
M A N N I N G

Matthew Dowst

Effective scripting from the console to the cloud

Log file cleanup process

T
a

s
k

L
o

g
ic

L
o

g
ic

L
o

g
g

in
g

T
a

s
k

Find files over

30 days old

Create an archive file

with timestamp
Add old files

to archive Delete old files

Record files that were

removed

Confirm copy

was successful

X=

Record location

of archive file

Delete the original

archive file

Send failure

notification

Copy archive to

Azure Blob storage

Practical Automation with PowerShell

Practical Automation
with PowerShell

EFFECTIVE SCRIPTING
FROM THE CONSOLE TO THE CLOUD

MATTHEW DOWST

MANN I NG

SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2023 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book
was correct at press time. The author and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

Manning Publications Co. Development editor: Connor O’Brien
20 Baldwin Road Technical development editor: Michael Lund
PO Box 761 Review editor: Adriana Sabo
Shelter Island, NY 11964 Production editor: Andy Marinkovich

Copy editor: Alisa Larson
Proofreader: Melody Dolab

Technical proofreader: Gonzalo Huerta-Canepa
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617299551
Printed in the United States of America

www.manning.com

 This book is dedicated to my wife, Leslie,
who has supported me every step of the way—

not just during the writing process, but my entire career.

brief contents
PART 1 ...1

1 ■ PowerShell automation 3

2 ■ Get started automating 22

PART 2 ...51

3 ■ Scheduling automation scripts 53

4 ■ Handling sensitive data 82

5 ■ PowerShell remote execution 106

6 ■ Making adaptable automations 135

7 ■ Working with SQL 168

8 ■ Cloud-based automation 193

9 ■ Working outside of PowerShell 216

10 ■ Automation coding best practices 239
vii

BRIEF CONTENTSviii
PART 3 ..277

11 ■ End-user scripts and forms 279

12 ■ Sharing scripts among a team 309

13 ■ Testing your scripts 328

14 ■ Maintaining your code 358

contents
preface xv
acknowledgments xvi
about this book xviii
about the author xxi
about the cover illustration xxii

PART 1 ...1

1 PowerShell automation 3
1.1 What you’ll learn in this book 4
1.2 Practical automation 5

Automation goal 7 ■ Triggers 8 ■ Actions 9
Maintainability 11

1.3 The automation process 12
Building blocks 12 ■ Phases 12 ■ Combining building
blocks and phases 13

1.4 Choosing the right tool for the job 17
Automation decision tree 17 ■ No need to reinvent the wheel 19
Supplemental tools 20

1.5 What you need to get started today 21
ix

CONTENTSx
2 Get started automating 22
2.1 Cleaning up old files (your first building blocks) 22

Your first function 25 ■ Returning data from functions 28
Testing your functions 29 ■ Problems to avoid when adding
functions to scripts 31 ■ Brevity versus efficiency 31
Careful what you automate 32 ■ Putting it all together 34

2.2 The anatomy of PowerShell automation 38
When to add functions to a module 40 ■ Creating a script
module 41 ■ Module creation tips 46

PART 2 51

3 Scheduling automation scripts 53
3.1 Scheduled scripts 54

Know your dependencies and address them beforehand 54
Know where your script needs to execute 54 ■ Know what context
the script needs to execute under 55

3.2 Scheduling your scripts 55
Task Scheduler 55 ■ Create scheduled tasks via PowerShell 57
Cron scheduler 61 ■ Jenkins scheduler 63

3.3 Watcher scripts 65
Designing watcher scripts 67 ■ Invoking action scripts 71
Graceful terminations 72 ■ Folder watcher 73 ■ Action
scripts 75

3.4 Running watchers 79
Testing watcher execution 79 ■ Scheduling watchers 81

4 Handling sensitive data 82
4.1 Principles of automation security 84

Do not store sensitive information in scripts 84 ■ Principle of least
privilege 85 ■ Consider the context 86 ■ Create role-based
service accounts 86 ■ Use logging and alerting 87 ■ Do not
rely on security through obscurity 88 ■ Secure your scripts 89

4.2 Credentials and secure strings in PowerShell 89
Secure strings 89 ■ Credential objects 90

4.3 Storing credentials and secure strings in PowerShell 91
The SecretManagement module 92 ■ Set up the SecretStore
vault 93 ■ Set up a KeePass vault 94 ■ Choosing the right
vault 96 ■ Adding secrets to a vault 97

CONTENTS xi
4.4 Using credentials and secure strings in your
automations 98
SecretManagement module 99 ■ Using Jenkins credentials 102

4.5 Know your risks 104

5 PowerShell remote execution 106
5.1 PowerShell remoting 107

Remote context 107 ■ Remote protocols 108 ■ Persistent
sessions 108

5.2 Script considerations for remote execution 109
Remote execution scripts 110 ■ Remote execution control scripts 113

5.3 PowerShell remoting over WSMan 116
Enable WSMan PowerShell remoting 116 ■ Permissions for
WSMan PowerShell remoting 116 ■ Execute commands with
WSMan PowerShell remoting 117 ■ Connect to the desired version
of PowerShell 119

5.4 PowerShell remoting over SSH 120
Enable SSH PowerShell remoting 120 ■ Authenticating
with PowerShell and SSH 121 ■ SSH environment
considerations 124 ■ Execute commands with SSH PowerShell
remoting 124

5.5 Hypervisor-based remoting 127
5.6 Agent-based remoting 131
5.7 Setting yourself up for success with PowerShell

remoting 134

6 Making adaptable automations 135
6.1 Event handling 138

Using try/catch blocks for event handling 138 ■ Creating custom
event handles 140

6.2 Building data-driven functions 144
Determining your data structure 145 ■ Storing your data 146
Updating your data structure 150 ■ Creating classes 151
Building the function 153

6.3 Controlling scripts with configuration data 157
Organizing your data 159 ■ Using your configuration data 161
Storing your configuration data 164 ■ Do not put cmdlets into
your configuration data 166

CONTENTSxii
7 Working with SQL 168
7.1 Setting your schema 170

Data types 171

7.2 Connecting to SQL 173
Permissions 176

7.3 Adding data to a table 177
String validation 177 ■ Inserting data to a table 178

7.4 Getting data from a table 181
SQL where clause 181

7.5 Updating records 186
Passing pipeline data 187

7.6 Keeping data in sync 190
Getting server data 191

7.7 Setting a solid foundation 191

8 Cloud-based automation 193
8.1 Chapter resources 194
8.2 Setting up Azure Automation 194

Azure Automation 195 ■ Log Analytics 197 ■ Creating Azure
resources 197 ■ Authentication from Automation runbooks 200
Resource keys 201

8.3 Creating a hybrid runbook worker 202
PowerShell modules on hybrid runbook workers 204

8.4 Creating a PowerShell runbook 204
Automation assets 208 ■ Runbook Editor 209 ■ Runbook
output 213 ■ Interactive Cmdlets 214

8.5 Security considerations 214

9 Working outside of PowerShell 216
9.1 Using COM objects and .NET Framework 217

Importing Word objects 218 ■ Creating a Word document 218
Writing to a Word document 219 ■ Adding tables to a Word
document 220

9.2 Building tables from a PowerShell object 222
Converting PowerShell objects to tables 223 ■ Converting
PowerShell arrays to tables 225

CONTENTS xiii
9.3 Getting web data 227
API keys 228

9.4 Using external applications 230
Calling an external executable 231 ■ Monitoring execution 231
Getting the output 232 ■ Creating Start-Process wrapper
function 233

9.5 Putting it all together 237

10 Automation coding best practices 239
10.1 Defining the full automation 241

Structuring your automation 242

10.2 Converting a manual task to an automated one 244
10.3 Updating structured data 245
10.4 Using external tools 248

Finding installed applications 248 ■ Call operators 251

10.5 Defining parameters 255
10.6 Making resumable automations 258

Determining code logic and functions 262

10.7 Waiting for automations 265
10.8 Think of the next person 267

Do not overcomplicate it 267 ■ Comment, comment,
comment 269 ■ Include help and examples on all scripts
and functions 271 ■ Have a backup plan 272

10.9 Do not forget about the presentation 274

PART 3 277

11 End-user scripts and forms 279
11.1 Script frontends 280

SharePoint trial tenant 280

11.2 Creating a request form 281
Gathering data 282 ■ Creating a SharePoint form 285

11.3 Processing requests 289
Permissions 289 ■ Monitoring for new requests 290
Processing the request 292

CONTENTSxiv
11.4 Running PowerShell script on end-user devices 297
Custom Git install 298 ■ Running as system versus the user 299
Using Active Setup with PowerShell 303

12 Sharing scripts among a team 309
12.1 Sharing a script 310

Creating a gist 311 ■ Editing a gist 312 ■ Sharing a gist 313
Executing a gist 313

12.2 Creating a shared module 314
Uploading the module to a GitHub repository 316 ■ Giving access
to the shared module 318 ■ Installing the shared module 318

12.3 Updating a shared module 322
Make the module self-update 323 ■ Creating a pull request 325
Testing the self-update 327

13 Testing your scripts 328
13.1 Introduction to Pester 329
13.2 Unit testing 331

BeforeAll 332 ■ Creating tests 333 ■ Mocks 334

13.3 Advanced unit testing 337
Web scraping 338 ■ Testing your results 344 ■ Mocking with
parameters 345 ■ Unit vs. integration tests 349

13.4 Integration testing 351
Integration testing with external data 354

13.5 Invoking Pester tests 355

14 Maintaining your code 358
14.1 Revisiting old code 359

Test before changing 360 ■ Updating the function 362
Post update test 366

14.2 Automating your testing 370
Creating a GitHub workflow 371

14.3 Avoiding breaking changes 373
Parameter changes 374 ■ Output changes 375

appendix Development environment set up 377

index 381

preface
While most people know PowerShell as a command-line tool, it is truly much more than
that. If you look at Microsoft’s description of PowerShell, it says that it is an automation
and configuration tool/framework. PowerShell was written to be a plain text language
that is easy to pick up and get started with but also a very powerful tool that you can use
to automate an untold number of tasks in your environment and daily life.

 However, I’m not here to sell you on PowerShell. The fact that you are reading this
book shows you know what PowerShell is capable of. Instead, this book is designed to
help you learn from my over-a-decade’s worth of experiences in creating PowerShell-
based automations and apply those lessons to your own automation needs.

 Like many people in the information technology space, I started my career on the
help desk and moved into a systems administrator role. No matter what position I was
in, if there was a repetitive task I needed to do, I scripted it—first in VBS and then
eventually in PowerShell. I was in a unique position because my background was in
infrastructure, but I ultimately landed at a company that does custom application devel-
opment. I learned many skills from those I worked with along the way who helped me
build bigger and better automations.

 Working as a consultant, I have repeatedly seen companies that are afraid of
automation—not necessarily fear of automating yourself out of a job, but fear of
becoming beholden to the automation. I can’t tell you the number of times I’ve heard
that some process cannot be changed because nobody knows how to update some eso-
teric automation that someone made years ago.

 My goal in writing this book is to help others avoid that situation by creating
robust, easy-to-maintain automations that will be supported for years to come.
xv

acknowledgments
This book has taken up many evenings and weekends, so first and foremost, I would
like to thank my family. I thank my wife Leslie, whose love of reading really inspired
me to start down this path, not to mention her endless support along the way, and my
two kids, Jason and Abigail, who spent many Saturdays and Sundays waiting for Dad to
come out of the office and play.

 I would also like to acknowledge Cameron Fuller, whose mentorship and support
have been paramount in getting me where I am today, and the rest of my colleagues at
Quisitive, who have inspired and supported me throughout this process. This includes,
but is not limited to, Greg Tate and David Stein, who provided invaluable feedback
during the MEAP process.

 Also, this book would not have been possible without the help of my editors,
Connor O’Brien and Michael Lund. Thank you, Connor, for working with me and
teaching me the best ways to communicate my message for others to learn. I thought I
knew a lot about writing before, but your patience and commitment to my vision
helped me make the book even better than I ever imagined. Also, thanks to Michael
for his technical feedback and guidance, which helped me tremendously throughout
the writing process.

 I’d also like to thank the reviewers and those who provided feedback through
MEAP. Your feedback has been invaluable in helping me write this book for a wider
audience. To all the reviewers—Aleksandar Nikolic, Alice Chang, Andreas Schabus,
Anne Epstein, Anton Herzog, Bruno Sonnino, Charles Mike Shelton, Chuck Coon,
Eric Dickey, Fredric Ragnar, Giuliano Latini, Glen Thompson, Glenn Swonk, Gonzalo
xvi

ACKNOWLEDGMENTS xvii
Huerta Cánepa, Håvard Wall, Jan Vinterberg, Jeremiah Griswold, Jérôme Bezet-
Torres, Jiri Pik, Kent Spillner, Mike Haller, Milan Sarenac, Muralidharan T R, Mustafa
Özçetin, Nik Rimington, Orlando Méndez Morales, Przemysław Chmielecki, Ranjit S.
Sahai, Roman Levchenko, Sander Zegveld, Satej Kumar Sahu, Shawn Bolan, Sylvain
Martel, Wayne A Boaz, Werner Nindl, and Zoheb Ainapore—your suggestions helped
make this a better book.

 Finally, I’d like to thank the PowerShell team at Microsoft and, especially, the wider
PowerShell community. This book would not have been possible without all the work
they do.

about this book
While the lessons in this book are written with PowerShell, the concepts taught can
apply to any automation language or platform. This is done by taking you beyond how
to do something and leaning more into the why. My goal is to help you take these con-
cepts and apply them directly to your needs by showing you how to think through the
automation and what needs to be accomplished so you can create efficient and main-
tainable automations that you can continue to use for years to come.

Who should read this book?
This book is for anyone familiar with PowerShell who would like to create enterprise-
ready automations. While the concepts of this book apply to everyone, from beginners
to experts, to get the most out of this book you should have some familiarity with
PowerShell. You should know how to install modules, understand the basics of creat-
ing PowerShell script (.ps1), and know some core basics of the language, such as
if/else conditional statements, splatting, and loops.

How this book is organized: A roadmap
This book consists of 14 chapters, broken down into three parts. Each part covers a
core concept of the automation process.

 Part 1 covers getting started with your automation journey:

 Chapter 1 discusses the best uses of PowerShell from an automation point of
view and how to ensure you are using the correct tools for the job.

 Chapter 2 shows you how to organize your scripts and modules to make reus-
able tools.
xviii

ABOUT THIS BOOK xix
Part 2 is the heart of the book, covering many different automation concepts:

 Chapter 3 covers scheduling automations and how to think about your code
when it is going to be run on a schedule.

 Chapter 4 shows you how to handle secure data in your automations, including
the use of password vaults.

 Chapter 5 demonstrates multiple ways you can use PowerShell for remote exe-
cution and how to apply these to real-world situations.

 Chapter 6 starts by showing you how to use logic in your code to make your
automations adaptable. It then takes that concept a step further by showing you
how to use external data to control the execution of an automation script.

 Chapter 7 goes in-depth into using PowerShell with a database backend, freeing
you from the Excel and CSV files many companies use to store important data.

 Chapter 8 shows you how to use Azure to manage and execute your automa-
tions by combining many of the concepts from previous chapters into a single
platform.

 Chapter 9 demonstrates how you can use PowerShell to interact with different
solutions. These include generating a Word document from within PowerShell,
communicating with a web API, and even invoking Python and passing data
between the two scripts.

 Chapter 10 covers some best practices when it comes to writing PowerShell spe-
cifically for automation purposes.

Part 3 shows you how you can share and maintain your automation scripts:

 Chapter 11 covers how you can use SharePoint as a front-end for a PowerShell
script and how to design scripts that need to run on end-user devices.

 Chapter 12 shows you how to use GitHub for source control and for sharing
scripts with your colleagues.

 Chapter 13 teaches you the basics of using Pester to create unit and integra-
tion tests that will help ensure your scripts meet all the scenarios you designed
them for.

 Chapter 14 demonstrates how to go back to a previous script and make changes
to it. This includes what you need to consider beforehand and incorporating
automated testing into your source control.

About the code
Unless otherwise stated, all code in this book is written to use PowerShell 7.2 or newer.
Some sections still require Windows PowerShell 5.1, but these are clearly called out. In
trying to write this book to be as conclusive as possible, I tried to keep the dependence
on third-party platforms to a minimum. Any platform or external tools used in this
book are either free or have a free trial long enough for you to complete the exer-
cises. There is no dependence on things like Active Directory.

ABOUT THIS BOOKxx
 To accommodate the spacing requirements for a printed book, splatting is used
throughout this book. If you are not familiar with splatting, it is a way to pass a collec-
tion of parameters to a command using a hashtable. This allows you to break up the
parameters into individual lines, making it more readable.

 To show the difference between a command and the output from the command,
anytime output is shown, the code will be in a separate block immediately following
the command and indented. Also, the output may be shortened to only show rele-
vant data:

Code example
Output example

You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/practical-automation-with-powershell.
The complete code for the examples in the book is available for download from the
Manning website at www.manning.com, and from GitHub at https://github.com/
mdowst/Practical-Automation-with-PowerShell.

 Helper scripts are also provided in some chapters. These are typically used to help
you set up your development environment to support the lessons in that chapter.
Their use will be called out in the individual chapters.

liveBook discussion forum
Purchase of Practical Automation with PowerShell includes free access to liveBook, Man-
ning’s online reading platform. Using liveBook’s exclusive discussion features, you
can attach comments to the book globally or to specific sections or paragraphs. It’s a
snap to make notes for yourself, ask and answer technical questions, and receive help
from the author and other users. To access the forum, go to https://livebook.manning
.com/book/practical-automation-with-powershell/discussion. You can also learn more
about Manning’s forums and the rules of conduct at https://livebook.manning.com/
discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

https://livebook.manning.com/book/practical-automation-with-powershell
https://github.com/mdowst/Practical-Automation-with-PowerShell
https://github.com/mdowst/Practical-Automation-with-PowerShell
https://livebook.manning.com/book/practical-automation-with-powershell/discussion
https://livebook.manning.com/book/practical-automation-with-powershell/discussion
https://livebook.manning.com/book/practical-automation-with-powershell/discussion
https://livebook.manning.com/discussion
https://livebook.manning.com/discussion
http://www.manning.com

about the author
MATTHEW DOWST is a Managing Consultant for Quisitive (for-
merly Catapult Systems) and the lead architect for their man-
aged automation team. He has spent the last 10 years working
extensively with PowerShell to help clients of all sizes automate
their production workloads. In addition, Matthew is very involved
in the PowerShell community, writing blogs, authoring mod-
ules, and participating in online forums. He is also the creator
of the PowerShell Weekly newsletter, a weekly roundup of that
week’s PowerShell news.
xxi

about the cover illustration
The figure on the cover of Practical Automation with PowerShell is captioned “Habitante
de Frascati,” or “Resident of Frascati,” taken from a collection by Jacques Grasset de
Saint-Sauveur, published in 1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or sta-
tion in life was just by their dress. Manning celebrates the inventiveness and initiative
of the computer business with book covers based on the rich diversity of regional cul-
ture centuries ago, brought back to life by pictures from collections such as this one.
xxii

Part 1

If you go to any conference, read any trade publications, or just talk to others,
you will hear that the future is in automation. However, automation is much
more than just taking an existing manual process and writing some code to do it
for you. To be genuinely successful in your automation endeavors, your automa-
tions must save you time and money. However, calculating that is more than just
taking into consideration the time it takes you to do the task versus a machine. You
also need to calculate in the time it takes to create and maintain the automation.

 In this section, you will learn not only how to calculate the cost of automation
but also how to minimize the cost of creation and maintenance. In addition, you
will see how properly planning your projects and creating reusable code will save
you time now and in the future.

PowerShell automation
Every day, across all industries, IT professionals are tasked to do more with less, and
the best way to achieve that is through automation. However, many companies do
not see IT automation as an asset. More often than not, automations are cobbled
together by some sysadmin in their spare time. This often leads to situations where
the automation becomes less efficient than doing the task manually, or even worse,
it becomes a blocker for change.

 I am sure at some point you have tried using one of the codeless automation
platforms such as IFTTT, Flow, or Zapier, among others. If you are like me, you prob-
ably found the features a little too basic. They are great for personal one-off–type
automations, but to really get what you need out of them and ensure they can sup-
port enterprise-level automations, they require customization beyond what their
simple GUIs can provide.

This chapter covers
 How to conceptualize your automation needs

 Why you should automate with PowerShell

 How to know when PowerShell is the right tool
for the job

 How you can get started automating your
workloads today
3

4 CHAPTER 1 PowerShell automation
 This is where PowerShell can shine. PowerShell is a task automation framework
with a simple and intuitive scripting language. PowerShell includes command-lets
(cmdlets) that allow you to do similar tasks available in admin consoles and provides
a framework in which tasks can be chained together to execute a series of logical
steps. Cmdlets allow you to manage and automate the entire Microsoft ecosystem
(Azure, Office 365, Microsoft Dynamics, etc.) and other platforms such as Linux
and Amazon Web Services. By harnessing the potential of PowerShell and learning a
few fundamental principles of automation, any IT professional can become an auto-
mation guru.

 In addition to asking IT professionals to do more with less, the IT industry is mov-
ing to an infrastructure as code model. I have the unique experience of working for a
company that specializes in infrastructure consulting and custom application develop-
ment. This has given me the opportunity to work on automation projects within both
specialties, and I have learned that anyone can become an automation guru with a bit
of knowledge from each side.

 If you are a systems administrator or other IT specialist, you are probably already
familiar with working in command-line interfaces (CLIs), using batch/shell files, and
running PowerShell scripts. Therefore, the leap to writing code specifically for auto-
mations is not that significant. However, you may not be as familiar with some of the
supporting skills around issues such as source control and unit testing, and this book
aims to help with that.

 At the same time, someone with a strong development background may not be as
familiar with all the idiosyncrasies of system administration. This is where PowerShell
can shine because it does not rely on enterprise architecture. You can just as easily run
a script on your local machine as you can on a server. This book demonstrates how
you can leverage PowerShell in an organization of any size to create robust, maintain-
able, and secure automations.

1.1 What you’ll learn in this book
This book does not simply show you how to write PowerShell scripts. There are
already hundreds of resources out there on just writing code. Instead, the goal is to
show you how you can use PowerShell as an automation tool by understanding

 How you can leverage PowerShell to automate repeatable tasks
 How to avoid common automation pitfalls with PowerShell
 How to share and maintain scripts for your team
 How to frontend your scripts for end users

We will achieve this goal by using real-world examples that IT professionals run into
every day. You will work through the technical side of writing the code, the conceptual
side of why the code is structured the way it is, and how you can apply that to your
automation needs.

51.2 Practical automation
1.2 Practical automation
If you are reading this book, then it is probably safe to assume you have asked yourself,
“What should I automate?” While the answer you most likely want to hear is “Every-
thing!” the generic answer is “Any repetitive task that takes you less time to automate
than perform.” However, like many things in the IT field, the answer is not always so sim-
ple. You need to consider multiple factors to determine whether something is worth
automating, and as you will see, it may not always be a straight return on time invested.

 It is easy to say if it takes you less time to automate it than it takes to do it manually,
then it is worth automating, but that is not the complete story. You need to take into
consideration the following:

 Time—How long does it take to perform the task?
 Frequency—How often is the task performed?
 Relevancy—How long will the task/automation be needed?
 Implementation—How long will it take to automate?
 Upkeep—How much long-term maintenance and upkeep will it require?

The first two items, how long and how often, are usually the most straightforward
numbers to figure out, along with the business side of things such as how long the task
will be relevant. For example, if you automate a task that will go away after the next
system upgrade, then you may not recoup your time invested.

 The implementation time and upkeep costs can be a little more challenging to cal-
culate. These are things you will begin to get a feel for the more you automate. Just
remember to factor in the cost of the tools, platforms, licenses, etc. To determine
upkeep costs, you need to consider technology-based maintenance tasks such as plat-
form maintenance, API changes, and system upgrades.

 Once you have answers to these questions, you can calculate the amount of time
you can spend automating the task to determine whether it is worth your time. You
can get the cost by multiplying the time by the frequency and the relevancy. Then, add
your implementation plus the upkeep over the relevancy period. If your current cost
exceeds your automation cost, then the task is worth automating.

Time × Frequency × Relevancy > Implementation + (Upkeep × Relevancy)

Current cost > Automation cost

At the beginning of your automation journey, estimating the implementation and
upkeep costs can be challenging. However, this is something you will learn the more
you do it. Until you become more comfortable with these estimates, a good rule of
thumb is that if you think you can automate it in half the time saved, then you will be
almost guaranteed a good return on your investment.

 Besides the benefit of simplifying a repetitive task, there are other factors to consider
when determining what to automate. Anything prone to a high degree of human error
is a great candidate for automation. Working with a large data set and data transcription

6 CHAPTER 1 PowerShell automation
is a great example of two tasks that are ripe for automation. People make mistakes
when typing. Those mistakes are amplified when they are dealing with lots of data in
front of them. If you have ever created a complex Excel formula to manipulate some
data, then you have already made a simple automation.

 Even if the task at hand is not something you need to do repeatedly, creating a
one-off automation may save you time. Plus, if you keep that automation, you can use
it as a foundation if you have to perform a similar task in the future. An excellent exam-
ple of this is string manipulation tasks. For example, say you have a text file with a bunch
of poorly formatted text that you need to parse into columns and get into a spreadsheet.
However, it is not that many rows, and you could transcribe it or copy/paste it in a few
minutes. Or you can take it as an opportunity to hone your skills by using regular
expressions, splits, substrings, indexes, replacements, or any other number of string
manipulation methods. Learning to use these correctly will be an invaluable skill in
your automation journey.

 Another place you can look for things to automate is in tasks that you may not
need to do often but that are complex and time-consuming. If the task is complex
enough that you made a checklist, then you also made an automation project plan.
Start by automating one of the steps, then another, and another, and so on until you
have a fully automated process. The next time this task comes up, you can click a but-
ton instead of referring to a checklist or trying to remember each step of the process.

 The best way to get started on your automation journey is to find a simple task that
you repeatedly do and automate it. It doesn’t have to be a big task or anything fancy.
Just think about something that will save you time.

 You can also use automation to help you overcome obstacles or handicaps that
might prevent you from being as productive as you would like to be. For example, I
will freely admit that I am not the most organized person when it comes to my inbox.
I would like to be, but I cannot always keep on top of things. I don’t like to use Out-
look rules because I want to ensure I don’t miss an alert, especially if I’m away from
my desk. So, what ends up happening is that I quickly read through my emails, but I
don’t always file them right then. As a result, I end up with thousands of emails in my
inbox over time. To combat this, I wrote a script that will file my emails for me. It
moves messages to specific folders based on email addresses and keywords. Not only
does this automation save me time and help me be more productive, but it also makes
me happy, and at the end of the day, that’s worth it to me.

 One last thing to remember is that you do not need to automate an entire process
end to end. You may very well calculate that the cost of automating a task would be
greater than performing it manually. However, you may be able to automate certain
portions of it to save time and give you a positive return on investment. A perfect
example of this is barcodes. Barcodes allow cashiers and warehouse workers to
quickly scan items instead of hand-entering product codes. RFID tags would be even
quicker, but the cost of implementing them has, so far, been higher than the cost of
scanning a barcode.

71.2 Practical automation
 The more experience you get with automation, the better you will become at
determining what is and what isn’t worth automating. Also, as you will see in the
next section, by using a phased approach with reusable building blocks in your auto-
mation processes, you can set yourself up for creating bigger and better automations
down the line.

 To help you get started, let’s look at the four key factors you need to consider when
designing an automation. These are the automation’s

 Goal
 Triggers
 Actions
 Maintainability

The automation goal is what that automation needs to accomplish. The trigger is what
initiates the automation actions. The actions are the steps taken during the automa-
tion. Finally, maintainability is what it will take to maintain this automation as a whole
and as individual building blocks.

 We can use a common real-world example to help illustrate each part of the anat-
omy of the automation. For example, imagine you have a web server that keeps going
offline because the logs fill up the drives. These logs cannot be deleted because they
are required for security audits. So, about once a week, you must find files over 30 days
old, compress these old logs, and move them to long-term storage.

1.2.1 Automation goal

The automation goal is what you are trying to achieve with a specific automation. While
the goal of the automation may seem easy to define, you need to be sure that you con-
sider all aspects of the automation.

 In our log file cleanup example, our obvious goal is to prevent the drives on the
web server from filling up, but that just scratches the surface. If that were our only
goal, we could simply delete the old logs. However, these logs are required for security
audits. So, our goal is to create an automation process that will prevent the drives
from filling up while ensuring no data is lost and that the data will be accessible on the
rare occasions it is needed. This gives an overview of the automation and can be used
to create a checklist when designing your actions.

 For example, if we change our goal to include regular access to the data, it could
change our actions. In this case, compressing the files and moving them to long-term
storage would not be the best option. You could instead move the files to a larger stor-
age array. This would make them easier to access while still preventing your drives
from filling up. Now that you know what you want your automation to achieve, you
can start planning the steps needed to get there.

8 CHAPTER 1 PowerShell automation
1.2.2 Triggers

Triggers are what start your automation. Broadly speaking, there are two types of triggers,
polling and event-based. Polling triggers check in with end points, and event triggers are
initiated by an outside event. Understanding the difference between these two types of
triggers and how they work will significantly impact your automation journey.

 Polling triggers routinely check in with a system for specific conditions. Two typi-
cal implementations—and ones we will use throughout this book—are monitors and
schedules.

 A monitor checks in and waits for a specific condition to occur. This can be any-
thing from watching an FTP site for file uploads to monitoring an inbox for emails or
confirming a service is running, among many other tasks. Monitors can run continu-
ously or on a recurring interval.

 The choice to use a continuous or interval-based monitor will depend on the bal-
ance between automations needs and costs. For example, let’s say you are monitor-
ing a file share for a file to be written. If you know that the file only gets written once
an hour, having your automation check every 60 seconds for it would be a waste of
resources.

 While a monitor might run on a regularly recurring schedule, a scheduled auto-
mation is different in that the trigger itself doesn’t check for a condition before run-
ning subsequent steps. Instead, it will run every time it is scheduled. Common
examples include cleaning files, data synchronization, and routine maintenance tasks.
Like with a monitor, you need to carefully consider the needs of your automation
when setting up your schedule.

 An event trigger occurs when an outside event initiates the automation. For exam-
ple, a common event trigger is an http request such as a webhook. Event triggers can
also include calls from other automations, and most service desk tools have a workflow
engine that can trigger automations when a particular request is received. These are
just a few examples of automated event triggers, but any external interaction can be
considered an event trigger.

 A simple button or the execution of a command shell can be an event trigger. The
critical thing to remember is that event triggers are initiated by any outside event,
whereas polling triggers reach out to the end point.

 Let’s go back to the example of cleaning up the web server logs. You need to figure
out what trigger would be best to use, polling or event. In this case, a polling trigger
makes sense because the web server has no way to reach out. Now, you need to deter-
mine whether it should be a monitor or schedule. Usually, a monitor is used for issues
that require immediate or near-future actions—for instance, a service has stopped or
a network connection has dropped. Since cleaning up web server logs is a mainte-
nance task, a schedule would make the most sense. Next, you need to determine your
recurrence interval.

91.2 Practical automation
 You already know that you have to clean up these logs at least once a week. Logi-
cally, a trigger with a recurring interval of less than one week would be best. You also
know that a new log file gets created after a certain number of lines. You see there are
about three or four logs generated daily. Therefore, a once-daily job would be a good
option because anything less would be overkill and anything more would run the risk
of the logs growing too large. Once you determine your trigger, it is time to move on
to the core part of your automation, the actions.

1.2.3 Actions

Actions are what most people think of when they think of automation. The actions are
the operations your automation performs to achieve the automation goal. Automa-
tions can consist of multiple different actions, sometimes referred to as steps. You can
classify actions into three main categories: logic, tasks, and logging. Figure 1.1 shows the
steps for the log cleanup automation.

 Logic actions are the actions that control the flow of your automation. They
include conditional constructs (your typical if/else conditions), loops, waits, error
catching/handling, and handling of variables or other runtime data. Tasks are the
actions performed against the end points. In other words, if it is not a logic or logging
action, it’s a task. The best way to think about it is that logic actions are the brain, and
tasks are the hands.

 Logging, as the name implies, is the recording of your actions. Your logging can
consist of output from both logic and task actions. While logging actions could be
considered tasks, I prefer to think of them separately because they are not directly
involved in completing the automation goal. However, they will be directly involved in
the creation of successful and maintainable automations.

 Looking at our example of cleaning up log files, we can identify the actions we
need to take and what type of actions they are:

1 Find logs over 30 days old (logic).
2 Create an archive file with timestamp name (task).
3 Add old files to the archive (task).
4 Remove the old files from the drive (task).
5 Record which files were removed and the name of the archive file (logging).
6 Copy the archive files to Azure Blob Storage for long-term storage (task).
7 Confirm that the copy was successful (logic). If not, stop the process, and send a

notification.
8 Record the location of the new file (logging).
9 Remove the original archive file (task).

10 CHAPTER 1 PowerShell automation
Log file cleanup process

T
a
s
k

L
o

g
ic

L
o

g
ic

L
o

g
g

in
g

T
a
s
k

Find files over
30 days old

Create an archive file
with timestamp

Add old files
to archive Delete old files

Record files that were
removed

Confirm copy
was successful

X=

Record location
of archive file

Delete the original
archive file

Send failure
notification

Copy archive to
Azure Blob storage

Figure 1.1 The steps for a file cleanup automation process separated by which steps are logic, tasks,
and logging

111.2 Practical automation
1.2.4 Maintainability

A few years ago, I helped a customer automate their user provisioning processes. During
the discovery phase, I was told users had to be created in a specific directory, left for
one hour, and then moved to their proper directory. Of course, I asked why and was
told it would allow the users to sync with an in-house application. It turns out the per-
son whose job it was to add and remove users from this application decided that they
would automate the process. At the time, all users existed in the same directory. So
they built this automation, saving them 30 to 60 minutes of work a week. However,
over time things changed.

 The company had expanded and needed to provide different policies to different
users, so they created different directories. They then noticed that certain users were
not being created in this in-house system. By this time, the person who wrote the auto-
mation was long gone, and no one else understood how it worked. So, they would add
users into the directory, wait until the hourly sync ran, and then move them to the
proper directory. What had initially saved one person 60 minutes of work a week was
now costing others a couple of extra minutes for each user they created, which means
in the long-term, this automation was costing them more than it ever saved. This is a
classic example of not planning for the future.

 No one can predict the future, but you can certainly plan for it. No matter what
step of the automation process you are working on, you need to ask yourself how diffi-
cult this will be to maintain. When you do this, think back on your experience and
consider how the requirements might change over time.

 In our log cleanup scenario, we said our first action was to find log files over 30
days old. One of the first things that should have come to mind is what happens if the
drive starts filling up faster and you need to clean up logs every 14 days. How difficult
would it be to make this change? If you created the number of days as a variable, it
would not be difficult at all. However, if you hardcoded the number of days in your
scripts, you would need to go back and make multiple changes.

 Another scenario that might not be as straightforward is if a second log folder is
deemed necessary. To begin, you need to ask, “How likely is this scenario?” If it is
likely, you should consider whether it is worth writing the automation to handle multi-
ple folder paths, or whether you could do something as simple as running it twice,
once for each path.

 Another aspect to consider is if you have to change log cleanup from daily to
hourly. Again, ask yourself if this is a likely scenario. If it is, determine what it would
take to change the automation to hourly. It might seem like a simple answer, say, to
change the filter from days to hours, but you also need to look at how this could affect
other actions. For instance, when creating the archive file, are you adding a time-
stamp to the name? If so, does it include hours? If it doesn’t, you may create a situa-
tion in which you accidentally overwrite data.

 The answers to any of these questions will depend on your unique requirements.
Of course, you will not be able to predict every possible situation, but if you keep these

12 CHAPTER 1 PowerShell automation
questions in mind and know how to address them using PowerShell, you will be more
prepared when changes become necessary.

 You also need to be aware of getting caught in the weeds. If you noticed, my first
response to any question is “How likely is this scenario?” You can get so bogged down
in accounting for different scenarios that you’ll never accomplish anything, or you’ll
make your logic so complex that no one else will understand it. It is a delicate balanc-
ing act that we will continually touch on throughout this book.

1.3 The automation process
When looking at an automation project, it is easy to get overwhelmed. People will tell
you to use things like the KISS principle (keep it short and simple). While that is
easy to say, it is not always easy to do in practice. It may seem nearly impossible when
you have multiple systems talking to each other, complex logic, and ever-changing
requirements. This is where the concepts of building blocks and phases come in. By
using building blocks and phases, you can break down your complex tasks into small,
simple steps.

1.3.1 Building blocks

No matter how complex the automation is, it can always be broken down into smaller,
more simplified steps or building blocks. By breaking tasks down into smaller blocks,
you can prevent yourself from becoming overwhelmed and provide clear goals that
you can meet regularly. In addition, this concept will allow you to use portions of the
automation as soon as day one and provide you with a framework to expand on your
earlier work. The majority of this book will cover helping you create these different
building blocks that you can use across your automations.

 Building blocks also allow you to build your skills over time. As you automate more
and more, your skills will continue to grow. You will learn new techniques, not just in
your coding but in the overall process. You may find a better way to perform a task
using PowerShell. If you used building blocks, you can go back and update all your
previous automations quickly and easily.

1.3.2 Phases

The adage “You have to be able to walk before you can run” applies perfectly to the
world of automation. Your first few automations you make will likely not be pretty—
just like the first picture you ever drew or the first paper you wrote in school. It takes
time and experience to build your skills. But that doesn’t mean you cannot start reap-
ing the benefits of automation immediately.

 By breaking your automations into phases, you can create incremental benefits.
Imagine you need to get from point A to point B. Sure, a car may be the fastest way to
get there, but you have no idea how to build a car, let alone have the resources. So,
start small and work your way up. Begin by building a skateboard. Then upgrade to a
scooter, a bike, and a motorcycle and, finally, build that car. Figure 1.2 illustrates the

131.3 The automation process
benefits of a phased approach to automation. Each step of the way, you will make
improvements and continue to improve your process. Plus, you will see benefits from
the very start, unlike if you set out to build a car from the get-go. In that situation, you
would be walking the entire time until you finally built the car.

 During each phase, you will most likely be creating several building blocks. Fur-
thermore, these building blocks that you create will often be used across the different
phases and improved upon from one phase to the next. For example, in figure 1.2,
you learned to make a wheel in phase 1. Then, in phase 2, you improved upon that
knowledge and made an even better wheel.

 Phases also allow you to adapt and adjust the automation along the way. You can
get feedback after each phase from the people using it. You may discover there are
things you did not consider. In the scenario in figure 1.2, after you created the skate-
board, people told you it was great for part of the trip but not for the really muddy
parts. You can take this feedback and adjust phase 2 to include larger wheels. Contrast
this with the nonphased approach of jumping right in and building the car and then
finding out it gets stuck in the mud. If you didn’t build the suspension and wheel wells
to fit bigger wheels, you would have a ton of rework to do.

1.3.3 Combining building blocks and phases

To demonstrate the concept of building blocks and phases in a more IT-centric way,
you can look at the common automation scenario of provisioning a virtual machine.
While there can be a lot to this process, you can break it down into a few phases:

1 Create a virtual machine.
2 Install the operating system.
3 Configure the operating system.

While it would be great to tackle all of this at once, it would be a massive undertaking,
and you would not see any benefits until the very end. Instead, you can tackle one

How not to approach automation

How to approach automation

Figure 1.2 How a phased approach can allow you to start receiving benefits sooner

14 CHAPTER 1 PowerShell automation
phase at a time, providing yourself with added benefits along the way. Start with phase 1,
creating a virtual machine. The building blocks for this could consist of

1 Selecting a host machine
2 Creating a blank virtual machine
3 Allocating CPU and memory
4 Attaching a network interface card to the appropriate subnet
5 Creating and attaching virtual hard disks

Once you’ve finished phase 1 (creating a virtual machine, shown in figure 1.3), you
can move on to phase 2 while already reaping the benefits of phase 1.

In phase 2, you are going to install the operating system. Here you have a couple of
options. You can create a template virtual hard disk with the operating system already
installed. However, this would mean you must maintain the template, including apply-
ing patches. Also, if you have multiple hosts in different regions, it could be a pain to
make sure they all stay in sync. Instead, you decided to use your configuration man-
agement tools to install the operating system. This way, your image is consistent
throughout your environment and always up to date.

 As you start building this part of the automation, you realize that your virtual
machine needs to be on a specific subnet to receive the image. Your building blocks
may be similar to this:

Phase
Configure OS

se 3
Phase
Install OS

se 2
Phase

Create VM
Phase 1

Select a hoshost machine

Create virturtual machine

Add CPU and memory

AddAdd NIC

Attach to
subnet

to network

Create virturtual disk

Attach virturtual disks

TBDTBD TBDTBD

Figure 1.3 A virtual provisioning phased approach (phase 1)

151.3 The automation process
1 Attach to operating system deployment subnet.
2 Turn on the virtual machine.
3 Wait for the operating system to install.
4 Attach to production subnet.

Since you created a block to assign the virtual machine to a subnet in phase 1, you can
reuse that code for blocks 1 and 4 in this phase. Notice that I made attaching to a sub-
net a separate block. This is because I’ve automated this exact scenario before and have
run into the situation multiple times. If you combine all the resources into one block—
that is, you assign CPU and memory, attach the network, and allocate the virtual hard
disk—you cannot reuse it. If you want to connect to a different network, you can reas-
sign the CPU and memory, but allocating another virtual hard disk could cause signifi-
cant issues. If you do something like this, don’t worry about it. Think of it as a learning
experience. I still do it all the time myself. Plus, since you will have to create the building
block to assign the subnet for this phase, there is no reason why you can’t go back and
update blocks in the previous phase. Figure 1.4 shows these developments in phase 2.

Now you have two phases in production, and users are starting to see real benefits.
In addition, you are learning what would benefit them in the next phase, shown in

Phase
Configure OS

se 3
Phase
Install OS

se 2
Phase

Create VM
Phase 1

Select a hoshost machine

Create virturtual machine

Add CPU andnd emorym

AddAdd NIC

Attach to network
subnet

Create virtuvirtual disk

Attach virturtual disks

Attach to OSD subnet

Turn on on VM

Instaltall OS

Attach to Prod subnet

TBDTBD

Figure 1.4 A virtual provisioning phased approach (phase 2) with shared
components

16 CHAPTER 1 PowerShell automation
figure 1.5. You can talk to the people using the automation and discover what they
would like to see in phase 3. It could be assigning a static IP address, creating secondary
data drives, or any other number of things you may not have considered. Also, you don’t
have to stop after phase 3. You can add a phase 4 to install applications automatically.

The most significant benefit of combining the concept of building blocks and phases
is flexibility—not just during the creation process but also down the road. If your
requirements or resources change, you only need to swap out the building blocks
specific to that change. The process itself and the other building blocks will remain
unchanged.

 Imagine if your company decided to switch to a new hypervisor or move to the
cloud. In these cases, you would need to redo phase 1. In phase 2, you simply need to
swap the network assignment blocks with the new ones you built. The rest of phase 2
stays the same. Alternatively, say your company decided to switch to a different operat-
ing system. There would be few to no changes in phase 1 and maybe some minor
changes in phase 2. All the changes would focus on phase 3. If you’ve used a phased
approach, no matter what gets thrown at you, you’ll be able to adjust rapidly.

Phase
Configure OS

se 3
Phase
Install OS

se 2
Phase

Create VM
Phase 1

Select a hoshost machine

Create virturtual machine

Add CPU aU and emorym

AddAdd NIC

Attach to
subnet

to network

rtu

Attach virtual disks

Attach to OSOSD subnet

Turn on on VM

Instaltall OS

Attach to PrProd subnet

Create virtual disk

Attach secondary drive

Assign ststatic IP

Create virtual disk

Install anti-virus

Figure 1.5 A virtual provisioning phased approach (phase 3) with shared
components

171.4 Choosing the right tool for the job
1.4 Choosing the right tool for the job
One of the biggest mistakes you can make when trying to automate a task is trying to
make a tool do something it is not designed to do. Therefore, before you begin any
PowerShell automation project, you need to determine whether it is the best tool for
the job.

 For example, I would not recommend using Python if you are setting up resources
in Azure, not because Python is a bad tool (far from it), but because Python does not
have the same native support for Azure resources. You can do it by invoking the Azure
CLI through Python, but this can lead to another set of issues. Now your Python script
is dependent on having the Azure CLI installed. Since the Azure CLI is a stand-alone
application and not a package for Python, you will need to build specific checks into
your script to ensure that the files you need are available. Also, your script is now
dependent on a platform that supports both Python and the Azure CLI. This dramati-
cally increases the complexity of your automation and makes it much less portable.

 Now, if you choose PowerShell for this task, you can use the Azure PowerShell
modules created and maintained by Microsoft to perform your tasks. All the function-
ality to check for and resolve dependency issues are built into PowerShell. With two or
three lines of code, you can make your script completely portable to any other system
running PowerShell.

 I am not saying PowerShell is the end-all, be-all, but for certain workloads, it just
makes sense. Now, with PowerShell Core, the number of tasks you can automate with
PowerShell is growing larger and larger, although it still does not cover everything. If
you need to do technical analysis as part of your automation, such as calculating and
plotting statistical charts, I would not recommend PowerShell. In this case, the pana-
das library in Python is leaps and bounds above anything available in PowerShell.

1.4.1 Automation decision tree

How do you determine whether PowerShell is the right tool for the job? One way is by
using the decision tree in figure 1.6.

 When using a decision tree, you need to look at all aspects of the automation pro-
cess you are creating. For example, let’s return to our previous example of archiving
old log files and add in the requirement to upload them to Azure Blob Storage. The
first action was to find files over 30 days old. Running that through a decision tree
would look something like this:

 Does this tool have native support for all the tasks I need to accomplish? Yes,
PowerShell has built-in functionality to work with file systems.

There is no need to continue with the other questions because the first one is a defin-
itive yes. The next few actions in the process will be similar. For instance, when creat-
ing the archive file, ask

 Does this tool have native support for all the tasks I need to accomplish? Yes, the
Compress-Archive cmdlet is native to PowerShell.

18 CHAPTER 1 PowerShell automation
However, not all actions will be so straightforward. Take, for example, the action to
copy the files to Azure Blob Storage:

 Does this tool have native support for all the tasks I need to accomplish? No.
 Are there modules/add-ons from the company that can accomplish the tasks?

Yes, Microsoft has an official Azure Blob Storage module.

Does this tool have native
support for the task?

Are there add-ons from the
vendor to support the task?

Are there add-ons from the
community to support the task?

Can you write your own custom
functionality?

Is it well maintained
and updated?

Would you be able to
maintain it on your own?

It is a viable option. Maybe consider a different tool.

No

Yes

No

Yes

No

Yes

Yes

Yes

No

Yes

No

No

Figure 1.6 The PowerShell decision tree can be used to determine whether PowerShell is the right
tool for the job.

191.4 Choosing the right tool for the job
Again, this is pretty cut and dried because we know Microsoft creates official Power-
Shell modules to support all Azure functionality. But there will be instances, even
within the Microsoft ecosystem, when the answer might not be so clear. For example,
let’s say that for the action to log which files are removed, you need to write these files
to a SQL table:

1 Does this tool have native support for all the tasks I need to accomplish? No.
2 Are there modules/add-ons from the company that can accomplish these tasks?

There is a SqlServer module from Microsoft, but it does not support all the tasks I want to
automate.

3 If not, are there modules/add-ons from the community that can accomplish
the tasks? Yes. The module dbatools is available in the PowerShell Gallery.

a Is it maintained and updated? The GitHub repo has over 15,000 commits and 200
contributors and is updated regularly.

4 How difficult would it be to write custom functionality? It is possible to query SQL
directly from PowerShell using the System.Data.SqlClient class that is native in .NET.

a Will it be difficult to maintain? There may be differences between .NET and .NET
Core for the SqlClient class.

As you can see, there is a multitude of ways that you can accomplish the task. It will be
your job to make an informed decision on which tool or tools are best suited for the
task at hand. Of course, you may find that no single tool can meet all your needs, and
that is fine, too. When using PowerShell, you can easily switch between different solu-
tions to accomplish your goals. After reading this book, you’ll be able to identify tasks
for which you can utilize PowerShell.

1.4.2 No need to reinvent the wheel

One of the great things about PowerShell is the large community that loves to share its
knowledge. At the time of this writing, over 6,400 different PowerShell modules are
available in the official PowerShell Gallery. There are also numerous websites, forums,
and blogs dedicated to PowerShell. So, chances are, if there is something you are try-
ing to do with PowerShell, someone has already done it or something similar.

 There is no need to write every single line of code in your scripts from scratch. I
encourage you to go explore what other people have done. Learn from their mistakes
and experiences. I cannot tell you how many times I’ve seen a block of code to do
XYZ, and I think to myself, “Why did they do it that way?” Then I write it another way,
run into a problem, and then realize, oh, that’s why the other script did that.
At the same time, do not just copy and paste code from GitHub or StackOverflow into
your script and expect everything to work. Instead, look at the code. Figure out what
exactly it does and how it accomplishes its task. You can then implement it into your
script with the confidence that it will work and, most important, that you will be able
to maintain it.

20 CHAPTER 1 PowerShell automation
1.4.3 Supplemental tools

While PowerShell is capable of many things, there are a few things it cannot do. For
example, it does not have a frontend that can provide forms that users can fill in. It is
also not a job scheduler and does not have built-in triggers like webhooks. Although
achieving some of this functionality through PowerShell is not technically impossible,
it may not be practical. There are other tools out there that are built specifically for
these tasks, and many of them support PowerShell.

 However, as you will see throughout this book, there is no reason why you cannot
combine multiple tools. For instance, in chapter 3, you will learn how to use multiple
tools to schedule jobs to run, and in chapter 11, you will see how to use tools like
SharePoint to create frontend forms for your automations.

JOB SCHEDULER

PowerShell does not have a built-in job scheduler. You may be aware of the Register-
ScheduledJob cmdlet, but that only created PowerShell jobs in the Windows Task
Scheduler. To achieve true cross-platform support with PowerShell Core, this func-
tionality was removed from version 6.0 and up. Of course, you can still use Task Sched-
uler to schedule and run your PowerShell scripts in Windows, just like you can use
Cron in Linux, but there are other tools out there that are purpose-built to handle
things like automation jobs.

 If you are already using tools such as Jenkins, Ansible, or Control-M, you can use
PowerShell inside of these platforms to fulfill your automation requirements. The best
part is that your automations will then be platform agnostic. For example, if you
invested your efforts in a solution like IFTTT or System Center Orchestrator, you are
now locked into those platforms. If that software is deprecated, changes its licensing,
or takes away functionality, your only course of action is to recreate your entire auto-
mation. However, if you build your automations with PowerShell in Jenkins and your
company decides to move to Ansible, you can easily transfer your automation scripts
from one platform to another with minimal effort.

FRONTEND

The same can be said for things like frontend forms. A frontend is just a way to gather
information for your automation. You can technically build forms in PowerShell, and
there are instances where it makes sense to do so, but there are a lot of caveats to it.
Like with job schedulers, there are numerous tools available that make creating and
presenting forms simple and easy.

 You can build all the actions for your automations in PowerShell and then
frontend it through any means you like. For instance, you can make a SharePoint list
to collect the necessary information for your automation in a few minutes. Then, all
you need to do is build a simple trigger that passes the required information to your
automation. If you want to move to ServiceNow, no problem. You simply remap your
trigger from SharePoint to ServiceNow, and your automation will continue to func-
tion as before.

21Summary
1.5 What you need to get started today
While PowerShell Core is a cross-platform tool, most examples in this book will be
running in a Windows environment. I recommend using Windows 11 or Windows
Server 2022, but you should be able to follow along using any version of Windows that
supports Windows PowerShell 5.1 and PowerShell 7. Unless otherwise specified, you
can assume that everything in this book is written for PowerShell 7.

 You will also need an integrated development environment to write your code.
Although the built-in PowerShell ISE has been the go-to for many years, it does not sup-
port PowerShell 7. If you have not already done so, I highly recommend that you switch
to Visual Studio Code (VS Code). Unlike the traditional Visual Studio, VS Code is a free,
lightweight code editor that is open-sourced, cross-platform, and very community-driven.
In addition, it supports most common programming and scripting languages, including
Windows PowerShell and PowerShell, allowing you to work with both side by side.

 One thing that makes PowerShell so versatile is that it can be used across a multi-
tude of platforms, including Windows, Linux, macOS, servers, containers, third-party
platforms, and many cloud platforms. Not only can it be run on those platforms, but it
can also be used to automate their management. At the time of writing, the big thing
in the industry is containers. By next month or next year, who knows what it will be.
This is why most of the examples in this book are designed to use your local resources.

 Because most cloud-native or PaaS services have different authentication protocols
or minor differences in how they handle scripts, it would be impossible to write for
every potential service. Instead, this book will teach you the fundamentals that will
remain the same regardless of which platform you use or manage. It will teach you
how to think about, identify, and work with your chosen platform.

 While some examples in this book utilize third-party platforms or cloud solutions,
all platforms are either free or have a free trial you can use. These include Jenkins,
Azure, SharePoint, and GitHub. You can refer to the appendix for complete details on
the environments and tools used.

Summary
 PowerShell is a powerful high-level language designed with IT automation in

mind that is easy to pick up and start using.
 You can use PowerShell to create reusable building blocks that can be shared

between automations and among your team members.
 To create successful automations, you need to be able to conceptualize the pro-

cess and plan for the future.
 PowerShell is an extensible and portable tool that makes it a perfect fit for most

automation needs.
 PowerShell can work hand in hand with other tools and platforms to meet most

needs you have quickly and easily.
 PowerShell has a large community and is backed by one of the largest tech com-

panies in the world.

Get started automating
In the last chapter, you read about how to make your automation project a success
by using the concepts of phases and building blocks and how those apply to Power-
Shell. In this chapter, you will see how to take a simple script and turn it into a reus-
able building block you can use anywhere. You will do this by creating a script to
clean up old log files and turn it into a building block by thinking like an automator.

 You will also learn how to store these building blocks for use across multiple
automations. Whether you are writing a simple script to automate a repetitive task
or working with a much more extensive script, knowing how to use a phased
approach to your automation can save you a lot of time, money, and stress.

2.1 Cleaning up old files (your first building blocks)
In this section, you are going to write a simple script (automation) to clean up old
log files. In doing so, you will apply the concept of building blocks to your script
creation.

This chapter covers
 Applying the concept of phased automations

 Examples of how to create reusable functions

 How to store your functions in a module
22

232.1 Cleaning up old files (your first building blocks)
 As always, you start with your requirements gathering. You know that you need to
remove old logs to keep the drive from filling up. You also understand that the logs
must be retained for at least seven years, but after 30 days, they can go into cold storage.

 With that information, you can start designing phase 1. In this phase, shown in fig-
ure 2.1, you will find the files to archive, add the old files to an archive file, and then
remove the old files. Now that you have your basic design, you need to start thinking
like an automator.

First, you need to consider what variables your automation will need. This will help you
determine the parameters for your script. In this case, you are going to need to know

 The folder containing the log file
 Where to save the archive file
 What to name the archive file
 How old a file should be before being archived

The first two tasks, getting the log folder and knowing where to save the archive, are
reasonably straightforward. In both cases, the input will be a folder path. However, the
next two tasks require some additional considerations.

 You know you need to filter the logs by date, so you only archive the files you
want. Since you want to archive files over 30 days old, you can simply subtract 30
days from the current time. You can achieve this in PowerShell by using the AddDays
method on a DateTime object and putting in a negative number. Since you want to
make this reusable for other automations, you can make the date filter parameter a
number value provided to the script. However, there are other things you will want
to consider.

 Because the value of the date filter needs to be a negative number, you can either
expect someone using this automation to know that and enter a negative value, or you

Parameters
• Log folder
• Archive folder
• Archive name
• Date filter

Get files
• Over {days} old

Archive files
• Add files to archive

Delete files
• Delete archived files

Figure 2.1 Design the first phase of the file cleanup automation by defining the required
parameters and the steps to perform, such as getting the files to archive, performing the
archive, and then cleaning up the archived files.

24 CHAPTER 2 Get started automating
can have the script automatically flip a positive number to a negative one. However, in
either case, you may potentially end up setting the date to 30 days in the future, caus-
ing your script to archive files way too soon.

 Luckily, with PowerShell, there are several ways to handle this. For example, you
can add logic to check whether the value is positive and have your script automatically
convert it to a negative number. Alternatively, you can calculate the date using the
AddDays method and confirm that the value returned is in the past. If it is not, you can
throw an error message and exit the function or attempt to fix it by reversing the sign
of the parameter. Both of these options can be reusable functions, but in this case,
they might be overkill. Instead, a more straightforward approach is to use the parame-
ter validation functionality, which is native in PowerShell, to ensure the value passed is
within the range you want. Because positive numbers are easier for people to think
about and enter, your script can require a positive number and then automatically flip
it to a negative one.

 While any of the approaches mentioned would be valid, we used the simplest and,
therefore, less error-prone process, following the KISS principle (keep it short and
simple). If, down the line, you discover that even with the validation, people keep try-
ing to send negative values, you can adjust your script to use one of the more complex
solutions. The key here is the phased approach. You have the ability to continue to
evolve your script as time goes on. While this problem is easily solved using parameter
validation, the next one, setting the name of the archive file, is not so straightforward.

 When your automation runs, you will most likely want to create a new archive file
instead of adding to an existing one. Adding to an existing archive file can be dangerous
because if something goes wrong, it can affect multiple files going back days or even
weeks. Also, a possible phase 2 could be to copy this archive to a cloud-based store. In this
case, you would not want to recopy the same file repeatedly as it continues to grow larger.
Instead, the safest bet is to create a new archive file every time the automation runs.

 Because the file name needs to be unique for every execution, it makes sense to
add a timestamp to the file name. This means you need to consider how often the
automation will run. If it runs once a day, make the timestamp for the day, month, and
year. However, if it will run multiple times a day, you may need to add the hour, min-
utes, and seconds, or even milliseconds, to the name. Next, you need to consider what
timestamp to use. You can use the current time, but that may make it difficult to find
past logs without looking inside every archive. You can use the date of your filter, but
this could get confusing if you ever change the number of days in the filter. Instead,
the best option is to use the timestamp from the newest file you are archiving. Now, if
you need to search the archives, you can quickly determine which files would be in
which archive simply by the name.

 Given these needs, the archive filename cannot be a simple parameter. Instead,
make a parameter for the archive filename prefix and create a building block (aka a
PowerShell function) to append the timestamp value to it. The additional steps are
shown in figure 2.2.

252.1 Cleaning up old files (your first building blocks)
As this example shows, something as simple as what to name your file can have more
variables than you may have initially considered. However, this serves as an excellent
example of the mindset you need when creating your automations. You will see
throughout this exercise examples of how to think like an automator.

2.1.1 Your first function

The code to create the timestamp, append it to the filename and folder, and confirm
it is a unique file is a perfect example of when to create a function. Not only will mak-
ing it a function allow you to maintain and test just that portion of the script, but its
functionality can also be useful in other automations.

 Just as with the larger overall automation, you start by determining your parame-
ters. In this case, you need the archive path, the file prefix, and the date value to cre-
ate the timestamp. Then you need to think about the tasks to perform.

 When you think in terms of automation, you should be asking yourself questions
such as what should happen if the folder in the ZipPath variable does not exist or if a
file with the same name is already in the folder. To address these concerns, use some
if conditions along with the Test-Path cmdlet to test the path and the file. The logic
behind these decisions is shown in figure 2.3.

 Now that you have the logic, you can move on to creating the function. However,
before diving right in, let’s cover a few best practices when creating a function.

 You should always include the [CmdletBinding()] attribute at the beginning of
any function. It provides your function with support for the default parameters to man-
age things such as verbose output and error handling. After the [CmdletBinding()]
line, you should always include [OutputType()]. It tells PowerShell what type of value
the function will return. In this case, your function will return a string value for the
archive file. So you’ll set the value to [OutputType([string])].

 Although neither the CmdletBinding nor the OutputType cmdlet is required to cre-
ate a function, it is good practice to include them. As you get into more advanced func-
tions, these will come into use, so it is good to start using them from the beginning.

Parameters
• Log folder
• Archive folder
• Archive name prefix
• Date filter

Get files
• Over {days} old

Create archive
• Determine name
• Confirm unique

Archive files
• Add files to archive

Delete files
• Delete archived files

Figure 2.2 Expand on the initial file cleanup design to include more details around the
creation of the archive file.

26 CHAPTER 2 Get started automating
Next, you will define your parameters in a params block. For each parameter, you set
whether it is mandatory and the type of value. Again, neither of these is required
when writing PowerShell functions. However, when you are writing functions that will
be used in automations or shared with others, it is good to include them so that peo-
ple can quickly identify what values are required and what data type they should pro-
vide. Also, it helps to ensure that the proper values are passed, and if not, PowerShell’s
built-in error handling will help prevent unforeseen consequences if the wrong value
is sent.

 You should also always include the comment-based Help section. Although I leave
this out in many of the examples in the book for brevity, I highly recommend you add
it to all scripts and functions you create. Plus, if you are using Visual Studio Code (VS

Start

Parameters
ZipPath

ZipPrefix
Date

Does ZipPath
exist?

Determine file name

Create ZipPath
folder

No

Yes

Does file
name exist?

Return file name

Terminate
execution

No

Yes

Figure 2.3 The automation process to ensure that you have a unique file name for the
archive file each time the file cleanup automation runs

272.1 Cleaning up old files (your first building blocks)

D
par

C
t

C

Code), there is no excuse not to add it because VS Code can autogenerate it. Just type
on the first line inside your function, and VS Code will outline the Help section for
you. Then, you simply fill in the details.

 Now let’s get into the actual execution of the function, which is shown in the fol-
lowing listing. The first thing you want to do is check whether the folder passed in
exists. Use the Test-Path cmdlet inside an if condition to do this.

Function Set-ArchiveFilePath{
 [CmdletBinding()]
 [OutputType([string])]
 param(
 [Parameter(Mandatory = $true)]
 [string]$ZipPath,

 [Parameter(Mandatory = $true)]
 [string]$ZipPrefix,

 [Parameter(Mandatory = $true)]
 [datetime]$Date
)

 if(-not (Test-Path -Path $ZipPath)){
 New-Item -Path $ZipPath -ItemType Directory | Out-Null
 Write-Verbose "Created folder '$ZipPath'"
 }

 $timeString = $Date.ToString('yyyyMMdd')
 $ZipName = "$($ZipPrefix)$($timeString).zip"
 $ZipFile = Join-Path $ZipPath $ZipName

 if(Test-Path -Path $ZipFile){
 throw "The file '$ZipFile' already exists"
 }

 $ZipFile
}

The Test-Path cmdlet returns True if the folder exists and False if it doesn’t. In this
case of the archive folder, you want to know that it does not exist. Therefore, you need
to reverse the logic by adding the -not keyword to the if statement, which causes the
command inside the if block to execute when it returns False. However, instead of
having your automation stop if the folder does not exist, you can create it using the
New-Item cmdlet.

 The next part of the script will be some simple string concatenations to create the
file name and set the path. When dealing with paths in any automation, it is always
best to use the Join-Path cmdlet as it will automatically account for the slashes. This
way, you do not have to worry whether the value passed for the folder parameter con-
tains a slash at the end or not.

Listing 2.1 Set-ArchiveFilePath function

Declare the function
and set the required
parameters.

Declare
CmdletBinding and
OutputType.

efine the
ameters.

Check whether the
folder path exists, and
create it if it doesn’t.

Include verbose
output for testing
and troubleshooting.

reate the
imestamp
based on
the date.

reate the
file name. Set the full path of

the zip file.

Confirm the file
doesn’t already exist.
Throw a terminating
error if it does.

Return the file
path to the script.

28 CHAPTER 2 Get started automating
Next, use Test-Path again to confirm a file with the same name doesn’t already exist,
except this time, you want to take action if it does, so do not include -Not to reverse
the logic. If a file with the same name already exists, you can use the throw command
to send a terminating error to the script, causing the entire process to halt. When
designing anything for automations, you must be mindful of when you want your
automation to stop if a particular condition is not satisfied. Like in the situation where
a file with the same name already exists, you want to terminate to prevent accidentally
overwriting data. Finally, the function ends by returning the value of the archive file
path by outputting the variable to the script.

2.1.2 Returning data from functions

When returning data from a function, it is best to save it to a variable in the function
and have just that variable on the last line of the function. You may see that others use
return or Write-Output in these cases. While these methods are valid ways to return
values from a function to a script, they have drawbacks.

 The return command in PowerShell is different from the return command you
will see in other languages. Just because you use the return command, it does not
mean that is the only value the function will return.

 Remember that a function will return everything written to the output stream.
Therefore, the name return can be misleading, especially for people used to lan-
guages like C# and Java. Also, in some situations, you will want to return multiple
streams from a function. If you are in the habit of adding return to every function,
this will cause issues.

 The return command does have its uses since it will stop the processing of a func-
tion. You can use it to stop a function from executing under certain conditions and

Controlling function output
If the New-Item cmdlet is not set to write to a variable, PowerShell will write it to the
output stream. Anything written to the output stream of your script will be returned
from your function. In this case, the function would return the output from this com-
mand and the zip file path at the end, causing all sorts of unknown issues later in
the script.

To prevent this from happening, add | Out-Null to the end of any PowerShell com-
mand to stop it from writing to the output stream. Out-Null does not block the error
or verbose streams, so you can still use those with the command.

If you added the [CmdletBinding()] to the beginning of the function, you can use
the -Verbose switch when calling the function. Verbose output is not written to the
output stream. Therefore, it is not returned to the script or any variables. However,
when you include the -Verbose switch, the verbose stream will be written to the
screen. This allows you to confirm that the if condition is working even though you
need to block the output from any command.

292.1 Cleaning up old files (your first building blocks)
return the value at that time. There are multiple other ways to handle this, but if
return works well in your situation, go ahead and use it. I would also recommend add-
ing some comments above that line to explain your choice.

 Some people prefer to use the Write-Output cmdlet for clarity, as it expresses what
is being written to the output stream. However, others feel that, just as with the return
command, it sets a false expectation that this will be the only value returned. Also,
using the Write-Output cmdlet can affect the performance of your functions and has
been known to cause issues with different data types.

 For these reasons, it is best to use a single line with a clearly named variable to out-
put the results to the output stream on the very last line of the function. Returning val-
ues inside if/else statements or having Write-Output cmdlets mixed in with other
commands can make it very difficult to read and understand where the output is com-
ing from. Remember, with automations, you are almost guaranteed that you will need
to revisit your script or function in the future. Why not make it easier for yourself or
the next person who reads the script?

2.1.3 Testing your functions

As mentioned previously, one of the best reasons to make functions is to allow for easy
testing. Testing is made even easier by the fact that PowerShell saves functions to
memory. This enables you to run multiple tests without worrying about dependencies
or issues with other parts of your script.

 To test the function you just created, we will use VS Code. If you have not already
done so, open a new file in VS Code and enter the function from listing 2.1.

 Press F5 to execute the code. Since the file only contains this one function, Power-
Shell does not execute the code; the function is simply loaded into memory. Then you
can execute the function in the terminal pane for your testing. In later chapters, we
will cover things like mock testing, but for now, the commands you run will perform
the actions they are designed to do.

To start, you need to determine the parameters to pass for testing. In this case, you
need ZipPath and ZipPrefix, which are both strings. Those can be easily passed as
part of the command line. The final parameter, Date, requires a DateTime object.
Here is where PowerShell’s ease of use can really come in handy. Because you defined
the parameter as a DateTime object, PowerShell is smart enough to know how to parse

Helper scripts
I have included several scripts throughout this book that you can use to help with test-
ing. These scripts are in the Help Scripts folder for each chapter or on the GitHub
repository for this book. For this section, I have included the script file New-TestLog-
Files.ps1. You can use this script to create a directory of dummy log files with differ-
ent created and modified dates. This will allow you to test the functions and scripts
in this section.

30 CHAPTER 2 Get started automating
a properly formatted string value into a DateTime object for you. This gives you the
option to either create the DateTime object before calling the function as the script
will do or send a properly formatted string, which it will convert for you. Keep in mind
that it must be a properly formatted string.

NOTE You can get a list of string format examples by running the command
(Get-Date).GetDateTimeFormats().

Once you have the values for your parameters, you are ready to begin testing. For the
first test, set the ZipPath parameter to a folder you know does not exist. This allows
you to test the folder creation statement in the function:

Set-ArchiveFilePath -ZipPath "L:\Archives\" -ZipPrefix "LogArchive-" -Date
"2021-02-24" -Verbose

VERBOSE: Created folder 'L:\Archives\'
L:\Archives\LogArchive-20210124.zip

Note the -Verbose at the end of the command line. This tells the function to output
any Write-Verbose statements that it executes. In this case, we received confirmation
that the condition to check that the folder does not exist is true, and the folder is cre-
ated. If you rerun the same command, you should see the same file name, but this
time, there should not be any verbose output. This tells you that the script correctly
detects that the folder exists, so it does not try to recreate it. It also shows you that the
New-Item command successfully created the folder the first time you ran the function:

Set-ArchiveFilePath -ZipPath "L:\Archives\" -ZipPrefix "LogArchive-" -Date
"2021-02-24" -Verbose

L:\Archives\LogArchive-20210124.zip

For the next test, create a zip file in the directory using the name that the previous
steps returned, and then run the command once more:

Set-ArchiveFilePath -ZipPath "L:\Archives\" -ZipPrefix "LogArchive-" -Date
"2021-02-24" -Verbose

Exception:
Line |
 24 | throw "The file '$ZipFile' already exists"
 | ~~
 | The file 'L:\Archives\LogArchive-20210224.zip' already exists

This time you will see that the function threw an exception, letting you know that the
file already exists. Once your function is tested, it is ready to be added to your script.
A bonus of testing is that you can create some perfect examples to include in your
comment-based help.

312.1 Cleaning up old files (your first building blocks)
2.1.4 Problems to avoid when adding functions to scripts

When you add a function into a script, it must go before any lines that call it because
PowerShell scripts execute in sequence. Therefore, you must always have the state-
ment declaring the function before calling it. Also, be very careful with functions
stored in memory. If you run one script that loads a function into memory and then
run another script in the same PowerShell session, the second script can use functions
that only exist in the first script. However, if you create a new PowerShell session and
then run the second script first, it will error out because it does not contain the func-
tion. It worked the first time because the first script had already loaded the function
into memory. For this reason, you should always create new PowerShell sessions
between tests. This prevents you from getting false positives in cases where items may
be stored in memory.

 Thankfully, VS Code provides a very easy way for you to do this. Simply click the lit-
tle trash can icon in the terminal. This will kill the session and ask if you want to start a
new one. Click Yes, and it will load a new, clean session.

2.1.5 Brevity versus efficiency

One trap that people often fall into with PowerShell is the insistence on making
scripts as few lines as possible. Unfortunately, this leads to scripts with unwieldy, long
commands that are impossible to read and test. As a result, they can often be less effi-
cient than if they are broken up into multiple lines.

 For example, you need to get the files to archive in the automation you are creat-
ing. This is done using the Get-ChildItem cmdlet which returns the files inside the
specified folder. They can then be added to an archive using the Compress-Archive
cmdlet. This task can be accomplished in a single line by piping the results of the
Get-ChildItem cmdlet to the Compress-Archive cmdlet:

Get-ChildItem -Path $LogPath -File | Where-Object{ $_.LastWriteTime -lt $Date}
| Compress-Archive -DestinationPath $ZipFile

If you combine these commands into one line, the output will be from the last com-
mand, Compress-Archive. Therefore, when you try to delete the files, your script will
not know which files were added to the archive. You would then need to rerun the
Get-ChildItem cmdlet to get the files to delete. Not only is this very inefficient, as you
are querying the machine for the files again, but it can also lead to unintended conse-
quences. For example, if a file has been added between the two times the Get-
ChildItem cmdlet runs, you could end up deleting a file that wasn’t archived.

 That is not saying that combining commands or using multiple pipelines is a bad
thing. It really just depends on the context. A good rule to remember is to only query
once. If you have a command collecting data and multiple steps use that data, that
command should not be repeated. Instead, the results should be saved in a variable
and passed to the other commands that need it.

32 CHAPTER 2 Get started automating
 Besides efficiency, another good reason to break things up is for readability. For
example, you can set the path, name, and timestamp in a single command, but it
becomes a mess to read:

$ZipFile = Join-Path $ZipPath "$($ZipPrefix)$($Date.ToString('yyyyMMdd')).zip"

Breaking it up into a couple of lines makes it much more readable:

$timeString = $Date.ToString('yyyyMMdd')
$ZipName = "$($ZipPrefix)$($timeString).zip"
$ZipFile = Join-Path $ZipPath $ZipName

At the same time, breaking code up into too many lines can sometimes lead to large
chunks that are not as clear:

$ZipFilePattern = '{0}_{1}.{2}'
$ZipFileDate = $($Date.ToString('yyyyMMdd'))
$ZipExtension = "zip"
$ZipFileName = $ZipFilePattern -f $ZipPrefix, $ZipFileDate, $ZipExtension
$ZipFile = Join-Path -Path $ZipPath -ChildPath $ZipFileName

There may be a perfectly good reason to do it this way. If you want the script to incre-
ment the file name instead of failing on a duplicate entry, it might make sense to
break it down to separate variables on separate lines. Neither way is inherently right or
wrong. It all depends on your context and needs.

 Remember, brevity and efficiency do not go hand in hand. Just because you can
achieve something with a single command doesn’t always mean it is a good idea. Read-
ability and clarity should take precedence over both.

2.1.6 Careful what you automate

The last step in the automation, deleting the old log files, might seem pretty straight-
forward. However, if the thought of deleting files via an automated script does not give
you pause, then perhaps you’ve never heard the saying, “To err is human. To totally
mess something up takes a computer.” This rings especially true with automations.
However, if you build them well, you can sleep soundly at night, knowing your auto-
mations will not be running wild throughout your environment.

 With the cleanup of the log files, you can quickly delete all the files found by the
Get-ChildItem command using the Remove-Item cmdlet. You can assume all the files
were added to the archive because the Compress-Archive cmdlet did not return any
errors, but we all know what assuming leads to. So, how can we ensure that each file
was archived and is safe to delete? By creating a function that will do just that.

 Like with everything in PowerShell and automations, there are multiple ways to
achieve this. For example, the Expand-Archive cmdlet can extract the archive to
another folder and check that each file matches. However, this would be very inefficient
and prone to issues such as not having enough disk space to extract the files, and it will
leave you with two sets of files to delete. Unfortunately, PowerShell does not have a

332.1 Cleaning up old files (your first building blocks)

ea
d
a
th

I
n

f

cmdlet to look inside a zip file without extracting it. Fortunately, you are not restricted
to only using PowerShell cmdlets. You can also call .NET objects directly in PowerShell.
For example, you can create a function that uses the System.IO.Compression .NET
namespace to look inside a zip file, thus allowing you to confirm each file’s name and
uncompressed size without needing to extract it.

Like the last function, you will start this one, shown in the next listing, with the
CmdletBinding and OutputType attributes. However, because you are performing a
delete with no output, the OutputType attribute can be left blank.

Function Remove-ArchivedFiles {
 [CmdletBinding()]
 [OutputType()]
 param(
 [Parameter(Mandatory = $true)]
 [string]$ZipFile,

 [Parameter(Mandatory = $true)]
 [object]$FilesToDelete,

 [Parameter(Mandatory = $false)]
 [switch]$WhatIf = $false
)
 $AssemblyName = 'System.IO.Compression.FileSystem'
 Add-Type -AssemblyName $AssemblyName | Out-Null

 $OpenZip = [System.IO.Compression.ZipFile]::OpenRead($ZipFile)
 $ZipFileEntries = $OpenZip.Entries

 foreach($file in $FilesToDelete){
 $check = $ZipFileEntries | Where-Object{ $_.Name -eq $file.Name -and
 $_.Length -eq $file.Length }
 if($null -ne $check){
 $file | Remove-Item -Force -WhatIf:$WhatIf
 }
 else {
 Write-Error "'$($file.Name)' was not find in '$($ZipFile)'"
 }
 }
}

How did I know to use the System.IO.Compression namespace?
After searching for ways to look inside an archive file in PowerShell and coming up
empty, I performed the same search, but instead of PowerShell, I used C#. This
brought me to a forum post on how to do just that. Knowing that I could dot source,
I was able to re-create the C# code using PowerShell.

Listing 2.2 Deleting archived files

Load the
System.IO.Compression.FileSystem

assembly so you can use dot
sourcing later.

Get the information on
the files inside the zip.

Confirm
ch file to
elete has
 match in
e zip file.

f $check does
ot equal null,
you know the
ile was found

and can be
deleted.

Add WhatIf to
allow for testing
without actually
deleting the files.

34 CHAPTER 2 Get started automating
For the parameters, you need to know the path of the zip file and the files that
should be inside of it. The zip file path is a simple string, but the files to delete need
multiple values. Because PowerShell is an object-oriented language and the output
from the Get-ChildItem cmdlet is saved in a variable, you can pass the object as a
parameter as is. This allows you to avoid the need to convert it to a string array or
something similar.

 Because this function performs an irreversible action, you will also want to include
a WhatIf switch to help with testing. Switches work much like a Boolean value, except
you don’t have to include True or False after it. Just listing the parameter in your
command sets it to True. WhatIf is a popular parameter included in many PowerShell
cmdlets. It allows you to see what the cmdlet would do without actually performing
the action. Including it in your function allows you to test the deletion process without
actually removing anything.

 Since you will be using a .NET class in your function, begin by adding the Add-
Type cmdlet with the full name of the .NET class. This cmdlet will load a .NET
namespace into your PowerShell session. This ensures that you will be able to use
the dot sourcing in the other command. In this case, it is the namespace System.IO
.Compression.FileSystem.

 The classes in that namespace can be called directly in PowerShell by writing the
class name between square brackets. You can call the methods and constructors by
adding two colons. For example, to get the files inside an archive, use the OpenRead
method in the System.IO.Compression.ZipFile class and save it to a PowerShell
variable:

$OpenZip = [IO.Compression.ZipFile]::OpenRead($ZipFile)

Next, you need to compare the files in the archive to the files that should be in it.
Using foreach allows you to go through every file, one at a time, to confirm each one
is in the archive file by matching the name and file size. If found, they can be deleted.
If they are not found, an error message is sent to PowerShell. However, unlike the pre-
vious function, there is no need to stop processing if a couple of files are missing. In
this case, use the Write-Error cmdlet instead of the throw command. The Write-
Error cmdlet sends the error back to PowerShell, but it is not a terminating error like
the throw command. Instead, this error is just recorded so it can be addressed later.
Because there is no output from this function, there is no need to add a variable result
to the end.

2.1.7 Putting it all together

Now that you have created your new function (aka building block), it is time to put
everything together into a single script, as shown in listing 2.3. Like with a function,
your scripts should always start with comment-based help, the CmdletBinding and
OutputType attributes, and a parameter block. If you need it to import any modules,
place them directly after the parameters.

352.1 Cleaning up old files (your first building blocks)
[CmdletBinding()]
[OutputType()]
param(
 [Parameter(Mandatory = $true)]
 [string]$LogPath,

 [Parameter(Mandatory = $true)]
 [string]$ZipPath,

 [Parameter(Mandatory = $true)]
 [string]$ZipPrefix,

 [Parameter(Mandatory = $false)]
 [double]$NumberOfDays = 30
)

Function Set-ArchiveFilePath{
 [CmdletBinding()]
 [OutputType([string])]
 param(
 [Parameter(Mandatory = $true)]
 [string]$ZipPath,

 [Parameter(Mandatory = $true)]
 [string]$ZipPrefix,

 [Parameter(Mandatory = $false)]
 [datetime]$Date = (Get-Date)
)

 if(-not (Test-Path -Path $ZipPath)){
 New-Item -Path $ZipPath -ItemType Directory | Out-Null
 Write-Verbose "Created folder '$ZipPath'"
 }

 $ZipName = "$($ZipPrefix)$($Date.ToString('yyyyMMdd')).zip"
 $ZipFile = Join-Path $ZipPath $ZipName

 if(Test-Path -Path $ZipFile){
 throw "The file '$ZipFile' already exists"
 }

 $ZipFile
}

Function Remove-ArchivedFiles {
 [CmdletBinding()]
 [OutputType()]
 param(
 [Parameter(Mandatory = $true)]
 [string]$ZipFile,

Listing 2.3 Putting it all together

Declare your
functions before
the script code.

36 CHAPTER 2 Get started automating
 [Parameter(Mandatory = $true)]
 [object]$FilesToDelete,

 [Parameter(Mandatory = $false)]
 [switch]$WhatIf = $false
)

 $AssemblyName = 'System.IO.Compression.FileSystem'
 Add-Type -AssemblyName $AssemblyName | Out-Null

 $OpenZip = [System.IO.Compression.ZipFile]::OpenRead($ZipFile)
 $ZipFileEntries = $OpenZip.Entries

 foreach($file in $FilesToDelete){
 $check = $ZipFileEntries | Where-Object{ $_.Name -eq $file.Name -and
 $_.Length -eq $file.Length }
 if($null -ne $check){
 $file | Remove-Item -Force -WhatIf:$WhatIf
 }
 else {
 Write-Error "'$($file.Name)' was not find in '$($ZipFile)'"
 }
 }
}

$Date = (Get-Date).AddDays(-$NumberOfDays)
$files = Get-ChildItem -Path $LogPath -File |
 Where-Object{ $_.LastWriteTime -lt $Date}

$ZipParameters = @{
 ZipPath = $ZipPath
 ZipPrefix = $ZipPrefix
 Date = $Date
}
$ZipFile = Set-ArchiveFilePath @ZipParameters

$files | Compress-Archive -DestinationPath $ZipFile

$RemoveFiles = @{
 ZipFile = $ZipFile
 FilesToDelete = $files
}
Remove-ArchivedFiles @RemoveFiles

Before you enter any of the script code and logic, enter the script functions. Although,
technically, functions can go anywhere as long as they are before any commands that
call them, it will make your script much easier to read and maintain if all functions are
declared at the beginning. This will also make it easier to add or replace building
blocks in a later phase.

 For instance, in phase 2, you want to upload the archive to a cloud storage pro-
vider. You can build that function outside of this script. When you are ready to add it,
you simply copy and paste it in and add a line to call it. Then, say, down the line, you

Set the date filter
based on the number
of days in the past.

Get the files to
archive based on
the date filter.

Get the archive
file path.

Add the files to
the archive file.

Confirm files are in
the archive and
delete.

372.1 Cleaning up old files (your first building blocks)
change cloud providers; you can simply swap out that function with one that uploads
to the other cloud, and you don’t have to change anything else in your script.

 Once you add the functions, you can start adding code for the script. Here, that
will be setting the date filter, getting the files to archive, getting the archive file path,
archiving the files, and finally deleting them.

 To test this script, you need log files to clean up. If you have not already done so, run
the New-TestLogFiles.ps1 included in this chapter’s Helper Scripts to create the dummy
log files for you to test. Next, set the values to use for your testing in the terminal:

$LogPath = "L:\Logs\"
$ZipPath = "L:\Archives\"
$ZipPrefix = "LogArchive-"
$NumberOfDays = 30

In VS Code, you can run a single line or section of your code at a time by highlighting
it and pressing F8. Unlike F5, which runs the entire script, F8 only runs the section of
code that is highlighted. Start testing by highlighting the functions and pressing F8.
This will load the functions into memory. Next, run the lines to set the date and col-
lect the files to archive:

$Date = (Get-Date).AddDays(-$NumberOfDays)
$files = Get-ChildItem -Path $LogPath -File |
 Where-Object{ $_.LastWriteTime -lt $Date}

You will notice there is no output. That is because the output is saved in the $files
variable at this point in the script. You can check the values of each variable by enter-
ing them in the terminal window. You can also use this to confirm that your date filter
is working and that only the files you want to archive are included:

$Date
Sunday, January 10, 2021 7:59:29 AM
$files
 Directory: L:\Logs

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 11/12/2020 7:59 AM 32505856 u_ex20201112.log
-a--- 11/13/2020 7:59 AM 10485760 u_ex20201113.log
-a--- 11/14/2020 7:59 AM 4194304 u_ex20201114.log
-a--- 11/15/2020 7:59 AM 40894464 u_ex20201115.log
-a--- 11/16/2020 7:59 AM 32505856 u_ex20201116.log

Next, run the lines to set the archive path and file name and confirm that it is set as
expected:

$ZipParameters = @{
 ZipPath = $ZipPath
 ZipPrefix = $ZipPrefix
 Date = $Date
}

38 CHAPTER 2 Get started automating
$ZipFile = Set-ArchiveFilePath @ZipParameters
$ZipFile
L:\Archives\LogArchive-20210110.zip

Then run the line to add the log files to the archive file:

$files | Compress-Archive -DestinationPath $ZipFile

Now you are ready to test the delete function. For your first test, add the -WhatIf
switch to the end of the command:

Remove-ArchivedFiles -ZipFile $ZipFile -FilesToDelete $files -WhatIf
What if: Performing the operation "Remove File" on target

"L:\Logs\u_ex20201112.log".
What if: Performing the operation "Remove File" on target

"L:\Logs\u_ex20201113.log".
What if: Performing the operation "Remove File" on target

"L:\Logs\u_ex20201114.log".
What if: Performing the operation "Remove File" on target

"L:\Logs\u_ex20201115.log".

You should see What if written to the terminal window for each file it would delete. If
you check in file explorer, you should see that the files are still there. Now rerun the
command without the -WhatIf switch:

Remove-ArchivedFiles -ZipFile $ZipFile -FilesToDelete $files

This time there should be no output. You can check File Explorer, and the files will
be gone.

 After running through this test, you will want to test the entire script. When per-
forming the final test, I recommend opening a new PowerShell window and calling
the script directly. This way, you can ensure there are not values or functions in
memory affecting the script. To do this, run New-TestLogFiles.ps1 again to create
new log files. Then open a new PowerShell terminal and run your script. If it works,
you are done.

2.2 The anatomy of PowerShell automation
In the previous section, you created your first building block (aka function). Now we
will look at how to utilize PowerShell to make that building block reusable.

 Throughout this book, we will define an automation as a single script. A script, in
this instance, is a single PowerShell script (ps1) file that, when executed from start to
finish, will perform all the required tasks of your automation. Now you can write a
PowerShell script one line after another to perform each task you need. However,
doing this leaves you with a tangled mess of code that is difficult to read, make
changes to, and test. Instead, use functions to break up your code into small, easily
testable, and manageable pieces of code. These functions are your building blocks.

392.2 The anatomy of PowerShell automation
 However, functions declared inside a script are only available to that script. At that
point, they become specialty-use tools and not really building blocks. Of course, some-
times you need a specialty tool, and you can build those as needed, but you do not
want to have to re-create general-purpose tools for every script you create.

 While storing your functions in a script file is fine for very specific tasks, it limits
your ability to share or reuse them outside of that individual script. The other option
you have is to store functions in a script module.

 A script module is a collection of functions, classes, and variables, all written in
PowerShell. Script modules are great for collaborating with a team because each
member can add their own functions to it. In addition, it allows you to reuse the same
function in multiple different automations. As you will see later in this book, modules
also lend themselves very nicely to version control and unit testing.

 A script module can also be used to extend the functionality of a base or gallery
module. These modules contain compiled cmdlets that you cannot change. They can
also contain functions that you can change, but doing so would cause untold issues
when it comes to upgrades and maintaining the code. Instead, you will see in this
chapter how your custom script modules can be used to supplement the other mod-
ules. Figure 2.4 shows a diagram of a script and its modules.

Your automation script

Local unctionsf

Gallery modules

Functions cmdlets

Base modules

Functions cmdlets

Your script modules

Functions

PowerShell

Figure 2.4 Your PowerShell script will inherit all of the script modules,
base modules, and gallery modules loaded into it. It can also contain its
own specialized functions if needed.

40 CHAPTER 2 Get started automating

D
par
A function in PowerShell is a collection of statements that are defined in a single com-
mand. For instance, if you want to get a list of the top 10 processes using the most
CPU on your computer, you can use the Get-Process cmdlet. However, running this
cmdlet will return every running process in alphabetical order, but you want to sort it
by top CPU utilization and limit the number of items returned. You also want to for-
mat the output to show the process ID, name, and CPU utilization with thousand sep-
arators. Now your command is starting to get pretty long and more complex.

 This also may be something you want to run often. Instead of needing to remem-
ber and retype this entire command line, you can turn it into a function, as shown in
the next listing, which can then be called with a single short command. You can also
make your functions dynamic by defining parameters. For example, you can create a
parameter to specify the number of items to return instead of hardcoding it to 10.

Function Get-TopProcess{
 param(
 [Parameter(Mandatory = $true)]
 [int]$TopN
)
 Get-Process | Sort-Object CPU -Descending |
 Select-Object -First $TopN -Property ID,
 ProcessName, @{l='CPU';e={'{0:N}' -f $_.CPU}}
}

Functions can contain calls to other functions and cmdlets. You can store your func-
tions inside your script or in a module. Once you have your function defined, you can
call it like any other command in PowerShell:

Get-TopProcess -TopN 5
 Id ProcessName CPU
 -- ----------- ---
1168 dwm 39,633.27
9152 mstsc 33,772.52
9112 Code 16,023.08
1216 svchost 13,093.50
2664 HealthService 10,345.77

2.2.1 When to add functions to a module

The question you should be asking yourself any time you are creating a function in
PowerShell is “Would this be useful in another script?” If the answer to that question is
yes or maybe, it is worth considering putting it into a module. As a good rule of
thumb, to ensure that your functions are reusable across multiple automations, it
should perform one task that can be restarted if something goes wrong.

 Take the example of an automation for archiving old logs. You want to find the old
files, add them to an archive, and then delete them from the folder. You can write a

Listing 2.4 Get top N processes

Declare your
function.

efine the
ameters.

Run the
command.

412.2 The anatomy of PowerShell automation
single function to do that, but what happens if something goes wrong halfway through
the removal process? If you restart the function, you could lose data when you re-created
the archive file, and half the files are already deleted.

 It is also good practice to write a function any time you find yourself writing the
same lines of code again and again. This way, if you need to make a change to your
code, there is only one place to update it instead of having to track down every single
line you wrote it on.

 However, there is also no need to go overboard with functions. If what you need to
do can be done with a single command or just a couple of lines of code, wrapping it in
a function could be more trouble than it is worth. It is also best not to include control
logic inside of your functions. If you need your automation to take specific actions
based on certain results, it is best to define that in the script.

 Most modules you come across in PowerShell are system-based (for example, the
Active Directory module or the Azure modules). They are all built with a specific tool
in mind because they are usually created by the company or provider of that system.
You can certainly stick to this pattern. It is really up to you. Nothing is stopping you
from creating a module to house a bunch of different useful yet unrelated functions.

 For instance, you can create a single module used for managing user accounts.
This module might have functions that reach out to Active Directory, Office 365, SAP,
etc. While these are all separate systems, your module can act as a bridge between
them, making your user management tasks much more manageable.

 Again, it depends on your needs. Plus, once you see how easy it is to create and
maintain a module, there should be no hesitation in considering it.

