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Preface

A significant robustness gap exists between machine intelligence and human percep-
tion despite recent advances in deep learning. Deep learning is not provably secure.
A critical challenge in deep learning is the vulnerability of deep learning networks
to security attacks from malicious adversaries. Even innocuous perturbations to
the training data can be used to manipulate the behavior of the deep network in
unintended ways. For example, autonomous AI agents in unmanned autonomous
systems such as self-driving vehicles can play multistage cyber deception games
with the learning algorithms. Adversarial deep learning algorithms are specifically
designed to exploit such vulnerabilities in deep networks. These vulnerabilities are
simulated by training the learning algorithm under various attack scenarios. The
attack scenarios are assumed to be formulated by an intelligent adversary. The
optimal attack policy is formulated as solving for optimization problems. The attack
scenarios have led to the development of adversarial attack technologies in computer
vision, natural language processing, cybersecurity on multidimensional, textual and
image data, sequence data, and spatial data.

In discriminative learning models, adversarial learning problems are formulated
with deep neural networks computing statistical divergence metrics between train-
ing data features and adversarial data features. Latent space on high-dimensional
training data can also be searched by deep networks to construct adversarial
examples. Depending on the goal, knowledge, and capability of an adversary,
adversarial examples can be crafted by prior knowledge, observation, and experi-
mentation on the loss functions in deep learning. Adversarial examples are known
to transfer between data-specific manifolds of deep learning models. Thus predictive
performance of deep learning models under attack is an interesting area for research.
Randomized adversarial algorithms for discrimination can be extended with effi-
ciency, complexity, reliability, learnability, etc. tradeoffs in the game theoretical
optimization. The resultant convergence properties of game theoretical optima
can be investigated with adaptive dynamic programming to produce numerical
computational methods for adversarial deep learning.

The existing adversarial learning algorithms differ in design assumptions regard-
ing adversary’s knowledge, attack strategies, attack influence, and security violation.

v
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In this book, we conduct a literature review to provide new insights on the
relation between adversarial learning and cyberattacks. We contrast the adversarial
threats found in the learning assumptions of machine learning models as well as
attack vectors in deep learning models. We also seek to survey and summarize
non-stationary data representations and concept classes learnt by adversarial deep
learning networks with respect to the sensitivity landscape and loss functions in
each application domain. The robustness of the adversarial deep learning networks
has been surveyed to produce a taxonomy of adversarial examples characterizing the
defense of learning systems with game theoretical adversarial learning algorithms.
The game theoretic learning profiles analyze adversarial robustness of the learning
system with respect to adversary’s objectives, assumptions, models, etc. in a
dynamic optimization of the learning robustness and its solution stability over a
changing fitness landscape.

We then review the use of game theory, convex optimization, and stochastic
optimization in securing the adversarial deep learning formulations by providing
algorithmic comparisons summarizing the theories and applications of game the-
oretical adversarial deep learning. Another interesting study is that of defence
mechanisms available for deep learning models deployed in real world environ-
ments. We propose future research directions in adversarial learning applications
specialized to data analytics models applicable to cybersecurity, deep learning,
and artificial intelligence. They can realize the practical verifications, numerical
approximations, and formal specifications of adversarial deep learning integrated
into complex systems. Computational intelligence techniques such as multitask
learning and multiobjective optimization relevant to the adversarial loss design are
also summarized. We thus propose to bound the attacker’s gain under an optimal
policy with respect to formal as well as empirical verification in the game theoretic
models extensible into learning system design techniques.

From a data privacy perspective, we review the cybersecurity risks, threats, and
vulnerabilities in privacy preservation and physical world attacks. Detection and
response options are provided for specific deep learning algorithms, attacks and
threats in complex learning systems, adversarial deep learning, robust optimization,
and intelligent control. Such research themes are applicable to resilient systems
design with privacy preserving data mining to analyze the threat data, metadata, and
attack patterns. It can also be used in the study of data quality and provenance of
shared information in adversarial data mining to produce IoT systems with defences
in the learning algorithms that combine security algorithmics with privacy systemics
to produce cybersecurity capacities. Then security orchestrations can provision
cybersecurity solutions as a service on the Internet for reliable access to real-world
machine learning systems.

