific test point xtest change if a given training data point was removed from
the training set. That is, we want to measure:

L xtest; θX ∖ x − L xtest; θX

where X  is the full dataset, X ∖ x represents the dataset with a single example x
removed, and θX  denotes the model parameters learned using X  (similarly for θX ∖ x).
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While this may appear to be a sensible approach, a naive implementation would
be prohibitively costly, requiring us to retrain the model with different subsets of
training data. This practical hurdle should sound familiar—an exact implementation
of Shapley values runs into a similar issue requiring rebuilding and retraining the
model with different subsets of input features.

To address this scalability problem, approximations are needed. We start by consid‐
ering how the model parameters would change if we upweighted a single training
example z = x,y  by a tiny, tiny bit called ϵ. Of course, upweighting by a tiny, tiny
amount is the same as removing that example completely. If we let L zi,θ  denote the
loss function at the point zi with the parameters θ then the new model parameters,
with this example z upweighted by ϵ, would be:

θ z,ϵ = arg min
θ

1
n

∑
i=1

n
L zi,θ − ϵ L z,θ

The idea of influence functions is to approximate what the change in the loss for the
parameters learned on the full dataset θX  versus the loss for the parameters learned
on the full dataset minus one test example θX ∖ x. So, the influence on the loss of
upweighting and element x at a test point xtest can be approximated (by chain rule,
omitting the derivation) by:

Influence x,xtest =
dL xtest,θ xtest,ϵ

dϵ
ϵ = 0

≈ 1
n
∇θL xtest; θX

T
HθX

−1∇θL x; θX

where ∇ and H  are the first- and second-order derivatives, respectively.

The general idea is that θX  is a stationary point of the loss function, and thus
a solution for ∇θL X ; θ = 0. This equation can be approximated by a first-order
Taylor series expansion giving rise to the Hessian term. Since matrix inversion is
still computationally expensive, the authors of the original IF paper proposed further
approximations to make the evaluation more efficient. In the subsequent years,
somewhat related approaches like representer points4 and TracIn5 were published that
generalize and expand on the ideas pioneered by IF.

The influence of specific training data points can be positive or negative that indicates
whether a particular data point helped or hurt the prediction. Figure 6-3 shows the
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helpful data points for two different image classification models, a support-vector
machine (SVM) and Inception network. Lower-level features such as contrast and
texture seem to have higher influence for SVM, whereas higher-level features such as
shape and patterns seem to have higher influence for Inception net. Even an image
from a different class (dog) can help the classification for another class (fish) by
effectively helping a model learn to differentiate them better.

Figure 6-3. Using influence functions, we can determine which were the most helpful
training images for each model. For the SVM model, fish close to the test image were
mostly helpful, while dogs were harmful for the SVM model. However, for the Inception
network, one of the most helpful training images was also a dog, presumably because it
helped to determine what a fish doesn’t look like as well.

Influence functions have their own set of pros and cons. The explanations they offer
align better with intuition—how important is a training data point to the model’s
prediction. The approximations in the original paper also make it computationally
feasible to generate influence functions for moderately sized models and datasets.
However, the algorithm doesn’t scale well for large models and datasets since it
requires computing second-order derivatives and matrix-vector products in high
dimensions. Influence functions also lack a systematic way to account for correlated
data points, so that the influence of a given data point might appear low if there’s
another data point that is strongly correlated with it. Even with these caveats, influ‐
ence functions are a useful tool to understand the relative importance of different
points in your training data.
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Concept-based explanations
Explanations can also be based on concepts6—abstractions that are at a higher level
compared to individual features. Here’s what you need to know about concept-based
explanations, and in particular TCAV:

• One of the commonly used techniques is TCAV (Testing with Concept Activa‐•
tion Vectors). TCAV is a global explainability method.

• Concept activation vectors (CAVs) are a way for machines to represent examples•
(e.g., images) using the internal layers of a neural net’s embedding space.

• TCAV uses CAVs and directional derivatives to quantify how much a user-•
defined concept is important for the model’s prediction.

• The TCAV score is a proportion and always lies between 0 and 1. Values closer to•
1 indicate that more of the images of the label class are positively influenced by a
concept vector, whereas values closer to 0 indicate less of an influence.

Pros Cons

• The TCAV score is a proportion, so it’s easily interpretable.•
• Users can determine or explore any concept they define or care•

about (e.g., gender, textures, patterns); they are not limited to
concepts considered during training.

• TCAV works without any retraining or modifications to the ML•
model.

• TCAV can interpret entire classes or sets of examples (not just•
individual data inputs) with a single quantitative measure.

• TCAV can be difficult or expensive to curate a•
collection of enough examples that illustrate a
concept.

• TCAV may not perform as well for shallow•
networks that don’t have the capacity to separate
internal states as well.

• This has been used primarily for images, less so for•
text or tabular datasets.

For the sake of concreteness in this section, we will focus on concept-based explana‐
tions for images. Such explanations can align better with human intuition, which is
not attuned to pixel-level perception, as shown in several papers where changes to
the pixel values that were imperceptible to humans could be highly significant to
a machine learning model. This article by Goodfellow et al.7 provides an example.
Figure 6-4 shows these concept-based explanations for an example image where
predictions are attributed to conceptual categories as opposed to Integrated Gradients
and XRAI that assign attributions to pixels and regions, respectively.
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Figure 6-4. Possible explanations for a prediction of “husky” (leftmost image). From left
to right: Integrated Gradients, XRAI, and concept-based explanations.

In order to generate concept-based explanations, we need to address two questions.
First, how can concepts be provided to the model? And second, how can we measure
how such abstractions are learned by the model? We’ll discuss how these two ques‐
tions are addressed with TCAV as an example. For the first question, to implement
TCAV, you, the practitioner, provide a set of examples that represent a certain con‐
cept or find an independent dataset with that concept already labeled.

The TCAV technique is flexible enough that it can be applied to any user-defined
concept (e.g., gender, patterns, textures, or job titles); you just need to curate a collec‐
tion of examples that exhibit that concept if it doesn’t already exist. We recommend
roughly 50–200 images per concept and target class for the TCAV algorithm to really
be able to pick up on the idea of the concept. That being said, depending on your
use case and the complexity of the concept, you can likely get away with only 10–20
pictures, but 200 is generally pretty safe.

For example, in the case of images and animal classification, to measure your model’s
utilization of the concept of “stripes,” as for recognizing zebras, you would provide a
set of supplementary images representing the “stripe” concept, and a set of random
images representing nonstripes (to facilitate discriminative learning). Or, if you’re
interested in assessing your model against various fairness metrics, you might collect
a database of images representing gender or protected classes to determine how much
your model has come to depend on those concepts.
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Luckily, for basic concepts there is an easy alternative to creating your own database
of images: the Broden (Broadly and Densely Labeled) dataset,8 which contains images
with labels of both low-level concepts such as colors and patterns as well as high-level
concepts such as objects. The dataset contains over 1,000 visual concepts ranging
across different abstraction levels including scenes, objects, materials, textures, colors,
and patterns. This can then be augmented with user-defined concepts that might not
be well represented in the existing 1,000 concepts. Figure 6-5 shows some example
concepts from the Broden dataset.

Figure 6-5. The Broden dataset contains over 1,000 visual concepts in different abstrac‐
tion levels including materials, textures, and colors. Here are some examples of the
images that represent the concepts “striped,” “zigzagged,” and “dotted.”

The second question we needed to address is how such abstractions can be learned
so that they can be used during attribution. As a potential solution, consider an
intermediate embedding layer for a deep learning model, or any other meaningful
representation for the broader class of models. We will use the term embedding in
the broader sense of a meaningful representation as opposed to the stricter sense of a
layer’s output. A linear classifier that separates the images representing the stripe con‐
cept from the ones in the nonstripe concept is a hyperplane describing the decision
boundary between the two. The concept activation vector is defined as the normal to
this hyperplane, and in general the images representing the stripe concept will have
a larger (signed) projection on this vector compared to the ones representing the
nonstripe concept. Figure 6-6 illustrates this process of concept learning.
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Figure 6-6. Process for learning concept vectors: (a) user-defined set of examples for a
concept (e.g., “striped”), and random examples for nonconcept (e.g., “nonstriped”); (b)
labeled training data for the specific class (e.g., “hot air balloons”), (c) and a trained
network; (d) concept vectors are learned by training a linear classifier to distinguish
between the embeddings produced by a concept’s examples versus a nonconcept’s exam‐
ples at a given layer. The concept plane is the decision boundary, and the concept
activation vector is the vector orthogonal to the decision boundary.

With these prerequisites in place, we can generate global, aggregated explanations
that summarize what fraction of images were on the stripe side of the hyperplane.
More formally, if we denote by fl the l-th layer of a neural network and let ℎl,k logit
for the model’s predicted class k. That is, ℎl,k is the part of the neural network that
maps the activations of the l-th layer to the k-th class prediction. The directional
derivative of that function in the direction of a unit vector CAV v for a concept C  is
then given by:

DC ,k,l x = ∇ℎl,k fl x · vC

where x is a specific image input. The dot product measures how aligned two vectors
are. If the vectors are orthogonal, then the dot product is zero. The dot product is
maximal when the vectors are parallel. So, DC ,k,l measures how aligned the gradient
and the concept vector are, in essence quantitatively measuring the sensitivity of the
model predictions for any layer l and for any concept vector vC. The TCAV score is
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then an aggregation of that sensitivity measure across all images. Letting Xk denote
the class of all images with the label k, we want to count the fraction of k-class inputs
whose l-layer activation vector was positively influenced by the concept C . Thus, the
TCAV score is computed via:

TCAVC ,k,l =
x ∈ Xk : DC ,k,l x > 0

Xk

Since, by definition, the TCAV score is a fraction, the value will always lie between
0 and 1. When TCAV is closer to 1, more of the images of the k-label class are
positively influenced by the concept vector associated with the concept C . When the
TCAV score is closer to 0, that concept vector doesn’t have as much of an influence.

Note that it’s also possible to provide local (individual test point) concept-based
explanations, but with the caveat that their quality will depend highly on the user-
curated concepts, whereas global aggregation can smooth some of that variability that
would occur with a smaller sample size.

There are two main issues with the formulation of concept-based explanations we
just discussed. First, for less standard concepts, like those that are not found in the
Broden dataset or other similarly curated dataset, the onus of providing meaningful
concepts and sufficient examples is on you, the practitioner, and is an error-prone
requirement. Second, it’s unclear precisely how many concepts are required to suffi‐
ciently explain a prediction. In other words, while for some domains only 10 concepts
might be needed to explain every prediction, for another it might be 1,000 concepts.
To address this second issue, a follow-up work to TCAV9 also proposes generating
supplementary image10 concepts as patches from the original training data, and
learning enough concepts such that a model using only the concept scores (like the
distance from the concept hyperplane) can achieve an accuracy as high as the full
raw images. However, issues such as redundant concepts, effect of embedding choice,
and so on still remain, and concept-based explanation continues to be an active area
of research.

Explainability by Design
Another way to approach explainability is by incorporating transparency principles
into the model from the get-go. One way this can be done is by choosing models that
are inherently explainable, such as linear models or tree models. Using the terminol‐
ogy from Chapter 2, such models are often referred to as interpretable models.
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Consider the loan approval models in Figure 6-7, and let’s look at an applicant with
an income of $80K, a credit score of 750, and a height of 5 ft. 10 in. Note that,
here we’re purposefully including height as an irrelevant feature and expect that the
models will learn to not rely on it. For both the models, the decision is to approve
the loans, and there is a clear explanation for how the different features do or do
not contribute to the decision: high income and high credit score make the loan
approval more likely, whereas height does not affect the decision at all. We can
make these observations without the need of a post hoc explanation technique like
Shapley values. Of course, more sophisticated models can potentially offer better
performance. What follows are alternatives for making models more explainable by
design beyond adhering to simple model architectures.

Figure 6-7. A tree model (top) and a linear model (bottom) for predicting loan approval
decisions. Both provide inherently transparent decisions, and how the decision will
change with respect to the features “income” and “credit score.”

Other ways explainability can be made a part of the model building is via adding
some explainability constraints during model training or by approximating complex,
opaque models by simpler, more transparent ones. Since inherently explainable mod‐
els form a very limited class of models, we’ll explore the more general methods,
namely explainability via constraints and distillation, in the following sections.

Explainability via constraints
A natural extension to inherently interpretable models are models that retain some
of the desired properties of the interpretable models while offering more flexibility.
Monotonicity and linearity are two such properties that we will describe in more
detail.
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Monotonicity of prediction with certain input features can lead to models that are
more interpretable and trustworthy. For example, everything else being the same, a
college applicant with higher grades compared to another applicant should have a
higher likelihood of getting accepted—which can’t be guaranteed by models in gen‐
eral, leading to opaque decisions. Akin to linear models, where a positive coefficient
implies nondecreasing and a negative coefficient a nonincreasing relationship, more
sophisticated models can be built with monotonicity constraints injected during
the design and training phase. In our work on deep lattice networks,11 we propose
model components within the framework of deep neural networks that can retain
monotonicity across the layers. Intuitively, monotonicity can be propagated through
the layers if the intervening nonlinear layers are monotonic (like ReLU), and the
linear transformations have positive weights. Figure 6-8 illustrates this intuition.

Figure 6-8. Top: a monotonicity preserving linear combination of nonlinear layer
outputs. Bottom: without any constraints on the parameters, the monotonicity is not
preserved.

Another way to introduce interpretability into the models is by using linear models
but in a transformed space that can capture nonlinear interactions. Note that this
approach would involve a postprocessing step to use an inverse transform on the
transformed features to obtain an interpretation on the original features. Techniques
like this have been prevalent and are often realized using kernels12 where an input
is first transformed to a different space and then a linear model is built using
these transformed features. Figure 6-9 shows how points that might be linearly
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nonseparable in their original space can become linearly separable in the transformed
space, thus allowing you to build powerful yet simple models.

Figure 6-9. Left: the data is nonseparable, requiring more sophisticated yet opaque
models for good performance. Right: kernel transformation can make the data linearly
separable so an interpretable linear model can be used instead.

Therefore, the main challenge toward enforcing linearity is to come up with kernels
or transformations that can make sense to an end user. For example, one such
transformation for images might be encoding distance to prototypes. Let’s consider
a transformation to three prototype-nearness scores (horse-score, crossing-score,
car-score); if an image is transformed to (0.9, 0.5, 0.001), a linear model can
predict it to be a zebra, which makes for a transparent and interpretable prediction.
Alvarez-Melis and Jaakkola13 offer a formal generalization to this idea, showing how
interpretable models can be built with certain constraints on transformations and
composability (more general than linear combination).

Explainability via distillation
Earlier in this chapter, we discussed how simpler models like linear or tree-based
models are inherently more explainable. However, they may fare poorly against the
more sophisticated models in terms of performance. Model distillation is a frame‐
work that attempts to combine the performance of the complex models with the
transparency of the simpler models. The central idea involves approximating the
performance of a complex, opaque model called the “teacher” with that of a simpler,
transparent model called the “student.” Along with transparency, this approach has
the added bonus of making the models smaller and consequently, faster. There are
two main issues to consider here: what is the benefit of this two-tier approach
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(complex to simple distillation) compared to directly training the simple model, and
what are the general ways to build these student models?