2.2.2 Creating a script module

Creating a module in PowerShell can sometimes be as easy as renaming a file from a
ps1 to a psm1, and it can be as complicated as writing cmdlets in C# that need to be
compiled to a DLL. A module that does not contain a compiled code is a script mod-
ule. A script module provides a perfect place to store and share a collection of related
functions. We will not go in-depth into module creation, as there can be a lot to it, and
there are plenty of other books and resources that cover this topic. However, I would
like to cover a few essential tips and tricks that you can use to get started creating
script modules today.

 At its most basic, a module can be a single PowerShell script file saved as a psm1.
You can paste all the functions you want into a psm1 file, save it, load it into Power-
Shell, and be on your way. But this does not lend itself well to versioning or testing. So,
at a minimum, you should also include a module manifest (psd1) file. The module
manifest can provide details about the module, such as which functions or variables to
make public. But, most important, it contains the module’s version number, helping
to ensure you always have the latest and greatest version.

 Along with the psm1 and psd1 files, you can include additional script files (ps1)
with your functions to load with the module. Instead of creating one massive psm1 file

42 CHAPTER 2 Get started automating
with every function, you can create a separate script (ps1) file for each function and
have them loaded by the psm1.

 To show you how simple this process can be, we can take our log file cleanup script
from the last section and move the functions from inside the script into a module. As
with anything, the first place to start is with the name. In this case, we can name the
module FileCleanupTools. Then, you simply create the folder structure, psd1, and psm1
files. The top-level folder, the psd1, and the psm1 should all have the same name. If
they do not have the same name, PowerShell will not be able to load them using the
standard Import-Module <ModuelName> command. Next, under the top-level folder,
you should create a folder that matches the version number.

 PowerShell allows you to have multiple versions of the same module installed at
the same time. This is great for testing and upgrading proposes. As long as you nest
your module files in a folder with the version number, you can pick and choose which
ones you want to load.

NOTE By default, PowerShell loads the highest version, so you need to include
-MaximumVersion and -MinimumVersion in the Import-Module command if
you want to load a specific version.

The psd1 and psm1 go inside the version folder. From
here forward, the file and folder structure is up to
you. However, the standard practice, and one that I
recommend, is to create a folder named Public. The
Public folder will contain the ps1 files that will house
the functions. As a result, your typical module will start
to look something like what you see in figure 2.5.

 While this may sound like a lot to remember, you
can use PowerShell to streamline your module cre-
ation process. As you just saw in the log file cleanup,
PowerShell can create folders for you. PowerShell
also includes the cmdlet New-ModuleManifest that
you can use to create the psd1 file for you.

 When you use the New-ModuleManifest cmdlet,
you need to specify the module name, the path to the
psd1 and psm1 files, and the module version number.
You will also want to provide the author’s name and
the minimum PowerShell version the module can
use. You can do that all at once with the script in the
following listing.

Function New-ModuleTemplate {
 [CmdletBinding()]
 [OutputType()]

Listing 2.5 New-ModuleTemplate

Your Module

1.0.0.0

Public

YourModule.psd1

YourModule.psm1

Function1.ps1

Function2.ps1

1.0.0.1

Public

YourModule.psd1

YourModule.psm1

Function1.ps1

Function2.ps1

New Function3.ps1

Figure 2.5 A PowerShell module
folder structure with version folders

432.2 The anatomy of PowerShell automation

f

na

The
o
m

 param(
 [Parameter(Mandatory = $true)]
 [string]$ModuleName,
 [Parameter(Mandatory = $true)]
 [string]$ModuleVersion,
 [Parameter(Mandatory = $true)]
 [string]$Author,
 [Parameter(Mandatory = $true)]
 [string]$PSVersion,
 [Parameter(Mandatory = $false)]
 [string[]]$Functions
)
 $ModulePath = Join-Path .\ "$($ModuleName)\$($ModuleVersion)"
 New-Item -Path $ModulePath -ItemType Directory
 Set-Location $ModulePath
 New-Item -Path .\Public -ItemType Directory

 $ManifestParameters = @{
 ModuleVersion = $ModuleVersion
 Author = $Author
 Path = ".\$($ModuleName).psd1"
 RootModule = ".\$($ModuleName).psm1"
 PowerShellVersion = $PSVersion
 }
 New-ModuleManifest @ManifestParameters

 $File = @{
 Path = ".\$($ModuleName).psm1"
 Encoding = 'utf8'
 }
 Out-File @File

 $Functions | ForEach-Object {
 Out-File -Path ".\Public\$($_).ps1" -Encoding utf8
 }
}

$module = @{
 ModuleName = 'FileCleanupTools'
 ModuleVersion = "1.0.0.0"
 Author = "YourNameHere"
 PSVersion = '7.0'
 Functions = 'Remove-ArchivedFiles',
 'Set-ArchiveFilePath'
}
New-ModuleTemplate @module

Now that you have your basic structure, you can add your functions to the Public
folder. To do this, create a new PowerShell script file in the folder and give it the same
name as the function. Starting with the Set-ArchiveFilePath function, create the file

Create a
older with
the same
me as the

module.

Create the Public
folder to store
your ps1 scripts.

Set the path to
the psd1 file.

Set the path to
the psm1 file.

Create the module
manifest psd1 file with
the settings supplied
in the parameters.

Create
a blank

psm1 file.

Create a blank ps1
for each function.

Set the parameters to
pass to the function.

 name
f your
odule

The version of
your module

Your
name The minimum

PowerShell version
this module supports

The functions to
create blank files for
in the Public folder

Execute the function to
create the new module.

44 CHAPTER 2 Get started automating
Set-ArchiveFilePath.ps1. Then do the same for the Remove-ArchivedFiles function.
Figure 2.6 shows this file structure.

From here, you can simply copy and paste the code for each function into its respec-
tive file. Be sure that you are only bringing in the function and no other parts of the
script when you copy and paste. The file should start with the Function keyword
declaring the function, and the last line should be the curly bracket ending the func-
tion. The next listing shows what the Set-ArchiveFilePath.ps1 file should contain.

Function Set-ArchiveFilePath{
 [CmdletBinding()]
 [OutputType([string])]
 param(
 [Parameter(Mandatory = $true)]
 [string]$ZipPath,

 [Parameter(Mandatory = $true)]
 [string]$ZipPrefix,

 [Parameter(Mandatory = $false)]
 [datetime]$Date = (Get-Date)
)

 if(-not (Test-Path -Path $ZipPath)){
 New-Item -Path $ZipPath -ItemType Directory | Out-Null
 Write-Verbose "Created folder '$ZipPath'"
 }

 $ZipName = "$($ZipPrefix)$($Date.ToString('yyyyMMdd')).zip"
 $ZipFile = Join-Path $ZipPath $ZipName

 if(Test-Path -Path $ZipFile){
 throw "The file '$ZipFile' already exists"
 }

 $ZipFile
}

Listing 2.6 Set-ArchiveFilePath.ps1

FileCleanupTools

1.0.0.0

Public

FileCleanupTools.psd1

FileCleanupTools.psm1

Remove-ArchivedFiles.ps1

Set-ArchiveFilePath.ps1

Figure 2.6 The file structure for
the FileCleanupTools module

452.2 The anatomy of PowerShell automation
Repeat this process for any other functions you want to add to the module. One thing
to note is that the script files will not automatically be loaded when you import the
module. By default, PowerShell will run the psm1 file on import because it is listed as
the RootModule in the psd1 manifest. Therefore, you need to let the module know
which files it needs to run to import your functions. The easiest way to do this is by
having the psm1 file search the Public folder for each ps1 file and then execute each
one to load the function into your current PowerShell session.

 The best part about loading the functions this way is that there is nothing you need
to update or change when adding a new function. Simply add the ps1 for it to the Pub-
lic folder, and it will be loaded the next time you import the module. As long as your
functions are in the Public folder, you can do this by adding the code in the following
listing to your psm1 file.

$Path = Join-Path $PSScriptRoot 'Public'
$Functions = Get-ChildItem -Path $Path -Filter '*.ps1'

Foreach ($import in $Functions) {
 Try {
 Write-Verbose "dot-sourcing file '$($import.fullname)'"
 . $import.fullname
 }
 Catch {
 Write-Error -Message "Failed to import function $($import.name)"
 }
}

If you use a different folder structure or multiple folders, you will need to update the
first couple of lines so PowerShell knows which folders to look in. For example, if you
add a Private folder for private functions, you can pass both folders to the Get-
ChildItem cmdlet to return all the ps1s between them:

$Public = Join-Path $PSScriptRoot 'Public'
$Private = Join-Path $PSScriptRoot 'Private'
$Functions = Get-ChildItem -Path $Public,$Private -Filter '*.ps1'

Once you have your module file created, run the Import-Module command and point
it to the path of your module manifest (psd1) file to import the functions into your
current PowerShell session. You will need to use the full path unless the module
folder is inside a folder included in the $env:PSModulePath environment variable.
Even if it is, it is good to use the full path for testing to ensure you are loading the cor-
rect version.

 Also, when you are testing a module, include the -Force switch at the end to force
the module to reload and pick up any changes you have made. You can also provide
the -PassThru switch to ensure that your functions are loaded:

Listing 2.7 Loading module functions

Get all the ps1 files
in the Public folder.

Loop
through
each ps1
file.

Execute each ps1 file to load
the function into memory.

46 CHAPTER 2 Get started automating
Import-Module .\FileCleanupTools.psd1 -Force -PassThru
ModuleType Version Name ExportedCommands
---------- ------- ---- ----------------
Script 1.0.0.0 FileCleanupTools {Remove-ArchivedFiles,
 Set-ArchiveFilePath}

Once your module is ready, remove the functions from the original script and add
one line of code to import the module, as shown in the following listing.

param(
 [Parameter(Mandatory = $true)]
 [string]$LogPath,

 [Parameter(Mandatory = $true)]
 [string]$ZipPath,

 [Parameter(Mandatory = $true)]
 [string]$ZipPrefix,

 [Parameter(Mandatory = $false)]
 [double]$NumberOfDays = 30
)

Import-Module FileCleanupTools

$Date = (Get-Date).AddDays(-$NumberOfDays)
$files = Get-ChildItem -Path $LogPath -File |
 Where-Object{ $_.LastWriteTime -lt $Date}

$ZipParameters = @{
 ZipPath = $ZipPath
 ZipPrefix = $ZipPrefix
 Date = $Date
}
$ZipFile = Set-ArchiveFilePath @ZipParameters

$files | Compress-Archive -DestinationPath $ZipFile

Remove-ArchivedFiles -ZipFile $ZipFile -FilesToDelete $files

2.2.3 Module creation tips

There are a few things you can do to help yourself and others when you are creating a
module. These include using common naming and styling, separating public and pri-
vate functions, installing custom modules in PSModulePath, and listing dependencies
in the manifest.

USE COMMON NAMING AND STYLING

You may have noticed by now that the majority of PowerShell commands follow the
same naming conventions and style. This includes using the Verb-Noun naming pattern

Listing 2.8 Moving functions to module

Replaced functions with
the command to load the
FileCleanupTools module

472.2 The anatomy of PowerShell automation
for cmdlets and functions (Get-Module, Import-Module, etc.). When deciding what
verb to use, it is best to stick with the list of approved verbs. You can find the list of
approved verbs by running the command Get-Verb. Also, the noun should be singu-
lar (for example, Get-Command, not Get-Commands).

 Module names, parameter names, and variables use Pascal casing. With Pascal cas-
ing, each proper word in the name starts with an uppercase letter. For example, the
module we just created is named FileCleanupTools. Some people will use Camel casing
for local variables and Pascal for global variables, but this is not universal. Camel casing
is like Pascal casing except the first word is lowercase (for example, fileCleanupTools).

 Do not be afraid of long variable and parameter names. It is much better to be
descriptive than short and vague. For example, a parameter named $NumberOfDays is
much clearer than one named $Days.

 None of these styles are required. You could create a function named archive-
File-Deleting, and it would work fine. Of course, you would receive a warning when
you import the module, but that’s it. However, others who are used to the standard
PowerShell naming conventions may find it challenging to find and use your functions.

SEPARATE PRIVATE AND PUBLIC FUNCTIONS

In our example, we created a folder named Public and put our functions ps1 files in it.
We did this to let others know that these are functions that they can use in their
scripts. There may be times when you write what are referred to as helper functions.
These are functions that other functions in the module can call, but the users should
not need to call directly. You can have helper functions for a whole host of reasons.
For example, you may have a function that parses some data and is used by several
functions in your module, but there would be no reason for the end user to need it. In
this case, it is best to make it a private function. To do this, create a second folder in
your module named Private to hold these files. Then, update the import in your psm1
to also import the Private folder.

 Keep in mind that just because the files are in the Private folder doesn’t mean they
will be hidden. The Public and Private folder names are just suggestions. You could
name them anything. However, others writing PowerShell modules commonly use
these names to help keep things organized. You can put them all together in one
folder, multiple subfolders, or any way you like, as long as the psm1 file can find
them. To make them private, you have to delist them from the manifest (psd1) file.
If you look inside the FileCleanupTools.psd1 you created earlier, you will see the
line FunctionsToExport = '*'. This line tells the module to export all functions that
match this pattern. Because the pattern is a single wildcard, everything will match. As
there is no exclude line, the only way to exclude something is by not listing it. This is
where the Public and Private folders come in handy. You can simply update the mani-
fest to only include the functions from the Public folder. So it would look like this for
the FileCleanupTools.psd1:

FunctionsToExport = 'Remove-ArchivedFiles', 'Set-ArchiveFilePath'

48 CHAPTER 2 Get started automating

If i

I

fou
an
do
When you do this, remember to update the manifest any time you want to add a new
public function.

INSTALL CUSTOM MODULES IN PSMODULEPATH

Have you ever wondered how PowerShell knows where the files are when you type
Import-Module and just give a module name and not a path as we did in the previous
example? It will do this for any module installed in a folder listed in the $env:PSModule-
Path environmental variable. Therefore, it is best to always install your modules to a
path listed there. However, be careful, as there are system (AllUsers) and user (Current-
User) scopes. If you are creating an automation that will run under the system
account, use the AllUsers scope. The default on Windows is $env:ProgramFiles\
PowerShell\Modules. You can confirm what folders are included by checking the
$env:PSModulePath variable in your PowerShell console.

LISTING DEPENDENCIES IN THE MANIFEST

There is a parameter in the manifest file named RequiredModules. This parameter
allows you to list modules that are required for this module. For example, if you
wrote a module to work with Active Directory users, you need to be sure that the
Active Directory module is loaded along with your module. The problem you may
run into with the RequiredModules parameter is that it does not import the module
if it has not already been imported, and it does not check versions. Therefore, I often
find myself handling module dependencies directly in the psm1 file, as in the follow-
ing listing.

[System.Collections.Generic.List[PSObject]]$RequiredModules = @()
$RequiredModules.Add([pscustomobject]@{
 Name = 'Pester'
 Version = '4.1.2'
})

foreach($module in $RequiredModules){
 $Check = Get-Module $module.Name -ListAvailable

 if(-not $check){
 throw "Module $($module.Name) not found"
 }

 $VersionCheck = $Check |
 Where-Object{ $_.Version -ge $module.Version }

 if(-not $VersionCheck){
 Write-Error "Module $($module.Name) running older version"
 }

 Import-Module -Name $module.Name
}

Listing 2.9 Importing required modules

Create an object for
each module to check.

Loop through each
module to check.

Check whether the
module is installed
on the local machine.

If not found, throw a
terminating error to
stop this module
from loading.

t is found,
check the

version.

f an older
version is
nd, write

error, but
 not stop.

Import the module into
the current session.

49Summary
While these tips are all optional, following them can help you and others down the
road when you need to make changes or updates to your modules.

Summary
 Building blocks can be translated to PowerShell functions.
 Functions should only perform one action that can be restarted if something

goes wrong.
 Functions should be stored in PowerShell modules to allow other automations

and people to use them.

Part 2

When it comes to creating successful automations, knowing how to write a
script is only part of the equation. You also need to know what to consider when
you have a script that will run unattended. This includes accounting for schedul-
ing the script, providing the appropriate permissions/credentials, storing exter-
nal data, and interacting with external sources.

 For instance, scheduling a script to run can seem simple, but have you con-
sidered what would happen if a part of the automation failed? Or what would
happen if the script was still running when the next occurrence kicks off? Or
how to handle a situation where a script is required to authenticate? Or what
would happen if two instances of a script tried to write data simultaneously?

 This section will answer these questions and more. It will teach you how to
think like an automation expert, plan for those unexpected situations, and cre-
ate the most robust automations possible.

Scheduling
automation scripts
When starting their PowerShell automation journey, one of the first things every-
one wants to learn about is scheduling scripts to run unattended. In this chapter,
you will learn more than just how to schedule a script. You will also learn some best
practices, using common real-world scenarios that will help to ensure your sched-
uled scripts run smoothly. The concepts and practices used in these examples can
be applied to any script you need to schedule.

 It is tempting to say that you can take any existing PowerShell script and
schedule it with a job scheduler, but that is only part of the solution. Before jump-
ing straight into scheduling a PowerShell script, you must ensure that your script
is adequately written to handle being run unattended. This includes many of the
previously covered concepts, like ensuring dependencies are met and there are
no user prompts.

This chapter covers
 How to schedule scripts

 Considerations for scheduled scripts

 Creating continuously running scripts
53

54 CHAPTER 3 Scheduling automation scripts
 There are several different types of scripts you will want to run on a scheduled
basis. Two of the most common are scheduled scripts and watcher scripts. A scheduled
script is any script that runs on a regular basis but not so often that it is continuously
running. A watcher script runs either continuously or at least every few minutes. This
chapter will cover both types, including the factors to consider when coding them and
the considerations to make when scheduling them.

3.1 Scheduled scripts
A scheduled script is run on a fairly regular basis but does not need to be real-time.
Some good examples of these are scripts to collect inventory, check on user accounts,
check system resources, run data backups, etc. No matter what your script does, you
need to take care before setting it to run on a schedule.

3.1.1 Know your dependencies and address them beforehand

If your script is dependent on any modules, be sure that these are installed on the sys-
tem running the script before scheduling it. You also need to be aware of how these
dependencies may affect other scheduled scripts. For example, if you have two scripts
that require different versions of the same module, you need to ensure that both ver-
sions are installed instead of just the highest version.

 Do not try to have your scheduled script install modules because this can lead to all
sorts of unintended consequences. For example, it could fail to properly install the
module, causing the scheduled script to never execute successfully. Or you could cre-
ate a situation where two scripts continually override each other, taking up valuable
system resources and causing failures between each other.

3.1.2 Know where your script needs to execute

Knowing where your script needs to execute sounds simple, but there are situations
where a script executing in the wrong environment or on the wrong server can
cause problems. A typical example is ensuring that the script has network access to
the required systems. For instance, if you need to connect to Amazon Web Services
or Azure from an on-premises script, you need to make sure no proxies or firewalls
are blocking it.

 There are also situations that may not seem as obvious. For instance, if you want to
force the Azure AD Connector to sync using PowerShell, that script must run on the
server with the connector installed. Another issue I’ve run into multiple times is dealing
with Active Directory replication. If you have a script that creates an Active Directory
user and then connects to Exchange, you can run into problems due to replication.
For example, if you create the account on a domain controller in a different site than
the Exchange server, it may not see the account when your script tries to create the
mailbox, causing your script to fail.

553.2 Scheduling your scripts
3.1.3 Know what context the script needs to execute under

In conjunction with knowing your dependencies and where your script needs to
execute is knowing what context it needs to run under. Most job schedulers can
run scripts as a particular user or as the system. If you need to authenticate with
Active Directory, SQL, or a network share, chances are you will need to run under a
user context. If you are collecting data about the local machine, it can run under
the system account.

 Knowing the context will also help in setting your dependencies. PowerShell
modules can be installed at the user level or the system level. You may test your
script under your account, but it fails to load the modules when run through the
job scheduler. This can be because the modules are installed under your account
only. Therefore, I suggest you install modules to the system level to avoid these
types of problems.

3.2 Scheduling your scripts
As with most things in PowerShell, there are several ways you can schedule scripts to
run regularly. You can use anything from the built-in Windows Task Scheduler to
enterprise-level job schedulers like Control-M or JAMS. Also, many other automation
platforms have built-in schedulers such as System Center Orchestrator/Service Man-
agement Automation (SMA), Ansible, ActiveBatch, and PowerShell Universal. There
are also several cloud-based solutions that can run PowerShell scripts both in the
cloud and in your on-premises environment. You will find these covered in chapter 8.
It will be up to you to choose the tool that best fits your environment. Whichever tool
you choose, the process remains the same:

1 Create your script.
2 Copy it where the scheduler can access it.
3 Ensure dependencies are met.
4 Set required permissions.
5 Schedule it.

The log file cleanup script from chapter 2 is a perfect example of a script you would
want to schedule to run. You can use it to practice creating a scheduled job using the
Windows Task Scheduler, Cron, and Jenkins.

NOTE A copy of the script Invoke-LogFileCleanup.ps1 and the module folder
FileCleanupTools are available in the Helper Script folder for this chapter.

3.2.1 Task Scheduler

Task Scheduler is by far the most popular tool for scheduling scripts in a Windows
environment. It does have one major drawback in that there is no central console for

56 CHAPTER 3 Scheduling automation scripts
it, but it is easy to use and has been built into the Windows operating system since
Windows NT 4.0.

 When setting up any job to run through Task Scheduler, you need to consider per-
missions to access the script file and permissions to access the required resources. For
this exercise, you can assume the logs are on the local machine, so you can run it
under the system account.

 However, you could, for example, place the script file on a network share. Having
the script in a network share is a great way to help maintain a single script file and not
have individual copies on every server. The downside is that you need to ensure that
Task Scheduler can access it. The best way to do this is with a service account. You
never want to use your personal account for a scheduled task. Besides the obvious
security risk, it’s also a great way to get locked out of your account the next time you
change your password. Your other options include creating a completely unrestricted
share or giving each computer that runs the script explicit access to the share—each
of which is a huge security risk and can make maintaining a nightmare.

 If you are reading this book, you are more than likely very familiar with the Win-
dows Task Scheduler. However, I would like to cover a few things you should consider
when creating scheduled tasks for PowerShell scripts.

INSTALLING YOUR CUSTOM MODULE OPTIONS

Since this script uses functions in a custom module, you must copy the module folder
somewhere the script can access it. The default paths for the PowerShell modules,
which will be automatically loaded at run time, are

 PowerShell v5.1—C:\Program Files\WindowsPowerShell\Modules
 PowerShell v7.0—C:\Program Files\PowerShell\7\Modules

To install the module for Task Scheduler to use, copy the folder FileCleanupTools
from chapter 2 to one of these two folders.

SECURITY OPTIONS

Typically, you want your automations to run unattended. Therefore, you want to
select Run Whether User Is Logged On or Not. From there, you have two options.
First, you can select Do Not Store Password to have the task run under the system
context. This is fine as long as everything the script interacts with is on the local
machine.

 Second, if you need to interact with other systems, network shares, or anything that
requires user authentication, leave Do Not Store Password unselected. Then click
Change User or Group to select the service account. You will receive a prompt to pro-
vide the password when you save the task.

CREATING POWERSHELL ACTIONS

When you create an action to execute a PowerShell script, you cannot simply set the
Program/Script box to the PowerShell script file (ps1). Instead, you need to set

573.2 Scheduling your scripts
the Program/Script box to the PowerShell executable. Then your script will go in the
Add Arguments box. The default paths for the PowerShell executables that will go in
the Program/Script box are

 PowerShell v5.1—C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe
 PowerShell v7.0—C:\Program Files\PowerShell\7\pwsh.exe

Then, in the Add Arguments box, you provide the -File argument with the path to
your script and the values to pass for any parameters:

-File "C:\Scripts\Invoke-LogFileCleanup.ps1" -LogPath "L:\Logs\" -ZipPath "L:

➥\Archives\" -ZipPrefix "LogArchive-" -NumberOfDays 30

Also, if you are using PowerShell v5.1 or below, you will most likely also want to include
the -WindowStyle argument and have it set to Hidden so your script will run silently.

SCHEDULING THE TASK

Once you have created the action, you need to schedule it. Task Scheduler in Win-
dows has multiple options for running tasks once or repeatedly. Click the Triggers tab,
and click New to create a new trigger. Select Daily with a start time of 8 a.m. in the set-
tings, and then click OK to add it to your task.

JOB LOGS

You can review the results of all past executions and see any errors in the History tab
for each job. All job logs are written to the Event Viewer log Microsoft-Windows-
TaskScheduler/Operational. Although there is no central console to manage jobs,
you can use event forwarding to collect all the job logs into one central location.

3.2.2 Create scheduled tasks via PowerShell

Since Task Scheduler does not have a central console for you to see and schedule
across multiple computers at once, the next best thing is to create your scheduled
tasks via a PowerShell script. This will help to ensure that all computers end up with
the same configuration.

 When creating a scheduled task through PowerShell, you have two main
options. One is to create a script that explicitly defines the required parameters,
and the other is to export an existing scheduled task. Whichever way you choose,
you will use the Register-ScheduledTask cmdlet that is part of the Scheduled-
Tasks module. This module is included in Windows, so there is nothing special you
need to install.

CREATE A NEW SCHEDULED TASK

Creating a scheduled task via PowerShell is very similar to the process of creating it
in the Task Scheduler console. You set the time interval for the trigger, define the
actions, assign permissions, and create the task. Using the previous example of setting

58 CHAPTER 3 Scheduling automation scripts
the Invoke-LogFileCleanup.ps1 script to run once a day at 8 a.m., let’s look at how
you can create this task.

 First, you need to define your trigger. This can be done using the New-Scheduled-
TaskTrigger cmdlet. You can set triggers to run once, daily, weekly, or at logon. In this
case, you will use the -Daily switch and set the -At parameter to 8 a.m.

 Next, you need to define your action. This is done using the New-ScheduledTask-
Action cmdlet. Here you need to supply the path to the executable and the argu-
ments. Remember, the executable is the path to the PowerShell executable and not
the ps1 file. Then, in the arguments, you supply the -File parameter, the path to the
ps1, and any parameters for that ps1.

 When you enter the argument, it needs to be a single string, so watch out for
things like escaping quotes and spaces. It is safest to create it with single quotes on the
outside and double quotes on the inside. When you create a string with single quotes
in PowerShell, it takes the text between them as literal characters and does not inter-
pret anything. You can see that in the following snippet, where the final string con-
tains all the double quotes:

$Argument = '-File ' +
 '"C:\Scripts\Invoke-LogFileCleanup.ps1"' +
 ' -LogPath "L:\Logs\" -ZipPath "L:\Archives\"' +
 ' -ZipPrefix "LogArchive-" -NumberOfDays 30'
$Argument
-File "C:\Scripts\Invoke-LogFileCleanup.ps1" -LogPath "L:\Logs\" -ZipPath "L:

➥\Archives\" -ZipPrefix "LogArchive-" -NumberOfDays 30

Once you have your action and trigger defined, you can create the scheduled task
using the Register-ScheduledTask cmdlet. These steps are shown in figure 3.1.

Daily
At 8 a.m.

New-ScheduledTaskTrigger

PowerShell Exe
PS1 w/

Parameters

New-ScheduledTaskAction

Name
User

Trigger
Action

Register-ScheduledTask

Figure 3.1 Creating a scheduled task via PowerShell by defining the trigger and action and registering it

593.2 Scheduling your scripts
When creating the scheduled task, you have several options to choose from when set-
ting the permissions. By default, the schedule is set to Run only when user is logged on.
However, since you will want it to run unattended, you will need to use the -User argu-
ment to set it to Run whether user is logged on or not.

 When creating it through the console, you can choose to have it run as the system
account or use a service account. To use the system account, set the value for the -User
argument to NT AUTHORITY\SYSTEM. If you decide to use a service account, you will also
need to supply the password using the -Password argument.

WARNING The password argument is a plain text string, so be sure not to
save it in any scripts.

One more thing to consider before creating your task is the name. I strongly recom-
mend that you create a subfolder in the Task Scheduler Library to group similar auto-
mations. You can do this by adding the folder name followed by a backslash (\) before
the task’s name in the -TaskName argument.

 Finally, you supply the -Trigger and -Action parameters with the trigger and action
you created. You can see the code for this scheduled task in the following listing.

$Trigger = New-ScheduledTaskTrigger -Daily -At 8am

$Execute = "C:\Program Files\PowerShell\7\pwsh.exe"
$Argument = '-File ' +
 '"C:\Scripts\Invoke-LogFileCleanup.ps1"' +
 ' -LogPath "L:\Logs" -ZipPath "L:\Archives"' +
 ' -ZipPrefix "LogArchive-" -NumberOfDays 30'

$ScheduledTaskAction = @{
 Execute = $Execute
 Argument = $Argument
}
$Action = New-ScheduledTaskAction @ScheduledTaskAction

$ScheduledTask = @{
 TaskName = "PoSHAutomation\LogFileCleanup"
 Trigger = $Trigger
 Action = $Action
 User = 'NT AUTHORITY\SYSTEM'
}
Register-ScheduledTask @ScheduledTask

NOTE You may receive an access denied message when running the Register-
ScheduledTask cmdlet. To avoid this, you can run the command from an ele-
vated PowerShell session.

Listing 3.1 Creating a scheduled task

Create a Scheduled
Task trigger.

Set the Action
execution path.

Set the Action
arguments.

Create the Scheduled
Task Action.

Combine the trigger
and action to create
the Scheduled Task.

60 CHAPTER 3 Scheduling automation scripts
After you run this, you should see your scheduled task under the folder PoSHAutoma-
tion, as shown in figure 3.2.

EXPORTING AND IMPORTING SCHEDULED TASKS

The best way to ensure that your jobs remain consistent across multiple computers is
by using the import and export functionality available with Task Scheduler. You can
use the Export-ScheduledTask cmdlet to export any task to XML. You can then use
this XML with the Register-ScheduledTask cmdlet to re-create the task on any other
Windows computer.

 You start by exporting the task and saving the XML output to a file. It is a good idea
to save these to a file share so that you can easily import them to any other machine on
your network. The Export-ScheduledTask cmdlet outputs a string with the XML data,
so you can save it by piping the output to a file using the Out-File cmdlet:

$ScheduledTask = @{
 TaskName = "LogFileCleanup"
 TaskPath = "\PoSHAutomation\"
}
$export = Export-ScheduledTask @ScheduledTask
$export | Out-File "\\srv01\PoSHAutomation\LogFileCleanup.xml"

From there, you can recreate the task on any other computer by importing the con-
tents of the XML file, running the Register-ScheduledTask, and passing in the XML
string to the -Xml argument. However, note that even though the XML file contains

Figure 3.2 Task Scheduler with a custom folder to keep your automations separate
from the rest of the scheduled tasks

613.2 Scheduling your scripts
the task’s name, you still have to supply the -TaskName parameter. Well, luckily, you
can convert XML directly to a PowerShell object. So, with a couple of extra lines of
code, shown in the following listing, you can extract the name of the job from the
XML to automatically populate the -TaskName parameter for you.

$FilePath = ".\CH03\Monitor\Export\LogFileCleanup.xml"
$xml = Get-Content $FilePath -Raw
[xml]$xmlObject = $xml
$TaskName = $xmlObject.Task.RegistrationInfo.URI
Register-ScheduledTask -Xml $xml -TaskName $TaskName

You can even take it one step further and import all the XML files from a single direc-
tory to create multiple jobs at once, as in the following listing. You can use the Get-
ChildItem cmdlet to get all the XML files in a folder and then use a foreach to
import each one of them.

$Share = "\\srv01\PoSHAutomation\"
$TaskFiles = Get-ChildItem -Path $Share -Filter "*.xml"

foreach ($FilePath in $TaskFiles) {
 $xml = Get-Content $FilePath -Raw
 [xml]$xmlObject = $xml
 $TaskName = $xmlObject.Task.RegistrationInfo.URI
 Register-ScheduledTask -Xml $xml -TaskName $TaskName
}

REGISTER-SCHEDULEDJOB

If you’ve been using PowerShell for a while, you may be aware of the cmdlet Register-
ScheduledJob. This cmdlet is very similar to the Register-ScheduledTask cmdlet,
with one major caveat. The Register-ScheduledJob cmdlet is not in PowerShell
Core. The way it works is entirely incompatible with .NET Core, and starting in Power-
Shell 7 has been blocked from even being imported using the PowerShell compatibil-
ity transport. Therefore, I highly recommend you switch any existing scripts from
Register-ScheduledJob to Register-ScheduledTask.

3.2.3 Cron scheduler

If you are new to Linux or just not familiar with Cron, it is the Linux equivalent of
Task Scheduler—or, really, the other way around since Cron was originally built by
Bell Labs in 1975. Either way, it is an excellent tool for scheduling recurring tasks on a

Listing 3.2 Importing a scheduled task

Listing 3.3 Importing multiple scheduled tasks

Import the contents of
the XML file to a string.

Convert the XML string
to an XML object. Set the task name

based on the value
in the XML.

Import the
scheduled task.

Get all the XML files
in the folder path.

Parse through each file
and import the job.

62 CHAPTER 3 Scheduling automation scripts
Linux computer and is installed by default on pretty much every major distro. It is a
very robust platform with many options, but we are going to focus on how you can use
it to run PowerShell scripts.

 Unlike Task Scheduler, Cron does not have a GUI. Instead, you control everything
through command lines and a Cron Table file, known as Crontab, containing all the
jobs for that particular user on that computer. Like Task Scheduler, in Cron, you sim-
ply set the schedule, set permissions, and set the action to call your script.

 The script part is easy. It is essentially the same command you used for Task Sched-
uler, just with paths written for Linux. For example, your command to call the Invoke-
LogFileCleanup.ps1 script would look something like this:

/snap/powershell/160/opt/powershell/pwsh -File "/home/posh/Invoke-
LogFileCleanup.ps1" -LogPath "/etc/poshtest/Logs" -ZipPath
"/etc/poshtest/Logs/Archives" -ZipPrefix "LogArchive-" -NumberOfDays 30

Prior to creating your Cron job, you can test the execution using Terminal. If your
command runs successfully through Terminal, you know it will run through Cron.

 To create your Cron job, open Terminal and enter the command as follows:

crontab -e

This will open the Crontab file for the current user. If you want the job to run as a differ-
ent user, enter the command with the -u argument followed by the account’s username:

crontab -u username -e

If this is your first time opening Crontab, you may see a prompt to select an editor.
Select your preferred one and continue.

 Now it is time to create your job. The syntax to create the job is the Cron syntax for
the schedule followed by the command. Again, we won’t go into too much detail on
Cron syntax as there are plenty of resources on it. Just know that it consists of five col-
umns that represent minute, hour, day of the month, month, and day of the week, as
shown in figure 3.3.

Minute (0–59)

Hour (0–23)

Day of month (0–31)

Month (0–12)

Day of week (0–6)

* * * * * Figure 3.3 Cron schedule parts

633.2 Scheduling your scripts
To run the script at 8 a.m., just like on the Windows computer, your syntax will be
* 8 * * *. Next, enter the syntax for the time interval followed by the command to exe-
cute, similar to the following:

* 8 * * * /snap/powershell/160/opt/powershell/pwsh -File "/home/posh/Invoke-
LogFileCleanup.ps1" -LogPath "/etc/poshtest/Logs" -ZipPath
"/etc/poshtest/Logs/Archives" -ZipPrefix "LogArchive-" -NumberOfDays 30

Then save your changes and close the Crontab file. As long as the Cron service is run-
ning on your computer, this job will execute at 8 a.m. every day.

3.2.4 Jenkins scheduler

As mentioned earlier, there are numerous tools out there that can support executing
PowerShell. Jenkins is an open source automation server that, while originally built as
a continuous integration tool, has grown much larger. As with any tool, it has its pluses
and minuses. A big plus is that it has a web UI that you can use to manage all of your
jobs in one place. It also has the ability to use role-based access and store credentials.
This will allow you to give others access to execute scripts on systems or environments
without providing them with explicit permissions to that system. If you have not
already done so, take a look at the instructions in the appendix for setting up a devel-
opment Jenkins server for performing these actions.

 One downside to Jenkins is that executing PowerShell on remote servers can be
tricky. Jenkins will execute the PowerShell script on the Jenkins server. But if you need it
to run the script on a different server, you will need to use PowerShell remoting or set
up each server as a Jenkins node. We will cover PowerShell remoting in depth in chap-
ter 5, so for this example, we are fine with the script running on the Jenkins server.

 If you followed the environment setup guide in the appendix, you should be all set
to perform this exercise. We will once again schedule your disk space usage script to
run on a schedule, this time using Jenkins.

 Before you copy your script to Jenkins, there is one thing you need to change.
Jenkins does not have the ability to pass parameters to a script the same way you can
from the command line. Instead, it uses environment variables. The easiest way to
account for this is by replacing your parameter block and defining the parameters
as values. Then, set a value for each variable to an environmental variable with the
same name. This will prevent you from having to rewrite every instance where the
parameter is used inside the script. The parameters in the log file cleanup should
look like this:

$LogPath = $env:logpath
$ZipPath = $env:zippath
$ZipPrefix = $env:zipprefix
$NumberOfDays = $env:numberofdays

64 CHAPTER 3 Scheduling automation scripts
The Jenkins environmental variable should be all lowercase in your script. Once you
have your parameters updated, it is time to create the job in Jenkins:

1 Open your web browser and log into your Jenkins instance.
2 Click New Item.
3 Enter a name for your project.
4 Select Freestyle project.
5 Click OK.
6 Check the box This project is parameterized.
7 Click the Add Parameter button and select String to bring up the screen shown

in figure 3.4.

8 In the Name field, enter the name of your parameter: LogPath.
9 In the Default Value field, enter the path to the log files.

10 Repeat steps 7 to 9 for the ZipPath, ZipPrefix, and NumberOfDays parameters.
11 Scroll down to the Build Triggers section, shown in figure 3.5.

12 Check the box Build periodically.
13 The syntax for the schedule is the same as Cron, so to run at 8 a.m. every day,

enter * 8 * * *.

Figure 3.4 Adding Jenkins
parameters

Figure 3.5 Jenkins trigger

653.3 Watcher scripts
14 Scroll down to the Build section, shown in figure 3.6, and click the Add Build
Step button.

15 Select PowerShell from the drop-down menu.
16 Copy and paste your Invoke-LogFileCleanup.ps1 script, with the replaced

parameters, into the Command block.
17 Click Save.
18 You can test your job right away by clicking the Build With Parameters button.
19 Click Build.
20 When your script is finished executing, you will see the job listed under the

Build History section.

If you click on any entry under Build History, you can view the console output of
your job.

3.3 Watcher scripts
A watcher script is a scheduled script that runs either continuously or at least every few
minutes. As a good rule of thumb, any script that needs to run every 15 minutes or less
should be considered a watcher. A typical example of this can be a file watcher, in
which you monitor a folder for new or updated files. Other examples are monitoring
a SharePoint list for new entries or checking a shared mailbox for new emails. Watcher
scripts can also be used for real-time monitoring, such as alerting on stopped services
or an unresponsive web application.

 When creating a watcher script, you need to consider all the same things you do
with any unattended scripts (dealing with dependencies, making data dynamic, pre-
venting user inputs, etc.). However, execution time needs to be at the forefront of
your mind during the designing and coding processes. For example, if you have a
script that executes once a minute and takes 2 minutes to run, you will encounter lots
of problems.

Figure 3.6 Jenkins script

66 CHAPTER 3 Scheduling automation scripts
 As you will see, one way to reduce your watcher script’s run time is by having it use
an action script. Think of it as a watcher script monitoring for a specific condition.
Once that condition is met, the watcher script will invoke the action script. Since the
action script runs in a separate process, your watcher script will not have to wait for
the action script to finish executing. Also, you can invoke multiple action scripts from
a single watcher, allowing them to run in parallel.

 For example, consider a script that performs the following once a minute:

1 Check an FTP site for new files.
2 If files are found, download them locally.
3 Copy the files to different folders based on the names.

If written as a traditional PowerShell script, it will process the files one at a time, which
means that you need to account for the time required for downloading the file, deter-
mining where to copy it, and copying it. In contrast, if you invoke an action script,
shown in figure 3.7, multiple files can be processed at once, resulting in a much faster
execution time and without the watcher waiting for each one.

Another advantage to using action scripts is that they execute as separate processes
from the watcher script. So, any errors, delays, or problems they experience will not
affect the action script.

 The concept of watcher and action scripts is not inherent to the PowerShell frame-
work. It is an automation process that I have used for years when building automa-
tions. The concepts behind it can be translated to any language or platform. There
were attempts to build it into the PowerShell framework years ago when PowerShell
Workflow was introduced as part of the SMA platform. And don’t feel bad if you’ve
never heard of PowerShell Workflow or SMA; most people haven’t. The advantages
that they brought in parallel processing and resuming can now all be achieved natively
in PowerShell. The concepts you learn here can be made into building blocks that you
can use with any automation you create.

Action script

Watcher script

For each
action Figure 3.7 A single watcher script can call

multiple action scripts in parallel and run them
in separate processes.

673.3 Watcher scripts
3.3.1 Designing watcher scripts

Since watcher scripts tend to run every minute or so, the most important thing to
consider is execution time. While the use of action scripts can help prevent your
script from running too long, there is always the chance that an unforeseen situa-
tion will arise, causing your script to run longer than intended. However, through
some good coding practices, you can prevent this from causing problems with your
automations.

 Before creating your watcher script, you must first know how often it will need
to run. You need to do this to ensure that your watcher script executions will not
overlap with each other. If there is a potential for overlap, you need to design a way
for your script to gracefully exit before that happens. You also need to develop the
watcher script to pick up where it last left off. We will walk through these concepts
while building a folder watcher.

 Consider the following scenario: you need to monitor a folder for new files. Once
a file is added, it needs to be moved to another folder. This monitor needs to be as
real-time as possible, so it will run once every minute. This is a common scenario that
you could implement for multiple reasons, including monitoring an FTP folder for
uploads from customers or monitoring a network share for exports from your ERP or
payroll systems.

 Before you begin, you need to break down the steps your automation will need
to perform. Then, determine which functionality needs to be in the watcher script
and which should go in the action script. Keep in mind that the goal is to have the
watcher script run as efficiently as possible and pick up from where the last one
left off.

 The first thing you need to do is get the files in the folder. Then, every file found
needs to be moved to another folder. Since you are dealing with data, you want to be
careful not to overwrite or skip any files. To help address this concern, you can have
the script check whether there is already a file with the same name in the destination
folder. If there is, some of your choices are to

 Overwrite the file
 Skip moving the file
 Error out
 Rename the file

If you skip moving the file or error out, you will cause problems with subsequent exe-
cutions because the script will keep picking up that same file again and again. Renam-
ing the file would be the safest option. However, while you are preventing data loss,
duplicating data can be a problem of its own. If the same file keeps getting added to
the source folder, the script will just keep renaming and moving, causing massive
duplicates in the destination folder. To prevent this from happening, you can imple-
ment a hybrid process to check whether the files with the same names are indeed the
same file, as shown in figure 3.8.

68 CHAPTER 3 Scheduling automation scripts
You can check whether the file size is the same, the last write times match, and the file
hash is the same. If all of these values match, it is safe to say that it is the same file and
can be overwritten. If any one of those checks fails, it will be renamed and copied.
This will help ensure that you don’t overwrite any data, duplicate existing data, and
remove all files from the source folder.

 Next, you need to determine which steps will be in the watcher and which will be
in the action script. Remember that you want as little processing done in the watcher
as possible. So, it would make sense to have only the first step of finding the new files
in the watcher. Then, let the action script handle everything else. This logic is illus-
trated in figure 3.9.

Rename file

Run once a minute

Check if file name is
unique in destination

Move file

(For Each)

Find new files

Check if size and
date match

Check if hashes
matches

Set overwrite flag

X=XX

X=XX

Yes

No

Yes
No

No

Yes

Figure 3.8 File watcher automation runs once a minute to check for new files. For
each file found, it needs to confirm that the file is unique and, if not, determine if the
hash matches or if it needs to be renamed.

693.3 Watcher scripts
Now that you know what needs to go into the watcher script, you can start coding it,
beginning with the command to find the new files in the folder. This can be done using
the Get-ChildItem cmdlet. Since you want to ensure that your script runs as efficiently as
possible, there are a few concepts you will want to follow regardless of the automation.

File watcher with action script

A
c
ti

o
n

W
a
tc

h
e
r

Rename file

Run once a minute

Check if file name is
unique in destination

Move file

(For
Each)

Invoke action scriptFind new files

Check if size and
date match

Check if hashes
matches

Set overwrite flag

X =

X =

Yes

No

YesNo

No

Yes

Figure 3.9 File watcher execution with the file actions of checking names and hashes is moved into an
action script that runs in a separate process.

70 CHAPTER 3 Scheduling automation scripts
USE CMDLET-BASED FILTERS

When you need to filter your results, try to use the parameters provided by the
cmdlets rather than using the Where-Object filtering whenever possible. In this case,
you will be using the Get-ChildItem cmdlet, which has a filter parameter. So, if you
only need to return XML files, you can use -Filter '*.xml' to limit your results.
When you use the Where-Object after a pipe, the Get-ChildItem cmdlet will return
all items, and then PowerShell will filter them, drastically increasing your run time.

AVOID RECURSION

It is always best to scope your scripts to only pull the data they need. If you have multi-
ple subfolders or nested organizational units (OUs), parsing through all of them can
be very time-consuming. It can often be quicker to run multiple get commands
scoped to individual subfolders than to run one at the top level with recursion.

 For example, if the folder watcher needs to look into multiple subfolders, it would
be quicker to list the specific folders than to list the parent and have your script search
through every child folder. You may also consider creating a separate watcher for
each folder.

 Another example of this is a watcher I created to monitor user accounts in Active
Directory. The structure was that each office had its own OU. Inside each OU were
separate OUs for computers, users, admins, printers, service accounts, etc. I only
needed to monitor the user OU under each site OU. So, if I scoped the script to the
top level and told it to recurse, it would find everything I needed, but it would also
waste time searching through all of the other OUs. Instead, I had one command
return all the OUs directly under the top level. Then I used a foreach to look directly
in the User OU under each one. Doing this caused the script to execute in 10 seconds
versus 90 seconds for the recursion command.

PROCESS IN ORDER

Since a watcher is time-sensitive, you always want to execute in the order received. In
the folder-watch example, you will want the files sorted by the date and time they were
created so that they will be processed in the order received. This helps to ensure that
if the script stops for any reason, the subsequent execution will pick up right where
the previous one left off. Following these practices, you can now build out the basic
structure of your watcher, which will get the files in the folder, sort them by date, and
then invoke the action script for each file.

LOG ACTIONS

Another thing to consider is what to do if the action script fails—for example, if
something goes wrong and the action script is unable to complete. Every time the
watcher runs, it may attempt to run the action script over and over. If the number
of problem items grows larger than your concurrent job count, your entire automa-
tion could stop.

 To protect against this, you can create a log to let your watcher know which actions
have been invoked. Again, this will be different for every watcher, but the concept

713.3 Watcher scripts
remains the same. For example, you can write the file’s creation date before it invokes
the action script for the folder watcher. Then, have the script filter on the last date
from the log the next time it starts, preventing it from attempting to send the same
files over and over.

AVOID UNNECESSARY COMMANDS

Adding additional checks or conditions to a watcher may be tempting to account for
every situation, but you are sacrificing speed with every new command added. If you
have multiple conditions, it may be best to break them into separate watchers or add
them to the action script. This is especially true if you have more than one action that
can be taken. A good rule to follow is one action per watcher. Not only will it speed up
your execution, but it will also make your code easier to maintain in the long run.

3.3.2 Invoking action scripts

There are many ways you can invoke one PowerShell script from another. You can use
the Invoke-Command, Invoke-Expression, New-Job, and Start-Process cmdlets. For
action scripts, the best option is to use the Start-Process. Unlike the other cmdlets,
the Start-Process cmdlet executes the script in a separate process from the watcher
script. This means if the watcher script stops executing or has an error, the action
scripts running are not affected, and vice versa.

 To invoke the action script using the Start-Process cmdlet, you need to pass the
script path and parameter values along with the path to the PowerShell executable.
You can also pass the -NoNewWindow argument to keep from having a ton of windows
pop up every time it runs. You will notice that the command argument is very similar
to the arguments you used when creating a scheduled task earlier. That is because
both are essentially the equivalent of running the command from a terminal or com-
mand prompt window.

 When invoking your action script, you want to ensure that the parameters are
primitive types (strings, int, Boolean, etc.) and not objects. This is because different
object types can have different behavior when passed in this manner, and it is difficult
to predict how they will react. For example, in the folder watcher, you want to pass the
file’s full path as a string versus the file object type from the Get-ChildItem cmdlet.

RESOURCE LIMITING

One thing to be cautious of when using the Start-Process cmdlet to invoke action
scripts is overwhelming your system. This can happen easily since each action script is
running as an independent process. So, in our example, if you suddenly have 100 files
added to the folder you are monitoring, your watcher could end up trying to process
all 100 at once.

 To avoid this, you can add a limit to the number of action scripts a watcher can
have running at once. This will prevent you from accidentally firing off more jobs
than your system can handle. You can add the -PassThru switch to the Start-Process
cmdlet to output the process ID (PID) of each action script and then save them to an
array. Then have your script check how many of the processes are still running. Once

72 CHAPTER 3 Scheduling automation scripts
the number of concurrently running jobs reaches the limit, have it wait until one has
finished before continuing to the next.

3.3.3 Graceful terminations

As previously mentioned, you should aim for your script to complete in half the
amount of the run interval. Therefore, you will want to monitor the execution time in
your watcher script so you can terminate it if it runs for too long.

 Most job scheduling platforms have settings for what to do if the previous task is
still running and it is time for the next task to start. For example, in Task Scheduler,
you can prevent the new task from starting, start it in parallel, queue it, or stop the
existing instance. My recommendation here would be to choose to stop the existing
instance. The main reason behind this is because if something goes wrong in the
script, this would kill the process and start it fresh, hopefully resolving the issue.

 Take, for example, an issue with authenticating to a network share. You all know
it happens randomly from time to time. It would be much better to have the script
start over and try to reauthenticate than to build all sorts of crazy logic into your
script to try to handle this.

 Having your script automatically terminate itself after a certain amount of time
means you can ensure it executes at a point that will not affect the subsequent exe-
cution. Letting the task scheduler terminate it should only be used as a backup for
unforeseen circumstances.

 For your folder watcher script, we said it needs to run every 60 seconds, so you
need to ensure that if it is still running after 30 seconds, you terminate it at a point of
your choosing. An excellent tool to help you do this is the System.Diagnostics
.Stopwatch .NET class.

 The Stopwatch class provides you a quick and easy way to measure the execution
times inside your script. You can create a new stopwatch instance by calling the class
with the StartNew method. Once the stopwatch starts, the total time is in the
Elapsed property. There are also different methods for stopping, restarting, and
resetting the stopwatch. The following snippet shows how to start, get the elapsed
time, and stop the stopwatch:

$Timer = [system.diagnostics.stopwatch]::StartNew()
Start-Sleep -Seconds 3
$Timer.Elapsed
$Timer.Stop()
Days : 0
Hours : 0
Minutes : 0
Seconds : 2
Milliseconds : 636
Ticks : 26362390
TotalDays : 3.0512025462963E-05
TotalHours : 0.000732288611111111
TotalMinutes : 0.0439373166666667

733.3 Watcher scripts
TotalSeconds : 2.636239
TotalMilliseconds : 2636.239

To use this in the watcher script, add the following command where you want the
timer to start:

$Timer = [system.diagnostics.stopwatch]::StartNew()

Then you can determine where the best place to stop the execution of your script
will be.

 Where you terminate will be different for every script, but typically, you want to ter-
minate after the action script is called. If you terminate before, you run the risk of
never making it to the action. You also want to avoid terminating before any of your
logs are written. The best place to terminate in the folder watcher script is at the bot-
tom of the foreach loop. This will ensure that the current file is sent to the action
script before stopping or recording the next one.

3.3.4 Folder watcher

Now that we have gone through all the parts of a watcher, let’s put it all together in the
folder watcher script. Following the design recommendations, it will start by declaring
the stopwatch. Then it will pick up the log with the last processed file’s date in it. Since
you don’t want it to error out the first time it runs, or if something happens to the log,
you can use the Test-Path cmdlet to confirm it exists before attempting to read it.

 Now you are ready to query the files and sort them based on the creation date.
Next, the script will write the creation time to the log for each file and then invoke the
action script. After the action script is invoked, it will check whether the number of
running jobs exceeds the limit. If it does, the script will wait until at least one of them
finishes. Then it will confirm that the time limit is not exceeded. If not, it will con-
tinue to the next file. Once all files are sent to action scripts, the watcher script will
exit. Figure 3.10 shows these steps, and the script is shown in the next listing.

param(
 [Parameter(Mandatory = $true)]
 [string]$Source,

 [Parameter(Mandatory = $true)]
 [string]$Destination,

 [Parameter(Mandatory = $true)]
 [string]$ActionScript,

 [Parameter(Mandatory = $true)]
 [int]$ConcurrentJobs,

 [Parameter(Mandatory = $true)]
 [string]$WatcherLog,

Listing 3.4 Watch-Folder.ps1

74 CHAPTER 3 Scheduling automation scripts

s

,

 [Parameter(Mandatory = $true)]
 [int]$TimeLimit
)

$Timer = [system.diagnostics.stopwatch]::StartNew()

if (Test-Path $WatcherLog) {
 $logDate = Get-Content $WatcherLog -Raw
 try {
 $LastCreationTime = Get-Date $logDate -ErrorAction Stop
 }
 catch {
 $LastCreationTime = Get-Date 1970-01-01
 }
}
else {
 $LastCreationTime = Get-Date 1970-01-01
}

$files = Get-ChildItem -Path $Source |
 Where-Object { $_.CreationTimeUtc -gt $LastCreationTime }
$sorted = $files | Sort-Object -Property CreationTime

[int[]]$Pids = @()
foreach ($file in $sorted) {
 Get-Date $file.CreationTimeUtc -Format o |
 Out-File $WatcherLog

 $Arguments = "-file ""$ActionScript""",
 "-FilePath ""$($file.FullName)""",
 "-Destination ""$($Destination)""",
 "-LogPath ""$($ActionLog)"""
 $jobParams = @{
 FilePath = 'pwsh'
 ArgumentList = $Arguments
 NoNewWindow = $true
 }
 $job = Start-Process @jobParams -PassThru
 $Pids += $job.Id

 while ($Pids.Count -ge $ConcurrentJobs) {
 Write-Host "Pausing PID count : $($Pids.Count)"
 Start-Sleep -Seconds 1
 $Pids = @(Get-Process -Id $Pids -ErrorAction SilentlyContinue |
 Select-Object -ExpandProperty Id)
 }

 if ($Timer.Elapsed.TotalSeconds -gt $TimeLimit) {
 Write-Host "Graceful terminating after $TimeLimit seconds"
 break
 }
}

Start
Stopwatch
timer.

Check whether the log file exists,
and set the filter date if it does.

Default time if no
log file is found

Get all the files
in the folder.

Sort the files based
on creation time.

Create an array to hold
the process IDs of the
action scripts.Record

the files
time to
the log. Set the arguments from

the action script.

Invoke the action script with
the PassThruswitch to pass
the process id to a variable... ... and the

id to the
array.

If the number of process id
is greater than or equal to
the number of current jobs
loop until it drops.

Get-Process will only return running processes,
so execute it to find the total number running.

Check whether the total
execution time is greater
than the time limit.

The break command is used to
exit the foreach loop, stopping
the script since there is
nothing after the loop.

753.3 Watcher scripts
3.3.5 Action scripts

When it comes to creating the action script, there are not as many limits and things to
consider. The process should follow all the standard PowerShell practices we’ve dis-
cussed regarding unattended scripts. Other than that, you may want to add some log-
ging to your script.

 Since the action script runs independently, the watcher is not aware of errors in it.
This means it won’t report them back to the invoking system or include them in its
logs. Therefore, it is always a good idea to have some form of logging in your action
scripts so that you can be aware of any issues or failures.

 We will cover logging in more depth in later chapters. So, for now, we can add some
simple text-file-based logging to the action script to record any errors. An excellent way
to ensure that you adequately capture errors is by using a try/catch/finally block.

Check if exceeded
runtime

Run once a minute

Write date to log

(For Each)

Start timer

Check if concurrent
job limit is met More Files

Exit script

X=X=XX

Get last creation time

Find new files Invoke action script

Pause 1 second

Yes

No X=XX No

No

Yes

Yes

Figure 3.10 File watcher with action script invocation, concurrent job limiter, and
execution timer

76 CHAPTER 3 Scheduling automation scripts
 In the action script, you will create a function to perform all the duplicate checks
and perform file moves. When you add the [CmdletBinding()] to the function, you
can use the -ErrorAction argument and set it to Stop when you call the functions.
During normal script execution, this would stop the script in the case of an error in
the function. However, when used inside a try block, it will send the script to the catch
block. If the function runs without any problems, the catch block is skipped. Thus,
regardless of an error, the finally block will always run.

 For the action script in our example, shown in figure 3.11, you can set a variable with
a success message under the function call in the try block. Then, in the catch block,
you can set that same variable to an error message. In the finally block, have it write
that message to the log. If the function has an error, it will skip over the variable set in
the try block and go right to the catch. Or, if there is no error, it will set the success
message and skip the catch block. In either case, the log file will be updated.

NOTE The variable $_ in a catch block will contain the error message. You
can use this to record precisely what went wrong.

Taking what we now know and the tasks we identified at the beginning of this exercise,
the task for this action script will be to test that the file exists. Then if it does, get the
file object using the Get-Item cmdlet. This will allow you to get the item data you will
need to use if a duplicate file is found. Remember, we are only passing in a string for
the file path and not the file object.

 Next, the action script will check whether a file with the same name already
exists in the destination folder. If one does, it will check whether the files are the
same. If they are, the script will overwrite the file to clear it out of the source folder.
If not, it will rename the file with a unique name. Then the file is moved to the des-
tination folder.

Getting a unique name
There are several ways to ensure that your file has a unique name. These include
using GUIDs or creating an interval variable that you can increment until a unique one
is found. But when it comes to file names, nothing beats the FileTime string in the
DateTime object.

All DateTime objects contain the methods ToFileTime and ToFileTimeUtc. Invok-
ing either of these methods will return a FileTime value. A FileTime value is the
number of 100-nanosecond intervals since January 1, 1601. By getting the current
time and converting it to FileTime, you are almost guaranteed a unique file name if
you add it to the file name—that is, unless you have two files with the same name
that are being moved within 100 nanoseconds of each other.

The FileTime value can also be parsed back into a standard DateTime format, giving
you a record of when the file was renamed.

773.3 Watcher scripts
Go ahead and create a second script named Move-WatcherFile.ps1. Then, build out
the action script, as in the following listing.

param(
 [Parameter(Mandatory = $true)]
 [string]$FilePath,
 [Parameter(Mandatory = $true)]

Listing 3.5 Action script with logging and error handling

No

Yes

Move file

Yes

No

Yes
No

No

Yes

SuccessFailed

Confirm file exists

X=

Get file object

Write error log
Check if file name is
unique in destination

X=XX

Check if size and
date match

X=XX

Rename file

Write logWrite error log

Set overwrite flag

Check if hashes
match

X=XX

Figure 3.11 Since the action
script runs in its own process, it
requires its own logging and
error handling.

78 CHAPTER 3 Scheduling automation scripts

u

 [string]$Destination,
 [Parameter(Mandatory = $true)]
 [string]$LogPath
)

Function Move-ItemAdvanced {
 [CmdletBinding()]
 [OutputType()]
 param(
 [Parameter(Mandatory = $true)]
 [object]$File,
 [Parameter(Mandatory = $true)]
 [string]$Destination
)

 $DestinationFile = Join-Path -Path $Destination -ChildPath $File.Name

 if (Test-Path $DestinationFile) {
 $FileMatch = $true
 $check = Get-Item $DestinationFile
 if ($check.Length -ne $file.Length) {
 $FileMatch = $false
 }
 if ($check.LastWriteTime -ne $file.LastWriteTime) {
 $FileMatch = $false
 }
 $SrcHash = Get-FileHash -Path $file.FullName
 $DstHash = Get-FileHash -Path $check.FullName
 if ($DstHash.Hash -ne $SrcHash.Hash) {
 $FileMatch = $false
 }

 if ($FileMatch -eq $false) {
 $ts = (Get-Date).ToFileTimeUtc()
 $name = $file.BaseName + "_" + $ts + $file.Extension
 $DestinationFile = Join-Path -Path $Destination -ChildPath $name
 Write-Verbose "File will be renamed '$($name)'"
 }
 else {
 Write-Verbose "File will be overwritten"
 }
 }
 else {
 $FileMatch = $false
 }

 $moveParams = @{
 Path = $file.FullName
 Destination = $DestinationFile
 }
 if ($FileMatch -eq $true) {
 $moveParams.Add('Force', $true)
 }
 Move-Item @moveParams -PassThru
}

Add a new function to
perform file checks when
a duplicate is found.

Check
whether

the file
exists.

Get the
matching file.

Check whether
they have the
same length.

Check whether they
have the same last
write time.

Check whether
they have the
same hash.

If they don’t all
match, create a
nique filename

with the
timestamp.

If the two files matched,
force an overwrite on
the move.

793.4 Running watchers
if (-not (Test-Path $FilePath)) {
 "$(Get-Date) : File not found" | Out-File $LogPath -Append
 break
}

$file = Get-Item $FilePath

$Arguments = @{
 File = $file
 Destination = $Destination
}

try {
 $moved = Move-ItemAdvanced @Arguments -ErrorAction Stop
 $message = "Moved '$($FilePath)' to '$($moved.FullName)'"
}
catch {
 $message = "Error moving '$($FilePath)' : $($_)"
}
finally {
 "$(Get-Date) : $message" | Out-File $LogPath -Append
}

Now your watcher and actions scripts are ready. As with all automations, there is no
way to predict every situation, so chances are you will need to make some tweaks to
either script. However, if you keep in mind execution time, concurrently running
jobs, and logging, you will be in good shape.

3.4 Running watchers
A watcher script should be able to be executed the same way you execute any script.
You just need to ensure that the watcher can access the action script and both can
access the resources they need independently. This means you can use all the same
tools for scheduling watchers as with any other PowerShell script.

3.4.1 Testing watcher execution

Before scheduling your watcher, you want to test it thoroughly. On top of your stan-
dard functionality testing, you need to measure the execution time. You can do this
using the Measure-Command cmdlet.

 The Measure-Command cmdlet allows you to measure the execution time of any
command, expression, or script block. You can test the execution time of your watcher
script by using it in conjunction with the Start-Process cmdlet. Similar to how you
call the action script from the watcher, you can use the Start-Process cmdlet to call
the watcher script from another PowerShell session. Doing this will ensure that it runs
in a separate session, just like when started by Task Scheduler or any other job sched-

Test that the file is
found. If not, write

to log and stop
processing.

Get the file
object.

Wrap the move command
in a try/catch with an
error action set to stop.

Catch will only run if an
error is returned from
within the try block.

Create a custom
message that
includes the file
path and the
failure reason
captured as $_.Write to the log file

using the finally block.

80 CHAPTER 3 Scheduling automation scripts
uler. The only difference here is that you are going to add the -Wait switch. This will
ensure your script waits until the watcher has finished processing so you get an accurate
measurement of the execution time. You can see in the following snippet how this
looks when invoking the Invoke-LogFileCleanup.ps1 watcher script:

$Argument = '-File ' +
 '"C:\Scripts\Invoke-LogFileCleanup.ps1"' +
 ' -LogPath "L:\Logs\" -ZipPath "L:\Archives\"' +
 ' -ZipPrefix "LogArchive-" -NumberOfDays 30'
$jobParams = @{
 FilePath = "C:\Program Files\PowerShell\7\pwsh.exe"
 ArgumentList = $Argument
 NoNewWindow = $true
}
Measure-Command -Expression {
 $job = Start-Process @jobParams -Wait}
Days : 0
Hours : 0
Minutes : 0
Seconds : 2
Milliseconds : 17
Ticks : 20173926
TotalDays : 2.33494513888889E-05
TotalHours : 0.000560386833333333
TotalMinutes : 0.03362321
TotalSeconds : 2.0173926
TotalMilliseconds : 2017.3926

As you can see, TotalSeconds is well under the 30-second limit you wanted. But be
sure to run multiple tests with different scenarios to ensure the time stays under the
30-second limit. For example, if I put 100 files in the watcher folder, my execution
time jumps to 68 seconds, well over the 30-second limit. When this happens, there are
two things you need to consider.

 First and foremost, you need to ask if it is possible that 100 files could be added in
one minute and, if so, for how long. If your script takes 68 seconds to process 100 files
and 100 files are added every minute, you will have a massive backlog that will never
clear. If this is the case, then you need to reconsider how your script is executing. It
would help if you asked yourself questions such as the following:

 Could I increase the limit of currently running job action scripts?
 Is there a way I can increase the speed of execution of the watcher script?
 Can I split the load between two or more watchers, each grabbing a chunk of

the files?

I cannot tell you the right answer because the answers will be different for every automa-
tion. Other automations may even have completely different questions. These are just
examples to help you see what you need to think about when creating your automations.

 For instance, if you discover that the average number of files added in 1 minute is
around 10, you will know that your automation will handle the rare cases where 100 files

81Summary
are added. You may end up with a backlog for a few minutes, but it will quickly catch
up. It becomes a balancing act that you will need to monitor and adjust over time.

 Also, if you find your watchers are exceeding their run time on a regular basis, you
can test the individual commands inside it using the Measure-Command cmdlet. This
will help you determine where you can rewrite certain portions or commands to help
speed things up.

3.4.2 Scheduling watchers

You can use all the same tools to schedule watcher scripts as you can to schedule mon-
itor scripts. The only difference is that you need to consider the execution time and
what happens if it is exceeded. Even though you built in a graceful termination, if the
job scheduler has a setting for it, you should have it terminate the job if it is time for
the next one to start as a backup. You should never have two instances of the same
watcher running at the same time.

 Also, each instance of the watcher running should be started by the job scheduler.
It may be tempting to create a job that runs once a day with a loop built in to keep
executing the same commands over and over for 24 hours. However, if something
goes wrong during the execution—for example, if the script has a terminating error
or the computer is rebooted—your automation will not run again until the next day.

Summary
 There are multiple different tools available that will allow you to schedule Power-

Shell scripts, including Task Scheduler and Cron.
 When creating a watcher script, the time of execution is extremely important.
 A watcher script should only monitor for events. Any actions that need to be

taken should be performed by an action script.
 You should know how long your script should execute and build a graceful ter-

mination if it runs too long.

Handling sensitive data
In December 2020, one of the largest and most sophisticated cyberattacks ever was
found to be taking place on systems across the globe. Security experts discovered
that the SolarWinds Orion platform was the subject of a supply chain hack. Hackers
were able to inject malware directly into the binaries of some Orion updates. This
attack was a big deal because SolarWinds’ Orion is a monitoring and automation
platform. The company’s motto, “One platform to rule your IT stack,” makes it a
very enticing target for bad actors.

 More than 200 companies and federal agencies were impacted by this attack,
including some big names such as Intel, Nvidia, Cisco, and the US Departments of
Energy and Homeland Security. Experts suspect that this attack is responsible for
other exploits found shortly after at Microsoft and VMware.

 If someone is able to gain full access to an automation platform, not only are
they able to perform any action that platform has permissions to perform, but they

This chapter covers
 Basic security principles for automations

 PowerShell secure objects

 Securing sensitive data needed by your scripts

 Identifying and mitigating risk
82

83CHAPTER 4 Handling sensitive data
also have access to all the information and data stored inside that platform. So, if you
have a script with full domain admin rights or full global administrator, the bad actors
will have those same rights and privileges.

 Even something that seems harmless, like an internal FTP address or public keys,
can be exploited in ways you might never consider. In the examination of the Solar-
Winds exploit, investigators discovered that the password for the SolarWinds update
server was saved in plain text inside a script that was in a public GitHub repository. At
the time of writing, it has not been confirmed that this is how the hackers were able to
inject their malware directly into the Orion updates. However, it is not a far stretch to
see how this mistake could have been the cause and a straightforward one to avoid.
This attack serves as a great reminder of several fundamental IT and automation secu-
rity principles, which we will cover in this chapter.

 Throughout this chapter, we will use the SQL health check automation illustrated
in figure 4.1 as an example, but the principles apply to any automation. In this auto-
mation, you will connect to a SQL instance using PowerShell and then check that the
databases have their recovery model set to SIMPLE. If a database is not set to SIMPLE, it
will send an email reporting the bad configuration. To run the SQL health check
automation, you will need to retrieve secure data for both the SQL server connection
and the SMTP connection.

Start health
check

Check recovery
module

Run health checkConnect to SQLGet instance and
credentials

Send email

Fail

End

Get SMTP
credentials

Pass

Figure 4.1 The SQL health check automation will send a notification if the recovery model is not
set properly.

84 CHAPTER 4 Handling sensitive data
4.1 Principles of automation security
Since every single company, platform, tool, and piece of software is different, some-
one could write an entire 500-page book on handling specific security situations and
not come close to scratching the surface. However, we will cover some key concepts
that you can apply across the board to any automation you are creating. To start, any
time you are creating automations, you need to ask yourself the following questions:

 What are my risks if someone gains access to this automation?
 How can I limit the damage if someone does access it?

4.1.1 Do not store sensitive information in scripts

First and foremost, you should never, under any circumstance, include any sensitive
data inside a script. While the SolarWinds hack in which someone gained access to the
entire platform is an extreme example, the fact that a password saved in a script
potentially started it all is not that unbelievable. Someone unwittingly sharing a script
with a plain text password in it online, losing a thumb drive with a copy of a password,
or sending the password over an unsecured email to a vendor is more common than
most people would like to admit. To protect yourself from this and other possible
breaches, you should never store sensitive data inside a script.

 The question then becomes “What is sensitive data?” Some pretty obvious exam-
ples are

 Passwords and secrets
 API keys
 SSH keys

SQL health check prerequisites
To run the SQL health check, you need a SQL instance to test. I have provided a script
in the chapter 4 Helper Scripts folder that will install and configure the latest version
of SQL Server Express for you. I highly recommend that you use a virtual machine for
this testing. If you set up the Jenkins server from the appendix, I recommend using
that machine. Also, please note that this installation script must be run using Win-
dows PowerShell 5.1.

If you choose to use an existing SQL instance, you will need to manually install the
dbatools and Mailozaurr modules from the PowerShell gallery.

You will also need a SendGrid account to send the notification emails. You can sign
up for a free account using a personal or work email address at sendgrid.com. The
free account can send 100 emails per day.

Finally, you will need to install KeePass to use as a secret vault. The information nec-
essary to set up the KeePass database is included later in this chapter. You can
download and install KeePass from keepass.info or by using Chocolatey with the
command choco install keepass.

http://www.sendgrid.com
https://keepass.info/

854.1 Principles of automation security
 Private certificates
 Certificate thumbprints
 PGP keys
 RSA tokens

Other sensitive information may not seem as obvious. For instance, in the example of
a SQL health check, a SQL connection string may seem innocuous, especially if it uses
a trusted connection and not a username and password. However, you are still giving
someone a piece of the puzzle. Suppose a bad actor finds your script with the SQL
connection string to the enterprise resource-planning database. In that case, they can
quickly target their attacks, increasing the potential of gaining access to sensitive
information before they are caught.

 The same concern is valid for storing usernames in scripts. While the username
itself is no good without the password, you have just given someone half of the infor-
mation they need to gain access. Also, as you saw in the previous chapters, this makes
your script less portable and harder to maintain.

 Even when it isn’t innocuous, people will often still put sensitive information in their
scripts for a number of reasons. They might not know how to secure it properly, or they
may be in a time crunch and intend to do it later—and, as we all know, later often never
comes. However, as you will see in this chapter, setting up a secure store for passwords
and other information is quick and easy. If you already have secure stores set up and
available, you have no excuse for putting sensitive data in your scripts.

 Remember to ask yourself whether this information would be of interest to an
attacker. If the answer is yes, it should be considered sensitive data and stored securely
outside of any scripts.

4.1.2 Principle of least privilege

Second only to not saving passwords in scripts is the principle of least privilege. This
principle states that an account should only have the permissions it needs and noth-
ing more. Unfortunately, people often do not want to spend the time figuring out per-
missions at a granular level, or even worse, some vendors will insist that an account
needs full administrator access. Sure, it is easier to make an administrator account
and move on. But, in doing so, you are creating an unacceptable level of risk.

 In the case of our SQL health check script, you do not want to give the account
database administrator rights because it only needs to read information about the
database. If the account has database administrator rights and becomes compro-
mised, the attacker not only can access all of your information, they can also create
backdoors and separate accounts that you might not find for months or longer. For
the health check script, you don’t even need read permissions to the databases. You
just need to be granted the view server state permissions. This means that even if the
service account is compromised, it cannot be used to read the data in the database.

 In another example, if you were part of an organization that used SolarWinds
Orion, there would have been no way you could have prevented the attackers from

86 CHAPTER 4 Handling sensitive data
gaining access. However, if you adhered to the principle of least privilege, you would
not be as severely impacted as others who might do something like give a service
account domain administrator access.

 The principle of least privilege does not only apply to things like service account
permissions. It can also include IP- or host-based restrictions. An excellent example of
this is SMTP relays. I have heard of situations where the username and password of a
service account with permission to impersonate any Exchange user gets leaked. Hack-
ers can then use that account to send emails that appear to both people and data pro-
tection filters to come from a person inside the company. They can then submit
payment requests to fake vendors.

 In some cases, tens of thousands of dollars were stolen before anyone caught on.
This could have all been avoided, or at least made much more difficult, if this account
was only able to send these requests from a particular IP address or server. This is why
I choose to use SendGrid in this automation example. Not only does it use an API key,
so there is no user to compromise, but it also has IP-based restrictions and auditing to
help prevent and detect unauthorized use.

4.1.3 Consider the context

An automation script intended to be run interactively versus one that is meant to be
run unattended will have completely different security considerations. Suppose it is
designed to run interactively. In that case, you can do things such as prompt for pass-
words, run under that user context, or use privileged access management solutions or
delegated permissions.

 However, suppose a script is going to run unattended. In that case, it will need a
way to securely access sensitive data while preventing others from accessing the same
data. Also, keep in mind that the solution to this may not involve passwords at all. Con-
sider our SQL health check scenario. If the SQL server uses Windows domain authori-
zation, there is no need to pass a username and password. You can use a job scheduler
to run as that account and execute the script.

 Another option is to set the job to run locally on the SQL server. This way, it can
run under the system context without needing a password. If you limit the script to
execute under the system context on the database server, the only way someone can
exploit it is to gain access to your database server. And if that happened, you would
have much more significant concerns than someone being able to see your script.

4.1.4 Create role-based service accounts

I cannot tell you how many times I have sent someone a list of required service
accounts, and the first thing they ask is “Can these all use the same account?” Unfor-
tunately, this has become a far too common practice, and it is a very dangerous one.
On the other side, some will argue that managing hundreds of service accounts can,
in itself, become a full-time job. This is why I like to use the concept of role-based
access.

874.1 Principles of automation security
 Let’s take a look at the requirements for the SQL health check. First, we know we
will need an account to authenticate with SQL and an account to send the email. In
this case, I would recommend creating two separate accounts because they are inter-
facing with two completely different systems and performing different roles. Also, you
will more than likely have more than one automation sending emails. So, instead of
setting up every service account with a mailbox or other SMTP replay permissions,
you can create one account to send emails and share it between automations.

 Taking it a step further, if you decide to create an automation to perform auto-
mated SQL maintenance or backups, you can reuse the service account for the health
check because they fall under the same role of SQL maintenance. However, if you cre-
ate an automation to perform SQL extracts, I recommend creating a new account.
Again, this is because the account serves a different function that does not fall under
the role of SQL maintenance.

 If an automation reaches out to different systems, especially ones outside of your
network, it is always best to use separate accounts—even if they support single sign-on.
This will help protect against situations where a vendor or a piece of software gets
compromised. If that happens, you will have reduced the impact by limiting that ser-
vice account to that specific platform.

 It becomes a balancing act that you will get a feel for and adjust over time. Just fol-
low the concept of one service account per role and system, and you will help to mini-
mize the impact of any potential compromise.

4.1.5 Use logging and alerting

You will not be able to protect yourself against every threat out there. However, you
can help to stop attacks as soon as possible through diligent logging and alerting. For
example, if you have a service account that sends data from your on-premises data
center to your cloud provider, and you suddenly start seeing logins from a foreign
country, you will know something is up, and you can put a stop to it. Figure 4.2 shows
an example of such an alert. The recent advancements in identity and threat protec-
tion solutions have been a very welcome addition to the automation community. The
ability to see when and where an account is being used makes spotting these situations
much more effortless.

 Most enterprise-level password vaults have built-in logging that lets you see when and
where passwords are accessed. Some even have AI behind them that can trigger alerts
when anomalous activity occurs. Learn how to use and tune these alerts to your benefit.

 Just as with the service accounts, it becomes a balancing act. Alert fatigue is a real
thing. The quickest way to get your alerts ignored is by sending too many—especially
if many of the alerts are false positives. For instance, the breach of Target Superstores
in 2014 could have been stopped well before 40 million customers’ credit and debit
cards were leaked had someone not turned off a noisy alert.

88 CHAPTER 4 Handling sensitive data
4.1.6 Do not rely on security through obscurity

Security through obscurity (STO) is the reliance on secrecy or obscurity to protect
yourself. While it may not seem like a bad idea on the surface, it should never be
relied on as the only means of security. A typical scenario you will see is changing the
default ports for SSH and RDP. This works against scanners looking for those particu-
lar ports, but once the secret that you changed the SSH port is discovered, an attacker
will adjust. It is no different than locking all the doors to your house but leaving your
house key under the doormat. Once someone knows it’s there, they can get into your
home with little to no problem.

 That is not to say STO doesn’t have its place. It should just never be relied on as
the only means of security. One common and very insecure STO practice that I often
see in PowerShell automations is the use of encoding to hide sensitive data in scripts.
This is often done in situations where someone needs to run a script on an end user’s
device as an administrator. While the encoding does obfuscate the text, making it dif-
ficult for an end user to see, a bad actor can reverse it in seconds. Also, when it runs,
the obfuscated values are decoded in memory as unsecured variables, making them
easy to find.

 Another example is compiling sensitive data into exe or dll files. While this may
seem more secure than encoding, it is not challenging to decompile an exe or dll.
Also, you run into the same vulnerability of having the data written as unsecured vari-
ables in memory.

 As you will learn throughout this chapter, there are many ways you can secure the
sensitive data that automations need to access. Both at rest and during execution, data
will be more secure than only relying on STO.

Figure 4.2 Alert on activity from an infrequent country from Microsoft Cloud App Security

894.2 Credentials and secure strings in PowerShell
4.1.7 Secure your scripts

Imagine you have an automation to collect health data from your servers. To avoid
dealing with service accounts and permissions, you create a scheduled task on each
server to execute the script. Then, to make your life even easier, you put the script on
a network share. This way, if you need to update it, all machines will automatically get
the new script the next time they run.

 Now imagine that script was in an insecure share, and a bad actor updated it to cre-
ate themselves a local administrator account on every single server. Since the script is
running as the system account, the script will have no problems doing that. This is why
you must maintain strict access to all production scripts, regardless of where they
reside. If you are using a platform such as Jenkins or Azure Automation, you should
set up at least two instances—one that people can access to develop and test their
automations and a second to run production workloads that you have locked down,
with access only given to a select few individuals.

 Another way to prevent unauthorized script execution is by using coded signed
scripts and setting your policies to block unsigned scripts from running. Code sign-
ing is a way to use a certificate to confirm the authenticity of a PowerShell script.
The only way someone can swap out a script is if they also have access to your code
signing certificate.

4.2 Credentials and secure strings in PowerShell
Back in the early days of PowerShell, when everything ran on-premises and was all con-
nected to the same Active Directory domain, authentication was easy. You could use
Task Scheduler or other job schedulers to run PowerShell scripts as a particular
account. Nowadays, in your cross-platform hybrid environments, you can easily find
yourself needing to authenticate across multiple environments for a single automation.
In most cases, you will need to supply credentials, API keys, or other authentication data
during the automation execution. To avoid storing these in plain text in both files and
memory, you can use SecureString and Credential objects in PowerShell.

 We will dig deeper into using these inside your scripts and with the SQL health
check in section 4.3, but before we do, it is good to know precisely what these object
types are and why they are more secure.

4.2.1 Secure strings

When you modify a standard string in PowerShell, it creates a copy of that string value
in memory before changing it. Therefore, even if you delete the variable or set it to
null, other copies of it might still exist in memory. Unlike a standard string object,
when a SecureString is stored in memory, it is locked in place, so no copies are made,
and it is encrypted. The fact that it is encrypted prevents memory dumps from being
able to read the value. Also, because it gets pinned and not copied, you know the
value will be deleted from memory when you delete the variable or your process ends.

90 CHAPTER 4 Handling sensitive data
NOTE Before getting started with secure strings, be aware that they should be
limited to Windows systems only. This is because the SecureString object
relies on a .NET Framework API, not a .NET Core API, so while you can use
SecureString on Linux and macOS, the values in memory are not encrypted.

There are two ways that you can create a SecureString in PowerShell. You can use the
ConvertTo-SecureString cmdlet or the Read-Host cmdlet. To use the Read-Host
cmdlet, you add the AsSecureString parameter to it. This will prompt the user to
enter a value that is then saved as a secure string inside the script:

$SecureString = Read-Host -AsSecureString
$SecureString
System.Security.SecureString

The other method uses the ConvertTo-SecureString cmdlet, which converts an exist-
ing string to a secure string using the AsPlainText parameter. The thing to keep in
mind here is that the plain text parameter will already be stored in memory, so it is not
as secure as using the Read-Host method. If you included the plain text value anywhere
in your script, it could be saved in the Event Logs and your PowerShell history. This is
why it requires using the Force parameter to ensure you know the risks of using it:

$String = "password01"
$SecureString = ConvertTo-SecureString $String -AsPlainText -Force
$SecureString
System.Security.SecureString

You may be asking when you would use the ConvertTo-SecureString cmdlet. There
are a few situations you will run into where you will need it, with the most common
being a desire to make the scripts transportable. By default, SecureStrings are
encrypted based on the user and the device. If you export the SecureString and try to
import it to a different computer, it will fail. However, you can provide a custom key
that you can use to perform the encryption. You can then use this key on other com-
puters to import the secure string. Of course, this leads to the need to protect that key
because if it gets leaked, all your SecureStrings could be decrypted. As you will see
later in this chapter, the PowerShell team at Microsoft has created a new solution that
utilizes password vaults instead of having to create custom encryption keys.

4.2.2 Credential objects

Credentials in PowerShell are stored as PSCredential objects. These are simply Power-
Shell objects that contain a standard string with the username and a SecureString
property with the password. Like with SecureStrings, there are two ways you can cre-
ate a PSCredential object.

 The first way is to use the Get-Credential cmdlet and prompt the user for the
credentials:

$Credential = Get-Credential

914.3 Storing credentials and secure strings in PowerShell
The other option is to manually create the PSCredential object by combing an exist-
ing unsecured string for the username and a SecureString for the password. If you
are creating a PSCredential object using unsecured strings, those unsecured copies
of the strings will still be in memory. However, they do have their uses, as you will see
in section 4.4 when using the Jenkins built-in vault:

$Username = 'Contoso\BGates'
$Password = 'P@ssword'
$SecureString = ConvertTo-SecureString $Password -AsPlainText -Force
$Credential = New-Object System.Management.Automation.PSCredential $Username,

➥ $SecureString

PSCredentials can only be used by systems and commands that support PSCredentials,
so passing them to other PowerShell cmdlets is not a problem. However, if you need
to call external systems that do not support PSCredential objects, you can convert
them to a .NET NetworkCredential object. An example of when you would use this
is if you are building custom database connection strings or authenticating with a
web application. In addition, you can use them for basic, digest, NTLM, and Kerberos
authentication:

$Username = 'Contoso\BGates'
$Password = ConvertTo-SecureString 'Password' -AsPlainText -Force
$Credential = New-Object System.Management.Automation.PSCredential $Username,

➥ $Password
$NetCred = $Credential.GetNetworkCredential()
$NetCred
UserName Domain
-------- ------
BGates Contoso

NOTE The NetworkCredential object will contain the password in plain text.
However, this is wiped from memory once the PowerShell session is closed.

4.3 Storing credentials and secure strings in PowerShell
There used to be no quicker way to trigger an argument in any PowerShell forum
than by asking how to store a password for use by a PowerShell script. You would
receive a dozen different opinions, each with others arguing why you should not use
that approach. This became even more heated after the release of PowerShell Core
and the discovery that the SecureString objects only exist in Windows.

 Fortunately, the PowerShell team at Microsoft has been working diligently on this
problem and has created the SecretManagement module. This module provides you
with the ability to store and retrieve secrets and credentials from various password
vaults. We will now set up the SecretManagement module for the SQL health check
automation and any future automations you create.

92 CHAPTER 4 Handling sensitive data
4.3.1 The SecretManagement module

The SecretManagement module, which is shown in figure 4.3, is an engine that you
can use to access different storage vaults. It allows you to use various vaults, including
Azure Key Vault, KeePass, LastPass, and many others. The SecretManagement module
enables you to interact with any of these storage vaults using a predefined set of com-
mands. It allows you to swap out the backend storage vault seamlessly without needing
to update your scripts. It also allows you to access multiple different vaults from within
a single automation.

In addition, the PowerShell team and Microsoft have released the SecretStore mod-
ule, a storage vault built specifically for use with the SecretManagement module. The
SecretStore module is not required to be able to use the SecretManagement module.
You can use any other vault that has an extension built for it. To find a complete list of
extensions, go to the PowerShell gallery and search for SecretManagement.

NOTE At this time, SecretManagement v1.0.0 is still only recommended for
Windows environments as it relies on the SecureString object. It will work on
Linux and macOS but will be less secure because the SecureString will be
unencrypted in memory.

There is no required setup specific to the SecretManagement module aside from
installing it. It just works as a translator for the different vaults. However, you will need
to configure the various vaults and register them with the SecretManagement module
so it knows how to access them.

SecretStore
vault

Automation
script

SecretManagement
module

KeePass
module

SecretStore
module

Other extension
modules

Other vault

KeePass
vault

Get-Secret

Check vaults for
requested secret

Connect to
configured vaults

Secret
found

Secret returned
to script

Figure 4.3 The SecretManagement module and how it can access multiple different vaults

934.3 Storing credentials and secure strings in PowerShell
4.3.2 Set up the SecretStore vault

Using the SecretStore module is a great way to familiarize yourself with the Secret-
Management module. However, it does have one major drawback in that any vaults
you create are tied to that specific user on that specific machine. This means that you
cannot share the vault with others or easily move it to another system. However, the
setup is easy, and you can get it up and running in a matter of minutes. To see how
simple it is, we will set up the SecretManagement module, along with the SecretStore,
to support the SQL health check automation.

INSTALL THE MODULES

The first step in the process is to install the two modules. They are both available from
the PowerShell gallery, so you can install them by using PowerShellGet:

Install-Module Microsoft.PowerShell.SecretStore
Install-Module Microsoft.PowerShell.SecretManagement

CONFIGURE THE SECRETSTORE VAULT

Once you have the modules installed, you need to create a vault in the SecretStore. To
do this, you will run the Get-SecretStoreConfiguration cmdlet. If this is your first
time setting up the SecretStore, you will receive a prompt to provide a password. This
is the password that you will use to access the vault:

Get-SecretStoreConfiguration
Creating a new Microsoft.PowerShell.SecretStore vault. A password is required

➥ by the current store configuration.
Enter password:

Enter password again for verification:

 Scope Authentication PasswordTimeout Interaction
 ----- -------------- --------------- -----------
CurrentUser Password 900 Prompt

Before continuing, you should consider the implications of needing to enter a pass-
word to access the vault. While it is more secure to have a password, it does not work
well for unattended automations because it requires user interaction. This is where
the fact that the vault is tied to a machine and user comes in handy.

 Since you want the SQL health check to run unattended, you will turn off the pass-
word requirement. When doing that, it is also a good idea to set the interaction to
none to prevent scripts from hanging if the password requirement is turned back on
for some reason. If the interaction is set to none and a password is required, an excep-
tion is thrown, causing the script to stop.

 Go ahead and disable the password and the interaction using the Set-SecretStore-
Configuration cmdlet:

Set-SecretStoreConfiguration -Authentication None -Interaction None
Confirm
Are you sure you want to perform this action?

94 CHAPTER 4 Handling sensitive data
Performing the operation "Changes local store configuration" on target "Secre

➥tStore module local store".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (defaul

➥t is "Y"): y
A password is no longer required for the local store configuration.
To complete the change please provide the current password.
Enter password:

By turning off the password requirement, your area of vulnerability is the account and
machine that contains the vault. In this case, you will want to make sure that you take
all the appropriate actions to secure this account, including using a strong password
and auditing the logins made by this account and this machine.

REGISTER THE VAULT

The previous steps were all aimed at setting up the vault in the SecretStore module.
Next, you need to register the vault with the SecretManagement module, so it knows
where to look for the secret values. You do this by passing the name of the extension
module and the vault’s name to the Register-SecretVault cmdlet. The vault’s name
is what you will use to reference it in your scripts.

 For the SQL health check, create a new vault named SQLHealthCheck:

Register-SecretVault -ModuleName Microsoft.PowerShell.SecretStore -Name SQLHe

➥althCheck

The SecretStore module allows you to create multiple vaults under the same profile.
Doing this can help with the management and organization of your secrets. Some
vaults require that you provide information to VaultParameters parameters, but
because SecretStore is tied to the machine and user, there are no additional configu-
rations required.

4.3.3 Set up a KeePass vault

As previously mentioned, there are over a dozen different vaults that the SecretMan-
agement module can use. We are now going to take a look at setting up a second vault
with KeePass. If you are not familiar with KeePass, it is a free, open source password
manager. Unlike other solutions vaults such as LastPass and Azure Key Vault, it is an
entirely offline solution.

 One major difference between a KeePass vault and a SecretStore vault is that Kee-
Pass uses a database file that you can move between machines and users or even store

Setting a default vault
The SecretManagement module allows you to set a default vault, so you do not have
to specify a name when retrieving secrets. This is fine for personal use but should
not be relied on for automations. You should always provide the vault name in auto-
mations to prevent failures if the default vault is changed.

954.3 Storing credentials and secure strings in PowerShell
on a network share. Like SecretStore, it allows you to bypass entering a password,
which works well for automations. However, KeePass can also use custom key files to
provide an extra layer of security.

 You do not need to install KeePass on a machine to use the KeePass extension. The
extension module contains all the requirements to access the database file. However,
you do need to have it installed to create a database file.

CREATE A KEEPASS DATABASE VAULT

When you create a KeePass database for use by the SecretManagement module, you
need to consider the same things you do with SecretStore—that is, how it will run. If
you are using it for unattended automations, you will want to exclude using a master
password. However, it would be a good idea to use a key file.

 KeePass uses a key file as an extra layer of security. Instead of providing a password,
your automation can provide a key file. Since KeePass databases are not restricted to the
machine that created them, the key file can help to protect you in situations in which a
bad actor may get a copy of the database file. Without the key file, it will be useless to
them. However, if a database file can be accessed using only the key file, you need to
ensure that both the database file and the key file are appropriately stored and pro-
tected from unauthorized access and, most important, that they are never stored in the
same place.

 Go ahead and install KeePass and create a database file named SmtpKeePass.kdbx
with a key file named SmtpKeePass.keyx. In the New Database Wizard, be sure to
uncheck the Master Password box and then check Show Expert Options to create the
key file. For more details, you can refer to https://keepass.info/.