Further, we contrast the existing literature with recent research into game
theoretical adversarial deep learning. We had studied adversarial attacks on game-
theoretic learning models involving evolutionary adversaries, stochastic adversaries,
and variational adversaries targeting the misclassification performance of deep
neural networks and convolutional neural networks. Our game theoretical adver-
sarial deep learning is applicable to cyberspace security classification problems
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in the training stage and testing stage. Such learning problems study feature
manipulations, misclassifications costs, and distributional robustness in adversarial
learning applications. The adversarial loss functions and training procedures in
recently done research are applicable to the study of trustworthiness of deep
learning in deployment. They can simulate the cyberspace security safeguards, risks,
and challenges in cyber-physical systems as computational algorithms design and
statistical inference analysis problems.

This book is relevant for adversarial machine learning practitioners and adver-
sarial artificial intelligence researchers working in the design and application of
adversarial deep learning theories in machine learning, deep learning, data mining,
and knowledge discovery algorithms design. Particular emphasis is placed on the
real-world application domains of Adversarial Deep Learning in the development of
data science, big data analytics, and cybersecurity solutions. The adversarial deep
learning theories are summarized with reference to capabilities of computational
algorithms in pattern recognition, game theory, computational mathematics, and
numerical analysis. The resultant analytics algorithmics, deep neural networks,
and adversarial loss functions review the state of the art in the implementation
of adversarial algorithms, their attack surfaces, concepts, and methods from the
perspective of game theoretical machine learning. The book explores the systems
theoretic dependence between randomization in adversarial manipulations and
generalizability in blackbox optimizations of the game theoretical adversarial deep
learning. It aids future research, design, development, and innovations in the game
theoretical adversarial deep learning algorithms applicable to cyberspace security
data mining problems.

The book also serves as a reference on the existing literature that can be
implemented by researchers as baseline models to empirically compare the relevant
attack scenarios and defense mechanisms for adversarial deep learning. The known
invasive techniques and their countermeasures to develop future cybersecurity capa-
bilities are reviewed. The security issues and vulnerabilities in the machine/deep
learning solutions are mainly located within the deep layers of mathematical formu-
lation and mechanism of the learning methods. The game theoretical formulations
of the adversarial learning in the book leverage deep learning and big data to solve
for adversarial samples that effect data manipulation on the learnt discriminative
learning baselines. Several such learning baselines must be built to generate an
adversary’s attack hypothesis and consequent defense mechanisms available for
adjusting the decision boundaries in discriminative learning. Thus the research
questions covered in the book can set the stage for strategies and expectations in
the adversarial deep learning capabilities offered around cyber adversaries’ Tools,
Tactics, Techniques, and Procedures (TTPs) in the cyber kill chain. They can assess,
prioritize, and select the high-risk use case scenarios of cyber threats targeting deep
learning models in security detection/prevention layers.

One significant barrier to the widespread adoption of deep learning methods
is their complexity in both learning and reasoning phases that make it difficult
to understand and test the potential vulnerabilities and also suitable mitigations.
Learning from data for decision making within cyberspace domain is still a
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current and important challenge due to its complexity in design and development.
This challenge is also interweaving with complexities from adversarial attacks
targeting manipulated results for machine/deep learning models. The resilience
of the machine learning models is a critical component for trustworthy systems
in cybersecurity and artificial intelligence, but one that is poorly understood and
investigated by mainstream security research and industry community. The book
provides a survey of the security evaluation of machine learning algorithms with the
design-for-security paradigm of adversarial learning to complement the classical
design-for-performance paradigm of machine learning. The security evaluation is
useful for the purpose of alleviating prediction bias in machine learning systems
according to the security attributes defined for a given adversarial learning models
algorithmics operational in dynamic learning environments. Formalized adversarial
learning assumptions around the attack surface then constructs adversarial deep
learning designs with reference to signal processing characteristics in the robustness
properties of machine learning systems TTPs.

