Computer
Organization
and Architecture

Linda Null
Julia Lobur

NOILIAdd H1¥NOA

THE ESSENTIALS OF

Computer

Organization
«d Architecture

NOILIdT HLYNOA

Linda Null

The Pennsylvania State University

Julia Lobur
The Pennsylvania State University

13

£
O
pr

r_
m
>0
20 20
Z%
—
_F
:

World Headquarters
Jones & Bartlett Learning
5 Wall Street

Burlington, MA 01803
978-443-5000
info@jblearning.com
www,jblearning.com

Jones & Bartlett Learning books and products are available through most bookstores and online booksellers. To contact Jones & Bartlett
Learning directly, call 800-832-0034, fax 978-443-8000, or visit our website, www jblearning.com.

Substantial discounts on bulk quantities of Jones & Bartlett Learning publications are available to corporations, professional associations,
and other qualified organizations. For details and specific discount information, contact the special sales department at Jones & Bartlett
Learning via the above contact information or send an email to specialsales@jblearning.com.

Copyright © 2015 by Jones & Bartlett Learning, LLC, an Ascend Learning Company

All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form, electronic or mechanical,
including photocopying, recording, or by any information storage and retrieval system, without written permission from the copyright
owner.

The content, statements, views, and opinions herein are the sole expression of the respective authors and not that of Jones & Bartlett
Learning, LLC. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not constitute or imply its endorsement or recommendation by Jones & Bartlett Learning, LLC and such reference shall not
be used for advertising or product endorsement purposes. All trademarks displayed are the trademarks of the parties noted herein. The
Essentials of Computer Organization and Architecture, Fourth Edition is an independent publication and has not been authorized, sponsored,
or otherwise approved by the owners of the trademarks or service marks referenced in this product.

There may be images in this book that feature models; these models do not necessarily endorse, represent, or participate in the activities
represented in the images. Any screenshots in this product are for educational and instructive purposes only. Any individuals and scenarios
featured in the case studies throughout this product may be real or fictitious, but are used for instructional purposes only.

Production Credits

Executive Publisher: William Brottmiller

Publisher: Cathy L. Esperti

Acquisitions Editor: Laura Pagluica

Editorial Assistant: Brooke Yee

Director of Production: Amy Rose

Senior Production Editor: Tiffany Sliter

Associate Production Editor: Sara Fowles

Associate Marketing Manager: Cassandra Peterson

VP, Manufacturing and Inventory Control: Therese Connell Composition: Laserwords Private Limited, Chennai, India
Cover and Title Page Design: Kristin E. Parker

Director of Photo Research and Permissions: Amy Wrynn

Cover and Title Page Image: © Eugene Sergeev/ShutterStock, Inc. Printing and Binding: Edwards Brothers Malloy
Cover Printing: Edwards Brothers Malloy

To order this product, use ISBN: 978-1-284-04561-1

Library of Congress Cataloging-in-Publication Data
Null, Linda.
The essentials of computer organization and architecture / Linda Null and Julia Lobur. — Fourth edition.
pages ; cm
Includes index.
ISBN 978-1-284-03314-4 (pbk.) — ISBN 1-284-03314-7 (pbk.) 1. Computer organization. 2. Computer architecture. I. Lobur, Julia. II.
Title.
QA76.9.C643N85 2015

004.2°2—dc23 2013034383
6048

Printed in the United States of America
1817161514 10987654321

mailto:info@jblearning.com
http://www.jblearning.com
http://www.jblearning.com
mailto:specialsales@jblearning.com

In memory of my father, Merrill Cornell, a pilot and man of endless talent and courage, who taught me that when
we step into the unknown, we either find solid ground, or we learn to fly.

—L. M. N.

To the loving memory of my mother, Anna J. Surowski, who made all things possible for her girls.

—J. M. L.

Contents

Preface
CHAPTER 1 Introduction

1.1 Overview

1.2 The Main Components of a Computer

1.3 An Example System: Wading Through the Jargon

1.4 Standards Organizations

1.5 Historical Development
1.5.1 Generation Zero: Mechanical Calculating Machines (1642-1945)
1.5.2 The First Generation: Vacuum Tube Computers (1945-1953)
1.5.3 The Second Generation: Transistorized Computers (1954—1965)
1.5.4 The Third Generation: Integrated Circuit Computers (1965-1980)
1.5.5 The Fourth Generation: VLSI Computers (1980-??7??)
1.5.6 Moore’s Law

1.6 The Computer Level Hierarchy

1.7 Cloud Computing: Computing as a Service

1.8 The Von Neumann Model

1.9 Non-Von Neumann Models

1.10 Parallel Processors and Parallel Computing

1.11 Parallelism: Enabler of Machine Intelligence—Deep Blue and Watson

Chapter Summary

Further Reading

References

Review of Essential Terms and Concepts

Exercises

CHAPTER 2 Data Representation in Computer Systems

2.1

Introduction

2.2 Positional Numbering Systems
2.3 Converting Between Bases

2.4

2.3.1
2.3.2
2.3.3

Converting Unsigned Whole Numbers
Converting Fractions
Converting Between Power-of-Two Radices

Signed Integer Representation

2.4.1
2.4.2

Signed Magnitude
Complement Systems

2.4.3 Excess-M Representation for Signed Numbers

2.4.4 Unsigned Versus Signed Numbers
2.4.5 Computers, Arithmetic, and Booth’s Algorithm
2.4.6 Carry Versus Overflow
2.4.7 Binary Multiplication and Division Using Shifting
2.5 Floating-Point Representation
2.5.1 A Simple Model
2.5.2 Floating-Point Arithmetic
2.5.3 Floating-Point Errors
2.5.4 The IEEE-754 Floating-Point Standard
2.5.5 Range, Precision, and Accuracy
2.5.6 Additional Problems with Floating-Point Numbers
2.6 Character Codes
2.6.1 Binary-Coded Decimal
2.6.2 EBCDIC
2.6.3 ASCII
2.6.4 Unicode
2.7 FError Detection and Correction
2.7.1 Cyclic Redundancy Check
2.7.2 Hamming Codes
2.7.3 Reed-Solomon
Chapter Summary
Further Reading
References
Review of Essential Terms and Concepts
Exercises
Focus on Codes for Data Recording and Transmission
2A.1 Non-Return-to-Zero Code
2A.2 Non-Return-to-Zero-Invert Code
2A.3 Phase Modulation (Manchester Code)
2A.4 Frequency Modulation
2A.5 Run-Length-Limited Code
2A.6 Partial Response Maximum Likelihood Coding
2A.7 Summary
Exercises

CHAPTER 3 Boolean Algebra and Digital Logic
3.1 Introduction
3.2 Boolean Algebra
3.2.1 Boolean Expressions
3.2.2 Boolean Identities
3.2.3 Simplification of Boolean Expressions
3.2.4 Complements

3.3

3.4

3.5

3.6

3.7

3.2.5 Representing Boolean Functions

Logic Gates
3.3.1 Symbols for Logic Gates
3.3.2 Universal Gates
3.3.3 Multiple Input Gates

Digital Components
3.4.1 Digital Circuits and Their Relationship to Boolean Algebra
3.4.2 Integrated Circuits
3.4.3 Putting It All Together: From Problem Description to Circuit
Combinational Circuits

3.5.1 Basic Concepts

3.5.2 Examples of Typical Combinational Circuits

Sequential Circuits

3.6.1 Basic Concepts

3.6.2 Clocks

3.6.3 Flip-Flops

3.6.4 Finite State Machines

3.6.5 Examples of Sequential Circuits

3.6.6 An Application of Sequential Logic: Convolutional Coding and Viterbi Detection
Designing Circuits

Chapter Summary

Further Reading

References

Review of Essential Terms and Concepts

Exercises
Focus on Karnaugh Maps

3A.1 Introduction

3A.2 Description of Kmaps and Terminology
3A.3 Kmap Simplification for Two Variables
3A.4 Kmap Simplification for Three Variables
3A.5 Kmap Simplification for Four Variables
3A.6 Don’t Care Conditions

3A.7 Summary

Exercises

CHAPTER 4 MARIE: An Introduction to a Simple Computer

4.1
4.2

4.3

Introduction

CPU Basics and Organization
4.2.1 The Registers
4.2.2 The ALU
4.2.3 The Control Unit

The Bus

4.4 Clocks
4.5 The Input/Output Subsystem
4.6 Memory Organization and Addressing
4.7 Interrupts
4.8 MARIE
4.8.1 The Architecture
4.8.2 Registers and Buses
4.8.3 Instruction Set Architecture
4.8.4 Register Transfer Notation
4.9 Instruction Processing
4.9.1 The Fetch-Decode—Execute Cycle
4.9.2 Interrupts and the Instruction Cycle
4.9.3 MARIE’s I/0
4.10 A Simple Program
4.11 ADiscussion on Assemblers
4.11.1 What Do Assemblers Do?
4.11.2 Why Use Assembly Language?
4.12 Extending Our Instruction Set
4.13 A Discussion on Decoding: Hardwired Versus Microprogrammed Control
4.13.1 Machine Control
4.13.2 Hardwired Control
4.13.3 Microprogrammed Control
4.14 Real-World Examples of Computer Architectures
4.14.1 Intel Architectures
4.14.2 MIPS Architectures
Chapter Summary
Further Reading
References
Review of Essential Terms and Concepts
Exercises

CHAPTER 5

A Closer Look at Instruction Set Architectures

5.1 Introduction

5.2 Instruction Formats
5.2.1 Design Decisions for Instruction Sets
5.2.2 Little Versus Big Endian
5.2.3 Internal Storage in the CPU: Stacks Versus Registers
5.2.4 Number of Operands and Instruction Length
5.2.5 Expanding Opcodes

5.3 Instruction Types
5.3.1 Data Movement
5.3.2 Arithmetic Operations

5.3.3 Boolean Logic Instructions
5.3.4 Bit Manipulation Instructions
5.3.5 Input/Output Instructions
5.3.6 Instructions for Transfer of Control
5.3.7 Special-Purpose Instructions
5.3.8 Instruction Set Orthogonality
5.4 Addressing
5.4.1 Data Types
5.4.2 Address Modes
5.5 Instruction Pipelining
5.6 Real-World Examples of ISAs

5.6.1 Intel

5.6.2 MIPS

5.6.3 Java Virtual Machine
5.6.4 ARM

Chapter Summary

Further Reading

References

Review of Essential Terms and Concepts
Exercises

CHAPTER 6

Memory

6.1 Introduction

6.2 Types of Memory

6.3 The Memory Hierarchy
6.3.1 Locality of Reference

6.4 Cache Memory
6.4.1 Cache Mapping Schemes
6.4.2 Replacement Policies
6.4.3 Effective Access Time and Hit Ratio
6.4.4 When Does Caching Break Down?
6.4.5 Cache Write Policies
6.4.6 Instruction and Data Caches
6.4.7 Levels of Cache

6.5 Virtual Memory
6.5.1 Paging
6.5.2 Effective Access Time Using Paging
6.5.3 Putting It All Together: Using Cache, TLBs, and Paging
6.5.4 Advantages and Disadvantages of Paging and Virtual Memory
6.5.5 Segmentation
6.5.6 Paging Combined with Segmentation

6.6 A Real-World Example of Memory Management

Chapter Summary

Further Reading

References

Review of Essential Terms and Concepts
Exercises

CHAPTER 7

Input/Output and Storage Systems
7.1 Introduction
7.2 1/0 and Performance
7.3 Amdahl’ s Law
7.4 1/0O Architectures
7.4.1 1/O Control Methods
7.4.2 Character I/0 Versus Block I/0
7.4.3 1/0 Bus Operation
7.5 Data Transmission Modes
7.5.1 Parallel Data Transmission
7.5.2 Serial Data Transmission
7.6 Magnetic Disk Technology
7.6.1 Rigid Disk Drives
7.6.2 Solid State Drives
7.7 Optical Disks
7.7.1 CD-ROM
7.7.2 DVD
7.7.3 Blue-Violet Laser Discs
7.7.4 Optical Disk Recording Methods
7.8 Magnetic Tape
7.9 RAID
7.9.1 RAID Level 0
7.9.2 RAID Level 1
7.9.3 RAID Level 2
7.9.4 RAID Level 3
7.9.5 RAID Level 4
7.9.6 RAID Level 5
7.9.7 RAID Level 6
7.9.8 RAID DP
7.9.9 Hybrid RAID Systems
7.10 The Future of Data Storage
Chapter Summary
Further Reading
References
Review of Essential Terms and Concepts
Exercises

Focus on Data Compression

7A.1 Introduction
7A.2 Statistical Coding
7A.2.1 Huffman Coding
7A.2.2 Arithmetic Coding
7A.3 Ziv-Lempel (LZ) Dictionary Systems
7A.4 GIF and PNG Compression
7A.5 JPEG Compression
7A.6 MP3 Compression
7A.7 Summary
Further Reading
References
Exercises

CHAPTER 8

System Software

8.1
8.2

8.3

8.4

8.5
8.6
8.7

Introduction

Operating Systems
8.2.1 Operating Systems History
8.2.2 Operating System Design
8.2.3 Operating System Services
Protected Environments
8.3.1 Virtual Machines
8.3.2 Subsystems and Partitions
8.3.3 Protected Environments and the Evolution of Systems Architectures
Programming Tools

8.4.1 Assemblers and Assembly
8.4.2 Link Editors

8.4.3 Dynamic Link Libraries
8.4.4 Compilers

8.4.5 Interpreters

Java: All of the Above
Database Software

Transaction Managers

Chapter Summary

Further Reading

References

Review of Essential Terms and Concepts

Exercises

CHAPTER 9

Alternative Architectures

9.1
9.2

Introduction
RISC Machines

9.3 Flynn’s Taxonomy
9.4 Parallel and Multiprocessor Architectures
9.4.1 Superscalar and VLIW
9.4.2 Vector Processors
9.4.3 Interconnection Networks
9.4.4 Shared Memory Multiprocessors
9.4.5 Distributed Computing
9.5 Alternative Parallel Processing Approaches
9.5.1 Dataflow Computing
9.5.2 Neural Networks
9.5.3 Systolic Arrays
9.6 Quantum Computing
Chapter Summary
Further Reading
References
Review of Essential Terms and Concepts
Exercises

CHAPTER 10

Topics in Embedded Systems
10.1 Introduction
10.2 An Overview of Embedded Hardware
10.2.1 Off-the-Shelf Embedded System Hardware
10.2.2 Configurable Hardware
10.2.3 Custom-Designed Embedded Hardware
10.3 An Overview of Embedded Software
10.3.1 Embedded Systems Memory Organization
10.3.2 Embedded Operating Systems
10.3.3 Embedded Systems Software Development
Chapter Summary
Further Reading
References
Review of Essential Terms and Concepts
Exercises

CHAPTER 11

Performance Measurement and Analysis
11.1 Introduction
11.2 Computer Performance Equations
11.3 Mathematical Preliminaries

11.3.1 What the Means Mean

11.3.2 The Statistics and Semantics
11.4 Benchmarking

11.4.1 Clock Rate, MIPS, and FLOPS

11.4.2 Synthetic Benchmarks: Whetstone, Linpack, and Dhrystone
11.4.3 Standard Performance Evaluation Corporation Benchmarks
11.4.4 Transaction Processing Performance Council Benchmarks
11.4.5 System Simulation

11.5 CPU Performance Optimization
11.5.1 Branch Optimization
11.5.2 Use of Good Algorithms and Simple Code

11.6 Disk Performance
11.6.1 Understanding the Problem
11.6.2 Physical Considerations
11.6.3 Logical Considerations

Chapter Summary

Further Reading

References

Review of Essential Terms and Concepts

Exercises

CHAPTER 12 Network Organization and Architecture
12.1 Introduction
12.2 Early Business Computer Networks

12.3 Early Academic and Scientific Networks: The Roots and Architecture of the
Internet

12.4 Network Protocols I: ISO/OSI Protocol Unification
12.4.1 AParable
12.4.2 The OSI Reference Model
12.5 Network Protocols II: TCP/IP Network Architecture
12.5.1 The IP Layer for Version 4
12.5.2 The Trouble with IP Version 4
12.5.3 Transmission Control Protocol
12.5.4 The TCP Protocol at Work
12.5.5 1P Version 6
12.6 Network Organization
12.6.1 Physical Transmission Media
12.6.2 Interface Cards
12.6.3 Repeaters
12.6.4 Hubs
12.6.5 Switches
12.6.6 Bridges and Gateways
12.6.7 Routers and Routing
12.7 The Fragility of the Internet
Chapter Summary
Further Reading

References
Review of Essential Terms and Concepts
Exercises

CHAPTER 13

Selected Storage Systems and Interfaces

13.1 Introduction

13.2 SCSI Architecture
13.2.1 “Classic” Parallel SCSI
13.2.2 The SCSI Architecture Model-3

13.3 Internet SCSI

13.4 Storage Area Networks

13.5 Other I/0 Connections
13.5.1 Parallel Buses: XT to ATA
13.5.2 Serial ATA and Serial Attached SCSI
13.5.3 Peripheral Component Interconnect
13.5.4 A Serial Interface: USB

13.6 Cloud Storage

Chapter Summary

Further Reading

References

Review of Essential Terms and Concepts

Exercises

APPENDIX A

Data Structures and the Computer
A.1 Introduction
A.2 Fundamental Structures

A.2.1 Arrays
A.2.2 Queues and Linked Lists
A.2.3 Stacks

A.3 Trees

A.4 Network Graphs

Summary

Further Reading

References

Exercises

Glossary

Answers and Hints for Selected Exercises

Index

Preface

TO THE STUDENT

This is a book about computer organization and architecture. It focuses on the function and design of the various
components necessary to process information digitally. We present computing systems as a series of layers,
starting with low-level hardware and progressing to higher-level software, including assemblers and operating
systems. These levels constitute a hierarchy of virtual machines. The study of computer organization focuses on
this hierarchy and the issues involved with how we partition the levels and how each level is implemented. The
study of computer architecture focuses on the interface between hardware and software, and emphasizes the
structure and behavior of the system. The majority of information contained in this textbook is devoted to
computer hardware, computer organization and architecture, and their relationship to software performance.

Students invariably ask, “Why, if I am a computer science major, must I learn about computer hardware? Isn’t
that for computer engineers? Why do I care what the inside of a computer looks like?” As computer users, we
probably do not have to worry about this any more than we need to know what our cars look like under the hood
in order to drive them. We can certainly write high-level language programs without understanding how these
programs execute; we can use various application packages without understanding how they really work. But what
happens when the program we have written needs to be faster and more efficient, or the application we are using
doesn’t do precisely what we want? As computer scientists, we need a basic understanding of the computer
system itself in order to rectify these problems.

There is a fundamental relationship between the computer hardware and the many aspects of programming and
software components in computer systems. In order to write good software, it is very important to understand the
computer system as a whole. Understanding hardware can help you explain the mysterious errors that sometimes
creep into your programs, such as the infamous segmentation fault or bus error. The level of knowledge about
computer organization and computer architecture that a high-level programmer must have depends on the task the
high-level programmer is attempting to complete.

For example, to write compilers, you must understand the particular hardware to which you are compiling.
Some of the ideas used in hardware (such as pipelining) can be adapted to compilation techniques, thus making the
compiler faster and more efficient. To model large, complex, real-world systems, you must understand how
floating-point arithmetic should, and does, work (which are not necessarily the same thing). To write device
drivers for video, disks, or other I/O devices, you need a good understanding of I/O interfacing and computer
architecture in general. If you want to work on embedded systems, which are usually very resource constrained,
you must understand all of the time, space, and price trade-offs. To do research on, and make recommendations
for, hardware systems, networks, or specific algorithms, you must acquire an understanding of benchmarking and
then learn how to present performance results adequately. Before buying hardware, you need to understand
benchmarking and all the ways that others can manipulate the performance results to “prove” that one system is
better than another. Regardless of our particular area of expertise, as computer scientists, it is imperative that we
understand how hardware interacts with software.

You may also be wondering why a book with the word essentials in its title is so large. The reason is twofold.
First, the subject of computer organization is expansive and it grows by the day. Second, there is little agreement
as to which topics from within this burgeoning sea of information are truly essential and which are just helpful to
know. In writing this book, one goal was to provide a concise text compliant with the computer architecture
curriculum guidelines jointly published by the Association for Computing Machinery (ACM) and the Institute of
Electrical and Electronic Engineers (IEEE). These guidelines encompass the subject matter that experts agree
constitutes the “essential” core body of knowledge relevant to the subject of computer organization and
architecture.

We have augmented the ACM/IEEE recommendations with subject matter that we feel is useful—if not
essential—to your continuing computer science studies and to your professional advancement. The topics that we
feel will help you in your continuing computer science studies include operating systems, compilers, database
management, and data communications. Other subjects are included because they will help you understand how
actual systems work in real life.

We hope that you find reading this book an enjoyable experience, and that you take time to delve deeper into
some of the material that we have presented. It is our intention that this book will serve as a useful reference long
after your formal course is complete. Although we give you a substantial amount of information, it is only a
foundation upon which you can build throughout the remainder of your studies and your career. Successful
computer professionals continually add to their knowledge about how computers work. Welcome to the start of
your journey.

TO THE INSTRUCTOR

This book is the outgrowth of two computer science organization and architecture classes taught at Penn State
Harrisburg. As the computer science curriculum evolved, we found it necessary not only to modify the material
taught in the courses, but also to condense the courses from a two-semester sequence into a three-credit, one-
semester course. Many other schools have also recognized the need to compress material in order to make room
for emerging topics. This new course, as well as this textbook, is primarily for computer science majors and is
intended to address the topics in computer organization and architecture with which computer science majors must
be familiar. This book not only integrates the underlying principles in these areas, but it also introduces and
motivates the topics, providing the breadth necessary for majors while providing the depth necessary for
continuing studies in computer science.

Our primary objective in writing this book was to change the way computer organization and architecture are
typically taught. A computer science major should leave a computer organization and architecture class with not
only an understanding of the important general concepts on which the digital computer is founded, but also with a
comprehension of how those concepts apply to the real world. These concepts should transcend vendor-specific
terminology and design; in fact, students should be able to take concepts given in the specific and translate to the
generic and vice versa. In addition, students must develop a firm foundation for further study in the major.

The title of our book, The Essentials of Computer Organization and Architecture, is intended to convey that the
topics presented in the text are those for which every computer science major should have exposure, familiarity, or
mastery. We do not expect students using our textbook to have complete mastery of all topics presented. It is our
firm belief, however, that there are certain topics that must be mastered; there are those topics about which
students must have a definite familiarity; and there are certain topics for which a brief introduction and exposure
are adequate.

We do not feel that concepts presented in sufficient depth can be learned by studying general principles in
isolation. We therefore present the topics as an integrated set of solutions, not simply a collection of individual
pieces of information. We feel our explanations, examples, exercises, tutorials, and simulators all combine to
provide the student with a total learning experience that exposes the inner workings of a modern digital computer at
the appropriate level.

We have written this textbook in an informal style, omitting unnecessary jargon, writing clearly and concisely,
and avoiding unnecessary abstraction, in hopes of increasing student enthusiasm. We have also broadened the
range of topics typically found in a first-level architecture book to include system software, a brief tour of
operating systems, performance issues, alternative architectures, and a concise introduction to networking, as
these topics are intimately related to computer hardware. Like most books, we have chosen an architectural model,
but it is one that we have designed with simplicity in mind.

Relationship to CS2013

In October 2013, the ACM/IEEE Joint Task Force unveiled Computer Science Curricula 2013 (CS2013). Although
we are primarily concerned with the Computer Architecture knowledge area, these new guidelines suggest
integrating the core knowledge throughout the curriculum. Therefore, we also call attention to additional
knowledge areas beyond architecture that are addressed in this book.

CS2013 is a comprehensive revision of CS2008, mostly the result of focusing on the essential concepts in the
Computer Science curriculum while still being flexible enough to meet individual institutional needs. These
guidelines introduce the notion of Core Tier-1 and Core Tier-2 topics, in addition to elective topics. Core Tier-1
topics are those that should be part of every Computer Science curriculum. Core Tier-2 topics are those that are
considered essential enough that a Computer Science curriculum should contain 90-100% of these topics. Elective
topics are those that allow curricula to provide breadth and depth. The suggested coverage for each topic is listed
in lecture hours.

The main change in the Architecture and Organization (AR) knowledge area from CS2008 to CS2013 is a
reduction of lecture hours from 36 to 16; however, a new area, System Fundamentals (SF), has been introduced
and includes some concepts previously found in the AR module (including hardware building blocks and
architectural organization). The interested reader is referred to the (CS2013 guidelines
(http//www.acm.org/education/curricula-recommendations) for more information on what the individual
knowledge areas include.

We are pleased that the fourth edition of The Essentials of Computer Organization and Architecture is in direct
correlation with the ACM/IEEE CS2013 guidelines for computer organization and architecture, in addition to
integrating material from additional knowledge units. Table P.1 indicates which chapters of this textbook satisfy the
eight topics listed in the AR knowledge area. For the other knowledge areas, only the topics that are covered in this
textbook are listed.

http://www.acm.org/education/curricula-recommendations

Core Tier 1 Core Tier 2 Includes
AR - Architecture Hours Hours Electives Chapters
Digital Logic and Digital Systems 3 M 1,34
Machine-Level Representation of Data 3 M 1,2
Assembly-Level Machine Organization 3] M 1,4,5,7,8,9
Memory System Organization and Arch 3 M 2,6, 7,13
Interfacing and Communication 1 M 4.7, 12
Functional Organization Y 4.5
Multiprocessing and Alternative Archs Y a
Performance Enhancements Y g9, 11
Core Tier 1 Core Tier 2 Includes
NC - Networking and Communication | Hours Hours Electives Chapters
Introduction 15 M 12
Metworked Applications 1.5 M 12
Reliable Data Delivery 2 M 12
Routing and Forwarding 1.5 M 12
Core Tier 1 Core Tier 2 Includes
05 - Operating Systems Hours Hours Electives Chapters
Owverview of Operating Systems 2 M a8
Memaory Management 3 M G
Virtual Machines Y 8
File Systems Y 7
Real-Time and Embedded Systems Y 10
System Performance Evaluations Y 6, 11
PD - Parallel and Distributed Core Tier 1 Core Tier 2 Includes
Computing Hours Hours Electives Chapters
Parallel Architecture 1 1 M L)
Distributed Systems Y 9
Cloud Computing Y 1,813
Core Tier 1 Core Tier 2 Includes
5F - Systems Fundamentals Hours Hours Electives Chapters
Computational Paradigms] M 3,49
State and State Machines G M 3
Parallelism 3 M 9
Evaluation 3 M 11
Proximity 3 M G
SP - Social Issues and Professional Core Tier 1 Core Tier 2 Includes
Practice Hours Hours Electives Chapters
History Y 1

TABLE P.1 ACM/IEEE CS2013 Topics Covered in This Book

Why Another Text?

No one can deny there is a plethora of textbooks for teaching computer organization and architecture already on
the market. In our 35-plus years of teaching these courses, we have used many very good textbooks. However,
each time we have taught the course, the content has evolved, and eventually, we discovered we were writing
significantly more course notes to bridge the gap between the material in the textbook and the material we deemed
necessary to present in our classes. We found that our course material was migrating from a computer engineering
approach to organization and architecture toward a computer science approach to these topics. When the decision
was made to fold the organization class and the architecture class into one course, we simply could not find a
textbook that covered the material we felt was necessary for our majors, written from a computer science point of
view, written without machine-specific terminology, and designed to motivate the topics before covering them.

In this textbook, we hope to convey the spirit of design used in the development of modern computing systems
and what effect this has on computer science students. Students, however, must have a strong understanding of
the basic concepts before they can understand and appreciate the intangible aspects of design. Most organization
and architecture textbooks present a similar subset of technical information regarding these basics. We, however,
pay particular attention to the level at which the information should be covered, and to presenting that information
in the context that has relevance for computer science students. For example, throughout this book, when
concrete examples are necessary, we offer examples for personal computers, enterprise systems, and mainframes,
as these are the types of systems most likely to be encountered. We avoid the “PC bias” prevalent in similar books
in the hope that students will gain an appreciation for the differences, the similarities, and the roles various
platforms play in today’s automated infrastructures. Too often, textbooks forget that motivation is, perhaps, the
single most important key in learning. To that end, we include many real-world examples, while attempting to
maintain a balance between theory and application.

Features

We have included many features in this textbook to emphasize the various concepts in computer organization and

architecture, and to make the material more accessible to students. Some of the features are:

* Sidebars. These sidebars include interesting tidbits of information that go a step beyond the main focus of the
chapter, thus allowing readers to delve further into the material.

* Real-World Examples. We have integrated the textbook with examples from real life to give students a better
understanding of how technology and techniques are combined for practical purposes.

* Chapter Summaries. These sections provide brief yet concise summaries of the main points in each chapter.

» Further Reading. These sections list additional sources for those readers who wish to investigate any of the
topics in more detail, and contain references to definitive papers and books related to the chapter topics.

* Review Questions. Each chapter contains a set of review questions designed to ensure that the reader has a firm
grasp of the material.

* Chapter Exercises. Each chapter has a broad selection of exercises to reinforce the ideas presented. More
challenging exercises are marked with an asterisk.

» Answers to Selected Exercises. To ensure that students are on the right track, we provide answers to
representative questions from each chapter. Questions with answers in the back of the text are marked with a
blue diamond.

» Special “Focus On” Sections. These sections provide additional information for instructors who may wish to
cover certain concepts, such as Kmaps and data compression, in more detail. Additional exercises are provided
for these sections as well.

» Appendix. The appendix provides a brief introduction or review of data structures, including topics such as
stacks, linked lists, and trees.

* Glossary. An extensive glossary includes brief definitions of all key terms from the chapters.

 Index. An exhaustive index is provided with this book, with multiple cross-references, to make finding terms and
concepts easier for the reader.

About the Authors

We bring to this textbook not only 35-plus years of combined teaching experience, but also 30-plus years of
industry experience. Our combined efforts therefore stress the underlying principles of computer organization and
architecture and how these topics relate in practice. We include real-life examples to help students appreciate how
these fundamental concepts are applied in the world of computing.

Linda Null holds a PhD in computer science from Iowa State University, an MS in computer science from
Iowa State University, an MS in computer science education from Northwest Missouri State University, an MS in
mathematics education from Northwest Missouri State University, and a BS in mathematics and English from
Northwest Missouri State University. She has been teaching mathematics and computer science for more than 35
years and is currently the computer science graduate program coordinator and associate program chair at the
Pennsylvania State University Harrisburg campus, where she has been a member of the faculty since 1995. She
has received numerous teaching awards including the Penn State Teaching Fellow Award and the Teaching
Excellence Award. Her areas of interest include computer organization and architecture, operating systems,
computer science education, and computer security.

Julia Lobur has been a practitioner in the computer industry for more than 30 years. She has held positions as
systems consultant, staff programmer/analyst, systems and network designer, software development manager, and
project manager, in addition to part-time teaching duties. Julia holds an MS in computer science and is an IEEE
Certified Software Development Professional.

Prerequisites

The typical background necessary for a student using this textbook includes a year of programming experience
using a high-level procedural language. Students are also expected to have taken a year of college-level
mathematics (calculus or discrete mathematics), as this textbook assumes and incorporates these mathematical
concepts. This book assumes no prior knowledge of computer hardware.

A computer organization and architecture class is customarily a prerequisite for an undergraduate operating
systems class (students must know about the memory hierarchy, concurrency, exceptions, and interrupts),
compilers (students must know about instruction sets, memory addressing, and linking), networking (students
must understand the hardware of a system before attempting to understand the network that ties these components
together), and of course, any advanced architecture class. This text covers the topics necessary for these courses.

General Organization and Coverage
Our presentation of concepts in this textbook is an attempt at a concise yet thorough coverage of the topics we
feel are essential for the computer science major. We do not feel the best way to do this is by “compartmentalizing”
the various topics; therefore, we have chosen a structured yet integrated approach where each topic is covered in
the context of the entire computer system.

As with many popular texts, we have taken a bottom-up approach, starting with the digital logic level and
building to the application level that students should be familiar with before starting the class. The text is carefully
structured so that the reader understands one level before moving on to the next. By the time the reader reaches the
application level, all the necessary concepts in computer organization and architecture have been presented. Our
goal is to allow the students to tie the hardware knowledge covered in this book to the concepts learned in their
introductory programming classes, resulting in a complete and thorough picture of how hardware and software fit
together. Ultimately, the extent of hardware understanding has a significant influence on software design and
performance. If students can build a firm foundation in hardware fundamentals, this will go a long way toward

helping them to become better computer scientists.

The concepts in computer organization and architecture are integral to many of the everyday tasks that
computer professionals perform. To address the numerous areas in which a computer professional should be
educated, we have taken a high-level look at computer architecture, providing low-level coverage only when
deemed necessary for an understanding of a specific concept. For example, when discussing ISAs, many
hardware-dependent issues are introduced in the context of different case studies to both differentiate and reinforce
the issues associated with ISA design.

The text is divided into 13 chapters and an appendix, as follows:

Chapter 1 provides a historical overview of computing in general, pointing out the many milestones in the
development of computing systems and allowing the reader to visualize how we arrived at the current state of
computing. This chapter introduces the necessary terminology, the basic components in a computer system, the
various logical levels of a computer system, and the von Neumann computer model. It provides a high-level view
of the computer system, as well as the motivation and necessary concepts for further study.

* Chapter 2 provides thorough coverage of the various means computers use to represent both numerical and
character information. Addition, subtraction, multiplication, and division are covered once the reader has been
exposed to number bases and the typical numeric representation techniques, including one’s complement, two’s
complement, and BCD. In addition, EBCDIC, ASCII, and Unicode character representations are addressed.
Fixed- and floating-point representation are also introduced. Codes for data recording and error detection and
correction are covered briefly. Codes for data transmission and recording are described in a special “Focus On”
section.

* Chapter 3 is a classic presentation of digital logic and how it relates to Boolean algebra. This chapter covers
both combinational and sequential logic in sufficient detail to allow the reader to understand the logical makeup of
more complicated MSI (medium-scale integration) circuits (such as decoders). More complex circuits, such as
buses and memory, are also included. We have included optimization and Kmaps in a special “Focus On” section.

Chapter 4 illustrates basic computer organization and introduces many fundamental concepts, including the
fetch—decode—execute cycle, the data path, clocks and buses, register transfer notation, and, of course, the
CPU. A very simple architecture, MARIE, and its ISA are presented to allow the reader to gain a full
understanding of the basic architectural organization involved in program execution. MARIE exhibits the classic
von Neumann design and includes a program counter, an accumulator, an instruction register, 4096 bytes of
memory, and two addressing modes. Assembly language programming is introduced to reinforce the concepts of
instruction format, instruction mode, data format, and control that are presented earlier. This is not an assembly
language textbook and was not designed to provide a practical course in assembly language programming. The
primary objective in introducing assembly is to further the understanding of computer architecture in general.
However, a simulator for MARIE is provided so assembly language programs can be written, assembled, and run
on the MARIE architecture. The two methods of control, hardwiring and microprogramming, are introduced and
compared in this chapter. Finally, Intel and MIPS architectures are compared to reinforce the concepts in the
chapter.

» Chapter 5 provides a closer look at instruction set architectures, including instruction formats, instruction types,
and addressing modes. Instruction-level pipelining is introduced as well. Real-world ISAs (including Intel®,
MIPS® Technologies, ARM, and Java™) are presented to reinforce the concepts presented in the chapter.

* Chapter 6 covers basic memory concepts, such as RAM and the various memory devices, and also addresses
the more advanced concepts of the memory hierarchy, including cache memory and virtual memory. This
chapter gives a thorough presentation of direct mapping, associative mapping, and set-associative mapping
techniques for cache. It also provides a detailed look at paging and segmentation, TLBs, and the various
algorithms and devices associated with each. A tutorial and simulator for this chapter is available on the book’s
website.

* Chapter 7 provides a detailed overview of I/O fundamentals, bus communication and protocols, and typical

external storage devices, such as magnetic and optical disks, as well as the various formats available for each.
DMA, programmed I/O, and interrupts are covered as well. In addition, various techniques for exchanging
information between devices are introduced. RAID architectures are covered in detail. Various data compression
formats are introduced in a special “Focus On” section.

* Chapter 8 discusses the various programming tools available (such as compilers and assemblers) and their
relationship to the architecture of the machine on which they are run. The goal of this chapter is to tie the
programmer’s view of a computer system with the actual hardware and architecture of the underlying machine.
In addition, operating systems are introduced, but only covered in as much detail as applies to the architecture
and organization of a system (such as resource use and protection, traps and interrupts, and various other
services).

* Chapter 9 provides an overview of alternative architectures that have emerged in recent years. RISC, Flynn’s
Taxonomy, parallel processors, instruction-level parallelism, multiprocessors, interconnection networks, shared
memory systems, cache coherence, memory models, superscalar machines, neural networks, systolic
architectures, dataflow computers, quantum computing, and distributed architectures are covered. Our main
objective in this chapter is to help the reader realize we are not limited to the von Neumann architecture, and to
force the reader to consider performance issues, setting the stage for the next chapter.

* Chapter 10 covers concepts and topics of interest in embedded systems that have not been covered in previous
chapters. Specifically, this chapter focuses on embedded hardware and components, embedded system design
topics, the basics of embedded software construction, and embedded operating systems features.

* Chapter 11 addresses various performance analysis and management issues. The necessary mathematical
preliminaries are introduced, followed by a discussion of MIPS, FLOPS, benchmarking, and various optimization
issues with which a computer scientist should be familiar, including branch prediction, speculative execution,
and loop optimization.

+ Chapter 12 focuses on network organization and architecture, including network components and protocols.
The OSI model and TCP/IP suite are introduced in the context of the Internet. This chapter is by no means
intended to be comprehensive. The main objective is to put computer architecture in the correct context relative
to network architecture.

* Chapter 13 introduces some popular I/O architectures suitable for large and small systems, including SCSI,
ATA, IDE, SATA, PCI, USB, and IEEE 1394. This chapter also provides a brief overview of storage area
networks and cloud computing.

+ Appendix A is a short appendix on data structures that is provided for those situations in which students may
need a brief introduction or review of such topics as stacks, queues, and linked lists.

The sequencing of the chapters is such that they can be taught in the given numerical order. However, an
instructor can modify the order to better fit a given curriculum if necessary. Figure P.1 shows the prerequisite
relationships that exist between various chapters.

[Chapter 1: Introduction]

Y Y
Chapter 2: Chapter 3:
Data Representation Boolean Algebra and
Digital Logic

N/

Chapter 4: MARIE, a
Simple Gomputer

Look at ISAs

P

[Chapter 6:] [Chapter 7: /O and]

[Chapter 5:A Glosra{]

Memory Storage Systems

e

Chapter 12:
Metwork Organization

System Software

l

(Chapter 9: Alternative]

Chapter 8: J

Architectures Chapte-r 11
= Performance Chapter 13:
Measurement and Selected Storage
Y Analysis Systems and Interfaces

Chapter 10:
Embedded Systems

FIGURE P.1 Prerequisite Relationship Between Chapters

What’s New in the Fourth Edition

In the years since the third edition of this book was created, the field of computer architecture has continued to
grow. In this fourth edition, we have incorporated many of these new changes in addition to expanding topics
already introduced in the first three editions. Our goal in the fourth edition was to update content and references,
add new material, expand current discussions based on reader comments, and expand the number of exercises in
all of the core chapters. Although we cannot itemize all the changes in this edition, the list that follows highlights
those major changes that may be of interest to the reader:

» Chapter 1 has been updated to include new examples and illustrations, tablet computers, computing as a service
(Cloud computing), and cognitive computing. The hardware overview has been expanded and updated (notably,
the discussion on CRTs has been removed and a discussion of graphics cards has been added), and additional
motivational sidebars have been added. The non-von Neumann section has been updated, and a new section on
parallelism has been included. The number of exercises at the end of the chapter has been increased by 26%.

* Chapter 2 contains a new section on excess-M notation. The simple model has been modified to use a standard
format, and more examples have been added. This chapter has a 44% increase in the number of exercises.

* Chapter 3 has been modified to use a prime (') instead of an overbar to indicate the NOT operator. Timing
diagrams have been added to help explain the operation of sequential circuits. The section on FSMs has been
expanded, and additional exercises have been included.

* Chapter 4 contains an expanded discussion of memory organization (including memory interleaving) as well as
additional examples and exercises. We are now using the “0x” notation to indicate hexadecimal numbers. More
detail has been added to the discussions on hardwired and microprogrammed control, and the logic diagrams for
MARIE'’s hardwired control unit and the timing diagrams for MARIE’s microoperations have all been updated.

» Chapter 5 contains expanded coverage of big and little endian and additional examples and exercises, as well as
a new section on ARM processors.

+ Chapter 6 has updated figures, an expanded discussion of associative memory, and additional examples and
discussion to clarify cache memory. The examples have all been updated to reflect hexadecimal addresses
instead of decimal addresses. This chapter now contains 20% more exercises than the third edition.

* Chapter 7 has expanded coverage of solid state drives and emerging data storage devices (such as carbon
nanotubes and memristors), as well as additional coverage of RAID. There is a new section on MP3
compression and in addition to a 20% increase in the number of exercises at the end of this chapter.

* Chapter 8 has been updated to reflect advances in the field of system software.

* Chapter 9 has an expanded discussion of both RISC vs. CISC (integrating this debate into the mobile arena) and
quantum computing, including a discussion of the technological singularity.

* Chapter 10 contains updated material for embedded operating systems.
» Chapter 12 has been updated to remove obsolete material and integrate new material.

* Chapter 13 has expanded and updated coverage of USB, expanded coverage of Cloud storage, and removal of
obsolete material.

Intended Audience

This book was originally written for an undergraduate class in computer organization and architecture for
computer science majors. Although specifically directed toward computer science majors, the book does not
preclude its use by IS and IT majors.

This book contains more than sufficient material for a typical one-semester (14 weeks, 42 lecture hours)
course; however, all the material in the book cannot be mastered by the average student in a one-semester class. If
the instructor plans to cover all topics in detail, a two-semester sequence would be optimal. The organization is
such that an instructor can cover the major topic areas at different levels of depth, depending on the experience
and needs of the students. Table P.2 gives the instructor an idea of the amount of time required to cover the topics,
and also lists the corresponding levels of accomplishment for each chapter.

It is our intention that this book serve as a useful reference long after the formal course is complete.

One Semester Two Semesters
(42 Hours) (84 Hours)
Lecture Expected Lecture Expected
Chapter Hours Level Hours Level
1 3 Mastery 3 Mastery
2 6 Mastery 6 Mastery
3 6 Mastery 6 Mastery
= 8 Mastery 8 Mastery
5 4 Familiarity 6 Mastery
6 3 Familiarity 8 Mastery
7 2 Familiarity 6 Mastery
8 2 Exposure 7 Mastery
9 2 Familiarity 7 Mastery
10 1 Exposure 5 Familiarity
1) Exposure o] Mastery
12 2 Exposure T Mastery
13 1 Exposure 6 Mastery

TABLE P.2 Suggested Lecture Hours

Support M aterials

Atextbook is a fundamental tool in learning, but its effectiveness is greatly enhanced by supplemental materials and
exercises, which emphasize the major concepts, provide immediate feedback to the reader, and motivate
understanding through repetition. We have, therefore, created the following ancillary materials for the fourth edition
of The Essentials of Computer Organization and Architecture:

¢ Test bank.

* Instructor’s Manual. This manual contains answers to exercises. In addition, it provides hints on teaching
various concepts and trouble areas often encountered by students.

* PowerPoint Presentations. These slides contain lecture material appropriate for a one-semester course in
computer organization and architecture.

* Figures and Tables. For those who wish to prepare their own lecture materials, we provide the figures and tables
in downloadable form.

* Memory Tutorial and Simulator. This package allows students to apply the concepts on cache and virtual
memory.

* MARIE Simulator. This package allows students to assemble and run MARIE programs.

» Datapath Simulator. This package allows students to trace the MARIE datapath.

* Tutorial Software. Other tutorial software is provided for various concepts in the book.

» Companion Website. All software, slides, and related materials can be downloaded from the book’s website:
go.jblearning.com/ecoade

The exercises, sample exam problems, and solutions have been tested in numerous classes. The Instructor’s

http://go.jblearning.com/ecoa4e

Manual, which includes suggestions for teaching the various chapters in addition to answers for the book’s
exercises, suggested programming assignments, and sample example questions, is available to instructors who
adopt the book. (Please contact your Jones & Bartlett Learning representative at 1-800-832-0034 for access to this
area of the website.)

The Instructional Model: MARIE

In a computer organization and architecture book, the choice of architectural model affects the instructor as well
as the students. If the model is too complicated, both the instructor and the students tend to get bogged down in
details that really have no bearing on the concepts being presented in class. Real architectures, although interesting,
often have far too many peculiarities to make them usable in an introductory class. To make things even more
complicated, real architectures change from day to day. In addition, it is difficult to find a book incorporating a
model that matches the local computing platform in a given department, noting that the platform, too, may change
from year to year.

To alleviate these problems, we have designed our own simple architecture, MARIE, specifically for
pedagogical use. MARIE (Machine Architecture that is Really Intuitive and Easy) allows students to learn the
essential concepts of computer organization and architecture, including assembly language, without getting caught
up in the unnecessary and confusing details that exist in real architectures. Despite its simplicity, it simulates a
functional system. The MARIE machine simulator, MarieSim, has a user-friendly GUI that allows students to (1)
create and edit source code, (2) assemble source code into machine object code, (3) run machine code, and (4)
debug programs.

Specifically, MarieSim has the following features:

* Support for the MARIE assembly language introduced in Chapter 4

* An integrated text editor for program creation and modification

* Hexadecimal machine language object code

* An integrated debugger with single step mode, break points, pause, resume, and register and memory tracing
* A graphical memory monitor displaying the 4096 addresses in MARIE’s memory

+ Agraphical display of MARIE’s registers

* Highlighted instructions during program execution

» User-controlled execution speed

» Status messages

» User-viewable symbol tables

* An interactive assembler that lets the user correct any errors and reassemble automatically, without changing
environments

* Online help

* Optional core dumps, allowing the user to specify the memory range
» Frames with sizes that can be modified by the user

* Asmall learning curve, allowing students to learn the system quickly

MarieSim was written in the Java language so that the system would be portable to any platform for which a Java
Virtual Machine (JVM) is available. Students of Java may wish to look at the simulator’s source code, and perhaps
even offer improvements or enhancements to its simple functions.

Figure P.2, the MarieSim Graphical Environment, shows the graphical environment of the MARIE machine
simulator. The screen consists of four parts: the menu bar, the central monitor area, the memory monitor, and the
message area.

Menu options allow the user to control the actions and behavior of the MARIE simulator system. These options
include loading, starting, stopping, setting breakpoints, and pausing programs that have been written in MARIE
assembly language.

The MARIE simulator illustrates the process of assembly, loading, and execution, all in one simple environment.
Users can see assembly language statements directly from their programs, along with the corresponding machine
code (hexadecimal) equivalents. The addresses of these instructions are indicated as well, and users can view any
portion of memory at any time. Highlighting is used to indicate the initial loading address of a program in addition to
the currently executing instruction while a program runs. The graphical display of the registers and memory allows
the student to see how the instructions cause the values in the registers and memory to change.

2 N O D) I 0 e M- S - . i Mo IO 1 ol 1B

5000 200D ADOO 100D 400C S000 200D 400F 3400 S00Z 7000 Q020
0000 0000 0000 OCOO 0000 0000 Q000 0000 0000 €000 OO0O00 0000
0060 0000 OO0 OODO 0000 0000 000D 0000 0000 COCO 0000 0000
6000 0000 0000 O0D0 0000 0000 0000 O000 0000 0000 000
0000 ©OOD 0000 OCDOD 0000 QOOO Q00D O000 0000 Q000 Qoo
BO40 o000 fong 000D 0000 Q000 Q00D oo
0000 0000 000 0000 0000 0000 (00O 0000
o000 o000 L1 Q0G0 0000 0000 QOG0 o000

0000 a0 0000 0000 0000 0000

FIGURE P.2 The MarieSim Graphical Environment

If You Find an Error

We have attempted to make this book as technically accurate as possible, but even though the manuscript has been
through numerous proofreadings, errors have a way of escaping detection. We would greatly appreciate hearing
from readers who find any errors that need correcting. Your comments and suggestions are always welcome;
please send on email to ECOA@)jblearning.com.

Credits and Acknowledgments

Few books are entirely the result of one or two people’s unaided efforts, and this one is no exception. We realize
that writing a textbook is a formidable task and only possible with a combined effort, and we find it impossible to

mailto:ECOA@jblearning.com

adequately thank those who have made this book possible. If, in the following acknowledgments, we inadvertently
omit anyone, we humbly apologize.

A number of people have contributed to the fourth edition of this book. We would first like to thank all of the
reviewers for their careful evaluations of previous editions and their thoughtful written comments. In addition, we
are grateful for the many readers who have emailed useful ideas and helpful suggestions. Although we cannot
mention all of these people here, we especially thank John MacCormick (Dickinson College) and Jacqueline Jones
(Brooklyn College) for their meticulous reviews and their numerous comments and suggestions. We extend a
special thanks to Karishma Rao and Sean Willeford for their time and effort in producing a quality memory
software module.

We would also like to thank the individuals at Jones & Bartlett Learning who worked closely with us to make
this fourth edition possible. We are very grateful to Tiffany Silter, Laura Pagluica, and Amy Rose for their
professionalism, commitment, and hard work on the fourth edition.

I, Linda Null, would personally like to thank my husband, Tim Wabhls, for his continued patience while living life
as a “book widower” for a fourth time, for listening and commenting with frankness about the book’s contents and
modifications, for doing such an extraordinary job with all of the cooking, and for putting up with the almost daily
compromises necessitated by my writing this book—including missing our annual fly-fishing vacation and forcing
our horses into prolonged pasture ornament status. I consider myself amazingly lucky to be married to such a
wonderful man. I extend my heartfelt thanks to my mentor, Merry McDonald, who taught me the value and joys of
learning and teaching, and doing both with integrity. Lastly, I would like to express my deepest gratitude to Julia
Lobur, as without her, this book and its accompanying software would not be a reality. It has been both a joy and
an honor working with her.

I, Julia Lobur, am deeply indebted to my lawful spouse, Marla Cattermole, who married me despite the
demands that this book has placed on both of us. She has made this work possible through her forbearance and
fidelity. She has nurtured my body through her culinary delights and my spirit through her wisdom. She has taken
up my slack in many ways while working hard at her own career. I would also like to convey my profound
gratitude to Linda Null: first, for her unsurpassed devotion to the field of computer science education and
dedication to her students and, second, for giving me the opportunity to share with her the ineffable experience of
textbook authorship.

“Computing is not about computers anymore. It is about living.... We have seen computers move out of
giant air-conditioned rooms into closets, then onto desktops, and now into our laps and pockets. But this
is not the end.... Like a force of nature, the digital age cannot be denied or stopped.... The information
superhighway may be mostly hype today, but it is an understatement about tomorrow. It will exist beyond
people’s wildest predictions.... We are not waiting on any invention. It is here. It is now. It is almost
genetic in its nature, in that each generation will become more digital than the preceding one.”

—Nicholas Negroponte, professor of media technology at MIT

CHAPTER 1

Introduction

1.1 OVERVIEW

Dr. Negroponte is among many who see the computer revolution as if it were a force of nature. This force has the
potential to carry humanity to its digital destiny, allowing us to conquer problems that have eluded us for centuries,
as well as all of the problems that emerge as we solve the original problems. Computers have freed us from the
tedium of routine tasks, liberating our collective creative potential so that we can, of course, build bigger and better
computers.

As we observe the profound scientific and social changes that computers have brought us, it is easy to start
feeling overwhelmed by the complexity of it all. This complexity, however, emanates from concepts that are
fundamentally very simple. These simple ideas are the ones that have brought us to where we are today and are the
foundation for the computers of the future. To what extent they will survive in the future is anybody’s guess. But
today, they are the foundation for all of computer science as we know it.

Computer scientists are usually more concerned with writing complex program algorithms than with designing
computer hardware. Of course, if we want our algorithms to be useful, a computer eventually has to run them.
Some algorithms are so complicated that they would take too long to run on today’s systems. These kinds of
algorithms are considered computationally infeasible. Certainly, at the current rate of innovation, some things
that are infeasible today could be feasible tomorrow, but it seems that no matter how big or fast computers
become, someone will think up a problem that will exceed the reasonable limits of the machine.

To understand why an algorithm is infeasible, or to understand why the implementation of a feasible algorithm
is running too slowly, you must be able to see the program from the computer’s point of view. You must
understand what makes a computer system tick before you can attempt to optimize the programs that it runs.
Attempting to optimize a computer system without first understanding it is like attempting to tune your car by
pouring an elixir into the gas tank: You’ll be lucky if it runs at all when you’re finished.

Program optimization and system tuning are perhaps the most important motivations for learning how
computers work. There are, however, many other reasons. For example, if you want to write compilers, you must
understand the hardware environment within which the compiler will function. The best compilers leverage
particular hardware features (such as pipelining) for greater speed and efficiency.

If you ever need to model large, complex, real-world systems, you will need to know how floating-point
arithmetic should work as well as how it really works in practice. If you wish to design peripheral equipment or
the software that drives peripheral equipment, you must know every detail of how a particular computer deals with
its input/output (I/0). If your work involves embedded systems, you need to know that these systems are usually
resource-constrained. Your understanding of time, space, and price trade-offs, as well as I/O architectures, will be
essential to your career.

All computer professionals should be familiar with the concepts of benchmarking and be able to interpret and
present the results of benchmarking systems. People who perform research involving hardware systems,
networks, or algorithms find benchmarking techniques crucial to their day-to-day work. Technical managers in
charge of buying hardware also use benchmarks to help them buy the best system for a given amount of money,
keeping in mind the ways in which performance benchmarks can be manipulated to imply results favorable to
particular systems.

The preceding examples illustrate the idea that a fundamental relationship exists between computer hardware
and many aspects of programming and software components in computer systems. Therefore, regardless of our
areas of expertise, as computer scientists, it is imperative that we understand how hardware interacts with

software. We must become familiar with how various circuits and components fit together to create working
computer systems. We do this through the study of computer organization. Computer organization addresses
issues such as control signals (how the computer is controlled), signaling methods, and memory types. It
encompasses all physical aspects of computer systems. It helps us to answer the question: How does a computer
work?

The study of computer architecture, on the other hand, focuses on the structure and behavior of the
computer system and refers to the logical and abstract aspects of system implementation as seen by the
programmer. Computer architecture includes many elements such as instruction sets and formats, operation codes,
data types, the number and types of registers, addressing modes, main memory access methods, and various 1/0
mechanisms. The architecture of a system directly affects the logical execution of programs. Studying computer
architecture helps us to answer the question: How do I design a computer?

The computer architecture for a given machine is the combination of its hardware components plus its
instruction set architecture (ISA). The ISA is the agreed-upon interface between all the software that runs on
the machine and the hardware that executes it. The ISA allows you to talk to the machine.

The distinction between computer organization and computer architecture is not clear-cut. People in the fields
of computer science and computer engineering hold differing opinions as to exactly which concepts pertain to
computer organization and which pertain to computer architecture. In fact, neither computer organization nor
computer architecture can stand alone. They are interrelated and interdependent. We can truly understand each of
them only after we comprehend both of them. Our comprehension of computer organization and architecture
ultimately leads to a deeper understanding of computers and computation—the heart and soul of computer science.

1.2 THE MAIN COMPONENTS OF A COMPUTER

Although it is difficult to distinguish between the ideas belonging to computer organization and those ideas
belonging to computer architecture, it is impossible to say where hardware issues end and software issues begin.
Computer scientists design algorithms that usually are implemented as programs written in some computer
language, such as Java or C++. But what makes the algorithm run? Another algorithm, of course! And another
algorithm runs that algorithm, and so on until you get down to the machine level, which can be thought of as an
algorithm implemented as an electronic device. Thus, modern computers are actually implementations of
algorithms that execute other algorithms. This chain of nested algorithms leads us to the following principle:

Principle of Equivalence of Hardware and Software: Any task done by software can also be done using
hardware, and any operation performed directly by hardware can be done using software.!

A special-purpose computer can be designed to perform any task, such as word processing, budget analysis, or
playing a friendly game of Tetris. Accordingly, programs can be written to carry out the functions of special-
purpose computers, such as the embedded systems situated in your car or microwave. There are times when a
simple embedded system gives us much better performance than a complicated computer program, and there are
times when a program is the preferred approach. The Principle of Equivalence of Hardware and Software tells us
that we have a choice. Our knowledge of computer organization and architecture will help us to make the best
choice.

We begin our discussion of computer hardware by looking at the components necessary to build a computing
system. At the most basic level, a computer is a device consisting of three pieces:

1. Aprocessor to interpret and execute programs
2. A memory to store both data and programs
3. Amechanism for transferring data to and from the outside world

We discuss these three components in detail as they relate to computer hardware in the following chapters.

Once you understand computers in terms of their component parts, you should be able to understand what a
system is doing at all times and how you could change its behavior if so desired. You might even feel like you have
a few things in common with it. This idea is not as far-fetched as it appears. Consider how a student sitting in
class exhibits the three components of a computer: The student’s brain is the processor, the notes being taken
represent the memory, and the pencil or pen used to take notes is the /O mechanism. But keep in mind that your
abilities far surpass those of any computer in the world today, or any that can be built in the foreseeable future.

1.3 AN EXAMPLE SYSTEM: WADING THROUGH THE JARGON

This text will introduce you to some of the vocabulary that is specific to computers. This jargon can be confusing,
imprecise, and intimidating. We believe that with a little explanation, we can clear the fog.

For the sake of discussion, we have provided a facsimile computer advertisement (see Figure 1.1). The ad is
typical of many in that it bombards the reader with phrases such as “32GB DDR3 SDRAM,” “PCle sound card,”
and “128KB L1 cache.” Without having a handle on such terminology, you would be hard-pressed to know
whether the stated system is a wise buy, or even whether the system is able to serve your needs. As we progress
through this text, you will learn the concepts behind these terms.

(3
FOR SALE: OBSOLETE COMPUTER - CHEAP! CHEAP! CHEAP!

- * Intel i7 Quad Core, 3.9GHz

3 « 1600MHz 32GE DDR3 SDRAM
Pl] + 128KB L1 cache, 2MB L2 cache

E « 1TB SATA hard drive (7200 RPM)

@ » 10 USB ports, 1 serial port, 4 PCl expansion slots

(1 PCI, 1 PCIx16, 2 PClx1), Bluetooth, and HDMI

« 24" widescreen LCD monitor, 16:10 aspect ratio,
1920x1200 WUXGA, 300 cd/m2, active matrix, 1000:1
(static), Bms, 24-hit color (16.7 million colors), VGA/DVI
input, 2 USB ports

« 16x CD/DVD +/— RW drive

* 1GB PCle video card

» PCle sound card

* Integrated 10/100/1000 Ethernet

> 7,

FIGURE 1.1 A Typical Computer Advertisement

Before we explain the ad, however, we need to discuss something even more basic: the measurement
terminology you will encounter throughout your study of computers.

It seems that every field has its own way of measuring things. The computer field is no exception. For
computer people to tell each other how big something is, or how fast something is, they must use the same units
of measure. The common prefixes used with computers are given in Table 1.1. Back in the 1960s, someone
decided that because the powers of 2 were close to the powers of 10, the same prefix names could be used for
both. For example, 2'° is close to 10% so “kilo” is used to refer to them both. The result has been mass confusion:
Does a given prefix refer to a power of 10 or a power of 2? Does a kilo mean 10° of something or 2 of

something? Although there is no definitive answer to this question, there are accepted “standards of usage.”
Power-of-10 prefixes are ordinarily used for power, electrical voltage, frequency (such as computer clock speeds),
and multiples of bits (such as data speeds in number of bits per second). If your antiquated modem transmits at
28.8kb/s, then it transmits 28,800 bits per second (or 28.8 x 10%). Note the use of the lowercase “k” to mean 10°
and the lowercase “b” to refer to bits. An uppercase “K” is used to refer to the power-of-2 prefix, or 1024. If a file
is 2KB in size, then it is 2 x 21° or 2048 bytes. Note the uppercase “B” to refer to byte. If a disk holds 1MB, then it
holds 2% bytes (or one megabyte) of information.

Not knowing whether specific prefixes refer to powers of 2 or powers of 10 can be very confusing. For this
reason, the International Electrotechnical Commission, with help from the National Institute of Standards and
Technology, has approved standard names and symbols for binary prefixes to differentiate them from decimal
prefixes. Each prefix is derived from the symbols given in Table 1.1 by adding an “i.” For example, 2'° has been
renamed “kibi” (for kilobinary) and is represented by the symbol Ki. Similarly, 22° is mebi, or Mi, followed by gibi
(Gi), tebi (Ti), pebi (Pi), exbi (Ei), and so on. Thus, the term mebibyte, which means 2% bytes, replaces what we
traditionally call a megabyte.

Prefix Symbol Power of 10 Power of 2 Prefix Symbol Power of 10 Power of 2
Kilo K 1thousand =10° 2'%=1024 | Milli m 1 thousandth = 1072 &30
Mega M 1 million = 108 20 Micro m 1 millionth = 1078 g2
Giga G 1 billion = 10° o) Nano n 1 billionth = 107° 2-20
Tera T 1 trillion = 1012 zH Pico p 1 trillionth = 10712 g
Peta P 1 quadrillion = 102 250 Femto f 1 quadrillionth = 10718 2750
Exa E 1 quintillion = 10'® 2 Atto a 1 quintillionth = 10718 27860
Zetta Z 1 sextillion = 1021 - Tl Zepto z 1 sextillionth = 10721 o710
Yotta Y 1 septillion = 1024 280 Yocto y 1 septillionth = 10724 o80

TABLE 1.1 Common Prefixes Associated with Computer Organization and Architecture

There has been limited adoption of these new prefixes. This is unfortunate because, as a computer user, it is
important to understand the true meaning of these prefixes. A kilobyte (1KB) of memory is typically 1024 bytes of
memory rather than 1000 bytes of memory. However, a 1GB disk drive might actually be 1 billion bytes instead of
2% (which means you are getting less storage than you think). All 3.5" floppy disks are described as storing
1.44MB of data when in fact they store 1440KB (or 1440 x 2% = 1474560 bytes). You should always read the
manufacturer’s fine print just to make sure you know exactly what 1K, 1KB, or 1G represents. See the sidebar
“When a Gigabyte Isn’t Quite ...” for a good example of why this is so important.

Who Uses Zettabytes and Yottabytes Anyway?

The National Security Agency (NSA), an intelligence-gathering organization in the United States, announced that
its new Intelligence Community Comprehensive National Cybersecurity Initiative Data Center, in Bluffdale, Utah,
was set to open in October 2013. Approximately 100,000 square feet of the structure is utilized for the data
center, Whereas the remaining 900,000+ square feet houses technical support and administration. The new data
center will help the NSA monitor the vast volume of data traffic on the Internet.

It is estimated that the NSA collects roughly 2 million gigabytes of data every hour, 24 hours a day, seven
days a week. This data includes foreign and domestic emails, cell phone calls, Internet searches, various

purchases, and other forms of digital data. The computer responsible for analyzing this data for the new data
center is the Titan supercomputer, a water-cooled machine capable of operating at 100 petaflops (or 100,000
trillion calculations each second). The PRISM (Planning Tool for Resource Integration, Synchronization, and
Management) surveillance program will gather, process, and track all collected data.

Although we tend to think in terms of gigabytes and terabytes when buying storage for our personal
computers and other devices, the NSA’s data center storage capacity will be measured in zettabytes (with many
hypothesizing that storage will be in thousands of zettabytes, or yottabytes). To put this in perspective, in a 2003
study done at the University of California (UC) Berkeley, it was estimated that the amount of new data created in
2002 was roughly 5EB. An earlier study by UC Berkeley estimated that by the end of 1999, the sum of all
information, including audio, video, and text, created by humankind was approximately 12EB of data. In 2006,
the combined storage space of every computer hard drive in the world was estimated at 160EB; in 2009, the
Internet as a whole was estimated to contain roughly 500 total exabytes, or a half zettabyte, of data. Cisco, a
U.S. computer network hardware manufacturer, has estimated that by 2016, the total volume of data on the
global internet will be 1.3ZB, and Seagate Technology, an American manufacturer of hard drives, has estimated
that the total storage capacity demand will reach 7ZB in 2020.

The NSA is not the only organization dealing with information that must be measured in numbers of bytes
beyond the typical “giga” and “tera.” It is estimated that Facebook collects 500TB of new material per day;
YouTube observes roughly 1TB of new video information every four minutes; the CERN Large Hadron Collider
generates 1PB of data per second; and the sensors on a single, new Boeing jet engine produce 20TB of data
every hour. Although not all of the aforementioned examples require permanent storage of the data they
create/handle, these examples nonetheless provide evidence of the remarkable quantity of data we deal with
every day. This tremendous volume of information is what prompted the IBM Corporation, in 2011, to develop
and announce its new 120-PB hard drive, a storage cluster consisting of 200,000 conventional hard drives
harnessed to work together as a single unit. If you plugged your MP3 player into this drive, you would have
roughly two billion hours of music!

In this era of smartphones, tablets, Cloud computing, and other electronic devices, we will continue to hear
people talking about petabytes, exabytes, and zettabytes (and, in the case of the NSA, even yottabytes).
However, if we outgrow yottabytes, what then? In an effort to keep up with the astronomical growth of
information and to refer to even bigger volumes of data, the next generation of prefixes will most likely include
the terms brontobyte for 10 and gegobyte for 10* (although some argue for geobyte and geopbyte as the
prefixes for the latter). Although these are not yet universally accepted international prefix units, if history is any
indication, we will need them sooner rather than later.