INSTALL THE KEEPASS SECRETMANAGEMENT EXTENSION MODULE

Once you have KeePass installed and your database vault set up, you need to install
the KeePass extension for the SecretManagement module so that you can use it
through PowerShell:

Install-Module SecretManagement.KeePass

REGISTER KEEPASS WITH SECRETMANAGEMENT

Finally, you can register your KeePass database with the SecretManagement module
using the Register-SecretVault cmdlet again. However, unlike with SecretStore, you
will need to provide parameters for the vault. These are different for each vault type.
For KeePass, you need to provide the path to the database file, if a master password is
required, and the path to the key file.

 For the SQL health check, run the Register-SecretVault cmdlet to register the
SmtpKeePass database you just created. Set the Path to the full path of the SmtpKee-
Pass.kdbx database file, KeyPath to the full path of the SmtpKeePass.keyx key file, and
UseMasterPassword to false:

$ModuleName = 'SecretManagement.KeePass'
Register-SecretVault -Name 'SmtpKeePass' -ModuleName $ModuleName -VaultParame

➥ ters @{

https://keepass.info/

96 CHAPTER 4 Handling sensitive data
 Path = " \\ITShare\Automation\SmtpKeePass.kdbx"
 UseMasterPassword = $false
 KeyPath= "C:\Users\svcacct\SmtpKeePass.keyx"
}

Once registered, you can add and retrieve secrets using the same commands you use
for SecretStore and any other vault attached to the SecretManagement module.

4.3.4 Choosing the right vault

The vault that you choose depends on your requirements. For example, SecretStore
vaults are tied to a particular user and machine. While this does increase the security,
it reduces the portability of your automation. In contrast, there is no such restriction
on KeePass database files. However, since the KeePass file can be moved to a different
machine, it is also more susceptible to being compromised if it is not properly stored
and secured.

 The nice thing about the SecretManagement module is that it can point to multi-
ple vaults on the backend. So, you can use a combination of various vaults to meet
your automation and security needs. Figure 4.4 shows an example.

For example, in the SQL health check, you will use the KeePass vault to store the cre-
dentials needed to send the email via SendGrid and SecretStore to hold the secrets for
connecting to the SQL instance. The reason for this is because you can have multiple
automations that need to send emails.

 If you create a new service account for each automation that needs to send an
email, you will quickly run into a situation in which you have so many accounts that

SecretStore
Vault

> SQL Health Check Script

A. Get-Secret
• Name SQLCred
• Vault SQLStore

Connect to SQL

Perform health checks

….

B. Get-Secret
• Name SMTPCred
• Vault SMTPStore

Send email

SecretManagement
Module

SecretStore
Module

KeePass
Module

A A

A

A

A

A

Network share

B

B

B

B

B

B

Figure 4.4 SecretManagement vault usage for the SQL health check automation

974.3 Storing credentials and secure strings in PowerShell
you cannot manage them. On the other hand, if you have a couple of service accounts
for sending emails used by multiple automations, you need to make sure that all auto-
mations can be easily updated if anything changes. This is where shared vaults come
in handy. If you put the credentials for the email into a shared vault, you can update
all automations at once if anything ever changes while, at the same time, having a sep-
arate vault that contains the SQL connection information, providing you an extra
layer of security. This way, if any one of your vaults gets compromised, the remaining
automations will be unaffected.

4.3.5 Adding secrets to a vault

Once you have your vaults created and registered to the SecretManagement module,
you can add your secrets to them. You use the Set-Secret cmdlet to add a secret to a
vault. You need to specify the parameters:

 Name—The name for the secret. This will be used to retrieve the value later.
 Vault—The name of the vault to store the secret. If not specified, the default

vault is used.
 Secret—The object containing the secret. The supported object types are

– byte[]
– String
– SecureString
– PSCredential
– Hashtable

Table 4.1 lists these parameters for the SQL health check script. The value for the
Secret parameter should be the only one that contains sensitive information. Also, if
a secret already exists in the vault with the same name, the Set-Secret cmdlet will
overwrite it unless you use the NoClobber switch.

 You need to create secrets in both the SecretStore vault and the KeePass vault for
the SQL health check automation. First, in the SecretStore vault, create a PSCredential
object with the username and password for the SQL connection and a SecureString
object with the name of the SQL server instance. Then, in the KeePass vault, you will
create the entries for the SendGrid API.

Table 4.1 Secrets required for the SQL health check script using the SecretManagement module

Secret name Vault Secret object type Notes

TestSQL SQLHealthCheck String <Your server name>\SQLEX-
PRESS *

TestSQLCredential SQLHealthCheck Credentials Username* : sqlhealth
Password* : P@55w9rd

SendGrid SmtpKeePass Secure string Your email address

98 CHAPTER 4 Handling sensitive data
Create the entries for the SecretStore vault:

$SQLServer = "$($env:COMPUTERNAME)\SQLEXPRESS"
Set-Secret -Name TestSQL -Secret $SQLServer -Vault SQLHealthCheck
$Credential = Get-Credential
Set-Secret -Name TestSQLCredential -Secret $Credential -Vault SQLHealthCheck

Create the entries for the KeePass vault:

$SmtpFrom = Read-Host -AsSecureString
Set-Secret -Name SendGrid -Secret $SmtpFrom -Vault SmtpKeePass
$Credential = Get-Credential
Set-Secret -Name SendGridKey -Secret $Credential -Vault SmtpKeePass

Now that you have the secrets stored in the vault, you are ready to set up your automa-
tion script to retrieve and use them.

4.4 Using credentials and secure strings in your
automations
As you will see, using the SecretManagement module to retrieve sensitive data is a sim-
ple and easy process. However, there are still other viable options out there for storing
and providing sensitive data to your scripts. Many popular automation and CD/CI

SendGridKey SmtpKeePass Credentials When using SendGrid, the user-
name will be apikey, and the
password will be your API key.

These are the default values if you used the setup scripts provided in the GitHub repo.

Naming-related secrets
Whenever you have two or more secrets that are related to each other, as you do in
the SQL health check, you should name them with the same prefix. Not only will it
make it easier to keep track of, but it will also allow you to simplify your parameters
by enabling you to pass one value that you can then append multiple suffixes to.

For example, to get the SQL secrets from table 4.1, you only need to pass the value
'TestSQL' Then, to get the credentials, you can simply append Credential to the
name:

$SqlName = 'TestSQL'
$SqlCred = "$($SqlName)Credential"

The same can be done for the SendGrid secrets by adding Key to the end of the
name.

Table 4.1 Secrets required for the SQL health check script using the SecretManagement module (continued)

Secret name Vault Secret object type Notes

994.4 Using credentials and secure strings in your automations
platforms have ways of delivering credentials and other values to your scripts safely
and securely. Using the SQL health check script, we will set up the automation first
using the SecretManagement module and then using Jenkins with its built-in vault.

4.4.1 SecretManagement module

Once you have the vaults set up and registered to SecretManagement, you can start
using them to retrieve secrets in your automations. Remember, the configurations are
set to the user profile, so you need to be logged in as the user who will access the vault
when configuring it. Then you need to ensure that your automation is running as that
user. You can refer to chapter 3 to learn about scheduling automations to run as a par-
ticular user.

 To retrieve a secret in your script, all you need to do is use the Get-Secret
cmdlet. This cmdlet will return the first secret that matches the name you provided.
This is why it is important to ensure that all of your secrets have unique names and
why it is always good to include the Vault parameter. If you don’t use the Vault
parameter, the SecretManagement module searches through all vaults, starting with
the default one.

 By default, string secrets are returned as SecureString objects. However, if you
need them returned as plain text, you can include the AsPlainText switch.

 As you will see in the SQL health check script, you can use any combination of
vaults and secrets you need inside your script. In this scenario, you need to retrieve
the SQL server connection information from one vault and the SendGrid information
from another. Also, when you retrieve the SQL server name and email address from
the vault, these need to be converted into standard strings using the AsPlainText
switch. Let’s start by testing the SQL and SendGrid connections separately.

 Starting with the SQL connection test in listing 4.1, you can retrieve the SQL con-
nection information from the SecretStore vault and then run a simple SQL query
using the Invoke-DbaDiagnosticQuery cmdlet. If the command output contains data
in the Results property, you know it worked. If the Results property is empty, check
the verbose output. If there is a permissions issue, it will be listed there. Try tweaking
your SQL permissions and testing again until you receive the expected results.

$Secret = @{
 Name = 'TestSQLCredential'
 Vault = 'SQLHealthCheck'
}
$SqlCredential = Get-Secret @Secret
$Secret = @{
 Name = 'TestSQL'
 Vault = 'SQLHealthCheck'
}
$SQLServer = Get-Secret @Secret -AsPlainText

Listing 4.1 Testing SQL connection information from the SecretStore vault

Retrieve credentials
for the SQL server
connection.

Retrieve the SQL server
name and convert it to
plain text.

100 CHAPTER 4 Handling sensitive data
$DbaDiagnosticQuery = @{
 SqlInstance = $SQLServer
 SqlCredential = $SqlCredential
 QueryName = 'Database Properties'
}
Invoke-DbaDiagnosticQuery @DbaDiagnosticQuery -Verbose

Next, you can test sending an email through SendGrid using the Send-EmailMessage
cmdlet, as shown in listing 4.2. In this case, you will retrieve this SendGrid API key and
the email address from the KeePass vault. Then send a test email to the same email
address. If you receive the email, you are ready to move forward with putting it all
together in the SQL health check automation.

$Secret = @{
 Name = 'SendGrid'
 Vault = 'SmtpKeePass'
}
$From = Get-Secret @Secret -AsPlainText
$Secret = @{
 Name = 'SendGridKey'
 Vault = 'SmtpKeePass'
}
$EmailCredentials = Get-Secret @Secret

$EmailMessage = @{
 From = $From
 To = $From
 Credential = $EmailCredentials
 Body = 'This is a test of the SendGrid API'
 Priority = 'High'
 Subject = "Test SendGrid"
 SendGrid = $true
}
Send-EmailMessage @EmailMessage

Now that you have confirmed you can run a health check query and send an email,
it is time to put everything together into an automation script, starting with the
parameters. You will want to set the names of the vaults and the names of the secret
objects as parameters so you can easily use this script across different SQL instances.
Since the related secrets are named with the same prefix, you only need to prompt
for the prefix and then have the script append the suffix. So, instead of having a
parameter for the SQL instance secret and a second one for the credential secret,
you just need to create one to pass the prefix. Then, in your script, append Credential
to the name. You can do the same for the SendGrid API key by appending Key to the
variable. Finally, you will need a parameter for the email to send to in the case of a
failed check.

 Next, the script will get the SQL connection information from the vault and then
execute the 'Database Properties' query from the Invoke-DbaDiagnosticQuery

Listing 4.2 Testing the SendGrid connection information from the KeePass vault

Execute a diagnostic query
against SQL to test the
connection information
from the SecretStore vault.

Get the email address
for the “send from”
in plain text.

Get the API key
for SendGrid.

Send a test email with
the SendGrid connection
information from the
KeePass vault.

1014.4 Using credentials and secure strings in your automations

no
cmdlet to return the recovery model information for all the databases. Next, it will
confirm that all of them are set to SIMPLE. If any are not set to SIMPLE, it will gather
the information to send an email notification by getting the SendGrid secrets. It will
then create the email body by converting the PowerShell object containing the bad
databases to an HTML table. Finally, it will send the email. The following listing shows
the complete script.

param(
 [string]$SQLVault,
 [string]$SQLInstance,
 [string]$SmtpVault,
 [string]$FromSecret,
 [string]$SendTo
)
$Secret = @{
 Name = "$($SQLInstance)Credential"
 Vault = $SQLVault
}
$SqlCredential = Get-Secret @Secret
$Secret = @{
 Name = $SQLInstance
 Vault = $SQLVault
}
$SQLServer = Get-Secret @Secret -AsPlainText

$DbaDiagnosticQuery = @{
 SqlInstance = $SQLServer
 SqlCredential = $SqlCredential
 QueryName = 'Database Properties'
}
$HealthCheck = Invoke-DbaDiagnosticQuery @DbaDiagnosticQuery
$failedCheck = $HealthCheck.Result |
 Where-Object { $_.'Recovery Model' -ne 'SIMPLE' }

if ($failedCheck) {
 $Secret = @{
 Name = $FromSecret
 Vault = $SmtpVault
 }
 $From = Get-Secret @Secret -AsPlainText
 $Secret = @{
 Name = "$($FromSecret)Key"
 Vault = $SmtpVault
 }
 $EmailCredentials = Get-Secret @Secret

 $Body = $failedCheck | ConvertTo-Html -As List |
 Out-String

 $EmailMessage = @{
 From = $From

Listing 4.3 SQL health check

Retrieve the credentials
for the SQL server
connection.

Retrieve the SQL server
name and convert it to
plain text.

Execute the Database
Properties diagnostic
query against SQL.

Get the email address
for the “send from”
in plain text.

Get the API key
for SendGrid.

Create the email body
by converting failed
check results to an
HTML table.

Send a
failure
email

tification.

102 CHAPTER 4 Handling sensitive data
 To = $SendTo
 Credential = $EmailCredentials
 Body = $Body
 Priority = 'High'
 Subject = "SQL Health Check Failed for $($SQLServer)"
 SendGrid = $true
 }
 Send-EmailMessage @EmailMessage
}

4.4.2 Using Jenkins credentials

Before the SecretManagement module, the best way to store credentials was by using a
third-party platform that has its own store. One of these platforms is Jenkins. So while
you can use the SecretManagement module for scripts that run through Jenkins, you
can also use the built-in Jenkins store.

 One of the advantages of using the Jenkins credentials is that you do not need to
worry about having the different secret vaults and module extensions installed on
every Jenkins server. Instead, they will all be able to get credentials from one global
store. Also, it provides a GUI interface and logging of which automations have used
which objects.

 By default, you will have a store named Jenkins, which we will use to store the SQL
health check automation values. You can set up different vaults and even apply role-
based access to them, but for now, we will use the global store.

 In this example, we will update the SQL health check script to use Jenkins creden-
tials and variables instead of the SecretManagement vaults.

 To create credentials in Jenkins, you need to navigate to Manage Jenkins > Manage
Credentials and then click the store you want to use. In this case, it will be the Jenkins
store. Once in the store, click Global Credentials and create the credential objects
listed in table 4.2.

Now that you have the credentials and secrets created, you can use them in your
scripts. But before you do, there are some things you need to know. Jenkins has its

Table 4.2 Secrets required for the SQL health check script using Jenkins

ID Kind Value

TestSQL Secret text <Your server name>\SQLEXPRESS *

TestSQLCredential Username with password Username* : sqlhealth
Password* : P@55w9rd

SendGrid Secret text Your email address

SendGridKey Username with password When using SendGrid, the username will be
apikey, and the password will be your API key.

* These are the default values if you used the setup scripts provided in the GitHub repo.

1034.4 Using credentials and secure strings in your automations
own methods for storing secret values and therefore does not have direct support
for the SecureString and PSCredential objects in PowerShell. So, it loads the val-
ues into environment variables at the time of execution as standard unsecured
strings. It has its own ways of preventing those variables from being written to the
output logs or saved in memory. Therefore, when you need to use the values as
SecureString or PSCredential objects, you need to convert them back from stan-
dard strings using the ConvertTo-SecureString cmdlet.

 In the SQL health check script, you will need to recreate the credentials for the
SQL connection and the SendGrid API key. The email address and SQL instance do
not need to be converted because they are expected to be unsecured strings.

 To get started, create a new Freestyle project in Jenkins. Then, under the Binding
section, add two bindings for username and password (separated), and configure
them to use the values in table 4.3.

Next, add two binds for secret text and configure them to use the values in table 4.4.

Finally, you need to update the SQL health check script to replace the calls to the
SecretManagement vaults with the environment variables for Jenkins, as shown in the
following listing. Remember that you will need to recreate the credentials.

$secure = @{
 String = $ENV:sqlpassword
 AsPlainText = $true
 Force = $true
}
$Password = ConvertTo-SecureString @secure
$SqlCredential = New-Object System.Management.Automation.PSCredential `
 ($ENV:sqlusername, $Password)

Table 4.3 Credential bindings required for the SQL health check script in Jenkins build

Username variable Password variable Credentials

sqlusername sqlpassword TestSQLCredential

sendgridusername sendgridpassword SendGridKey

Table 4.4 Secret text bindings required for the SQL health
check script in Jenkins build

Variable Credentials

sqlserver TestSQL

sendgrid SendGrid

Listing 4.4 SQL health check through Jenkins

Replace the Get-Secret call with Jenkins
environment variables and recreate the
credential object.

104 CHAPTER 4 Handling sensitive data
$SQLServer = $ENV:sqlserver

$DbaDiagnosticQuery = @{
 SqlInstance = $SQLServer
 SqlCredential = $SqlCredential
 QueryName = 'DatabaseProperties'
}
$HealthCheck = Invoke-DbaDiagnosticQuery @DbaDiagnosticQuery
$failedCheck = $HealthCheck.Result |
 Where-Object { $_.'Recovery Model' -ne 'SIMPLE' }

if ($failedCheck) {
 $From = $ENV:sendgrid
 $secure = @{
 String = $ENV:sendgridusername
 AsPlainText = $true
 Force = $true
 }
 $Password = ConvertTo-SecureString @secure
 $Credential = New-Object System.Management.Automation.PSCredential `
 ($ENV:sendgridpassword, $Password)

 $Body = $failedCheck | ConvertTo-Html -As List |
 Out-String

 $EmailMessage = @{
 From = $From
 To = $SendTo
 Credential = $EmailCredentials
 Body = $Body
 Priority = 'High'
 Subject = "SQL Health Check Failed for $($SQLServer)"
 SendGrid = $true
 }
 Send-EmailMessage @EmailMessage
}

If you want to make this build dynamic so you can run it against different SQL
instances, all you need to do is change the bindings from specific credentials to
parameter expressions. You can then enter the name of the secrets to use at run time.

4.5 Know your risks
Throughout this chapter, you have seen that there is always a potential vulnerability
introduced when creating unattended automations. However, by knowing what they
are, you can help mitigate them. Unfortunately, many companies can be so scared of
automation from a security perspective that they make it impossible to get anything
done. That is why it will be your job to understand the risks so that you can explain
them and the steps you have taken to mitigate them.

 In our example, with the SQL health check, we were able to reduce the risks
using multiple techniques. First, we used an account specifically for running the
health check, with the minimum required permissions, along with a separate API

Replace the
Get-Secret call with
Jenkins environment
variables.

Replace the Get-Secret call with Jenkins
environment variables and recreate the
credential object.

105Summary
key to use SendGrid for sending notifications. We also prevented any sensitive data
from being stored in the script by using the SecretManagement module and Jenkins
credential stores.

 However, even though we significantly reduced the vulnerabilities, there are still
risks that you need to be aware of so you can take the steps to properly account for
them. For example, the KeePass vault can be copied by a bad actor and used on a
machine outside of your network. However, by using a key file and storing that key file
in a separate secure location, that database would be worthless to them. You will also
want to ensure that only authorized personnel can access either file through appropri-
ate file and share permissions.

 In addition, just using SendGrid, instead of an SMTP relay, provides you additional
levels of security. For example, you can create IP-based restrictions, view audit logs,
and create alerts for anomalous activity. Therefore, even if your KeePass database is
copied and someone gets a copy of the key file, they may not be able to do anything
with it.

 Another potential vulnerability to consider is that Jenkins passes the secret values
to PowerShell as unsecured strings. However, Jenkins has built-in security to prevent
these values from being written out to any output stream, and the PowerShell runtime
is terminated after execution, clearing the memory used. So, really, the only way some-
one could get the values would be to perform a memory dump during the script’s exe-
cution, and if someone has access to your server and can perform a memory dump
completely undetected, you have much bigger problems on your hands.

 In all cases, we were able to reduce any risks added by introducing unattended
automations. Of course, not even an air-gapped computer with an armed guard sitting
next to it is 100% secure—and no security officer should ever expect that—but that
doesn’t mean you shouldn’t do all you can to minimize risk. However, I can tell you
from experience that being open and honest with your security team about the risks
and the steps you have taken to reduce them can make getting your automations
approved a much easier process.

Summary
 Following some basic principles such as using role-based access, assigning the

least privilege, and not relying on security through obscurity can help to ensure
that your automations are safe and secure.

 SecureString and PSCredential objects can be used natively in PowerShell to
keep your sensitive data secure during execution and at rest.

 The SecretManagement module can be used with multiple password vaults to
provide secure storage and access to sensitive data you need in your scripts.

 Many platforms have built-in vaults that you can use in place of the Secret-
Management module.

 Knowing what your risks are is the only way that you can reduce them to an
acceptable level.

PowerShell
remote execution
The ability to execute remote PowerShell commands is not only essential for recur-
ring automations, but is also a powerful tool to have in your arsenal for ad-hoc situ-
ations. Just think back on your career and remember times when you needed to
gather large-scale information about your environment or apply a change across
multiple servers at once. You will quickly realize this is a common situation for any
IT department. And, in some cases, especially security-related ones, time can be of
the essence. Therefore, before these situations arise, you will want to have Power-
Shell remoting set up and know how to adapt your scripts for remote execution.

 For instance, in May of 2021, security researchers identified vulnerabilities in
several Visual Studio Code (VS Code) extensions. While discovering installed ver-
sions of VS Code may be simple, finding the installed extensions can present a signif-
icant challenge. This is because extensions are installed at the user level and not at
the system level. Therefore, a lot of scanning tools will not pick them up. Fortunately,

This chapter covers
 Designing scripts for remote execution

 PowerShell-based remoting

 Hypervisor-based remoting

 Agent-based remoting
106

1075.1 PowerShell remoting
all VS Code extensions contain a vsixmanifest file, which we can search for and read to
identify installed extensions.

 We will use this scenario throughout this chapter to demonstrate the different ways
that you can execute PowerShell remotely and how you will need to adjust your scripts
depending on which type of remote execution you use. You can then apply these same
fundamental principles to all remote execution automations. But before we get into
that, let’s quickly cover some of the basic concepts of PowerShell remoting.

5.1 PowerShell remoting
When discussing PowerShell remoting, there are two things you need to understand.
One is the remote execution protocols, or how the machines talk to each other. The
other is the remote execution context, or how the remote sessions behave.

 For clarity, the machine you will be making the remote connects from is the client.
Any devices you are connecting to are the servers.

5.1.1 Remote context

There are three main types of remote execution context:

 Remote commands
 Interactive sessions
 Imported sessions

A remote command is one in which you execute a predefined command or script
against a remote server. Most commonly, you use the Invoke-Command cmdlet for this
in automation scenarios. It not only allows you to execute the commands on the
remote server, but it also allows you to return the results to the client machine.

 In the VS Code extension scenario, this type of remote execution is the best
choice. First, you can execute predefined scripts and commands, which you will have.
Second, you can return all the results to a single session so you can view the results
from all machines in a single place.

 An interactive context is one in which you use the Enter-PSSession cmdlet to
enter a remote session. This is the equivalent of opening a PowerShell prompt on the
remote server. It is suitable for running one-off commands but does not lend itself
very well to automation because the information from the commands is not returned
to the local client.

 The import context is one in which you use the Import-PSSession cmdlet to import
the cmdlets and functions from a remote session into your local session. This allows you
to use the commands without needing to install modules locally. It is most often used for
Office 365 and Exchange-based automations. However, since the cmdlets are imported
to the local client, it provides no way to interact with the remote server.

108 CHAPTER 5 PowerShell remote execution
5.1.2 Remote protocols

When you look into PowerShell remoting protocols, it is easy to get overwhelmed.
There are so many acronyms, initialisms, and abbreviations that it can be hard to tell
what anything is. For instance, PowerShell 7 supports WMI, WS-Management (WSMan),
Secure Shell Protocol (SSH), and RPC remoting. You will need to know which proto-
cols to use based on the context required for the automation and the remote server’s
operating system.

 WMI and RPC remoting have long been staples of PowerShell and Windows
remoting in general—with the keyword here being Windows. If you have ever used a
cmdlet that contains the -ComputerName parameter, chances are you have used
either WMI or RPC. These protocols work great but can be very limiting. Not only
are they restricted to Windows, but there are a limited number of cmdlets that con-
tain the -ComputerName parameter. Therefore, to truly take full advantage of Power-
Shell remoting capabilities, you should use WSMan and SSH for executing remote
commands.

 The WSMan and SSH protocols create remote PowerShell sessions that let you run
PowerShell under any remote context. Which one you use will depend on your partic-
ular environment. WSMan only works on Windows-based machines and can support
local or Active Directory authentication. SSH can support both Windows and Linux
but does not support Active Directory authentication.

NOTE You will often hear the terms WinRM and WSMan used interchange-
ably. This is because WSMan is an open standard and WinRM is Microsoft’s
implementation of that standard.

Just as there are mixed environments nowadays, there is no reason you can’t use a
mixture of protocols. In most cases, if a machine is domain joined, I will use
WSMan; otherwise, I’ll use SSH. As you will see, you can easily adapt your scripts to
support both.

5.1.3 Persistent sessions

When using the Invoke-Command and Enter-PSSession cmdlets, you have the option
to either establish the session at the time of execution by using the -ComputerName
argument or use an existing session, also known as a persistent session. You can create
these persistent sessions using the New-PSSession cmdlet.

 Persistent sessions allow you to connect to the same session multiple times. You can
also use them to create connections to multiple remote servers and execute your com-
mands against all of them at once, providing you parallel execution.

1095.2 Script considerations for remote execution
5.2 Script considerations for remote execution
There are two types of scripts we will talk about with regard to remote execution. The
first are the scripts for execution on the remote server. In our scenario, it will be the
script to find the VS Code extensions, but it can be any script you want to run
remotely. The second is the control script. The control script runs on the local client
and tells the remote servers to execute the script, as you can see in figure 5.1.

For the majority of this chapter, we will be discussing and working with control scripts.
You will design these control scripts to be reusable for any script that you need to

End-user devices and PowerShell remote execution
Remote PowerShell execution is generally limited to server devices and not end-user
devices. The biggest reason for this is security. Allowing remote execution on end-
user devices can leave you open to vulnerabilities if a device becomes compromised.
And, as you know, the risk of an end-user device becoming compromised is exponen-
tially larger than a server. Also, servers' network configurations remain relatively
static compared to end-user devices. With the growing trend of work-anywhere, there
is no guarantee that an end-user device will be reachable over your WAN. Therefore,
it is best to use configuration management software or MDM for managing end-user
devices with PowerShell. We will cover this in depth in chapter 11.

Client

Control script

For each remote server

Export all data

• Request remote session
• Send remote command
• Get command output
• Add output to combined list

Remote server 1

• Execute script
• Output return data

Remote server 2

• Execute script
• Output return data

Remote server 3

• Execute script
• Output return data

Figure 5.1 Control scripts are used to execute a PowerShell script or script block
across multiple machines and return the data to a single place.

110 CHAPTER 5 PowerShell remote execution
execute remotely. However, before we dive in, there are a few things you need to be
mindful of when creating a script you know will be used for remote execution.

5.2.1 Remote execution scripts

All of the automation script fundamentals we’ve discussed in the other chapters still
apply when designing a remote execution script. These include ensuring the remote
server has any required modules installed and that the script does not contain any
commands that would stop and wait for user interaction. In addition, you want to
ensure that any information returned from a remote execution is appropriately for-
matted and that your script can work on the required operating systems and Power-
Shell versions. Again, we will use the VS Code extension example to help illustrate
these points, as shown in figure 5.2, but keep in mind that these things apply to any
remote PowerShell execution and not just to this specific scenario.

Finding the installed VS Code extensions may seem like a reasonably simple task. You
just need to search the VS Code extensions folder inside each user’s home folders,
gather the extensions found, and return the results or, if none are found, return a
message stating that.

 Since we know the cmdlets required to perform this task are built-in, we do not
need to worry about module dependencies. We also know that they do not require
user interactions. So, we can move on to the remote execution considerations.

 The first thing you need to determine is what operating systems and PowerShell
versions the remote machines are using. Ideally, you want to write one script that you
can run on all devices. This way, if you need to change something, you only have to
change it once.

 In the VS Code extensions scenario, you are searching in user home folders, and
different operating systems have different home paths. In other scenarios, there could
be different environmental variables, services, system paths, or any other number of

Create a list to record all
results

$extensions = @()

Find all the user profile
folders

Get-ChildItem-Path
$homePath-Directory

For each user profile,
search extensions folder

Get-ChildItem @fldr
$extensions.Add($_)

If no extensions, add no
extensions found to list

$extensions.Add(@{
Id = ‘No extensions’

Write the results to the
output stream

$extensions

Figure 5.2 Search all user profiles for installed VS Code extensions and return the results.

1115.2 Script considerations for remote execution
things. Luckily, PowerShell has built-in variables to help you deal with this. The vari-
ables $IsLinux, $IsWindows, and $IsMacOS will return True or False depending on
the operating system. Using these variables allows you to set your own variables for the
specific operating system while leaving the rest of the script universal. For our sce-
nario, you can create an if/else condition to set the home path based on the operat-
ing system and leave the rest of the script the same.

 Ideally, all servers would be running PowerShell 7 or greater, but in reality, that is
not always the case. There are plenty of situations where you need to ensure that your
scripts can run in Windows PowerShell and PowerShell 7. While the majority of Power-
Shell commands remained the same, there are some breaking changes between the two
versions. It is also easy to fall into the habits of the newer versions. For example, the
$IsLinux, $IsWindows, and $IsMacOS variables were introduced with PowerShell 6. To
account for this, you could build some logic into your scripts to check PowerShell ver-
sions and end up with multiple different nested if/else conditions, or you could use
your knowledge of PowerShell to your advantage. You know that prior to PowerShell 6,
PowerShell only ran on Windows. Therefore, it doesn’t have the $IsLinux, $IsWindows,
or $IsMacOS variables. This means you can use a simple if $IsLinux use the Linux path,
else if $IsMacOS use the macOS path, else use the Windows path. Since the $IsLinux
and $IsMacOS variables don’t exist in Windows PowerShell, a Windows device will
always use the else path:

if ($IsLinux) {
 # set Linux specific variables
}
elseif ($IsMacOS) {
 # set macOS specific variables
}
else {
 # set Windows specific variables
}

The next item to consider is how to structure any data you need to return from remote
execution. Similar to executing a function, everything written to the output stream by
the script will be returned to the control script. Therefore, you need to know what com-
mands write to the output stream and only return the information you need.

 Another item that seems obvious but is often overlooked is adding the machine’s
name to the information returned. If you run a script against 10 machines and they all
return data, it doesn’t do any good unless you know which machine returned it. While
some remote protocols will automatically add the remote machine’s name to the
return data, others do not. So, it is best to have the script return the machine name in
the output. This will guarantee that you will know which machine it was, regardless of
the remote method used.

NOTE The environment variable to return the machine name $env:COMPUTER-
NAME doesn't work in Linux, but the .NET Core call [system.environment]
::MachineName works in Linux and Windows.

112 CHAPTER 5 PowerShell remote execution

t

Also, it is good practice to add the date and time to the output, especially if you plan
to execute the script multiple times.

 One last thing to consider is what to do if there is no data to return. For exam-
ple, if no extensions are found with the VS Code extension script, there is nothing
to return. However, that also means you don’t have a record that it ran. Therefore,
you want to include a check in your code when designing remote execution scripts
to return something, even if the conditions are not met. In addition, you want to
ensure that this return is formatted the same way as if results were found, so your
results can be stored together. You will see why this is important in the next sec-
tion when we cover the control scripts. The following listing shows the completed
script.

[System.Collections.Generic.List[PSObject]] $extensions = @()
if ($IsLinux) {
 $homePath = '/home/'
}
else {
 $homePath = "$($env:HOMEDRIVE)\Users"
}

$homeDirs = Get-ChildItem -Path $homePath -Directory

foreach ($dir in $homeDirs) {
 $vscPath = Join-Path $dir.FullName '.vscode\extensions'
 if (Test-Path -Path $vscPath) {
 $ChildItem = @{
 Path = $vscPath
 Recurse = $true
 Filter = '.vsixmanifest'
 Force = $true
 }
 $manifests = Get-ChildItem @ChildItem
 foreach ($m in $manifests) {
 [xml]$vsix = Get-Content -Path $m.FullName
 $vsix.PackageManifest.Metadata.Identity |
 Select-Object -Property Id, Version, Publisher,
 @{l = 'Folder'; e = { $m.FullName } },
 @{l = 'ComputerName'; e = {[system.environment]::MachineName}},
 @{l = 'Date'; e = { Get-Date } } |
 ForEach-Object { $extensions.Add($_) }
 }
 }
}
if ($extensions.Count -eq 0) {
 $extensions.Add([pscustomobject]@{
 Id = 'No extension found'
 Version = $null
 Publisher = $null
 Folder = $null

Listing 5.1 Get-VSCodeExtensions.ps1

Set the home folder
path based on the
operating system.

Get the subfolders
under the home
path.

Parse
through
each folder
and check
for VS Code
extensions.

If the VS Code extension
folder is present, search
it for vsixmanifest files.

Get the contents of
the vsixmanifest
file and convert it
to a PowerShell
XML object.

Get the details
from the manifest
and add them to

he extensions list.

Add the folder
path, computer
name, and date

to the output.

If no extensions are found,
return a PowerShell object
with the same properties
stating nothing was found.

1135.2 Script considerations for remote execution
 ComputerName = [system.environment]::MachineName
 Date = Get-Date
 })
}
$extensions

Once you have created this script, save it to your local machine with the name Get-
VSCodeExtensions.ps1. This is the script you will be using to test your control scripts.

5.2.2 Remote execution control scripts

When executing a script against multiple remote servers, you will want to have a con-
trol script. The control script will create the remote connection, run the remote com-
mand, and gather any information returned, as shown in figure 5.3. Based on the type
of remote execution you are performing, the cmdlets used will differ, but the overall
process remains the same.

When designing your control scripts, one of the first things to consider is the execu-
tion time. For example, you can use a foreach to loop through each remote device
and run the script on it. However, these will not run in parallel. So, if your script takes
30 seconds to execute and you check 20 servers, it will take 10 minutes to complete.
On the other hand, if you run the command on multiple servers at once, you can dra-
matically reduce execution time.

 PowerShell offers multiple ways to run remote commands sequentially. For exam-
ple, some remote execution cmdlets, like the Invoke-Command, allow you to pass an
array of computers. However, you need to be careful with this because if one computer

Just like an extension, include
the output at the end.

Client

Control Script

$session = New-PSSession
...
$Results = Invoke-Command
...
$AllResults.Add($Results)
...
Remove-PSSession

For each remote server

Server

Local PowerShell Session

[System.Collections.Generic.List[PS
if ($IsLinux) {
$homePath = '/home/'
}
else {
$homePath = "$($env:HOMEDRI
}
...

Execute script

Output return data

Close Session

Return output to client

Send scriptCreate remote connection

Close the connection
Export all data

Figure 5.3 Control scripts are used to initiate PowerShell sessions across multiple machines and
return the data to a single place.

114 CHAPTER 5 PowerShell remote execution
fails, it could cause the others not to run. A better way to handle this is by using per-
sistent connections.

 Persistent connections allow you to establish the remote session before executing
the command and will keep it active until you tell it to close. This enables you to cre-
ate an entire group of connections in a matter of seconds and execute the remote
script against them all at once. It also allows you to account for failed connections so
the rest of the remote devices are not affected. As you can see in figure 5.4, even if cre-
ating the persistent connection takes around 1 second, you will end up saving time in
the long run—and that is just with 10 servers.

As with most things in automation, there is always a balancing act. You do not want to
create so many connections at once that your computer and network slow to a crawl.
PowerShell remoting is limited to 32 persistent connections per session by default, but
that number can be changed. The amount of memory and bandwidth needed will

1m 2m 3m 4m 5m

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

Sequential executions Parallel with persistence

Figure 5.4 Comparison of the number of executions in a 5-minute window when using persistent
connections for parallel execution versus individual executions

1155.2 Script considerations for remote execution
depend on what commands you are using and how much data the script collects. You
will have to test and figure out what works best for you and your environment.

 As with most things in PowerShell, there is always more than one way to accom-
plish something. In this chapter, you will see four different ways of executing remote
scripts. In addition, there are other ways to run PowerShell processes in parallel, such
as foreach parallel loops or using jobs, which both present their unique challenges
and advantages. However, from my experiences, persistent connections are the way to
go when dealing with remote execution.

 Aside from making the remote connections, the next most important thing is han-
dling the data returned from each machine. If you run this script against 5 or 10 com-
puters, you can probably run them all at once and just save the output to a single
variable. However, if you are executing against 50, 100, 1,000, or more computers, you
must combine the executions’ data. For example, if you have 50 machines to check,
you can break them into five groups of 10. Then, use an array to add the data together
after each group finishes.

 Consider a situation where you processed through half of the machines, and your
network connection drops or your PowerShell console closes. If you restart your
script, it will resume from the beginning and check all of the devices again. This may
not be a big deal if you are checking 50 machines, but what if you are checking 500 or
1,000 machines? Starting over will be a colossal waste of time. This is where saving
your return data outside of PowerShell comes in handy. The easiest way to do this is by
exporting it to a CSV file. PowerShell natively supports importing and exporting of
objects to CSV using the cmdlets Import-Csv and Export-Csv. In addition, CSV data
is easily human-readable.

If you export your results after each remote execution, you can reimport them if you
need to restart the script. Then, you simply need to check whether the CSV file exists.
If it does, load the data into a variable and use it to filter your machine list to exclude
those that have already been checked.

 When filtering, you want to ensure that you use the value your script used to con-
nect to create the remote session and not the name returned from the return data.
For example, when using the Invoke-Command cmdlet, the PSComputerName property is
automatically added to the output. By filtering on this, you will prevent duplicate sub-
missions due to things like your control script using the FQDN and your script return-
ing the NetBIOS or using DNS aliases.

Formatting data for Export-Csv
When using the Export-Csv cmdlet to append to an existing CSV file, you need to
be aware that it will only include the fields that are currently in the header row. This
is why it is crucial to return all data from your script using the same format.

116 CHAPTER 5 PowerShell remote execution
 One last thing to consider is creating a separate CSV export for any machines that
fail to connect. This way, they are not stored in the same CSV as the actual results you
want, and the file provides you with an excellent list to use for troubleshooting and
fixing the failed connections.

 Now, it is time to look into how you can execute your scripts on different remote
systems and build your control scripts. We will start with the native capabilities in
PowerShell.

5.3 PowerShell remoting over WSMan
When using PowerShell in an Active Directory environment, WSMan is your best
option. Not only does it support Active Directory authentication, but it is also enabled
by default on Windows server operating systems. You can also use Group Policy
Objects (GPOs) to enable WSMan remoting, making your setup almost effortless.

5.3.1 Enable WSMan PowerShell remoting

Unfortunately, at this time, only Windows PowerShell can be controlled via GPOs and
not PowerShell Core. Therefore, if you want to execute remote command using Power-
Shell 6 or above, you will need to run the Enable-PSRemoting cmdlet on each server.
You can add the -Force switch to prevent prompts when enabling:

Enable-PSRemoting -Force

If you run the Enable-PSRemoting cmdlet and receive an error that one or more net-
work connections are public, you can include the -SkipNetworkProfileCheck switch
or make the connection private.

 Also, the Enable-PSRemoting cmdlet will only enable remote PowerShell for the
version you run the command in. So, for example, if you run the Enable-PSRemoting
cmdlet in a PowerShell 7 session, it will not enable remoting in Windows PowerShell
or the other way around.

5.3.2 Permissions for WSMan PowerShell remoting

By default, members of the Administrators and the Remote Management Users
groups have permission to connect via PowerShell remoting to the server. Users in the
Remote Management Users group have the same rights as a standard user unless they
have additional permissions on the server.

 For your VS Code extension scenario, you want to give the user administrator priv-
ileges because they need to read the files inside each user profile. You can add the
user using the Computer Management console or by running the following command
in an administrative PowerShell prompt:

Add-LocalGroupMember -Group "Administrators" -Member "<YourUser>"

1175.3 PowerShell remoting over WSMan
5.3.3 Execute commands with WSMan PowerShell remoting

Now that your remote servers are set up, you are ready to start executing your
remote commands. The next step is determining how to perform the remote execu-
tions and recording the results. You do this using a control script to invoke the Get-
VSCodeExtensions.ps1 script you made earlier, but keep in mind that this control
script is designed for use with any other script you need to execute across multiple
different systems.

 When using the Invoke-Command cmdlet, the script file only needs to be accessible
to the local client and not the remote servers. You can also pass just a script block
instead, which works well for one-line or two-line commands. But when you are pass-
ing a complex script, it is best to save it as a separate script file. This will also allow you
to make your control script reusable by not having the commands hardcoded.

 Next, you need to provide the Invoke-Command cmdlet with the remote servers. As
discussed earlier, you want to create persistent sessions for each machine using the
New-PSSession cmdlet. Then pass all the sessions to the Invoke-Command as an array
to the -Session argument. Doing this will also allow you to isolate specific machines
that failed to make the connection so that you can fix them separately.

 When creating the array of remote sessions, you need to be careful to only add suc-
cessful connections to the array. If you add a session that did not connect to your array
and then pass that array to the Invoke-Command, it will error, and no commands will
run on the remote server. To prevent this, you can wrap the New-PSSession command
in a try/catch and set the -ErrorAction argument to Stop. Then, if there is an error
in the New-PSSession, your script will automatically jump to the catch block, skipping
all other lines inside the try block. You can see this in the following snippet. If the
New-PSSession has an error, it will skip the line to add it to the array, thus ensuring
your array only contains successful sessions:

$s = "localhost"
try{
 $session = New-PSSession -ComputerName $s -ErrorAction Stop
 $Sessions.Add($session)
}
catch{
 Write-Host "$($s) failed to connect: $($_)"
}

To finish out the structure of your control script, you just need to add the list to col-
lect all the returned data and the CSV import and export. Figure 5.5 illustrates
the logic.

118 CHAPTER 5 PowerShell remote execution
The final step in the process is closing the remote sessions. When you create a session
using the New-PSSession cmdlet, that session remains active on the local client and
the remote server. To close it, you use the Remove-PSSession cmdlet as in listing 5.2.
This cmdlet will close the session, releasing the resources back to the remote server
and closing the connection between the two machines. If you do not close your ses-
sions, you can quickly run into issues with running out of memory or hitting concur-
rent session limits.

$servers = 'Svr01', 'Svr02', 'Svr03'
$CsvFile = 'P:\Scripts\VSCodeExtensions.csv'
$ScriptFile = 'P:\Scripts\Get-VSCodeExtensions.ps1'
$ConnectionErrors = "P:\Scripts\VSCodeErrors.csv"

Listing 5.2 Executing local script against remote computers using WSMan remoting

List of servers

Does CSV exist
Import CSV

Filter server list

Execute the script on
all sessions

For each server

Close sessions

Export results
to CSV

Yes

Create remote
session

Error

Write to
Error
CSV

Add to array

No Yes

No

Figure 5.5 WSMan control script for remote script execution with persistent
connections

Array of servers
to connect to

Path to save
results to

The script
file from
listing 5.1

Another CSV file to record
connection errors

1195.3 PowerShell remoting over WSMan
if (Test-Path -Path $CsvFile) {
 $csvData = Import-Csv -Path $CsvFile |
 Select-Object -ExpandProperty PSComputerName -Unique
 $servers = $servers | Where-Object { $_ -notin $csvData }
}

[System.Collections.Generic.List[PSObject]] $Sessions = @()
foreach ($s in $servers) {
 $PSSession = @{
 ComputerName = $s
 }
 try {
 $session = New-PSSession @PSSession -ErrorAction Stop
 $Sessions.Add($session)
 }
 catch {
 [pscustomobject]@{
 ComputerName = $s
 Date = Get-Date
 ErrorMsg = $_
 } | Export-Csv -Path $ConnectionErrors -Append
 }
}

$Command = @{
 Session = $Sessions
 FilePath = $ScriptFile
}
$Results = Invoke-Command @Command

$Results | Export-Csv -Path $CsvFile -Append

Remove-PSSession -Session $Sessions

5.3.4 Connect to the desired version of PowerShell

Before PowerShell 6, running the New-PSSession cmdlet, like you did in listing 5.2, is all
you would need to do to execute a remote command. However, since PowerShell 6 and 7
are separate from Windows PowerShell, you may need to include the -ConfigurationName
argument. If you don’t specify this argument, the cmdlet will default to the value in the
$PSSessionConfigurationName preference variable. Unless you expressly set this vari-
able, it will default to using Windows PowerShell 5.1. Therefore, to use PowerShell 7
remotely, you need to specify PowerShell.7 to the -ConfigurationName argument or set
the value in the $PSSessionConfigurationName variable.

 The introduction of the -ConfigurationName argument means you have some
additional items to consider in your automation. For example, if you use the Power-
Shell 7 configuration, your command will fail to connect to machines that don’t have
PowerShell 7 installed.

 If you use the default of Windows PowerShell 5.1, you will need to ensure that your
script can run in Windows PowerShell 5.1. Plus, as you will see in the next section,
SSH connections use the default on the remote machine. Since SSH is only supported

Test whether the
CSV file exists; if
it does, exclude
the servers
already scanned.

Connect to each server
and add the session to
the $Sessions array list.

Add any errors to
the connection
error CSV file.

Execute the script
on all remote
sessions at once.

Export the
results to CSV.

Close and remove the
remote sessions.

120 CHAPTER 5 PowerShell remote execution
in PowerShell 6 and later, you need to ensure that your script will run in both Power-
Shell 7 and Windows PowerShell.

 As discussed earlier, most commands work the same in PowerShell 7 and Windows
PowerShell, but there are some breaking changes between them. Also, you are intro-
ducing complexity to your automation by trying to support both. In the long run, it is
better to use the -ConfigurationName argument and fix any servers that are not con-
figured correctly. Not only will it be cleaner this way, but you will also be setting your-
self up for future automations. But, to keep things simple in this example, we will skip
using this argument because the script can work in both versions.

5.4 PowerShell remoting over SSH
Secure Shell Protocol (SSH) has been in use for Unix/Linux systems for over 25
years. However, in recent years, Microsoft has started to introduce it in the Windows
ecosystem. Starting with PowerShell 6, SSH remoting can be done natively using
OpenSSH. PowerShell can use SSH for remote connections between any combination
of Windows, Linux, and macOS devices.

 There are a few differences between SSH and WSMan remoting that you need to be
aware of. The first is that SSH does not support Active Directory domain authentication.
So, the accounts used for remote execution have to be local accounts on the remote
server. Also, SSH remoting does not support remote configuration. This means that you
cannot specify the version of PowerShell to use on the remote server. Instead, Power-
Shell will automatically connect to the default version set on the remote server. There
are also a few differences in the way you connect, which we will cover now.

5.4.1 Enable SSH PowerShell remoting

Unlike with WSMan, there is no command to enable SSH remoting for PowerShell.
All of the configuration for SSH is done in the sshd_config file. Also, OpenSSH is not
included in the PowerShell binaries, so you must install it separately. There are two
components in OpenSSH: the client and the server. The client is for connecting to
remote servers, and the server component accepts those connection requests. To
enable SSH PowerShell remoting, you need to perform the following steps:

1 Install OpenSSH.
2 Enable the OpenSSH services.
3 Set authentication methods.
4 Add PowerShell to the SSH subsystem.

To get started, you need to install OpenSSH on the Windows device. If you are using
Windows 10 build 1809 or later or Windows 2019 or later, OpenSSH is included as a
feature. You can install it using the following command as an administrator:

Get-WindowsCapability -Online |
Where-Object{ $_.Name -like 'OpenSSH*' -and $_.State -ne 'Installed' } |
ForEach-Object{ Add-WindowsCapability -Online -Name $_.Name }

1215.4 PowerShell remoting over SSH
If you are running an older version of Windows, you can install a portable version of
OpenSSH made for PowerShell. It is available on the PowerShell GitHub repository
(https://github.com/PowerShell/OpenSSH-Portable).

 Next, you want to ensure that the sshd and ssh-agent services are set to start auto-
matically and are running:

Get-Service -Name sshd,ssh-agent |
 Set-Service -StartupType Automatic
Start-Service sshd,ssh-agent

On the client machine, you are only making outbound connections, so this is all that
needs to be done for now. For remote servers, you need to configure OpenSSH to
allow remote connections and to use PowerShell. To do this, open the sshd_config file
on the remote server. For Windows, the path to the configuration file is typically
%ProgramData%\ssh and for Linux, /etc/ssh.

 To get started, you can enable password-based authentication by setting the line
with PasswordAuthentication to yes or leaving it commented out because its default
is yes. You also want to uncomment the key-based authentication setting, Pubkey-
Authentication and set it to yes:

PasswordAuthentication yes
PubkeyAuthentication yes

You will eventually disable password-based authentication, but you need to leave it on
until you configure key-based authentication in the next section.

 Next, you need to add a subsystem entry to let SSH know where the PowerShell
binaries are:

Windows
Subsystem powershell c:/progra~1/powershell/7/pwsh.exe -sshs -NoLogo

Linux with Snap
Subsystem powershell /snap/powershell/160/opt/powershell/pwsh -sshs -NoLogo

Other Linux
Subsystem powershell /opt/microsoft/powershell/7/pwsh -sshs -NoLogo
Subsystem powershell /usr/bin/pwsh -sshs -NoLogo

Note that the Windows path uses the 8.3 short name for the path. There is a bug in
OpenSSH for Windows that does not allow paths with spaces in them.

5.4.2 Authenticating with PowerShell and SSH

As you just saw, there are two methods to authenticating with SSH, passwords and
keys. The big difference between these two, besides security, is that passwords cannot
be passed to the New-PSSession or Invoke-Command cmdlets. Instead, they must be
typed at the time of execution. So, as far as automations go, you want to use key-based
authentication, illustrated in figure 5.6.

https://github.com/PowerShell/OpenSSH-Portable

122 CHAPTER 5 PowerShell remote execution
 For those unfamiliar with SSH, key-based authentication works by using key pairs.
There is a private key and a public key. The private key is maintained on the local
client initiating the connection. It is the equivalent of a password, so access to the pri-
vate key must be strictly controlled. The public key is copied to the remote servers you
want to access. You can generate a key pair using the ssh-keygen command. For our
example of connecting from Windows to Linux, the Windows client will have the pri-
vate key, and the public key is copied to the Linux server.

After generating a key pair, you can store the private key using the ssh-agent for extra
security. The agent will associate the private key with the user account on that system.
You can then move the private key file to a secure storage location.

 Another concept of SSH that you need to be familiar with is the known host. When
you connect to a remote SSH server, it will provide a host key. This key is different
from the authentication key pair. This key is unique to the host and used to identify it.

Client Server

Initiates session

Replies with random message

Encrypts random message using
private key and sends back

Decrypts message with a public key;
if it matches, the session is created

Sends PowerShell script to execute

Sends output from the script

Closes the session

Figure 5.6 How SSH remote
execution works with key pair
authentication

1235.4 PowerShell remoting over SSH
It is helpful to prevent attacks using DNS redirects or other similar tactics. The first
time you connect to a remote server, it will prompt you to confirm the server’s key. If
you select yes, the server and its key are added to the known_hosts file on the local cli-
ent. From then on, you will be able to connect without being prompted.

 As you can tell, there is a lot more that goes into setting up SSH remoting. But
once you have everything configured, it will be smooth sailing. To illustrate this, we
will walk through the steps to set up a Windows client to use SSH to connect to a
Linux server:

1 Generate a key pair on the Windows client.
2 Add the private key to the Windows ssh-agent.
3 Enable password authentication on the Linux server.
4 Copy the public key to the Linux server.
5 Enable key-based authentication on the Linux server.
6 Disable password authentication on the Linux server.
7 Test the connection from Windows to Linux.

On the Windows client, open a PowerShell 7 prompt. First, you’ll run the command
ssh-keygen to generate your key pair. If you leave everything set to the defaults, it will
create the private key file (id_rsa) and the public key file (id_rsa.pub) in the .ssh
folder of your profile. Then, you want to import the private key to the ssh-agent so
you don’t need to leave the private key file sitting around on your machine:

ssh-keygen
ssh-add "$($env:USERPROFILE)\.ssh\id_rsa"

After running the ssh-add, you can move the private key file to a more secure storage
location.

 Now, you need to copy the public key to the remote servers. The best way to do this
is by using ssh to copy it.

 On the Linux server, ensure that password- and key-based authentication are set to
yes in the sshd_config file. Then, run the following command from the Windows cli-
ent to copy the key to the user’s profile on the remote Linux server. Replace username
with the account’s name on the remote server and hostname with the name or IP
address of the server. If this is your first time connecting, you will be prompted to add
the machine to the trusted hosts and provide the password:

type "$($env:USERPROFILE)\.ssh\id_rsa.pub" | ssh username@hostname "mkdir -p

➥~/.ssh && touch ~/.ssh/authorized_keys && chmod -R go= ~/.ssh && cat >> ~/.ss

➥h/authorized_keys"

Now you can disable password authentication in the sshd_config file on the remote
machine. To disable password-based authentication, you must uncomment the
PasswordAuthentication attribute and set it to no. The default behavior is to accept

124 CHAPTER 5 PowerShell remote execution
password-based authentication, so having a hash sign (#) at the beginning of this line
is the same as having it set to yes.

PasswordAuthentication no
PubkeyAuthentication yes

You should now be able to connect to the remote machine without being prompted.
You can test this using the following command from your Windows client:

Invoke-Command -HostName 'remotemachine' -UserName 'user' -ScriptBlock{$psver

➥ siontable}

5.4.3 SSH environment considerations

Most individuals who use PowerShell regularly are used to working in Active Directory
environments, where a lot of the authentication and account management is taken
care of for you. However, since SSH only works on local accounts, you need to pay
extra attention to your configurations.

 For example, when using WSMan with a domain account, it is pretty much a given
that you can authenticate to all the devices with the same username and password
combination. However, when using SSH connections, this is not always the case. When
copying the public key to the remote devices, you can place the key under any user
profile you have access to on that device. But if you use different account names
during this process, it can cause you issues with your automation.

 Therefore, you need to ensure that you either copy the public key to the same-
named account on all servers or maintain a list of servers and the accounts associated
with them. I prefer to use the same-named account because it makes automations eas-
ier and keeps your environment cleaner and easier to manage.

5.4.4 Execute commands with SSH PowerShell remoting

You execute commands with SSH remoting the same way you execute them with WSMan
remoting. The only difference is that you need to use the -HostName and -UserName
arguments instead of the -ComputerName and -Credential arguments.

 Since you are using the New-PSSession cmdlet to create the sessions, you do not
need to change the Invoke-Command or any other commands in the script. You just
need to update the New-PSSession to handle SSH connections. The only problem
now is figuring out how to deal with the fact that there are different parameters for
SSH and WSMan connections.

 You could use the try/catch block in the script to attempt the SSH connection if
the WSMan connection fails. The downside is that the New-PSSession cmdlet can some-
times take 20–30 seconds to return an error. If you are checking a large number of serv-
ers, this could drastically increase your execution time. To prevent this, you can add a
simple port check to the script using the Test-NetConnection cmdlet. You can first test
whether a device is listening on port 5985, the default WSMan port. If that fails, you can
test to see whether it is listening on the SSH port of 22. Based on the results of the port
test, your script will pick the appropriate connection to use, as shown in figure 5.7.

1255.4 PowerShell remoting over SSH
Another issue you need to consider is that, by default, in certain scenarios SSH has
prompts that rely on user interactions. The first is when the device you are connecting
to is not in the known_hosts file in your local profile. The second is when key-based
authentication fails, and password-based authentication is enabled on the remote
server. If you run into these situations during the script execution, the script will hang
waiting for input.

 To resolve this, you can create a profile-specific config file on the client initiating
the remote connections and configure it to fail in these situations. Then, by using a
try/catch, you can record the reasons for the failures and address them afterward.

List of servers

Does CSV exist?
Import CSV

Filter server list

Execute the script on
all sessions

For each server

Close sessions

Export results
to CSV

Yes

Create remote
session

Error

Write to
Error
CSV

Add to array

No Yes

WSMan
port

SSH port

Set WSMan
parameters

Set SSH
parameters

Open

Closed

Open

Closed

No

Figure 5.7 Control script for remote script execution with persistent connections using both
WSMan and SSH protocols

126 CHAPTER 5 PowerShell remote execution
To do this, simply create a file named config in the .ssh folder in your profile and add
the following lines:

PasswordAuthentication no
StrictHostKeyChecking yes

You can also achieve this by using a one-line PowerShell command:

"PasswordAuthentication no\r\nStrictHostKeyChecking yes" |
Out-File "$($env:USERPROFILE)/.ssh/config"

Now, you do not have to worry about your automations hanging, and there is nothing
else you need to change in your script to support it. So, all you need to do is add the
logic for the Test-NetConnection and the New-PSSession parameters to support SSH
connections.

 Since the Test-NetConnection cmdlet returns true or false Boolean values, you
can use it directly inside an if/else conditional statement and build the parameters
based on the successful connection. Then, if it is false on both, have it throw an error
so the catch block is triggered and the error is recorded. The following listing shows
the script.

$SshUser = 'posh'
$servers = 'Svr01', 'Svr02', 'Svr03'
$CsvFile = 'P:\Scripts\VSCodeExtensions.csv'
$ScriptFile = 'P:\Scripts\Get-VSCodeExtensions.ps1'
$ConnectionErrors = "P:\Scripts\VSCodeErrors.csv"

if (Test-Path -Path $CsvFile) {
 $csvData = Import-Csv -Path $CsvFile |
 Select-Object -ExpandProperty PSComputerName -Unique
 $servers = $servers | Where-Object { $_ -notin $csvData }
}

[System.Collections.Generic.List[PSObject]] $Sessions = @()
foreach ($s in $servers) {
 $test = @{
 ComputerName = $s
 InformationLevel = 'Quiet'
 WarningAction = 'SilentlyContinue'
 }
 try {
 $PSSession = @{
 ErrorAction = 'Stop'
 }
 if (Test-NetConnection @test -Port 5985) {
 $PSSession.Add('ComputerName', $s)
 }

Listing 5.3 Remote execution using WSMan and SSH

Added variable for the
default ssh username to use Remaining

variables are
unchanged.

Set the parameters for the
Test-NetConnection calls.

Create a hashtable for
New-PSSession parameters.

If listening
on the

WSMan
port

1275.5 Hypervisor-based remoting
 elseif (Test-NetConnection @test -Port 22) {
 $PSSession.Add('HostName', $s)
 $PSSession.Add('UserName', $SshUser)
 }
 else {
 throw "connection test failed"
 }
 $session = New-PSSession @PSSession
 $Sessions.Add($session)
 }
 catch {
 [pscustomobject]@{
 ComputerName = $s
 Date = Get-Date
 ErrorMsg = $_
 } | Export-Csv -Path $ConnectionErrors -Append
 }
}

$Command = @{
 Session = $Sessions
 FilePath = $ScriptFile
}
$Results = Invoke-Command @Command

$Results | Export-Csv -Path $CsvFile -Append

Remove-PSSession -Session $Sessions

If you convert the variable at the beginning of this listing to parameters, it can be
reused for any automation that requires you to connect to multiple remote machines
and makes a great building block to keep around.

5.5 Hypervisor-based remoting
Unlike PowerShell native remoting, hypervisor-based remoting relies on an interme-
diary to execute PowerShell on a remote machine. However, like with native Power-
Shell remoting, you can use a control script to make these connections. This method
uses a hypervisor to initiate the remote session. For example, Microsoft Hyper-V can
use PowerShell Direct, and VMware uses the Invoke-VMScript cmdlet, which is part
of their PowerCLI module. Even most cloud providers, including Azure and Amazon
Web Services, have this functionality available to their virtual machines.

 The most significant advantage to hypervisor-based remoting over native Power-
Shell remoting is that you do not need to have direct network communication with
the virtual machine itself, as you can see in figure 5.8. Instead, you only need to be
able to communicate with the host. From there, you can let the hypervisor integration
tools take over. This can be indispensable for things like initial machine configura-
tions or even enabling native PowerShell remoting.

 This can also come in handy when dealing with machines in a DMZ and especially
in the cloud. Another great example is the Azure Virtual Machine Run Command

If listening on
the SSH port

If neither,
throw to the
catch block.

Create a remote session
using the parameters set
based on the results of
the Test-NetConnection
commands.

Remainder of the
script is unchanged
from listing 5.2

128 CHAPTER 5 PowerShell remote execution
functionality. It allows you to run a command on an Azure virtual machine, and you
only need port 443 access to Azure. You do not need any network access to the vir-
tual machine itself.

 As with all remote connections, hypervisor-based remoting has its own unique con-
siderations and caveats. One big issue to be mindful of is that a virtual machine’s
name may not always be the same as the name in the guest operating system. So, you
need to be aware of this when passing in the list of computers. In most cases, it will
need to be the name of the virtual machine.

 A huge advantage that hypervisor-based connections have is the ability to have
your control script turn on virtual machines that may be off. Then, after it runs the
script on them, it can turn them back off. However, using this approach can present
other problems. For example, a host may not be able to support turning on every vir-
tual machine at once. Therefore, your best option would be to check each server indi-
vidually, even though it will take longer to run in those situations.

 In the previous example, you used a list of servers to create remote connections
using either WSMan or SSH. Then, PowerShell used those sessions to run the VS
Code extension script on the remote servers. In this scenario, you will substitute the
server list with a command to return all the virtual machines on a Hyper-V host and
then use PowerShell Direct to connect to each virtual machine.

 As mentioned, many of these hypervisor-based remoting solutions have their own
specific caveats, and Hyper-V PowerShell Direct is no exception. Your host and guest
operating systems must all be Windows 10, Windows Server 2016, or later for this to
work. Also, the control script must run on the host machine with administrator privi-
leges. As you can imagine, in clustered environments, this could pose a problem.

 However, PowerShell Direct is supported using the same cmdlets as native Power-
Shell remoting. Since you will be processing each machine individually, there is no
need to use the New-PSSession cmdlet. Therefore, your script can simply create the
connection at the time of execution in the Invoke-Command cmdlet.

 So, the script will get all the virtual machines on the host. Then for each one, it will
turn on if required and wait for the operating system to respond. Next, it will run the
remote command, write the results to the CSV file, and turn the virtual machine off if
it started it. These steps are illustrated in figure 5.9.

 Before you put everything together in the script, there are a few additional items
to take into account. First, if you cannot authenticate to the virtual machine operat-
ing system using your current credentials, you will be prompted to provide a username

Initial hypervisor-based
connection

Invoke-Command

Hypervisor

Execute script
…

Return results

Virtual machine

Figure 5.8 Remote script execution using hypervisor-based remoting

1295.5 Hypervisor-based remoting
and password. Just like with the SSH connections, this causes the script to hang wait-
ing for the credentials. However, if you pass credentials to the machine and they fail,
it will simply error out, which is the behavior you want in an automated script. So,
you can create the credential object using the Get-Credential cmdlet or the Secret-
Management module. Even though Get-Credential requires user interaction, it is
only once when the script starts, and for ease of the example, we will use it here.

 The other item to consider is what happens if the virtual machine fails to turn on
or the operating system does not properly boot. Addressing the issue of the virtual
machine failing to start can be handled the same way you dealt with the New-PSSession:
by using a try/catch and having the catch use a continue to skip the rest of the loop.

 The trickier issue is dealing with the operating system not booting properly. You
can determine whether the operating system has started by the Heartbeat property of

For each virtual
machine

Export
results to

CSV

Power
state

Execute script

On Off

Get all virtual machines

Get-VM

$TurnOn
= $true

Turn on VM

Wait for
boot

$TurnOn

Turn off VM

True

Figure 5.9 Control script for remote script execution using PowerShell Direct on Hyper-V

130 CHAPTER 5 PowerShell remote execution

pa

m

the virtual machine returning either OkApplicationsHealthy or OkApplications-
Unknown. So, how do you tell if a server is still booting or if the boot failed? Unfortu-
nately, there is no perfect way. However, to prevent your automation from just sitting
there waiting for a machine that may never boot, you can use a stopwatch to stop wait-
ing after a predetermined amount of time. In this case, you can use an if statement to
check whether the allotted amount of time has elapsed and, if so, use a break com-
mand to quit the loop.

$Credential = Get-Credential
$CsvFile = 'P:\Scripts\VSCodeExtensions.csv'
$ScriptFile = 'P:\Scripts\Get-VSCodeExtensions.ps1'
$ConnectionErrors = "P:\Scripts\VSCodeErrors.csv"

$servers = Get-VM
foreach ($VM in $servers) {
 $TurnOff = $false
 if ($VM.State -ne 'Running') {
 try {
 $VM | Start-VM -ErrorAction Stop
 }
 catch {
 [pscustomobject]@{
 ComputerName = $s
 Date = Get-Date
 ErrorMsg = $_
 } | Export-Csv -Path $ConnectionErrors -Append
 continue
 }
 $TurnOff = $true
 $timer = [system.diagnostics.stopwatch]::StartNew()
 while ($VM.Heartbeat -notmatch '^OK') {
 if ($timer.Elapsed.TotalSeconds -gt 5) {
 break
 }
 }
 }

 $Command = @{
 VMId = $Vm.Id
 FilePath = $ScriptFile
 Credential = $Credential
 ErrorAction = 'Stop'
 }
 try {
 $Results = Invoke-Command @Command
 $Results | Export-Csv -Path $CsvFile -Append
 }
 catch {
 [pscustomobject]@{
 ComputerName = $s

Listing 5.4 Connecting to all virtual machines from a Hyper-V host

Prompt for
credentials. Path to save

results to

The script file
from listing 5.1

Another CSV file to
record connection
errors

Get all the virtual
machines on the
host.

Check
whether
the virtual
machine is
running.

Start the virtual
machine.

If the start
command fails,
continue to the

next virtual
machine. Wait for the heartbeat to

equal a value that starts
with OK, letting you know
the OS has booted.If the operating system

does not boot, break
the loop and continue
to the connection.

Set the
rameters
using the

virtual
achine ID Execute the script

on the virtual
machine.

If execution fails,
record the error.

1315.6 Agent-based remoting
 Date = Get-Date
 ErrorMsg = $_
 } | Export-Csv -Path $ConnectionErrors -Append
 }

 if ($TurnOff -eq $true) {
 $VM | Stop-VM
 }

}

If you use VMware, Citrix, Azure, Amazon Web Services, or any other hypervisor or
cloud provider, the cmdlets used will be different, but the concept remains the same.

5.6 Agent-based remoting
Like hypervisor-based remoting, agent-based remoting relies on an intermediate tool
to execute this script. However, in this case, it is usually a third-party platform. There
are numerous platforms that support agent-based remote execution. These include
Jenkins nodes, Azure Automation Hybrid Runbook Workers, HPE Operations Agents,
and System Center Orchestrator Runbook Workers, to name a few.

 These connections use a locally installed agent to execute the script directly on the
remote device. They offer an advantage over PowerShell remoting because the agent
will typically handle all the permissions and authentication.

 We will not delve down into the nitty-gritty on setting these up, as each platform is
unique. But we are going to discuss how you need to adapt your scripts when using
these agents. These concepts can also apply to other scenarios, such as running a
script via group policy or configuration management software.

 The most significant difference with this form of remote execution is that there is
no control script. This means that if your script is gathering information to return,
you need to figure out how you will collect that data. Even if your script performs an
action and not data collection, you will want to log its execution and results. There-
fore, you want to adjust your script to return data to one centralized location.

 Depending on your environment, this location could be any number of things.
Typically, in a domain environment, a file share would be a safe bet. However, when
using mixed environments, all servers may not have access to a single file share. In
these cases, you can use an FTP site or cloud-based storage option to store the data.
No matter which option you choose, the concepts you will learn here will remain the
same. In all cases, you need to write the data to a centralized location while protecting
against potential conflicts from multiple machines writing data simultaneously.

 For example, if you decide to go the network share route, you can simply put an
Export-Csv command at the end of the script pointing to a predetermined CSV
file on a network share. Then, to prevent accidentally overwriting the data from
other devices, you can include the -Append switch. However, having multiple machines

If the virtual machine was
not running to start with,
turn it back off.There is no disconnect

needed because you did
not create a persistent
connection.

132 CHAPTER 5 PowerShell remote execution
simultaneously writing to the same file can cause conflict and write errors. To prevent
that from happening, your best option is to have each system write to its own file, as
shown in figure 5.10. Then, on your end, you can write a script that will gather all the
files at once and import them to a single object.

Now you need to consider how you will ensure that each server creates a unique file
because you do not want to have two or more servers constantly overwriting the same
file. Depending on your environment, you may be able to get away with just using the
system name to make your file name unique. However, in large or multiple domain
environments, this may not always be the case. You can’t even guarantee that using
something like the device SID will produce unique values. Even the trick you used in
chapter 3 of adding the timestamp to the file may not work because there is a chance
that two computers with the same name will run the script simultaneously. It is a very
small chance, but not one that would be out of the realm of possibility.

 While there is no 100% foolproof way to ensure a unique value, you can get pretty
close by using a globally unique identifier, more commonly referred to as a GUID. A
GUID is made up of 32 hexadecimal values split into five groups. Thus, there are
2128 different possible GUID combinations. This is more than the number of stars in
the known universe, and the best part is that you can create all the GUIDs you want
by simply using the New-Guid cmdlet. So, if you append the system name and a ran-
domly generated GUID to the file name and you still end up with a duplicate name,
you better run straight out and buy a lottery ticket.

 Using these concepts, you can update the Get-VSCodeExtensions.ps1 as in the
following listing to write the results to a network share with a unique name with just
a couple of extra lines added to the bottom.

Remote agent 1

• Execute script
• Export to CSV

Client

Collection script

For each file

Export all data

• Import data
• Add to combined list

File share

File 1

File 2

File 3•

•

•
Remote agent 2

• Execute script
• Export to CSV

Remote agent 3

• Execute script
• Export to CSV

Figure 5.10 Example workflow for collecting data returned by remote agent executions to a central
location

1335.6 Agent-based remoting
$CsvPath = '\\Srv01\IT\Automations\VSCode'
[System.Collections.Generic.List[PSObject]] $extensions = @()
if ($IsLinux) {
 $homePath = '/home/'
}
else {
 $homePath = "$($env:HOMEDRIVE)\Users"
}

$homeDirs = Get-ChildItem -Path $homePath -Directory

foreach ($dir in $homeDirs) {
 $vscPath = Join-Path $dir.FullName '.vscode\extensions'
 if (Test-Path -Path $vscPath) {
 $ChildItem = @{
 Path = $vscPath
 Recurse = $true
 Filter = '.vsixmanifest'
 Force = $true
 }
 $manifests = Get-ChildItem @ChildItem
 foreach ($m in $manifests) {
 [xml]$vsix = Get-Content -Path $m.FullName
 $vsix.PackageManifest.Metadata.Identity |
 Select-Object -Property Id, Version, Publisher,
 @{l = 'Folder'; e = { $m.FullName } },
 @{l = 'ComputerName'; e = {[system.environment]::MachineName}},
 @{l = 'Date'; e = { Get-Date } } |
 ForEach-Object { $extensions.Add($_) }
 }
 }
}

if ($extensions.Count -eq 0) {
 $extensions.Add([pscustomobject]@{
 Id = 'No extension found'
 Version = $null
 Publisher = $null
 Folder = $null
 ComputerName = [system.environment]::MachineName
 Date = Get-Date
 })
}
$fileName = [system.environment]::MachineName +
 '-' + (New-Guid).ToString() + '.csv'
$File = Join-Path -Path $CsvPath -ChildPath $fileName
$extensions | Export-Csv -Path $File -Append

Listing 5.5 Remote execution with output results to network share

Add a variable with the
path to the network share.

Create a unique file
name by combining
the machine name
with a randomly
generate GUID.

Combine the file name with
the path of the network share.

Export the results
to the CSV file.

134 CHAPTER 5 PowerShell remote execution
5.7 Setting yourself up for success with PowerShell
remoting
I cannot emphasize strongly enough that you should know how to remotely connect
to all systems in your environment and have them preconfigured. As you saw, there is
no need to use a single remote connection type. You can certainly use a combination
that makes sense for your environment. However, by having everything set up and
your control script built, you can be ready for whatever situations may arise. And the
concepts we covered with the VS Code extensions can apply to any script you need to
run remotely.

 To give a real-world example, I once had a customer call me in a panic because a
bad update had been automatically pushed to their antivirus software. This bad update
had not only stopped a number of their business applications but had also broken its
own updating mechanism. The only resolution was to reinstall the application manu-
ally on 150+ servers.

 The customer called looking for extra hands to help with all the manual reinstalls.
However, I informed them that we had already written a control script to install an
agent a few weeks before. After changing a few lines of code, we were able to reinstall
the antivirus software on every server in under an hour.

 The most remarkable thing about this is that we could handle it from one central
location, even though they had a very disjointed network. They had a mixture of Win-
dows, Linux, on-premises, and cloud servers. They also had to deal with remote offices
that were not always in a trusted domain.

 We used a combination of WSMan and SSH PowerShell remoting for all the servers
in their data center and then used the Azure Virtual Machine Run Command for some
machines in Azure. Finally, since we had set up the servers in their remote offices as
Azure Automation Hybrid Workers, we were able to update all of those using the agent.

 Through the use of PowerShell remoting, we saved this company many person-
hours of manually connecting to and reinstalling an application. But, more import-
ant, we were able to get their business applications back online faster, saving them
untold thousands in potential lost revenue.

Summary
 WSMan remoting works well in Windows Active Directory environments.
 For non–Active Directory environments or ones with Linux and macOS, you

need to use SSH remoting.
 Control scripts are used to execute a remote command against multiple servers

and can be designed to use a mixture of remoting protocols.
 When using agent-based remoting, you need to account for not having a con-

trol script.
 Hypervisor-based remoting works well for situations in which other remoting is

not an option; however, it may not be a viable option for recurring automations.

Making adaptable
automations
One of the toughest challenges you will face with automation is figuring out how to
make things as efficient and maintainable as possible. The best way to achieve that
is by making your code as smart and adaptable as possible. As you will see, adapt-
able scripting can mean many different things. For example, something as simple
as adding parameters to a function makes your code more adaptable. But in this
chapter, we will take it to the next level by making functions that can account for
potential known errors and resolve them and make a function that can create
dynamic if/else statements on the fly. And, at the end, you will see how you can
tie all these functions together into a dynamic automation.

This chapter covers
 Using event handling to account for known

errors

 Creating dynamic functions

 Using external data in your scripts
135

136 CHAPTER 6 Making adaptable automations
 To demonstrate this, we will build an automation to perform some basic server
setup tasks. This automation will perform the following steps:

1 Install Windows Features and Roles
2 Stop and disable unneeded services
3 Configure the security baseline setting
4 Configure the Windows firewall

We will start with stopping and disabling
unneeded services, which will provide a great
example of using error handling in your script
to do more than just report a problem or halt
execution. Next, we will configure security
baselines by providing the script with a list of
registry keys to check and update. Then, we
will see how you can tie together all four steps
listed previously into a single automation using
a configuration data file.

 Since the scenarios in this chapter deal with
changing system settings, I suggest creating a
new virtual machine with Windows Server 2016
or newer for your testing. Also, since we are
dealing with a new server, all code will work in
Windows PowerShell and PowerShell 7.

 We will be putting all the code created into a module named PoshAutomate-
ServerConfig, shown in the next listing. You can quickly generate the base structure
you will need using the New-ModuleTemplate function from chapter 2. The file struc-
ture is shown in figure 6.1.

Function New-ModuleTemplate {
 [CmdletBinding()]
 [OutputType()]
 param(
 [Parameter(Mandatory = $true)]
 [string]$ModuleName,
 [Parameter(Mandatory = $true)]
 [string]$ModuleVersion,
 [Parameter(Mandatory = $true)]
 [string]$Author,
 [Parameter(Mandatory = $true)]
 [string]$PSVersion,
 [Parameter(Mandatory = $false)]
 [string[]]$Functions
)
 $ModulePath = Join-Path .\ "$($ModuleName)\$($ModuleVersion)"
 New-Item -Path $ModulePath -ItemType Directory

Listing 6.1 Creating the PoshAutomate-ServerConfig module

PoshAutomate-ServerConfig

1.0.0.0

Public

PoshAutomate-ServerConfig.psd1

PoshAutomate-ServerConfig.psm1

Disable-WindowsService.ps1

Install-RequiredFeatures.ps1

Set-FirewallDefaults.ps1

Set-SecurityBaseline.ps1

Set-ServerConfig.ps1

Test-SecurityBaseline.ps1

Figure 6.1 PoshAutomate-ServerConfig
module file structure

This is the same
function as in
listing 2.5.

137CHAPTER 6 Making adaptable automations

The
 Set-Location $ModulePath
 New-Item -Path .\Public -ItemType Directory

 $ManifestParameters = @{
 ModuleVersion = $ModuleVersion
 Author = $Author
 Path = ".\$($ModuleName).psd1"
 RootModule = ".\$($ModuleName).psm1"
 PowerShellVersion = $PSVersion
 }
 New-ModuleManifest @ManifestParameters

 $File = @{
 FilePath = ".\$($ModuleName).psm1"
 Encoding = 'utf8'
 }
 Out-File @File

 $Functions | ForEach-Object {
 Out-File -Path ".\Public\$($_).ps1" -Encoding utf8
 }
}

$module = @{
 ModuleName = 'PoshAutomate-ServerConfig'
 ModuleVersion = "1.0.0.0"
 Author = "YourNameHere"
 PSVersion = '5.1'
 Functions = 'Disable-WindowsService',
 'Install-RequiredFeatures', 'Set-FirewallDefaults',
 'Set-SecurityBaseline', 'Set-ServerConfig',
 'Test-SecurityBaseline'
}
New-ModuleTemplate @module

Once you get the file structure created, you can add the following code to the Posh-
Automate-ServerConfig.psm1 to automatically import the functions from the Public
folder.

$Path = Join-Path $PSScriptRoot 'Public'
$Functions = Get-ChildItem -Path $Path -Filter '*.ps1'

Foreach ($import in $Functions) {
 Try {
 Write-Verbose "dot-sourcing file '$($import.fullname)'"
 . $import.fullname
 }
 Catch {
 Write-Error -Message "Failed to import function $($import.name)"
 }
}

Listing 6.2 PoshAutomate-ServerConfig.psm1

Set the parameters
to pass to the
function. The name of

your module
 version
of your
module

Your
name

The minimum PowerShell
version this module supports

The functions to
create blank files
for in the Public
folder

Execute the function
to create the new
module.

Get all the ps1 files
in the Public folder.

Loop through
each ps1 file.

Execute each ps1 file to load
the function into memory.

138 CHAPTER 6 Making adaptable automations
6.1 Event handling
To see the true potential and cost savings of automation, you must be able to build
event handling into your scripts. Any time you have to go in after an automation runs
and fix something, make a note of it. If you see something that happens on a regular
basis, there is a good chance you need to add some event handling to your script.

 Take, for example, the first scenario in our automation of stopping and disabling
services. Anyone who has worked with Windows knows that you can do this with a few
lines of code:

Get-Service -Name Spooler |
 Set-Service -StartupType Disabled -PassThru |
 Stop-Service -PassThru

Now think about what happens if the service is not found. For example, if you pass the
name of a service that does not exist to the Get-Service cmdlet, it will return an error.
But if the service does not exist, there is nothing to stop or disable. So, is it really an
error? I would say it is not an error, but it is something that you should record.

 To prevent your script from throwing an error, you can choose to suppress errors on
that command using the parameter -ErrorAction SilentlyContinue. However, when
you do this, there is no way for you to know for sure that the service does not exist. You
are just assuming that the reason for the error was that the service did not exist. But
when you suppress the error message, there is no way to know for sure. For example, it
could also throw an error if you do not have the appropriate permissions. The only way
to know for sure is to capture and evaluate the error message using a try/catch block.

6.1.1 Using try/catch blocks for event handling

By default, a PowerShell script will stop executing when a command throws a terminat-
ing error, except for when that error happens inside of a try block. When there is a ter-
minating error inside a try block, the script will skip the remainder of the code inside
the try block and go to the catch block. If there are no errors, the script will skip the
code in the catch block. You can also add a finally block, as in figure 6.2, that will exe-
cute last in all cases. So, let’s see how we can use this with our services function.

 If you open a PowerShell command and enter Get-Service -Name xyz, you will see an
error stating it cannot find the service. If you run that command again but wrap in a
try/catch, you will still see the same error. That is because this particular error is not a ter-
minating error. Therefore, the catch block is not triggered. So, to ensure the catch block
is triggered, you can add -ErrorAction Stop to the end of the command to turn all error
messages into terminating errors, ensuring that the catch block will be triggered:

try{
 Get-Service -Name xyz -ErrorAction Stop
}
catch{
 $_
}

1396.1 Event handling
When you run this command in Windows PowerShell, you will still see the error mes-
sage, but notice that the output is now white instead of red. This is because of the $_
in the catch block. When a catch block is triggered, the error that caused it is auto-
matically saved to the variable $_. We can use this to test that the error we received was
the expected one.

In PowerShell 7, the error displays in red as typical errors do, but the functionality is
the same. The error is saved to the $_ variable, and the error does not cause the script
to terminate.

 Inside the catch block, you can use an if/else conditional statement to check the
error message. If it does not match the expected error, it will call the Write-Error
cmdlet to let PowerShell error handling report the error but not terminate the execu-
tion. You should use nonterminating errors in situations where the subsequent steps
can still process even though an error has occurred.

 For example, you do not need to stop processing the other services in this scenario
if one of them fails. The other services can still be stopped and disabled. Then, you
can go back and address the failures:

$Name = 'xyz'
try{
 $Service = Get-Service -Name $Name -ErrorAction Stop
}
catch{
 if($_.FullyQualifiedErrorId -ne 'NoServiceFoundForGivenName,Microsoft

.PowerShell.Commands.GetServiceCommand'){
 Write-Error $_
 }
}

try {
PowerShell code
}

Error occured

No error
Catch {
Execute catch code
}

Finally {
Execute finally code

}

Figure 6.2 When code in a try block
throws an error, the catch block is run,
and then the finally block is run. If
there is no error, the catch block is
skipped, and the finally block is run
after the try block finishes.

140 CHAPTER 6 Making adaptable automations
However, if an error on a particular step would cause subsequent failures, you will
want to terminate the execution—for instance, if you are setting up a web server and
IIS failed to install. There would be no need to continue with the steps to configure
IIS because it would not be there. In these situations, you could simply replace the
Write-Error command with throw:

$Name = 'xyz'
try{
 $Service = Get-Service -Name $Name -ErrorAction Stop
}
catch{

 if($_.FullyQualifiedErrorId -ne 'NoServiceFoundForGivenName,Microsoft.Pow

➥erShell.Commands.GetServiceCommand'){
 throw $_
 }
}

In the next step, we want to set the service startup type to disabled. You do not need
to stop a service before you disable it. And since we want to ensure they are disabled, it
makes sense to put that command before the stop command. This way, if the function
runs into an unexpected error in the stop process, we will have guaranteed that the
service is at least disabled.

 In this situation, we can put the Set-Service cmdlet directly under the Get-Service
cmdlet because the Get-Service cmdlet has the error action set to stop. Thus, if there
is an error in the Get-Service command, it will jump to the catch block, skipping the
Set-Service command.

6.1.2 Creating custom event handles

Now that we have disabled the service, it is time to stop it. I am almost positive that every-
one reading this book has run into a situation in which you tell a service to stop running,
and it just hangs. If you’ve ever experienced this through PowerShell, you have most
likely seen your console fill with warning after warning stating, “Waiting for service ‘xyz’
to stop.” And PowerShell will continue to repeat that message until the service stops or
you manually kill the execution—neither of which is an ideal situation in an automation
scenario. So, let’s take a look at how we can avoid this through some parallel processing.

 Most cmdlets that act upon an outside resource and wait for a particular state
will have an option to bypass that wait. In this scenario, the Stop-Service cmdlet has
a -NoWait switch. This switch tells the cmdlet to send the stop command but not wait
for it to stop. Doing this will allow you to send multiple stop commands one after
another without waiting for one to finish stopping. It will also allow you to create your
own event handling to kill the process after a predetermined amount of time. So, we
need to make the functionality to do the following:

1 Send the stop command to multiple services without waiting
2 Check the status of the services to ensure they have all stopped

1416.1 Event handling
3 If any have not stopped after 60 seconds, attempt to kill the process
4 If any have not stopped after 90 seconds, notify that a reboot is required

Unlike with the Get-Service cmdlet, we do not care whether the Stop-Service cmdlet
throws an error. This is because regardless of what happens on the stop, the service has
already been disabled. So, even if there is an error or it does not stop in the time we
allotted, a reboot will be requested, which will ensure that the service does not come
back up. Therefore, there is no problem adding the -ErrorAction SilentlyContinue
argument to the command in this situation.

Since we will be checking multiple services for multiple conditions, it is a good idea
to create a custom PowerShell object to keep track of the status and startup type for
every service. Then, when you can create a while loop to check that the services
have stopped, you do not need to check ones you know have stopped or were not
found.

 The while loop will need to run as long as services are running but should also
contain a timer to terminate after a set amount of time, even if all the services do not
stop. You will also want to add the ability to perform a hard kill of the running process
if it does not stop on its own. You can do this by using the Get-CimInstance cmdlet to
get the process ID of the service and then using the Stop-Process cmdlet to force it
to stop. Since you do not want to run the Stop-Process repeatedly, you can add a
property to the object to record that there was an attempt to stop it. Therefore, the
custom PowerShell object will need the following properties:

 Service—Service name
 Status—The status of the service

Using jobs to bypass waits
Some cmdlets that you may want to run in parallel do not have a no-wait option—for
example, downloading multiple files using the Invoke-WebRequest cmdlet. In these
situations, you can use PowerShell jobs to run the command as background pro-
cesses. You can see this in the following snippet, where two files are downloaded
simultaneously as jobs. Then, Get-Job followed by Wait-Job will pause the script
until both jobs are complete:

Start-Job -ScriptBlock {
 Invoke-WebRequest -Uri $UrlA -OutFile $FileA
}
Start-Job -ScriptBlock {
 Invoke-WebRequest -Uri $UrlB -OutFile $FileB
}
Get-Job | Wait-Job

Once the jobs are complete, you can continue with your script. You can also get the
return information from the jobs by using the Receive-Job cmdlet.

142 CHAPTER 6 Making adaptable automations
 Startup—The startup type of the service
 HardKill—A Boolean value set to true after the Stop-Process command

Once you put everything together, the process should look like figure 6.3. You can see
the script in listing 6.3.

Function Disable-WindowsService {
 [CmdletBinding()]
 [OutputType([object])]
 param(
 [Parameter(Mandatory = $true)]
 [string[]]$Services,
 [Parameter(Mandatory = $true)]
 [int]$HardKillSeconds,
 [Parameter(Mandatory = $true)]
 [int]$SecondsToWait
)

 [System.Collections.Generic.List[PSObject]] $ServiceStatus = @()
 foreach ($Name in $Services) {

Listing 6.3 Disable-WindowsService

Get service

Disable service

Check service
status

Running

Return result

Stop service

Hard kill time
elapsed and not

attempted

Yes

Hard kill

Wait time elapsed

No

Yes

Yes

No

No

Figure 6.3 For each service that needs to be stopped, the function will wait a certain amount of time, and
if it does not stop, then a hard kill will be issued.

1436.1 Event handling
 $ServiceStatus.Add([pscustomobject]@{
 Service = $Name
 HardKill = $false
 Status = $null
 Startup = $null
 })
 try {
 $Get = @{
 Name = $Name
 ErrorAction = 'Stop'
 }
 $Service = Get-Service @Get
 $Set = @{
 InputObject = $Service
 StartupType = 'Disabled'
 }
 Set-Service @Set
 $Stop = @{
 InputObject = $Service
 Force = $true
 NoWait = $true
 ErrorAction = 'SilentlyContinue'
 }
 Stop-Service @Stop
 Get-Service -Name $Name | ForEach-Object {
 $ServiceStatus[-1].Status = $_.Status.ToString()
 $ServiceStatus[-1].Startup = $_.StartType.ToString()
 }
 }
 catch {
 $msg = 'NoServiceFoundForGivenName,Microsoft.PowerShell' +
 '.Commands.GetServiceCommand'
 if ($_.FullyQualifiedErrorId -eq $msg) {
 $ServiceStatus[-1].Status = 'Stopped'
 }
 else {
 Write-Error $_
 }
 }
 }

 $timer = [system.diagnostics.stopwatch]::StartNew()
 do {
 $ServiceStatus | Where-Object { $_.Status -ne 'Stopped' } |
 ForEach-Object {
 $_.Status = (Get-Service $_.Service).Status.ToString()

 if ($_.HardKill -eq $false -and
 $timer.Elapsed.TotalSeconds -gt $HardKillSeconds) {
 Write-Verbose "Attempting hard kill on $($_.Service)"
 $query = "SELECT * from Win32_Service WHERE name = '{0}'"
 $query = $query -f $_.Service
 $svcProcess = Get-CimInstance -Query $query
 $Process = @{
 Id = $svcProcess.ProcessId

Create a custom
PowerShell object to
track the status of
each service.

Attempt to find
the service and

then disable
and stop it.

If the service doesn’t
exist, there is nothing
to stop, so consider
that a success.

Monitor the
stopping of
each service.

If any services
have not

stopped in the
predetermined

amount of
time, kill the

process.

144 CHAPTER 6 Making adaptable automations
 Force = $true
 ErrorAction = 'SilentlyContinue'
 }
 Stop-Process @Process
 $_.HardKill = $true
 }
 }
 $Running = $ServiceStatus | Where-Object { $_.Status -ne 'Stopped' }
 } while ($Running -and $timer.Elapsed.TotalSeconds -lt $SecondsToWait)
 $ServiceStatus |
 Where-Object { $_.Status -ne 'Stopped' } |
 ForEach-Object { $_.Status = 'Reboot Required' }

 $ServiceStatus
}

Like many things in this book, event handling could be a book, or at least several
chapters, on its own. This section was intended to give you an overview of some differ-
ent ways that you can use it in your automations. There are many other ways to
achieve event handling, some of which we will cover in subsequent chapters. I also
encourage you to explore more resources on it because good event handling can
really make your automations shine.

 The next step in the automation will be checking and setting security baseline reg-
istry values. This will present a new concept of adaptable automation, which uses con-
figuration data to control your script’s execution.

6.2 Building data-driven functions
The Don’t Repeat Yourself (DRY) principle is key to creating efficient and manage-
able automations. Even if you are not familiar with the term, you should be familiar
with the concept of not repeating code over and over again in your scripts. This is the
fundamental concept behind functions, modules, and the building blocks we talked
about in the first half of this book. However, as you will see here, you can extend this
concept beyond those and use external data to drive your automation.

 The first and most crucial step in building a data-driven function is figuring out
your data structure. Once you have your data structure figured out, you need to write
the code to handle it and decide how and where to store it. To demonstrate how to do
this, we will build the step in the automation to configure the security baseline setting
for your server. This will be done by checking and setting different registry keys.

 You can easily return registry keys with the Get-ItemProperty cmdlet and change or
add them with the New-ItemProperty cmdlet. If you build a couple of functions that
can do this, you only need one or two lines per registry key to check. But if you have ever
looked at the list of registry keys required for security hardening, you will see this could
quickly grow into a 500+ line script. In fact, if you do a quick search on GitHub or the
PowerShell Gallery for security hardening scripts, you will find dozens of scripts over
1,000 lines long. Now imagine you have to maintain different copies for different oper-
ating system versions and different server roles. It would become a nightmare.