This book begins with a review of adversarial machine learning in Chap. 1
along with a comparison of new versus existing approaches to game theoretical
adversarial machine learning. Chapter 2 positions our research contributions in
contrast to related literature on (i) adversarial security mechanisms and generative
adversarial networks, (ii) adversarial examples for misleading deep classifiers and
game theoretical adversarial deep learning models, and (iii) adversarial examples in
transfer learning and domain adaptation for cybersecurity.

The adversarial attack surfaces for the security and privacy tradeoffs in adver-
sarial deep learning are given in Chap. 3. They summarize the cyber, physical,
active, and passive attack surfaces in interdependent, interconnected, and interac-
tive security-critical environments for learning systems. Such attack surfaces are
increasing vertically in numbers, volumes and horizontally in types, functionality
over Internet, social networks, smartphones, and IoT devices. Autonomic security
in self-protecting and self-healing threat mitigation strategies must consider such
attack surfaces in control mechanisms of the networking domains to identify threats
and choose appropriate machine learning and data mining methods for adversarial
learning.

Chapter 4 describes game theoretical adversarial deep learning. The compu-
tational algorithms in our research are contrasted with stochastic optimization
techniques in the game theory literature. Several game formulations are illustrated
with examples to construct cost-sensitive adversaries for adversarial data mining.
Proper quantification of the hypothesis set in decision problems of this research
leads us into various functional problems, oracular problems, sampling tasks, and
optimization problems in the game theoretical adversarial learning. We can then
develop a theory of sample complexity, formal verification, and fuzzy automata in
the adversarial models with reliable guarantees. The resultant sampling dynamics
are applicable into the Adversarial Signal Processing of soft matching patterns and
their feature embeddings in cybersecurity attack scenarios and defense mechanisms.
In terms of information-theoretic efficiency of machine learning, this is a study
of the sample complexity of the function classes in adversarial learning games to
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devise each attack scenario as a blackbox attack where the adversaries have no prior
knowledge of the deep learning training processes and its best response strategies.

Chapter 5 presents theories and algorithms for adversarial deep learning. These
algorithmics can also be used to check the learning system specifications for
consistency and applicability to merge the attack data and harden the specifications
into a new adversarial learning model with vulnerability assessment metrics,
protocols, and countermeasure fusions. Example applications of the adversarial
attacks due to game theoretical adversarial deep learning proposed in our research
are presented in Chap. 6. We work in the context of statistical spam and autonomous
systems applications with images and videos. But we have found literature in
several cybersecurity analytics applications for the adversarial deep learning in real-
world domains. For instance, it is applicable in cryptanalysis, steganalysis, IoT
malware, synthetic data generators, network security, biometrics recognition, object
detection, virtual assistants, cyber-physical control systems, phishing detection,
computational red teaming, natural language generation, etc. But the data analytics
results from adversarial data mining are not always formulated in terms of game
theoretical modelling and optimization although game theory provides an excellent
abstraction for generative-discriminative modelling in adversarial deep learning that
is intractable in shallow architectures for machine learning.

Chapter 7 develops a discussion on the utilization of adversarial learning in pri-
vacy enhancing technologies. By defining the trust, resilience, and agility ontologies
for each threat agent the privacy preserving data mining techniques can extend our
research in game theoretical adversarial deep learning to operate in accordance with
privacy-by-design paradigm for contractual, statutory, and regulatory requirements
regarding the use of computing and internet technologies in machine learning. We
can produce security and dependability metrics ontologies to reflect the quality
of an adversarial system with respect to its privacy functionality, performance,
dependability, coupled with security costs and complexities, transparency and
fairness, interpretability, and explainability in modelling the adversarial AI agents
within multivector, multistage, and hybrid kill-chain strategies for cyberattacks.
Computational difficulties for measuring utility and associated information loss
can be addressed in game theory to provision security service offerings satisfying
lightweightness, heterogeneity, early detection of attacks, high availability, high
accuracy, high reliability, fault tolerance, resilience, robustness, scalability, and
energy efficiency. Such adversarial AI agents can discover new attacks and learn
over time to respond better to threats in cybersecurity as seen in intelligent scanners,
firewalls, anti-malware, intelligent espionage tools, and autonomous weapons.
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Chapter 1
Adversarial Machine Learning

This chapter investigates the robustness gap between machine intelligence and
human perception in machine learning for cyberspace security with game theoretical
adversarial learning algorithms. In this chapter, we shall conduct a literature
review to provide new insights on the relation between adversarial learning and
cybersecurity. We seek to survey and summarize non-stationary data representations
learnt by machine learning models. The modelling robustness shall be surveyed
to produce a summarization of adversarial examples and adversarial algorithms.
We shall also survey the use of convex optimization, stochastic optimization,
and evolutionary computing in adversarial deep learning formulations. Another
interesting study shall be that of defense mechanisms available for deep learning
models deployed in real-world environments.