Instead of first building a complex model (teacher), and then distilling it down to
a simple model (student), a practitioner might consider directly building a simple
model if transparency is the goal. While this idea is reasonable on the surface, it
misses out on the rich information that the teacher model can provide to the student
model. Consider a classification problem—a simple model trained using just the
original training data can be thought of as an approximation to the teacher where the
goal is only to match the hard labels (cat or dog) since both have access to the same
information. However, with the distillation approach, soft labels (probability(cat),
probability(dog)) can be created using the teacher and provide much more fine-
grained information to the student since now the data includes richer differentiation
between instances of different dogs (analogously cats).

To elaborate, the general way to build student models is by augmenting the training
data using the original, complex teacher model. This can be done via soft labels
and predicted hard labels for classification and predicted target for regression. The
student can then be built to both optimize performance on the original training
set and to optimize how close it is to the teacher. Figure 6-10 shows this general
framework where the original data as well as the augmented data is used to train
a distilled student model. You can find more details in this foundational paper by
Hinton et al.14 and follow-up work by Frosst et al.15

Figure 6-10. Instead of directly training a simple model from just the training data,
distillation techniques can use both the training data and the augmented data from a
teacher model to train a better-performing student model.
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Other Modalities
While you are more likely to work with datasets containing images, text, and tabular
data, the explainability techniques discussed in this book are general and can be
applied to other data modalities with a few extra steps. In previous chapters, we went
into the details for applications of different explainability techniques to the three
common modalities. In this section, we’ll go over two case studies that highlight how
the different techniques can be applied to other modalities.

Time-Series Data
Time-series forecasting problems are some of the most common ML use cases in the
business world. Many real-world datasets have time component features, and accu‐
rate time-series forecasting can be incredibly beneficial in decision-making. However,
working with time-series data is approached quite differently to how you might
approach a typical supervised regression problem. With any ML task, creating fea‐
tures is one of the most important and time-consuming components; with time-series
models, it is even more challenging because with time-series data, each feature poten‐
tially affects the prediction over different time horizons. A common approach to
creating time-series is to use a sliding window where the features for a single training
example are taken over a certain number of time steps and used to predict variables
of interest for (potentially multiple) future time steps, as shown in Figure 6-11. In
addition, these time-dependent features are often combined with static covariates
such as holidays, store location, store promotions, or product information. This time
dependence on features poses a unique challenge for explainability.

Figure 6-11. A common approach to feature engineering time-series data is to use a
sliding window to create features and labels. The feature window would create the
features for a single training example and its corresponding label, or labels in the case of
multihorizon forecasting.
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For example, suppose we wanted to build an ML model to predict customer traffic at
a restaurant on any given day. In this case, the number of customers could be used
as a time-series feature to capture temporal trends; but also, local ads, the weather, or
special holidays are relevant features whose values depend on the time they occurred.
In fact, ads and weather on a given day as well as for at least a few days in the past can
affect how many people go to the restaurant. Even the future can affect traffic since a
gloomy weekend forecast can motivate diners to go out on a Thursday night.

Depending on the model, techniques like Shapley values can still be used because
the user can create a baseline time-series and compute how the prediction changes
as features are swapped from baseline values to the given value. However, generating
feature attributions can be difficult to understand since instead of n, we now have
n · t Shapley values, where n is the number of features and t is the time horizon (past
+ future).

As a concrete example, let us assume we are aiming to predict the customer traffic
to the restaurant on a Friday night using only the weather and advertisements and
looking at the data for three days into the past, ignoring any information about the
future. Now, we have six features that can affect the prediction: weather on Tuesday,
Wednesday, and Thursday, as well as whether or not the restaurant was advertised
on a local website on the same days. Figure 6-12 shows these features as [(False,
Cloudy), (True, Rainy), (True, Sunny)]. In this case, the baseline might be
[(False, Cloudy), (False, Cloudy), (False, Cloudy)].

Figure 6-12. To predict the customer traffic to the restaurant on a Friday night using
only the weather and advertisements and looking at the data for three days would result
in six features to consider when implementing Shapley values.

Using Shapley values as is will give us fine-grained attributions on how each feature
contributed on each day. While this information can be useful, it can also quickly get
overwhelming and unwieldy for datasets with many features and models with long
time horizons. To make sure that the explanations are more easily understandable,
some postprocessing can be done. The simplest postprocessing would be aggregating
the explanations by features or time.
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For example, suppose our model predicts that 65 diners will come to the restaurant
on Friday. Aggregating by features accumulates the Shapley values for each feature
over the entire time horizon, leading to an overall attribution for an individual feature
—weather contributed to 40 diners going to the restaurant whereas ads contributed
to 25 diners going to the restaurant. Aggregating by time accumulates the Shapley
values for each time point over all the features, leading to an overall attribution
for an individual time point—Tuesday’s feature information contributed to 5 diners
going to the restaurant, Wednesday’s feature information contributed to 30 diners,
and Thursday’s feature information contributed to 30 diners. Both schemes account
for the 65 diners that were predicted by the model for Friday, but instead of six
attributions (i.e., 3 · 2), we are down to five (i.e., 3 from aggregating by time + 2 from
aggregating by features), as shown in Figure 6-13. If we were considering 20 features
over 30 days, the difference would be far more drastic: 600 attributions versus 50.

Figure 6-13. When implementing Shapley values for time-series models, one way to
make explanations more easily understandable is through postprocessing, e.g., aggregat‐
ing the explanations by features or by time.
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This restaurant example focused on feature attribution, but similar extensions can
be made, for example, for influence function-based explanations—how similar is this
Thursday to other days in the past, or how would the prediction change if a specific
day’s data was removed from the training set.

Another approach to explaining time-series data is through attention-based models
(discussed in Chapter 5). Also, AI labs out of MIT and the Harvard NLP group have
released exBERT,16 an interactive visualization tool for exploring transformer models.
However, these attention-based models are not as well equipped to handle different
types of inputs such as both temporal and static features, not just language or speech.
To address this challenge, a recent 2021 paper introduced Temporal Fusion Trans‐
formers17 (TFTs). TFTs are an attention-based DNN model designed for multihorizon
forecasting and developed specifically to allow for more direct interpretability.

Multimodal Data
There are scenarios where the input can come from many different modalities
such as medical diagnosis that can use images (X-ray), text (doctor’s notes), tabu‐
lar (patient information), and time-series (echocardiogram) information. Given the
model-agnostic nature of several of the techniques we have discussed in the book,
even models built over multimodal data can be explained with the same tools.

Let’s consider a relatively simple problem of visual question answering, where given
an image and a question, the model is required to predict an answer. Let’s also
assume we intend to use Integrated Gradients (IG), introduced in Chapter 4, as the
explainability technique. We have already seen how IG can be used with images; to
use it for text, we first need to transform the text from a discrete (words encoded
by their IDs) to a continuous domain (words encoded by their embeddings) because
IG requires gradient operations that are ill-defined for discrete domains. Once we
have IG attributions for word embedding elements, they can be summed up to get
the attribution for the word. The attributions for image pixels do not require any
postprocessing. Figure 6-14 shows an example of this type of attribution applied to a
visual question answering model with attribution at pixel and word level.18 This can
be a powerful tool for model debugging too—a model that has high attribution for
uninformative words like the would require further scrutiny.
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Figure 6-14. Feature attribution for a visual question answering model that takes both
an image and a question (text) as inputs. The highlights show which words and which
pixels contributed the most to the predicted label. Feature attributions are relative, and
aggregation can be done to get the modality level attribution that yields a contribution of
16.26 from the question and 1.83 from the image. (Print readers can see the color image
at https://oreil.ly/xai-6-14.)

Evaluation of Explainability Techniques
For most part, this book has focused on well-established explainability techniques
that have been widely used across different applications. At this stage, you’re probably
wondering how these techniques compare with each other or if one technique is
better than the others somehow. Unfortunately, there is no free lunch and different
techniques may do better or worse depending on your dataset, your use case, and
how you plan to use the resulting explanations. Just as there is no one-size-fits-all
machine learning model, there is no single explainability technique that surpasses all
the rest. Instead, we encourage you to view and collect these techniques as tools in
a well-stocked toolkit that exists to help you analyze your model and can be utilized
through your entire ML workflow (see Chapter 8).
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19 Mukund Sundararajan et al., “Axiomatic Attribution for Deep Networks,” International Conference on
Machine Learning, PMLR, 2017.

Although you may have a bunch of explainability techniques at your disposal, the
question still remains as to how you can evaluate them and which one is best to
use for your use case. Evaluating a predictive machine learning model is much
more straightforward; there are well-known metrics you can use like accuracy, preci‐
sion/recall, mean-square error, intersection over union, and so on. However, there is
a lack of consensus for how to evaluate the quality of explanations. Often, researchers
have relied on showing a handful of examples to convince others of the usefulness
of their proposed explanation technique, but over time more attention has been
devoted to developing systematic evaluation methods. In this section, we will go over
a few different approaches to evaluating explainability techniques. Even though this
discussion is not exhaustive, we aim to provide you with a starting point and to create
awareness for the topic.

A Theoretical Approach
With the lack of clear evaluation metrics for assessing explainability techniques, one
approach is to take a “first principles” perspective, meaning with no preconceived
assumptions, and define a collection of axioms that any practitioner would expect an
explainability technique to have.

Axioms of Mathematics

In mathematics, axioms are statements that cannot be proven true
or false. They are accepted to be self-evidently true and serve as
the starting point from which the rest of the abstract theory can be
developed. For example, the axiom of equality states that a number
is always equal to itself. Or perhaps, in more layman’s terms, “It is
what it is.” This seems too obvious to not be true, and it’s what any
reasonable person would expect. However, this statement can’t for‐
mally be proven true or false, so it is accepted as true. Axioms like
this form the foundation of mathematical theory, from which the
proofs of all other theorems, propositions, lemmas, and conjectures
follow.

An axiomatic approach defines a collection of well-understood and accepted proper‐
ties (i.e., axioms) that any explainability technique should have. This provides an
intuitive benchmark with which to judge new or existing techniques. In their 2017
paper19 introducing the technique of Integrated Gradients, Sundararajan et al. also
introduce a collection of fundamental axioms for qualifying feature attributions. We’ll
briefly discuss those axioms here because they provide a nice sanity check for what
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we expect an explainability method should possess and, when possible, we’ll compare
these axioms against some of the techniques we’ve seen so far in the book. However,
keep in mind that these axioms are just one way of framing evaluation, and just
because one method doesn’t satisfy one of the axioms doesn’t mean it should be
abandoned completely. It’s very likely that it could still be a useful technique for you
and for your use case.

To frame the following axioms, we’ll borrow the notation from the 2017 paper. Let F
represent the model’s (e.g., a deep neural network) prediction for a certain class label
and the x = x1,x2,⋯,xn  represent an input tensor to F . We measure attributions
in the context of a baseline, so let x′ denote the baseline. For example, suppose we
have some input image, as in Figure 6-15, and our model predicts the class label
“sulfur-crested cockatoo” with a confidence of 0.886.

Figure 6-15. The model function F  takes an input image x and maps to a value between
0 and 1, which represents the model’s class prediction for that example.

The model function F  maps the input image x to a probability score in (0,1). If we
take the baseline to be a black image, then F x′ = 0. The features of the model are
the pixels, the individual xi’s of the image, so we take AF

i x  to represent the feature
attribution of pixel xi of the model F  at the input x with respect to the baseline x′.

Axiom of completeness
The axiom of completeness is perhaps the most straightforward. It states that for any
input to the model, the total attribution must be equal to the sum of all of the feature
attributions of the input. Mathematically, this means:

F x − F x′ = ∑
i
AF
i x

You can think of completeness as a sanity check that the attribution method is
comprehensive in assigning attributions to features. That is to say, the attribution of
a given input is “completely” accounted for across all model features. It seems like
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a reasonable request, and many of the explainability methods we’ve discussed satisfy
this criteria, such as Integrated Gradients, Shapley values, and Layer-Wise Relevance
Propagation. However perturbation techniques, such as LIME, do not.

Axiom of sensitivity
As the name suggests, the axiom of sensitivity examines how sensitive or stable
an explainability method should be to changing feature values. It states that if the
baseline and input differ only by one feature, but the prediction is the same, then
that feature should have zero attribution. And conversely, if the input and baseline
differ by only one feature, and the prediction is different, then that feature must have
nonzero attribution. For example, in Figure 6-16, the two images differ by a single
pixel value, but the model prediction doesn’t change. The (in)sensitivity axiom says
that in this case the attribution for that feature (i.e., pixel) should be zero.

Figure 6-16. The two images differ by one feature value (a single pixel), but have the
same prediction. The feature attribution for this pixel should be zero.

Mathematically, this axiom can be formulated as follows: if an input example x has
only one nonzero feature and F x ≠ 0 then the attribution for that feature is zero.
Stated with respect to insensitivity, this axiom states that if the model function F x
does not depend on the value of a feature, as in Figure 6-16, then the attribution of
that feature should be zero.

You can show that completeness implies sensitivity, so any technique that satisfies
the axiom of completeness also satisfies the sensitivity axiom. Although perturbations
methods of explainability do not satisfy completeness, they do satisfy sensitivity.
However, methods like DeConvNets and Guided Backprop, which we discuss in
Chapter 4, violate this sensitivity axiom.
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Axiom of implementation invariance
The next axiom is related to the dependence on the machine learning model itself.
The axiom of implementation invariance states that if two different models are func‐
tionally equivalent, meaning they compute the exact same function F x , then the
attributions for all the features should be the same. In short, if the function F  doesn’t
change between two models, then their attributions shouldn’t change either. This
axiom seems pretty straightforward to expect of an explainability technique. After
all, why should the attributions change just because the implementation changes? So
long as the final prediction is the same, that’s all that should matter, right? Well, there
are indeed methods that don’t satisfy this criteria, such as DeepLIFT and Layer-Wise
Relevance Propagation.

Axiom of linearity
The axiom of linearity says that if you can express your machine learning model as a
linear combination of two other model functions, then the attributions should also be
expressed in the same way. For example, if the model function F  can be written as the
sum of two model functions then you should expect that the attributions sum as well.
Integrated Gradients and other path-based methods satisfy this axiom.

Axiom of symmetry-preserving
The last axiom is the axiom of symmetry-preserving. We say that two features
are symmetric if they can be interchanged and the model function F  prediction
doesn’t change. The axiom states that if two features are symmetric, meaning they
are interchangeable without changing the value of F , then their attributions should
be the same as well. This is somewhat related to the sensitivity axiom, but they’re
slightly different. The axiom of sensitivity says that if you change one feature value
and the total attribution of the input doesn’t change, then that feature must have
zero attribution. Symmetry-preserving instead pertains to the model function itself.
It means that there are two input variables that are symmetric. So, for any image,
swapping these two pixel values wouldn’t change the predicted value of F . In this
case, the attributions should be the same as well.

This axiomatic approach to evaluating explainability techniques provides a reason‐
able sanity check and a good starting point. However, just because a certain technique
fails one of these axioms doesn’t mean you should discount it completely. Depend‐
ing on your use case, that technique could still be beneficial to you. They simply
provide one lens with which to understand the potential drawbacks or caveats of
a certain method. Since these axioms were introduced, there have been a number
of other studies aimed at providing a more rigorous framework for evaluating XAI
techniques. Next, we’ll discuss some of these empirical approaches.
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Empirical Approaches
In the previous section, we looked at some of the desirable properties of an explan‐
ation technique and stated them as axioms establishing a theoretical framework.
Trying to prove that your explanation method satisfies these axioms can get mathe‐
matically cumbersome and might be overkill if the aim is to quickly establish whether
the method is good enough for your use case. In this section, we look at empirical
approaches that can be applied to most techniques out of the box and are founded on
intuition about how a technique should behave in simple scenarios.