Set the
reboot
required if
any services
did not stop.

Return the
results.

1456.2 Building data-driven functions
 To prevent this from happening to you, we will create a function that can use exter-
nal serialized data to provide the registry keys and values to your script. This data can
be stored in external files that are human-readable, easy to update, and easy to use in
PowerShell.

6.2.1 Determining your data structure

Checking and setting hundreds of registry keys may sound like an extremely tedious
task that can have all sorts of different requirements. However, as with many things,
the best approach is to break it up into different scenarios.

 For example, I reviewed the Windows security baseline (http://mng.bz/DDaR)
recommendations for an Azure virtual machine and found 135 registry settings. Out
of those 135 different registry settings, the script needs to meet only four different
types of conditions (equals, greater than or equal to, between two numbers, and
equals or does not exist). Therefore, I can narrow my scope to concentrate on these
four conditions. I know if the script can handle those, it can handle all 135.

 I have selected an entry from each of these four to test with and listed them in
table 6.1.

Based on this table, we know our function will have to check whether the value of a
key is equal to a number, greater than or equal to a number, between two numbers, or
does not exist. Knowing this, we can start to build the data structure.

 Table 6.1 shows that you will need the Key Path, the Key Name, the expected value,
and how to evaluate that value. You can convert those evaluations to comparison oper-
ators in PowerShell.

 The first two conditions you need to test for are
pretty straightforward. Equal is -eq, and greater than or
equal to is -ge. The third one makes things a little
more complicated because it checks between two num-
bers. But this can be achieved by creating an array and
using the -in operator. So, just considering these, your
data structure might look something like figure 6.4.

 However, things get a little more complicated with
the fourth condition because it can be one of two

Table 6.1 Registry key values to check

Key path Key name Expected value

LanManServer\Parameters\ EnableSecuritySignature = 1

EventLog\Security\ MaxSize ≥ 32768

LanManServer\Parameters\ AutoDisconnect Between 1 and 15

LanManServer\Parameters\ EnableForcedLogoff = 1 or does not exist

All key paths start in HKLM:\SYSTEM\CurrentControlSet\Services\

RegistryCheck

KeyPath
Name
Operator
Value

Figure 6.4 Initial data structure
for the registry check

https://shortener.manning.com/DDaR

146 CHAPTER 6 Making adaptable automations
conditions, and one of those conditions is that it does not exist. However, when you
think about it, “does not exist” is the equivalent of saying “is equal to null.” So,
now the only tricky part is handling the two different conditions. You can take the
value and operator properties, put them in their own class, and add them as an
array to the registry check class, as in figure 6.5. Then, you can have your script
evaluate as many as you need. As long as one of them evaluates to true, the check
will pass.

If you were to build this out as a hashtable in PowerShell, it would be something like
the following snippet:

@{
 KeyPath = 'HKLM:\SYSTEM\Path\Example'
 Name = 'SecurityKey'
 Tests = @(
 @{operator = 'eq'; value = '1' }
 @{operator = 'eq'; value = $null }
)
}

6.2.2 Storing your data

Once you have your basic structure, it is time to think about how to store that data.
There are numerous data serialization formats out there, and many have native
support in PowerShell. These include XML, CSV, JSON, and PowerShell Data Files.
The format you choose for your automations depends on your needs, but my rec-
ommendation is to use JSON unless you have a specific reason not to. JSON con-
sists of key-value pairs and supports strings, numbers, dates, Boolean, arrays, and
nested objects. It is versatile and human-readable. You can also convert any JSON
string to a PowerShell object using the ConvertFrom-Json cmdlet and back into
JSON using the ConvertTo-Json cmdlet. You can see the results of this conversion
in figure 6.6.

RegistryCheck

KeyPath

Name

Tests

RegistryTest

Operator

Value

Figure 6.5 Updated data structure for the registry check to include the
test operator and value as a nested array

1476.2 Building data-driven functions
By taking the data structure we just determined, you can build a PowerShell object
with your checks, convert it to a JSON string, then export the JSON to a file. The fol-
lowing listing shows the execution.

[System.Collections.Generic.List[PSObject]] $JsonBuilder = @()
$JsonBuilder.Add(@{
 KeyPath =
 'HKLM:\SYSTEM\CurrentControlSet\Services\LanManServer\Parameters'
 Name = 'EnableSecuritySignature'
 Tests = @(
 @{operator = 'eq'; value = '1' }
)
})
$JsonBuilder.Add(@{
 KeyPath =
 'HKLM:\SYSTEM\CurrentControlSet\Services\EventLog\Security'
 Name = 'MaxSize'
 Tests = @(
 @{operator = 'ge'; value = '32768' }
)
})
$JsonBuilder.Add(@{
 KeyPath =
 'HKLM:\SYSTEM\CurrentControlSet\Services\LanManServer\Parameters'
 Name = 'AutoDisconnect'
 Tests = @(
 @{operator = 'in'; value = '1..15' }
)
})
$JsonBuilder.Add(@{
 KeyPath =
 'HKLM:\SYSTEM\CurrentControlSet\Services\LanManServer\Parameters'
 Name = 'EnableForcedLogoff'
 Tests = @(

Listing 6.4 Creating JSON

Figure 6.6 Side-by-side
comparison of PowerShell
hashtable and the hashtable
converted to JSON

Add an entry
for each
registry key
to check.

148 CHAPTER 6 Making adaptable automations
 @{operator = 'eq'; value = '1' }
 @{operator = 'eq'; value = '$null' }
)
})

$JsonBuilder |
 ConvertTo-Json -Depth 3 |
 Out-File .\RegistryChecks.json -Encoding UTF8

As you can see in listing 6.4, the ConvertTo-Json only creates a JSON string. Similarly,
the ConvertFrom-Json cmdlet only accepts strings. Since neither of these cmdlets can
read or write to a file or any other external source, you need to use them in conjunc-
tion with other cmdlets.

 The fact that the JSON cmdlets accept strings is actually a huge advantage. It
means you can get your string from anywhere and convert it from JSON. For our pur-
poses, we are going to read and write to the local file system. For this, we are going to
use the Out-File cmdlet to write to a file and the Get-Content cmdlet to read from it.
But in other situations, you could receive JSON from a web request, a SQL database,
or even passed in as parameters. Anywhere you can get a string value from, you can
use JSON.

 That is not to say that JSON is the end-all, be-all for automations and PowerShell.
Other formats also have their pros and cons.

 XML is a tried-and-true format that has been around for over 20 years and is used by
many applications. It is exceptionally versatile, like JSON, but has the advantage of sche-
mas to aid in data validation. While JSON does have schema support, that functionality
does not exist natively in PowerShell. Instead, PowerShell just makes its best guess as to
the data type based on how it is structured in the string. This gives XML an advantage
when it needs to be transferred between different applications. However, JSON is much
easier to read and define. For example, in figure 6.7, I took the same PowerShell object
for a single registry check and exported it to JSON (left) and XML (right).

 CSV is excellent when you need to share the information with someone else—
especially nontechnical people since you can use Excel to read and edit it. However,
CSVs are flat files, so you can’t have nest objects or arrays. Plus, PowerShell natively
treats every item in a CSV as a string.

 A PowerShell Data File (PSD1) contains key–value pairs very similar to JSON,
except PowerShell treats them as hashtables instead of PowerShell objects. You are
most likely familiar with these as module manifest files, but they can also be used to
store data that you import into your script. They look very similar to JSON and sup-
port many of the same data types. However, one considerable disadvantage to PSD1
files is they require a physical file, whereas JSON is converted from a string variable.
Also, as the name implies, PowerShell Data Files are unique to PowerShell and cannot
be used in other applications. Therefore, PSD1 files are best left for use inside mod-
ules with relatively static data.

Convert the PowerShell
object to JSON and
export it to a file.

1496.2 Building data-driven functions
JSON validation
Unless you are familiar enough with JSON to know which characters to escape and which
are not supported, it is always a good idea to use PowerShell or some other JSON editor
to update your JSON files. Also, if you ever have problems importing your JSON, you can
use the website jsonlint.com to evaluate it and let you know precisely where the issues
are. There are also numerous JSON validation extensions for VS Code.

Figure 6.7 The same PowerShell object converted to JSON and XML

http://jsonlint.com

150 CHAPTER 6 Making adaptable automations
6.2.3 Updating your data structure

Now that you have your test data defined and exported to JSON, it is time to consider the
data you need to resolve the failed checks. Since the tests are not always a one-for-one
type comparison (i.e., EnableForcedLogoff can either be 1 or null), you cannot use
the test value as the value to set. Therefore, you will need to add a new property to the
JSON. This new property will tell the script what value to set when a check fails. You will
also want to note the type of value it should be (e.g., DWORD, String, Binary, etc.).

 To add these new fields to your JSON, you have two options. You can open the
JSON in VS Code and manually copy and paste the fields into every entry in the file,
all the while hoping you don’t miss one or accidentally enter an illegal character. Or
use the preferred method of having PowerShell help you update all the entries.

 You can quickly and easily add a new property to a PowerShell object using the
Select-Object cmdlet. This cmdlet lets you specify the properties you want to return
from a PowerShell object and allows you to create custom properties on the fly by
passing a hashtable as a property. The hashtable only needs two key pairs: Label for
the name of the property and Expression for the expression to evaluate. You will
often see these written simply as l and e for short in scripts.

 So, let’s add some new properties to the JSON file. The first one we want is the data
type named Type. We know most of them are of the type DWORD, so we can just hard-
code DWORD into the property. You can then manually change any you need to. We’ll
name the second property Data and default its value to the first value in our test array.
The data structure with these properties is shown in figure 6.8. Again, you can manually
update afterward, but this gives you a good head start instead of just writing blank values.

You can use the snippet in the following listing to add these fields to your JSON and
export it as a new file.

$checks = Get-Content .\RegistryChecks.json -Raw |
 ConvertFrom-Json

$updated = $checks |
 Select-Object -Property *, @{l='Type';e={'DWORD'}},
 @{l='Data';e={$_.Tests[0].Value}}

Listing 6.5 Adding new data to JSON using PowerShell

RegistryCheck

KeyPath

Name

Tests

RegistryTest

Operator

Value

Type

Data

Figure 6.8 Final data
structure for the registry
check JSON with added
values to set if the
check fails

Import the JSON file
and convert it to a
PowerShell object.

Use Select-Object to
add new properties to
the object.

1516.2 Building data-driven functions
ConvertTo-Json -InputObject $updated -Depth 3 |
 Out-File -FilePath .\RegistryChecksAndResolves.json -Encoding utf8

Now that we have the data structure, it is time to look at how to import it into the auto-
mation. To save you the trouble of filling out the JSON file, I have included a copy in
the Helper Scripts for this chapter.

6.2.4 Creating classes

One of the great things about using serialized data is that it can be dynamic. For
example, when you query a REST API that returns JSON, you do not need to know the
data structure beforehand. PowerShell will automatically convert it to a PowerShell
object. However, this can also be a bad thing when a script is expecting a specifically
formatted object. In these cases, your best option is to create a custom class to define
the properties your object needs.

 As we see in our example here, we know what properties need to exist for the reg-
istry check. So, to prevent unexpected data from causing problems in your function,
you will want to create a class. In fact, you will need to create two classes because your
JSON has a nested object with the Tests property. Classes can exist inside their own
files, or you can declare them in the psm1 for the module. For our purposes, we will
create these in the PoshAutomate-ServerConfig.psm1 file. Also, you will want to be
sure that your classes are located before the import function code, as it can cause
errors if a function tries to reference a class before it is loaded.

 Starting with the class for the Tests objects, you will need two string properties:
the operator and value. When you build a class, you can create custom constructors
inside of it. These allow you to convert objects or perform data validations or other
types of data manipulation to ensure your object has the correct values. Since the
JSON import creates a generic object, we will create a constructor to accept a single
object and then have it assign the appropriate properties. We will also include a con-
structor with no parameters that will allow you to create an empty version of this call.

 To define a class, you need to include the class keyword followed by the name of
the class and curly brackets, as shown in the next listing. Inside the brackets, you will
define the properties of the class, followed by the constructors. The constructors must
have the same name as the class.

class RegistryTest {
 [string]$operator
 [string]$Value
 RegistryTest(){
 }
 RegistryTest(
 [object]$object

Listing 6.6 Registry test class

Convert the updated object with the new
properties back to JSON and export it.

Method to create a
blank instance of
this class

Method to create an instance of this
class populated with data from a
generic PowerShell object

152 CHAPTER 6 Making adaptable automations
){
 $this.operator = $object.Operator
 $this.Value = $object.Value
 }
}

Now we can create the class for the main registry check object. It will be similar to the
other class, except for the Tests property. In this case, we want to make it an array by
adding square brackets inside the data type declaration. Then, in our constructor, we
will add a foreach to loop through each test and add it to the array. These methods
are shown in the following listing.

class RegistryCheck {
 [string]$KeyPath
 [string]$Name
 [string]$Type
 [string]$Data
 [string]$SetValue
 [Boolean]$Success
 [RegistryTest[]]$Tests
 RegistryCheck(){
 $this.Tests += [RegistryTest]::new()
 $this.Success = $false
 }
 RegistryCheck(
 [object]$object
){
 $this.KeyPath = $object.KeyPath
 $this.Name = $object.Name
 $this.Type = $object.Type
 $this.Data = $object.Data
 $this.Success = $false
 $this.SetValue = $object.SetValue

 $object.Tests | Foreach-Object {
 $this.Tests += [RegistryTest]::new($_)
 }
 }
}

Finally, we can add two additional properties, shown in the data structure in figure 6.9,
to help with debugging and to confirm your script is getting the correct data. First,
add a blank object of SetValue so you can record the value that the script is checking.
It is set to object because you do not know what type of data may be returned from
the different registry keys. Next, add a Boolean value named Success and set it to
false. You will have the script flip this to true if the check passes. These do not need
to be in the JSON because their values are not predefined.

Listing 6.7 Registry check class

Method to create a
blank instance of
this class

Method to create an instance of this
class populated with data from a
generic PowerShell object

1536.2 Building data-driven functions
6.2.5 Building the function

Since we only have four conditions to check for, it may be tempting to create an
if/else conditional statement to test against each. However, there is the possibility
that you could have different conditions in the future. In that case, you could build an
if/else that will handle all 14 different comparison operators in PowerShell, but that
would make a huge nested mess of if/else statements, which would be a nightmare
to troubleshoot. Plus, it goes against the DRY principle because you are repeating the
same thing. Instead, we will look at how we can build a function to accept dynamic
conditions. However, first, we need to get the value to check.

 As mentioned previously, the Get-ItemProperty cmdlet can return the value of a
registry key. However, if the key or the key path does not exist, it will throw an error.
Since a key not existing can be an expected result, you do not want this. You also will
not want to use a try/catch here because there could be other reasons why a value is
not returned. For example, if access is denied, you could end up with a false positive
using a try/catch. Instead, you can use the Test-Path cmdlet to test that the path
exists. Then, if it does, use the Get-Item cmdlet to return all the subkeys and confirm
the one you want is present. If both of these conditions are met, you can be assured
that the key exists, and you can get the value from it. Figure 6.10 shows the process.

 Now that you have the value, it is time to build the logic to confirm that it matches
the expected value. The Invoke-Expression cmdlet allows you to take a string and exe-
cute it as PowerShell code. Let’s take, for example, our first registry key that should
equal 1. A simple test for this may look something like this:

if($Data -eq 1){
 $true
}

You can quickly turn this into a string to swap the operator and the value on using
some simple string formatting and pass it to the Invoke-Expression cmdlet:

'if($Data -{0} {1}){{$true}}' -f 'eq', 1

The best thing about Invoke-Expression is that it treats everything just like you typed
it out in your script. This means it will easily be able to handle arrays for checking

RegistryCheck

KeyPath

Name

Tests

RegistryTest

Operator

Value

Type

Data

SetValue

Success

Figure 6.9 Final data
structure for the registry
check class with added
values recording results

154 CHAPTER 6 Making adaptable automations
between values. For example, in the following snippet, the value passed in is a string
set to 1..15. If you type 1..15 into PowerShell, it will create an array from 1 to 15.
When this string is passed to the Invoke-Expression, it will be evaluated as an array,
thus making it easy for you to determine whether a value is between two numbers.
When you run the following snippet, it should output true. You can then experiment
with switching around the values for the first three variables to see how it works:

$Data = 3
$Operator = 'in'
$Expected = '1..15'
$cmd = 'if($Data -{0} {1}){{$true}}' -f $Operator, $Expected
Invoke-Expression $cmd

Now, all you have to do is loop through each test from your JSON, and if any of them
return true, you know the value is correct, as shown in figure 6.11. Another advantage
to this is that you can output the expression string to the Verbose stream to aid in test-
ing and troubleshooting.

 One more thing to consider when building the logic of this function is how you
want to pass the parameters. You can pass an object and reference the properties or
list each property as a separate parameter. Passing the individual properties can make
things easier for reusability and testing when you cannot guarantee you will always
have your data formatted in a consistent manner. However, in this case, since we have

Data = null

Key path exists Key exists

Test data value

Return result

Yes

No Data =
key value

Yes
No

Figure 6.10 Confirming that the
path to the registry key exists and
that the key itself exists before
attempting to get the value from it

1556.2 Building data-driven functions
built a custom class object, you can guarantee that. Also, regardless of which method
you choose, the tests will need to be specifically formatted objects. So, since you have
already declared the class and can create the required object whenever you need to,
you can simply have it pass the object. Let’s make the Test-SecurityBaseline func-
tion in the following listing.

Function Test-SecurityBaseline {
 [CmdletBinding()]
 [OutputType([object])]
 param(
 [Parameter(Mandatory = $true)]
 [RegistryCheck]$Check
)
 $Data = $null
 if (-not (Test-Path -Path $Check.KeyPath)) {

Listing 6.8 Test-SecurityBaseline

Data = null

Key path exists Key exists

Foreach test

Return result

Yes

No

Build evalulation
expression

Evaluate

Success =
true

True

Data =
key value

Yes
No

Figure 6.11 The registry
check workflow with the
dynamic expression builder

Set the initial
value of $Data
to null.

156 CHAPTER 6 Making adaptable automations

tha
k

 Write-Verbose "Path not found"
 }
 else {
 $SubKeys = Get-Item -LiteralPath $Check.KeyPath
 if ($SubKeys.Property -notcontains $Check.Name) {
 Write-Verbose "Name not found"
 }
 else {
 try {
 $ItemProperty = @{
 Path = $Check.KeyPath
 Name = $Check.Name
 }
 $Data = Get-ItemProperty @ItemProperty |
 Select-Object -ExpandProperty $Check.Name
 }
 catch {
 $Data = $null
 }
 }
 }

 foreach ($test in $Check.Tests) {
 $filter = 'if($Data -{0} {1}){{$true}}'
 $filter = $filter -f $test.operator, $test.Value
 Write-Verbose $filter
 if (Invoke-Expression $filter) {
 $Check.Success = $true
 }
 }

 $Check.SetValue = $Data
 $Check
}

To handle the updating of the failed checks, you will want to create a separate func-
tion. This will allow you to run and test the checks and the updates separately.

 This function will be named Set-SecurityBaseline, as in listing 6.9, and it can
use the same object from the Test-SecurityBaseline function in listing 6.8 to
update the failed checks. This function will be pretty standard PowerShell. It just
needs to ensure that the key path exists and create it if it doesn’t. Then, set the key to
the value defined in the JSON. We will also force -ErrorAction to Continue so one
failed entry does not stop the processing of the others.

Function Set-SecurityBaseline{
 [CmdletBinding()]
 [OutputType([object])]
 param(
 [Parameter(Mandatory = $true)]

Listing 6.9 Set-SecurityBaseline

If the path is not
found, there is nothing
to do because $Data is
already set to null.Get the keys

t exist in the
ey path and

confirm that
the key you

want is
present.

If the key is not found,
there is nothing to do
because $Data is
already set to null.

If the key is found,
get the value and
update the $Data

variable with
the value.

Run through
each test for this
registry key.

Build the string to
create the If statement
to test the value of the
$Data variable.

If the statement returns
true, you know a test
passed, so update the
Success property.

Add the value of the key for
your records and debugging.

1576.3 Controlling scripts with configuration data

re
pat

fe
 [RegistryCheck]$Check
)
 if(-not (Test-Path -Path $Check.KeyPath)){
 New-Item -Path $Check.KeyPath -Force -ErrorAction Stop
 }

 $ItemProperty = @{
 Path = $Check.KeyPath
 Name = $Check.Name
 Value = $Check.Data
 PropertyType = $Check.Type
 Force = $true
 ErrorAction = 'Continue'
 }
 New-ItemProperty @ItemProperty
}

6.3 Controlling scripts with configuration data
In the previous sections, we saw how you can use event handling and serialized data to
control the actions of a function. Now, we can take it a step further and build a genu-
inely dynamic automation that can stitch together all of these functions. This is where
the fundamentals of the building blocks concept from chapter 1 come into their own.

 We started with a function to stop and disable services. Then, we built a second
function to check registry values based on a JSON input and a third function to auto-
matically set the registry value for those that did not meet the requirements. Finally,
let’s finish our automation with a few more simple examples that will help demon-
strate the concepts here. First, in the following listing, we will create a function to pass
a string array to install Windows Features.

Function Install-RequiredFeatures {
 [CmdletBinding()]
 [OutputType([object])]
 param(
 [Parameter(Mandatory = $true)]
 [string[]]$Features
)
 [System.Collections.Generic.List[PSObject]] $FeatureInstalls = @()
 foreach ($Name in $Features) {
 Install-WindowsFeature -Name $Name -ErrorAction SilentlyContinue |
 Select-Object -Property @{l='Name';e={$Name}}, * |
 ForEach-Object{ $FeatureInstalls.Add($_) }
 }

 $FeatureInstalls
}

Then you can use the following listing to configure the internal firewall logging.

Listing 6.10 Install-RequiredFeatures

Create the
gistry key

h if it does
not exist.

Create or Update the
registry key with the
predetermined value.

Loops
through

each
ature and

install it

158 CHAPTER 6 Making adaptable automations
Function Set-FirewallDefaults {
 [CmdletBinding()]
 [OutputType([object])]
 param(
 [Parameter(Mandatory = $true)]
 [UInt64]$LogSize
)
 $FirewallSettings = [pscustomobject]@{
 Enabled = $false
 PublicBlocked = $false
 LogFileSet = $false
 Errors = $null
 }

 try {
 $NetFirewallProfile = @{
 Profile = 'Domain', 'Public', 'Private'
 Enabled = 'True'
 ErrorAction = 'Stop'
 }
 Set-NetFirewallProfile @NetFirewallProfile
 $FirewallSettings.Enabled = $true

 $NetFirewallProfile = @{
 Name = 'Public'
 DefaultInboundAction = 'Block'
 ErrorAction = 'Stop'
 }
 Set-NetFirewallProfile @NetFirewallProfile
 $FirewallSettings.PublicBlocked = $true

 $log = '%windir%\system32\logfiles\firewall\pfirewall.log'
 $NetFirewallProfile = @{
 Name = 'Domain', 'Public', 'Private'
 LogFileName = $log
 LogBlocked = 'True'
 LogMaxSizeKilobytes = $LogSize
 ErrorAction = 'Stop'
 }
 Set-NetFirewallProfile @NetFirewallProfile
 $FirewallSettings.LogFileSet = $true
 }
 catch {
 $FirewallSettings.Errors = $_
 }

 $FirewallSettings
}

These functions can go on and on as you think of other things to add or your require-
ments change.

Listing 6.11 Set-FirewallDefaults

Create a custom
object to record and
output the results of
the commands.

Enable all
firewall profiles.

Block all inbound
public traffic.

Set the
firewall log

settings,
including
the size.

1596.3 Controlling scripts with configuration data
 Now comes the next challenge—determining how to string all of these functions
together and provide the correct parameters for them. This is where dynamic-based
configuration data comes into play.

 Similar to how you controlled the conditional statements in the previous exam-
ple, you can perform similar tasks at the script level. For instance, you can generate
a configuration file for each of the previously listed steps based on the parameters of
the functions and then have a single script to call each function with the appropri-
ate parameters.

6.3.1 Organizing your data

We now have five separate functions for this automation, each with its own parameters.
The values provided to those parameters can change between operating system versions
and server roles, which once again leaves us with one of those fine balancing acts of auto-
mation. Do you put everything into one massive JSON file and have the script parse it?
Do you create a separate JSON file for each operating system version? Then, would you
need separate files for each role that a server would need for each operating system? As
you can see, it is as easy to end up with a massive mess of files as it is to end up with a few
gigantic unmanageable files. The best thing to do in these situations is to write it out.

 Look at each step of your automation and think about the parameter require-
ments across versions and roles. Doing this will help you determine the best way to
structure your data:

 Step 1 of installing roles and features is relatively consistent across operating
system versions but wildly different between server roles.

 Step 2 is stopping and disabling services. These can change slightly between
operating system versions and based on the server role.

 Step 3 of setting security baselines remains fairly consistent across roles but dif-
fers between operating system versions.

 Step 4 of setting the internal firewall settings is consistent across operating sys-
tems but not server roles.

As you can see, there is no clear winner between operating system or server role,
which, again, is where the beauty of this model comes into play. Technically, you don’t
have to choose. What you can do is combine them.

 For instance, you can create a Windows Server 2019 baseline configuration file
with the settings all servers will have regardless of their role. Then, you can make
smaller role-specific configurations just to apply the deltas. You can even create new
functions that could, for example, turn services back on.

 For our purposes, we will build a simple configuration file that can be used on any
Windows Server 2016 or later operating system. Taking a look at the different steps,
we know we will need the following parameters, shown in figure 6.12:

1 Features—Default features and roles to install
2 Services—List of services to stop and disable

160 CHAPTER 6 Making adaptable automations
3 SecurityBaseline—Security baseline registry keys
4 FirewallLogSize—Firewall log size

The tricky one here is the security baseline registry keys. There could be hundreds of
entries in this list. To keep things cleaner, you can store these in a separate file and
just reference them in the control JSON. But you risk inadvertently causing issues if
you don’t remain vigilant about ensuring that those references are not broken. The
safe approach would be to combine them into one JSON.

And, once again, you can create a class in the PoshAutomate-ServerConfig.psm1. This
class, shown in the following listing, consists of the four previously discussed parameters.

class ServerConfig {
 [string[]]$Features
 [string[]]$Services
 [RegistryCheck[]]$SecurityBaseline
 [UInt64]$FirewallLogSize
 ServerConfig(){
 $this.SecurityBaseline += [RegistryCheck]::new()
 }
 ServerConfig(
 [object]$object
){
 $this.Features = $object.Features
 $this.Services = $object.Services
 $this.FirewallLogSize = $object.FirewallLogSize
 $object.SecurityBaseline | Foreach-Object {
 $this.SecurityBaseline += [RegistryCheck]::new($_)
 }
 }
}

Listing 6.12 ServerConfig class

RegistryCheck

KeyPath

Name

Tests

RegistryTest

Operator

Value

Type

Data

SetValue

Success

Server Configuration

FirewallLogSize

Feature

SecurityBaseline

Service

Figure 6.12 The SecurityBaseline property for the Server Configuration class uses the custom class
RegistryCheck, which, in turn, uses the custom class RegistryTest.

Method to create
a blank instance of
this class

Method to create an instance of this
class populated with data from a
generic PowerShell object

1616.3 Controlling scripts with configuration data
Another significant advantage of using classes is that you can quickly and easily create
your configuration JSON. You can add another function to the PoshAutomate-Server-
Config.psm1 named New-ServerConfig, as in the following listing, and have it create
a blank version of the ServerConfig class.

Function New-ServerConfig{
 [ServerConfig]::new()
}

To keep from having a 140-line long listing here, I have included a copy of the com-
plete PoshAutomate-ServerConfig.psm1 in the Helper Scripts folder for this chapter.
Once you have the PoshAutomate-ServerConfig.psm1, you use the New-ServerConfig
function to create a JSON template:

Import-Module .\PoshAutomate-ServerConfig.psd1 -Force
New-ServerConfig | ConvertTo-Json -Depth 4

{
 "Features": null,
 "Service": null,
 "SecurityBaseline": [
 {
 "KeyPath": null,
 "Name": null,
 "Type": null,
 "Data": null,
 "SetValue": null,
 "Tests": [
 {
 "operator": null,
 "Value": null
 }
]
 }
],
 "FirewallLogSize": 0
}

Now that we have all our data defined, it is time to build the final part of the automa-
tion.

6.3.2 Using your configuration data

The final step in this process is to tie everything together nicely with one script. This
last script will get the required configuration information from the JSON file. Then,
use that data to run each of the functions you have created.

 It is also a good idea for a script like this to add some logging output to record
what was done. In this case, we can just create a function that will output the returned

Listing 6.13 New-ServerConfig

162 CHAPTER 6 Making adaptable automations
data to a table view and write it to a text file on the local machine. This means the
script will need a parameter for the JSON file and one for the log file.

 You can use the combination of the Get-Content and ConvertFrom-Json cmdlets
that we used before to import your configuration data. Then, convert that object to
the ServerConfig class you defined. Now all you need to do is call each function in
the order you want to execute them. Since each function has error handling built in,
you do not have to worry about it here. Just run the function and write the results to
the log. After the execution completes, you can review the log for any potential errors
or issues.

 The only exception here is the security baseline functions. Since there are two sep-
arate functions, you can have the script run the check once. Then, fix any noncompli-
ant registry keys. Finally, run the check once more to confirm everything is compliant.
Putting it all together, the script will follow the flow shown in figure 6.13.

Import JSON
convert to

serverConfig

Install features

Check security
baseline

Disable services

Resolve security
baselines

Recheck security
baselines

Log results

Log start

Log start

Log results

Set firewall

Failed

Log start

Log start

Log results

Log results

Figure 6.13 Workflow to set
server configurations based on
a JSON template

1636.3 Controlling scripts with configuration data
To include this function as part of the module, add a new file under the Public folder
named Set-ServerConfig.ps1 and enter the code from the following listing.

Function Set-ServerConfig {
 [CmdletBinding()]
 [OutputType([object])]
 param(
 [Parameter(Mandatory = $true)]
 [object]$ConfigJson,
 [Parameter(Mandatory = $true)]
 [object]$LogFile
)
 $JsonObject = Get-Content $ConfigJson -Raw |
 ConvertFrom-Json
 $Config = [ServerConfig]::new($JsonObject)

 Function Write-StartLog {
 param(
 $Message
)
 "`n$('#' * 50)`n# $($Message)`n" | Out-File $LogFile -Append
 Write-Host $Message
 }

 Function Write-OutputLog {
 param(
 $Object
)
 $output = $Object | Format-Table | Out-String
 if ([string]::IsNullOrEmpty($output)) {
 $output = 'No data'
 }
 "$($output.Trim())`n$('#' * 50)" | Out-File $LogFile -Append
 Write-Host $output
 }
 $msg = "Start Server Setup - $(Get-Date)`nFrom JSON $($ConfigJson)"
 Write-StartLog -Message $msg

 Write-StartLog -Message "Set Features"
 $Features = Install-RequiredFeatures -Features $Config.Features
 Write-OutputLog -Object $Features

 Write-StartLog -Message "Set Services"
 $WindowsService = @{
 Services = $Config.Services
 HardKillSeconds = 60
 SecondsToWait = 90
 }
 $Services = Disable-WindowsService @WindowsService
 Write-OutputLog -Object $Services

 Write-StartLog -Message "Set Security Baseline"
 foreach ($sbl in $Config.SecurityBaseline) {

Listing 6.14 Set-ServerConfig

Import the
configuration data
from the JSON file.

Convert the JSON
data to the class
you defined.

A small function to ensure
consistent logs are written
for an activity starting

A small function to ensure
consistent logs are written
for an activity completing

Set Windows
Features first.

Set the
services.

Check each registry
key in the Security
Baseline.

164 CHAPTER 6 Making adaptable automations
 $sbl = Test-SecurityBaseline $sbl
 }

 foreach ($sbl in $Config.SecurityBaseline |
 Where-Object { $_.Success -ne $true }) {
 Set-SecurityBaseline $sbl
 $sbl = Test-SecurityBaseline $sbl
 }
 $SecLog = $SecBaseline |
 Select-Object -Property KeyPath, Name, Data, Result, SetValue
 Write-OutputLog -Object $SecLog

 Write-StartLog -Message "Set Firewall"
 $Firewall = Set-FirewallDefaults -LogSize $Config.FirewallLogSize
 Write-OutputLog -Object $Firewall

 Write-Host "Server configuration is complete."
 Write-Host "All logs written to $($LogFile)"
}

6.3.3 Storing your configuration data

Where you store your configuration, data can change from automation to automa-
tion, but it makes sense to store the configuration data within the module in most
cases. Doing this will not only ensure that your data is there when you need it, but if
you implement version control on your modules, you will be able to track changes to
the configuration files as well.

 Another bonus to storing your configuration files within the module is that you
can create a wrapper function to help you select the files. This way, you do not have to
look up the full path to the JSON file every time you want to run it. You can do this in
a similar fashion to how you load the module functions from the different ps1 files.

 To set this up, add a folder named Configurations to the module directory and
place your configuration JSON files in there, as in the following listing.

Import-Module .\PoshAutomate-ServerConfig.psd1 -Force

$Config = New-ServerConfig

$Content = @{
 Path = '.\RegistryChecksAndResolves.json'
 Raw = $true
}
$Data = (Get-Content @Content | ConvertFrom-Json)
$Config.SecurityBaseline = $Data

$Config.FirewallLogSize = 4096

$Config.Features = @(
 "RSAT-AD-PowerShell"
 "RSAT-AD-AdminCenter"

Listing 6.15 Creating Server Configuration JSON

Fix any that did
not pass the test.

Set the firewall.

Import the
module.Create a blank

configuration item.

Import security
baseline registry
keys.

Set the default
firewall log size.

Set roles and
features to install.

1656.3 Controlling scripts with configuration data
 "RSAT-ADDS-Toolsf"
)

$Config.Services = @(
 "PrintNotify",
 "Spooler",
 "lltdsvc",
 "SharedAccess",
 "wisvc"
)

if(-not (Test-Path ".\Configurations")){
 New-Item -Path ".\Configurations" -ItemType Directory
}

$Config | ConvertTo-Json -Depth 4 |
 Out-File ".\Configurations\SecurityBaseline.json" -Encoding UTF8

In the PoshAutomate-ServerConfig.psm1 file, add a command to query this folder for
the different JSON files. Then, add a function named Invoke-ServerConfig that will
display the JSON files for you to select. Once you make your selection, it will automat-
ically execute the Set-ServerConfig function for you.

 You can even use the Out-GridView to make a pop-up to make selections, or you
can just pass in the name if you know it. Also, it can have multiple selections allowing
you to run the operating system and role-based configurations one after the other.
The following listing shows the updated script.

Function Invoke-ServerConfig{
 [CmdletBinding()]
 [OutputType([object])]
 param(
 [string[]]$Config = $null
)
 [System.Collections.Generic.List[PSObject]]$selection = @()
 $Path = @{
 Path = $PSScriptRoot
 ChildPath = 'Configurations'
 }
 $ConfigPath = Join-Path @Path

 $ChildItem = @{
 Path = $ConfigPath
 Filter = '*.JSON'
 }
 $Configurations = Get-ChildItem @ChildItem

 if(-not [string]::IsNullOrEmpty($Config)){
 foreach($c in $Config){
 $Configurations | Where-Object{ $_.BaseName -eq $Config } |
 ForEach-Object { $selection.Add($_) }

Listing 6.16 Invoke-ServerConfig

Set services
to disable.

Create the
Configurations
folder.

Export
the security
baseline.

Get the
Configurations
folder.

Get all the JSON files
in the Configurations
folder.

If a config name is
passed, attempt to
find the file.

166 CHAPTER 6 Making adaptable automations
 }
 }

 if($selection.Count -eq 0){
 $Configurations | Select-Object BaseName, FullName |
 Out-GridView -PassThru | ForEach-Object { $selection.Add($_) }
 }

 $Log = "$($env:COMPUTERNAME)-Config.log"
 $LogFile = Join-Path -Path $($env:SystemDrive) -ChildPath $Log

 foreach($json in $selection){
 Set-ServerConfig -ConfigJson $json.FullName -LogFile $LogFile
 }
}

Once you have everything put together, you can copy the module files over to your
new server, import it, and run the configuration:

Import-Module .\PoshAutomate-ServerConfig.psd1 -Force
Invoke-ServerConfig

6.3.4 Do not put cmdlets into your configuration data

One final thing to remember when using configuration data is that you never want to
put any actual commands in your data. The values in your data should be static. Put-
ting commands in your configuration data will not only make troubleshooting and
testing a nightmare but can cause unexpected conditions in your code that could
have dire consequences. While this may seem contradictory to the last section, it is
not. In that section, we passed in values and conditional operators but not actual com-
mands. Those values and operators will return the same result every single time you
run them.

 An excellent example of this is dealing with dates. Say you need to check that a
date is over X number of years from now. The best way to handle that would be to have
your script create the DateTime object. Then, you can include a property in your con-
figuration that holds the number of years. Finally, this property can be passed to the
AddYears() method of the DateTime to have the script set the date value for you:

$AddYears = 1
$Data = Get-Date 1/21/2035
$DateFromConfig = (Get-Date).AddYears($AddYears)
$cmd = 'if($Data -{0} {1}){{$true}}' -f 'gt', '$DateFromConfig'
Invoke-Expression $cmd

A bad example would be to pass in a string set to (Get-Date).AddYears(1) and use the
Invoke-Expression to evaluate it. While it would have the same results as the previous

If a config name is not passed or a name
is not found, prompt for a file to use.

Set the default
log file path.

Run the Set-ServerConfig
for each JSON file.

167Summary
example, it is also more prone to error and more difficult to troubleshoot, and it
opens you up to potential injection attacks:

$Data = Get-Date 1/21/2035
$cmd = 'if($Data -{0} {1}){{$true}}' -f 'gt', '(Get-Date).AddYears(1)'
Invoke-Expression $cmd

The critical thing to remember here is that you should test all of your functions inde-
pendently without running any external commands. The configuration data import is
just a way for you to provide a list of parameters to your scripts.

Summary
 You can use try/catch blocks to capture specific errors and take actions based

on them.
 Remember the DRY principle: don’t repeat the same code over and over. Instead,

use your data to help drive your scripts.
 JSON is a versatile data-serialization format that supports most of the same data

types you find natively in PowerShell.
 If you have a defined data structure, you should create a class to help maintain

its integrity.
 You can use external data to create data-driven functions and to control the

execution of your scripts.
 Data files should be stored with the scripts when they are directly related to

each other.

Working with SQL
Anyone who has worked in IT long enough has inevitably received a call from a
panicked department head saying that the Excel spreadsheet or Access database
the entire department is reliant on has broken. As you investigate, you discover a
mess of spaghetti code macros that have been cobbled together over the years. As
you are racking your brain trying to reverse engineer it, you keep thinking to your-
self, how did this happen?

 I have found that these are often the result of one person taking some initiative
to try to improve their job—in much the same way an automator thinks. However,
before they realized what was happening, the entire department became depen-
dent on what they threw together in their spare time. I am here to tell you this is
not just a problem in “other” departments. It happens with IT and with automa-
tions as well. And I am also here to show you how not to fall into this trap by learn-
ing to use a proper database.

This chapter covers
 Building SQL databases and tables

 Inserting and updating data

 Retrieving data

 Using data validation before writing to SQL
168

169CHAPTER 7 Working with SQL
 In the last chapter, we saw how you can use data to help drive your scripts and
automations, and the data we used was stored in local JSON files. This is fine when
the data is relatively static and you have tight control over who can update it. How-
ever, a local or even shared file will not cut it when you have data that needs to be
shared with multiple people who can update it. In these cases, you will want to use a
relational database.

 There are multiple different database engines available that you can use with Power-
Shell, but we will work with Microsoft SQL Server for this chapter. However, many of
the items discussed here are database agnostic, so you could easily implement the
same automations using your database of choice.

 At the end of chapter 5, I told the story of how I used PowerShell remoting
across various systems in different environments to resolve an issue with a bad defi-
nition update. What I failed to mention was how I knew where all the systems resided.
With today’s hybrid environments, it is increasingly difficult to track whether a
server is physical, a VMware VM, a Hyper-V VM, an Azure or AWS VM, etc.

 To help solve this problem, we will be creating a PowerShell module you and your
team can use to track your server assets across all your different environments. This
module will store the data about your servers in a SQL database, and you will build the
functionality to

1 Add a server to the database
2 Search the database for servers
3 Update the information for one or more servers

You can use Microsoft SQL Server Express for this automation, which you can down-
load and use for free. If you already installed SQL Express in chapter 4 for the data-
base health checks, you can use the same one here. Otherwise, I’ve included a script
in the Helper Scripts folder for this chapter to install and set up a SQL Express
instance.

 We will also be using the dbatools PowerShell module to perform all the interac-
tions with SQL, including creating the database objects, which we will start with right
now in listing 7.1 by using the New-DbaDatabase cmdlet. To create the database, all
you need to do is provide the SQL instance and the database name. We will also set
the Recovery Mode to Simple. Without delving deep into DBA territory, a simple
recovery model is acceptable unless you are designing mission-critical, highly avail-
able, zero data loss systems. You can still create full and differential backups with sim-
ple logs, so there is no need to require the resources that full logs will take.

 If you are running PowerShell on the same machine as the SQL Express install,
you can run the following listing, as written, to create the database. However, if you
are on a remote machine or using your own SQL instance, be sure to update the
$SqlInstance variable for your environment.

170 CHAPTER 7 Working with SQL
$SqlInstance = "$($env:COMPUTERNAME)\SQLEXPRESS"
$DatabaseName = 'PoshAssetMgmt'
$DbaDatabase = @{
 SqlInstance = $SqlInstance
 Name = $DatabaseName
 RecoveryModel = 'Simple'
}
New-DbaDatabase @DbaDatabase

One last note before we get started—this chapter does not expect you to be a DBA,
nor will it teach you how to be one. We will only use simple queries in the functions to
provide examples of interacting with SQL. There are plenty of resources out there to
help you learn how to create complex queries, backup your databases, and perform
preventive maintenance. For now, we are just going to focus on getting data in and
out of a database.

7.1 Setting your schema
As we have now seen with almost every automation, the most crucial step in the auto-
mation process is defining the data you will need. In this case, you will need to create
a table to hold your server information. For the SQL table, you can start with some
fairly standard columns like

 Name—The name of the asset
 Operating System Type—Linux or Windows
 Operating System Version—The name of the operating system version
 Status—Whether it is in service, being repaired, or retired
 Remote Method—The method of remote connection to use for this server (SSH,

WSMan, Power CLI, etc.)

Next, you will need to add some additional columns that will allow you to create refer-
ences to the external systems. When creating references to external systems, it is best
to avoid using values that are subject to change, like display names. Most hypervisors
have a unique internal identifier for their virtual machines. For instance, VMware has
the Managed Object Reference ID for every VM. Azure VMs all have a universally
unique identifier (UUID). No matter what systems you use, you should be able to find
a way to uniquely identify the different servers:

 UUID—The unique identifier from the source systems.
 Source—The system that you are referencing (Hyper-V, VMware, Azure, AWS,

etc.).
 Source Instance—The instance of the source environment. This can be the

vSphere cluster, Azure subscription, etc.—anything to let you know where that
data came from.

Listing 7.1 Creating PoshAssetMgmt database

1717.1 Setting your schema
Along with the previously listed items, you will want to create an identity column. An
identity column is a column that is automatically populated by the database. This
will allow you to automatically assign an ID to every entry without having to write
any code to do it. This will come in handy when you need to reference items
between tables. Also, when updating items, you can use the ID instead of trying to
match on other fields.

 You can add additional fields for tracking cost centers, IP address, subnet, or what-
ever would make your job easier. Keep in mind that the ultimate goal here is to create
one place to see all servers and quickly identify where they live. Be careful you are not
just duplicating the data from other systems.

7.1.1 Data types

Much like when building a PowerShell function, you need to consider the data types
when determining your table schema. However, it is not always as simple as an int
equals an int. This is especially true when it comes to string.

 In SQL, as well as other database engines, there are multiple types of strings, and
we could spend the entire rest of the chapter discussing the different types and when
and why to use each. But the most common one used is the nvarchar type.

 A nvarchar column can hold 1–4,000 byte pairs, and, most important, it can sup-
port Unicode characters. Since there is such a size range, when you declare a nvarchar,
you also need to set a maximum character length.

NOTE There is a nvarchar max in which you can store approximately 1 bil-
lion characters. However, using this is very inefficient on the SQL backend
and, in most cases, is just unnecessary.

For most other fields, the decisions between SQL and PowerShell data types are
straightforward. Based on the size of a number you need, you can choose an int, float,
double, real, decimal, etc. And there are some data types with different names. For
example, a GUID in SQL is a uniqueidentifier and a Boolean is a bit.

 The last thing you need to consider is whether or not to allow null values. In our
example, we want to ensure that all fields are populated because the data would not
be helpful if any data is missing. However, if you added a column for the cost center,
you could allow it to be null. This is because there could be servers without a cost cen-
ter, so requiring it could prevent you from being able to add a server. On the other
hand, having a blank UUID would make the entry worthless because you cannot refer-
ence it back to the source system.

 So now we can map our data needed to their SQL data types. Table 7.1 shows the
values.

 Now that you have the data defined, you can use the New-DbaDbTable cmdlet to cre-
ate the table. Start by defining each column in a hashtable and then adding the differ-
ent hashtables into an array for each table. This array is then passed to the -ColumnMap

172 CHAPTER 7 Working with SQL
parameter to set schema information for each column. Finally, you can translate the
information from the table directly into the hashtables:

$ID = @{
 Name = 'ID';
 Type = 'int';
 MaxLength = $null;
 Nullable = $false;
 Identity = $true;
}

Now that you have your table schema defined, you can create the table by supplying
the SQL instance, the database to create it, and a name for the table, as shown in the
following listing.

$SqlInstance = "$($env:COMPUTERNAME)\SQLEXPRESS"
$DatabaseName = 'PoshAssetMgmt'
$ServersTable = 'Servers'
$ServersColumns = @(
 @{Name = 'ID';
 Type = 'int'; MaxLength = $null;
 Nullable = $false; Identity = $true;
 }
 @{Name = 'Name';
 Type = 'nvarchar'; MaxLength = 50;
 Nullable = $false; Identity = $false;
 }
 @{Name = 'OSType';
 Type = 'nvarchar'; MaxLength = 15;

Table 7.1 Servers

Name Type MaxLength Nullable Identity

ID int N/A No Yes

Name nvarchar 50 No No

OSType nvarchar 15 No No

OSVersion nvarchar 50 No No

Status nvarchar 15 No No

RemoteMethod nvarchar 25 No No

UUID* nvarchar 255 No No

Source nvarchar 15 No No

SourceInstance nvarchar 255 No No

*UUID is not a unique identifier because it will not always be a GUID.

Listing 7.2 Creating a Servers table in SQL

Create the ID
column as an
identity column.

Create the Name column
as a string with a max
length of 50 characters.

Create the OSType column
as a string with a max
length of 15 characters.

1737.2 Connecting to SQL
 Nullable = $false; Identity = $false;
 }
 @{Name = 'OSVersion';
 Type = 'nvarchar'; MaxLength = 50;
 Nullable = $false; Identity = $false;
 }
 @{Name = 'Status';
 Type = 'nvarchar'; MaxLength = 15;
 Nullable = $false; Identity = $false;
 }
 @{Name = 'RemoteMethod';
 Type = 'nvarchar'; MaxLength = 25;
 Nullable = $false; Identity = $false;
 }
 @{Name = 'UUID';
 Type = 'nvarchar'; MaxLength = 255;
 Nullable = $false; Identity = $false;
 }
 @{Name = 'Source';
 Type = 'nvarchar'; MaxLength = 15;
 Nullable = $false; Identity = $false;
 }
 @{Name = 'SourceInstance';
 Type = 'nvarchar'; MaxLength = 255;
 Nullable = $false; Identity = $false;
 }
)
$DbaDbTable = @{
 SqlInstance = $SqlInstance
 Database = $DatabaseName
 Name = $ServersTable
 ColumnMap = $ServersColumns
}
New-DbaDbTable @DbaDbTable

Once you have your table created, it is time to create the module and functions to
interact with them.

7.2 Connecting to SQL
Throughout this chapter, you will be making calls to a single SQL instance and data-
base. To keep from having to pass these as parameters to your functions each and
every time, you can set them as variables in the module’s psm1 file. Then, just refer-
ence these variables in your functions.

 When you do this, it is always good to make the variables with a name that will be
unique to your module. I tend to also include an underscore at the beginning of the
variable name to help identify it as a module variable.

 For things like connection information, it makes sense to create it as a single Power-
Shell object, with properties for the individual values, like the SQL server instance, the
database, and any table name. This can make things cleaner and more manageable by
only having one variable. But before you can do that, you need to create the module files.

Create the OSVersion column
as a string with a max length
of 50 characters.

Create the a Status column
as a string with a max length
of 15 characters.

Create the RemoteMethod
column as a string with a max
length of 25 characters.

Create the UUID column
as a string with a max
length of 255 characters.

Create the Source column
as a string with a max
length of 15 characters.

Create the SourceInstance
column as a string with a max
length of 255 characters.

174 CHAPTER 7 Working with SQL

The
o
m

 We will be putting all the code created into a module named PoshAssetMgmt.
You can quickly generate the base structure in the following listing by using the New-
ModuleTemplate function from chapter 2.

Function New-ModuleTemplate {
 [CmdletBinding()]
 [OutputType()]
 param(
 [Parameter(Mandatory = $true)]
 [string]$ModuleName,
 [Parameter(Mandatory = $true)]
 [string]$ModuleVersion,
 [Parameter(Mandatory = $true)]
 [string]$Author,
 [Parameter(Mandatory = $true)]
 [string]$PSVersion,
 [Parameter(Mandatory = $false)]
 [string[]]$Functions
)
 $ModulePath = Join-Path .\ "$($ModuleName)\$($ModuleVersion)"
 New-Item -Path $ModulePath -ItemType Directory
 Set-Location $ModulePath
 New-Item -Path .\Public -ItemType Directory

 $ManifestParameters = @{
 ModuleVersion = $ModuleVersion
 Author = $Author
 Path = ".\$($ModuleName).psd1"
 RootModule = ".\$($ModuleName).psm1"
 PowerShellVersion = $PSVersion
 }
 New-ModuleManifest @ManifestParameters

 $File = @{
 Path = ".\$($ModuleName).psm1"
 Encoding = 'utf8'
 }
 Out-File @File

 $Functions | ForEach-Object {
 Out-File -Path ".\Public\$($_).ps1" -Encoding utf8
 }
}

$module = @{
 ModuleName = 'PoshAssetMgmt'
 ModuleVersion = "1.0.0.0"
 Author = "YourNameHere"
 PSVersion = '7.1'
 Functions = 'Connect-PoshAssetMgmt',
 'New-PoshServer', 'Get-PoshServer', 'Set-PoshServer'
}
New-ModuleTemplate @module

Listing 7.3 Creating the PoshAssetMgmt module

This is the same
function as in
listing 2.5.

Set the parameters
to pass to the
function.

 name
f your
odule

The version of
your module

Your
name

The minimum PowerShell
version this module supports

The functions to create blank
files for in the Public folder

Execute the function to
create the new module.

1757.2 Connecting to SQL
Once the files have been created, open the PoshAssetMgmt.psm1 file and create a
variable named $_PoshAssetMgmt to hold the connection information about your
database. Since this variable is declared inside the psm1 file, it will automatically be
scoped so all functions inside the module can access it. Therefore, you don’t need to
add it as a parameter or set it globally. You will also add the same functionality we used
in previous modules to import ps1 files and check for the dbatools module, as in the
following listing.

$_PoshAssetMgmt = [pscustomobject]@{
 SqlInstance = 'YourSqlSrv\SQLEXPRESS'
 Database = 'PoshAssetMgmt'
 ServerTable = 'Servers'
}

$Path = Join-Path $PSScriptRoot 'Public'
$Functions = Get-ChildItem -Path $Path -Filter '*.ps1'

Foreach ($import in $Functions) {
 Try {
 Write-Verbose "dot-sourcing file '$($import.fullname)'"
 . $import.fullname
 }
 Catch {
 Write-Error -Message "Failed to import function $($import.name)"
 }
}

[System.Collections.Generic.List[PSObject]]$RequiredModules = @()
$RequiredModules.Add([pscustomobject]@{
 Name = 'dbatools'
 Version = '1.1.5'
})

foreach($module in $RequiredModules){
 $Check = Get-Module $module.Name -ListAvailable

 if(-not $check){
 throw "Module $($module.Name) not found"
 }

 $VersionCheck = $Check |
 Where-Object{ $_.Version -ge $module.Version }

 if(-not $VersionCheck){
 Write-Error "Module $($module.Name) running older version"
 }

 Import-Module -Name $module.Name
}

Listing 7.4 PoshAutomate-AssetMgmt

Update SqlInstance
to match your server
name.

Get all the ps1 files
in the Public folder.

Loop through each ps1 file.

Execute each ps1 file to load
the function into memory.

Create an object for
each module to check.

Check whether the
module is installed
on the local machine.

176 CHAPTER 7 Working with SQL
7.2.1 Permissions

One of the best advantages of using SQL is the built-in permission handling. Micro-
soft SQL has so many different levels of permissions that it is sure to fit your needs. It
goes way deeper than simple read and write permissions. SQL can even support per-
missions down to the row and column levels.

 You may have noticed that the first listing in the chapter where you created the
database did not include a credential parameter. That is because the dbatools module
will use the logged-in user if no other credentials are supplied. This makes things
super simple to implement in an Active Directory domain environment. However, not
everyone is running in a domain, and there are times where you may want to run as a
different user. To account for these situations, you can build a connection function
using the Connect-DbaInstance cmdlet. This will allow you to set a default connec-
tion that all the other functions can use.

 To do this, you create the Connect-PoshAssetMgmt function. The parameters of
this function will allow you to pass in a SQL instance, database, and credentials. If
the SQL instance or database is not provided, it can use the default values set in the
$_PoshAssetMgmt variable.

 Creating a connection function like this is pointless if you still have to pass it to
every function. Therefore, you can save the connection information to a variable that
the other functions can reference—similar to what you just did with the $_PoshAsset-
Mgmt variable in the psm1. The only difference here is that this variable is inside of a
function and not in the psm1.

 When a variable is set inside the psm1, it is automatically scoped to the script level.
This allows all the other functions in the module to read that variable. However, when
you set a variable inside a function, it only exists in the scope of that function—that
is, unless you scope to the script level by adding $script: to the variable name. As
you can see in the next listing, the variable for the connection information is set
using $script:_SqlInstance to ensure that it is scoped to the script level.

Function Connect-PoshAssetMgmt {
 [CmdletBinding()]
 [OutputType([object])]
 param(
 [Parameter(Mandatory = $false)]
 [string]$SqlInstance = $_PoshAssetMgmt.SqlInstance,

 [Parameter(Mandatory = $false)]
 [string]$Database = $_PoshAssetMgmt.Database,

 [Parameter(Mandatory = $false)]
 [PSCredential]$Credential
)

 $connection = @{
 SqlInstance = $SqlInstance

Listing 7.5 Connect-PoshAssetMgmt

Set the default
connection parameters.

1777.3 Adding data to a table
 Database = $Database
 }

 if ($Credential) {
 $connection.Add('SqlCredential', $Credential)
 }

 $Script:_SqlInstance = Connect-DbaInstance @connection

 $Script:_SqlInstance
}

You can test it by importing the module and running the Connect-PoshAssetMgmt
function:

Import-Module '.\PoshAssetMgmt.psd1' -Force
Connect-PoshAssetMgmt
ComputerName Name ConnectedAs
------------ ---- -----------
SRV01 SRV01\SQLEXPRESS SRV01\Administrator

7.3 Adding data to a table
Now that you have the connection defined and the database created, the next step is
to import the data into the tables. To do this, we will create a new function named
New-PoshServer. This function will use the Write-DbaDataTable cmdlet to add an
entry to the Servers table in SQL.

 You can define the data to import by mapping the parameters to the table col-
umns, thus ensuring you receive the correct data. However, that is just a small part of
the equation. To ensure that you are inserting properly formatted data, you need to
validate it before inserting it.

7.3.1 String validation

To ensure that the New-PoshServer function can insert the data into the table, you
must confirm that you have the correct data and that it matches the data types and
lengths set in the table. Luckily for us, a lot of this validation can be done using the
PowerShell parameter validation functionality.

 For example, you want to ensure that you do not pass any null or blank values. You
can quickly achieve this by setting the Mandatory parameter attribute to True for all
the parameters. By default, PowerShell sets them to not required.

 You will also need to check the length for all string parameters to ensure they do
not exceed the max length for the column. To confirm a string does not exceed the
max length, you can use the parameter validation attribute ValidateScript. The
ValidateScript attribute allows you to define a script block that can validate a param-
eter’s value. If your script block returns true, the value is considered valid. For
instance, to confirm the name is under the 50-character limit, you can have a simple
conditional statement that checks the length of the string:

Add the credential
object if passed.

Output the result so the person
running it can confirm the
connection information.

178 CHAPTER 7 Working with SQL
Function New-PoshServer {
 param(
 [Parameter(Mandatory=$true)]
 [ValidateScript({$_.Length -le 50 })]
 [string]$Name
)
 $PSBoundParameters
}
New-PoshServer -Name 'Srv01'
New-PoshServer -Name

'ThisIsAReallyLongServerNameThatWillCertainlyExceed50Characters'

You can then repeat this same pattern with the OSVersion, UUID, and SourceInstance
parameters, ensuring you enter the maximum length for each.

 You will want to take a different approach for the Status, OSType, RemoteMethod,
and Source parameters because these columns will have predefined values. For these,
you can use the ValidateSet parameter attribute to control which values can be
passed to this parameter:

[Parameter(Mandatory=$true)]
[ValidateSet('Active','Depot','Retired')]
[string]$Status,

[Parameter(Mandatory=$true)]
[ValidateSet('Windows','Linux')]
[string]$OSType,

[Parameter(Mandatory=$true)]
[ValidateSet('WSMan','SSH','PowerCLI','HyperV','AzureRemote')]
[string]$RemoteMethod,

[Parameter(Mandatory=$true)]
[ValidateSet('Physical','VMware','Hyper-V','Azure','AWS')]
[string]$Source,

You can update these validation sets to fit your individual needs. The great thing
about them is that they prevent situations where you can have misspellings or differ-
ent abbreviations skewing your data. For instance, I’ve seen situations where half the
VMs are listed as being in HyperV and the other half as being in Hyper-V, making
searching for all Hyper-V VMs a tedious and error-prone task.

 In more advanced applications, you can use enumeration sets that contain a list of
named constants with an underlying integral value. These are invaluable when build-
ing APIs or bringing data in from multiple locations. But for a simple PowerShell
function, they can be overkill.

7.3.2 Inserting data to a table

Once you have all your data validated, it is time to write it to the SQL table following
the process shown in figure 7.1. To do this, you can write a T-SQL Insert statement and
have it passed to a query, but the dbatools module has a cmdlet to make it even easier

1797.3 Adding data to a table
for you. You can perform single or bulk data uploads to a SQL table using the Write-
DbaDataTable cmdlet, with no SQL commands required.

 To use the Write-DbaDataTable cmdlet, you need to provide a PowerShell object
where the properties match the columns in the table and then provide the SQL
instance and the table, and the cmdlet will handle the rest of the insert process for
you. Putting this all together in the following listing, we can create our first function,
New-PoshServer.

Function New-PoshServer {
 [CmdletBinding()]
 [OutputType([object])]
 param(
 [Parameter(Mandatory = $true)]
 [ValidateScript({ $_.Length -le 50 })]
 [string]$Name,

 [Parameter(Mandatory = $true)]
 [ValidateSet('Windows', 'Linux')]
 [string]$OSType,

 [Parameter(Mandatory = $true)]
 [ValidateScript({ $_.Length -le 50 })]
 [string]$OSVersion,

Listing 7.6 New-PoshServer

Validate length
of strings

Validate status
value

Set import
parameters

Write to SQL

True

True

SQL instance

Data
map

Asset Table

Map parameters to
columns

Figure 7.1 New-PoshServer
function with validation and SQL
instance information to add a new
entry into the SQL database

Validate that the server
name is less than or equal
to 50 characters.

Validate that the
OSType is one of the
predefined values.

Validate that the OSVersion
is less than or equal to 50
characters.

180 CHAPTER 7 Working with SQL

W

 [Parameter(Mandatory = $true)]
 [ValidateSet('Active', 'Depot', 'Retired')]
 [string]$Status,

 [Parameter(Mandatory = $true)]
 [ValidateSet('WSMan', 'SSH', 'PowerCLI', 'HyperV', 'AzureRemote')]
 [string]$RemoteMethod,

 [Parameter(Mandatory = $false)]
 [ValidateScript({ $_.Length -le 255 })]
 [string]$UUID,

 [Parameter(Mandatory = $true)]
 [ValidateSet('Physical', 'VMware', 'Hyper-V', 'Azure', 'AWS')]
 [string]$Source,

 [Parameter(Mandatory = $false)]
 [ValidateScript({ $_.Length -le 255 })]
 [string]$SourceInstance
)

 $Data = [pscustomobject]@{
 Name = $Name
 OSType = $OSType
 OSVersion = $OSVersion
 Status = $Status
 RemoteMethod = $RemoteMethod
 UUID = $UUID
 Source = $Source
 SourceInstance = $SourceInstance
 }

 $DbaDataTable = @{
 SqlInstance = $_SqlInstance
 Database = $_PoshAssetMgmt.Database
 InputObject = $Data
 Table = $_PoshAssetMgmt.ServerTable
 }
 Write-DbaDataTable @DbaDataTable

 Write-Output $Data
}

Once you have the function created, you can test it by creating a few test servers:

Import-Module '.\PoshAssetMgmt.psd1' -Force
Connect-PoshAssetMgmt | Out-Null

$testData = @{
 OSType = 'Windows'
 Status = 'Active'
 RemoteMethod = 'WSMan'
 Source = 'VMware'
 OSVersion = 'Microsoft Windows Server 2019 Standard'
 SourceInstance = 'Cluster1'
}

Validate that
the Status is

one of the
predefined

values.

Validate that the
RemoteMethod is one of
the predefined values.

Validate that the UUID
is less than or equal to
255 characters.

Validate that
the Source is

one of the
predefined

values.

Validate that the SourceInstance
is less than or equal to 255
characters.

Build the data
mapping for the
SQL columns.

rite the
data to

the table.

Since Write-DbaDataTable doesn’t
have any output the data object, you
know which ones were added.

1817.4 Getting data from a table
New-PoshServer -Name 'Srv01' -UUID '001' @testData
New-PoshServer -Name 'Srv02' -UUID '002' @testData
New-PoshServer -Name 'Srv03' -UUID '003' @testData

Now that there is data in the database, let’s look at how you can retrieve it.

7.4 Getting data from a table
The Invoke-DbaQuery cmdlet from the dbatools module returns the results of a T-SQL
query to PowerShell. All you need to do is pass the information about the connection
(that is, SQL instance, database, credentials, etc.) along with the query. So, for example,
running the following snippet will return all the servers you just added to the table:

$DbaQuery = @{
 SqlInstance = "$($env:COMPUTERNAME)\SQLEXPRESS"
 Database = 'PoshAssetMgmt'
 Query = 'SELECT * FROM Servers'
}
Invoke-DbaQuery @DbaQuery

This query works fine for now because you only have a few entries in your table. But as
you add more servers to it, it will quickly become very resource-intensive. This is
because the query will return every single record from the table to PowerShell. This
will require you to use the Where-Object cmdlet to filter the data if you only want
specific servers—and doing that is horribly inefficient.

 By filtering your results before they get returned to PowerShell, you will not only
save on memory consumption by not having unneeded records sitting there waiting to
be filtered out, but it will also be exponentially faster. This is due to SQL’s ability
to optimize data retrieval. Through the use of query execution plans, indexes, and sta-
tistics, SQL can note the queries you run, which it can use in the future to retrieve
those results again, much faster. Some more modern versions even have automatic
indexing and optimization.

 When you use the Where-Object cmdlet, PowerShell loops through each record
one at a time to determine whether it needs to be filtered or not. This occurs at a
much slower and more resource-intensive rate. So, let’s look at how to filter the data
before it ever gets to PowerShell.

7.4.1 SQL where clause

To filter your data in a SQL query, you can add a where clause to it. Where clauses in
SQL allow you to filter on any column in the table. For example, if I want to get the
server named Srv01, I can use the following SQL query:

SELECT * FROM Servers WHERE Name = 'Srv01'

However, like with most things we deal with, you will want to make it dynamic. You can
do this by replacing the value 'Srv01' with a SQL variable. A SQL variable is declared
using the at symbol (@) in your query. You can then create a hashtable mapping the
actual values to the variables. You then pass this hashtable to the -SqlParameter

182 CHAPTER 7 Working with SQL
argument in the Invoke-DbaQuery cmdlet. This will then swap your variables for the
values when it executes in SQL:

$DbaQuery = @{
 SqlInstance = "$($env:COMPUTERNAME)\SQLEXPRESS"
 Database = 'PoshAssetMgmt'
 Query = 'SELECT * FROM Servers WHERE Name = @name'
 SqlParameter = @{name = 'Srv01'}
}
Invoke-DbaQuery @DbaQuery

While swapping the values for variables and then creating a hashtable with the values
may seem like a lot of extra steps, there are several very good reasons to do it this way:

 It checks that the correct data types are passed.
 It will automatically escape characters in your values that may cause issues in a

standard SQL string.
 It automatically converts data types, like DateTime, from PowerShell to SQL

format.
 It allows SQL to use the same query plan even with different values, making

things faster.
 It can prevent SQL injection attacks.

Since there are eight columns in the table, there may be dozens of different where
clause combinations you could want. So, in lieu of trying to guess the different where
clauses a person could want, you can use PowerShell to build it dynamically.

SQL injection attacks
A SQL injection attack is when an attacker is able to insert unwanted code into your
SQL queries. For example, you could dynamically build the SQL where clause by join-
ing strings together:

$query = "SELECT * FROM Servers WHERE Name = '$($Server)'"

If the value of the $Server variable is 'Srv01', it would create the query string:

SELECT * FROM Servers WHERE Name = 'Srv01'

The problem with this method is that it leaves you vulnerable. A person could inject
any value they wanted into the $Server variable, including malicious code, and your
SQL server would not know any different—for instance, if someone set the value of
$Server to "';Truncate table xyz;select '". In this case, your automation would
execute the following query, erasing all data from the table XYZ:

SELECT * FROM Servers WHERE Name = '';Truncate table xyz;select ''

By parameterizing the values, you prevent this. So, if someone happened to pass the
value "';Truncate table xyz;select '" as the name of a server, SQL would only
recognize it as a string with that value and not actually execute the malicious code.

1837.4 Getting data from a table
 Just like with the insert function, you need to start by determining your parame-
ters. And once again, you can create a one-for-one mapping between the columns and
the parameters.

 We can also make a couple of assumptions about the behavior of the where clause.
For instance, we will want to use -and, not -or, if multiple parameters are passed. You
will also want to allow it to be run without a where clause.

 Now that you know your parameters and how you want them to act, you can build
the logic shown in figure 7.2 to create and append your where clause to the SQL
query. One of the best ways to do this is by creating a string array that you populate
based on the parameters passed. The trick here is to only add the items to the where
clause if a value is passed to the parameter. You can do this by using the $PSBound-
Parameters variable.

The $PSBoundParameters variable is populated inside of every function by PowerShell
and is a hashtable of the parameters and the values you passed. If a parameter is not
used, there is no entry in the $PSBoundParameters variable. Therefore, you can loop
through the items in the $PSBoundParameters variable to build the where clause.

 However, there is one catch to using the $PSBoundParameters variable in this man-
ner. When you add the CmdletBinding to your function, it adds the common parame-
ters to it. So, for instance, if you added the Verbose switch to your command,
$PSBoundParameters would contain a key with the name Verbose. This would cause
your code to add an entry in the where clause for Verbose. To prevent this, you can
filter out any parameters added by the CmdletBinding by filtering names listed in the
[System.Management.Automation.Cmdlet]::CommonParameters property list. This
will ensure that only your defined parameters are used.

Foreach
PSBoundParameter

Is common
parameter

False

Where string
array

$where

SQL parameter
hash table

$SqlParameter

Key = @Key

$where

Key = value

$SqlParameter Figure 7.2 Create a string array for
the where clause and a hashtable
for the parameter values, allowing you
to dynamically create your SQL queries
at run time.

184 CHAPTER 7 Working with SQL
 By using the GetEnumerator() method on the $PSBoundParameters, you can loop
through each key pair in the hashtable and add the text for that column’s filter. The
text will be in the format “column operator variable” and added to a string array.

 You do not need to add the -and between the different clauses at this point. That
will be added at the end by using a join on the string array.

 As you loop through each item, you will also need to build a hashtable with the key
and the value for each parameter. For example, if you passed the parameter Name with
the value of 'Srv02', the where argument would look like Name = @Name. Then, the
hashtable entry would have the key Name with the value 'Srv02'.

 Once you have the where clause string built, it is time to add it to the query, keep-
ing in mind that you could run it without any filters. Therefore, you’ll need to check
whether there are any values to filter. Again, this can be done with a simple if condi-
tion to check the count of the where array, shown in figure 7.3. If it is greater than

Foreach
PSBoundParameter

Is common
parameter

False

Set query
string

Where string
count

Set query
string

> 0

Execute query

Return results

0

Where string
array

$where

SQL parameter
hash table

$SqlParameter

Key = @Key

$where

Key = value

$SqlParameter

Figure 7.3 Get-PoshServer
function with dynamic where
clause for SQL side filtering

1857.4 Getting data from a table
zero, then add the where clause. Finally, you can execute the Invoke-DbaQuery cmdlet
to run the query and return the results, as in the following listing.

Function Get-PoshServer {
 [CmdletBinding()]
 [OutputType([object])]
 param(
 [Parameter(Mandatory = $false)]
 [int]$ID,

 [Parameter(Mandatory = $false)]
 [string]$Name,

 [Parameter(Mandatory = $false)]
 [string]$OSType,

 [Parameter(Mandatory = $false)]
 [string]$OSVersion,

 [Parameter(Mandatory = $false)]
 [string]$Status,

 [Parameter(Mandatory = $false)]
 [string]$RemoteMethod,

 [Parameter(Mandatory = $false)]
 [string]$UUID,

 [Parameter(Mandatory = $false)]
 [string]$Source,

 [Parameter(Mandatory = $false)]
 [string]$SourceInstance
)

 [System.Collections.Generic.List[string]] $where = @()
 $SqlParameter = @{}
 $PSBoundParameters.GetEnumerator() |
 Where-Object { $_.Key -notin
 [System.Management.Automation.Cmdlet]::CommonParameters } |
 ForEach-Object {
 $where.Add("$($_.Key) = @$($_.Key)")
 $SqlParameter.Add($_.Key, $_.Value)
 }

 $Query = "SELECT * FROM " +
 $_PoshAssetMgmt.ServerTable

 if ($where.Count -gt 0) {
 $Query += " Where " + ($where -join (' and '))
 }

Listing 7.7 Get-PoshServer

Loop through each item in
the $PSBoundParameters

to create the where clause
while filtering out common

parameters.

Set the
default
query.

If the where clause
is needed, add it
to the query.

186 CHAPTER 7 Working with SQL
 Write-Verbose $Query

 $DbaQuery = @{
 SqlInstance = $_SqlInstance
 Database = $_PoshAssetMgmt.Database
 Query = $Query
 SqlParameter = $SqlParameter
 }

 Invoke-DbaQuery @DbaQuery
}

Go ahead and test it out with a few different combinations:

Import-Module '.\PoshAssetMgmt.psd1' -Force
Connect-PoshAssetMgmt
Get-PoshServer | Format-Table
Get-PoshServer -Id 1 | Format-Table
Get-PoshServer -Name 'Srv02' | Format-Table
Get-PoshServer -Source 'VMware' -Status 'Active' | Format-Table

7.5 Updating records
Now that you can insert and retrieve values, it is time to look at updating records. You
can update data using the Invoke-DbaQuery cmdlet, but unlike with retrieving data,
you will use an Update SQL statement. This new function, Set-PoshServer, will be a
combination of the Get and the New functions.

 To start with, you already built all the data validation into the New-PoshServer
function, all of which you can reuse in the Set-PoshServer function, except this time,
you are going to add two additional parameters: InputObject and ID. The ID parame-
ter is for the ID of an existing server entry, and the InputObject parameter will use
pipeline values from the Get-PoshServer function.

 Since the function will need either the ID or the InputObject to update a record,
you will need to ensure that at least one of them is included but not both at the same
time. To keep PowerShell from requiring both, you can use the ParameterSetName
attribute and assign different names for the InputObject and ID parameters. This
way, when the pipeline is used, it will not see the ID parameter as mandatory, and vice
versa. It will also keep someone from using both at the same time:

[Parameter(ValueFromPipeline = $true,ParameterSetName="Pipeline")]
[object]$InputObject,
[Parameter(Mandatory = $true,ParameterSetName="Id")]
[int]$ID,

All other parameters not defined with a parameter set can be used regardless of
whether the pipeline or the ID parameter is used.

Execute the query
and output the
results.

1877.5 Updating records
7.5.1 Passing pipeline data

Allowing values from pipelines is a great way to update multiple servers at once. For
example, say you changed the name of your VMware cluster. You can use the Get-
PoshServer function to get all the entries with the old cluster name and update them
to the new name in a single line. However, to ensure you properly process the pipeline
values, there is more required than just adding ValueFromPipeline to the parameter.

 When using pipeline data, you must add the begin, process, and end blocks to
your function, as shown in figure 7.4. When you pass values from the pipeline, the
begin and end blocks execute once, but the process block executes once for each
value passed. Without it, only the last value passed to the pipeline will process.

When the function in listing 7.8 executes, the begin block executes once, regardless
of how many items are in the pipeline. So, you use the begin block to set any variables
or logic that only needs to run once. Then, the process block is executed once for
each item in the pipeline. Once all the values in the process block finish, the end
block runs once. This can be used to create return data, close connections, etc.

Set update
query string

Set update
parameters

Begin Process
for each asset

Return $Return

End

Array to hold
update output

$Return

ParameterSet-
name = ID

Get-
maintenance

window

True

Set SQL
parameters

Calculate
end time

Invoke update query

Add SQL
parameters to

update
parameters

Add query output

$Return

Figure 7.4 Set-PoshServer function with the ability to use a pipeline or an ID number to identify which
item to update

188 CHAPTER 7 Working with SQL
Function Set-PoshServer {
 [CmdletBinding()]
 [OutputType([object])]
 param
 (
 [Parameter(ValueFromPipeline = $true,
 ParameterSetName = "Pipeline")]
 [object]$InputObject,
 [Parameter(Mandatory = $true,
 ParameterSetName = "ID")]
 [int]$ID,

 [Parameter(Mandatory = $false)]
 [ValidateScript({ $_.Length -le 50 })]
 [string]$Name,

 [Parameter(Mandatory = $false)]
 [ValidateSet('Windows', 'Linux')]
 [string]$OSType,

 [Parameter(Mandatory = $false)]
 [ValidateScript({ $_.Length -le 50 })]
 [string]$OSVersion,

 [Parameter(Mandatory = $false)]
 [ValidateSet('Active', 'Depot', 'Retired')]
 [string]$Status,

 [Parameter(Mandatory = $false)]
 [ValidateSet('WSMan', 'SSH', 'PowerCLI', 'HyperV', 'AzureRemote')]
 [string]$RemoteMethod,

 [Parameter(Mandatory = $false)]
 [ValidateScript({ $_.Length -le 255 })]
 [string]$UUID,

 [Parameter(Mandatory = $false)]
 [ValidateSet('Physical', 'VMware', 'Hyper-V', 'Azure', 'AWS')]
 [string]$Source,

 [Parameter(Mandatory = $false)]
 [ValidateScript({ $_.Length -le 255 })]
 [string]$SourceInstance
)
 begin {
 [System.Collections.Generic.List[object]] $Return = @()
 [System.Collections.Generic.List[string]] $Set = @()
 [System.Collections.Generic.List[string]] $Output = @()
 $SqlParameter = @{ID = $null}

 $PSBoundParameters.GetEnumerator() |
 Where-Object { $_.Key -notin @('ID', 'InputObject') +
 [System.Management.Automation.Cmdlet]::CommonParameters } |

Listing 7.8 Set-PoshServer

Create the SQL
Parameters hashtable to

hold the values for the SQL
variables, starting with
a null value for the ID.

Loop through each item in the
$PSBoundParameters to create
the where clause while filtering

out common parameters and the
ID and InputObject parameters.

1897.5 Updating records
 ForEach-Object {
 $set.Add("$($_.Key) = @$($_.Key)")
 $Output.Add("deleted.$($_.Key) AS Prev_$($_.Key),
 inserted.$($_.Key) AS $($_.Key)")
 $SqlParameter.Add($_.Key, $_.Value)
 }

 $query = 'UPDATE [dbo].' +
 "[$($_PoshAssetMgmt.ServerTable)] " +
 'SET ' +
 ($set -join (', ')) +
 ' OUTPUT @ID AS ID, ' +
 ($Output -join (', ')) +
 ' WHERE ID = @ID'

 Write-Verbose $query

 $Parameters = @{
 SqlInstance = $_SqlInstance
 Database = $_PoshAssetMgmt.Database
 Query = $query
 SqlParameter = @{}
 }

 if ($PSCmdlet.ParameterSetName -eq 'ID') {
 $InputObject = Get-PoshServer -Id $Id
 if (-not $InputObject) {
 throw "No server object was found for id '$Id'"
 }
 }
 }
 process {
 $SqlParameter['ID'] = $InputObject.ID

 $Parameters['SqlParameter'] = $SqlParameter
 Invoke-DbaQuery @Parameters | ForEach-Object { $Return.Add($_) }
 }
 end {
 $Return
 }
}

Starting with the begin block, you can declare an array to store the results from each
update and set the string for the query. Just like with the Get-PoshServer function,
you will build your query dynamically, except this time, instead of building the where
clause, you are building the SET values. You can also include a second string array to
build an OUTPUT clause on the update query to return the values and compare the
field before and after. For example, to update the Source column for a server, your
query should look like the following snippet:

UPDATE [dbo].[Server]
SET Source = @Source

Add parameters
other than the ID

or InputObject to the
Set clause array and

SqlParameters.

Set the
query with the

output of the
changed items.

Set the parameters
for the database
update command.

If the ID was passed,
check that it matches
an existing server.

Update the
ID for this
InputObject.

Update SQL
parameters and

execute the
update.

Return the
changes.

190 CHAPTER 7 Working with SQL
OUTPUT @ID AS ID, deleted.Source AS Prev_Source,
 inserted.Source AS Source
WHERE ID = @ID

When building the query, you will also want to ensure that you exclude the ID and
InputObject parameters from being added to the query and hashtable, just like you
do with the common parameters.

 Next, you can set the parameters for the Invoke-DbaQuery command since these will
be the same for each update. Finally, if the ID parameter is passed and not the Input-
Object, you will want to check that it is a valid ID number before trying to update it.

 There are a few ways to test whether the invoking command included the ID
parameter or the pipeline. But the best way is by check the value of the Parameter-
SetName property on the $PSCmdlet variable. The $PSCmdlet variable is automatically
created when a function is executed and contains the information about the invoca-
tion. If the property is equal to ID, you can guarantee the ID parameter was used. If
you simply check for the existence of the $ID variable, you could run into a false posi-
tive if someone has set a global variable with that same name.

 Next, in the process block, you can execute the update query for each Input-
Object. Here all you need to do is add the value for the ID to the SQL parameters and
then add the SQL parameters to the Invoke-DbaQuery parameters.

 Now that you have all the values set for the update statement, you can pass it to the
Invoke-DbaQuery cmdlet and add the output to the $Return array. Finally, in the end
block, you can write the $Return to the output stream.

 Now you can test using both an ID and the pipeline:

Import-Module '.\PoshAssetMgmt.psd1' -Force
Connect-PoshAssetMgmt
Set-PoshServer -Id 1 -Status 'Retired' -Verbose
Get-PoshServer -SourceInstance 'Cluster1' | Set-PoshServer -SourceInstance

'Cluster2'

7.6 Keeping data in sync
One of the biggest challenges with any list, spreadsheet, or database is keeping data
up to date. Unfortunately, since every environment is different, I cannot give you one
fool-proof way to keep all your data update to date, but I can provide some tips.

 The first and most important tip is to create a schedule for syncing your data. The
more often you do this, the better your data will be, and it will be much easier to spot
errors or omissions. If you can, the best way is to set up a scheduled job to run daily to
check and confirm your data.

 The second tip is that you should only remove data when absolutely necessary. You
may have noticed that we did not create a Remove-PoshServer function. This is
because the removal of asset information should be carefully controlled. This is why
there is a retired status for servers. You should only remove items after a predeter-
mined amount of time or if bad data gets entered.

1917.6 Keeping data in sync
 Right up there with the other tips is to watch out for duplicate data. Because of the
way the New-PoshServer function is written, it will allow you to add the same server in
the system over and over. Again, this is by design because you could very well have two
servers with the same name or even the same UUID. (Trust me, I’ve seen enough
cloned VMs in my days not to doubt this.) So, when you are building your automation
to sync the data, you will want to build in checks to ensure the data is unique to your
environment.

7.6.1 Getting server data

The way you retrieve your server information will depend very much on the type of
servers and hypervisors you have. For example, VMware PowerCLI will return the guest
operating system from the Get-VM cmdlet. However, the Get-VM cmdlet for Hyper-V
does not, but you can get the VM ID within the running VM. Again, this is another
topic that could be a chapter on its own. But to get you started, I have included a cou-
ple of samples in the Helper Scripts folder for this chapter for different hypervisors
and clouds.

 Another option is to gather the data from external sources and export it to a CSV or
JSON file. Then, import that file into PowerShell and run the update sync. This method
works well for disconnected networks. You can test this method out for yourself with the
following listing and the SampleData.CSV file from the Helper Scripts folder.

$ServerData = Import-Csv ".\SampleData.CSV"

$ServerData | ForEach-Object {
 $values = @{
 Name = $_.Name
 OSType = $_.OSType
 OSVersion = $_.OSVersion
 Status = 'Active'
 RemoteMethod = 'PowerCLI'
 UUID = $_.UUID
 Source = 'VMware'
 SourceInstance = $_.SourceInstance
 }

 $record = Get-PoshServer -UUID $_.UUID

 if($record){
 $record | Set-PoshServer @values
 }
 else{
 New-PoshServer @values
 }
}

Listing 7.9 Sync from external CSV

Import the data
from the CSV.

Get all
the VMs.

Get the values for all
items and map them to
the parameters for the
Set-PoshServer and New-
PoshServer functions.

Run the Get-PoshServer
to see whether a record
exists with a matching
UUID.

If the record exists,
update it; otherwise,
add a new record.

192 CHAPTER 7 Working with SQL
7.7 Setting a solid foundation
Building your solutions using a relational database has several advantages. Not only is
it set up with better backup and recovery, speed, and reliability, but it also makes
things easier on you. For example, you do not need to worry about building anything
into your code to deal with permissions. Just let SQL handle it.

 Also, your functions will run much more smoothly because you can filter results
before they ever get to PowerShell. Imagine if this was all in a CSV file. You would
need to import all the data into PowerShell, convert everything that is not a string
back to its indented data type, and rely on pipeline filtering. Finally, as you will see in
the next few chapters, having data stored in a relational database will set you up nicely
for future growth by allowing you to create interactions with the database outside of a
standard module like this.

Summary
 Using a relational database is more reliable than shared files.
 Most relational databases can handle permissions on their own without you

needing to code anything specific for it.
 You always want to validate your data before writing it to a database.
 Setting variables as parameters in a SQL script helps with data type conversions,

escape characters, and preventing SQL injection attacks.
 When using pipelines, include the process block so each item in the pipeline is

processed.

Cloud-based automation
With most companies embracing, at the very least, a hybrid approach to cloud-
based computing, a lot of IT professionals have had to quickly adapt to keep up.
However, at the same time, it has opened up an entirely new set of tools that you
can use to perform your automations.

 When you hear the words cloud-based automation, that can refer to two different
things. One is the automation of cloud-based assets such as virtual machines (VMs)
or PaaS services. The other, and the one we will be focusing on, is using a cloud-
based tool to perform automations. And, as you will learn in this chapter, those
automations are not limited to just cloud-based resources.

 You may remember that way back in chapter 2, we created a script to clean up
log files by adding them to a ZIP archive. I mentioned that you could then copy
those archives to a cloud-based storage container. You also saw in chapter 3 how
you can use tools like Task Scheduler and Jenkins to schedule jobs like this. In this

This chapter covers
 Setting up Azure Automation

 Creating PowerShell runbooks in Azure Automation

 Executing runbooks from Azure to on-premises
environments
193

194 CHAPTER 8 Cloud-based automation
chapter, we will take it a step further and use Azure Automation to copy those archive
files from your on-premises server to Azure Blob storage.

 Azure Automation is a cloud-based automation platform that allows you to run
serverless PowerShell scripts directly in Azure. However, it is not just limited to Azure-
based executions. It can use hybrid runbook workers to execute these scripts, known as
runbooks, on individual servers or groups of servers. This allows you to store and sched-
ule scripts in Azure to run on servers in your on-premises environment or even in
other clouds.

8.1 Chapter resources
This chapter is divided into three parts. First, you will create the Azure resources
required to support the automation. Then, you will set up a local server as a hybrid
runbook worker. The final part will be the creation of the automation in Azure.

 If you do not have an Azure subscription, you can sign up for a free 30-day trial.
Since Azure Automation is a cloud-based service, there are fees associated with job
run times. At the time of this writing, and ever since Azure Automation was intro-
duced, it provides 500 minutes a month for free. After you use the 500 minutes, the
cost is a fraction of a cent per minute. In September of 2021, it is US$0.002, which
comes out to just under $90 a month if you have an automation that runs 24/7. For
the purposes of this chapter, we will stay well under 500 minutes.

 In addition to the Azure subscription, you will also need a server running Windows
Server 2012 R2 or greater with TCP port 443 access to the internet. This server will
execute scripts from Azure in your on-premises environment.

 Since this chapter deals with hybrid scenarios, there will be different places where
you will need to execute different code snippets and scripts. Also, some of it will
require PowerShell 5.1 as Azure Automation does not fully support PowerShell 7 yet.

 To help keep everything straight, I will include callouts for which environment and
version of PowerShell to use. For this chapter, there will be three different environments:

 Any device with PowerShell 7 installed. Most likely, the one you have used
throughout this book.

 The server that you will connect to Azure for the hybrid scenario. All snippets
for this will use PowerShell 5.1 and ISE.

 The script editor in the Azure Automation portal.

The first two can be the same device, but make sure to pay attention to when you need
to use Windows PowerShell 5.1 versus PowerShell 7.

8.2 Setting up Azure Automation
Setting up an Azure Automation account can be as simple as going to the Azure por-
tal, clicking Create Resource, and then running through the wizard to create a new
automation account. This approach will work if you plan on only doing cloud-based
automations. However, if you want to create hybrid runbook workers, you need to do a
few more things.

1958.2 Setting up Azure Automation
 The basic organizational structure, for those not familiar with Azure, is a single Azure
Active Directory (Azure AD) Tenant, with subscriptions and resources underneath it.
The tenant is where all your user accounts, groups, and service principal are stored.

 Subscriptions are where you create Azure resources. All Azure consumption is
billed at the Subscription level. You can have multiple subscriptions under one tenant.

 Next are the Resource Groups, shown in figure 8.1. Resources like Azure Automa-
tion accounts or VMs cannot be added directly to a subscription. Instead, they are
added to Resource Groups. Resource Groups allow you to group your individual
resources into logical collections. They also help with setting permissions since all
Azure resources inherit permissions down, and there is no way to block inheritance or
create deny permissions.

For this chapter, we will create a brand-new Resource Group so you can keep everything
separate from any other Azure resources you may have. Then, you will create the
required Azure resources. For this automation, we will create the following resources:

 Azure Automation account—This is the automation platform that will hold and exe-
cute your scripts.

 Log Analytics Workspace—This provides the agent for creating a hybrid runbook
worker for executing Azure Automation scripts in your on-premises environment.

 Storage Account—This will be used to store the files uploaded from the automation.

8.2.1 Azure Automation

As mentioned previously, Azure Automation is a cloud-based automation platform with
the ability to run automations in the cloud, on-premises, or in other clouds. The auto-
mations are created as runbooks. A runbook can be a script written in PowerShell 5.1,
PowerShell Workflow, Python 2, or Python 3. In addition, there are also graphical run-
books that allow you to drag and drop different actions. For our automation, we will
be creating a PowerShell runbook.

Storage
account

Log
analytics

Resource
group

Automation
account

Subscription

Figure 8.1 Azure resources required
for the storage upload automation. All
resources are grouped into a single
Resource Group, which resides under
a subscription.

196 CHAPTER 8 Cloud-based automation
When you execute a runbook in Azure Automation, you can choose to execute it in
Azure or on a hybrid runbook worker, as you can see in figure 8.2. The hybrid run-
book worker is what allows Azure Automation to access resources in your on-premises
environment. When you execute a runbook on a hybrid runbook worker, the runbook
is delivered to the machine for execution. This gives you one central place to store
and maintain your scripts, regardless of where they need to run.

Azure Automation also has the ability to store different assets for your runbooks to
use. These include modules, variables, credentials, and certificates.

PowerShell 7
While I was writing this book, Microsoft added PowerShell 7 as a preview feature in
Azure Automation. So, while all the PowerShell runbooks in this chapter were writ-
ten and tested in PowerShell 5.1, you should be able to run them in either version.
As of April 2022, there is an additional prompt to select the PowerShell version
when creating a new runbook.

On-premises

Hybrid runbook
worker

Azure

Automation account Runbook
copy

Local resources

Azure resources Office 365

PowerShell
runbook

Figure 8.2 Automation account hybrid runbook worker automation flow, showing how runbooks can
be executed either in the cloud or directly in your on-premises environment

1978.2 Setting up Azure Automation
8.2.2 Log Analytics

A lot of the functionality in Azure Automation is tightly integrated with Log Analytics,
including the hybrid runbook workers. To make a server a hybrid runbook worker, the
Microsoft Monitoring Agent (MMA) must be installed and set to a Log Analytics work-
space with the Azure Automation solution added.

 Log Analytics is a monitoring and data collection tool in Azure. Most services in
Azure have the ability to send diagnostic and metric logs to Log Analytics. You can then
search these logs using Kusto queries and create alerts based on query results. (Kusto is
an Azure-based query similar to SQL but designed for ad hoc big data queries.) You can
also send logs from on-premises or VMs in other clouds via MMA. When MMA commu-
nicates with a Log Analytics workspace with the Automation solution added, it will
download the files you need to make the server a hybrid runbook worker.

 The process to set up Azure Automation and add a server as a hybrid runbook
worker is as follows:

1 Create an Azure Automation account.
2 Create a Log Analytics workspace.
3 Add the Automation Solution to the workspace.
4 Install the MMA on an on-premises server.
5 Connect the MMA to the Log Analytics workspace.
6 The MMA will download the hybrid runbook worker files and PowerShell module.
7 Use the hybrid runbook worker module to connect to the Azure Automation

account.