When a Gigabyte Isn’t Quite ...

Purchasing a new array of disk drives should be a relatively straightforward process once you determine your
technical requirements (e.g., disk transfer rate, interface type, etc.). From here, you should be able to make
your decision based on a simple price/capacity ratio, such as dollars per gigabyte, and then you’ll be done. Well,
not so fast.

The first boulder in the path of a straightforward analysis is that you must make sure that the drives you are
comparing all express their capacities either in formatted or unformatted bytes. As much as 16% of drive space
is consumed during the formatting process. (Some vendors give this number as “usable capacity.”) Naturally,
the price—capacity ratio looks much better when unformatted bytes are used, although you are most interested in
knowing the amount of usable space a disk provides.

Your next obstacle is to make sure that the same radix is used when comparing disk sizes. It is increasingly
common for disk capacities to be given in base 10 rather than base 2. Thus, a “1GB” disk drive has a capacity
of 10° = 1,000,000,000 bytes, rather than 2* = 1,073,741,824 bytes—a reduction of about 7%. This can make

a huge difference when purchasing multigigabyte enterprise-class storage systems.

As a concrete example, suppose you are considering purchasing a disk array from one of two leading
manufacturers. Manufacturer x advertises an array of 12 250GB disks for $20,000. Manufacturer y is offering
an array of 12 212.5GB disks for $21,000. All other things being equal, the cost ratio overwhelmingly favors
Manufacturer x:

Manufacturer x: $20,000 + (12 x 250GB) = $6.67 per GB
Manufacturer y: $21,000 + (12 x 212.5GB) = $8.24 per GB

Being a little suspicious, you make a few telephone calls and learn that Manufacturer x is citing capacities
using unformatted base 10 gigabytes and Manufacturer y is using formatted base 2 gigabytes. These facts cast
the problem in an entirely different light: To start with, Manufacturer x’s disks aren’t really 250GB in the way
that we usually think of gigabytes. Instead, they are about 232.8 base 2 gigabytes. After formatting, the number
reduces even more to about 197.9GB. So the real cost ratios are, in fact:

Manufacturer x: $20,000 + (12 x 197.9GB) = $8.42 per GB
Manufacturer y: $21,000 + (12 x 212.5GB) == $8.24 per GB

Indeed, some vendors are scrupulously honest in disclosing the capabilities of their equipment.
Unfortunately, others reveal the facts only under direct questioning. Your job as an educated professional is to
ask the right questions.

When we want to talk about how fast something is, we speak in terms of fractions of a second—usually
thousandths, millionths, billionths, or trillionths. Prefixes for these metrics are given in the right-hand side of Table
1.1. Generally, negative powers refer to powers of 10, not powers of 2. For this reason, the new binary prefix
standards do not include any new names for the negative powers. Notice that the fractional prefixes have
exponents that are the reciprocal of the prefixes on the left side of the table. Therefore, if someone says to you that
an operation requires a microsecond to complete, you should also understand that a million of those operations
could take place in one second. When you need to talk about how many of these things happen in a second, you
would use the prefix mega-. When you need to talk about how fast the operations are performed, you would use
the prefix micro-.

Now to explain the ad. The microprocessor in the ad is an Intel i7 Quad Core processor (which means it is
essentially four processors) and belongs to a category of processors known as multicore processors (Section 1.10
contains more information on multicore processors). This particular processor runs at 3.9GHz. Every computer
system contains a clock that keeps the system synchronized. The clock sends electrical pulses simultaneously to all
main components, ensuring that data and instructions will be where they’re supposed to be, when they’re
supposed to be there. The number of pulsations emitted each second by the clock is its frequency. Clock
frequencies are measured in cycles per second, or hertz. If computer system clocks generate millions of pulses
per second, we say that they operate in the megahertz (MHz) range. Most computers today operate in the
gigahertz (GHz) range, generating billions of pulses per second. And because nothing much gets done in a
computer system without microprocessor involvement, the frequency rating of the microprocessor is crucial to
overall system speed. The microprocessor of the system in our advertisement operates at 3.9 billion cycles per
second, so the seller says that it runs at 3.9GHz.

The fact that this microprocessor runs at 3.9GHz, however, doesn’t necessarily mean that it can execute 3.9
billion instructions every second or, equivalently, that every instruction requires 0.039 nanoseconds to execute.
Later in this text, you will see that each computer instruction requires a fixed number of cycles to execute. Some
instructions require one clock cycle; however, most instructions require more than one. The number of
instructions per second that a microprocessor can actually execute is proportionate to its clock speed. The number
of clock cycles required to carry out a particular machine instruction is a function of both the machine’s
organization and its architecture.

The next thing we see in the ad is “1600MHz 32GB DDR3 SDRAM.” The 1600MHz refers to the speed of the
system bus, which is a group of wires that moves data and instructions to various places within the computer.
Like the microprocessor, the speed of the bus is also measured in MHz or GHz. Many computers have a special
local bus for data that supports very fast transfer speeds (such as those required by video). This local bus is a
high-speed pathway that connects memory directly to the processor. Bus speed ultimately sets the upper limit on
the system’s information-carrying capability.

The system in our advertisement also boasts a memory capacity of 32 gigabytes (GB), or about 32 billion
characters. Memory capacity not only determines the size of the programs you can run, but also how many
programs you can run at the same time without bogging down the system. Your application or operating system
manufacturer will usually recommend how much memory you’ll need to run its products. (Sometimes these
recommendations can be hilariously conservative, so be careful whom you believe!)

In addition to memory size, our advertised system provides us with a memory type, SDRAM, short for
synchronous dynamic random access memory. SDRAM is much faster than conventional (nonsynchronous)
memory because it can synchronize itself with a microprocessor’s bus. The system in our ad has DDR3 SDRAM,
or double data rate type three SDRAM (for more information on the different types of memory, see Chapter 6).

A Look Inside a Computer

Have you ever wondered what the inside of a computer really looks like? The example computer described in
this section gives a good overview of the components of a modern PC. However, opening a computer and
attempting to find and identify the various pieces can be frustrating, even if you are familiar with the
components and their functions.

BIOS Flash Chip
SATA Connector (X4)., i PLCC Socket Southbridge

- ith heatsink
Floppy Drive IDE Connector (X2) bl tsattmi
Connector

CMOS Backup Battery

24-pin ATX Power :
Connector Integrated Graphics
Processor
Super 10 (with heatsink)
Chip
DIMM Memory PCl slot (X3)
Slots (¥4)
CPU Fan
Connector
CPU Fan and ntegrated Audio
Heatsink Mount Codec Chip
Integrated Gigabit
Ethernet Chip

CPU Socket

(Socket 939) PCl Express Slot

Connectors for

integrated peripherals
P2 Keyhoard ard Mouire, Seral Porl,
Faralle] Porm, VEA, Frewine]EEF 1304s,
LISE (X4), Eshoret, Audo (X5)

Photo courtesy of Moxfyre at en.wikipedia (from
http://commons.wikimedia.org/wiki/File:Acer_E360_Socket_939_motherboard_by_Foxconn.svg).

If you remove the cover on your computer, you will no doubt first notice a big metal box with a fan
attached. This is the power supply. You will also see various drives, including a hard drive and a DVD drive (or
perhaps an older floppy or CD drive). There are many integrated circuits—small, black rectangular boxes with
legs attached. You will also notice electrical pathways, or buses, in the system. There are printed circuit boards
(expansion cards) that plug into sockets on the motherboard, the large board at the bottom of a standard
desktop PC or on the side of a PC configured as a tower or mini-tower. The motherboard is the printed circuit
board that connects all the components in the computer, including the CPU, and RAM and ROM, as well as an
assortment of other essential components. The components on the motherboard tend to be the most difficult to
identify. Above you see an Acer E360 motherboard with the more important components labeled.

The Southbridge, an integrated circuit that controls the hard disk and I/O (including sound and video cards),
is a hub that connects slower I/O devices to the system bus. These devices connect via the I/O ports at the
bottom of the board. The PCI slots allow for expansion boards belonging to various PCI devices. This
motherboard also has PS/2 and Firewire connectors. It has serial and parallel ports, in addition to four USB
ports. This motherboard has two IDE connector slots, four SATA connector slots, and one floppy disk
controller. The super I/O chip is a type of I/O controller that controls the floppy disk, both the parallel and serial
ports, and the keyboard and mouse. The motherboard also has an integrated audio chip, as well as an integrated
Ethernet chip and an integrated graphics processor. There are four RAM memory banks. There is no processor
currently plugged into this motherboard, but we see the socket where the CPU is to be placed. All computers
have an internal battery, as seen in the top middle of the picture. The power supply plugs into the power

http://commons.wikimedia.org/wiki/File:Acer_E360_Socket_939_motherboard_by_Foxconn.svg

connector. The BIOS flash chip contains the instructions in ROM that your computer uses when it is first
powered up.

A note of caution regarding looking inside the box: There are many safety issues, for both you and your
computer, involved with removing the cover. There are many things you can do to minimize the risks. First and
foremost, make sure the computer is turned off. Leaving it plugged in is often preferred, as this offers a path
for static electricity. Before opening your computer and touching anything inside, you should make sure you are
properly grounded so static electricity will not damage any components. Many of the edges, both on the cover
and on the circuit boards, can be sharp, so take care when handling the various pieces. Trying to jam misaligned
cards into sockets can damage both the card and the motherboard, so be careful if you decide to add a new
card or remove and reinstall an existing one.

The next line in the ad, “128KB L1 cache, 2MB L2 cache” also describes a type of memory. In Chapter 6, you
will learn that no matter how fast a bus is, it still takes “a while” to get data from memory to the processor. To
provide even faster access to data, many systems contain a special memory called cache. The system in our
advertisement has two kinds of cache. Level 1 cache (L1) is a small, fast memory cache that is built into the
microprocessor chip and helps speed up access to frequently used data. Level 2 cache (L2) is a collection of fast,
built-in memory chips situated between the microprocessor and main memory. Notice that the cache in our system
has a capacity of kilobytes (KB), which is much smaller than main memory. In Chapter 6, you will learn how
cache works, and that a bigger cache isn’t always better.

On the other hand, everyone agrees that the more fixed disk capacity you have, the better off you are. The
advertised system has a 1TB hard drive, an average size by today’s standards. The storage capacity of a fixed (or
hard) disk is not the only thing to consider, however. A large disk isn’t very helpful if it is too slow for its host
system. The computer in our ad has a hard drive that rotates at 7200 revolutions per minute (RPM). To the
knowledgeable reader, this indicates (but does not state outright) that this is a fairly fast drive. Usually, disk speeds
are stated in terms of the number of milliseconds required (on average) to access data on the disk, in addition to
how fast the disk rotates.

Rotational speed is only one of the determining factors in the overall performance of a disk. The manner in
which it connects to—or interfaces with—the rest of the system is also important. The advertised system uses a
SATA (serial advanced technology attachment or serial ATA) disk interface. This is an evolutionary storage
interface that has replaced IDE, or integrated drive electronics. Another common interface is EIDE, enhanced
integrated drive electronics, a cost-effective hardware interface alternative for mass storage devices. EIDE
contains special circuits that allow it to enhance a computer’s connectivity, speed, and memory capability. Most
ATA, IDE, and EIDE systems share the main system bus with the processor and memory, so the movement of
data to and from the disk is also dependent on the speed of the system bus.

Whereas the system bus is responsible for all data movement internal to the computer, ports allow movement
of data to and from devices external to the computer. Our ad speaks of two different ports with the line, “10 USB
ports, 1 serial port.” Serial ports transfer data by sending a series of electrical pulses across one or two data lines.
Another type of port some computers have is a parallel port. Parallel ports use at least eight data lines, which are
energized simultaneously to transmit data. Many new computers no longer come with serial or parallel ports, but
instead have only USB ports. USB (universal serial bus) is a popular external bus that supports Plug-and-Play
installation (the ability to configure devices automatically) as well as hot plugging (the ability to add and remove
devices while the computer is running).

Expansion slots are openings on the motherboard where various boards can be plugged in to add new
capabilities to a computer. These slots can be used for such things as additional memory, video cards, sound cards,
network cards, and modems. Some systems augment their main bus with dedicated I/0 buses using these
expansion slots. Peripheral Component Interconnect (PCI) is one such I/O bus standard that supports the
connection of multiple peripheral devices. PCI, developed by the Intel Corporation, operates at high speeds and also
supports Plug-and-Play.

PCI is an older standard (it has been around since 1993) and was superseded by PCI-x in 2004. PCI-x basically
doubled the bandwidth of regular PCI. Both PCI and PCI-x are parallel in operation. In 2004, PCI express (PCle)
replaced PCI-x. PCle operates in serial and is currently the standard in today’s computers. In the ad, we see the
computer has 1 PCI slot, 1 PCI x 16 slot, and 2 PCI x 1 slots. This computer also has Bluetooth (a wireless
technology allowing the transfer of information over short distances) and an HDMI port (High-Definition
Multimedia Interface, used to transmit audio and video).

PCle has not only superseded PCI and PCI-x, but in the graphics world, it has also progressively replaced the
AGP (accelerated graphics port) graphics interface designed by Intel specifically for 3D graphics. The computer
in our ad has a PCle video card with 1GB of memory. The memory is used by a special graphics processing unit
on the card. This processor is responsible for performing the necessary calculations to render the graphics so the
main processor of the computer is not required to do so. This computer also has a PCle sound card; a sound card
contains components needed by the system’s stereo speakers and microphone.

In addition to telling us about the ports and expansion slots in the advertised system, the ad supplies us with
information on an LCD (liquid crystal display) monitor, or “flat panel” display. Monitors have little to do with the
speed or efficiency of a computer system, but they have great bearing on the comfort of the user. This LCD
monitor has the following specifications: 24”, 1920 x 1200 WUXGA, 300 cd/m?, active matrix, 1000:1 (static),
8ms, 24-bit color (16.7 million colors), VGA/DVI input, and 2USB ports. LCDs use a liquid crystal material
sandwiched between two pieces of polarized glass. Electric currents cause the crystals to move around, allowing
differing levels of backlighting to pass through, creating the text, colors, and pictures that appear on the screen.
This is done by turning on/off different pixels, small “picture elements” or dots on the screen. Monitors typically
have millions of pixels, arranged in rows and columns. This monitor has 1920 x 1200 (more than a million) pixels.

Most LCDs manufactured today utilize active matrix technology, Whereas passive technology is reserved for
smaller devices such as calculators and clocks. Active matrix technology uses one transistor per pixel; passive
matrix technology uses transistors that activate entire rows and columns. Although passive technology is less
costly, active technology renders a better image because it drives each pixel independently.

The LCD monitor in the ad is 24”, measured diagonally. This measurement affects the aspect ratio of the
monitor—the ratio of horizontal pixels to vertical pixels that the monitor can display. Traditionally, this ratio was
4:3, but newer widescreen monitors use ratios of 16:10 or 16:9. Ultra-wide monitors use a higher ratio, around 3:1
or 2:1.

When discussing resolution and LCDs, it is important to note that LCDs have a native resolution; this means
LCDs are designed for a specific resolution (generally given in horizontal pixels by vertical pixels). Although you
can change the resolution, the image quality typically suffers. Resolutions and aspect ratios are often paired. When
listing resolutions for LCDs, manufacturers often use the following abbreviations: XGA (extended graphics array);
XGA+ (extended graphics array plus); SXGA (super XGA); UXGA (ultra XGA); W prefix (wide); and WVA (wide
viewing angle). The viewing angle specifies an angle, in degrees, that indicates at which angle a user can still see
the image on the screen; common angles range from 120 to 170 degrees. Some examples of standard 4:3 native
resolutions include XGA (1024 x 768), SXGA (1280 x 1024), SXGA+ (1400 x 1050), and UXGA (1600 x 1200).
Common 16:9 and 16:10 resolutions include WXGA (1280 x 800), WXGA+ (1440 x 900), WSXGA+ (1680 x
1050), and WUXGA (1920 x 1200).

LCD monitor specifications often list a response time, which indicates the rate at which the pixels can change
colors. If this rate is too slow, ghosting and blurring can occur. The LCD monitor in the ad has a response time of
8ms. Originally, response rates measured the time to go from black to white and back to black. Many
manufacturers now list the response time for gray-to-gray transitions (which is generally faster). Because they
typically do not specify which transition has been measured, it is very difficult to compare monitors. One
manufacturer may specify a response time of 2ms for a monitor (and it measures gray-to-gray), while another
manufacturer may specify a response rate of 5ms for its monitor (and it measures black-to-white-to-black). In
reality, the monitor with the response rate of 5ms may actually be faster overall.

Continuing with the ad, we see that the LCD monitor has a specification of 300 cd/m? which is the monitor’s
luminance. Luminance (or image brightness) is a measure of the amount of light an LCD monitor emits. This

measure is typically given in candelas per square meter (cd/m?). When purchasing a monitor, the brightness level
should be at least 250 (the higher the better); the average for computer monitors is from 200 to 300 cd/m.
Luminance affects how easy a monitor is to read, particularly in low light situations.

Whereas luminance measures the brightness, the contrast ratio measures the difference in intensity between
bright whites and dark blacks. Contrast ratios can be static (the ratio of the brightest point on the monitor to the
darkest point on the monitor that can be produced at a given instant in time) or dynamic (the ratio of the darkest
point in one image to the lightest point in another image produced at a separate point in time). Static specifications
are typically preferred. A low static ratio (such as 300:1) makes it more difficult to discern shades; a good static
ratio is 500:1 (with ranges from 400:1 to 3000:1). The monitor in the ad has a static contrast ratio of 1000:1. LCD
monitors can have dynamic ratios of 12,000,000:1 and higher, but a higher dynamic number does not necessarily
mean the monitor is better than a monitor with a much lower static ratio.

The next specification given for the LCD monitor in the ad is its color depth. This number reflects the number
of colors that can be displayed on the screen at one time. Common depths are 8-bit, 16-bit, 24-bit, and 32-bit. The
LCD monitor in our ad can display 2?4, or roughly 16.7 million colors.

LCD monitors also have many optional features. Some have integrated USB ports (as in this ad) and/or
speakers. Many are HDCP (high bandwidth digital content protection) compliant (which means you can watch
HDCP-encrypted materials, such as Blu-ray discs). LCD monitors may also come with both VGA (video graphics
array) and DVI (digital video interface) connections (as seen in the ad). VGA sends analog signals to the monitor
from the computer, which requires digital-to-analog conversion; DVI is already digital in format and requires no
conversion, resulting in a cleaner signal and crisper image. Although an LCD monitor typically provides better
images using a DVI connection, having both connectors allows one to use an LCD with existing system
components.

Now that we have discussed how an LCD monitor works and we understand the concept of a pixel, let’s go
back and discuss graphics cards (also called video cards) in more detail. With millions of pixels on the screen, it is
quite challenging to determine which ones should be off and which ones should be on (and in what color). The job
of the graphics card is to input the binary data from your computer and “translate” it into signals to control all
pixels on the monitor; the graphics card therefore acts as a “middleman” between the computer’s processor and
monitor. As mentioned previously, some computers have integrated graphics, which means the computer’s
processor is responsible for doing this translation, causing a large workload on this processor; therefore, many
computers have slots for graphics cards, allowing the processor on the graphics card (called a graphics
processing unit, or GPU) to perform this translation instead.

The GPU is no ordinary processor; it is designed to most efficiently perform the complex calculations required
for image rendering and contains special programs allowing it to perform this task more effectively. Graphics cards
typically contain their own dedicated RAM used to hold temporary results and information, including the location
and color for each pixel on the screen. A frame buffer (part of this RAM) is used to store rendered images until
these images are intended to be displayed. The memory on a graphics card connects to a digital-to-analog
converter (DAC), a device that converts a binary image to analog signals that a monitor can understand and sends
them via a cable to the monitor. Most graphics cards today have two types of monitor connections: DVI for LCD
screens and VGA for the older CRT (cathode ray tube) screens.

Most graphics cards are plugged into slots in computer motherboards, so are thus powered by the computers
themselves. However, some are very powerful and actually require a connection directly to a computer’s power
supply. These high-end graphics cards are typically found in computers that deal with image-intensive applications,
such as video editing and high-end gaming.

Continuing with the ad, we see that the advertised system has a 16x DVD +/— RW drive. This means we can
read and write to DVDs and CDs. “16x” is a measure of the drive speed and measures how quickly the drive can
read and write. DVDs and CDs are discussed in more detail in Chapter 7.

Computers are more useful if they can communicate with the outside world. One way to communicate is to
employ an Internet service provider and a modem. There is no mention of a modem for the computer in our ad, as
many desktop owners use external modems provided by their Internet service provider (phone modem, cable

modem, satellite modem, etc). However, both USB and PCI modems are available that allow you to connect your
computer to the Internet using the phone line; many of these also allow you to use your computer as a fax
machine. I/0 and I/O buses in general are discussed in Chapter 7.

A computer can also connect directly to a network. Networking allows computers to share files and peripheral
devices. Computers can connect to a network via either a wired or a wireless technology. Wired computers use
Ethernet technology, an international standard networking technology for wired networks, and there are two
options for the connection. The first is to use a network interface card (NIC), which connects to the
motherboard via a PCI slot. NICs typically support 10/100 Ethernet (both Ethernet at a speed of 10Mbps and fast
Ethernet at a speed of 100Mbps) or 10/100/1000 (which adds Ethernet at 1,000Mbps). Another option for wired
network capability is integrated Ethernet, which means that the motherboard itself contains all necessary
components to support 10/100 Ethernet; thus no PCI slot is required. Wireless networking has the same two
options. Wireless NICs are available from a multitude of vendors and are available for both desktops and laptops.
For installation in desktop machines, you need an internal card that will most likely have a small antenna. Laptops
usually use an expansion (PCMCIA) slot for the wireless network card, and vendors have started to integrate the
antenna into the back of the case behind the screen. Integrated wireless (such as that found in the Intel Centrino
mobile technology) eliminates the hassle of cables and cards. The system in our ad employs integrated Ethernet.
Note that many new computers may have integrated graphics and/or integrated sound in addition to integrated
Ethernet.

Although we cannot delve into all of the brand-specific components available, after completing this text, you
should understand the concept of how most computer systems operate. This understanding is important for casual
users as well as experienced programmers. As a user, you need to be aware of the strengths and limitations of your
computer system so you can make informed decisions about applications and thus use your system more
effectively. As a programmer, you need to understand exactly how your system hardware functions so you can
write effective and efficient programs. For example, something as simple as the algorithm your hardware uses to
map main memory to cache and the method used for memory interleaving can have a tremendous effect on your
decision to access array elements in row versus column-major order.

Throughout this text, we investigate both large and small computers. Large computers include mainframes,
enterprise-class servers, and supercomputers. Small computers include personal systems, workstations, and
handheld devices. We will show that regardless of whether they carry out routine chores or perform sophisticated
scientific tasks, the components of these systems are very similar. We also visit some architectures that lie outside
what is now the mainstream of computing. We hope that the knowledge you gain from this text will ultimately
serve as a springboard for your continuing studies the vast and exciting fields of computer organization and
architecture.

Tablet Computers

Ken Olsen, the founder of Digital Equipment Corporation, has been unfairly ridiculed for saying “There is no
reason for any individual to have a computer in his home.” He made this statement in 1977 when the word,
computer, evoked a vision of the type of machine made by his company: refrigerator-sized behemoths that cost
a fortune and required highly skilled personnel to operate. One might safely say that no one—except perhaps a
computer engineer—ever had such a machine in his or her home.

As already discussed, the “personal computing” wave that began in the 1980s erupted in the 1990s with the
establishment of the World Wide Web. By 2010, decennial census data reported that 68% of U.S. households
claimed to have a personal computer. There is, however, some evidence that this trend has peaked and is now in
decline, owing principally to the widespread use of smartphones and tablet computers. According to some
estimates, as many as 65% of Internet users in the United States connect exclusively via mobile platforms. The
key to this trend is certainly the enchanting usability of these devices.

We hardly need the power of a desktop computer to surf the Web, read email, or listen to music. Much
more economical and lightweight, tablet computers give us exactly what we need in an easy-to-use package.
With its booklike form, one is tempted to claim that a tablet constitutes the perfect “portable computer.”

The figure on the next page shows a disassembled Pandigital Novel tablet computer. We have labeled several
items common to all tablets. The mini USB port provides access to internal storage and the removable SD card.
Nearly all tablets provide Wi-Fi connection to the Internet, with some also supporting 2G, 3G, and 4G cellular
protocols. Battery life can be as much as 14 hours for the most efficient high-end tablet computers. Unlike the
Pandigital, most tablets include at least one camera for still photography and live video.

Mini USB Port
Removable SD Slot i Reset and On/Off

(Micro SD) [l

n e

Bezel Surrounding ., | : - s
Protective Glass o e £ e
Headphone Jack

A Disassembled Tablet Computer
Courtesy of Julia Lobur.

A touchscreen dominates the real estate of all portable devices. For consumer tablets and phones,
touchscreens come in two general types: resistive and capacitive. Resistive touchscreens respond to the
pressure of a finger or a stylus. Capacitive touchscreens react to the electrical properties of the human skin.
Resistive screens are less sensitive than capacitive screens, but they provide higher resolution. Unlike resistive
screens, capacitive screens support multitouch, which is the ability to detect the simultaneous press of two or
more fingers.

Military and medical computer touchscreens are necessarily more durable than those intended for the
consumer market. Two different technologies, surface acoustic wave touch sense and infrared touch sense,
respectively, send ultrasonic and infrared waves across the surface of a ruggedized touchscreen. The matrix of
waves is broken when a finger comes in contact with the surface of the screen.

Because of its high efficiency, cell phone CPU technology has been adapted for use in the tablet platform.
The mobile computing space has been dominated by ARM chips, although Intel and AMD have been gaining
market share. Operating systems for these devices include variants of Android by Google and iOS by Apple.
Microsoft’s Surface tablets running Windows 8 provide access to the Microsoft Office suite of products.

As tablet computers continue to replace desktop systems, they will also find uses in places where traditional
computers—even laptops—are impractical. Thousands of free and inexpensive applications are available for all
platforms, thereby increasing demand even further. Educational applications abound. With a size, shape, and

weight similar to a paperback book, tablet computers are replacing paper textbooks in some U.S. school
districts. Thus, the elusive dream of “a computer for every student” is finally coming true—thanks to the tablet.
By 1985, people were already laughing at Olsen’s “home computer” assertion. Would perhaps these same people
have scoffed if instead he would have predicted a computer in every backpack?

1.4 STANDARDS ORGANIZATIONS

Suppose you decide you’d like to have one of those nifty new LCD widescreen monitors. You figure you can shop
around a bit to find the best price. You make a few phone calls, surf the Web, and drive around town until you find
the one that gives you the most for your money. From your experience, you know you can buy your monitor
anywhere and it will probably work fine on your system. You can make this assumption because computer
equipment manufacturers have agreed to comply with connectivity and operational specifications established by a
number of government and industry organizations.

Some of these standards-setting organizations are ad hoc trade associations or consortia made up of industry
leaders. Manufacturers know that by establishing common guidelines for a particular type of equipment, they can
market their products to a wider audience than if they came up with separate—and perhaps incompatible—
specifications.

Some standards organizations have formal charters and are recognized internationally as the definitive authority
in certain areas of electronics and computers. As you continue your studies in computer organization and
architecture, you will encounter specifications formulated by these groups, so you should know something about
them.

The Institute of Electrical and Electronics Engineers (IEEE) is an organization dedicated to the
advancement of the professions of electronic and computer engineering. The IEEE actively promotes the interests
of the worldwide engineering community by publishing an array of technical literature. The IEEE also sets
standards for various computer components, signaling protocols, and data representation, to name only a few areas
of its involvement. The IEEE has a democratic, albeit convoluted, procedure established for the creation of new
standards. Its final documents are well respected and usually endure for several years before requiring revision.

The International Telecommunications Union (ITU) is based in Geneva, Switzerland. The ITU was
formerly known as the Comité Consultatif International Télégraphique et Téléphonique, or the International
Consultative Committee on Telephony and Telegraphy. As its name implies, the ITU concerns itself with the
interoperability of telecommunications systems, including telephone, telegraph, and data communication systems.
The telecommunications arm of the ITU, the ITU-T, has established a number of standards that you will encounter
in the literature. You will see these standards prefixed by ITU-T or the group’s former initials, CCITT.

Many countries, including the European Community, have commissioned umbrella organizations to represent
their interests in various international groups. The group representing the United States is the American National
Standards Institute (ANSI). Great Britain has its British Standards Institution (BSI) in addition to having a
voice on the CEN (Comité Furopéen de Normalisation), the European committee for standardization.

The International Organization for Standardization (ISO) is the entity that coordinates worldwide
standards development, including the activities of ANSI with BSI, among others. ISO is not an acronym, but
derives from the Greek word, isos, meaning “equal.” The ISO consists of more than 2800 technical committees,
each of which is charged with some global standardization issue. Its interests range from the behavior of
photographic film to the pitch of screw threads to the complex world of computer engineering. The proliferation of
global trade has been facilitated by the ISO. Today, the ISO touches virtually every aspect of our lives.

Throughout this text, we mention official standards designations where appropriate. Definitive information
concerning many of these standards can be found in excruciating detail on the website of the organization
responsible for establishing the standard cited. As an added bonus, many standards contain “normative” and
informative references, which provide background information in areas related to the standard.

1.5 HISTORICAL DEVELOPMENT

During their 60-year life span, computers have become the perfect example of modern convenience. Living
memory is strained to recall the days of steno pools, carbon paper, and mimeograph machines. It sometimes seems
that these magical computing machines were developed instantaneously in the form that we now know them. But
the developmental path of computers is paved with accidental discovery, commercial coercion, and whimsical
fancy. And occasionally computers have even improved through the application of solid engineering practices!
Despite all the twists, turns, and technological dead ends, computers have evolved at a pace that defies
comprehension. We can fully appreciate where we are today only when we have seen where we’ve come from.

In the sections that follow, we divide the evolution of computers into generations, each generation being
defined by the technology used to build the machine. We have provided approximate dates for each generation for
reference purposes only. You will find little agreement among experts as to the exact starting and ending times of
each technological epoch.

Every invention reflects the time in which it was made, so one might wonder whether it would have been called
a computer if it had been invented in the late 1990s. How much computation do we actually see pouring from the
mysterious boxes perched on or beside our desks? Until recently, computers served us only by performing mind-
bending mathematical manipulations. No longer limited to white-jacketed scientists, today’s computers help us to
write documents, keep in touch with loved ones across the globe, and do our shopping chores. Modern business
computers spend only a minuscule part of their time performing accounting calculations. Their main purpose is to
provide users with a bounty of strategic information for competitive advantage. Has the word computer now
become a misnomer? An anachronism? What, then, should we call them, if not computers?

We cannot present the complete history of computing in a few pages. Entire texts have been written on this
subject and even they leave their readers wanting more detail. If we have piqued your interest, we refer you to
some of the books cited in the list of references at the end of this chapter.

1.5.1 Generation Zero: Mechanical Calculating Machines (1642-1945)

Prior to the 1500s, a typical European businessperson used an abacus for calculations and recorded the result of
his ciphering in Roman numerals. After the decimal numbering system finally replaced Roman numerals, a number
of people invented devices to make decimal calculations even faster and more accurate. Wilhelm Schickard (1592-
1635) has been credited with the invention of the first mechanical calculator, the Calculating Clock (exact date
unknown). This device was able to add and subtract numbers containing as many as six digits. In 1642, Blaise
Pascal (1623-1662) developed a mechanical calculator called the Pascaline to help his father with his tax work.
The Pascaline could do addition with carry and subtraction. It was probably the first mechanical adding device
actually used for a practical purpose. In fact, the Pascaline was so well conceived that its basic design was still
being used at the beginning of the twentieth century, as evidenced by the Lightning Portable Adder in 1908 and the
Addometer in 1920. Gottfried Wilhelm von Leibniz (1646-1716), a noted mathematician, invented a calculator
known as the Stepped Reckoner that could add, subtract, multiply, and divide. None of these devices could be
programmed or had memory. They required manual intervention throughout each step of their calculations.

Although machines like the Pascaline were used into the twentieth century, new calculator designs began to
emerge in the nineteenth century. One of the most ambitious of these new designs was the Difference Engine by
Charles Babbage (1791-1871). Some people refer to Babbage as “the father of computing.” By all accounts, he
was an eccentric genius who brought us, among other things, the skeleton key and the “cow catcher,” a device
intended to push cows and other movable obstructions out of the way of locomotives.

Babbage built his Difference Engine in 1822. The Difference Engine got its name because it used a calculating
technique called the method of differences. The machine was designed to mechanize the solution of polynomial
functions and was actually a calculator, not a computer. Babbage also designed a general-purpose machine in 1833
called the Analytical Engine. Although Babbage died before he could build it, the Analytical Engine was designed to
be more versatile than his earlier Difference Engine. The Analytical Engine would have been capable of performing

any mathematical operation. The Analytical Engine included many of the components associated with modern
computers: an arithmetic processing unit to perform calculations (Babbage referred to this as the mill), a memory
(the store), and input and output devices. Babbage also included a conditional branching operation where the next
instruction to be performed was determined by the result of the previous operation. Ada, Countess of Lovelace and
daughter of poet Lord Byron, suggested that Babbage write a plan for how the machine would calculate numbers.
This is regarded as the first computer program, and Ada is considered to be the first computer programmer. It is
also rumored that she suggested the use of the binary number system rather than the decimal number system to
store data.

A perennial problem facing machine designers has been how to get data into the machine. Babbage designed the
Analytical Engine to use a type of punched card for input and programming. Using cards to control the behavior of
a machine did not originate with Babbage, but with one of his friends, Joseph-Marie Jacquard (1752-1834). In
1801, Jacquard invented a programmable weaving loom that could produce intricate patterns in cloth. Jacquard
gave Babbage a tapestry that had been woven on this loom using more than 10,000 punched cards. To Babbage, it
seemed only natural that if a loom could be controlled by cards, then his Analytical Engine could be as well. Ada
expressed her delight with this idea, writing, “[T]he Analytical Engine weaves algebraical patterns just as the
Jacquard loom weaves flowers and leaves.”

The punched card proved to be the most enduring means of providing input to a computer system. Keyed data
input had to wait until fundamental changes were made in how calculating machines were constructed. In the latter
half of the nineteenth century, most machines used wheeled mechanisms, which were difficult to integrate with
early keyboards because they were levered devices. But levered devices could easily punch cards and wheeled
devices could easily read them. So a number of devices were invented to encode and then “tabulate” card-punched
data. The most important of the late-nineteenth-century tabulating machines was the one invented by Herman
Hollerith (1860-1929). Hollerith’s machine was used for encoding and compiling 1890 census data. This census
was completed in record time, thus boosting Hollerith’s finances and the reputation of his invention. Hollerith later
founded the company that would become IBM. His 80-column punched card, the Hollerith card, was a staple of
automated data processing for more than 50 years.

A Pre-Modern “Computer” Hoax

The latter half of the sixteenth century saw the beginnings of the first Industrial Revolution. The spinning jenny
allowed one textile worker to do the work of twenty, and steam engines had power equivalent to hundreds of
horses. Thus began our enduring fascination with all things mechanical. With the right skills applied to the
problems at hand, there seemed no limits to what humankind could do with its machines!

Elaborate clocks began appearing at the beginning of the 1700s. Complex and ornate models graced
cathedrals and town halls. These clockworks eventually morphed into mechanical robots called automata.
Typical models played musical instruments such as flutes and keyboard instruments. In the mid-1700s, the most
sublime of these devices entertained royal families across Europe. Some relied on trickery to entertain their
audiences. It soon became something of a sport to unravel the chicanery. Empress Marie-Therese of the
Austria-Hungarian Empire relied on a wealthy courtier and tinkerer, Wolfgang von Kempelen, to debunk the
spectacles on her behalf. One day, following a particularly impressive display, Marie-Therese challenged von
Kempelen to build an automaton to surpass all that had ever been brought to her court.

von Kempelen took the challenge, and after several months’ work, he delivered a turban-wearing, pipe-
smoking, chess-playing automaton. For all appearances, “The Turk” was a formidable opponent for even the
best players of the day. As an added touch, the machine contained a set of baffles enabling it to rasp “Echec!”
as needed. So impressive was this machine that for 84 years it drew crowds across Europe and the United
States.

Of course, as with all similar automata, von Kempelen’s Turk relied on trickery to perform its prodigious

feat. Despite some astute debunkers correctly deducing how it was done, the secret of the Turk was never
divulged: A human chess player was cleverly concealed inside its cabinet. The Turk thus pulled off one of the
first and most impressive “computer” hoaxes in the history of technology. It would take another 200 years
before a real machine could match the Turk—without the trickery.

| e S .i";f-'rr'f Fhe Tk,

oL s ey e

—— T EE

i nf prerrir iy, £
i

i I:F f

-

The mechanical Tark
Reprinted from Robert Willis, An attempt to Analyse the Automaton Chess Player of Mr. de Kempelen. JK Booth,
London. 1824.

1.5.2 The First Generation: Vacuum Tube Computers (1945-1953)

Although Babbage is often called the “father of computing,” his machines were mechanical, not electrical or
electronic. In the 1930s, Konrad Zuse (1910-1995) picked up where Babbage left off, adding electrical technology
and other improvements to Babbage’s design. Zuse’s computer, the Z1, used electromechanical relays instead of
Babbage’s hand-cranked gears. The Z1 was programmable and had a memory, an arithmetic unit, and a control
unit. Because money and resources were scarce in wartime Germany, Zuse used discarded movie film instead of
punched cards for input. Although his machine was designed to use vacuum tubes, Zuse, who was building his
machine on his own, could not afford the tubes. Thus, the Z1 correctly belongs in the first generation, although it
had no tubes.

Zuse built the Z1 in his parents’ Berlin living room while Germany was at war with most of Europe.
Fortunately, he couldn’t convince the Nazis to buy his machine. They did not realize the tactical advantage such a
device would give them. Allied bombs destroyed all three of Zuse’s first systems, the Z1, Z2, and Z3. Zuse’s
impressive machines could not be refined until after the war and ended up being another “evolutionary dead end” in
the history of computers.

Digital computers, as we know them today, are the outcome of work done by a number of people in the 1930s
and 1940s. Pascal’s basic mechanical calculator was designed and modified simultaneously by many people; the
same can be said of the modern electronic computer. Notwithstanding the continual arguments about who was
first with what, three people clearly stand out as the inventors of modern computers: John Atanasoff, John
Mauchly, and J. Presper Eckert.

John Atanasoff (1904-1995) has been credited with the construction of the first completely electronic
computer. The Atanasoff Berry Computer (ABC) was a binary machine built from vacuum tubes. Because this
system was built specifically to solve systems of linear equations, we cannot call it a general-purpose computer.
There were, however, some features that the ABC had in common with the general-purpose ENIAC (Electronic
Numerical Integrator and Computer), which was invented a few years later. These common features caused
considerable controversy as to who should be given the credit (and patent rights) for the invention of the electronic
digital computer. (The interested reader can find more details on a rather lengthy lawsuit involving Atanasoff and
the ABC in Mollenhoff [1988].)

John Mauchly (1907-1980) and J. Presper Eckert (1929-1995) were the two principal inventors of the
ENIAC, introduced to the public in 1946. The ENIAC is recognized as the first all-electronic, general-purpose
digital computer. This machine used 17,468 vacuum tubes, occupied 1800 square feet of floor space, weighed 30
tons, and consumed 174 kilowatts of power. The ENIAC had a memory capacity of about 1000 information bits
(about 20 10-digit decimal numbers) and used punched cards to store data.

John Mauchly’s vision for an electronic calculating machine was born from his lifelong interest in predicting
the weather mathematically. While a professor of physics at Ursinus College near Philadelphia, Mauchly engaged
dozens of adding machines and student operators to crunch mounds of data that he believed would reveal
mathematical relationships behind weather patterns. He felt that if he could have only a little more computational
power, he could reach the goal that seemed just beyond his grasp. Pursuant to the Allied war effort, and with
ulterior motives to learn about electronic computation, Mauchly volunteered for a crash course in electrical
engineering at the University of Pennsylvania’s Moore School of Engineering. Upon completion of this program,
Mauchly accepted a teaching position at the Moore School, where he taught a brilliant young student, J. Presper
Eckert. Mauchly and Eckert found a mutual interest in building an electronic calculating device. In order to secure
the funding they needed to build their machine, they wrote a formal proposal for review by the school. They
portrayed their machine as conservatively as they could, billing it as an “automatic calculator.” Although they
probably knew that computers would be able to function most efficiently using the binary numbering system,
Mauchly and Eckert designed their system to use base 10 numbers, in keeping with the appearance of building a
huge electronic adding machine. The university rejected Mauchly and Eckert’s proposal. Fortunately, the U.S.
Army was more interested.

The Army’s ENIAC can give you the
answer in a froction of a second !

Think that's a stumper? You should see some
of the ENIA(s problems! Brain twisters that
if put to paper would run off this page and
feet beyond . ., addition, subtraction, multi-
piicatiun, di-."::sic:-u—squurt root, cube root,
any root. Solved by an incredibly complex
system of cirenits operating 15,000 electronic
tubes and tipping the scales at 30 tons!

The ENIAC is symbolie of many amazing
Army devices with a brilliant future for you!
The new Regular Army needs men with apti-
tude for scientific work, and as one of the first
trained in the post-war era, you stand to get
in an the ground floor of important jobs

YOUR REGULAR ARMY SERVES THE NATION
AND MANKIND IN WAR AND PEACE

LS Army, 1946.

N
WA
5 hAN,
oy
S
L
. % \
.)

-‘. i s

HOW MUK (S V2587 2

which have never before existed. You'll find
that an Army career pays off,

The most attractive fields are {illing
quickly. Get into the swim while the getting’s
good! 15, 2 and 3 year enlistments are open
in the Regular Army to ambitious young men
18 to 34 (17 with parents’ consent) who are
otherwise qualified. If you enlist for 3 years,
you may choose your own branch of the ser-
vice, of those still open. Get full details at
your nearest Army Recruiting Station.

A GOOD JOB FOR YOU

U.S. Army

CHOOSE THIS
FINE PROFESSION NOW!

U.S. Army, 1946.

During World War II, the army had an insatiable need for calculating the trajectories of its new ballistic
armaments. Thousands of human “computers” were engaged around the clock cranking through the arithmetic
required for these firing tables. Realizing that an electronic device could shorten ballistic table calculation from days
to minutes, the army funded the ENIAC. And the ENIAC did indeed shorten the time to calculate a table from 20
hours to 30 seconds. Unfortunately, the machine wasn’t ready before the end of the war. But the ENIAC had
shown that vacuum tube computers were fast and feasible. During the next decade, vacuum tube systems
continued to improve and were commercially successful.

What Is a Vacuum Tube?

The wired world that we know today was born from the invention of a single electronic device called a vacuum
tube by Americans and—more accurately—a valve by the British. Vacuum tubes should be called valves
because they control the flow of electrons in electrical systems in much the same way as valves control the
flow of water in a plumbing system. In fact, some mid-twentieth-century breeds of these electron tubes contain
no vacuum at all, but are filled with conductive gases, such as mercury vapor, which can provide desirable
electrical behavior.

Plale .
(Anode)
Control
Grid—

e < |I
Cathode — | FL Fﬂ) |
Envelope — | 1|

The electrical phenomenon that makes tubes work was discovered by Thomas A. Edison in 1883 while he
was trying to find ways to keep the filaments of his light bulbs from burning away (or oxidizing) a few minutes
after electrical current was applied. Edison reasoned correctly that one way to prevent filament oxidation would
be to place the filament in a vacuum. Edison didn’t immediately understand that air not only supports
combustion, but also is a good insulator. When he energized the electrodes holding a new tungsten filament, the
filament soon became hot and burned out as the others had before it. This time, however, Edison noticed that
electricity continued to flow from the warmed negative terminal to the cool positive terminal within the light

bulb. In 1911, Owen Willans Richardson analyzed this behavior. He concluded that when a negatively charged
filament was heated, electrons “boiled off” as water molecules can be boiled to create steam. He aptly named
this phenomenon thermionic emission.

Thermionic emission, as Edison had documented it, was thought by many to be only an electrical curiosity.
But in 1905, a British former assistant to Edison, John A. Fleming, saw Edison’s discovery as much more than a
novelty. He knew that thermionic emission supported the flow of electrons in only one direction: from the
negatively charged cathode to the positively charged anode, also called a plate. He realized that this behavior
could rectify alternating current. That is, it could change alternating current into the direct current that was
essential for the proper operation of telegraph equipment. Fleming used his ideas to invent an electronic valve
later called a diode tube or rectifier.

JAWAWA

SVAVAVA "uuS AR VEVAY

The diode was well suited for changing alternating current into direct current, but the greatest power of the
electron tube was yet to be discovered. In 1907, an American named Lee DeForest added a third element, called
a control grid. The control grid, when carrying a negative charge, can reduce or prevent electron flow from the
cathode to the anode of a diode.

Negative charge

on cathode and control
grid; positive on anode.
Electrons stay near
cathode.

Negative charge on
cathode; positive on
control grid and anode.
Electrons travel from
cathode to anode.

When DeForest patented his device, he called it an audion tube. It was later known as a triode. The
schematic symbol for the triode is shown at the left.

A triode can act as either a switch or an amplifier. Small changes in the charge of the control grid can cause
much larger changes in the flow of electrons between the cathode and the anode. Therefore, a weak signal
applied to the grid results in a much stronger signal at the plate output. A sufficiently large negative charge
applied to the grid stops all electrons from leaving the cathode.

Filament Grid

Anode
(plate)
Cathode

Additional control grids were eventually added to the triode to allow more exact control of the electron flow.

Tubes with two grids (four elements) are called tetrodes; tubes with three grids are called pentodes. Triodes
and pentodes were the tubes most commonly used in communications and computer applications. Often, two or
three triodes or pentodes would be combined within one envelope so they could share a single heater, thereby
reducing the power consumption of a particular device. These latter-day devices were called “miniature” tubes
because many were about 2 inches (5cm) high and 0.5 inch (1.5cm) in diameter. Equivalent full-sized diodes,
triodes, and pentodes were a little smaller than a household light bulb.

Vacuum tubes were not well suited for building computers. Even the simplest vacuum tube computer system
required thousands of tubes. Enormous amounts of electrical power were required to heat the cathodes of these
devices. To prevent a meltdown, this heat had to be removed from the system as quickly as possible. Power
consumption and heat dissipation could be reduced by running the cathode heaters at lower voltages, but this
reduced the already slow switching speed of the tube. Despite their limitations and power consumption, vacuum
tube computer systems, both analog and digital, served their purpose for many years and are the architectural
foundation for all modern computer systems.

Diode Triode

Tetrode Pentode

Although decades have passed since the last vacuum tube computer was manufactured, vacuum tubes are
still used in audio amplifiers. These “high-end” amplifiers are favored by musicians who believe that tubes
provide a resonant and pleasing sound unattainable by solid-state devices.

1.5.3 The Second Generation: Transistorized Computers (1954-1965)

The vacuum tube technology of the first generation was not very dependable. In fact, some ENIAC detractors
believed that the system would never run because the tubes would burn out faster than they could be replaced.
Although system reliability wasn’t as bad as the doomsayers predicted, vacuum tube systems often experienced
more downtime than uptime.

In 1948, three researchers with Bell Laboratories—John Bardeen, Walter Brattain, and William Shockley—
invented the transistor. This new technology not only revolutionized devices such as televisions and radios, but also
pushed the computer industry into a new generation. Because transistors consume less power than vacuum tubes,
are smaller, and work more reliably, the circuitry in computers consequently became smaller and more reliable.

Despite using transistors, computers of this generation were still bulky and quite costly. Typically only universities,
governments, and large businesses could justify the expense. Nevertheless, a plethora of computer makers
emerged in this generation; IBM, Digital Equipment Corporation (DEC), and Univac (now Unisys) dominated the
industry. IBM marketed the 7094 for scientific applications and the 1401 for business applications. DEC was busy
manufacturing the PDP-1. A company founded (but soon sold) by Mauchly and Eckert built the Univac systems.
The most successful Unisys systems of this generation belonged to its 1100 series. Another company, Control Data
Corporation (CDC), under the supervision of Seymour Cray, built the CDC 6600, the world’s first supercomputer.
The $10 million CDC 6600 could perform 10 million instructions per second, used 60-bit words, and had an
astounding 128 kilowords of main memory.

What Is a Transistor?

The transistor, short for transfer resistor, is the solid-state version of the triode. There is no such thing as a
solid-state version of the tetrode or pentode. Electrons are better behaved in a solid medium than in the open
void of a vacuum tube, so there is no need for the extra controlling grids. Either germanium or silicon can be the
basic “solid” used in these solid-state devices. In their pure form, neither of these elements is a good conductor
of electricity. But when they are combined with trace amounts of elements that are their neighbors in the
Periodic Chart of the Elements, they conduct electricity in an effective and easily controlled manner.

Boron, aluminum, and gallium can be found to the left of silicon and germanium on the Periodic Chart.
Because they lie to the left of silicon and germanium, they have one less electron in their outer electron shell, or
valence. So if you add a small amount of aluminum to silicon, the silicon ends up with a slight imbalance in its
outer electron shell, and therefore attracts electrons from any pole that has a negative potential (an excess of
electrons). When modified (or doped) in this way, silicon or germanium becomes a P-type material.

Similarly, if we add a little boron, arsenic, or gallium to silicon, we’ll have extra electrons in valences of the
silicon crystals. This gives us an N-type material. A small amount of current will flow through the N-type
material if we provide the loosely bound electrons in the N-type material with a place to go. In other words, if
we apply a positive potential to N-type material, electrons will flow from the negative pole to the positive pole. If
the poles are reversed, that is, if we apply a negative potential to the N-type material and a positive potential to
the P-type material, no current will flow. This means we can make a solid-state diode from a simple junction of
N- and P-type materials.

The solid-state triode, the transistor, consists of three layers of semiconductor material. Either a slice of P-
type material is sandwiched between two N-type materials, or a slice of N-type material is sandwiched between
two P-type materials. The former is called an NPN transistor, the latter a PNP transistor. The inner layer of the
transistor is called the base; the other two layers are called the collector and the emitter.

The figure at the left shows how current flows through NPN and PNP transistors. The base in a transistor
works just like the control grid in a triode tube: Small changes in the current at the base of a transistor result in a
large electron flow from the emitter to the collector.

Electron Source

A Few IIIlI-l A Few

Electrons Electrons

Large
Current Qutput

- +

A discrete-component transistor is shown in “TO-50” packaging in the figure at the top of this sidebar.
There are only three wires (leads) that connect the base, emitter, and collector of the transistor to the rest of the
circuit. Transistors are not only smaller than vacuum tubes, but they also run cooler and are much more reliable.
Vacuum tube filaments, like light bulb filaments, run hot and eventually burn out. Computers using transistorized
components will naturally be smaller and run cooler than their vacuum tube predecessors. The ultimate
miniaturization, however, is not realized by replacing individual triodes with discrete transistors, but in shrinking
entire circuits onto one piece of silicon.

Emitter Contacts

Y v\

Base
N Collector

2 °°°0 2l °Z°Z°Z°9°92z

Integrated circuits, or chips, contain hundreds to billions of microscopic transistors. Several different
techniques are used to manufacture integrated circuits. One of the simplest methods involves creating a circuit
using computer-aided design software that can print large maps of each of the several silicon layers forming the
chip. Each map is used like a photographic negative where light-induced changes in a photoresistive substance
on the chip’s surface produce the delicate patterns of the circuit when the silicon chip is immersed in a chemical
that washes away the exposed areas of the silicon. This technique is called photomicrolithography. After the
etching is completed, a layer of N-type or P-type material is deposited on the bumpy surface of the chip. This
layer is then treated with a photoresistive substance, exposed to light, and etched as was the layer before it. This
process continues until all the layers have been etched. The resulting peaks and valleys of P- and N-type material
form microscopic electronic components, including transistors, that behave just like larger versions fashioned
from discrete components, except that they run a lot faster and consume a small fraction of the power.

1.5.4 The Third Generation: Integrated Circuit Computers (1965-1980)

The real explosion in computer use came with the integrated circuit generation. Jack Kilby invented the integrated
circuit (IC), or microchip, made of germanium. Six months later, Robert Noyce (who had also been working on
integrated circuit design) created a similar device using silicon instead of germanium. This is the silicon chip upon
which the computer industry was built. Early ICs allowed dozens of transistors to exist on a single silicon chip that
was smaller than a single “discrete component” transistor. Computers became faster, smaller, and cheaper, bringing
huge gains in processing power. The IBM System/360 family of computers was among the first commercially
available systems to be built entirely of solid-state components. The 360 product line was also IBM’s first offering
in which all the machines in the family were compatible, meaning they all used the same assembly language. Users
of smaller machines could upgrade to larger systems without rewriting all their software. This was a revolutionary
new concept at the time.

The IC generation also saw the introduction of time-sharing and multiprogramming (the ability for more than
one person to use the computer at a time). Multiprogramming, in turn, necessitated the introduction of new
operating systems for these computers. Time-sharing minicomputers such as DEC’s PDP-8 and PDP-11 made
computing affordable to smaller businesses and more universities. IC technology also allowed for the development
of more powerful supercomputers. Seymour Cray took what he had learned while building the CDC 6600 and
started his own company, the Cray Research Corporation. This company produced a number of supercomputers,
starting with the $8.8 million Cray-1, in 1976. The Cray-1, in stark contrast to the CDC 6600, could execute more
than 160 million instructions per second and could support 8MB of memory. See Figure 1.2 for a size comparison
of vacuum tubes, transistors, and integrated circuits.

1.5.5 The Fourth Generation: VLSI Computers (1980-???7?)

In the third generation of electronic evolution, multiple transistors were integrated onto one chip. As manufacturing
techniques and chip technologies advanced, increasing numbers of transistors were packed onto one chip. There
are now various levels of integration: SSI (small-scale integration), in which there are 10 to 100 components per
chip; MSI (medium-scale integration), in which there are 100 to 1000 components per chip; LSI (large-scale

integration), in which there are 1000 to 10,000 components per chip; and finally, VLSI (very-large-scale
integration), in which there are more than 10,000 components per chip. This last level, VLSI, marks the beginning
of the fourth generation of computers. The complexity of integraged circuits continues to grow, with more
transistors being added all the time. The term ULSI (ultra-large-scale integration) has been suggested for integrated
circuits containing more than 1 million transistors. In 2005, billions of transistors were put on a single chip. Other
useful terminology includes: (1) WSI (wafer-scale integration, building superchip ICs from an entire silicon wafer;
(2) 3D-IC (three-dimensional integrated circuit); and (3) SOC (system-on-a-chip), an IC that includes all the
necessary components for the entire computer.

FIGURE 1.2 Comparison of Computer Components Clockwise, starting from the top:

1) Vacuum tube

2) Transistor

3) Chip containing 3200 2-input NAND gates

4) Integrated circuit package (the small silver square in the lower left-hand corner is an integrated circuit)
Courtesy of Linda Null.

To give some perspective to these numbers, consider the ENIAC-on-a-chip project. In 1997, to commemorate
the fiftieth anniversary of its first public demonstration, a group of students at the University of Pennsylvania
constructed a single-chip equivalent of the ENIAC. The 1800-square-foot, 30-ton beast that devoured 174

kilowatts of power the minute it was turned on had been reproduced on a chip the size of a thumbnail. This chip
contained approximately 174,569 transistors—an order of magnitude fewer than the number of components
typically placed on the same amount of silicon in the late 1990s.

VLSI allowed Intel, in 1971, to create the world’s first microprocessor, the 4004, which was a fully functional,
4-bit system that ran at 108KHz. Intel also introduced the random access memory (RAM) chip, accommodating
four kilobits of memory on a single chip. This allowed computers of the fourth generation to become smaller and
faster than their solid-state predecessors.

VLSI technology, and its incredible shrinking circuits, spawned the development of microcomputers. These
systems were small enough and inexpensive enough to make computers available and affordable to the general
public. The premiere microcomputer was the Altair 8800, released in 1975 by the Micro Instrumentation and
Telemetry (MITS) corporation. The Altair 8800 was soon followed by the Apple I and Apple II, and Commodore’s
PET and Vic 20. Finally, in 1981, IBM introduced its PC (Personal Computer).

The Personal Computer was IBM’s third attempt at producing an “entry-level” computer system. Its
Datamaster and its 5100 Series desktop computers flopped miserably in the marketplace. Despite these early
failures, IBM’s John Opel convinced his management to try again. He suggested forming a fairly autonomous
“independent business unit” in Boca Raton, Florida, far from IBM’s headquarters in Armonk, New York. Opel
picked Don Estridge, an energetic and capable engineer, to champion the development of the new system, code-
named the Acorn. In light of IBM’s past failures in the small-systems area, corporate management held tight rein
on the Acorn’s timeline and finances. Opel could get his project off the ground only after promising to deliver it
within a year, a seemingly impossible feat.

Estridge knew that the only way he could deliver the PC within the wildly optimistic 12-month schedule would
be to break with IBM convention and use as many “off-the-shelf” parts as possible. Thus, from the outset, the
IBM PC was conceived with an “open” architecture. Although some people at IBM may have later regretted the
decision to keep the architecture of the PC as nonproprietary as possible, it was this very openness that allowed
IBM to set the standard for the industry. While IBM’s competitors were busy suing companies for copying their
system designs, PC clones proliferated. Before long, the price of “IBM-compatible” microcomputers came within
reach for just about every small business. Also, thanks to the clone makers, large numbers of these systems soon
began finding true “personal use” in people’s homes.

IBM eventually lost its microcomputer market dominance, but the genie was out of the bottle. For better or
worse, the IBM architecture continues to be the de facto standard for microcomputing, with each year heralding
bigger and faster systems. Today, the average desktop computer has many times the computational power of the
mainframes of the 1960s.

Since the 1960s, mainframe computers have seen stunning improvements in price—performance ratios owing to
VLSI technology. Although the IBM System/360 was an entirely solid-state system, it was still a water-cooled,
power-gobbling behemoth. It could perform only about 50,000 instructions per second and supported only 16MB
of memory (while usually having kilobytes of physical memory installed). These systems were so costly that only
the largest businesses and universities could afford to own or lease one. Today’s mainframes—now called
“enterprise servers”—are still priced in the millions of dollars, but their processing capabilities have grown several
thousand times over, passing the billion-instructions-per-second mark in the late 1990s. These systems, often used
as Web servers, routinely support hundreds of thousands of transactions per minute!

The processing power brought by VLSI to supercomputers defies comprehension. The first supercomputer,
the CDC 6600, could perform 10 million instructions per second, and had 128KB of main memory. By contrast,
supercomputers of today contain thousands of processors, can address terabytes of memory, and will soon be able
to perform a quadrillion instructions per second.

What technology will mark the beginning of the fifth generation? Some say the fifth generation will mark the
acceptance of parallel processing and the use of networks and single-user workstations. Many people believe we
have already crossed into this generation. Some believe it will be quantum computing. Some people characterize the
fifth generation as being the generation of neural network, DNA, or optical computing systems. It’s possible that
we won’t be able to define the fifth generation until we have advanced into the sixth or seventh generations, and

whatever those eras will bring.

The Integrated Circuit and Its Production

Integrated circuits are found all around us, from computers to cars to refrigerators to cell phones. The most
advanced circuits contain hundreds of millions (and even billions) of components in an area about the size of
your thumbnail. The transistors in these advanced circuits can be as small as 45nm, or 0.000045 millimeters, in
size. Thousands of these transistors would fit in a circle the diameter of a human hair.

How are these circuits made? They are manufactured in semiconductor fabrication facilities. Because the
components are so small, all precautions must be taken to ensure a sterile, particle-free environment, so
manufacturing is done in a “clean room.” There can be no dust, no skin cells, no smoke—not even bacteria.
Workers must wear clean room suits, often called “bunny suits,” to ensure that even the tiniest particle does not
escape into the air.

The process begins with the chip design, which eventually results in a mask, the template or blueprint that
contains the circuit patterns. A silicon wafer is then covered by an insulating layer of oxide, followed by a layer
of photosensitive film called photo-resist. This photo-resist has regions that break down under UV light and
other regions that do not. A UV light is then shone through the mask (a process called photolithography). Bare
oxide is left on portions where the photo-resist breaks down under the UV light. Chemical “etching” is then used
to dissolve the revealed oxide layer and also to remove the remaining photo-resist not affected by the UV light.
The “doping” process embeds certain impurities into the silicon that alters the electrical properties of the
unprotected areas, basically creating the transistors. The chip is then covered with another layer of both the
insulating oxide material and the photo-resist, and the entire process is repeated hundreds of times, each iteration
creating a new layer of the chip. Different masks are used with a similar process to create the wires that
connect the components on the chip. The circuit is finally encased in a protective plastic cover, tested, and
shipped out.

As components become smaller and smaller, the equipment used to make them must be of continually higher
quality. This has resulted in a dramatic increase in the cost of manufacturing ICs over the years. In the early
1980s, the cost to build a semiconductor factory was roughly $10 million. By the late 1980s, that cost had risen
to approximately $200 million, and by the late 1990s, an IC fabrication factory cost more or less around $1
billion. In 2005, Intel spent approximately $2 billion for a single fabrication facility and, in 2007, invested
roughly $7 billion to retool three plants in order to allow them to produce a smaller processor. In 2009, AMD
begin building a $4.2 billion chip manufacturing facility in upstate New York.

The manufacturing facility is not the only high-dollar item when it comes to making ICs. The cost to design
a chip and create the mask can run anywhere from $1 million to $3 million—more for smaller chips and less for
larger ones. Considering the costs of both the chip design and the fabrication facility, it truly is amazing that we
can walk into our local computer store and buy a new Intel i3 microprocessor chip for around $100.

1.5.6 Moore’s Law

So where does it end? How small can we make transistors? How densely can we pack chips? No one can say for
sure. Every year, scientists continue to thwart prognosticators’ attempts to define the limits of integration. In fact,
more than one skeptic raised an eyebrow when, in 1965, Intel founder Gordon Moore stated, “The density of
transistors in an integrated circuit will double every year.” The current version of this prediction is usually
conveyed as “the density of silicon chips doubles every 18 months.” This assertion has become known as Moore’s
Law. Moore intended this postulate to hold for only 10 years. However, advances in chip manufacturing processes
have allowed this assertion to hold for almost 40 years (and many believe it will continue to hold well into the
2010s).

Yet, using current technology, Moore’s Law cannot hold forever. There are physical and financial limitations
that must ultimately come into play. At the current rate of miniaturization, it would take about 500 years to put the
entire solar system on a chip! Clearly, the limit lies somewhere between here and there. Cost may be the ultimate
constraint. Rock’s Law, proposed by early Intel capitalist Arthur Rock, is a corollary to Moore’s Law: “The cost
of capital equipment to build semiconductors will double every four years.” Rock’s Law arises from the
observations of a financier who saw the price tag of new chip facilities escalate from about $12,000 in 1968 to $12
million in the mid-1990s. In 2005, the cost of building a new chip plant was nearing $3 billion. At this rate, by the
year 2035, not only will the size of a memory element be smaller than an atom, but it would also require the entire
wealth of the world to build a single chip! So even if we continue to make chips smaller and faster, the ultimate
question may be whether we can afford to build them.

Certainly, if Moore’s Law is to hold, Rock’s Law must fall. It is evident that for these two things to happen,
computers must shift to a radically different technology. Research into new computing paradigms has been
proceeding in earnest during the last half decade. Laboratory prototypes fashioned around organic computing,
superconducting, molecular physics, and quantum computing have been demonstrated. Quantum computers,
which leverage the vagaries of quantum mechanics to solve computational problems, are particularly exciting. Not
only would quantum systems compute exponentially faster than any previously used method, but they would also
revolutionize the way in which we define computational problems. Problems that today are considered ludicrously
infeasible could be well within the grasp of the next generation’s schoolchildren. These school-children may, in
fact, chuckle at our “primitive” systems in the same way that we are tempted to chuckle at the ENIAC.

1.6 THE COMPUTER LEVEL HIERARCHY

If a machine is to be capable of solving a wide range of problems, it must be able to execute programs written in
different languages, from Fortran and C to Lisp and Prolog. As we shall see in Chapter 3, the only physical
components we have to work with are wires and gates. A formidable open space—a semantic gap—exists
between these physical components and a high-level language such as C++. For a system to be practical, the
semantic gap must be invisible to most of the users of the system.

Programming experience teaches us that when a problem is large, we should break it down and use a “divide
and conquer” approach. In programming, we divide a problem into modules and then design each module
separately. Each module performs a specific task, and modules need only know how to interface with other
modules to make use of them.

Computer system organization can be approached in a similar manner. Through the principle of abstraction, we
can imagine the machine to be built from a hierarchy of levels, in which each level has a specific function and
exists as a distinct hypothetical machine. We call the hypothetical computer at each level a virtual machine. Each
level’s virtual machine executes its own particular set of instructions, calling upon machines at lower levels to
carry out the tasks when necessary. By studying computer organization, you will see the rationale behind the
hierarchy’s partitioning, as well as how these layers are implemented and interface with each other. Figure 1.3
shows the commonly accepted layers representing the abstract virtual machines.

Level 6, the User Level, is composed of applications and is the level with which everyone is most familiar. At
this level, we run programs such as word processors, graphics packages, or games. The lower levels are nearly
invisible from the User Level.