Basic sanity checks
Basic sanity checks are the first line of investigation for the subject of evaluation. A
sanity check is a quick way to weed out poor methods. A good method must neces‐
sarily pass such a check, but passing the check is not sufficient proof of correctness
or good performance, since the checks are not intended to be exhaustive. With this
in mind, one of the simplest questions to ask is whether an explainability technique
truly does reveal something about the underlying model behavior. If the explanations
don’t change much with different models, the quality of the explainability technique
appears rightfully suspicious. Similarly, if the data labels were changed, breaking the
relationship between the model inputs and their outputs, we should expect explana‐
tions to change as well.

A sanity check–based approach20 has been used to evaluate saliency maps for com‐
monly used explainability techniques, including many of the methods we’ve discussed
in this book like Guided Backprop, Guided Grad-CAM, Grad-CAM, Integrated Gra‐
dients, and Gradient x Input. To test the sensitivity of these methods to the model
weights, Adebayo et al. compare the output of each saliency method when applied
to a trained model against the same saliency output for the model with randomized
weights. To test for sensitivity to data, a data randomization test compares the outputs
of these saliency methods for a model trained on the true dataset and for a model
trained on a copy of the dataset where the labels have been randomly shuffled. As
with the model parameter randomization test, you would expect that the saliency
outputs would change dramatically when the labels are randomized.

Surprisingly, many of these saliency methods failed these basic sanity checks. For
example, the saliency maps produced by Guided Backprop and Guided Grad-CAM
were found to be not sensitive to these randomization tests. A follow-up paper21 dis‐
covered some gaps in the evaluation scheme of Adebayo et al., suggesting caveats on

Evaluation of Explainability Techniques | 197

https://oreil.ly/jprIH
https://oreil.ly/t19iJ
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International Conference on Computer Vision, 2019.

how sensitivity should be measured and how visualization of the results can induce
bias. These sanity checks, when done properly, can still be of value and provide one
means of evaluation for an explainability technique. As a practitioner, you should be
cautious when interpreting the results of both the explainability techniques and the
evaluation schemes.

Faithfulness check
The next and a more challenging way to evaluate explainability techniques is to
consider faithfulness of explanations to the model; that is, whether high attribution
(to features or training data points) actually implies importance. In other words, an
explainability technique can be considered to be revealing a model’s strong reliance
on a feature or training data point, if the model’s performance suffers strongly when
the high attribution inputs (features or training data points) are removed. However,
if a technique assigns a high attribution to an input (feature or a training data
point), and removing or altering that input doesn’t change the model’s performance
significantly, the technique’s attribution is less reliable.

In the paper that introduces XRAI,22 a masking-based evaluation scheme is defined
that captures this idea: starting with a blurry image, most- to least-salient pixels
(based on the attribution) are sequentially introduced and model performance is
evaluated. For a good explainability technique, we expect sharp improvement in
performance at the start since the high saliency pixels are indeed the ones that would
be the most useful to the model.

As a concrete example, let’s consider a 5×5 image of a cat for which the model
predicts “cat” with confidence 0.9. This means there are 25 pixels that can be ranked
by attribution. Starting from a blurry image, we add pixels one by one based on their
attribution values and notice how the prediction changes. Let’s assume that the blurry
image has a confidence score of 0 for the image being a cat. For a faithful technique,
we would expect a big jump in confidence (say, from 0 to 0.3) when the highest
attribution pixel is added, a somewhat smaller jump (e.g., from 0.3 to 0.5) for the next
one, an even smaller jump (0.5 to 0.6) for the one after, and so on. This would be
an insertion-based check. We can also do a deletion-based check by removing high
attribution pixels one by one, and for a good technique, we should see the prediction
fall sharply at the start. If the technique was poor, we should see erratic jumps with
both the insertion or the deletion checks.
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Synthetic datasets
Another approach to evaluation is through synthetic datasets where the ML practi‐
tioner knows what the salient inputs are a priori. An explainability technique that
can demonstrate it picks out these salient inputs is then more trustworthy than the
one that picks out nonsalient inputs. For feature-based explanations, Yang, Mengjiao,
and Kim provide a case study23 on how synthetic data can be used for evaluating
explainability techniques. By taking an image patch from a specific class (say, dog)
and pasting it in different backgrounds, this approach ensures that the background is
never quite salient since an image can be a dog anywhere (dog on a beach, dog in a
gym, dog in a ring, etc.) and a good explainability technique shouldn’t attribute much
relevance to the background. For example-based explanations, similar augmentations
can be made by adding random data points to the training set and measuring how
attribution gets assigned to these nonsalient data points.

Application specific
Using basic sanity checks, faithfulness checks and checks built using synthetic data‐
sets can help you evaluate your explanation technique in many scenarios. However, as
you might have noticed, most of these checks are built as safeguards against obvious
mistakes and don’t guarantee success for a technique that has passed them. Another
prevalent theme of explainability evaluation is centered around real use cases and
becomes most relevant for sensitive applications. If explanations are being used to
facilitate cancer diagnosis, the evaluation should consider metrics like time saved,
mistakes avoided, new mistakes made, etc. A technique can pass all the previous
checks, but if it doesn’t save doctors any time while diagnosing, it might not be a
great fit for the application. Similarly, if the explanations are being used to convey
understanding of a model’s inner workings to an everyday user, the evaluation should
consider how well the explanations align with the user’s intuition (this is discussed in
more depth in Chapter 7).

Evaluation of explainability techniques is an active and hotly debated topic with
a consistent flux of new ideas. As these explainability techniques continue finding
their way into critical or regulated applications, the question of how much trust can
be placed in any technique will continue to be pertinent. Unlike areas in machine
learning where the notion of ground truth is well-defined leading to clear metrics,
quantifying the quality of evaluation techniques is further complicated by the fact
that for real-world datasets, the ground truth is often ambiguous—is that an image
of a bee because of the striped pattern or because of the presence of specific flowers?
Both are valid explanations even if one corresponds more closely to human intuition.
Until we have well-established evaluation methodologies, it is worthwhile to spend
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some time ensuring alignment between the technique’s intended use case and the
application at hand.

Summary
In this chapter, we went over some of the emerging topics in the field of explain‐
ability. Different ways of approaching the question of explainability continue to
receive attention from both researchers and practitioners. With that in mind, we first
discussed how attribution or saliency can be assigned to inputs other than just the
data features. Specifically, we looked at attributing to training data via a notion of
similarity and influence functions. We also revisited attribution to concepts that can
be defined via an auxiliary input.

Next we looked at a class of explainability methods that intervene during the model‐
ing process as opposed to the post hoc techniques that are the main area of focus for
the book. You saw how constraints like linearity and monotonicity can lead to more
transparent and trustworthy models. We also went over how complex models can be
distilled to simpler approximate models, often by using richer data generated using
the complex model. Such models are easier to understand and have been successfully
used for applications like ensuring fairness.

To reinforce the point that several of the techniques discussed in this book are model
and modality agnostic, we looked at a couple of examples of applying Shapley values
and integrated gradient techniques to different modalities, with the former being
mostly applicable out of the box for time-series and the latter applicable to mixed
(image and text) modality with low-overhead pre- and postprocessing.

Lastly, we looked at the fairly nascent field of systematic evaluation of explainability
techniques. Historically, hand-picked examples of a technique’s good performance
were taken to be sufficient evidence for the quality of a technique. However, lately,
there has been a larger push toward using well-defined, independent evaluation
frameworks, especially as explainability continues to be applied to sensitive domains.
Ranging from basic sanity checks to faithfulness studies to methods employing
synthetic data, these frameworks aim to ensure alignment between the user’s expecta‐
tions and the technique’s performance. The goals and methodologies for evaluation
are not clearly understood, and extra care is required when using XAI for critical
applications. Since a significant amount of XAI usage is by decision-makers, research
is also experiencing a surge in field studies involving interactions between the
explainability tools and human users. We continue to explore this aspect in the
next chapter.
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CHAPTER 7

Interacting with Explainable AI

Explanations cannot exist in a vacuum. They are consumed, used, and acted upon
by ourselves, our colleagues, auditors, and the public to gain an understanding of
why an AI acted the way it did. Without explainability (and interpretability), Machine
Learning (ML) is a one-way street of information and predictions. We may see an
ML do something astounding, such as translating a paragraph from one language to
another, but it is rare for us to unequivocally trust technology.

Fundamentally, we are in a working relationship with every AI we use. Imagine
machine learning as your coworker. Even if this coworker did an amazing job, we
would find them difficult to work with if, when we asked them to perform a task, they
went off to another room, returned with the answer, and then promptly left again,
never answering our questions or responding to a thing we said! This silent coworker
problem is what explainability tries to address by starting a two-way dialogue, as
in Figure 7-1, between the ML system and its users. However, this dialogue is very
limited given how novel explainability is, which makes your choices around how to
construct that dialogue even more important.
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Figure 7-1. Explainability creates a dialogue between an ML and its users.

In this chapter, we will review the needs of different ML consumers and what to keep
in mind when designing Explainable AI (XAI) to work best for each of these groups.
We will also explore how to display explanations, and what the trade-offs are between
different types of visualizations. No explanation is perfect, so we will also discuss
common pitfalls in how explanations can be misinterpreted, and how to preemptively
design your explainability to mitigate these issues. Finally, we will also discuss what
happens after an explanation has been created and communicated, diving into the
actions taken after an explanation.

Who Uses Explainability?
In Chapter 2, we discussed who consumes explanations: ML practitioners, observers,
and end users. Each of these groups has a different need for explanations, and
different levels of knowledge about machine learning, so we cannot treat them all the
same. To better understand these groups, we can categorize them in terms of their
expertise and their intent. Expertise can be in how the ML itself works, the broader
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environment the ML operates in, or the additional factors for the ML’s input features
(or inference). Intent is defined by what actions a consumer may take in reaction to
receiving an explanation.

There are three common types of expertise:

Domain
Has knowledge of the environment the ML operates in, but not necessarily how
the ML itself functions. For example, a banker may understand the broader
economic environment for loans.

Model inputs
Understands or has access to additional information related to the inference
inputs but may not be able to alter the inputs. While this could be the training
data, it is more often the data sample used for a deployed prediction, or the
dataset features in general. For example, a consumer has a deeper intrinsic
understanding of their shopping preferences that informs a product recommen‐
dation system.

Machine learning
Understands the model architecture and how the model works; however, there
may be limited understanding of the dataset or implications of predictions made.
For example, this could be a data scientist who was hired as a consultant to
build an ML model for predicting how long it would take for robots to assemble
parts in a factory, but does not have previous experience with robots, which
unpredictably break down, or assembly lines, which have complex, cascading
cause and effects when estimating production times.

The following are common types of intent:

Model improvement
Based on the explanation, the user will take action to increase the quality of the
model. This could include refining the training dataset, using different features,
or changing the model architecture.

Build trust in the model
Increase confidence that the model’s predictions are accurate and reliable.

Verify
Confirm that the model behaves as expected against a set of standards. For
example, that a credit-rating model adheres to financial antidiscrimination
regulations.1
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Remediation
Understand what actions to take to alter a prediction in the future by changing
the inputs to the model. For example, a consumer could remediate, in this case
improve, a credit-rating prediction by reducing their debt.

Understand model behavior
Construct a simplified model in the user’s mind, which can be used as a surrogate
for understanding the model’s performance.

Monitoring
Ongoing assessment that a model’s performance remains acceptable.

An explanation consumer can have multiple simultaneous expertises and intents. In
some cases, these intents can even appear contradictory. A motorist who receives a
speeding ticket from an AI that tracks vehicle speeds and decides to issue tickets may
simultaneously want to verify the performance of the model, and also understand
what actions they could take in the future to avoid another ticket.

In practice, we have often found that people within the three main groups of
explanation consumers are united by their primary expertise and needs, as shown
in Table 7-1.

Table 7-1. The primary expertise and intents of explanation consumers

Consumer Subgroup Expertise(s) Intent(s)
ML practitioners Data scientist ML Model improvement

ML engineer ML Monitoring
Observers Business stakeholder Domain, inputs Trust, verify, understand

Regulator Domain, inputs Verify, understand
End users General Inputs Trust, remediation

Specialist Domain, inputs Trust, understand

Often, as consumers become more familiar with an ML system, their expertise and
intents will change. A common pattern is for data scientists to become domain
experts over time, and end users, particularly in business and industries, will shift
from validating a system to working to understand the model so they can anticipate
and be better prepared for prediction results and common failures.

Each combination of these expertises and intents can result in a different type of
explanation being more or less useful. Our advice is to think of expertise as the
background you can assume for an explanation, and intent for where you want the
explanation to guide the consumer toward.
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Picking the Right Explanation Technique for Your Audience
The act of choosing which explanation technique is best for your audience can be
difficult due to the lack of definitive guidance and vague information in the ML
community. If one believes the research literature, every new technique is strictly a
vast improvement over all previous explanation techniques. Conversely, there is also a
corresponding number of papers demonstrating how various explanation techniques
are very bad at their job. With this conflicting advice, how does one pick the right
technique? By answering the following questions, you should be able to filter many
possible techniques to just one or two that meet your audience’s needs:

1. What needs to be explained? A single inference, a cohort of predictions, or the1.
global behavior of the model?

2. What is the audience’s expertise? Does the technique require an understanding of2.
how ML works to interpret the results?

3. What action will they take after an explanation? Should the technique generally3.
inform, or should it present specific details?

4. Is this ML model being used in a critical or high-risk situation? Different explan‐4.
ation techniques offer varying levels of guarantees and robustness.

5. How quickly do they need an explanation? The latency of generating explana‐5.
tions can range from milliseconds to minutes or longer.

For widely used combinations of expertise and intent, we have put together a guide
of possible techniques to use. However, view these recommendations as a starting
point rather than a definitive list—the best technique for your situation may vary! See
Table 7-2 for a list of suggested pairings.

Table 7-2. Suggested techniques for the different expertises and intents of an ML consumer

Expertise Intent Explainability technique
ML Model improvement Sampled Shapley, Integrated Gradients,

example-based, layer-based
Domain Model monitoring Feature attributions

Build trust Example-based, independent conditional expectations, distillation
Verify Feature attributions, concept activations, pixel attributions

Inputs Build trust Example-based, region-based attributions
Verify Partial-design plots, feature attributions
Remediation Example-based, concept activations
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Finally, another important group of explanation consumers is other technological
systems. As an example, Google has had great success in using feature attributions to
perform automated model monitoring. When abnormal drift or skew is detected in
feature attributions for a newly released model, it is automatically rolled back and the
previous version of the model is used. However, the topic of using explanations in an
automated fashion is outside the scope of this book.

Now that you understand how XAI techniques can be used by different types of
consumers and their intentions, let’s turn our attention to how to visualize and
present these explanations.

How to Effectively Present Explanations
Despite the whole point of explainability being to bring clarity to an ML system,
explanations are often poorly presented to ML consumers. This can lead to false
assumptions, misplaced confidence in an ML system, and the wrong actions being
taken. Presenting explanations through a visualization, user interface, or even plain
text, should serve three goals:

• Clarify what, how, and why an ML system performed the way it did.•
• Accurately represent what is known in the explanation.•
• Start from the ML consumer’s place of understanding and build upon it.•

Information visualization is an entire field of practice and research.
If you want to learn more, we suggest reading The Visual Display of
Quantitative Information by Edward Tufte (Graphics Press, 2001).