Even if you are not planning to use hybrid runbook workers, setting a Log Analytics
workspace is a good idea because you can forward the logs from your automations to
it. This will give you the ability to search your job executions, outputs, and errors eas-
ily. Plus, it will allow you to create alerts for failed jobs or errors.

8.2.3 Creating Azure resources

Before you can do anything, you must first install the Azure PowerShell modules and
connect to your Azure subscription.

 There are several methods for connecting to Azure via PowerShell. You can have it
prompt you to authenticate. You can pass a credential object to the command or use a
service principal and certificate. For now, we just want to install the Azure modules
and connect by having it prompt you.

 To support this automation, you will need to create a Resource Group, Azure Auto-
mation account, Log Analytics workspace, and an Azure Storage account. Different
resources have different naming requirements. For most Azure resources, the name
can contain only letters, numbers, and hyphens. In addition, the name must start with
a letter, and it must end with a letter or a number. And most have a length limit. For
example, Log Analytics must be between 4 and 63 characters, and Azure Automation
is 6–50. However, storage accounts present their own unique naming requirements.

198 CHAPTER 8 Cloud-based automation
 A storage account’s name must be 3–24 characters long and contain only lowercase
letters and numbers. And, most important, the name must be unique across all existing
storage account names in Azure—not your Azure but all of Azure. So, a little trick I’ve
developed is to add a timestamp to the end of the name. Also, since all of these resources
are being used for the same automation, you can give them all the same name—that is, as
long as the name meets the requirements of the resource with the strictest standard. For
the most current version of the Azure naming rules, refer to the Microsoft Docs page
Naming Rules And Restrictions For Azure Resources (http://mng.bz/JV0Q).

 You will also need to choose a region when setting up Azure resources. Some
resources are only available in certain regions, and some have regional dependencies
when interacting with other resources. For example, to link your Azure Automation
account to a Log Analytics workspace, they need to be in compatible regions. Gener-
ally, this means that they are in the same region, but there are exceptions to this rule.
For instance, you can only link Log Analytics in EastUS to Azure Automation in EastUS2.
You can see a listing of compatible regions in table 8.1.

Table 8.1 Supported regions for linked Automation accounts and Log Analytics workspaces

Log Analytics workspace region Azure Automation region

AustraliaEast AustraliaEast

AustraliaSoutheast AustraliaSoutheast

BrazilSouth BrazilSouth

CanadaCentral CanadaCentral

CentralIndia CentralIndia

CentralUS CentralUS

ChinaEast2 ChinaEast2

EastAsia EastAsia

EastUS2 EastUS

EastUS EastUS2

FranceCentral FranceCentral

JapanEast JapanEast

KoreaCentral KoreaCentral

NorthCentralUS NorthCentralUS

NorthEurope NorthEurope

NorwayEast NorwayEast

SouthCentralUS SouthCentralUS

SoutheastAsia SoutheastAsia

http://mng.bz/JV0Q

1998.2 Setting up Azure Automation
For the complete list of supported mappings, refer to the Microsoft Docs (http://mng
.bz/wy6g).

NOTE All code snippets in this section use PowerShell 7.

Go ahead and open a PowerShell console or VS Code, install the required Azure Pow-
erShell modules, and import them to your local session:

Install-Module -Name Az
Install-Module -Name Az.MonitoringSolutions
Import-Module -Name Az,Az.MonitoringSolutions

Next, set the variables to use throughout this section. Feel free to change the values to
whatever naming conventions you would like to use:

$SubscriptionId = 'The GUID of your Azure subscription'
$DateString = (Get-Date).ToString('yyMMddHHmm')
$ResourceGroupName = 'PoshAutomate'
$WorkspaceName = 'poshauto' + $DateString
$AutomationAccountName = 'poshauto' + $DateString
$StorageAccountName = 'poshauto' + $DateString
$AutomationLocation = 'SouthCentralUS'
$WorkspaceLocation = 'SouthCentralUS'

Then connect to your subscription:

Connect-AzAccount -Subscription $SubscriptionId

Now that you are connected to your Azure subscription, you can create your
resources, starting with the resource group:

New-AzResourceGroup -Name $ResourceGroupName -Location $AutomationLocation

SwitzerlandNorth SwitzerlandNorth

UAENorth UAENorth

UKSouth UKSouth

USGovArizona USGovArizona

USGovVirginia USGovVirginia

WestCentralUS WestCentralUS

WestEurope WestEurope

WestUS WestUS

WestUS2 WestUS2

Table 8.1 Supported regions for linked Automation accounts and Log Analytics workspaces (continued)

Log Analytics workspace region Azure Automation region

http://mng.bz/wy6g
http://mng.bz/wy6g
http://mng.bz/wy6g

200 CHAPTER 8 Cloud-based automation
Then you can create the Log Analytics workspace, Azure Automation account, and
Storage account inside the resource group:

$WorkspaceParams = @{
 ResourceGroupName = $ResourceGroupName
 Name = $WorkspaceName
 Location = $WorkspaceLocation
}
New-AzOperationalInsightsWorkspace @WorkspaceParams

$AzAutomationAccount = @{
 ResourceGroupName = $ResourceGroupName
 Name = $AutomationAccountName
 Location = $AutomationLocation
 Plan = 'Basic'
}
New-AzAutomationAccount @AzAutomationAccount

$AzStorageAccount = @{
 ResourceGroupName = $ResourceGroupName
 AccountName = $StorageAccountName
 Location = $AutomationLocation
 SkuName = 'Standard_LRS'
 AccessTier = 'Cool'
}
New-AzStorageAccount @AzStorageAccount

You will also need to add the Azure Automation solution to the Log Analytics work-
space. This is what will allow you to create hybrid runbook workers:

$WorkspaceParams = @{
 ResourceGroupName = $ResourceGroupName
 Name = $WorkspaceName
}
$workspace = Get-AzOperationalInsightsWorkspace @WorkspaceParams

$AzMonitorLogAnalyticsSolution = @{
 Type = 'AzureAutomation'
 ResourceGroupName = $ResourceGroupName
 Location = $workspace.Location
 WorkspaceResourceId = $workspace.ResourceId
}
New-AzMonitorLogAnalyticsSolution @AzMonitorLogAnalyticsSolution

8.2.4 Authentication from Automation runbooks

When you execute a runbook in Azure Automation, it does not by default have access to
any other Azure resources. When Azure Automation executes the runbook on a hybrid
runbook worker, it has access to the local system, but that is it. If you need your runbook
to connect to different Azure resources or other local systems, you must set it up to do so.

 To access Azure-based resources, you can create a managed identity. A managed
identity is an Azure AD object that you can assign to the Automation account. Then,

2018.2 Setting up Azure Automation
when your automation executes, it can run under the context of this managed iden-
tity. You can think of this as the equivalent to setting the run as account in a scheduled
task or Cron job from chapter 3.

 You can then give this identity permissions to any Azure resources just as you
would with any user account. The best part about it is that there are no passwords or
secrets required. You just assign it to the Automation account, and your runbooks can
use it. We will discuss the security implications of this later in this chapter.

 We will create a system-assigned managed identity for our automation and give it
contributor access to the storage account:

$AzStorageAccount = @{
 ResourceGroupName = $ResourceGroupName
 AccountName = $StorageAccountName
}
$storage = Get-AzStorageAccount @AzStorageAccount

$AzAutomationAccount = @{
 ResourceGroupName = $ResourceGroupName
 AutomationAccountName = $AutomationAccountName
 AssignSystemIdentity = $true
}
$Identity = Set-AzAutomationAccount @AzAutomationAccount

$AzRoleAssignment = @{
 ObjectId = $Identity.Identity.PrincipalId
 Scope = $storage.Id
 RoleDefinitionName = "Contributor"
}
New-AzRoleAssignment @AzRoleAssignment

8.2.5 Resource keys

Now that you have all the resources created, you need to get the variable and keys
required to connect your local server to the Log Analytics workspace and Azure Auto-
mation account to make it a hybrid runbook worker. You will need the Log Analytics
workspace ID and key and the Automation account’s URL and key. Luckily, this is
something we can get via PowerShell. After running this command, save the output, as
you will need it to set up the hybrid runbook worker in the next section:

$InsightsWorkspace = @{
 ResourceGroupName = $ResourceGroupName
 Name = $WorkspaceName
}
$Workspace = Get-AzOperationalInsightsWorkspace @InsightsWorkspace

$WorkspaceSharedKey = @{
 ResourceGroupName = $ResourceGroupName
 Name = $WorkspaceName
}
$WorspaceKeys = Get-AzOperationalInsightsWorkspaceSharedKey

@WorkspaceSharedKey

202 CHAPTER 8 Cloud-based automation
$AzAutomationRegistrationInfo = @{
 ResourceGroupName = $ResourceGroupName
 AutomationAccountName = $AutomationAccountName
}
$AutomationReg = Get-AzAutomationRegistrationInfo

@AzAutomationRegistrationInfo
@"
`$WorkspaceID = '$($Workspace.CustomerId)'
`$WorkSpaceKey = '$($WorspaceKeys.PrimarySharedKey)'
`$AutoURL = '$($AutomationReg.Endpoint)'
`$AutoKey = '$($AutomationReg.PrimaryKey)'
"@

8.3 Creating a hybrid runbook worker
Now that you have all the Azure resources created, you can create a hybrid runbook
worker that will allow you to execute runbooks locally. To do this, you need to install
MMA, link it to the Log Analytics workspace, and then link it to the Automation account.

 Hybrid runbook workers can be Linux or Windows servers, but the following
instructions are for a Windows-based server to not overcomplicate things. For Linux,
the process is the same but with shell commands.

NOTE All code listings in this section must be run on the server on which you
are making a hybrid runbook worker and will use Windows PowerShell 5.1.

On the server on which you want to make a hybrid runbook worker, open PowerShell
ISE as an administrator. Then, add the workspace ID and key to the following listing
to install the Log Analytics agent using PowerShell.

$WorkspaceID = 'YourId'
$WorkSpaceKey = 'YourKey'

$agentURL = 'https://download.microsoft.com/download' +
 '/3/c/d/3cd6f5b3-3fbe-43c0-88e0-8256d02db5b7/MMASetup-AMD64.exe'

$FileName = Split-Path $agentURL -Leaf
$MMAFile = Join-Path -Path $env:Temp -ChildPath $FileName
Invoke-WebRequest -Uri $agentURL -OutFile $MMAFile | Out-Null

$ArgumentList = '/C:"setup.exe /qn ' +
 'ADD_OPINSIGHTS_WORKSPACE=0 ' +
 'AcceptEndUserLicenseAgreement=1"'
$Install = @{
 FilePath = $MMAFile
 ArgumentList = $ArgumentList
 ErrorAction = 'Stop'
}
Start-Process @Install -Wait | Out-Null

Listing 8.1 Install Microsoft Monitoring Agent

Set the parameters for
your workspace. URL for the

agent installer

Download
the agent.

Install the
agent.

2038.3 Creating a hybrid runbook worker

the a
config

ob
$Object = @{
 ComObject = 'AgentConfigManager.MgmtSvcCfg'
}
$AgentCfg = New-Object @Object

$AgentCfg.AddCloudWorkspace($WorkspaceID,
 $WorkspaceKey)

Restart-Service HealthService

Once the install completes, you will need to wait a couple of minutes for it to perform
the initial sync. This initial sync will download the hybrid runbook worker files, allow-
ing you to connect the local server to Azure Automation.

 When creating hybrid runbook workers, you need to include a group name. The
group allows you to create a pool of workers for load balancing and high availability.
However, you have no control over which individual server in that group will execute a
script. Therefore, if you need to execute a script on a specific server, you can use
PowerShell remoting or put it in a hybrid worker group on its own.

 In our scenario where we are copying a file from the local system to the cloud, it
would make sense to create a single hybrid runbook worker so it can just go from the
local system to the cloud. However, suppose the files are saved to a network share. In
that case, you could create multiple hybrid runbooks workers in a single group where
anyone could execute the runbook.

 To create your hybrid runbook worker, add the Automation URL and key you
retrieved earlier and run the following listing to link the local server with your Auto-
mation account.

$AutoUrl = ''
$AutoKey = ''
$Group = $env:COMPUTERNAME

$Path = 'HKLM:\SOFTWARE\Microsoft\System Center ' +
 'Operations Manager\12\Setup\Agent'
$installPath = Get-ItemProperty -Path $Path |
 Select-Object -ExpandProperty InstallDirectory
$AutomationFolder = Join-Path $installPath 'AzureAutomation'

$ChildItem = @{
 Path = $AutomationFolder
 Recurse = $true
 Include = 'HybridRegistration.psd1'
}
$modulePath = Get-ChildItem @ChildItem |
 Select-Object -ExpandProperty FullName

Import-Module $modulePath

Listing 8.2 Create a hybrid runbook worker

Load
gent
 com
ject. Set the workspace

ID and key.

Restart the agent for the
changes to take effect.

Set the parameters for your
Automation account.

Find the directory the
agent was installed in.

Search the folder for the
HybridRegistration module.

Import the
HybridRegistration module.

204 CHAPTER 8 Cloud-based automation
$HybridRunbookWorker = @{
 Url = $AutoUrl
 key = $AutoKey
 GroupName = $Group
}
Add-HybridRunbookWorker @HybridRunbookWorker

8.3.1 PowerShell modules on hybrid runbook workers

When building your runbooks for use in Azure Automation, you have to be mindful
of your module dependencies, especially when executing on a hybrid runbook
worker. You can import modules to your automation account directly from the
PowerShell gallery and even upload your own custom ones. These modules are
automatically imported when your runbook executes in Azure. However, these mod-
ules do not transfer to your hybrid runbook workers. Therefore, you need to manu-
ally ensure that you have the correct module versions installed on the hybrid runbook
workers.

 For this automation, you will be uploading a file from the local file system to Azure
Blob. Therefore, you will need the Az.Storage module installed on the hybrid run-
book worker. This module is part of the default Az PowerShell module installation.

 Also, when installing modules on the hybrid runbook worker, you must scope
them to install for all users. Otherwise, your automation may not be able to find
them:

Install-Module -Name Az -Scope AllUsers

8.4 Creating a PowerShell runbook
When creating a PowerShell runbook, you have two options. You can write the script
locally using an IDE like VS Code or ISE and import it to the Automation account, or
you can write it directly in the portal using the runbook editor. The advantage of the
local development is that testing is much easier and quicker. The disadvantage is that
there are some commands unique to Azure Automation for importing assets like cre-
dentials and variables. For this reason, I recommend using a hybrid approach. You
can develop the script locally to get all the functionality working, then transfer it to
Azure Automation, and update it to use any assets you need.

 To see how this works, you will build the script for uploading the archive files to
Azure Blob storage locally. Then, you will import it to the Automation account and
update it to use the managed identity.

 Since the purpose of this chapter is to show you how to use Azure Automation and
not all the ins and outs of Azure Blob storage, the script I provide in listing 8.3 is rela-
tively simple. It will check a folder for ZIP files, upload them to the Azure Blob, and
then delete them from the local system. Figure 8.3 illustrates the process. I have also
included the script New-TestArchiveFile.ps1 in the Helper Scripts for this chapter that
you can use to make some test ZIP files.

Register the local
machine with the
Automation account.

2058.4 Creating a PowerShell runbook
Set local
variables

Set Azure
storage variables

Connect to Azure

Already
uploaded

Upload to blob

False

Delete file

Get ZIP files

Get Azure
storage
context

Create containerContainer exists

For each file

Yes

No

Figure 8.3 ZIP file upload
process when running locally

206 CHAPTER 8 Cloud-based automation
As with any cloud-based automation, the first thing we need to do is connect to the
account. For testing, you can use the Connect-AzAccount cmdlet without any creden-
tials or other authentication parameters. This will cause it to prompt you to authenticate
manually. You will change this to automate the authentication once it is imported as
a runbook.

 To upload to Azure Storage, you must create a context object using a storage
account key. The Azure Storage cmdlets use this context to authenticate with the
storage account. You can create all sorts of different keys with different permissions.
By default, there will be two keys with full permissions. We will use one of these for
this automation.

 Next, you need a container to put the files in, similar to a folder on the local file
system. You can use different containers for organizing files and also for controlling
access for different files. Then, finally, the script will check whether the file already
exists in Azure, and if not, it will upload it and then delete it.

 You may notice here that we are not doing any checks before deleting the file. That
is because the Set-AzStorageBlobContent cmdlet has built-in hash checks. Therefore,
if something goes wrong during the upload process, it will return an error. You can then
stop the removal by having the execution terminate if there is an error.

NOTE Listing 8.3 should be created and tested on the hybrid runbook worker
using Windows PowerShell 5.1.

$FolderPath = 'L:\Archives'
$Container = 'devtest'

$ResourceGroupName = 'PoshAutomate'
$StorageAccountName = ''
$SubscriptionID = ''

Connect-AzAccount
Set-AzContext -Subscription $SubscriptionID

$ChildItem = @{
 Path = $FolderPath
 Filter = '*.zip'
}
$ZipFiles = Get-ChildItem @ChildItem

$AzStorageAccountKey = @{
 ResourceGroupName = $ResourceGroupName
 Name = $StorageAccountName
}
$Keys = Get-AzStorageAccountKey @AzStorageAccountKey
$AzStorageContext = @{
 StorageAccountName = $StorageAccountName
 StorageAccountKey = $Keys[0].Value

Listing 8.3 Upload ZIP files to Azure Blob

Set the local variables.

Set the Azure
Storage variables.

Connect to Azure.

Get all the ZIP
files in the folder.

Get the storage keys and
create a context object that
will be used to authenticate
with the storage account.

2078.4 Creating a PowerShell runbook
}
$Context = New-AzStorageContext @AzStorageContext

$AzStorageContainer = @{
 Name = $Container
 Context = $Context
 ErrorAction = 'SilentlyContinue'
}
$containerCheck = Get-AzStorageContainer @AzStorageContainer
if(-not $containerCheck){
 $AzStorageContainer = @{
 Name = $Container
 Context = $Context
 ErrorAction = 'Stop'
 }
 New-AzStorageContainer @AzStorageContainer| Out-Null
}

foreach($file in $ZipFiles){
 $AzStorageBlob = @{
 Container = $container
 Blob = $file.Name
 Context = $Context
 ErrorAction = 'SilentlyContinue'
 }
 $blobCheck = Get-AzStorageBlob @AzStorageBlob
 if (-not $blobCheck) {
 $AzStorageBlobContent = @{
 File = $file.FullName
 Container = $Container
 Blob = $file.Name
 Context = $Context
 Force = $true
 ErrorAction = 'Stop'
 }
 Set-AzStorageBlobContent @AzStorageBlobContent
 Remove-Item -Path $file.FullName -Force
 }
}

After successfully testing the script, you can save it as a ps1 file and upload it to Azure
Automation:

$AzAutomationRunbook = @{
 Path = 'C:\Path\Upload-ZipToBlob.ps1'
 ResourceGroupName = $ResourceGroupName
 AutomationAccountName = $AutomationAccountName
 Type = 'PowerShell'
 Name = 'Upload-ZipToBlob'
 Force = $true
}
$import = Import-AzAutomationRunbook @AzAutomationRunbook

Go ahead and run the New-TestArchiveFile.ps1 script again on the hybrid runbook
worker to make a new ZIP file for testing through Azure.

Check to see whether
the container exists. If
it does not, create it.

Check whether the file already
exists in the container. If not,
upload it, and then delete it
from the local server.

Upload the file to
Azure storage.

208 CHAPTER 8 Cloud-based automation
8.4.1 Automation assets

When testing the ZIP file upload script, we hardcoded the values required for con-
necting to the storage account. Instead of hardcoding those values into the script, you
can convert them to variables in the Azure Automation account.

 Making them variables gives you the ability to share them among other runbooks
in the same account. This is great for things like the storage account and subscrip-
tion IDs where you could have multiple different automations using the same resource.
Then, if you later change the storage account or want to reuse this same runbook in
another subscription, all you need to do is update the variables. But, at the same
time, this can be a double-edged sword because changing one variable can affect
multiple different runbooks.

 Also, don’t be afraid of using descriptive names for your variable. It will save you a
lot of guessing in the long run. For example, for this automation, instead of making
a variable named ResourceGroup, make it descriptive, like ZipStorage_Resource-
Group. This way, you know it is the resource group for the Zip Storage automation.

 Azure Automation also provides the ability to encrypt your variables. You can do
this in the portal or through PowerShell by setting the Encrypted argument to true.
As we will discuss later with the security considerations, there are different permis-
sion levels in Azure Automation. Therefore, if someone has read access to the Auto-
mation account, they can see the value of unencrypted variables in plain text. While
variables may not be as sensitive as passwords, they can hold sensitive data like con-
nection strings or API keys. So, to prevent accidentally having sensitive data in plain
text, I recommend encrypting all variables. Go ahead and create variables for the
subscription, resource group, and storage account:

$AutoAcct = @{
 ResourceGroupName = $ResourceGroupName
 AutomationAccountName = $AutomationAccountName
 Encrypted = $true
}
$Variable = @{
 Name = 'ZipStorage_AccountName'
 Value = $StorageAccountName
}
New-AzAutomationVariable @AutoAcct @Variable

$Variable = @{
 Name = 'ZipStorage_SubscriptionID'
 Value = $SubscriptionID
}
New-AzAutomationVariable @AutoAcct @Variable

$Variable = @{
 Name = 'ZipStorage_ResourceGroup'
 Value = $ResourceGroupName
}
New-AzAutomationVariable @AutoAcct @Variable

2098.4 Creating a PowerShell runbook
8.4.2 Runbook Editor

Now that you have your variables created, you need to tell your script about them. To
do this, navigate to the Azure portal and your Automation account. Select Runbooks
from the left menu and then click on the runbook named Upload-ZipToBlob. When
the runbook loads, click the Edit button to open the runbook editor.

 This runbook editor works just like any other IDE or development editor. It has
autocomplete suggestions and syntax highlighting. But on top of that, it can insert
assets stored in the Automation account. If you expand Assets > Variables in the left
menu, you will see the variables you just created.

NOTE All remaining code snippets and listings are using the Runbook Editor
in Azure Automation.

Starting with the $SubscriptionID variable, remove the value set in the script so that
the line is just $SubscriptionID =. Place the cursor after the equals sign, click the
ellipsis next to ZipStorage_SubscriptionID, and select Add Get Variable to Canvas.
The line should now look like this:

$SubscriptionID = Get-AutomationVariable -Name 'ZipStorage_SubscriptionID'

Repeat this same process with the resource group and storage account name variables,
as shown in figure 8.4. Next, you can convert the $FolderPath and $Container vari-
ables to parameters.

 One final thing to do is to have the script authenticate with Azure. Since you are
using a managed identity, there is no need to add credential assets or pass secrets to
the runbook. Instead, you can connect to Azure as the managed identity by adding
the -Identity switch to the Connect-AzAccount cmdlet.

 Now, the final version of the runbook should look like the following listing.

param(
 [Parameter(Mandatory = $true)]
 [string]$FolderPath,
 [Parameter(Mandatory = $true)]
 [string]$Container
)

$SubscriptionID = Get-AutomationVariable `
 -Name 'ZipStorage_SubscriptionID'
$ResourceGroupName = Get-AutomationVariable -Name 'ZipStorage_ResourceGroup'
$StorageAccountName = Get-AutomationVariable -Name 'ZipStorage_AccountName'

Connect-AzAccount -Identity
Set-AzContext -Subscription $SubscriptionID

Listing 8.4 Upload-ZipToBlob

Get the Azure
Storage variables.

Connect to Azure.

210 CHAPTER 8 Cloud-based automation
$ChildItem = @{
 Path = $FolderPath
 Filter = '*.zip'
}
$ZipFiles = Get-ChildItem @ChildItem

$AzStorageAccountKey = @{
 ResourceGroupName = $ResourceGroupName
 Name = $StorageAccountName
}
$Keys = Get-AzStorageAccountKey @AzStorageAccountKey
$AzStorageContext = @{
 StorageAccountName = $StorageAccountName
 StorageAccountKey = $Keys[0].Value
}
$Context = New-AzStorageContext @AzStorageContext

$AzStorageContainer = @{
 Name = $Container
 Context = $Context
 ErrorAction = 'SilentlyContinue'
}
$containerCheck = Get-AzStorageContainer @AzStorageContainer
if(-not $containerCheck){
 $AzStorageContainer = @{
 Name = $Container
 Context = $Context
 ErrorAction = 'Stop'
 }
 New-AzStorageContainer @AzStorageContainer| Out-Null
}

foreach($file in $ZipFiles){
 $AzStorageBlob = @{
 Container = $container
 Blob = $file.Name
 Context = $Context
 ErrorAction = 'SilentlyContinue'
 }
 $blobCheck = Get-AzStorageBlob @AzStorageBlob
 if (-not $blobCheck) {
 $AzStorageBlobContent = @{
 File = $file.FullName
 Container = $Container
 Blob = $file.Name
 Context = $Context
 Force = $true
 ErrorAction = 'Stop'
 }
 Set-AzStorageBlobContent @AzStorageBlobContent
 Remove-Item -Path $file.FullName -Force
 }
}

Get all the ZIP files
in the folder.

Get the storage keys and
create a context object that
will be used to authenticate
with the storage account.

Check to see whether
the container exists. If
it does not, create it.

Check whether the file
already exists in the
container. If not, upload
it, and then delete it
from the local server.

Upload the file
to Azure Storage.

2118.4 Creating a PowerShell runbook
Get local
variables from

parameters

Get Azure
storage variables

Connect to Azure
-Identity

Already
uploaded

Upload to blob

False

Delete file

Get ZIP files

Get Azure
storage
context

Create containerContainer exists

For each file

Yes

No

Get-AutomationVariable

ZipStorage_AccountName

ZipStorage_ResourceGroup

ZipStorage_SubscriptionID

Figure 8.4 ZIP file upload
process when running through
Automation hybrid worker
runbook

212 CHAPTER 8 Cloud-based automation
Once you have the updates done to the script, it is time to test it. Click the Test Pane
button. In the test pane, you can test the execution of the script. First, enter the values
for the folder path and container name parameters. Then, under Run Settings, select
Hybrid Worker and select the server you set up earlier. Then, click Start.

 Since you selected the hybrid runbook worker, it will execute on that server and
should behave just as it did when you ran it earlier. If the test runs successfully, check
the storage account to confirm the file was uploaded.

 Then, back in the runbook editor, close the test pane, and click Publish. When you
do this, your runbook is available to anyone with permission to execute it. From this
main runbook screen, you can manually execute a runbook or create a recurring
schedule for it. You can also make additional edits and use the tester without affecting
the published version until you click the Publish button again.

 Go ahead and run the New-TestArchiveFile.ps1 on the hybrid runbook worker
server to make a new test file. Then, from the Upload-ZipToBlob runbook in the
Azure portal, click Start. You will see the input fields shown in figure 8.5. Enter the
same parameter values, select your hybrid worker, and click OK.

Figure 8.5 Starting an
Azure Automation runbook
with parameters and on a
hybrid runbook worker

2138.4 Creating a PowerShell runbook
This will execute the runbook and open the job screen. From the job screen, you
can view all the execution details, including the hybrid worker used, the parame-
ters, the output, and any errors or warnings. This data is retained in the portal for
30 days after execution.

8.4.3 Runbook output

I mentioned earlier that you can take any PowerShell script and import it to Azure
Automation as a runbook. While this is true, there are a few commands that do not
work in Azure Automation runbooks. Two of the most common ones are Write-Host
and Write-Progress.

 You can still include Write-Host and Write-Progress in your scripts; just know that
since there is no console, they will not produce any output. To show data in the Output
section of the runbook, it must be written to the output stream using Write-Output.
Therefore, it is usually best to convert any Write-Host commands to Write-Output
when making a runbook. Since there is no other equivalent to Write-Progress, it
would be best to remove this command from the script.

 Also, verbose logging is off by default. So, if you have any Write-Verbose com-
mands in your script, it will not display in the logs unless you specifically turn on ver-
bose logging in the runbook settings, as shown in figure 8.6.

Once you do this, the verbose logs will show in the All Logs section of the runbook
job. But be careful because verbose logging can slow down the execution of your run-
books, so only use it when needed, and then turn it back off.

 You can see how the different outputs work by importing the Output-Examples.ps1
script from the Helper Scripts folder as a runbook and executing it. Figure 8.7 shows
an example.

Figure 8.6 Enable verbose logging for an Azure Automation runbook.

214 CHAPTER 8 Cloud-based automation
8.4.4 Interactive Cmdlets

As with most automation situations, you cannot have cmdlets that require interactive
input in your runbooks. For example, Read-Host will not work because there is no way
to interact with the runbook other than entering parameters.

 You can also run into issues with cmdlets that have interactive logins. For example,
the Add-AzAccount cmdlet will prompt for credentials if none are provided. The run-
books can often detect these and terminate the execution rather than hang and wait
for input that will never come. However, this does not work all the time. So, to be safe,
if you have a cmdlet that could prompt for user interaction, it is best to test and con-
firm that the way you are using it will not cause a user prompt to appear.

8.5 Security considerations
Like with any other automation platform, you need to be aware of the security impli-
cations of both what the automations can do and what data is stored in it. For
instance, you just created a managed identity and assigned it permissions to a storage
account. Now, any person with permissions to create runbooks in that Automation
account can use that managed identity in their scripts. The same goes for any vari-
ables, credentials, and certificates you store in that account. However, there are a few
things you can do to help protect your environment.

 In Azure Automation, there are multiple different levels of permissions that you
can assign to users. One of these is the Automation Operator. This role will allow
someone to execute a runbook, but they cannot create, edit, or delete one. A good

Figure 8.7 Azure Automation runbook output example

215Summary
use case for this is a runbook that performs maintenance tasks on a VM that requires
elevated permissions. You can assign those permissions to the managed identity and
then give the people who need to execute it the Automation Operator role. They will
now only be able to perform what your runbook can perform and not edit or create
any custom automations. Also, they don’t even need permissions to the individual
VMs as it will run as the managed identity.

 The cloud offers the awesome ability to create new instances of items in seconds.
Therefore, you should create a separate development Automation account that you can
point to other development resources. Have your team build and test their runbooks
there. Then, once you are ready, you can move them to your production account with
stricter controls and permissions.

Summary
 Azure Automation can execute PowerShell scripts serverless in Azure or on a

hybrid runbook worker in your local environment.
 Log Analytics with the Automation solution is required to support hybrid run-

book workers.
 You can securely store variables, credentials, and certificates in Azure Automation.
 You can develop and test your PowerShell scripts outside of Azure Automation

and then import the ps1 file as a runbook.
 If someone has permission to create a runbook in an Automation account, they

have access to all the assets, including credentials and managed identities stored
in that account.

Working outside
of PowerShell
While PowerShell is a very robust language with multiple different integrations and
custom modules, there are still some situations in which you need to work with
something outside of PowerShell. This can range from calling separate executables
to remote API calls and interacting directly with Component Object Module
(COM) objects and Dynamic Link Library (DLL) files. As you will see, PowerShell
has specially built cmdlets to deal with each one of these situations.

 In this chapter, you will learn how to interact with different resources to solve
one of the biggest problems in IT: system documentation (or the lack thereof). You
will create a script that will populate a Word document using the Word COM
object. You will then use PowerShell to gather information about your local com-
puter and enter that data in the Word document.

This chapter covers
 Different ways to interact with resources outside

of PowerShell

 Using COM objects to interact with other
applications

 How to call local executables from PowerShell

 Working with remote API
216

2179.1 Using COM objects and .NET Framework
 Then, taking it further, you will use a remote REST API to get your external IP
address and location information for the document. Then, finally, you will call a
Python script to create a time-series graph that you can insert into the document. The
process is illustrated in figure 9.1.

Having good documentation of your systems is critical for a business. Not only does it
help with accountability, but it also helps with disaster recovery. By utilizing Power-
Shell, you can ensure that you have good documentation that all follows the same for-
matting and is easy to generate and maintain. It could save you days’ worth of work if
you ever need to rebuild an environment. Also, the things shown here aren’t only for
documenting system builds. They can be used for any data that you want to put into a
defined and clean format.

NOTE The code in this chapter requires that you have Microsoft Office Word
installed locally. You will also need Python 3.8 with the pandas and Matplotlib
libraries for section 9.4 (Python 3.9 or newer should work as well but has not
been tested). There is a script in the Helper Script folder for setting up
Python if you do not have it installed.

9.1 Using COM objects and .NET Framework
As you have already seen numerous times throughout this book, you can call native
.NET classes directly in PowerShell. However, we will now look at how you can use
nonnative frameworks and objects in PowerShell using the New-Object cmdlet.

 The New-Object cmdlet allows you to create a PowerShell object using a .NET
Framework class (often stored in DLL files) or a ProgID (Programmatic Identifier) of
a COM object. When you output this command to a PowerShell variable, it creates an
instance of that object that you can use in your script. Typically, this is done using the
methods associated with the object.

Import Word com
object

Import Word
interop

assembies

Create Word
document

Add title and TOC

Write OS information
Write disk

information
Write network

information
Insert time-series

graph

Figure 9.1 Write computer information to a Word document automation flow

218 CHAPTER 9 Working outside of PowerShell
.NET and, by extension, PowerShell objects contain different members. The two you
are probably most familiar with are properties and methods. Properties represent the
data associated with the object, and methods are the actions the object can perform.
Thus, you can think of methods as similar to functions, just with a different syntax for
invoking.

9.1.1 Importing Word objects

In this automation, you want to interact with Microsoft Word. The COM object
ProgID for Microsoft Word is Word.Application. You can create an instance of this in
PowerShell by using the New-Object cmdlet and the ProgID:

$Word = New-Object -ComObject Word.Application

In some cases, this is all you will need to do. However, in addition to the Word COM
object, you will want to import the Microsoft Office Interop object for Word. Using
the Office interop object helps to simplify some of the interactions with the Word
COM object. The Office interop is installed by default when you install Office, and it
is stored in the Global Assembly Cache (GAC).

 If you are using Windows PowerShell 5.1, these can be called using just the name
of the interop, as in the previous snippet. However, with PowerShell 7 using .NET
Core, you need to supply the full path to the DLLs. Fortunately, you can use the Get-
ChildItem cmdlet to search the GAC to find the assemblies you need and then load
them into your current session using the Add-Type cmdlet:

$GAC = Join-Path $env:WINDIR 'assembly\GAC_MSIL'
Get-ChildItem -Path $GAC -Recurse -Include

➥ 'Microsoft.Office.Interop.Word.dll','office.dll' |
Foreach-Object{
 Add-Type -Path $_.FullName
}

9.1.2 Creating a Word document

Now that you have the Word objects imported into your current session, you can cre-
ate your document. To do that, you first need to determine which methods and prop-
erties are needed. And, fortunately, PowerShell has a great way to help you do that. If
you pipe the Word COM object in PowerShell to the Get-Member cmdlet, you will be
able to see all the different properties and methods available:

ProgID
The ProgID, or Programmatic Identifier, of a COM object is not the same as a process
ID. The ProgID is a string that represents the CLSID (Class ID) of an application. This
allows you to use a simple name instead of looking up or memorizing the GUID of the
CLSID. For example, Outlook has a ProgID Outlook.Application which represents
the CLSID of {0006F03A-0000-0000-C000-000000000046}.

2199.1 Using COM objects and .NET Framework
$Word | Get-Member
Name MemberType Definition
---- ---------- ----------
Activate Method void Activate ()
AddAddress Method void AddAddress ()
AutomaticChange Method void AutomaticChange ()
BuildKeyCode Method int BuildKeyCode (WdKey..
CentimetersToPoints Method float CentimetersToPoints ()
ChangeFileOpenDirectory Method void ChangeFileOpenDirectory
CheckGrammar Method bool CheckGrammar (string..
…
ActiveDocument Property Document ActiveDocument ()
ActiveEncryptionSession Property int ActiveEncryptionSession
ActivePrinter Property string ActivePrinter (){get}
ActiveWindow Property Window ActiveWindow () {get}
AddIns Property AddIns AddIns () {get}
…

Right now, we are only concerned with three properties: Visible, Documents, and
Selection. Visible is whether the Word application is actually open on your local
screen. If you set Visible to true, you will see the data being written to the document
as we go along. However, you need to create or open a document before you can see
anything.

 Since you are creating a new document, you can simply use the Add method on the
Document property. This will create a new document instance in the Word COM object
that you will reference in your code.

 Then, finally, setting the Selection property will let the code know where to put
the data you want to insert. Think of it as where the cursor is. If you run the following
snippet, you should see Word open and a new document created. It will also set the
selection area to the top of the document since it is a blank document:

$Word = New-Object -ComObject Word.Application
$Word.Visible = $True
$Document = $Word.Documents.Add()
$Selection = $Word.Selection

9.1.3 Writing to a Word document

Now that you have a Word document created and the selection set to a variable, you
can use the properties and methods to add data to your document. To start, you can
use the Style property to set the style of the paragraph. Then, use the TypeText()
method to add your text, followed by the TypeParagraph() method to start the next
paragraph. As you saw in the Get-Member output, most of the methods in this object
are named with logical names. You can find the parameters required for each method
by using the Get-Member cmdlet again and examining the output:

$Selection | Get-Member -Name TypeText, TypeParagraph
 TypeName: System.__ComObject#{00020975-0000-0000-c000-000000000046}

220 CHAPTER 9 Working outside of PowerShell
Name MemberType Definition
---- ---------- ----------
TypeText Method void TypeText (string Text)
TypeParagraph Method void TypeParagraph ()

For the TypeText() method, you just need to pass in any string value. This string can
be a hardcoded string, a string returned from a command, or a variable. The Type-
Paragraph() method does not require any input and is the equivalent of pressing
Enter while typing in a document. You can test this yourself by using the following
snippet to enter a title for the document:

$Selection.Style = 'Title'
$Selection.TypeText("$([system.environment]::MachineName) - System Document")
$Selection.TypeParagraph()

When each method in the previous snippet executes, it updates the selection variable
with the location of the cursor. Similar to how your cursor moves as you type, this
works just fine when you are adding text line by line. However, there are times when
you will want to use a range. A range can represent any part of the document, unlike
the selection, which is only the cursor's current position. Ranges work well because
they allow you to select multiple spots simultaneously and are not affected by the cur-
sor location. For instance, if I moved the cursor back to the top of the document and
used the TypeText() method again, it would enter the text before the title. However,
if I set the range to the selection and then move the cursor, the range location will not
change. Also, methods that create objects will require ranges and not selection—for
example, adding a table of contents or a table.

9.1.4 Adding tables to a Word document

To add a table to a selection or range, you can use the Add() method on the Tables
property. First, however, you need to know what parameters are required for the
Add() method. Unfortunately, if you use the Get-Member cmdlet to list the methods or
the Table property, it will give you an error saying, “You must specify an object for the
Get-Member cmdlet.” This is because there is no table yet, and the Get-Member cmdlet
cannot be used with null properties. So, how can you figure out what properties you
need to supply the Add() method?

 The first method is to read the documentation. For instance, you can find all the
information you need at the Microsoft Doc site for the Word object model (https://
mng.bz/qoDz). However, not all objects are as well documented as products like
Microsoft Office are. In those cases, you can view the PSObject property, which
exists for all PowerShell objects. The PSObject property lists all the methods and
properties, similar to Get-Member, but without needing the object to contain any
data. If you run the following command, you can see the parameters required for
the Add() method:

https://mng.bz/qoDz
https://mng.bz/qoDz
https://mng.bz/qoDz

2219.1 Using COM objects and .NET Framework
$Selection.Tables.psobject.methods
OverloadDefinitions

Table Item (int Index)
Table AddOld (Range Range, int NumRows, int NumColumns)
Table Add (Range Range, int NumRows, int NumColumns, Variant

➥ DefaultTableBehavior, Variant AutoFitBehavior)

As you can see, the Add() method requires a range, which we already discussed, and
then the number of rows and columns. The next two arguments, DefaultTable-
Behavior and AutoFitBehavior, are listed as variants. Since a variant can represent
any other data type, you will need to refer to the documentation to see what these
object types need to be. In this case, both are enumerators, or Enums. An Enum is a
set of named constants with an associated integer. For instance, the AutoFitBehavior
Enum has three different options, as shown in table 9.1.

On the back end, the computer only cares about the integer value. However, using
Enums creates a level of abstraction, allowing you to use easily identifiable names
instead of remembering which value is associated with which integer. So, now all you
need to do is identify the corresponding Enum and add it to your command.

 All the Enums for Office are in the Office Interop DLLs you imported earlier. There-
fore, you can enter the full path of the Enum class between square brackets, followed by
two colons and then the name of the Enum value. For example, to use the wdAutoFit-
Fixed Enum in the WdAutoFitBehavior Enum, you would enter the following:

[Microsoft.Office.Interop.Word.WdAutoFitBehavior]::wdAutoFitContent

The best part about using the Enums like this is that you do not have to memorize them
or look them up if you want to change the behavior. Instead, you can simply call the
GetEnumValues() method on the Enum object to get a list of the values you can use:

[Microsoft.Office.Interop.Word.WdAutoFitBehavior].GetEnumValues() |
 Select-Object @{l='Name';e={$_}}, @{l='value';e={$_.value__}}
 Name Value
 ---- -----
 wdAutoFitFixed 0
wdAutoFitContent 1
 wdAutoFitWindow 2

Table 9.1 WdAutoFitBehavior Enum

Enum Int Description

wdAutoFitContent 1 The table is automatically sized to fit the content contained in the table.

wdAutoFitFixed 0 The table is set to a fixed size, regardless of the content, and is not
automatically sized.

wdAutoFitWindow 2 The table is automatically sized to the width of the active window.

222 CHAPTER 9 Working outside of PowerShell
Now, you can put it all together and create a table at the current selection position:

$Table = $Selection.Tables.add($Word.Selection.Range, 3, 2,
 [Microsoft.Office.Interop.Word.WdDefaultTableBehavior]::wdWord9TableBehavior,
 [Microsoft.Office.Interop.Word.WdAutoFitBehavior]::wdAutoFitContent)

Then, to fill in the data for the table, you call the Cell() method and supply the row
and column you want to update. Go ahead and test it out with the table you just created:

$Table.Cell(1,1).Range.Text = 'First Cell'
$Table.Cell(3,2).Range.Text = 'Last Cell'

9.2 Building tables from a PowerShell object
Now that you know how to make tables, let’s look at how we can automatically fill one
out using the data from a PowerShell object, as shown in figure 9.2.

WdAutoFitBehavior vs AutoFitBehavior
You may have noticed that the Add method on the Table property showed the fields
as AutoFitBehavior and DefaultTableBehavior. However, the Enums themselves
start with a Wd prefix, which stands for Word. You will see similar naming conventions
with the other Office products, like Xl for Excel or Ol for Outlook. Unfortunately, there
is no standard across the industry, so you will need to check the documentation for
any other products you are interfacing with.

Figure 9.2 Operating system data displayed in a two-column table

2239.2 Building tables from a PowerShell object
First, we can gather information about the operating system and write the results to a
single table with two columns. The first column will be the property name, and the
second column will be the value. This is similar to the output you would see when you
pipe to the Format-List cmdlet at the end of a PowerShell command.

 Then, create another table with the disk space information for the computer. Since
there can be multiple disks on any given machine, we need to make this dynamic so the
correct number of rows is added. As you can see in figure 9.3, this is similar to the out-
put you would see when you pipe to the Format-Table cmdlet at the end of a Power-
Shell command.

To accomplish this, we will make two different functions. One, named New-
WordTableFromObject, will create the two-column table with the properties and val-
ues. The other function, New-WordTableFromArray, will be able to handle a dynamic
range of columns and rows.

9.2.1 Converting PowerShell objects to tables

Let’s start with getting the data to send to the New-WordTableFromObject function by
gathering data from the Win32_OperatingSystem WMI class:

$OperatingSystem = Get-CimInstance -ClassName Win32_OperatingSystem |
Select-Object Caption, InstallDate, ServicePackMajorVersion, OSArchitecture,

➥ BootDevice, BuildNumber, CSName,

➥ @{l='Total Memory';e={[math]::Round($_.TotalVisibleMemorySize/1MB)}}

To help build and populate the data in Word, we will again use the PsObject property—
except this time, you are going to use the subproperty of Properties. If you save the
value of $object.PsObject.Properties to a variable, you can then use that variable
to determine the number of rows and the value of the first column. The nice thing
about using the PsObject properties as opposed to the Get-Member is that the PsObject
is in the order that you see on the screen, whereas the Get-Member will automatically
alphabetize the properties.

Figure 9.3 Disk space data displayed in a dynamically created table

224 CHAPTER 9 Working outside of PowerShell
 Once you have the properties, you can create the table by setting the rows to the
count of the properties. Then, use a for statement to loop through each property to
populate the first column with the name and the second column with the value, as
shown in figure 9.4. Finally, once your table is populated, add a paragraph break at
the end so that you can start the next part of your document.

Function New-WordTableFromObject {
 [CmdletBinding()]
 [OutputType()]
 param(
 [Parameter(Mandatory = $true)]
 [object]$object
)

 $Properties = @($object.psobject.Properties)

 $Table = $Selection.Tables.add(
 $Word.Selection.Range,
 $Properties.Count,
 2,
[Microsoft.Office.Interop.Word.WdDefaultTableBehavior]::wdWord9TableBehavior
 ,[Microsoft.Office.Interop.Word.WdAutoFitBehavior]::wdAutoFitContent
)

Listing 9.1 New-WordTableFromObject

Import Word com
object

Import Word
interop

assembies

Create Word
document

Add title and TOC

Write OS information
Write disk

information
Write network

information
Insert time-series

graph

Get-CimInstance
Win32_OperatingSystem

New-
WordTableFromObject

For each property

Column 1 =
Name

Column 2 =
Value

Figure 9.4 Continue the data gathering script to collect the
operating system information and write the results to a table
in the Word document

Get the
properties of
the object.

Create
the table.

2259.2 Building tables from a PowerShell object
 for ($r = 0; $r -lt $Properties.Count; $r++) {
 $Table.Cell($r + 1, 1).Range.Text =
 $Properties[$r].Name.ToString()
 $Table.Cell($r + 1, 2).Range.Text =
 $Properties[$r].Value.ToString()
 }

 $Word.Selection.Start = $Document.Content.End
 $Selection.TypeParagraph()
}

You can test this using the following command to collect the operating system data
and send it to the function:

$OperatingSystem = Get-CimInstance -Class Win32_OperatingSystem |
 Select-Object Caption, InstallDate, ServicePackMajorVersion,
 OSArchitecture, BootDevice, BuildNumber, CSName,
 @{l='Total Memory';e={[math]::Round($_.TotalVisibleMemorySize/1MB)}}
New-WordTableFromObject $OperatingSystem

9.2.2 Converting PowerShell arrays to tables

The next table will be structured in a more traditional manner with a header row fol-
lowed by data rows. You will need to build the function to use a dynamic value for the
rows and the columns to do this.

 Once again, you are going to create a variable with the values from the PsObject
.Properties—except this time, you are going to use the count to set the number of
columns. The number of rows will be the number of objects in your array, plus 1 for
the header.

 You will also need to take into consideration that the object, in this case, is an array.
This means that if you simply put $object.psobject.Properties like before, you will
get the properties for each and every iteration in the array. So, if you have three itera-
tions in the array, you will end up with three of each header. To prevent this, you can
use the Select-Object with the argument -First 1 to only return the properties
from the first entry in the array.

 After the table is created, use a single for statement to populate the header. Then,
you will need to create another for statement to populate the data for each row. This
second for statement will need to have a third nested for statement inside it to loop
through each column in the row. Think about it like you are moving one cell at a time
across and then going to the start of the next line and moving across. Figure 9.5 illus-
trates the process.

 Then, just like before, you’ll add a paragraph break at the end to continue your
document.

Loop through each
property, adding it
and the value to
the table.

Add a paragraph
after the table.

226 CHAPTER 9 Working outside of PowerShell
Function New-WordTableFromArray{
 [CmdletBinding()]
 [OutputType()]
 param(
 [Parameter(Mandatory = $true)]
 [object]$object
)

 $columns = $object | Select-Object -First 1 |
 Select-Object -Property @{l='Name';e={$_.psobject.Properties.Name}} |
 Select-Object -ExpandProperty Name

 $Table = $Selection.Tables.add(
 $Word.Selection.Range,

Listing 9.2 New-WordTableFromArray

For each row

Import Word com
object

Import Word
interop

assembies

Create Word
document

Add title and TOC

Write OS information
Write disk
information

Write network
information

Insert time-series
graph

Get-CimInstance
Win32_LogicalDisk

New-
WordTableFromArray

For each property

Column 1 =
Property[0]

Column 2 =
Property[1]

Column # =
Property[#]

For each column

Value[0] Value[1] Value[#]

Figure 9.5 Continue the data gathering script to get disk information and write to a table in the Word
document.

Get the name of
the columns.

Create
the table.

2279.3 Getting web data
 $Object.Count + 1,
 $columns.Count,
[Microsoft.Office.Interop.Word.WdDefaultTableBehavior]::wdWord9TableBehavior
 ,[Microsoft.Office.Interop.Word.WdAutoFitBehavior]::wdAutoFitContent
)

 $Table.Style = 'Grid Table 1 Light'

 for($c = 0; $c -lt $columns.Count; $c++){
 $Table.Cell(1,$c+1).Range.Text = $columns[$c]
 }

 for($r = 0; $r -lt $object.Count; $r++){
 for($c = 0; $c -lt $columns.Count; $c++){
 $Table.Cell($r+2,$c+1).Range.Text =
 $object[$r].psobject.Properties.Value[$c].ToString()
 }
 }

 $Word.Selection.Start= $Document.Content.End
 $Selection.TypeParagraph()
}

You can test this function using the disk space data:

$DiskInfo = Get-CimInstance -Class Win32_LogicalDisk |
 Select-Object DeviceId,
 @{l='Size';e={[Math]::Round($_.Size / 1GB, 2)}},
 @{l='FreeSpace';e={[Math]::Round($_.FreeSpace / 1GB, 2)}}
New-WordTableFromArray $DiskInfo

9.3 Getting web data
When I started working as a sysadmin oh so many years ago, web APIs were something
I thought only developers would have to deal with. However, with the shift in the
industry to Platform as a Service (PaaS), many system administrators are finding them-
selves needing to interact with web-based applications.

 One of the most common types of web APIs is representational state transfer, or
REST. A typical REST request is made up of a URI, method, body, and header. The
URI is similar to a URL but can contain parameters that are passed to the receiving
server. The method tells the remote system what to do with the request. For instance,
GET will return data, POST and PUT will often update an existing object or create new
ones, etc. The body will often contain the information for the POST or PUT type meth-
ods. And, finally, the header will contain information related to the authentication
and content types. The most common context types used by REST are JSON and
XML, both of which have native PowerShell support.

 To interact with a REST API through PowerShell, you can use the Invoke-
RestMethod cmdlet. This cmdlet is excellent because it automatically formats the
response from your web request to a PowerShell object. Therefore, you don’t need to

Set the
table style.

Add the
header

row.

Loop through each item in
the array row, adding the
data to the correct row.

Loop through each
column, adding the
data to the correct cell.

Add a paragraph
after the table.

228 CHAPTER 9 Working outside of PowerShell
build any custom classes or parse a bunch of output data. Instead, you simply save the
output from the Invoke-RestMethod to a variable in PowerShell, and you can use it in
your script just like you would any other object.

To show you how easy it can be, let’s call the ipify API to find your public IP address:

$IP = Invoke-RestMethod -Uri 'https:/ /api.ipify.org?format=json'
$IP
ip
--
48.52.216.180

Now that you have the external IP address, it is time to get the geolocation for it.
However, in order to get this information, you will need to obtain an API key from
ipify.org.

9.3.1 API keys

It is very rare to come across an open API that just lets you call it without some form of
authentication. The most common form of authentication is via API keys. API keys
allow the server to verify who is sending the request, preventing abuse and ensuring
that it is not someone trying to impersonate someone else.

 Unfortunately, every API is different, so there is no way I could cover all the ways of
generating and passing API keys. However, most APIs have documentation on how to
authenticate with them. We will use the geolocation API from geo.ipify.org to return
the city, region, and country from your public IP address.

What is a REST API?
REST is an architectural style for submitting HTTP requests, not a protocol or a stan-
dard. For an API to be considered REST, it must conform to specific criteria. These
include a client-server architecture, stateless communication, cacheable, a layered
system, and a uniform interface between components. However, since it is not a pro-
tocol or standard, developers can create their own patterns, headers, and responses.
Therefore, you will need to refer to the developer documentation on the best ways to
interface with their API.

Also, not all HTTP requests are REST. There are other architectures out there. How-
ever, the way you communicate with them is the same. So, you can use the Invoke-
WebRequest instead of the Invoke-RestMethod for other types of communication. In
fact, under the hood, the Invoke-RestMethod cmdlet uses the Invoke-WebRequest
to perform the communication. The Invoke-RestMethod cmdlet just contains some
additional functionality to automatically convert the response data into a PowerShell
object. The Invoke-WebRequest cmdlet returns the raw results; it is up to you to
parse and convert them.

http://geo.ipify.org
http://ipify.org

2299.3 Getting web data
 Go ahead and sign up for a free account at geo.ipify.org. Once you have signed in,
you will receive an API key for 1,000 free geolocation lookups (more than enough for
our needs). Like with most public APIs, they have a section on their website with code
samples on how to use the API.

 Passing data to an API is usually done in a key/value format. You can think of the
key as the parameter, which, like in PowerShell, is a predetermined string. For exam-
ple, the geolocation API has two parameters, apiKey and ipAddress.

 To pass the required information to the API, we will build a hashtable that you will
pass to the -Body parameter. The hashtable will contain the values for the IP address
to look up and the API key:

$apiKey = "your_API_key"
$ApiUrl = "https:/ /geo.ipify.org/api/v2/country,city"
$Body = @{
 apiKey = $apiKey
 ipAddress = $IP.ip
}
$geoData = $null
$geoData = Invoke-RestMethod -Uri $ApiUrl -Body $Body
$geoData.location
country : US
region : Illinois
city : Chicago
lat : 41.94756
lng : -87.65650
postalCode : 60613
timezone : -05:00

Now you can put this all together and use these API results to populate data in your
Word document, as shown in figure 9.6:

$IP = Invoke-RestMethod -Uri 'https:/ /api.ipify.org?format=json'
$Selection.TypeText("IP Address : $($IP.ip)")
$Selection.TypeText([char]11)

$apiKey = "your_API_key"
$ApiUrl = "https:/ /geo.ipify.org/api/v2/country,city"
$Body = @{
 apiKey = $apiKey
 ipAddress = $IP.ip
}
$geoData = $null
$geoData = Invoke-RestMethod -Uri $ApiUrl -Body $Body
$Selection.TypeText("IP Location : $($geoData.location.city),

➥ $($geoData.location.country)")
$Selection.TypeParagraph()

http://geo.ipify.org

230 CHAPTER 9 Working outside of PowerShell
9.4 Using external applications
As useful as PowerShell is, like any other language out there, it cannot do everything.
So, there are times when you need to interact with applications outside of PowerShell.
These are often command-line applications that do not have PowerShell-equivalent
commands. But, as you are about to see, PowerShell can also interact with scripts from
other languages.

 When it comes to creating data visualizations, the Matplotlib library is much more
advanced than anything in PowerShell. If you are not familiar with Python, don’t
worry; you don’t need to be to use this script. But you do need to have Python installed
and the Matplotlib and pandas library installed. As always, there is a PowerShell script in
the Helper Scripts for this chapter to install and configure these for you.

Import Word com
object

Import Word
interop

assembies

Create Word
document

Add title and TOC

Write OS information
Write disk

information
Write network

information
Insert time-series

graph

Get-NetIPAddress

New-
WordTableFromArray

Invoke-RestMethod

Ipify.org

What’s my IP

Your IP

Invoke-RestMethod

TypeText
“IP Address : $($ip.ip)”

airtel.lv

What’s my IP location

Your location

TypeText
"IP Location :

$($ipData.city),
$($ipData.country)"

Figure 9.6 Getting data from an external REST API and writing it to Word

2319.4 Using external applications
 Regardless of the application you are using, the process shown here remains the
same. There are several ways to call an external application from PowerShell, but the
most consistent and easy-to-use way is by using the Start-Process cmdlet. Not only
does this cmdlet provide the functionality to execute external applications and pro-
vide command-line arguments, but it also provides a mechanism to capture the out-
put and errors from the command.

9.4.1 Calling an external executable

To get started with the Start-Process cmdlet, you need to start with the arguments
FilePath and ArgumentList. The FilePath is the path to the executable. It can
either be the full path (e.g. C:\Windows\System32\PING.EXE), use environment vari-
ables (e.g. $env:SystemRoot\System32\PING.EXE), or simply the name of the exe-
cutable, assuming the path of the file is in the PATH environmental variable (e.g.
PING.EXE).

 The ArgumentList is the parameters and values that you want to pass to the execut-
able. It can either be a single string, written as you would inside a command prompt, or
an array of strings that PowerShell will combine into a single string for you. You can try
this out yourself using PING.EXE to ping a remote host. First, use a single argument of
the remote host, and then two arguments specify the number of pings:

Start-Process -FilePath 'ping.exe' -ArgumentList 'google.com'
Start-Process -FilePath 'ping.exe' -ArgumentList 'google.com','-n 10'

9.4.2 Monitoring execution

When you use the Start-Process cmdlet, the default behavior is to start the process
and continue with the script. Therefore, it will not wait for the execution to finish
unless you include the -Wait switch. However, when talking about automations, espe-
cially ones that run without interactions, you never want to rely on a wait argument
that does not have a timeout argument. This is because there are situations where an
executable can hang, and your script will continue to run indefinitely. To prevent this,
you can use a while loop with a counter or timer to automatically exit or kill the pro-
cess if it exceeds a certain threshold.

 To monitor the status, you add the -PassThru switch to the Start-Process com-
mand. This will return the information about the running process to PowerShell. You
can then use the HasExited inside a while loop to pause your script while the process
is still active. Then, you can use a stopwatch timer to check that the process has not
exceeded the allowed run time. If it does exceed the run time, you can use the Stop-
Process to kill it and use a throw or Write-Error to let the PowerShell script know
the process failed to complete:

$RuntimeSeconds = 2
$ping = Start-Process -FilePath 'ping.exe' -ArgumentList

➥ 'google.com','-n 10' -PassThru
$timer = [system.diagnostics.stopwatch]::StartNew()

232 CHAPTER 9 Working outside of PowerShell
while($ping.HasExited -eq $false){
 if($timer.Elapsed.TotalSeconds -gt $RuntimeSeconds){
 $ping | Stop-Process -Force
 throw "The application did not exit in time"
 }
}
$timer.Elapsed.TotalSeconds
$timer.Stop()

9.4.3 Getting the output

When you run these commands, you will notice that they open in a new window, and
nothing is returned to the PowerShell window. If you include the switch -NoNewWindow,
the results will return to the same window as the Start-Process command. However,
they will not always be returned to the output stream. As you most likely know, not all
command-line applications are built the same. Not only does the output vary wildly
from application to application, but some will interpret the output as error streams.
For a good example of this, try the Start-Process cmdlet with git.exe. It thinks all
outputs are errors. To prevent this from causing problems in your script, you can cap-
ture and parse the outputs and errors from the command.

 The parameters -RedirectStandardOutput and -RedirectStandardError will send
the outputs and errors to text files. You can then parse these files to get the data you need.
You can test this out by using Driverquery.exe with the -RedirectStandardOutput
and -RedirectStandardError arguments. With this command, the file StdOutput.txt
should contain the results of the command, and the ErrorOutput.txt should be empty:

$Process = @{
 FilePath = 'Driverquery.exe'
 ArgumentList = '/NH'
 RedirectStandardOutput = 'StdOutput.txt'
 RedirectStandardError = 'ErrorOutput.txt'
 NoNewWindow = $true
 Wait = $true
}
Start-Process @Process
Get-Content 'ErrorOutput.txt'
Get-Content 'StdOutput.txt'
1394ohci 1394 OHCI Compliant Ho Kernel
3ware 3ware Kernel 5/18/2015 5:28:03 PM
ACPI Microsoft ACPI Driver Kernel
AcpiDev ACPI Devices driver Kernel
acpiex Microsoft ACPIEx Drive Kernel
acpipagr ACPI Processor Aggrega Kernel
AcpiPmi ACPI Power Meter Drive Kernel
acpitime ACPI Wake Alarm Driver Kernel
Acx01000 Acx01000 Kernel
ADP80XX ADP80XX Kernel 4/9/2015 3:49:48 PM
...

Now let’s try it again, but this time, we will add /FO List to the argument list. This will
cause an error because the list output is incompatible with the /NH argument. This

2339.4 Using external applications
time, the StdOutput.txt is blank, and the ErrorOutput.txt contains the error message
from the command:

$Process = @{
 FilePath = 'Driverquery.exe'
 ArgumentList = '/FO List /NH'
 RedirectStandardOutput = 'StdOutput.txt'
 RedirectStandardError = 'ErrorOutput.txt'
 NoNewWindow = $true
 Wait = $true
}
Start-Process @Process
Get-Content 'ErrorOutput.txt'
Get-Content 'StdOutput.txt'
ERROR: Invalid syntax. /NH option is valid only for "TABLE" and "CSV" format.
Type "DRIVERQUERY /?" for usage.

As mentioned earlier, not all applications work as nicely as this one. Therefore, you
will want to test each executable individually to ensure that your output matches what
is expected. For example, if you use PING.EXE with a bad hostname, it will not return
anything to the error file, but the output file will contain the message letting you know
the host wasn’t found. It will be up to you to parse these files and have your script take
appropriate actions based on the results.

9.4.4 Creating Start-Process wrapper function

For the Word document automation, we want to insert a time-series graph of the per-
centage of processor time counter. Since there may be other counters you will want to
add down the line, building a wrapper function to create this graph makes sense. This
function will take the counter values, convert them to the appropriate JSON format,
and then call the timeseries.py script to create an image file of the graph. This image
can then be inserted into your Word document.

 If you have not already done so, please use the Install-Python.ps1 in the Helper
Scripts for this chapter to set up Python. The timeseries.py script requires three
arguments. These are the path to save the output PNG image, a title for the graph,
and a JSON object of the time-series. We’ll start by getting some data to test with,
using the Get-Counter cmdlet to get the % Processor Time counter:

$sampleData = Get-Counter -Counter "\Processor(_Total)\% Processor Time"

➥ -SampleInterval 2 -MaxSamples 10

Now we can start building out the structure of the function, starting with the parame-
ters. The parameters of the script we are invoking are the PNG path, title, and JSON.
The timeseries.py script expects the JSON to be an array with two keys: timestamp and
value. Therefore, instead of converting the counter to JSON before calling the func-
tion, it would be best to have the function convert it. This way, you can ensure that the
data passed is appropriately formatted.

234 CHAPTER 9 Working outside of PowerShell
 For the PNG path, you can write it to the Temp directory since we will only need it
long enough to insert it into the Word document. You will also need to know the path
to the Python executable and to the timeseries.py script itself. Therefore, the parame-
ters will be

 PyPath—The path to the Python executable. If you do not know this, use the
command py -0p to display the installed versions of Python. We are using ver-
sion 3.8 for this.

 ScriptPath—The path to the timeseries.py script.
 Title—The title to display at the top of the graph.
 CounterData—The output from the Get-Counter cmdlet. You can ensure the

correct data is sent by setting the type on the parameter to [PerformanceCounter-
SampleSet].

Now you need to determine the arguments to use with the Start-Process cmdlet.
You know you will need the -FilePath and -ArgumentList. When building the argu-
ments string, you need to ensure you take into consideration spaces and escape char-
acters. For Python, any value with a space in it needs to be wrapped in double quotes.
You can ensure that this happens by wrapping the value in quotes in the argument
list—for example, """$($Title)""".

 Then, with the JSON, you need to escape the double quotes inside it to keep
Python from thinking it is multiple arguments. You can do this with a simple replace
to place a slash before each double quote.

 You will also want to include the -NoNewWindow and -PassThru switches to allow
you to monitor the execution process. Finally, you will want to include the -Redirect-
StandardOutput and -RedirectStandardError arguments to capture the outputs.

 You will need to ensure that the file names you use when redirecting the output
and creating the PNG are unique each time you run them. This will prevent issues
where multiple scripts may be running and conflicting with each other. As we saw way
back in chapter 2, the best way to get a unique name is by using a GUID. So, you can
create a GUID using the New-Guid cmdlet. Then, use that GUID to name the output
files and the PNG.

 Next, you can create a while loop to monitor the execution of the process. Then,
once the process completes, you can parse the contents of the output files and return
the appropriate information to the main script. Figure 9.7 illustrates the logic.

 In this case, we know that the script executed successfully when the output states
“File saved to :” followed by the path to the PNG, and the error output is blank.
Therefore, you can build an if/else statement to check for this and return the path
to the PNG file back to the main script. Finally, you will want to ensure that you clean
up the output files to prevent them from using unneeded disk space. Listing 9.3 pro-
vides the script.

2359.4 Using external applications
Function New-TimeseriesGraph {
 [CmdletBinding()]
 [OutputType()]
 param(
 [Parameter(Mandatory = $true)]
 [string]$PyPath,
 [Parameter(Mandatory = $true)]
 [string]$ScriptPath,

Listing 9.3 New-TimeseriesGraph

Import Word com
object

Import Word
interop

assembies

Create Word
document

Add title and TOC

Write OS information
Write disk
information

Write network
information

Insert time-series
graph

Get-Counter
% processor time

New-TimeseriesGraph

Convert data to JSON

Invoke ython scriptP

Build script parameters

Monitor script and
wait to finish

timeseries.py

Plot time series chart

Export chart to image

Insert image to document

Figure 9.7 Invoke Python script from PowerShell and pass parameters as a JSON string. The Python
script will execute, while PowerShell waits for it to finish.

236 CHAPTER 9 Working outside of PowerShell
 [Parameter(Mandatory = $true)]
 [string]$Title,
 [Parameter(Mandatory = $true)]
 [Microsoft.PowerShell.Commands.GetCounter.PerformanceCounterSampleSet[]]
 $CounterData
)

 $CounterJson = $CounterData |
 Select-Object Timestamp,
 @{l = 'Value'; e = { $_.CounterSamples.CookedValue } } |
 ConvertTo-Json -Compress

 $Guid = New-Guid

 $path = @{
 Path = $env:TEMP
 }
 $picture = Join-Path @Path -ChildPath "$($Guid).PNG"
 $StandardOutput = Join-Path @Path -ChildPath "$($Guid)-Output.txt"
 $StandardError = Join-Path @Path -ChildPath "$($Guid)-Error.txt"

 $ArgumentList = @(
 """$($ScriptPath)"""
 """$($picture)"""
 """$($Title)"""
 $CounterJson.Replace('"', '\"')
)
 $Process = @{
 FilePath = $PyPath
 ArgumentList = $ArgumentList
 RedirectStandardOutput = $StandardOutput
 RedirectStandardError = $StandardError
 NoNewWindow = $true
 PassThru = $true
 }
 $graph = Start-Process @Process

 $RuntimeSeconds = 30
 $timer = [system.diagnostics.stopwatch]::StartNew()
 while ($graph.HasExited -eq $false) {
 if ($timer.Elapsed.TotalSeconds -gt $RuntimeSeconds) {
 $graph | Stop-Process -Force
 throw "The application did not exit in time"
 }
 }
 $timer.Stop()

 $OutputContent = Get-Content -Path $StandardOutput
 $ErrorContent = Get-Content -Path $StandardError
 if ($ErrorContent) {
 Write-Error $ErrorContent
 }

Convert the
counter data into
a JSON string.

Generate a random GUID
to use with the file names.

Set the name and path of
the picture and output file.

Set the arguments for the timeseries.py
script. Wrap the parameters in double
quotes to account for potential spaces.

Set the arguments
for the Start-Process
command.

Start the timer
and wait for the
process to exit.

Get the content
from the output
and error files.

If there is anything in the
error file, write it as an error
in the PowerShell console.

2379.5 Putting it all together
 elseif ($OutputContent | Where-Object { $_ -match 'File saved to :' }) {
 $output = $OutputContent |
 Where-Object { $_ -match 'File saved to :' }
 $Return = $output.Substring($output.IndexOf(':') + 1).Trim()
 }
 else {
 Write-Error "Unknown error occurred"
 }

 Remove-Item -LiteralPath $StandardOutput -Force
 Remove-Item -LiteralPath $StandardError -Force

 $Return
}

9.5 Putting it all together
Now that we have all of our functionality to write to Word, get the external IP informa-
tion, and use an external application to create a time-series graph, you can put it all
together into one script. Start with the three functions you created:

 New-WordTableFromObject

 New-WordTableFromArray

 New-TimeseriesGraph

Then, you can create a new function to create the section headers for each section in the
Word document. This function will take the three commands needed to set the heading
style, enter the heading text, and create the paragraph break in a single command.

 After the functions, you will first need the commands to load the Word COM
object and create your new document, followed by the commands to load the Word
interop assemblies from the GAC into PowerShell. Now it is time to start populating
the Word document.

 First, start by creating a title using the name of the computer. You can also add a
table of contents by using the Add() method on the TableOfContents property of the
document.

 Next, you can add the system information starting with a heading, followed by the
tables for the operating system information and the disk usage, with the operating sys-
tem information using the New-WordTableFromObject function and the disk usage
using the New-WordTableFromArray. After this, you can create a new heading for Net-
work Data. Then, use the Get-NetIpAddress cmdlet to get the internal IP address
information and write it to a table once again using the New-WordTableFromArray
function. Once you have that, you can use the Invoke-RestMethod cmdlet with the
ipify APIs to get the external IP information and write that to the document.

 Next, go ahead and collect some sample data from the % Processor Time counter
using the Get-Counter cmdlet and pass it to the New-TimeseriesGraph function to

If the output has the expected data, parse
it to return what you need in PowerShell.

If there was no error
and no output, then
something else went
wrong, so you will want
to notify the person
running the script.

Delete the
output files.

238 CHAPTER 9 Working outside of PowerShell
create the PNG image. You can then add this image to the document using the
method $Document.InlineShapes.AddPicture($pathtoPicture).

 Then, once you are done populating all the information into the document, you
can update the table of contents to refresh it with the headings you just created. Then,
save it to your local system.

 You will also want to clean up any picture files and close the Word objects in Power-
Shell to release them from memory. Due to the length of this final snippet, I have cho-
sen to omit it from the text. A copy of it can be found with the accompanying files or
on GitHub at http://mng.bz/neda.

Summary
 .NET classes and COM objects can be loaded and interacted with directly in

PowerShell.
 Assemblies in the Global Assembly Cache (GAC) are not automatically loaded

in PowerShell 7, so you may need to update scripts if moving from Windows
PowerShell 5.1.

 REST is a common HTTP request architecture used across industries, but it
does not define the structure of the data. You will need to refer to each API’s
documentation for specifics of interacting with it.

 How an external application outputs data or error messages depends on that
application. So, you will want to capture and examine both in your scripts.

http://mng.bz/neda

Automation
coding best practices
One of the biggest challenges most IT professionals face today is the speed at which
things change. It used to be that you upgraded your operating systems and applica-
tions every three to five years. However, the subscription- and cloud-based models
have drastically increased the frequency of upgrades. As a result, it is not uncom-
mon to see multiple major upgrades in a single year now. One of the best ways to
help yourself keep up with these trends is through automation. In this chapter, you
will learn how you can ensure that your automations will grow with you by applying
some best practices to your code.

 Back in 2015, when Microsoft first released Windows 10, they introduced the
concept of feature updates, where twice a year a new version of Windows is
released. And this trend will continue with Windows 11. Even many Linux distros
will have multiple versions. For instance, Ubuntu has some with long-term support
(LTS) versions and some short-term support (STS) versions. Some distros have

This chapter covers
 Building a full automation from start to finish

 How to write and comment your code so others
can understand it

 Best practices around building robust and
resumable automations
239

240 CHAPTER 10 Automation coding best practices
even moved to a continuous delivery model. All this means that you can end up with
an assortment of different operating systems in your environment.

 One of the most challenging things for administrators to keep up with is the secu-
rity and management enhancements in all these different versions. You will find that
some support Mobile Device Management (MDM), some can support autopilot or
Trusted Platform Module (TPM), and the list can go on. The point is you may need to
test any given operating system at any time. At the same time, it would not make sense
to leave a bunch of different virtual machines lying around just in case you need to
test something. To solve this problem, we will create a zero-touch Windows ISO that
you can use to quickly deploy a new virtual machine with a click of a button.

 Typically, in the past, you would have downloaded and installed the Windows Assess-
ment and Deployment Kit (Windows ADK), and then built out an auto-unattended file
and manually created a custom ISO. But with releases every six months, you can save
yourself a lot of time by automating the creation of the zero-touch ISO image.

 So, this automation will contain two parts. The first part will be creating the zero-
touch ISO image from the original source ISO. The second part will be creating a vir-
tual machine and installing the operating system without needing to interact with it.

 While creating this automation, we will look at how you can use some best prac-
tices to ensure that it will be adaptable for future releases and that others will be able
to use it. I have personally been using and updating this automation since 2015.

 While I take great care throughout this book to make the automations as universal
as possible, when it comes to creating virtual machines, there is no way to create a sin-
gle script that would work for every hypervisor. Therefore, I have chosen Hyper-V
because it is built into Windows 10 and 11. There is also a free version of the Hyper-V
server that you can download.

 I completed all the automations in this chapter using Hyper-V on my Windows 11
desktop and Windows 10 laptop. You will need the following items to complete all the
scripts in this chapter:

 Windows Server 2022 ISO—If you do not have a copy of this ISO handy, you
can download a 180-day trial from the Microsoft Evaluation Center (http://
mng.bz/vXR7).

 Oscdimg command-line tool—This tool is part of the Windows ADK and is used to
create customized Windows ISOs. I have included a copy of it in the Helper
Scripts folder for this chapter.

Oscdimg and Windows ADK
I completely understand that some of you may not feel comfortable using an execut-
able downloaded from a third-party. So, if you prefer, you can obtain a copy of the
oscdimg.exe by installing the Windows ADK for Windows 10 or above (http://mng
.bz/49Xw). When installing the Windows ADK, you only need to install the Deploy-
ment Tools feature. This will include the oscdimg.exe directly from Microsoft.

http://mng.bz/vXR7
http://mng.bz/vXR7
http://mng.bz/vXR7
http://mng.bz/49Xw
http://mng.bz/49Xw
http://mng.bz/49Xw

24110.1 Defining the full automation
While this chapter is written to work with Hyper-V, its lessons apply to any hypervisor
and, really, any automation.

10.1 Defining the full automation
As we talked about way back in chapter 1, the first thing you need to do when starting
a new automation project is to clearly define the steps and the goals. Of course, you
will not be able to figure out every detail before you begin, but having a general out-
line and the end goal is paramount to successful automation. An excellent way to do
this is by defining your goal and then expanding upon that.

 For this chapter, the goal is to build an automation that can create a Windows
Server 2022 virtual machine with little to no interaction required. Then, building on
that, you can define the high-level steps it takes to create a virtual machine and install
Windows Server 2022:

1 Create a virtual machine.
2 Attach Windows Server 2022 ISO.
3 Run through the installation wizard.
4 Attach a second virtual hard drive.
5 Add the disk to the operating system

Steps 1, 2, and 4 should be straightforward to automate. Since we are using Hyper-V, all
of this can be done in PowerShell. The same can be said for pretty much every hypervi-
sor out there. I guarantee if you search your preferred search engine for “Create VM
PowerShell,” you will find all sorts of examples. You can also say the same thing about
step 5. Again, there are plenty of examples of attaching a new disk inside of Windows.

 So, let’s flesh out these tasks a little further with some more details:

1 Create a virtual machine.
a Give it a name.
b Find the path to create it.
c Determine which network to connect to.
d Create the operating system disk.
e Set memory and processor requirements.

2 Attach Windows Server 2022 ISO.
3 Run through the installation wizard.
4 Attach a second virtual hard drive.

a Create a disk in the same location as the operating system disk.
b Attach the disk to the virtual machine.

5 Add the second disk to the operating system.

a Initialize the disk.
b Create partitions and format.
c Assign a drive letter.

242 CHAPTER 10 Automation coding best practices
This leaves you to figure out step 3 of automating the installation of the operating
system. To do this, you need to create a zero-touch ISO. By zero touch, I mean you
can attach the ISO to a virtual machine, turn it on, and have the operating system
install without you needing to interact with it. To do this, you will need to make
some changes to the files in the ISO and include an auto-unattended answer file.

 To keep things focused on PowerShell automation and not get sucked into the
weeds of creating an auto-unattended answer file, I have provided a copy of a basic
one for Windows Server 2022 with the source code for this chapter. It is the file
named Autounattend.xml in the Helper Script folder. The process to create these
can be quite involved. I would recommend the blog post “How to create an auto-
mated install for Windows Server 2016” by Mischa Taylor (https://mng.bz/7Z24) if
you are interested in creating your own. Most of the items carry over to Windows
Server 2019 and 2022.

10.1.1 Structuring your automation

It used to be that you would need to make a new ISO file every few years when a new
operating system was released. But with releases coming as often as every six months,
you can save yourself a lot of time by automating the creation of the zero-touch ISO.
This will allow you to quickly and easily keep your files up to date. The steps to create
a zero-touch ISO are shown in figure 10.1.

 The big thing here is that this process does not fit into the larger automation.
There is no need to recreate the ISO every time you create a virtual machine. There-
fore, this part should be considered separate automation and stored in a separate file.
You could put it all in one giant script, but then you would need to include all sorts of
additional logic, and it could be a nightmare to update and test.

 There is no set limit, like that scripts should only be 1,000 or fewer lines. It is
more of a logical choice to determine whether they fit together. For instance, say
you want to automate the setup of a WordPress server. For this, you will need to
install Apache, PHP, MySQL, and WordPress itself. Then, you will need to configure
the WordPress site. At a minimum, each installation should be a single function. You
don’t want to have to search through thousands of lines of code to make a tweak to
one of the components.

 Similarly, with the configuration, you could have a hosted WordPress site that
you don’t need to install, just configure. Therefore, the configuration should be in a
completely separate script to run separately from the setup. In short, if multiple
steps will always be run together, they can be in the same script but should be in
stand-alone functions. If there is a chance they will run separately, they should be in
separate scripts.

 So, for this automation, you will create two scripts. You need one to create the ISO
and another to create the virtual machine with that ISO. Let’s start with creating the
zero-touch ISO.

https://mng.bz/7Z24

24310.1 Defining the full automation
Set paths
Source ISO path

New ISO path
Extraction folder

Extract ISO

Extraction folder
exists

Delete extraction
folder

Yes

No

Mount the ISO image Get the new drive
letter

Create destination
folder

Copy the ISO files Dismount the ISO

Rename the efisys
files

Download the
AutoUnattend XML

Update the
Autounattend.xml

password

Set the selected
image in the

Autounattend.xml

Save the updated
XML file

Create new ISO

Locate the
oscdimg.exe

Get the path to the
boot files

Create new ISO

Configure for unattended install

Delete the bootfix.bin

Select the image to
use

Check if the
assessment and
deployment kit is

installed

Figure 10.1 Mount the ISO and extract the contents to your local machine, configure the image for unattended
install suppressing the “Press Any Key to Boot from CD or DVD” prompt and adding the Autounattend.xml, set
the default password, select which version of the OS you want, and, finally, package all this together in a new
ISO file.

244 CHAPTER 10 Automation coding best practices
10.2 Converting a manual task to an automated one
Converting a manual task to automation is not always a one-to-one translation. When per-
forming a manual task, you often do things that you may not realize you are doing.
Therefore, you might not even think to consider them before building your automation.

 For instance, there is no native PowerShell cmdlet to extract an ISO, but there is
native support to mount an ISO. So, instead of extracting, you can mount the ISO
using the Mount-DiskImage cmdlet and then copy the files to the local computer
using the Copy-Item cmdlet.

 On the surface, that sounds simple enough, but when you try to script it, you will
quickly discover another issue. The Mount-DiskImage cmdlet does not tell you what
drive letter it mounts the ISO to. When you are doing things manually, you don’t
often pay attention to something like the drive letter. You just mount it, open the
drive, and copy the files. However, you need to know exactly where the files are
when automating. So, you will need to perform a look-up for the drive letter. Luck-
ily, you can do this by piping the results of the Mount-DiskImage cmdlet to the Get-
Volume cmdlet. But it is an extra step you may not have considered when building
your automation.

 Another thing you might not consider is whether the destination folder already
has files from another ISO in it. The Copy-Item cmdlet can overwrite files with the
-Force switch, but it will not remove files that do not exist in the source location. So, if
you run this script multiple times for different ISOs, you could end up with all sorts of
extra files. These extra files may be harmless, or they may not be. Either way, they
should not be there. So, your best course of action is to check if there are files in the
directory first and then remove them before copying the new files.

 Finally, you may discover during your testing that you cannot overwrite some of the
ISO files. This is because the copy process will sometimes make them read-only files.
Luckily, once again, this can be quickly resolved using PowerShell, as shown in the script
in the next listing. Just get all the files and folders you copied using the Get-ChildItem
cmdlet. Then, use a foreach to loop through each one and set the IsReadOnly flag to
false using the Set-ItemProperty cmdlet.

$ExtractTo = 'C:\Temp'
$SourceISOPath = 'C:\ISO\WindowsSrv2022.iso'
if (test-path $ExtractTo) {
 Remove-Item -Path $ExtractTo -Recurse -Force
}

$DiskImage = @{
 ImagePath = $SourceISOPath
 PassThru = $true
}
$image = Mount-DiskImage @DiskImage

Listing 10.1 Extracting the ISO

Check if the folder
exists and delete it
if it does.

Mount the
ISO image.

24510.3 Updating structured data

Cop
ISO
$drive = $image |
 Get-Volume |
 Select-Object -ExpandProperty DriveLetter

New-Item -type directory -Path $ExtractTo

Get-ChildItem -Path "$($drive):" |
 Copy-Item -Destination $ExtractTo -recurse -Force

Get-ChildItem -Path $ExtractTo -Recurse |
 ForEach-Object {
 Set-ItemProperty -Path $_.FullName -Name IsReadOnly -Value $false
}

$image | Dismount-DiskImage

Now that you have the ISO files extracted, it is time to set it up as a zero-touch image
and customize the Autounattend.xml for the particular image you are using.

10.3 Updating structured data
To create a zero-touch ISO, you must delete the bootfix.bin and rename the efisys_
noprompt.bin to efisys.bin. Doing this will bypass the “Press Any Key to Boot from CD
or DVD…” and take you directly to the installation wizard. To bypass the installation
wizard, you need to provide it with the answers it needs. This is where the Autounat-
tend.xml comes in. However, since not every environment is the same, you will need
to make slight adjustments to this XML file to meet your needs.

 When it comes to updating files with structured data, your best course of action is
to load the data into a PowerShell object. Then, make the changes in PowerShell and
export the changes back to the original format. You can do this for any data type that
has support in PowerShell like JSON and, in this case, XML. Using this method is
more straightforward and safer than trying to write some regular expressions or wild-
card look-up to perform a find and replace inside the file.

 For instance, in the following XML snippet, you can see the entry to the adminis-
trator’s password:

<UserAccounts>
 <AdministratorPassword>
 <Value>pasword</Value>
 <PlainText>false</PlainText>
 </AdministratorPassword>
</UserAccounts>

If you perform a simple find and replace on the word password, it could cause you to
update the lines with AdministratorPassword unintentionally. Even if you used a reg-
ular expression to find the line <Value>password</Value>, there is no guarantee that
this is the only line that matches that value.

 However, if you import the XML to a PowerShell object, then you can change the
value of the property directly in PowerShell by finding the correct path:

Get the new
drive letter.

Create
destination folder.y the

 files.

Remove the read-only flag
for all files and folders.

Dismount
the ISO.

246 CHAPTER 10 Automation coding best practices
$object = $Autounattend.unattend.settings |
 Where-Object { $_.pass -eq "oobeSystem" }
$object.component.UserAccounts.AdministratorPassword.Value = $NewPassword

Also, since the password is a Base64 encoded string, you can have PowerShell encode it,
then write it for you. One thing to note is that you must add the string Administrator-
Password to the end of the password before encoding it. That’s just a requirement of
the Autounattend.xml:

$NewPassword = 'P@ssw0rd'
$pass = $NewPassword + 'AdministratorPassword'
$bytes = [System.Text.Encoding]::Unicode.GetBytes($pass)
$base64Password = [system.convert]::ToBase64String($bytes)

Your final output should look similar to the following example:

<UserAccounts>
 <AdministratorPassword>
 <Value>UABAAHMAcwB3ADAAcgBkAEEAZABtAGkAbgAA==</Value>
 <PlainText>false</PlainText>
 </AdministratorPassword>
</UserAccounts>

Finally, you will need to select which operating system image to use. Most ISO files will
contain multiple versions of the operating system. For example, a Windows Server
2022 contains the following installation images:

 Windows Server 2022 Standard
 Windows Server 2022 Standard (Desktop Experience)
 Windows Server 2022 Datacenter
 Windows Server 2022 Datacenter (Desktop Experience)

Since this list will be different for each operating system, you need to prompt the per-
son running the automation to select which one to use. You can do this by passing the
install.wim from the extracted ISO to the Get-WindowsImage cmdlet. Then, pipe
those results to the Out-GridView cmdlet.

 The Out-GridView cmdlet will automatically create a pop-up window with the val-
ues piped to it. By including the -PassThru switch, you can allow the user to select one
or more of the values in the window and pass that back to the PowerShell session.

WARNING Only use Out-GridView when you know someone will be running
an automation manually. If you try to schedule a script with an Out-GridView
cmdlet, your automation will become hung waiting for the input.

Once you have the image to use, you can update the Autounattend PowerShell object
with the image number, similar to how you updated the administrator password.
Then, you can save all your changes back to the original Autounattend.XML file using
the Save method on the Autounattend PowerShell object. The script is shown in the
following listing.

24710.3 Updating structured data
$ExtractTo = 'C:\Temp'
$password = 'P@55word'
$bootFix = Join-Path $ExtractTo "boot\bootfix.bin"
Remove-Item -Path $bootFix -Force

$ChildItem = @{
 Path = $ExtractTo
 Filter = "efisys.bin"
 Recurse = $true
}
Get-ChildItem @ChildItem | Rename-Item -NewName "efisys_prompt.bin"
$ChildItem['Filter'] = "efisys_noprompt.bin"
Get-ChildItem @ChildItem | Rename-Item -NewName "efisys.bin"

$Path = @{
 Path = $ExtractTo
 ChildPath = "Autounattend.xml"
}
$AutounattendXML = Join-Path @Path
$Uri = 'https://gist.githubusercontent.com/mdowst/3826e74507e0d0188e13b8' +
 'c1be453cf1/raw/0f018ec04d583b63c8cb98a52ad9f500be4ece75/Autounattend.xml'
Invoke-WebRequest -Uri $Uri -OutFile $AutounattendXML

[xml]$Autounattend = Get-Content $AutounattendXML

$passStr = $password + 'AdministratorPassword'
$bytes = [System.Text.Encoding]::Unicode.GetBytes($passStr)
$passEncoded = [system.convert]::ToBase64String($bytes)
$setting = $Autounattend.unattend.settings |
 Where-Object{$_.pass -eq 'oobeSystem'}
$setting.component.UserAccounts.AdministratorPassword.Value = $passEncoded

$ChildItem = @{
 Path = $ExtractTo
 Include = "install.wim"
 Recurse = $true
}
$ImageWim = Get-ChildItem @ChildItem
$WinImage = Get-WindowsImage -ImagePath $ImageWim.FullName |
 Out-GridView -Title 'Select the image to use' -PassThru
$image = $WinImage.ImageIndex.ToString()

$setup = $Autounattend.unattend.settings |
 Where-Object{$_.pass -eq 'windowsPE'} |
 Select-Object -ExpandProperty component |
 Where-Object{ $_.name -eq "Microsoft-Windows-Setup"}
$setup.ImageInstall.OSImage.InstallFrom.MetaData.Value = $image

$Autounattend.Save($AutounattendXML)

Listing 10.2 Create a Windows zero-touch ISO

Delete the
bootfix.bin.

Rename the
efisys files.

Download the
AutoUnattend XML.

Load the
Autounattend.xml.

Update
the values.

Select the
image to use.

Set the selected image in
the Autounattend.xml.

Save the updated
XML file.

248 CHAPTER 10 Automation coding best practices
10.4 Using external tools
Unfortunately, not everything can be achieved directly in PowerShell. There are
instances where you need to call external tools. For instance, creating a new Windows
ISO file with the Autounattend.XML requires the use of a specific executable oscdimg.

 The oscdimg executable is included in the Windows ADK. Unfortunately, the Win-
dows ADK is not included in Windows, so you must download and install it manually.
This means that you cannot guarantee that the oscdimg executable will be in the same
location on every machine. Therefore, you will need to locate it first.

 If the application is a stand-alone executable, your best option is to include it
with the automation script. This way, you can always ensure it is there. But if an
application needs to be installed on the machine, you will need to include some
additional logic to find it.

10.4.1 Finding installed applications

Since not all programs are installed in the same manner, even on the same operating
system, you will need to adjust your automation based on the specific one you need.
However, there are a few standard options you can use to locate an application. Of
course, these are dependent on the operating system. And since Windows ADK is only
supported on Windows, we will look at those options.

 First, you can try checking the Uninstall keys in the registry. These keys are where
the items listed in Add/Remove Programs come from. You can usually search under
these keys to find the installation information for the application. Keep in mind that
there are two Uninstall keys because of support for x86 programs:

HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall
HKLM:\SOFTWARE\WOW6432Node\Microsoft\Windows\CurrentVersion\Uninstall

Once again, this is something PowerShell can do. You can use the Get-ChildItem
cmdlet to search the DisplayName value for each key under the Uninstall registry key.
Then check if the value matches your search string. The following snippet should
return data if you have the Windows ADK installed:

AutoUnattend Product Keys
If you downloaded the trial ISO for Windows Server, it does not require a product key
during installation. However, if you are using a volume license, Microsoft Developer Net-
work, or other ISO, it may require a product key to allow full zero-touch. In these cases,
you can add the product key to the AutoUnattend.xml file under UserData\ProductKey:

<UserData>
 <ProductKey>
 <Key>12345-12345-12345-12345-12345</Key>
 <WillShowUI>Never</WillShowUI>
 </ProductKey>
</UserData>

24910.4 Using external tools
$SearchFor = '*Windows Assessment and Deployment Kit*'
$Path = 'HKLM:\SOFTWARE\WOW6432Node\Microsoft\Windows\CurrentVersion\Uninstall'
Get-ChildItem -Path $Path | ForEach-Object{
 if($_.GetValue('DisplayName') -like $SearchFor){
 $_
 }
}

If you are lucky, the entry in the Uninstall key will contain the path to the Install direc-
tory. However, that is not always the case, like with the Windows ADK. So, you’ll need
to find a different way to locate it.

 The next thing I’ll usually try is to open File Explorer and locate the installation
path manually. Then, I’ll open the Registry Editor and search for that path, starting
under HKEY_LOCAL_MACHINE\SOFTWARE and working my way up. If you are lucky, the
application may have stored the installation path in the registry.