Level 5, the High-Level Language Level, consists of languages such as C, C++, Fortran, Lisp, Pascal, and
Prolog. These languages must be translated (using either a compiler or an interpreter) to a language the machine
can understand. Compiled languages are translated into assembly language and then assembled into machine code.
(They are translated to the next lower level.) The user at this level sees very little of the lower levels. Even though a
programmer must know about data types and the instructions available for those types, he or she need not know
about how those types are actually implemented.

FIGURE 1.3 The Abstract Levels of Modern Computing Systems

Level 4, the Assembly Language Level, encompasses some type of assembly language. As previously
mentioned, compiled higher-level languages are first translated to assembly, which is then directly translated to
machine language. This is a one-to-one translation, meaning that one assembly language instruction is translated to
exactly one machine language instruction. By having separate levels, we reduce the semantic gap between a high-
level language, such as C++, and the actual machine language (which consists of Os and 1s).

Level 3, the System Software Level, deals with operating system instructions. This level is responsible for
multiprogramming, protecting memory, synchronizing processes, and various other important functions. Often,
instructions translated from assembly language to machine language are passed through this level unmodified.

Level 2, the Instruction Set Architecture (ISA), or Machine Level, consists of the machine language recognized

by the particular architecture of the computer system. Programs written in a computer’s true machine language on
a hardwired computer (see below) can be executed directly by the electronic circuits without any interpreters,
translators, or compilers. We will study ISAs in depth in Chapters 4 and 5.

Level 1, the Control Level, is where a control unit makes sure that instructions are decoded and executed
properly and that data is moved where and when it should be. The control unit interprets the machine instructions
passed to it, one at a time, from the level above, causing the required actions to take place.

Control units can be designed in one of two ways: They can be hardwired or they can be microprogrammed.
In hardwired control units, control signals emanate from blocks of digital logic components. These signals direct
all the data and instruction traffic to appropriate parts of the system. Hardwired control units are typically very fast
because they are actually physical components. However, once implemented, they are very difficult to modify for
the same reason.

The other option for control is to implement instructions using a microprogram. A microprogram is a program
written in a low-level language that is implemented directly by the hardware. Machine instructions produced in
Level 2 are fed into this microprogram, which then interprets the instructions by activating hardware suited to
execute the original instruction. One machine-level instruction is often translated into several microcode
instructions. This is not the one-to-one correlation that exists between assembly language and machine language.
Microprograms are popular because they can be modified relatively easily. The disadvantage of microprogramming
is, of course, that the additional layer of translation typically results in slower instruction execution.

Level 0, the Digital Logic Level, is where we find the physical components of the computer system: the gates
and wires. These are the fundamental building blocks, the implementations of the mathematical logic, that are
common to all computer systems. Chapter 3 presents the Digital Logic Level in detail

1.7 CLOUD COMPUTING: COMPUTING AS A SERVICE

We must never forget that the ultimate aim of every computer system is to deliver functionality to its users.
Computer users typically do not care about terabytes of storage and gigahertz of processor speed. In fact, many
companies and government agencies have “gotten out of the technology business” entirely by outsourcing their
data centers to third-party specialists. These outsourcing agreements tend to be highly complex and prescribe
every aspect of the hardware configuration. Along with the detailed hardware specifications, service-level
agreements (SLAs) provide penalties if certain parameters of system performance and availability are not met.
Both contracting parties employ individuals whose main job is to monitor the contract, calculate bills, and
determine SLA penalties when needed. Thus, with the additional administrative overhead, data center outsourcing is
neither a cheap nor an easy solution for companies that want to avoid the problems of technology management.

Platform as a Service (PaaS)

Infrastructure as a Service (laaS)

FIGURE 1.4 Levels of Computing as a Service

A somewhat easier approach may be found in the emerging field of Cloud computing. Cloud computing is the
general term for any type of virtual computing platform provided over the Internet. A Cloud computing platform is
defined in terms of the services that it provides rather than its physical configuration. Its name derives from the
cloud icon that symbolizes the Internet on schematic diagrams. But the metaphor carries well into the actual Cloud
infrastructure, because the computer is more abstract than real. The “computer” and “storage” appear to the user
as a single entity in the Cloud but usually span several physical servers. The storage is usually located on an array
of disks that are not directly connected to any particular server. System software is designed to give this
configuration the illusion of being a single system; thus, we say that it presents a virtual machine to the user.

Cloud computing services can be defined and delivered in a number of ways based on levels of the computer
hierarchy shown again in Figure 1.4. At the top of the hierarchy, where we have executable programs, a Cloud
provider might offer an entire application over the Internet, with no components installed locally. This is called
Software as a Service, or SaaS. The consumer of this service does not maintain the application or need to be at
all concerned with the infrastructure in any way. SaaS applications tend to focus on narrow, non-business-critical
applications. Well-known examples include Gmail, Dropbox, GoToMeeting, and Netflix. Specialized products are

available for tax return preparation, payroll, fleet management, and case management, to name only a few.
Salesforce.com is a pioneering, full-featured SaaS offering designed for customer relationship management. Fee-
based SaaS is typically billed monthly according to the number of users, sometimes with per-transaction fees
added on as well.

A great disadvantage of SaaS is that the consumer has little control over the behavior of the product. This may
be problematic if a company has to make radical changes to its processes or policies in order to use a SaaS
product. Companies that desire to have more control over their applications, or that need applications for which
SaaS is unavailable, might instead opt to deploy their own applications on a Cloud-hosted environment called
Platform as a Service, or PaaS. PaaS provides server hardware, operating systems, database services, security
components, and backup and recovery services. The PaaS provider manages performance and availability of the
environment, whereas the customer manages the applications hosted in the PaaS Cloud. The customer is typically
billed monthly per megabytes of storage, processor utilization, and megabytes of data transferred. Well-known
PaaS providers include Google App Engine and Microsoft Windows Azure Cloud Services [as well as Force.com
(PaaS provided by Salesforce.com)].

PaaS is not a good fit in situations where rapid configuration changes are required. This would be the case if a
company’s main business is software development. The formality of change processes necessary to a well-run
PaaS operation impedes rapid software deployment [by forcing a company to play by the service provider’s rules].
Indeed, in any company where staff is capable of managing operating system and database software, the
Infrastructure as a Service (IaaS) Cloud model might be the best option. IaaS, [the most basic of the models,]
provides only server hardware, secure network access to the servers, and backup and recovery services. The
customer is responsible for all system software including the operating system and databases. IaaS is typically
billed by the number of virtual machines used, megabytes of storage, and megabytes of data transferred, but at a
lower rate than PaaS. The biggest names in IaaS include Amazon EC2, Google Compute Engine, Microsoft Azure
Services Platform, Rackspace, and HP Cloud.

Not only do PaaS and IaaS liberate the customer from the difficulties of data center management, they also
provide elasticity: the ability to add and remove resources based on demand. A customer pays for only as much
infrastructure as is needed. So if a business has a peak season, extra capacity needs to be allocated only for the
duration of the peak period. This flexibility can save a company a great deal of money when it has large variations
in computing demands.

Cloud storage is a limited type of IaaS. The general public can obtain small amounts of Cloud storage
inexpensively through services such as Dropbox, Google Drive, and Amazon.com’s Cloud Drive—to name only a
few among a crowded field. Google, Amazon, HP, IBM, and Microsoft are among several vendors that provide
Cloud storage for the enterprise. As with Cloud computing in general, enterprise-grade Cloud storage also requires
careful management of performance and availability.

The question that all potential Cloud computing customers must ask themselves is whether it is less expensive
to maintain their own data center or to buy Cloud services—including the allowances for peak periods. Moreover,
as with traditional outsourcing, vendor-provided Cloud computing still involves considerable contract negotiation
and management on the part of both parties. SLA management remains an important activity in the relationship
between the service provider and the service consumer. Moreover, once an enterprise moves its assets to the
Cloud, it might be difficult to transition back to a company-owned data center, should the need arise. Thus, any
notion of moving assets to the Cloud must be carefully considered, and the risks clearly understood.

The Cloud also presents a number of challenges to computer scientists. First and foremost is the technical
configuration of the data center. The infrastructure must provide for uninterrupted service, even during
maintenance activities. It must permit expedient allocation of capacity to where it is needed without degrading or
interrupting services. Performance of the infrastructure must be carefully monitored and interventions taken
whenever performance falls below certain defined thresholds; otherwise, monetary SLA penalties may be incurred.

On the consumer side of the Cloud, software architects and programmers must be mindful of resource
consumption, because the Cloud model charges fees in proportion to the resources consumed. These resources
include communications bandwidth, processor cycles, and storage. Thus, to save money, application programs

http://Salesforce.com
http://Force.com
http://Salesforce.com
http://Amazon.com

should be designed to reduce trips over the network, economize machine cycles, and minimize bytes of storage.
Meticulous testing is crucial prior to deploying a program in the Cloud: An errant module that consumes resources,
say, in an infinite loop, could result in a “surprising” Cloud bill at the end of the month.

With the cost and complexity of data centers continuing to rise—with no end in sight—Cloud computing is
almost certain to become the platform of choice for medium- to small-sized businesses. But the Cloud is not
worry-free. A company might end up trading its technical challenges for even more vexing supplier management
challenges.

1.8 THE VON NEUMANN MODEL

In the earliest electronic computing machines, programming was synonymous with connecting wires to plugs. No
layered architecture existed, so programming a computer was as much of a feat of electrical engineering as it was
an exercise in algorithm design. Before their work on the ENIAC was complete, John W. Mauchly and J. Presper
Eckert conceived of an easier way to change the behavior of their calculating machine. They reckoned that
memory devices, in the form of mercury delay lines, could provide a way to store program instructions. This
would forever end the tedium of rewiring the system each time it had a new problem to solve, or an old one to
debug. Mauchly and Eckert documented their idea, proposing it as the foundation for their next computer, the
EDVAC. Unfortunately, while they were involved in the top secret ENIAC project during World War II, Mauchly
and Eckert could not immediately publish their insight.

No such proscriptions, however, applied to a number of people working at the periphery of the ENIAC project.
One of these people was a famous Hungarian mathematician named John von Neumann (pronounced von noy-
man). After reading Mauchly and Eckert’s proposal for the EDVAC, von Neumann published and publicized the
idea. So effective was he in the delivery of this concept that history has credited him with its invention. All stored-
program computers have come to be known as von Neumann systems using the von Neumann architecture.
Although we are compelled by tradition to say that stored-program computers use the von Neumann architecture,
we shall not do so without paying proper tribute to its true inventors: John W. Mauchly and J. Presper Eckert.

Today’s version of the stored-program machine architecture satisfies at least the following characteristics:

* Consists of three hardware systems: A central processing unit (CPU) with a control unit, an arithmetic logic
unit (ALU), registers (small storage areas), and a program counter; a main memory system, which holds
programs that control the computer’s operation; and an I/0O system.

» Capacity to carry out sequential instruction processing.

* Contains a single path, either physically or logically, between the main memory system and the control unit of

the CPU, forcing alternation of instruction and execution cycles. This single path is often referred to as the von
Neumann bottleneck.

Figure 1.5 shows how these features work together in modern computer systems. Notice that the system shown
in the figure passes all of its I/O through the arithmetic logic unit (actually, it passes through the accumulator,
which is part of the ALU). This architecture runs programs in what is known as the von Neumann execution
cycle (also called the fetch-decode-execute cycle), which describes how the machine works. One iteration of the
cycle is as follows:

1. The control unit fetches the next program instruction from the memory, using the program counter to
determine where the instruction is located.
2. The instruction is decoded into a language the ALU can understand.

3. Any data operands required to execute the instruction are fetched from memory and placed in registers in the
CPU.

4. The ALU executes the instruction and places the results in registers or memory.

The ideas present in the von Neumann architecture have been extended so that programs and data stored in a
slow-to-access storage medium, such as a hard disk, can be copied to a fast-access, volatile storage medium such
as RAM prior to execution. This architecture has also been streamlined into what is currently called the system
bus model, which is shown in Figure 1.6. The data bus moves data from main memory to the CPU registers (and
vice versa). The address bus holds the address of the data that the data bus is currently accessing. The control bus
carries the necessary control signals that specify how the information transfer is to take place.

Central Processing Unit

r \
¢ N[)

| Program Counter

ShbE AN J

£ ™

G 6)

P ™

| - Registers Main
* o Memory
L% "

Control
Unit

Input/Output
System

FIGURE 1.5 The von Neumann Architecture

CPU Input
_ Memor and
(ALU, Registers, 1 Output

and Control)

ANl A A 2 A

I | | |
Data Bus \/"
[' ' ' |

Address Bus \{f’ "\v] (\/?
| |

Control Bus

FIGURE 1.6 The Modified von Neumann Architecture, Adding a System Bus

Other enhancements to the von Neumann architecture include using index registers for addressing, adding
floating-point data, using interrupts and asynchronous I/O, adding virtual memory, and adding general registers.
You will learn a great deal about these enhancements in the chapters that follow.

Quantum Leap for Computers: How Small Can We Go?

VLSI technology has allowed us to put billions of transistors on a single chip, but there is a limit to how small
we can go with current transistor technology. Researchers at the University of New South Wales’ Centre for
Quantum Computer Technology and the University of Wisconsin—Madison have taken “small” to an entirely new
level. In May 2010, they announced the 7-atom transistor, a working transistor embedded in silicon that is only
7 atoms in size. Transistors 1 atom in size that allowed the flows of electrons were reported as early as 2002,
but this transistor is different in that it provides all the functionality of a transistor as we know it today.

The 7-atom transistor was created by hand, using a scanning tunneling microscope. It’s a long way from
being mass produced, but the researchers hope to make it commercially available by 2015. The transistor’s tiny
size means smaller but more powerful computers. Experts estimate it may shrink microchips by a factor of 100,
while enabling an exponential speedup in processing. This means our computers could become one hundred
times smaller, but at the same time, also one hundred times faster.

In addition to replacing traditional transistors, this discovery may be fundamental in the efforts to build a
quantum computer in silicon. Quantum computing is expected to be the next significant leap in computer
technology. Small quantum computers now exist that perform calculations millions of times faster than
conventional computers, but these computers are too small to be of much use. A large-scale, working quantum
computer would enable us to perform calculations and solve problems that would take a conventional computer
more than 13 billion years. That could change the way we view the world. For one thing, every encryption
algorithm employed today would be useless against that kind of computing power. On the other hand, ultra-
secure communications would be possible using new quantum technologies.

Quantum computers have significant potential. Current applications, including special effects for movies,

cryptography, searching large data files, factoring large numbers, simulating various systems (such as nuclear
explosions and weather patterns), military and intelligence gathering, and intensive, time-consuming
computations (such as those found in astronomy, physics, and chemistry), would all see tremendous
performance increases if quantum computing were used. New applications we have not yet discovered are likely
to evolve as well.

In addition to its potential to change computing as we know it today, this new 7-atom transistor is significant
for another reason. Recall Moore’s Law; this law is not so much a law of nature, but rather an expectation of
innovation and a significant driving force in chip design. Moore’s Law has held since 1965, but in order to do
so, chip manufacturers have jumped from one technology to another. Gordon Moore himself has predicted that,
if restricted to CMOS silicon, his law will fail sometime around 2020. The discovery of this 7-atom transistor
gives new life to Moore’s Law—and we suspect that Gordon Moore is breathing a sigh of relief over its
discovery. However, noted physicist Stephen Hawking has explained that chip manufacturers are limited in their
quest to “enforce” Moore’s Law by two fundamental constraints: the speed of light and the atomic nature of
matter, implying that Moore’s Law will eventually fail, regardless of the technology being used.

1.9 NON-VON NEUMANN MODELS

Until recently, almost all general-purpose computers followed the von Neumann design. That is, the architecture
consisted of a CPU, memory, and I/O devices, and they had single storage for instructions and data, as well as a
single bus used for fetching instructions and transferring data. von Neumann computers execute instructions
sequentially and are therefore extremely well suited to sequential processing. However, the von Neumann
bottleneck continues to baffle engineers looking for ways to build fast systems that are inexpensive and compatible
with the vast body of commercially available software.

Engineers who are not constrained by the need to maintain compatibility with von Neumann systems are free to
use many different models of computing. Non—von Neumann architectures are those in which the model of
computation varies from the characteristics listed for the von Neumann architecture. For example, an architecture
that does not store programs and data in memory or does not process a program sequentially would be considered
a non—-von Neumann machine. Also, a computer that has two buses, one for data and a separate one for
instructions, would be considered a non-von Neumann machine. Computers designed using the Harvard
architecture have two buses, thus allowing data and instructions to be transferred simultaneously, but also have
separate storage for data and instructions. Many modern general-purpose computers use a modified version of the
Harvard architecture in which they have separate pathways for data and instructions but not separate storage. Pure
Harvard architectures are typically used in microcontrollers (an entire computer system on a chip), such as those
found in embedded systems, as in appliances, toys, and cars.

Many non—von Neumann machines are designed for special purposes. The first recognized non—von Neumann
processing chip was designed strictly for image processing. Another example is a reduction machine (built to
perform combinatory logic calculations using graph reduction). Other non—-von Neumann computers include
digital signal processors (DSPs) and media processors, which can execute a single instruction on a set of data
(instead of executing a single instruction on a single piece of data).

A number of different subfields fall into the non—von Neumann category, including neural networks (using
ideas from models of the brain as a computing paradigm) implemented in silicon, cellular automata, cognitive
computers (machines that learn by experience rather than through programming, including IBM’s SyNAPSE
computer, a machine that models the human brain), quantum computation (a combination of computing and
quantum physics), dataflow computation, and parallel computers. These all have something in common—the
computation is distributed among different processing units that act in parallel. They differ in how weakly or
strongly the various components are connected. Of these, parallel computing is currently the most popular.

1.10 PARALLEL PROCESSORS AND PARALLEL COMPUTING

Today, parallel processing solves some of our biggest problems in much the same way that settlers of the Old West
solved their biggest problems using parallel oxen. If they were using an ox to move a tree and the ox was not big
enough or strong enough, they certainly didn’t try to grow a bigger ox—they used two oxen. If our computer isn’t
fast enough or powerful enough, instead of trying to develop a faster, more powerful computer, why not simply
use multiple computers? This is precisely what parallel computing does. The first parallel processing systems were
built in the late 1960s and had only two processors. The 1970s saw the introduction of supercomputers with as
many as 32 processors, and the 1980s brought the first systems with more than 1000 processors. Finally, in 1999,
IBM announced funding for the development of a supercomputer architecture called the Blue Gene series. The
first computer in this series, the Blue Gene/L, is a massively parallel computer containing 131,000 dual-core
processors, each with its own dedicated memory. In addition to allowing researchers to study the behavior of
protein folding (by using large simulations), this computer has also allowed researchers to explore new ideas in
parallel architectures and software for those architectures. IBM has continued to add computers to this series. The
Blue Gene/P appeared in 2007 and has quad-core processors. The latest computer designed for this series, the
Blue Gene/Q, uses 16-core processors, with 1024 compute nodes per rack, scalable up to 512 racks. Installations
of the Blue Gene/Q computer include Nostromo (being used for biomedical data in Poland), Sequoia (being used at
Lawrence Livermore National Laboratory for nuclear simulations and scientific research), and Mira (used at
Argonne National Laboratory).

Dual-core and quad-core processors (and higher, as we saw in Blue Gene/Q) are examples of multicore
processors. But what is a multicore processor? Essentially, it is a special type of parallel processor. Parallel
processors are often classified as either “shared memory” processors (in which processors all share the same
global memory) or “distributed memory” computers (in which each processor has its own private memory).
Chapter 9 covers parallel processors in detail. The following discussion is limited to shared memory multicore
architectures—the type used in personal computers.

Multicore architectures are parallel processing machines that allow for multiple processing units (often called
cores) on a single chip. Dual core means 2 cores; quad core machines have 4 cores; and so on. But what is a
core? Instead of a single processing unit in an integrated circuit (as found in typical von Neumann machines),
independent multiple cores are “plugged in” and run in parallel. Each processing unit has its own ALU and set of
registers, but all processors share memory and some other resources. “Dual core” is different from “dual
processor.” Dual-processor machines, for example, have two processors, but each processor plugs into the
motherboard separately. The important distinction to note is that all cores in multicore machines are integrated into
the same chip. This means that you could, for example, replace a single-core (uniprocessor) chip in your computer
with, for example, a dual-core processor chip (provided your computer had the appropriate socket for the new
chip). Many computers today are advertised as dual core, quad core, or higher. Dual core is generally considered
the standard in today’s computers. Although most desktop and laptop computers have limited cores (fewer than 8),
machines with hundreds of cores are available for the right price, of course.

Just because your computer has multiple cores does not mean it will run your programs more quickly.
Application programs (including operating systems) must be written to take advantage of multiple processing units
(this statement is true for parallel processing in general). Multicore computers are very useful for multitasking—
when users are doing more than one thing at a time. For example, you may be reading email, listening to music,
browsing the Web, and burning a DVD all at the same time. These “multiple tasks” can be assigned to different
processors and carried out in parallel, provided the operating system is able to manipulate many tasks at once.

In addition to multitasking, multithreading can also increase the performance of any application with inherent
parallelism. Programs are divided into threads, which can be thought of as mini-processes. For example, a Web
browser is multithreaded; one thread can download text, while each image is controlled and downloaded by a
separate thread. If an application is multithreaded, separate threads can run in parallel on different processing units.
We should note that even on uniprocessors, multithreading can improve performance, but this is a discussion best
left for another time. For more information, see Stallings (2012).

To summarize, parallel processing refers to a collection of different architectures, from multiple separate
computers working together, to multiple processors sharing memory, to multiple cores integrated onto the same
chip. Parallel processors are technically not classified as von Neumann machines because they do not process
instructions sequentially. However, many argue that parallel processing computers contain CPUs, use program
counters, and store both programs and data in main memory, which makes them more like an extension to the von
Neumann architecture rather than a departure from it; these people view parallel processing computers as sets of
cooperating von Neumann machines. In this regard, perhaps it is more appropriate to say that parallel processing
exhibits “non—-von Neumannness.” Regardless of how parallel processors are classified, parallel computing allows
us to multitask and to solve larger and more complex problems, and is driving new research in various software
tools and programming.

Even parallel computing has its limits, however. As the number of processors increases, so does the overhead
of managing how tasks are distributed to those processors. Some parallel processing systems require extra
processors just to manage the rest of the processors and the resources assigned to them. No matter how many
processors we place in a system, or how many resources we assign to them, somehow, somewhere, a bottleneck
is bound to develop. The best we can do, however, is make sure the slowest parts of the system are the ones that
are used the least. This is the idea behind Amdahl’s Law. This law states that the performance enhancement
possible with a given improvement is limited by the amount that the improved feature is used. The underlying
premise is that every algorithm has a sequential part that ultimately limits the speedup that can be achieved by
multiprocessor implementation.

If parallel machines and other non—von Neumann architectures give such huge increases in processing speed
and power, why isn’t everyone using them everywhere? The answer lies in their programmability. Advances in
operating systems that can utilize multiple cores have put these chips in laptops and desktops that we can buy
today; however, true multiprocessor programming is more complex than both uniprocessor and multicore
programming and requires people to think about problems in a different way, using new algorithms and
programming tools.

One of these programming tools is a set of new programming languages. Most of our programming languages
are von Neumann languages, created for the von Neumann architecture. Many common languages have been
extended with special libraries to accommodate parallel programming, and many new languages have been designed
specifically for the parallel programming environment. We have very few programming languages for the remaining
(nonparallel) non—von Neumann platforms, and fewer people who really understand how to program in these
environments efficiently. Examples of non—von Neumann languages include Lucid (for dataflow) and QCL
(Quantum Computation Language) for quantum computers, as well as VHDL or Verilog (languages used to
program FPGAs). However, even with the inherent difficulties in programming parallel machines, we see in the
next section that significant progress is being made.

1.11 PARALLELISM: ENABLER OF MACHINE INTELLIGENCE—DEEP
BLUE AND WATSON

It is evident by our sidebar on the Mechanical Turk that chess playing has long been considered the ultimate
demonstration of a “thinking machine.” The chess-board is a battlefield where human can meet machine on more-
or-less equal terms—with the human always having the edge, of course. Real chess-playing computers have been
around since the late 1950s. Over the decades, they gradually improved their hardware and software to eventually
become formidable opponents for reasonably skilled players. The problem of championship chess playing,
however, had long been considered so hard that many believed a machine could never beat a human Grandmaster.
On May 11, 1997, a machine called Deep Blue did just that.

Deep Blue’s principal designers were IBM researchers Feng-hsiung Hsu, Thomas Anantharaman, and Murray
Campbell. Reportedly costing more than $6 million and taking six years to build, Deep Blue was a massively parallel
system consisting of 30 RS/6000-based nodes supplemented with 480 chips built especially to play chess. Deep

Blue included a database of 700,000 complete games with separate systems for opening and endgames. It evaluated
200 million positions per second on average. This enabled Deep Blue to produce a 12-move look ahead.

Having soundly beat an earlier version of Deep Blue, world chess champion Garry Kasparov was
overwhelmingly favored to win a rematch starting May 3, 1997. At the end of five games, Kasparov and Deep Blue
were tied, 24 to 2%. Then Deep Blue quickly seized upon an error that Kasparov made early in the sixth game.
Kasparov had no choice but to concede, thus making Deep Blue the first machine to ever defeat a chess
Grandmaster.

With Deep Blue’s stunning win over Kasparov now in the history books, IBM Research manager Charles Lickel
began looking for a new challenge. In 2004, Lickel was among the millions mesmerized by Ken Jennings’s
unprecedented 74-game winning streak on the American quiz show, Jeopardy! As he watched Jennings win one
match after another, Lickel dared to think that it was possible to build a machine that could win at Jeopardy!
Moreover, he believed that IBM Research had the talent to build such a machine. He tapped Dr. David Ferrucci to
lead the effort.

IBM scientists were in no rush to sign on to Lickel’s audacious project. They doubted—with good reason—
that such a machine could be built. After all, creating Deep Blue was hard enough. Playing Jeopardy! is enormously
more difficult than playing chess. In chess, the problem domain is clearly defined with fixed, unambiguous rules,
and a finite (although very large) solution space. Jeopardy! questions, on the other hand, cover a nearly infinite
problem space compounded by the vagaries of human language, odd relations between concepts, puns, and vast
amounts of unstructured factual information. For example, a Jeopardy! category could be titled “Doozy Twos” and
relate to an African leader, an article of clothing, an Al Jolson song, and an ammunition size (Benjamin Tutu, tutu
skirt, “Toot Toot Tootsie,” and .22 caliber). Whereas a human being has little trouble seeing the relationship
(especially once the answer is revealed), computers are utterly baffled.

To make the game fair, Watson had to emulate a human player as closely as possible. No connection to the
Internet or any other computers was permitted, and Watson was required to physically press a plunger to “buzz in”
with an answer. However, Watson wasn’t programmed to process sound or images, so visual and strictly audio
clues—such as musical selections—were not used during the match.

Once a clue was read, Watson initiated several parallel processes. Each process examined different aspects of
the clue, narrowed the solution space, and formulated a hypothesis as to the answer. The hypothesis included a
probability of its being correct. Watson selected the most likely of the hypotheses, or selected no hypothesis at all if
the probability of correctness didn’t reach a predetermined threshold. Watson’s designers determined that if
Watson were to attempt just 70% of the questions and respond correctly just 85% of the time, it would win the
contest. No human players had ever done as well

Using Watson’s algorithms, a typical desktop computer would need about two hours to come up with a good
hypothesis. Watson had to do it in less than three seconds. It achieved this feat through a massively parallel
architecture dubbed DeepQA (Deep Question and Answer). The system relied on 90 IBM POWER 750 servers.
Each server was equipped with four POWER?7 processors, and each POWER?7 processor had eight cores, giving a
total of 2880 processor cores. While playing Jeopardy!, each core had access to 16TB of main memory and 4TB
of clustered storage.

Unlike Deep Blue, Watson could not be programmed to solve problems through brute force: The problem space
was much too large. Watson’s designers, therefore, approached the situation just as a human being would: Watson
“learned” by consuming terabytes of unstructured data from thousands of news sources, journals, and books. The
DeepQA algorithms provided Watson with the ability to synthesize information—in a humanlike manner—from this
universe of raw data. Watson drew inferences and made assumptions using hard facts and incomplete information.
Watson could see information in context: The same question, in a different context, might well produce a different
answer.

On the third day of its match, February 16, 2011, Watson stunned the world by soundly beating both reigning
Jeopardy! champs, Ken Jennings and Brad Rutter. Watson’s winnings were donated to charity, but Watson’s
service to humanity was only beginning. Watson’s ability to absorb and draw inferences from pools of
unstructured data made it a perfect candidate for medical school. Beginning in 2011, IBM, WellPoint, and Memorial

Sloan-Kettering Cancer Center set Watson to work absorbing more than 600,000 pieces of medical evidence, and
two million pages of text from 42 medical journals and oncology research documents. Watson’s literature
assimilation was supplemented with 14,700 hours of live training provided by WellPoint nurses. Watson was then
given 25,000 test case scenarios and 1500 real-life cases from which it demonstrated that it had gained the ability
to derive meaning from the mountain of complex medical data, some of which was in informal natural language—
such as doctors’ notes, patient records, medical annotations, and clinical feedback. Watson’s Jeopardy! success
has now been matched by its medical school success. Commercial products based on Watson technology,
including “Interactive Care Insights for Oncology” and “Interactive Care Reviewer,” are now available. They hold
the promise to improve the speed and accuracy of medical care for cancer patients.

Although Watson’s applications and abilities have been growing, Watson’s footprint has been shrinking. In the
span of only a few years, system performance has improved by 240% with a 75% reduction in physical resources.
Watson can now be run on a single POWER 750 server, leading some to claim that “Watson on a chip” is just
around the corner.

In Watson, we have not merely seen an amazing Jeopardy! player or crack oncologist. What we have seen is
the future of computing. Rather than people being trained to use computers, computers will train themselves to
interact with people—with all their fuzzy and incomplete information. Tomorrow’s systems will meet humans on
human terms. As Dr. Ferrucci puts it, there simply is no other future for computers except to become like Watson.
It just has to be this way.

CHAPTER SUMMARY

In this chapter, we have presented a brief overview of computer organization and computer architecture and
shown how they differ. We also have introduced some terminology in the context of a fictitious computer
advertisement. Much of this terminology will be expanded on in later chapters.

Historically, computers were simply calculating machines. As computers became more sophisticated, they
became general-purpose machines, which necessitated viewing each system as a hierarchy of levels instead of one
gigantic machine. Each layer in this hierarchy serves a specific purpose, and all levels help minimize the semantic
gap between a high-level programming language or application and the gates and wires that make up the physical
hardware. Perhaps the single most important development in computing that affects us as programmers is the
introduction of the stored-program concept of the von Neumann machine. Although there are other architectural
models, the von Neumann architecture is predominant in today’s general-purpose computers.

FURTHER READING

We encourage you to build on our brief presentation of the history of computers. We think you will find this
subject intriguing because it is as much about people as it is about machines. You can read about the “forgotten
father of the computer,” John Atanasoff, in Mollenhoff (1988). This book documents the odd relationship between
Atanasoff and John Mauchly, and recounts the open court battle of two computer giants, Honeywell and Sperry
Rand. This trial ultimately gave Atanasoff his proper recognition.

For a lighter look at computer history, try the book by Rochester and Gantz (1983). Augarten’s (1985)
illustrated history of computers is a delight to read and contains hundreds of hard-to-find pictures of early
computers and computing devices. For a complete discussion of the historical development of computers, you can
check out the three-volume dictionary by Cortada (1987). A particularly thoughtful account of the history of
computing is presented in Ceruzzi (1998). If you are interested in an excellent set of case studies about historical
computers, see Blaauw and Brooks (1997).

You will also be richly rewarded by reading McCartney’s (1999) book about the ENIAC, Chopsky and
Leonsis’s (1988) chronicle of the development of the IBM PC, and Toole’s (1998) biography of Ada, Countess of
Lovelace. Polachek’s (1997) article conveys a vivid picture of the complexity of calculating ballistic firing tables.
After reading this article, you will understand why the army would gladly pay for anything that promised to make

the process faster or more accurate. The Maxfield and Brown book (1997) contains a fascinating look at the
origins and history of computing as well as in-depth explanations of how a computer works.

For more information on Moore’s Law, we refer the reader to Schaller (1997). For detailed descriptions of
early computers as well as profiles and reminiscences of industry pioneers, you may wish to consult the IEEE
Annals of the History of Computing, which is published quarterly. The Computer Museum History Center can be
found online at www.computerhistory.org. It contains various exhibits, research, timelines, and collections. Many
cities now have computer museums and allow visitors to use some of the older computers.

A wealth of information can be found at the websites of the standards-making bodies discussed in this chapter
(as well as sites not discussed in this chapter). The IEEE can be found at www.ieee.org; ANSI at www.ansi.org;
the ISO at www.iso.ch; the BST at www.bsi-global.com; and the ITU-T at www.itu.int. The ISO site offers a vast
amount of information and standards reference materials.

The WWW Computer Architecture Home Page at www.cs.wisc.edu/~arch/www/ contains a comprehensive
index to computer architecture-related information. Many USENET newsgroups are devoted to these topics as
well, including comp.arch and comp.arch.storage.

The entire May—June 2000 issue of MIT’s Technology Review magazine is devoted to architectures that may be
the basis of tomorrow’s computers. Reading this issue will be time well spent. In fact, we could say the same of
every issue.

For a truly unique account of human computers, we invite you to read Grier’s When Computers Were Human.
Among other things, he presents a stirring account of the human computers who drove the mathematical tables
project under the Depression-era Works Progress Administration (WPA). The contributions made by these “table
factories” were crucial to America’s victory in World War II. A shorter account of this effort can also be found in
Grier’s 1998 article that appears in the IEEE Annals of the History of Computing.

The entire May—June 2012 issue of the IBM Journal of Research and Development is dedicated to the building
of Watson. The two articles by Ferrucci and Lewis give great insight into the challenges and triumphs of this
groundbreaking machine. The IBM whitepaper, “Watson—A System Designed for Answers,” provides a nice
summary of Watson’s hardware architecture. Feng-hsiung Hsu gives his first-person account of the building of
Deep Blue in Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Readers
interested in the Mechanical Turk can find more information in the book of the same name by Tom Standage.

REFERENCES

Augarten, S. Bit by Bit: An Illustrated History of Computers. London: Unwin Paperbacks, 1985.

Blaauw, G., & Brooks, F. Computer Architecture: Concepts and Evolution. Reading, MA: Addison-Wesley, 1997.
Ceruzzi, P. E. A History of Modern Computing. Cambridge, MA: MIT Press, 1998.

Chopsky, J., & Leonsis, T. Blue Magic: The People, Power and Politics Behind the IBM Personal Computer. New
York: Facts on File Publications, 1988.

Cortada, J. W. Historical Dictionary of Data Processing, Volume 1: Biographies; Volume 2: Organization; Volume
3: Technology. Westport, CT: Greenwood Press, 1987.

Ferrucci, D. A., “Introduction to ‘This is Watson.” ” IBM Journal of Research and Development 56:3/4, May—June
2012, pp. 1:1-1:15.

Grier, D. A. “The Math Tables Project of the Work Projects Administration: The Reluctant Start of the Computing
Era.” IEEE Annals of the History of Computing 20:3, July—Sept. 1998, pp. 33-50.

Grier, D. A. When Computers Were Human. Princeton, NJ: Princeton University Press, 2007.

Hsu, F.-h. Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton, NJ:
Princeton University Press, 2006.

IBM. “Watson—A System Designed for Answers: The future of workload optimized systems design.” February
2011. ftp://public.dhe.ibm.com/common/ssi/ecm/en/pow03061usen/POW-03061USEN.PDF. Retrieved June 4,

http://www.computerhistory.org
http://www.ieee.org
http://www.ansi.org
http://www.iso.ch
http://www.bsi-global.com
http://www.itu.int
http://www.cs.wisc.edu/~arch/www/
http://ftp://public.dhe.ibm.com/common/ssi/ecm/en/pow03061usen/POW-03061USEN.PDF

2013.

Lewis, B. L. “In the game: The interface between Watson and Jeopardy!” IBM Journal of Research and
Development 56:3/4, May—June 2012, pp. 17:1-17:6.

Maguire, Y., Boyden III, E. S., & Gershenfeld, N. “Toward a Table-Top Quantum Computer.” IBM Systems
Journal 39:3/4, June 2000, pp. 823-839.

Maxfield, C., & Brown, A. Bebop BYTES Back (An Unconventional Guide to Computers). Madison, AL: Doone
Publications, 1997.

McCartney, S. ENIAC: The Triumphs and Tragedies of the World’s First Computer. New York: Walker and
Company, 1999.

Mollenhoff, C. R. Atanasoff: The Forgotten Father of the Computer. Ames, TA: lowa State University Press, 1988.
Polachek, H. “Before the ENIAC.” IEEE Annals of the History of Computing 19:2, June 1997, pp. 25-30.

Rochester, J. B., & Gantz, J. The Naked Computer: A Layperson’s Almanac of Computer Lore, Wizardry,
Personalities, Memorabilia, World Records, Mindblowers, and Tomfoolery. New York: William A. Morrow,
1983.

Schaller, R. “Moore’s Law: Past, Present, and Future.” IEEE Spectrum, June 1997, pp. 52-59.

Stallings, W. Operating Systems: Internals and Design Principles, 7th ed. Upper Saddle River, NJ: Prentice Hall,
2012.

Standage, T. The Turk: The Life and Times of the Famous Eighteenth-Century Chess-Playing Machine. New York:
Berkley Trade, 2003.

Tanenbaum, A. Structured Computer Organization, 6th ed. Upper Saddle River, NJ: Prentice Hall, 2013.

Toole, B. A. Ada, the Enchantress of Numbers: Prophet of the Computer Age. Mill Valley, CA: Strawberry Press,
1998.

Waldrop, M. M. “Quantum Computing.” MIT Technology Review 103:3, May/June 2000, pp. 60—66.

REVIEW OF ESSENTIAL TERMS AND CONCEPTS

1. What is the difference between computer organization and computer architecture?
2. What is an ISA?
3. What is the importance of the Principle of Equivalence of Hardware and Software?
4. Name the three basic components of every computer.
5. To what power of 10 does the prefix giga- refer? What is the (approximate) equivalent power of 2?
6. To what power of 10 does the prefix micro- refer? What is the (approximate) equivalent power of 2?
7. What unit is typically used to measure the speed of a computer clock?
8. What are the distinguishing features of tablet computers?
9. Name two types of computer memory.
10. What is the mission of the IEEE?
11. What is the full name of the organization that uses the initials ISO? Is ISO an acronym?
12. ANSI is the acronym used by which organization?
13. What is the name of the Swiss organization that devotes itself to matters concerning telephony,
telecommunications, and data communications?
14. Who is known as the father of computing, and why?

15.
16.
17.
18.
19.
20.
21.
22,
23.
24.

25.
26.
27.
28.
29.
30.
31.
32.

33.
34.
35.
36.

What was the significance of the punched card?

Name two driving factors in the development of computers.

What is it about the transistor that made it such a great improvement over the vacuum tube?
How does an integrated circuit differ from a transistor?

Explain the differences between SSI, MSI, LSI, and VLSI.

What technology spawned the development of microcomputers? Why?

What is meant by an “open architecture”?

State Moore’s Law.

How is Rock’s Law related to Moore’s Law?

Name and explain the seven commonly accepted layers of the Computer Level Hierarchy. How does this
arrangement help us to understand computer systems?

How does the term abstraction apply to computer organization and architecture?

What was it about the von Neumann architecture that distinguished it from its predecessors?
Name the characteristics present in von Neumann architecture.

How does the fetch-decode-execute cycle work?

What is a multicore processor?

What are the key characteristics of Cloud computing?

What are the three types of Cloud computing platforms?

What are the main challenges of Cloud computing from a provider perspective as well as a consumer
perspective?

What are the advantages and disadvantages of service-oriented computing?
What is meant by parallel computing?

What is the underlying premise of Amdahl’s Law?

What makes Watson so different from traditional computers?

EXERCISES

1. In what ways are hardware and software different? In what ways are they the same?

2. a) How many milliseconds (ms) are in 1 second?
b) How many microseconds (ps) are in 1 second?
¢) How many nanoseconds (ns) are in 1 millisecond?
d) How many microseconds are in 1 millisecond?
e) How many nanoseconds are in 1 microsecond?
f) How many kilobytes (KB) are in 1 gigabyte (GB)?
g) How many kilobytes are in 1 megabyte (MB)?
h) How many megabytes are in 1 gigabyte?
i) How many bytes are in 20 megabytes?
j) How many kilobytes are in 2 gigabytes?

#+ 3. By what order of magnitude is something that runs in nanoseconds faster than something that runs in

milliseconds?

Pretend you are ready to buy a new computer for personal use. First, take a look at ads from various
magazines and newspapers and list terms you don’t quite understand. Look up these terms and give a brief
written explanation. Decide what factors are important in your decision as to which computer to buy and
list them. After you select the system you would like to buy, identify which terms refer to hardware and
which refer to software.

Makers of tablet computers continually work within narrow constraints on cost, power consumption,
weight, and battery life. Describe what you feel would be the perfect tablet computer. How large would the
screen be? Would you rather have a longer-lasting battery, even if it means having a heavier unit? How
heavy would be too heavy? Would you rather have low cost or fast performance? Should the battery be
consumer replaceable?

. Pick your favorite computer language and write a small program. After compiling the program, see if you

can determine the ratio of source code instructions to the machine language instructions generated by the
compiler. If you add one line of source code, how does that affect the machine language program? Try
adding different source code instructions, such as an add and then a multiply. How does the size of the
machine code file change with the different instructions? Comment on the result.

. Respond to the idea presented in Section 1.5: If invented today, what name do you think would be given to

the computer? Give at least one good reason for your answer.

8. Briefly explain two breakthroughs in the history of computing.

9. Would it be possible to fool people with an automaton like the Mechanical Turk today? If you were to try to

+ 10.

11.
12.

13.

14.

15.
16.
17.

18.
19.
20.

create a Turk today, how would it differ from the eighteenth-century version?

Suppose a transistor on an integrated circuit chip were 2 microns in size. According to Moore’s Law, how
large would that transistor be in 2 years? How is Moore’s Law relevant to programmers?

What circumstances helped the IBM PC become so successful?
List five applications of personal computers. Is there a limit to the applications of computers? Do you
envision any radically different and exciting applications in the near future? If so, what?
In the von Neumann model, explain the purpose of the:
a) processing unit
b) program counter

Under the von Neumann architecture, a program and its data are both stored in memory. It is therefore
possible for a program, thinking that a memory location holds a piece of data when it actually holds a
program instruction, to accidentally (or on purpose) modify itself. What implications does this present to
you as a programmer?

Explain why modern computers consist of multiple levels of virtual machines.
Explain the three main types of Cloud computing platforms.

What are the challenges facing organizations that wish to move to a Cloud platform? What are the risks and
benefits?

Does Cloud computing eliminate all of an organization’s concerns about its computing infrastructure?
Explain what it means to “fetch” an instruction.

Read a popular local newspaper and search through the job openings. (You can also check some of the
more popular online career sites.) Which jobs require specific hardware knowledge? Which jobs imply
knowledge of computer hardware? Is there any correlation between the required hardware knowledge and
the company or its location?

21. List and describe some common uses and some not-so-common uses of computers in business and other
sectors of society.

22. The technologist’s notion of Moore’s Law is that the number of transistors per chip doubles approximately
every 18 months. In the 1990s, Moore’s Law started to be described as the doubling of microprocessor
power every 18 months. Given this new variation of Moore’s Law, answer the following:

a) After successfully completing your computer organization and architecture class, you have a brilliant
idea for a new chip design that would make a processor six times faster than the fastest ones on the
market today. Unfortunately, it will take you four and a half years to save the money, create the
prototype, and build a finished product. If Moore’s Law holds, should you spend your money developing
and producing your chip or invest in some other venture?

b) Suppose we have a problem that currently takes 100,000 hours of computer time using current
technology to solve. Which of the following would give us the solution first: (1) Replace the algorithm
used in the current solution with one that runs twice as fast and run it on the current technology, or (2)
Wait 3 years, assuming Moore’s Law doubles the performance of a computer every 18 months, and find
the solution using the current algorithm with the new technology?

23. What are the limitations of Moore’s Law? Why can’t this law hold forever? Explain.
24. What are some technical implications of Moore’s Law? What effect does it have on your future?

25. Do you share Dr. Ferrucci’s opinion that all computers will become like Watson someday? If you had a
tablet-sized Watson, what would you do with it?

! What this principle does not address is the speed with which the equivalent tasks are carried out. Hardware implementations are almost
always faster.

There are 10 kinds of people in the world—those who understand binary and those who don't.

—Anonymous

CHAPTER 2

Data Representation in Computer Systems

2.1 INTRODUCTION

The organization of any computer depends considerably on how it represents numbers, characters, and control
information. The converse is also true: Standards and conventions established over the years have determined
certain aspects of computer organization. This chapter describes the various ways in which computers can store
and manipulate numbers and characters. The ideas presented in the following sections form the basis for
understanding the organization and function of all types of digital systems.

The most basic unit of information in a digital computer is called a bit, which is a contraction of binary digit.
In the concrete sense, a bit is nothing more than a state of “on” or “off” (or “high” and “low”) within a computer
circuit. In 1964, the designers of the IBM System/360 mainframe computer established a convention of using
groups of 8 bits as the basic unit of addressable computer storage. They called this collection of 8 bits a byte.

Computer words consist of two or more adjacent bytes that are sometimes addressed and almost always are
manipulated collectively. The word size represents the data size that is handled most efficiently by a particular
architecture. Words can be 16 bits, 32 bits, 64 bits, or any other size that makes sense in the context of a
computer’s organization (including sizes that are not multiples of eight). An 8-bit byte can be divided into two 4-bit
halves called nibbles (or nybbles). Because each bit of a byte has a value within a positional numbering system,
the nibble containing the least-valued binary digit is called the low-order nibble, and the other half the high-order
nibble.

2.2 POSITIONAL NUMBERING SYSTEMS

At some point during the middle of the sixteenth century, Europe embraced the decimal (or base 10) numbering
system that the Arabs and Hindus had been using for nearly a millennium. Today, we take for granted that the
number 243 means two hundreds, plus four tens, plus three units. Notwithstanding the fact that zero means
“nothing,” virtually everyone knows that there is a substantial difference between having 1 of something and
having 10 of something.

The general idea behind positional numbering systems is that a numeric value is represented through increasing
powers of a radix (or base). This is often referred to as a weighted numbering system because each position is
weighted by a power of the radix.

The set of valid numerals for a positional numbering system is equal in size to the radix of that system. For
example, there are 10 digits in the decimal system, 0 through 9, and 3 digits for the ternary (base 3) system, 0, 1,
and 2. The largest valid number in a radix system is one smaller than the radix, so 8 is not a valid numeral in any
radix system smaller than 9. To distinguish among numbers in different radices, we use the radix as a subscript,
such as in 33,, to represent the decimal number 33. (In this text, numbers written without a subscript should be
assumed to be decimal.) Any decimal integer can be expressed exactly in any other integral base system (see
Example 2.1).

— EXAMPLE 2.1 Three numbers represented as powers of a radix.

24351, =2X 102 +4 X101 +3 X 10°+5x 1071 +1 X 1072
212, = 2% 31 %3 2% 39 =03
10110, =1 X22+0X22+1X22+1X21 +0X20=22

The two most important radices in computer science are binary (base two), and hexadecimal (base 16). Another
radix of interest is octal (base 8). The binary system uses only the digits 0 and 1; the octal system, O through 7.
The hexadecimal system allows the digits 0 through 9 with A, B, C, D, E, and F being used to represent the
numbers 10 through 15. Table 2.1 shows some of the radices.

2.3 CONVERTING BETWEEN BASES

Gottfried Leibniz (1646—1716) was the first to generalize the idea of the (positional) decimal system to other bases.
Being a deeply spiritual person, Leibniz attributed divine qualities to the binary system. He correlated the fact that
any integer could be represented by a series of ones and zeros with the idea that God (1) created the universe out
of nothing (0). Until the first binary digital computers were built in the late 1940s, this system remained nothing
more than a mathematical curiosity. Today, it lies at the heart of virtually every electronic device that relies on
digital controls.

Powers of 2 Decimal | 4-Bit Binary | Hexadecimal
22-5=025 0 0000 0
o_ z 2 an1o 2
20=1 -
212 3 0011 3
92 _ 4 4 0100 4
a_ 5 0101 5
=8

L 0110 6
e 7 0111 7
2532 8 1 '"EI; 8
26 = B4 5 _: 3 9
= 10 s A
o 11 1011 B
29512 it
210 = 1024 E 1R g
215 = 32,768 4 . -
218 = 85,538 3

15 1111 F

TABLE 2.1 Some Numbers to Remember

Because of its simplicity, the binary numbering system translates easily into electronic circuitry. It is also easy
for humans to understand. Experienced computer professionals can recognize smaller binary numbers (such as
those shown in Table 2.1) at a glance. Converting larger values and fractions, however, usually requires a
calculator or pencil and paper. Fortunately, the conversion techniques are easy to master with a little practice. We
show a few of the simpler techniques in the sections that follow.

2.3.1 Converting Unsigned Whole Numbers

We begin with the base conversion of unsigned numbers. Conversion of signed numbers (numbers that can be
positive or negative) is more complex, and it is important that you first understand the basic technique for
conversion before continuing with signed numbers.

Conversion between base systems can be done by using either repeated subtraction or a division-remainder
method. The subtraction method is cumbersome and requires a familiarity with the powers of the radix being used.
Because it is the more intuitive of the two methods, however, we will explain it first.

As an example, let’s say we want to convert 104, to base 3. We know that 3* = 81 is the highest power of 3
that is less than 104, so our base 3 number will be 5 digits wide (one for each power of the radix: 0 through 4). We
make note that 81 goes once into 104 and subtract, leaving a difference of 23. We know that the next power of 3,
3% = 27, is too large to subtract, so we note the zero “placeholder” and look for how many times 3% = 9 divides 23.
We see that it goes twice and subtract 18. We are left with 5, from which we subtract 3! = 3, leaving 2, which is 2
x 39 These steps are shown in Example 2.2.

— EXAMPLE 2.2 Convert 104,, to base 3 using subtraction.

104

—81 =34 X |
23
—0=3*X0
4

—18=32X2
S
—3=3'Xx1
2

(]

The division-remainder method is faster and easier than the repeated subtraction method. It employs the idea that
successive divisions by the base are in fact successive subtractions by powers of the base. The remainders that we
get when we sequentially divide by the base end up being the digits of the result, which are read from bottom to
top. This method is illustrated in Example 2.3.

— EXAMPLE 2.3 Convert 104, to base 3 using the division-remainder method.

3 divides 104 34 times with a remainder of 2

Lid
B
oo
]

3 divides 34 11 times with a remainder of 1

3 divides 11 3 times with a remainder of 2

g

fad

L
=
= B

3 divides 3 1 time with a remainder of 0

(i
fabd
=

3 divides 1 0 times with a remainder of 1

(ad

8=

Reading the remainders from bottom to top, we have: 104,, = 10212,.

This method works with any base, and because of the simplicity of the calculations, it is particularly useful in
converting from decimal to binary. Example 2.4 shows such a conversion.

— EXAMPLE 2.4 Convert 147, to binary.

21147 1 2divides 147 73 times with a remainder of 1
2173 1 2divides 73 36 times with a remainder of 1
2 m 0 2 divides 36 18 times with a remainder of 0
218 0 2divides 18 9 times with a remainder of 0

2]E 1 2 divides 9 4 times with a remainder of 1
>

2 |4 0 divides 4 2 times with a remainder of 0

212 0 2divides 2 1 time with a remainder of 0

2 L] 1 2 divides 1 0 times with a remainder of 1
0

Reading the remainders from bottom to top, we have: 147, = 10010011,.

A binary number with N bits can represent unsigned integers from 0 to 2V — 1. For example, 4 bits can represent
the decimal values O through 15, whereas 8 bits can represent the values 0 through 255. The range of values that
can be represented by a given number of bits is extremely important when doing arithmetic operations on binary
numbers. Consider a situation in which binary numbers are 4 bits in length, and we wish to add 1111, (15,,) to
1111,. We know that 15 plus 15 is 30, but 30 cannot be represented using only 4 bits. This is an example of a
condition known as overflow, which occurs in unsigned binary representation when the result of an arithmetic
operation is outside the range of allowable precision for the given number of bits. We address overflow in more
detail when discussing signed numbers in Section 2.4.

2.3.2 Converting Fractions

Fractions in any base system can be approximated in any other base system using negative powers of a radix.
Radix points separate the integer part of a number from its fractional part. In the decimal system, the radix point
is called a decimal point. Binary fractions have a binary point.

Fractions that contain repeating strings of digits to the right of the radix point in one base may not necessarily
have a repeating sequence of digits in another base. For instance, %5 is a repeating decimal fraction, but in the
ternary system, it terminates as 0.2, (2 X 31 =2 x 3).

We can convert fractions between different bases using methods analogous to the repeated subtraction and
division-remainder methods for converting integers. Example 2.5 shows how we can use repeated subtraction to
convert a number from decimal to base 5.

— EXAMPLE 2.5 Convert 0.4304,, to base 5.

0.4304
—0.4000 =571 x2
0.0304
—0.0000 =572X0 (A placeholder)
0.0304
—0.0240 =577 X 3
0.0064
—0.0064 = 5% X 4
0.0000

Reading from top to bottom, we have: 0.4304,, = 0.2034..

Because the remainder method works with positive powers of the radix for conversion of integers, it stands to
reason that we would use multiplication to convert fractions, because they are expressed in negative powers of the
radix. However, instead of looking for remainders, as we did above, we use only the integer part of the product
after multiplication by the radix. The answer is read from top to bottom instead of bottom to top. Example 2.6
illustrates the process.

— EXAMPLE 2.6 Convert 0.4304,, to base 5.

1520 The integer part is 2. Omit from subsequent multiplication.

0.7600 The integer part is 0. We’ll need it as a placeholder.

X 5
3.8000 The integer part is 3. Omit from subsequent multiplication.

8000
X 5
4.0000 The fractional part is now zero, so we are done.

Reading from top to bottom, we have 0.4304,, = 0.2034..

This example was contrived so that the process would stop after a few steps. Often things don’t work out quite so
evenly, and we end up with repeating fractions. Most computer systems implement specialized rounding algorithms
to provide a predictable degree of accuracy. For the sake of clarity, however, we will simply discard (or truncate)
our answer when the desired accuracy has been achieved, as shown in Example 2.7.

— EXAMPLE 2.7 Convert 0.34375,, to binary with 4 bits to the right of the binary point.

X 2
0.68750 (Another placeholder)
68750
i)
1.37500
37500
X 2
0.75000
715000
¥ 2

1.50000 (This is our fourth bit. We will stop here.)

Reading from top to bottom, 0.34375,, = 0.0101, to four binary places.

The methods just described can be used to directly convert any number in any base to any other base, say from
base 4 to base 3 (as in Example 2.8). However, in most cases, it is faster and more accurate to first convert to
base 10 and then to the desired base. One exception to this rule is when you are working between bases that are
powers of two, as you’ll see in the next section.

— EXAMPLE 2.8 Convert 3121, to base 3.

First, convert to decimal:

3121, =3 X4+ 1 X424+ 2 X4 + 1 X 4°
3IX64+1X16+2X4+1=217,

Then convert to base 3:

TP 14

372 0

3124 0

38 2

32 2
0 We have 3121, = 220015

2.3.3 Converting Between Power-of-Two Radices

Binary numbers are often expressed in hexadecimal—and sometimes octal—to improve their readability. Because
16 = 24 a group of 4 bits (called a hextet) is easily recognized as a hexadecimal digit. Similarly, with 8 = 23, a
group of 3 bits (called an octet) is expressible as one octal digit. Using these relationships, we can therefore
convert a number from binary to octal or hexadecimal by doing little more than looking at it.

— EXAMPLE 2.9 Convert 110010011101, to octal and hexadecimal.

110010 011101 Separate into groups of 3 for the octal conversion.
e 2 3 B

110010011101, = 62354

1100 1001 1101 Separate into groups of 4 for the hexadecimal conversion.
C 9 D

110010011101, = C9D,,

If there are too few bits, leading zeros can be added.

2.4 SIGNED INTEGER REPRESENTATION

We have seen how to convert an unsigned integer from one base to another. Signed numbers require that additional
issues be addressed. When an integer variable is declared in a program, many programming languages
automatically allocate a storage area that includes a sign as the first bit of the storage location. By convention, a “1”
in the high-order bit indicates a negative number. The storage location can be as small as an 8-bit byte or as large
as several words, depending on the programming language and the computer system. The remaining bits (after the
sign bit) are used to represent the number itself.

How this number is represented depends on the method used. There are three commonly used approaches. The
most intuitive method, signed magnitude, uses the remaining bits to represent the magnitude of the number. This
method and the other two approaches, which both use the concept of complements, are introduced in the
following sections.

2.4.1 Signed Magnitude

Up to this point, we have ignored the possibility of binary representations for negative numbers. The set of positive
and negative integers is referred to as the set of signed integers. The problem with representing signed integers as
binary values is the sign—how should we encode the actual sign of the number? Signed-magnitude
representation is one method of solving this problem. As its name implies, a signed-magnitude number has a sign
as its leftmost bit (also referred to as the high-order bit or the most significant bit) whereas the remaining bits
represent the magnitude (or absolute value) of the numeric value. For example, in an 8-bit word, —1 would be
represented as 10000001, and +1 as 00000001. In a computer system that uses signed-magnitude representation
and 8 bits to store integers, 7 bits can be used for the actual representation of the magnitude of the number. This
means that the largest integer an 8-bit word can represent is 27 — 1, or 127 (a zero in the high-order bit, followed
by 7 ones). The smallest integer is 8 ones, or —127. Therefore, N bits can represent —(2*" — 1) to 2%b — 1.
Computers must be able to perform arithmetic calculations on integers that are represented using this notation.

Signed-magnitude arithmetic is carried out using essentially the same methods that humans use with pencil and
paper, but it can get confusing very quickly. As an example, consider the rules for addition: (1) If the signs are the
same, add the magnitudes and use that same sign for the result; (2) If the signs differ, you must determine which
operand has the larger magnitude. The sign of the result is the same as the sign of the operand with the larger
magnitude, and the magnitude must be obtained by subtracting (not adding) the smaller one from the larger one. If
you consider these rules carefully, this is the method you use for signed arithmetic by hand.

We arrange the operands in a certain way based on their signs, perform the calculation without regard to the
signs, and then supply the sign as appropriate when the calculation is complete. When modeling this idea in an 8-bit
word, we must be careful to include only 7 bits in the magnitude of the answer, discarding any carries that take
place over the high-order bit.

— EXAMPLE 2.10 Add 01001111, to 00100011, using signed-magnitude arithmetic.
S IO & carries

0 %7 L5 71 I (79)

eyl Lakd w1 et

0 i Sl I R G (11

The arithmetic proceeds just as in decimal addition, including the carries, until we get to the seventh bit from the
right. If there is a carry here, we say that we have an overflow condition and the carry is discarded, resulting in an
incorrect sum. There is no overflow in this example.

We find that 01001111, + 00100011, = 01110010, in signed-magnitude representation.

)
)

e

Sign bits are segregated because they are relevant only after the addition is complete. In this case, we have the sum
of two positive numbers, which is positive. Overflow (and thus an erroneous result) in signed numbers occurs
when the sign of the result is incorrect.

In signed magnitude, the sign bit is used only for the sign, so we can’t “carry into” it. If there is a carry
emitting from the seventh bit, our result will be truncated as the seventh bit overflows, giving an incorrect sum.
(Example 2.11 illustrates this overflow condition.) Prudent programmers avoid “million-dollar” mistakes by
checking for overflow conditions whenever there is the slightest possibility they could occur. If we did not discard
the overflow bit, it would carry into the sign, causing the more outrageous result of the sum of two positive
numbers being negative. (Imagine what would happen if the next step in a program were to take the square root or
log of that result!)

— EXAMPLE 2.11 Add 01001111, to 01100011, using signed-magnitude arithmetic.

Last carry 1 « O B ¢ carries
overflowsand 0 F o &'t Bl (79)
1s discarded. 0 + L L 900 1}] + (99)

0 031100 1W (50)

We obtain the erroneous result of 79 + 99 = 50.

Dabbling on the Double

The fastest way to convert a binary number to decimal is a method called double-dabble (or double-dibble).
This method builds on the idea that a subsequent power of two is double the previous power of two in a binary
number. The calculation starts with the leftmost bit and works toward the rightmost bit. The first bit is doubled
and added to the next bit. This sum is then doubled and added to the following bit. The process is repeated for
each bit until the rightmost bit has been used.

EXAMPLE 1

Convert 10010011, to decimal.

Step 1: Write down the binary number, leaving space between the bits.

1) 0 1 0 §) 1 1
Step 2: Double the high-order bit and copy it under the next bit.
1 0 0 1 O 0 1 1
p.
X2
Z
Step 3: Add the next bit and double the sum. Copy this result under the next bit.
1 0 0 1 O 0 1 l
2 4
¥,
X2 X2
2 4
Step 4: Repeat Step 3 until you run out of bits.
1 0 0 1 0 0 1 I
2 4 8 18 36 72 146
=0] QI] -+
2 4 9 18 36 /3 147 <= The answer: 10010011, = 14/,

X 2 X2 X2 X2 X2 X2 X 2
2 i 8 18 36 12 146

When we combine hextet grouping (in reverse) with the double-dabble method, we find that we can convert
hexadecimal to decimal with ease.

EXAMPLE 2
Convert 02CA,, to decimal.

First, convert the hex to binary by grouping into hextets.

0 2 £ A

Ddb@ 0010 1100 1010

Then apply the double-dabble method on the binary form:

1 0 1 1 0 0 1 0 1 0
2 4 10 22 44 88 178 356 114
+ 0 ol) =1 + 0 +0 4 1 30 i +0
2 5 11 27 44 89 178 357 114
X 2 X 2 X2 L X 2 X 2 X 2 X 2 X 2
2 4 10 2 44 88 178 356 114
02CA,; = 1011001010, =714,,

As with addition, signed-magnitude subtraction is carried out in a manner similar to pencil-and-paper decimal

arithmetic, where it is sometimes necessary to borrow from digits in the minuend.

— EXAMPLE 2.12 Subtract 010011112 from 011000112 using signed-magnitude arithmetic.

] 12 < borrows
0 1. +646 6 11 (99)
9 = 10601111 — (79)
0 g 101 00 (20)

We find that 01100011, — 01001111, = 00010100, in signed-magnitude representation.

— EXAMPLE 2.13 Subtract 011000112 (99) from 010011112 (79) using signed-magnitude arithmetic.

By inspection, we see that the subtrahend, 01100011, is larger than the minuend, 01001111. With the result
obtained in Example 2.12, we know that the difference of these two numbers is 0010100,. Because the subtrahend
is larger than the minuend, all we need to do is change the sign of the difference. So we find that 01001111, —

01100011, = 10010100, in signed-magnitude representation.

We know that subtraction is the same as “adding the opposite,” which equates to negating the value we wish to
subtract and then adding instead (which is often much easier than performing all the borrows necessary for

subtraction, particularly in dealing with binary numbers). Therefore, we need to look at some examples involving
both positive and negative numbers. Recall the rules for addition: (1) If the signs are the same, add the magnitudes
and use that same sign for the result; (2) If the signs differ, you must determine which operand has the larger
magnitude. The sign of the result is the same as the sign of the operand with the larger magnitude, and the
magnitude must be obtained by subtracting (not adding) the smaller one from the larger one.

— EXAMPLE 2.14 Add 100100112 (-19) to 000011012 (+13) using signed-magnitude arithmetic.

The first number (the augend) is negative because its sign bit is set to 1. The second number (the addend) is
positive. What we are asked to do is in fact a subtraction. First, we determine which of the two numbers is larger
in magnitude and use that number for the augend. Its sign will be the sign of the result.

0 1:2 < borrows
1 8 D=0 8 1.1 ¢—19)
0 —89001101 + (13)
1 g 000 1 1:0 (—6)

With the inclusion of the sign bit, we see that 10010011, — 00001101, = 10000110, in signed-magnitude
representation.

— EXAMPLE 2.15 Subtract 10011000, (—24) from 10101011, (—43) using signed-magnitude arithmetic.

We can convert the subtraction to an addition by negating —24, which gives us 24, and then we can add this to
—43, giving us a new problem of —43 + 24. However, we know from the addition rules above that because the
signs now differ, we must actually subtract the smaller magnitude from the larger magnitude (or subtract 24 from
43) and make the result negative (because 43 is larger than 24).

02
0+01011 (43)
— 0011000 —024)
8 1 af .l] (19)

Note that we are not concerned with the sign until we have performed the subtraction. We know the answer must
be negative. So we end up with 10101011, — 10011000, = 10010011, in signed-magnitude representation.

While reading the preceding examples, you may have noticed how many questions we had to ask ourselves: Which
number is larger? Am I subtracting a negative number? How many times do I have to borrow from the minuend? A
computer engineered to perform arithmetic in this manner must make just as many decisions (though a whole lot
faster). The logic (and circuitry) is further complicated by the fact that signed magnitude has two representations
for zero, 10000000 and 00000000 (and mathematically speaking, this simply shouldn’t happen!). Simpler methods
for representing signed numbers would allow simpler and less expensive circuits. These simpler methods are based
on radix complement systems.