We’re going to avoid the topic of explanations which themselves are interactive via
UI. Although there have been research initiatives to create interactive explanations,
all of these approaches are in their infancy and have not been proven to deliver
at scale in the broader ML community. This comes with a caveat that we expect
the future of explanations is interaction and collaboration, so we recommend you
continue to look for opportunities in using interactive explanations.

Clarify What, How, and Why the ML Performed the Way It Did
Each explanation should provide the consumer with all the key pieces of information
they need to interpret the explanation. Often, this requires additional auxiliary infor‐
mation to be displayed so the intent of the explanation can be understood. At a
minimum, the explanation should represent:

206 | Chapter 7: Interacting with Explainable AI

https://oreil.ly/lgWio


2 The Nielsen Norman Group, one of the most respected UX research firms in the world, has an excellent
article on the inverted pyramid.

• What is the range for a value in the explanation?•
• When was the explanation generated?•
• If the explanation is visual, use a recommended color scheme for good contrast•

in gradients, and be color-blind friendly. ColorBrewer has designed and tested
color palettes that are easily perceived.

• Show the predicted value(s). If it is a cohort, provide some information about•
how the cohort was defined.

For consumers with ML expertise, or those with an intent to verify, the explanation
should also include any relevant versioning info for the dataset and model (e.g.,
training/validation split, randomization seed, hyperparameters, etc.) and details of
the parameters chosen for the explanation technique.

We all enjoy stories, and it is natural to convey explanations through narratives. This
can be a great way to convey highly technical information to a nontechnical audience.
That being said, there are two risks to using narratives. First, it is easy to get swept
away in trying to make the story more compelling by reaching for more impactful
terms and verbiage. Second, stories almost always make use of a timeline, implying
causality. In both situations, you are inadvertently conveying unfounded accuracy or
certainty in the explanation to your ML consumers. Using a more journalistic style
of writing, or the inverted pyramid2 format, can be a good structure for presenting
explanations as stories to users.

Accurately Represent the Explanations
The obvious goal of any explanation is to provide an accurate understanding of the
model’s behavior. It is equally important, but less intuitive, to be conscientious of
ensuring the accuracy of the explanation itself. Raw explanations are almost always
a set of numbers, and it is vital to ensure they are accurately represented when the
explanation is translated into other formats (e.g., as a saliency map, bar chart, token
highlighting, generated text, etc.). For example, when explaining the predictions of
an image model, Integrated Gradients highlight the specific pixels that contributed to
the explanation. In contrast, techniques like XRAI and LIME visualize regions that
contributed to a prediction, which is less precise. Depending on your audience, either
technique may be more or less appropriate. For example, a regulator seeking to verify
an ML classifier for X-rays may wish to see evidence that the model was attentive to
the actual X-ray scan and not ancillary, or leaked, information such as text overlaid in
the X-ray image. Displaying the exact attributions of different pixels will be useful in
verifying the system is behaving as expected.
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In contrast, for a patient, it may be best to use a technique that does not mislead users
into overconfidence in the accuracy of the system. For our X-ray example, we may
know the system has high accuracy, but displaying exact pixel-level attributions may
overcommunicate the confidence of the ML system and be counterproductive to aid‐
ing patients and medical professionals in understanding the diagnosis. In situations
like these, where there is a lack of ML or domain expertise, a regional explanation
technique can best convey the accuracy of the explanation, erring on the side of
caution.

A common critique of explainability is that the techniques do not faithfully, or
accurately, represent the actual decision-making process learned by the ML model.
Many papers have been written stating that explainability should not be used due to
the perceived inaccuracy of the techniques (see the Appendix for a list of suggested
papers to read). However, explainability is often a necessity, not a luxury, so in
many situations, you must present explanations when there is no good alternative,
such as using an inherently interpretable model. It is important to not minimize the
contribution of these papers to our understanding of Explainable AI, but instead view
them as guides for when, and how, explainability will fail.

The majority of research on how XAI techniques fail can be grouped into two
categories: the inaccuracy of the explanations, and how brittle the techniques are. The
first group critiques the technical accuracy, or faithfulness, of a method to represent
the model’s true behavior. The second group of criticisms is focused on how robust
explanations are to manipulation and noise.

Technical accuracy of explanations
Technical accuracy can be measured in several ways, such as how well the technique
represents the way the model works, the numerical accuracy of the explanation value,
or an independent benchmark, such as how precisely a salience map technique for
an image classifier correctly outlines the shape in the image. Technical accuracy is
perhaps the most utilitarian, and uncontroversial, set of research to look at when
thinking about the appropriateness of a method for a given consumer. Some types
of inaccuracies are mostly irrelevant to a user. For example, an end user may not
expect, or be able to differentiate, between an explanation that is 90% accurate from
one that is 100% accurate. This premise is what makes sampled Shapley (covered
in 2 and 3) still useful, even though they represent an approximation of the true
Shapley values for attributing influence to dataset features. In contrast, Grad-CAM’s
(Chapter 4) inaccuracy in attributing pixel influence for a multiclassification model
renders it unsuitable for almost all consumers who do not have ML expertise and
would understand this important exception when viewing an explainability result.

Ironically, for all the focus on evaluating the technical accuracy of explainability
methods, little research has been performed on another type of accuracy aligned to

208 | Chapter 7: Interacting with Explainable AI



our ultimate goal of having ML consumers accurately comprehend the model. We
call this the presentation efficacy: how well the presentation of an explanation conveys
information to and is understood by ML consumers. Representing an explanation
with 100% efficacy means the ML consumer perfectly understood all the information
conveyed by the visualization. In contrast, a presentation efficacy of 50% would mean
half of the understanding was lost due to the presentation.

Consider the two explanations in Figure 7-2; both have the same underlying explan‐
ation. By using high-contrast colors, the explanation on the left has used good
information visualization practices, making it easy to understand what pixels are
influencing the model’s classification of the bird as a cockatoo. In contrast, the
explanation on the right uses the same saliency map, but rather than using a combi‐
nation of high-contrast colors to represent pixel attribution, it uses white. This makes
it nearly impossible to distinguish characteristics of the explanation once it is overlaid
onto the original image of a white cockatoo.

Figure 7-2. The same underlying explanation is portrayed in two different ways to
illustrate how a bad visualization has very low presentation efficacy.

As of 2022, we are not aware of any research that has studied this presentation efficacy
to understand topics such as thresholds for comprehension or how it may differ
between types of ML consumers. In our opinion, presentation efficacy is the largest
potential danger you will encounter as an ML practitioner in using, sharing, and
embedding Explainable AI in your ML systems. Many Explainable AI techniques come
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3 Bicubic smoothing is by far the most popular technique, resulting in fuzzy-looking images. However, it is
harder to see the flaws of interpolating in bicubic smoothing because our visual system naturally accommo‐
dates for images that are slightly blurry.

with visualization methods that often violate core information visualization principles
or, in the pursuit of aesthetics, overrepresent how accurate their explanations are.

As an example of the overrepresentation flaw, many techniques for image models
mistakenly display explanation masks (heatmaps, outlines, etc.) at a higher resolution
than what was generated by the technique. As these masks are often overlaid on top
of the image input, the mask displays attributions to pixels that were never even seen
by the model or the explanation method. Understanding how this occurs, and why it
is often done, are vital to giving explainability consumers accurate explanations.

This overrepresentation comes from trying to apply an explanation mask to the
original, unprocessed image used as an input to the model. Many image models crop
and downsample an image to the input dimensions, often dramatically given the size
of many images today compared to the common resolutions used by models (e.g.,
224×224, 128×128, or 64×64 pixels). The resulting explainability mask is the same
size as the input dimension (i.e., 224×224), but the designer of the explainability
technique or the ML practitioner wishes to overlay the mask onto the original image,
which is often at resolutions in the megapixels (e.g., more than 1024×1024). The
easiest way to do this is to use an image transformation library to upsample (also
known as upscale) the explanation mask using a standard image library to interpolate
to the size of the original image. Modern interpolation methods are designed to “fill
in the blanks” in a visually pleasing way. Figure 7-3 shows an example of upsampling
on an image from the MNIST dataset using the nearest neighbors algorithm, the
most basic of interpolation methods.3 All MNIST images are purely black and white,
so any gray areas in the upsampled image are approximations by the algorithm of
what the pixels should look like in that region.

Figure 7-3. Upsampling an image of a 4 from the MNIST dataset to 10× its size.
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However, this interpolation is based on assumptions on what the new pixels should
look like, rather than deriving their values from an authoritative source. As a result,
upsampled explanation masks will highlight pixel attributions that never existed.
Figure 7-4 shows an example of this issue. For the upscaled saliency map, erroneous
attributions are introduced, resulting in light green pixels. The problem can most
clearly be seen when we overlay the saliency map on top of the original image.
Whereas the original pixel attribution technique showed the model as only being
influenced by four pixels in a low-resolution diamond, the upscaled saliency map
begins to imply that there was a fuzziness to the pixel attribution technique. This is
most problematic when interesting features, such as edges or patterns, were lost in
downscaling or cropping the original feature.

Figure 7-4. Example of an upsampled image mask and what pixel attributions were
interpolated.

To avoid this problem, avoid upsampling explanation masks using interpolation. Two
options, seen in Figure 7-5, are to upsample with no interpolation, which results in
a disjointed but still faithful explanation mask, or to interpolate with some sort of
pattern or shading to indicate “we don’t know what the explanation would be for
these pixels.”

Figure 7-5. Illustrative examples, not meant for actual use, of how one could accurately
show a saliency map that is resized to the original image.
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4 To the best of our knowledge, artificial perturbations of the network weights, say via retraining, and their
effect on explainability techniques, has not been studied.

5 Ann-Kathrin Dombrowski et al., “Explanations Can Be Manipulated and Geometry Is to Blame,” arXiv, 2019,
https://arxiv.org/abs/1906.07983.

Another common technical inaccuracy results from explainability techniques that
do not perform per-element attributions of the input features. While this rarely
occurs for structured data models, it is common to do this for feature attributions
in time-series models and for region-based explanation techniques for image or text
models. For example, many image explanation techniques that generate heatmap
explanation masks will display a gradient to interpolate between different regions
of the heatmap. This is inaccurate because the interpolation is introduced after the
explanation has been calculated and conveys a smooth transition in model influence
that may not actually exist.

A common rationale for using these gradients is that CNN models utilize a similar
smoothing kernel in their convolution (downsampling) layers, so it is okay to use a
similar smoothing approach in the explanation. However, the ML community has not
studied the effectiveness of this claim as of the summer of 2022.

Brittleness in explanations
There is a growing body of research focused on the brittleness of different explana‐
tion techniques. Brittleness is the inability of a system to perform well outside of
its original design parameters. For explainability, this takes the form of adversarial
attacks and artificial noise injected into inputs.4 For many techniques, it is clearly
demonstrated they do not handle brittle attacks with much grace. For example,
researchers were able to inject noise into an image that resulted in the image mask
generated by the explanation technique spelling out different words, as shown in
Figure 7-6.5
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Figure 7-6. From the work of Dombrowski et al., the original image of a dog on the left
can be imperceptibly manipulated to the image on the right to such an extent that words
can be created in the explanation output.
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6 Nicholas Carlini et al., “Extracting Training Data from Large Language Models,” arXiv, 2021.
7 Juyeon Heo et al., “Fooling Neural Network Interpretations via Adversarial Model Manipulation,” arXiv, 2019.

What Are Adversarial Attacks?

In machine learning, an adversarial attack is an attempt to trick
or influence a model’s prediction with deceptive or manipulated
data. Evasion tactics are the most common and typically involve
some data modification in the form of adversarial examples; i.e., an
instance with small, imperceptible changes that can fool the model
into making the wrong prediction. For example, glasses or clothing
that have been designed to evade facial recognition software or
reflective tape that is used to trick license plate readers. These
kinds of adversarial examples and attacks can pose a real problem
for real-world ML systems. In 2017, scientists at MIT’s LabSix, an
AI research group, caused Google’s image recognition model to
classify a 3D-printed toy turtle modified with a slight texture as a
rifle and classify a cat as guacamole.
Adversarial attacks can also take the form of model poisoning or
model extraction. An extreme example of model poisoning would
be when the Microsoft Twitter chatbot Tay (now defunct) was
corrupted by users’ input from producing light, playful conversa‐
tion as intended to instead creating misogynistic and racist rants.
As an example of model extraction, it’s been shown that large
language models6 like GPT-3 can actually leak details from the
training data and can be prompted to return private and personally
identifiable information such as names, email addresses, and phone
numbers when certain manipulated keywords or phrases are sent
for prediction.

In other cases, researchers have been able to demonstrate7 how image-based explana‐
tions can be manipulated into misexplanations through fine-tuning the model, with
no significant loss in accuracy; an example is shown in Figure 7-7.
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Figure 7-7. By fine-tuning the model’s weights, Heo et al. were able to change the
results of both Grad-CAM (Chapter 4) and LRP (Chapter 5), with no meaningful loss
in the model’s performance. (Print readers can see the color image at https://oreil.ly/
xai-fig-7-7.)

Research into the brittleness of explainability techniques has primarily focused on
image models and image-focused explanation techniques, but it is reasonable to
assume many of these adversarial attacks could be adapted to other modalities. What
is also not clear, as of 2022, is whether the explanation techniques are themselves
performing poorly, or whether they are surfacing turmoil within the model.

While it is tempting to draw the conclusion that these explainability techniques
should never be used due to their shortcomings, you should also consider how likely
it is these issues may be encountered in your ML system when it is deployed in the
real world. For example, how susceptible are the inputs of your model to adversarial
attack? If your model draws entirely from factual internal sources, e.g., sales data or
camera images on a factory floor, it is unlikely that the explanation will be exposed to
adversarial attacks (or, if it is, this may be the least of your problems). Conversely, an
AI that flags user comments in a forum is highly exposed to adversarial attacks, and
we could expect any accompanying explanations to be vulnerable as well.
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8 An absolute truth explanation would be to trace an explanation throughout the entire ML’s decision pro‐
cess/layers and annotate each weight and variable to reference its influence. It would also be absolutely
incomprehensible.

With High-Risk Systems, Ensure Explanations Do Not Overrepresent
Their Validity

If your AI is being used in a high-risk system, e.g., in the medical
domain or justice system, be careful to ensure your target audience
does not place more emphasis on the explanation than is warranted
by the technique. In such cases, we often observe that explainability
is used with an intent to improve trust in the system with end
users. However, these explanations are often treated as absolute
truths by ML consumers and used to justify their conclusions,
rather than a probable explanation for a model’s behavior.8

For other, more primitive, explanation techniques such as PDP plots (discussed in
Chapter 3), the risk of conveying inaccurate explanations through poor visualizations
is much lower. Issues to be aware of include changing scales in the axes between
explanations, which consumers may not notice, and plots that are so small they can
be overinterpreted.

Build on the ML Consumer’s Existing Understanding
The most useful explanations for consumers are those that build on their existing
knowledge, either of the inputs, prediction, or ML model, to gain a more sophisti‐
cated understanding. To understand why this is, we must first understand a few
aspects of human-computer interaction: mental models, situational awareness, and
satisficing.