Data mining is the study of automatically learning mathematical patterns from
the information in a database. It is a process of knowledge discovery that requires
developing computational algorithms [182] for preprocessing, modelling, and post-
processing data given a database system. The design of those algorithms, however,
must be based on a machine learning paradigm. Machine learning paradigms are
modes of computational learning based on some underlying statistical assumptions,
such as the level of human oversight in the training data or the data’s underlying dis-
tribution. Example paradigms include supervised learning, unsupervised learning,
semi-supervised learning, reinforcement learning, meta-learning, and deep learning.

A standard statistical assumption, called the stationarity assumption, is that the
training data used by a model to learn a mathematical pattern and the testing
data used to evaluate how well it recognizes those patterns are sampled from the
same underlying probability distribution of independent and identically distributed
(i.i.d) random variables. Yet the stationarity assumption does not hold in most
real-world applications; training and testing data seldom share exactly the same
distributions and are not often i.i.d. Therefore, a robust learning paradigm for non-
stationary data analytics has become something of a goal in adversarial learning.
Adversarial learning has applications in areas like spam filtering, virus detection,
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2 1 Adversarial Machine Learning

intrusion detection, fraud detection, biometric authentication, network protocol
verification, computational advertising, recommender systems, social media web
mining, complex system performance modelling, and so on [31, 56].

Adversarial learning algorithms are specifically designed to exploit vulnerabili-
ties in a given machine learning algorithm. These vulnerabilities are simulated by
training the learning algorithm under various attack scenarios and policies. The
attack scenarios are assumed to be formulated by an intelligent adversary [285],
and the optimal attack policy is one that can solve one or many optimization
problems over one or many attack scenarios, noting that various adversarial
learning algorithms may differ in their statistical assumptions over the adversary’s
knowledge, security violations, attack strategies, and attack influences [63].

As such, a learning algorithm that has been designed to offset an attack becomes
robust to that attack; its vulnerabilities are no longer vulnerable. Thus, the goal of
adversarial learning can be thought of as one of finding solutions for the objective
functions in search and optimization algorithms that defend against attack scenarios.
Once found, these solutions can be incorporated into the design of many machine
learning algorithms as defense mechanisms to guard against attack.

Deep learning refers to a particular class of neural network algorithms. These
algorithms consist of many stages of non-linear information processing in hierar-
chical architectures exploited for pattern classification and feature learning [156].
Deep learning research aims to discover machine learning algorithms at multiple
levels of data abstraction.

Deep learning with high-dimensional data has been found to be susceptible
to adversarial attacks. Such attacks are crafted by prior knowledge, observation,
and experimentation on the loss functions in the deep learning models [226].
A systematic investigation into the design of deep learning loss functions to
defend against adversaries is a novel and practical area of research. Furthermore,
statistical error analyses of the data-driven loss functions must consider conflicting
optimization goals in the models under attack, such as accuracy, scalability, runtime,
and diversity, defined over underlying data distributions.

Loss functions have been defined in the context of multiple machine learning
paradigms applicable to deep learning. In supervised learning, loss functions are
defined as fitting criteria for class probability estimation [92]. In statistical learning,
loss functions are defined as minimizers of empirical risk in training data [524].
In computational learning, loss functions are said to minimize Bayes decision rule
for predictors by computing the expected probability of classification error [415].
Energy-based learning models [349, 350] are a theoretical framework for statistical
inference and computational learning characterized by loss functions.