2.4.2 Complement Systems

Number theorists have known for hundreds of years that one decimal number can be subtracted from another by
adding the difference of the subtrahend from all nines and adding back a carry. This is called taking the nine’s

complement of the subtrahend or, more formally, finding the diminished radix complement of the subtrahend.
Let’s say we wanted to find 167 — 52. Taking the difference of 52 from 999, we have 947. Thus, in nine’s
complement arithmetic, we have 167 — 52 = 167 + 947 = 1114. The “carry” from the hundreds column is added
back to the units place, giving us a correct 167 — 52 = 115. This method was commonly called “casting out 9s”
and has been extended to binary operations to simplify computer arithmetic. The advantage that complement
systems give us over signed magnitude is that there is no need to process sign bits separately, but we can still
easily check the sign of a number by looking at its high-order bit.

Another way to envision complement systems is to imagine an odometer on a bicycle. Unlike cars, when you
go backward on a bike, the odometer will go backward as well. Assuming an odometer with three digits, if we
start at zero and end with 700, we can’t be sure whether the bike went forward 700 miles or backward 300 miles!
The easiest solution to this dilemma is simply to cut the number space in half and use 001-500 for positive miles
and 501-999 for negative miles. We have, effectively, cut down the distance our odometer can measure. But now
if it reads 997, we know the bike has backed up 3 miles instead of riding forward 997 miles. The numbers 501-
999 represent the radix complements (the second of the two methods introduced below) of the numbers 001-500
and are being used to represent negative distance.

One’s Complement

As illustrated above, the diminished radix complement of a number in base 10 is found by subtracting the
subtrahend from the base minus one, which is 9 in decimal. More formally, given a number N in base r having d
digits, the diminished radix complement of N is defined to be (r ¢ — 1) — N. For decimal numbers, r = 10, and the
diminished radix is 10 — 1 = 9. For example, the nine’s complement of 2468 is 9999 — 2468 = 7531. For an
equivalent operation in binary, we subtract from one less the base (2), which is 1. For example, the one’s
complement of 0101, is 1111, — 0101 = 1010. Although we could tediously borrow and subtract as discussed
above, a few experiments will convince you that forming the one’s complement of a binary number amounts to
nothing more than switching all of the 1s with Os and vice versa. This sort of bit-flipping is very simple to
implement in computer hardware.

It is important to note at this point that although we can find the nine’s complement of any decimal number or
the one’s complement of any binary number, we are most interested in using complement notation to represent
negative numbers. We know that performing a subtraction, such as 10 — 7, can also be thought of as “adding the
opposite,” as in 10 + (—7). Complement notation allows us to simplify subtraction by turning it into addition, but it
also gives us a method to represent negative numbers. Because we do not wish to use a special bit to represent the
sign (as we did in signed-magnitude representation), we need to remember that if a number is negative, we should
convert it to its complement. The result should have a 1 in the leftmost bit position to indicate that the number is
negative.

Although the one’s complement of a number is technically the value obtained by subtracting that number from
a large power of two, we often refer to a computer using one’s complement for negative numbers as a one’s
complement system, or a computer that uses one’s complement arithmetic. This can be somewhat misleading, as
positive numbers do not need to be complemented; we only complement negative numbers so we can get them into
a format the computer will understand. Example 2.16 illustrates these concepts.

— EXAMPLE 2.16 Express 23,, and —9,, in 8-bit binary, assuming a computer is using one’s complement
representation.

23,, = + (00010111,) = 00010111,
~9,, = —(00001001,) = 11110110,

Unlike signed magnitude, in one’s complement addition there is no need to maintain the sign bit separate from the
other bits. The sign takes care of itself. Compare Example 2.17 with Example 2.10.

— EXAMPLE 2.17 Add 01001111, to 00100011, using one’s complement addition.

| - &= carries
1868711] (79)
08 1 088 1) +{35)
D1.11808018 (114)

Suppose we wish to subtract 9 from 23. To carry out a one’s complement subtraction, we first express the
subtrahend (9) in one’s complement, then add it to the minuend (23); we are effectively now adding —9 to 23. The
high-order bit will have a 1 or a 0 carry, which is added to the low-order bit of the sum. (This is called end carry-

around and results from using the diminished radix complement.)

— EXAMPLE 2.18 Add 23, to -9,, using one’s complement arithmetic.

1 «— 111 i 1 & carries
6 ¥ B0l 11 (23)
F L 1 1 3 0l 18 f=0)

The last o801 18]

carry is added +=1
to the sum. (i 190 14,

— EXAMPLE 2.19 Add 9,, to —23,, using one’s complement arithmetic.

The last 0« 00001001 (9)
carry is zero gl 1 7 @10l 0 - ¢23)
so we are done. 1 1110001 —14,

How do we know that 11110001, is actually —14,,? We simply need to take the one’s complement of this binary
number (remembering it must be negative because the leftmost bit is negative). The one’s complement of
11110001, is 00001110,, which is 14.

The primary disadvantage of one’s complement is that we still have two representations for zero: 00000000 and
11111111. For this and other reasons, computer engineers long ago stopped using one’s complement in favor of the
more efficient two’s complement representation for binary numbers.

Two’s Complement

Two’s complement is an example of a radix complement. Given a number N in base r having d digits, the radix
complement of N is defined as r — N for N # 0 and 0 for N = 0. The radix complement is often more intuitive than
the diminished radix complement. Using our odometer example, the ten’s complement of going forward 2 miles is
10 — 2 = 998, which we have already agreed indicates a negative (backward) distance. Similarly, in binary, the
two’s complement of the 4-bit number 0011, is 24 — 0011, = 10000, — 0011, = 1101,.

Upon closer examination, you will discover that two’s complement is nothing more than one’s complement
incremented by 1. To find the two’s complement of a binary number, simply flip bits and add 1. This simplifies
addition and subtraction as well. Because the subtrahend (the number we complement and add) is incremented at
the outset, however, there is no end carry-around to worry about. We simply discard any carries involving the
high-order bits. Just as with one’s complement, two’s complement refers to the complement of a number, whereas
a computer using this notation to represent negative numbers is said to be a two’s complement system, or uses
two’s complement arithmetic. As before, positive numbers can be left alone; we only need to complement negative
numbers to get them into their two’s complement form. Example 2.20 illustrates these concepts.

— EXAMPLE 2.20 Express 23,,, —23,,, and —9,, in 8-bit binary, assuming a computer is using two’s complement
representation.

23,, = + (00010111, = 00010111,
—23,, = — (00010111,) = 11101000, + 1 = 11101001,
—9,, = — (00001001,) = 11110110, + 1 = 11110111,

Because the representation of positive numbers is the same in one’s complement and two’s complement (as well as
signed-magnitude), the process of adding two positive binary numbers is the same. Compare Example 2.21 with
Example 2.17 and Example 2.10.

— EXAMPLE 2.21 Add 01001111, to 00100011, using two’s complement addition.

| i S A <= carries

0N e T (79)
B0 BiRiEE 1) +{35)
THL1 YRR B (114)

Suppose we are given the binary representation for a number and want to know its decimal equivalent. Positive
numbers are easy. For example, to convert the two’s complement value of 00010111, to decimal, we simply
convert this binary number to a decimal number to get 23. However, converting two’s complement negative
numbers requires a reverse procedure similar to the conversion from decimal to binary. Suppose we are given the
two’s complement binary value of 11110111,, and we want to know the decimal equivalent. We know this is a
negative number but must remember it is represented using two’s complement. We first flip the bits and then add 1
(find the one’s complement and add 1). This results in the following: 00001000, + 1 = 00001001,. This is
equivalent to the decimal value 9. However, the original number we started with was negative, so we end up with —
9 as the decimal equivalent to 11110111,.

The following two examples illustrate how to perform addition (and hence subtraction, because we subtract a
number by adding its opposite) using two’s complement notation.

— EXAMPLE 2.22 Add 9,, to —23,, using two’s complement arithmetic.

0000100 1 9)
+11101001 +(=23)
BEIFL IR —14,,

It is left as an exercise for you to verify that 11110010, is actually —14,, using two’s complement notation.

— EXAMPLE 2.23 Find the sum of 23,, and -9,, in binary using two’s complement arithmetic.

l— 111 1 11 & carries

Discard 0o 1To1 11 (23)
carry. ol 1A L 81 ¥ = =}
g1 11r0 14,

In two’s complement, the addition of two negative numbers produces a negative number, as we might expect.

— EXAMPLE 2.24 Find the sum of 11101001, (-23) and 11110111, (-9) using two’s complement addition.

l~— 1111111 &= carries
Discard 1 1487 6071 (23]
carry. il gL Gd =) + (—9)
11 1000808 (—32)

Notice that the discarded carries in Examples 2.23 and 2.24 did not cause an erroneous result. An overflow occurs
if two positive numbers are added and the result is negative, or if two negative numbers are added and the result is
positive. It is not possible to have overflow when using two’s complement notation if a positive and a negative
number are being added together.

INTEGER MULTTPLICATION AND DIVISION

Unless sophisticated algorithms are used, multiplication and division can consume a considerable number of
computation cycles before a result is obtained. Here, we discuss only the most straightforward approach to
these operations. In real systems, dedicated hardware is used to optimize throughput, sometimes carrying out
portions of the calculation in parallel. Curious readers will want to investigate some of these advanced methods
in the references cited at the end of this chapter.

The simplest multiplication algorithms used by computers are similar to traditional pencil-and-paper methods
used by humans. The complete multiplication table for binary numbers couldn’t be simpler: zero times any

number is zero, and one times any number is that number.

To illustrate simple computer multiplication, we begin by writing the multiplicand and the multiplier to two
separate storage areas. We also need a third storage area for the product. Starting with the low-order bit, a
pointer is set to each digit of the multiplier. For each digit in the multiplier, the multiplicand is “shifted” one bit to
the left. When the multiplier is 1, the “shifted” multiplicand is added to a running sum of partial products.
Because we shift the multiplicand by one bit for each bit in the multiplier, a product requires double the working
space of either the multiplicand or the multiplier.

There are two simple approaches to binary division: We can either iteratively subtract the denominator from
the divisor, or we can use the same trial-and-error method of long division that we were taught in grade school.
As with multiplication, the most efficient methods used for binary division are beyond the scope of this text and
can be found in the references at the end of this chapter.

Regardless of the relative efficiency of any algorithms that are used, division is an operation that can always
cause a computer to crash. This is the case particularly when division by zero is attempted or when two
numbers of enormously different magnitudes are used as operands. When the divisor is much smaller than the
dividend, we get a condition known as divide underflow, which the computer sees as the equivalent of division
by zero, which is impossible.

Computers make a distinction between integer division and floating-point division. With integer division, the
answer comes in two parts: a quotient and a remainder. Floating-point division results in a number that is
expressed as a binary fraction. These two types of division are sufficiently different from each other as to
warrant giving each its own special circuitry. Floating-point calculations are carried out in dedicated circuits
called floating-point units, or FPUs.

— EXAMPLE Find the product of 00000110, and 00001011,.

Multiplicand Partial products
[o]ofo]olol1]1]o] + [o]olo]o]o]ofo]o] 1011 Add multiplicand
4 and shift left.
[o]ofo]ol41]1]e]o] + [o]olofo]o]4]4]0] 1011 Add multiplicand
4 and shift laft.
[oJoJo[1T4]ololo] + [oJoJal1]alo[1 o] 1 0 1 1 Don't add, justshift
4 multiplicand left.
[olo]1]1]o]o]olo] + |o]ofol1]o]o]1]o] ;ﬂ 11 Add multiplicand.
= (o]1]o]o]o]o]1]o] Product

Simple computer circuits can easily detect an overflow condition using a rule that is easy to remember. You’ll
notice in both Examples 2.23 and 2.24 that the carry going into the sign bit (a 1 is carried from the previous bit
position into the sign bit position) is the same as the carry going out of the sign bit (a 1 is carried out and
discarded). When these carries are equal, no overflow occurs. When they differ, an overflow indicator is set in the
arithmetic logic unit, indicating the result is incorrect.

A Simple Rule for Detecting an Overflow Condition in Signed Numbers: If the carry into the sign bit
equals the carry out of the bit, no overflow has occurred. If the carry into the sign bit is different from the
carry out of the sign bit, overflow (and thus an error) has occurred.

The hard part is getting programmers (or compilers) to consistently check for the overflow condition. Example
2.25 indicates overflow because the carry into the sign bit (a 1 is carried in) is not equal to the carry out of the sign
bit (a 0 is carried out).

— EXAMPLE 2.25 Find the sum of 126, and 8,, in binary using two’s complement arithmetic.

O— 1111 & carries

Discard last bl 111 Tel) (126)
carry. = a1 Yy +(38)

1 0088110 122111

A one is carried into the leftmost bit, but a zero is carried out. Because these carries are not equal, an overflow has
occurred. (We can easily see that two positive numbers are being added but the result is negative.) We return to
this topic in Section 2.4.6.

Two’s complement is the most popular choice for representing signed numbers. The algorithm for adding and
subtracting is quite easy, has the best representation for 0 (all 0 bits), is self-inverting, and is easily extended to
larger numbers of bits. The biggest drawback is in the asymmetry seen in the range of values that can be
represented by N bits. With signed-magnitude numbers, for example, 4 bits allow us to represent the values —7
through +7. However, using two’s complement, we can represent the values —8 through +7, which is often
confusing to anyone learning about complement representations. To see why +7 is the largest number we can
represent using 4-bit two’s complement representation, we need only remember that the first bit must be 0. If the
remaining bits are all 1s (giving us the largest magnitude possible), we have 0111,, which is 7. An immediate
reaction to this is that the smallest negative number should then be 1111,, but we can see that 1111, is actually —1
(flip the bits, add one, and make the number negative). So how do we represent —8 in two’s complement notation
using 4 bits? It is represented as 1000,. We know this is a negative number. If we flip the bits (0111), add 1 (to get
1000, which is 8), and make it negative, we get —8.

2.4.3 Excess-M Representation for Signed Numbers

Recall the bicycle example that we discussed when introducing complement systems. We selected a particular
value (500) as the cutoff for positive miles, and we assigned values from 501 to 999 to negative miles. We didn’t
need signs because we used the range to determine whether the number was positive or negative. Excess-M
representation (also called offset binary representation) does something very similar; unsigned binary values are
used to represent signed integers. However, excess-M representation, unlike signed magnitude and the complement
encodings, is more intuitive because the binary string with all Os represents the smallest number, whereas the
binary string with all 1s represents the largest value; in other words, ordering is preserved.

The unsigned binary representation for integer M (called the bias) represents the value 0, whereas all zeros in
the bit pattern represents the integer —M. Essentially, a decimal integer is “mapped” (as in our bicycle example) to
an unsigned binary integer, but interpreted as positive or negative depending on where it falls in the range. If we are
using n bits for the binary representation, we need to select the bias in such a manner that we split the range
equally. We typically do this by choosing a bias of 2" — 1. For example, if we were using 4-bit representation, the
bias should be 24! — 1 = 7. Just as with signed magnitude, one’s complement, and two’s complement, there is a
specific range of values that can be expressed in n bits.

The unsigned binary value for a signed integer using excess-M representation is determined simply by adding M
to that integer. For example, assuming that we are using excess-7 representation, the integer 0,, would be

represented as 0 + 7 = 7,, = 0111,; the integer 3,, would be represented as 3 + 7 = 10,, = 1010,; and the integer —7
would be represented as -7 + 7 = 0,, = 0000,. Using excess-7 notation and given the binary number 1111,, to find
the decimal value it represents, we simply subtract 7: 1111, = 15,,, and 15 — 7 = 8; therefore, the value 1111,, using
excess-7 representation, is +8,,.

Let’s compare the encoding schemes we have seen so far, assuming 8-bit numbers:

Integer Binary Strings Representing the Signed Integer
Binary Signed One’s Two's
Decimal | (for absolute value) Magnitude Complement | Complement | Excess-127
2 00000010 00000010 00000010 00000010 10000001
-2 00000010 10000010 11111101 11111110 01111101
100 01100100 01100100 01100100 01100100 11100011
—100 01100100 11100100 10011011 10011100 00011071

Excess-M representation allows us to use unsigned binary values to represent signed integers; it is important to
note, however, that two parameters must be specified: the number of bits being used in the representation and the
bias value itself. In addition, a computer is unable to perform addition on excess-M values using hardware designed
for unsigned numbers; special circuits are required. Excess-M representation is important because of its use in
representing integer exponents in floating-point numbers, as we will see in Section 2.5.

2.4.4 Unsigned Versus Signed Numbers

We introduced our discussion of binary integers with unsigned numbers. Unsigned numbers are used to represent
values that are guaranteed not to be negative. A good example of an unsigned number is a memory address. If the
4-bit binary value 1101 is unsigned, then it represents the decimal value 13, but as a signed two’s complement
number, it represents —3. Signed numbers are used to represent data that can be either positive or negative.

A computer programmer must be able to manage both signed and unsigned numbers. To do so, the
programmer must first identify numeric values as either signed or unsigned numbers. This is done by declaring the
value as a specific type. For instance, the C programming language has int and unsigned int as possible types for
integer variables, defining signed and unsigned integers, respectively. In addition to different type declarations,
many languages have different arithmetic operations for use with signed and unsigned numbers. A language may
have one subtraction instruction for signed numbers and a different subtraction instruction for unsigned numbers.
In most assembly languages, programmers can choose from a signed comparison operator or an unsigned
comparison operator.

It is interesting to compare what happens with unsigned and signed numbers when we try to store values that
are too large for the specified number of bits. Unsigned numbers simply wrap around and start over at zero. For
example, if we are using 4-bit unsigned binary numbers, and we add 1 to 1111, we get 0000. This “return to zero”
wraparound is familiar—perhaps you have seen a high-mileage car in which the odometer has wrapped back
around to zero. However, signed numbers devote half their space to positive numbers and the other half to negative
numbers. If we add 1 to the largest positive 4-bit two’s complement number 0111 (+7), we get 1000 (-8). This
wraparound with the unexpected change in sign has been problematic to inexperienced programmers, resulting in
multiple hours of debugging time. Good programmers understand this condition and make appropriate plans to deal
with the situation before it occurs.

2.4.5 Computers, Arithmetic, and Booth’s Algorithm

Computer arithmetic as introduced in this chapter may seem simple and straight-forward, but it is a field of major
study in computer architecture. The basic focus is on the implementation of arithmetic functions, which can be
realized in software, firmware, or hardware. Researchers in this area are working toward designing superior
central processing units (CPUs), developing high-performance arithmetic circuits, and contributing to the area of
embedded systems application-specific circuits. They are working on algorithms and new hardware
implementations for fast addition, subtraction, multiplication, and division, as well as fast floating-point operations.
Researchers are looking for schemes that use nontraditional approaches, such as the fast carry look-ahead
principle, residue arithmetic, and Booth’s algorithm. Booth’s algorithm is a good example of one such scheme
and is introduced here in the context of signed two’s complement numbers to give you an idea of how a simple
arithmetic operation can be enhanced by a clever algorithm.

Although Booth’s algorithm usually yields a performance increase when multiplying two’s complement
numbers, there is another motivation for introducing this algorithm. In Section 2.4.2, we covered examples of
two’s complement addition and saw that the numbers could be treated as unsigned values. We simply perform
“regular” addition, as the following example illustrates:

1001 (=7)
+ 0011 (+3)
1100 (—4)

The same is true for two’s complement subtraction. However, now consider the standard pencil-and-paper method
for multiplying the following two’s complement numbers:

1011 (=5)
X 1100 (—4)
0000
0000
1011
1011
10000100 (—124)

“Regular” multiplication clearly yields the incorrect result. There are a number of solutions to this problem, such as
converting both values to positive numbers, performing conventional multiplication, and then remembering if one
or both values were negative to determine whether the result should be positive or negative. Booth’s algorithm not
only solves this dilemma, but also speeds up multiplication in the process.

The general idea of Booth’s algorithm is to increase the speed of a multiplication when there are consecutive
zeros or ones in the multiplier. It is easy to see that consecutive zeros help performance. For example, if we use
the tried and true pencil-and-paper method and find 978 x 1001, the multiplication is much easier than if we take
978 x 999. This is because of the two zeros found in 1001. However, if we rewrite the two problems as follows:

078 X 1001 =978 X (1000 + 1) = 978 X 1000 + 978
978 X 999 = 978 X (1000 — 1) = 978 x 1000 — 978
we see that the problems are in fact equal in difficulty.

Our goal is to use a string of ones in a binary number to our advantage in much the same way that we use a
string of zeros to our advantage. We can use the rewriting idea from above. For example, the binary number 0110

can be rewritten 1000 — 0010 = —0010 + 1000. The two ones have been replaced by a “subtract” (determined by
the rightmost 1 in the string) followed by an “add” (determined by moving one position left of the leftmost 1 in the

string).
Consider the following standard multiplication example:
0011
X 0110

+ 0000 (0 in multiplier means simple shift)
+ 0011 (1 in multiplier means add multiplicand and shift)

+ 0011 (1 in multiplier means add multiplicand and shift)
+ 0000 (0 in multiplier means simple shift)
00010010

The idea of Booth’s algorithm is to replace the string of ones in the multiplier with an initial subtract when we see
the rightmost 1 of the string (or subtract 0011) and then later add for the bit after the last 1 (or add 001100). In the
middle of the string, we can now use simple shifting:

0011
X 0110
+ 0000 (0 in multiplier means shift)
— 0011 (first 1 in multiplier means subtract multiplicand and shift)
+ 0000 (middle of string of 1s means shift)
+ 0011 (prior step had last 1 so add multiplicand)
00010010

In Booth’s algorithm, if the multiplicand and multiplier are n-bit two’s complement numbers, the result is a 2n-bit
two’s complement value. Therefore, when we perform our intermediate steps, we must extend our n-bit numbers
to 2n-bit numbers. If a number is negative and we extend it, we must extend the sign. For example, the value 1000
(-8) extended to 8 bits would be 11111000. We continue to work with bits in the multiplier, shifting each time we
complete a step. However, we are interested in pairs of bits in the multiplier and proceed according to the
following rules:

1. If the current multiplier bit is 1 and the preceding bit was 0, we are at the beginning of a string of ones, so
subtract the multiplicand from the product (or add the opposite).

2. If the current multiplier bit is O and the preceding bit was 1, we are at the end of a string of ones, so add the
multiplicand to the product.

3. If it is a 00 pair, or a 11 pair, do no arithmetic operation (we are in the middle of a string of zeros or a string of
ones). Simply shift. The power of the algorithm is in this step: We can now treat a string of ones as a string of
zeros and do nothing more than shift.

Note: The first time we pick a pair of bits in the multiplier, we should assume a mythical 0 as the “previous™ bit.
Then we simply move left one bit for our next pair.

Example 2.26 illustrates the use of Booth’s algorithm to multiply —3 x 5 using signed 4-bit two’s complement
numbers.

— EXAMPLE 2.26 Negative 3 in 4-bit two’s complement is 1101. Extended to 8 bits, it is 11111101. Its
complement is 00000011. When we see the rightmost 1 in the multiplier, it is the beginning of a string of 1s, so we
treat it as if it were the string 10:

1101 (for subtracting, we will add —3’s complement, or 00000011)
X 0101
+00000011 (10 = subtract 1101 = add 00000011)
+11111101 (01 = add 11111101 to product—note sign extension)
+00000011 (10 = subtract 1101 = add 00000011)

+11111101 (01 = add multiplicand 11111101 to product)
100111110001 (using the 8 rightmost bits, we have —3 X 5 = —15)
-

Ignore extended sign bits that go beyond 2n.

— EXAMPLE 2.27 Let’s look at the larger example of 53 x 126:

00110101 (for subtracting, we will add the complement of 53, or
X 01111110 11001011)
+0000000000000000 (00 = simple shift)
+111111111001011 (10 = subtract = add 11001011, extend sign)
+00000000000000 (11 = simple shift)

+0000000000000 (11 = simple shift)
+ 000000000000 (11 = simple shift)
+00000000000 (11 = simple shift)
+0000000000 (11 = simple shift)
+000110101 (01 = add)

10001101000010110 (53 X 126 = 6678)

Note that we have not shown the extended sign bits that go beyond what we need and use only the 16 rightmost
bits. The entire string of ones in the multiplier was replaced by a subtract (adding 11001011) followed by an add.
Everything in the middle is simply shifting—something that is very easy for a computer to do (as we will see in
Chapter 3). If the time required for a computer to do an add is sufficiently larger than that required to do a shift,
Booth’s algorithm can provide a considerable increase in performance. This depends somewhat, of course, on the
multiplier. If the multiplier has strings of zeros and/or ones, the algorithm works well. If the multiplier consists of
an alternating string of zeros and ones (the worst case), using Booth’s algorithm might very well require more
operations than the standard approach.

Computers perform Booth’s algorithm by adding and shifting values stored in registers. A special type of shift
called an arithmetic shift is necessary to preserve the sign bit. Many books present Booth’s algorithm in terms of
arithmetic shifts and add operations on registers only, and may appear quite different from the preceding method.
We have presented Booth’s algorithm so that it more closely resembles the pencil-and-paper method with which we

are all familiar, although it is equivalent to the computer algorithms presented elsewhere.

There have been many algorithms developed for fast multiplication, but many do not hold for signed
multiplication. Booth’s algorithm not only allows multiplication to be performed faster in most cases, but it also has
the added bonus in that it works correctly on signed numbers.

2.4.6 Carry Versus Overflow

The wraparound referred to in the preceding section is really overflow. CPUs often have flags to indicate both
carry and overflow. However, the overflow flag is used only with signed numbers and means nothing in the
context of unsigned numbers, which use the carry flag instead. If carry (which means carry out of the leftmost bit)
occurs in unsigned numbers, we know we have overflow (the new value is too large to be stored in the given
number of bits) but the overflow bit is not set. Carry out can occur in signed numbers as well; however, its
occurrence in signed numbers is neither sufficient nor necessary for overflow. We have already seen that overflow
in signed numbers can be determined if the carry in to the leftmost bit and the carry out of the leftmost bit differ.
However, carry out of the leftmost bit in unsigned operations always indicates overflow.

Expression Result Carry? Overflow? Correct Result?
0100 (+4)+0010(+2) 0110 (+6} No No Yes

0100 (+4)+0110({+6) 1010 (-6} No Yes HNo
1100(-4)+1110({-2) 1010 (-6} Yes No Yes

1100(—-4) +1010({-6) 0110 (+6) Yes Yes No

TABLE 2.2 Examples of Carry and Overflow in Signed Numbers

To illustrate these concepts, consider 4-bit unsigned and signed numbers. If we add the two unsigned values
0111 (7) and 0001 (1), we get 1000 (8). There is no carry (out), and thus no error. However, if we add the two
unsigned values 0111 (7) and 1011 (11), we get 0010 with a carry, indicating that there is an error (indeed, 7 + 11
is not 2). This wraparound would cause the carry flag in the CPU to be set. Essentially, carry out in the context of
unsigned numbers means an overflow has occurred, even though the overflow flag is not set.

We said carry (out) is neither sufficient nor necessary for overflow in signed numbers. Consider adding the
two’s complement integers 0101 (+5) and 0011 (+3). The result is 1000 (-8), which is clearly incorrect. The
problem is that we have a carry in to the sign bit, but no carry out, which indicates that we have an overflow
(therefore, carry is not necessary for overflow). However, if we now add 0111 (+7) and 1011 (-5), we get the
correct result: 0010 (+2). We have both a carry in to and a carry out of the leftmost bit, so there is no error (so
carry is not sufficient for overflow). The carry flag would be set, but the overflow flag would not be set. Thus
carry out does not necessarily indicate an error in signed numbers, nor does the lack of carry out indicate that the
answer is correct.

To summarize, the rule of thumb used to determine when carry indicates an error depends on whether we are
using signed or unsigned numbers. For unsigned numbers, a carry (out of the leftmost bit) indicates the total
number of bits was not large enough to hold the resulting value, and overflow has occurred. For signed numbers,
if the carry in to the sign bit and the carry (out of the sign bit) differ, then overflow has occurred. The overflow
flag is set only when overflow occurs with signed numbers.

Carry and overflow clearly occur independently of each other. Examples using signed two’s complement
representation are given in Table 2.2. Carry in to the sign bit is not indicated in the table.

2.4.7 Binary Multiplication and Division Using Shifting

Shifting a binary number simply means moving the bits left or right by a certain amount. For example, the binary
value 00001111 shifted left one place results in 00011110 (if we fill with a zero on the right). The first number is
equivalent to decimal value 15; the second is decimal 30, which is exactly double the first value. This is no
coincidence!

When working with signed two’s complement numbers, we can use a special type of shift, called an arithmetic
shift, to perform quick and easy multiplication and division by 2. Recall that the leftmost bit in a two’s complement
number determines its sign, so we must be careful when shifting these values that we don’t change the sign bit, as
multiplying or dividing by 2 should not change the sign of the number.

We can perform a left arithmetic shift (which multiples a number by 2) or a right arithmetic shift (which
divides a number by 2). Assuming that bits are numbered right to left beginning with zero, we have the following
definitions for left and right arithmetic shifts.

A left arithmetic shift inserts a 0 in for bit b,, and shifts all other bits left one position, resulting in bit b, ,
being replaced by bit b, ,. Because bit b, , is the sign bit, if the value in this bit changes, the operation has caused
overflow. Multiplication by 2 always results in a binary number with the rightmost bit equal to 0, which is an even
number, and thus explains why we pad with a zero on the right. Consider the following examples:

— EXAMPLE 2.28 Multiply the value 11 (expressed using 8-bit signed two’s complement representation) by 2.
We start with the binary value for 11:
00001011

and we shift left one place, resulting in:
00010110

which is decimal 2 = 11 x 2. No overflow has occurred, so the value is correct.

— EXAMPLE 2.29 Multiply the value 12 (expressed using 8-bit signed two’s complement representation) by 4.
We start with the binary value for 12:

00001100
and we shift left two places (each shift multiplies by 2, so two shifts is equivalent to multiplying by 4), resulting in:
00110000

which is decimal 48 = 12 x 4. No overflow has occurred, so the value is correct.

— EXAMPLE 2.30 Multiply the value 66 (expressed using 8-bit signed two’s complement representation) by 2.
We start with the binary value for 66:

01000010
and we shift left one place, resulting in:
10000100

but the sign bit has changed, so overflow has occurred (66 x 2 = 132, which is too large to be expressed using 8
bits in signed two’s complement notation).

Aright arithmetic shift moves all bits to the right, but carries (copies) the sign bit from bit b, , to b, ,. Because

we copy the sign bit from right to left, overflow is not a problem. However, division by 2 may have a remainder of
1; division using this method is strictly integer division, so the remainder is not stored in any way. Consider the

following examples:

— EXAMPLE 2.31 Divide the value 12 (expressed using 8-bit signed two’s complement representation) by 2.
We start with the binary value for 12:
00001100

and we shift right one place, copying the sign bit of 0, resulting in:
00000110

which is decimal 6 = 12 + 2.

— EXAMPLE 2.32 Divide the value 12 (expressed using 8-bit signed two’s complement representation) by 4.
We start with the binary value for 12:

00001100

and we shift right two places, resulting in:
00000011

which is decimal 3 = 12 + 4.

— EXAMPLE 2.33 Divide the value —14 (expressed using 8-bit signed two’s complement representation) by 2.
We start with the two’s complement representation for —14:

11110010

and we shift right one place (carrying across the sign bit), resulting in:
11111001

which is decimal -7 = -14 + 2.

Note that if we had divided —15 by 2 (in Example 2.33), the result would be 11110001 shifted one to the left to
yield 11111000, which is —8. Because we are doing integer division, —15 divided by 2 is indeed equal to —8.

2.5 FLOATING-POINT REPRESENTATION

If we wanted to build a real computer, we could use any of the integer representations that we just studied. We
would pick one of them and proceed with our design tasks. Our next step would be to decide the word size of our
system. If we want our system to be really inexpensive, we would pick a small word size, say, 16 bits. Allowing
for the sign bit, the largest integer this system could store is 32,767. So now what do we do to accommodate a
potential customer who wants to keep a tally of the number of spectators paying admission to professional sports
events in a given year? Certainly, the number is larger than 32,767. No problem. Let’s just make the word size
larger. Thirty-two bits ought to do it. Our word is now big enough for just about anything that anyone wants to
count. But what if this customer also needs to know the amount of money each spectator spends per minute of
playing time? This number is likely to be a decimal fraction. Now we’re really stuck.

The easiest and cheapest approach to this problem is to keep our 16-bit system and say, “Hey, we’re building a
cheap system here. If you want to do fancy things with it, get yourself a good programmer.” Although this
position sounds outrageously flippant in the context of today’s technology, it was a reality in the earliest days of
each generation of computers. There simply was no such thing as a floating-point unit in many of the first
mainframes or microcomputers. For many years, clever programming enabled these integer systems to act as if

they were, in fact, floating-point systems.

If you are familiar with scientific notation, you may already be thinking of how you could handle floating-point
operations—how you could provide floating-point emulation—in an integer system. In scientific notation,
numbers are expressed in two parts: a fractional part and an exponential part that indicates the power of ten to
which the fractional part should be raised to obtain the value we need. So to express 32,767 in scientific notation,
we could write 3.2767 x 10% Scientific notation simplifies pencil-and-paper calculations that involve very large or
very small numbers. It is also the basis for floating-point computation in today’s digital computers.

2.5.1 A Simple Model

In digital computers, floating-point numbers consist of three parts: a sign bit, an exponent part (representing the
exponent on a power of 2), and a fractional part (which has sparked considerable debate regarding appropriate
terminology). The term mantissa is widely accepted when referring to this fractional part. However, many people
take exception to this term because it also denotes the fractional part of a logarithm, which is not the same as the
fractional part of a floating-point number. The Institute of Electrical and Electronics Engineers (IEEE) introduced
the term significand to refer to the fractional part of a floating-point number combined with the implied binary
point and implied 1 (which we discuss at the end of this section). Regrettably, the two terms mantissa and
significand have become interchangeable when referring to the fractional part of a floating-point number, even
though they are not technically equivalent. Throughout this text, we refer to the fractional part as the significand,
regardless of whether it includes the implied 1 as intended by IEEE.

The number of bits used for the exponent and significand depends on whether we would like to optimize for
range (more bits in the exponent) or precision (more bits in the significand). (We discuss range and precision in
more detail in Section 2.5.7.) For the remainder of this section, we will use a 14-bit model with a 5-bit exponent,
an 8-bit significand, and a sign bit (see Figure 2.1). More general forms are described in Section 2.5.2.

1 bit 5 bits 8 bits

Sign bit Exponent Significand
FIGURE 2.1 Simple Model Floating-Point Representation

Let’s say that we wish to store the decimal number 17 in our model. We know that 17 = 17.0 x 10° = 1.7 x 10!
= 0.17 x 102, Analogously, in binary, 17,, = 10001, x 2° = 1000.1, x 2! = 100.01, x 22 = 10.001, x 2% = 1.0001, %
24 =0.10001, x 25. If we use this last form, our fractional part will be 10001000 and our exponent will be 00101,
as shown here:

g & ¢ 1 0 1|1 06 00 1 0 OO0

Using this form, we can store numbers of much greater magnitude than we could using a fixed-point
representation of 14 bits (which uses a total of 14 binary digits plus a binary, or radix, point). If we want to
represent 65536 = 0.1, x 2" in this model, we have:

g 1 ¢ ¢ 0 1 |1 0 00 O 0 00

One obvious problem with this model is that we haven’t provided for negative exponents. If we wanted to store
0.25, we would have no way of doing so because 0.25 is 2-? and the exponent —2 cannot be represented. We could

fix the problem by adding a sign bit to the exponent, but it turns out that it is more efficient to use a biased
exponent, because we can use simpler integer circuits designed specifically for unsigned numbers when comparing
the values of two floating-point numbers.

Recall from Section 2.4.3 that the idea behind using a bias value is to convert every integer in the range into a
nonnegative integer, which is then stored as a binary numeral. The integers in the desired range of exponents are
first adjusted by adding this fixed bias value to each exponent. The bias value is a number near the middle of the
range of possible values that we select to represent zero. In this case, we would select 15 because it is midway
between 0 and 31 (our exponent has 5 bits, thus allowing for 2° or 32 values). Any number larger than 15 in the
exponent field represents a positive value. Values less than 15 indicate negative values. This is called an excess-15
representation because we have to subtract 15 to get the true value of the exponent. Note that exponents of all
zeros or all ones are typically reserved for special numbers (such as zero or infinity). In our simple model, we
allow exponents of all zeros and ones.

Returning to our example of storing 17, we calculated 17,, = 0.10001, x 2°. The biased exponent is now 15 + 5

=20:

g, 1 4 1 0o |1 0 00 1 0 O 0

If we wanted to store 0.25 = 0.1 x 2!, we would have:

g o 1 1 0 |1 0 00 O 0 0O 0

There is still one rather large problem with this system: We do not have a unique representation for each number.
All of the following are equivalent:

Gy1 @ 1 &% | 1T @8 T Bl | =

g1 @ 1 Th & | & T8 O T | =

g 1 @ 1 7T | & @1 89 9 & 1 0 | ==

Gy 1 T B @@ | & Dol & @l

Because synonymous forms such as these are not well-suited for digital computers, floating-point numbers must
be normalized—that is, the leftmost bit of the significand must always be 1. This process is called
normalization. This convention has the additional advantage that if the 1 is implied, we effectively gain an extra bit
of precision in the significand. Normalization works well for every value except zero, which contains no nonzero
bits. For that reason, any model used to represent floating-point numbers must treat zero as a special case. We will
see in the next section that the IEEE-754 floating-point standard makes an exception to the rule of normalization.

— EXAMPLE 2.34 Express 0.03125,, in normalized floating-point form using the simple model with excess-15

bias.
0.03125,, = 0.00001, x 2° = 0.0001 x 21 = 0.001 x 22 =0.01 x 2 = 0.1 x 2* Applying the bias, the exponent
field is 15 — 4 = 11.

g(¢ ¥+ & ¢ 1 |1 0 OO0 O 0 O 0

Note that in our simple model we have not expressed the number using the normalization notation that implies the
1, which is introduced in Section 2.5.4.

2.5.2 Floating-Point Arithmetic

If we wanted to add two decimal numbers that are expressed in scientific notation, such as 1.5 x 10?2 + 3.5 x 103,
we would change one of the numbers so that both of them are expressed in the same power of the base. In our
example, 1.5 x 10?2 + 3.5 x 10® = 0.15 x 10% + 3.5 x 10% = 3.65 x 10°. Floating-point addition and subtraction work
the same way, as illustrated below.

— EXAMPLE 2.35 Add the following binary numbers as represented in a normalized 14-bit format, using the
simple model with a bias of 15.

g(1 ¢ & 0 1 |1 &+ 00 1 0 0 0|+

(& Y 2 F @& |3 8.8 F 1 8 4 b

We see that the addend is raised to the second power and that the augend is to the zero power. Alignment of these
two operands on the binary point gives us:

11.001000
+ 0.10011010
11.10111010

Renormalizing, we retain the larger exponent and truncate the low-order bit. Thus, we have:

g (4 & o0 3 |3 F 3 8 A F 4 0

However, because our simple model requires a normalized significand, we have no way to represent zero. This is
easily remedied by allowing the string of all zeros (a zero sign, a zero exponent, and a zero significand) to represent
the value zero. In the next section, we will see that IEEE-754 also reserves special meaning for certain bit patterns.

Multiplication and division are carried out using the same rules of exponents applied to decimal arithmetic, such as
273 x 24 =21 for example.

— EXAMPLE 2.36 Assuming a 15-bit bias, multiply:

|1t 0 0 1 O 1 1 0 0 1 0 0 0| =0.11001000 x 23

(0|t @ 0 O 0 1 0 01 1 0 1 0] =0.10011010 x 21

Multiplication of 0.11001000 by 0.10011010 yields a product of 0.0111100001010000, and then multiplying by 23 x
21 = 24 yields 111.10000101. Renormalizing and supplying the appropriate exponent, the floating-point product is:

g(1 ¢ & ¢ O |1 £ 1 1 & 0 O -0

2.5.3 Floating-Point Errors

When we use pencil and paper to solve a trigonometry problem or compute the interest on an investment, we
intuitively understand that we are working in the system of real numbers. We know that this system is infinite,
because given any pair of real numbers, we can always find another real number that is smaller than one and
greater than the other.

Unlike the mathematics in our imaginations, computers are finite systems, with finite storage. When we call
upon our computers to carry out floating-point calculations, we are modeling the infinite system of real numbers in
a finite system of integers. What we have, in truth, is an approximation of the real number system. The more bits
we use, the better the approximation. However, there is always some element of error, no matter how many bits
we use.

Floating-point errors can be blatant, subtle, or unnoticed. The blatant errors, such as numeric overflow or
underflow, are the ones that cause programs to crash. Subtle errors can lead to wildly erroneous results that are
often hard to detect before they cause real problems. For example, in our simple model, we can express normalized
numbers in the range of — 11111111, x 26 through +.11111111 x 26, Obviously, we cannot store 27 or 2'%; they
simply don’t fit. It is not quite so obvious that we cannot accurately store 128.5, which is well within our range.
Converting 128.5 to binary, we have 10000000.1, which is 9 bits wide. Our significand can hold only eight.
Typically, the low-order bit is dropped or rounded into the next bit. No matter how we handle it, however, we have
introduced an error into our system.

We can compute the relative error in our representation by taking the ratio of the absolute value of the error to
the true value of the number. Using our example of 128.5, we find:

128.5 — 128 = 0.00389105 = 0.39%.
128.5

If we are not careful, such errors can propagate through a lengthy calculation, causing substantial loss of
precision. Table 2.3 illustrates the error propagation as we iteratively multiply 16.24 by 0.91 using our 14-bit simple
model. Upon converting these numbers to 8-bit binary, we see that we have a substantial error from the outset.

As you can see, in six iterations, we have more than tripled the error in the product. Continued iterations will
produce an error of 100% because the product eventually goes to zero. Although this 14-bit model is so small that
it exaggerates the error, all floating-point systems behave the same way. There is always some degree of error
involved when representing real numbers in a finite system, no matter how large we make that system. Even the

smallest error can have catastrophic results, particularly when computers are used to control physical events such
as in military and medical applications. The challenge to computer scientists is to find efficient algorithms for
controlling such errors within the bounds of performance and economics.

Multiplier Multiplicand 14-Bit Product Efc?ciluct Error
21‘3 5? ?Sﬁm X ?53,5?2%?“ z 211 _1?5';32} 14.7784 1.46%
311 -erS 163{;} * e ;11 3[}11%[;51} 13.4483 1.94%
daiees) 0 (s 122080 246%
E%Q}L‘} s i ;?:1:%11;2; 111366 2.91%
2?{1]%:;2; s heder 7 ;‘3215.;19(] 10.1343 3.79%
33215; 100 x 0.11101000 = ; é]%? 21 ; ;{]1 — P

TABLE 2.3 Error Propagation in a 14-Bit Floating-Point Number

2.5.4 The IEEE-754 Floating-Point Standard

The floating-point model we have been using in this section is designed for simplicity and conceptual
understanding. We could extend this model to include whatever number of bits we wanted. Until the 1980s, these
kinds of decisions were purely arbitrary, resulting in numerous incompatible representations across various
manufacturers’ systems. In 1985, the IEEE published a floating-point standard for both single- and double-
precision floating-point numbers. This standard is officially known as IEEE-754 (1985) and includes two formats:
single precision and double precision. The IEEE-754 standard not only defines binary floating-point
representations, but also specifies basic operations, exception conditions, conversions, and arithmetic. Another
standard, IEEE 854-1987, provides similar specifications for decimal arithmetic. In 2008, IEEE revised the 754
standard, and it became known as IEEE 754-2008. It carried over the single and double precision from 754, and
added support for decimal arithmetic and formats, superseding both 754 and 854. We discuss only the single and
double representation for floating-point numbers.

The IEEE-754 single-precision standard uses an excess 127 bias over an 8-bit exponent. The significand
assumes an implied 1 to the left of the radix point and is 23 bits. This implied 1 is referred to as the hidden bit or
hidden 1 and allows an actual significand of 23 + 1 = 24 bits. With the sign bit included, the total word size is 32
bits, as shown in Figure 2.2.

1 bit 8 bits 23 bits

Sign bit Exponent Significand
Bias: 127

FIGURE 2.2 IEEE-754 Single-Precision Floating-Point Representation

We mentioned earlier that IEEE-754 makes an exception to the rule of normalization. Because this standard
assumes an implied 1 to the left of the radix point, the leading bit in the significand can indeed be zero. For
example, the number 5.5 = 101.1 = .1011 x 23, IEEE-754 assumes an implied 1 to the left of the radix point and
thus represents 5.5 as 1.011 x 22, Because the 1 is implied, the significand is 011 and does not begin with a 1.

Table 2.4 shows the single-precision representation of several floating-point numbers, including some special
ones. One should note that zero is not directly representable in the given format, because of a required hidden bit in
the significand. Therefore, zero is a special value denoted using an exponent of all zeros and a significand of all
zeros. IEEE-754 does allow for both -0 and +0, although they are equal values. For this reason, programmers
should use caution when comparing a floating-point value to zero.

| Floating-Point Number Single-Precision Representation

| |
|10 | 001111111 00000000000000000000000 |
|05 | 001111110 00000000000000000000000 |
195 | 010000011 00111000000000000000000 |
-3.75	110000000 11100000000000000000000
Zero	000000000 00000000000000000000000
+ Infinity	0/1 11111111 00000000000000000000000
NaN	0/1 11111111 any nonzero significand
Denorma]ized Number	0/1 00000000 any nonzero significand

TABLE 2.4 Some Example IEEE-754 Single-Precision Floating-Point Numbers

When the exponent is 255, the quantity represented is + infinity (which has a zero significand) or “not a
number” (which has a nonzero significand). “Not a number,” or NaN, is used to represent a value that is not a real
number (such as the square root of a negative number) or as an error indicator (such as in a “division by zero”
error).

Under the IEEE-754 standard, most numeric values are normalized and have an implicit leading 1 in their
significands (that is assumed to be to the left of the radix point). Another important convention is when the
exponent is all zeros but the significand is nonzero. This represents a denormalized number in which there is no
hidden bit assumed.

Zero

Negative Expressible Negative | Positive Expressible Positive
Overflow Megative Numbers Underflow | Underflow Positive Overflow
Numbers
<€ >
-1.0 x 10308 —-1.0 x 10-308 1.0 x 107308 1.0 x 10308

FIGURE 2.3 Range of IEEE-754 Double-Precision Numbers

The largest magnitude value we can represent (forget the sign for the time being) with the single-precision
floating-point format is 2'% x 1.1111111111 1111111111111, (let’s call this value MAX). We can’t use an exponent of
all ones because that is reserved for NaN. The smallest magnitude number we can represent is 2% X
.00000000000000000000001, (let’s call this value MIN). We can use an exponent of all zeros (which means the
number is denormalized) because the significand is nonzero (and represents 22%). Due to the preceding special
values and the limited number of bits, there are four numerical ranges that single-precision floating-point numbers
cannot represent: negative numbers less than -MAX (negative overflow); negative numbers greater than —MIN
(negative underflow); positive numbers less than +MIN (positive underflow); and positive numbers greater than
+MAX (positive overflow).

Double-precision numbers use a signed 64-bit word consisting of an 11-bit exponent and a 52-bit significand.
The bias is 1023. The range of numbers that can be represented in the IEEE double-precision model is shown in
Figure 2.3. NaN is indicated when the exponent is 2047. Representations for zero and infinity correspond to the
single-precision model.

At a slight cost in performance, most FPUs use only the 64-bit model so that only one set of specialized
circuits needs to be designed and implemented.

Virtually every recently designed computer system has adopted the IEEE-754 floating-point model
Unfortunately, by the time this standard came along, many mainframe computer systems had established their own
floating-point systems. Changing to the newer system has taken decades for well-established architectures such as
IBM mainframes, which now support both their traditional floating-point system and IEEE-754. Before 1998,
however, IBM systems had been using the same architecture for floating-point arithmetic that the original
System/360 used in 1964. One would expect that both systems will continue to be supported, owing to the
substantial amount of older software that is running on these systems.

2.5.5 Range, Precision, and Accuracy

When discussing floating-point numbers it is important to understand the terms range, precision, and accuracy.
Range is very straightforward, because it represents the interval from the smallest value in a given format to the
largest value in that same format. For example, the range of 16-bit two’s complement integers is —32768 to
+32767. The range of IEEE-754 double-precision floating-point numbers is given in Figure 2.3. Even with this
large range, we know there are infinitely many numbers that do not exist within the range specified by IEEE-754.
The reason floating-point numbers work at all is that there will always be a number in this range that is close to the
number you want.

People have no problem understanding range, but accuracy and precision are often confused with each other.
Accuracy refers to how close a number is to its true value; for example, we can’t represent 0.1 in floating point,
but we can find a number in the range that is relatively close, or reasonably accurate, to 0.1. Precision, on the
other hand, deals with how much information we have about a value and the amount of information used to
represent the value. 1.666 is a number with four decimal digits of precision; 1.6660 is the same exact number with

five decimal digits of precision. The second number is not more accurate than the first.

Accuracy must be put into context—to know how accurate a value is, one must know how close it is to its
intended target or “true value.” We can’t look at two numbers and immediately declare that the first is more
accurate than the second simply because the first has more digits of precision.

Although they are separate, accuracy and precision are related. Higher precision often allows a value to be more
accurate, but that is not always the case. For example, we can represent the value 1 as an integer, a single-
precision floating point, or a double-precision floating point, but each is equally (exactly) accurate. As another
example, consider 3.13333 as an estimate for pi. It has 6 digits of precision, yet is accurate to only two digits.
Adding more precision will do nothing to increase the accuracy.

On the other hand, when multiplying 0.4 % 0.3, our accuracy depends on our precision. If we allow only one
decimal place for precision, our result is 0.1 (which is close to, but not exactly, the product). If we allow two
decimal places of precision, we get 0.12, which accurately reflects the answer.

2.5.6 Additional Problems with Floating-Point Numbers

We have seen that floating-point numbers can overflow and underflow. In addition, we know that a floating-point
number may not exactly represent the value we wish, as is the case with the rounding error that occurs with the
binary floating-point representation for the decimal number 0.1. As we have seen, these rounding errors can
propagate, resulting in substantial problems.

Although rounding is undesirable, it is understandable. In addition to this rounding problem, however, floating-
point arithmetic differs from real number arithmetic in two relatively disturbing, and not necessarily intuitive, ways.
First, floating-point arithmetic is not always associative. This means that for three floating-point numbers a, b, and
¢,

(@a+b)y+c#a+(b+c)

The same holds true for associativity under multiplication. Although in many cases the left-hand side will equal the
right-hand side, there is no guarantee. Floating-point arithmetic is also not distributive:

ax(b)+c)#ab+ac

Although results can vary depending on compiler (we used Gnu C), declaring the doubles a = 0.1, b = 0.2, and ¢ =
0.3 illustrates the above inequalities nicely. We encourage you to find three additional floating-point numbers to
illustrate that floating-point arithmetic is neither associative nor distributive.

What does this all mean to you as a programmer? Programmers should use extra care when using the equality
operator on floating-point numbers. This implies that they should be avoided in controlling looping structures such
as do...while and for loops. It is good practice to declare a “nearness to x” epsilon (e.g., epsilon = 1.0 x 10-*) and
then test an absolute value.

For example, instead of using:

if x = 2 then...

it is better to use:

if(abs{x — 2) < epsilon) then...\\ It's close encugh if we'wve
%\ defined epsilon correctly!

Floating-Point Ops or Oops?

In this chapter, we have introduced floating-point numbers and the means by which computers represent them.

We have touched upon floating-point rounding errors (studies in numerical analysis will provide further depth on
this topic) and the fact that floating-point numbers don’t obey the standard associative and distributive laws. But
just how serious are these issues? To answer this question, we introduce three major floating-point blunders.

In 1994, when Intel introduced the Pentium microprocessor, number crunchers around the world noticed
something weird was happening. Calculations involving double-precision divisions and certain bit patterns were
producing incorrect results. Although the flawed chip was slightly inaccurate for some pairs of numbers, other
instances were more extreme. For example, if x = 4,195,835 and y = 3,145,727, finding z = x — (x/y) % y should
produce a z of 0. The Intel 286, 386, and 486 chips gave exactly that result. Even taking into account the
possibility of floating-point round-off error, the value of z should have been about 9.3 x 10-°. But on the new
Pentium, z was equal to 256!

Once Intel was informed of the problem, research and testing revealed the flaw to be an omission in the
chip’s design. The Pentium was using the radix-4 SRT algorithm for speedy division, which necessitated a
1066-element table. Once implemented in silicon, 5 of those table entries were 0 and should have been +2.

Although the Pentium bug was a public relations debacle for Intel, it was not a catastrophe for those using
the chip. In fact, it was a minor thing compared to the programming mistakes with floating-point numbers that
have resulted in disasters in areas from off-shore oil drilling, to stock markets, to missile defense. The list of
actual disasters that resulted from floating-point errors is very long. The following two instances are among the
worst of them.

During the Persian Gulf War of 1991, the United States relied on Patriot missiles to track and intercept cruise
missiles and Scud missiles. One of these missiles failed to track an incoming Scud missile, allowing the Scud to
hit an American army barracks, killing 28 people and injuring many more. After an investigation, it was
determined that the failure of the Patriot missile was due to using too little precision to allow the missile to
accurately determine the incoming Scud velocity.

The Patriot missile uses radar to determine the location of an object. If the internal weapons control
computer identifies the object as something that should be intercepted, calculations are performed to predict the
air space in which the object should be located at a specific time. This prediction is based on the object’s known
velocity and time of last detection.

The problem was in the clock, which measured time in tenths of seconds. But the time since boot was
stored as an integer number of seconds (determined by multiplying the elapsed time by 1/10). For predicting
where an object would be at a specific time, the time and velocity needed to be real numbers. It was no problem
to convert the integer to a real number; however, using 24-bit registers for its calculations, the Patriot was
limited in the precision of this operation. The potential problem is easily seen when one realizes 1/10 in binary is:

0.0001100110011001100110011001100 ...

When the elapsed time was small, this “chopping error” was insignificant and caused no problems. The
Patriot was designed to be on for only a few minutes at a time, so this limit of 24-bit precision would be of no
consequence. The problem was that during the Gulf War, the missiles were on for days. The longer a missile
was on, the larger the error became, and the more probable that the inaccuracy of the prediction calculation
would cause an unsuccessful interception. And this is precisely what happened on February 25, 1991, when a
failed interception resulted in 28 people killed—a failed interception caused by loss of precision (required for
accuracy) in floating-point numbers. It is estimated that the Patriot missile had been operational about 100
hours, introducing a rounding error in the time conversion of about 0.34 seconds, which translates to
approximately half a kilometer of travel for a Scud missile.

Designers were aware of the conversion problem well before the incident occurred. However, deploying
new software under wartime conditions is anything but trivial. Although the new software would have fixed the
bug, field personnel could have simply rebooted the systems at specific intervals to keep the clock value small
enough so that 24-bit precision would have been sufficient.

One of the most famous examples of a floating-point numeric disaster is the explosion of the Ariane 5

rocket. On June 4, 1996, the unmanned Ariane 5 was launched by the European Space Agency. Forty seconds
after liftoff, the rocket exploded, scattering a $500 million cargo across parts of French Guiana. Investigation
revealed perhaps one of the most devastatingly careless but efficient software bugs in the annals of computer
science—a floating-point conversion error. The rocket’s inertial reference system converted a 64-bit floating-
point number (dealing with the horizontal velocity of the rocket) to a 16-bit signed integer. However, the
particular 64-bit floating-point number to be converted was larger than 32,767 (the largest integer that can be
stored in 16-bit signed representation), so the conversion process failed. The rocket tried to make an abrupt
course correction for a wrong turn that it had never taken, and the guidance system shut down. Ironically,
when the guidance system shut down, control reverted to a backup unit installed in the rocket in case of just
such a failure, but the backup system was running the same flawed software.

It seems obvious that a 64-bit floating-point number could be much larger than 32,767, so how did the
rocket programmers make such a glaring error? They decided the velocity value would never get large enough
to be a problem. Their reasoning? It had never gotten too large before. Unfortunately, this rocket was faster than
all previous rockets, resulting in a larger velocity value than the programmers expected. One of the most serious
mistakes a programmer can make is to accept the old adage “But we’ve always done it that way.”

Computers are everywhere—in our washing machines, our televisions, our microwaves, even our cars. We
certainly hope the programmers who work on computer software for our cars don’t make such hasty
assumptions. With approximately 15 to 60 microprocessors in all new cars that roll off the assembly line and
innumerable processors in commercial aircraft and medical equipment, a deep understanding of floating-point
anomalies can quite literally be a lifesaver.

2.6 CHARACTER CODES

We have seen how digital computers use the binary system to represent and manipulate numeric values. We have
yet to consider how these internal values can be converted to a form that is meaningful to humans. The manner in
which this is done depends on both the coding system used by the computer and how the values are stored and
retrieved.

2.6.1 Binary-Coded Decimal

For many applications, we need the exact binary equivalent of the decimal system, which means we need an
encoding for individual decimal digits. This is precisely the case in many business applications that deal with money
—we can’t afford the rounding errors that occur when we convert real numbers to floating point when making
financial transactions!

Binary-coded decimal (BCD) is very common in electronics, particularly those that display numerical data,
such as alarm clocks and calculators. BCD encodes each digit of a decimal number into a 4-bit binary form. Each
decimal digit is individually converted to its binary equivalent, as seen in Table 2.5. For example, to encode 146, the
decimal digits are replaced by 0001, 0100, and 0110, respectively.

Because most computers use bytes as the smallest unit of access, most values are stored in 8 bits, not 4. That
gives us two choices for storing 4-bit BCD digits. We can ignore the cost of extra bits and pad the high-order
nibbles with zeros (or ones), forcing each decimal digit to be replaced by 8 bits. Using this approach, padding with
zeros, 146 would be stored as 00000001 00000100 00000110. Clearly, this approach is quite wasteful. The second
approach, called packed BCD, stores two digits per byte. Packed decimal format allows numbers to be signed, but
instead of putting the sign at the beginning, the sign is stored at the end. The standard values for this “sign digit”
are 1100 for +, 1101 for —, and 1111 to indicate that the value is unsigned (see Table 2.5). Using packed decimal
format, +146 would be stored as 00010100 01101100. Padding would still be required for an even number of
digits. Note that if a number has a decimal point (as with monetary values), this is not stored in the BCD
representation of the number and must be retained by the application program.

Another variation of BCD is zoned decimal format. Zoned decimal representation stores a decimal digit in the
low-order nibble of each byte, which is exactly the same as unpacked decimal format. However, instead of padding
the high-order nibbles with zeros, a specific pattern is used. There are two choices for the high-order nibble, called
the numeric zone. EBCDIC zoned decimal format requires the zone to be all ones (hexadecimal F). ASCII
zoned decimal format requires the zone to be 0011 (hexadecimal 3). (See the next two sections for detailed
explanations of EBCDIC and ASCII.) Both formats allow for signed numbers (using the sign digits found in Table
2.5) and typically expect the sign to be located in the high-order nibble of the least significant byte (although the
sign could be a completely separate byte). For example, +146 in EBCDIC zoned decimal format is 11110001
11110100 11000110 (note that the high-order nibble of the last byte is the sign). In ASCII zoned decimal format,
+146 is 00110001 00110100 11000110.

Digit | BCD

o

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

O oOoONOUTLA WN

Zones

1111 Unsigned
1100 Positive
1101 Negative

TABLE 2.5 Binary-Coded Decimal

Note from Table 2.5 that six of the possible binary values are not used—1010 through 1111. Although it may
appear that nearly 40% of our values are going to waste, we are gaining a considerable advantage in accuracy. For
example, the number 0.3 is a repeating decimal when stored in binary. Truncated to an 8-bit fraction, it converts
back to 0.296875, giving us an error of approximately 1.05%. In EBCDIC zoned decimal BCD, the number is
stored directly as 1111 0011 (we are assuming the decimal point is implied by the data format), giving no error at
all.

— EXAMPLE 2.37 Represent —1265 using packed BCD and EBCDIC zoned decimal.
The 4-bit BCD representation for 1265 is:

0001 0010 0110 0101

Adding the sign after the low-order digit and padding the high-order bit with 0000, we have:

0000 0001 0010 0110 0101 1101

The EBCDIC zoned decimal representation requires 4 bytes:

1M 0001 m 0010 1M 0110 110 0101

The sign bit is shaded in both representations.

2.6.2 EBCDIC

Before the development of the IBM System/360, IBM had used a 6-bit variation of BCD for representing characters
and numbers. This code was severely limited in how it could represent and manipulate data; in fact, lowercase
letters were not part of its repertoire. The designers of the System/360 needed more information processing
capability as well as a uniform manner in which to store both numbers and data. To maintain compatibility with
earlier computers and peripheral equipment, the IBM engineers decided that it would be best to simply expand BCD
from 6 bits to 8 bits. Accordingly, this new code was called Extended Binary Coded Decimal Interchange
Code (EBCDIC). IBM continues to use EBCDIC in IBM mainframe and midrange computer systems; however,
IBM’s AIX operating system (found on the RS/6000 and its successors) and operating systems for the IBM PC
use ASCII. The EBCDIC code is shown in Table 2.6 in zone-digit form. Characters are represented by appending
digit bits to zone bits. For example, the character a is 1000 0001 and the digit 3 is 1111 0011 in EBCDIC. Note that
the only difference between uppercase and lowercase characters is in bit position 2, making a translation from
uppercase to lowercase (or vice versa) a simple matter of flipping one bit. Zone bits also make it easier for a
programmer to test the validity of input data.

2.6.3 ASCII

While IBM was busy building its iconoclastic System/360, other equipment makers were trying to devise better
ways for transmitting data between systems. The American Standard Code for Information Interchange
(ASCII) is one outcome of those efforts. ASCII is a direct descendant of the coding schemes used for decades by
teletype (telex) devices. These devices used a 5-bit (Murray) code that was derived from the Baudot code, which
was invented in the 1880s. By the early 1960s, the limitations of the 5-bit codes were becoming apparent. The
International Organization for Standardization devised a 7-bit coding scheme that it called International Alphabet
Number 5. In 1967, a derivative of this alphabet became the official standard that we now call ASCII.

As you can see in Table 2.7, ASCII defines codes for 32 control characters, 10 digits, 52 letters (uppercase
and lowercase), 32 special characters (such as $ and #), and the space character. The high-order (eighth) bit was
intended to be used for parity.

Parity is the most basic of all error-detection schemes. It is easy to implement in simple devices like teletypes.
A parity bit is turned “on” or “off” depending on whether the sum of the other bits in the byte is even or odd. For
example, if we decide to use even parity and we are sending an ASCII A, the lower 7 bits are 100 0001. Because
the sum of the bits is even, the parity bit would be set to off and we would transmit 0100 0001. Similarly, if we
transmit an ASCII C, 100 0011, the parity bit would be set to on before we sent the 8-bit byte, 1100 0011. Parity
can be used to detect only single-bit errors. We will discuss more sophisticated error-detection methods in Section
2.7.

To allow compatibility with telecommunications equipment, computer manufacturers gravitated toward the
ASCII code. As computer hardware became more reliable, however, the need for a parity bit began to fade. In the
early 1980s, microcomputer and microcomputer-peripheral makers began to use the parity bit to provide an
“extended” character set for values between 128,, and 255,,,.

Depending on the manufacturer, the higher-valued characters could be anything from mathematical symbols to
characters that form the sides of boxes to foreign-language characters such as fi. Unfortunately, no number of
clever tricks can make ASCII a truly international interchange code.

2.6.4 Unicode

Both EBCDIC and ASCII were built around the Latin alphabet. As such, they are restricted in their abilities to
provide data representation for the non-Latin alphabets used by the majority of the world’s population. As all
countries began using computers, each was devising codes that would most effectively represent their native
languages. None of these was necessarily compatible with any others, placing yet another barrier in the way of the
emerging global economy.