Mental models are very similar to ML models: they represent a framework that a
person has learned that lets them quickly and efficiently reach conclusions and make
decisions. Like ML, mental models often do not truly represent the actual system
they model. As an example, most people’s mental model of how to drive a car is
that pressing the gas pedal makes the car go faster. In reality, the gas pedal controls
the amount of air and fuel flowing into a car engine, which then causes a larger
combustion, and in turn, causes the engine to exert more force through gears in a
transmission. The gearing in this transmission allows the engine to exert more or less
force depending on the speed the wheels are rotating at. While the true model of the
car is more accurate, and explains why pressing a gas pedal at different speeds does
not make the car accelerate the same amount, reasoning through this process every
time would make driving much more onerous. Most of the time, it is sufficient to use
a simpler mental model that pushing the gas pedal makes the car go faster.
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For Explainable AI, the best explanations match the consumer’s mental model of
the ML system, or are able to help them build a sufficiently accurate mental model.
It’s most effective to evaluate how well the frameworks of the explanation and the
mental model match each other when deciding between different families of XAI
techniques. Determining user’s mental models for different ML systems is done
primarily through conducting user interviews and research. This is a time-consuming
process that requires a trained UX researcher. Assuming your ML system is replacing
an existing process, one shortcut to discovering this pairing is to ask users how they
build confidence in decisions without an AI. For example, when classifying cancer
in cell tissue slides, pathologists often justify their decision by referencing textbook
images that represent canonical examples of cancers in cell tissue. In this case, using
an example-based (or counterfactual) technique would be the best pairing for the
pathologist end user, as shown by the SMILY app in Figure 7-8, developed by Google
Health.

Figure 7-8. SMILY uses example-based explanations and concept explanations to help
pathologists understand cell tissue slides.

Situational awareness describes how well a person understands a given scenario, and
it is also a process by which people try to make decisions or arrive at conclusions
when confronted with new circumstances. For ML consumers, they are often trying
to improve their situational awareness when they ask the question, Why did the ML
model behave that way?
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The three steps of situational awareness are:

1. Perceive
Determine what new information to gather and collect this information.

2. Comprehend
Using new and existing information, build an understanding of the current
situation.

3. Project
With the current understanding, create assumptions about what will happen in
the future. This could be which actions should be taken to change the situation,
or how the situation itself will continue to evolve.

Situational awareness also heavily relies on users having a correct mental model;
otherwise, it is very difficult to accurately comprehend and project, or even know what
information to gather. Building situational awareness is a large field of research in its
own right in human-computer interaction, so we will only briefly discuss how this
pertains to ML consumers of explanations. Explanations are most influential when a
person is perceiving or comprehending. As the ML practitioner, your choice of explan‐
ation technique also dictates the information available to the consumer when they are
trying to gather new information about the rationale behind a prediction. Similarly,
useful explanation techniques are those that best help an ML consumer comprehend
the ML. Unfortunately, Explainable AI currently does little, beyond setting the stage,
to help users as they project. In the future, we are looking forward to XAI that is
closer to an interactive dialogue to help consumers explore different scenarios as part of
improving their ability to project the future behavior of an ML model.

Satisficing is a common human behavior that might be best described as “good
enough for the amount of time I’ve got right now.” More formally, people are
extremely good at deriving a generally optimal solution to a problem, doing it far
faster than would be expected given the time it takes them to determine the truly
optimal solution, but at the cost of relying on heuristics and stereotypes. Satisficing
has been observed across all professions and, counterintuitively, as someone becomes
more of an expert at their job and is faster at finding the best solution, they are no less
likely to satisfice. For you, this is an important consideration of how you can expect
ML consumers to interact with explanations—quickly and forming conclusions that
are generally correct but may miss nuances. Anecdotally, we have seen this often arise
across many model modalities and explanation techniques.
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For example, consumers of feature attribution charts often summarize that features
with minimal contributions (even if negative) for an individual prediction are not
true for the entire dataset. For example, in a classification model, it may be that
most predictions are not influenced by a feature, but for those along a decision
boundary, the feature is highly influential. Another example of this approach is when
one quickly assigns erroneous, semantic meaning to explanation heatmaps in images,
when it is clear the model does not have the capacity for semantic representation;
e.g., “clearly the model learned to recognize a cat because the cat ears and eyes are
highlighted” rather than the more precise “this region of pixels contains many edges
that are indicative of a cat.” Satisficing is useful, and with it your ML consumers
will probably arrive at the right conclusion most of the time more quickly. However,
it also causes failures in the cases that may be of most interest to you and these
consumers, where the model is not behaving as expected.

To counter satisficing, try to carefully curate the information presented in the explan‐
ation to the user. For example, many feature- and pixel-attribution techniques do
not show negative attributions because it helps ML consumers be more focused on
signals that drive the model toward the prediction (rather than away from it). It is
also useful to design explanations to help answer a specific question for a consumer,
rather than just being a general dashboard of the model’s health.

With this discussion of mental models, situational awareness, and satisficing, it is also
worth asking if explanations can be used to teach users how an ML model works.
There is little research into this area of explainability, but we also expect that this
would be a difficult use of explanations in their current form. By definition, the
techniques we’ve presented in this book seek to explain a model after it has made a
prediction, in a post hoc fashion. By asking if explainability can teach a user about
how an ML model works, we are also asking if explanations could be used to create
a surrogate, interpretable ML model. Whether this is feasible is still an active area of
research.

Common Pitfalls in Using Explainability
In using explanations, we find there are a few common pitfalls for ML consumers.
These situations occur not because there is something wrong with the explanation
or ML model but come from consumers improperly understanding or using explana‐
tions. Most result from overreliance or overconfidence in the explanation technique
but are also driven by how explainability results are packaged and delivered to con‐
sumers. The three most common pitfalls are assuming causality, overfitting “intent”
to a model, and leveraging additional explanations in an attempt to augment the
original explanation.

Common Pitfalls in Using Explainability | 219



Helping Your Future Self Understand the Explanations
You Generated Today

Once you get an explanation technique up and running, it’s tempting to cash in on
your hard work and generate as many explanations as you can right away. Unfortu‐
nately, you often find yourself squinting at many charts in an old Jupyter notebook
or trying to explain the context for the explanation you sent along to colleagues a few
months ago.

To save yourself future frustration, we’ve found it useful to always embed the follow‐
ing information in your explanations:

1. Exact technique and parameters used, e.g., was it SHAP or Captum’s sampled1.
Shapley?

2. Model version, training configuration, hyperparameter values, and dataset ver‐2.
sion, to be able to trace the source of the explanation.

3. Timestamp the explanation was generated, which is useful for knowing if the3.
explanation is stale.

4. Input and inference values. You would be surprised how few techniques include4.
this information in their visualizations.

Assuming Causality
Very few, if any, explanation techniques are able to establish causality in any suf‐
ficiently complex model. Techniques can only describe correlations between what
influenced the model and the prediction. For example, Integrated Gradients may
highlight a single pixel as highly influential in the model’s prediction, but the
technique does not guarantee that the pixel caused (even in part) the prediction.

At odds with explanation techniques’ ability to provide correlations is the strong
human desire to explain consequences due to causality. Causality is an important part
of storytelling and narratives, and often you will find that consumers try to fit an
explanation into a broader narrative to justify, attack, or just comprehend a model’s
actions. It is very difficult to work around this need for causality, and you will not
get far trying to change your consumer’s instinctive behavior. Instead, there are two
strategies you can use to mitigate the tendency to fall back to causative descriptions:

• Language matters. Whenever introducing an explanation, whether with text,•
verbally, or in a presentation, be careful to not introduce or imply causation. This
can be very difficult! For example, with feature attributions, it is tempting to say
a particular feature caused the model to behave a certain way. Instead, try to use
words like “influence” or “suggest.”
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• Avoid “this-then-that” narratives. Often explanations, with good intentions, try•
to present a logical flow of information and narrative. “This is the input to the
model, then the model generated this prediction, here is the explanation” is a
common narrative. Unfortunately, this narrative also implies a causal chain of
reasoning from inputs to explanations. Instead, you may want to try inverting
this narrative: “The model gave this prediction, which is explained by X. Addi‐
tionally, here are the inputs.”

Overfitting Intent to a Model
When given a sufficiently compelling explanation, consumers are tempted to extrapo‐
late from the explanation to concepts learned by the model. Except for those focused
on concepts, e.g., TCAVs, it is difficult to say that most explanation techniques are
able to reveal semantic concepts the model has learned. In our earlier example of an
image classifier given a prediction for a photo of a cat, it is accurate to say what pixels
influenced the prediction, but it is not accurate to reach further and say, “Now we
know the model has learned how to recognize cat ears.” It certainly could have, but
a pixel attribution technique gives explanations based on the pixels in the image, not
the semantic concepts related to those pixels.

To avoid this overfitting, make explanations clear and constrained.

Overreaching for Additional Explanations
Once given a sufficient explanation, it is not unusual for ML consumers to reach
for another explanation technique to augment their understanding. However, these
techniques, even if good on their own, may not actually increase the power of the
original explanation. For example, a common reach is for a user who has received
a feature attribution explanation to try and find a counterfactual explanation to
prove the validity of the feature attribution by finding a prediction for a data sample
with a different value for the most influential feature and a different predicted class.
The consumer may then declare this proves the influence of the top-ranked feature.
While the counterfactual can enhance our understanding of the model’s behavior,
and even back-and-forth between looking at feature attributions and corresponding
counterfactuals can tell us about different facets of the model, it is important to not
treat each explanation as a validation of the other. Each explanation has its own
gotchas and nuances that constrain what they can tell us about the model. Together,
they may widen our understanding of the model, but may not necessarily deepen our
understanding of one particular aspect.

Preventing explanation overreach is difficult because users often take matters into
their own hands to find new explanations. Strongly discouraging this behavior rarely
works in practice either, as the ML consumers will genuinely believe they are proac‐
tively contributing to the overall quality of the Explainable AI. Instead, to prevent
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overreach, you can help channel this positive energy in a productive direction by
making it easy to retrieve additional explanations with the same technique, or proac‐
tively determining what techniques can be combined in advance and offering those
to the user.

Summary
In this chapter, we discussed what happens after an explanation is generated by look‐
ing at how ML consumers interact with explanations. We introduced a framework
of expertise and intents for ML consumers. These expertises, such as ML, domain,
and inputs, combined with intents like improving, monitoring, understanding, and
validating models, along with building trust in the AI and performing remediations,
allow us to understand how to best match our audience with the right type of
explanation. We then turned our attention to displaying explanations, highlighting
best practices such as following information visualization guidelines, conveying the
accuracy of an explanation, and building upon an ML consumer’s existing under‐
standing. Finally, we discussed common pitfalls that occur when users interact with
explanations and identified some ways of avoiding these issues.

So you’ve now gotten to a point where your ML consumer has received the explana‐
tion, understood it, and is ready to go to the next step. But what is that next step?
Throughout this book, we have occasionally referenced how explanations can be used
to understand or improve a model. For ML practitioners, these are examples of an
important part of model control and analysis. Understanding how a model works,
we can analyze its behavior and make smarter choices about how to improve the
model or dataset. For end users, though, this type of model analysis often is part
of a larger decision support system, where they are synthesizing many competing
sources of information and evaluations to decide on the best course of action. A sales
forecaster at a large grocery chain may use your explanations to understand what time
of year they can expect to sell the most strawberries. However, before deciding to place
that order for a cargo ship full of berries, they are also likely to check the expected
strawberry yield this season. For a regulator that is trying to establish confidence in
your AI, and validate its predictions, this explanation may be one of many factors
in an audit of the overall performance of a company’s use of technology. To put it
succinctly, generating, consuming, and interacting with an explanation is just the start.
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CHAPTER 8

Putting It All Together

In this book, we have given you, the ML practitioner, a framework for how to use
Explainable AI (XAI) and where it can be best applied. We also gave you a toolbox of
explainable techniques to apply in different scenarios, and guides for crafting respon‐
sible and beneficial interactions with explanations. In this chapter, we step back to
focus on the bigger picture around Explainable AI. With the tools and capabilities
that we covered in this book, how can you approach the entire ML workflow and
build with explainability in mind? We also provide a preview of the upcoming AI
regulations and standards that will require explainability.

Building with Explainability in Mind
Many times, explainability is approached as an afterthought to model development,
an added bonus to developing your most recent top-performing model or a post
hoc feature request required by your boss trying to adhere to some new regulatory
constraint that’s been imposed on the business. However, explainability and the goal
of XAI is much more than that.

Throughout this book, we’ve discussed in detail a number of explainability techni‐
ques and seen how they can be applied for tabular, image, and text data. For the
most part, we’ve explored these techniques in isolation so you, the reader, can quickly
get up to speed on commonly used methods, how they work, their pros, and their
cons. Of course, in practice explainability doesn’t occur in isolation. You should
consider these techniques as part of your ever-expanding toolkit for analysis in
machine learning. This toolkit isn’t restricted merely to post hoc model analysis. The
true benefit of Explainable AI is that it can be applied across the entire end-to-end
machine learning life cycle from collecting, preprocessing, and improving datasets to
model development, deployment, and monitoring.

223



In this section, we’ll discuss at a high level how to build more effective machine
learning solutions by incorporating the methodology of explainability throughout
the entire machine learning life cycle. Explainability isn’t just a post hoc feature but
rather a lens for viewing and improving the entire machine learning process; there
are already many promising directions that XAI can be used to augment AI systems,
boosting accuracy, trust, transparency, robustness, and safety.

The ML Life Cycle
Developing any machine learning solution is an iterative process, and the steps you
may take from start to finish will depend heavily on your use case and, ultimately, the
business goals of the project. However, most end-to-end machine learning projects
follow the same basic road map, shown in Figure 8-1, at a high-level aligning along
three stages: discovery, development, and deployment.

Figure 8-1. The true benefit of Explainable AI is that it can be applied across the entire
machine learning life cycle from collecting, preprocessing, and improving datasets to
model development, deployment, and monitoring.

Each stage is approached in turn, and there is a canonical order to the individual
steps of each stage; however, there is often a healthy amount of iteration, and you may
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1 Rory Sayres et al., “Using a Deep Learning Algorithm and Integrated Gradients Explanation to Assist Grading
for Diabetic Retinopathy,” Ophthalmology 126.4 (2019): 552–64.

find yourself revisiting an earlier step as you gain more information from a later step,
particularly between discovery and development.

Explainability through discovery
Machine learning exists as a tool to solve a problem but is often only a small compo‐
nent of a much bigger solution. Discovery is the initial stage of any ML project, and
the first step is to define the business use case and understand how exactly ML fits
into the wider solution (Step 1 of Figure 8-1). Even at this early stage, it’s important to
consider the role that explainability will (or will not) play in the solution as well. This
decision can have ripple effects on the later choices that arise in the ML cycle, and it is
important to keep sight of these requirements through each stage of the life cycle.

One thing to consider is how the model predictions will be used in the final system
or how they will be presented to the end user, and how explanations may (or may
not) be presented (see Chapter 7 for detailed discussion about human factors related
to XAI). For example, suppose our goal is to develop a predictive diagnostic model
that informs a physician of potential health outcomes for a patient. It is possible that
providing model explanations alongside predictions can improve patient outcomes.
For example, a 2019 study1 measured doctors’ ability to diagnose diabetic retinopathy
from scans by comparing three settings: unassisted (no machine learning model),
model predictions only, and model predictions plus XAI heatmap. They found that
doctors that were assisted with deep learning model predictions alone had improved
accuracy over those who were unassisted. They also found that model predictions
paired with XAI heatmaps increased accuracy for those patients with diabetic retin‐
opathy and increased sensitivity without decreasing specificity. However, there could
also be unforeseen negative side effects to consider as well; e.g., surfacing explana‐
tions could lead to unwanted outcomes as well such as doctors “overrelying” on
explanations, and accepting inaccurate model predictions.