 With the Windows ADK, you are in luck because you should find the installation
path in the value KitsRoot10 under the key HKLM:\SOFTWARE\WOW6432Node\Microsoft\
Windows Kits\Installed Roots. Therefore, you can use the following snippet to get
the install path in your script:

$Path = 'HKLM:\SOFTWARE\WOW6432Node\Microsoft\Windows Kits\Installed Roots'
$DevTools = Get-ItemProperty -Path $Path
$DevTools.KitsRoot10

If you cannot locate the installation path in the registry, your next option is to search
the file system. However, since installers can install programs anywhere, you need to
build logic into the search. Your goal should be to make the search process as efficient
as possible. Therefore, you will want to build a tiered search.

 You can start first by searching standard directories where applications are often
installed. And remember, you cannot count on the folders to be in the same spot on
every computer. So, you will want to use environmental variables to locate these
folders. Table 10.1 lists standard directories for application installs and their envi-
ronment variable names.

The goal here is to be as efficient as possible. So, you can search each of these folders
in order and stop if you find the executable you want. If you do not find it, you can
move to a broader search of the system drives.

Table 10.1 Common install directories and their environment variable (Windows)

Directory Environment variable

Program Files $env:ProgramFiles

Program Files (x86) ${env:ProgramFiles(x86)}

ProgramData $env:ProgramData

AppData\Local $env:LOCALAPPDATA

250 CHAPTER 10 Automation coding best practices
 To achieve this in a script, you can build a list of the folders you want to check first.
Then use the Get-Volume cmdlet to return the different drives for the local computer,
filtering out removable and temporary storage. Then, use a foreach loop to check
each location and check for the installation files using the Get-ChildItem cmdlet.
Then, if the file is found, break the loop because there is no need to check any fur-
ther. You can also include an if statement after the foreach to check that the file was
found and, if not, throw an error to stop the execution.

 Before you carry on with your script, you must consider one more situation. What
happens if multiple copies of the same file are found? This can happen when there
are multiple versions of an application installed. In this case, you can use the -First 1
argument with the Select-Object cmdlet to return only the first one found. This will
prevent you from accidentally executing the command multiple times because you
found multiple copies. You can see this in the following listing where the script
searches for the oscdimg.exe file.

$FileName = 'oscdimg.exe'
[System.Collections.Generic.List[PSObject]] $SearchFolders = @()

$ItemProperty = @{
 Path = 'HKLM:\SOFTWARE\WOW6432Node\Microsoft\Windows Kits\Installed

Roots'
}
$DevTools = Get-ItemProperty @ItemProperty

if(-not [string]::IsNullOrEmpty($DevTools.KitsRoot10)){
 $SearchFolders.Add($DevTools.KitsRoot10)
}

$SearchFolders.Add($env:ProgramFiles)
$SearchFolders.Add(${env:ProgramFiles(x86)})
$SearchFolders.Add($env:ProgramData)
$SearchFolders.Add($env:LOCALAPPDATA)

Get-Volume |
 Where-Object { $_.FileSystemLabel -ne 'Temporary Storage' -and
 $_.DriveType -ne 'Removable' -and $_.DriveLetter } |
 Sort-Object DriveLetter -Descending | Foreach-Object {
 $SearchFolders.Add("$($_.DriveLetter):\")
}

foreach ($path in $SearchFolders) {
 $ChildItem = @{
 Path = $path
 Filter = $FileName
 Recurse = $true
 ErrorAction = 'SilentlyContinue'
 }

Listing 10.3 Find the oscdimg.exe file

Check if the Assessment and
Deployment Kit is installed.

If ADK is found,
add the path to the
folder search list.

Add the other common
installation locations to
the folder search list.

Add the
system disks
to the folder

search list.

Loop through each
folder and break if the
executable is found.

25110.4 Using external tools
 $filePath = Get-ChildItem @ChildItem |
 Select-Object -ExpandProperty FullName -First 1
 if($filePath){
 break
 }
}

if(-not $filePath){
 throw "$FileName not found"
}

$filePath

10.4.2 Call operators

Fortunately for us, the oscdimg executable is a stand-alone application, so I included a
copy of it in the Helper Script folder for this chapter. So, all you need to do is put it in
the same folder as the script, and you can create the path to it by combining the
$PSScriptRoot variable with the name of the executable. Then, if it is not found in
the directory, you can search the system for it.

 To finish the ISO build, you will build the command-line arguments and call the
oscdimg executable by placing the call operator & at the beginning of the line. The &
tells PowerShell that the variable is a command to execute. You can see this at work in
the following listing.

$NewIsoPath = 'C:\ISO\WindowsSrv2022_zerotouch.iso'
$filePath = ".\Chapter10\Helper Scripts\oscdimg.exe"
$Path = @{
 Path = $ExtractTo
 ChildPath = 'boot\etfsboot.com'
}
$etfsboot = Join-Path @Path
$Path = @{
 Path = $ExtractTo
 ChildPath = 'efi\microsoft\boot\efisys.bin'
}
$efisys = Join-Path @Path
$arguments = @(
 '-m'
 '-o'
 '-u2'
 '-udfver102'
 "-bootdata:2#p0,e,b$($etfsboot)#pEF,e,b$($efisys)"
 $ExtractTo
 $NewIsoPath
)

& $filePath $arguments

Listing 10.4 Running the oscdimg.exe

Get the path to the
etfsboot.com file.

Get the path to
the efisys.bin file.

Build an array with
the arguments for
the oscdimg.exe.

Execute the oscdimg.exe
with the arguments using
the call operator.

252 CHAPTER 10 Automation coding best practices

M
the
im

C
the
Since the oscdimg executable runs in a child scope of the main script, the output will
be returned directly to the PowerShell console. One downside is that PowerShell
often interprets the output as an error message. There are a couple of ways to handle
this. You can use the Start-Process cmdlet, but that requires capturing and reading
multiple output files. Also, you will need to know what will be written in those files to
determine if an error occurred. The easier way to check is by using the $LASTEXITCODE
variable. This variable returns the exit code of the last call operation. If it equals zero,
the command completed successfully. The following listing puts the entire zero-touch
automation script together.

$SourceISOPath = "C:\ISO\Windows_Server_2022.iso"
$NewIsoPath = 'D:\ISO\Windows_Server_2022_ZeroTouch.iso'
$ExtractTo = 'D:\Win_ISO'
$password = 'P@55word'

$Uri = 'https://gist.githubusercontent.com/mdowst/3826e74507e0d0188e13b8' +
 'c1be453cf1/raw/0f018ec04d583b63c8cb98a52ad9f500be4ece75/Autounattend.xml'
$FileName = 'oscdimg.exe'
[System.Collections.Generic.List[PSObject]] $SearchFolders = @()

if(test-path $ExtractTo){
 Remove-Item -Path $ExtractTo -Recurse -Force
}

$DiskImage = @{
 ImagePath = $SourceISOPath
 PassThru = $true
}
$image = Mount-DiskImage @DiskImage

$drive = $image |
 Get-Volume |
 Select-Object -ExpandProperty DriveLetter

New-Item -type directory -Path $ExtractTo

Get-ChildItem -Path "$($drive):" |
 Copy-Item -Destination $ExtractTo -recurse -Force

$image | Dismount-DiskImage

$bootFix = Join-Path $ExtractTo "boot\bootfix.bin"
Remove-Item -Path $bootFix -Force

$ChildItem = @{
 Path = $ExtractTo
 Filter = "efisys.bin"
 Recurse = $true
}
Get-ChildItem @ChildItem | Rename-Item -NewName "efisys_prompt.bin"

Listing 10.5 Create a Windows zero-touch ISO—final

Check if the folder
exists and delete it
if it does.ount

 ISO
age.

Get the new
drive letter.

Create the
destination
folder.

opy
 ISO
files.

Dismount the ISO.

Delete the
bootfix.bin.

Rename the
efisys files.

25310.4 Using external tools
$ChildItem['Filter'] = "efisys_noprompt.bin"
Get-ChildItem @ChildItem | Rename-Item -NewName "efisys.bin"

$Path = @{
 Path = $ExtractTo
 ChildPath = "Autounattend.xml"
}
$AutounattendXML = Join-Path @Path
Invoke-WebRequest -Uri $Uri -OutFile $AutounattendXML

[xml]$Autounattend = Get-Content $AutounattendXML

$passStr = $password + 'AdministratorPassword'
$bytes = [System.Text.Encoding]::Unicode.GetBytes($passStr)
$passEncoded = [system.convert]::ToBase64String($bytes)
$setting = $Autounattend.unattend.settings |
 Where-Object{$_.pass -eq 'oobeSystem'}
$setting.component.UserAccounts.AdministratorPassword.Value = $passEncoded

$ChildItem = @{
 Path = $ExtractTo
 Include = "install.wim"
 Recurse = $true
}
$ImageWim = Get-ChildItem @ChildItem
$WinImage = Get-WindowsImage -ImagePath $ImageWim.FullName |
 Out-GridView -Title 'Select the image to use' -PassThru
$image = $WinImage.ImageIndex.ToString()

$setup = $Autounattend.unattend.settings |
 Where-Object{$_.pass -eq 'windowsPE'} |
 Select-Object -ExpandProperty component |
 Where-Object{ $_.name -eq "Microsoft-Windows-Setup"}
$setup.ImageInstall.OSImage.InstallFrom.MetaData.Value = $image

$Autounattend.Save($AutounattendXML)

$ItemProperty = @{
 Path = 'HKLM:\SOFTWARE\WOW6432Node\Microsoft\Windows Kits\Installed

Roots'
}
$DevTools = Get-ItemProperty @ItemProperty

if(-not [string]::IsNullOrEmpty($DevTools.KitsRoot10)){
 $SearchFolders.Add($DevTools.KitsRoot10)
}

$SearchFolders.Add($env:ProgramFiles)
$SearchFolders.Add(${env:ProgramFiles(x86)})
$SearchFolders.Add($env:ProgramData)
$SearchFolders.Add($env:LOCALAPPDATA)

Get-Volume |
 Where-Object { $_.FileSystemLabel -ne 'Temporary Storage' -and
 $_.DriveType -ne 'Removable' -and $_.DriveLetter } |

Download the
AutoUnattend XML.

Load the
Autounattend.xml.

Update the
values.

Select the
image to use.

Set the selected image in
the Autounattend.xml.

Save the updated
XML file.

Check if the Assessment and
Deployment Kit is installed.

If the ADK is found,
add the path to the
folder search list.

Add the other common installation
locations to the folder search list.

Add the system disks to
the folder search list.

254 CHAPTER 10 Automation coding best practices
 Sort-Object DriveLetter -Descending | Foreach-Object {
 $SearchFolders.Add("$($_.DriveLetter):\")
}

foreach ($path in $SearchFolders) {
 $ChildItem = @{
 Path = $path
 Filter = $FileName
 Recurse = $true
 ErrorAction = 'SilentlyContinue'
 }
 $filePath = Get-ChildItem @ChildItem |
 Select-Object -ExpandProperty FullName -First 1
 if($filePath){
 break
 }
}

if(-not $filePath){
 throw "$FileName not found"
}

$Path = @{
 Path = $ExtractTo
 ChildPath = 'boot\etfsboot.com'
}
$etfsboot = Join-Path @Path
$Path = @{
 Path = $ExtractTo
 ChildPath = 'efi\microsoft\boot\efisys.bin'
}
$efisys = Join-Path @Path
$arguments = @(
 '-m'
 '-o'
 '-u2'
 '-udfver102'
 "-bootdata:2#p0,e,b$($etfsboot)#pEF,e,b$($efisys)"
 $ExtractTo
 $NewIsoPath
)

& $filePath $arguments

if($LASTEXITCODE -ne 0){
 throw "ISO creation failed"
}

Go ahead and run this script to create your zero-touch ISO to complete the first script
in the automation. Then you will be ready for the next script, where you will automate
the virtual machine creation.

Loop through each
folder and break if the
executable is found.

Get the path to the
etfsboot.com file.

Get the path to
the efisys.bin file.

Build an array with
the arguments for
the oscdimg.exe.

Execute the oscdimg.exe
with the arguments using
the call operator.

Confirm the last
exit code is zero.

25510.5 Defining parameters
10.5 Defining parameters
In my opinion, one of the toughest yet least talked about aspects of creating an auto-
mation script is defining the parameters. If you hardcode too many variables in your
script, your automation may not be flexible enough. On the other hand, if you make
too many parameters and choices, you could end up making an automation process
that is more difficult than the manual process. Therefore, you will want to try and find
a balance between the two.

 An excellent example of this is a project I was assigned to a few years ago to automate
the installation of System Center products. The goal was to provide a simple interface
that consultants could use to deploy products like Configuration Manager and Service
Manager for customers. This also had the added bonus of creating standardized installa-
tions, making it simple for consultants to pick up where another left off.

 I started with the Service Manager installation. Service Manager typically consists of
two servers: a management server and a data warehouse server. Additional management
servers may be deployed for large companies, but the installation is always the same.

 I created a script to generate an answer file to perform a silent installation. The
consultant had to provide about six or seven parameters, and it would go off and per-
form the installations. It would download and install all the prerequisites and even
install the SQL backend for them. The script worked great, so I moved on to doing
the same for Configuration Manager.

 I started by talking to consultants who regularly set up Configuration Manager for
clients. Unlike Service Manager, Configuration Manager has numerous different roles
that can spread across multiple machines—and that doesn’t even include the remote
distribution points at client sites.

 As I talked to more and more of the consultants, I discovered more scenarios. As I
took notes, I quickly realized that if I built a script to accommodate all the different
scenarios, I would essentially be remaking the installation wizard. So, we decided that
it wasn’t worth scripting the entire installation, but we could script portions to help
consultants save time and standardize where possible.

 I bring this up because I don’t want you to fall down the rabbit hole of trying to
accommodate every situation through parameters, because you may end up just rein-
venting the wheel/wizard/GUI. But, at the same time, that doesn’t mean your auto-
mation should not consider different scenarios or environments because some can be
handled by your code.

 Let’s start by looking at what values are required to create a new virtual machine:

 Which Hyper-V host to create it on
 The name of the virtual machine
 Where to store the virtual machine configuration and disks
 The sizes of the operating system disk
 The number and size of secondary disks
 The virtual switch

256 CHAPTER 10 Automation coding best practices
 How much memory to assign
 The location of the ISO
 If you want automatic checkpoints
 Which virtual machine generation to use
 What the boot order should be

As you can see, there are many things to consider, but as you think through these
things, remember that your automation does not have to fit every single scenario.
However, there are four buckets a potential parameter can fall into:

 Mandatory—The parameter must be supplied by the person or script initiating
the automation.

 Fixed—A predetermined value that cannot be changed.
 Optional—A parameter that the person can choose to supply or not, but keep in

mind that optional parameters should have a fixed value they default to if not
supplied.

 Logical—Parameters that can use logic to determine their value. Like with
optional parameters, logical parameters should have a fallback plan if they can-
not determine a value.

For example, when it comes to automatic checkpoints, you know that you never want
to use them. So, you can just set it as a fixed value to disable them in your script. Then,
if there is ever a time when you want them, you can just turn them back on manually
after the creation process.

 An example of an optional parameter is the virtual hard disk (VHD) space. Most
operating systems require 30–40 GB of space to install. Knowing that you can increase
the disk size after installation, you could fix it to 50 GB or make it an optional param-
eter. This way, you can provide another size if you want.

 A parameter you can use a logical value for is the virtual switch. Here, you can have
your script attempt to locate the switch for you. You can have it check for an external
switch and, if it doesn’t find it, try to find the default switch. If for some reason it is
unable to find a switch, you can leave it off since you can still install the operating sys-
tem without it.

 Another logical parameter can be the path for the virtual machine configuration
and disks. Hyper-V has a default location to store virtual machines. So, you can have
your script get this location and then just append a folder with the virtual machine
name to it. If there is some reason you don’t want to use the default path, then
chances are you are doing something out of the ordinary, in which case using the wiz-
ard might be your best bet.

 So, looking back at the original list of parameters, you can now determine which
ones to make into input parameters that the person running the script will need to
provide, which ones you create logic for, and which ones you have set in the script, as

25710.5 Defining parameters
shown in figure 10.2. Also, be sure to remember that unless it is a mandatory parameter,
there needs to be a default value.

Obviously, you can adapt these parameters to meet your needs and requirements. This
is just a thought experiment to give you an idea of how to think about requirements
and parameters. But once you have your parameters defined, it is time to move on
with the automation process.

Figure 10.2 Hyper-V virtual machine creation parameters broken down into buckets for mandatory
(values that must be supplied), optional (values that have a default value but can be overwritten by the
user), fixed (values that are hardcoded), and logical (values that are determined by logic in the script)

Hyper-V virtual machine creation

Mandatory Optional Fixed Logical

D
e
fi
n
e
d
 p

a
ra

m
e
te

rs

Hyper-V host
OS disk size

Default: 50 GB
Secondary disks

Set: 1 at 10GB
Storage location
Based on host

VM name
Memory

Set: 4 GB
Switch

Logic or none

ISO location

Generation
Set: 2

Auto-checkpoints
Set: Off

Boot order
Set: DVD, VHD

258 CHAPTER 10 Automation coding best practices
10.6 Making resumable automations
One of the most overlooked concepts I’ve seen in automation scripts is the concept
of resuming. When building multistage automations, you need to think about the
following things:

 What can go wrong at each stage?
 Can the automation continue if it fails?
 Can you rerun the stage?

For instance, in the first part of the virtual machine creation automation, you will
collect the information for the logical parameters, disk paths, and the virtual switch.
Then, you will create the virtual machine using the New-VM cmdlet. Once the virtual
machine is created, you need to set the memory values and the automatic snapshots,
add the ISO file, set the boot order, and then turn on the virtual machine. Each one
of those is a separate command, as you can see in figure 10.3.

Now you need to consider what would happen if an error occurred at any one of these
steps. And if it did, how would restarting the script affect the automation, and how can
you prevent any adverse conditions?

 Start with the first commands to collect the information about the storage loca-
tion. If this fails, the virtual machine creation will fail because it won’t have a path. So,
you can write a few extra lines of code to check that the path exists and is accessible.
But that might be unnecessary because you know that when you run the New-VM
cmdlet with a blank path, it will fail and tell you exactly why.

 However, this is dependent on you knowing the exact behavior of the cmdlet and
assuming this behavior will not change between versions. For example, if the behav-
ior of the New-VM cmdlet changes to create a virtual machine in a potentially
unwanted location, you would need to check first. Therefore, it would be in your
best interest to include a quick Test-Path check to confirm that the script can
access the location.

Get default paths
Get-VMHost

Get virtual switch
Get-VMSwitch

Create VM
New-Vm

Set memory
Set-VMMemory

Set checkpoints
Set-VM

Add ISO
Add-VMDvdDrive

Set boot order
Set-VMFirmware

Figure 10.3 Virtual machine creation script process that includes determining the host and switch, creating
the virtual machine, setting the memory and check-points, adding the ISO, and setting the boot order

25910.6 Making resumable automations

ss
 The next step to get the virtual switch is similar, except that you can create a vir-
tual machine without a switch. But if a switch is not found and you pass a null value
for the parameter to the New-VM cmdlet, it will fail. So, in this case, you can include
some logic to only add the parameter if a switch is found, as shown in the following
listing.

$VmHost = Get-VMHost -ComputerName $VMHostName

$TestPath = Test-Path -Path $VmHost.VirtualMachinePath
if($TestPath -eq $false){
 throw "Unable to access path '$($VmHost.VirtualMachinePath)'"
}

$Path = @{
 Path = $VmHost.VirtualMachinePath
 ChildPath = "$VMName\$VMName.vhdx"
}
$NewVHDPath = Join-Path @Path

$VMParams = @{
 Name = $VMName
 NewVHDPath = $NewVHDPath
 NewVHDSizeBytes = 40GB
 Path = $VmHost.VirtualMachinePath
 Generation = 2
}

$VmSwitch = Get-VMSwitch -SwitchType External |
 Select-Object -First 1
if (-not $VmSwitch) {
 $VmSwitch = Get-VMSwitch -Name 'Default Switch'
}

if ($VmSwitch) {
 $VMParams.Add('SwitchName',$VmSwitch.Name)
}

With both of these steps, you know you can run them every time the script restarts
without causing any issue because they are just gathering information. But the next
command—to create the virtual machine—will need to be treated differently.

 If the command to create the new virtual machine fails, the script cannot continue.
So, you can easily handle that using the argument -ErrorAction Stop on the com-
mand to create the virtual machine to stop the execution if there is an error. But now,
consider what would happen if there was an error later in the script. Looking at the
following listing, consider what would happen if you restarted the automation.

Listing 10.6 Getting the path and external switch

Get the VM host to
determine the VM path.

Confirm the
script can acce
the VM path.

Set the path for the
VM’s virtual hard disk

Set the new VM
parameters.

Determine the
switch to use.

If the switch is
found, add it to the
VM parameters.

260 CHAPTER 10 Automation coding best practices
$VMParams = @{
 Name = $VMName
 NewVHDPath = $NewVHDPath
 NewVHDSizeBytes = 40GB
 SwitchName = $VmSwitch.Name
 Path = $VmHost.VirtualMachinePath
 Generation = 2
 ErrorAction = 'Stop'
}
$VM = New-VM @VMParams

As is, if you were to restart the script, the virtual machine creation would fail because a
machine with that name already exists. This would prevent the rest of the automation
from continuing because you included the argument -ErrorAction Stop on the
machine creation command. However, it is not truly an error because the virtual
machine does exist.

 So, before you create the virtual machine, you can check if it already exists using
the Get-VM cmdlet and create it if it doesn’t—except now, there is one more problem.
If you run the Get-VM cmdlet and the virtual machine doesn’t exist, it will return an
error. Of course, you can suppress the error, but how do you know if it failed because
the virtual machine was not found or because of some other problem? So, instead of
suppressing the error, you can use a try/catch and check the error message, as in list-
ing 10.8. If it is due to the virtual machine not existing, then carry on. If not, then
throw a terminating error. Figure 10.4 illustrates the process.

try {
 $VM = Get-VM -Name $VMName -ErrorAction Stop
}
catch {
 $VM = $null

 if ($_.FullyQualifiedErrorId -ne
 'InvalidParameter,Microsoft.HyperV.PowerShell.Commands.GetVM') {
 throw $_
 }
}

if ($null -eq $VM) {
 $VMParams = @{
 Name = $VMName
 NewVHDPath = $NewVHDPath
 NewVHDSizeBytes = 40GB
 SwitchName = $VmSwitch.Name
 Path = $VmHost.VirtualMachinePath
 Generation = 2

Listing 10.7 Create a virtual machine

Listing 10.8 Check if the VM exists before creating it

Attempt to see if the
VM already exists.

If the catch is triggered, then set
$VM to null to ensure that any
previous data is cleared out.

If the error is not the
expected one for a VM not
being there, then throw a
terminating error.

If the VM is not
found, then
create it.

Create the VM.

26110.6 Making resumable automations
 ErrorAction = 'Stop'
 }
 $VM = New-VM @VMParams
}

Now, consider the steps to set the memory values and the automatic snapshots, add
the ISO file, set the boot order, and turn on the virtual machine. Think about what
would happen if any of these steps failed or if the script had to restart.

 For example, say the cmdlet to set the ISO file, Add-VMDvdDrive, fails because you
entered the wrong path in the parameters. You already built the logic, so you know

$VM = $null

Create VM
New-Vm

Get-VM Error

No Error

$VM = The VM Invalid param
error

VM exists

Yes

Terminate
script

No

No

Configure VM

Yes

Figure 10.4 Test if a virtual machine exists before attempting to create it. If it
exists, skip the creation, but continue with the rest of the script.

262 CHAPTER 10 Automation coding best practices
the virtual machine will not be recreated, but what about the setting memory and
checkpoints commands? If you rerun either of those, it won’t make much difference
because it will just set the same values again. However, if setting the boot order with
Set-VMFirmware fails and you need to restart, the Add-VMDvdDrive cmdlet will run
again. If that happens, a second DVD drive will be attached to the virtual machine. It
might not hurt anything, but it really is not what you would want either. So, for this
particular command, you will want to check whether a drive is already attached, and, if
it is, just add the ISO file to it using a script like the one in the following listing.

$VMMemory = @{
 DynamicMemoryEnabled = $true
 MinimumBytes = 512MB
 MaximumBytes = 2048MB
 Buffer = 20
 StartupBytes = 1024MB
}
$VM | Set-VMMemory @VMMemory

$VM | Set-VM -AutomaticCheckpointsEnabled $false

if(-not $VM.DVDDrives){
 $VM | Add-VMDvdDrive -Path $ISO
}
else{
 $VM | Set-VMDvdDrive -Path $ISO
}

$BootOrder = @(
 $VM.DVDDrives[0]
 $VM.HardDrives[0]
)
$VM | Set-VMFirmware -BootOrder $BootOrder

You cannot change the boot order or change some memory allocation settings when a
virtual machine is running. Therefore, you will check to see if the virtual machine is
running before executing those steps. If it is already running, you can assume that all
the previous steps have been completed, so there is no need to rerun them. Instead,
you can just have your script continue. Figure 10.5 shows the logic.

10.6.1 Determining code logic and functions

Chapter 2 mentioned a few basic rules to follow when creating functions. These
include the following:

 A function can perform multiple related tasks but should be able to be
restarted if an error occurs at any point.

 Do not include control logic inside of your functions. If you need your script to
take specific actions based on certain results, it is best to define that in the script.

Listing 10.9 Updating virtual machine settings

Set the VM
memory.

Disable automatic
checkpoints.

Add the Windows
installation ISO.

Set the boot
order to use the
DVD drive first.

26310.6 Making resumable automations
Considering these, you can determine the best way to structure your script.
 The first thing you need to do for the virtual machine provisioning is check

whether the virtual machine exists and, if it does not, create it. Since this is control
logic, you will want it in your main script. However, when it comes to creating the vir-
tual machine, you can create a single function that will get the disk path and the virtual
switch and create the virtual machine.

Get default paths
Get-VMHost

Get virtual switch
Get-VMSwitch

Create VM
New-Vm

Set memory
Set-VMMemory

Set checkpoints
Set-VM

Add Drive and ISO
Add-VMDvdDrive

Set boot order
Set-VMFirmware

Get VM
Get-VM

VM exists No

Yes

Is running No

DVD existsNo

Add ISO
Set-VMDvdDrive

Yes

Start VM
Start-VM

Install OS

Yes

Figure 10.5 If the virtual machine does not exist, create it. If the virtual machine is not running, configure
the settings (memory, drives, etc.) and then start it. Once it is created and running, move on to the operating
system install.

264 CHAPTER 10 Automation coding best practices
 Then, you need to check whether the machine is running. If it is not, then update
the settings and start it. Again, this is control logic, so it goes in the main script. But
updating the settings can be done in a single function because that section of code
can be rerun from the beginning. Then, you can call the command to start the virtual
machine. The steps are shown in figure 10.6.

Get VM
Get-VM

VM exists

No

Yes

Is running

No

Start VM
Start-VM

Install OS

Yes

Get default paths
Get-VMHost

Get virtual switch
Get-VMSwitch

Create VM
New-Vm

Function new-VmFromIso

Set memory
Set-VMMemory

Set check-points
Set-VM

Add Drive and ISO
Add-VMDvdDrive

Set boot order
Set-VMFirmware

DVD existsNo

Add ISO
Set-VMDvdDrive

Yes

Function set-VmSettings

Figure 10.6 Virtual machine creation organized with functions and checks. The first check that confirms
whether the virtual machine exists is performed in the script. If it doesn’t exist, a function is called to perform
the creation process. Once it is confirmed that it exists or has been created, a running check will tell you
whether you can set the configuration or not. Finally, if the configuration is performed, you know it is not
running, so turn it on—but outside the function, in case you need to perform additional configuration later.

26510.7 Waiting for automations
You may notice that there is a check in the update settings to see whether a DVD
drive has already been added. While this may seem like control logic, it does not
directly impact the execution of the script. So, it is acceptable to include conditions
inside your functions, just not something that would change the execution of the
script.

 Another way to look at it is through the function calls themselves. Having nested
functions, or functions calling functions, can make for maintenance and trouble-
shooting nightmares. For example, if you put the virtual machine running check
inside the Set-VmSettings function in figure 10.6, your script will always execute it.
This can cause errors because the Start-VM cmdlet will always run and return an error
if the virtual machine is already running. So, you can put the logic inside the function
to only turn it on if it is not running to avoid that. Now, say that 6 months from now,
you want to add a new function to perform some additional configurations. Of course,
it cannot perform them if the virtual machine is running, but if the virtual machine is
started by the Set-VmSettings function, you will need to make some significant
changes to get this new functionality implemented.

 As you can see, this can get complex quickly, and unfortunately, there is no golden
rule for it. But by being aware of these challenges during the initial build process, you
can save yourself lots of work in the long run.

10.7 Waiting for automations
Once the virtual machine starts, you will need to wait for the operating system to fin-
ish installing before you can do anything else. You have two options here. You can just
have the script stop and then go back and start it again once the installation is com-
plete, but that requires manual intervention. So instead, you can have your script wait
and monitor for completion using a while loop.

 Whenever you build a while loop, you need to be 100% certain that it will end.
In this instance, you need to find a way to tell your script that the operating system
installation has been completed. Since the host machine cannot tell that, you can
use the Invoke-Command cmdlet to execute a remote command inside the virtual
machine. Once that command completes successfully, you know the operating sys-
tem is installed. However, if the operating system installation fails, your script could
theoretically run forever. So, to prevent that from happening, you need to build a
fail-safe into your loop.

 There are two ways to build a fail-safe. One is to check for a failed condition as
well as a success condition. For example, if you are monitoring data transferring
from one place to another, you know that transfer will either succeed or fail. So, all
you need do is monitor for the transfer to end and then get the results. Unfortu-
nately, with the operating system installation, you only know when it is successful.
There is no way for PowerShell to know whether the operating system installation
failed or is just still running.

266 CHAPTER 10 Automation coding best practices
 If you cannot monitor all possible conditions, you should include a time limit
on your while loop. You can do that using the .NET Stopwatch class you first learned
about in chapter 3. The Stopwatch class will create a timer that will continue to run as
long as your script is executing. So, you can use it to check the elapsed time and take
appropriate actions if the time is exceeded. In chapter 3, you used it to ensure that
job executions would not overlap and that you could control when a script termi-
nates. In this automation, it will be used as a fail-safe for when other conditions
cannot be checked.

 For the operating system installation loop, you can set the time limit to 30 minutes.
If, after 30 minutes, your installation has not been completed, then throw a terminat-
ing error. This will alert you to the problem so you can resolve it manually.

 This technique can be used in any situation where PowerShell is not able to tell
the condition of the object it is waiting on. The best part is that since you made this
script resumable, after you fix the operating system installation, all you have to do
is restart the script, and it will pick up where it left off.

$OsInstallTimeLimit = 30
$Command = @{
 VMId = $VM.Id
 ScriptBlock = { $env:COMPUTERNAME }
 Credential = $Credential
 ErrorAction = 'Stop'
}

$timer = [system.diagnostics.stopwatch]::StartNew()

$Results = $null
while ([string]::IsNullOrEmpty($Results)) {
 try {
 $Results = Invoke-Command @Command
 }
 catch {
 if ($timer.Elapsed.TotalMinutes -gt
 $OsInstallTimeLimit) {
 throw "Failed to provision virtual machine after 10 minutes."
 }
 }
}

Once the operating system installation is finished, there is only one step left: attaching
a second VHD.

Listing 10.10 Waiting for the operating system install to finish

Command to return the VM
guest hostname. It will be used
to determine that the OS install
has been completed.

Include a timer or
counter to ensure that
your script doesn’t end
after so many minutes.

Set the variable before the while loop
to $null to ensure that past variables
are not causing false positives.

Run the command to
get the hostname.

If the timer exceeds the
number of minutes, throw

a terminating error.

26710.8 Think of the next person
10.8 Think of the next person
In this last step, you will create a new VHD and attach it to the virtual machine.
Then, you will execute a remote command on the virtual machine to initialize, par-
tition, and format the new disk. This sounds like many steps that can get compli-
cated quickly when you start thinking about making the script resumable. There is
no problem with making complicated logic when needed, but you need to think
about the next person who might use this script or even yourself six months down
the line. Are they going to be able to follow it? To make things easier on them and
yourself, you can follow these best practices.

10.8.1 Do not overcomplicate it

Keeping in mind that you will want to resume the script from any point, you will need
to build some checks into it to ensure that you don’t just add new hard disks every
time you restart it. But, at the same time, you do not want to go overboard by creating
a whole bunch of different nested if statements that make it nearly impossible for
someone else to understand.

 To add a second drive to your virtual machine, you need to perform the follow-
ing steps:

1 Determine the path and name of the VHD.
2 Create the VHD.
3 Attach the VHD to the virtual machine.
4 Add the disk inside the guest operating system.

Figure 10.7 shows the process. Now think about restarting the automation after each
step. For instance, step 1 of getting the path and name must run every time the
script runs, so no additional logic is needed. However, step 2, create the VHD, will
fail if the disk exists. Therefore, you need to check if the disk exists before creating
it. So, you can use the Test-Path cmdlet and an if statement to determine whether
the disk needs to be created.

 Now, on step 3, if the disk exists, it does not mean it was attached to the virtual
machine. But, if it is already attached, trying to attach it again will cause an error. So,
before attaching the VHD, you can check the virtual machine object and see whether
the VHD is already attached.

 Finally, once the VHD is attached, you need to initialize, partition, and format
the new disk in the guest operating system. The difficult part here is determining
whether this has already been done. This is because the guest operating system has
no idea what VHD is attached to it. It just knows that it has this disk. Trying to solve
situations like this can cause others to make things overly complicated. They will try
to do things like writing a file to the new disk in the guest operating system as a
mark of it being added. The problem here is that there is no way to know if some-
one removed that file, if the disk was added but failed to write the file, how you

268 CHAPTER 10 Automation coding best practices
would handle adding a third disk, etc. In reality, all you need to do is check the
guest operating system for any raw disks.

 The existence of a raw disk lets you know that a disk has not been added to the
operating system. So, using the Get-Disk cmdlet, you can check for any disk with the
partition style of raw. Then, using pipelines, you can pass that disk to the Initialize-
Disk cmdlet, then to the New-Partition cmdlet, and finally to the Format-Volume
cmdlet. You can run this command as many times as you like because it only returns
raw disks. Therefore, you do not need to build any fancy logic or checks into the
script in the next listing. The simple Where-Object filter after the Get-Disk cmdlet is
all you need.

Install OS

Add to OS
Invoke-Command

Set disk path
Join-Path

Disk attached
Set boot order

Set-VMFirmware
No

Disk exists

Yes

Create disk
New-VHD

No

Function add-SecondVHD

Get-Disk |
Initialize-Disk |
New-Partition |
Format-Volume

Figure 10.7 Process to add a second VHD to a virtual machine and configure
the disk in the guest operating system

26910.8 Think of the next person
Function Add-SecondVHD{
 param(
 $VM
)
 $Path = @{
 Path = $VM.Path
 ChildPath = "$($VM.Name)-Data.vhdx"
 }
 $DataDisk = Join-Path @Path

 if (-not(Test-Path $DataDisk)) {
 New-VHD -Path $DataDisk -SizeBytes 10GB | Out-Null
 }

 $Vhd = $VM.HardDrives |
 Where-Object { $_.Path -eq $DataDisk }
 if (-not $Vhd) {
 $VM | Get-VMScsiController -ControllerNumber 0 |
 Add-VMHardDiskDrive -Path $DataDisk
 }
}

Add-SecondVHD -VM $VM

$ScriptBlock = {
 $Volume = @{
 FileSystem = 'NTFS'
 NewFileSystemLabel = "Data"
 Confirm = $false
 }
 Get-Disk | Where-Object { $_.PartitionStyle -eq 'raw' } |
 Initialize-Disk -PartitionStyle MBR -PassThru |
 New-Partition -AssignDriveLetter -UseMaximumSize |
 Format-Volume @Volume
}

$Command = @{
 VMId = $VM.Id
 ScriptBlock = $ScriptBlock
 Credential = $Credential
 ErrorAction = 'Stop'
}
$Results = Invoke-Command @Command
$Results

10.8.2 Comment, comment, comment

Sometimes making complex logic in your automation is unavoidable. In these cases,
you will want to ensure that you leave proper comments in your script following a
few best practices.

Listing 10.11 Adding a second VHD

Set the path for the
second hard drive.

If the VHD does not
exist, create it.

If the VHD is not
attached to the
VM, attach it.

Script block to initialize,
partition, and format the
new drive inside the guest OS

Run the command on
the guest OS to set up
the new drive.

270 CHAPTER 10 Automation coding best practices
DO NOT STATE THE OBVIOUS

Do not comment on anything that someone familiar with PowerShell will already
know. For example, above the New-VHD cmdlet, you do not need to put the comment
“Create a new VHD.” However, if you nest the New-VHD cmdlet inside of an if state-
ment that checks whether the disk already exists, it might warrant a brief command
such as “If the VHD does not exist, create it.”

 Also, if you create such a mess of nested if/else and foreach statements that you
feel the need to add a comment to the end of each block, you may want to consider
rethinking the logic or building some functions to handle it.

USE REGIONS TO SEPARATE CODE LOGICALLY

PowerShell lets you create regions that allow you to create a grouping of lines. To cre-
ate a new region, all you have to do is enter #region at the start of a line and then, to
end it, create another line with #endregion. Most editors, including VS Code and ISE,
will allow you to collapse the entire code section between these two lines. You can also
include a title next to the region declarations to identify the section quickly.

 You can see an example in the screenshot in figure 10.8, where I put the com-
mands to create the virtual machine into a region. Then, in the second screenshot, in
figure 10.9, I collapsed it.

Figure 10.8 PowerShell code to create a virtual machine added to
a region

Figure 10.9 The same code
as figure 10.8, but collapsed

27110.8 Think of the next person
Also, if you find your script becoming so long that you need to create multiple
regions, it might be a good sign that you need to break them up into separate files and
create a custom module instead of a single script.

AVOID MULTIPLE-LINE COMMENTS

There should never be more comments than code. Try to keep your comments short
and to the point. If you need to explain a section in depth, I recommend creating a
region and placing the multiple-line comment at the beginning of the region.

 Also, place your multiple-line comments between a less-than hash (<#) and
greater-than hash (#>) instead of putting a hash at the start of every line. This way, you
can collapse the entire comment block when working on the script:

#region Section the requires explaining
<#
This is where I would put a multiple-line
comment. It is also best to use the less than hash
and hash greater than when creating multiple-line
comments, as it allows you to collapse the entire
comment section.
#>

... your code

#endregion

10.8.3 Include help and examples on all scripts and functions

Nothing can be more frustrating than coming across a script or function that does not
contain the help section at the beginning. You may think the name and parameters
are obvious, but remember, you are the one writing it. You need to think about the
next person who will use it.

 You can generate the help section template using VS Code by entering ## at the
top of a script or inside a function. It will even include a line for each parameter. For
example, the following snippet shows what VS Code was generated when I entered ##
on the first line of this function:

Function New-VmFromIso {
 <#
 .SYNOPSIS
 Short description

 .DESCRIPTION
 Long description

 .PARAMETER VMName
 Parameter description

 .PARAMETER VMHostName
 Parameter description

272 CHAPTER 10 Automation coding best practices
 .EXAMPLE
 An example

 .NOTES
 General notes
 #>
 [CmdletBinding()]
 param(
 [Parameter(Mandatory = $true)]
 [string]$VMName,
 [Parameter(Mandatory = $true)]
 [string]$VMHostName
)

}

Unlike the comments in your code, you want to be as verbose as possible in the help
section. You want to ensure that everyone knows exactly what this script or function
does and how to use it. If you have optional parameters, explain when they are
required and include examples of them being used.

 On top of showing how to use the parameters, also show examples of the parame-
ter values. The only thing more frustrating than no help is help that does not explain
what it is doing. For example, instead of making an example like Set-VmSettings -VM
$VM -ISO $ISO, show what those values are. It is useless unless the person knows what
the $VM and $ISO values are. Instead, make your examples like the following snippet:

.EXAMPLE
$ISO = 'D:\ISO\Windows11.iso'
$VM = Get-VM -Name 'Vm01'
Set-VmSettings -VM $VM -ISO $ISO

10.8.4 Have a backup plan

Throughout this chapter and this book, I have talked multiple times about keeping
things as simple as possible. However, that does not mean you can’t get fancy. But if
you do, have a backup plan.

 To show what I mean by this, we can get fancy about obtaining the login creden-
tials for the new virtual machine. Since you saw how to set and encode the default
password in the first automation, you can also decode it. To do that, you can create
a function that will mount the ISO, find the autounattend.xml file, and import it to
PowerShell. Then retrieve the password value, decode it, and build a credential
object.

 Shown in listing 10.12 is a pretty slick bit of code that is more of a nicety to have
than a required step in the automation process. Of course, you could just simply
prompt the person running the script to enter the username and password, but where
is the fun in that? So, you can go ahead and include the fancy function to extract the
password, but include a fail-safe in it.

27310.8 Think of the next person
 If the function cannot find the password in the ISO file, then have it prompt the
user to enter the username and password using the Get-Credential cmdlet. This way,
if something goes wrong, your automation can continue to work.

Function Get-IsoCredentials {
 param($ISO)

 $DiskImage = @{
 ImagePath = $ISO
 PassThru = $true
 }
 $image = Mount-DiskImage @DiskImage

 $drive = $image |
 Get-Volume |
 Select-Object -ExpandProperty DriveLetter

 $ChildItem = @{
 Path = "$($drive):"
 Filter = "autounattend.xml"
 }
 $AutounattendXml = Get-ChildItem @ChildItem

 if ($AutounattendXml) {
 [xml]$Autounattend = Get-Content $AutounattendXML.FullName
 $object = $Autounattend.unattend.settings |
 Where-Object { $_.pass -eq "oobeSystem" }
 $AdminPass = $object.component.UserAccounts.AdministratorPassword
 if ($AdminPass.PlainText -eq $false) {
 $encodedpassword = $AdminPass.Value
 $base64 = [system.convert]::Frombase64string($encodedpassword)
 $decoded = [system.text.encoding]::Unicode.GetString($base64)
 $AutoPass = ($decoded -replace ('AdministratorPassword$', ''))
 }
 else {
 $AutoPass = $AdminPass.Value
 }
 }

 $image | Dismount-DiskImage | Out-Null

 $user = "administrator"
 if ([string]::IsNullOrEmpty($AutoPass)) {
 $parameterHash = @{
 UserName = $user
 Message = 'Enter administrator password'
 }
 $credential = Get-Credential @parameterHash
 }
 else {
 $pass = ConvertTo-SecureString $AutoPass -AsPlainText -Force
 $Object = @{

Listing 10.12 Get-IsoCredentials

Mount the
ISO image.

Get the new
drive letter.

Attempt to find the
autounattend.xml in
the ISO image.

If the autounattend.xml is found,
attempt to extract the password.

Dismount
the ISO.

If the password is returned,
create a credential object;
otherwise, prompt the user
for the credentials.

274 CHAPTER 10 Automation coding best practices
 TypeName = 'System.Management.Automation.PSCredential'
 ArgumentList = ($user , $pass)
 }
 $credential = New-Object @Object
 }

 $credential
}

10.9 Do not forget about the presentation
I’m sure most of you have, at some point, watched a cooking show and seen the
judges critique a contestant about their presentation. The food may have tasted
wonderful, but they still lost because it was ugly. The same can be said for your code.
If your script is a jumbled mess of 300-character-long single-line commands, nobody
will want to touch it.

 Please don’t fall into the trap of trying to make your script three lines shorter
because of the misconception that the shorter the script, the better it is. Sure, it is fun
to see how efficient you can make your code, but the number of lines does not directly
correlate with efficiency. Break up those one-liners. And, if you want to keep all the
pipes, remember PowerShell allows line breaks after pipes. For example, PowerShell
treats both of the following commands in the exact same way:

Get-Service -Name Spooler | Stop-Service

Get-Service -Name Spooler |
 Stop-Service

Use splatting to handle cmdlets with a bunch of parameters. My typical rule of
thumb is to use splatting if my parameters make my script scroll horizontally. On a
typical widescreen monitor, that’s around 150–180 characters. Manning, the pub-
lishers of this book, limits a code line to 76 characters, which is why you see so much
splatting in this book.

 Finally, group your code logically. For example, don’t mix functions and script
code together. Your script should be the help section, parameters, functions, and then
the code. Also, if you have a lot of functions, consider grouping them into regions.

 So, taking everything we have covered in this chapter, you can put together the
final script, which leads to my last tip. Once you have your completed script, open it in
VS Code, right-click, and select Format Document. This will ensure that all your com-
mands have the proper spacing and indentations.

 Since the final code of this chapter is quite long, I have decided to leave it out of the
text in the book. Instead, you can find the completed script in the source code provided
with this book or in the GitHub repository (https://mng.bz/m2W0). The logic is illus-
trated in figure 10.10.

https://mng.bz/m2W0

27510.9 Do not forget about the presentation
Get VM
Get-VM

VM exists No

Yes

Is running

Start VM
Start-VM

Get ISO credentials

Yes

No

> New-VmFromIso

Get the VM host
Set the path for the virtual hard disk
Set the new VM parameters
Determine the switch to use
If switch is found

Add switch to VM parameters
Create the VM
Get the VM

> Get-IsoCredentials

Mount the ISO image
Get the new drive letter
Attempt to find the autounattend.xml
If autounattend.xml

Extract the password
Dismount the ISO
If the password is found

Create a credential object
Else

Prompt for credentials

> Add-VmDataDrive

Set path for the second hard drive
If the VHD does not exist

Create it
If the VHD is not attached

Attach it

> Set-VmSettings

Set the VM memory
Disable automatic checkpoints
Add the Windows installation ISO
Set the boot order

Get the host name

While null

Remove the ISO

Add data drive

Add drive in guest
OS

Figure 10.10 The entire zero-touch virtual machine creation, including checks to make the automation
restartable by seeing whether the virtual machine exists before attempting to create it, and checking if it
is running before configuring the settings. It includes a loop to monitor the operating system installation and
adds the second drive to both the virtual machine and the guest operating system after the installation.

276 CHAPTER 10 Automation coding best practices
Summary
 Converting tasks from manual to automations is not always a one-to-one conver-

sion. There may be things you do not even realize you are doing. Therefore, it
is always a good idea to walk through it step by step.

 When updating structured data, import it to PowerShell instead of trying to
manipulate a text file.

 Functions should not contain logic that would change the execution of the
overall script. Instead, that logic should be done in the main script body.

 Not all applications and operating systems behave the same way. As a result, you
may need to use additional logic when interfacing with external tools.

 You should always try to make multistep automations restartable if there is a fail-
ure at any one part.

 Think about the next person to use the script and comment and document it
appropriately.

Part 3

Creating an automation for yourself is all well and good, but to see the
true potential that automation has to offer, you need to be able to share it. In
this section, you will learn how to easily share scripts with your colleagues. You
will also see how you can create a frontend to implement an automated process
that anyone can use. And, finally, you will learn how you can maintain your auto-
mations through the use of source control and unit testing.

End-user scripts
and forms
So far, most scripts in this book are backend scripts (e.g., ones you would run locally,
on a dedicated machine, or shared with others familiar with PowerShell). However,
this is not always the case. PowerShell can assist others in your organization who
may not even know what PowerShell is. In this chapter, you will see how you can
build and design PowerShell automations to help not just yourself but the entire
organization.

 In this chapter, we will cover two main scenarios related to end-user scripts. The
first is providing an automation mechanism to the business. A very common exam-
ple of this is user account provisioning and deprovisioning. There is a wealth of
resources out there on creating users in Active Directory, Exchange, Office 365,
and other environments. But you cannot just provide HR a copy of a PowerShell

This chapter covers
 Creating a web frontend for a PowerShell

automation

 Processing automation requests

 Writing PowerShell to execute on client machines
279

280 CHAPTER 11 End-user scripts and forms
script and expect them to know how to execute it. Instead, you will want to give them
a frontend interface to submit requests for automations.

 The second scenario is using PowerShell to manage end-user devices. Anyone who
has worked in IT long enough knows that there are some things that just cannot be
handled by application installers, group policy, mobile device management, or what-
ever configuration management system you might be using. And, in most cases, you
will need to execute the script across hundreds or thousands of machines. To help you
when these situations arise, you will learn how to mimic and test the execution of
scripts so you will be able to design a working script for these tasks.

11.1 Script frontends
When designing scripts that require user input, you have two choices. First, you can
package the automation as a script or module and provide a copy to the person. Or
you can create a frontend.

 Providing someone with a script assumes that the person is familiar with Power-
Shell, knows how to provide parameters, and has the correct modules and versions
installed. It might be safe to assume that members of your team can handle this. But
what about nontechnical people? For them, the better choice is to provide a frontend.

 As you know, PowerShell itself does not have a frontend. Instead, it is entirely
command-line driven. If you search around the web, you will find plenty of resources
around creating custom forms using PowerShell and .NET. However, these still require
that the person has the correct version of PowerShell installed, along with any required
modules and, even more important, the correct permissions.

 On top of that, designing a form can be a long and arduous task. Having to account
for things like different screen resolutions, not to mention different platforms, can turn
a simple task into a major project. To prevent this from happening to you, you can lever-
age existing platforms to create web-based forms and then have PowerShell pick up the
data submitted by the form and perform the appropriate actions. Most IT service man-
agement platforms have a web portal that you can leverage, or, as you will see in this
case, you can do something as simple as a SharePoint form that takes less than 10 min-
utes to create.

 By using a platform like SharePoint, you can bring its capabilities to your automa-
tions. For instance, when you create a list in SharePoint, it automatically includes a form
to add and edit items. Also, since it is a web platform, someone could submit a request
from their mobile phone or any other device with a browser. And, if that is not enough
to convince you, SharePoint (and other similar platforms) also provide built-in security.

11.1.1 SharePoint trial tenant

The following two sections in this chapter will require a SharePoint Online tenant. If
you do not have an existing SharePoint tenant or would prefer to do your testing out-
side your company’s environment, you can sign up for the Microsoft 365 Developer
Program. Doing this will give you a free sandbox tenant prepopulated with 25 users.

28111.2 Creating a request form
 To set up your demo tenant, go to the Microsoft 365 Developer Program (http://
mng.bz/QnpG), click the Join Now button, and log in using any Microsoft personal
account (hotmail.com, live.com, outlook.com, msn.com, etc.). Then, follow the prompts
to enter your region and contact information. When you reach the page to set up your
Microsoft 365 E5 sandbox, select Instant Sandbox.

 Next, you will need to provide an admin user name and password. Keep these
somewhere handy, as you will need them throughout the following two sections.

 Once you complete the setup wizard, your sandbox environment will start provi-
sioning, and you can continue to the next section, where you will create a custom
SharePoint form.

11.2 Creating a request form
Anyone who has ever maintained a SharePoint, Teams, or Groups environment knows
that site sprawl can be a huge problem. You can choose to give individuals throughout
the company access to create sites, but you will lose control of the settings and mainte-
nance of these sites. The other option is to restrict anyone from creating sites, which
shifts a burden onto the people who can create them. So, to provide a happy middle
ground, you can create a form for people to request sites and then have an automa-
tion perform the actual creation.

 By having people submit a form, you can track the owners, know the state of the
sites, and if you choose, you can even use the built-in approval processes in Share-
Point. Another added benefit is that you can control exactly how each site is created.

 Throughout this section, we will be using the PnP PowerShell module. This mod-
ule is a cross-platform solution with over 600 cmdlets to manage Microsoft 365 envi-
ronments, including SharePoint Online. The PnP PowerShell module is a successor to
the SharePoint PnP modules that have been around for over 10 years. While it came
from the SharePoint Pnp module, it has grown to include commands for managing
Microsoft Teams, Project, Security & Compliance, and Azure Active Directory.

 Before getting started, you need to ensure that you have the PnP PowerShell
installed and imported:

Install-Module PnP.Powershell
Import-Module PnP.Powershell

Then you need to connect to your SharePoint Online site. If you signed up for a devel-
opment environment, your tenant’s name will be a random alphanumeric subdomain
on the onmicrosoft.com domain. This will make your SharePoint URL the subdomain
.SharePoint.com. For example, 57pzfq.onmicrosoft.com would be 57pzfq.SharePoint
.com. For now, you can use the interactive login to access with an administrator account:

Connect-PnPOnline -Url "https://<subdomain>.SharePoint.com" -UseWebLogin

Finally, before we get started, go ahead and create a new site specifically for this exer-
cise so you can keep everything self-contained in case you want to remove it later:

http://mng.bz/QnpG
http://mng.bz/QnpG
http://mng.bz/QnpG

282 CHAPTER 11 End-user scripts and forms
$PnPSite = @{
 Type = 'CommunicationSite'
 Title = 'Site Management'
 Url = "https://<subdomain>.sharepoint.com/sites/SiteManagement"
 Owner = "<your-username>@<subdomain>.onmicrosoft.com"
 SiteDesign = 'Blank'
}
New-PnPSite @PnPSite

If you navigate to the URL of the site, you should see a new blank SharePoint site,
shown in figure 11.1.

Next, you need to switch your PowerShell session to this new site, so everything you do
is on it and not on your main SharePoint page:

Connect-PnPOnline -Url "https://<subdomain>.SharePoint.com/sites

➥ /SiteManagement" -UseWebLogin

You are now ready to create the list to gather the request information.

11.2.1 Gathering data

Ensuring that you get the correct data for your automation is the most critical step in
the process. The best way to determine the data you need is to look at the cmdlets to cre-
ate the site. In this case, you will use the New-PnPTenantSite cmdlet to create the sites.

 Using the following snippet, you can list the parameters for the New-PnPTenantSite
cmdlet:

$commandData = Get-Command 'New-PnPTenantSite'
$commandData.ParameterSets |

Figure 11.1 A blank SharePoint site created to host the form for submitting new site
requests

28311.2 Creating a request form
Select-Object -Property @{l='ParameterSet';
 e={$_.Name}} -ExpandProperty Parameters |
 Where-Object{ $_.Name -notin
 [System.Management.Automation.Cmdlet]::CommonParameters } |
Format-Table ParameterSet, Name, ParameterType, IsMandatory

You should see 4 required parameters and 10 optional parameters. Just because some-
thing is a parameter or even a required parameter does not mean it needs to be a field
in the form for the user to fill in. You may be able to perform lookups or calculations
or set default values for some parameters. Using table 11.1, you can determine which
parameters you want to include and where you will get that data.

Starting with the required parameters, the most obvious one we will need is the Title.
This can be a simple text field for the user to fill out. Next is the Url. Per SharePoint
requirements, a site’s URL can’t contain symbols other than an underscore, dash, sin-
gle quotes, and period (_, -, ', and ., respectively). Also, you will most likely want the
URL to reflect the site’s name. For this reason, you can use the Title to determine
the Url and remove any illegal characters in your PowerShell. This way, you do not
have to rely on the user to know these limitations.

 For Owner, you have a couple of options. You can have the user select the owner
or have the owner automatically set to the person who created the request—or even

Table 11.1 The parameters for the New-PnPTenantSite that will be used to help determine the fields
you need in your form

Parameter Data type Required

Title string TRUE

Url string TRUE

Owner string TRUE

Lcid uint FALSE

Template string FALSE

TimeZone int TRUE

ResourceQuota double FALSE

ResourceQuotaWarningLevel double FALSE

StorageQuota long FALSE

StorageQuotaWarningLevel long FALSE

RemoveDeletedSite switch FALSE

Wait switch FALSE

Force switch FALSE

Connection PnPConnection FALSE

284 CHAPTER 11 End-user scripts and forms
a combination of both. We will keep it simple and just get the person who created
the request.

 The final required parameter, TimeZone, has multiple ways to address it. If you are
a small company with offices in a single time zone, you can just set a default value.
However, a lot of companies have offices in multiple time zones. Therefore, you can
create a drop-down list of different time zones for users to choose from. The nice
thing about this is that you can customize it to your company. So, you don’t need to
list all 93 different time zones in the drop-down—just the ones you know you need.
You can also make this optional and set a default value when not selected. To keep
things short and simple here, we will just have the automation use the same time zone
as the main SharePoint site.

 For the optional parameters, you know you will want the users to choose a tem-
plate, so we will include the Template parameter. These will need to be a prepopu-
lated list of options. If you run the Get-PnPWebTemplates cmdlet, you will see all the
available templates:

Get-PnPWebTemplates | Select-Object Name, Title, DisplayCategory
Name Title DisplayCategory
---- ----- ---------------
STS#3 Team site (no Microsoft 365 group) Collaboration
STS#0 Team site (classic experience) Collaboration
BDR#0 Document Center Enterprise
DEV#0 Developer Site Collaboration
OFFILE#1 Records Center Enterprise
EHS#1 Team Site - SharePoint Online Enterprise
BICenterSite#0 Business Intelligence Center Enterprise
SRCHCEN#0 Enterprise Search Center Enterprise
ENTERWIKI#0 Enterprise Wiki Publishing
PROJECTSITE#0 Project Site Collaboration
PRODUCTCATALOG#0 Product Catalog Publishing
COMMUNITY#0 Community Site Collaboration
COMMUNITYPORTAL#0 Community Portal Enterprise
SITEPAGEPUBLISHING#0 Communication site Publishing
SRCHCENTERLITE#0 Basic Search Center Enterprise
visprus#0 Visio Process Repository Enterprise

The tricky part here is that the name values that you need for the New-PnPTenantSite
cmdlet are not easy to figure out independently. So, you will want to make your drop-
down show the title instead of the name. However, the title of a template is not
immutable, meaning it can change. Therefore, you will not want to create a drop-
down of just the titles. Instead, you can create a second list to hold the title and the
name properties. Then, use that list as a lookup. This will allow you to display the
clean title value for the people submitting the form and refer back to the internal
name inside your automation.

 For the other parameters, you can just let SharePoint use the default values. So,
our final parameters are shown in table 11.2.

28511.2 Creating a request form
REPORTING STATUS

Before you create the list in SharePoint, you need to consider how you will let the user
know about the status of the automation. If they just submit a form and it takes them
to a blank page or shows them the SharePoint list, there is no way for them to know
what is happening. Therefore, at a minimum, you will want to include a status field in
your list, as in figure 11.2. Then, as your automation runs, you can update it so they
know what is happening.

Also, since you are generating the site URL in the automation, you will need to let the
user know what it is. So, you will want to add another field for the URL.

11.2.2 Creating a SharePoint form

Creating a form in SharePoint can be as simple as creating a list and using the default
SharePoint forms, or you can use custom JSON or Power App to really customize
them. For our purposes, the automatically generated form will work.

Table 11.2 Final parameters for what will need to be gathered for creating a new SharePoint site

Parameter Value

Title A text box on the form

Url Derived from the title in the script

Owner Created by user from the SharePoint entry

Template Look up from another list

TimeZone Use the same as the main SharePoint site

Set status to
Creating

Run once a minute

Create new site

(For each)

Find new list entries

Set status to Active
Populate URL

Figure 11.2 New SharePoint site creation workflow with status updates so the
submitter knows the status of their request

286 CHAPTER 11 End-user scripts and forms
 To create a SharePoint list, you can use the New-PnPList cmdlet. Then, you can
customize it by using the Set-PnPList cmdlet and adding additional fields using the
Add-PnPField cmdlet.

 Starting with the list to hold the template selections, you can create the list and
then add a text column for the Name property. There is no need to create a column
for the title because a Title field is included by default when you create a list:

$templateList = New-PnPList -Title 'Site Templates' -Template GenericList
Add-PnPField -List $templateList -DisplayName "Name" -InternalName "Name" -Ty

➥pe Text -AddToDefaultView

Since this is going to be a prepopulated list, you can get the list of templates again
using the Get-PnPWebTemplates cmdlet. Then, you can loop through each one and
add it to the list using the Add-PnpListItem cmdlet:

$WebTemplates = Get-PnPWebTemplates
foreach($t in $WebTemplates){
 $values = @{
 Title = $t.Title
 Name = $t.Name
 }
 Add-PnpListItem -List $templateList -Values $values
}

If you navigate to the site and click Site Contents, you should now see a list named Site
Templates, shown in figure 11.3. Inside it, you will see the list of templates you just
imported.

Now you can repeat the process to create the new site request list. However, there are
a few additional things that are necessary for creating this list.

 First, when creating the list, this time, you will want to include the OnQuickLaunch
switch so the list is added to the navigation pane on the site. Also, by default, SharePoint

Figure 11.3 Site Templates
list in SharePoint that will be
used as a drop-down for the
new site creation form

28711.2 Creating a request form
enables attachments on a list. Since there is no need for attachments, you can use the
Set-PnPList cmdlet to disable them:

$list = New-PnPList -Title 'Site Requests' -Template GenericList -OnQuickLaun

➥ch
Set-PnPList -Identity $list -EnableAttachments $false

Like with the previous list, the Title field is created by default. But this time, let’s use
the Set-PnPField cmdlet to change the field’s display name to Site Name. This way,
it will be more obvious to the person submitting the form what they need to put in
the field:

Set-PnPField -List $list -Identity "Title" -Values @{Title="Site name"}

Next, you can add the new fields you will need to the site, starting with the Site URL
and Status fields. The Site URL field will be set to the type of URL, so SharePoint will
make it a link, and Status will be a choice because you should have your statuses pre-
defined. When you create a choice list, you can include the fields for the drop-down
in a string array.

 Now, there are two more things to consider with these fields. First, since any field
added to a list in SharePoint is automatically added to the submission form, it gives
users the ability to change it. To prevent that, you can create a custom form or simply
set the columns to Hidden. This way, they will not show on the form. However, since
the user will need to see them, you can include the -AddToDefaultView switch when
creating them. This way, even though they will not be on the form, they will show
when the user looks at the list. And, finally, on the Status field, you will want to include
a default value:

Add-PnPField -List $list -DisplayName "Site URL" -InternalName "SiteURL" -Typ

➥e URL -AddToDefaultView
Set-PnPField -List $list -Identity "SiteURL" -Values @{Hidden=$True}

Add-PnPField -List $list -DisplayName "Status" -InternalName "Status" -Type C

➥hoice -AddToDefaultView -Choices "Submitted","Creating","Active","Retired",'P

➥roblem'
Set-PnPField -List $list -Identity "Status" -Values @{DefaultValue="Submitted

➥"; Hidden=$True}

The last field to add is the Lookup field. Lookup fields are a little more complicated
to make with PowerShell. They require that you create the XML required to perform
the lookup. Since this chapter is more about the automation than the creation of
SharePoint lists, I’ll spare you the details of each value in the XML. All you need to
know is the List field is the GUID of the lookup list—in this case, the Site Templates
list. The SourceID is the GUID of the list to add the field to, and the ID just needs to
be any random GUID. If you followed all the previous code examples, you can run the
following snippet without making any changes:

288 CHAPTER 11 End-user scripts and forms
$xml = @"
<Field
 Type="Lookup"
 DisplayName="Template"
 Required="TRUE"
 EnforceUniqueValues="FALSE"
 List="{$($templateList.Id)}"
 ShowField="Title"
 UnlimitedLengthInDocumentLibrary="FALSE"
 RelationshipDeleteBehavior="None"
 ID="{$(New-Guid)}"
 SourceID="{$($list.Id)}"
 StaticName="Template"
 Name="Template"
 ColName="int1"
 RowOrdinal="0"
/>
"@
Add-PnPFieldFromXml -List $list -FieldXml $xml

After creating everything, go back to the site and navigate to the Site Requests list. If
you click the New button, you should see the form shown in figure 11.4 with the site
name and template drop-down.

Figure 11.4 The New item form that is
created automatically by SharePoint,
based on the list you created

28911.3 Processing requests
Go ahead and submit a new entry so you have something to test with in the next section.

11.3 Processing requests
Now that you have your nice form, you need to trigger your automations. There are
several ways to do this. You can use something as simple as Task Scheduler or Cron to
run the script every 5–10 minutes to check for new entries. Some cloud platforms like
Power Apps and Logic Apps have integrations for SharePoint that can use webhooks
and Azure Automation or Azure Functions to trigger a PowerShell script, but those
include additional costs for either consumption, licensing, or both. No matter which
you choose, the script behind it will remain the same, so for now, we will just concen-
trate on the script to perform the automation.

11.3.1 Permissions

Like you have had to do many times throughout this book, we once again need to fig-
ure out a way to securely provide the script access to the resources it needs. Luckily, the
PnP PowerShell module can help with this too. The cmdlet Register-PnPAzureADApp
can create a service principal (Azure AD App) with all the permissions required to
manage SharePoint sites. It also can generate the certificate for authentication and
save it to the user or machine stores.

 To create the Azure AD App with the default permissions, you can run the follow-
ing snippet. The default permissions include everything you need to perform the
steps of this automation. You will be prompted to log in. Then, it will pause for 60 sec-
onds before asking you to approve the permissions:

Register-PnPAzureADApp -ApplicationName 'PnP-SiteRequests' -Tenant

➥ '<subdomain>.onmicrosoft.com' -Store CurrentUser -Interactive
WARNING: No permissions specified, using default permissions
Certificate added to store
Checking if application 'PnP-SiteRequests' does not exist yet...Success.

Application 'PnP-SiteRequests' can be registered.
App PnP-SiteRequests with id 581af0eb-0d07-4744-a6f7-29ef06a7ea9f created.
Starting consent flow.

Pfx file : C:\PnP\PnP-SiteRequests.pfx
Cer file : C:\PnP\PnP-SiteRequests.cer
AzureAppId/ClientId : 34873c07-f9aa-460d-b17b-ac02c8e8e77f
Certificate Thumbprint : FBE0D17755F6321E07EFDBFD6A046E4975C0277C
Base64Encoded : MIIKRQIBAzCCCgEGCSqGSIb3DQEHAaCCCfIEggnu…

Now, to authenticate with SharePoint, you will need the AzureAppId/ClientId and
Certificate Thumbprint and the certificate installed locally on the machine:

$ClientId = '<Your Client GUID>'
$Thumbprint = '<Your Certificate Thumbprint>'
$RequestSite = "https://<subdomain>.sharepoint.com/sites/SiteManagement"
$Tenant = '<subdomain>.onmicrosoft.com'
Connect-PnPOnline -ClientId $ClientId -Url $RequestSite -Tenant $Tenant

➥ -Thumbprint $Thumbprint

290 CHAPTER 11 End-user scripts and forms
Make sure to store the certificate files in a secure location. I would also recommend
storing the client ID and thumbprint in the Secret Store. For more information on
this, you can refer to chapter 4 for best practices around handling sensitive informa-
tion in scripts, but it is not necessary at this step in the process.

11.3.2 Monitoring for new requests

To make this a truly hands-free automation, you need to be able to monitor the Share-
Point list for new entries. However, since you do not want the site creation process
interfering with the monitor, you can use the watcher and action script concept we
covered in-depth in chapter 3. This is the concept where you will have one script that
monitors for new entries and initiates a second script to create the site.

 In this situation, the watcher script will check the SharePoint list for entries with a
status of Submitted. For each one found, it will set the status to Creating and then ini-
tiate an action script to perform the creation process, as shown in figure 11.5. By
updating the status in the watcher script, you are preventing it from potentially sub-
mitting the same request twice.

Another benefit to using a tool like SharePoint is that you do not have to worry about
passing all the values between the watcher and action scripts. Instead, you can pass the
ID of the list item and have the action script look up all the data it needs.

 This also helps when making changes to the script. For example, say you want to
add a drop-down for the time zone. By just having the action script pass the ID, you
only need to change the watcher script. Therefore, the watcher script in the next list-
ing connects to SharePoint, queries the list for new entries, updates the status, and ini-
tializes the action script.

$ClientId = '<Your Client GUID>'
$Thumbprint = '<Your Certificate Thumbprint>'

Listing 11.1 Monitoring for new site requests

Query for
status of

submitted

Foreach item

Set status to
creating

Invoke action
script

Connect to
SharePoint

Figure 11.5 SharePoint list
watcher script to check for new
entries, then submit an action
script to perform the automation
on new entries

Your connection
information

29111.3 Processing requests
$RequestSite = "https://<subdomain>.sharepoint.com/sites/SiteManagement"
$Tenant = '<subdomain>.onmicrosoft.com'

$ActionScript = ".\Listing 2.ps1"

$RequestList = 'Site Requests'

$PnPOnline = @{
 ClientId = $ClientId
 Url = $RequestSite
 Tenant = $Tenant
 Thumbprint = $Thumbprint
}
Connect-PnPOnline @PnPOnline

$Query = @'
<View>
 <Query>
 <Where>
 <Eq>
 <FieldRef Name='Status'/>
 <Value Type='Text'>Submitted</Value>
 </Eq>
 </Where>
 </Query>
</View>
'@
$submittedSites = Get-PnPListItem -List $RequestList -Query $Query

foreach ($newSite in $submittedSites) {
 $Arguments = "-file ""$ActionScript""",
 "-ListItemId ""$($newSite.Id)"""

 $jobParams = @{
 FilePath = 'pwsh'
 ArgumentList = $Arguments
 NoNewWindow = $true
 ErrorAction = 'Stop'
 }

 $PnPListItem = @{
 List = $RequestList
 Identity = $newSite
 Values = @{ Status = 'Creating' }
 }
 Set-PnPListItem @PnPListItem

 try {
 if (-not (Test-Path -Path $ActionScript)) {
 throw ("The file '$($ActionScript)' is not recognized as " +
 "the name of a script file. Check the spelling of the " +
 "name, or if a path was included, verify that the path " +
 "is correct and try again.")
 }

The action script
that will perform
the site creation

The name of
the list

Connect to the Site
Management site.

Query to get all entries on
the Site Request list with
the status of Submitted.

Set the arguments
from the action
script.

Set the status
to Creating.

Confirm that the
action script can
be found.

292 CHAPTER 11 End-user scripts and forms
 Start-Process @jobParams -PassThru
 }
 catch {
 $PnPListItem['Values'] =
 @{ Status = 'Problem' }
 Set-PnPListItem @PnPListItem

 Write-Error $_
 }
}

11.3.3 Processing the request

The next step is to create the script to perform the actual site creation. To do this, you
will need to gather the information from the SharePoint list, define the lookup values,
and, finally, write the completed data back to the original request.

 Since this script will be running in a different context from the watcher script, it
will need to authenticate again and look up the entry. However, you don’t need to do
any XML queries this time because you are expecting the item ID from the watcher
script, which you can pass to the Get-PnpListItem cmdlet.

 When using the Get-PnpListItem cmdlet, it does not create properties for the
different fields. Instead, all the fields and their values are added to a hashtable. So,
you reference them using square brackets with a string set to the field’s internal
name. For example, to get the title for the list item with the ID of 1, it would look
like the following snippet:

$item = Get-PnpListItem -List 'Site Requests' -Id 1
$item['Title']
$item['Author']
$item['Template']
Posh Tester

Email LookupId LookupValue
----- -------- -----------
user@<sub>.onmicrosoft.com 6 Matthew Dowst

LookupId LookupValue TypeId
-------- ----------- ------
 15 Communication site {f1d34cc0-9b50-4a78-be78-d5facfcccfb7}

As you can see, the title is a simple string you can work with, but the template and
author are lookup values. To set the owner, you only need the email address, so you
can just use the Email property. But for the template, you need to look up the internal
name you wrote to the Site Templates list. Therefore, you need to use the Get-
PnpListItem cmdlet again, this time to get the value for the template name:

$templateItem = Get-PnpListItem -List 'Site Templates' -Id $item['Template'].

➥LookupId
$templateItem['Name']
SITEPAGEPUBLISHING#0

Invoke the
action script.

If it errors trying to
execute the action script,
then report a problem.

29311.3 Processing requests
Next, you set the URL based on the title. Keeping in mind that you can only have let-
ters, numbers, underscores, dashes, single quotes, and periods, you will need to sani-
tize the string. The best way to do this is by using regular expressions (regex).

 Now, I know the word regex can be a dirty word to some people, and there are
varying reasons for this. The syntax of it can be difficult to grasp and, if not done
right, can lead to problems in your code like returning the wrong information or
dropping information it should have. There are others who say the overreliance on
regex is bad coding practice and should only be used when there is no other option.
But like most things in life, a little regex in moderation is not bad and can save you
a lot of time and hassle.

 In a case like this, where you need to remove illegal characters from the URL, it is
really the best way to handle it. Since there is no way that you can list all illegal charac-
ters, you can use the regex replace method with a NOT clause to list the characters you
will allow. This will replace any that do not match with nothing. So, for example, my-
page (name) would become my-pagename. The following snippet shows the command
and regex we will use:

[regex]::Replace($string, "[^0-9a-zA-Z_\-'\.]", "")

The $string variable is the original string you want to clean up, followed by the regex
to find the characters that need to replaced. The final value is the value to replace
them with, which in this case is nothing.

 The regex itself looks like gibberish to those not familiar with regular expressions
but is quite straightforward when you break it down. The square brackets [] create a
matching list. This tells regex to match against any character inside the brackets.
Then, by adding the caret ^, you turn it into a NOT match. By using that along with a
Replace, you are telling it to replace any characters that don’t match the criteria.
Then, the rest is the values you want to allow:

 [Starts matching list.
 ^ Does not match.
 0-9 Any digit between 0 and 9.
 a-z Any lowercase letter between A and Z.
 A-Z Any uppercase letter between A and Z.
 _ Any underscore.
 \- Any dash. Since dashes can mean something else in regex, the slash is an

escape character telling it to view the dash as a literal dash.
 ' Any single quote.
 \. Any period (full-stop) escaped, so it is viewed as literal, like the dash.
] Ends the matching list.

Once you have the URL, you will check that no other sites are already using it. And, if
there are, you will add a while loop to add a number to the end until a unique URL is

294 CHAPTER 11 End-user scripts and forms
found. Also, keep in mind that this is an automation, so you should also include a fail-
safe in the while loop. For instance, if the count reaches 100, there might be some-
thing else going on, so this should be investigated. Therefore, if the loop reaches 100
iterations, it should throw a terminating error. Then, you can get the time zone from
the parent site and finally create the new site.

 Once the site is created, you can add additional commands to perform customiza-
tions specific to your needs. Then, update the original request in the SharePoint list
with the status of Active and the URL, as in figure 11.6. This way, the person submit-
ting the request knows their site is ready and how to get to it. You can see the script in
listing 11.2.

param(
 [Parameter(Mandatory = $false)]
 [int]$ListItemId = 1
)

Listing 11.2 Creating a new SharePoint site

Connect to
SharePoint site

Look up new site
request

Look up template
name

Set URL

URL is unique
Add/Increment

number

Create the site

Yes

Site created

Set status to problem

No

Yes

Add URL to list

No

Set status to active

Figure 11.6 Create a new SharePoint site based on the information provided in a SharePoint list, including
the automatic creation of a unique URL and recording the URL and status back to the original request.

29511.3 Processing requests

Ge
sit

path
the
$ClientId = '<Your Client GUID>'
$Thumbprint = '<Your Certificate Thumbprint>'
$RequestSite = "https://<subdomain>.sharepoint.com/sites/SiteManagement"
$Tenant = '<subdomain>.onmicrosoft.com'

$RequestList = 'Site Requests'
$TemplateList = 'Site Templates'

$SiteProblem = @{
 List = $RequestList
 Identity = $ListItemId
 Values = @{ Status = 'Problem' }
}

$PnPOnline = @{
 ClientId = $ClientId
 Url = $RequestSite
 Tenant = $Tenant
 Thumbprint = $Thumbprint
}
Connect-PnPOnline @PnPOnline

$PnPListItem = @{
 List = $RequestList
 Id = $ListItemId
}
$siteRequest = Get-PnPListItem @PnPListItem

$PnpListItem = @{
 List = $TemplateList
 Id = $siteRequest['Template'].LookupId
}
$templateItem = Get-PnpListItem @PnpListItem

$web = Get-PnPWeb -Includes 'RegionalSettings.TimeZone'

$URI = [URI]::New($web.Url)
$ParentURL = $URI.GetLeftPart([System.UriPartial]::Authority)
$BaseURL = $ParentURL + '/sites/'

$regex = "[^0-9a-zA-Z_\-'\.]"
$Path = [regex]::Replace($siteRequest['Title'], $regex, "")
$URL = $BaseURL + $Path

$iteration = 1
do {
 try {
 $PnPTenantSite = @{
 Identity = $URL
 ErrorAction = 'Stop'
 }
 Get-PnPTenantSite @PnPTenantSite
 $URL = $BaseURL + $Path +
 $iteration.ToString('00')
 $iteration++
 }

Your connection
information

The name
of the list

Set the parameters to set the
status to Problem if anything goes
wrong during the script execution.

Connect to the
Site Management
site.

Get the site
request details
from SharePoint.

Look up the name of the template
from the Site Templates list.

Get the current
web object. It
will be used to
determine URL
and time zone ID.

Get the top-level
SharePoint URL
from the current
website URL.

t the
e URL
 from
 title.

If the site is not
found, then trigger
the catch.

If it is found, then add
a number to the end
and check again.

296 CHAPTER 11 End-user scripts and forms
 catch {
 if ($_.FullyQualifiedErrorId -ne
 'EXCEPTION,PnP.PowerShell.Commands.GetTenantSite') {
 Set-PnPListItem @SiteProblem
 throw $_
 }
 else {
 $siteCheck = $null
 }
 }
 if ($iteration -gt 99) {
 Set-PnPListItem @SiteProblem
 throw "Unable to find unique website name for '$($URL)'"
 }
} while ($siteCheck)

$PnPTenantSite = @{
 Title = $siteRequest['Title']
 Url = $URL
 Owner = $siteRequest['Author'].Email
 Template = $templateItem['Name']
 TimeZone = $web.RegionalSettings.TimeZone.Id
}
try {
 New-PnPTenantSite @PnPTenantSite -ErrorAction Stop

 $values = @{
 Status = 'Active'
 SiteURL = $URL
 }
 $PnPListItem = @{
 List = $RequestList
 Identity = $ListItemId
 Values = $values
 }
 Set-PnPListItem @PnPListItem
}
catch {
 Set-PnPListItem @SiteProblem
}

After running the script with your test entry, you should see the URL and Status
updated in the original list, as in figure 11.7.

If error ID does not match the expected
value for the site not being there, set the Status

to Problem and throw a terminating error.

Final fail-safe: If the iterations get too high,
something went wrong, so set the Status to
Problem and terminate the script.

Set all the
parameter
values.

Create the
new site.

Update the original
request with the URL and
set the status to Active.

If something goes
wrong in the site-
creation process, set
the status to Problem.

Figure 11.7 Test site request list submission after the automation ran and updated the
URL and status of the request

29711.4 Running PowerShell script on end-user devices
You can now schedule the watch script to run every few minutes to check the list for
new entries, and your automation will be fully functional. Next, we will look at a situa-
tion in which you need a script to execute on the user’s local machine.

11.4 Running PowerShell script on end-user devices
While it is best to offload the processing of scripts to backend systems, there are times
when you will need to run a PowerShell script on a local client device. There are sev-
eral reasons you may need to do this. For example, there are still third-party software
vendors who create horrible installers that cannot run without some extra finagling.
Even Microsoft themselves is guilty of this. Only a few years ago, they provided a
PowerShell script to enroll devices in Update Compliance before they had the settings
in Group Policy or Intune. So, in this section, I will show you some tips and tricks on
writing and testing PowerShell scripts for execution on client devices.

 The first thing to consider with executing scripts on client devices is what mecha-
nism to use. PowerShell remoting is disabled by default in Windows 10/11. And, for
security reasons, it is never a good idea to enable remote PowerShell execution on cli-
ent devices. It is a different story for servers because you have greater control over
them. But client devices can be in and out of all sorts of places that you have no con-
trol over. Also, with the ever-increasing prevalence of remote working, there is no way
to guarantee you can connect to every machine like you used to do over a WAN. For
this reason, I strongly recommend investing in a systems management solution. There
are several options out there, just to list a few:

 System Center Configuration Manager
 Microsoft Intune
 Ivanti UEM
 ManageEngine Desktop Central
 Jamf Pro
 Quest KACE
 Symantec Client Management Suite

Regardless of which solution you choose, you need to write and test your PowerShell
scripts to run through them. If you have ever tried debugging a script through one of
these solutions, you know what a pain it can be.

 For example, to test a PowerShell script through Intune, you must upload it to
Intune and deploy it to a test machine. It sounds simple, but then you realize that the
test machine must be enrolled in Intune. So, now you need to join it to your Azure AD
domain. Then, to deploy it, the machine has to be a member of an Azure AD group.
So, you have to create a one-off group with just this machine in there to test. Once you
have all that done, you can force a sync on the test machine by digging down through
five or six layers of settings. Then, all you can do is wait and hope that the machine
updates its policies, finds the script, executes it, and reports straight back to Intune.
And, to be fair to Intune, every platform has its quirks and enrollment requirements.

298 CHAPTER 11 End-user scripts and forms
 But the point is that testing through these solutions can be a huge time suck. Luck-
ily, there are ways to replicate how they execute scripts, allowing you to test and make
adjustments in seconds. Of course, once you finish your local testing, you will still
need to do a final test through the platform, but if you did all your debugging locally
first, it should go much smoother. So, let’s take a look at some ways to do that.

11.4.1 Custom Git install

To demonstrate how you can build and test the scripts to execution under different
contexts, you will create a script to install and configure Git. In this script, you will per-
form the following tasks:

1 Install Git.
2 Enable auto CRLF to prevent line-ending issues between Windows and other

operating systems.
3 Set the default branch to use the name main in the user’s configuration.

Since Winget does not support system-based installation, this script will use Choco-
latey to perform the installation. If you are not familiar with Chocolatey, it is a package
manager similar to Winget, apt, or Homebrew. You can refer to their documentation
(docs.chocolatey.org) for the latest installation instructions.

 Also, this section will focus on Windows due to the nature of how different operat-
ing systems handle user- and system-based execution. But keep in mind that while the
commands might be different on Linux or macOS, the general process behind this
section will remain the same.

 Installing Git with Chocolatey can be as simple as entering the command choco
install git.install -y. But there are additional parameters you can supply to cus-
tomize the installation. One parameter that you should consider is NoAutoCrlf.

 When you use a Windows computer and add a new line to a file by pressing the
Enter key, two hidden characters are added to the file. These are the carriage return
(CR) and line feed (LF), hence CRLF. However, only a line feed is added on Unix-
based systems like Linux and macOS. This can cause issues when you share files with
people using different operating systems. To prevent this, you can have Git automati-
cally convert CRLF line endings to LF.

 However, if you read the documentation for the NoAutoCrlf parameter, it will only
apply to new installs. Since you are using Chocolatey, it can detect if existing versions
of Git are installed and either upgrade them or skip the install. In these cases, the
NoAutoCrlf parameter will be ignored. So, instead of building a bunch of logic into
your script to detect existing versions, you can just run the following command to
enable the CRLF to LF conversion automatically after the installation:

git config --system core.autocrlf true

Using the --system parameter tells Git to use this setting for all users on the com-
puter and all repositories. But let’s say you want to create a setting at the user level. In

http://docs.chocolatey.org

29911.4 Running PowerShell script on end-user devices
that case, you would use the --global parameter. This will apply the settings specific
to all repositories for the user who ran the command. Since you may need to change
the default branch name for different users, you will want to set that value at the user
level and not the system level. This can be done with the following command, with
<name> being a placeholder for the default name:

git config --global init.defaultBranch <name>

You can put these commands together into a single script to test this installation. How-
ever, keep in mind that you just installed Git, so the Git executable will most likely not
be in the path environment variable. Therefore, you will need to supply the full path
to the executable. Fortunately, PowerShell allows you to create aliases, so you can use
the git command just as you would if it had been previously installed. You can do this
by setting an alias of git to the full path of the git.exe.

 Create a script named git-install.ps1 based on the following listing and save it to a
test machine.

param(
 $branch
)
choco install git.install -y

$alias = @{
 Name = 'git'
 Value = (Join-Path $Env:ProgramFiles 'Git\bin\git.exe')
}
New-Alias @alias -force

git config --system core.autocrlf true

git config --global init.defaultBranch $branch

Typically, the best way to test is to use a virtual machine that you can take snapshots of
and revert between tests. However, since I know that may not be possible for everyone,
I’ve included the uninstall and clean-up commands in the following snippet. You can
use these to remove Git and clear out the customizations between installs:

choco uninstall git.install -y
Remove-Item "$($env:USERPROFILE)\.gitconfig" -force
Remove-Item "$($env:ProgramFiles)\Git" -Recurse -force

11.4.2 Running as system versus the user

Most systems management solutions can run scripts as the logged-on user or as the sys-
tem account. Both ways have their advantages and disadvantages. For instance, some
actions require elevated permissions that might not be available when running as the

Listing 11.3 git-install.ps1

Install Git.

Set an alias to the
full path of git.exe.

Enable Auto
CRLF to LF
conversion.

Set the default branch
at the user level.

300 CHAPTER 11 End-user scripts and forms
local user. However, it can be difficult to set user-specific settings when running as
the system. Therefore, you will need to test the different methods to see how your
script will behave.

 An excellent way to approach testing is by first testing the installation method as an
administrator. Get it all working, so you know your commands are good and produce
the desired outcome. Then, once you know your script is working, move to testing it as
a standard user and under the system context. You may find that your script doesn’t
work entirely in either. But that’s okay; since you know your commands are good,
there are ways you can mix the two types of executions. Start by opening an elevated
PowerShell window and executing the git-install.ps1:

.\git-install.ps1 -branch 'main'
Chocolatey v0.12.1
Installing the following packages:
git.install
By installing, you accept licenses for the packages.
Progress: Downloading git.install 2.35.1.2... 100%

chocolatey-core.extension v1.3.5.1 [Approved]
chocolatey-core.extension package files install completed. Performing ot...
 Installed/updated chocolatey-core extensions.
 The install of chocolatey-core.extension was successful.
 Software installed to 'C:\ProgramData\chocolatey\extensions\chocola...

git.install v2.35.1.2 [Approved]
git.install package files install completed. Performing other installa...
Using Git LFS
Installing 64-bit git.install...
git.install has been installed.
Environment Vars (like PATH) have changed. Close/reopen your shell to
 see the changes (or in powershell/cmd.exe just type `refreshenv`).
 The install of git.install was successful.
 Software installed to 'C:\Program Files\Git\'

Chocolatey installed 2/2 packages.
 See the log for details (C:\ProgramData\chocolatey\logs\chocolatey.log).

What you are checking for here is that the software installs without any interactions
required and that the expected configurations are set. To check the configuration,
open a second PowerShell window and enter the following command. Then, check
the output to ensure that your settings match the expected outcomes. The ones you
set are bolded in the output:

git config --list --show-scope
diff.astextplain.textconv=astextplain
system filter.lfs.clean=git-lfs clean -- %f
system filter.lfs.smudge=git-lfs smudge -- %f
system filter.lfs.process=git-lfs filter-process
system filter.lfs.required=true

30111.4 Running PowerShell script on end-user devices
system http.sslbackend=openssl
system http.sslcainfo=C:/Program Files/Git/mingw64/ssl/certs/ca-bundle.crt
system core.autocrlf=true
system core.fscache=true
system core.symlinks=false
system pull.rebase=false
system credential.helper=manager-core
system credential.https://dev.azure.com.usehttppath=true
system init.defaultbranch=master
global init.defaultbranch=main

You should see that the autocrlf is set to true at the system level, and the default
branch is main at the global level. If you see that, you know your commands are good,
and it is time to move on to testing under the user and system contexts. Go ahead and
run the uninstall commands or restore a snapshot to ensure that Git is not installed
and the settings have been cleared.

 Testing as a user is usually pretty straightforward. Log on to the test machine with
an account with standard user permissions, run your script, and see what happens. Of
course, in this case, I’m sure most of you will already know that you will be met with
User Access Control (UAC) prompts and errors trying to write the system-level config-
uration. So, to save you some time, I’ll just tell you that it won’t work.

 If the script was just running the last command to set the branch, it would, but the
installation and setting of the system configuration require administrator permissions.
Table 11.3 details the context in which a script can be executed and the resources it will
have access to.

As you can see, the only context that has the permissions to write to both the system
and user areas is an administrator. Since you should never give your users local
administrator rights, this is not really a viable option. So, it is best to avoid user-based
scripts that perform installations. They work great for setting user-based settings,
but not system-wide settings. Therefore, in our case, we can skip right to testing as
the system.

 Running a script under the system context is not the same as running from an ele-
vated prompt. The script considers the system to be the user when running under the

Table 11.3 The different contexts a script can run under and the resources it will be able to access

Standard user Administrator System

User Profile Read/Write Read/Write N/A

User Registry (HKCU) Read/Write Read/Write N/A

Program Files Read Read/Write Read/Write

Program Data Read Read/Write Read/Write

Machine Registry (HKLM) Read Read/Write Read/Write

302 CHAPTER 11 End-user scripts and forms
system. Therefore, it will not have access to the user’s profile or registry hive. It is also
not something that you can do by right-clicking the PowerShell icon. There are two
easy ways to test a script as a system in PowerShell. The first is to use the Sysinternals
Tool PSExec to open PowerShell as system using the /s switch. The other option is to
use the Invoke-CommandAs module created by Marc R. Kellerman.

 The downside to the Invoke-CommandAs module is that it is designed for Win-
dows PowerShell 5.1. However, since we are building this script specific to Windows,
we can use Windows PowerShell 5.1.

 To test under the system context, open an elevated Windows PowerShell 5.1
prompt, install the Invoke-CommandAs module, and then import it. Then, you can
use the Invoke-CommandAs cmdlet with the -AsSystem switch and the -ScriptBlock
parameter pointed to the git-install.ps1:

Install-Module -Name Invoke-CommandAs
Import-Module -Name Invoke-CommandAs
Invoke-CommandAs -ScriptBlock { . C:\git-install.ps1 } -AsSystem
Progress: Downloading git.install 2.35.1.2... 100%

git.install v2.35.1.2 [Approved]
git.install package files install completed. Performing ot...
Using Git LFS
Installing 64-bit git.install...
git.install has been installed.
WARNING: Can't find git.install install location
 git.install can be automatically uninstalled.
Environment Vars (like PATH) have changed. Close/reopen your shell to
 see the changes (or in powershell/cmd.exe just type `refreshenv`).
 The install of git.install was successful.
 Software installed to 'C:\Program Files\Git\'

Chocolatey installed 1/1 packages.
 See the log for details (C:\ProgramData\chocolatey\logs\chocolatey.log).

Now, just like last time, open a new PowerShell prompt and check the configuration:

git config --list --show-scope
system diff.astextplain.textconv=astextplain
system filter.lfs.clean=git-lfs clean -- %f
system filter.lfs.smudge=git-lfs smudge -- %f
system filter.lfs.process=git-lfs filter-process
system filter.lfs.required=true
system http.sslbackend=openssl
system http.sslcainfo=C:/Program Files/Git/mingw64/ssl/certs/ca-bundle.crt
system core.autocrlf=true
system core.fscache=true
system core.symlinks=false
system pull.rebase=false
system credential.helper=manager-core
system credential.https://dev.azure.com.usehttppath=true
system init.defaultbranch=master

30311.4 Running PowerShell script on end-user devices
If you receive an error message that git cannot be found, this can be because install-
ing under the system did not cause your environment variables to update. You can
force them to update using the following command or reboot:

$env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") +

➥";" + [System.Environment]::GetEnvironmentVariable("Path","User")

Either way, when you run the configuration check, you’ll notice that the user’s default
branch is not set. This is because it technically ran as the system user. So, to handle
installers that need to run under both the system and the user, you can use a tech-
nique known as Active Setup.

11.4.3 Using Active Setup with PowerShell

Active Setup is a method to execute commands once per user during the login pro-
cess. It is similar to the RunOnce mechanism, but Active Setup runs before the desk-
top loads and at a higher privilege level. This allows you to perform tasks that might
otherwise require administrator privileges.