Digit

Zone| 0000 0001 OO10 OO OM00 O O110 O411 1000 1004 1040 1011 1100 1O1 1110 114
DODO| NUL SOH STX ETX PF HT LC DEL RLF SMM ¥T FF CRHR 80 sl
0001| DLE DC1 DC2 TM RES NL BS IL CAN EM CC CW1 IFS IGS IRS IUS
0o10| DS SOS FS BYF LF ETB ESC SM Ccuz ENG ACK BEL
0011 SYN PN RS UC EOT CU3 DC4 NAK suUB
0100| SP . < { + !
oll| & 5 g) ; -
oo | - / ; % = > ?
oM ! # @ : = "
1000 a b C d e f h i
1001 | I n o P q r
10] 1 u W X y z
101
1100 | A B c D E F G H I
1101 i K L M N o u Q R
1o A =] T u 1) w X 4 Fi
1111 0 1 2 3 4 5 B 7 8 9
Abbreviations
MNUL Null T™ Tape mark ETE End of transmission block
S0H Start of heading RES Restore ESC Escape
STX Start of text NL Newline SM Setmode
ETX End of text BS Backspace CuU2 Customer use 2
PF Punch off IL Idle ENQ Enguiry
HT Horizontal tab CAN Cancel ACK Acknowledge
LC Lowercase EM End of medium BEL Ring the bell (beep)
DEL Delete CC Cursor control SYN Synchronous idle
RLF Reverse linefeed CU1 Customer use 1 PN Punch on
SMM Start manual message IFS Interchange file separator RS Record separator
VT Vertical tab IGS Interchange group separator UC Uppercase
FF Form feed IRS Interchange record separator EOT End of transmission
CR Carriage return IUS Interchange unit separator CU3 Customeruse 3
S0 Shift out DS Digit select DC4 Device control 4
Sl Shift in S05 Start of significance MAK Negative acknowledgment
DLE Data link escape FS Field separator SUB Substitute
DCi Device control 1 BYP Bypass SP Space
DC2 Device control 2 LF Line feed

TABLE 2.6 The EBCDIC Code (Values Given in Binary Zone-Digit Format)

TABLE 2.7 The ASCII Code (Values Given in Decimal)

0 MNUL 16 DLE 32 48 0 B4 @ 80 P 98 112
1 SO0H 17 DCA 33 ! 49 1 65 A 81 Q 97 a 13 gq
2 8TX 18 DC2 34 " 0 2 66 B 82 R 98 b 14 r
3 ETX 19 DC3 35 # 51 3 87 C 83 8 99 ¢ 115 s
4 EQT 20 DC4 36 52 4 68 D 84 T 100 d 116 t
5 ENQ 21 NAK 37 % 53 6 69 E 85 U 101 e 117 u
6 ACK 22 SYN a8 & b4 6 0 F 88 V 102 f 18 v
7 BEL 23 ETB 39 bb 7 G 87 W 103 g 19 w
| 8 BS 24 CAN 40 | 56 8 72 H 88 X 104 h 120 %
9 HT 25 EM 41) 57 9 731 89 Y 105 i 121 .y
10 LF 26 SUB 42 - 58 7 80 £ 106 | 122 z
1" VT 27 ESC 43 + 58 75 K L | 107 k 123 {
12 FF 28 Fs 44 80 < 768 L 92 3 108 | 124 |
13 CR 29 GS 45 - 61 = 7 M 93 109 m 128 }
14 50 30 RS 46 . 62 78 N 94 - 10 n 126 -~
15 sl 3 us 47 63 ? 79 0 95 _ 1M o 127 DEL
Abbreviations
MUL Mull DLE Data link escape
S0OH Start of heading DC1 Device control 1
STX Start of text DC2 Device control 2
ETX End of text DC3 Device control 3
EOT End of transmission Dt: - e no e
ENQ Engquiry MAK Megative acknowledge
ACK Acknowledge SYMN Synchronous idle
ETE End of transmission block
BEL Bell (beep)
CAN Cancel
BS Backspace _
y EM End of medium
HT Horizontal tab SUB Substitute
I Line feed, new lina ESC Escape
NI Weilimal b FS File separator
FF Form feed, new page GS Group separator
CR Carriage return RS Record separator
50 Shift out UsS Unit separator
Sl Shift in DEL Deleteidle

In 1991, before things got too far out of hand, a consortium of industry and public leaders was formed to
establish a new international information exchange code called Unicode. This group is appropriately called the
Unicode Consortium.

Unicode is a 16-bit alphabet that is downward compatible with ASCII and the Latin-1 character set. It is
conformant with the ISO/IEC 10646-1 international alphabet. Because the base coding of Unicode is 16 bits, it has
the capacity to encode the majority of characters used in every language of the world. If this weren’t enough,
Unicode also defines an extension mechanism that will allow for the coding of an additional million characters. This
is sufficient to provide codes for every written language in the history of civilization.

The Unicode codespace consists of five parts, as shown in Table 2.8. A full Unicode-compliant system will also
allow formation of composite characters from the individual codes, such as the combination of “ and A to form A.
The algorithms used for these composite characters, as well as the Unicode extensions, can be found in the
references at the end of this chapter.

Although Unicode has yet to become the exclusive alphabet of American computers, most manufacturers are
including at least some limited support for it in their systems. Unicode is currently the default character set of the
Java programming language. Ultimately, the acceptance of Unicode by all manufacturers will depend on how
aggressively they wish to position themselves as international players and how inexpensively disk drives can be
produced to support an alphabet with double the storage requirements of ASCII or EBCDIC.

Character Character Set Mumber of Hexadecimal
Types Description Characters Values
, = 0000
Alphabets Eiggfgg'“c' 8192 to
? : 1FFF
Dingbats, 2000
Symbols mathematical, 4096 to
etc. 2FFF
Chinese, Japanese
' 2 3000
CJK and Korean phonetic 4096 o
symbols and 3EEE
punctuation
Unified Chinese, 4000
Han Japanese, 40,960 to
and Korean DFFF
Expansion or 4096 E?é}t}
spillover from Han EFFF
FOOO
User defined 4095 fo
FFFE

TABLE 2.8 Unicode Codespace

2.7 ERROR DETECTION AND CORRECTION

No communications channel or storage medium can be completely error-free. It is a physical impossibility. As
transmission rates are increased, bit timing gets tighter. As more bits are packed per square millimeter of storage,
magnetic flux densities increase. Error rates increase in direct proportion to the number of bits per second
transmitted, or the number of bits per square millimeter of magnetic storage.

In Section 2.6.3, we mentioned that a parity bit could be added to an ASCII byte to help determine whether any
of the bits had become corrupted during transmission. This method of error detection is limited in its effectiveness:
Simple parity can detect only an odd number of errors per byte. If two errors occur, we are helpless to detect a
problem. Nonsense could pass for good data. If such errors occur in sending financial information or program
code, the effects can be disastrous.

As you read the sections that follow, you should keep in mind that just as it is impossible to create an error-free
medium, it is also impossible to detect or correct 100% of all errors that could occur in a medium. Error detection
and correction is yet another study in the trade-offs that one must make in designing computer systems. The well-
constructed error control system is therefore a system where a “reasonable” number of the “reasonably” expected
errors can be detected or corrected within the bounds of “reasonable” economics. (Note: The word reasonable is
implementation-dependent.)

2.7.1 Cyclic Redundancy Check

Checksums are used in a wide variety of coding systems, from bar codes to International Standard Book Numbers.
These are self-checking codes that will quickly indicate whether the preceding digits have been misread. A cyclic
redundancy check (CRC) is a type of checksum used primarily in data communications that determines whether
an error has occurred within a large block or stream of information bytes. The larger the block to be checked, the
larger the checksum must be to provide adequate protection. Checksums and CRCs are types of systematic error
detection schemes, meaning that the error-checking bits are appended to the original information byte. The group
of error-checking bits is called a syndrome. The original information byte is unchanged by the addition of the
error-checking bits.

The word cyclic in cyclic redundancy check refers to the abstract mathematical theory behind this error
control system. Although a discussion of this theory is beyond the scope of this text, we can demonstrate how the
method works to aid in your understanding of its power to economically detect transmission errors.

Arithmetic Modulo 2

You may be familiar with integer arithmetic taken over a modulus. Twelve-hour clock arithmetic is a modulo 12
system that you use every day to tell time. When we add 2 hours to 11:00, we get 1:00. Arithmetic modulo 2 uses
two binary operands with no borrows or carries. The result is likewise binary and is also a member of the modulus
2 system. Because of this closure under addition, and the existence of identity elements, mathematicians say that
this modulo 2 system forms an algebraic field.

The addition rules are as follows:

0+0=0
0O+1=1
1+0=1
1+1=0

— EXAMPLE 2.38 Find the sum of 1011, and 110, modulo 2.

1011
+110

1101, (mod 2)

This sum makes sense only in modulo 2.

Modulo 2 division operates through a series of partial sums using the modulo 2 addition rules. Example 2.39
illustrates the process.

— EXAMPLE 2.39 Find the quotient and remainder when 1001011, is divided by 1011,.

1011)T001011 1. Write the divisor directly beneath

1011 the first bit of the dividend.
0010 2. Add these numbers using modulo 2.
3. Bring down bits from the dividend
so that the first 1 of the difference
001001 can align with the first 1 of the divisor.

1011 4. Copy the divisor as in Step 1.

0010 5. Add as in Step 2.
00101 6. Bring down another bit.
7. 101, is not divisible by 1011,, so this

1s the remainder.
The quotient is 1010,.

Arithmetic operations over the modulo 2 field have polynomial equivalents that are analogous to polynomials over
the field of integers. We have seen how positional number systems represent numbers in increasing powers of a
radix, for example,

1011, =1x 22+ 0x22+ 1 x 21+ 1 x 20,
By letting X = 2, the binary number 1011, becomes shorthand for the polynomial:
IxXP+0xX2+1x X +1xXO

The division performed in Example 2.39 then becomes the polynomial operation:

X+X3+X+1
X Xt

Calculating and Using CRCs

With that lengthy preamble behind us, we can now proceed to show how CRCs are constructed. We will do this
by example:

1. Let the information byte I = 1001011,. (Any number of bytes can be used to form a message block.)

2. The sender and receiver agree upon an arbitrary binary pattern, say, P = 1011,. (Patterns beginning and ending
with 1 work best.)

3. Shift I to the left by one less than the number of bits in P, giving a new I = 1001011000,

4. Using I as a dividend and P as a divisor, perform the modulo 2 division (as shown in Example 2.39). We ignore
the quotient and note that the remainder is 100,. The remainder is the actual CRC checksum.

5. Add the remainder to I, giving the message M:

1001011000, + 100, = 1001011100,

6. M is decoded and checked by the message receiver using the reverse process. Only now P divides M exactly:

1010100
1011) 1001011100
1011
001001

1011
0010
001011

1011
0000

Note: The reverse process would include appending the remainder.
A remainder other than zero indicates that an error has occurred in the transmission of M. This method works
best when a large prime polynomial is used. There are four standard polynomials used widely for this purpose:

+ CRC-CCITT (ITU-T): X'6 + X'2 + X5 + 1

© CRC-12:X2+ X1+ X+ X2+ X +1

+ CRC-16 (ANSI): X6 + X5 + X* + 1

* CRC-32: X2+ X% + X2 + X2+ X'+ X2+ X'+ X0+ X0+ X7+ X° + X* + X + 1

CRC-CCITT, CRC-12, and CRC-16 operate over pairs of bytes; CRC-32 uses four bytes, which is appropriate for
systems operating on 32-bit words. It has been proven that CRCs using these polynomials can detect more than
99.8% of all single-bit errors.

CRCs can be implemented effectively using lookup tables as opposed to calculating the remainder with each
byte. The remainder generated by each possible input bit pattern can be “burned” directly into communications and
storage electronics. The remainder can then be retrieved using a 1-cycle lookup as compared to a 16- or 32-cycle
division operation. Clearly, the trade-off is in speed versus the cost of more complex control circuitry.

2.7.2 Hamming Codes

Data communications channels are simultaneously more error-prone and more tolerant of errors than disk systems.
In data communications, it is sufficient to have only the ability to detect errors. If a communications device
determines that a message contains an erroneous bit, all it has to do is request retransmission. Storage systems and
memory do not have this luxury. A disk can sometimes be the sole repository of a financial transaction or other
collection of nonreproducible real-time data. Storage devices and memory must therefore have the ability to not
only detect but to correct a reasonable number of errors.

Error-recovery coding has been studied intensively over the past century. One of the most effective codes—
and the oldest—is the Hamming code. Hamming codes are an adaptation of the concept of parity, whereby error
detection and correction capabilities are increased in proportion to the number of parity bits added to an
information word. Hamming codes are used in situations where random errors are likely to occur. With random
errors, we assume each bit failure has a fixed probability of occurrence independent of other bit failures. It is
common for computer memory to experience such errors, so in our following discussion, we present Hamming
codes in the context of memory bit error detection and correction.

We mentioned that Hamming codes use parity bits, also called check bits or redundant bits. The memory
word itself consists of m bits, but r redundant bits are added to allow for error detection and/or correction. Thus,
the final word, called a code word, is an n-bit unit containing m data bits and r check bits. There exists a unique
code word consisting of n = m + r bits for each data word as follows:

m bits | r bits

The number of bit positions in which two code words differ is called the Hamming distance of those two code
words. For example, if we have the following two code words:

100010081
16 1 1) 0 0

we see that they differ in 3 bit positions (marked by *), so the Hamming distance of these two code words is 3.
(Please note that we have not yet discussed how to create code words; we will do that shortly.)

The Hamming distance between two code words is important in the context of error detection. If two code
words are a Hamming distance d apart, d single-bit errors are required to convert one code word to the other,
which implies that this type of error would not be detected. Therefore, if we wish to create a code that guarantees
detection of all single-bit errors (an error in only 1 bit), all pairs of code words must have a Hamming distance of
at least 2. If an n-bit word is not recognized as a legal code word, it is considered an error.

Given an algorithm for computing check bits, it is possible to construct a complete list of legal code words.
The smallest Hamming distance found among all pairs of the code words in this code is called the minimum
Hamming distance for the code. The minimum Hamming distance of a code, often signified by the notation
D(min), determines its error detecting and correcting capability. Stated succinctly, for any code word X to be
received as another valid code word Y, at least D(min) errors must occur in X. So, to detect k (or fewer) single-bit
errors, the code must have a Hamming distance of D(min) = k + 1. Hamming codes can always detect D(min) — 1
errors and correct (D(min) — 1)/2 errors. ! Accordingly, the Hamming distance of a code must be at least 2k + 1
in order for it to be able to correct k errors.

Code words are constructed from information words using r parity bits. Before we continue the discussion of
error detection and correction, let’s consider a simple example. The most common error detection uses a single
parity bit appended to the data (recall the discussion on ASCII character representation). A single-bit error in any

bit of the code word produces the wrong parity.

— EXAMPLE 2.40 Assume a memory with 2 data bits and 1 parity bit (appended at the end of the code word)
that uses even parity (so the number of 1s in the code word must be even). With 2 data bits, we have a total of 4
possible words. We list here the data word, its corresponding parity bit, and the resulting code word for each of
these 4 possible words:

Data Word	Parity Bit	Code Word
00	0	000
01	1	011
10	1	101
1	0	110

The resulting code words have 3 bits. However, using 3 bits allows for 8 different bit patterns, as follows (valid
code words are marked with an *):

000*	100
001	101*
010	110%
011*	111

If the code word 001 is encountered, it is invalid and thus indicates that an error has occurred somewhere in the
code word. For example, suppose the correct code word to be stored in memory is 011, but an error produces
001. This error can be detected, but it cannot be corrected. It is impossible to determine exactly how many bits
have been flipped and exactly which ones are in error. Error-correcting codes require more than a single parity bit,
as we see in the following discussion.

What happens in the above example if a valid code word is subject to two-bit errors? For example, suppose the
code word 011 is converted into 000. This error is not detected. If you examine the code in the above example,
you will see that D(min) is 2, which implies that this code is guaranteed to detect only single-bit errors.

We have already stated that the error detecting and correcting capabilities of a code are dependent on D(min),
and from an error detection point of view, we have seen this relationship exhibited in Example 2.40. Error
correction requires the code to contain additional redundant bits to ensure a minimum Hamming distance D(min) =
2k + 1 if the code is to detect and correct k errors. This Haimming distance guarantees that all legal code words are
far enough apart that even with k changes, the original invalid code word is closer to one unique valid code word.
This is important because the method used in error correction is to change the invalid code word into the valid
code word that differs in the fewest number of bits. This idea is illustrated in Example 2.41.

— EXAMPLE 2.41 Suppose we have the following code (do not worry at this time about how this code was
generated; we will address this issue shortly):

00
01
1 0
1

00
1}
1 0
01
First, let’s determine D(min). By examining all possible pairs of code words, we discover that the minimum
Hamming distance D(min) = 3. Thus, this code can detect up to two errors and correct one single-bit error. How
is correction handled? Suppose we read the invalid code word 10000. There must be at least one error because this
does not match any of the valid code words. We now determine the Hamming distance between the observed code
word and each legal code word: It differs in 1 bit from the first code word, 4 from the second, 2 from the third,
and 3 from the last, resulting in a difference vector of [1,4,2,3]. To make the correction using this code, we
automatically correct to the legal code word closest to the observed word, resulting in a correction to 00000. Note
that this “correction” is not necessarily correct! We are assuming that the minimum number of possible errors has
occurred, namely, 1. It is possible that the original code word was supposed to be 10110 and was changed to
10000 when two errors occurred.

Suppose two errors really did occur. For example, assume we read the invalid code word 11000. If we
calculate the distance vector of [2,3,3,2], we see there is no “closest” code word, and we are unable to make the

correction. The minimum Hamming distance of 3 permits correction of one error only, and cannot ensure
correction, as evidenced in this example, if more than one error occurs.

In our discussion up to this point, we have simply presented you with various codes, but have not given any
specifics as to how the codes are generated. There are many methods that are used for code generation; perhaps
one of the more intuitive is the Hamming algorithm for code design, which we now present. Before explaining the
actual steps in the algorithm, we provide some background material.

Suppose we wish to design a code with words consisting of m data bits and r check bits, which allows for
single-bit errors to be corrected. This implies that there are 2™ legal code words, each with a unique combination of
check bits. Because we are focused on single-bit errors, let’s examine the set of invalid code words that are a
distance of 1 from all legal code words.

Each valid code word has n bits, and an error could occur in any of these n positions. Thus, each valid code
word has n illegal code words at a distance of 1. Therefore, if we are concerned with each legal code word and
each invalid code word consisting of one error, we have n + 1 bit patterns associated with each code word (1 legal
word and n illegal words). Because each code word consists of n bits, where n = m + r, there are 2" total bit
patterns possible. This results in the following inequality:

(n+1)x2m<2n
where n + 1 is the number of bit patterns per code word, 2™ is the number of legal code words, and 2" is the total
number of bit patterns possible. Because n = m + r, we can rewrite the inequality as:
(m+r+1)x2m<omr
or
(m+r+1)<2

This inequality is important because it specifies the lower limit on the number of check bits required (we always
use as few check bits as possible) to construct a code with m data bits and r check bits that corrects all single-bit
errors.

Suppose we have data words of length m = 4. Then:

(A+r+1)<2

which implies that r must be greater than or equal to 3. We choose r = 3. This means to build a code with data
words of 4 bits that should correct single-bit errors, we must add 3 check bits.

The Hamming Algorithm
The Hamming algorithm provides a straightforward method for designing codes to correct single-bit errors. To
construct error-correcting codes for any size memory word, we follow these steps:

1. Determine the number of check bits, r, necessary for the code and then number the n bits (where n = m + r),
right to left, starting with 1 (not 0).

2. Each bit whose bit number is a power of 2 is a parity bit—the others are data bits.
3. Assign parity bits to check bit positions as follows: Bit b is checked by those parity bits b,, b,, ..., b; such that
b, + b, + ... + b;= b (where “+” indicates the modulo 2 sum).

We now present an example to illustrate these steps and the actual process of error correction.

— EXAMPLE 2.42 Using the Hamming code just described and even parity, encode the 8-bit ASCII character K.
(The high-order bit will be zero.) Induce a single-bit error and then indicate how to locate the error.
We first determine the code word for K.

Step 1: Determine the number of necessary check bits, add these bits to the data bits, and number all n bits.
Because m = 8, we have: (8 + r + 1) < 27, which implies that r must be greater than or equal to 4. We choose r = 4.
Step 2: Number the n bits right to left, starting with 1, which results in:

21" 108 87 6 5 4 3 2 1

The parity bits are marked by boxes.
Step 3: Assign parity bits to check the various bit positions.
To perform this step, we first write all bit positions as sums of those numbers that are powers of 2:

1 =1 5=1+4 9=1+8%8
2=12 6=2+4 100=2+8
3=1+2 7T=1+2+4 11=1+2+4+8
4=4 8§ =38 12=4+8

The number 1 contributes to 1, 3, 5, 7, 9, and 11, so this parity bit will reflect the parity of the bits in these
positions. Similarly, 2 contributes to 2, 3, 6, 7, 10, and 11, so the parity bit in position 2 reflects the parity of this
set of bits. Bit 4 provides parity for 4, 5, 6, 7, and 12, and bit 8 provides parity for bits 8, 9, 10, 11, and 12. If we
write the data bits in the nonboxed blanks, and then add the parity bits, we have the following code word as a

result:
[0]
4

0 10 01
2710 9 8

Therefore, the code word for K is 010011010110.
Let’s introduce an error in bit position b, resulting in the code word 010111010110. If we use the parity bits to

&8 4.0 3 [
7 6 5 3 2 1

check the various sets of bits, we find the following:

Bit 1 checks 1, 3, 5, 7, 9, and 11: With even parity, this produces an error.
Bit 2 checks 2, 3, 6, 7, 10, and 11: This is ok.

Bit 4 checks 4, 5, 6, 7, and 12: This is ok.

Bit 8 checks 8, 9, 10, 11, and 12: This produces an error.

Parity bits 1 and 8 show errors. These two parity bits both check 9 and 11, so the single-bit error must be in either
bit 9 or bit 11. However, because bit 2 checks bit 11 and indicates no error has occurred in the subset of bits it
checks, the error must occur in bit 9. (We know this because we created the error; however, note that even if we
have no clue where the error is, using this method allows us to determine the position of the error and correct it by
simply flipping the bit.)

Because of the way the parity bits are positioned, an easier method to detect and correct the error bit is to add
the positions of the parity bits that indicate an error. We found that parity bits 1 and 8 produced an error, and 1 + 8
=9, which is exactly where the error occurred.

— EXAMPLE 2.43 Use the Hamming algorithm to find all code words for a 3-bit memory word, assuming odd
parity.

We have 8 possible words: 000, 001, 010, 011, 100, 101, 110, and 111. We first need to determine the required
number of check bits. Because m = 3, we have: (3 + r + 1) < 2r, which implies that r must be greater than or equal
to 3. We choose r = 3. Therefore, each code word has 6 bits, and the check bits are in positions 1, 2, and 4, as
shown here:

From our previous example, we know that:

 bit 1 checks the parity over bits 1, 3, and 5
* bit 2 check the parity over bits 2, 3, and 6
* bit 4 checks the parity over bits 4, 5, and 6

Therefore, we have the following code words for each memory word:

Memory Word Code Word

0 o 0
000 L= = = = ==
Bit Position 5] 5 4 3 2 1

0 0 1 1
001 g . CE = @ @
Bit Position 6 5 4 3 2 1
o 1@ o @ T
010 BitPoston 6 5 4 3 2 1
m o 1 @ 1 [
S BtPosion © 5 4 3 2 1

=)
o
= |[2]
[N =
w|[2]
&[]

-:n|-:::-

Bit Posifion &

4
oo
-3
p
(e
-]

Bit Position 6

S
|—L
|_L
e

s
oI
- I=

Bit Position 6

1

Bit Position 6

111

~ =]

g
oI
- =

o | =

3

Our set of code words is 001011, 001100, 010010, 010101, 100001, 100110, 111000, 111111. If a single bit in any
of these words is flipped, we can determine exactly which one it is and correct it. For example, to send 111, we
actually send the code word 111111 instead. If 110111 is received, parity bit 1 (which checks bits 1, 3, and 5) is
ok, and parity bit 2 (which checks bits 2, 3, and 6) is ok, but parity bit 4 shows an error, as only bits 5 and 6 are
ones, violating odd parity. Bit 5 cannot be incorrect, because parity bit 1 checked out ok. Bit 6 cannot be wrong
because parity bit 2 checked out ok. Therefore, it must be bit 4 that is wrong, so it is changed from a 0 to a 1,
resulting in the correct code word 111111.

In the next chapter, you will see how easy it is to implement a Hamming code using simple binary circuits.
Because of its simplicity, Hamming code protection can be added inexpensively and with minimal effect on
performance.

2.7.3 Reed-Solomon

Hamming codes work well in situations where one can reasonably expect errors to be rare events. Fixed magnetic
disk drives have error ratings on the order of 1 bit in 100 million. The 3-bit Hamming code that we just studied will
easily correct this type of error. However, Hamming codes are useless in situations where there is a likelihood that
multiple adjacent bits will be damaged. These kinds of errors are called burst errors. Because of their exposure to

mishandling and environmental stresses, burst errors are common on removable media such as magnetic tapes and
compact discs.

If we expect errors to occur in blocks, it stands to reason that we should use an error-correcting code that
operates at a block level, as opposed to a Hamming code, which operates at the bit level. A Reed-Solomon (RS)
code can be thought of as a CRC that operates over entire characters instead of only a few bits. RS codes, like
CRCs, are systematic: The parity bytes are appended to a block of information bytes. RS(n, k) codes are defined
using the following parameters:

* s = The number of bits in a character (or “symbol”)
* k= The number of s-bit characters comprising the data block
* n = The number of bits in the code word

in— k)

RS(n, k) can correct errors in the k information bytes.

2
The popular RS(255, 223) code, therefore, uses 223 8-bit information bytes and 32 syndrome bytes to form
255-byte code words. It will correct as many as 16 erroneous bytes in the information block.
The generator polynomial for an RS code is given by a polynomial defined over an abstract mathematical
structure called a Galois field. (A lucid discussion of Galois mathematics is beyond the scope of this text. See the
references at the end of the chapter.) The RS-generating polynomial is:

o =x—a¥x—a*h... [x=ath

where t =n — k and x is an entire byte (or symbol) and g(x) operates over the field GF(2%). (Note: This polynomial
expands over the Galois field, which is considerably different from the integer fields used in ordinary algebra.)
The n-byte RS code word is computed using the equation:

c(x) = glx) X i(x)

where i(x) is the information block.

Despite the daunting algebra behind them, RS error-correction algorithms lend themselves well to
implementation in computer hardware. They are implemented in high-performance disk drives for mainframe
computers as well as compact discs used for music and data storage. These implementations will be described in
Chapter 7.

CHAPTER SUMMARY

We have presented the essentials of data representation and numerical operations in digital computers. You should
master the techniques described for base conversion and memorize the smaller hexadecimal and binary numbers.
This knowledge will be beneficial to you as you study the remainder of this text. Your knowledge of hexadecimal
coding will be useful if you are ever required to read a core (memory) dump after a system crash or if you do any
serious work in the field of data communications.

You have also seen that floating-point numbers can produce significant errors when small errors are allowed to
compound over iterative processes. There are various numerical techniques that can be used to control such
errors. These techniques merit detailed study but are beyond the scope of this text.

You have learned that most computers use ASCII or EBCDIC to represent characters. It is generally of little
value to memorize any of these codes in their entirety, but if you work with them frequently, you will find yourself
learning a number of “key values” from which you can compute most of the others that you need.

Unicode is the default character set used by Java and recent versions of Windows. It is likely to replace
EBCDIC and ASCII as the basic method of character representation in computer systems; however, the older

codes will be with us for the foreseeable future, owing both to their economy and their pervasiveness.

Error detecting and correcting codes are used in virtually all facets of computing technology. Should the need
arise, your understanding of the various error control methods will help you to make informed choices among the
various options available. The method that you choose will depend on a number of factors including computational
overhead and the capacity of the storage and transmission media available to you.

FURTHER READING

Abrief account of early mathematics in Western civilization can be found in Bunt et al. (1988).

Knuth (1998) presents a delightful and thorough discussion of the evolution of number systems and computer
arithmetic in Volume 2 of his series on computer algorithms. (Every computer scientist should own a set of the
Knuth books.)

A definitive account of floating-point arithmetic can be found in Goldberg (1991). Schwartz et al. (1999)
describe how the IBM System/390 performs floating-point operations in both the older form and the IEEE
standard. Soderquist and Leeser (1996) provide an excellent and detailed discussion of the problems surrounding
floating-point division and square roots.

Detailed information about Unicode can be found at the Unicode Consortium website, www.unicode.org, as
well as in the Unicode Standard, Version 4.0 (2003).

The International Standards Organization website can be found at www.iso.ch. You will be amazed at the span
of influence of this group. A similar trove of information can be found at the American National Standards Institute
website: www.ansi.org.

After you master the concepts of Boolean algebra and digital logic, you will enjoy reading Arazi’s book (1988).
This well-written book shows how error detection and correction are achieved using simple digital circuits. Arazi’s
appendix gives a remarkably lucid discussion of the Galois field arithmetic that is used in Reed-Solomon codes.

If you’d prefer a rigorous and exhaustive study of error-correction theory, Pretzel’s (1992) book is an excellent
place to start. The text is accessible, well-written, and thorough.

Detailed discussions of Galois fields can be found in the (inexpensive!) books by Artin (1998) and Warner
(1990). Warner’s much larger book is a clearly written and comprehensive introduction to the concepts of abstract
algebra. A study of abstract algebra will be helpful to you should you delve into the study of mathematical
cryptography, a fast-growing area of interest in computer science.

REFERENCES

Arazi, B. A Commonsense Approach to the Theory of Error Correcting Codes. Cambridge, MA: The MIT Press,
1988.

Artin, E. Galois Theory. New York: Dover Publications, 1998.
Bunt, L. N. H,, Jones, P. S., & Bedient, J. D. The Historical Roots of Elementary Mathematics.
New York: Dover Publications, 1988.

Goldberg, D. “What Every Computer Scientist Should Know about Floating-Point Arithmetic.” ACM Computing
Surveys 23:1, March 1991, pp. 5-47.

Knuth, D. E. The Art of Computer Programming, 3rd ed. Reading, MA: Addison-Wesley, 1998.
Pretzel, O. Error-Correcting Codes and Finite Fields. New York: Oxford University Press, 1992.

Schwartz, E. M., Smith, R. M., & Krygowski, C. A. “The S/390 G5 Floating-Point Unit Supporting Hex and
Binary Architectures.” IEEE Proceedings from the 14th Symposium on Computer Arithmetic, 1999, pp. 258—
265.

Soderquist, P., & Leeser, M. “Area and Performance Tradeoffs in Floating-Point Divide and Square-Root
Implementations.” ACM Computing Surveys 28:3, September 1996, pp. 518-564.

http://www.unicode.org
http://www.iso.ch
http://www.ansi.org

The Unicode Consortium. The Unicode Standard, Version 4.0. Reading, MA: Addison-Wesley, 2003.
Warner, S. Modern Algebra. New York: Dover Publications, 1990.

REVIEW OF ESSENTIAL TERMS AND CONCEPTS

10.
11.

12,
13.

14.

15.
16.
17.
18.
19.
20.
21.

22,
23.
24,
25.
26.
27.
28.
29.

NS RN

The word bit is a contraction for what two words?

Explain how the terms bit, byte, nibble, and word are related.

Why are binary and decimal called positional numbering systems?

Explain how base 2, base 8, and base 16 are related.

What is a radix?

How many of the “numbers to remember” (in all bases) from Table 2.1 can you remember?
What does overflow mean in the context of unsigned numbers?

Name the four ways in which signed integers can be represented in digital computers, and explain the
differences.

Which one of the four representations for signed integers is used most often by digital computer systems?
How are complement systems similar to the odometer on a bicycle?

Do you think that double-dabble is an easier method than the other binary-to-decimal conversion methods
explained in this chapter? Why?

With reference to the previous question, what are the drawbacks of the other two conversion methods?

What is overflow, and how can it be detected? How does overflow in unsigned numbers differ from overflow
in signed numbers?

If a computer is capable only of manipulating and storing integers, what difficulties present themselves? How
are these difficulties overcome?

What are the goals of Booth’s algorithm?

How does carry differ from overflow?

What is arithmetic shifting?

What are the three component parts of a floating-point number?
What is a biased exponent, and what efficiencies can it provide?
What is normalization, and why is it necessary?

Why is there always some degree of error in floating-point arithmetic when performed by a binary digital
computer?

How many bits long is a double-precision number under the IEEE-754 floating-point standard?
What is EBCDIC, and how is it related to BCD?

What is ASCII, and how did it originate?

Explain the difference between ASCII and Unicode.

How many bits does a Unicode character require?

Why was Unicode created?

How do cyclic redundancy checks work?

What is systematic error detection?

30.
31.
32.
33.
34.

What is a Hamming code?

What is meant by Hamming distance, and why is it important? What is meant by minimum Hamming distance?
How is the number of redundant bits necessary for code related to the number of data bits?

What is a burst error?

Name an error-detection method that can compensate for burst errors.

EXERCISES
1. Perform the following base conversions using subtraction or division-remainder:
#a)458,=___
+b)677,=__
#0)1518,=___ |
e d)4401,=__
2. Perform the following base conversions using subtraction or division-remainder:
a) 588,, = 3
b) 2254, = 5
€ 652,=___
d) 3104, = 5
3. Perform the following base conversions using subtraction or division-remainder:
a) 137,=___
b) 248,=___ .
c 387,=___
d 633,=__
4. Perform the following base conversions:
a) 20101, = 10
b) 2302, = 10
c) 1605, = 10
d 687,=
5. Perform the following base conversions:
a) 20012, = 10
b) 4103 = 10
c) 3236, = 1
d) 1378, = 10
6. Perform the following base conversions:
a) 21200,=__
b) 3244.=__
c 3402,=___

d) 7657, = 0

7. Convert the following decimal fractions to binary with a maximum of six places to the right of the binary
point:
+ a) 26.78125
+ b) 194.03125
€) 298.796875
+ d) 16.1240234375
8. Convert the following decimal fractions to binary with a maximum of six places to the right of the binary
point:
a) 25.84375
b) 57.55
¢) 80.90625
d) 84.874023
9. Convert the following decimal fractions to binary with a maximum of six places to the right of the binary
point:
a) 27.59375
b) 105.59375
c) 241.53125
d) 327.78125
10. Convert the following binary fractions to decimal:
a) 10111.1101
b) 100011.10011
¢) 1010011.10001
d) 11000010.111
11. Convert the following binary fractions to decimal:
a) 100001.111
b) 111111.10011
¢) 1001100.1011
d) 10001001.0111
12. Convert the following binary fractions to decimal:
a) 110001.10101
b) 111001.001011
¢) 1001001.10101
d) 11101001.110001

13. Convert the hexadecimal number AC12,, to binary.
14. Convert the hexadecimal number 7A01,, to binary.
15. Convert the hexadecimal number DEAD BEEF to binary.

16. Represent the following decimal numbers in binary using 8-bit signed magnitude, one’s complement, two’s
complement, and excess-127 representations.
+a)77
+ b) 42
c) 119

17.

18.

19.

20.

21.

22,

23.

d) -107

Represent the following decimal numbers in binary using 8-bit signed magnitude, one’s complement, two’s
complement, and excess-127 representations:

a) 60

b) —60

c) 20

d) 20

Represent the following decimal numbers in binary using 8-bit signed magnitude, one’s complement, two’s
complement, and excess-127 representations:

a) 97

b) -97

c) 44

d) 44

Represent the following decimal numbers in binary using 8-bit signed magnitude, one’s complement, two’s
complement, and excess-127 representations:

a) 89

b) -89

c) 66

d) 66

What decimal value does the 8-bit binary number 10011110 have if:

a) it is interpreted as an unsigned number?

b) it is on a computer using signed-magnitude representation?

c) it is on a computer using one’s complement representation?

d) it is on a computer using two’s complement representation?

e) it is on a computer using excess-127 representation?

What decimal value does the 8-bit binary number 00010001 have if:

a) it is interpreted as an unsigned number?

b) it is on a computer using signed-magnitude representation?

c) it is on a computer using one’s complement representation?

d) it is on a computer using two’s complement representation?

e) it is on a computer using excess-127 representation?

What decimal value does the 8-bit binary number 10110100 have if:

a) it is interpreted as an unsigned number?

b) it is on a computer using signed-magnitude representation?

c) it is on a computer using one’s complement representation?

d) it is on a computer using two’s complement representation?

e) it is on a computer using excess-127 representation?

Given the following two binary numbers: 11111100 and 01110000.

a) Which of these two numbers is the larger unsigned binary number?

b) Which of these two is the larger when it is being interpreted on a computer using signed two’s
complement representation?

24.

25.

26.

c¢) Which of these two is the smaller when it is being interpreted on a computer using signed-magnitude
representation?

Using a “word” of 3 bits, list all the possible signed binary numbers and their decimal equivalents that are
representable in:

a) Signed magnitude

b) One’s complement

c¢) Two’s complement

Using a “word” of 4 bits, list all the possible signed binary numbers and their decimal equivalents that are
representable in:

a) Signed magnitude

b) One’s complement

c¢) Two’s complement

From the results of the previous two questions, generalize the range of values (in decimal) that can be
represented in any given x number of bits using:

a) Signed magnitude

b) One’s complement

c¢) Two’s complement

27. Fill in the following table to indicate what each binary pattern represents using the various formats.
Unsigned 4-Bit Binary Signed One's Two’s
Integer Value Magnitude Complement | Complement | Excess-7
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
B 0110
7 o111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

28. Given a (very) tiny computer that has a word size of 6 bits, what are the smallest negative numbers and the
largest positive numbers that this computer can represent in each of the following representations?
a) One’s complement
b) Two’s complement

29. To add 2 two’s complement numbers together, what must be true?
30. What is the most common representation used in most computers to store signed integer values and why?

31. You have stumbled on an unknown civilization while sailing around the world. The people, who call
themselves Zebronians, do math using 40 separate characters (probably because there are 40 stripes on a
zebra). They would very much like to use computers, but would need a computer to do Zebronian math,
which would mean a computer that could represent all 40 characters. You are a computer designer and
decide to help them. You decide the best thing is to use BCZ, Binary-Coded Zebronian (which is like BCD
except it codes Zebronian, not Decimal). How many bits will you need to represent each character if you
want to use the minimum number of bits?

32. Add the following unsigned binary numbers as shown.

a) 01110101 b) 00010101 c) 01101111
33. Add the following unsigned binary numbers as shown.
a) 01000100 b) 01011011 c) 10101100
+10111011 +00011111 +00100100
+ 34. Subtract the following signed binary numbers as shown using two’s complement arithmetic.
a) 01110101 b) 00110101 c) 01101111
—00111011 —00001011 —00010001
35. Subtract the following signed binary numbers as shown using two’s complement arithmetic.
a) 11000100 b) 01011011 c) 10101100
—00111011 —00011111 —00100100
36. Perform the following binary multiplications, assuming unsigned integers:
+« a) 1100
X101
b) 10101
X111
¢) 11010

X 1100

37. Perform the following binary multiplications, assuming unsigned integers:

a) 1011
x 101
b) 10011
X 1011
c) 11010
X 1011

38. Perform the following binary divisions, assuming unsigned integers:
+ a) 101101 + 101
b) 10000001 + 101
c) 1001010010 + 1011

39. Perform the following binary divisions, assuming unsigned integers:
a) 11111101 + 1011
b) 110010101 + 1001
¢) 1001111100 + 1100

40. Use the double-dabble method to convert 10212, directly to decimal. (Hint: You have to change the
multiplier.)

41. Using signed-magnitude representation, complete the following operations:
+0+(—0) =
(—0) + 0 =
0+0=
(—0) + (—0) =

42. Suppose a computer uses 4-bit one’s complement representation. Ignoring overflows, what value will be
stored in the variable j after the following pseudocode routine terminates?

0 — 3 // Store 0 in j.
-3 -k J/ Store -3 in k.
while k = 0

=341

k =k -1

end while

43.

44.

45.

+ 46.

47.

48.
49.

50.

51.

Perform the following binary multiplications using Booth’s algorithm, assuming signed two’s complement
integers:

a) 1011 b) 0011 c) 1011
X 0101 x1011 X1100

Using arithmetic shifting, perform the following:

a) double the value 00010101,

b) quadruple the value 01110111,

¢) divide the value 11001010, in half

If the floating-point number representation on a certain system has a sign bit, a 3-bit exponent, and a 4-bit
significand:

a) What is the largest positive and the smallest positive number that can be stored on this system if the

storage is normalized? (Assume that no bits are implied, there is no biasing, exponents use two’s
complement notation, and exponents of all zeros and all ones are allowed.)

b) What bias should be used in the exponent if we prefer all exponents to be non-negative? Why would you
choose this bias?

Using the model in the previous question, including your chosen bias, add the following floating-point
numbers and express your answer using the same notation as the addend and augend:

o 1T 1+ 't O & D
o1 01 1 0 0 1

Calculate the relative error, if any, in your answer to the previous question.

Assume we are using the simple model for floating-point representation as given in the text (the
representation uses a 14-bit format, 5 bits for the exponent with a bias of 15, a normalized mantissa of 8
bits, and a single sign bit for the number):
a) Show how the computer would represent the numbers 100.0 and 0.25 using this floating-point format.

b) Show how the computer would add the two floating-point numbers in part a by changing one of the
numbers so they are both expressed using the same power of 2.

¢) Show how the computer would represent the sum in part b using the given floating-point representation.
What decimal value for the sum is the computer actually storing? Explain.

What causes divide underflow, and what can be done about it?

Why do we usually store floating-point numbers in normalized form? What is the advantage of using a bias
as opposed to adding a sign bit to the exponent?

Leta=1.0x%x2%b=-1.0 x 2%and c = 1.0 x 2. Using the simple floating-point model described in the text
(the representation uses a 14-bit format, 5 bits for the exponent with a bias of 15, a normalized mantissa of
8 bits, and a single sign bit for the number), perform the following calculations, paying close attention to the
order of operations. What can you say about the algebraic properties of floating-point arithmetic in our finite
model? Do you think this algebraic anomaly holds under multiplication as well as addition?

b+(a+c)=
(b+a)+c=

Show how each of the following floating-point values would be stored using IEEE-754 single precision (be

52.

53.

sure to indicate the sign bit, the exponent, and the significand fields):
a)125 b)-1.5 ¢ 0.75 d)26.625

Show how each of the following floating-point values would be stored using IEEE-754 double precision (be
sure to indicate the sign bit, the exponent, and the significand fields):
a) 125 b)-1.5 ¢ 0.75 d)26.625

Suppose we have just found yet another representation for floating-point numbers. Using this
representation, a 12-bit floating-point number has 1 bit for the sign of the number, 4 bits for the exponent,
and 7 bits for the mantissa, which is normalized as in the Simple Model so that the first digit to the right of
the radix points must be a 1. Numbers in the exponent are in signed two’s complement representation. No
bias is used, and there are no implied bits. Show the representation for the smallest positive number this
machine can represent using the following format (simply fill in the squares provided). What decimal
number does this equate to?

SIGN EXPONENT MANTISSA

54. Find three floating-point values to illustrate that floating-point addition is not associative. (You will need to

run a program on specific hardware with a specific compiler.)

55. a) Given that the ASCII code for A is 1000001, what is the ASCII code for J?

b) Given that the EBCDIC code for A is 1100 0001, what is the EBCDIC code for J?

56. a) The ASCII code for the letter A is 1000001, and the ASCII code for the letter a is 1100001. Given that

»

the ASCII code for the letter G is 1000111, without looking at Table 2.7, what is the ASCII code for the
letter g?

b) The EBCDIC code for the letter A is 1100 0001, and the EBCDIC code for the letter a is 1000 0001.
Given that the EBCDIC code for the letter G is 1100 0111, without looking at Table 2.6, what is the
EBCDIC code for the letter g?

¢) The ASCII code for the letter A is 1000001, and the ASCII code for the letter a is 1100001. Given that
the ASCII code for the letter Q is 1010001, without looking at Table 2.7, what is the ASCII code for the
letter q?

d) The EBCDIC code for the letter J is 1101 0001, and the EBCDIC code for the letter j is 1001 0001.
Given that the EBCDIC code for the letter Q is 1101 1000, without looking at Table 2.6, what is the
EBCDIC code for the letter g?

e) In general, if you were going to write a program to convert uppercase ASCII characters to lowercase,
how would you do it? Looking at Table 2.6, could you use the same algorithm to convert uppercase
EBCDIC letters to lowercase?

f) If you were tasked with interfacing an EBCDIC-based computer with an ASCII or Unicode computer,
what would be the best way to convert the EBCDIC characters to ASCII characters?

57. Assume a 24-bit word on a computer. In these 24 bits, we wish to represent the value 295.
a) How would the computer represent the decimal value 295?
b) If our computer uses 8-bit ASCII and even parity, how would the computer represent the string 295?

©) If our computer uses packed BCD with zero padding, how would the computer represent the number
+2957?

58. Decode the following ASCII message, assuming 7-bit ASCII characters and no parity: 1001010 1001111

1001000 1001110 0100000 1000100 1001111 1000101

59.

60.

61.

62.

63.

64.

65.

66.

67.

+ 68.

Why would a system designer wish to make Unicode the default character set for their new system? What
reason(s) could you give for not using Unicode as a default? (Hint: Think about language compatibility
versus storage space.)

Assume we wish to create a code using 3 information bits, 1 parity bit (appended to the end of the
information), and odd parity. List all legal code words in this code. What is the Hamming distance of your
code?

Suppose we are given the following subset of code words, created for a 7-bit memory word with one parity
bit: 11100110, 00001000, 10101011, and 11111110. Does this code use even or odd parity? Explain.

Are the error-correcting Hamming codes systematic? Explain.

Compute the Hamming distance of the following code:
0011010010111100
0000011110001111
0010010110101101
0001011010011110

Compute the Hamming distance of the following code:
0000000101111111
0000001010111111
0000010011011111
0000100011101111
0001000011110111
0010000011111011
0100000011111101
1000000011111110

In defining the Hamming distance for a code, we choose to use the minimum (Hamming) distance between
any two encodings. Explain why it would not be better to use the maximum or average distance.

Suppose we want an error-correcting code that will allow all single-bit errors to be corrected for memory
words of length 10.
a) How many parity bits are necessary?
b) Assuming we are using the Hamming algorithm presented in this chapter to design our error-correcting
code, find the code word to represent the 10-bit information word:
1001100110.

Suppose we want an error-correcting code that will allow all single-bit errors to be corrected for memory
words of length 12.
a) How many parity bits are necessary?
b) Assuming we are using the Hamming algorithm presented in this chapter to design our error-correcting
code, find the code word to represent the 12-bit information word:
100100011010.

Suppose we are working with an error-correcting code that will allow all single-bit errors to be corrected
for memory words of length 7. We have already calculated that we need 4 check bits, and the length of all
code words will be 11. Code words are created according to the Hamming algorithm presented in the text.
We now receive the following code word:
10101011110
Assuming even parity, is this a legal code word? If not, according to our error-correcting code, where is the
error?

69.

70.

71.
72.
& 73.

74.

75.

76.

% 77.

78.

79.

80.

81.

82.

Repeat exercise 68 using the following code word:
01111010101

Suppose we are working with an error-correcting code that will allow all single-bit errors to be corrected
for memory words of length 12. We have already calculated that we need 5 check bits, and the length of all
code words will be 17. Code words are created according to the Hamming algorithm presented in the text.
We now receive the following code word:

01100101001001001

Assuming even parity, is this a legal code word? If not, according to our error-correcting code, where is the
error?

Name two ways in which Reed-Solomon coding differs from Hamming coding.

When would you choose a CRC code over a Hamming code? A Hamming code over a CRC?
Find the quotients and remainders for the following division problems modulo 2.

a) 1010111, + 1101,

b) 1011111, + 11101,

c) 1011001101, + 10101,

d) 111010111, + 10111,

Find the quotients and remainders for the following division problems modulo 2.

a) 1111010, + 1011, b) 1010101, + 1100, ¢) 1101101011, + 10101, d) 1111101011, + 101101,
Find the quotients and remainders for the following division problems modulo 2.

a) 11001001, + 1101,

b) 1011000, + 10011,

c) 11101011, + 10111,

d) 111110001, + 1001,

Find the quotients and remainders for the following division problems modulo 2.

a) 1001111, + 1101,

b) 1011110, + 1100,

¢) 1001101110, + 11001,

d) 111101010, + 10011,

Using the CRC polynomial 1011, compute the CRC code word for the information word, 1011001. Check
the division performed at the receiver.

Using the CRC polynomial 1101, compute the CRC code word for the information word, 01001101. Check
the division performed at the receiver.
Using the CRC polynomial 1101, compute the CRC code word for the information word, 1100011. Check
the division performed at the receiver.
Using the CRC polynomial 1101, compute the CRC code word for the information word, 01011101. Check
the division performed at the receiver.

Pick an architecture (such as 80486, Pentium, Pentium IV, SPARC, Alpha, or MIPS). Do research to find
out how your architecture approaches the concepts introduced in this chapter. For example, what
representation does it use for negative values? What character codes does it support?

We have seen that floating-point arithmetic is neither associative nor distributive. Why do you think this is

the case?

FOCUS ON CODES FOR DATA RECORDING AND TRANSMISSION

ASCII, EBCDIC, and Unicode are represented unambiguously in computer memories. (Chapter 3 describes how
this is done using binary digital devices.) Digital switches, such as those used in memories, are either “off” or “on”
with nothing in between. However, when data are written to some sort of recording medium (such as tape or
disk), or transmitted over long distances, binary signals can become blurred, particularly when long strings of ones
and zeros are involved. This blurring is partly attributable to timing drifts that occur between senders and receivers.
Magnetic media, such as tapes and disks, can also lose synchronization owing to the electrical behavior of the
magnetic material from which they are made. Signal transitions between the “high” and “low” states of digital
signals help to maintain synchronization in data recording and communications devices. To this end, ASCII,
EBCDIC, and Unicode are translated into other codes before they are transmitted or recorded. This translation is
carried out by control electronics in data recording and transmission devices. Neither the user nor the host
computer is ever aware that this translation has taken place.

Bytes are sent and received by telecommunications devices by using “high” and “low” pulses in the
transmission media (copper wire, for example). Magnetic storage devices record data using changes in magnetic
polarity called flux reversals. Certain coding methods are better suited for data communications than for data
recording. New codes are continually being invented to accommodate evolving recording methods and improved
transmission and recording media. We will examine a few of the more popular recording and transmission codes to
show how some of the challenges in this area have been overcome. For the sake of brevity, we will use the term
data encoding to mean the process of converting a simple character code such as ASCII to some other code that
better lends itself to storage or transmission. Encoded data will be used to refer to character codes so encoded.

2A.1 NON-RETURN-TO-ZERO CODE

The simplest data encoding method is the non-return-to-zero (NRZ) code. We use this code implicitly when we
say that “highs” and “lows” represent ones and zeros: ones are usually high voltage, and zeroes are low voltage.
Typically, high voltage is positive 3 or 5 volts; low voltage is negative 3 or 5 volts. (The reverse is logically
equivalent.)

For example, the ASCII code for the English word OK with even parity is 11001111 01001011. This pattern in
NRZ code is shown in its signal form as well as in its magnetic flux form in Figure 2A.1. Each of the bits occupies
an arbitrary slice of time in a transmission medium or an arbitrary speck of space on a disk. These slices and
specks are called bit cells.

a)

()

Fern

L5 A S R T AR AR A L AR RN R

FIGURE 2A.1 NRZ Encoding of OKas
a) Transmission Waveform
b) Magnetic Flux Pattern (The direction of the arrows indicates the magnetic polarity.)

As you can see by the figure, we have a long run of ones in the ASCII O. If we transmit the longer form of the
word OK, OKAY, we would have a long string of zeros as well as a long string of ones: 11001111 01001011
01000001 01011001. Unless the receiver is synchronized precisely with the sender, it is not possible for either to
know the exact duration of the signal for each bit cell. Slow or out-of-phase timing within the receiver might cause
the bit sequence for OKAY to be received as: 10011 0100101 010001 0101001, which would be translated back to
ASCII as <ETX>(), bearing no resemblance to what was sent. (<ETX> is used here to mean the single ASCII
End-of-Text character, 26 in decimal.)

Alittle experimentation with this example will demonstrate to you that if only one bit is missed in NRZ code, the
entire message can be reduced to gibberish.

2A.2 NON-RETURN-TO-ZERO-INVERT CODE

The non-return-to-zero-invert (NRZI) method addresses part of the problem of synchronization loss. NRZI
provides a transition—either high-to-low or low-to-high—for each binary one, and no transition for binary zero.
The NRZI coding for OK (with even parity) is shown in Figure 2A.2.

Although NRZI eliminates the problem of dropping binary ones, we are still faced with the problem of long
strings of zeros causing the receiver or reader to drift out of phase, potentially dropping bits along the way.

The obvious approach to solving this problem is to inject sufficient transitions into the transmitted waveform to
keep the sender and receiver synchronized, while preserving the information content of the message. This is the
essential idea behind all coding methods used today in the storage and transmission of data.

[

(=]

FIGURE 2A.2 NRZI Encoding of OK

2A.3 PHASE MODULATION (MANCHESTER CODE)

The coding method known commonly as phase modulation (PM), or Manchester coding, deals with the
synchronization problem head-on. PM provides a transition for each bit, whether a one or a zero. In PM, each
binary one is signaled by an “up” transition, and binary zeros with a “down” transition. Extra transitions are
provided at bit cell boundaries when necessary. The PM coding of the word OK is shown in Figure 2A.3.

Phase modulation is often used in data transmission applications such as local area networks. It is inefficient
for use in data storage, however. If PM were used for tape and disk, phase modulation would require twice the bit
density of NRZ. (One flux transition for each half bit cell, depicted in Figure 2A.3b.) However, we have just seen
how using NRZ might result in unacceptably high error rates. We could therefore define a “good” encoding
scheme as a method that most economically achieves a balance between “excessive” storage volume requirements

and “excessive” error rates. A number of codes have been created in trying to find this middle ground.

a)
[T T T T T T T T T T T T T T T 1
|1|1|olalzlll1I1IDIT_I4:-I0I1’5’1’1’
| | | I | | | | I | | | | | | I |
| | | I I I I I I I I I I I I I I
		I N N	N B
I N B	B		
I I	HEE B 1] \		
			I I
e e T A A S I			
[U I [[[T R			
R e o 0 T R R Y el R R i
b) i i S TR s o 0 3 Ty 0 3 R 7% S ik O A 2 oo 7 P ke 7

FIGURE 2A.3 Phase Modulation (Manchester Coding) of the Word OK as:
a) Transmission Waveform
b) Magnetic Flux Pattern

2A.4 FREQUENCY MODULATION

As used in digital applications, frequency modulation (FM) is similar to phase modulation in that at least one
transition is supplied for each bit cell. These synchronizing transitions occur at the beginning of each bit cell. To
encode a binary 1, an additional transition is provided in the center of the bit cell. The FM coding for OK is shown
in Figure 2A.4.

As you can readily see from the figure, FM is only slightly better than PM with respect to its storage
requirements. FM, however, lends itself to a coding method called modified frequency modulation (MFM),
whereby bit cell boundary transitions are provided only between consecutive zeros. With MFM, then, at least one
transition is supplied for every pair of bit cells, as opposed to each cell in PM or FM.

With fewer transitions than PM and more transitions than NRZ, MFM is a highly effective code in terms of
economy and error control. For many years, MFM was virtually the only coding method used for rigid disk
storage. The MFM coding for OK is shown in Figure 2A.5.

2A.5 RUN-LENGTH-LIMITED CODE

Run-length-limited (RLL) is a coding method in which block character code words such as ASCII or EBCDIC
are translated into code words specially designed to limit the number of consecutive zeros appearing in the code.
An RLL(d, k) code allows a minimum of d and a maximum of k consecutive zeros to appear between any pair of
consecutive ones.

| | | | | | | |] | [| | | [| |
|l|l|DIDILIlI‘_IlIDIlIDIC-IJ.IC-Illll
O O I Y R e T S T N T N
Bt aile fhedb o o il o 23 8 A .

|
| |
|
[|
|
i e Sl e Sk kel
E o3 g ko3 Boda B F OB LA EA F o
| | | | | | | | | | | | | |

FIGURE 2A.4 Frequency Modulation Coding of OK
I 0 1) 1 1 1 1 0 1 1) 0 1 (] i 1

FIGURE 2A.5 Modified Frequency Modulation Coding of OK

Clearly, RLL code words must contain more bits than the original character code. However, because RLL is
coded using NRZI on the disk, RLL-coded data actually occupy less space on magnetic media because fewer flux
transitions are involved. The code words employed by RLL are designed to prevent a disk from losing
synchronization as it would if a “flat” binary NRZI code were used.

Although there are many variants, RLL(2, 7) is the predominant code used by magnetic disk systems. It is
technically a 16-bit mapping of 8-bit ASCII or EBCDIC characters. However, it is nearly 50% more efficient than
MFM in terms of flux reversals. (Proof of this is left as an exercise.)

Theoretically speaking, RLL is a form of data compression called Huffman coding (discussed in Chapter 7),
where the most likely information bit patterns are encoded using the shortest code word bit patterns. (In our case,
we are talking about the fewest number of flux reversals.) The theory is based on the assumption that the presence
or absence of a 1 in any bit cell is an equally likely event. From this assumption, we can infer that the probability is
0.25 of the pattern 10 occurring within any pair of adjacent bit cells. (

Similarly, the bit pattern 011 has a probability of 0.125 of occurring. Figure 2A.6 shows the probability tree for
the bit patterns used in RLL(2, 7). Table 2A.1 gives the bit patterns used by RLL(2, 7).

As you can see by the table, it is impossible to have more than seven consecutive Os, whereas at least two Os
will appear in any possible combination of bits.

Figure 2A.7 compares the MFM coding for OK with its RLL(2, 7) NRZI coding. MFM has 12 flux transitions
to 8 transitions for RLL. If the limiting factor in the design of a disk is the number of flux transitions per square
millimeter, we can pack 50% more OKs in the same magnetic area using RLL than we could using MFM. For this
reason, RLL is used almost exclusively in high-capacity disk drives.

Root

|||||||| S
=
2
=
]
=
=
o
e T
[rA————-—-
o
=]
@ il PR N
= "
= / [l e
o ! =
-G . E—-
[
& 3 L0
o /
; R
5} R s -
= |8 1 o
~ () [e=] [e=] i (=] —— —_————— - —_—
al =N E=1 E=3 R=3 1 i
olol=l=lalala /
S|lo|lolol=l=2] @&~ ————— —— e ol e e
||l lola|D e !
o= |—= |23 el
— =" |
= R 2 e
-.er TR ||D| IDI ||||| e
Il
_— g |||||| e e -
E 5 —tge— S lousetel e
m] = L
= O - —————-
—_ — =)
7 ||||| | s el s Sl e e
S B8 = B! el FESERT
— — &
T =1 (11 (11| — ——- A S
I X — -
2 £ =} =
5 g o 1 s
S
= R (i El P
= w ——F——+- ol -
= R= — .._,. —
2 it B ey
0 L [}
o o) e te el e e
= —~ L]
~ E ~ _._, B
e -~
s | € o \ A2
= |3 S 0 -
© |2 3 Tl | MO N
. \ =
< |& = N 2 [
g < \ =
g 3 N
G < o (=] — m b k ___.|I||||||
= |5|2]|=|8|5|E|&8|8| =& |~
o LElmlmlelelelele] H Tl

FIGURE 2A.7 MFM (top) and RLL(2, 7) Coding (bottom) for OK

2A.6 PARTIAL RESPONSE MAXIMUM LIKELIHOOD CODING

RLL by itself is insufficient for reliable encoding on today’s ultra-high-capacity magnetic disk and tape media. As
data density increases, encoded bits are necessarily written closer together. This means that fewer grains of
magnetic material participate in the encoding of each bit, causing decreased magnetic signal strength. As signal
strength decreases, adjacent flux reversals begin to interfere with each other. This phenomenon, known as
superpositioning, is characterized in Figure 2A.8, which shows how a nice, neat, easy-to-detect magnetic sine
wave starts looking like a string of overcooked spaghetti.

Despite its wild appearance, superpositioned waveforms are well defined and understood. However, unlike
traditional sine waves, their characteristics cannot be captured by a simple peak detector that takes one
measurement per bit cell. They are instead sampled several times across the bit cell waveform, giving a “partial
response” pattern to the detector circuit. The detector circuit (Viterbi detector) then matches the partial response
pattern to a relatively small set of possible response patterns and the closest match (the pattern with the “maximum
likelihood” of being correct) is passed to the digital decoder. Thus, this encoding scheme is called partial response
maximum likelihood, or PRML. (After you read Chapter 3, you will understand how a Viterbi detector decides
which pattern is the most likely.)

PRML is a generic designation for a family of encoding methods that are distinguished from one another by the
number of samples taken per bit cell More frequent sampling permits greater data density. Along with
improvements in magnetic head technology, PRML has been a fundamental enabler of the geometric increase in
disk and tape densities since 2000, and it is indeed possible that this technology has not yet been fully exploited.

o, THHTTTHETHT
A L

T

CE

FIGURE 2A.8 Magnetic Behaviors as Bit Density Increases

In a), b), and c), magnetic flux changes are pushed increasingly closer together.

2A.7 SUMMARY

Your knowledge of how bytes are stored on disks and tape will help you to understand many of the concepts and
problems relating to data storage. Your familiarity with error control methods will aid you in your study of both
data storage and data communications. The best information pertinent to data encoding for magnetic storage can
be found in electrical engineering books. They contain a trove of fascinating information regarding the behavior of
physical media, and how this behavior is employed by various coding methods. You will learn more about data
storage in Chapter 7. Chapter 12 presents topics relating to data communications.

EXERCISES
1. Why is non-return-to-zero coding avoided as a method for writing data to a magnetic disk?
2. Why is Manchester coding not a good choice for writing data to a magnetic disk?
3. Explain how run-length-limited encoding works.

4. Write the 7-bit ASCII code for the character 4 using the following encoding:
a) Non-return-to-zero
b) Non-return-to-zero-invert
¢) Manchester code
d) Frequency modulation
e) Modified frequency modulation
f) Run-length-limited
(Assume 1 is “high” and 0 is “low.”)

IThe brackets denote the integer floor function, which is the largest integer that is smaller than or equal to the enclosed quantity. For
example, 8.3 =8 and 8.9 = 8.

“I’ve always loved that word, Boolean.”

—Claude Shannon

CHAPTER 3

Boolean Algebra and Digital Logic

3.1 INTRODUCTION

George Boole lived in England during the first half of the nineteenth century. The firstborn son of a cobbler, Boole
taught himself Greek, Latin, French, German, and the language of mathematics. Just before he turned 16, Boole
accepted a position teaching at a small Methodist school, providing his family with much-needed income. At the
age of 19, Boole returned home to Lincoln, England, and founded his own boarding school to better provide
support for his family. He operated this school for 15 years, until he became Professor of Mathematics at Queen’s
College in Cork, Ireland. His social status as the son of a tradesman prevented Boole’s appointment to a more
prestigious university, despite his authoring of more than a dozen highly esteemed papers and treatises. His most
famous monograph, The Laws of Thought, published in 1854, created a branch of mathematics known as
symbolic logic or Boolean algebra.

Nearly 85 years later, John Vincent Atanasoff applied Boolean algebra to computing. He recounted the moment
of his insight to Linda Null. At the time, Atanasoff was attempting to build a calculating machine based on the same
technology used by Pascal and Babbage. His aim was to use this machine to solve systems of linear equations.
After struggling with repeated failures, Atanasoff was so frustrated that he decided to take a drive. He was living in
Ames, Iowa, at the time, but found himself 200 miles away in Illinois before he suddenly realized how far he had
driven.

Atanasoff had not intended to drive that far, but because he was in Illinois, where it was legal to buy a drink in
a tavern, he sat down and ordered a bourbon. He chuckled to himself when he realized that he had driven such a
distance for a drink! Even more ironic is the fact that he never touched the drink. He felt he needed a clear head to
write down the revelations that came to him during his long, aimless journey. Exercising his physics and
mathematics backgrounds and focusing on the failures of his previous computing machine, he made four critical
breakthroughs necessary in the machine’s new design:

1. He would use electricity instead of mechanical movements (vacuum tubes would allow him to do this).

2. Because he was using electricity, he would use base 2 numbers instead of base 10 (this correlated directly with
switches that were either “on” or “off”), resulting in a digital, rather than an analog, machine.

3. He would use capacitors (condensers) for memory because they store electrical charges with a regenerative
process to avoid power leakage.

4. Computations would be done by what Atanasoff termed “direct logical action” (which is essentially equivalent
to Boolean algebra) and not by enumeration as all previous computing machines had done.

It should be noted that at the time, Atanasoff did not recognize the application of Boolean algebra to his problem
and that he devised his own direct logical action by trial and error. He was unaware that in 1938, Claude Shannon
proved that two-valued Boolean algebra could describe the operation of two-valued electrical switching circuits.
Today, we see the significance of Boolean algebra’s application in the design of modern computing systems. It is
for this reason that we include a chapter on Boolean logic and its relationship to digital computers.

This chapter contains a brief introduction to the basics of logic design. It provides minimal coverage of Boolean
algebra and this algebra’s relationship to logic gates and basic digital circuits. You may already be familiar with the
basic Boolean operators from your previous programming experience. It is a fair question, then, to ask why you
must study this material in more detail. The relationship between Boolean logic and the actual physical components
of any computer system is strong, as you will see in this chapter. As a computer scientist, you may never have to

design digital circuits or other physical components—in fact, this chapter will not prepare you to design such
items. Rather, it provides sufficient background for you to understand the basic motivation underlying computer
design and implementation. Understanding how Boolean logic affects the design of various computer system
components will allow you to use, from a programming perspective, any computer system more effectively. If you
are interested in delving deeper, there are many resources listed at the end of the chapter to allow further
investigation into these topics.

3.2 BOOLEAN ALGEBRA

Boolean algebra is an algebra for the manipulation of objects that can take on only two values, typically true and
false, although it can be any pair of values. Because computers are built as collections of switches that are either
“on” or “off,” Boolean algebra is a natural way to represent digital information. In reality, digital circuits use low
and high voltages, but for our level of understanding, 0 and 1 will suffice. It is common to interpret the digital
value 0 as false and the digital value 1 as true.

3.2.1 Boolean Expressions

In addition to binary objects, Boolean algebra also has operations that can be performed on these objects, or
variables. Combining the variables and operators yields Boolean expressions. A Boolean function typically has
one or more input values and yields a result, based on the input values, in the set {0,1}.