Or perhaps there are legal, ethical, or regulatory concerns that are required of the
final ML solution that provide additional information as to why a model makes
the recommendation it does. Any machine learning project should begin with a
comprehensive understanding of the business opportunity and aligning on model
constraints and performance requirements for deployment. Many times, there are
indirect factors related to the business use case that influence development choices
that arise later, like speed of inference or model size, or the cost to obtain data for
different features in a dataset. It is equally important to discuss explainability or
interpretability requirements and agree on what level and type of explanations are
necessary or sufficient before embarking on a new project.
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Step 2 of Figure 8-1 is data exploration and a deep dive into data understanding.
This is also the beginning of the development portion of the ML life cycle. This is
perhaps the most crucial step of designing an ML solution. Ultimately, the data guides
the process, and it’s necessary to understand the quality of the data that is available.
From an explainability perspective, the majority of explainability techniques provide
insights that are focused on the dataset and features. What are the distributions of
the key features? How will missing values be handled? Are there outliers? Are any
input values highly correlated? How can we augment the dataset? Is there bias in
the dataset? It is important to keep in mind explainability during this stage as well.
For example, as we saw in Chapter 3, when discussing explainability techniques
for tabular data, some explainability techniques give misleading results when two
features are highly correlated. It is important to be aware of these caveats early on.

Premodeling explainability is focused on understanding the data or any feature
engineering that is used to train the machine learning model, see also the discussion
in Chapter 2. This type of explainability is independent of any model and focused
solely on the data. Explanations that focus solely on the dataset are often referred to
as exploratory data analysis (EDA). EDA is a collection of statistical techniques and
visualizations that are used to gain more insight into a dataset. EDA can take many
forms, and visualization plays an important role during this step.

Commonly used tools such as Know Your Data and Facets allow you to quickly get
a sense of the statistical properties of the features in your dataset such as the mean,
standard deviation, range, and percentage of missing samples, as well as the feature
dimensionality and presence of any outliers. Figure 8-2 shows how the Facets Overview
looks when applied to the California Housing dataset. In Chapter 3, we apply many
different explainability techniques to models built on this dataset. The Facets Overview
gives a quick look at the feature distributions of values in the dataset. This makes it easy
to uncover common issues such as unexpected feature values, missing feature values,
training/serving skew, and train/test/validation set skew. With a lens of explainability in
mind, this knowledge of the data distribution and data quality is important for under‐
standing model behavior, interpreting model predictions, and exposing any biases that
might exist.
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Figure 8-2. The Facets Overview of the California Housing dataset provides summary
statistics for each feature and compares the training and test datasets. (Print readers can
see the color image at https://oreil.ly/xai-fig-8-2.)
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Explainability through development
Entering fully into the development stage, the next step in the ML life cycle (Step 3
in Figure 8-1) is model and algorithm selection. Explainability requirements play an
important role in deciding which model to use, or even limit which models you may
be able to use. One way to meet this explainability requirement is to employ naturally
interpretable models, such as sparse linear models, decision trees, or additive mod‐
els. These models inherently provide a means of inspecting the model behavior by
examining the model components directly; e.g., a single rule or path in the decision
tree (see “Explaining Tree-Based Models” on page 63), or the weight of a specific
feature in a linear model. If you’re working with tabular data, these interpretable
models might perform as well or better than more complex deep neural networks,
and they have the added benefit of being fully explainable. If the model meets the
performance requirements in terms of your predetermined evaluation metrics and
uses a reasonable number of internal components (e.g., decision paths or features),
such models can provide extremely useful insights. In fact, in most cases, if an
interpretable model can be used and has similar performance to a more complex one,
then the interpretable model is preferable.

However, for more complex data types, like images or text, you’re likely to find neural
networks more performant than these more inherently interpretable models. In this
case, XAI paired with a complex neural network could be the way to go. Broadly
speaking, explanations that are part of the model’s prediction itself are known as
intrinsic explanations. Intrinsic explanations rely on using an interpretable model
or may require modifications to the model or training loop itself, as in constrained
optimization (see the discussion on constrained optimization and deep lattice in
Chapter 6). Intrinsic explanations are a good example of techniques that exist halfway
in between pure explainability and interpretability, so don’t worry too much if you
see them described as either explainability or interpretability. Many of the techniques
we’ve described in this book (see Chapter 3 to Chapter 5) fall into the category of
post hoc explainability methods, which means they are applied after model training
and rely on model predictions to surface explanations. Knowing how explainability
techniques work for different models and their pros and cons can have a large impact
on the outcome of the model selection stage of the ML cycle.

We begin by building data pipelines and engineering features (Step 4 of Figure 8-1).
Feature engineering is the process of transforming raw input data into features that
are more closely aligned with the model’s learning objective and expressed in a format
that can be fed to the model for training. Feature engineering techniques can involve
bucketizing inputs, converting between data formats, tokenizing and stemming text,
creating feature embeddings (as discussed in the beginning of Chapter 5), and many
others.

Using explainability to perform feature engineering and feature selection is one of
the most efficient ways to understand your model’s performance and identify ways to
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improve. Applying an explainability approach during this step can help determine if
your dataset includes excessive, or even confounding, features that are not contribu‐
ting to the performance of your model. Almost all of the feature-based explainability
methods that we’ve discussed throughout Chapters 3, 4, and 5 can be used in feature
selection.

To do this correctly, you should apply your preferred XAI technique first on the
entire training and test datasets to generate global explanations first, before looking
at individual predictions or cohorts. One thing to keep in mind is that feature-based
techniques that assign a negative value for a feature does not necessarily mean that it’s
not important or that you should remove that feature from the model. Instead, look
for features that have little (or no) absolute influence on predictions.

After identifying these low-impact features, it’s then a good idea to perform a sliced
analysis. Sliced analysis is a general term for comparing certain quantitative metrics
across various cross sections of your dataset. A cross section can be formed by taking
all examples with a given feature or label value. In the context of explainability, you
can also create a cross section based on cohort explanations. We introduced the
concept of cohort explanations in Chapter 2. Cohort explanations are aggregated
explanations that are generated for a specific subset of the full dataset. Comparing
and contrasting these cohorts is one method of sliced analysis.

Sliced analysis can help you understand the behavior of your model in a way that
is generalized enough to lead to broad improvements in model quality but localized
enough to avoid the problem of trying to boil the entire ocean. You can often use the
outputs of explanations in other sliced analysis tools, or even in follow-on statistical
analyses.

Document How You Selected Your Slices

When performing sliced analysis, a common regret among practi‐
tioners is that they do not extensively document the selection pro‐
cess for the slice, and the parameters of the analysis. This lack of
information can make it difficult to compare new slices to previous
slices and analyses performed much earlier in the ML workflow, for
example, performance after a model has been deployed and serving
predictions for a year with the original analyses done during model
development.

Sliced analysis is a useful tool for feature selection because it allows you to verify that
the average influence of this feature does not appear to be zero, only due to high
variance between positive and negative values for different cohorts of predictions.
That is, you’re able to confirm that the feature importance isn’t artificially low merely
due to the effects of other features.

Building with Explainability in Mind | 229



In general, when performing this kind of feature selection analysis, there is no
universal attribution threshold below which a feature is meaningless to the model’s
behavior. It requires experimentation and exploration. These explainability techni‐
ques simply provide another powerful lens with which to analyze and understand
your features. You will find that the cutoff for meaningful features varies due to
the complexity of the dataset, the cost of obtaining data for that feature, and if any
features are highly correlated.

Once you have identified features to remove from your model, it is important to
iteratively remove one feature at a time and then revalidate your model’s performance
along with regenerating any global or cohort explanations. We have routinely seen
that trivial features that were initially ignored by the model become very influential as
other, less relevant features are removed.

What About Layer Selection?
If we can use Explainable AI to select and prune features from our dataset, it seems
reasonable to assume one could also use a model-focused technique to find layers that
do not contribute to the performance of the model and remove, or simplify, these
layers. There has been some research in this area (see Appendix), but unfortunately,
as of 2022, we have not seen any techniques emerge that are both robust and simple
enough to use to justify what is often a lengthy process of setting up the technique,
interpreting the findings, and iteratively trying to change the model. Instead, many
other techniques for model architecture selection are more useful at this time, such as
model distillation, hyperparameter tuning, and neural architecture searches.

The next steps of the development stage, Steps 5 and 6 in Figure 8-1, are focused
on building and evaluating the ML model. This is another area where the power of
explainability techniques really shines. Throughout this book, we have discussed how
explainability can identify what is influencing a model and how it behaves. Looked
at from another perspective, Explainable AI can also give you insight into a model’s
robustness. By identifying where a model is relying on relevant features, you can
understand how well the model will be able to adapt in unforeseen circumstances.
A model that arrives at the correct prediction, but relies on seemingly unrelated
information, may be easily swayed to make an incorrect prediction with only slight
changes to the inputs. Likewise, if you find that the model is unable to identify similar
instances from your dataset via example-based explanations (discussed in Chapter 6),
it likely indicates the model is brittle.

Explainability can also show where the model is overly dependent on irrelevant fea‐
tures. These may be the background of an image, an ancillary column in structured
data, or very specific grammar in text. Any of these could reveal that the model is also
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vulnerable to an adversarial attack, where a desired prediction can be engineered in
advance without an obvious change to the inputs.

In general, when debugging ML models, explainability techniques
are often one of the first tools practitioners reach for when they
are trying to understand why a model performed poorly. It is
important to recognize the value of investing in building a reusable,
Explainable AI tool that allows many types of ML consumers in
your organization to easily load a model, replay an interference,
and receive an explanation. Investing in this tooling up front can
help avoid having you, and other practitioners, having to be on call
as a messenger who runs Jupyter notebook cells in order to shuttle
explanations back to the interested party.

The last step of the development stage is to present results to the stakeholders and
regulatory groups within the business (Step 7 of Figure 8-1). This is a critical and
necessary step in the ML life cycle as it is often an important decision point for whether
the ML model will make its way to production and deployment (the final stage of the
ML life cycle) or not. Often this step is focused on creating numbers and visuals for
initial reports that will be presented within the organization, and explainability tools
provide an effective way to build confidence in the ML model predictions.

During this step, it’s important to keep in mind your intended audience, and you
should be cognizant of how the explanations are to be presented alongside the model
results. In Chapter 7, we discussed in detail a number of aspects to keep in mind
when interacting with explainability. Since the target audience during this step is
the business stakeholders or end users, you’ll most likely communicate to users with
domain expertise and less ML experience.

Once again, example-based explanations can be used to complement a model’s pre‐
diction by showing examples related to the one being predicted. There are different
ways to determine “relatedness” of examples, but two types that we have found to
be most useful during this step of the ML life cycle are normative examples and
contrastive examples.

Normative and contrastive examples are examples that are closely related to the input
example and whose label either agrees or differs with the model’s prediction. For
example, in Figure 8-3 the model predicts the label “cat” for the input image. Nor‐
mative examples are examples from the training dataset that also have the label
“cat,” while contrastive examples are examples from the training dataset that have a
different ground truth label.
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Figure 8-3. Normative examples are examples that come from the same predicted class
(e.g., “cat”) as the ML model, while contrastive examples are taken from a different class
(e.g., “tiger,” “hamster,” or “dog”).

One way to generate normative examples is by choosing a layer close to the model’s
final label layer and retrieving the k closest neighbors from the training set that
have the same predicted label as the given instance. These examples are often called
“prototypes.” That is, these are examples in the dataset which are “close” to our given
instance and share the same label. Naturally, we would expect to recognize common
features between prototypes and the given instance.

To prevent reasoning errors due to overgeneralization, it is important to also present
examples that differ from the norm but are still in the target class. That is, examples
in the training set that share the same label as the model prediction but are unrelated
to the example in question. These examples are called “criticisms.” These kind of
high-level, example-based explanations through prototypes and criticisms can be
particularly useful to help build trust in a model’s prediction.

When the model makes a prediction that is unexpected or goes against the intuition
and experience of domain experts or stakeholders, example-based explanations are
especially valuable. Consider, for example, a model used by a bank to assist in
determining which loans to approve or deny. Suppose a business submits a new loan
application and the ML model marks the application as high risk or high likelihood of
defaulting. This could be based on a number of features such as the loan amount, the
previous credit history of the applicant, the FICA score, or the current debt liability of
the applicant, etc.
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Normative examples are instances from the training dataset that share the same
label. This could be historical loan applications that were also deemed too risky by
human experts or underwriters, or loan applications that had been approved but
later defaulted on. A prototype would be a normative example from the training
dataset that is similar in some way to the given application. Perhaps they had the
same FICO score or they share similar credit history as the applicant. A criticism is
a normative example that is quite different from the given application in question.
That is, a criticism example would have a different FICO score or debt liability,
but nonetheless was also deemed too risky or ultimately defaulted. Surfacing both
prototypes and diverse criticisms gives a holistic view of the model’s target class and
helps stakeholders identify common or diverging trends between those examples and
the instance in question.

In addition to prototypes and criticisms taken from the same predictive category,
contrastive examples are taken from a different class to the model’s prediction, but are
nonetheless closely related to the given instance. These examples allow for reasoning
about related instances from different categories. In the example of the loan applica‐
tion model we previously discussed, a contrastive example would be a historical loan
application from the training dataset that is very similar or closely related to the new
loan application but whose ground truth label was “no risk” or “low risk.”

Contrastive examples are similar in spirit to counterfactuals (discussed in Chapter 2),
derived from real instances instead of synthetic ones and near the model’s decision
boundary for the predicted class. In this way, they are a more informative type of
counterfactual and give insight to the model’s learned representations as well as the
local nature of the training data distribution.

Figure 8-4 shows an example of both normative and contrastive examples. This image
was taken from the game Quick, Draw! introduced by Google in 2016. The game is
like an AI-assisted version of Pictionary. Quick, Draw! asks the user to draw a given
object, like “pool” or “truck” or “vase,” while an ML model tries to guess what the user
is drawing. In Figure 8-4, the user was asked to draw a scorpion. Once the neural
network has had its turn guessing the image (without success, it seems), the game
surfaces similar examples from the training dataset that were labeled as scorpion (on
the right) as well as examples from the training dataset that were similar to the user’s
drawing but were not labeled as scorpion, such as a rake, a cherry, and a garden hose.
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Figure 8-4. The game Quick, Draw! asks the user to draw an object while an ML model
guesses the drawing. Once the user’s turn is up, the game provides a comparison of
normative and contrastive examples from the user’s drawing.

Beyond single examples and representations, another approach to understanding
model behavior is through concepts. Concepts enable reasoning about the represen‐
tation of features that a model learns through training. In Chapter 6, we discussed in
detail the TCAV (Testing with Concept Activation Vectors) method, which provides
representable terms via sets of examples encoding the concepts of interest for a given
example.

Explainability through deployment
The final stage of the ML life cycle is deployment (Steps 8–10 in Figure 8-1) and is
commonly referred to as MLOps (ML operations). This stage is related to aspects of
automating, monitoring, testing, managing, maintaining, and auditing machine learn‐
ing models in production. It is a necessary component for any company hoping to
scale the number of machine learning–driven applications within their organization.