Adversarial learning problems in discriminative learning loss functions are typ-
ically formulated with statistical divergence metrics between training data features
and adversarial data features. The latent space on high-dimensional training data can
also be searched by deep networks to construct adversarial examples. Depending
on the goal, knowledge, and capability of an adversary, adversarial examples can
also be crafted by prior knowledge, observation, and experimentation on the loss
functions in deep learning.
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Thus the existing adversarial learning algorithms differ in design assumptions
regarding adversary’s knowledge, attack strategies, attack influence, and security
violation. Furthermore, adversarial examples are known to transfer between data-
specific manifolds of machine learning models. Therefore the predictive perfor-
mance of deep learning models under attack is an interesting area for research.

Adversarial attack technologies exist in computer vision, natural language pro-
cessing, cyberspace security on multidimensional, textual and image data, sequence
data, and spatial data. Such problems study feature manipulations, misclassifications
costs, and distributional robustness in deep learning models misspecification. Resul-
tant machine learning algorithms have applications to model cybersecurity risks
in web security, malware analysis, anti-spoofing techniques, rare pattern mining,
imbalanced classification, out-of-distribution examples detection, concept drift, and
motif mining. The related adversarial loss functions and training procedures are
applicable to the evaluation of deep learning deployments trustworthiness. They can
simulate the cyberspace security safeguards, risks, and challenges as computational
optimization and statistical inference problems. Generating and explaining the
adversarial data manipulations allows a study of the effects of algorithmic bias
in deep learning. Further it can be the conduit for robust optimization theories
developed around adversarial machine learning.

In image processing and computer vision, data provenance has applications in
image forensics for the detection of manipulated images in strategic intelligence.
Questions on the origin of suspect images have gained prominence with the increase
in deepfakes on the Internet. Deepfakes are deep learning networks that are able to
generate fake news and fake evidence on the Internet. They are of public concern
in the online social media and search engine landscape. Misinformation threats
due to fake data can try to target the weakest links in the information chain
for falsification purposes. They can be used to manipulate public opinion during
elections, discredit, and blackmail people. New approaches to recognizing synthetic
media must be provided into browser extensions and analytics toolsets. Further
adversarial attacks to scramble objects in images can disrupt computer vision result
to increase misclassification rates and spread false information. Deepfakes have
applications in creative arts, advertising, film production, and video games [617].
They can affect the politics of evidence involving audiovisual manipulation in
witness testimony. It can be recontextualized, reinterpreted, and broadcasted on the
Internet. Nguyen et al. [460] give a survey of the deep learning models to create
deepfake content. Carlini et al. [103] have an approach to construct robustness
bounds in neural networks that have to contend with such adversarial examples
designed to mislead image classifications to take unwanted actions.

Integrating data provenance into machine learning shall create robust, scalable,
and generalizable methods for knowledge discovery that can support authenticity of
digital media to obtain accurate and reliable results in augmented intelligence with
adversarial training. Explainable artificial intelligence is a research area advancing
machine learning in digital media forensics and predictive technologies. Robust
models for data-driven decision-making in machine learning assume imperfect
information is available for learning system parameters and optimizing probability
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distributions on uncertain data and erroneous estimations. In robust optimization,
random variables underlying the machine learning features are modelled as uncer-
tain parameters belonging to a convex uncertainty set and the decision-maker
protects the machine learning system against the worst case within that set. Data-
driven optimization objectives then use observations of the random variables as
training inputs to mathematical programming problems. Robust decision-making
involves stochastic programming and optimization under probabilistic constraints.
Robust optimization problems can also be studied as risk aversion problems with
an empirical risk measure for feature engineering [692] with adversarial robustness.
Deep generative modelling of the adversarial data manipulations investigates the
dependencies between generative modelling and causal attributions in the latent
variables. It has applications in computer vision tasks acting as control pipelines
in physical systems where the main challenge with generating robust physical
perturbations is environmental variability.

1.1 Adversarial Learning Frameworks

Traditional machine learning models assume training data samples, testing data
samples, and validation data samples follow the same, independent, and identically
distributed data distribution. This assumption creates security vulnerabilities in
machine learning models subject to attack from intelligent adversaries with a
malicious intent. Given training data samples, such adversaries design adversarial
examples to increase model error. Securing learning systems from such adversarial
examples is an active area of research in artificial intelligence, security diagnostics,
generative learning, deep learning, information security, autonomous systems,
intelligent systems, and data analytics.