Three common Boolean operators are AND, OR, and NOT. To better understand these operators, we need a
mechanism to allow us to examine their behaviors. A Boolean operator can be completely described using a table
that lists the inputs, all possible values for these inputs, and the resulting values of the operation for all possible
combinations of these inputs. This table is called a truth table. A truth table shows the relationship, in tabular
form, between the input values and the result of a specific Boolean operator or function on the input variables.
Let’s look at the Boolean operators AND, OR, and NOT to see how each is represented, using both Boolean
algebra and truth tables.

The logical operator AND is typically represented by either a dot or no symbol at all. For example, the Boolean
expression xy is equivalent to the expression x °® y and is read “x and y.” The expression xy is often referred to as a
Boolean product. The behavior of this operator is characterized by the truth table shown in Table 3.1.

The result of the expression xy is 1 only when both inputs are 1, and 0 otherwise. Each row in the table
represents a different Boolean expression, and all possible combinations of values for x and y are represented by the
rows in the table.

The Boolean operator OR is typically represented by a plus sign. Therefore, the expression x + y is read “x or
y.” The result of x + y is 0 only when both of its input values are 0. The expression x + y is often referred to as a
Boolean sum. The truth table for OR is shown in Table 3.2.

The remaining logical operator, NOT, is represented typically by either an overscore or a prime. Therefore,
both x— and x' are read “not x.” The truth table for NOT is shown in Table 3.3.

Inputs	Outputs
x Y	¥
0 o	0
0 1	0
1 o	0
L1	!

TABLE 3.1 Truth Table for AND

Inputs	Outputs
—	
0 o	0
0 1	!
Lo	!
Lo	!
TABLE 3.2 Truth Table for OR

Inputs	Outputs
x	x
0	!
!	0

TABLE 3.3 Truth Table for NOT

We now understand that Boolean algebra deals with binary variables and logical operations on those variables.
Combining these two concepts, we can examine Boolean expressions composed of Boolean variables and multiple
logic operators. For example, the Boolean function

F(x,y,z2)=x+Yy'z

is represented by a Boolean expression involving the three Boolean variables x, y, and z and the logical operators
OR, NOT, and AND. How do we know which operator to apply first? The rules of precedence for Boolean
operators give NOT top priority, followed by AND, and then OR. For our previous function F, we would negate y
first, then perform the AND of y' and z, and finally OR this result with x.

We can also use a truth table to represent this expression. It is often helpful, when creating a truth table for a
more complex function such as this, to build the table representing different pieces of the function, one column at
a time, until the final function can be evaluated. The truth table for our function F is shown in Table 3.4.

The last column in the truth table indicates the values of the function for all possible combinations of x, y, and
z. We note that the real truth table for our function F consists of only the first three columns and the last column.
The shaded columns show the intermediate steps necessary to arrive at our final answer. Creating truth tables in
this manner makes it easier to evaluate the function for all possible combinations of the input values.

3.2.2 Boolean Identities

Frequently, a Boolean expression is not in its simplest form. Recall from algebra that an expression such as 2x + 6x
is not in its simplest form; it can be reduced (represented by fewer or simpler terms) to 8x. Boolean expressions
can also be simplified, but we need new identities, or laws, that apply to Boolean algebra instead of regular
algebra. These identities, which apply to single Boolean variables as well as Boolean expressions, are listed in Table
3.5. Note that each relationship (with the exception of the last one) has both an AND (or product) form and an OR

(or sum) form. This is known as the duality principle.

Inputs Outputs

XYE y' y'z x+yz=F

000 1 0 0

001 ; 1

010 0 O 0

011 0 0O 0

100 1 0 1

101 1 1

110 0O O 1

111 0 O 1
TABLE 3.4 Truth Table for F(x,y,z) =x +y'z
Identity Name	AND Form	OR Form
Identity Law	Ix=x	0+x=x
Null (or Dominance) Law	0x=0	1+x=1
Idempotent Law	xx=x	x+x—x
InverseLaw	xx':0	x+x':1
ComrnutativeLaw	xy=yx	x+y=y+x
Associative Law	(xn)z = x(yz)	(xty)tz=x+(y+2)
Distributive Law	x+(2)=(x+y)(x+2z)	xy+z)=xy+xz
Absorption Law	+) =x	x+xy=x
DeMorgan’s Law	oy =x+y	vy =xy
Double Complement Law	X'=x	

TABLE 3.5 Basic Identities of Boolean Algebra

The Identity Law states that any Boolean variable ANDed with 1 or ORed with 0 simply results in the original
variable (1 is the identity element for AND; 0 is the identity element for OR). The Null Law states that any Boolean
variable ANDed with 0 is 0, and a variable ORed with 1 is always 1. The Idempotent Law states that ANDing or
ORing a variable with itself produces the original variable. The Inverse Law states that ANDing or ORing a variable
with its complement produces the identity for that given operation. Boolean variables can be reordered (commuted)
and regrouped (associated) without affecting the final result. You should recognize these as the Commutative and

Associative Laws from algebra. The Distributive Law shows how OR distributes over AND and vice versa.

The Absorption Law and DeMorgan’s Law are not so obvious, but we can prove these identities by creating a
truth table for the various expressions: If the right-hand side is equal to the left-hand side, the expressions represent

the same function and result in identical truth tables. Table 3.6 depicts the truth table for both the left- and right-
hand sides of DeMorgan’s Law for AND. It is left as exercises to prove the validity of the remaining laws, in
particular, the OR form of DeMorgan’s Law and both forms of the Absorption Law.

The Double Complement Law formalizes the idea of the double negative, which evokes rebuke from high
school English teachers. The Double Complement Law can be useful in digital circuits as well as in your life. For
example, let x = 1 represent the idea that you have a positive quantity of cash. If you have no cash, you have x'.
When an untrustworthy acquaintance asks to borrow some cash, you can truthfully say that you don’t have no
money. That is, x = (x)" even if you just got paid.

X y (xy) (xy)’ x' y x' +y'
0 0 0 1 1 1 1
0 1 0 1 1 0 1
1 0 0 1 0 1 1
1 1 1 0 0 0 0

TABLE 3.6 Truth Table for the AND Form of DeMorgan’s Law

One of the most common errors that beginners make when working with Boolean logic is to assume the
following: (xy)' = x'y'. Please note that this is not a valid equality! DeMorgan’s Law clearly indicates that this
statement is incorrect. Instead, (xy)' = x' + y'. This is a very easy mistake to make, and one that should be avoided.
Care must be taken with other expressions involving negation as well

3.2.3 Simplification of Boolean Expressions

The algebraic identities we studied in algebra class allow us to reduce algebraic expressions (such as 10x + 2y — x
+ 3y) to their simplest forms (9x + 5y). The Boolean identities can be used to simplify Boolean expressions in a
similar manner. We apply these identities in the following examples.

— EXAMPLE 3.1 Suppose we have the function F(x,y) = xy + xy. Using the OR form of the Idempotent Law and
treating the expression xy as a Boolean variable, we simplify the original expression to xy. Therefore, F(x,y) = xy +

Xy = Xy.

— EXAMPLE 3.2 Given the function F(x,),z) = X'yz + x'yz' + xz, we simplify as follows:

F{.T.‘\.’,E} — I"}:Z + x-"}:.z.l' + x7
=x'y(z +2') +xz (Distributive)
= x'y(1) + xz (Inverse)

=x'y+xz (Identity)

— EXAMPLE 3.3 Given the function F(x,y) =y + (xy)', we simplify as follows:

F[I}}J} — }: _|_ Lr},}f

=y+@x'+y) (DeMorgan’s)
=y+(y +x') (Commutative)
=iy ¥Y)y+rx (Associative)
Sl (Inverse)

=i] (Null)

— EXAMPLE 3.4 Given the function F(x,y) = (xy)'(xX' + y)(y +y), we simplify as follows:

Flxy) =@y (x"+wy' + v

= (xy)'(x" + y)(1) (Inverse)

= (@' +y) (Identity)
=@yt y) (DeMorgan’s)
=x"+Yyy (Distributive over AND)
=x+0 (Inverse)

=x' (Idempotent)

At times, the simplification is reasonably straightforward, as in the preceding examples. However, using the
identities can be tricky, as we see in the next two examples.

— EXAMPLE 3.5 Given the function F(x,y) = X'(x + y) + (y + X)(x + y'), we simplify as follows:
Fay)y=x'x+y+{xy+xx+y)
=xx+y+Ex+yx+y) (Commutative)

=x'(x+y)+x+y) (Distributive over AND)
=X x + 3y +{x+0) (Inverse)

= x'(x+ 3) +x (Identity)

=B o e s 4 Tl S (Distributive)
=0+x'y+x (Inverse)

=xy+x (Identity)

=x+x'y (Commutative)
=x+x)x+y (Distributive over AND)
=1lx+y) (Inverse)

= x -+ y [Ident]ty}

— EXAMPLE 3.6 Given the function F(x,y,z) = xy + x'z + yz, we simplify as follows:

Fx,y2)=xy+x'z+yz

=xy + x'z + yz(1) (Identity)
=xy+xz+ yz(x +x’) (Inverse)

=xy +x'z + (yo)x + (yz)x’ (Distributive)
=xy+x'z + x(yz) + x'(2y) (Commutative)
=xy+x'z+ (xy)z + (x2)y (Associative twice)
=xy + (xy)z + x'z + (x7)y (Commutative)
=xy(1 +2) +x'z(1 +y) (Distributive)

= xy(1) + x'z(1) (Null)

=xy +x'z (Identity)

Example 3.6 illustrates what is commonly known as the Consensus Theorem.

How did we know to insert additional terms to simplify the function in Example 3.6? Unfortunately, there is no
defined set of rules for using these identities to minimize a Boolean expression; it is simply something that comes
with experience. There are other methods that can be used to simplify Boolean expressions; we mention these later
in this section.

We can also use these identities to prove Boolean equalities, as we see in Example 3.7.

— EXAMPLE 3.7 Prove that (x + y))(xX' +y) =y

x+yx'+y)=xx"+xy+yx'+ yy (Distributive)
=0+ xy+w' + yy (Inverse)
=0+xy+w +y (Idempotent)
=xy+yux' +y (Identity)
=y+yux'+y (Commutative)
=y +x Yy (Distributive)
=y(l)+vy (Inverse)
=y+ty (Identity)
=Yy (Idempotent)

To prove the equality of two Boolean expressions, you can also create the truth tables for each and compare. If
the truth tables are identical, the expressions are equal. We leave it as an exercise to find the truth tables for the
equality proven in Example 3.7.

3.2.4 Complements

As you saw in Example 3.1, the Boolean identities can be applied to Boolean expressions, not simply Boolean
variables (we treated xy as a Boolean variable and then applied the Idempotent Law). The same is true for the
Boolean operators. The most common Boolean operator applied to more complex Boolean expressions is the NOT
operator, resulting in the complement of the expression. Quite often, it is cheaper and less complicated to
implement the complement of a function rather than the function itself. If we implement the complement, we must
invert the final output to yield the original function; this is accomplished with one simple NOT operation.
Therefore, complements are quite useful.

To find the complement of a Boolean function, we use DeMorgan’s Law. The OR form of this law states that
(x +y)' = X'y'. We can easily extend this to three or more variables as follows:

Given the function:

F(xy,z) = (xty+z). Then F'(x,y,z) = (x + y + 2)'.
Let w= (x+y). Then F'(x,y,z) = (W + 2)' = w'z.

Now, applying DeMorgan’s Law again, we get:

wz = (x+y)z =XyZ7 = F'(x,y,z)

Therefore, if F(x,y,z) = (x + y + z), then F'(x,y,z) = X'y'z". Applying the principle of duality, we see that (xyz)' = x' +
y+7Z.

It appears that, to find the complement of a Boolean expression, we simply replace each variable by its
complement (x is replaced by x') and interchange ANDs and ORs. In fact, this is exactly what DeMorgan’s Law
tells us to do. For example, the complement of x' + yz' is x(y' + z). We have to add the parentheses to ensure the
correct precedence.

You can verify that this simple rule of thumb for finding the complement of a Boolean expression is correct by
examining the truth tables for both the expression and its complement. The complement of any expression, when
represented as a truth table, should have Os for output everywhere the original function has 1s, and 1s in those
places where the original function has 0s. Table 3.7 depicts the truth tables for F(x,y,z) = x' + yz' and its
complement, F'(x,y,z) = x(y' + z). The shaded portions indicate the final results for F' and F'.

3.2.5 Representing Boolean Functions

We have seen that there are many different ways to represent a given Boolean function. For example, we can use a
truth table, or we can use one of many different Boolean expressions. In fact, there are an infinite number of
Boolean expressions that are logically equivalent to one another. Two expressions that can be represented by the
same truth table are considered logically equivalent (see Example 3.8).

— EXAMPLE 3.8 Suppose F(x,y,z) = x + xy'. We can also express F as F(x,y,z) = x + x + xy' because the
Idempotent Law tells us these two expressions are the same. We can also express F as F(x,y,z) = x(1 + y") using
the Distributive Law.

To help eliminate potential confusion, logic designers specify a Boolean function using a canonical, or
standardized, form. For any given Boolean function, there exists a unique standardized form. However, there are
different “standards” that designers use. The two most common are the sum-of-products form and the product-
of-sums form.

The sum-of-products form requires that the expression be a collection of ANDed variables (or product terms)

that are ORed together. The function F,(x,y,z) = Xy + yz' + xyz is in sum-of-products form. The function F,(x,y,z) =
xy'+ x (y + Z) is not in sum-of-products form. We apply the Distributive Law to distribute the x variable in F,,
resulting in the expression xy' + xy + xz', which is now in sum-of-products form.

x ¥ z yz' X +yz' |y +z | x{y +2)
0 0 0 0 1 1 0
0 0 1 0 1 1 0
0 1 0 1 1 0 0
0 1 1 0 1 1 0
1 0 0 0 0 1 1
1 0 1 0 0 1 1
1 1 0 1 1 0 0
1 1 1 0 0 1 1

TABLE 3.7 Truth Table Representation for a Function and Its Complement

Boolean expressions stated in product-of-sums form consist of ORed variables (sum terms) that are ANDed
together. The function F,(x,y,z) = (x +y) (x + Z)(y + Z)(y + 2) is in product-of-sums form. The product-of-sums
form is often preferred when the Boolean expression evaluates true in more cases than it evaluates false. This is not
the case with the function F,, so the sum-of-products form is appropriate. Also, the sum-of-products form is
usually easier to work with and to simplify; we therefore use this form exclusively in the sections that follow.

Any Boolean expression can be represented in sum-of-products form. Because any Boolean expression can also
be represented as a truth table, we conclude that any truth table can also be represented in sum-of-products form.
Example 3.9 shows us that it is a simple matter to convert a truth table into sum-of-products form.

— EXAMPLE 3.9 Consider a simple majority function. This is a function that, when given three inputs, outputs a
0 if less than half of its inputs are 1, and a 1 if at least half of its inputs are 1. Table 3.8 depicts the truth table for
this majority function over three variables.

To convert the truth table to sum-of-products form, we start by looking at the problem in reverse. If we want
the expression x + y to equal 1, then either x or y (or both) must be equal to 1. If xy + yz = 1, then either xy = 1 or
yz = 1 (or both).

Using this logic in reverse and applying it to our majority function, we see that the function must output a 1
when x =0, y = 1, and z = 1. The product term that satisfies this is x'yz (clearly, this is equal to 1 when x =0, y =
1, and z = 1). The second occurrence of an output value of 1 is when x =1, y = 0, and z = 1. The product term to
guarantee an output of 1 is xy'z. The third product term we need is xyz', and the last is xyz. In summary, to generate
a sum-of-products expression using the truth table for any Boolean expression, we must generate a product term
of the input variables corresponding to each row where the value of the output variable in that row is 1. In each
product term, we must then complement any variables that are 0 for that row.

Our majority function can be expressed in sum-of-products form as F(x,y,z) = X'yz + xy'z + xyz' + xyz.

= |=|=|ol=|lo/lo|la|m

el el el e =R = = =
._LHLQG_._L_LDQ“
el =0 s =T I e B P e T

TABLE 3.8 Truth Table Representation for the Majority Function

Please note that the expression for the majority function in Example 3.9 may not be in simplest form; we are
only guaranteeing a standard form. The sum-of-products and product-of-sums standard forms are equivalent ways
of expressing a Boolean function. One form can be converted to the other through an application of Boolean
identities. Whether using sum-of-products or product-of-sums, the expression must eventually be converted to its
simplest form, which means reducing the expression to the minimum number of terms. Why must the expressions
be simplified? A one-to-one correspondence exists between a Boolean expression and its implementation using
electrical circuits, as shown in the next section. Unnecessary terms in the expression lead to unnecessary
components in the physical circuit, which in turn yield a suboptimal circuit.

3.3 LOGIC GATES

The logical operators AND, OR, and NOT that we have discussed have been represented thus far in an abstract
sense using truth tables and Boolean expressions. The actual physical components, or digital circuits, such as
those that perform arithmetic operations or make choices in a computer, are constructed from a number of
primitive elements called gates. Gates implement each of the basic logic functions we have discussed. These gates
are the basic building blocks for digital design. Formally, a gate is a small, electronic device that computes various
functions of two-valued signals. More simply stated, a gate implements a simple Boolean function. To physically
implement each gate requires from one to six or more transistors (described in Chapter 1), depending on the
technology being used. To summarize, the basic physical component of a computer is the transistor; the basic logic
element is the gate.

3.3.1 Symbols for Logic Gates

We initially examine the three simplest gates. These correspond to the logical operators AND, OR, and NOT. We
have discussed the functional behavior of each of these Boolean operators. Figure 3.1 depicts the graphical
representation of the gate that corresponds to each operator.

Note the circle at the output of the NOT gate. Typically, this circle represents the complement operation.

X X+ X
¥ 4
y — ¥

AND Gate OR Gate MNOT Gate
FIGURE 3.1 The Three Basic Gates

X ¥ x XOR y
0 0 0
1 0 1
y
1 1 0
a) b}

FIGURE 3.2 a) The Truth Table for XOR
b) The Logic Symbol for XOR

Another common gate is the exclusive-OR (XOR) gate, represented by the Boolean expression: x ® y. XOR is
false if both of the input values are equal and true otherwise. Figure 3.2 illustrates the truth table for XOR as well
as the logic diagram that specifies its behavior.

3.3.2 Universal Gates

Two other common gates are NAND and NOR, which produce complementary output to AND and OR,
respectively. Each gate has two different logic symbols that can be used for gate representation. (It is left as an
exercise to prove that the symbols are logically equivalent. Hint: Use DeMorgan’s Law.) Figures 3.3 and 3.4 depict
the logic diagrams for NAND and NOR along with the truth tables to explain the functional behavior of each gate.

The NAND gate is commonly referred to as a universal gate, because any electronic circuit can be
constructed using only NAND gates. To prove this, Figure 3.5 depicts an AND gate, an OR gate, and a NOT gate
using only NAND gates.

Why not simply use the AND, OR, and NOT gates we already know exist? There are two reasons for using
only NAND gates to build any given circuit. First, NAND gates are cheaper to build than the other gates. Second,
complex integrated circuits (which are discussed in the following sections) are often much easier to build using the
same building block (i.e., several NAND gates) rather than a collection of the basic building blocks (ie., a
combination of AND, OR, and NOT gates).

X y x NAND y
0 0 1 :
" (xy) 5 X 4y =(xy)
0 1 1
1 0 1 L y
1 1 0

FIGURE 3.3 Truth Table and Logic Symbols for NAND

X ¥ X NOR y

{} D 1 X - X_G Fepf [
(x +) x'y'=(x+y)

0 1 0

1 0 0 y B9

1 1 0

FIGURE 3.4 Truth Table and Logic Symbols for NOR

X

= }L
¥ (xy)' — (xX'y') =x+y
(xy)" = xy X
y —}[mn :

AND Gate OR Gate NOT Gate

FIGURE 3.5 Three Circuits Constructed Using Only NAND Gates

Please note that the duality principle applies to universality as well. One can build any circuit using only NOR
gates. NAND and NOR gates are related in much the same way as the sum-of-products form and the product-of-
sums form presented. One would use NAND for implementing an expression in sum-of-products form and NOR
for those in product-of-sums form.

3.3.3 Multiple Input Gates

In our examples thus far, all gates have accepted only two inputs. Gates are not limited to two input values,
however. There are many variations in the number and types of inputs and outputs allowed for various gates. For
example, we can represent the expression x + y + z using one OR gate with three inputs, as in Figure 3.6. Figure
3.7 represents the expression xy'z.

We shall see later in this chapter that it is sometimes useful to depict the output of a gate as Q along with its
complement Q' as shown in Figure 3.8.

Note that Q always represents the actual output.

X

X+y+Z
¥
z

FIGURE 3.6 A Three-Input OR Gate Representing x + y + z

xf xy'z
}f—
g—

FIGURE 3.7 A Three-Input AND Gate Representing x y'z

Q
Dr

FIGURE 3.8 AND Gate with Two Inputs and Two Outputs

X

y

X
X+y'z
F |

FIGURE 3.9 Logic Diagram for F(x,y,z) = x + 'z

3.4 DIGITAL COMPONENTS

Upon opening a computer and looking inside, one would realize that there is a lot to know about all of the digital
components that make up the system. Every computer is built using collections of gates that are all connected by
way of wires acting as signal pathways. These collections of gates are often quite standard, resulting in a set of
building blocks that can be used to build the entire computer system. Surprisingly, these building blocks are all
constructed using the basic AND, OR, and NOT operations. In the next few sections, we discuss digital circuits,
their relationship to Boolean algebra, the standard building blocks, and examples of the two different categories,
combinational logic and sequential logic, into which these building blocks can be placed.

3.4.1 Digital Circuits and Their Relationship to Boolean Algebra

What is the connection between Boolean functions and digital circuits? We have seen that a simple Boolean
operation (such as AND or OR) can be represented by a simple logic gate. More complex Boolean expressions can
be represented as combinations of AND, OR, and NOT gates, resulting in a logic diagram that describes the entire
expression. This logic diagram represents the physical implantation of the given expression, or the actual digital

circuit. Consider the function F(x,y,z) = x + y'z (which we looked at earlier). Figure 3.9 represents a logic diagram
that implements this function.

Recall our discussion of sum-of-products form. This form lends itself well to implementation using digital
circuits. For example, consider the function F(x,y,z) = xy + yz' + xyz. Each term corresponds to an AND gate, and
the sum is implemented by a single OR gate, resulting in the following circuit:

X

z >

L]

We can build logic diagrams (which in turn lead to digital circuits) for any Boolean expression. At some level,
every operation carried out by a computer is an implementation of a Boolean expression. This may not be obvious
to high-level language programmers because the semantic gap between the high-level programming level and the
Boolean logic level is so wide. Assembly language programmers, being much closer to the hardware, use Boolean
tricks to accelerate program performance. A good example is the use of the XOR operator to clear a storage
location, as in A XOR A. The XOR operator can also be used to exchange the values of two storage locations. The
same XOR statement applied three times to two variables, say A and B, swaps their values:

A=A XOR
B B =A XOR
BA=AXORB

One operation that is nearly impossible to perform at the high-level language level is bit masking, where individual
bits in a byte are stripped off (set to 0) according to a specified pattern. Boolean bit masking operations are
indispensable for processing individual bits in a byte. For example, if we want to find out whether the 4’s position
of a byte is set, we AND the byte with 04,,. If the result is nonzero, the bit is equal to 1. Bit masking can strip off
any pattern of bits. Place a 1 in the position of each bit that you want to keep, and set the others to 0. The AND
operation leaves behind only the bits that are of interest.

Boolean algebra allows us to analyze and design digital circuits. Because of the relationship between Boolean
algebra and logic diagrams, we simplify our circuit by simplifying our Boolean expression. Digital circuits are
implemented with gates, but gates and logic diagrams are not the most convenient forms for representing digital
circuits during the design phase. Boolean expressions are much better to use during this phase because they are
easier to manipulate and simplify.

The complexity of the expression representing a Boolean function has a direct effect on the complexity of the
resulting digital circuit: The more complex the expression, the more complex the resulting circuit. We should point
out that we do not typically simplify our circuits using Boolean identities; we have already seen that this can
sometimes be quite difficult and time consuming. Instead, designers use a more automated method to do this. This
method involves the use of Karnaugh maps (or Kmaps). Refer to the focus section following this chapter to learn
how Kmaps are used to simplify digital circuits.

3.4.2 Integrated Circuits

Computers are composed of various digital components, connected by wires. Like a good program, the actual

hardware of a computer uses collections of gates to create larger modules, which, in turn, are used to implement
various functions. The number of gates required to create these “building blocks” depends on the technology being
used. Because the circuit technology is beyond the scope of this text, you are referred to the reading list at the end
of this chapter for more information on this topic.

Typically, gates are not sold individually; they are sold in units called integrated circuits (ICs). A chip (a
silicon semiconductor crystal) is a small electronic device consisting of the necessary electronic components
(transistors, resistors, and capacitors) to implement various gates. As already explained, components are etched
directly on the chip, allowing them to be smaller and to require less power for operation than their discrete
component counterparts. This chip is then mounted in a ceramic or plastic container with external pins. The
necessary connections are welded from the chip to the external pins to form an IC. The first ICs contained very
few transistors. As we learned, the first ICs were called SSI chips and contained up to 100 electronic components
per chip. We now have ultra-large-scale integration (ULSI) with more than 1 million electronic components per
chip. Figure 3.10 illustrates a simple SSI IC.

+5volsDC 1] gl [g] [aa] (o] 8]

] J

Motch —=

“ |2‘ ‘3| B ‘5‘ ‘6‘ 7" Ground

FIGURE 3.10 Simple SSI Integrated Circuit

We have seen that we can represent any Boolean function as (1) a truth table, (2) a Boolean expression (in
sum-of-products form), or (3) a logic diagram using gate symbols. Consider the function represented by the
following truth table:

X ¥ ¥
o 0]
0O 0 1|0
o 1 0 |1
o 1 1 1
1 0 0 | O
1 0 1 o
1 1 0]0
i 1 1 |0

This function is expressed in sum-of-products form as F(x,y,z) = X'yz + x'yz. This simplifies to F(x,),z) = x'y
(the simplification is left as an exercise). We can now express this using a logic diagram as follows:

]

Using only NAND gates, we can redraw the logic diagram as follows:

x)
— X L Masic 8
}_ 2 “F}ﬁi"l'{x+y'}‘=(x+y'}’=x'r

We can implement this in hardware using the SSI circuit from Figure 3.10 as follows:

+5 volts
Dc |14 13

12 11

Fix,y,2) = x'y

:

[

1 2
I
X

—

Ground

3.4.3 Putting It All Together: From Problem Description to Circuit

We now understand how to represent a function by a Boolean expression, how to simplify a Boolean expression,
and how to represent a Boolean expression using a logic diagram. Let’s combine these skills to design a circuit

from beginning to end.

— EXAMPLE 3.10 Suppose we are given the task of designing a logic circuit to help us determine the best time to
plant our garden. We investigate three possible factors: (1) time, where O represents day and 1 represents evening;
(2) moon phase, where 0 represents not full and 1 represents full; and (3) temperature, where O represents 45°F
and below, and 1 represents over 45°F. These three items represent our inputs. After significant research, we
determine that the best time to plant a garden is during the evening with a full moon (temperature does not appear

to matter). This results in the following truth table:

Time (x) Moon (y) Temperature (2) Plant?
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

We have placed 1s in the output column when the inputs indicated “evening” and “full moon,” and Os
everywhere else. By converting our truth table to a Boolean function F, we see that F(x,y,z) = xyz' + xyz (we use a
process similar to that presented in Example 3.9: We include terms where the function evaluates to 1). We now
simplify F:

Flx,y.2) = xyz'+ xyz
= xv (using the absorption law)
Therefore, this function evaluates to one AND gate using x and y as input.

X

xy=F
}J'—

The steps to design a Boolean circuit are as follows: (1) read the problem carefully to determine the input and
output values; (2) establish a truth table that shows the output for all possible inputs; (3) convert the truth table into
a Boolean expression; and (4) simplify the Boolean expression.

— EXAMPLE 3.11 Assume you are responsible for designing a circuit that will allow the president of your college
to determine whether to close campus due to weather conditions. If the highway department has not salted the area
roads, and there is ice on the roads, campus should be closed. Regardless of whether there is ice or salt on the
roads, if there is more than 8 in. of snow, campus should be closed. In all other situations, campus should remain
open.

There are three inputs: ice (or no ice), salt (or not salt), and snow of more than 8 in. on the roads (or not),
resulting in the following truth table:

Ice (x) Salt (y) Snow (2) Close?
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

The truth table yields the Boolean expression F(x,y,z) = X'y'z + X'yz + xy'z’ + xy'z + xyz. We can simplify this
expression using Boolean identities as follows:

Fxyz2) =xyz+x'yvz +xy'7' +xy7 + xy2

=xyz+xyz+xy'z+xyz+xy'7 (Commutative)
=x'y'z+vy) +x(y'z+y2) + x3'7 (Distributive X 2)
=x"+x07 +y7)+x37 (Distributive)
=7 + @ty (Inverse/Identity)
=@y +yz+xy7 (Distributive)
=7+ xy'7 (Inverse/Identity)

We leave it to the reader to draw the logic diagram corresponding to z + xy’z’. Once the circuit has been
implemented in hardware, all the college president has to do is set the inputs to indicate the current conditions, and
the output will tell her whether to close campus.

3.5 COMBINATIONAL CIRCUITS

Digital logic chips are combined to give us useful circuits. These logic circuits can be categorized as either
combinational logic or sequential logic. This section introduces combinational logic. Sequential logic is covered
in Section 3.6.

3.5.1 Basic Concepts

Combinational logic is used to build circuits that contain basic Boolean operators, inputs, and outputs. The key
concept in recognizing a combinational circuit is that an output is always based entirely on the given inputs (as we
saw in Examples 3.10 and 3.11). Thus, the output of a combinational circuit is a function of its inputs, and the
output is uniquely determined by the values of the inputs at any given moment. A given combinational circuit may
have several outputs. If so, each output represents a different Boolean function.

3.5.2 Examples of Typical Combinational Circuits

Let’s begin with a very simple combinational circuit called a half-adder.

— EXAMPLE 3.12 Consider the problem of adding two binary digits together. There are only three things to
remember: 0 +0=0,0+1=1+0=1,and 1 + 1 = 10. We know the behavior this circuit exhibits, and we can
formalize this behavior using a truth table. We need to specify two outputs, not just one, because we have a sum
and a carry to address. The truth table for a half-adder is shown in Table 3.9.

A closer look reveals that Sum is actually an XOR. The Carry output is equivalent to that of an AND gate. We
can combine an XOR gate and an AND gate, resulting in the logic diagram for a half-adder shown in Figure 3.11.

Inputs Outputs

X ¥ Sum Carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

TABLE 3.9 Truth Table for a Half-Adder
N
- :) Sum
J 7
Carry

FIGURE 3.11 Logic Diagram for a Half-Adder

The half-adder is a very simple circuit and not really very useful because it can only add two bits together.
However, we can extend this adder to a circuit that allows the addition of larger binary numbers. Consider how
you add base 10 numbers: You add up the rightmost column, note the units digit, and carry the tens digit. Then you
add that carry to the current column and continue in a similar manner. We can add binary numbers in the same
way. However, we need a circuit that allows three inputs (x, y, and Carry In) and two outputs (Sum and Carry
Out). Figure 3.12 illustrates the truth table and corresponding logic diagram for a full-adder. Note that this full-
adder is composed of two half-adders and an OR gate.

Given this full-adder, you may be wondering how this circuit can add binary numbers; it is capable of adding
only three bits. The answer is, it can’t. However, we can build an adder capable of adding two 16-bit words, for

example, by replicating the above circuit 16 times, feeding the Carry Out of one circuit into the Carry In of the
circuit immediately to its left. Figure 3.13 illustrates this idea. This type of circuit is called a ripple-carry adder
because of the sequential generation of carries that “ripple” through the adder stages. Note that instead of drawing
all the gates that constitute a full-adder, we use a black boex approach to depict our adder. A black box approach
allows us to ignore the details of the actual gates. We concern ourselves only with the inputs and outputs of the
circuit. This is typically done with most circuits, including decoders, multiplexers, and adders, as we shall see very
SOON.

Carry In
Inputs OQutputs F - Di}sum
Carry Carry } /.

X ¥ In Sum Out ¥ /.

0 0 0 0 0

1] 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1 Carry Out

a) b)
FIGURE 3.12 a) Truth Table for a Full-Adder
b) Logic Diagram for a Full-Adder
Yis Xis YiooX Yo

: l(F;!s\l'

w4
————————————— <« FA

L
vs vs,

Carry Out

FIGURE 3.13 Logic Diagram for a Ripple-Carry Adder

Because this adder is very slow, it is not normally implemented. However, it is easy to understand and should
give you some idea of how addition of larger binary numbers can be achieved. Modifications made to adder
designs have resulted in the carry-look-ahead adder, the carry-select adder, and the carry-save adder, as well as
others. Each attempts to shorten the delay required to add two binary numbers. In fact, these newer adders
achieve speeds of 40-90% faster than the ripple-carry adder by performing additions in parallel and reducing the
maximum carry path. Adders are very important circuits—a computer would not be very useful if it could not add
numbers.

An equally important operation that all computers use frequently is decoding binary information from a set of n

inputs to a maximum of 2" outputs. A decoder uses the inputs and their respective values to select one specific
output line. What do we mean by “select an output line”? It simply means that one unique output line is asserted, or
set to 1, whereas the other output lines are set to 0. Decoders are normally defined by the number of inputs and the
number of outputs. For example, a decoder that has 3 inputs and 8 outputs is called a 3-to-8 decoder.

We mentioned that this decoder is something the computer uses frequently. At this point, you can probably
name many arithmetic operations the computer must be able to perform, but you might find it difficult to propose
an example of decoding. If so, it is because you are not familiar with how a computer accesses memory.

All memory addresses in a computer are specified as binary numbers. When a memory address is referenced
(whether for reading or for writing), the computer first has to determine the actual address. This is done using a
decoder. Example 3.13 should clarify any questions you may have about how a decoder works and what it might
be used for.

— EXAMPLE 3.13 A 3-to-8 decoder circuit

Imagine memory consisting of 8 chips, each containing 8K bytes. Let’s assume chip 0 contains memory
addresses 0-8191 (or 1FFF in hex), chip 1 contains memory addresses 8192-16,383 (or 2000-3FFF in hex), and
so on. We have a total of 8K x 8, or 64K (65,536) addresses available. We will not write down all 64K addresses as
binary numbers; however, writing a few addresses in binary form (as we illustrate in the following paragraphs) will
illustrate why a decoder is necessary.

Given 64 = 2% and 1K = 219 then 64K = 2° x 210 = 216 which indicates that we need 16 bits to represent each
address. If you have trouble understanding this, start with a smaller number of addresses. For example, if you have
four addresses—addresses 0, 1, 2, and 3, the binary equivalent of these addresses is 00, 01, 10, and 11, requiring
two bits. We know 22 = 4. Now consider eight addresses. We have to be able to count from 0 to 7 in binary. How
many bits does that require? The answer is 3. You can either write them all down, or you recognize that 8 = 23,
The exponent tells us the minimum number of bits necessary to represent the addresses. (We will see this idea
again later in this chapter, as well as in Chapters 4 and 6.)

All addresses on chip 0 have the format: 000xxxxxxxxxxxxx. Because chip 0 contains the addresses 0-8191, the
binary representation of these addresses is in the range 0000000000000000 to 0001111111111111. Similarly, all
addresses on chip 1 have the format 001xxxxxxxxxxxxx, and so on for the remaining chips. The leftmost 3 bits
determine on which chip the address is actually located. We need 16 bits to represent the entire address, but on
each chip, we only have 2! addresses. Therefore, we need only 13 bits to uniquely identify an address on a given
chip. The rightmost 13 bits give us this information.

When a computer is given an address, it must first determine which chip to use; then it must find the actual
address on that specific chip. In our example, the computer would use the 3 leftmost bits to pick the chip and then
find the address on the chip using the remaining 13 bits. These 3 high-order bits are actually used as the inputs to a
decoder so the computer can determine which chip to activate for reading or writing. If the first 3 bits are 000,
chip 0 should be activated. If the first 3 bits are 111, chip 7 should be activated. Which chip would be activated if
the first 3 bits were 010? It would be chip 2. Turning on a specific wire activates a chip. The output of the
decoder is used to activate one, and only one, chip as the addresses are decoded.

Figure 3.14 illustrates the physical components in a decoder and the symbol often used to represent a decoder. We
will see how a decoder is used in memory in Section 3.6.

Another common combinational circuit is a multiplexer. This circuit selects binary information from one of
many input lines and directs it to a single output line. Selection of a particular input line is controlled by a set of
selection variables, or control lines. At any given time, only one input (the one selected) is routed through the
circuit to the output line. All other inputs are “cut off.” If the values on the control lines change, the input actually
routed through changes as well. Figure 3.15 illustrates the physical components in a multiplexer and the symbol
often used to represent a multiplexer. S, and S, are the control lines; I, — I, are the input values.

Another useful set of combinational circuits to study includes a parity generator and a parity checker (recall we

studied parity in Chapter 2). A parity generator is a circuit that creates the necessary parity bit to add to a word; a
parity checker checks to make sure proper parity (odd or even) is present in the word, detecting an error if the

parity bit is incorrect.

Typically, parity generators and parity checkers are constructed using XOR functions. Assuming we are using
odd parity, the truth table for a parity generator for a 3-bit word is given in Table 3.10. The truth table for a parity
checker to be used on a 4-bit word with 3 information bits and 1 parity bit is given in Table 3.11. The parity
checker outputs a 1 if an error is detected and 0 otherwise. We leave it as an exercise to draw the corresponding

logic diagrams for both the parity generator and the parity checker.

o

>

a)

FIGURE 3.14 a) A Look Inside a Decoder

b) A Decoder Symbol

: S,Sgks

S‘rsﬂr}IE

FIGURE 3.15 a) A Look Inside a Multiplexer

b) A Multiplexer Symbol

—— >
—> —>
: Decoder :
n lnputs . . 2" Qutputs
—> —>
b}
One input
lp —>» is rolled
to output
by —
Multiplexer e
l2 —
sy
S, Sq

Control lines

b)

Bit shifting, moving the bits of a word or byte one position to the left or right, is a very useful operation.
Shifting a bit to the left takes it to the position of the next higher power of two. When the bits of an unsigned

integer are shifted to the left by one position, it has the same effect as multiplying that integer by 2, but using
significantly fewer machine cycles to do so. The leftmost or rightmost bit is lost after a left or right shift
(respectively). Left shifting the nibble, 1101, changes it to 1010, and right shifting it produces 0110. Some buffers
and encoders rely on shifters to produce a bit stream from a byte so that each bit can be processed in sequence. A
4-bit shifter is illustrated in Figure 3.16. When the control line, S, is low (i.e., zero), each bit of the input (labeled I,
through I,) is shifted left by one position into the outputs (labeled O, through O,). When the control line is high, a

right shift occurs. This shifter can easily be expanded to any number of bits, or combined with memory elements
to create a shift register.

Parity
Bit

Eod
]

T [o T IR e T B e O i O Y |
= = | O == |O|D | =
ol = I = B T O = R =
O| =| =] 0O|=|8|0 (=

TABLE 3.10 Parity Generator

Error
X ¥ z P detected?
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

TABLE 3.11 Parity Checker

There are far too many combinational circuits for us to be able to cover them all in this brief chapter. The
references at the end of this chapter provide much more information on combinational circuits than we can give
here. However, before we finish the topic of combinational logic, there is one more combinational circuit we need
to introduce. We have covered all of the components necessary to build an arithmetic logic unit (ALU).

Figure 3.17 illustrates a simple ALU with four basic operations—AND, OR, NOT, and addition—carried out on
two machine words of 2 bits each. The control lines, f, and f,, determine which operation is to be performed by
the CPU. The signal 00 is used for addition (A + B); 01 for NOT A; 10 for A OR B, and 11 for A AND B. The
input lines A, and A, indicate 2 bits of one word, and B, and B, indicate the second word. C, and C, represent the

output lines.

Input
By | B4 Ay A,

’ *ﬁ}—b%@ &%@

=D

e e il ol (L)
|
Carry ‘@ Overflow
| A
1/ !
Half- Full-
Adder Adder
Qutput
Cq C,

FIGURE 3.17 A Simple Two-Bit ALU

3.6 SEQUENTIAL CIRCUITS

In the previous section, we studied combinational logic. We have approached our study of Boolean functions by
examining the variables, the values for those variables, and the function outputs that depend solely on the values of
the inputs to the functions. If we change an input value, this has a direct and immediate effect on the value of the
output. The major weakness of combinational circuits is that there is no concept of storage—they are memoryless.
This presents us with a dilemma. We know that computers must have a way to remember values. Consider a much
simpler digital circuit needed for a soda machine. When you put money into a soda machine, the machine
remembers how much you have put in at any given instant. Without this ability to remember, it would be very
difficult to use. A soda machine cannot be built using only combinational circuits. To understand how a soda
machine works, and ultimately how a computer works, we must study sequential logic.

3.6.1 Basic Concepts

A sequential circuit defines its output as a function of both its current inputs and its previous inputs. Therefore, the
output depends on past inputs. To remember previous inputs, sequential circuits must have some sort of storage
element. We typically refer to this storage element as a flip-flop. The state of this flip-flop is a function of the
previous inputs to the circuit. Therefore, pending output depends on both the current inputs and the current state
of the circuit. In the same way that combinational circuits are generalizations of gates, sequential circuits are
generalizations of flip-flops.

3.6.2 Clocks

Before we discuss sequential logic, we must first introduce a way to order events. (The fact that a sequential
circuit uses past inputs to determine present outputs indicates that we must have event ordering.) Some sequential
circuits are asynchronous, which means they become active the moment any input value changes. Synchronous
sequential circuits use clocks to order events. A clock is a circuit that emits a series of pulses with a precise pulse
width and a precise interval between consecutive pulses. This interval is called the clock cycle time. Clock speed
is generally measured in megahertz or gigahertz.

A clock is used by a sequential circuit to decide when to update the state of the circuit (i.e., when do “present”
inputs become “past” inputs?). This means that inputs to the circuit can only affect the storage element at given,
discrete instances of time. In this chapter, we examine synchronous sequential circuits because they are easier to
understand than their asynchronous counterparts. From this point, when we refer to “sequential circuit,” we are
implying “synchronous sequential circuit.” Most sequential circuits are edge triggered (as opposed to being level
triggered). This means they are allowed to change their states on either the rising or falling edge of the clock signal,
as seen in Figure 3.18.

3.6.3 Flip-Flops

Alevel-triggered circuit is allowed to change state whenever the clock signal is either high or low. Many people use
the terms latch and flip-flop interchangeably. Technically, a latch is level triggered, whereas a flip-flop is edge
triggered. In this text, we use the term flip-flop. William Eccles and F. W. Jordan invented the first flip-flop (from
vacuum tubes) in 1918, so these circuits have been around for some time. However, they have not always been
called flip-flops. Like so many other inventions, they were originally named after the inventors and were called
Eccles—Jordan trigger circuits. So where did “flip-flop” come from? Some say it was the sound the circuit made
(as produced on a speaker connected to one of the components in the original circuit) when it was triggered,;
others believe it came from the circuit’s ability to flip from one state to another and back again.

Falling High
Rising Edge g Low
Edge

S

FIGURE 3.18 A Clock Signal Indicating Discrete Instances of Time

To “remember” a past state, sequential circuits rely on a concept called feedback. This simply means the
output of a circuit is fed back as an input to the same circuit. A very simple feedback circuit uses two NOT gates,
as shown in Figure 3.19. In this figure, if Q is 0, it will always be 0. If Q is 1, it will always be 1. This is not a
very interesting or useful circuit, but it allows you to see how feedback works.

A more useful feedback circuit is composed of two NOR gates resulting in the most basic memory unit called
an SR flip-flop. SR stands for “set/reset.” The logic diagram for the SR flip-flop is given in Figure 3.20.

We can describe any flip-flop by using a characteristic table, which indicates what the next state should be
based on the inputs and the current state, Q. The notation Q(t) represents the current state, and Q(t + 1) indicates
the next state, or the state the flip-flop should enter after the clock has been pulsed. We can also specify a timing
diagram, which indicates the relationship of signals from the clock to changes in a flip-flop’s output. Figure 3.21a
shows the actual implementation of the SR sequential circuit; Figure 3.21b adds a clock to the flip-flop; Figure
3.21c specifies its characteristic table; and Figure 3.21d shows an example timing diagram. We are interested in
exploring only clocked flip-flops.

An SR flip-flop exhibits interesting behavior. There are three inputs: S, R, and the current output Q(t). We
create the truth table shown in Table 3.12 to further illustrate how this circuit works.

For example, if Sis 0 and R is 0, and the current state, Q(t), is 0, then the next state, Q(t + 1), is also 0. If S is
0 and R is 0, and Q(¢t) is 1, then Q(t + 1) is set to 1. Actual inputs of (0, 0) for (S, R) result in no change when the
clock is pulsed. Following a similar argument, we can see that inputs (S, R) = (0,1) force the next state, Q(t + 1),
to 0 regardless of the current state (thus forcing a reset on the circuit output). When (S, R) = (1, 0), the circuit
output is set to 1.

FIGURE 3.19 Example of Simple Feedback

FIGURE 3.20 SR Flip-Flop Logic Diagram

o
s o'
clock
Q
R ? R
a) b)
= 1
S5 R Q(t+1) 0
;
0 0 Q(t) (no change) R 0
0 1 0 (reset to 0) 1
1 0 1 (setto 1) =
1 1 undefined 1
Clock B

c)

FIGURE 3.21 a) SR Flip-Flop

b) Clocked SR Flip-Flop

c¢) Characteristic Table for the SR Flip-Flop

d) Timing Diagram for the SR Flip-Flop (assuming initial state of Q is 0)

Present State | Next State
S R Qft) Q(t+1)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 Undefined
1 1 1 Undefined

TABLE 3.12 Truth Table for SR Flip-Flop

Looking at the example timing diagram in Figure 3.21d, we see that at time t,, the clock ticks, but because S =
R =0, Q does not change. At t,, S has changed to 1, and R is still 0, so when the clock ticks, Q is set to 1. At t,, S

=R =0, so Q does not change. By t,, because R has changed to 1, when the clock ticks, S=0, R =1, and Q is
reset to 0.

J K Q(t +1)
J 0 0 0 Q(t) (no change)
0 1 0 (resettoc 0
> ()
Q pb——o 1 0 1 (setto 1)
1 1 Q'(t)
a) b)
s i | | |
o——1
L 1 | | i |
D RN
—p>C | . . ;
; ¥ i , .
] | i i |
Clock |
th B f3 I
©) (d)

FIGURE 3.22 a) JK Flip-Flop

b) JK Characteristic Table

c) JK Flip-Flop as a Modified SR Flip-Flop

d) Timing Diagram for JK Flip-Flop (assuming initial state of Q is 0)

There is one oddity with this particular flip-flop. What happens if both S and R are set to 1 at the same time? If
we examine the unclocked flip-flop in Figure 3.21a, this forces a final state in which both Q and Q' are 0, but how
can Q = 0 = Q'? Let’s look at what happens when S = R = 1 using the clocked flip-flop in Figure 3.21b. When the
clock pulses, the S and R values are input into the flip-flop. This forces both Q and Q' to 0. When the clock pulse
is removed, the final state of the flip-flop cannot be determined, as once the clock pulse ends, both the S and R
inputs are killed, and the resulting state depends on which one actually terminated first (this situation is often called
a “race condition”). Therefore, this combination of inputs is not allowed in an SR flip-flop.

We can add some conditioning logic to our SR flip-flop to ensure that the illegal state never arises—we simply
modify the SR flip-flop as shown in Figure 3.22. This results in a JK flip-flop. A JK flip-flop is basically the same
thing as an SR flip-flop except when both inputs are 1, this circuit negates the current state. The timing diagram in
Figure 3.22d illustrates how this circuit works. At time ¢t,, J = K = 0, resulting in no change to Q. At t,, J=1 and K
=0,s0Qis setto 1. At t,, K=J =1, which causes Q to be negated, changing it from 1 to 0. At t,, K= 0 and J =

1, forcing Q to be set to 1.

B & — D Q(t+1)

a) b)
D 1 I : !
o— 1
D s QFl— 1| ! !
Q i ; l

—>C 00— : =
Gr 1 1 I 1
>o—R Clock
0

r t, L

d)

FIGURE 3.23 a) D Flip-Flop b) D Flip-Flop Characteristic Table c) D Flip-Flop as a Modified SR Flip-Flop d)
Timing Diagram for D Flip-Flop

There appears to be significant disagreement regarding where the “JK” came from. Some believe it was named
after Jack Kilby, inventor of the integrated circuit. Others believe it is named after John Kardash, who is often
credited as its inventor (as specified in his biographical data on his current company’s website). Still others believe
it was coined by workers at Hughes Aircraft who labeled circuits input using letters, and J and K just happened to
be next on the list (as detailed in a letter submitted to the electronics magazine EDN in 1968).

Another variant of the SR flip-flop is the D (data) flip-flop. A D flip-flop is a true representation of physical
computer memory. This sequential circuit stores one bit of information. If a 1 is asserted on the input line D, and
the clock is pulsed, the output line Q becomes a 1. If a 0 is asserted on the input line and the clock is pulsed, the
output becomes 0. Remember that output Q represents the current state of the circuit. Therefore, an output value
of 1 means the circuit is currently “storing” a value of 1. Figure 3.23 illustrates the D flip-flop, lists its
characteristic table and timing diagram, and reveals that the D flip-flop is actually a modified SR flip-flop.

3.6.4 Finite State Machines

Characteristic tables and timing diagrams allow us to describe the behavior of flip-flops and sequential circuits. An
equivalent graphical depiction is provided by a finite state machine (FSM). Finite state machines typically use
circles to represent machine states and directed arcs to represent transitions from one state to another. Each circle
is labeled with the state it represents, and each arc is labeled with the input and/or output for that state transition.
FSMs can be in only one state at a time. We are interested in synchronous FSMs (those allowing state transitions
only when the clock ticks).

A real-world example that can be modeled with state machines is a common traffic light. It has three states:
green, yellow, and red. Transitions among states occur as timers in the hardware expire. An FSM for a traffic light
appears below:

Timer

Timer

Timer

There are a number of different kinds of finite state machines, each suitable for a different purpose. Figure
3.24 shows a Moore machine representation of a JK flip-flop. The circles represent the two states of the flip-flop,
which we have labeled A and B. The output, Q, is indicated in brackets, and the arcs illustrate the transitions
between the states. We can see in this figure exactly how a JK flip-flop goes from state 0 to state 1 when J = 1 and
S =0, or when J =K =1, and how it goes from state 1 to state 0 when J= K =1, or when J =1 and K = 0. This
finite state machine is a Moore-type machine because each of the states is associated with the output of the
machine. In fact, the reflexive arcs shown in the figure are not required because the output of the machine changes
only when the state changes, and the state does not change through a reflexive arc. We can therefore draw a
simplified Moore machine (Figure 3.25). Moore machines are named for Edward F. Moore, who invented this type
of FSM in 1956.

A contemporary of Edward Moore, George H. Mealy, independently invented another type of FSM that has also
been named after its inventor. Like a Moore machine, a Mealy machine consists of a circle for each state, and the
circles are connected by arcs for each transition. Unlike a Moore machine, which associates an output with each
state (indicated in the Moore machine example by putting a 0 or 1 in square brackets), a Mealy machine associates
an output with each transition. This implies that a Mealy machine’s outputs are a function of its current state and
its input, and a Moore machine’s output is a function only of its current state. Each transition arc is labeled with its
input and output separated by a slash. Reflexive arcs cannot be removed from Mealy machines because they depict
an output of the machine. A Mealy machine for our JK flip-flop is shown in Figure 3.26.

00, 10,

01 00
10, 11

01, 1

FIGURE 3.24 JK Flip-Flop Represented as a Moore Machine
10, 11

01, 1

FIGURE 3.25 Simplified Moore Machine for the JK Flip-Flop

00/0, 10M1,

01/0 001
10/1, 11/1

01/0, 11/0
FIGURE 3.26 JK Flip-Flop Represented as a Mealy Machine

In the actual implementation of either a Moore or Mealy machine, two things are required: a memory (register)
to store the current state and combinational logic components that control the output and transitions from one state
to another. Figure 3.27 illustrates this idea for both machines.

The graphical models and the block diagrams that we have presented for the Moore and Mealy machines are
useful for high-level conceptual modeling of the behavior of circuits. However, once a circuit reaches a certain
level of complexity, Moore and Mealy machines become unwieldy and only with great difficulty capture the details
required for implementation. Consider, for example, a microwave oven. The oven will be in the “on” state only
when the door is closed, the control dial is set to “cook” or “defrost,” and there is time on the timer. The “on” state
means that the magnetron is producing microwaves, the light in the oven compartment is lit, and the carousel is
rotating. If the time expires, the door opens, or the control is turned from “cook” to “off,” the oven moves to the
“off” state. The dimension provided by the timer, along with the numerous signals that define a state, is hard to
capture in the Moore and Mealy models. For this reason, Christopher R. Clare invented the algorithmic state
machine (ASM). As its name implies, an algorithmic state machine is directed at expressing the algorithms that
advance an FSM from one state to another.

: l

Sequential

n Combinational Logic Combinational Output
\ Logic (Memory) Logic
b) S tial
» Combinational w e EEES ir; “
Logic J (Memory)
— Combinational Output

Logic

FIGURE 3.27 a) Block Diagram for Moore Machines b) Block Diagram for Mealy Machines

An algorithmic state machine consists of blocks that contain a state box, a label, and optionally condition and
output boxes (Figure 3.28). Each ASM block has exactly one entry point and at least one exit point. Moore type
outputs (the circuit signals) are indicated inside the state block; Mealy-type outputs are indicated in the oval output
“box.” If a signal is asserted when “high,” it is prefixed with an H; otherwise, it is prefixed with an L. If the signal
is asserted immediately, it is also prefixed with an I; otherwise, the signal asserts at the next clock cycle. The input
conditions that cause changes in state (this is the algorithmic part) are expressed by elongated, six-sided polygons
called condition boxes. Any number of condition boxes can be placed inside an ASM block, and the order in which
they are shown is unimportant. An ASM for our microwave oven example is shown in Figure 3.29.

As implied, ASMs can express the behavior of either a Moore or Mealy machine. Moore and Mealy machines
are probably equivalent and can be used interchangeably. However, it is sometimes easier to use one rather than the
other, depending on the application. In most cases, Moore machines require more states (memory) but result in
simpler implementations than Mealy machines, because there are fewer transitions to account for in Moore
machines.

State
Mame

Single Entry Point

|
| |
l |
| |
' |
l |
: Exit to |
! State Box Next Block }l
l |
|
| |
| ¢ |
| i |
o |
I < Condition Box Qutput Box |
|
' |
l 4, T |
| F |
: Condition Box Output Box |
|
| |
} ¢ T Exit to |
| Next Block :
e ® T 4
FIGURE 3.28 Components of an Algorithmic State Machine
_______________________________ A B e Lm0 S R L A S S b e L i it 3 |
[|
L. | I L |
> B g |
4 | | ¥ |
|
H: Magnetron l I L: Magnetron l
H: Lightbulb I I L: Lightbulb I
H: Turntable : : L: Turntable :
| [
| |
Y £ : : Y :
' Time =0
; I |
< Time > 07 >—> Lo F or |
I [
I Door open |
n Ll or !
Y A Switch = "Off"? |
[|
< Door closed? >—h [I
Lo T |
' \ |
|
T I I
Y F | | |
Switch = "Cook" or I I I
Switch = "Defrost"? - |
[|
v T | @ :
- I |
| |

FIGURE 3.29 Algorithmic State Machine for a Microware Oven

Hardware-Free Machines

Moore and Mealy machines are only two of many different types of finite state machines that you will encounter
in computer science literature. An understanding of FSMs is essential in the study of programming languages,
compilers, the theory of computation, and automata theory. We refer to these abstractions as machines because
machines are devices that respond to a set of stimuli (events) by generating predictable responses (actions)
based on a history of prior events (current state). One of the most important of these is the deterministic
finite automata (DFA) computational model. Formally speaking, a DFA, M, is completely described by the
quintuple M = (Q, S, %, §, F) where

* Qs a finite set of states that represents every configuration the machine can assume;

+ Sis an element of Q that represents the start state, which is the initial state of the machine before it receives
any inputs;

» ¥ is the input alphabet or set of events that the machine will recognize;

+ 4§ is a transition function that maps a state in Q and a letter from the input alphabet to another (possibly the
same) state in Q; and

» Fis a set of states (elements of Q) designated as the final (or accepting) states.

DFAs are particularly important in the study of programming languages; they are used to recognize
grammars or languages. To use a DFA, you begin in the Start state and process an input string, one character at
a time, changing states as you go. Upon processing the entire string, if you are in a final accepting state, a legal
string is “accepted” by that DFA. Otherwise, the string is rejected.

We can use this DFA definition to describe a machine—as in a compiler—that extracts variable names
(character strings) from a source code file. Suppose our computer language accepts variable names that must
start with a letter, can contain an infinite stream of letters or numbers following the initial letter, and is
terminated by a whitespace character (tab, space, linefeed, etc.). The initial state of the variable name is the null
string, because no input has been read. We indicate this starting state in the figure below with an exaggerated
arrowhead (there are several other notations). When the machine recognizes an alphabetic character, it
transitions to State I, where it stays as long as a letter or number is input. Upon accepting a whitespace
character, the machine transitions to State A, its final accepting state, which we indicate with a double circle. If
a character other than a number, letter, or whitespace is entered, the machine enters its error state, which is a
final state that rejects the string.

Letter,
NMumber

Start Whitespace

All Others

Finite State Machine for Accepting a Variable Name

Of more interest to us (because we are discussing hardware) are Moore and Mealy FSMs that have output
states. The basic difference between these FSMs and DFAs is that—in addition to the transition function moving
us from state to state—Moore and Mealy machines also generate an output symbol. Furthermore, no set of final
states is defined because circuits have no concept of halting or accepting strings; they instead generate output.
Both the Moore and Mealy machines, M, can be completely described by the quintuple M = (Q, S, Z, T, §)
where

* Qs a finite set of states that represents each configuration of the machine;

* Sis an element of Q that represents the Start state, the state of the machine before it has received any inputs;
» ¥ is the input alphabet or set of events that the machine will recognize;

» T'is the finite output alphabet; and

» § is a transition function that maps a state from Q and a letter from the input alphabet to a state from Q.

We note that the input and output alphabets are usually identical, but they don’t have to be. The way in
which output is produced is the distinguishing element between the Moore and Mealy machines. Hence, the
output function of the Moore machine is embedded in its definition of S, and the output function for the Mealy
machine is embedded in the transition function, 6.

If any of this seems too abstract, just remember that a computer can be thought of as a universal finite state
machine. It takes the description of one machine plus its input and then produces output that is as (usually)
expected. Finite state machines are just a different way of thinking about the computer and computation.

3.6.5 Examples of Sequential Circuits

Latches and flip-flops are used to implement more complex sequential circuits. Registers, counters, memories, and
shift registers all require the use of storage and are therefore implemented using sequential logic.

— EXAMPLE 3.14 Our first example of a sequential circuit is a simple 4-bit register implemented using four D
flip-flops. (To implement registers for larger words, we would need to add flip-flops.) There are four input lines,
four output lines, and a clock signal line. The clock is very important from a timing standpoint; the registers must
all accept their new input values and change their storage elements at the same time. Remember that a synchronous
sequential circuit cannot change state unless the clock pulses. The same clock signal is tied into all four D flip-
flops, so they change in unison. Figure 3.30 depicts the logic diagram for our 4-bit register, as well as a block

diagram for the register. In reality, physical components have additional lines for power and for ground, as well as
a clear line (which gives the ability to reset the entire register to all zeros). However, in this text, we are willing to
leave those concepts to the computer engineers and focus on the actual digital logic present in these circuits.

In,———D Q|—— Outy
In, D Q —— Out;
—
Ina D Q —— QOut,
—
——— Out
Ins D @ 3 Ing — — Out,
Iny — — Out
| :1 Register DE t1
Clock — 2 g
Ing — — Outy
T T
a) b)

FIGURE 3.30 a) 4-Bit Register
b) Block Diagram for a 4-Bit Register

— EXAMPLE 3.15 Another useful sequential circuit is a binary counter, which goes through a predetermined
sequence of states as the clock pulses. In a straight binary counter, these states reflect the binary number
sequence. If we begin counting in binary 0000, 0001, 0010, 0011, ..., we can see that as the numbers increase, the
low-order bit is complemented each time. Whenever it changes state from 1 to 0, the bit to the left is then
complemented. Each of the other bits changes state from 0 to 1 when all bits to the right are equal to 1. Because of
this concept of complementing states, our binary counter is best implemented using a JK flip-flop (recall that when
J and K are both equal to 1, the flip-flop complements the present state). Instead of independent inputs to each flip-
flop, there is a count enable line that runs to each flip-flop. The circuit counts only when the clock pulses and
this count enable line is set to 1. If count enable is set to 0 and the clock pulses, the circuit does not change state.
Examine Figure 3.31 very carefully, tracing the circuit with various inputs to make sure you understand how this
circuit outputs the binary numbers from 0000 to 1111. Note: B, B,, B,, and B, are the outputs of this circuit, and

they are always available regardless of the values of the count enable and clock signals. Also check to see which

state the circuit enters if the current state is 1111 and the clock is pulsed.

J Ql—+— Bg
> C
Count Enable
K
J Q —— B4
—>C
K
J Qr—+— B
—>C
K
J Q {—e— By
—1>C
i ™~ Output Carry
Clock
o o o

FIGURE 3.31 4-Bit Synchronous Counter Using JK Flip-Flops

We have looked at a simple register and a binary counter. We are now ready to examine a very simple memory
circuit.

— EXAMPLE 3.16 The memory depicted in Figure 3.32 holds four 3-bit words (this is typically denoted as a 4 x
3 memory). Each column in the circuit represents one 3-bit word. Notice that the flip-flops storing the bits for
each word are synchronized via the clock signal, so a read or write operation always reads or writes a complete
word. The inputs In,, In;, and In, are the lines used to store, or write, a 3-bit word to memory. The lines S, and S,
are the address lines used to select which word in memory is being referenced. (Notice that S, and S, are the input
lines to a 2-to-4 decoder that is responsible for selecting the correct memory word.) The three output lines (Out,,
Out,, and Out,) are used when reading words from memory.

Word 0 Weord 1 Word 2 Word 3

1) — out,
J =
s Da DaQ Da DaQ Ot
’— 44 4 44 ’7 49

o
o
 I—

Select Select Select

E Word 0 ﬂ Word 1 (Word 2 Word 3

T Write W
Clock Enable

FIGURE 3.32 4 x 3 Memory

You should notice another control line as well. The write enable control line indicates whether we are reading or
writing. Note that in this chip, we have separated the input and output lines for ease of understanding. In practice,
the input lines and output lines are the same lines.

To summarize our discussion of this memory circuit, here are the steps necessary to write a word to memory:

1. An address is asserted on S, and S,.

2. Write enable (WE) is set to high.
3. The decoder using S, and S, enables only one AND gate, selecting a given word in memory.

4. The line selected in Step 3 combines with the clock and Write Enable select only one word.
5. The write gate enabled in Step 4 drives the clock for the selected word.
6. When the clock pulses, the word on the input lines is loaded into the D flip-flops.

We leave it as an exercise to create a similar list of the steps necessary to read a word from this memory.
Another interesting exercise is to analyze this circuit and determine what additional components would be
necessary to extend the memory from, say, a 4 X 3 memory to an 8 x 3 memory or a 4 X 8 memory.

Logically Speaking, How’d They Do That?

In this chapter, we introduced logic gates. But exactly what goes on inside these gates to carry out the logic
functions? How do these gates physically work? It’s time to open the hood and take a peek at the internal
composition of digital logic gates.

The implementation of the logic gates is accomplished using different types of logic devices belonging to
different production technologies. These devices are often classified into logic families. Each family has its
advantages and disadvantages, and each differs from the others in its capabilities and limitations. The logic
families currently of interest include TTL, NMOS/PMOS, CMOS, and ECL.

TTL (transistor—transistor logic) replaces all the diodes originally found in integrated circuits with bipolar
transistors. (See the sidebar on transistors in Chapter 1 for more information.) TTL defines binary values as
follows: 0 to 0.8 V is logic 0, and 2-5 V is logic 1. Virtually any gate can be implemented using TTL. Not only
does TTL offer the largest number of logic gates (from the standard combinational and sequential logic gates to
memory), but this technology also offers superior speed of operation. The problem with these relatively
inexpensive integrated circuits is that they draw considerable power.

TTL was used in the first integrated circuits that were widely marketed. However, the most commonly used
type of transistor used in integrated circuits today is called a MOSFET (metal-oxide semiconductor field
effect transistor). Field effect transistors (FEB) are simply transistors whose output fields are controlled by
a variable electric field. The phrase metal-oxide semiconductor is actually a reference to the process used to
make the chip, and even though polysilicon is used today instead of metal, the name continues to be used.

NMOS (N-type metal-oxide semiconductors) and PMOS (P-type metaloxide semiconductors) are the
two basic types of MOS transistors. NMOS transistors are faster than PMOS transistors, but the real advantage
of NMOS over PMOS is that of higher component density (more NMOS transistors can be put on a single
chip). NMOS circuits have lower power consumption than their bipolar relatives. The main disadvantage of
NMOS technology is its sensitivity to damage from electrical discharge. In addition, not as many gate
implementations are available with NMOS as with TTL. Despite NMOS circuits using less power than TTL,
increased NMOs circuit densities caused a resurgence in power consumption problems.