When planning for deployment and through operationalizing the model (Steps 8 and
9 in Figure 8-1), it’s important to consider what role explanations may play for the
end user of the ML model. As with all things in ML, there is a trade-off between the
benefit of providing explanations and the technical burden of maintaining that part
of the infrastructure postproduction. Building an ML system that provides explana‐
tions alongside predictions in production will help end users of your system improve
their understanding and build trust in the model. Likewise, automatically generating
explanations as part of any AI governance process your organization has makes it
much easier to demonstrate to stakeholders, such as business executives, regulators,
and crossfunctional partners, how the model works and what influences the model.
However, deploying a model that provides explanations requires additional techni‐
cal investment and in some cases may be too much information for the end user
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who is not familiar with how to interpret those results. For ML systems that serve
explanations alongside predictions to end users, the computational intensity of many
techniques can prove to be a very difficult hurdle to overcome while also trying to
quickly return a response in the range of tens to hundreds of milliseconds. In short,
XAI can be costly, time-consuming, and potentially confusing to the end user.

We find there is often a trade-off between the XAI techniques that are most accurate
and robust versus those that are computationally fast, but less valid. If you cannot
find a good trade-off between the latency of your model serving explanations and
the quality of the explanations, it may make sense to investigate using an inherently
interpretable ML model, or to explore model extraction, which seeks to train a
smaller, more interpretable model from the original model.

Deployment is not the end of a machine learning model’s life cycle. Once the model
goes into production, it can start to degrade, and its predictions can grow increas‐
ingly unreliable. How do you know that your model is working as expected in the real
world? What if there are unexpected changes in the incoming data? Or the model no
longer produces accurate or useful predictions? How will these changes be detected?
These considerations are handled in the final stage, Step 10 of Figure 8-1, model
monitoring.

Model monitoring and continued model evaluation provide a way to assess your
model’s performance over time. Traditional model monitoring focuses on detecting
data skew or drift in the model’s inputs or outputs using the same evaluation metrics
you used during development. However, this approach treats the model itself as an
opaque function, often focusing only on the inputs and outputs and when predictions
start to deviate from the ground truth. This approach alone poses several challenges
and lacks any actionable advice for addressing the root problem. A much more rich
and detailed analysis can be obtained by monitoring feature attribution drift through
incorporating XAI during model monitoring as well.

For example, feature attributions can serve as an early indicator that the model’s
performance may be degrading, and monitoring feature attributions over time is a
useful signal for detecting drift and skew in live inputs compared to what the model
was trained on. Furthermore, feature attributions provide a number of advantages
over more standard skew detection algorithms.

Most skew detection algorithms are specific to the input and are most commonly
only able to handle numeric and/or categorical features. Other data modalities, like
time-series, or unstructured inputs, like images, are more challenging and often have to
be paired with some sort of dimensionality reduction. This added complexity is error
prone and can be problematic both because of loss of information through dimension
reduction techniques and sensitivity implementation choices. Feature attribution meth‐
ods, however, are capable of handling multiple input modalities and, since attributions
are dense numeric values, they can be compared more easily across data types.
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Also, monitoring based on feature attributions requires less fine-tuning to detect
data skew or drift. Not all data skews are created equal, and determining the right
threshold can be tricky. Alerting too often risks desensitization while alerting too
infrequently risks missing important, business-impacting issues. As a result, it’s often
necessary to tune skew detection algorithms, depending on the skew severity’s impact
on the final model. As the number of features increases, this can become an increas‐
ingly challenging task. XAI provides quantification of input influence that allows
thresholds to be tuned in a more informed manner and thus balance the sensitivity
and specificity trade-off for better alerts.

Another direction where XAI feature attributions can assist with skew detection is in
handling joint distributions. Most skew detection algorithms are developed to detect
skew in the univariate distribution of a given feature. However, this misses any data
shift or skew that may have occurred in the joint distribution of related features.
For example, a model that has two separate features “can fly” and “bird species”
that has been put into production can all of a sudden start receiving examples of
“flying penguins.” This would obviously constitute an outlier and be a sign of some
kind of data drift or skew, but the issue could go unnoticed because individually
the univariate statistics for the two features haven’t changed. However, by using XAI
techniques like feature attributions that take into account the joint distribution of
features can catch these kinds of issues.

Lastly, and perhaps the most useful aspect of XAI techniques in model monitoring,
is that they can provide actionable insights in addition to a diagnosis. Most skew
detection algorithms surface outliers or alert data distributional shifts, but this can
then require its own detailed analysis to determine how to address or mitigate those
issues. XAI can help here as well as a means to augment the training dataset or
provide an additional lens with which to better understand model features.

AI auditing often goes hand in hand with model monitoring. There are many use
cases where it is advantageous to keep a detailed record of model predictions along
with the corresponding model input requests and any other contextual information
that may be useful. These details are useful for later diagnosis in the case of an audit.

Having model requests (i.e., instances sent to the model for prediction) and model
responses (i.e., predictions) together are necessary for carrying out model monitor‐
ing, and you want to capture enough contextual information to re-create the environ‐
ment exactly as is to assist in any subsequent analysis. While it may seem obvious,
this can actually be quite difficult to accomplish effectively. Think, for example, of
a self-driving car. This is an extremely complex system with multiple ML models in
play as well as complex hardware and software requirements with onboard custom
chips and real-time operating systems. In this situation, it may not be possible to
re-create the environment precisely as is. However, recording some XAI outputs like
attributions can be beneficial for a deeper understanding without having to re-create

236 | Chapter 8: Putting It All Together



the exact same environment. XAI outputs can provide a high-level description of the
state, which provides valuable information where a precise recreation is not possible.

More broadly, XAI plays an important role in meeting the requirements of AI
regulations. Given the increased role that ML models play in our everyday lives,
governments across the world are beginning to draft or introduce AI regulations that
can be addressed with XAI.

AI Regulations and Explainability
Across the world, governments are beginning to draft or introduce regulations for
AI. As of the summer of 2022, AI regulations have been introduced in the EU.
The Digital Services Act (DSA) was approved by the European Parliament in July
2022 and will go into effect January 2024. The Artificial Intelligence Act has been
proposed by the European Commission, introducing a common regulatory and legal
framework applying to all types of AI. It is expected to come into effect in late
2023 or 2024. China also has several ministries drafting regulations. The first set
of regulations, the New Generation Artificial Intelligence Ethics Specifications, from
the Ministry of Science and Technology, lays out ethical norms for the use of AI in
China covering areas such as the use and protection of personal information and
responsible AI.

Similarly, in the US, the National Institute for Standards and Technology (NIST) has
drafted recommendations for AI governance, the AI Risk Management Framework.
The International Standards Organization (ISO) has begun finalizing ISO 42001 on
Artificial Intelligence, and is actively working on a draft for Explainable AI (ISO
6254). Although individual regulations may be scoped to countries or sectors of
technology, it is eventually expected the vast majority of AI employed by businesses
will be subject to some form of accountability.

All of these regulations and standards have one common theme: they expect Explain‐
able AI to have a central role in helping consumers and regulators assess how an ML
behaves and whether it is adhering to regulations. So far, regulations and standards
have avoided specifying exactly what type of explainability must be used, just that AI
should have documentation demonstrating how the model behaves or, in real time or
on request, the ML can explain its output.

This is both a blessing and a curse for ML practitioners. On the positive side, you will
have the flexibility to determine which explainability techniques are the best match
for your ML and use case. However, at the same time, you will likely be asked by
stakeholders to demonstrate that whatever choice you made meets the regulatory
standards for explainability, which are currently quite vague. In the coming years, we
will likely see more clarity on the exact requirements for explainability, but we expect
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it will prominently feature many of the classes of techniques we have covered in this
book, such as feature attributions, example-based explanations, and counterfactuals.

What to Look Forward To in Explainable AI
What most excites us about the future of explainability is how it will move from indi‐
vidual, narrowly focused techniques to ones that generate richer explanations with
less configuration needed in advance. Broadly, there are three trends to keep an eye
on in the future of Explainable AI: natural and semantic explanations, interrogative
explanations, and more targeted explanations.

Natural and Semantic Explanations
We often find that many types of explanations remain too technical or abstract
for nontechnical users. An array of numbers representing feature attributions isn’t
necessarily very helpful for these users. Instead, techniques that can either present
explanations in a more natural way, perhaps via a generative text model to create fluid
sentences for the explanation, or are able to generate explanations based on a semantic
understanding of the model and its dataset, will be much more helpful. Imagine if
instead of being presented with an array of feature attribution values for a weather
prediction, a user could be told, “There is an 80% chance of rain this afternoon
because the temperature has dropped significantly and humidity is above 90%.”

Semantic explanations, which require an even more innate understanding of the
behaviors and concepts in the ML system, will also represent a large change in how
we explain AIs. For example, an explainability technique may recognize that many of
the similar examples where an ML classified a dog as a cat were due to poor lighting
and low resolution in the photos. Instead of trying to highlight the pixels, where, for
example, poor resolution or poor lighting may result in vague pixel attributions, it
could categorically identify more pervasive causes for why the model failed.

Interrogative Explanations
Today, explanations are a one-way dialogue from the ML to the consumer. It is not
unusual for someone to receive an explanation and immediately have more questions
(see also the discussion in Chapter 7 on the human-interaction components of build‐
ing explainable ML systems and “How to Effectively Present Explanations” on page
206). However, with current methods, that often requires an ML practitioner to roll
up their sleeves and implement a new type of explanatory technique or perform
additional types of explanations that were not expected before. A better ecosystem of
Explainable AI tools will help make this job easier but will not solve the problem.

Instead, we expect a wave of second-generation explanation AI techniques that enable
a richer experience where a user can query the ML for further information about a
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2 David Watson et al., “Local Explanations via Necessity and Sufficiency: Unifying Theory and Practice,” arXiv,
2021.

prediction or behavior and can even guide the user in improving their understanding.
Imagine this as a conversation between the consumer, perhaps a regulator, and the AI
about a credit-rating ML:

Regulator: Why was this individual given a credit rating of 520?
AI: The most influential features were the high limits on the individual’s credit cards,
which caused the model to decrease its rating; their history of missed loan payments
further drove the rating down.
Regulator: Are individuals who live in similar zip codes (often an indirect variable for
race in the US) with missed loan payments penalized as much as others?
AI: No. Also, examining what the model considers to be 1,000 most similar people to
this individual, there is no correlation with the zip code. Similar individuals who paid
loans on time 25% more often on average had an increase of 50 points in their credit
rating.

Targeted Explanations
As of 2022, there has been little work performed on assessing whether explanations
follow the rule of Occam’s razor: that the simplest explanation is the best. We expect
that more robust explanations will be those that are more concise and targeted. For
example, Local Explanations via Necessity and Sufficiency,2, lays the foundation for
these types of explanations by demonstrating how the minimal amount of perturba‐
tion necessary to flip a prediction provides an optimal explanation. These types of
explanations will do much to address the brittleness problem described in Chapter 7,
and will also take us a step further toward causal explanations.

Summary
In this chapter, we discussed how to design ML solutions with explainability in mind
to build more reliable ML systems and provided a look toward the future of XAI.
We’ve seen how Explainable AI techniques can be incorporated into each step of the
ML life cycle, from discovery to development to deployment, assisting in building
more robust ML solutions. We encourage you to think about XAI as a toolkit for
better understanding machine learning models. We also provided a glimpse into what
the future of XAI might hold and current research efforts.

Now, with these techniques and an understanding of how and where to apply them,
you can improve both the models themselves and how your consumers work with
them. Explainability is a rapidly changing field; we encourage you to view new
techniques with optimism, but also give them some time to prove their worth in the
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rougher seas that constitute models and datasets in industry. It is also important to
think responsibly about how you use explanations in high-risk settings, keeping in
mind their potential to be brittle and create bias or false confidence in users. Most of
all, explanations serve as a way for you to build a richer interaction with the models
you work with every day.
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APPENDIX

Taxonomy, Techniques,
and Further Reading

To aid you in using this book in the future, we have put together a brief review of the
topics and techniques covered in this book. You can use these guides and tables as
a reference in the future to help you quickly survey your options for a new problem
before diving into more detail.

ML Consumers
There are three types of users who consume and interact with ML:

ML practitioners
Data scientists and ML engineers that build, develop, tune, deploy, and opera‐
tionalize a model.

Observers
Business stakeholders and regulators who are not involved in the engineering
of the model, but also are not using the model in deployment. They use explana‐
tions to validate model performance and build trust that a model is working as
expected.

End users
Domain experts and affected users who use, or are impacted by, a model’s predic‐
tions. They may have a deep understanding of the context the model operates in
or may be affected by the result of a model’s prediction, with little background
knowledge in ML or the domain.
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Taxonomy of Explainability
There are several characteristics that help define the field of explainability. These are:

Explainability versus interpretability
Although sometimes used interchangeably in industry, we define explainability
as techniques that explain a model based on a prediction (or group of predic‐
tions). The technique does not need to understand how the model itself works,
although it may rely on aspects of a model’s architecture to generate the explana‐
tion. In contrast, interpretability can provide insights about a model’s behavior
without any predictions as the interpretability technique is a fundamental aspect
of the model’s architecture and behavior.

Data-centric versus model-centric
The technique may provide an understanding of how the dataset and its struc‐
ture influence the model’s prediction or describe the behavior of the model itself.
For example, data-centric approaches to explainability include techniques like
TracIn, influence functions, or TCAV (see “Alternate Input Attribution” on page
172). Model-centric explainability approaches are focused more on aspects of the
model and model architecture itself. This would include the techniques discussed
in Chapter 3, Chapter 4, and Chapter 5 in this book.

When thinking of model-centric methods, most commonly used explainability tech‐
niques can be characterized across three axes:

Intrinsic versus post hoc
Intrinsic explanations are part of a prediction. By intrinsic, we mean models that
are inherently interpretable. That is, they are simple enough in structure that we
can understand how the model is making predictions by simply looking at the
model itself. For example, the learned weights of a linear model or the splits that
are learned with a decision tree can be used to interpret why a model makes
the predictions it does. Post hoc explanations are performed after a model has
been trained and rely on a prediction to create the explanation. Post hoc methods
involve using the trained model and data to understand why certain predictions
are being made. In some cases, post hoc methods can be applied to models that
have intrinsic explainability as well.

Model specific versus model agnostic
Model agnostic means the explainability method can be applied to any model
while a model-specific method can only be used with certain model types. For
example, the method that would only work with neural networks would be
considered model specific. If an explainability method treats the trained model as
an opaque model, then it would be considered model agnostic.
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Local, global, and cohort explanations
A local explanation focuses only on a single prediction. A global explanation
attempts to make claims about trends and behaviors for model predictions across
an entire dataset. Many times, a local XAI method can be turned into a global
technique by using aggregations of the local results. Thus, some techniques are
useful in providing both local and global explanations. A cohort explanation is a
global explanation performed on a slice of the full dataset. A slice of your dataset
could be a subset defined by a single feature value. For example, let’s consider
a model that predicts customer churn. All users with an income over $50,000
per year could constitute a cohort. Cohort explanations can be useful to better
understand why a model is not performing well for this particular subset. It can
also help uncover bias in your model or indicate places where you might need to
collect more data.