 You use Active Setup by creating a registry key under the path HKEY_LOCAL_MACHINE
\SOFTWARE\Microsoft\Active Setup\Installed Components. Since this is the local
machine hive, you can write to it while running as the system. The key you create
will have two values under it: one with the version number and one with the com-
mand to execute.

 The command writes a copy of the version value under the same path in the cur-
rent user hive. Then, every time you log into Windows, it compares the user values
version to the machine values and runs any new commands or ones with updated
version numbers.

 While Active Setup itself is a function of Windows and not PowerShell, we can use
PowerShell to overcome some of its limitations. The most significant limitation is that
since Active Setup runs before the desktop is loaded, there is no way to see error mes-
sages. The only way to confirm it ran is by checking the registry key in the current user
hive, and that only tells you that it ran, not whether it ran successfully. Also, if it exe-
cutes a script file, there is no record of that script other than its name. If the script is
removed or changed, it can be difficult or impossible to tell what was done.

 To avoid the issue of not knowing if the command was executed successfully, we
will use a wrapper script to record a log of the commands executed. This can be done
natively in PowerShell using the Start-Transcript cmdlet.

 To keep consistent records of all scripts and versions, you can create a folder under
the Program Data directory to store each one along with the name of the Active Setup
registry key and version number. Then, have the log file for each user written to a
folder in their local application data folder with the same name. This way, you will
have a one-for-one mapping between the registry keys, scripts, and log files.

 We will put all this together in a reusable function you can use any time you need
to use Active Setup. Then, all you need to do is supply a name, a version number, and
the commands you want to execute, and the function will take care of the rest.

304 CHAPTER 11 End-user scripts and forms
 Starting with the wrapper script, you will use the Start-Transcript cmdlet to
record the outputs from the script execution. You can include the timestamp of when
it ran using the –IncludeInvocationHeader switch and record multiple runs to the
same log file by including the -Append and -Force switches.

 Also, to ensure that you capture any error messages, you will wrap the entire script
in a try/catch/finally block. The code you want to execute will go inside the try
block. If there is a terminating error in your code, the catch block will be triggered
instead of just stopping. Inside the catch block, you will output the error message to
record it in the transcript log. Then, whether there was an error or not, the finally
block will execute, and it will have the Stop-Transcript cmdlet to cleanly close the
transcript log, marking the end of the execution process.

 To create this script, you will need to combine two different script strings, the
wrapper code and the code you need to execute. There are several ways to create and
combine strings in PowerShell, but when converting code to a string, you need to
account for certain things, like line breaks, special characters, and keywords.

 When dealing with line breaks in a string, the best option is to use a here-string.
Here-strings allow you to include line breaks in your string without PowerShell think-
ing they are new lines of code. Like regular strings, PowerShell will treat here-strings
with single quotes as a literal, while double quotes will evaluate any variables. So, if you
use double quotes, you will need to escape any characters that would be evaluated
when the script executes. A single-quote here-string is a good option for your wrapper
script because it is relatively static but can be a hassle with the code you are adding to
the wrapper. Luckily, there is a third option, which is to use a script block.

 PowerShell allows you to declare script blocks inside a script and save them to a
variable by adding curly brackets at the beginning and end of the code. These script
blocks are just saved and not executed. Plus, they can be converted to strings by using
the ToString() method. The advantage you get with script blocks over here-strings is
that the code you enter will still take advantage of syntax highlighting, IntelliSense,
and code analysis to help identify errors.

 Once you have the string with the script code in it, you need to write it to the local
machine. This function will create the folder ActiveSetup in the Program Data
directory and save the script inside of it. The script name will be based on the name
and version of the application. So, for the script in listing 11.4, the path will be
C:\ProgramData\ActiveSetup\Git_v1.0.ps1.

 To create the Active Setup registry values, you first need to make the key,
HKLM:\Software\Microsoft\Active Setup\Installed Components\Git. Then, popu-
late Version with the version number and StubPath with the command to execute.

 When populating StubPath, you cannot just enter the command as you would to
run it from the command prompt. Since it runs before the user profile is fully loaded,
it does not contain all the environment variables you would see in a standard session.
So, you will need your script to write the literal path to the script file. Also, when pro-
viding a path, you must escape the slashes by doubling them (\\).

30511.4 Running PowerShell script on end-user devices

t

C
Ac
 In addition, when calling a PowerShell script, you will want to bypass the system
execution policy to prevent it from blocking your script. Luckily, since Active Setup
runs at a higher privilege, you can bypass the execution policy just for this command
by including the argument -ExecutionPolicy bypass.

Function New-ActiveSetup {
 param(
 [string]$Name,
 [System.Management.Automation.ScriptBlock]$ScriptBlock,
 [version]$Version = '1.0.0.0'
)

 $ActiveSetupReg =
 'HKLM:\Software\Microsoft\Active Setup\Installed Components'

 $Item = @{
 Path = $ActiveSetupReg
 Name = $Name
 Force = $true
 }
 $ActiveSetup = New-Item @Item | Select-Object -ExpandProperty PSPath

 $DefaultPath = 'ActiveSetup\{0}_v{1}.ps1'
 $ChildPath = $DefaultPath -f $Name, $Version
 $ScriptPath = Join-Path -Path $env:ProgramData -ChildPath $ChildPath
 $ScriptFolder = Split-Path -Path $ScriptPath

 if (-not(Test-Path -Path $ScriptFolder)) {
 New-Item -type Directory -Path $ScriptFolder | Out-Null
 }

 $WrapperScript = {
 param($Name,$Version)
 $Path = "ActiveSetup\$($Name)_$($Version).log"
 $log = Join-Path $env:APPDATA $Path
 $Transcript = @{ Path = $log; Append = $true;
 IncludeInvocationHeader = $true; Force = $true}
 Start-Transcript @Transcript
 try{
 {0}
 }
 catch{ Write-Host $_ }
 finally{ Stop-Transcript }
 }

 $WrapperString = $WrapperScript.ToString()
 $WrapperString = $WrapperString.Replace('{','{{')
 $WrapperString = $WrapperString.Replace('}','}}')
 $WrapperString = $WrapperString.Replace('{{0}}','{0}')

Listing 11.4 New-ActiveSetup

The path to the Active
Setup registry keys

Create the Active
Setup registry key.

Set the
path for

he script.

reate the
tiveSetup
folder if it
does not

exist.
Declare the Wrapper
script code.

Convert wrapper code
to string and fix curly
brackets to all for
string formatting.

306 CHAPTER 11 End-user scripts and forms
 $WrapperString -f $ScriptBlock.ToString() |
 Out-File -FilePath $ScriptPath -Encoding utf8

 $args = @{
 Path = $ActiveSetup
 Force = $true
 }
 $ActiveSetupValue = 'powershell.exe -ExecutionPolicy bypass ' +
 "-File ""$($ScriptPath.Replace('\', '\\'))""" +
 " -Name ""$($Name)"" -Version ""$($Version)"""
 Set-ItemProperty @args -Name '(Default)' -Value $Name
 Set-ItemProperty @args -Name 'Version' -Value $Version
 Set-ItemProperty @args -Name 'StubPath' -Value $ActiveSetupValue
}

You can now include the code in the next listing in the original script from listing 11.3
to the call default branch setting command with Active Setup.

Function New-ActiveSetup {
 <#
 Code from listing 4
 #>
}

choco install git.install -y

$alias = @{
 Name = 'git'
 Value = (Join-Path $Env:ProgramFiles 'Git\bin\git.exe')
}
New-Alias @alias -force

git config --system core.autocrlf true

$ScriptBlock = {
 git config --global init.defaultBranch main
 git config --global --list
}

New-ActiveSetup -Name 'Git' -ScriptBlock $ScriptBlock -Version '1.0'

Once you have it all put together, remove Git again and run the install as system:

choco uninstall git.install -y
Remove-Item "$($env:USERPROFILE)\.gitconfig" -force
Remove-Item "$($env:ProgramFiles)\Git" -Recurse -force
Invoke-CommandAs -ScriptBlock { . C:\git-install.ps1 } -AsSystem

When the install completes, open a second PowerShell prompt and check the Git con-
fig. Like the previous time, the global setting for default should be missing:

Listing 11.5 Git install with Active Setup

Add the script block
to the wrapper code
and export it to the
script file.Set the registry

values for the
Active Setup.

Install Git.

Set an alias to the
full path of git.exe.

Enable Auto
CRLF to LF
conversion.

Set the default branch
at the user level using
Active Setup.

307Summary
$env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") +

➥";" + [System.Environment]::GetEnvironmentVariable("Path","User")
git config --list --show-scope
system diff.astextplain.textconv=astextplain
system filter.lfs.clean=git-lfs clean -- %f
system filter.lfs.smudge=git-lfs smudge -- %f
system filter.lfs.process=git-lfs filter-process
system filter.lfs.required=true
system http.sslbackend=openssl
system http.sslcainfo=C:/Program Files/Git/mingw64/ssl/certs/ca-bundle.crt
system core.autocrlf=true
system core.fscache=true
system core.symlinks=false
system pull.rebase=false
system credential.helper=manager-core
system credential.https://dev.azure.com.usehttppath=true
system init.defaultbranch=master

Now log off and back on, and then check the config once more. This time, you should
see that the global setting for the default branch is set to main:

git config --list --show-scope
system diff.astextplain.textconv=astextplain
system filter.lfs.clean=git-lfs clean -- %f
system filter.lfs.smudge=git-lfs smudge -- %f
system filter.lfs.process=git-lfs filter-process
system filter.lfs.required=true
system http.sslbackend=openssl
system http.sslcainfo=C:/Program Files/Git/mingw64/ssl/certs/ca-bundle.crt
system core.autocrlf=true
system core.fscache=true
system core.symlinks=false
system pull.rebase=false
system credential.helper=manager-core
system credential.https://dev.azure.com.usehttppath=true
system init.defaultbranch=master
global init.defaultbranch=main

Now that you know your script can run under the system context and still make user-
level changes, you are ready to test through your system management platform.

Summary
 Instead of designing a custom frontend, you can utilize existing platforms and

integrate your PowerShell automations with them. These can include platforms
like SharePoint, CRM, an ITSM catalog, and others.

 If an automation does not need to run on a user’s local machine, you should set
up a backend system to execute it. This will help to ensure that you have the
correct modules and allow you better control over permissions.

 When running a script on a local machine, it can execute as the logged-on user
or as system. Depending on what the script is doing, it may require executing
under the user context or the system context.

308 CHAPTER 11 End-user scripts and forms
 Scripts running under the system context will not have access to the user-based
folders and registry hives. However, script running as the user will not be able to
access system folders and registry hives.

 If a script needs to make changes to both system and user resources, you can
use Active Setup to execute the part of the scripts for the user-based resources.

 There is no way to interact with scripts that run through Active Setup, so prop-
erly log their execution to make troubleshooting easier.

Sharing scripts
among a team
How often have you spent time writing a script to perform a task, only to find out
someone else on your team had already done something similar? If you are like me,
the answer is more times than you can count. And this problem only continues to
grow as things like working from home and bringing your own device become
more prevalent. So, in this chapter, we will explore some ways that you can share
scripts as a team.

 Depending on which source you look at, you will see reports that 20–50% of ser-
vice desk calls are for repetitive issues. These can be things like password resets, fix-
ing permissions, freeing up disk space, troubleshooting connection issues, or any
other number of issues. So, it would only make sense for you to arm your team with
tools to resolve these problems quickly, and one of the best ways to do this is by

This chapter covers
 Using GitHub Gist to share scripts

 Creating a module to share with a team

 Using a GitHub repository to store and manage
a module
309

310 CHAPTER 12 Sharing scripts among a team
creating a PowerShell module that they can use. In this chapter, you will learn how to
use GitHub to share individual scripts and an entire module.

 To get started, you will need a GitHub account. A free account will do. You will also
need to install the Git command-line tools and the GitHub CLI. You can download
and install Git from git-scm.com/downloads, and GitHub CLI can be downloaded and
installed from cli.github.com. Or, if you prefer, you can run the GitSetup.ps1 included
in the Helper Scripts for this chapter to have them installed for you.

 Once the installations are complete, you will need to close and reopen your
PowerShell window to ensure that the environment is updated. Then, you can con-
figure your computer to use your GitHub account. The first two commands in the
following snippet will set your email and name. The name is what you want GitHub
to display. It does not have to be your username. The last command will open your
default browser to have you log into your account and confirm you want to connect
it to your computer:

git config --global user.email "you@example.com"
git config --global user.name "Your Name"
gh auth login –-web

WARNING You must complete these steps before continuing with this chapter.

Also, if you prefer, you can switch the default editor for Git from vim to VS Code using
the following command:

gh config set editor "code -w"

12.1 Sharing a script
When it comes to sharing an individual script, you have many options. You can
upload it to a network share or a collaboration platform like SharePoint or Teams
or even email it to someone. However, each of these methods has its drawbacks.
Network shares require LAN or VPN access. Platforms like SharePoint and Teams
will often block scripts from being uploaded. Most email clients also block scripts,
plus once you email it, you no longer have any way to update the script or ensure
the people you shared it with are using the most current version. The best option,
and the one we will cover in this section, is using a dedicated code platform. There
are multiple different options out there like Azure DevOps, Bitbucket, and the one
we will be using, GitHub.

 I chose GitHub for a few reasons. First and foremost, the free tier contains all
the functionality you will need in this chapter. The paid tiers offer additional func-
tionality like more storage space, single sign-on, and better collaboration tools,
none of which you will need here. Second, it is based on Git, the most widely used

https://git-scm.com/downloads
https://cli.github.com/

31112.1 Sharing a script
version control system out there. Since Git is open source, many platforms utilize it.
GitHub is just a place for storing Git repositories. Therefore, many of the lessons in
this chapter can be applied to the other platforms like Azure DevOps and Bit-
Bucket, which can also use Git.

 If you are not familiar with GitHub or any code repository platforms, they can
seem intimidating with all the different options. Or you may think, I just need a single
script; why would I create an entire code repository? And the answer to that is you
don’t. GitHub, along with being a place for code repositories, complete with branch-
ing, continuous testing, and pull requests, has a service named Gist.

 A gist is a single code snippet that you can create and share in a few seconds. And
the best part is that it has built-in version control. This way, you can track your changes
over time. On top of that, a gist can be public or private, have syntax highlighting in
the browser, and allows others to add comments, and you can run a gist script locally
with a one-liner in PowerShell.

12.1.1 Creating a gist

You can create a gist in the browser at gist.github.com or use the GitHub CLI to
upload an existing script. To demonstrate this, you can use a command from back in
chapter 9 to return information about a local PC. Save the code in the following list-
ing to your local machine as Get-SystemInfo.ps1.

Get-CimInstance -Class Win32_OperatingSystem |
 Select-Object Caption, InstallDate, ServicePackMajorVersion,
 OSArchitecture, BootDevice, BuildNumber, CSName,
 @{l='Total_Memory';e={[math]::Round($_.TotalVisibleMemorySize/1MB)}}

After saving the script, open a command-prompt window and navigate to the folder
with the Get-SystemInfo.ps1 script. Then, enter the following command to upload the
file to a GitHub Gist. Including the --web switch will tell it to open the newly created
gist in your web browser after creation, as shown in figure 12.1:

gh gist create Get-SystemInfo.ps1 -–web
- Creating gist Get-SystemInfo.ps1
✓ Created gist Get-SystemInfo.ps1
Opening gist.github.com/2d0f590c7dde480fba8ac0201ce6fe0f in your browser.

And that is it! You have just created your first gist.

Listing 12.1 Get-SystemInfo.ps1

http://gist.github.com

312 CHAPTER 12 Sharing scripts among a team
12.1.2 Editing a gist

Just like when creating gists, you can edit them via the command line or directly in the
web browser. When using the command line, you will need to know the ID of the gist
you want to edit. You can quickly find that using the View option with the GitHub CLI:

gh gist list
0d0188e13b8c1be453cf1 Autounattend.xml 1 file secret about 25 days ago
116626205476f1df63fe3 AzureVM-Log4j.ps1 1 file public about 7 days ago
a1a9a69c0790d06eb8a53 Get-SystemInfo.ps1 1 file secret about 1 month ago
e0a176f34e2384212a3c1 PoshAutomator.ps1 1 file secret about 1 month ago
a7e6af4038444ff7db54d Get-OSData.ps1 1 file secret about 1 month ago
ffc62944a5a429375460a NewDevServer 1 file secret about 4 months ago
3aafcd16557f952e58c6f Out-GridViewCode 1 file public about 3 months ago

Then, copy the ID of the gist you want to update, and add it to the end of the edit
command:

gh gist edit <Your ID>

This will open the gist in the default editor you set in the configuration. You can make
all your edits and run tests in the editor. Once you save and close the file, it will upload
the changes to GitHub and automatically create a new version of the gist.

Figure 12.1 Creating a gist using the GitHub CLI and viewing it in the browser

31312.1 Sharing a script
12.1.3 Sharing a gist

The gist you just created is private. This means that if someone looks at your GitHub
profile, they will not see a listing for this gist. However, you can still share it using the
direct URL. You can also choose to make a gist public by using the --public switch at
the time of creation. And you can switch between public and private after creation
through the web interface:

gh gist create --public Get-SystemInfo.ps1

One downside to Gist is that while it does allow for collaboration, there is no way to
approve changes. Therefore, I recommend using full repositories when you have a
script that multiple people will work on (more on that later). However, you can allow
comments to be made on a gist, so you can at least receive feedback on it.

12.1.4 Executing a gist

As I mentioned earlier, one of the great benefits of gists is the ability to execute them
directly from a URL without needing to download the file. The way to do this is to
combine the Invoke-Expression and Invoke-RestMethod cmdlets. This is also
another reason why you do not want to allow others to be able to edit your gists.

 To see this in action, open the gist you just created in your web browser. In the top
right corner of the gist, you will see the Raw button. Click on the Raw button, and it
will open your gist as a plain text file. If you pass this URL to the Invoke-RestMethod
cmdlet, it will display your script as a string:

Invoke-RestMethod -Uri 'The Gist Raw URL'
Listing 1 - Get-SystemInfo.ps1
Get-CimInstance -Class Win32_OperatingSystem |
 Select-Object Caption, InstallDate, ServicePackMajorVersion,
 OSArchitecture, BootDevice, BuildNumber, CSName,
 @{l='Total_Memory';e={[math]::Round($_.TotalVisibleMemorySize/1MB)}}

Since the output of the Invoke-RestMethod is a string, you can pass it to the Invoke-
Expression cmdlet, and it will convert the string to PowerShell and execute it:

Invoke-Expression (Invoke-RestMethod -Uri 'The Gist Raw URL')
Caption : Microsoft Windows 11 Enterprise
InstallDate : 10/21/2021 5:09:00 PM
ServicePackMajorVersion : 0
OSArchitecture : 64-bit
BootDevice : \Device\HarddiskVolume1
BuildNumber : 22000
CSName : DESKTOP-6VBP512
Total_Memory : 32

This method works great when you need to share a one-off or a specialized script with
someone. But, as you can imagine, remembering that URL could, in some cases, be
even more difficult than remembering the command. I also advise against using a URL

314 CHAPTER 12 Sharing scripts among a team
shortener, because the Raw URL will change with each version. So, a shortened URL
may point to an old version. That is not to say it doesn’t have its benefits. For example,
there are often times when a client or colleague needs help with a specific issue I have
scripted a resolution for in the past. I can keep these as gists and just send them the
link when needed. However, if there are commands that you run often, a better solu-
tion is to create a shared module.

12.2 Creating a shared module
When it comes to creating a module to share with your team, the creation process is
the same as it is with any other module you create. However, what is different is how
you share it. Suppose your module contains functions specific to your company. You
would not want to upload it to some place like the PowerShell Gallery, where anyone
can find and download it. You could create a private repository using a network share,
but this can cause issues for remote employees. Or you could set up a NuGet server to
use as a private repository, but this involves additional overhead and can still be an
issue for remote employees unless you host it somewhere externally or allow access
through your firewall. Also, while a NuGet server does have some version control, it
does not have all the capabilities that a code repository does.

 In this section, you will create a GitHub repository for a shared PowerShell mod-
ule. We will then add some custom code to replicate the installation functionality you
get with a repository. And, finally, we will make it so the module can update itself.

 To get started, create the module code just like we have done many times through-
out this book. However, you will not include a version folder this time, as you can see in
the next listing, because we will use GitHub for version control. Also, since we have cov-
ered it many times before, I have included the code to import the functions in the psm1.

Function New-ModuleTemplate {
 [CmdletBinding()]
 [OutputType()]
 param(
 [Parameter(Mandatory = $true)]
 [string]$ModuleName,
 [Parameter(Mandatory = $true)]
 [string]$ModuleVersion,
 [Parameter(Mandatory = $true)]
 [string]$Author,
 [Parameter(Mandatory = $true)]
 [string]$PSVersion,
 [Parameter(Mandatory = $false)]
 [string[]]$Functions
)
 $ModulePath = Join-Path .\ "$($ModuleName)"
 New-Item -Path $ModulePath -ItemType Directory
 Set-Location $ModulePath
 New-Item -Path .\Public -ItemType Directory

Listing 12.2 Create a PoshAutomator module

Do not include the version
path since GitHub will take
care of the version controls.

31512.2 Creating a shared module
 $ManifestParameters = @{
 ModuleVersion = $ModuleVersion
 Author = $Author
 Path = ".\$($ModuleName).psd1"
 RootModule = ".\$($ModuleName).psm1"
 PowerShellVersion = $PSVersion
 }
 New-ModuleManifest @ManifestParameters

 $File = @{
 Path = ".\$($ModuleName).psm1"
 Encoding = 'utf8'
 }
 @'
$Path = Join-Path $PSScriptRoot 'Public'
$Functions = Get-ChildItem -Path $Path -Filter '*.ps1'

Foreach ($import in $Functions) {
 Try {
 Write-Verbose "dot-sourcing file '$($import.fullname)'"
 . $import.fullname
 }
 Catch {
 Write-Error -Message "Failed to import function $($import.name)"
 }
}
'@ | Out-File @File
 $Functions | ForEach-Object {
 Out-File -Path ".\Public\$($_).ps1" -Encoding utf8
 }
}

$module = @{
 ModuleName = 'PoshAutomator'
 ModuleVersion = "1.0.0.0"
 Author = "YourNameHere"
 PSVersion = '5.1'
 Functions = 'Get-SystemInfo'
}
New-ModuleTemplate @module

Once you create the module, go ahead and populate the Get-SystemInfo function
script in the following listing.

Function Get-SystemInfo{
 Get-CimInstance -Class Win32_OperatingSystem |
 Select-Object Caption, InstallDate, ServicePackMajorVersion,
 OSArchitecture, BootDevice, BuildNumber, CSName,
 @{l='Total_Memory';e={[math]::Round($_.TotalVisibleMemorySize/1MB)}}
}

Listing 12.3 Get-SystemInfo

Go ahead and autopopulate
the functionality to import
the function scripts.

Get all the
ps1 files in the
Public folder.

Loop through
each ps1 file.

Execute each ps1 file to load
the function into memory.

Set the parameters to
pass to the function.

The name of your module

The version of your module

Your name

The minimum PowerShell
version this module supports

The functions to create blank
files for in the Public folder

Execute the function to
create the new module.

316 CHAPTER 12 Sharing scripts among a team
You should now be able to test the module and ensure the Get-SystemInfo function
works:

Import-Module .\PoshAutomator.psd1
Get-SystemInfo
Caption : Microsoft Windows 11 Enterprise
InstallDate : 10/21/2021 5:09:00 PM
ServicePackMajorVersion : 0
OSArchitecture : 64-bit
BootDevice : \Device\HarddiskVolume1
BuildNumber : 22000
CSName : DESKTOP-6VBP512
Total_Memory : 32

12.2.1 Uploading the module to a GitHub repository

Now that you have your module's initial files and structure, let’s create a GitHub
repository to store it. Like with Gist, this can all be done via the command line. You
also have the ability to make a GitHub repository private or public. If you make it
private, you can invite other users to a repository and allow them to contribute to
the code base.

 Open a command prompt and navigate to the folder with the module files to
get started. Then, start by initializing the repository using the following commands.
This will create a folder named .git in the directory with all the configuration files
for the repository:

git init
Initialized empty Git repository in C:/PoshAutomatorB/.git/

These commands create a local repository in the current folder, add all of the files to
the repository, commit the changes, and apply the changes to the main branch.

 Next, you can add all the files in the directory to the repository. Just because a file
is placed in the folder, it does not mean that it is in the Git repository. You have to tell
Git to add the file or files. By using a period at the end of the add, you are telling Git
to add all files and folders in the current directory:

git add .

Then, it is time to save the changes to the repository by committing them. Commits
provide you with a current snapshot of all the files. They also allow you to see the
changes over time:

git commit -m "first commit"
[master (root-commit) cf2a211] first commit
 4 files changed, 261 insertions(+)
 create mode 100644 Install-PoshAutomator.ps1
 create mode 100644 PoshAutomator.psd1
 create mode 100644 PoshAutomator.psm1
 create mode 100644 Public/Get-SystemInfo.ps1

31712.2 Creating a shared module
Then, finally, you will want to ensure that your local branch is named main and all
changes have been saved. You do not have to name your branch main, but it is pretty
much an unwritten rule that the default branch is named main:

git branch -M main

Next, you will create the remote repository in GitHub using the following command.
Note the URL of the command’s output. In the next step, you will need it to connect
the local repository to the remote repository:

gh repo create PoshAutomator --private --source=. --remote=upstream
✓ Created repository mdowst/PoshAutomator on GitHub
✓ Added remote https://github.com/mdowst/PoshAutomator.git

Once the remote repository is created, you need to add it to your local repository
using the URL from the create command:

git remote add origin https://github.com/<yourProfile>/PoshAutomator.git

Finally, you will sync your local files to the remote repository using the push command:

git push -u origin main
Enumerating objects: 7, done.
Counting objects: 100% (7/7), done.
Compressing objects: 100% (6/6), done.
Writing objects: 100% (7/7), 3.56 KiB | 3.56 MiB/s, done.
Total 7 (delta 0), reused 0 (delta 0), pack-reused 0
To https://github.com/mdowst/PoshAutomator.git
 * [new branch] main -> main
Branch 'main' set up to track remote branch 'main' from 'origin'.

You can verify everything synced correctly by navigating to the repository in your web
browser. Figure 12.2 shows an example.

Figure 12.2 Initial commit
and sync with the remote
repository on GitHub

318 CHAPTER 12 Sharing scripts among a team
12.2.2 Giving access to the shared module

If you created the repository as public, then there is nothing else that needs to be
done. However, if the repository is private, you will need to give your team members
access to it before they can download or contribute to the module.

 You can share a GitHub repository by opening it in your web browser and going to
Settings > Collaborators > Manage Access. You can then share the project with your
team by adding their GitHub accounts as collaborators.

12.2.3 Installing the shared module

Since you are using GitHub instead of the PowerShell repository, you will need to cre-
ate a way for your team to easily install this module. You can do that by creating an
installation script that will sync the module files to their local machine and link the
files to their default PowerShell module path.

 To make things as simple as possible for your team, the installation script will need
to check if the Git executable is installed and, if not, install it. Since different operat-
ing systems have different ways of installing applications, I recommend using a pack-
age manager, one that you know your team will have installed. In this example, we will
assume winget for Windows, Homebrew for macOS, and APT for Linux. Therefore,
the installation script will need to perform the following steps:

1 Check if Git is installed.
2 Install Git if it is not found, based on the operating system.
3 Clone the remote repository to the local machine.
4 Create a symbolic link between the repository folder and the PowerShell mod-

ule path.

NOTE The choice of package manager is completely up to you. Just make
sure that is it something that is supported in your environment.

The way that PowerShell works is that any module found in the PSModulePath is auto-
matically recognized by PowerShell and can be imported just by using the name. To
have the repository module recognized in this manner, it must be inside one of the
folders listed in the PSModulePath environment variable. The tricky part is that this
path is different for different operating systems. This means you can run into all sorts
of issues trying to get the repository to clone to one of the folders under it. For exam-
ple, you can update the environment variable on Windows machines but not Linux.
Likewise, you can have the PowerShell profile add it, but each version of PowerShell
and each console have their own profiles. Therefore, the best way is to create a sym-
bolic link under one of the folders in the PSModulePath environment variable. This
way, the repository can be located anywhere on the machine but still automatically
loaded into any PowerShell session.

 The first thing you need to do is determine how to test whether Git is installed.
Luckily, Git has a switch to return the installed version. Therefore, you can test the

31912.2 Creating a shared module
installation by creating a function that will run to check the Git version and confirm it
returns data. You can do this by simply passing the command to the Invoke-Expression
cmdlet and using a try/catch to determine whether the executable exists.

 Since you will technically be running an executable and not a PowerShell
expression, there is no way to tell the command to stop on an error. Therefore, you
can’t force the catch to run if the executable is not found. To work around this,
you can overwrite the global error action preference to stop execution on any
errors. But when you do this, be sure to set it back to the way it was before, as in the
next listing, or you may cause issues with other commands expecting the default
error action.

Function Test-CmdInstall {
 param(
 $TestCommand
)
 try {
 $Before = $ErrorActionPreference
 $ErrorActionPreference = 'Stop'
 $Command = @{
 Command = $TestCommand
 }
 $testResult = Invoke-Expression @Command
 }
 catch {
 $testResult = $null
 }
 finally {
 $ErrorActionPreference = $Before
 }
 $testResult
}

Once you have your function, you can build the command to perform the installs if
required based on the operating system. One thing you will want to ensure is that you
reload the Path environmental variable if you perform the Git installation. This way,
the commands after it know how to find them since the Path is only updated when
you load your session:

$env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") +

➥";" + [System.Environment]::GetEnvironmentVariable("Path","User")

The remainder of the script will be the functionality to download the files and create
the symbolic link. The Git clone command will copy the files from GitHub to the
local computer, and the New-Item cmdlet will create the symbolic link. Figure 12.3
illustrates the process.

Listing 12.4 Test-CmdInstall

Capture the current
ErrorActionPreference.

Set ErrorActionPreference
to stop on all errors, even
nonterminating ones.

Attempt
to run the
command.

If an error is returned,
set results to null.

Reset the
ErrorActionPreference
to the original value.

320 CHAPTER 12 Sharing scripts among a team
Create a new file named Install-PoshAutomator.ps1 and enter the code in the next list-
ing. Be sure to update the $RepoUrl variable with the URL for your repository.

$RepoUrl =
 'https://github.com/<yourprofile>/PoshAutomator.git'
Function Test-CmdInstall {
 param(
 $TestCommand
)
 try {
 $Before = $ErrorActionPreference
 $ErrorActionPreference = 'Stop'
 $testResult = Invoke-Expression -Command $TestCommand
 }
 catch {
 $testResult = $null
 }
 finally {
 $ErrorActionPreference = $Before
 }
 $testResult
}

Function Set-EnvPath{
 $env:Path =
 [System.Environment]::GetEnvironmentVariable("Path", "Machine") +
 ";" +
 [System.Environment]::GetEnvironmentVariable("Path", "User")
}

Listing 12.5 Install-PoshAutomator.ps1

Is Git Installed? Install Git

Create symbolic link

Clone repo locally

Is Windows wingetYes

Is Linux apt-getYes

Is macOS homebrewYes

No

No

Reload path

Figure 12.3 Install-PoshAutomator flow including the ability to automatically install Git

The URL to
your GitHub
repository

Reload the Path
environment
variables.

32112.2 Creating a shared module

C
s

$GitVersion = Test-CmdInstall 'git --version'
if (-not ($GitVersion)) {
 if($IsWindows){
 Write-Host "Installing Git for Windows..."
 $wingetParams = 'winget install --id Git.Git' +
 ' -e --source winget --accept-package-agreements' +
 ' --accept-source-agreements'
 Invoke-Expression $wingetParams
 }
 elseif ($IsLinux) {
 Write-Host "Installing Git for Linux..."
 apt-get install git -y
 }
 elseif ($IsMacOS) {
 Write-Host "Installing Git for macOS..."
 brew install git -y
 }
 Set-EnvPath
 $GitVersion = Test-CmdInstall 'git --version'
 if (-not ($GitVersion)) {
 throw "Unable to locate Git.exe install.
 Please install manually and rerun this script."
 }
 else{
 Write-Host "Git Version $($GitVersion) has been installed"
 }
}
else {
 Write-Host "Git Version $($GitVersion) is already installed"
}

if($IsWindows){
 Set-Location $env:USERPROFILE
}
else {
 Set-Location $env:HOME
}

Invoke-Expression -Command "git clone $RepoUrl"

$ModuleFolder = Get-Item './PoshAutomator'
$UserPowerShellModules =
 [Environment]::GetEnvironmentVariable("PSModulePath").Split(';')[0]
$SimLinkProperties = @{
 ItemType = 'SymbolicLink'
 Path = (Join-Path $UserPowerShellModules $ModuleFolder.BaseName)
 Target = $ModuleFolder.FullName
 Force = $true
}
New-Item @SimLinkProperties

Once you have this put together, you can upload it to a gist:

gh gist create Install-PoshAutomator.ps1 --web

Check for Git.exe
and install if not
found.

Reload environment
variables to ensure
Git is available.

Set the location
to the user's
profile.

Clone the
repository locally.

Get the first folder listed
in the PSModulePath.

reate the
ymbolic link.

322 CHAPTER 12 Sharing scripts among a team
Then, you can use the Raw link to create a one-line installation command you can
share with your team. But we will come back to that in a little bit.

12.3 Updating a shared module
The best part of using a code repository to store your module files is that they provide
branching, code reviews, automated testing, and version control. We will cover creat-
ing automated tests and code reviews in later chapters. For now, we will just look at
how to create a separate branch for developing your changes and then how to create a
pull request to update the main branch.

 Creating separate branches allows you to create copies of the repository to make
code changes and test with, without having to make changes to code that is currently
in use. Then, once you have finished and tested all of your changes, you can merge
them into the main branch so that two people or teams can be working on different
parts at the same time without interfering with each other. You can see an example of
this in figure 12.4.

Once again, open a command prompt and navigate to the folder with the repository
files. Use the following snippets to create a new branch and pull down the main repos-
itory from GitHub. This ensures that your local branch has the most recent version of
all the files and you are not working from an older codebase:

git checkout -b develop
Switched to a new branch 'develop'
git pull origin main
From https://github.com/mdowst/PoshAutomatorB
 * branch main -> FETCH_HEAD
Already up to date.

Now you can make any changes you want to the existing files or add new files. To see
how this works, go ahead and open PoshAutomator.psd1. Then, change the version
number to 1.0.0.1 and save the file. Next, using Git, you will commit the changes:

Main

Someone
else’s branch

Your branch

Figure 12.4 Simple branch model with a single main branch

32312.3 Updating a shared module
git add .
git commit -m "versioned PoshAutomator.psd1"
[develop 6d3fb8e] versioned PoshAutomator.psd1
 1 file changed, 1 insertion(+), 1 deletion(-)

Then, push the change to GitHub:

git push origin develop
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 322 bytes | 322.00 KiB/s, done.
Total 3 (delta 2), reused 0 (delta 0), pack-reused 0
remote: Resolving deltas: 100% (2/2), completed with 2 local objects.
remote:
remote: Create a pull request for 'develop' on GitHub by visiting:
remote: https://github.com/mdowst/PoshAutomator/pull/new/develop
remote:
To https://github.com/mdowst/PoshAutomator.git
 * [new branch] develop -> develop

Since there is no branch named develop in the GitHub repository, it will be automati-
cally created for you. Then, if you make more changes and push again, it will update
the branch. So now, if you navigate to the repository in GitHub and click on branches,
you should see the main and develop branches.

 When you have finished all your updates, you will merge the develop branch into
the main branch using a pull request. The pull request allows you to review all differ-
ences between the branches side by side so you can see exactly what will change
before committing anything to the main codebase. But before we do that, let's look at
how you can ensure that your team members are always using the most recent version
of the module.

12.3.1 Make the module self-update

Since this is a shared module, you will want to ensure that everyone using it has the
most recent version installed. The fact that the module is stored in GitHub gives you
the capability to have the module check for and automatically sync changes. Once
again, this can be done using the Git executables.

 To make the module self-update, you will add the code in listing 12.6 to the Posh-
Automator.psm1 file. As you know, the psm1 file is executed when the module is
imported to PowerShell. So, we will add some commands to it to check that the code
on the local machine matches the latest version on GitHub. This time, you will use
the Start-Process cmdlet to execute the Git commands. This cmdlet will allow you
to ensure that the Git executable is running in the correct directory and capture the
output so it can check if an update is required. The code will perform the following
functionality:

1 Get the current local branch to ensure the local repository is set to main:

git branch --show-current

324 CHAPTER 12 Sharing scripts among a team
2 If it is not on main, switch to main:

git checkout main

3 Update the metadata for the main branch on GitHub:

git fetch

4 Compare the local version of main against the remote version:

git diff main origin/main --compact-summary

5 If the output from the diff command shows differences, then sync to ensure
that the local files match the remote ones:

git reset origin/main

Since you are using the Start-Process cmdlet to execute the command, you will
need a local file to capture the output. You can use the New-TemporaryFile cmdlet to
create one for you and then have your code delete it after the checks are complete.

 One last thing you will want to do is provide the user a message letting them know
the module was updated and recommending that they restart PowerShell. This is
because any changes to the psm1 and psd1 files will not be picked up until the next
time the module is loaded, and a module cannot reload itself.

$gitResults = New-TemporaryFile
$Process = @{
 FilePath = 'git.exe'
 WorkingDirectory = $PSScriptRoot
 RedirectStandardOutput = $gitResults
 Wait = $true
 NoNewWindow = $true
}
$Argument = 'branch --show-current'
Start-Process @Process -ArgumentList $Argument
$content = Get-Content -LiteralPath $gitResults -Raw

if($content.Trim() -ne 'main'){
 $Argument = 'checkout main'
 Start-Process @Process -ArgumentList $Argument
}
$Argument = 'fetch'
Start-Process @Process -ArgumentList $Argument
$Argument = 'diff main origin/main --compact-summary'
Start-Process @Process -ArgumentList $Argument
$content = Get-Content -LiteralPath $gitResults -Raw

Listing 12.6 PoshAutomator.psm1

Create a temporary file to
capture command outputs.

Set the default parameters
to use when executing the
Git command.

Get the current
branch.

Check if the current
branch is main.

Set the branch
to main.

Update the metadata
for the main branch
on GitHub.

Compare the local version of
main against the remote version.

32512.3 Updating a shared module

If
d
th
d
n

if($content){
 Write-Host "A module update was detected. Downloading new code base..."
 $Argument = 'reset origin/main'
 Start-Process @Process -ArgumentList $Argument
 $content = Get-Content -LiteralPath $gitResults
 Write-Host $content
 Write-Host "It is recommended that you reload your PowerShell window."
}

if(Test-Path $gitResults){
 Remove-Item -Path $gitResults -Force
}

$Path = Join-Path $PSScriptRoot 'Public'
$Functions = Get-ChildItem -Path $Path -Filter '*.ps1'

Foreach ($import in $Functions) {
 Try {
 Write-Verbose "dot-sourcing file '$($import.fullname)'"
 . $import.fullname
 }
 Catch {
 Write-Error -Message "Failed to import function $($import.name)"
 }
}

Go ahead and save your changes to the psm1 file and run the following commands to
sync the changes with GitHub. Then, you will be able to make a pull request to move
your changes to the main branch:

git checkout develop
git add .
git commit -m "added self-updating to PoshAutomator.psm1"
git push origin develop

12.3.2 Creating a pull request

Once you have completed and tested all of your changes to a development branch,
you can update the main branch via a pull request. You can create a pull request using
the GitHub CLI, but you should use the browser to approve and complete a pull
request. Then, you can quickly review all adds, deletes, and updates to the code with
the browser. But first, start by creating the pull request:

gh pr create --title "Develop to Main" --body "This is my first pull request"
? Where should we push the develop' branch? mdowst/PoshAutomator

Creating pull request for develop into main in mdowst/PoshAutomator

Branch 'develop' set up to track remote branch 'develop' from 'upstream'.
Everything up-to-date
https://github.com/mdowst/PoshAutomator/pull/1

 a difference is
etected, force
e module to

ownload the
ewest version.

Delete the
temporary file.

Get all the ps1 files
in the Public folder.

Loop through each ps1 file.

Execute each ps1 file to load
the function into memory.

326 CHAPTER 12 Sharing scripts among a team
This command will create a pull request for the branch you are on to the main branch.
It will also output the URL for the pull request. Go ahead and copy that URL and
open it in GitHub.

 The pull request is designed to show you the history of commits made to the
branch and the file differences between the two branches. When a pull request is com-
pleted, the changes are merged into the destination branch.

 The pull request will also show you if there are any merge conflicts. These can arise
when a file has been updated in both branches. To prevent accidentally overwriting
someone else’s work, you will need to manually review the conflicting files and deter-
mine which one to keep. You can review the difference between the files on branch
under the Files Changed tab, shown in figure 12.5.

If all the changes look good, click the Merge Pull Request button back on the Conver-
sation tab. When the merge completes, you will be given the option to delete the
develop branch. It is usually a good idea to do so to prevent having a bunch of old
branches sitting around. Plus, all of your commits have been merged with the main
branch, so you don’t have to worry about losing data.

 We have just scratched the surface of what is possible with pull requests. You can
do many different things with them, like have reviewers approve changes, create con-
tinuous integration tests, and create custom code checks. Some of this will be covered
in later chapters.

Figure 12.5 The Files Changed tab of the pull request shows the difference between the two
branches. The new lines start with a plus sign (+) and are highlighted in green, and removed/
updated lines start with a minus sign (•) and are highlighted in red.

327Summary
12.3.3 Testing the self-update

Now that you have everything put together, the only thing left is to test the self-updating
functionality. To do this, you will install the module using the installation script from
section 11.2.2. Then, make a change to the main branch and reload the module. This
should trigger the module to update itself.

 Start by opening the gist for the Install-PoshAutomator.ps1 script, then click the Raw
button. Next, copy the raw URL and execute it using the Invoke-Expression/Invoke-
RestMethod cmdlets. Then, test importing and using the module:

Invoke-Expression (Invoke-RestMethod -Uri 'Your Gist Raw URL')
Import-Module PoshAutomator
Get-SystemInfo

Open the repository in your browser and confirm you are on the main branch. Next,
click the PoshAutomator.psd1 file. Click the pencil icon to edit the file and change
the version to 1.0.0.2. Scroll to the bottom of the page and click Commit Changes.

 Normally you would not want to update the main repository in this manner. In
fact, with the paid versions of GitHub, you can lock down the main branch to prevent
someone from accidentally committing to it. However, for testing and learning pur-
poses, it is much quicker than creating a new branch and merging a pull request.

 Once you save the changes, go back to your command prompt and import the
PoshAutomator module with the -Force switch to ensure it reloads:

Import-Module PoshAutomator -Force

Then, if you run it once more, it should load without downloading anything.
 From here, the possibilities are endless. You and your team can continue to add

new functionality to the module, and the changes will automatically sync for everyone.

Summary
 You can use a GitHub Gist to share individual scripts or code snippets quickly

and easily.
 You can execute a gist directly from the URL using the Invoke-Express and

Invoke-RestMethod expressions.
 A GitHub repository can be used to store a PowerShell module that can be

shared among the members of your team.
 Using the Git and GitHub CLI executables, you can automate much of your

codebase's development and updating processes.

Testing your scripts
If you asked me what one key takeaway I would like people to get from this book, it
would be to plan for the future. Throughout this book, we have discussed things
like creating functions and modules with your reusable code. By making things
modular and extensible, you are giving yourself a great foundation. However, there
will come a time when you may need to make changes to these foundational parts.
If you have a function or module used across multiple automations, you need to
ensure that your changes do not break existing functionality. The best way to do
that is by creating unit and integration tests, and there is no better way to do that in
PowerShell than by using Pester.

 Pester is the predominant test and mock framework for PowerShell. It is one of
PowerShell's most prominent community-owned extensions, with over 130 contrib-
utors and an Open Collective group. It has been such the gold standard for Power-
Shell testing that Microsoft includes it in the default PowerShell installation. Like
many things in PowerShell, it is simple to get started but is also very powerful once
you start diving deep into it.

This chapter covers
 Writing unit tests using Pester

 Creating mocks to ensure consistency in testing

 Writing integration tests with Pester
328

32913.1 Introduction to Pester
 In this chapter, we will work through a scenario I’m sure many of you have faced:
reconciling a vulnerability report against the actual state of a machine. Anyone who
has dealt with vulnerability scanners knows there can be many false positives. One of
the most common false positives is caused by security patches being superseded.

 For example, say you missed the February patch but installed the March one. Since
they are cumulative, your machine is up to date. However, some vulnerability scanners
will still consider the February patch missing.

 To help save you time and frustration when this happens, you will create a script
that can search the Microsoft Update Catalog for a particular patch and return the
supersedence information. You can then check the computer to see whether any of
the patches that superseded the original patches are installed.

 As you build this functionality, you will use Pester to create different tests, allowing
you to confirm each piece of your script along the way. But before we dive right in,
let’s have a brief overview of Pester.

13.1 Introduction to Pester
Pester provides a framework to create repeatable tests in PowerShell. This provides
you with assurance that your code will still work after making changes. It will also allow
you to mock the behavior of any PowerShell command, which, as you will see, can
come in very handy.

 Before getting started, you want to ensure that you have at least Pester version 5.3.1
installed. By default, PowerShell includes Pester version 3.4.0. So, you will need to
include the -SkipPublisherCheck switch to allow it to upgrade:

Install-Module Pester -Scope AllUsers -Force -SkipPublisherCheck

Unlike the rest of PowerShell, Pester does not use cmdlets. It uses keywords. The key-
words are used to organize, execute, and confirm the unit tests. At the top level is the
Describe keyword. Describe is used to group your tests into logical categories. Below
Describe is Context. The Context allows you to group similar tests inside of a
Describe section. You are not required to include Context in your script, but it can be
helpful to keep things organized. Each Describe and Context block can be given a
label that will be included in the test results.

 Also, Pester commands cannot be run interactively. They must be saved to a ps1
file and run all at once:

Describe "Test 1" {
 Context "Sub Test A" {
 # Test code
 }

 Context "Sub Test B" {
 # Test code
 }
}

330 CHAPTER 13 Testing your scripts
Inside of the Describe and Context blocks are It blocks that contain the actual test
commands. Then, the Should command is used to confirm the results:

Describe "Boolean Test" {
 Context "True Tests" {
 It '$true is true' {
 $true | Should -Be $true
 $true | Should -Not -Be $false
 $true | Should -BeTrue
 $true | Should -BeOfType [System.Boolean]
 }
 }

 Context "False Tests" {
 It '$false is false' {
 $false | Should -Be $false
 $false | Should -Not -Be $true
 $false | Should -BeFalse
 $false | Should -BeOfType [System.Boolean]
 }
 }
}

The important thing to know is that the commands written inside an It block are
entirely self-contained. This means that you cannot share variables or commands
between It blocks like you would in a standard PowerShell script. To share code
between tests, you must use the BeforeAll or BeforeEach commands.

 The BeforeAll or BeforeEach commands can be declared at the top of the script
or nested inside of Describe and Context blocks. Like their names state, the Before-
All runs once before running all tests, and the BeforeEach reruns the commands
before each test:

Describe "Boolean Test" {
 Context "True Tests" {
 BeforeAll{
 $var = $true
 }

 It '$true is true' {
 $var | Should -BeTrue
 }

 It '$true is still true' {
 $var | Should -BeTrue
 }
 }
}

The BeforeAll or BeforeEach commands are also where you will include your Mock
commands.

33113.2 Unit testing
13.2 Unit testing
For those unfamiliar with software testing terminology, a unit test is designed to test
the logic in your code. In PowerShell terms, a unit test would be a test for a single
function. Since you are testing the logic in your code, you should use mocks to ensure
consistent data is sent to your functions.

 A mock is a way to “fake” a call to something outside of your function. For exam-
ple, in our scenario of checking for vulnerabilities, we will need to get the results from
the Get-HotFix cmdlet, as shown in figure 13.1. Your unit test aims to test that your
function handles the response from this cmdlet in the way you designed. To ensure
this, you will mock the call to the Get-HotFix cmdlet in your test to return the values
you want to test against.

Before you create your first test, you need code to test. So, let’s create a function to test
whether a computer has a particular patch installed. The Get-HotFix cmdlet returns
the Microsoft patches installed on a Windows computer. To test for a specific patch, you
use the -Id parameter with the patch’s knowledge base (KB) number. You can also
check remote machines using the -ComputerName parameter. However, if you use the
-Id parameter and the patch is not installed on the computer, the Get-HotFix cmdlet
will return an error. So, to prevent your script from returning a bunch of errors when
searching for patches, you can wrap the Get-HotFix cmdlet in a try/catch block.

 If an error triggers the catch block from the Get-HotFix cmdlet, you can confirm
whether the error was from the patch not being found or something else. If it is

Get-HotFix

True

Found

False

Not found

Get-HotFix

True

Found

False

Mock
Get-HotFix

(found)

Standard execution Mock execution

Figure 13.1 Standard execution will call the actual cmdlet, making your unit test
dependent on the local machine being appropriately configured. Instead, you can mock
the cmdlet to return exactly what you are expecting in any scenario.

332 CHAPTER 13 Testing your scripts
something else, throw an error; otherwise, just return false. If the patch is found, the
catch block will not be triggered, and the return value will be set to true. Go ahead
and create the function to test using the following listing.

Function Get-HotFixStatus{
 param(
 $Id,
 $Computer
)

 $Found = $false
 try{
 $HotFix = @{
 Id = $Id
 ComputerName = $Computer
 ErrorAction = 'Stop'
 }
 Get-HotFix @HotFix | Out-Null
 $Found = $true
 }
 catch{
 $NotFound = 'GetHotFixNoEntriesFound,' +
 'Microsoft.PowerShell.Commands.GetHotFixCommand'
 if($_.FullyQualifiedErrorId -ne $NotFound){
 throw $_
 }
 }
 $Found
}

You can test this out with a couple of patches you have installed on your computer,
and then with a couple that you know are not installed. Save this function to your
local computer in a file named Get-HotFixStatus.ps1. Then, create a new file in the
same folder named Get-HotFixStatus.Unit.Tests.ps1. This is the file that will contain the
code for performing the Pester tests.

13.2.1 BeforeAll

The first thing you will need to do in your Pester test is to set any global variables
and commands. Since Get-HotFixStatus is a custom function, PowerShell and, by
extension, Pester will not know about it unless you import it to the current session.
So, to ensure that all tests are aware of the function, you will put a BeforeAll block at
the very top of the script, outside of any Describe or Context blocks. This BeforeAll
will call the Get-HotFixStatus.ps1 file to import the function into the current session:

BeforeAll {
 Set-Location -Path $PSScriptRoot
 . .\Get-HotFixStatus.ps1
}

Listing 13.1 Get-HotFixStatus

Set the initial
value to false.

Attempt to return the
patch and stop execution
on any error.

If the previous
command did not
error, then it is safe to
assume it was found.

If the catch block is
triggered, check to
see if the error was
because the patch
was not found.

Termination execution
on any error other
than the patch not
found

33313.2 Unit testing
Remember that the BeforeAll block will be inherited by all Describe or Context
blocks below. This way, all tests will have the Get-HotFixStatus function.

13.2.2 Creating tests

Now it is time to create your tests. First, we will create a simple test to ensure the func-
tion behaves as expected when a patch is installed.

 We will get to mocks shortly, but for now, you can run the command Get-HotFix
without any parameters and choose a KB number to test with.

 Below the BeforeAll in the Pester script, create a Describe block with the label
Get-HotFixStatus. Then, inside of that, you can create an It block with the Get-
HotFixStatus command set to a KB number you know is installed. Then, confirm it
returns true by using a Should assertion:

Describe ‘Get-HotFixStatus’ {
 It “Hotfix is found on the computer” {
 $KBFound = Get-HotFixStatus -Id ‘KB5011493’ -Computer ‘localhost’
 $KBFound | Should -Be $true
 }
}

Save the Get-HotFixStatus.Unit.Tests.ps1 file and execute it. You should see an output
similar to the following snippet if everything worked:

Starting discovery in 1 files.
Discovery found 1 tests in 5ms.
Running tests.
[+] D:\Chapter13\Pester\Get-HotFixStatus.Unit.Tests.ps1 185ms (158ms|22ms)
Tests completed in 189ms
Tests Passed: 1, Failed: 0, Skipped: 0 NotRun: 0

You can also add a test for a patch you know is not installed, this time using a KB num-
ber you know is not installed and checking that the result is false:

It "Hotfix is not found on the computer" {
 $KBFound = Get-HotFixStatus -Id 'KB1234567' -Computer 'localhost'
 $KBFound | Should -Be $false
}

Then, you can add one final test that will throw a terminating error. Since the function
is designed to terminate on any error other than the patch not being found, you can
pass it a machine name that does not exist and then confirm that it throws an error:

It "Hotfix is found on the computer" {
 { Get-HotFixStatus -Id 'KB5011493' -Computer 'Srv123' } | Should -Throw
}

Now your Get-HotFixStatus.Unit.Tests.ps1 should look like the next listing. Go ahead
and save it, and run it once more to confirm that all tests pass as expected.

334 CHAPTER 13 Testing your scripts
BeforeAll {
 Set-Location -Path $PSScriptRoot
 . .\Get-HotFixStatus.ps1
}

Describe 'Get-HotFixStatus' {
 It "Hotfix is found on the computer" {
 $KBFound = Get-HotFixStatus -Id 'KB5011493' -Computer 'localhost'
 $KBFound | Should -Be $true
 }

 It "Hotfix is not found on the computer" {
 $KBFound = Get-HotFixStatus -Id 'KB1234567' -Computer 'localhost'
 $KBFound | Should -Be $false
 }

 It "Unable to connect" {
 { Get-HotFixStatus -Id 'KB5011493' -Computer 'Bad' } | Should -Throw
 }
}

These tests will run and pass on your local computer where you verified the KB num-
bers. However, the test will fail if you run it on a computer without the first patch
installed—and this failure would be a false positive because the function did what it
was supposed to. So, let’s look at how you can prevent that by using mocks.

13.2.3 Mocks

Mocks can be a very powerful tool when it comes to unit testing. They allow you to
intercept the call to any PowerShell command and return predetermined results. This
allows you to control the exact data that your tests will receive. Remember, your unit
test is not testing the commands that it calls but rather the behavior that you designed
the function to take based on the results of those commands.

 For example, say you want to check Active Directory users for passwords about to
expire. If a password is within a week of expiring, you want to send the user an email.
If it is within three days of expiring, you want to send them and their manager an
email. To test this function, you need to have user accounts that meet those exact
specifications. So, instead of manually manipulating user accounts to meet each sce-
nario, you can mock the call to the Get-AdUser cmdlet. Inside of that mock, you can
create PowerShell objects that match the expected return of the cmdlet.

 In our scenario, you will want to mock the Get-HotFix cmdlet that is executed
inside the Get-HotFixStatus function. By doing this, you can ensure that your tests
will behave as expected regardless of where they are run.

 To create a mock, you need to declare it using the Mock command, followed by the
command you want to mock and a script block of what you want to return. Typically,
you will declare a mock inside a BeforeAll or BeforeEach command, as you can see
in figure 13.2.

Listing 13.2 Get-HotFixStatus.Unit.Tests.ps1 local check

Import your
function.

Pester tests

33513.2 Unit testing
 You also need to take into consideration the level of the mock. For instance, if you
added a mock to the BeforeAll at the top of the script or inside the Describe block, it
would apply to both the found and not found It blocks. Therefore, you will want to
use a Context block inside the Describe block to ensure the Mock only applies to the
correct tests.

Before all

Context “Hotfix Found”

Before all

It tests

Describe ‘Get-HotFixStatus’

Context “Hotfix Not Found”

Before all

It tests

Context “Unable to connect”

Before All

It tests

• Import Functions

• Set global variables

Mock Get-HotFix

(no error)

Mock Get-HotFix

(not found error)

Mock Get-HotFix

(RPC server error)

Figure 13.2 Pester mocking example
showing that BeforeAll blocks are
inherited down but not between different
Context or Describe blocks

336 CHAPTER 13 Testing your scripts
The way the Get-HotFixStatus function is written, as long as the Get-HotFix cmdlet
does not return an error, it considers the patch found. So, in this case, you can create
a Mock that returns nothing:

Mock Get-HotFix {}

For the next test, we need to simulate a patch not being found. In this case, the Get-
HotFixStatus function expects a specific error message, which you can easily repro-
duce using a throw command:

Mock Get-HotFix {
 throw 'GetHotFixNoEntriesFound,Microsoft.PowerShell.Commands.GetHotFixCommand'
}

And, finally, you can test an error where the Get-HotFix cmdlet cannot connect to the
remote machine:

Mock Get-HotFix {
 throw 'System.Runtime.InteropServices.COMException,Microsoft.PowerShell

.Commands.GetHotFixCommand'
}

Your script will look like the next listing when you put this all together. Save this and
run it again. You should see all tests pass.

BeforeAll {
 Set-Location -Path $PSScriptRoot
 . .\Get-HotFixStatus.ps1

 $Id = 'KB1234567'
}

Describe 'Get-HotFixStatus' {
 Context "Hotfix Found" {
 BeforeAll {
 Mock Get-HotFix {}
 }
 It "Hotfix is found on the computer" {
 $KBFound = Get-HotFixStatus -Id $Id -Computer 'localhost'
 $KBFound | Should -Be $true
 }
 }

 Context "Hotfix Not Found" {
 BeforeAll {
 Mock Get-HotFix {
 throw ('GetHotFixNoEntriesFound,' +
 'Microsoft.PowerShell.Commands.GetHotFixCommand')
 }
 }

Listing 13.3 Get-HotFixStatus.Unit.Tests.ps1 with mocking

Import your
function.

Set a default
value for the ID.

Pester tests

33713.3 Advanced unit testing
 It "Hotfix is not found on the computer" {
 $KBFound = Get-HotFixStatus -Id $Id -Computer 'localhost'
 $KBFound | Should -Be $false
 }
 }

 Context "Not able to connect to the remote machine" {
 BeforeAll {
 Mock Get-HotFix {
 throw ('System.Runtime.InteropServices.COMException,' +
 'Microsoft.PowerShell.Commands.GetHotFixCommand')
 }
 }

 It "Unable to connect" {
 { Get-HotFixStatus -Id $Id -Computer 'Bad' } | Should -Throw
 }
 }
}

As you can see, mocks can be very useful in unit testing. But, as you will learn in the
next section, you need to be careful not to rely on them too much.

13.3 Advanced unit testing
So far, you have written a function that can check a computer for an installed patch,
but this does not account for superseded patches. Say your vulnerability report shows
that a computer is missing the March 2022 patch. When you check the computer, it
has the April 2022 patch installed. Since this patch is cumulative and supersedes the
March patch, you know it is a false positive on the vulnerability report. However, when
you have hundreds or thousands of computers to do this on, checking each one could
be a full-time job. So, let’s look at how we can include some superseded checks and
integrate those checks into your Pester tests.

 Unfortunately, Microsoft does not have a searchable API for all patches. You can
install Windows Server Update Services (WSUS) and sync the entire patch catalog
locally to search, but this is a massive amount of overhead. In addition, there are hun-
dreds of applications in WSUS, and it constantly needs to be updated to include new
ones. So, unless you have some really beefy hardware, you would be better off finding
another way to search for patch information.

 The Microsoft Update Catalog website (https://www.catalog.update.microsoft.com/)
allows you to search for every patch released by Microsoft. The downside to this web-
site is that there is no publicly available backend for you to search. However, all is not
lost. You can still get the information you need from this site by using some web scrap-
ing. And to help with this, you will want to install the PowerHTML module from the
PowerShell Gallery.

 The PowerHTML module includes the ConvertFrom-Html cmdlet. This cmdlet
can take an HTML input and convert it to an object you can navigate using XPath

https://www.catalog.update.microsoft.com/

338 CHAPTER 13 Testing your scripts
queries. And don’t worry if you have no idea how to write XPath queries or even what
one is. We will let your browser do most of the work for you:

Install-Module PowerHTML

13.3.1 Web scraping

The trick to web scraping is to use the developer tools available in most modern web
browsers. This section was written using Edge, but the process is the same for Chrome
and Firefox. To get started, open the Microsoft Update Catalog website in your browser
(https://www.catalog.update.microsoft.com/). Then, search for a patch that you know
has been superseded. If you do not know one off the top of your head, you can use
KB4521858, as in the example in figure 13.3.

 When you search for KB4521858 on the site, you will see in the address bar that the
URL for the search results is https://www.catalog.update.microsoft.com/Search.aspx?q
=KB4521858. You will also see that there are three results because this patch applies to
Windows Server 2016 and Windows 10, both x64 and x86. So, you know you will need
to account for multiple results.

Each of the links shown in figure 13.3 will open a new window with that patch's details,
including the superseded information. If you click on one of them, it opens a new win-
dow with the patch's details, shown in figure 13.4, including the superseded information.

 So, the first thing you need to do is extract the links from the search results. Then,
extract the data from the page that each one of those links opens. This is where
PowerShell and the ConvertFrom-Html cmdlet will come in handy.

Figure 13.3 Search results for the patch KB4521858 in the Microsoft Catalog showing that there can be multiple
results for one KB number

https://www.catalog.update.microsoft.com/
https://www.catalog.update.microsoft.com/Search.aspx?q=KB4521858
https://www.catalog.update.microsoft.com/Search.aspx?q=KB4521858
https://www.catalog.update.microsoft.com/Search.aspx?q=KB4521858

33913.3 Advanced unit testing
We will start by creating a command that will let you build the search results URL and
pass that URL to the ConvertFrom-Html cmdlet:

$KbArticle = 'KB4521858'
$UriHost = 'https:/ /www.catalog.update.microsoft.com/'
$SearchUri = $UriHost + 'Search.aspx?q=' + $KbArticle
$Search = ConvertFrom-Html -URI $SearchUri

If you look at the output for the $Search variable, it will just show you the top node of
the page, which in this case is document:

NodeType Name AttributeCount ChildNodeCount ContentLength InnerText
-------- ---- -------------- -------------- ------------- ---------
Document #document 0 5 51551 …

Here is where XPath queries will help you find what you need. In the web browser,
right-click on the first link and select Inspect. This will open the developer console
and navigate right to the section with the code for this link. If you then right-click on
the code, you will be presented with several copy options, one of which is Copy XPath.

 If you copy the XPath and paste it to Notepad or VS Code, you will see something
like the following snippet:

//*[@id="83d7bc64-ff39-4073-9d77-02102226aff6_link"]

You may have noticed that the ID here is the same one in the URL when clicking on
the link. However, if you look at the other links, you will see different IDs. This shows

Figure 13.4 Clicking on the search results opens a new window that contains the information you
need to collect.

340 CHAPTER 13 Testing your scripts
that you cannot just search for the ID because you have no idea what it will be. So
right-click on the code again, and this time, select Copy Element:

<a id="83d7bc64-ff39-4073-9d77-02102226aff6_link"
 href="javascript:void(0);"
 onclick="goToDetails("83d7bc64-ff39-4073-9d77-02102226aff6");"
 class="contentTextItemSpacerNoBreakLink">
2019-10 Servicing Stack Update for Windows Server 2016 for x64-based Systems

(KB4521858)

Here you get the entire section of the web page that contains the link information.
You can create an XPath query on any and all values inside the element. If you copy
the element from the other two links, you will see that the class and href have the
same values in each one. Therefore, you can build any XPath query to search for ele-
ments containing both values. You can then pass the XPath query to the SelectNodes
method on the $Search variable, and you should see the three elements that corre-
spond with the three links:

$xPath = '//*[' +
 '@class="contentTextItemSpacerNoBreakLink" ' +
 'and @href="javascript:void(0);"]'
$Search.SelectNodes($xPath) | Format-Table NodeType, Name, Id, InnerText
NodeType Name AttributeCount ChildNodeCount ContentLength InnerText
-------- ---- -------------- -------------- ------------- ---------
Element a 4 1 144 …
Element a 4 1 148 …
Element a 4 1 148 …

You can then take this further by extracting the ID from each element:

$Search.SelectNodes($xPath) | ForEach-Object {
 $_.Id
}
83d7bc64-ff39-4073-9d77-02102226aff6_link
3767d7ce-29db-4d75-93b7-34922d49c9e3_link
250bfd45-b92c-49af-b604-dbdfd15061e6_link

Back in the web browser, if you click on the first link, you will see that the URL is
https://www.catalog.update.microsoft.com/ScopedViewInline.aspx?updateid=83d7bc64
-ff39-4073-9d77-02102226aff6, which nearly matches the ID from the first element. It
is not perfect because the ID contains _link at the end, but that can easily be resolved
using a Replace method. You can now build the URL for each link using the extracted
ID and then pass that to the ConvertFrom-Html cmdlet:

$Search.SelectNodes($xPath) | ForEach-Object {
 $Id = $_.Id.Replace('_link', '')
 $DetailsUri = $UriHost +
 "ScopedViewInline.aspx?updateid=$($Id)"

https://www.catalog.update.microsoft.com/ScopedViewInline.aspx?updateid=83d7bc64-ff39-4073-9d77-02102226aff6
https://www.catalog.update.microsoft.com/ScopedViewInline.aspx?updateid=83d7bc64-ff39-4073-9d77-02102226aff6

34113.3 Advanced unit testing
 $Details = ConvertFrom-Html -Uri $DetailsUri
 $DetailsUri
}
https:/ /www.catalog.update.microsoft.com/ScopedViewInline.aspx?updateid=

83d7bc64-ff39-4073-9d77-02102226aff6
https:/ /www.catalog.update.microsoft.com/ScopedViewInline.aspx?updateid=

3767d7ce-29db-4d75-93b7-34922d49c9e3
https:/ /www.catalog.update.microsoft.com/ScopedViewInline.aspx?updateid=

250bfd45-b92c-49af-b604-dbdfd15061e6

Now that you have the URL for each update, it is time to extract the data you need
from that web page. Unfortunately, during my testing, I discovered that the results for
this particular URL did not work with the ConvertFrom-Html cmdlet. This was
because this web page requires a header setting the return language. You can use the
Invoke-WebRequest and pass the results to the ConvertFrom-Html cmdlet to get
around that:

$Headers = @{"accept-language"="en-US,en;q=0.9"}
$Request = Invoke-WebRequest -Uri $DetailsUri -Headers $Headers
$Details = ConvertFrom-Html -Content $Request

Now, open one of the links in your browser. On the Overview tab, there are values for
the architecture and the supported products. Starting with the architecture value,
right-click it and select Inspect. You will see the value is inside a div with the ID of
archDiv. You can right-click the div and Copy XPath.

 Next, paste that XPath into your script and return the InnerText property. Then,
you can use a Replace to remove the "Architecture:" part at the front and remove
any white space with the Trim method:

$xPath = '//*[@id="archDiv"]'
$Architecture = $Details.SelectSingleNode($xPath).InnerText
$Architecture.Replace('Architecture:', '').Trim()
AMD64

You can then do the same thing for supported products, but if you are using a link
that has more than one product, you may see some results like the following:

Getting header values
The header values I provided in the Invoke-WebRequest snippet are for US English
results. To find what the language values should be for your language, open your
web browser and press F12 to open the Developer Tool. Then, click the Network tab
in the Developer tools and confirm they are recording. Next, navigate to one of the
links for a KB article. You should see an entry for ScopedViewInline.aspx in the con-
sole. Click it and then the Headers tab. There, you will see the value sent for the
Accept Language entry. You can copy that value and update your script with your pre-
ferred language.

342 CHAPTER 13 Testing your scripts
$xPath = '//*[@id="productsDiv"]'
$Products = $Details.SelectSingleNode($xPath).InnerText
$Products = $Products.Replace('Supported products:', '')
$Products

 Windows 10
 ,
 Windows 10 LTSB

As you can see, there is a lot of white space between the two products. Since a Trim
only removes from the beginning and the end, it will not remove the space and line
breaks between the two products. Luckily, you can rectify this by splitting the values
into an array and then trimming the individual values. Also, this makes your data
cleaner and easier to parse later on because, with an array, you can use -contains and
-in operators. In contrast, a string with multiple values would require you to use -like
or -match operators, which are not as accurate:

$xPath = '//*[@id="productsDiv"]'
$Products = $Details.SelectSingleNode($xPath).InnerText
$Products = $Products.Replace('Supported products:', '')
$Products = $Products.Split(',').Trim()
$Products
Windows 10
Windows 10 LTSB

Back in the web browser, go to the Package Details tab. Then, right-click in the box for
This Update Has Been Replaced by the Following Updates and choose Inspect.

 You will see an ID named supersededbyInfo. This is a good indication that this
box has a nice ID label you can use. You can also see that each link underneath is
inside of an a element that is inside a div. So, you will use the Elements method after
the XPath to parse through each level. Right-click on the supersededbyInfo ID and
Copy XPath and add the path to your script:

$xPath = '//*[@id="supersededbyInfo"]'
$DivElements = $Details.SelectSingleNode($xPath).Elements("div")
$SupersededBy = $DivElements.Elements("a")
$SupersededBy | Format-Table NodeType, Name, InnerText
NodeType Name InnerText
-------- ---- ---------
 Element a 2019-11 Servicing Stack Update for Windows Server…(KB4520724)
 Element a 2020-03 Servicing Stack Update for Windows Server…(KB4540723)
 Element a 2020-04 Servicing Stack Update for Windows Server…(KB4550994)
 Element a 2020-06 Servicing Stack Update for Windows Server…(KB4562561)
 Element a 2020-07 Servicing Stack Update for Windows Server…(KB4565912)
 Element a 2021-02 Servicing Stack Update for Windows Server…(KB5001078)
 Element a 2021-04 Servicing Stack Update for Windows Server…(KB5001402)
 Element a 2021-09 Servicing Stack Update for Windows Server…(KB5005698)
 Element a 2022-03 Servicing Stack Update for Windows Server…(KB5011570)

34313.3 Advanced unit testing
Let’s take it one step further and get the GUIDs and KB article numbers from the
results. If you look at the URL of the a elements, you will see the path is the same as
the ones you just built with the GUID from the search results. So, all you need to do is
get the value after the equals sign.

 Next, you can extract the KB number from the InnerText using a regular expres-
sion. Since all KB numbers start with the letters KB followed by a seven-digit number,
your regular expression will be KB[0-9]{7}. And, finally, you can build this all into a
PowerShell object and save it to a variable:

$xPath = '//*[@id="supersededbyInfo"]'
$DivElements = $Details.SelectSingleNode($xPath).Elements("div")
$SupersededBy = $DivElements.Elements("a") | Foreach-Object {
 $KB = [regex]::Match($_.InnerText.Trim(), 'KB[0-9]{7}')
 [pscustomobject]@{
 KbArticle = $KB.Value
 Title = $_.InnerText.Trim()
 ID = $_.Attributes.Value.Split('=')[-1]
 }
}
$SupersededBy
KbArticle Title ID
--------- ----- --
KB4520724 2019-11 Servicing Stack Update for Window...(KB4520724) 447b628f…
KB4540723 2020-03 Servicing Stack Update for Window...(KB4540723) 3974a7ca…
KB4550994 2020-04 Servicing Stack Update for Window...(KB4550994) f72420c7…
KB4562561 2020-06 Servicing Stack Update for Window...(KB4562561) 3a5f48ad…
KB4565912 2020-07 Servicing Stack Update for Window...(KB4565912) 6c6eeeea…
KB5001078 2021-02 Servicing Stack Update for Window...(KB5001078) ef131c9c…
KB5001402 2021-04 Servicing Stack Update for Window...(KB5001402) 6ab99962…
KB5005698 2021-09 Servicing Stack Update for Window...(KB5005698) c0399f37…
KB5011570 2022-03 Servicing Stack Update for Window...(KB5011570) c8388301…

Now that you have all the elements you need, you can build this into the function in
the following listing, which returns a custom PowerShell object for each search result.

Function Find-KbSupersedence {
 param(
 $KbArticle
)

 $UriHost = 'https:/ /www.catalog.update.microsoft.com/'
 $SearchUri = $UriHost + 'Search.aspx?q=' +
 $KbArticle
 $Search = ConvertFrom-Html -URI $SearchUri

 $xPath = '//*[' +
 '@class="contentTextItemSpacerNoBreakLink" ' +
 'and @href="javascript:void(0);"]'

Listing 13.4 Find-KbSupersedence.ps1

XPath query for the
KB articles returned
from the search

344 CHAPTER 13 Testing your scripts
 $Search.SelectNodes($xPath) | ForEach-Object {
 $Title = $_.InnerText.Trim()
 $Id = $_.Id.Replace('_link', '')

 $DetailsUri = $UriHost +
 "ScopedViewInline.aspx?updateid=$($Id)"
 $Headers = @{"accept-language"="en-US,en;q=0.9"}
 $Request = Invoke-WebRequest -Uri $DetailsUri -Headers $Headers
 $Details = ConvertFrom-Html -Content $Request

 $xPath = '//*[@id="archDiv"]'
 $Architecture = $Details.SelectSingleNode($xPath).InnerText
 $Architecture = $Architecture.Replace('Architecture:', '').Trim()

 $xPath = '//*[@id="productsDiv"]'
 $Products = $Details.SelectSingleNode($xPath).InnerText
 $Products = $Products.Replace('Supported products:', '')
 $Products = $Products.Split(',').Trim()

 $xPath = '//*[@id="supersededbyInfo"]'
 $DivElements = $Details.SelectSingleNode($xPath).Elements("div")
 if ($DivElements.HasChildNodes) {
 $SupersededBy = $DivElements.Elements("a") | Foreach-Object {
 $KB = [regex]::Match($_.InnerText.Trim(), 'KB[0-9]{7}')
 [pscustomobject]@{
 KbArticle = $KB.Value
 Title = $_.InnerText.Trim()
 ID = [guid]$_.Attributes.Value.Split('=')[-1]
 }
 }
 }

 [pscustomobject]@{
 KbArticle = $KbArticle
 Title = $Title
 Id = $Id
 Architecture = $Architecture
 Products = $Products
 SupersededBy = $SupersededBy
 }
 }
}

Now that you have your function, test it with a couple of KB numbers to check the
results. Then we can build some Pester tests for it.

13.3.2 Testing your results

To get started, you can build a simple test like in the next listing to confirm the func-
tion works and returns the data you are expecting. You can start with a test to search
for KB4521858 and ensure it does not return null and that three results are returned.

Parse
through
each search
result.

Get the title and GUID
of the KB article.

Get the details page
from the Catalog.

Get the
Architecture.

Get the
Products.

Get the
Superseded
By Updates.

Create a PowerShell
object with search
results.

34513.3 Advanced unit testing

Get
se

res
BeforeAll {
 Set-Location -Path $PSScriptRoot
 . ".\Listing 04 - Find-KbSupersedence.ps1"
}

Describe 'Find-KbSupersedence' {
 It "KB Article is found" {
 $KBSearch = Find-KbSupersedence -KbArticle 'KB4521858'
 $KBSearch | Should -Not -Be $null
 $KBSearch | Should -HaveCount 3
 }
}

Now, this test will work as long as the information for the KB article remains the same
and your machine running the test has internet access. But for it to be a proper unit
test, you will want to mock the results from the Microsoft Catalog.

13.3.3 Mocking with parameters

In the previous section, you built a mock for the Get-HotFix cmdlet to ensure that
you receive consistent test results. In this case, you will want to mock the Convert-
From-Html cmdlet. However, this mock will not be as simple as the previous one.

 For instance, in the previous test, you knew that the Get-HotFix either returns the
patch or throws an error. This makes the mocking super simple. On the other hand,
to mock the results of the ConvertFrom-Html cmdlet, you would need to build an
object with HtmlAgilityPack.HtmlNode classes, which is not something most people
would know how to do. But there are other ways you can create mock data.

 You can use cmdlets like ConvertFrom-Json or Import-CliXml to easily create
PowerShell objects from a file or string. But in this case, the object returned from the
ConvertFrom-Html cmdlet is too complex for these. We will come back to them in
chapter 14.

 Fortunately, the ConvertFrom-Html cmdlet can import data from a URI, a string, or a
file. This means that you can export the results of the command, save them, and import
them back in when needed. Taking some snippets from the Find-KbSupersedence
function, as in the following listing, you can create an HTML file for each search
result.

$KbArticle = 'KB5008295'

$UriHost = 'https:/ /www.catalog.update.microsoft.com/'
$SearchUri = $UriHost + 'Search.aspx?q=' + $KbArticle

$Search = ConvertFrom-Html -URI $SearchUri

Listing 13.5 Find-KbSupersedence.Unit.Test.ps1 initial

Listing 13.6 Export HTML to file

Build the search URL.

 the
arch
ults.

346 CHAPTER 13 Testing your scripts
$Search.OuterHtml | Out-File ".\$($KbArticle).html"

$xPath = '//*[' +
'@class="contentTextItemSpacerNoBreakLink" ' +
'and @href="javascript:void(0);"]'

$Search.SelectNodes($xPath) | ForEach-Object {
 $Id = $_.Id.Replace('_link', '')
 $DetailsUri = $UriHost +
 "ScopedViewInline.aspx?updateid=$($Id)"
 $Header = @{"accept-language"="en-US,en;q=0.9"}
 $Details = Invoke-WebRequest -Uri $DetailsUri -Headers $Header |
 ConvertFrom-Html

 $Details.OuterHtml | Out-File ".\$($Id).html"
}

Another way to do this is to open each page in your web browser, right-click, and
choose View Page Source. From there, you can copy and paste the contents into a
file on your local machine. To save you some time, no matter which way you choose,
I’ve included the search results for KB4521858 in the Helper Scripts folder for this
chapter.

 Now you can build the mock similar to the ones from before, but this time you will
need to use a parameter filter. The parameter filter on the mock can be used to deter-
mine where in the script to call the mock. You can see the logic in figure 13.5.

 There are currently two places in the script that call the ConvertFrom-Html
cmdlet. The first one is to get the search results, and the second is to get the KB arti-
cle details. The first time it is called to get the search results, it uses the URI parame-
ter. However, the second call is piped from the Invoke-WebRequest cmdlet, which
maps to the Content parameter. Therefore, in the second instance, you will want to
mock the Invoke-WebRequest cmdlet because it is the one that is making the call to
the external source.

 So, we will tell it to only call the mock when the ConvertFrom-Html cmdlet uses
the URI parameter. Then, mock the Invoke-WebRequest cmdlet for the second call.
This way, when you use the Content parameter for the second call, Pester will
ignore it.

 Also, when you call a mock, the values passed to the parameters are available inside
it. So, for our specific case, I named the files the same as the last part of the URI after
the equals sign. This allows the mock to choose the correct file dynamically, based on
the URI.

 The ConvertFrom-Html mock can import the file directly using the Path parame-
ter. However, the Invoke-WebRequest cmdlet returns a PowerShell object that the
actual ConvertFrom-Html will use to convert the content to a HtmlAgilityPack
.HtmlNode class. In this case, the ConvertFrom-Html cmdlet only needs the Content

Output the HTML
of the page to a file
named after the KB.

XPath query for the KB articles
returned from the search

Parse
through
each search
result.

Get the ID and use it
to get the details page
from the Catalog.

Output the HTML
of the page to a file
named after the ID.

34713.3 Advanced unit testing
property, so you can build a custom object to pass the results back in the way the
script needs:

Mock ConvertFrom-Html -ParameterFilter{ $URI } -MockWith {
 $Path = Join-Path $PSScriptRoot "$($URI.AbsoluteUri.Split('=')[-1]).html"
 ConvertFrom-Html -Path $Path
}

Mock Invoke-WebRequest -MockWith {
 $Path = Join-Path $PSScriptRoot "$($URI.AbsoluteUri.Split('=')[-1]).html"
 $Content = Get-Content -Path $Path -Raw
 [pscustomobject]@{

Mock ‘ConvertFrom-Html’
ParameterFilter { $Uri }
(Import HTML and return)

Mock ‘Invoke-WebRequest’
ParameterFilter { $Uri }

(Import HTML and return)

> Find-KbSupersedence

$Search = ConvertFrom-Html -URI $SearchUri

….

$Search.SelectNodes($xPath) | ForEach -Object {

….

$Request = Invoke-WebRequest -Uri $DetailsUri

$Details = ConvertFrom -Html -Content $Request

….

[pscustomobject]@{

KbArticle = $KbArticle

Title = $Title

Id = $Id

Architecture = $Architecture

Products = $Products

SupersededBy = $SupersededBy

}

Yes Is mockedParameter
match

Yes Is mockedParameter
match

Find-KbSupersedence-
KbArticle $ID

$KBSearch |
Should -Not -Be $null

Should -Invoke mock
tests

No

Yes Is mockedParameter
match

Yes

Yes

Figure 13.5 Creating a mock with a parameter filter can help ensure a command used multiple times is only
mocked when needed.

348 CHAPTER 13 Testing your scripts
 Content = $Content
 }
}

Finally, you will want to ensure that the Mock is actually being called. Previously, with
the mock of the Get-HotFix, it would have been pretty easy to tell if it was not being
used, but with the ConvertFrom-Html, it will be more difficult. So, you can use the
Should -Invoke test to count the number of times a mock is invoked instead of the
actual command.

 By including the Should -Invoke test, you can ensure that your parameter filters are
working as expected and that the mock is not being triggered when it should not. The
ConvertFrom-Html cmdlet mock should have been called one time for this test (once
for the search), and the Invoke-WebRequest mock should have been called three times
(once for each search result). If it gets called more times, you know your parameter fil-
ter is too broad, and if it gets called fewer times, your filter is too restrictive.

 Update the Find-KbSupersedence.Unit.Tests.ps1 script with the code in the follow-
ing listing, and ensure the test HTML files are in the same folder as the script.

BeforeAll {
 Set-Location -Path $PSScriptRoot
 . ".\Find-KbSupersedence.ps1"
}

Describe 'Find-KbSupersedence' {
 BeforeAll {
 Mock ConvertFrom-Html -ParameterFilter{
 $URI } -MockWith {
 $File = "$($URI.AbsoluteUri.Split('=')[-1]).html"
 $Path = Join-Path $PSScriptRoot $File
 ConvertFrom-Html -Path $Path
 }

 Mock Invoke-WebRequest -MockWith {
 $File = "$($URI.AbsoluteUri.Split('=')[-1]).html"
 $Path = Join-Path $PSScriptRoot $File
 $Content = Get-Content -Path $Path -Raw
 [pscustomobject]@{
 Content = $Content
 }
 }
 }

 It "KB Article is found" {
 $KBSearch = Find-KbSupersedence -KbArticle 'KB4521858'
 $KBSearch | Should -Not -Be $null
 $KBSearch | Should -HaveCount 3

 $cmd = 'ConvertFrom-Html'
 Should -Invoke -CommandName $cmd -Times 1

Listing 13.7 Find-KbSupersedence.Unit.Tests.ps1 with mock test files

Build the mock for
ConvertFrom-Html.

Build the mock for
Invoke-WebRequest.

Build a custom PowerShell
object to mock what the
cmdlet would return.

Find-KbSupersedence
should use the mock.

Confirm the mocks were
called the expected
number of times.

34913.3 Advanced unit testing
 $cmd = 'Invoke-WebRequest'
 Should -Invoke -CommandName $cmd -Times 3
 }
}

Now, you need to be careful what you mock in your tests. There are some situations
you may not be able to account for with mocks—for instance, if Microsoft changes the
backend of the Catalog website and the data cannot be found using the correct paths.
Your tests would continue to pass, but in the real world, the code would fail. This is
where integration testing comes in, which we will cover in the next section.

13.3.4 Unit vs. integration tests

In cases like this, where your function has some complex logic and multiple places
where something can go wrong, you need to determine what is a unit test versus an
integration test. Remember that a unit test should be self-contained and not depen-
dent on external systems. To illustrate this, let’s stick with the KB article KB4521858.

 We have already tested that the function will return data, but let’s take a closer look at
the data returned. Since this function does things like web scraping and string manipula-
tion, you will want to ensure that the properties are populated with the expected results.

 For instance, you can check that the results contain a particular GUID or that
there are two Windows 10 as the products and two AMD64 as the architecture. You
can even check individual results like whether a particular GUID should be a specific
product or that it is superseded the expected number of times. These tests will help
you test changes that might affect the parsing of the data:

$KBSearch = Find-KbSupersedence -KbArticle 'KB4521858'
$KBSearch.Id | Should -Contain '250bfd45-b92c-49af-b604-dbdfd15061e6'
$KBSearch | Where-Object{ $_.Products -contains 'Windows 10' } | Should -HaveCount 2
$KBSearch | Where-Object{ $_.Architecture -eq 'AMD64' } | Should -HaveCount 2
$KB = $KBSearch | Where-Object{ $_.Id -eq '83d7bc64-ff39-4073-9d77-02102226aff6' }
$KB.Products | Should -Be 'Windows Server 2016'

Since this particular patch is over two years old, there is a pretty good chance that it
will not change, but it is not guaranteed. Therefore, building a test with this level of
detail should be done as a unit test with mocks. Remember, the unit test is just testing
your logic.

 Then, when you get to the integration tests, you can make broader tests. For exam-
ple, you can check that any GUID was returned instead of checking for a specific
GUID. Or, instead of checking for AMD64 only, you can check that the architecture is
AMD64, x86, or ARM. By making the integration tests broader, your tests would not be
at the mercy of a third party changing something like a GUID value. However, it still
would catch situations in which the external source changed, and the GUID was no
longer in the same place.

 So, for your unit tests, you’ve tested that the function returns data and that the
data is what is expected. The only remaining thing to do is test what happens when a

350 CHAPTER 13 Testing your scripts
patch is not superseded. To help with this, I’ve included the mock files for the patch
KB5008295 in the helper scripts, which, at the time I captured them, was not super-
seded by any other patches.

 In this test, you want to ensure that the superseded results are null for both patches
with this KB number. Go ahead and update the Find-KbSupersedence.Unit.Tests.ps1
script with the code in the following listing containing these final tests, and confirm
everything passes.

BeforeAll {
 Set-Location -Path $PSScriptRoot
 . ".\Find-KbSupersedence.ps1"
}

Describe 'Find-KbSupersedence' {
 BeforeAll {
 Mock ConvertFrom-Html -ParameterFilter{
 $URI } -MockWith {
 $File = "$($URI.AbsoluteUri.Split('=')[-1]).html"
 $Path = Join-Path $PSScriptRoot $File
 ConvertFrom-Html -Path $Path
 }

 Mock Invoke-WebRequest -MockWith {
 $File = "$($URI.AbsoluteUri.Split('=')[-1]).html"
 $Path = Join-Path $PSScriptRoot $File
 $Content = Get-Content -Path $Path -Raw
 [pscustomobject]@{
 Content = $Content
 }
 }
 }

 It "KB Article is found" {
 $KBSearch = Find-KbSupersedence -KbArticle 'KB4521858'
 $KBSearch | Should -Not -Be $null
 $KBSearch | Should -HaveCount 3

 $cmd = 'ConvertFrom-Html'
 Should -Invoke -CommandName $cmd -Times 1
 $cmd = 'Invoke-WebRequest'
 Should -Invoke -CommandName $cmd -Times 3
 }

 It "In Depth Search results" {
 $KBSearch = Find-KbSupersedence -KbArticle 'KB4521858'
 $KBSearch.Id |
 Should -Contain '250bfd45-b92c-49af-b604-dbdfd15061e6'
 $KBSearch |
 Where-Object{ $_.Products -contains 'Windows 10' } |
 Should -HaveCount 2

Listing 13.8 Find-KbSupersedence.Unit.Tests.ps1 in-depth with mocks

Build the mock for
ConvertFrom-Html.

Find-KbSupersedence
should use the mock.

Confirm the mocks were
called the expected
number of times.

35113.4 Integration testing
 $KBSearch |
 Where-Object{ $_.Architecture -eq 'AMD64' } |
 Should -HaveCount 2
 $KB = $KBSearch |
 Where-Object{ $_.Id -eq '83d7bc64-ff39-4073-9d77-02102226aff6' }
 $KB.Products | Should -Be 'Windows Server 2016'
 ($KB.SupersededBy | Measure-Object).Count | Should -Be 9
 }

 It "SupersededBy results" {
 $KBMock = Find-KbSupersedence -KbArticle 'KB5008295'

 $KBMock.SupersededBy |
 Should -Be @($null, $null)

 $cmd = 'ConvertFrom-Html'
 Should -Invoke -CommandName $cmd -Times 1
 $cmd = 'Invoke-WebRequest'
 Should -Invoke -CommandName $cmd -Times 2
 }
}

These tests will all pass for any update that has superseded patches, but what about
ones that do not?

13.4 Integration testing
So far, in this chapter, all the tests you have built are unit tests. This means that they
test individual parts of your code (e.g., functions). The next step is to build integration
tests that test how everything works together. To accomplish this, we’ll go ahead and
create one more function. This function will check a computer for a particular patch,
and if not found, it will check each superseded update until it finds one installed.

 Go ahead and save the next listing as the file Get-VulnerabilityStatus.ps1 in the
same folder as the other functions. Then, you will be ready to start building some inte-
gration tests.

Function Get-VulnerabilityStatus{
 param(
 [string]$Id,
 [string]$Product,
 [string]$Computer
)
 $HotFixStatus = @{
 Id = $Id
 Computer = $Computer
 }
 $Status = Get-HotFixStatus @HotFixStatus

 if($Status -eq $false){
 $Supersedence = Find-KbSupersedence -KbArticle $Id

Listing 13.9 Get-VulnerabilityStatus.ps1

Run the Find-
KbSupersedence
for the not
superseded
update.

Confirm
there are no
superseding
updates for

both updates
returned.

Confirm the mocks were
called the expected
number of times.

First check is
the patch is
installed.

If it is not installed,
check for any patches
that supersede it.

352 CHAPTER 13 Testing your scripts
 $KBs = $Supersedence |
 Where-Object{ $_.Products -contains $Product }
 foreach($item in $KBs.SupersededBy){
 $Test = Get-HotFixStatus -Id $item.KbArticle -Computer $Computer
 if($Test -eq $true){
 $item.KbArticle
 break
 }
 }
 }
 else{
 $Id
 }
}

When building integration tests, your goal is to ensure that all the code works together
as expected. To ensure this, you should not mock any of your custom code. In this case,
that refers to the functions Get-HotFixStatus, Find-KbSupersedence, and Get-
VulnerabilityStatus. However, you can still mock items outside of these functions.
For example, to ensure the Get-VulnerabilityStatus function works when a patch is
installed, you do not want to mock the function Get-HotFixStatus. Instead, you will
want to mock the Get-HotFix cmdlet. This way, the Get-HotFixStatus function will be
called, and you can ensure that it returns the expected results to the other function.
You will also want to build a test to check for the condition where a patch is not installed
but is still required because a patch that supersedes it is also not installed.