CMOS (complementary metal-oxide semiconductor) chips were designed as low-power alternatives to
TTL and NMOS circuits, providing more TTL equivalents than NMOS in addition to addressing the power
issues. Instead of using bipolar transistors, this technology uses a complementary pair of FETs, an NMOS and a
PMOS FET (hence the name “complementary”). CMOS differs from NMOS because when the gate is in a
static state, CMOS uses virtually no power. Only when the gate switches states does the circuit draw power.
Lower power consumption translates to reduced heat dissipation.

For this reason, CMOS is extensively used in a wide variety of computer systems. In addition to low power
consumption, CMOS chips operate within a wide range of supply voltages (typically from 3 to 15 V)—unlike
TTL, which requires a power supply voltage of plus or minus 0.5 V. However, CMOS technology is extremely
sensitive to static electricity, so extreme care must be taken when handling circuits. Although CMOS technology
provides a larger selection of gates than NMOS, it still does not match that of its bipolar relative, TTL.

ECL (emitter-coupled logic) gates are used in situations that require extremely high speeds. Whereas TTL
and MOS use transistors as digital switches (the transistor is either saturated or cut off), ECL uses transistors to
guide current through gates, resulting in transistors that are never completely turned off or completely saturated.
Because they are always in an active status, the transistors can change states very quickly. However, the trade-
off for this high speed is substantial power requirements. Therefore, ECL is used only rarely, in very specialized

applications.

A newcomer to the logic family scene, BICMOS (bipolar CMOS) integrated circuits use both the bipolar
and CMOS technologies. Despite the fact that BICMOS logic consumes more power than TTL, it is
considerably faster. Although not currently used in manufacturing, BICMOS appears to have great potential.

3.6.6 An Application of Sequential Logic: Convolutional Coding and Viterbi
Detection

Several coding methods are employed in data storage and communication. One of them is the partial response
maximum likelihood (PRML) encoding method. Our previous discussion (which isn’t prerequisite for
understanding this section) concerned the “partial response” component of PRML. The “maximum likelihood”
component derives from the way that bits are encoded and decoded. The salient feature of the decoding process is
that only certain bit patterns are valid. These patterns are produced using a convolutional code. A Viterbi decoder
reads the bits that have been output by a convolutional encoder and compares the symbol stream read with a set of
“probable” symbol streams. The one with the least error is selected for output. We present this discussion because
it brings together a number of concepts from this chapter as well as from Chapter 2. We begin with the encoding

process.
;]j ,\/.AEBC
Qutput
j >AEBC":I-B
/1 |
Py Ir" "
Input & g ' C)
LD Qr— D Q - D Q b
F:"C —>C Jf'}(}

T—DIO'

>C

Q'p—

JT‘—'_L»(

Clock
FIGURE 3.33 Convolutional Encoder for PRML

The Hamming code introduced in Chapter 2 is a type of forward error correction that uses blocks of data (or
block coding) to compute the necessary redundant bits. Some applications require a coding technique suitable for a
continuous stream of data, such as that from a satellite television transmitter. Convolutional coding is a method
that operates on an incoming serial bit stream, generating an encoded serial output stream (including redundant
bits) that enables it to correct errors continuously. A convolutional code is an encoding process whereby the
output is a function of the input and some number of bits previously received. Thus, the input is overlapped, or
convoluted, over itself to form a stream of output symbols. In a sense, a convolutional code builds a context for
accurate decoding of its output. Convolutional encoding combined with Viterbi decoding has become an accepted
industry standard for encoding and decoding data stored or transmitted over imperfect (noisy) media.

The convolutional coding mechanism used in PRML is illustrated in Figure 3.33. Careful examination of this
circuit reveals that two output bits are written for each input bit. The first output bit is a function of the input bit

and the second previous input bit: A XOR C. The second bit is a function of the input bit and the two previous bits:
A XOR C XOR B. The two AND gates at the right-hand side of the diagram alternatively select one of these
functions during each pulse of the clock. The input is shifted through the D flip-flops on every second clock pulse.
We note that the leftmost flip-flop serves only as a buffer for the input and isn’t strictly necessary.

At first glance, it may not be easy to see how the encoder produces two output bits for every input bit. The
trick has to do with the flip-flop situated between the clock and the other components of the circuit. When the
complemented output of this flip-flop is fed back to its input, the flip-flop alternately stores Os and 1s. Thus, the
output goes high on every other clock cycle, enabling and disabling the correct AND gate with each cycle.

We step through a series of clock cycles in Figure 3.34. The initial state of the encoder is assumed to contain
all Os in the flip-flops labeled A, B, and C. A couple of clock cycles are required to move the first input into the A
flip-flop (buffer), and the encoder outputs two zeros. Figure 3.34a shows the encoder with the first input (1) after
it has passed to the output of flip-flop A. We see that the clock on flip-flops A, B, and C is enabled, as is the upper
AND gate. Thus, the function A XOR C is routed to the output. At the next clock cycle (Figure 3.34b), the lower
AND gate is enabled, which routes the function A XOR C XOR B to the output. However, because the clock on
flip-flops A, B, and C is disabled, the input bit does not propagate from flip-flop A to flip-flop B. This prevents the
next input bit from being consumed while the second output bit is written. At clock cycle 3 (Figure 3.34c), the
input has propagated through flip-flop A, and the bit that was in flip-flop A has propagated to flip-flop B. The
upper AND gate on the output is enabled and the function A XOR C is routed to the output.

The characteristic table for this circuit is given in Table 3.13. As an example, consider the stream of input bits,
11010010. The encoder initially contains all Os, so B = 0 and C = 0. We say that the encoder is in State 0 (00,).
When the leading 1 of the input stream exits the buffer, A, B =0 and C = 0, giving (A XOR C XOR B) =1 and (A
XOR C) = 1. The output is 11 and the encoder transitions to State 2 (10,). The next input bit is 1, and we have B =
1 and C = 0 (in State 2), giving (A XOR C XOR B) = 0 and (A XOR C) = 1. The output is 01 and the encoder
transitions to State 1 (01,). Following this process over the remaining six bits, the completed function is:

F(1101 0010) =11 01 01 00 10 11 11 10

The encoding process is made a little clearer using the Mealy machine (Figure 3.35). This diagram informs us
at a glance as to which transitions are possible and which are not. You can see the correspondence between the
Figure 3.35 machine and the characteristic table by reading the table and tracing the arcs or vice versa. The fact
that there is a limited set of allowable transitions is crucial to the error-correcting properties of this code and to the
operation of the Viterbi decoder, which is responsible for decoding the stream of bits correctly. By reversing the
inputs with the outputs on the transition arcs, as shown in Figure 3.36, we place bounds around the set of possible
decoding inputs.

a)

b)

d)

=), L\
’j)AGECCDB

100

D Q D Q D Q
’7>C r)‘c —C
I—D Q
> C
’_ Qrp-
Clock Cycle 1

_)D,A&wc

11 00

11100

01 11 00

s bl

AECEHB
I/
D G D Q D G
’—}C —>C —=C
]—D Q
1
e
Clock Cycle 2
) hee
-)]j)AG}CCBB
F/
D O D Q D Q
’7:’0 —=C —=C
=C
|_ Q' p—
Clock Cycle 3
X _ADC
) D
j >ACB
A
B D Q D Q
’—l}C —= G —=C
LD Q
G
Nyl |' ap-

Clock Cycle 4

FIGURE 3.34 Stepping through Four Clock Cycles of a Convolutional Encoder

Current Next
Input State State
A BC BC Qutput
0 00 00 00
1 00 10 11
0 01 00 11
1 01 10 00
0 10 01 10
1 10 11 01
0 11 01 01
1 11 11 10

TABLE 3.13 Characteristic Table for the Convolutional Encoder in Figure 3.33
0/00

1/

oM 1/0

0/01 1/10

FIGURE 3.35 Mealy Machine for the Convolutional Encoder in Figure 3.33

01/0 10/1

FIGURE 3.36 Mealy Machine for a Convolutional Decoder

Input 00 10 11 11
0]
1]
2
3 [] @ ® ® []
Qutput 1 0 0 1

FIGURE 3.37 Trellis Diagram Illustrating State Transitions for the Sequence 00 10 11 11

For example, suppose the decoder is in State 1 and sees the pattern 00 01. The decoded bit values returned are
1 1, and the decoder ends up in State 3. (The path traversed is 1 — 2 — 3.) If, on the other hand, the decoder is in
State 2 and sees the pattern 00 11, an error has occurred because there is no outbound transition on State 2 for 00.
The outbound transitions on State 2 are 01 and 10. Both of these have a Hamming distance of 1 from 00. If we
follow both (equally likely) paths out of State 2, the decoder ends up in either State 1 or State 3. We see that there
is no outbound transition on State 3 for the next pair of bits, 11. Each outbound transition from State 3 has a
Hamming distance of 1 from 11. This gives an accumulated Hamming distance of 2 for both paths: 2 - 3- 1 and
2 - 3 - 2. However, State 1 has a valid transition on 11. By taking the path 2 — 1 — 0, the accumulated error is
only 1, so this is the most likely sequence. The input therefore decodes to 00 with maximum likelihood.

An equivalent (and probably clearer) way of expressing this idea is through the trellis diagram, shown in Figure
3.37. The four states are indicated on the left side of the diagram. The transition (or time) component reads from
left to right. Every code word in a convolutional code is associated with a unique path in the trellis diagram. A
Viterbi detector uses the logical equivalent of paths through this diagram to determine the most likely bit pattern. In
Figure 3.37, we show the state transitions that occur when the input sequence 00 10 11 11 is encountered with the
decoder starting in State 1. You can compare the transitions in the trellis diagram with the transitions in the Mealy
diagram in Figure 3.36.

Suppose we introduce an error in the first pair of bits in our input, giving the erroneous string 10 10 11 11.
With our decoder starting in State 1 as before, Figure 3.38 traces the possible paths through the trellis. The
accumulated Hamming distance is shown on each of the transition arcs. The correct path that correctly assumes
that the string should be 00 10 11 11 is the one having the smallest accumulated error, so it is accepted as the
correct sequence.

3
Output 1 0 0

FIGURE 3.38 Trellis Diagram Illustrating Hamming Errors for the Sequence 10 10 11 11

In most cases where it is applied, the Viterbi decoder provides only one level of error correction. Additional
error-correction mechanisms such as cyclic redundancy checking and Reed-Solomon coding (discussed in
Chapter 2) are applied after the Viterbi algorithm has done what it can to produce a clean stream of symbols. All
these algorithms are usually implemented in hardware for utmost speed using the digital building blocks described
in this chapter.

We hope that our discussion in this section has helped you to see how digital logic and error-correction
algorithms fit together. The same can be done with any algorithm that can be represented using one of the finite
state machines described. In fact, the convolutional code just described is also referred to as a (2, 1) convolutional
code because two symbols are output for every one symbol input. Other convolutional codes provide somewhat
deeper error correction, but they are too complex for economical hardware implementation.

3.7 DESIGNING CIRCUITS

In the preceding sections, we introduced many different components used in computer systems. We have, by no

means, provided enough detail to allow you to start designing circuits or systems. Digital logic design requires
someone not only familiar with digital logic, but also well versed in digital analysis (analyzing the relationship
between inputs and outputs), digital synthesis (starting with a truth table and determining the logic diagram to
implement the given logic function), and the use of computer-aided design (CAD) software. Recall from our
previous discussions that great care needs to be taken when designing the circuits to ensure that they are
minimized. A circuit designer faces many problems, including finding efficient Boolean functions, using the
smallest number of gates, using an inexpensive combination of gates, organizing the gates of a circuit board to use
the smallest surface area and minimal power requirements, and attempting to do all of this using a standard set of
modules for implementation. Add to this the many problems we have not discussed, such as signal propagation,
fan out, synchronization issues, and external interfacing, and you can see that digital circuit design is quite
complicated.

Up to this point, we have discussed how to design registers, counters, memory, and various other digital
building blocks. Given these components, a circuit designer can implement any given algorithm in hardware (recall
the Principle of Equivalence of Hardware and Software from Chapter 1). When you write a program, you are
specifying a sequence of Boolean expressions. Typically, it is much easier to write a program than it is to design
the hardware necessary to implement the algorithm. However, there are situations in which the hardware
implementation is better (e.g., in a real-time system, the hardware implementation is faster, and faster is definitely
better.) However, there are also cases in which a software implementation is better. It is often desirable to replace a
large number of digital components with a single programmed microcomputer chip, resulting in an embedded
system. Your microwave oven and your car most likely contain embedded systems. This is done to replace
additional hardware that could present mechanical problems. Programming these embedded systems requires
design software that can read input variables and send output signals to perform such tasks as turning a light on or
off, emitting a beep, sounding an alarm, or opening a door. Writing this software requires an understanding of how
Boolean functions behave.

CHAPTER SUMMARY

The main purpose of this chapter is to acquaint you with the basic concepts involved in logic design and to give
you a general understanding of the basic circuit configurations used to construct computer systems. This level of
familiarity will not enable you to design these components; rather, it gives you a much better understanding of the
architectural concepts discussed in the following chapters.

In this chapter, we examined the behaviors of the standard logical operators AND, OR, and NOT and looked at
the logic gates that implement them. Any Boolean function can be represented as a truth table, which can then be
transformed into a logic diagram, indicating the components necessary to implement the digital circuit for that
function. Thus, truth tables provide us with a means to express the characteristics of Boolean functions as well as
logic circuits. In practice, these simple logic circuits are combined to create components such as adders, ALUs,
decoders, multiplexers, registers, and memory.

There is a one-to-one correspondence between a Boolean function and its digital representation. Boolean
identities can be used to reduce Boolean expressions, and thus, to minimize both combinational and sequential
circuits. Minimization is extremely important in circuit design. From a chip designer’s point of view, the two most
important factors are speed and cost; minimizing circuits helps to both lower the cost and increase performance.

Digital logic is divided into two categories: combinational logic and sequential logic. Combinational logic
devices, such as adders, decoders, and multiplexers, produce outputs that are based strictly on the current inputs.
The AND, OR, and NOT gates are the building blocks for combinational logic circuits, although universal gates,
such as NAND and NOR, could also be used. Sequential logic devices, such as registers, counters, and memory,
produce outputs based on the combination of current inputs and the current state of the circuit. These circuits are
built using SR, D, and JK flip-flops.

You have seen that sequential circuits can be represented in a number of different ways, depending on the
particular behavior that we want to emphasize. Clear pictures can be rendered by Moore, Mealy, and algorithmic

state machines. A lattice diagram expresses transitions as a function of time. These finite state machines differ
from DFAs in that, unlike DFAs, they have no final state because circuits produce output rather than accept
strings.

These logic circuits are the building blocks necessary for computer systems. In Chapter 4, we put these blocks
together and take a closer, more detailed look at how a computer actually functions.

If you are interested in learning more about Kmaps, there is a special section that focuses on Kmaps located at
the end of this chapter, after the exercises.

FURTHER READING

Most computer organization and architecture books have a brief discussion of digital logic and Boolean algebra.
The books by Stallings (2013), Tanenbaum (2012), and Patterson and Hennessy (2011) contain good synopses of
digital logic. Mano (1993) presents a good discussion on using Kmaps for circuit simplification (discussed in the
focus section of this chapter) and programmable logic devices, as well as an introduction to the various circuit
technologies. For more in-depth information on digital logic, see the Wakerly (2000), Katz (1994), or Hayes (1993)
books.

Davis (2000) traces the history of computer theory, including biographies of all the seminal thinkers, in his
Universal Computer book. This book is a joy to read. For a good discussion of Boolean algebra in lay terms, check
out the book by Gregg (1998). The book by Maxfield (1995) is an absolute delight to read and contains informative
and sophisticated concepts on Boolean logic, as well as a trove of interesting and enlightening bits of trivia
(including a wonderful recipe for seafood gumbo!). For a straightforward and easy-to-read book on gates and flip-
flops (as well as a terrific explanation of what computers are and how they work), see Petzold (1989). Davidson
(1979) presents a method of decomposing NAND-based circuits (of interest because NAND is a universal gate).

Moore, Mealy, and algorithmic state machines were first proposed in papers by Moore (1956), Mealy (1955),
and Clare (1973). Cohen’s (1991) computer theory book is one of the most easily understandable on this topic. In
it you will find excellent presentations of Moore, Mealy, and finite state machines in general, including DFAs.
Forney’s (1973) well-written tutorial on the Viterbi algorithm in a paper by that same name explains the concept
and the mathematics behind this convolutional decoder. Fisher’s (1996) article explains how PRML is used in disk
drives.

If you are interested in actually designing some circuits, there are several nice simulators freely available. One
set of tools is called the Chipmunk System. It performs a wide variety of applications, including electronic circuit
simulation, graphics editing, and curve plotting. It contains four main tools, but for circuit simulation, Log is the
program you need. The Diglog portion of Log allows you to create and actually test digital circuits. If you are
interested in downloading the program and running it on your machine, the general Chipmunk distribution can be
found at www.cs.berkeley.edu/~lazzaro/chipmunk/. The distribution is available for a wide variety of platforms
(including PCs and Unix machines).

Another nice package is Multimedia Logic (MMLogic) by Softronix, but it is currently available for Windows
platforms only. This fully functional package has a nice GUI with drag-and-drop components and comprehensive
online help. It includes not only the standard complement of devices (such as ANDs, ORs, NANDs, NORs,
adders, and counters), but also special multimedia devices (including bitmap, robot, network, and buzzer devices).
You can create logic circuits and interface them to real devices (keyboards, screens, serial ports, etc.) or other
computers. The package is advertised for use by beginners but allows users to build quite complex applications
(such as games that run over the Internet). MMLogic can be found at www.softronix.com/logic.html, and the
distribution includes not only the executable package, but also the source code so users can modify or extend its
capabilities.

A third digital logic simulator is Logisim, an open-source software package available at
http://ozark.hendrix.edu/~burch/logisim/. This software is compact, easy to install, and easy to use, and it requires
only that Java 5 or later be installed; therefore, it is available for Windows, Mac, and Linux platforms. The interface
is intuitive, and unlike most simulators, Logisim allows the user to modify a circuit during simulation. The

http://www.cs.berkeley.edu/~lazzaro/chipmunk/
http://www.softronix.com/logic.html
http://ozark.hendrix.edu/~burch/logisim/

application allows the user to build larger circuits from smaller ones, draw bundles of wires (with multi-bit width)
in one mouse action, and use a tree view to see the library of components that can be utilized for building circuits.
Like MMLogic, the package was designed as an educational tool to help beginners experiment with digital logic
circuits, but also allows the user to build fairly complex circuits.

Any of these simulators can be used to build the MARIE architecture discussed next in Chapter 4.

REFERENCES
Clare, C. R. Designing Logic Systems Using State Machines. New York: McGraw-Hill, 1973.
Cohen, D. I. A. Introduction to Computer Theory, 2nd ed. New York: John Wiley & Sons, 1991.

Davidson, E. S. “An Algorithm for NAND Decomposition under Network Constraints.” IEEE Transactions on
Computing C-18, 1979, p. 1098.

Davis, M. The Universal Computer: The Road from Leibniz to Turing. New York: W. W. Norton, 2000.

Fisher, K. D., Abbott, W. L., Sonntag, J. L., & Nesin, R. “PRML Detection Boosts Hard-Disk Drive Capacity.”
IEEE Spectrum, November 1996, pp. 70-76.

Forney, G. D. “The Viterbi Algorithm.” Proceedings of the IEEE 61, March 1973, pp. 268-278.

Gregg, J. Ones and Zeros: Understanding Boolean Algebra, Digital Circuits, and the Logic of Sets. New York:
IEEE Press, 1998.

Hayes, J. P. Digital Logic Design. Reading, MA: Addison-Wesley, 1993.

Katz, R. H. Contemporary Logic Design. Redwood City, CA: Benjamin Cummings, 1994.
Mano, M. M. Computer System Architecture, 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1993.
Maxfield, C. Bebop to the Boolean Boogie. Solana Beach, CA: High Text Publications, 1995.

Mealy, G. H. “A Method for Synthesizing Sequential Circuits.” Bell System Technical Journal 34, September 1955,
pp- 1045-1079.

Moore, E. F. “Gedanken Experiments on Sequential Machines,” in Automata Studies, edited by C. E. Shannon and
John McCarthy. Princeton, NJ: Princeton University Press, 1956, pp. 129-153.

Patterson, D. A., & Hennessy, J. L. Computer Organization and Design, The Hardware/Software Interface, 4th ed.
San Mateo, CA: Morgan Kaufmann, 2011.

Petzold, C. Code: The Hidden Language of Computer Hardware and Software. Redmond, WA: Microsoft Press,
1989.

Stallings, W. Computer Organization and Architecture, 9th ed. Upper Saddle River, MJ: Prentice Hall, 2013.
Tanenbaum, A. Structured Computer Organization, 6th ed. Upper Saddle River, NJ: Prentice Hall, 2012.
Wakerly, J. F. Digital Design Principles and Practices. Upper Saddle River, NJ: Prentice Hall, 2000.

REVIEW OF ESSENTIAL TERMS AND CONCEPTS

Why is an understanding of Boolean algebra important to computer scientists?
Which Boolean operation is referred to as a Boolean product?

Which Boolean operation is referred to as a Boolean sum?

Create truth tables for the Boolean operators OR, AND, and NOT.

What is the Boolean duality principle?

&g wh e

Why is it important for Boolean expressions to be minimized in the design of digital circuits?

7. What is the relationship between transistors and gates?

8. What is the difference between a gate and a circuit?

9.
10.
11.
12,
13.
14.
15.
16.

17.

18.
19.
20.
21.
22,
23.
24,
25.
26.

Name the four basic logic gates.

What are the two universal gates described in this chapter? Why are these universal gates important?

Describe the basic construction of a digital logic chip.

Describe the operation of a ripple-carry adder. Why are ripple-carry adders not used in most computers today?
What are the three methods we can use to express the logical behavior of Boolean functions?

What are the necessary steps one must take when designing a logic circuit from a description of the problem?
What is the difference between a half-adder and a full-adder?

What do we call a circuit that takes several inputs and their respective values to select one specific output line?
Name one important application for these devices.

What kind of circuit selects binary information from one of many input lines and directs it to a single output
line?

How are sequential circuits different from combinational circuits?

What is the basic element of a sequential circuit?

What do we mean when we say that a sequential circuit is edge triggered rather than level triggered?

In the context of digital circuits, what is feedback?

How is a JK flip-flop related to an SR flip-flop?

Why are JK flip-flops often preferred to SR flip-flops?

Which flip-flop gives a true representation of computer memory?

How is a Mealy machine different from a Moore machine?

What does an algorithmic state machine offer that is not provided by either a Moore or a Mealy machine?

EXERCISES

1. Construct a truth table for the following:

+ a) yz +z(xy)
#+ b)x(y'+2z)+xyz
¢) (x+y)(x' +y) (Hint: This is from Example 3.7.)
2. Construct a truth table for the following:
a) xyz+x(yz)' + X(y + 2) + (xyz)’
b) (x+y)(x' +2)(y' + Z)
+ 3. Using DeMorgan’s Law, write an expression for the complement of F if F(x,y,z)
=xy'(x + 2).

4. Using DeMorgan’s Law, write an expression for the complement of F if F(x,y,z)
= (W +)X+ D) +).

5. Using DeMorgan’s Law, write an expression for the complement of F if F(w,x,),z)

=xZ'(xX'yz + x) + y(Wz + X).

6. Using DeMorgan’s Law, write an expression for the complement of F if F(x,y,z)

= XE(xy + X2) + Xy (W + y).

7. Prove DeMorgan’s Laws are valid.

10.

11.
12.

13.

14.

+ 15.

16.

17.

18.

+19.

8. Is the following distributive law valid or invalid? Prove your answer. x XOR (y + z) = (x XOR y) + (x XOR

2)

Is the following true or false? Prove your answer. (x XOR y)' = xy + (x + y)'
Show that x = xy + xy’'

a) Using truth tables

b) Using Boolean identities

Use only the first seven Boolean identities to prove the Absorption Laws.
Show that xz = (x + y)(x + y)(X' + 2)

a) Using truth tables

b) Using Boolean identities

Use any method to prove the following either true or false.

xZ+ Xy +yzZ=xz+y

Simplify the following functional expressions using Boolean algebra and its identities. List the identity used
at each step.

a) F(xy2) =y(x' + (x+y))

b) F(x,y,z) = X'yz + xz

¢ Fxyz)=(xX'+y+2z) +xy7 +yz+ xyz

Simplify the following functional expressions using Boolean algebra and its identities. List the identity used
at each step.

a) x(yz+yz)+xy+xy+xz

b) xyz"+(y+2) +xyz

Q) z(xy'+)(x +y)

Simplify the following functional expressions using Boolean algebra and its identities. List the identity used
at each step.

a) z(w+Xx)' + wxz+ wxyz + wx'yz

b) y(XZ +xz) + z(x + y)'

o) x(yz' + x)(y' + 2)

Simplify the following functional expressions using Boolean algebra and its identities. List the identity used
at each step.

a) x(y + 2)(x' + Z)

b) xy + xyz + xy'z + X'y'z

o) xyz+x(y+2z)+xyz

Simplify the following functional expressions using Boolean algebra and its identities. List the identity used
at each step.

a) y(xz' + x'z) + y'(xz' +x'z)

b) x(yz+y) +x(y +2z)

0 xlyz+(y+2z)1Ixy +2)

Using the basic identities of Boolean algebra, show that

X(X' +y) = xy

*20. Using the basic identities of Boolean algebra, show that
x+xXy=x+y
21. Using the basic identities of Boolean algebra, show that
Xy +Xz+yz=xy+xz
22. The truth table for a Boolean expression is shown below. Write the Boolean expression in sum-of-products
form.

X
0
0
0
0
1
1
;
1

“A(lwlooo|l=|=O| D=

z
0
1
0
1
0
1
0
1

.._.L.._.L._LC)C)_LQ_..L'T-'

23. The truth table for a Boolean expression is shown below. Write the Boolean expression in sum-of-products
form.

=m0 oo x
e = I = P Y = = -
~|lo|l=|lao|=|o|=|o|N
OO == | O = = |=|"

24. Which of the following Boolean expressions is not logically equivalent to all the rest?
a) wx' +wy' +wz
b) w+tx +y +z
) wx'+y +2)
d) wx'yz' + wx'y' + wy'z' + wz
25. Draw the truth table and rewrite the expression below as the complemented sum of two products:
xy+xy+txz+yz

26. Given the Boolean function, F(x,y,z) = X'y + xyz'

a) Derive an algebraic expression for the complement of F. Express in sum-of-products form.
b) Show that FF' = 0.
c¢) Show that F + F' = 1.
27. Given the function, F(x,y,z) = y(xX'z + xz') + x(yz + yz')
a) List the truth table for F.
b) Draw the logic diagram using the original Boolean expression.
c) Simplify the expression using Boolean algebra and identities.
d) List the truth table for your answer in part c.
e) Draw the logic diagram for the simplified expression in part c.
28. Construct the XOR operator using only AND, OR, and NOT gates.
29. Construct the XOR operator using only NAND gates.
Hint: x XOR y = ((xy)'(xy")")’
30. Draw a half-adder using only NAND gates.
31. Draw a full-adder using only NAND gates.

32. Design a circuit with three inputs x, y, and z representing the bits in a binary number, and three outputs (a,
b, and c) also representing bits in a binary number. When the input is 0, 1, 6, or 7, the binary output will be
the complement of the input. When the binary input is 2, 3, 4, or 5, the output is the input shifted left with
rotate. (For example, 3 = 011, outputs 110; 4 = 100, outputs 001.) Show your truth table, all computations
for simplification, and the final circuit.

33. Draw the combinational circuit that directly implements the Boolean expression:
Fxyz) =xyz+(y +2)
34. Draw the combinational circuit that directly implements the following Boolean expression:
F(x,y,z) =x+xy+yz
35. Draw the combinational circuit that directly implements the Boolean expression: F(x,y,z) =(x(y XOR z)) +

(x2)’

36. Find the truth table that describes the following circuit:

y —>o—9

=]

¥ >

37. Find the truth table that describes the following circuit:

Z>C y.
i s s [| ¥

38. Find the truth table that describes the following circuit:
' — ./
¥ >C ’ 3 At

B B

Z

39. How many inputs does a decoder have if it has 64 outputs?

40. How many control lines does a multiplexer have if it has 32 inputs?

41. Draw circuits to implement the parity generator and parity checker shown in Tables 3.10 and 3.11,
respectively.

42. Assume you have the following truth tables for functions F,(x,),z) and F,(x,),z):

N
—_

Fa
0

—_ = O D D O M
- ek OO0 = - O O
- O = O =4 O = O|MN

=R = - le el
_ =k D D = =k O

a) Express F, and F, in sum-of-products form.

b) Simplify each function.
¢) Draw one logic circuit to implement the above two functions.

43. Assume you have the following truth tables for functions F,(w,x,),z) and F,(w,x,y,2):

44.

45.
46.

47.

—
.

- - - e - .- 000 0O00CO0CO|s
e i = I == T - T = R - O - B e T = I -4
- - 00 = = 00 == 00 = = 0 9%
- 0O = 0O = 0O = O = O = O = O = O|N
_ e = = = D = O O OO0 O = O = O
- = = D D0 0 0 0 0 00 =0 =0

a) Express F, and F, in sum-of-products form.
b) Simplify each function.
¢) Draw one logic circuit to implement the above two functions.

Design a truth table for a combinational circuit that detects an error in the representation of a decimal digit
encoded in BCD. (This circuit should output a 1 when the input is one of the six unused combinations for
BCD code.)

Simplify the function from exercise 44 and draw the logic circuit.

Describe how each of the following circuits works and indicate typical inputs and outputs. Also provide a
carefully labeled “black box™ diagram for each.

a) Decoder
b) Multiplexer

Little Susie is trying to train her new puppy. She is trying to figure out when the puppy should get a dog
biscuit as a reward. She has concluded the following:

Give the puppy a biscuit if it sits and wiggles but does not bark.
Give the puppy a biscuit if it barks and wiggles but does not sit.
Give the puppy a biscuit if it sits but does not wiggle or bark.
Give the puppy a biscuit if it sits, wiggles, and barks.

o1l b=

Don’t give the puppy a treat otherwise.
Use the following:

S: Sit (0 for not sitting; 1 for sitting)

W: Wiggles (0 for not wiggling; 1 for wiggling)

B: Barking (O for not barking; 1 for barking)

F: Biscuit function (0, don’t give the puppy a biscuit; 1, give the puppy a biscuit)

Construct a truth table and find the minimized Boolean function to implement the logic telling Susie when to
give her dog a biscuit.

48. Tyrone Shoelaces has invested a huge amount of money into the stock market and doesn’t trust just anyone
to give him buying and selling information. Before he will buy a certain stock, he must get input from three
sources. His first source is Pain Webster, a famous stock broker. His second source is Meg A. Cash, a self-
made millionaire in the stock market, and his third source is Madame LaZora, world-famous psychic. After
several months of receiving advice from all three, he has come to the following conclusions:

a) Buy if Pain and Meg both say yes and the psychic says no.

b) Buy if the psychic says yes.

c¢) Don’t buy otherwise.

Construct a truth table and find the minimized Boolean function to implement the logic telling Tyrone when to
buy.

#+*49. A very small company has hired you to install a security system. The brand of system that you install is
priced by the number of bits encoded on the proximity cards that allow access to certain locations in a
facility. Of course, this small company wants to use the fewest bits possible (spending the least amount of
money possible) yet have all of its security needs met. The first thing you need to do is to determine how
many bits each card requires. Next, you have to program card readers in each secured location so that they
respond appropriately to a scanned card.

This company has four types of employees and five areas that they wish to restrict to certain employees.
The employees and their restrictions are as follows:

a) The Big Boss needs access to the executive lounge and the executive washroom.

b) The Big Boss’s secretary needs access to the supply closet, employee lounge, and executive lounge.

c¢) Computer room employees need access to the server room and the employee lounge.

d) The janitor needs access to all areas in the workplace.

Determine how each class of employee will be encoded on the cards and construct logic diagrams for the
card readers in each of the five restricted areas.

50. Complete the truth table for the following sequential circuit:

A Mext State
X Y A A B
0 0 0
o J Q D Q B 0 | 0 | 1
0 1 0
Y K Q ;
Q BIESE
1 0 0
1| 0 1
1 1 0
0 g 1 1 1

51. Complete the truth table for the following sequential circuit:

Next State
A B X A B
A L B 0 0 0
0 0 1
X
D Q) g 0 1 0
> —F 0 1 1
Q’ K @ 1 0 0
1 0 1
K ol o W 1 1 0
1 1 1
52. Complete the truth table for the following sequential circuit:
Next State
A B X A B
A B 0 0 0
0 0 1
X D Q D Q 0 1 0
> > 0 1 1
Q Q 1T 1o [0
1 0 1
JTLIL Ly, 1 1 0
1 1 1
53. Complete the truth table for the following sequential circuit:
Next State
A B X A B
0 0 0
B e B 0 0 1
—> 0 1 0
}D 0 K o 0 1 i
Q' 1 0 0
X 1 0 1
1 1 0
JUL L 1 1 1

54. Complete the truth table for the following sequential circuit:

Next State

X Y Z S Q
X — S 0 0 0
X Full-Adder D Q Q - e 1
7 C —>C 0 1 0
Q' 0 1 1
i e
i, J NENE
1 1 0
1 1 1

55. A sequential circuit has one flip-flop; two inputs, X and Y; and one output, S. It consists of a full-adder
circuit connected to a JK flip-flop, as shown. Fill in the truth table for this sequential circuit by completing
the Next State and Output columns.

X — Full-Adder S
‘f_
z Coe Ty Q
>
K
|
Clock

Present State | Inputs Next State | Qutput
Q(t) X Y Q(t+1) S
0 0 0
0 0 1
0 : UM ¢
0 1 1
1 0 0
1 0 1
1 ¥ @
1 1 1

56. True or false: When a JK flip-flop is constructed from an SR flip-flop, S = JQ' and R = KQ.

#+*57. Investigate the operation of the following circuit. Assume an initial state of 0000. Trace the outputs (the
Qs) as the clock ticks and determine the purpose of the circuit. You must show the trace to complete your

answer.
— J 0 J Q J 0 O ey
= — = — = — >
- K Q' K Q K o K Q-
L L L
Clock

58. A Null-Lobur flip-flop (NL flip-flop) behaves as follows: If N = 0, the flip-flop does not change state. If N =
1, the next state of the flip-flop is equal to the value of L.

a) Derive the characteristic table for the NL flip-flop.

b) Show how an SR flip-flop can be converted to an NL flip-flop by adding gate(s) and inverter(s). (Hint:
What values must S and R have so that the flip-flop will be set and reset at the proper time when N = 1?
How can you prevent the flip-flop from changing state when N = 07?)

*59. A Mux-Not flip-flop (MN flip-flop) behaves as follows: If M = 1, the flip-flop complements the current
state. If M = 0, the next state of the flip-flop is equal to the value of N.
a) Derive the characteristic table for the flip-flop.
b) Show how a JK flip-flop can be converted to an MN flip-flop by adding gate(s) and and inverter(s).
60. List the steps necessary to read a word from memory in the 4 x 3 memory circuit shown in Figure 3.32.
61. Construct Moore and Mealy machines that complement their input.
62. Construct a Moore machine that counts modulo 5.
63. Construct two parity checkers using a Moore machine for one and a Mealy machine for the other.
64. Using the lemma that two FSMs are equivalent if and only if they produce the same output from the same
input strings, show that Moore and Mealy machines are equivalent.
65. Using the convolutional code and Viterbi algorithm described in this chapter, assuming that the encoder and
decoder always start in State 0, determine the following:
a) The output string generated for the input: 10010110.
b) In which state is the encoder after the sequence in part a is read?
¢) Which bit is in error in the string, 11 01 10 11 11 11 10? What is the probable value of the string?
66. Repeat question 65 to determine the following:
a) The output string generated for the input: 00101101.
b) In which state is the encoder after the sequence in part a is written?
¢) Which bit is in error in the string, 00 01 10 11 00 11 00? What is the probable value of the string?
67. Repeat question 65 to determine the following:
a) The output string generated for the input: 10101010.
b) In which state is the encoder after the sequence in part a is written?
c¢) Which bit is in error in the string, 11 10 01 00 00 11 01? What is the probable value of the string?

68. Repeat question 65 to determine the following:

a) The output string generated for the input: 01000111.
b) In which state is the encoder after the sequence in part a is written?
¢) Which bit is in error in the string, 11 01 10 11 01 00 01? What is the probable value of the string?

FOCUS ON KARNAUGH MAPS

3A.1 INTRODUCTION

In this chapter, we focused on Boolean expressions and their relationship to digital circuits. Minimizing these
circuits helps reduce the number of components in the actual physical implementation. Having fewer components
allows the circuitry to operate faster.

Reducing Boolean expressions can be done using Boolean identities; however, using identities can be difficult
because no rules are given on how or when to use the identities, and there is no well-defined set of steps to follow.
In one respect, minimizing Boolean expressions is very much like doing a proof: You know when you are on the
right track, but getting there can sometimes be frustrating and time consuming. In this focus section, we introduce
a systematic approach for reducing Boolean expressions.

3A.2 DESCRIPTION OF KMAPS AND TERMINOLOGY

Karnaugh maps, or Kmaps, are a graphical way to represent Boolean functions. A map is simply a table used to
enumerate the values of a given Boolean expression for different input values. The rows and columns correspond
to the possible values of the function’s inputs. Each cell represents the outputs of the function for those possible
inputs.

If a product term includes all of the variables exactly once, either complemented or not complemented, this
product term is called a minterm. For example, if there are two input values, x and y, there are four minterms, x'y
", X'y, xy', and xy, which represent all of the possible input combinations for the function. If the input variables are
X, y, and z, then there are eight minterms: X'y'z', x'y'z, x'yz, X'yz, xy'z', xy'z, xyz', and xyz.

As an example, consider the Boolean function F(x,y) = xy + X'y. Possible inputs for x and y are shown in Figure
3A.1. The minterm x'y' represents the input pair (0, 0). Similarly, the minterm x'y represents (0, 1), the minterm xy’'
represents (1, 0), and xy represents (1, 1).

The minterms for three variables, along with the input values they represent, are shown in Figure 3A.2.

Minterm | x ¥
Xy 0 0
X'y 0 1
xy 1 0
Xy 1 1

FIGURE 3A.1 Minterms for Two Variables

Minterm
x'yz
Xyz
xyz'
X'yz
xy'z'
XYz

r

Ed =N =R =N =R

el el el el =0 =0 = s

alalololm|—wlo|o =

xyz

FIGURE 3A.2 Minterms for Three Variables

A Kmap is a table with a cell for each minterm, which means it has a cell for each line of the truth table for the
function. Consider the function F(x,y) = xy and its truth table, as seen in Example 3A.1.

— EXAMPLE 3A.1 F(x,y) = xy

X Y Xy
0 0] 0
a 1 0
1 0 0
1 1 1
The corresponding Kmap is

¥
X 0 1

o O 0

Notice that the only cell in the map with a value of 1 occurs when x = 1 and y = 1, the same values for which xy =
1. Let’s look at another example, F(x,y) = x + y.

— EXAMPLE3A.2 F(x,y) = x +y

X y|x+y

1] 0 a

i 1 1

1 0 1

1 1 1
¥

X 0 1

o o 1
1] 1 1

Three of the minterms in Example 3A.2 have a value of 1, exactly the minterms for which the input to the

function gives us a 1 for the output. To assign 1s in the Kmap, we simply place 1s where we find corresponding
1s in the truth table. We can express the function F(x,y) = x + y as the logical OR of all minterms for which the
minterm has a value of 1. Then F(x,y) can be represented by the expression x'y + xy'+ xy. Obviously, this
expression is not minimized (we already know this function is simply x + y). We can minimize using Boolean
identities.

Fxy)=xy+x'+xy

- X'y + xy + xy' + oy (remember, xy + xy = xy)
Vi Exl iy Y

Yotk

—x+y

How did we know to add an extra xy term? Algebraic simplification using Boolean identities can be tricky. This is
where Kmaps can help.

3A.3 KMAP SIMPLIFICATION FOR TWO VARIABLES

In the previous reduction for the function F(x,y), the goal was to group the terms so we could factor out variables.
We added the xy to give us a term to combine with the x'y. This allowed us to factor out the y, leaving x' + x,
which reduces to 1. However, if we use Kmap simplification, we won’t have to worry about which terms to add
or which Boolean identity to use. The maps take care of that for us.

Let’s look at the Kmap for F(x,y) = x + y again in Figure 3A.3.

To use this map to reduce a Boolean function, we simply need to group 1s. This grouping is similar to how we
grouped terms when we reduced using Boolean identities, except we must follow specific rules. First, we group
only 1s. Second, we can group 1s in the Kmap if the 1s are in the same row or in the same column, but they
cannot be on the diagonal (i.e., they must be adjacent cells). Third, we can group 1s if the total number in the
group is a power of 2. The fourth rule specifies that we must make the groups as large as possible. As a fifth and
final rule, all 1s must be in a group (even if some are in a group of one). Let’s examine some correct and incorrect
groupings, as shown in Figures 3A.4 through 3A.7.

Notice in Figures 3A.6b and 3A.7b that one 1 belongs to two groups. This is the map equivalent of adding the
term xy to the Boolean function, as we did when we were performing simplification using identities. The xy term in
the map is used twice in the simplification procedure.

¥
X 0 1
0| O 1
1 1
FIGURE 3A.3 Kmap for F(x,y) =x+y
¥ ¥
X 0 1 X 0 1
0|0 1 o] 0 1
1 1 1 1)1 1
a) Incormrect b} Correct

FIGURE 3A.4 Groups Contain Only 1s

X 0 1 X 0 1
0| 0 1 0| 0 1
110 1 | 1

a) Incorrect b) Correct

FIGURE 3A.5 Groups Cannot Be Diagonal

¥ ¥
X 1 X 0 1
0| O 1 0| 0 1
14U 1 1[4 1
a) Incormrect b) Correct

FIGURE 3A.6 Groups Must Be Powers of 2

¥y ¥y
X 0 1 X 0 1
0| o i 0| 0 1
1 1 1|14 1
a) Incorrect b) Correct

FIGURE 3A.7 Groups Must Be as Large as Possible

To simplify using Kmaps, first create the groups as specified by the rules above. After you have found all
groups, examine each group and discard the variable that differs within each group. For example, Figure 3A.7b
shows the correct grouping for F(x,y) = x + y. Let’s begin with the group represented by the second row (where x
= 1). The two minterms are xy' and xy. This group represents the logical OR of these two terms, or xy' + xy. These
terms differ in y, so y is discarded, leaving only x. (We can see that if we use Boolean identities, this would reduce
to the same value. The Kmap allows us to take a shortcut, helping us to automatically discard the correct variable.)
The second group represents x'y + xy. These differ in x, so x is discarded, leaving y. If we OR the results of the
first group and the second group, we have x + y, which is the correct reduction of the original function, F.

3A.4 KMAP SIMPLIFICATION FOR THREE VARIABLES

Kmaps can be applied to expressions of more than two variables. In this focus section, we show three- and four-
variable Kmaps. These can be extended for situations that have five or more variables. We refer you to Maxfield
(1995) in the “Further Reading” section of this chapter for thorough and enjoyable coverage of Kmaps.

You already know how to set up Kmaps for expressions involving two variables. We simply extend this idea to
three variables, as indicated by Figure 3A.8.

The first difference you should notice is that two variables, y and z, are grouped together in the table. The
second difference is that the numbering for the columns is not sequential. Instead of labeling the columns as 00,
01, 10, 11 (a normal binary progression), we have labeled them 00, 01, 11, 10. The input values for the Kmap must
be ordered so that each minterm differs in only one variable from each neighbor. By using this order (for example,
01 followed by 11), the corresponding minterms, x'y'z and x'yz differ only in the y variable. Remember, to reduce,
we need to discard the variable that is different. Therefore, we must ensure that each group of two minterms
differs in only one variable.

yz
X 00 01 11 10

0| Xy~ | XL | XY | Xve
Xz | Xy'z XYZ XyZ'

=k

FIGURE 3A.8 Minterms and Kmap Format for Three Variables

The largest groups we found in our two-variable examples were composed of two 1s. It is possible to have
groups of four or even eight 1s, depending on the function. Let’s look at a couple of examples of map
simplification for expressions of three variables.

— EXAMPLE 3A.3 F(x,),2) = Xy'z + X'yz + xy'z + xyz

¥z

X 00 1l 11 10
0 0 1 1 0
1 0 1 1 0

We again follow the rules for making groups. You should see that you can make groups of two in several ways.
However, the rules stipulate that we must create the largest groups whose sizes are powers of two. There is one
group of four, so we group these as follows:

¥z

X 00 1 11 10
0 0 1 1 0
1 0 1 1 0

It is not necessary to create additional groups of two. The fewer groups you have, the fewer terms there will
be. Remember, we want to simplify the expression, and all we have to do is guarantee that every 1 is in some
group.

How, exactly, do we simplify when we have a group of four 1s? Two 1s in a group allowed us to discard one
variable. Four 1s in a group allows us to discard two variables: The two variables in which all four terms differ. In
the group of four from the preceding example, we have the following minterms: x'y'z, x'yz, xy'z, and xyz. These all
have z in common, but the x and y variables differ. So we discard x and y, leaving us with F(x,y,z) = z as the final
reduction. To see how this parallels simplification using Boolean identities, consider the same reduction using
identities. Note that the function is represented originally as the logical OR of the minterms with a value of 1.

Fixy2) =x'yz + x'yz + x3'z + xy2

=x'(y'z +yo) +x(y'z + y2)
(x'+ x)(y'z + y2)
=y'z+yz

'+ ¥)z

4,

The end result using Boolean identities is exactly the same as the result using map simplification.
From time to time, the grouping process can be a little tricky. Let’s look at an example that requires more
scrutiny.

— EXAMPLE 3A.4 F(x,y,2) = X'y'7 + Xy'z + Xyz + X'yz' + xy'7' + xyz'

yz

X 00 o 11 10
0 1 1 1 1
1 1 0 0 1

This is a tricky problem for two reasons: We have overlapping groups, and we have a group that “wraps
around.” The leftmost 1s in the first column can be grouped with the rightmost 1s in the last column, because the
first and last columns are logically adjacent (envision the map as being drawn on a cylinder). The first and last
rows of a Kmap are also logically adjacent, which becomes apparent when we look at four-variable maps in the
next section.

The correct groupings are as follows:

¥z
X 00 4] 11 10
0 1) 1 1 (1
1 1 0 0 1

The first group reduces to x' (this is the only term the four have in common), and the second group reduces to Z,
so the final minimized function is F(x,y,z) = x' + Z'.

— EXAMPLE 3A.5 Suppose we have a Kmap with all 1s:

yz

X 00 o1 11 10
0 1 1 1 1
1 1 1 1 1

The largest group of 1s we can find is a group of eight, which puts all of the 1s in the same group. How do we
simplify this? We follow the same rules we have been following. Remember, groups of two allowed us to discard
one variable, and groups of four allowed us to discard two variables; therefore, groups of eight should allow us to
discard three variables. But that’s all we have! If we discard all the variables, we are left with F(x,y,z) = 1. If you
examine the truth table for this function, you see that we do indeed have a correct simplification.

yz

WX 00 o1 11 10
00(WXYZ |WXYZE | WXYZ |WXYE
M | WXY'Z | WXY'Z | WXYZ | WXYZ
1| WXYZ | WXY'Z | WXYZ | WXYZ'
10| WX'YZ' | WX'YZ | WX'YZ | WX'YZ

FIGURE 3A.9 Minterms and Kmap Format for Four Variables

3A.5 KMAP SIMPLIFICATION FOR FOUR VARIABLES

We now extend the map simplification techniques to four variables. Four variables give us 16 minterms, as shown

in Figure 3A.9. Notice that the special order of 11 followed by 10 applies for the rows as well as the columns.
Example 3A.6 illustrates the representation and simplification of a function with four variables. We are only
concerned with the terms that are 1s, so we omit entering the Os into the map.

— EXAMPLE 3A.6 F(w,x,y,z) = WXy'Z' + WX'y'z + wX'yz' + wxyz + wx'y'z + wx'y'z + wx'yz'

Group 1
yz
WX 0a o 11 10
00 1 1 1
o1 { |*T Group 3

1
10 1 1 1

r\

Group 2

Group 1 is a “wraparound” group, as we saw previously. Group 3 is easy to find as well. Group 2 represents
the ultimate wraparound group: It consists of the 1s in the four corners. Remember, these corners are logically
adjacent. The final result is that F reduces to three terms, one from each group: x'y' (from Group 1), x'z' (from
Group 2), and w'yz' (from Group 3). The final reduction for F is then F(w,x,y,z) = X'y' + X'z’ + w'yz'.

Occasionally, there are choices to make when performing map simplification. Consider Example 3A.7.

— EXAMPLE 3A.7 A choice of groups

yz
WX 00 01 11 10

00 1 1

i) 1 1 1

11 1

10 1

The first column should clearly be grouped. Also, the w'x'yz and w'xyz terms should be grouped. However, we
have a choice as to how to group the w'xyz' term. It could be grouped with w'xyz or with w'xy'z’ (as a wraparound).
These two solutions are as follows.

¥z ¥z

wx 0o 1] il 10 Wx 00 o 11 10
0o 1 1 00 1 1
01 1 1 1 01 1 1 1
11 1 1 1
10 1 10 1

The first map simplifies to F(w,x,y,z) = F, = y'z' + w'yz + w'xy. The second map simplifies to F(w,x,y,z) = F, =
y'zZ' + wyz + wxz'. The last terms are different. F, and F,, however, are equivalent. We leave it up to you to

produce the truth tables for F, and F, to check for equality. They both have the same number of terms and

variables as well. If we follow the rules, Kmap minimization results in a minimized function (and thus a minimal
circuit), but these minimized functions need not be unique in representation.

Before we move on to the next section, here are the rules for Kmap simplification.

The groups can only contain 1s, no 0s.

Only 1s in adjacent cells can be grouped; diagonal grouping is not allowed.
The number of 1s in a group must be a power of 2.

The groups must be as large as possible while still following all rules.

All 1s must belong to a group, even if it is a group of one.

Overlapping groups are allowed.

Wraparounds are allowed.

NS RewWNE

Use the fewest number of groups possible.

Using these rules, let’s complete one more example for a four-variable function. Example 3A.8 shows several
applications of the various rules.

— EXAMPLE 3A.8
w&g 00 01 11 10

oo| (1 1

o1 1 1

11 1 1
10) | 1

In this example, we have one group with a single element. Note that there is no way to group this term with
any others if we follow the rules. The function represented by this Kmap simplifies to F(w,x,y,z) = yz + xz + w'x'y'z
"+ wx'y.

If you are given a function that is not written as a sum of minterms, you can still use Kmaps to help minimize
the function. However, you have to use a procedure that is somewhat the reverse of what we have been doing to
set up the Kmap before reduction can occur. Example 3A.9 illustrates this procedure.

— EXAMPLE 3A.9 A function not represented as a sum of minterms

Suppose you are given the function F(w,x,y,z) = w'xy + w'X'yz + w'x'yz'. The last two terms are minterms, and
we can easily place 1s in the appropriate positions in the Kmap. However, the term w'xy is not a minterm. Suppose
this term were the result of a grouping you had performed on a Kmap. The term that was discarded was the z
term, which means this term is equivalent to the two terms w'xyz’ + w'xyz. You can now use these two terms in the
Kmap, because they are both minterms. We now get the following Kmap:

¥z

wx 00 01 11 10
00 1 1
o v | 3
11
10

So we know the function F(w,x,y,z) = w'xy + wX'yz + w'x'yz' simplifies to F(w,x,y,z) = w'y.

3A.6 DON’T CARE CONDITIONS

There are certain situations where a function may not be completely specified, meaning there may be some inputs
that are undefined for the function. For example, consider a function with four inputs that act as bits to count, in
binary, from O to 10 (decimal). We use the bit combinations 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111,
1000, 1001, and 1010. However, we do not use the combinations 1011, 1100, 1101, 1110, and 1111. These latter
inputs would be invalid, which means if we look at the truth table, these values wouldn’t be either O or 1. They
should not be in the truth table at all.

We can use these don’t care inputs to our advantage when simplifying Kmaps. Because they are input values
that should not matter (and should never occur), we can let them have values of either 0 or 1, depending on which
helps us the most. The basic idea is to set these don’t care values in such a way that they either contribute to make
a larger group, or they don’t contribute at all. Example 3A.10 illustrates this concept.

— EXAMPLE 3A.10 Don’t care conditions

Don’t care values are typically indicated with an “X” in the appropriate cell. The following Kmap shows how to
use these values to help with minimization. We treat the don’t care values in the first row as 1s to help form a
group of four. The don’t care values in rows 01 and 11 are treated as Os. This reduces to F,(w,x,),z) = w'x' + yz.

¥z

WX 00 o 11 10
00 X 1 1 X
4] X 1
11 X 1
10 1

There is another way these values can be grouped:

yz

WX 0o iy 1" 10
00 X 1 1 X
01 BE" I1]]

1 X 1
10 1

Using these groupings, we end up with a simplification of F,(w,x,y, z) = w'z + yz. Notice that in this case, F, and F,
are not equal. However, if you create the truth tables for both functions, you should see that they are not equal only

in those values for which we “don’t care.”

3A.7 SUMMARY

In this section, we have given a brief introduction to Kmaps and map simplification. Using Boolean identities for
reduction is awkward and can be very difficult. Kmaps, on the other hand, provide a precise set of steps to follow
to find the minimal representation of a function, and thus the minimal circuit that function represents.

EXERCISES
1. Write a simplified expression for the Boolean function defined by each of the following Kmaps:

+a)
yz
X 00 M 11 10
0 0 1 1 0
i 1 0 Q i
+h)
yz
X 00 M 11 10
0 0 1 1 1
1 1 0 a 0
cl
yz
X 00 M 11 10
0| 1 1 1 0

2. Write a simplified expression for the Boolean function defined by each of the following Kmaps:

a)

X 0o 1l 11 10

1 1 0 0 0
b)
¥z
X 00 o 1" 10
0 1 0 0 1
1 1 0 0 0
c)
¥z
X 00 L1 1 10
0 1 0 0 1

1 1 0 1 1

3. Create the Kmaps and then simplify for the following functions:
a) F(xyz)=Xy7 +Xyz+ xXyz
b) F(x,y,z) = x'y'7 + x'yz + xy'7' + xyz'
Q) F(xyz)=yz+yz+xyz
4. Write a simplified expression for the Boolean function defined by each of the following Kmaps:

+4a)

¥z
Wx 00 o 1 10
00 1 0 0 1
0 1 0 0
11 0 0 1
10 1 0 1
¢h)
F4
m\r\ 00 01 11 10
00 1 1 1 1
o 0 0 1 1
1 1 1 1
10 1 0 0 1
c)
yz
WX 00 01 11 10
00 0 1 0 1
o 0 1 1
11 1 1 0 Q
10 1 1 0 1

5. Write a simplified expression for the Boolean function defined by each of the following Kmaps (leave in
sum-of-products form):

al
yz
WX 00 4] 11 10
00 1 i 0 i
01 1 1 0 1
11 0 0 0 0
10 1 1 1

b

¥z

WX 00 o 11 10
00 0 1 1 0
o 1 1 1 1
1 0 0 1
10 0 1 1 0

c)

yz

WX 00 o 11 10
00 0 1 0 0
o 1 1 1 1
1 1 1 1 1
10 0 1 0 1

6. Create the Kmaps and then simplify for the following functions (leave in sum-of-products form):

@) F(w,x,y,z) = wXy'zZ + wx'yz + wxy'z + wxyz + wxyz + wx'y'z + wx'yz

+ b) F(w,x,y,2) = wxy'zZ + wX'y'z + wx'y'z + wx'yz' + wx'y'z
c) F(w,x,y,z) =yz+wy + wxy + wx'yz+ wx'yz

7. Create the Kmaps and then simplify for the following functions (leave in sum-of-products form):
a) F(wx,y,z) = wXy'z + wx'yzZ+ wxy'z + wxyz + wxyz' + wxy'z + wxyz + wx'y'z

b) F(w,x,y,z) = wX'y'z + wz + wX'yz' + wxy'z'+ wx'y

¢) Fwx,yz) = wXxy + wxz + wxz + wx'y'z

8. Given the following Kmap, show algebraically (using Boolean identities) how the four terms reduce to one
term.
yz
X 00 1] 11 10
0 0 1 1 0
1| © 1 1 0

9. Write a simplified expression for the Boolean function defined by each of the following Kmaps:

a)

0o

M

1

10

b)

¥z

Wx 00 o 1 10
00 1 1 1 |
o 0 X 1 X
1 0 0 X 0
10 1 0 X 1

10. Write a simplified expression for the Boolean function defined by each of the following Kmaps:
al

yz
X 00 o 11 10
0| X 0 0 1
1 1 1 X 1
b)
yz
WX 00 o 1 10
00 1 1 1 1
o X 0 1 X
1 0 0 0 0
10 0 1 X 0

11. Write a simplified expression for the Boolean function defined by each of the following Kmaps:
al

yz
X 00 o1 11 10
0 1 X 0 1
1 0 0 1 1
b)
Yz
WX 00 o 1 10
00 0 0 1 0
o ® 0 0 X
1 X 1 0 0
10 1 X 0 0

12. Find the minimized Boolean expression for the functions defined by each of the following truth tables:

al

b}

“When you wish to produce a result by means of an instrument, do not allow yourself to complicate it.”

—Leonardo da Vinci

CHAPTER 4

MARIE: An Introduction to a Simple Computer

4.1 INTRODUCTION

Designing a computer nowadays is a job for a computer engineer with plenty of training. It is impossible in an
introductory textbook such as this (and in an introductory course in computer organization and architecture) to
present everything necessary to design and build a working computer such as those we can buy today. However,
in this chapter, we first look at a very simple computer called MARIE: a Machine Architecture that is Really
Intuitive and Easy. We then provide brief overviews of Intel and MIPs machines, two popular architectures
reflecting the CISC and RISC design philosophies. The objective of this chapter is to give you an understanding of
how a computer functions. We have, therefore, kept the architecture as uncomplicated as possible, following the
advice in the opening quote by Leonardo da Vinci.

4.2 CPU BASICS AND ORGANIZATION

From our studies in Chapter 2 (data representation), we know that a computer must manipulate binary-coded data.
We also know from Chapter 3 that memory is used to store both data and program instructions (also in binary).
Somehow, the program must be executed and the data must be processed correctly. The central processing unit
(CPU) is responsible for fetching program instructions, decoding each instruction that is fetched, and performing
the indicated sequence of operations on the correct data. To understand how computers work, you must first
become familiar with their various components and the interaction among these components. To introduce the
simple architecture in the next section, we first examine, in general, the microarchitecture that exists at the control
level of modern computers.

All computers have a CPU that can be divided into two pieces. The first is the datapath, which is a network of
storage units (registers) and arithmetic and logic units (for performing various operations on data) connected by
buses (capable of moving data from place to place) where the timing is controlled by clocks. The second CPU
component is the control unit, a module responsible for sequencing operations and making sure the correct data
are where they need to be at the correct time. Together, these components perform the tasks of the CPU: fetching
instructions, decoding them, and finally performing the indicated sequence of operations. The performance of a
machine is directly affected by the design of the datapath and the control unit. Therefore, we cover these
components of the CPU in detail in the following sections.

4.2.1 The Registers

Registers are used in computer systems as places to store a wide variety of data, such as addresses, program
counters, and data necessary for program execution. Put simply, a register is a hardware device that stores binary
data. Registers are located on the processor so information can be accessed very quickly. We saw in Chapter 3 that
D flip-flops can be used to implement registers. One D flip-flop is equivalent to a 1-bit register, so a collection of D
flip-flops is necessary to store multi-bit values. For example, to build a 16-bit register, we need to connect 16 D
flip-flops together. We saw in our binary counter figure from Chapter 3 that these collections of flip-flops must be
clocked to work in unison. At each pulse of the clock, input enters the register and cannot be changed (and thus is
stored) until the clock pulses again.

Data processing on a computer is usually done on fixed-size binary words stored in registers. Therefore, most
computers have registers of a certain size. Common sizes include 16, 32, and 64 bits. The number of registers in a

machine varies from architecture to architecture, but is typically a power of 2, with 16, 32, and 64 being most
common. Registers contain data, addresses, or control information. Some registers are specified as “special
purpose” and may contain only data, only addresses, or only control information. Other registers are more generic
and may hold data, addresses, and control information at various times.

Information is written to registers, read from registers, and transferred from register to register. Registers are
not addressed in the same way memory is addressed (recall that each memory word has a unique binary address
beginning with location 0). Registers are addressed and manipulated by the control unit itself.

In modern computer systems, there are many types of specialized registers: registers to store information,
registers to shift values, registers to compare values, and registers that count. There are “scratchpad” registers that
store temporary values, index registers to control program looping, stack pointer registers to manage stacks of
information for processes, status (or flag) registers to hold the status or mode of operation (such as overflow,
carry, or zero conditions), and general-purpose registers that are the registers available to the programmer. Most
computers have register sets, and each set is used in a specific way. For example, the Pentium architecture has a
data register set and an address register set. Certain architectures have very large sets of registers that can be used
in quite novel ways to speed up execution of instructions. (We discuss this topic when we cover advanced
architectures in Chapter 9.)

4.2.2 The ALU

The arithmetic logic unit (ALU) carries out the logic operations (such as comparisons) and arithmetic operations
(such as add or multiply) required during the program execution. You saw an example of a simple ALU in Chapter
3. Generally, an ALU has two data inputs and one data output. Operations performed in the ALU often affect bits in
the status register (bits are set to indicate actions such as whether an overflow has occurred). The ALU knows
which operations to perform because it is controlled by signals from the control unit.

4.2.3 The Control Unit

The control unit is the “policeman” or “traffic manager” of the CPU. It monitors the execution of all instructions
and the transfer of all information. The control unit extracts instructions from memory, decodes these instructions,
making sure data are in the right place at the right time, tells the ALU which registers to use, services interrupts,
and turns on the correct circuitry in the ALU for the execution of the desired operation. The control unit uses a
program counter register to find the next instruction for execution and a status register to keep track of
overflows, carries, borrows, and the like. Section 4.13 covers the control unit in more detail.

4.3 THE BUS

The CPU communicates with the other components via a bus. A bus is a set of wires that acts as a shared but
common datapath to connect multiple subsystems within the system. It consists of multiple lines, allowing the
parallel movement of bits. Buses are low cost but very versatile, and they make it easy to connect new devices to
each other and to the system. At any one time, only one device (be it a register, the ALU, memory, or some other
component) may use the bus. However, this sharing often results in a communications bottleneck. The speed of
the bus is affected by its length as well as by the number of devices sharing it. Quite often, devices are divided into
master and slave categories; a master device is one that initiates actions and a slave is one that responds to
requests by a master.

A bus can be point-to-point, connecting two specific components (as seen in Figure 4.1a) or it can be a
common pathway that connects a number of devices, requiring these devices to share the bus (referred to as a
multipoint bus and shown in Figure 4.1b).

Serial
Port

Control
Unit

Modem

a)

Printer
b) @
Computer 1
Computer 2 Fos “—T!:rﬁ ﬂﬂ;—f-’g
Server 0

|

(===

CPU | & Disk
Memaory

Controller

Monitor Disk
Controller

FIGURE 4.1 a) Point-to-Point Buses
b) Multipoint Buses

Because of this sharing, the bus protocol (set of usage rules) is very important. Figure 4.2 shows a typical bus
consisting of data lines, address lines, control lines, and power lines. Often the lines of a bus dedicated to moving
data are called the data bus. These data lines contain the actual information that must be moved from one location
to another. Control lines indicate which device has permission to use the bus and for what purpose (reading or
writing from memory or from an input/output [I/O] device, for example). Control lines also transfer
acknowledgments for bus requests, interrupts, and clock synchronization signals. Address lines indicate the
location (e.g., in memory) that the data should be either read from or written to. The power lines provide the
electrical power necessary. Typical bus transactions include sending an address (for a read or write), transferring
data from memory to a register (a memory read), and transferring data to the memory from a register (a memory
write). In addition, buses are used for I/0 reads and writes from peripheral devices. Each type of transfer occurs
within a bus cycle, the time between two ticks of the bus clock.

Because of the different types of information buses transport and the various devices that use the buses, buses
themselves have been divided into different types. Processor-memory buses are short, high-speed buses that are
closely matched to the memory system on the machine to maximize the bandwidth (transfer of data) and are
usually design specific. I/O buses are typically longer than processor-memory buses and allow for many types of
devices with varying bandwidths. These buses are compatible with many different architectures. A backplane bus
(Figure 4.3) is actually built into the chassis of the machine and connects the processor, the I/O devices, and the
memory (so all devices share one bus). Many computers have a hierarchy of buses, so it is not uncommon to have
two buses (e.g., a processor-memory bus and an I/O bus) or more in the same system. High-performance systems
often use all three types of buses.