XAI Techniques
The techniques in this book have been arranged by use case with a focus on data
modalities covering tabular (Chapter 3), image (Chapter 4), and text (Chapter 5).
While some of these techniques were developed with a specific data type in mind,
many of them can be applied in multiple settings. Here we break down the techniques
discussed in each chapter, what you need to know about each of them, and their pros
and cons.

Tabular Models
Chapter 3 focused on tabular models and the explainability techniques that are used
to convey how important features were in a model’s prediction. These feature-based
techniques can be divided into techniques attributing influence to the feature, or
demonstrating counterfactuals by changing the value of the feature to alter the pre‐
diction. See Table A-1.

Table A-1. Summary of explainable techniques applicable to tabular models

Technique What to know Pros Cons
Feature
permutation

Changes the value of input
features to observe how
the model’s score changes

• Easy to implement•
• Intuitive•

• Highly correlated features are•
misleading

• Does not reflect the actual predictive•
value of a feature

Shapley values Uses game theory
to determine feature
attributions

• Can be used for global,•
cohort, and local explanations

• Intuitive•

• Computationally intensive•
• Choosing baseline can be hard•
• Actual process of calculating Shapley•

values can be difficult to explain to
stakeholders and end users

Taxonomy, Techniques, and Further Reading | 243



Technique What to know Pros Cons
Decision tree Explanations based directly

on weights in tree nodes
• Easy to understand•
• Computationally trivial•

• Scikit solution does not support•
multilabel classification

Partial
dependence
plots (PDPs)

Shows marginal effect
of specific feature in a
prediction

• Easy to implement•
• Can indicate a causal•

relationship if no feature
correlation

• Assumes features are independent•
• Lack of values for a feature causes•

reliability issues

Individual
conditional
explanations
(ICE)

Extension of PDPs
to visualize feature
dependence per instance

• Gives more holistic view than•
PDPs

• Same issues as PDPs•
• Visualizations can quickly become•

unreadable

Accumulated
local effects
(ALE)

Extends PDPs to account for
correlated features

• Accounts for conditional•
dependence of correlated
features

• Good OSS options for•
visualizing

• Implementation not intuitive•
• Strongly correlated features can still•

cause issues

Image Models
Chapter 4 dived into techniques for explaining models built using image data. Many
rely on generating saliency maps, new images that can be overlaid onto the original
input image to demonstrate which pixels or regions in the original image most influ‐
enced the prediction. Some advanced techniques try to demonstrate the influence of
different concepts learned by the model in the prediction, such as patterns or shapes.
See Table A-2.

Table A-2. Summary of explainable techniques applicable to image models

Technique What to know Pros Cons
Integrated
Gradients (IG)

Local pixel attribution method
based on sampling image along
gradient of values

• Intuitive explanations•
• Among faster image•

explanation techniques

• Requires model to be•
differentiable

• Sensitive to baseline•

XRAI Region-based attribution method
based on IG

• Faster than other region-•
based techniques

• Works best on natural•
images

• Only useful for image models•
• Less granular explanations•

Grad-CAM Popular region-based attribution
method; use Grad-CAM++, if
at all

• Computationally efficient• • Flawed explanations•
• Prone to identifying background•

as relevant
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Technique What to know Pros Cons
LIME Primarily for classification

models, pixel-based attributions
• Popular•
• Many visualization options•

• Explanations are brittle and can•
be low accuracy

• Prone to identifying background•
as relevant

• Slow•

Guided
Backprop and
Guided
Grad-CAM

Build on DeConvNets, which
examine the interior layers of a
convolution network

• Sharper visualizations•
• Localize relevant regions•

• Some research suggests they fail•
basic “sanity” checks

Text Models
Chapter 5 described how text models utilize a variety of Explainable AI methods.
Most methods are not directly comparable, as they often perform best for one type of
model architecture over another. See Table A-3.

Table A-3. Summary of explainable techniques applicable to text models

Technique What to know Pros Cons
LIME Perturbs input by randomly

removing words, and works best
with ~1K perturbations

• Easy to implement•
• Model agnostic•

• Very sensitive parameters•
related to kernel width

• Does not work well for highly•
nonlinear models

Gradient x Input Saliency method for word tokens
that allows positive and negative
attributions

• Easy and fast to implement•
• Research indicates best•

performing explainability
technique for transformers

• Only works for differentiable•
models

• Should be used in conjunction•
with other gradient-based
techniques

Layer
Integrated
Gradients

Variation of Integrated Gradients
(IG), but focused on a single layer
of the network instead of input
features

• Useful for text to isolate the•
embedding layer

• Same pros as IG•

• Same cons as IG•

Layer-Wise
Relevance
Propagation
(LRP)

Accumulates influence from layers
in model from head back toward
inputs

• Very modular and widely•
usable

• Good performance for text•
classification

• Only works with DNNs•
• Attributions can concentrate on•

only a few features

Advanced and Emerging Techniques
In Chapter 6, we presented explainability for specific types of model architectures or
those that require a deeper understanding of ML. We looked at XAI techniques using
example-based explanations, influence functions, and concept-based explanations,
like TCAV. See Table A-4.
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Table A-4. Summary of explainable techniques discussed in Chapter 6

Technique What to know Pros Cons
Example-
based
explanations

Provide insight into
model behavior by
surfacing approximate
nearest neighbor–based
explanations for model
instances

• Useful for debugging,•
communicating with
stakeholders

• Very intuitive, human-relatable•
representation of model
behavior

• Can be difficult to scale up beyond•
~1-10K examples; may need to use
a cloud service

• Does not offer completeness•
guarantees

Influence-
based
explanations

Influence function–based
explanations measure how
model predictions would
change if an example was
removed from the training
dataset

• Useful for debugging models,•
detecting dataset errors

• Explanations better align with•
intuition

• Works well for small,•
moderately sized models

• Doesn’t scale well to large models,•
datasets

• Lacks a way to account for correlated•
data points

• Requires twice differentiability•

TCAV Exposes learned concepts
that were influential
in model behavior and
prediction

• Highly customizable; you can•
explore any concept (e.g.,
gender)

• Works without any retraining of•
the ML model

• Can be difficult or expensive to•
curate examples of a concept

• Does not perform well on shallow•
models

• Less tested for text or tabular data•

Interacting with Explainability
In Chapter 7, we laid out guidelines for how to think about presenting explanations
for users and how they may interact with those explanations. We introduced the
concepts of identifying the expertise and intent of the ML consumer.

Common types of expertise possessed by ML consumers include:

Domain
Knowledge of the environment the ML system operates within.

Model inputs
Has more context about the information provided to the model when it makes a
prediction.

Machine learning
Understands how the model architecture and model work.

Common types of intents an ML consumer may include for using explainability
techniques in the ML solution:

Model improvement
Take action to increase the quality of the model.

Verify performance
Confirm that the model behaves as expected.
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Build trust
Increase confidence that the model is reliable.

Remediation
Understand what actions to take to alter a prediction.

Understand model behavior
Construct a simplified model in the user’s mind, which can be used as a surrogate
for understanding the model’s performance.

Monitoring
Ongoing assessment that a model’s performance remains acceptable.

We also presented a five-step guide for how to choose the best explanation technique
for your audience and the questions you want to keep in mind when making those
design decisions:

1. What needs to be explained?1.
2. What is their expertise?2.
3. What action will they take after an explanation?3.
4. Is this ML model being used in a critical or high-risk situation?4.
5. How quickly do they need an explanation?5.

We discussed what to keep in mind when displaying explanations to users:

Focus on clarity, accuracy
Explainability techniques should build on the user’s existing understanding, and
it’s important to follow best practices in information visualization, such as mak‐
ing the visualization color-blind friendly and providing a guided experience
through how information is presented to the user.

Accurately presenting an explanation to a user is critical
Unfortunately, it is easy to create a sense of false confidence in how intelligent the
model may be.

Provide well-grounded explanations
An explanation that is grounded in a user’s existing understanding makes it
much more likely that the explanation will successfully improve the user’s situa‐
tional awareness of how the model works, giving users the ability to project how
the model will behave in the future.

Finally, we also looked at pitfalls in interacting with Explainable AI. ML consumers
are most likely to assume causality in explanations, overfit intent to a model, and
overreach for additional explanations:
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Assuming causality
This is the most common and also the most dangerous. Almost no explainability
technique is able to definitely establish causality for an ML model operating in
the real world.

Overfitting intent
This can also lead a user to have false confidence in the model. In this scenario,
users often extrapolate from an explanation to assume the model understands
concepts familiar to them. However, it is often unlikely that the ML model
has actually learned these concepts, leading to a mismatch between the user’s
understanding of the model and its actual behavior.

Overreaching for additional explanations
This can lead to confirmation bias as other explanations are misused to confirm
existing expectations. Unfortunately, preventing explanation overreach is very
difficult.

Putting It All Together
Lastly, we looked at how Explainable AI fits into the larger picture of building reliable
and robust ML solutions. We discussed how the XAI techniques we’ve covered in
this book can be applied throughout the entire ML life cycle and how to build with
explainability in mind from discovery to development to deployment and production:

Discovery
Discovery is the initial stage of any ML project, and the first step is to define the
business use case and understand how exactly ML fits into the wider solution. At
this early stage it’s important to consider the role that explainability will (or will
not) play in the solution. In this stage, premodeling explainability is an essential
tool for understanding the data or any feature engineering that is used to train
the machine learning model.

Development
Explainability plays an important role in deciding which model to use or for
debugging models through development. XAI methods are also a useful toolkit
for understanding feature engineering and feature selection using sliced analysis.
Here techniques like example-based explanations are useful for closing the loop
with stakeholders.

Deployment
This stage is related to aspects of automating, monitoring, testing, managing,
maintaining, and auditing machine learning models in production. The XAI
toolkit can be particularly useful when incorporated into model monitoring and
skew detection algorithms and feature attribution drift.
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We also looked at the emerging landscape of regulations for AI coming from the gov‐
ernments around the world, from the EU to the US and China. This is both a blessing
and a curse: on the positive side, you will have the flexibility to determine which
explainability techniques are the best match for your ML and use case. However, you
will likely be asked by stakeholders to demonstrate that whatever choice you made
meets the regulatory standards for explainability.

Finally, we turned an eye toward the future of XAI and what you can expect,
including:

Natural and semantic explanations
An array of numbers representing feature attributions isn’t necessarily very help‐
ful for most users. Looking ahead, techniques that can present explanations in
a more natural way or are able to generate explanations based on a semantic
understanding of the model and its dataset, will be much more helpful.

Interrogative explanations
Today’s explanations are a one-way dialogue; in the future, we expect to see
techniques that allow for a richer experience where the user can query the ML
model for further information about the prediction or behavior.

Targeted explanations
Explanations are focused on demonstrating the minimal amount of information
sufficient to slip a model’s prediction, meant as a way to achieve explanations that
are more concise and simpler and thus more robust.

Further Reading
Following is a list of papers that we have found influenced our thinking about how
to make, evaluate, and use explanations. In each case, we have tried to list papers we
think will substantively add to your knowledge and give you new ways of thinking
about XAI rather than exhaustively listing all research and writing on a topic.

Explainable AI
“DARPA’s Explainable AI (XAI) Program: A Retrospective” is a summary of lessons
learned on XAI techniques by the DARPA research program into XAI from 2016 to
2021 which spanned 12 teams and studies that included over 12,000 participants in
total.

NIST’s “Four Principles of Explainable Artificial Intelligence” by Jonathon Phillips et
al. has distilled many aspects of XAI into a core set of concepts that can be useful for
reasoning about any XAI technique.

“Interpretable Machine Learning” by Christoph Molnar covers both interpretable
models and gives a from-first-principles approach to teaching XAI techniques.
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“The Many Shapley Values for Model Explanation” by Mukund Sundararajan and
Amir Najmi covers the variety of Shapley value–based techniques in XAI, the theoret‐
ical basis for correctness in each approach, and introduces useful axioms for desired
properties of Shapley values.

“A Unified Approach to Interpreting Model Predictions” by Scott Lundberg and Su-In
Lee introduces how Shapley values can be used in XAI.

“The Explanation Game: Explaining Machine Learning Models with Cooperative
Game Theory” by Luke Merrick and Ankur Taly explores how subtle differences
in underlying implementations, such as Shapley values, can have a disproportionate
impact on the final values in explanations.

Captum’s Model interpretability for PyTorch is an impressive library and contains
implementations of every XAI technique we discuss in this book, and then some. In
addition, there are a number of excellent tutorials to get you started.

“Visualizing the Impact of Feature Attribution Baselines” by Pascal Sturmfels et al.
gives an excellent and detailed discussion of the role and impact of baselines for
attribution methods.

The Language Interpretability Tool is just one of a number of excellent tools out
of Google’s PAIR team and is an excellent platform for examining your NLP ML
models through a lens of interpretability and explainability. We truly only scratched
the surface of its full capabilities.

Been Kim’s invited talk, “Beyond Interpretability: Developing a Language to Shape
Our Relationships with AI” from ICMR (2022) is an excellent discussion on the role
of AI explainability and interpretability and provides an invaluable perspective on
how to approach and utilize this ever-expanding toolkit.

Interacting with Explainability
“Metrics for Explainable AI: Challenges and Prospects” by Robert R. Hoffman et al. is
a thorough discussion of how users approach and evaluate the value of explanations.

“Interpreting Interpretability: Understanding Data Scientists’ Use of Interpretability
Tools for Machine Learning” by Harmanpreet Kaur et al. performs a small study on
how data scientists interpret the results of SHAP, finding common themes in how
participants overrelied and misunderstood the visualized results.

Technical Accuracy of XAI techniques
“The Disagreement Problem in Explainable Machine Learning: A Practitioner’s Per‐
spective” by Satyapriya Krishna et al. performs an exhaustive study comparing how
common XAI techniques differ in their attributed feature values.
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“Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and
Use Interpretable Models Instead”” by Cynthia Rudin discusses the trade-off between
using opaque black boxes versus inherently interpretable models and outlines several
key reasons why explainable black boxes should be avoided in high-stakes decisions
in criminal justice, healthcare, and computer vision..

The pair of papers “Sanity Checks for Saliency Maps” by Julius Adebayo et al. and
its rebuttal, “A Note About: Local Explanation Methods for Deep Neural Networks
Lack Sensitivity to Parameter Values” by Mukund Sundararajan and Ankur Taly, gives
an exhaustive comparison of different saliency map–based techniques, discusses the
differences between them, and explores how parameter choices can deeply affect the
resulting explanations.

Brittleness of XAI techniques
“On the Robustness of Interpretability Methods” by David Alvarez-Melis and Tommi
S. Jaakkola introduces metrics for measuring the robustness of techniques.

“Fooling LIME and SHAP: Adversarial Attacks on Post Hoc Explanation Methods” by
Dylan Slack et al. introduces a framework based on perturbation and repeated model
analysis to effectively represent unbiased explanations for a biased model.

“On the (In)fidelity and Sensitivity for Explanations” by Chih-Kuan Yeh et al. also
examines how saliency map–based techniques are brittle to slight perturbations in
the inputs, provides a theoretical explanation for these results, and shows how to
strengthen techniques against these problems.

XAI for DNNs
“Understanding Deep Networks via Extremal Perturbations and Smooth Masks” by
Ruth Fong et al. demonstrates how to use perturbation analysis for understanding the
behavior of intermediate layers.

“Explaining Nonlinear Classification Decisions with Deep Taylor Decomposition” by
Grégoire Montavon et al. introduces a technique to explain DNNs through attribut‐
ing the final output to each layer in the model.
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