Adversarial examples can mislead learning models as long as adversary’s attack
is planned after learning model has completed training and therefore cannot react to
new samples. From this observation, adversarial algorithms incorporate adversary
into training process of learning models. Thus, adversarial algorithms model
adversarial machine learning as an interaction between two agents—the learning
model and one or more intelligent adversaries.

Game theory provides a framework to study interactions between learning model
(or learner for short) and intelligent adversary (or adversary for short) in terms
of interaction between evolving strategies of the learner and the adversary. Game
theory interactions were first formulated in life sciences as non-linear differential
equations that study interactions between populations of biological systems.

In machine learning, loss functions quantify the impact of information uncer-
tainty over a distribution of analytics predictions. Adversarial algorithms formulate
machine learning loss functions for a training process that prevents model overfitting
to training data in presence of rational, adaptive adversaries that simulate evolving
changes to learning environment as adversarial examples.
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In game theoretical adversarial learning, adversarial examples are generated by
designing machine learning algorithms under various attack scenarios in adversary’s
strategy space. Optimal attack strategy for adversarial manipulation is formulated as
solution to (often non-linear and non-convex) optimization problems.

Adversarial examples are hard to detect because machine learning models trained
on limited data are required to produce expected output for every possible input.
Reinforcement learning agents can also be manipulated by adversarial examples to
result in degraded agent performance in the presence of perturbations too subtle to
be perceived by a human.

In the following literature review, we provide an overview of the existing
adversarial machine learning algorithms, each differing in attack scenarios and
defense mechanisms for deploying reliable data analysis systems and robust pattern
recognition systems. We also summarize the state-of-the-art techniques in game
theoretical adversarial learning and adversarial reinforcement learning for software-
based inference and decision-making.

1.1.1 Adversarial Algorithms Comparisons

This section presents a literature review and attack taxonomy of adversarial learning
algorithms. The adversarial algorithms are summarized in Tables 1.1 and 1.2 in
terms of algorithm design and algorithm application. The algorithms are primarily
compared on the adversarial cost function (or cost function for short). It is a
measure of the expected performance of the learning algorithm in the presence of an
adversary. It is formulated differently for different adversarial learning algorithms.
The tables’ columns list the various features for comparing adversarial learning
algorithms. Our algorithm is termed “game theory : deep learning.” The tables’ rows
list the various algorithms under comparison. Across the rows, we list computational
models vulnerable to adversarial data for feature extraction, deep learning, support
vector machines, and classifier ensembles where the input data for simulating
adversarial attacks is taken to be text spam, image spam, and biometric spam. The
algorithms are compared on cost function, search algorithm, convergence condi-
tions, attack strategy, attack influence, security violation, adversary’s knowledge,
algorithm moves, and learning games. The “cost function” is the objective function
to solve for adversarial data. The “search algorithm” is the algorithm used to
find an optimal solution. The “convergence conditions” is the search criteria for
creating adversarial data. The “attack strategy” is the attack scenario under which
the adversary operates. The “attack influence” of a strategy determines the access
that the adversary has to train data and test data input to the learning algorithm.
The “security violation” is the purpose of the adversary’s attack. The “adversary’s
knowledge” is the semantic information of the adversary. The “algorithm moves”
are the actions taken by learning algorithm to adapt to adversarial data manipulation.
From the tables, we see that most of the existing research works do not add
game theory formulations to the cost function. Thus most of the existing learning
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algorithms cannot adapt to continuous adversarial data manipulations. As shown in
the column “Learning games,” it is the only adversarial learning algorithm that has
a game theory-based formulation of training and testing data distributions input to
deep learning models.

1.2 Adversarial Security Mechanisms

In addition to Tables 1.1 and 1.2, the existing adversarial learning algorithms and
their application domains can also be classified by the learner’s defense mechanisms
and corresponding adversary’s attack scenarios [33, 59, 63, 531]. Learner’s defense
mechanisms have been proposed by designing secure learning algorithms [63],
multiple classifier systems [59], privacy-preserving machine learning [531], and use
of randomization or disinformation to mislead the adversary [33].