Power
CPU .
> Address Lines
{; 2 € ! , Data Lines Main

\L/ [_]E 4 A Control Lines Memory

([YYY vvvy)
/O /O
Device Device
IO Subsystem
. A

FIGURE 4.2 The Components of a Typical Bus

S
B i e
B e
_--"___,_,_,--':___,_,—F"-___,—'-"'_:__-'-'"_'—_,__,--"_ ™ ___,_,-'-:
=
I—I '—.:P e
— T
5::_3 - 1 :::l
(== E =
e

\.I \
(1]
IFRVRY,

Interface
Cards

FIGURE 4.3 Backplane Bus

Personal computers have their own terminology when it comes to buses. They have an internal bus (called the
system bus) that connects the CPU, memory, and all other internal components. External buses (sometimes
referred to as expansion buses) connect external devices, peripherals, expansion slots, and I/O ports to the rest of
the computer. Most PCs also have local buses, data buses that connect a peripheral device directly to the CPU.
These high-speed buses can be used to connect only a limited number of similar devices. Expansion buses are
slower but allow for more generic connectivity. Chapter 7 deals with these topics in great detail.

Buses are physically little more than bunches of wires, but they have specific standards for connectors, timing,
and signaling specifications and exact protocols for use. Synchronous buses are clocked, and things happen only
at the clock ticks (a sequence of events is controlled by the clock). Every device is synchronized by the rate at
which the clock ticks, or the clock rate. The bus cycle time mentioned is the reciprocal of the bus clock rate. For
example, if the bus clock rate is 133MHz, then the length of the bus cycle is 1/133,000,000 or 7.52 nanoseconds
(ns). Because the clock controls the transactions, any clock skew (drift in the clock) has the potential to cause
problems, implying that the bus must be kept as short as possible so the clock drift cannot get overly large. In
addition, the bus cycle time must not be shorter than the length of time it takes information to traverse the bus. The
length of the bus, therefore, imposes restrictions on both the bus clock rate and the bus cycle time.

With asynchronous buses, control lines coordinate the operations, and a complex handshaking protocol
must be used to enforce timing. To read a word of data from memory, for example, the protocol would require
steps similar to the following:

1. ReqREAD: This bus control line is activated and the data memory address is put on the appropriate bus lines at
the same time.

2. ReadyDATA: This control line is asserted when the memory system has put the required data on the data lines
for the bus.

3. ACK: This control line is used to indicate that the ReqREAD or the ReadyDATA has been acknowledged.

Using a protocol instead of the clock to coordinate transactions means that asynchronous buses scale better with
technology and can support a wider variety of devices.

To use a bus, a device must reserve it, because only one device can use the bus at a time. As mentioned, bus
masters are devices that are allowed to initiate transfer of information (control bus), and bus slaves are modules
that are activated by a master and respond to requests to read and write data (so only masters can reserve the bus).
Both follow a communications protocol to use the bus, working within very specific timing requirements. In a very
simple system (such as the one we present in the next section), the processor is the only device allowed to become

a bus master. This is good in terms of avoiding chaos, but bad because the processor now is involved in every
transaction that uses the bus.

In systems with more than one master device, bus arbitration is required. Bus arbitration schemes must
provide priority to certain master devices and, at the same time, make sure lower priority devices are not starved
out. Bus arbitration schemes fall into four categories:

1. Daisy chain arbitration: This scheme uses a “grant bus” control line that is passed down the bus from the
highest priority device to the lowest priority device. (Fairness is not ensured, and it is possible that low-priority
devices are “starved out” and never allowed to use the bus.) This scheme is simple but not fair.

2. Centralized parallel arbitration: Each device has a request control line to the bus and a centralized arbiter
selects who gets the bus. Bottlenecks can result using this type of arbitration.

3. Distributed arbitration using self-selection: This scheme is similar to centralized arbitration but instead of a
central authority selecting who gets the bus, the devices themselves determine who has highest priority and
who should get the bus.

4. Distributed arbitration using collision detection: Each device is allowed to make a request for the bus. If
the bus detects any collisions (multiple simultaneous requests), the device must make another request.
(Ethernet uses this type of arbitration.)

Chapter 7 contains more detailed information on buses and their protocols.

4.4 CLOCKS

Every computer contains an internal clock that regulates how quickly instructions can be executed. The clock also
synchronizes all of the components in the system. As the clock ticks, it sets the pace for everything that happens
in the system, much like a metronome or a symphony conductor. The CPU uses this clock to regulate its progress,
checking the otherwise unpredictable speed of the digital logic gates. The CPU requires a fixed number of clock
ticks to execute each instruction. Therefore, instruction performance is often measured in clock cycles—the time
between clock ticks—instead of seconds. The clock frequency (sometimes called the clock rate or clock speed)
is measured in megahertz (MHz) or gigahertz (GHz), as we saw in Chapter 1. The clock cycle time (or clock
period) is simply the reciprocal of the clock frequency. For example, an 800MHz machine has a clock cycle time
of 1/800,000,000 or 1.25ns. If a machine has a 2ns cycle time, then it is a 500MHz machine.

Most machines are synchronous: there is a master clock signal, which ticks (changing from 0 to 1 to 0 and so
on) at regular intervals. Registers must wait for the clock to tick before new data can be loaded. It seems
reasonable to assume that if we speed up the clock, the machine will run faster. However, there are limits on how
short we can make the clock cycles. When the clock ticks and new data are loaded into the registers, the register
outputs are likely to change. These changed output values must propagate through all the circuits in the machine
until they reach the input of the next set of registers, where they are stored. The clock cycle must be long enough
to allow these changes to reach the next set of registers. If the clock cycle is too short, we could end up with
some values not reaching the registers. This would result in an inconsistent state in our machine, which is
definitely something we must avoid. Therefore, the minimum clock cycle time must be at least as great as the
maximum propagation delay of the circuit, from each set of register outputs to register inputs. What if we
“shorten” the distance between registers to shorten the propagation delay? We could do this by adding registers
between the output registers and the corresponding input registers. But recall that registers cannot change values
until the clock ticks, so we have, in effect, increased the number of clock cycles. For example, an instruction that
would require two clock cycles might now require three or four (or more, depending on where we locate the
additional registers).

Most machine instructions require one or two clock cycles, but some can take 35 or more. We present the
following formula to relate seconds to cycles:

e seconds instructions _ average cycles seconds
CPU time = = e — : X
program program instruction cycle

It is important to note that the architecture of a machine has a large effect on its performance. Two machines with
the same clock speed do not necessarily execute instructions in the same number of cycles. For example, a
multiply operation on an older Intel 286 machine required 20 clock cycles, but on a new Pentium, a multiply
operation can be done in 1 clock cycle, which implies that the newer machine would be 20 times faster than the
286, even if they both had the same internal system clock. In general, multiplication requires more time than
addition, floating-point operations require more cycles than integer ones, and accessing memory takes longer than
accessing registers.

Generally, when we mention the clock, we are referring to the system clock, or the master clock that
regulates the CPU and other components. However, certain buses also have their own clocks. Bus clocks are
usually slower than CPU clocks, causing bottleneck problems.

System components have defined performance bounds, indicating the maximum time required for the
components to perform their functions. Manufacturers guarantee that their components will run within these
bounds in the most extreme circumstances. When we connect all of the components together serially, where one
component must complete its task before another can function properly, it is important to be aware of these
performance bounds so we are able to synchronize the components properly. However, many people push the
bounds of certain system components in an attempt to improve system performance. Overclocking is one method
people use to achieve this goal.

Although many components are potential candidates, one of the most popular components for overclocking is
the CPU. The basic idea is to run the CPU at clock and/or bus speeds above the upper bound specified by the
manufacturer. Although this can increase system performance, one must be careful not to create system timing
faults or, worse yet, overheat the CPU. The system bus can also be overclocked, which results in overclocking the
various components that communicate via the bus. Overclocking the system bus can provide considerable
performance improvements, but can also damage the components that use the bus or cause them to perform
unreliably.

4.5 THE INPUT/OUTPUT SUBSYSTEM

Input and output (I/0) devices allow us to communicate with the computer system. I/O is the transfer of data
between primary memory and various I/O peripherals. Input devices such as keyboards, mice, card readers,
scanners, voice recognition systems, and touch screens allow us to enter data into the computer. Output devices
such as monitors, printers, plotters, and speakers allow us to get information from the computer.

These devices are not connected directly to the CPU. Instead, there is an interface that handles the data
transfers. This interface converts the system bus signals to and from a format that is acceptable to the given
device. The CPU communicates to these external devices via I/O registers. This exchange of data is performed in
two ways. In memory-mapped I/0, the registers in the interface appear in the computer’s memory map and there
is no real difference between accessing memory and accessing an I/0O device. Clearly, this is advantageous from
the perspective of speed, but it uses up memory space in the system. With instruction-based 1/0, the CPU has
specialized instructions that perform the input and output. Although this does not use memory space, it requires
specific I/0 instructions, which implies that it can be used only by CPUs that can execute these specific
instructions. Interrupts play a very important part in I/O, because they are an efficient way to notify the CPU that
input or output is available for use. We explore these I/0 methods in detail in Chapter 7.

4.6 MEMORY ORGANIZATION AND ADDRESSING

We saw an example of a rather small memory in Chapter 3. In this chapter, we continue to refer to very small
memory sizes (so small that any reasonable person today would consider them to be ridiculously small in any
modern computing device). However, smaller memories make the numbers manageable, and the principles we
discuss in this chapter apply to small and large memories alike. These principles include how memory is laid out
and how it is addressed. It is important that you have a good understanding of these concepts before we continue.

You can envision memory as a matrix of bits. Each row, implemented by a register, has a length typically
equivalent to the addressable unit size of the machine. Each register (more commonly referred to as a memory
location) has a unique address; memory addresses usually start at zero and progress upward. Figure 4.4 illustrates
this concept.

An address is typically represented by an unsigned integer. Recall from Chapter 2 that four bits are a nibble and
eight bits are a byte. Normally, memory is byte addressable, which means that each individual byte has a unique
address. Some machines may have a word size that is larger than a single byte. For example, a computer might
handle 32-bit words (which means it can manipulate 32 bits at a time through various instructions and it uses 32-
bit registers) but still employ a byte-addressable architecture. In this situation, when a word uses multiple bytes,
the byte with the lowest address determines the address of the entire word. It is also possible that a computer
might be word addressable, which means each word (not necessarily each byte) has its own address, but most
current machines are byte addressable (even though they have 32-bit or larger words). A memory address is
typically stored in a single machine word.

If all this talk about machines using byte addressing with words of different sizes has you somewhat confused,
the following analogy may help. Memory is similar to a street full of apartment buildings. Each building (word) has
multiple apartments (bytes), and each apartment has its own address. All of the apartments are numbered
sequentially (addressed), from 0 to the total number of apartments in the complex minus one. The buildings
themselves serve to group the apartments. In computers, words do the same thing. Words are the basic unit of size
used in various instructions. For example, you may read a word from or write a word to memory, even on a byte-
addressable machine.

Address <€ 8-bit Address <€ 16-hit >
0 0
1 1
2 2
3 3
N-1 M=-1
a) b)

FIGURE 4.4 a) N 8-Bit Memory Locations
b) M 16-Bit Memory Locations

If an architecture is byte addressable, and the instruction set architecture word is larger than 1 byte, the issue
of alignment must be addressed. For example, if we wish to read a 32-bit word on a byte-addressable machine,
we must make sure that (1) the word is stored on a natural alignment boundary, and (2) the access starts on that
boundary. This is accomplished, in the case of 32-bit words, by requiring the address to be a multiple of 4. Some
architectures allow certain instructions to perform unaligned accesses, where the desired address does not have to
start on a natural boundary.

Memory is built from random access memory (RAM) chips. (We cover memory in detail in Chapter 6.)
Memory is often referred to using the notation length x width (L. x W). For example, 4M X 8 means the memory is
4M long (it has 4M = 22 x 220 = 222 jtems) and each item is 8 bits wide (which means that each item is a byte). To

address this memory (assuming byte addressing), we need to be able to uniquely identify 2% different items, which
means we need 2% different addresses. Because addresses are unsigned binary numbers, we need to count from 0
to (22 — 1) in binary. How many bits does this require? Well, to count from O to 3 in binary (for a total of four
items), we need 2 bits. To count from 0 to 7 in binary (for a total of eight items), we need 3 bits. To count from 0
to 15 in binary (for a total of 16 items), we need 4 bits. Do you see a pattern emerging here? Can you fill in the
missing value for Table 4.1?

The correct answer to the missing table entry is 5 bits. What is actually important when calculating how many
bits a memory address must contain is not the length of the addressable unit but rather the number of addressable
units. The number of bits required for our 4M memory is 22. Because most memories are byte addressable, we say
we need N bits to uniquely address each byte. In general, if a computer has 2~ addressable units of memory, it
requires N bits to uniquely address each unit.

To better illustrate the difference between words and bytes, suppose the 4M x 8 memory referred to in the
previous example were word addressable instead of byte addressable and each word were 16 bits long. There are
22 unique bytes, which implies there are 222 + 2 = 22! total words, which would require 21, not 22, bits per
address. Each word would require two bytes, but we express the address of the entire word by using the lower
byte address.

Although most memory is byte addressable and 8 bits wide, memory can vary in width. For example, a 2K x
16 memory holds 2!' = 2048 16-bit items. This type of memory is typically used on a word-addressable
architecture with 16-bit words.

Main memory is usually larger than one RAM chip. Consequently, these chips are combined into a single
memory of the desired size. For example, suppose you need to build a 32K x 8 byte-addressable memory and all
you have are 2K x 8 RAM chips. You could connect 16 rows of chips together as shown in Figure 4.5.

Total ltems 2 4 8 | 16 | 32
Total as a Power of 2 o1 | 92 | 23 | o4 | 95
Mumber of Address Bits | 1 2 3 4 | ??

TABLE 4.1 Calculating the Address Bits Required

Row 0 2K % 8
Row 1 2K x 8
Row 15 2K % 8

FIGURE 4.5 Memory as a Collection of RAM Chips

Each chip addresses 2K bytes. Addresses for this memory must have 15 bits (there are 32K = 2° x 210 bytes to
access). But each chip requires only 11 address lines (each chip holds only 2! bytes). In this situation, a decoder is

needed to decode either the leftmost or rightmost 4 bits of the address to determine which chip holds the desired
data. Once the proper chip has been located, the remaining 11 bits are used to determine the offset on that chip.
Whether we use the 4 leftmost or 4 rightmost bits depends on how the memory is interleaved. (Note: We could
also build a 16K x 16 memory using 8 rows of 2 RAM chips each. If this memory were word addressable,
assuming 16-bit words, an address for this machine would have only 14 bits.)

A single memory module causes sequentialization of access (only one memory access can be performed at a
time). Memory interleaving, which splits memory across multiple memory modules (or banks), in which multiple
banks can be accessed simultaneously, can be used to help relieve this. The number of banks is determined solely
by how many addressable items we have, not by the size of each addressable item. Each bank, when accessed,
will return a word the size of the addressable unit for that architecture. If memory is 8-way interleaved, the
memory is implemented using 8 modules, numbered 0 through 7. With low-order interleaving, the low-order bits
of the address are used to select the bank; in high-order interleaving, the high-order bits of the address are used.

Suppose we have a byte-addressable memory consisting of 8 modules of 4 bytes each, for a total of 32 bytes
of memory. We need 5 bits to uniquely identify each byte. Three of these bits are used to determine the module
(we have 22 = 8 modules), and the remaining two are used to determine the offset within that module. High-order
interleaving, the most intuitive organization, distributes the addresses so that each module contains consecutive
addresses, as we see with the 32 addresses in Figure 4.6a. Module 0 contains the data stored at addresses 0, 1, 2,
and 3; module 1 contains the data stored at addresses 4, 5, 6, and 7; and so on. We see the address structure for
an address in this memory using high-order interleaving in Figure 4.6b. This tells us that the first three bits of an
address should be used to determine the memory module, whereas the two remaining bits are used to determine the
offset within the module. Figure 4.6c shows us a more detailed view of what the first two modules of this memory
look like for high-order interleaving. Consider address 3, which in binary (using our required 5 bits), is 00011.
High-order interleaving uses the leftmost three bits (000) to determine the module (so the data at address 3 is in
module 0). The remaining two bits (11) tell us that the desired data is at offset 3 (11, is decimal value 3), the last

address in module 0.

Module 0 Module 1 Module2 Module3 Moduled Module5 Module6 Module7
0 4 8 12 16 20 24 28
1 5 9 13 17 21 25 29
2 3] 10 14 18 22 26 20
3 7 11 15 19 23 27 31
a)
3 bits 2 bits
Module number Offset in module
b) - 5 bits >
Decimal Address Split
Word Binary per Given Module Offset in
Module Address Address Structure Number Module
Module 0O 0 00000 000 00 0 0
1 Q001 Qo0 01 B 1
2 00010 000 10 0 2
3 00011 000 11] 3
Module 1 4 00100 001 00 1 0
5 00101 001 41 1 1
& 00110 001 10 1 2
c) 7 00111 001 11 1 3

FIGURE 4.6 a) High-Order Memory Interleaving

b) Address Structure
c¢) First Two Modules

Low-order interleaved memory places consecutive addresses of memory in different memory modules. Figure
4.7 shows low-order interleaving on 32 addresses. We see the address structure for an address in this memory
using low-order interleaving in Figure 4.7b. The first two modules of this memory are shown in Figure 4.7c. In
this figure, we see that module 0 now contains the data stored at addresses 0, 8, 16, and 24. To locate address 3
(00011), low-order interleaving uses the rightmost 3 bits to determine the module (which points us to module 3),
and the remaining two bits, 00, tell us to look at offset zero within that module. If you check module 3 in Figure
4.7, this is precisely where we find address 3.

For both low- and high-order interleaving, there is a relationship between k (the number of bits used to identify
the module) and the order of inter leaving: 4-way interleaving uses k = 2; 8-way interleaving uses k = 3; 16-way
interleaving uses k = 4; and in general, for n-way interleaving, we note that n = 2%, (This relationship is reinforced

in Chapter 6.)

Module 0 Module 1 Module2 Module3 Moduled4 Module5 Module& Module7

0 1 2 3 4 5 (5] 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
} 24 25 26 27 28 29 30 31
a
2 bits 3 bits
Offset in Module Module Number
b) - 5 bits >
Decimal Address Split
Word Binary per Given Offset in Module
Module Address Address Structure Module Number
Module 0O 0 00000 00 000 0 0
8 01000 01 000 1 0
16 10000 10 000 2 0
24 11000 131 GO0 3 0
Module 1 1 00001 00 001 0 1
9 01001 01 001 1 1
10001 10 001 2 1
c) 25 11001 11 401 3 1

FIGURE 4.7 a) Low-Order Memory Interleaving
b) Address Structure
c¢) First Two Modules

With the appropriate buses using low-order interleaving, a read or write using one module can be started before
a read or write using another module actually completes. (Reads and writes can be overlapped.) For example, if an
array of length 4 is stored in the example of memory using high-order interleaving (stored at addresses 0, 1, 2, and
3), we are forced to access each array element sequentially, as the entire array is stored in one module. If,
however, low-order interleaving is used (and the array is stored in modules 0, 1, 2, and 3 at offset 0 in each), we
can access the array elements in parallel because each array element is in a different module.

— EXAMPLE 4.1 Suppose we have a 128-word memory that is 8-way low-order interleaved (please note that the
size of a word is not important in this example), which means it uses 8 memory banks; 8 = 23, so we use the low-
order 3 bits to identify the bank. Because we have 128 words, we need 7 bits for each address (128 = 27).
Therefore, an address in this memory has the following structure:

4 bits 3 bits
Offset in Module Module Number

< 7 bits >

Note that each module must be of size 2¢. We can reach this conclusion two ways. First, if memory is 128 words,
and we have 8 modules, then 128/8 = 27/23 = 2% (so each module holds 16 words). We can also see from the
address structure that the offset in the module required 4 bits, allowing for 2 = 16 words per module.

What would change if Example 4.1 used high-order interleaving instead? We leave this as an exercise.

Let’s return to the memory shown in Figure 4.5, a 32K x 8 memory consisting of 16 chips (modules) of size
2K x 8 each. Memory is 32K = 2° x 210 = 215 addressable units (in this case, bytes), which means we need 15 bits
for each address. Each chip holds 2K = 2!! bytes, so 11 bits are used to determine the offset on the chip. There are
16 = 24 chips, so we need 4 bits to determine the chip. Consider the address 001000000100111. Using high-order
interleaving, we use the 4 leftmost bits to determine the chip, and the remaining 11 as the offset:

4 bits 11 bits
0010 00000100111
Chip Offset on Chip
< 15 bits !

The data at address 001000000100111 is stored on chip 2 (0010,) at offset 39 (00000100111,). If we use low-
order interleaving, the rightmost 4 bits are used to determine the chip:

11 bits 4 bits
00100000010 0111
Offset on Chip Chip
- 15 bits 2

So the data, using low-order interleaving, is stored on chip 7 (0111,) at offset 258 (00100000010,).

Although low-order interleaving allows for concurrent access of data stored sequentially in memory (such as
an array or the instructions in a program), high-order interleaving is more intuitive. Therefore, for the remainder of
the text, we assume high-order interleaving is being used.

The memory concepts we have covered are very important and appear in various places in the remaining
chapters, in particular in Chapter 6, which discusses memory in detail. The key concepts to focus on are: (1)
Memory addresses are unsigned binary values (although we often view them as hex values because it is easier),
and (2) The number of items to be addressed, NOT the size of the item, determines the numbers of bits that occur
in the address. Although we could always use more bits for the address than required, that is seldom done because
minimization is an important concept in computer design.

4.7 INTERRUPTS

We have introduced the basic hardware information required for a solid understanding of computer architecture:
the CPU, buses, control unit, registers, clocks, I/0, and memory. However, there is one more concept we need to
cover that deals with how these components interact with the processor: Interrupts are events that alter (or
interrupt) the normal flow of execution in the system. An interrupt can be triggered for a variety of reasons,
including;:

* I/O requests

* Arithmetic errors (e.g., division by 0)

 Arithmetic underflow or overflow

* Hardware malfunction (e.g., memory parity error)

+ User-defined break points (such as when debugging a program)
» Page faults (this is covered in detail in Chapter 6)

* Invalid instructions (usually resulting from pointer issues)

* Miscellaneous

The actions performed for each of these types of interrupts (called interrupt handling) are very different. Telling
the CPU that an I/O request has finished is much different from terminating a program because of division by 0.
But these actions are both handled by interrupts because they require a change in the normal flow of the program’s
execution.

An interrupt can be initiated by the user or the system, can be maskable (disabled or ignored) or
nonmaskable (a high-priority interrupt that cannot be disabled and must be acknowledged), can occur within or
between instructions, may be synchronous (occurs at the same place every time a program is executed) or
asynchronous (occurs unexpectedly), and can result in the program terminating or continuing execution once the
interrupt is handled. Interrupts are covered in more detail in Section 4.9.2 and in Chapter 7.

Now that we have given a general overview of the components necessary for a computer system to function,
we proceed by introducing a simple, yet functional, architecture to illustrate these concepts.

4.8 MARIE

MARIE, a Machine Architecture that is Really Intuitive and Easy, is a simple architecture consisting of memory (to
store programs and data) and a CPU (consisting of an ALU and several registers). It has all the functional
components necessary to be a real working computer. MARIE will help to illustrate the concepts in this and the
preceding three chapters. We describe MARIE’s architecture in the following sections.

4.8.1 The Architecture

MARIE has the following characteristics:

* Binary, two’s complement

» Stored program, fixed word length

* Word (but not byte) addressable

* 4K words of main memory (this implies 12 bits per address)
* 16-bit data (words have 16 bits)

+ 16-bit instructions: 4 for the opcode and 12 for the address
* A 16-bit accumulator (AC)

* A 16-bit instruction register (IR)
* A 16-bit memory buffer register (MBR)
* A 12-bit program counter (PC)
* A 12-bit memory address register (MAR)
* An 8-bit input register

* An 8-bit output register

Figure 4.8 shows the architecture for MARIE.

Before we continue, we need to stress one important point about memory. In Chapter 3, we presented a simple
memory built using D flip-flops. We emphasize again that each location in memory has a unique address
(represented in binary) and each location can hold a value. These notions of the address versus what is actually
stored at that address tend to be confusing. To help avoid confusion, visualize a post office. There are post office
boxes with various “addresses” or numbers. Inside the post office box, there is mail. To get the mail, the number
of the post office box must be known. The same is true for data or instructions that need to be fetched from
memory. The contents of any memory address are manipulated by specifying the address of that memory location.
We shall see that there are many different ways to specify this address.

OutREG
ALU
AC
Y InREG
S
MBR MAR
PC IR
Control Unit
The CPU

Main
Memory

< Memory Address 0

FIGURE 4.8 MARIE’s Architecture

4.8.2 Registers and Buses
Registers are storage locations within the CPU (as illustrated in Figure 4.8). The ALU portion of the CPU performs

<—— Memory Address 4K—1

all of the processing (arithmetic operations, logic decisions, etc.). The registers are used for very specific purposes
when programs are executing: They hold values for temporary storage, data that is being manipulated in some way,
or results of simple calculations. Many times, registers are referenced implicitly in an instruction, as we see when
we describe the instruction set for MARIE in Section 4.8.3.

In MARIE, there are seven registers, as follows:

* AC: The accumulator, which holds data values. This is a general-purpose register, and it holds data that the
CPU needs to process. Most computers today have multiple general-purpose registers.

* MAR: The memory address register, which holds the memory address of the data being referenced.

* MBR: The memory buffer register, which holds either the data just read from memory or the data ready to be
written to memory.

* PC: The program counter, which holds the address of the next instruction to be executed in the program.

« IR: The instruction register, which holds the next instruction to be executed.

* InREG: The input register, which holds data from the input device.

* OutREG: The output register, which holds data for the output device.

The MAR, MBR, PC, and IR hold very specific information and cannot be used for anything other than their
stated purposes. For example, we could not store an arbitrary data value from memory in the PC. We must use the
MBR or the AC to store this arbitrary value. In addition, there is a status or flag register that holds information
indicating various conditions, such as an overflow in the ALU, whether or not the result of an arithmetic or logical
operation is zero, if a carry bit should be used in a computation, and when a result is negative. However, for clarity,
we do not include that register explicitly in any figures.

MARIE is a very simple computer with a limited register set. Modern CPUs have multiple general-purpose
registers, often called user-visible registers, that perform functions similar to those of the AC. Today’s
computers also have additional registers; for example, some computers have registers that shift data values and
other registers that, if taken as a set, can be treated as a list of values.

MARIE cannot transfer data or instructions into or out of registers without a bus. In MARIE, we assume a
common bus scheme. Each device connected to the bus has a number, and before the device can use the bus, it
must be set to that identifying number. We also have some pathways to speed up execution. We have a
communication path between the MAR and memory (the MAR provides the inputs to the address lines for memory
so the CPU knows where in memory to read or write), and a separate path from the MBR to the AC. There is also
a special path from the MBR to the ALU to allow the data in the MBR to be used in arithmetic operations.
Information can also flow from the AC through the ALU and back into the AC without being put on the common
bus. The advantage gained using these additional pathways is that information can be put on the common bus in
the same clock cycle in which data are put on these other pathways, allowing these events to take place in parallel.
Figure 4.9 shows the datapath (the path that information follows) in MARIE.

4.8.3 Instruction Set Architecture

MARIE has a very simple, yet powerful, instruction set. The instruction set architecture (ISA) of a machine
specifies the instructions that the computer can perform and the format for each instruction. The ISA is essentially
an interface between the software and the hardware. Some ISAs include hundreds of instructions. We mentioned
previously that each instruction for MARIE consists of 16 bits. The most significant 4 bits, bits 12 through 15,
make up the opcode that specifies the instruction to be executed (which allows for a total of 16 instructions). The
least significant 12 bits, bits 0 through 11, form an address, which allows for a maximum memory address of 22 —
1. The instruction format for MARIE is shown in Figure 4.10.

Most ISAs consist of instructions for processing data, moving data, and controlling the execution sequence of
the program. MARIE’s instruction set consists of the instructions shown in Table 4.2.

The Load instruction allows us to move data from memory into the CPU (via the MBR and the AC). All data
(which includes anything that is not an instruction) from memory must move first into the MBR and then into
either the AC or the ALU; there are no other options in this architecture. Notice that the Load instruction does not
have to name the AC as the final destination; this register is implicit in the instruction. Other instructions reference
the AC register in a similar fashion. The Store instruction allows us to move data from the CPU back to memory.
The Add and Subt instructions add and subtract, respectively, the data value found at address X to or from the
value in the AC. The data located at address X is copied into the MBR where it is held until the arithmetic operation
is executed. Input and Output allow MARIE to communicate with the outside world.

Bus
[] 0
—™ Main Memory >
* 1
—» MAR »
2
——» PC >
3
MER 7 >

{ ALU
- » A — =
b
- w»f INREG >
6
—» OutREG >
B
EEEEE— IR >

16-Bit Bus

FIGURE 4.9 Datapath in MARIE

Opcode Address

Bit 15 12 1 0
FIGURE 4.10 MARIE’s Instruction Format
Instruction Number
Bin Hex Instruction Meaning
0001 1 Load X Load the contents of address X into AC.
0010 2 Store X Store the contents of AC at address X.
0011 3 Add X Add the contents of address X to AC and store the result in AC.
0100 4 Subt X Subtract the contents of address X from AC and store the
result in AC.
0101 5 Input Input a value from the keyboard into AC.
0110 6 Output Output the wvalue in AC to the display.
0111 7 Halt Terminate the program.
1000 8 Skipcond | Skip the next instruction on condition.
1001 9 Jump X oad the value of X into PC.

TABLE 4.2 MARIE’s Instruction Set

Input and output are complicated operations. In modern computers, input and output are done using ASCII
bytes. This means that if you type in the number 32 on the keyboard as input, it is actually read in as the ASCII
characters “3” followed by “2.” These two characters must be converted to the numeric value 32 before they are
stored in the AC. Because we are focusing on how a computer works, we are going to assume that a value input
from the keyboard is “automatically” converted correctly. We are glossing over a very important concept: How
does the computer know whether an I/O value is to be treated as numeric or ASCII, if everything that is input or
output is actually ASCII? The answer is that the computer knows through the context of how the value is used. In
MARIE, we assume numeric input and output only. We also allow values to be input as decimal and assume there
is a “magic conversion” to the actual binary values that are stored. In reality, these are issues that must be
addressed if a computer is to work properly.

The Halt command causes the current program execution to terminate. The Skipcond instruction allows us to
perform conditional branching (as is done with “while” loops or “if” statements). When the Skipcond instruction
is executed, the value stored in the AC must be inspected. Two of the address bits (let’s assume we always use the
two address bits closest to the opcode field, bits 10 and 11) specify the condition to be tested. If the two address
bits are 00, this translates to “skip if the AC is negative.” If the two address bits are 01 (bit eleven is 0 and bit ten is
1), this translates to “skip if the AC is equal to 0.” Finally, if the two address bits are 10 (or 2), this translates to
“skip if the AC is greater than 0.” By “skip” we simply mean jump over the next instruction. This is accomplished
by incrementing the PC by 1, essentially ignoring the following instruction, which is never fetched. The Jump
instruction, an unconditional branch, also affects the PC. This instruction causes the contents of the PC to be
replaced with the value of X, which is the address of the next instruction to fetch.

We wish to keep the architecture and the instruction set as simple as possible and yet convey the information
necessary to understand how a computer works. Therefore, we have omitted several useful instructions. However,
you will see shortly that this instruction set is still quite powerful. Once you gain familiarity with how the machine
works, we will extend the instruction set to make programming easier.

Let’s examine the instruction format used in MARIE. Suppose we have the following 16-bit instruction:

opcode address
| Il |

ojofo(1|0|0f0|0O|O(O(0O|O|O[OfT|1

Bit 1514131211098 76543210

The leftmost four bits indicate the opcode, or the instruction to be executed. 0001 is binary for 1, which
represents the Load instruction. The remaining 12 bits indicate the address of the value we are loading, which is
address 3 in main memory. This instruction causes the data value found in main memory, address 3, to be copied
into the AC. Consider another instruction:

opcode address
| 1l |

0|0|1|1|0(0|0(0(0|0O(0|0|1]1]|0|1

Bit 1514131211109 8 76543210

The leftmost four bits, 0011, are equal to 3, which is the Add instruction. The address bits indicate address
00D in hex (or 13 decimal). We go to main memory, get the data value at address 00D, and add this value to the
AC. The value in the AC would then change to reflect this sum. One more example follows:

opcode address
| I |

1(0({0|0|1(0|0|0O|O(0|O|O(O(0O]|0O|0O

Bit 1514131211109 876 543210

The opcode for this instruction represents the Skipcond instruction. Bits ten and eleven (read left to right, or bit
eleven followed by bit ten) are 10, indicating a value of 2. This implies a “skip if AC greater than 0.” If the value in
the AC is less than or equal to zero, this instruction is ignored and we simply go on to the next instruction. If the
value in the AC is greater than zero, this instruction causes the PC to be incremented by 1, thus causing the
instruction immediately following this instruction in the program to be ignored (keep this in mind as you read the
following section on the instruction cycle).

These examples bring up an interesting point. We will be writing programs using this limited instruction set.
Would you rather write a program using the commands Load, Add, and Halt, or their binary equivalents 0001,
0011, and 0111? Most people would rather use the instruction name, or mnemeonic, for the instruction, instead of
the binary value for the instruction. Our binary instructions are called machine instructions. The corresponding
mnemonic instructions are what we refer to as assembly language instructions. There is a one-to-one
correspondence between assembly language and machine instructions. When we type in an assembly language
program (i.e., using the instructions listed in Table 4.2), we need an assembler to convert it to its binary equivalent.
We discuss assemblers in Section 4.11.

4.8.4 Register Transfer Notation

We have seen that digital systems consist of many components, including arithmetic logic units, registers, memory,
decoders, and control units. These units are interconnected by buses to allow information to flow through the
system. The instruction set presented for MARIE in the preceding section constitutes a set of machine-level
instructions used by these components to execute a program. Each instruction appears to be very simplistic;
however, if you examine what actually happens at the component level, each instruction involves multiple
operations. For example, the Load instruction loads the contents of the given memory location into the AC register.

But if we observe what is happening at the component level, we see that multiple “mini-instructions” are being
executed. First, the address from the instruction must be loaded into the MAR. Then the data in memory at this
location must be loaded into the MBR. Then the MBR must be loaded into the AC. These mini-instructions are
called microoperations and specify the elementary operations that can be performed on data stored in registers.

The symbolic notation used to describe the behavior of microoperations is called register transfer notation
(RIN) or register transfer language (RTL). We use the notation M[X] to indicate the actual data stored at
location X in memory, and ~ to indicate a transfer of information. In reality, a transfer from one register to
another always involves a transfer onto the bus from the source register, and then a transfer off the bus into the
destination register. However, for the sake of clarity, we do not include these bus transfers, assuming that you
understand that the bus must be used for data transfer.

We now present the register transfer notation for each of the instructions in the ISA for MARIE.

Load X
Recall that this instruction loads the contents of memory location X into the AC. However, the address X must first
be placed into the MAR. Then the data at location M[MAR] (or address X) is moved into the MBR. Finally, this
data is placed in the AC.
MAR ~ X
MBR ~ M[MAR]
AC — MBR

Because the IR must use the bus to copy the value of X into the MAR, before the data at location X can be
placed into the MBR, this operation requires two bus cycles. Therefore, these two operations are on separate lines
to indicate that they cannot occur during the same cycle. However, because we have a special connection between

the MBR and the AC, the transfer of the data from the MBR to the AC can occur immediately after the data is put
into the MBR, without waiting for the bus.

Store X
This instruction stores the contents of the AC in memory location X:

MAR < X, MBR < AC
M[MAR] — MBR

Add X
The data value stored at address X is added to the AC. This can be accomplished as follows:

MAR ~ X
MBR ~ M[MAR]
AC « AC + MBR

Subt X

Similar to Add, this instruction subtracts the value stored at address X from the accumulator and places the result
back in the AC:

MAR ~ X

MBR ~ M[MAR]
AC ~ AC - MBR

Input
Any input from the input device is first routed into the InREG. Then the data is transferred into the AC.

AC ~ InREG

Output

This instruction causes the contents of the AC to be placed into the OutREG, where it is eventually sent to the
output device.

OutREG ~ AC

Halt
No operations are performed on registers; the machine simply ceases execution of the program.

Skipcond

Recall that this instruction uses the bits in positions 10 and 11 in the address field to determine what comparison to
perform on the AC. Depending on this bit combination, the AC is checked to see whether it is negative, equal to 0,
or greater than 0. If the given condition is true, then the next instruction is skipped. This is performed by
incrementing the PC register by 1.

If IR[11-10] = 00 then {if bits 10 and 11 in the IR are both 0}
If AC < 0 then PC « PC + 1

else If IR[11-10] = 01 then {if bit 11
If AC = 0 then PC « PC + 1

else If IR[11-10] = 10 then {if bit 11
If AC > 0 then PC « PC + 1

0 and bit 10 = 1}

1 and bit 10 = 0}

If the bits in positions ten and eleven are both ones, an error condition results. However, an additional condition
could also be defined using these bit values.

Jump X
This instruction causes an unconditional branch to the given address, X. Therefore, to execute this instruction, X
must be loaded into the PC.

PC - X

In reality, the lower or least significant 12 bits of the instruction register (or IR[11-0]) reflect the value of X.
So this transfer is more accurately depicted as:

PC ~ IR[11-0]

However, we feel that the notation PC ~ X is easier to understand and relate to the actual instructions, so we use
this instead.

Register transfer notation is a symbolic means of expressing what is happening in the system when a given
instruction is executing. RTN is sensitive to the datapath, in that if multiple microoperations must share the bus,
they must be executed in a sequential fashion, one following the other.

4.9 INSTRUCTION PROCESSING

Now that we have a basic language with which to communicate ideas to our computer, we need to discuss exactly
how a specific program is executed. All computers follow a basic machine cycle: the fetch, decode, and execute
cycle.

4.9.1 The Fetch-Decode—Execute Cycle

The fetch—decode—execute cycle represents the steps that a computer follows to run a program. The CPU fetches
an instruction (transfers it from main memory to the instruction register), decodes it (determines the opcode and
fetches any data necessary to carry out the instruction), and executes it (performs the operation[s] indicated by the
instruction). Notice that a large part of this cycle is spent copying data from one location to another. When a
program is initially loaded, the address of the first instruction must be placed in the PC. The steps in this cycle,
which take place in specific clock cycles, are listed below. Note that Steps 1 and 2 make up the fetch phase, Step
3 makes up the decode phase, and Step 4 is the execute phase.

1. Copy the contents of the PC to the MAR: MAR ~ PC.

2. Go to main memory and fetch the instruction found at the address in the MAR, placing this instruction in the
IR; increment PC by 1 (PC now points to the next instruction in the program): IR —« M[MAR] and then PC ~
PC + 1. (Note: Because MARIE is word addressable, the PC is incremented by 1, which results in the next
word’s address occupying the PC. If MARIE were byte addressable, the PC would need to be incremented by
2 to point to the address of the next instruction, because each instruction would require 2 bytes. On a byte-
addressable machine with 32-bit words, the PC would need to be incremented by 4.)

Start

Copy the PC to
the MAR

¥

Copy the contents of
memory at address
MAR to IR;
Increment PC by 1

v

Decode the instruction and
place bits IR[11-0] in
MAR

Yes Instruction

requires
operand?

Copy the contents of
memory at address
MAR to MBR

a0
Execute the

instruction
I

FIGURE 4.11 The Fetch-Decode-Execute Cycle

3. Copy the rightmost 12 bits of the IR into the MAR; decode the leftmost 4 bits to determine the opcode, MAR
~ IR[11-0], and decode IR[15-12].

4. If necessary, use the address in the MAR to go to memory to get data, placing the data in the MBR (and
possibly the AC), and then execute the instruction MBR — M[MAR] and execute the actual instruction.

This cycle is illustrated in the flowchart in Figure 4.11.
Note that computers today, even with large instruction sets, long instructions, and huge memories, can execute
millions of these fetch—decode—execute cycles in the blink of an eye.

4.9.2 Interrupts and the Instruction Cycle

All computers provide a means for the normal fetch—decode—execute cycle to be interrupted. These interruptions
may be necessary for many reasons, including a program error (such as division by 0, arithmetic overflow, stack
overflow, or attempting to access a protected area of memory); a hardware error (such as a memory parity error
or power failure); an I/O completion (which happens when a disk read is requested and the data transfer is
complete); a user interrupt (such as hitting Ctrl-C or Ctrl-Break to stop a program); or an interrupt from a timer set
by the operating system (such as is necessary when allocating virtual memory or performing certain bookkeeping
functions). All of these have something in common: they interrupt the normal flow of the fetch—decode—execute
cycle and tell the computer to stop what it is currently doing and go do something else. They are, naturally, called
interrupts.

The speed with which a computer processes interrupts plays a key role in determining the computer’s overall
performance. Hardware interrupts can be generated by any peripheral on the system, including memory, the hard
drive, the keyboard, the mouse, or even the modem. Instead of using interrupts, processors could poll hardware
devices on a regular basis to see if they need anything done. However, this would waste CPU time as the answer
would more often than not be “no.” Interrupts are nice because they let the CPU know the device needs attention
at a particular moment without requiring the CPU to constantly monitor the device. Suppose you need specific
information that a friend has promised to acquire for you. You have two choices: call the friend on a regular
schedule (polling) and waste his or her time and yours if the information is not ready, or wait for a phone call from
your friend once the information has been acquired. You may be in the middle of a conversation with someone else
when the phone call “interrupts” you, but the latter approach is by far the more efficient way to handle the
exchange of information.

Computers also employ software interrupts (also called traps or exceptions) used by various software
applications. Modern computers support both software and hardware interrupts by using interrupt handlers.
These handlers are simply routines (procedures) that are executed when their respective interrupts are detected.
The interrupts, along with their associated interrupt service routines (ISRs), are stored in an interrupt vector
table.

How do interrupts fit into the fetch—decode—execute cycle? The CPU finishes execution of the current
instruction and checks, at the beginning of every fetch—-decode—execute cycle, to see if an interrupt has been
generated, as shown in Figure 4.12. Once the CPU acknowledges the interrupt, it must then process the interrupt.

The details of the “Process the Interrupt” block are given in Figure 4.13. This process, which is the same
regardless of what type of interrupt has been invoked, begins with the CPU detecting the interrupt signal. Before
doing anything else, the system suspends whatever process is executing by saving the program’s state and variable
information. The device ID or interrupt request number of the device causing the interrupt is then used as an index
into the interrupt vector table, which is kept in very low memory. The address of the interrupt service routine
(known as its address vector) is retrieved and placed into the program counter, and execution resumes (the fetch—
decode—execute cycle begins again) within the service routine. After the interrupt service has completed, the
system restores the information it saved from the program that was running when the interrupt occurred, and
program execution may resume—unless another interrupt is detected, whereupon the interrupt is serviced as
described.

Has an
interrupt been
issued?

Yes

Perform fetch—
decode—executs
cycle

Process the
interrupt

FIGURE 4.12 Fetch-Decode—Execute Cycle with Interrupt Checking

It is possible to suspend processing of noncritical interrupts by use of a special interrupt mask bit found in the
flag register. This is called interrupt masking, and interrupts that can be suspended are called maskable
interrupts. Nonmaskable interrupts cannot be suspended, because to do so, it is possible that the system would
enter an unstable or unpredictable state.

Assembly languages provide specific instructions for working with hardware and software interrupts. When
writing assembly language programs, one of the most common tasks is dealing with I/O through software
interrupts (see Chapter 7 for additional information on interrupt-driven I/0O). Indeed, one of the more complicated
functions for the novice assembly language programmer is reading input and writing output, specifically because
this must be done using interrupts. MARIE simplifies the I/O process for the programmer by avoiding the use of
interrupts for I/0.

4.9.3 MARIE’s I/O

I/O processing is one of the most challenging aspects of computer system design and programming. Our model is
necessarily simplified, and we provide it at this point only to complete MARIE’s functionality.

MARIE has two registers to handle input and output. One, the input register, holds data being transferred from
an input device into the computer; the other, the output register, holds information ready to be sent to an output
device. The timing used by these two registers is very important. For example, if you are entering input from the
keyboard and type very fast, the computer must be able to read each character that is put into the input register. If
another character is entered into that register before the computer has a chance to process the current character,
the current character is lost. It is more likely, because the processor is very fast and keyboard input is very slow,
that the processor might read the same character from the input register multiple times. We must avoid both of
these situations.

Interrupt
signal
detected

‘

Save
variables and
registers

v

Look up ISR
address in
interrupt
vector table

v

Place ISR
address
in PC

Start)

Perform work

specific to
interrupt
Restore
saved variables |—
and registers
Return)

Branch to
top of
fetch-decode-
execute cycle

FIGURE 4.13 Processing an Interrupt

To get around problems like these, MARIE employs a modified type of programmed I/O (discussed in Chapter
7) that places all I/O under the direct control of the programmer. MARIE’s output action is simply a matter of
placing a value into the OutREG. This register can be read by an output controller that sends it to an appropriate
output device, such as a terminal display, printer, or disk. For input, MARIE, being the simplest of simple systems,
places the CPU into a wait state until a character is entered into the INREG. The InREG is then copied to the
accumulator for subsequent processing as directed by the programmer. We observe that this model provides no
concurrency. The machine is essentially idle while waiting for input. Chapter 7 explains other approaches to 1/0
that make more efficient use of machine resources.

4.10 ASIMPLE PROGRAM

We now present a simple program written for MARIE. In Section 4.12, we present several additional examples to
illustrate the power of this minimal architecture. It can even be used to run programs with procedures, various
looping constructs, and different selection options.

Our first program adds two numbers together (both of which are found in main memory), storing the sum in
memory. (We forgo I/0 for now.)

Table 4.3 lists an assembly language program to do this, along with its corresponding machine language
program. The list of instructions under the Instruction column constitutes the actual assembly language program.
We know that the fetch—decode—execute cycle starts by fetching the first instruction of the program, which it
finds by loading the PC with the address of the first instruction when the program is loaded for execution. For
simplicity, let’s assume our programs in MARIE are always loaded starting at address 100 (in hex).

The list of instructions under the Binary Contents of Memory Address column constitutes the actual machine
language program. It is often easier for humans to read hexadecimal as opposed to binary, so the actual contents of
memory are displayed in hexadecimal. To avoid using a subscript of 16, we use the standard “0x” notation to
distinguish a hexadecimal number. For example, instead of saying 123,,, we write 0x123.

Hex Binary Contents of Hex Contents
Address Instruction Memory Address of Memory
100 Load 104 0001000100000100 1104
101 Add 105 0011000100000101 3105
102 store 106 0010000100000110 2106
103 Halt 0111000000000000 7000
104 0023 0000000000100011 0023
105 FFEY 11111111311101001 FFES
106 oooo 0000000000000000 0000

TABLE 4.3 A Program to Add Two Numbers

This program loads 0x0023 (or decimal value 35) into the AC. It then adds OXFFE9 (decimal —23) that it finds
at address 0x105. This results in a value of 0x000C, or 12, in the AC. The Store instruction stores this value at
memory location 0x106. When the program is done, the binary contents of location 0x106 change to
0000000000001100, which is hex 000C, or decimal 12. Figure 4.14 indicates the contents of the registers as the
program executes.

a) Load 104

Step RTN PC IR MAR | MBR AC
(initial walues) 100 |==—es F e Y
Fetch MAR €<— PC T | —

IR «<— M[MAR] 100 1104 100 |--------=---

PG<—FE 1+ 1 101 1104 L I R B
Decode MAR € IR[11-0] 101 1104 B — —— — = |- ——= i

(Decode IR[15-12])| 101 1104 Tlig: [==mismnl s
Get operand MER «<— M[MAR] 101 1104 104 PR - —— - - =
Execute AC «=——MER 101 1104 104 00213 00213
b) Add 105

Step RTN PC IR MAR | MBR AC
(initial wvalues) 101 1104 104 0023 0023
Fetch MAR <€ FC 101 1104 101 00213 00213

IR «<— M[MAR] 101 3105 101 0023 0023

PC < Pl 1 102 | 3105 101 0023 0023
Decode MAR<— IR[11-0] 102 | 31035 105 00213 0023

(Decode IR[15-12])| 102 | 3105 105 0023 0023
Get operand MBR < M[MAR] 102 | 3105 105 FEEY 0023
Execute AC=——AC + MBR 102 | 3105 105 FFEY 000C
c) Store 106

Step RTN PC IR MAR | MBR AC
(initial wvaluesg) 102 | 3105 105 FEFEY 000C
Fetch MAR<—PC 102 | 3105 102 FFE9 000c

IR «—— M[MAR] 102 | 2106 102 FFE9 000C
PG&e——PC'+ 1 103 | 2106 102 FFES 0o0oc
Decode MAR<—IR[11-0] 103 | 2106 106 FFE9 oooc
(Decode IR[15-12])| 103 | 2106 106 FFE9 000C
Get operand (not necessary) 103 | 2106 | 106 | FFE9 | 000C
Execute MER = AC 103 | 2106 106 000C 000C
M[MAR] < MER 103 | 2106 106 0ooc 0ooc

FIGURE 4.14 A Trace of the Program to Add Two Numbers

The last RTN instruction in Figure 4.14c places the sum at the proper memory location. The statement “decode
IR[15-12]” simply means the instruction must be decoded to determine what is to be done. This decoding can be
done in software (using a microprogram) or in hardware (using hardwired circuits). These two concepts are
covered in more detail in Section 4.13.

Note that there is a one-to-one correspondence between the assembly language and the machine language
instructions. This makes it easy to convert assembly language into machine code. Using the instruction tables given
in this chapter, you should be able to hand assemble any of our example programs. For this reason, we look at only
the assembly language code from this point on. Before we present more programming examples, however, a
discussion of the assembly process is in order.

4.11 A DISCUSSION ON ASSEMBLERS

In the program shown in Table 4.3, it is a simple matter to convert from the assembly language instruction Load
104, for example, to the machine language instruction 0x1104. But why bother with this conversion? Why not just
write in machine code? Although it is very efficient for computers to see these instructions as binary numbers, it is
difficult for human beings to understand and program in sequences of Os and 1s. We prefer words and symbols
over long numbers, so it seems a natural solution to devise a program that does this simple conversion for us. This
program is called an assembler.

4.11.1 What Do Assemblers Do?

An assembler’s job is to convert assembly language (using mnemonics) into machine language (which consists
entirely of binary values, or strings of Os and 1s). Assemblers take a programmer’s assembly language program,
which is really a symbolic representation of the binary numbers, and convert it into binary instructions, or the
machine code equivalent. The assembler reads a source file (assembly program) and produces an object file (the
machine code).

Substituting simple alphanumeric names for the opcodes makes programming much easier. We can also
substitute labels (simple names) to identify or name particular memory addresses, making the task of writing
assembly programs even simpler. For example, in our program to add two numbers, we can use labels to indicate
the memory addresses, thus making it unnecessary to know the exact memory address of the operands for
instructions. Table 4.4 illustrates this concept.

When the address field of an instruction is a label instead of an actual physical address, the assembler still must
translate it into a real, physical address in main memory. Most assembly languages allow for labels. Assemblers
typically specify formatting rules for their instructions, including those with labels. For example, a label might be
limited to three characters and may also be required to occur as the first field in the instruction. MARIE requires
labels to be followed by a comma.

Hex Address Instruction

100 Load X
101 Add Y
102 Store Z
102 Halt
104 i 4 0023
105 FEFES
104 T 0000

TABLE 4.4 An Example Using Labels

Labels are nice for programmers. However, they make more work for the assembler. It must make two passes
through a program to do the translation. This means the assembler reads the program twice, from top to bottom
each time. On the first pass, the assembler builds a set of correspondences called a symbol table. For the above
example, it builds a table with three symbols: X, Y, and Z. Because an assembler goes through the code from top to
bottom, it cannot translate the entire assembly language instruction into machine code in one pass; it does not
know where the data portion of the instruction is located if it is given only a label. But after it has built the symbol
table, it can make a second pass and “fill in the blanks.”

In the above program, the first pass of the assembler creates the following symbol table:

X Ox104
Y Ox105
z Ox106

It also begins to translate the instructions. After the first pass, the translated instructions would be incomplete as
follows:

| | = |

| PG| =

0 0

On the second pass, the assembler uses the symbol table to fill in the addresses and create the corresponding
machine language instructions. Thus, on the second pass, it would know that X is located at address 0x104, and
would then substitute 0x104 for the X. A similar procedure would replace the Y and Z, resulting in:

DS DD
LT b S IR

| |k |

]
3
2
7

Because most people are uncomfortable reading hexadecimal, most assembly languages allow the data values
stored in memory to be specified as binary, hexadecimal, or decimal. Typically, some sort of assembler directive
(an instruction specifically for the assembler that is not supposed to be translated into machine code) is given to the
assembler to specify which base is to be used to interpret the value. We use DEC for decimal and HEX for
hexadecimal in MARIE’s assembly language. For example, we rewrite the program in Table 4.4 as shown in Table

4.5.

Hex Address Instruction
100 L.oad X
101 Add Y
102 Store i
103 Halt
104 e DEC 15
105 DEC 23
106 i HEX 0000

TABLE 4.5 An Example Using Directives for Constants

Instead of requiring the actual binary data value (written in HEX), we specify a decimal value by using the
directive DEC. The assembler recognizes this directive and converts the value accordingly before storing it in
memory. Again, directives are not converted to machine language; they simply instruct the assembler in some way.

Another kind of directive common to virtually every programming language is the comment delimiter.
Comment delimiters are special characters that tell the assembler (or compiler) to ignore all text following the
special character. MARIE’s comment delimiter is a front slash (“/”), which causes all text between the delimiter
and the end of the line to be ignored.

4.11.2 Why Use Assembly L.anguage?

Our main objective in presenting MARIE’s assembly language is to give you an idea of how the language relates to
the architecture. Understanding how to program in assembly goes a long way toward understanding the
architecture (and vice versa). Not only do you learn basic computer architecture, but you also can learn exactly
how the processor works and gain significant insight into the particular architecture on which you are
programming. There are many other situations where assembly programming is useful.

Most programmers agree that 10% of the code in a program uses approximately 90% of the CPU time. In time-
critical applications, we often need to optimize this 10% of the code. Typically, the compiler handles this
optimization for us. The compiler takes a high-level language (such as C++) and converts it into assembly language
(which is then converted into machine code). Compilers have been around a long time, and in most cases they do a
great job. Occasionally, however, programmers must bypass some of the restrictions found in high-level languages
and manipulate the assembly code themselves. By doing this, programmers can make the program more efficient in
terms of time (and space). This hybrid approach (most of the program written in a high-level language, with part
rewritten in assembly) allows the programmer to take advantage of the best of both worlds.

Are there situations in which entire programs should be written in assembly language? If the overall size of the
program or response time is critical, assembly language often becomes the language of choice. This is because
compilers tend to obscure information about the cost (in time) of various operations and programmers often find it
difficult to judge exactly how their compiled programs will perform. Assembly language puts the programmer
closer to the architecture and, thus, in firmer control. Assembly language might actually be necessary if the
programmer wishes to accomplish certain operations not available in a high-level language.

A perfect example, in terms of both response performance and space-critical design, is found in embedded
systems. These are systems in which the computer is integrated into a device that is typically not a computer.
Embedded systems must be reactive and often are found in time-constrained environments. These systems are

designed to perform either a single instruction or a very specific set of instructions. Chances are you use some
type of embedded system every day. Consumer electronics (such as cameras, camcorders, cellular phones, PDAs,
and interactive games), consumer products (such as washers, microwave ovens, and washing machines),
automobiles (particularly engine control and antilock brakes), medical instruments (such as CAT scanners and heart
monitors), and industry (for process controllers and avionics) are just a few of the examples of where we find
embedded systems.

The software for an embedded system is critical. An embedded software program must perform within very
specific response parameters and is limited in the amount of space it can consume. These are perfect applications
for assembly language programming. We delve deeper into this topic in Chapter 10.

4.12 EXTENDING OUR INSTRUCTION SET

Even though MARIE’s instruction set is sufficient to write any program we wish, there are a few instructions we
can add to make programming much simpler. We have 4 bits allocated to the opcode, which implies that we can
have 16 unique instructions, and we are using only 9 of them. Surely, we can make many programming tasks
much easier by adding a few well-chosen instructions to our instruction set. Our new instructions are summarized
in Table 4.6.

The JnS (jump-and-store) instruction allows us to store a pointer to a return instruction and then proceeds to
set the PC to a different instruction. This enables us to call procedures and other subroutines, and then return to
the calling point in our code once the subroutine has finished. The Clear instruction moves all Os into the
accumulator. This saves the machine cycles that would otherwise be expended in loading a 0 operand from
memory.

With the AddI, Jumpl, Loadl, and Storel instructions, we introduce a different addressing mode. All previous
instructions assume that the value in the data portion of the instruction is the direct address of the operand
required for the instruction. These instructions use the indirect addressing mode. Instead of using the value
found at location X as the actual address, we use the value found in X as a pointer to a new memory location that
contains the data we wish to use in the instruction. For example, to execute the instruction AddI 400, we first go
to location 0x400. If we find the value 0x240 stored at location 0x400, we would go to location 0x240 to get the
actual operand for the instruction. We have essentially allowed for pointers in our language, giving us tremendous
power to create advanced data structures and manipulate strings. (We delve more deeply into addressing modes in
Chapter 5.)

Instruction

Number (hex) | Instruction Meaning

0 Jng & Store the PC at address X and jump to X + 1.

A Clear Put all zeros in AC.

B AddT X Add dindirect: Go to address X. Use the value at X
as the actual address of the data
operand to add to AC.

C JumpI X Jump dindirect: Go to address X. Use the wvalue at X
as the actusl address of the loeatdion to
jump to.

D LoadI X Load indirect: Go to address X. Use the value at
X as the actual address of the operand to
load into the AC.

E Storel X Store indirect: Go to address X. Use the value at

X as the destination address for storing
the value in the accumulator.

TABLE 4.6 MARIE’s Extended Instruction Set

Our six new instructions are detailed below using register transfer notation.

JnS

MER « BC
MAR « X
M[MAR] « MER
MBR « X
AC « 1
AC « AC + MBR
PC « AC

Clear
AC ¢« O

Addl X
MAR « X
MER « M[MAR]
MAR « MER
MER <« M[MAR]
AC «— AC + MER

Table 4.7 summarizes MARIE’s entire instruction set.
Let’s look at some examples using the full instruction set.

Jumpl X

MAR « X

MER « M[MAR]
PC « MER

Loadl X
MER « X
MEE « M[MAR]
MAER « MER
MEE « M[MAR]
AC «— MER

Storel X

MBR « X

MBR + M[MAR]
MAR « MBR
MER « AC
M[MAR] « MBR

— EXAMPLE 4.2 Here is an example using a loop to add five numbers:

Hex
Address

100
101
102
103
104
105
106
107
108
105
10A
10B
10C
10D
10E

10F
110
32
112
2 bk
114
115
116
3B
118
3385
11Aa
11B

Loop,

Addr,
Next,
Num,
Sum,
Ctr,
One,

Instruction
Load hddr
Store Next
Load Num
Subt One
Store Ctr
Load Sum
AddI Next
Store Sum
Load Next
Add One
Store Next
Load Ctr
Subt One
Store Ctr
Skipcond 000
Jump Loop
Halt

Hex 117
Hex 0
Dec L
Dec 0
Hex 0
Dec 1
Dec 10
Dec 15
Dec 20
Dec 25
Dec 30

/Load address of first number toc be added
/Store this address as our Next pointer
/Lioad the number of items to be added
/Decrement

/Store this walue in Ctr to control looping
/Load the Sum into AC

/Bdd the value pointed to by location Next
/Btore this sum

/Lioad Next

/Increment by one to point to next address
/Store in our pointer Next

/Load the loop control wvariable

/Subtract one from the loop control variable
/Store this new value in loop control variable
/If control variable < 0, skip next
/instruction

/Otherwise, go to Loop

/Terminate program

/Numbers to be summed start at location 117
/A pointer to the next number to add

/The number of values to add

/The sum

/The loop control wariable

/Used to increment and decrement by 1

/The values to be added together

Note: Line numbers in program are given for information only and are not used in the MarieSim environment.

Although the comments are reasonably explanatory, let’s walk through Example 4.2. Recall that the symbol
table stores [label, location] pairs. The Load Addr instruction becomes Load 111, because Addr is located at
physical memory address 0x111. The value of 0x117 (the value stored at Addr) is then stored in Next. This is the
pointer that allows us to “step through” the five values we are adding (located at hex addresses 117, 118, 119, 11A,
and 11B). The Ctr variable keeps track of how many iterations of the loop we have performed. Because we are
checking to see if Ctr is negative to terminate the loop, we start by subtracting one from Ctr. Sum (with an initial
value of 0) is then loaded in the AC. The loop begins, using Next as the address of the data we wish to add to the
AC. The Skipcond statement terminates the loop when Ctr is negative by skipping the unconditional branch to the
top of the loop. The program then terminates when the Halt statement is executed.

Opcode

Instruction

RTN

0ooo

Jns X

MER €<— FC

MAR €— X
M[MAR]<——MBR
MER «— X
ACe— 1

ACe«e— AC + MER
PC «— AC

0001

Load X

MAR «— X
MER «— M[MAR]
AC «— MER

Store X

MAR €— X, MBR<— AC
M[MAR] «— MBR

Add X

MAR <« X
MER «<— M [MAR]
AC <— AC + MBR

Subt X

MAR e X
MBR & M[MAR]
AC<— AC - MBR

Input

AC «— InREG

Output

OutREG «— AC

Halt

1000

Skipcond

If IR[11-10] = 00 then

If AC £ 0 then
Elgse If IR[11-10] =
If AC = 0 then
Else Tf IR[11-10] =
If AC > 0 then

PC «=— PC + 1
01 then
PC<— PC + 1
10 then
FE.¥— BC Tl

Jump X

C<— IR[11-0]

Clear

AC<=— 0D

AddI X

MAR€— X

MER €— M[MAR]
MAR €— MER

MBR «— M[MAR]
AC<— AC + MBR

JumpI X

MAR<— X
MBR €— M[MAR]
PC<«— MEBR

LoadIl X

MAR «— X

MBR <— M[MAR]
MAR <« MER
MER < M[MAR]
AC «— MBR

Storel X

MAR €——X
MBR «—— M[MAR]
MAR <—— MER

MBR <« AC
M [MAR J«— MER

TABLE 4.7 MARIE’s Full Instruction Set

Example 4.3 shows how you can use the Skipcond and Jump instructions to perform selection. Although this
example illustrates an if/else construct, you can easily modify this to perform an if/then structure, or even a case
(or switch) structure.

— EXAMPLE 4.3 This example illustrates the use of an if/else construct to allow for selection. In particular, it
implements the following:

if X = Y then

X=X X 2
elae
b= S
Hex
Address Instruction
100 T, Load X /Load the first value
101 Subt Y /Subtract the value of ¥, store result in AC
102 Skipcond 400 /If AC = 0, skip the next instruction
103 Jump Else /Jump to Else part if AC is not equal to 0
104 Then, Load X /Relcad X so it can be doubled
105 Add X /Double X
106 Store X /8tore the new wvalue
107 Jump Endif /Skip over the false, or else, part to end of
Jif
108 Else, Load Y /Start the else part by loading Y
109 Subt X /Bubtract X from Y
10A Store Y /Btore Y - X in Y
10B Endif, Halt /Terminate program (it doesn’t do much!)
10C X, Dec 12 /Load the loop control wvariable
10D Y. Dec 20 /Subtract one from the loop control wvariable

— EXAMPLE 4.4 This program demonstrates the use of indirect addressing to traverse and output a string. The
string is terminated with a null.

Hex
Address
100
101
102
103
104
105
106
107
108
109
10A
10B
10C
10D
10E
10F
110
111
112
113
114
115
116
117

Instruction

Getch,

Cutp,

One,
Chptr,
String,

Loadl
Skipcond
Jump
Halt
Output
Load
Add
Store
Jump
Hex
Hex
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec

Chptr
400
Outp

Chptr
One
Chptr
Getch
0001
10B
072
101
108
108
111
032
119
3 s B B
114
108
100
D33
000

/Load the character found at address
/If AC = 0, skip next instruction.
/Otherwise, proceed with operation.
/Output the character.
/Move pointer to next character.
/Process next character.
/Pointer to “current” character.

JH /String definition starts here.

/e

ril

Vil

Jo

/ [=pace]

fw

/o

iy

/1

/d

Vi

J [mull]

Chptr.

Example 4.4 demonstrates the use of the Loadl and Storel instructions by printing a string. Readers who
understand the C and C++ programming languages will recognize the pattern: We start by declaring the memory
location of the first character of the string and read it until we find a null character. Once the Loadl instruction
places a null in the accumulator, Skipcond 400 evaluates to true, and the Halt instruction is executed. You will
notice that to process each character of the string, we increment the “current character” pointer, Chptr, so that it
points to the next character to print.

Example 4.5 demonstrates how JnS and Jumpl are used to allow for subroutines. This program includes an
END statement, another example of an assembler directive. This statement tells the assembler where the program
ends. Other potential directives include statements to let the assembler know where to find the first program
instruction, how to set up memory, and whether blocks of code are procedures.

— EXAMPLE 4.5 This example illustrates the use of a simple subroutine to double the value stored at X.

Hex

Address Instruction
100 Load X /Load the first number to be doubled
101 Store Temp /Use Temp as a parameter to pass value to Subr
102 JnS Subr /Store return address, jump to procedure
103 Store %