 The final test you will build will test for the condition where a patch is not
installed. However, a patch that supersedes it is installed. So, while it is not installed, it
is also no longer needed. Let’s start by finding a patch that has superseded updates.
For that, you can use KB4521858 again:

$KB = Find-KbSupersedence -KbArticle 'KB4521858' |
 Where-Object{ $_.Products -contains 'Windows Server 2016' }
$KB.SupersededBy
KbArticle Title ID
--------- ----- --
KB4520724 2019-11 Servicing Stack Update for Windows…(KB4520724) 6d4809e8-
KB4540723 2020-03 Servicing Stack Update for Windows…(KB4540723) 14075cbe-
KB4550994 2020-04 Servicing Stack Update for Windows…(KB4550994) d43e862f-
KB4562561 2020-06 Servicing Stack Update for Windows…(KB4562561) 2ce894bd-
KB4565912 2020-07 Servicing Stack Update for Windows…(KB4565912) 0804dba3-
KB5001078 2021-02 Servicing Stack Update for Windows…(KB5001078) 99e788ad-
KB5001402 2021-04 Servicing Stack Update for Windows…(KB5001402) 95335a9a-
KB5005698 2021-09 Servicing Stack Update for Windows…(KB5005698) 73f45b23-
KB5011570 2022-03 Servicing Stack Update for Windows…(KB5011570) 3fbca6b8-

Let’s select the fifth KB article from the list, KB4565912, to test with. To make this
work, you will create two Mock blocks for the Get-HotFix cmdlet. The first mock will
return the Hotfix Not Found error for any ID other than KB4565912. Then, the sec-
ond will mock a good return if the ID is KB4565912. This time, you want to test that

Check each
superseded

patch to see
if any are
installed. If a superseded patch is

found, there is no need to
check for additional ones,
so go ahead and break
the foreach loop.

35313.4 Integration testing
when you pass the ID of KB4521858 to Get-VulnerabilityStatus, it will return
KB4565912. You will also want to include the mock of the ConvertFrom-Html in the
test so you can control the results from the Microsoft Catalog.

 Also, since KB4565912 is the fifth KB in the list, you can confirm that the break in
Get-VulnerabilityStatus works and that it did not continue checking for other
patches after finding the installed one. You can do this once again using the Should
-Invoke. This time, you will check that the first mock ran four times and the second
one ran once. You can see the script in the next listing.

BeforeAll {
 Set-Location -Path $PSScriptRoot
 . ".\Get-HotFixStatus.ps1"
 . ".\Find-KbSupersedence.ps1"
 . ".\Get-VulnerabilityStatus.ps1"
}

Describe 'Find-KbSupersedence not superseded' {
 BeforeAll {
 $Id = 'KB4521858'
 $Vulnerability = @{
 Id = $Id
 Product = 'Windows Server 2016'
 Computer = 'localhost'
 }
 Mock ConvertFrom-Html -ParameterFilter{
 $URI } -MockWith {
 $File = "$($URI.AbsoluteUri.Split('=')[-1]).html"
 $Path = Join-Path $PSScriptRoot $File
 ConvertFrom-Html -Path $Path
 }
 }
 Context "Patch Found" {
 BeforeAll {
 Mock Get-HotFix {}
 }

 It "Patch is found on the computer" {
 $KBFound = Get-VulnerabilityStatus @Vulnerability
 $KBFound | Should -Be $Id
 }
 }

 Context "Patch Not Found" {
 BeforeAll {
 Mock Get-HotFix {
 throw ('GetHotFixNoEntriesFound,' +
 'Microsoft.PowerShell.Commands.GetHotFixCommand')
 }
 }
 It "Patch is not found on the computer" {
 $KBFound = Get-VulnerabilityStatus @Vulnerability

Listing 13.10 Get-VulnerabilityStatus.Integration.Test.ps1

Import all your
functions.

Build the mock for
ConvertFrom-Html.

Mock Get-HotFix so the
integration test thinks
the patch is installed.

Mock Get-HotFix so the integration test
thinks the patch is not installed, and
neither is one that supersedes it.

354 CHAPTER 13 Testing your scripts
 $KBFound | Should -BeNullOrEmpty
 }
 }

 Context "Superseding Patch Found" {
 BeforeAll {
 Mock Get-HotFix {
 throw ('GetHotFixNoEntriesFound,' +
 'Microsoft.PowerShell.Commands.GetHotFixCommand')
 } -ParameterFilter { $Id -ne 'KB4565912' }

 Mock Get-HotFix { } -ParameterFilter {
 $Id -eq 'KB4565912' }
 }
 It "Superseding Patch is found on the computer" {
 $KBFound = Get-VulnerabilityStatus @Vulnerability
 $KBFound | Should -Be 'KB4565912'

 $cmd = 'Get-HotFix'
 Should -Invoke -CommandName $cmd -ParameterFilter {
 $Id -ne 'KB4565912' } -Times 4
 Should -Invoke -CommandName $cmd -ParameterFilter {
 $Id -eq 'KB4565912' } -Times 1
 }
 }
}

13.4.1 Integration testing with external data

In the last integration test, you were still mocking the results from the Microsoft Cata-
log because you were testing that your full automation worked the way you designed
it. However, when working with external data sources, you should also build tests to
ensure that the data is what is expected. For instance, if Microsoft changes the format
on its website, it could break your web scraping in the Find-KbSupersedence function.

 When building unit tests for external data, you can build them slightly more gener-
ically. For example, in listing 13.7, you tested that the KB search results returned a spe-
cific GUID. However, you could just test that the result is a GUID, not a specific GUID.
You can also check that the product field is populated:

$KBSearch.Id |
 Should -Match ("(\{){0,1}[0-9a-fA-F]{8}\-[0-9a-fA-F]{4}\-[0-9a-fA-F]" +
 "{4}\-[0-9a-fA-F]{4}\-[0-9a-fA-F]{12}(\}){0,1}")
$KBSearch.Products | Should -Not -Be $null

Some other tests can get a little more specific to ensure that you receive the expected
data. Like with the architecture, you know the return data will be x86, AMD64, or
ARM. So for this, you can use a Where-Object filter to exclude any results that do not
match one of those three. Then, test that the number of results matches the number
of search results. If there are fewer than expected, you know that one of the fields was
populated with something different.

Mock Get-HotFix so that not
installed is returned for any
patch other than KB4565912.

Mock Get-
HotFix so

that installed
is returned

only for
KB4565912.

Add the same
ParameterFilters

to the Should
-Invoke to confirm

they execute the
expected number

of times.

35513.5 Invoking Pester tests
 You can also test that something meets the minimum or maximum value by using
BeGreaterOrEqual or BeLessThan in your assertions. For example, since we know that
KB4521858 has been superseded nine times, you can assert that it should be equal to
or greater than nine. Therefore, if another patch is released to supersede it, your test
will continue to pass, but if it fails to return the superseded patches, then it will fail.
You can save the code in the next listing in the Tests folder and confirm that your
function is still working when talking to the Microsoft Catalog.

BeforeAll {
 Set-Location -Path $PSScriptRoot
 . ".\Find-KbSupersedence.ps1"
}

Describe 'Find-KbSupersedence' {
 It "KB Article is found" {
 $KBSearch =
 Find-KbSupersedence -KbArticle 'KB4521858'
 $KBSearch | Should -Not -Be $null
 $KBSearch | Should -HaveCount 3
 $GuidRegEx = '(\{){0,1}[0-9a-fA-F]{8}\-' +
 '[0-9a-fA-F]{4}\-[0-9a-fA-F]{4}\-[0-9a-fA-F]{4}\' +
 '-[0-9a-fA-F]{12}(\}){0,1}'
 $KBSearch.Id | Should -Match $GuidRegEx
 $KBSearch.Products | Should -Not -Be $null
 $KBSearch |
 Where-Object{ $_.Architecture -in 'x86','AMD64','ARM' } |
 Should -HaveCount $KBSearch.Count
 $KB = $KBSearch | Select-Object -First 1
 ($KB.SupersededBy | Measure-Object).Count |
 Should -BeGreaterOrEqual 9
 }
}

13.5 Invoking Pester tests
Another fantastic feature of Pester is the ability to run multiple tests at once. The com-
mand Invoke-Pester will invoke every file in the current folder that ends in .Tests.ps1.

 If you followed along with all the listings in this chapter, you should have a folder
with the following files:

 6fcd8832-c48d-46bc-9dac-ee1ec2cdfdeb.html
 9bd3bbf6-0002-4c0b-ae52-fc21ba9d7166.html
 Find-KbSupersedence.ps1
 Find-KbSupersedence.Unit.Tests.ps1
 Find-KbSupersedence.Integration.Tests.ps1
 Get-HotFixStatus.ps1
 Get-HotFixStatus.Unit.Tests.ps1

Listing 13.11 Find-KbSupersedence.Integration.Tests.ps1 integration tests

Find-KbSupersedence
without a mock.

Confirm the
ID is a GUID.

Confirm products
are populating.

Confirm the
number of

results that
have the
expected

architecture
matches the

number of
results. Confirm there are at

least nine SupersededBy
KB articles.

356 CHAPTER 13 Testing your scripts
 Get-VulnerabilityStatus.ps1
 Get-VulnerabilityStatus.Integration.Tests.ps1

If you open a new PowerShell window and navigate to that folder, you can run
Invoke-Pester, and it will run all the test files in the folder:

Invoke-Pester
Starting discovery in 4 files.
Discovery found 10 tests in 25ms.
Running tests.
[+] D:\Ch13\Find-KbSupersedence.Integration.Tests.ps1 10.81s (10.78s|28ms)
[+] D:\Ch13\Find-KbSupersedence.Unit.Tests.ps1 84ms (54ms|25ms)
[+] D:\Ch13\Get-HotFixStatus.Unit.Tests.ps1 48ms (15ms|25ms)
[+] D:\Ch13\Get-VulnerabilityStatus.Integration.Tests.ps1 17.05s

(17.02s|23ms)
Tests completed in 28.01s
Tests Passed: 10, Failed: 0, Skipped: 0 NotRun: 0

One other excellent function of the Invoke-Pester cmdlet is that you can customize
how the tests run, display, and even write the results to a test results file. This is done
by creating a Pester configuration using the New-PesterConfiguration cmdlet and
then customizing the settings to meet your needs.

 For example, the following snippet will write the details of each test run and write
the test results to a file named testResults.xml. The test results file contains the details
of the test results in an NUnit schema. NUnit is an industry-standard unit-testing
framework. As you will see in the next chapter, these test files can be used to report on
automated tests:

$config = New-PesterConfiguration
$config.TestResult.Enabled = $true
$config.Output.Verbosity = 'Detailed'
Invoke-Pester -Configuration $config
Pester v5.3.1

Starting discovery in 4 files.
Discovery found 10 tests in 63ms.
Running tests.

Running tests from 'D:\Ch13\Find-KbSupersedence.Integration.Tests.ps1'
Describing Find-KbSupersedence
 [+] KB Article is found 3.73s (3.73s|1ms)

Running tests from 'D:\Ch13\Find-KbSupersedence.Unit.Tests.ps1'
Describing Find-KbSupersedence
 [+] KB Article is found 139ms (137ms|2ms)
 [+] In Depth Search results 21ms (20ms|0ms)
 [+] SupersededBy results 103ms (103ms|0ms)

Running tests from 'D:\Ch13\Get-HotFixStatus.Unit.Tests.ps1'
Describing Get-HotFixStatus
 Context Hotfix Found
 [+] Hotfix is found on the computer 8ms (4ms|4ms)

357Summary
 Context Hotfix Not Found
 [+] Hotfix is not found on the computer 5ms (4ms|1ms)
 Context Not able to connect to the remote machine
 [+] Unable to connect 10ms (10ms|1ms)

Running tests from 'D:\Ch13\Get-VulnerabilityStatus.Integration.Tests.ps1'
Describing Find-KbSupersedence not superseded
 Context Patch Found
 [+] Patch is found on the computer 9ms (7ms|3ms)
 Context Patch Not Found
 [+] Patch is not found on the computer 10.46s (10.46s|1ms)
 Context Superseding Patch Found
 [+] Superseding Patch is found on the computer 4.27s (4.27s|1ms)
Tests completed in 18.99s
Tests Passed: 10, Failed: 0, Skipped: 0 NotRun: 0

The goal of this chapter was to give you a good general overview of how to get started
with Pester. I encourage you to continue using Pester for any custom functionality you
write. The following links are to some additional resources you can use to explore Pes-
ter further:

 https://pester.dev/docs/quick-start
 https://github.com/pester/pester

Summary
 Pester is the ubiquitous test and mock framework for PowerShell.
 You can create mocks to ensure consistency when testing.
 Mocks work great for unit testing because you are only testing the logic inside

of your function.
 You can use mocks with integration tests, but be sure not to mock any of your cus-

tom code, as you want to ensure that everything functions together as expected.
 Pester tests can be saved to files for reporting and recording historical results.

https://pester.dev/docs/quick-start
https://github.com/pester/pester

Maintaining your code
Throughout this book, I have stressed the importance of building code that you
can easily maintain and share. You have seen how to accomplish this through the
use of functions and modules. Then, in chapter 12, you saw how to use GitHub to
store your code and control the changes to it through pull requests. And, in chap-
ter 13, you saw how to build unit and integration tests to ensure that your code
functions as expected. Now, in this chapter, you will see how to bring this all
together.

 In chapter 11, you created the module PoshAutomator and stored it in GitHub.
This module contains the function Get-SystemInfo, which returns information
about the local computer. However, the focus of the chapter was more on GitHub
and source control than the code itself. Therefore Get-SystemInfo is a fairly basic
function. It uses the Get-CimInstance cmdlet to gather data, which only works on

This chapter covers
 Making changes to older functions without

breaking existing automations

 Using automated testing to verify that code
changes do not break existing functionality

 Automating unit and integration tests with
GitHub workflows
358

35914.1 Revisiting old code
Windows machines. So, in this chapter, we are going to expand it to include the same
information for Linux-based machines.

 Now, don’t worry, you will not have to create a bunch of different virtual machines
to test against all the different Linux distributions. Instead, we will use Pester to simu-
late the return values from a few different distros. And, luckily for you, I created a
bunch of virtual machines with different Linux distros and captured that data for you.
Then we will take it all one step further and create a GitHub workflow to automatically
run your Pester tests any time there is a code change.

 It is okay if you haven’t read chapters 11 and 13. If you are already familiar with
using Git and Pester, it should not be a problem if you skip them. However, if you have
not read chapter 11, you will not have the code and GitHub repository to update. So, I
have provided some scripts in the Helper Scripts folder for this chapter that you can
use to create these quickly. Refer to the GitHub-Setup.md file for instructions on set-
ting up git and GitHub.

 Assuming you either completed the exercises from chapter 11 or ran the script,
you will want to open the PoshAutomator folder in VS Code and create a new branch
named add_linux. Then you will be ready to perform all the exercises in this chapter:

git checkout -b add_linux

14.1 Revisiting old code
One of my favorite things to do is to go back and look at the scripts I wrote two or
more years ago. Without fail, every time I do this, I will find one bit of code that makes
me say, “What was I thinking?” But aside from cringing at my code, I can also see how
my skills and knowledge have grown. Even after 15 years of writing PowerShell, I am
still finding new and better ways to accomplish things. Of course, this makes it very
tempting to go back and “fix” all this past code, but you need to be careful that you do
not break something that might still be relying on that code.

 The function Get-SystemInfo from chapter 11 can return information about the
local Windows operating system. Now, we want to expand that to include information
about Linux-based operating systems. You can see the code and the output from this
function in the following snippet:

Function Get-SystemInfo{
 Get-CimInstance -Class Win32_OperatingSystem |
 Select-Object Caption, InstallDate, ServicePackMajorVersion,
 OSArchitecture, BootDevice, BuildNumber, CSName,
 @{l='Total_Memory';e={[math]::Round($_.TotalVisibleMemorySize/1MB)}}
}
Get-SystemInfo
Caption : Microsoft Windows 11 Enterprise
InstallDate : 10/21/2021 5:09:00 PM
ServicePackMajorVersion : 0
OSArchitecture : 64-bit
BootDevice : \Device\HarddiskVolume3

360 CHAPTER 14 Maintaining your code
BuildNumber : 22000
CSName : MyPC
Total_Memory : 32

Before you just dive right in and start changing code, you need to ensure that updat-
ing this function will not break anything else that may rely on it. The best way to do
this is to create a Pester test for the function as it is right now. Then, make your
changes and finish by creating new tests for any new functionality.

14.1.1 Test before changing

To ensure that your code changes do not affect anything else that may be using this
code, you should always start by making a few Pester tests of the function. Since this
function is part of a module, I suggest that you create a new folder inside the module
folder named Test. Then, you can store all test scripts and files there.

 To start, create a test that executes the Get-SystemInfo function where data is
returned for each property. You can do this with a simple Should -Not -BeNullOrEmpty
after each property to check. As long as the data is returned, the test will pass. It
doesn’t matter if it was run on Windows 10, 11, or even XP. However, if you run it on a
Linux machine, it would fail because no information would be returned, which is the
expected result at this time.

 Then, you can create one more test to check the actual return values, as shown in
figure 14.1. To do this, you can mock the data returned from the Get-CimInstance
cmdlet, and once again, PowerShell has a couple of nifty cmdlets to help you do that.

Context “Get-SystemInfo
works”

IT tests

Describe ‘Get-SystemInfo’

Context “Get-SystemInfo
returns data”

Before all

Mock
Get-CimInstance

IT tests

InModuleScope

Figure 14.1 Get-SystemInfo unit
test that checks to see if the function
returns data and then mocks the return
data to ensure the expected values are
returned

36114.1 Revisiting old code
The cmdlets Export-Clixml and Import-Clixml can be used, respectively, to export
and import a PowerShell object. The best thing about these cmdlets is that they store
information about the object types. Therefore, when you import them back in, it is
nearly identical to the original object. This is opposed to something like JSON, where
PowerShell just makes its best guess as to what the object type should be.

 So, to create the mock, all you need to do is pipe the results from Get-CimInstance
into Export-Clixml and save it as an XML in the Test folder. Then, when you create
your mock, you will call the Import-Clixml cmdlet and import the file:

Get-CimInstance -Class Win32_OperatingSystem | Export-Clixml -Path
.\Test\Get-CimInstance.Windows.xml

You can even help make your assertions by running the Get-SystemInfo function and
looping through the properties to populate the names and values in a string. Then,
you can copy and paste the output into your It block:

$Info = Get-SystemInfo
$Info.psobject.Properties | ForEach-Object{
 "`$Info.$($_.Name) | Should -Be '$($_.Value)'"
}

This trick will work for any PowerShell object, but you will want to go back and fix any
values that have a specific data type. For instance, remove the quotes around any num-
bers and use the Get-Date cmdlet to convert strings to DateTimes where applicable.

 There is one more thing you will need to add to your mocks. Since you are testing
a cmdlet inside a module, you need to tell Pester that the mocks will be inside the
module. You can do this by wrapping your entire test in an InModuleScope block. The
InModuleScope block tells Pester to assume that all mocks are in the context of the
module. This is the preferred method when you are testing your module code.

 You can also use the -ModuleName argument directly on your mock commands, but
this should be reserved for tests outside the current module. By wrapping the entire test
in the InModuleScope block, you ensure that your module functions are being tested.

 Go ahead and create a file named Get-SystemInfo.Unit.Tests.ps1 in the Test folder
based on the next listing. Be sure to update the values in the Get-SystemInfo Windows
11 block with the data from your local machine.

$ModulePath = Split-Path $PSScriptRoot
Import-Module (Join-Path $ModulePath 'PoshAutomator.psd1') -Force

InModuleScope -ModuleName PoshAutomator {
 Describe 'Get-SystemInfo' {
 Context "Get-SystemInfo works" {
 It "Get-SystemInfo returns data" {
 $Info = Get-SystemInfo
 $Info.Caption | Should -Not -BeNullOrEmpty

Listing 14.1 Get-SystemInfo test before updating

Import
the
module.

Set the module scope to the
module you are testing.

Test Get-SystemInfo
generic results to ensure
data is returned.

362 CHAPTER 14 Maintaining your code
 $Info.InstallDate | Should -Not -BeNullOrEmpty
 $Info.ServicePackMajorVersion | Should -Not -BeNullOrEmpty
 $Info.OSArchitecture | Should -Not -BeNullOrEmpty
 $Info.BootDevice | Should -Not -BeNullOrEmpty
 $Info.BuildNumber | Should -Not -BeNullOrEmpty
 $Info.CSName | Should -Not -BeNullOrEmpty
 $Info.Total_Memory | Should -Not -BeNullOrEmpty
 }
 }

 Context "Get-SystemInfo returns data" {
 BeforeAll {
 Mock Get-CimInstance {
 Import-Clixml -Path ".\Get-CimInstance.Windows.xml"
 }
 }
 It "Get-SystemInfo Windows 11" {
 $Info = Get-SystemInfo
 $Info.Caption | Should -Be 'Microsoft Windows 11 Enterprise'
 $Date = Get-Date '10/21/2021 5:09:00 PM'
 $Info.InstallDate | Should -Be $Date
 $Info.ServicePackMajorVersion | Should -Be 0
 $Info.OSArchitecture | Should -Be '64-bit'
 $Info.BootDevice | Should -Be '\Device\HarddiskVolume3'
 $Info.BuildNumber | Should -Be 22000
 $Info.CSName | Should -Be 'MyPC'
 $Info.Total_Memory | Should -Be 32
 }
 }
 }
}

Once you’ve created this, ensure the Get-CimInstance.Windows.xml is in the Test
folder, and run the test. It should return two tests passed:

.\Get-SystemInfo.Unit.Tests.ps1
Starting discovery in 1 files.
Discovery found 2 tests in 19ms.
Running tests.
[+] D:\PoshAutomator\Test\Get-SystemInfo.Unit.Tests.ps1 178ms (140ms|22ms)
Tests completed in 181ms
Tests Passed: 2, Failed: 0, Skipped: 0 NotRun: 0

14.1.2 Updating the function

To add the Linux functionality, the first thing you need to do is determine whether a
machine is Windows or Linux. This can be done with the $IsWindows and $IsLinux
variables. These variables were introduced in PowerShell 6 to return a Boolean value
based on the operating system. There is also an $IsMacOS for macOS devices. Before
you go off and just make some if/else logic, you need to take into consideration
PowerShell versions.

 Since these variables do not exist in Windows PowerShell 5.1, you will break back-
ward compatibility if you make your function completely dependent on them. However,

Test Get-SystemInfo results
with mocking to ensure data
that is returned matches the
expected values.

36314.1 Revisiting old code
since versions before PowerShell 6 only run in Windows, you can have your script
check if it is Linux because it will return false if the variable does not exist. If it is, run
the Linux commands; else, run the Windows commands. You could even put an
if/else between them to display that you do not support macOS yet (sorry, I don’t
own a Mac to test with).

 However, there is one more thing to consider, and that is creating mocks. The
IsLinux, IsMacOS, and IsWindows are read-only variables. This means you cannot
override them for your testing. You also can only create mocks for the PowerShell
commands and not variables. So, to allow you to mock different operating systems,
you can use the Get-Variable cmdlet to return the value of each variable. It will have
the same behavior as just putting the variable there, but it has the added benefit of
using a mock:

If(Get-Variable -Name IsLinux -ValueOnly){
 <# Linux commands #>
}
ElseIf(Get-Variable -Name IsMacOS -ValueOnly){
 Write-Warning 'Support for macOS has not been added yet.'
}
Else{
 <# Windows commands #>
}

Now comes the fun part of getting the data for the Linux operating systems. Since there
is no single command to get this information in Linux, you will need to build the return
data by combining the output of several commands. To save you the time researching
this, I have listed the different properties in table 14.1 along with the command or file
that the information can be returned from in most major Linux distros.

Starting with the two files (/etc/os-release and /proc/meminfo), you have a couple
of different ways to get the data. You can use the Get-Content cmdlet to return all the

Table 14.1 Linux properties

Property Command/file

Caption /etc/os-release (PRETTY_NAME)

InstallDate stat /

ServicePackMajorVersion /etc/os-release (VERSION)

OSArchitecture uname -m

BootDevice df /boot

BuildNumber /etc/os-release (VERSION_ID)

CSName uname -n

Total_Memory /proc/meminfo (MemTotal)

364 CHAPTER 14 Maintaining your code
data in the file, or you can use the Select-String cmdlet to return the line that
matches a specific pattern. In this case, we will use both.

 The file /etc/os-release is formatted using a pattern of key equals sign value,
which also happens to be the same format that the ConvertFrom-StringData cmdlet
uses. This cmdlet works much like the ConvertFrom-Json, where it will take a format-
ted string and turn it into a hashtable. The following snippet shows an example of the
contents from an Ubuntu server:

Get-Content -Path /etc/os-release
NAME="Ubuntu"
VERSION="20.04.4 LTS (Focal Fossa)"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 20.04.4 LTS"
VERSION_ID="20.04"
HOME_URL="https://www.ubuntu.com/"
SUPPORT_URL="https://help.ubuntu.com/"
BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/"
VERSION_CODENAME=focal
UBUNTU_CODENAME=focal

You can pipeline the output to the ConvertFrom-StringData cmdlet and save it to a
variable. Then, you can access the properties directly. You may need to do some
cleanup of the quotes using a replace, but other than that, you have a good chunk of
the information you need:

$OS = Get-Content -Path /etc/os-release | ConvertFrom-StringData
$OS.PRETTY_NAME
$OS.PRETTY_NAME.Replace('"','')
"Ubuntu 20.04.4 LTS"
Ubuntu 20.04.4 LTS

The next file you need to get data from is /proc/meminfo. This file is not formatted in
a way that PowerShell recognizes, so you will need to do some more data manipula-
tion to get the value you need. We know the line with the number you want starts with
MemTotal. So, we can use the Select-String cmdlet to only return the line that starts
with that:

Select-String -Path /proc/meminfo -Pattern 'MemTotal'
/proc/meminfo:1:MemTotal: 4019920 kB

Then you can use a regular expression to extract the number from the line:

Select-String -Path /proc/meminfo -Pattern 'MemTotal' |
 ForEach-Object{ [regex]::Match($_.line, "(\d+)").value}
4019920

36514.1 Revisiting old code
Next, you will need to use some commands to return information about the operat-
ing system. We had previously discussed that you can run external commands
directly in PowerShell, which you could do here. But you would run into the prob-
lem that you will not be able to mock them. So, to ensure that you can adequately
mock the results for your testing, you can use the Invoke-Expression cmdlet to run
these external commands. Then, you can mock the Invoke-Expression cmdlet in
your Pester tests.

 Like when you extracted the data from the files, you will need to do some data
manipulation to get the results from the command output. Once again, you can use
the Select-String to help get what you need. For example, you can run the com-
mand stat / to get the installation date. However, this command returns multiple
lines with different data. So, as with the memory total, we’ll narrow it down to the line
we want and then extract the value we want:

$stat = Invoke-Expression -Command 'stat /'
$stat | Select-String -Pattern 'Birth:' | ForEach-Object{
 Get-Date $_.Line.Replace('Birth:','').Trim()
}
Wednesday, 26 January 2022 15:47:51

You can do something similar for the boot device by returning the first value of the
last line from the command df /boot. You can do this by splitting on the line breaks
`n, then getting the last one by using the number [-1], then splitting on the spaces
and getting the first value:

$boot = Invoke-Expression -Command 'df /boot'
$boot.Split("`n")[-1].Split()[0]
/dev/sda1

Fortunately, the last two commands to get the architecture and name can be retrieved
using a command that only outputs the value you need, so there is no need to manip-
ulate the output. Go ahead and update the Get-SystemInfo.ps1 with the updated func-
tion in the following listing.

Function Get-SystemInfo{
 [CmdletBinding()]
 param()
 if(Get-Variable -Name IsLinux -ValueOnly){
 $OS = Get-Content -Path /etc/os-release |
 ConvertFrom-StringData

 $search = @{
 Path = '/proc/meminfo'

Listing 14.2 Get-SystemInfo.ps1

Check if the machine
is running a Linux-
based OS.

Get the data from
the os-release file,
and convert it to a
PowerShell object.

Search the meminfo file for the MemTotal
line and extract the number.

366 CHAPTER 14 Maintaining your code
 Pattern = 'MemTotal'
 }
 $Mem = Select-String @search |
 ForEach-Object{ [regex]::Match($_.line, "(\d+)").value}

 $stat = Invoke-Expression -Command 'stat /'
 $InstallDate = $stat | Select-String -Pattern 'Birth:' |
 ForEach-Object{
 Get-Date $_.Line.Replace('Birth:','').Trim()
 }

 $boot = Invoke-Expression -Command 'df /boot'
 $OSArchitecture = Invoke-Expression -Command 'uname -m'
 $CSName = Invoke-Expression -Command 'uname -n'

 [pscustomobject]@{
 Caption = $OS.PRETTY_NAME.Replace('"',"")
 InstallDate = $InstallDate
 ServicePackMajorVersion = $OS.VERSION.Replace('"',"")
 OSArchitecture = $OSArchitecture
 BootDevice = $boot.Split("`n")[-1].Split()[0]
 BuildNumber = $OS.VERSION_ID.Replace('"',"")
 CSName = $CSName
 Total_Memory = [math]::Round($Mem/1MB)
 }
 }
 else{
 Get-CimInstance -Class Win32_OperatingSystem |
 Select-Object Caption, InstallDate, ServicePackMajorVersion,
 OSArchitecture, BootDevice, BuildNumber, CSName,
 @{l='Total_Memory';
 e={[math]::Round($_.TotalVisibleMemorySize/1MB)}}
 }
}

14.1.3 Post update test

After making the updates, you will first want to run the original test script to ensure
that you did not break anything. If all the tests pass, you can start building your
new ones.

 To test the Linux output, you will need to create several mocks. You will need to
mock the data returned from the /etc/os-release and /proc/meminfo files and the
results from the df, stat, and uname commands. With the exception of the /etc/
os-release file, the output for all the other commands remains the same between dif-
ferent Linux distros. Therefore, if you place all the tests inside the same context, you
only need to mock these once. Then, inside each It test block, you can mock the
results for the individual /etc/os-release file.

Run
the stat

command,
parse the

output for
the Birth line,

then extract
the date.

Run the df and
uname commands,
and save the
output as is.

Build the
results into

a PowerShell
object that

matches
the same

properties as
the existing

Windows
output.

Original
Windows
system
information
commands

36714.1 Revisiting old code
 I have included several text files that start with the name test in the Helper Scripts
for this chapter to save you a lot of time and hassle. These files contain output exam-
ples for the different distros and commands. You can import the data from these files
inside the mock statements to replicate the results from running these commands on
a Linux server.

 If you are interested in creating additional test files, all you need to do is run the
command in Linux and then pipe it to the Out-File cmdlet to save the output in a
text file:

stat / | Out-File .\test.stat.txt

To ensure that you are calling the correct mock for each command, you must use
parameter filters. For example, to mock the df /boot command, you will mock
Invoke-Expression with the parameter filter of the command equal to the df com-
mand. Then, you can mock the individual os-release files inside of the It blocks:

Mock Invoke-Expression -ParameterFilter { $Command -eq 'df /boot' } -MockWith {
 Get-Content -Path (Join-Path $PSScriptRoot 'test.df.txt')
}

You will also want to test the invoke assertions to ensure that your mocks are being
properly called. For example, to ensure that the df mock was called, you would add
the following assertion:

Should -Invoke -CommandName 'Invoke-Expression' -ParameterFilter {
 $Command -eq 'df /boot' } -Times 1

Since you have seven mocks, you will also want to include seven invoke assertions.
When testing against three different distros, that is 21 tests, just to confirm the tests
are running. Then, counting the other tests, each It block will be around 22 lines
long. Now imagine that in a few months you decide to add a new property to the func-
tion. You will need to update every single It block with this new test. Digging through
hundreds of lines of code to ensure that you updated everything would be a huge
pain. So, instead of creating separate It blocks for each distro, you can use a foreach
loop to pass the expected values for each distro, as shown in figure 14.2.

 All you need to do is create a hashtable for each distro and populate it with the
data expected. Pester will then loop through each test case, allowing you to perform
multiple tests with one It block. Update Get-SystemInfo.Unit.Tests.ps1 with the addi-
tional tests in listing 14.3, and ensure everything passes.

368 CHAPTER 14 Maintaining your code
$ModulePath = Split-Path $PSScriptRoot
Import-Module (Join-Path $ModulePath 'PoshAutomator.psd1') -Force

InModuleScope -ModuleName PoshAutomator {
 Describe 'Get-SystemInfo v1' {

Listing 14.3 Get-SystemInfo test after the updates

Context “Get-SystemInfo
works”

It tests

Describe ‘Get-SystemInfo v1’

Context “Get-SystemInfo
returns data”

Before all

Mock
Get-CimInstance

It tests

InModuleScope

Describe ‘Get-SystemInfo v2’

Context “Get-SystemInfo
returns data”

Before all

Mock
Linux Commands

It tests

Foreach test

Mock os-release

Figure 14.2 Get-SystemInfo
unit tests after updating the function
to include Linux. Include foreach to
check multiple different Linux distros
with a single It block.

Import the module.

Set the module scope to the
module you are testing.

The tests from before
you made any changes

36914.1 Revisiting old code
 <#
 Copy Tests from Listing 1 here to ensure they all still pass
 #>
 }

 Describe 'Get-SystemInfo v2' {
 Context "Get-SystemInfo for Linux" {
 BeforeAll {
 Mock Get-Variable -MockWith { $true }

 Mock Select-String -ParameterFilter {
 $Path -eq '/proc/meminfo' } -MockWith {
 [pscustomobject]@{line = 'MemTotal: 8140600 kB' }
 }
 Mock Invoke-Expression -ParameterFilter {
 $Command -eq 'df /boot' } -MockWith {
 Get-Content -Path (Join-Path $PSScriptRoot 'test.df.txt')
 }
 Mock Invoke-Expression -ParameterFilter {
 $Command -eq 'stat /' } -MockWith {
 Get-Content -Path (Join-Path $PSScriptRoot 'test.stat.txt')
 }
 Mock Invoke-Expression -ParameterFilter {
 $Command -eq 'uname -m' } -MockWith {
 'x86_64'
 }
 Mock Invoke-Expression -ParameterFilter {
 $Command -eq 'uname -n' } -MockWith {
 'localhost.localdomain'
 }
 }

 It "Get-SystemInfo Linux (<Caption>)" -ForEach @(
 @{ File = 'test.rhel.txt';
 Caption = "Red Hat Enterprise Linux 8.2 (Ootpa)";
 ServicePackMajorVersion = '8.2 (Ootpa)';
 BuildNumber = '8.2'
 }
 @{ File = 'test.Ubuntu.txt';
 Caption = "Ubuntu 20.04.4 LTS";
 ServicePackMajorVersion = '20.04.4 LTS (Focal Fossa)';
 BuildNumber = '20.04'
 }
 @{ File = 'test.SUSE.txt';
 Caption = "SUSE Linux Enterprise Server 15 SP3";
 ServicePackMajorVersion = '15-SP3';
 BuildNumber = '15.3'
 }
) {
 Mock Get-Content -ParameterFilter {
 $Path -eq '/etc/os-release' } -MockWith {
 Get-Content -Path (Join-Path $PSScriptRoot $File)
 }

 $Info = Get-SystemInfo

New tests
for the Linux
distros

Mock the Get-Variable
command to return true
if IsLinux variable.

Mock each on the Linux
system commands to
control the data that
is returned.

Test the different
Linux distros using
a foreach so you do
not need to recreate
the It block for each
distro.

Build
hashtables

with the values
needed to test

each distro.

Run the Get-
SystemInfo

while mocking
the Linux

results.

370 CHAPTER 14 Maintaining your code
 $cmd = 'Get-Content'
 Should -Invoke -CommandName $cmd -ParameterFilter {
 $Path -eq '/etc/os-release' } -Times 1
 Should -Invoke -CommandName 'Get-Variable' -ParameterFilter {
 $Name -eq 'IsLinux' -and $ValueOnly } -Times 1
 Should -Invoke -CommandName 'Select-String' -ParameterFilter {
 $Path -eq '/proc/meminfo' } -Times 1
 Should -Invoke -CommandName 'Invoke-Expression' -ParameterFilter {
 $Command -eq 'df /boot' } -Times 1
 Should -Invoke -CommandName 'Invoke-Expression' -ParameterFilter {
 $Command -eq 'stat /' } -Times 1
 Should -Invoke -CommandName 'Invoke-Expression' -ParameterFilter {
 $Command -eq 'uname -m' } -Times 1
 Should -Invoke -CommandName 'Invoke-Expression' -ParameterFilter {
 $Command -eq 'uname -n' } -Times 1

 $Info.Caption | Should -Be $Caption
 $Date = Get-Date '2021-10-01 13:57:20.213260279 -0500'
 $Info.InstallDate | Should -Be $Date
 $Info.ServicePackMajorVersion | Should -Be $ServicePackMajorVersion
 $Info.OSArchitecture | Should -Be 'x86_64'
 $Info.BootDevice | Should -Be '/dev/sda2'
 $Info.BuildNumber | Should -Be $BuildNumber
 $Info.CSName | Should -Be 'localhost.localdomain'
 $Info.Total_Memory | Should -Be 8
 }
 }

 }
}

This time you should have five tests that pass.

14.2 Automating your testing
Now that you have your changes made to the module, you are almost ready to sync
them with the remote GitHub repository and create a pull request to move them into
production. However, before you do that, let’s create a GitHub workflow to run these
Pester tests for you automatically.

 GitHub workflows are a continuous integration and continuous delivery (CI/CD)
platform that allows you to automate your build, test, and deploy your code. You can
create workflows that run your Pester tests automatically every time a pull request is
submitted. This will help you to ensure that everything still works as expected. Work-
flows can also be used to deploy code automatically. For example, you can upload
modules directly to the PowerShell Gallery or to a private repository.

 GitHub workflows are written in YAML, yet another data-serialization language, like
JSON and XML. YAML is used by many CI/CD platforms, including GitHub workflows
and Azure DevOps Pipelines. If you have never even heard of YAML before, don’t worry;
the syntax is very straightforward. The biggest challenge for someone who uses languages
like PowerShell is that YAML uses indentions to signify nesting, similar to Python.

Confirm
the expected

mocks are
being called.

Confirm
the results
match the
expected

values.

37114.2 Automating your testing
14.2.1 Creating a GitHub workflow

A GitHub workflow is not designed specifically with Pester testing in mind. However,
what it does have is the ability to run shell commands. These shell commands support
PowerShell and have the Pester modules installed. This allows you to call your Pester
tests from within the workflow, and the results will be reported back to you.

 To create a GitHub workflow, you need to create the YAML and place it in the
folder .github/workflows/ in your repository (and yes, that is a period in front of
GitHub). Create the folder structure in your local repository and create a new file
named Get-SystemInfo.yaml.

 The first thing you need to do in the YAML is name the workflow and define the
triggers. The triggers are defined using the key on and tell GitHub when to run a
workflow automatically. In this case, you want the workflow to run when a pull request
is opened or reopened. So, the start of your file will look like the following snippet:

name: PoshAutomator Pester Tests
on:
 pull_request:
 types: [opened, reopened]

Next, you need to define your jobs. Jobs are used to define the environment you want
to run the test in. A workflow can be made up of several jobs that can run concur-
rently or sequentially. We only need a single job to execute the tests in our case.

 You need to define the operating system you want it to run on when you define a
job. There are several options, including Windows Server, Ubuntu, and macOS, and
they all have PowerShell and Pester installed. In most cases, you will want to use the
Windows image.

 If you need to test against Windows PowerShell 5.1, it is only available in Windows.
Even if you are using PowerShell 6 or 7, some cmdlets are only available on Windows.
For instance, the Get-CimInstance cmdlet does not exist on Linux operating systems.
Even though you are mocking the results of it, it can cause issues if the host machine
does not think the cmdlet exists. So, to make things easier, you can run it on a Win-
dows image.

 Under the job, you will define the steps for the workflow to take. To run the Pester
test, you only need two steps, as you can see in the next listing—one to check out the
repository code, making it available to the job, and a second one to run the Pester script.

name: PoshAutomator Pester Tests
on:
 pull_request:
 types: [opened, reopened]

jobs:
 pester-test:
 name: Pester test

Listing 14.4 Get-SystemInfo.yaml

Set to run when
a pull request is
opened or reopened
automatically

372 CHAPTER 14 Maintaining your code
 runs-on: windows-latest
 steps:
 - name: Check out repository code
 uses: actions/checkout@v3
 - name: Run the Get-SystemInfo.Unit.Test.ps1 Test File
 shell: pwsh
 run: |
 Invoke-Pester .\Test\Get-SystemInfo.Test.ps1 -Passthru

Once the Get-SystemInfo.yaml file is updated, commit and sync your changes to
GitHub:

git add .
git commit -m "added Linux support and Pester workflow"
git push origin add_linux

Then, create a new pull request between the add_linux branch and main:

gh pr create --title "Add Linux Support" --body "Updated Get-SystemInfo

➥function to work on major Linux distros. Add workflows for testing"

If you open the pull request in your web browser, as shown in figure 14.3, you should
see that the workflow has triggered and is running.

Run on
Windows. Check out the code for

the workflow to access.

Invoke
the Pester

scripts.

Figure 14.3 GitHub pull
request showing that there
are workflow checks that
are running

37314.3 Avoiding breaking changes
If you click on the details, you can watch the execution and see the detailed outcome
of the tests. After it finishes, you will be able to view the results from right within the
pull request, as in figure 14.4.

Once you approve and merge this pull request with the main branch, these Pester
tests will be run any time someone makes a change.

 Along with testing against changes to your code, these types of tests can be used to
ensure that platform-level changes don’t affect your code. With new versions of Power-
Shell being released every few months, you will want make sure that the updates do
not introduce any breaking changes to your code to ensure your continued success on
your automation journey.

14.3 Avoiding breaking changes
The example in the last section was very specific to that particular function. Unfor-
tunately, there is no one way for me to say how you should update your code in
other situations. It all depends on what the code is and what you need it to do. But
there is one thing you need to be aware of no matter what, and that is creating a
breaking change.

 A number of factors can cause a breaking change, but two of the most common I
see are the renaming of properties and parameters. For example, when I look back at
the code in the function, it bothers me that I left the computer’s name as CSName.
I really should have made it HostName. However, if I just decide to change it because

Figure 14.4 The results of the Pester tests running through the GitHub
workflow

374 CHAPTER 14 Maintaining your code
I don’t like it, I could potentially break someone else’s automation that was expecting
the CSName property.

 That is not to say that you cannot introduce breaking changes. It’s just that they
should have a more valid reason than that I don’t like the name of that property. And
if you do introduce a breaking change, you had better be sure that everyone is aware
and has time to prepare.

14.3.1 Parameter changes

There are several types of parameter changes that can affect existing automations.
These include adding and removing parameters, renaming, and changing the type.
Fortunately, there are multiple ways you can ensure that your parameter changes will
have as little impact as possible on existing automations.

 Removing a parameter is usually the best way to break existing automations. Power-
Shell will throw an error whenever you pass a parameter that does not exist. So, it is
best to avoid removing parameters whenever possible.

 An excellent example of this can be seen in the Invoke-WebRequest cmdlet. In
Windows PowerShell 5.1 and older, this cmdlet used the user’s Internet Explorer pro-
file when connecting to a remote endpoint. To overwrite this and connect using just
the basic connection, you could include the switch UseBasicParsing. With the move
to cross-platform, this cmdlet was uncoupled from Internet Explorer, making the Use-
BasicParsing switch obsolete. However, to support backward capability, the parame-
ter remains in PowerShell 6 and 7. As long as it is not hurting anything, you can leave
obsolete parameters in your functions.

 On the other end, adding parameters may seem innocuous, but it will break all
existing automations if it is set to required. Therefore, when adding a parameter, it is
best to make it optional, at least at first. I will also recommend the same approach with
renaming parameters. If you need to add a required parameter or rename a parame-
ter, it should be done slowly.

 An excellent example of this can be seen in the Azure PowerShell modules. The
cmdlet Get-AzManagementGroup originally had a parameter named GroupName. How-
ever, if you look at a management group in the Azure portal, there is no management
group name field. Instead, there is an ID field and a display name field. The value the
GroupName parameter expected was the ID. So, people were obviously confused.
Before Microsoft completely removed the GroupName parameter, they released an
update that would display a warning anytime it was used to let you know the parame-
ter was changing. They also included an alias so both would work for a period of time.
This gave people plenty of time to update their scripts before this parameter was
removed entirely.

 You can do this yourself by adding an alias declaration to the parameter and making
the alias the original value. You can then use the ValidateScript attribute to display a
warning any time the parameter is used. This will give people a heads-up to change the

37514.3 Avoiding breaking changes
parameter and time to do it before it is permanently removed. For example, say you
want to change the parameter in the following snippet from Name to HostName:

param(
 [string]$Name
)

When making the change, the parameter’s name should always be the new name, and
the old name should become the alias. Then, you will need to update all references to
the old name in the function’s code. This way, when it comes time to remove the old
parameter name, you can just remove the alias, and you are done:

param(
 [Alias('Name')]
 [string]$HostName
)

You can also use the ValidateScript attribute to display a warning when the param-
eter is used. Since the ValidateScript only runs when a parameter is used, it will
only display when used. So all you have to do is include a Write-Warning cmdlet fol-
lowed by $true. The $true is because the ValidateScript is technically designed to
test the value of a parameter, so if you use it, it must return $true for your function
to execute:

param(
 [Alias('Name')]
 [ValidateScript({
 Write-Warning "The parameter Name is being replaced with HostName. Be

sure to update any scripts using Name";
 $true}
)]
 [string]$HostName
)

14.3.2 Output changes

Changing the output of a function can be a lot trickier than changing the parameters
because there is no good equivalent of the alias. The data you return is the data that is
sent back to the invoking command. Things like adding a property usually do not
harm things, but removing and renaming properties can have massive impacts.

 If you need to change the output from a command, the best course of action is to
create an entirely new function. Then, you can put a warning on the old one stating
that it is being replaced. Once you’ve given people enough time to make the changes,
you can remove the old function. You can also add an alias for the old function name
to the new function in a module’s psm1 file. Then, if something is still using the old
name, it will be automatically mapped to the new function. When doing this in a

376 CHAPTER 14 Maintaining your code
module, you need to include the Export-ModuleMember command so the alias is avail-
able to the user and not just inside the module:

New-Alias -Name Old-Function -Value New-Function
Export-ModuleMember -Alias * -Function *

As I mentioned at the beginning of this section, I really wish I had made the com-
puter’s name HostName and not CSName. But as long it is not causing confusion, I can-
not justify changing it because I’m not too fond of it. However, if it were causing
issues, my suggestion would be to include both properties for some time. Then, like
with the others, provide a warning that the property will eventually be changing.

Summary
 Be sure not to introduce breaking changes without proper notice and an inves-

tigation of the impact.
 Before updating old code, you should create unit tests for it to ensure that you

do not break any existing functionality.
 You can include unit and integration tests in your GitHub repository to auto-

matically test your code any time a pull request is submitted.

appendix
Development

environment set up

One of the biggest challenges I faced when writing this book was how to make
example automations that could appeal to large audiences. Therefore, for the most
part, I tried to stick with base operating systems tasks or with software that almost
everyone already has, like Office. Otherwise, the tools used in this book are either
free or open source. The only exception is the cloud-based items, but they all offer
free trials that you can use.

 The majority of the examples in this book can be done using a single machine.
However, to get the benefits and to be able to create every automation in this book,
you will need three machines. These can all be any combination of physical or vir-
tual machines. The three machines you will need are

1 Development machine (required)—Windows 10, Windows Server 2016, or newer
2 Automation server (optional)—Windows Server 2016 or newer
3 Linux machine (optional)—Ubuntu 20.04 or newer

I have provided you with three options for setting up your environment. You can
download and install the applications manually. You can use Chocolatey to perform
most installs or use the Lab Setup kits provided in the GitHub repository to auto-
mate the setup.

A.1 Development machine
The majority of the script development and testing can be done on a single Win-
dows 10/11 or Windows Server 2016/2019/2022 or newer machine. You can install
and configure the entire machine using the DevelopmentMachine.ps1 script in the
GitHub repository Practical-Automation-with-PowerShell:
377

378 APPENDIX Development environment set up
Set-ExecutionPolicy Bypass -Scope Process -Force;
Invoke-Expression (Invoke-RestMethod 'https://raw.githubusercontent.com/

➥mdowst/Practical-Automation-with-PowerShell/main/LabSetup/DevelopmentMac

➥hineSetup.ps1'))

Everything you need is provided in the following list if you prefer to install and config-
ure the applications manually:

 PowerShell 7
– Direct install: http://mng.bz/690o

 Chocolatey
– Direct install: https://chocolatey.org/install

 Git
– Direct install: https://git-scm.com/download/win
– Choco install: https://community.chocolatey.org/packages/git

 Visual Studio Code
– Direct install: https://code.visualstudio.com/
– Choco install: https://community.chocolatey.org/packages/vscode

 Visual Studio Code extensions
– PowerShell
– Direct install: http://mng.bz/o5nd

 GitHub Pull Requests and Issues
– Direct install: http://mng.bz/neoa

A.1.1 Clone the book repository

A GitHub repository for this book contains all of the code examples and snippets
from the book. It also includes a preconfigured workspace, so you do not have to man-
ually configure the Visual Studio Code extensions. These steps are not necessary if
you ran the automated installation script:

1 In Visual Studio Code, click the Source Control extension button on the far
left.

2 Click the Clone Repository button.
3 In the message box, enter the URL https://github.com/mdowst/Practical

-Automation-with-PowerShell.git.
4 Click Clone from URL.
5 Select where to save the repository, and click OK.
6 Wait for the clone to finish.
7 Once finished, go to File > Open Workspace.
8 Navigate to the repository, and select the PoSHAutomate.code-workspace file.

https://chocolatey.org/install
https://git-scm.com/download/win
https://community.chocolatey.org/packages/git
https://code.visualstudio.com/
https://community.chocolatey.org/packages/vscode
https://github.com/mdowst/Practical-Automation-with-PowerShell.git
https://github.com/mdowst/Practical-Automation-with-PowerShell.git
https://github.com/mdowst/Practical-Automation-with-PowerShell.git
http://mng.bz/690o
http://mng.bz/o5nd
http://mng.bz/neoa

379A.3 Linux environment
A.2 Automation Server
The automation server will host the different applications and platforms that your
automation will interact with. This machine should be Windows Server 2016 or newer.
You can download a 180-day trial of Windows Server from Microsoft.

 You can install and configure most of the requirements using the Automation-
Machine.ps1 script in the GitHub repository Practical-Automation-with-PowerShell.
However, there will be additional setups that you must perform to configure Jenkins:

Set-ExecutionPolicy Bypass -Scope Process -Force;
Invoke-Expression (Invoke-RestMethod 'https:/ /raw.githubusercontent.com/

➥mdowst/Practical-Automation-with-PowerShell/main/LabSetup/Automation

➥Server.ps1'))

Everything you need is listed next if you prefer to install and configure the applica-
tions manually:

 PowerShell 7
– Direct install: http://mng.bz/49Gw

 Chocolatey (not required unless you want to use Choco installs)
– Direct install: https://chocolatey.org/install

 Jenkins CI 2.222.4 or newer
– Direct install: https://www.jenkins.io/download/
– Choco install: https://community.chocolatey.org/packages/jenkins

A.2.1 Set up Jenkins

Jenkins is used in several examples throughout the book, but no automations are
dependent on it. So, it is up to you if you want to install it and go through those
examples:

1 Open a web browser on the server, and navigate to http:/ /localhost:8080.
2 Select Install Suggested Plugins.
3 Create the first user.
4 Click Manage Jenkins.
5 Under the System Configuration section, click Manage Plug-Ins.
6 Select the Available tab.
7 Search for and select PowerShell.
8 Click Install Without Restart.

A.3 Linux environment
A few examples in this book are designed specifically for Linux. All examples in this
book were tested using Ubuntu 20.04:

 Direct install: http://mng.bz/5m2q
 Snap install: snap install powershell –classic

https://chocolatey.org/install
https://www.jenkins.io/download/
https://community.chocolatey.org/packages/jenkins
http://mng.bz/49Gw
http://mng.bz/5m2q

380 APPENDIX Development environment set up
 Visual Studio Code
– Direct install: https://code.visualstudio.com/docs/setup/linux
– Snap install: snap install code --classic

 Git
– Direct install: https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
– Snap install: snap install git-ubuntu --classic

https://code.visualstudio.com/docs/setup/linux
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-windows?view=powershell-7.1
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-windows?view=powershell-7.1

index
Symbols

/s parameter 302
% Processor Time counter 233, 237

A

Action parameter 59
action scripts

adding logging to 75–79
invoking 71–72
logging 70–71

Active Setup, using with PowerShell
303–307

adaptable automations 135–167
configuration data 157–167

cmdlets 166–167
organizing 159–161
storing 164–166
using 161–163

data-driven functions 144–156
building 153–156
creating classes 151–152
determining data structure

145–146
storing data 146–148
updating data structure 150–151

event handling 138–144
custom event handles 140–144
try/catch blocks 138–140

Add-AzAccount cmdlet 214
AddDays method 23
Add method 219–221, 237
Add-PnPField cmdlet 286
Add-PnpListItem cmdlet 286
AddToDefaultView parameter 287

Add-Type cmdlet 34, 218
Add-VMDvdDrive cmdlet 262
AddYears method 166
agent-based remoting 131–132
alerting 87
apiKey parameter 229
Append parameter 131, 304
archive-File-Deleting function 47
AsPlainText parameter 90, 99
AsSecureString parameter 90
AsSystem parameter 302
At parameter 58
AutoFitBehavior Enum 221
automation 3–49, 53–81

adaptable 135–167
configuration data 157–167
data-driven functions 144–156
event handling 138–144

anatomy of 38–49
adding functions to modules 40–41
creating modules 41–49

cloud-based 193–215
Azure Automation 194–201
hybrid runbook workers 202–204
PowerShell runbooks 204–214

coding best practices 239–276
converting manual tasks to automated

ones 244–245
defining full automation 241–242
defining parameters 255–257
external tools 248–254
presentation 274
resumable automations 258–265
thinking of the next person 267–273
updating structured data 245–246
waiting for automations 265–266
381

INDEX382
automation (continued)
key factors 5–12

actions 9
automation goal 7
maintainability 11–12
triggers 8–9

log file cleanup script 22–38
being careful 32–34
brevity vs. efficiency 31–32
creating functions 25–28
final script listing 34–38
problems to avoid when adding functions

to scripts 31
returning data from functions 28–29
testing functions 29–30

process of 12–16
building blocks 12
combining building blocks and phases

13–16
phases 12–13

remote execution 106–134
agent-based remoting 131–132
hypervisor-based remoting 127–131
over SSH 120–127
over WSMan 116–120
script considerations 109–116

scheduled scripts 54–65
creating via Cron scheduler 61–63
creating via Jenkins scheduler 63–65
creating via PowerShell 57–61
creating via Task Scheduler 55–57
knowing dependencies and addressing

them beforehand 54
knowing what context script needs to

execute under 55
knowing where script needs to execute

54
security 82–105

credentials and secure strings 89–104
knowing risks 104–105
principles of 84–89

SQL 168–192
adding data to tables 177–181
connecting to 173–177
getting data from tables 181–186
keeping data in sync 190–191
setting schema 170–173
updating records 186–190

technical requirements 21
testing 328–357

advanced unit testing 337–351
integration testing 351–355
invoking tests 355–357
overview of 329–330
unit testing 331–337

tools
automation decision tree 17–19
choice of 17–20
supplemental 20
using existing material 19

watcher scripts 65–79
action scripts 75–79
designing 67–71
folder watcher 73
graceful terminations 72–73
invoking action scripts 71–72
running 79–81

automation decision tree 17–19
automation goal 7
automation server

setting up Jenkins 379
Automation Server (optional) environment

379
Autounattend PowerShell object 246
Azure AD (Azure Active Directory) Tenant

195
Azure Automation 194–201

authentication from Automation
runbooks 200–201

creating Azure resources 197–200
Log Analytics 197
overview of 195–196
resource keys 201

B

backend scripts 279
BeforeAll block 330, 332–334
BeforeEach command 330, 334
Body parameter 229
BootDevice property 363
break command 130
building blocks 12

combining with phases 13–16
overview of 12

BuildNumber property 363

C

Caption property 363
carriage return and line feed (CRLF) 298
carriage return (CR) 298
Cell method 222
choco install keepass command 84
Chocolatey, Installing Git with 298
CI/CD (continuous integration and continuous

delivery) platform 370
client 107
CLIs (command-line interfaces) 4
clone book repository 378

INDEX 383
cloud-based automation 193–215
Azure Automation 194–201

authentication from Automation
runbooks 200–201

creating Azure resources 197–200
Log Analytics 197
overview of 195–196
resource keys 201

hybrid runbook workers
creating 202–204
PowerShell modules on 204

PowerShell runbooks 204–214
automation assets 208
interactive cmdlets 214
runbook editor 209–213
runbook output 213

security considerations 214–215
[CmdletBinding] attribute 25
CmdletBinding attribute 33–34
cmdlets (command-lets) 4

cmdlet-based filters 70
interactive 214
not putting in configuration data 166–167

code maintenance 358–376
automating tests 370–373

creating GitHub workflow 371–373
avoiding breaking changes 373–376

output changes 375–376
parameter changes 374–375

revisiting old code 359–370
post-update testing 366–370
testing before changing 360–362
updating functions 362–365

coding best practices 239–276
converting manual tasks to automated

ones 244–245
defining full automation

overview of 241–242
structuring automation 242

defining parameters 255–257
external tools 248–254

calling operators 251–254
finding installed applications 248–250

presentation 274
resumable automations

determining code logic and functions
262–265

overview of 258–262
thinking of the next person 267–273

backup plans 272–273
commenting 269–271
including help and examples 271–272
not overcomplicating 267–268

updating structured data 245–246
waiting for automations 265–266

ColumnMap parameter 172
COM (Component Object Module) objects 216
command-lets. See cmdlets
commenting 269–271

avoiding multiple-line comments 271
not stating the obvious 270–271
using regions to separate code logically

270–271
COM objects and .NET Framework 217–222

adding tables to Word documents 220–222
create Word documents 218–219
importing Word objects 218
writing to Word documents 219–220

Compress-Archive cmdlet 31–32
ComputerName parameter 108, 331
configuration data 157–167

cmdlets 166–167
organizing 159–161
storing 164–166
using 161–163

Connect-AzAccount cmdlet 206, 209
Connect-DbaInstance cmdlet 176
Connection parameter 283
Connect-PoshAssetMgmt function 176–177
Container variable 209
Content parameter 346
Content property 347
continuous integration and continuous delivery

(CI/CD) platform 370
ConvertFrom-Html cmdlet 337–341, 345–346

mock 346, 348
ConvertFrom-Json cmdlet 146, 148, 162, 345
ConvertFrom-StringData cmdlet 364
ConvertTo-Json cmdlet 146
ConvertTo-SecureString cmdlet 90, 103
Copy-Item cmdlet 244
CounterData parameter 234
CR (carriage return) 298
Credential object 89
credentials and secure strings

overview of credential objects 89–91
overview of secure strings 89–90
storing in PowerShell 91–98

adding secrets to vaults 97–98
choosing right vault 96–97
KeePass vault 94–96
SecretManagement module 92
SecretStore vault 93–94

using in automations 98–104
Jenkins credentials 102–104
SecretManagement module 99–101

CRLF (carriage return and line feed) 298
Cron scheduler, creating scheduled scripts

61–63
CSName property 363, 374

INDEX384
D

Daily parameter 58
data-driven functions 144–156

building 153–156
creating classes 151–152
determining data structure 145–146
storing data 146–148
updating data structure 150–151

data types 171–173
DateTime object 23, 29–30, 76, 166, 182
dependencies

knowing and addressing beforehand 54
listing in manifest 48–49

Describe keyword 329
development environment 377–380

automation server 379
development machine 377–378
Linux environment 379–380

development machine
clone book repository 378
setting up 377–378

Development machine (required) environment
377

df /boot command 365, 367
df command 366–367
df mock 367
diff command 324
DLL (Dynamic Link Library) 216
DRY (Don't Repeat Yourself) principle 144

E

Elapsed property 72
Elements method 342
else keyword or command 111
Email property 292
Enable-PSRemoting cmdlet 116
end-user scripts and forms 279–308

creating request forms 281–289
creating SharePoint forms 285–289
gathering data 282–285
reporting status 285

request processing 289–297
monitoring for new requests 290
permissions 289–290
processing requests 292–297

running scripts on end-user devices 297–307
custom Git install 298–299
running as system vs. as user 299–303
using Active Setup with PowerShell 303–307

script frontends 280–281
SharePoint trial tenant 280–281

Enter-PSSession cmdlet 107–108
ErrorAction SilentlyContinue parameter 138

event handling 138–144
custom event handles 140–144
try/catch blocks 138–140

Expand-Archive cmdlet 32
Export-Clixml cmdlet 361
Export-Csv cmdlet 115, 131
Export-ModuleMember command 376
Export-ScheduledTask cmdlet 60
external applications 230–234

calling external executables 231
creating Start-Process wrapper function

233–234
getting output 232–233
monitoring execution 231

F

failed condition 265
Features parameter 159
File parameter 58
files variable 37
FileTime string 76
Find-KbSupersedence function 345, 352, 354
FirewallLogSize parameter 160
fixed parameters 256
FolderPath variable 209
Force parameter 45, 90, 116, 244, 283, 304,

327
foreach loop 73, 115, 250, 270, 367
for loop 224–225
Format-List cmdlet 223
Format-Table cmdlet 223
Format-Volume cmdlet 268
frontends 20, 280–281
Function keyword 44
functions

creating 25–28
data-driven 144–156
problems to avoid when adding to scripts 31
returning data from 28–29
testing 29–30
updating 362–365

G

GAC (Global Assembly Cache) 218
Get-AdUser cmdlet 334
Get-AzManagementGroup cmdlet 374
Get-ChildItem cmdlet 31, 34, 45, 61, 69–71, 218,

244, 248, 250
Get-CimInstance cmdlet 141, 358, 360
Get-Content cmdlet 148, 162, 363
Get-Counter cmdlet 233–234, 237
Get-Credential cmdlet 90, 129, 273
(Get-Date).GetDateTimeFormats command 30

INDEX 385
Get-Date cmdlet 361
Get-Disk cmdlet 268
GetEnumerator method 184
GetEnumValues method 221
Get function 186
Get-HotFix cmdlet 331, 334, 336, 345, 352
Get-HotFixStatus function 332–334, 336, 352
Get-Item cmdlet 76, 153
Get-ItemProperty cmdlet 144, 153
Get-Member cmdlet 218–220
Get-NetIpAddress cmdlet 237
Get-PnpListItem cmdlet 292
Get-PnPWebTemplates cmdlet 284, 286
Get-PoshServer function 184, 186–187, 189
Get-Process cmdlet 40
Get-Secret cmdlet 99
Get-SecretStoreConfiguration cmdlet 93
Get-Service cmdlet 138, 140–141
Get-SystemInfo function 316, 358–361
Get-SystemInfo unit tests 360, 368
Get-Variable cmdlet 363
Get-Verb command 47
Get-VM cmdlet 191, 260
Get-Volume cmdlet 244, 250
Get-VSCodeExtensions.ps1 script 117
Get-VulnerabilityStatus function 352
Get-WindowsImage cmdlet 246
Gists

creating 311
editing 312
executing 313–314
sharing 313

Git, custom install 298–299
Git clone command 319
git command 299
GitHub 309–327

creating workflows 371–373
shared modules

creating 314–322
creating pull requests 325–326
giving access to 318
installing 318–322
making module self-update 323–325
testing self-update 327
updating 322–327
uploading to GitHub repository 316–317

sharing scripts 310–314
creating Gists 311
editing Gists 312
executing Gists 313–314
sharing Gists 313

git-install.ps1 script 299
Global Assembly Cache (GAC) 218
Global parameter 299
GroupName parameter 374

H

HardKill property 142
Hashtable parameter 97
Heartbeat property 129
helper functions 47
Hotfix Not Found error 352
HtmlAgilityPack.HtmlNode class 345–346
hybrid runbook workers

creating 202–204
PowerShell modules on 204

hypervisor-based remoting 127–131

I

Identity parameter 209
ID parameter 186, 190, 331
ID variable 190
if/else condition 27–28, 30, 111, 126, 130, 139,

153, 184, 250, 267, 270
Import-CliXml cmdlet 345, 361
Import-Csv cmdlet 115
import function code 151
Import-Module command 42, 45
Import-PSSession cmdlet 107
IncludeInvocationHeader parameter 304
Initialize-Disk cmdlet 268
InnerText property 341
in operator 145
InputObject parameter 186, 190
insert function 183
InstallDate property 363
integration testing 351–355

unit testing vs. 349–351
with external data 354–355

Invoke-CommandAs cmdlet 302
Invoke-CommandAs module 302
Invoke-Command cmdlet 71, 107–108, 113, 115,

117, 121, 128, 265
Invoke-DbaDiagnosticQuery cmdlet 99, 101
Invoke-DbaQuery cmdlet 181–182, 185–186, 190
Invoke-Expression cmdlet 71, 153, 313, 319, 327,

365
Invoke-Pester cmdlet 356
Invoke-RestMethod cmdlet 227–228, 237, 313,

327
Invoke-ServerConfig function 165
Invoke-VMScript cmdlet 127
Invoke-WebRequest cmdlet 141, 228, 341, 346, 374
ipAddress parameter 229
IsLinux variable 111, 362
IsMacOS variable 111
IsReadOnly flag 244
IsWindows variable 111, 362
VS Code (Virtual Studio Code) 270

INDEX386
J

Jenkins
creating scheduled scripts 63–65
credentials 102–104
setting up 379

job logs 57
job schedulers 20
Join-Path cmdlet 27

K

KB (knowledge base) number 331
KeePass vault 94–96

creating database vault 95
installling SecretManagement extension

module 95
registering with SecretManagement 95–96

Kellerman, Marc R. 302
KISS (keep it short and simple) principle 12, 24

L

LASTEXITCODE variable 252
Lcid parameter 283
LF (line feed) 298
like operator 342
Linux environment 379–380
Log Analytics 197
log file cleanup script 22–38

being careful 32–34
brevity vs. efficiency 31–32
creating functions 25–28
final script listing 34–38
problems to avoid when adding functions to

scripts 31
returning data from functions 28–29
testing functions 29–30

logging 9, 87
logical parameters 256
LTS (long-term support) versions of Ubuntu

239

M

maintainability 11–12
Mandatory parameter attribute 177, 256
match operator 342
MDM (mobile device management) 240
Measure-Command cmdlet 79, 81
MMA (Microsoft Monitoring Agent) 197
Mock command 330
mocks

advanced unit testing 334–337
mocking with parameters 345–349

modules 46–49
adding functions to 40–41
common naming and styling 46–47
creating 41–46
creating shared 314–322
installing custom module options 56
installing custom modules in PSModulePath

48
listing dependencies in manifest 48–49
on hybrid runbook workers 204
SecretManagement module 92

installling 95
registering KeePass with 95–96
using in automations 99–101

separate private and public functions 47–48
monitors 8
Mount-DiskImage cmdlet 244

N

Name parameter 97
NetworkCredential object 91
New-DbaDatabase cmdlet 169
New-DbaDbTable cmdlet 171
New function 186
New-Guid cmdlet 132, 234
New-Item cmdlet 27–28, 30, 319
New-ItemProperty cmdlet 144
New-Job cmdlet 71
New-ModuleManifest cmdlet 42
New-ModuleTemplate function 136, 174
New-Object cmdlet 217–218
New-Partition cmdlet 268
New-PesterConfiguration cmdlet 356
New-PnPList cmdlet 286
New-PnPTenantSite cmdlet 282, 284
New-PoshServer function 177–179, 186, 191
New-PSSession cmdlet 108, 117–119, 121, 124, 128
New-PSSession parameter 126
New-ScheduledTaskAction cmdlet 58
New-ScheduledTaskTrigger cmdlet 58
New-ServerConfig function 161
New-TemporaryFile cmdlet 324
New-TimeseriesGraph function 237
New-VHD cmdlet 270
New-VM cmdlet 258–259
New-WordTableFromArray function 223, 237
New-WordTableFromObject function 223, 237
NoAutoCrlf parameter 298
NoClobber parameter 97
NoNewWindow parameter 232, 234
not keyword 27
NOT match 293
no-wait option 141
NoWait parameter 140

INDEX 387
NumberOfDays parameter 47, 64
nvarchar type 171

O

OnQuickLaunch parameter 286
OpenRead method 34
optional parameters 256
OSArchitecture property 363
Oscdimg command-line tool 240
OSType parameter 178
OSVersion parameter 178
Out-File cmdlet 60, 148, 367
Out-GridView cmdlet 246
OutputType attribute 25, 33–34
Owner parameter 283, 285

P

parameter 97
ParameterSetName attribute 186, 190
PassThru parameter 45, 71, 231, 234, 246
PasswordAuthentication property 123
Path environmental variable 319
persistent sessions 108
phases

combining with building blocks 13–16
overview of 12–13

PoshAssetMgmt variable 175–176
PoshAutomate-ServerConfig module 136
POST type method 227
PowerShell

building tables from PowerShell objects 222–227
creating actions 56–57
creating scheduled scripts 57–61

create new scheduled task 57–60
exporting and importing scheduled tasks 60–61
Register-ScheduledJob cmdlet 61

credentials and secure strings 89–104
remote execution 106–134
runbooks 204–214
using Active Setup with 303–307
v5.1 56–57
v7.0 56–57

principle of least privilege 85–86
PSBoundParameters variable 183
PSCmdlet variable 190
PSComputerName property 115
PSCredential objects 90–91, 97, 103
PSModulePath 48, 318
PSModulePath environment variable 45, 48
PsObject property 220, 223
PSScriptRoot variable 251
PSSessionConfigurationName variable 119
public parameter 313

push command 317
PUT type method 227
py -0p command 234
PyPath parameter 234

R

Read-Host cmdlet 90
Receive-Job cmdlet 141
recursion, avoiding 70
RedirectStandardError parameter 232
RedirectStandardOutput parameter 232
regex (regular expressions) 293
Register-PnPAzureADApp cmdlet 289
Register-ScheduledJob cmdlet 20, 53, 61
Register-ScheduledTask cmdlet 57–58, 60–61
Register-SecretVault cmdlet 94–95
relational databases 168–192

adding data to tables 177–181
inserting data into tables 178–181
string validation 177–178

advantages of 192
connecting to

overview of 173–176
permissions 176–177

getting data from tables
overview of 181
where clause 181–186

keeping data in sync
getting server data 191
overview of 190–191

setting schema
data types 171–173
overview of 170–171

updating records
overview of 186–187
passing pipeline data 187–190

remote context 107
remote execution 106–134

advantage of 134
agent-based remoting 131–132
hypervisor-based remoting 127–131
over SSH 120–127

authenticating 121–124
enabling 120–121
environment considerations 124
executing commands 124–127

over WSMan 116–120
connecting to desired version of PowerShell

119–120
enabling 116
executing commands 117–118
permissions for 116

persistent sessions 108
remote context 107

INDEX388
remote execution (continued)
remote protocols 108
script considerations 109–116

remote execution control scripts 113–116
remote execution scripts 110–113

RemoteMethod parameter 178
remote protocols 108
Remove-ArchivedFiles function 44
RemoveDeletedSite parameter 283
Remove-Item cmdlet 32
Remove-PoshServer function 190
Remove-PSSession cmdlet 118
Replace method 340
RepoUrl variable 320
request forms

creating 281–289
creating SharePoint forms 285–289
gathering data 282–285
reporting status 285

request processing 289–297
monitoring for new requests 290
permissions 289–290
processing requests 292–297

RequiredModules parameter 48
ResourceGroup variable 208
resource limiting 71–72
ResourceQuota parameter 283
ResourceQuotaWarningLevel parameter 283
REST APIs

API keys 228–229
interacting with 227–229

Results property 99
resumable automations

determining code logic and functions 262–265
overview of 258–262

return command 28–29
role-based service accounts 86–87
runbooks

authentication from Automation
runbooks 200–201

hybrid runbook workers
creating 202–204
PowerShell modules on 204

PowerShell runbooks 204–214
automation assets 208
interactive cmdlets 214
runbook editor 209–213
runbook output 213

S

Save method 246
scheduled scripts 54–65

creating via Cron scheduler 61–63
creating via Jenkins scheduler 63–65

creating via PowerShell 57–61
create new scheduled task 57–60
exporting and importing scheduled tasks

60–61
Register-ScheduledJob cmdlet 61

creating via Task Scheduler 55–57
creating PowerShell actions 56–57
installing custom module options 56
job logs 57
scheduling tasks 57
security options 56

knowing dependencies and addressing them
beforehand 54

knowing what context script needs to execute
under 55

knowing where script needs to execute 54
watchers 65–79

action scripts 75–79
designing 67–71
folder watcher 73
graceful terminations 72–73
invoking action scripts 71–72
running 79–81

ScheduledTasks module 57
ScriptBlock parameter 302
ScriptPath parameter 234
Search variable 339–340
SecretManagement module 92

installling 95
registering KeePass with 95–96
using in automations 99–101

Secret parameter 97
SecretStore vault 93–94

configuring 93–94
installing modules 93
registering 94

SecureString objects 89–92, 99, 103
SecureString parameter 97
security 82–105

cloud-based automation 214–215
credentials and secure strings

overview of credential objects 89–91
overview of secure strings 89–90
storing 91–98
using in automations 98–104

knowing risks 104–105
principles of 84–89

context 86
logging and alerting 87
principle of least privilege 85–86
role-based service accounts 86–87
securing scripts 89
security through obscurity 88
storing sensitive information in scripts 84–85

SecurityBaseline parameter 160

INDEX 389
Selection property 219
Selection.Visible property 219
SelectNodes method 340
Select-Object cmdlet 150, 250
Select-String cmdlet 364
Send-EmailMessage cmdlet 100
SendGrid ID 102
SendGridKey ID 102
SendGridKey Secret name 98
sendgridusername variable 103
sendgrid variable 103
ServerConfig class 161–162
servers 107
Servers table 177
Server variable 182
ServicePackMajorVersion property 363
Service property 141
Services parameter 159
Set-ArchiveFilePath function 43
Set-AzStorageBlobContent cmdlet 206
Set-ItemProperty cmdlet 244
Set-PnPField cmdlet 287
Set-PnPList cmdlet 286–287
Set-PoshServer function 186–187
Set-Secret cmdlet 97
Set-SecretStoreConfiguration cmdlet 93
Set-SecurityBaseline function 156
Set-ServerConfig function 165
Set-Service cmdlet 140
Set-VmSettings function 265
shared modules

creating 314–322
creating pull requests 325–326
giving access to 318
installing 318–322
making module self-update 323–325
testing self-update 327
updating 322–327
uploading to GitHub repository 316–317

SharePoint
creating forms 285–289
trial tenant 280–281

sharing scripts 310–314
creating Gists 311
editing Gists 312
executing Gists 313–314
sharing Gists 313

short-term support (STS) versions of Ubuntu 239
Should assertion 330, 333
Should -Invoke test 348
SkipNetworkProfileCheck parameter 116
SkipPublisherCheck parameter 329
SMA (System Center Orchestrator/Service Man-

agement Automation) 55
SourceInstance parameters 178

Source parameter 178
SQL 168–192

adding data to tables 177–181
inserting data into tables 178–181
string validation 177–178

advantages of 192
connecting to

overview of 173–176
permissions 176–177

getting data from tables
overview of 181
where clause 181–186

keeping data in sync
getting server data 191
overview of 190–191

setting schema
data types 171–173
overview of 170–171

updating records
overview of 186–187
passing pipeline data 187–190

SqlInstance variable 169
sqlserver variable 103
sqlusername username variable 103
ssh-agent service 121
sshd service 121
ssh-keygen command 122–123
SSH (Secure Shell Protocol), remote execution

over 120–127
authenticating 121–124
enabling 120–121
environment considerations 124
executing commands 124–127

StartNew method 72
Start-Process cmdlet 71, 79, 231–232, 234, 252,

323–324
Start-Process wrapper function, creating 233–234
Start-Transcript cmdlet 303–304
Startup property 142
Start-VM cmdlet 265
stat command 365–366
Status name 172
Status parameter 178
Status property 141
stop command 140
Stop-Process cmdlet 141
Stop-Service cmdlet 140–141
Stop-Transcript cmdlet 304
Stopwatch class 72, 231
Storage Account 195
StorageQuota parameter 283
StorageQuotaWarningLevel parameters 283
STO (security through obscurity) 88
String parameter 97
string validation 177–178

INDEX390
string variable 293
STS (short-term support) versions of Ubuntu 239
Style property 219
SubscriptionID variable 209
success condition 265
System Center Orchestrator/Service Management

Automation (SMA) 55
System.Diagnostics.Stopwatch .NET class 72
System.IO.Compression.ZipFile class 34
system parameter 298

T

TableOfContents property 237
Table property 220
tables

adding data to 177–181
inserting data into tables 178–181
string validation 177–178

adding to Word documents 220–222
building from PowerShell objects 222–227

converting PowerShell arrays to tables
225–227

converting PowerShell objects to tables
223–225

getting data from
overview of 181
where clause 181–186

setting schema
data types 171–173
overview of 170–171

Tables property 220
TaskName parameter 61
tasks 9

creating new scheduled tasks 57–60
exporting and importing scheduled tasks

60–61
scheduling 57

Task Scheduler, creating scheduled scripts 55–57
creating PowerShell actions 56–57
installing custom module options 56
job logs 57
scheduling tasks 57
security options 56

Template parameter 283–285
testing 328–357

advanced unit testing 337–351
mocking with parameters 345–349
testing results 344–345
unit vs. integration tests 349–351
web scraping 338–344

integration testing 351–355
unit testing vs. 349–351
with external data 354–355

invoking tests 355–357

overview of 329–330
revisiting old code

post-update testing 366–370
testing before changing 360–362

unit testing 331–337
BeforeAll block 332–333
creating tests 333–334
mocks 334–337

Test-NetConnection cmdlet 124, 126
Test-Path cmdlet 25, 27, 73, 153, 267
Test-SecurityBaseline function 155–156
Tests object 151
Tests property 151–152
throw command 28, 34, 336
timestamp key 233
TimeZone parameter 283–285
Title parameter 234, 283, 285
ToFileTime method 76
ToFileTimeUtc method 76
ToString method 304
Total_Memory property 363
TPM (Trusted Platform Module) 240
Trigger parameter 59
triggers 8–9
Trim method 341
try/catch blocks, for event handling 138–140
Type data type 150
TypeParagraph method 219–220
TypeText method 219–220

U

uname command 366
unit testing 331–337

advanced 337–351
mocking with parameters 345–349
testing results 344–345
web scraping 338–344

BeforeAll block 332–333
creating tests 333–334
integration testing vs. 349–351
mocks 334–337

URI parameter 346
Url parameter 283, 285
UseBasicParsing parameter 374
UUID parameter 178
UUID (Universally unique identifier) 170

V

ValidateScript attribute 177, 374–375
ValidateSet parameter 178
value key 233
Vault parameter 97, 99
Verbose parameter 28, 183

INDEX 391
VHD (virtual hard disk) space 256
Visible property 219
VMs (virtual machines) 193
VS Code (Visual Studio Code) 27, 106

W

Wait parameter 80, 231, 283
watcher scripts 65–79

action scripts
adding logging to 75–79
invoking 71–72

designing 67–71
avoiding recursion 70
avoiding unnecessary commands 71
logging actions 70–71
processing in order 70
using cmdlet-based filters 70

folder watcher script 73
graceful terminations 72–73
running 79–81

scheduling watchers 81
testing execution 79–81

WdAutoFitBehavior Enum 221
wdAutoFitContent Enum 221
wdAutoFitFixed Enum 221
wdAutoFitWindow Enum 221
web parameter 311
web scraping 338–344
WhatIf parameter 34, 38
where clause 181–186

Where-Object cmdlet 181, 268, 354
while loop 141, 231, 234, 265–266, 293–294
Win32_OperatingSystem WMI class 223
Windows ADK (Windows Assessment and Deploy-

ment Kit) 240
Windows Server 2022 ISO 240
WinRM 108
Word

adding tables to documents 220–222
creating documents 218–219
importing objects 218
writing to documents 219–220

Write-DbaDataTable cmdlet 177, 179
Write-Error cmdlet 34, 139
Write-Host command 213
Write-Output cmdlet 29
Write-Progress command 213
Write-Verbose command 213
Write-Warning cmdlet 375
WSMan, remote execution over 116–120

connecting to desired version of
PowerShell 119–120

enabling 116
executing commands 117–118
permissions for 116

WSUS (Windows Server Update Services) 337

Z

ZipPath parameter 30, 64
ZipPrefix parameter 64

For ordering information, go to www.manning.com

RELATED MANNING TITLES

Learn PowerShell in a Month of Lunches,
Fourth Edition
by Travis Plunk, James Petty, Tyler Leonhardt,
Jeffrey Hicks
Foreword by Don Jones

ISBN 9781617296963
360 pages, $39.99
March 2022

Learn dbatools in a Month of Lunches
by Chrissy LeMaire, Rob Sewell, Jess Pomfret,
Cláudio Silva
Foreword by Anna Hoffman

ISBN 9781617296703
400 pages, $59.99
May 2022

Data Engineering on Azure
by Vlad Riscutia

ISBN 9781617298929
336 pages, $49.99
July 2021

Matthew Dowst

ISBN-13: 978-1-61729-955-1

T
he PowerShell scripting language is a force multiplier,
giving you programmatic control over your whole data
center. With this powerful tool, you can create reusable

automations that radically improve consistency and productiv-
ity on your Ops team. Th is book shows you how to design,
write, organize, and deploy scripts to automate operations on
systems of all sizes, from local servers to enterprise clusters in
the cloud.

Practical Automation with PowerShell: Effective scripting from
the console to the cloud shows you how to build PowerShell
automations for local and cloud systems. In it, you’ll fi nd tips
for identifying automatable tasks, techniques for structuring
and managing scripts, and lots of well-explained example
code. You’ll even learn how to adapt existing scripts to new
use cases and empower non-technical users through easy-to-
understand SharePoint frontends.

What’s Inside
● Structure PowerShell code for sharing and reusability
● Store and secure your automations
● Execute automation with Azure Automation, Jenkins,
 Task Scheduler, and Cron
● Store and retrieve data, credentials, and variables
● Use source control solutions to maintain and test
 code changes

For sysadmin and IT professionals who manage backend
systems.

Matthew Dowst has over 15 years of experience in IT manage-
ment and consulting.

For print book owners, all ebook formats are free:
https://www.manning.com/freebook

Practical Automation with PowerShell

POWERSHELL / SYSTEM ADMINISTRATION

M A N N I N G

“No matter what question
I had about automation

with PowerShell, this book
had the answer! I highly

 recommend it.”—Eric Dickey, Raytheon

“A brilliant introduction
to PowerShell for real-world
tasks. Th e approach and style

 make it a joy to read.”—Nik Rimington, Spindogs

“Move beyond snippets
copied from the internet

and understand how
 to automate.”—Wayne Boaz

Providence Health Plan

“Th is book stands out of the
crowd. It teaches you how to
design and write remarkable

PowerShell scripts.”—Roman Levchenko
Microsoft MVP

See first page

	Practical Automation with PowerShell
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book?
	How this book is organized: A roadmap
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	Part 1
	1 PowerShell automation
	1.1 What you’ll learn in this book
	1.2 Practical automation
	1.2.1 Automation goal
	1.2.2 Triggers
	1.2.3 Actions
	1.2.4 Maintainability

	1.3 The automation process
	1.3.1 Building blocks
	1.3.2 Phases
	1.3.3 Combining building blocks and phases

	1.4 Choosing the right tool for the job
	1.4.1 Automation decision tree
	1.4.2 No need to reinvent the wheel
	1.4.3 Supplemental tools

	1.5 What you need to get started today
	Summary

	2 Get started automating
	2.1 Cleaning up old files (your first building blocks)
	2.1.1 Your first function
	2.1.2 Returning data from functions
	2.1.3 Testing your functions
	2.1.4 Problems to avoid when adding functions to scripts
	2.1.5 Brevity versus efficiency
	2.1.6 Careful what you automate
	2.1.7 Putting it all together

	2.2 The anatomy of PowerShell automation
	2.2.1 When to add functions to a module
	2.2.2 Creating a script module
	2.2.3 Module creation tips

	Summary

	Part 2
	3 Scheduling automation scripts
	3.1 Scheduled scripts
	3.1.1 Know your dependencies and address them beforehand
	3.1.2 Know where your script needs to execute
	3.1.3 Know what context the script needs to execute under

	3.2 Scheduling your scripts
	3.2.1 Task Scheduler
	3.2.2 Create scheduled tasks via PowerShell
	3.2.3 Cron scheduler
	3.2.4 Jenkins scheduler

	3.3 Watcher scripts
	3.3.1 Designing watcher scripts
	3.3.2 Invoking action scripts
	3.3.3 Graceful terminations
	3.3.4 Folder watcher
	3.3.5 Action scripts

	3.4 Running watchers
	3.4.1 Testing watcher execution
	3.4.2 Scheduling watchers

	Summary

	4 Handling sensitive data
	4.1 Principles of automation security
	4.1.1 Do not store sensitive information in scripts
	4.1.2 Principle of least privilege
	4.1.3 Consider the context
	4.1.4 Create role-based service accounts
	4.1.5 Use logging and alerting
	4.1.6 Do not rely on security through obscurity
	4.1.7 Secure your scripts

	4.2 Credentials and secure strings in PowerShell
	4.2.1 Secure strings
	4.2.2 Credential objects

	4.3 Storing credentials and secure strings in PowerShell
	4.3.1 The SecretManagement module
	4.3.2 Set up the SecretStore vault
	4.3.3 Set up a KeePass vault
	4.3.4 Choosing the right vault
	4.3.5 Adding secrets to a vault

	4.4 Using credentials and secure strings in your automations
	4.4.1 SecretManagement module
	4.4.2 Using Jenkins credentials

	4.5 Know your risks
	Summary

	5 PowerShell remote execution
	5.1 PowerShell remoting
	5.1.1 Remote context
	5.1.2 Remote protocols
	5.1.3 Persistent sessions

	5.2 Script considerations for remote execution
	5.2.1 Remote execution scripts
	5.2.2 Remote execution control scripts

	5.3 PowerShell remoting over WSMan
	5.3.1 Enable WSMan PowerShell remoting
	5.3.2 Permissions for WSMan PowerShell remoting
	5.3.3 Execute commands with WSMan PowerShell remoting
	5.3.4 Connect to the desired version of PowerShell

	5.4 PowerShell remoting over SSH
	5.4.1 Enable SSH PowerShell remoting
	5.4.2 Authenticating with PowerShell and SSH
	5.4.3 SSH environment considerations
	5.4.4 Execute commands with SSH PowerShell remoting

	5.5 Hypervisor-based remoting
	5.6 Agent-based remoting
	5.7 Setting yourself up for success with PowerShell remoting
	Summary

	6 Making adaptable automations
	6.1 Event handling
	6.1.1 Using try/catch blocks for event handling
	6.1.2 Creating custom event handles

	6.2 Building data-driven functions
	6.2.1 Determining your data structure
	6.2.2 Storing your data
	6.2.3 Updating your data structure
	6.2.4 Creating classes
	6.2.5 Building the function

	6.3 Controlling scripts with configuration data
	6.3.1 Organizing your data
	6.3.2 Using your configuration data
	6.3.3 Storing your configuration data
	6.3.4 Do not put cmdlets into your configuration data

	Summary

	7 Working with SQL
	7.1 Setting your schema
	7.1.1 Data types

	7.2 Connecting to SQL
	7.2.1 Permissions

	7.3 Adding data to a table
	7.3.1 String validation
	7.3.2 Inserting data to a table

	7.4 Getting data from a table
	7.4.1 SQL where clause

	7.5 Updating records
	7.5.1 Passing pipeline data

	7.6 Keeping data in sync
	7.6.1 Getting server data

	7.7 Setting a solid foundation
	Summary

	8 Cloud-based automation
	8.1 Chapter resources
	8.2 Setting up Azure Automation
	8.2.1 Azure Automation
	8.2.2 Log Analytics
	8.2.3 Creating Azure resources
	8.2.4 Authentication from Automation runbooks
	8.2.5 Resource keys

	8.3 Creating a hybrid runbook worker
	8.3.1 PowerShell modules on hybrid runbook workers

	8.4 Creating a PowerShell runbook
	8.4.1 Automation assets
	8.4.2 Runbook Editor
	8.4.3 Runbook output
	8.4.4 Interactive Cmdlets

	8.5 Security considerations
	Summary

	9 Working outside of PowerShell
	9.1 Using COM objects and .NET Framework
	9.1.1 Importing Word objects
	9.1.2 Creating a Word document
	9.1.3 Writing to a Word document
	9.1.4 Adding tables to a Word document

	9.2 Building tables from a PowerShell object
	9.2.1 Converting PowerShell objects to tables
	9.2.2 Converting PowerShell arrays to tables

	9.3 Getting web data
	9.3.1 API keys

	9.4 Using external applications
	9.4.1 Calling an external executable
	9.4.2 Monitoring execution
	9.4.3 Getting the output
	9.4.4 Creating Start-Process wrapper function

	9.5 Putting it all together
	Summary

	10 Automation coding best practices
	10.1 Defining the full automation
	10.1.1 Structuring your automation

	10.2 Converting a manual task to an automated one
	10.3 Updating structured data
	10.4 Using external tools
	10.4.1 Finding installed applications
	10.4.2 Call operators

	10.5 Defining parameters
	10.6 Making resumable automations
	10.6.1 Determining code logic and functions

	10.7 Waiting for automations
	10.8 Think of the next person
	10.8.1 Do not overcomplicate it
	10.8.2 Comment, comment, comment
	10.8.3 Include help and examples on all scripts and functions
	10.8.4 Have a backup plan

	10.9 Do not forget about the presentation
	Summary

	Part 3
	11 End-user scripts and forms
	11.1 Script frontends
	11.1.1 SharePoint trial tenant

	11.2 Creating a request form
	11.2.1 Gathering data
	11.2.2 Creating a SharePoint form

	11.3 Processing requests
	11.3.1 Permissions
	11.3.2 Monitoring for new requests
	11.3.3 Processing the request

	11.4 Running PowerShell script on end-user devices
	11.4.1 Custom Git install
	11.4.2 Running as system versus the user
	11.4.3 Using Active Setup with PowerShell

	Summary

	12 Sharing scripts among a team
	12.1 Sharing a script
	12.1.1 Creating a gist
	12.1.2 Editing a gist
	12.1.3 Sharing a gist
	12.1.4 Executing a gist

	12.2 Creating a shared module
	12.2.1 Uploading the module to a GitHub repository
	12.2.2 Giving access to the shared module
	12.2.3 Installing the shared module

	12.3 Updating a shared module
	12.3.1 Make the module self-update
	12.3.2 Creating a pull request
	12.3.3 Testing the self-update

	Summary

	13 Testing your scripts
	13.1 Introduction to Pester
	13.2 Unit testing
	13.2.1 BeforeAll
	13.2.2 Creating tests
	13.2.3 Mocks

	13.3 Advanced unit testing
	13.3.1 Web scraping
	13.3.2 Testing your results
	13.3.3 Mocking with parameters
	13.3.4 Unit vs. integration tests

	13.4 Integration testing
	13.4.1 Integration testing with external data

	13.5 Invoking Pester tests
	Summary

	14 Maintaining your code
	14.1 Revisiting old code
	14.1.1 Test before changing
	14.1.2 Updating the function
	14.1.3 Post update test

	14.2 Automating your testing
	14.2.1 Creating a GitHub workflow

	14.3 Avoiding breaking changes
	14.3.1 Parameter changes
	14.3.2 Output changes

	Summary

	Appendix—Development environment set up
	A.1 Development machine
	A.1.1 Clone the book repository

	A.2 Automation Server
	A.2.1 Set up Jenkins

	A.3 Linux environment

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Adobe Gray - 20% Dot Gain)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /RUS <FEFF005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