Biggio et al. [63] discuss learner’s defense mechanism in terms of an empirical
framework extending the model selection and performance evaluation steps of
pattern classification by Duda et al. [166]. The framework recommends training
the learner for “security by design” rather than “security by obscurity.” The frame-
work recommends following additional steps to validate the defense mechanisms
proposed in case of both generative learning models and discriminative learning
models under attack.

• Proactively anticipate the most relevant adversarial attacks through a what-if
analysis simulating potential attack scenarios.

• Define attack scenarios in terms of goal, knowledge, and capability of adversary.
• Propose a generative data distribution model on conditional probabilities that

can formally account for a large number of potential attacks and cross-validation
samples on training data and testing data.

Following assumptions are made regarding the learning algorithm’s security. The
model performance is then evaluated under an optimal attack strategy simulated
according to the framework proposed by Biggio et al. [63].

• An adversary’s goal is formulated as the optimization of an objective function.
The objective function is designed on the desired security violation (that is
integrity, availability, or privacy) and attack specificity (from targeted to indis-
criminate).

• An adversary’s knowledge is defined as knowledge of the components of the
classifier, viz., training data, feature set, learning algorithm, decision function
and its parameters, available and feedback.

• An adversary’s capability is defined as the control adversary has on training
data and testing data taking into account application-specific constraints such as
attack influence (either causative or exploratory), effect on class priors, fraction
of samples, and features manipulated by adversary.
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Depending on the goal, knowledge, and capability of the adversary, these assump-
tions are also classified in terms of attack influence, security violation, and attack
specificity.

The attack influence can be causative or exploratory. Causative attack affects both
training and testing data. Exploratory attack affects only testing data.

The security violation can target either integrity or availability or privacy of
the learner. A machine learning algorithm whose integrity is compromised cannot
detect malicious behavior of the adversary. The integrity of an algorithm with
many false negatives gets compromised. A machine learning algorithm whose
availability is compromised exhibits severely degraded performance for legitimate
users. The availability of an algorithm with many false positives gets compromised.
The privacy of an algorithm whose detailed feedback is made public also gets
compromised.

The attack specificity can be either targeted or indiscriminate for attacks that
influence prediction or action of the algorithm. In targeted attacks the attack is
directed at only a few instances of the training or testing data. In indiscriminate
attacks the attack is directed at an entire class of instances or objects.

Our adversarial algorithms have causative attack influence, integrity security
violation, and targeted attack specificity.

The typical adversary’s attack scenarios range across (i) adding noise to fea-
tures/labels, (ii) adding/deleting features/labels, (iii) slight change or manipulation
or perturbation to data distributions, and (iv) slight change to decision boundaries.
The corresponding optimization problems are solved using search algorithms with
sampling and gradients methods. The sampling methods range across incremental
sampling, bagging sampling, stacking sampling, and randomized sampling. The
gradient methods range across linear methods, quadratic methods, convex methods,
and stochastic methods. These optimization problems are solved on finding a local
optimum solution determined by convergence conditions ranging across (i) number
of features, (ii) number of regularization terms, and (iii) changes to estimated errors
over training/testing data.

Our adversarial algorithms cause slight change to data distributions simulated
by stochastic optimization and randomized sampling methods. Our optimization
problems converge onto solutions computed at Nash equilibria in Stackelberg
games. From the adversary’s standpoint, the equilibrium solution is a local optimum
in case of worst-case attack scenarios and a global optimum in case of best-case
attack scenarios. The strength and relevancy of our attack scenarios is determined
by the performance of the deep learning models under attack.

1.2.1 Adversarial Examples Taxonomies

Papernot et al. [482] provide a threat model summarizing various attack scenarios
in adversarial learning algorithms. The adversarial classifier’s defense mechanisms
are then supposed to improve model robustness to its validation data samples.
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Here, validation data samples are deployed into the trained model’s runtime data
distribution to be non-iid with respect to testing data samples in trained model’s
training data distribution.

Papernot et al. [482] express their machine learning threat model in steps of
adversarial manipulations found during machine learning training process and
machine learning inference process. During machine learning training process,
adversary is supposed to manipulate either online data collection processes or
offline data collection processes. Such an adversarial manipulation either injects
adversarial examples or modifies training data with intent of modifying learning
model’s decision boundaries. During machine learning inference process, adversary
is supposed to plan either blackbox attacks or whitebox attacks on learning model’s
parameters. Such attack settings cause distribution drifts between training and
runtime data distributions.

Papernot et al. [482] also view machine learning security through the prism of
confidentiality, integrity, and availability models where adversary targets classifier’s
parameters, labels, and features, respectively. In contrast to machine learning
security, machine learning privacy is explored in terms of model performance when
(i) training and runtime data distributions differ, (ii) amount of data exposed by
learning model is bound by a differential privacy budget, and (iii) learning model’s
defenses provide fairness, interpretability, and transparency to learning outputs.
Adversarial environments affecting model complexity, model accuracy, and model
resilience are formulated in terms of no free lunch theorem for adversarial learning.
Papernot et al. [482] also motivate game theoretical adversarial learning during
machine learning inference within a probably approximately correct (PAC) learning
framework.

Biggio et al. [68] survey adversarial machine learning for pattern classifiers. The
adversarial examples for pattern classifiers are supposed to be created at either
training time or testing time. Recent research in adversarial examples for deep
network applications in computer vision and cybersecurity is also discussed. Attack
scenarios at training time are called poisoning attacks, while attack scenarios at
testing time are called evasion attacks. To integrate with deep learning terminology,
poisoning attacks are also called adversarial training attacks while evasion attacks
are also called adversarial testing attacks. Then security evaluation and defense
mechanisms of pattern classifiers under attack are discussed. Here, a proactive
security-by-design learning model incorporating adversary designs in learning
process is also presented. It is shown in Fig. 1.1.

Biggio et al. [68] categorize adversary designs as optimization problem-solving
for best attack strategy defined by adversary’s goal in attack scenario, adversary’s
knowledge of targeted learning system and adversary’s capability of manipulating
input data. Under various assumptions on such adversary designs, optimal attack
strategies are then shown to be possible for not only supervised learning algorithms
but also unsupervised learning algorithms such as clustering algorithms and feature
selection algorithms. Adversary’s goal is further categorized into (i) security
violation that compromises one of integrity, availability, and privacy of learning
system and (ii) attack specificity and error specificity that cause misclassification
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Fig. 1.1 Reactive and proactive arms race between adversary and learner

of specific set of samples and specific set of classes, respectively. Here, adversary’s
knowledge of targeted learning system is further categorized into following

• Perfect-knowledge whitebox attacks with complete knowledge of learning
parameters. In this case, security evaluation provides upper bound on perfor-
mance degradation in attack scenario.

• Limited-knowledge gray-box attacks with prior knowledge about feature
representation and learning algorithm but not training data and learning param-
eters. Here security evaluation is conducted on a surrogate classifier learning a
surrogate dataset available from similar data source as training data. Adversarial
examples for surrogate classifier are then tested against targeted classifier to
evaluate transferability of attack scenarios between learning algorithms.

• Zero-knowledge blackbox attacks without any knowledge of learning
algorithm but partial knowledge of feature representation and training data
distribution. Here security evaluation checks whether optimal attack strategy
transfers between an optimally trained surrogate model and targeted classifier
model. Reinforced feedback on classifier decisions can be used to refine surrogate
model.

Biggio et al. [68] also categorize adversary’s knowledge by application-specific
data manipulation constraints on input data distributions, features, and classes.
A high-level formulation of adversary’s optimal attack strategy and classifier’s
security evaluation curves is also provided. Such a security evaluation considers
both differentiable and non-differentiable learning algorithms like neural networks
and decision trees, respectively. Here sensitivity analysis of deep networks is
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defined as a study of the phenomenon of minimally perturbing training samples,
whereas a more general security evaluation of pattern classifiers is defined to
be a study of adversary’s attack strength and attack confidence in manipulating
classifier’s decision boundaries for the targeted classes. Proactive defense tech-
niques summarized across such attack settings include (i) randomizing training
data and classifier output, (ii) domain experts correcting classifier decisions, (iii)
data sanitization with robust statistics, (iv) automatic drift detection, (v) properly
combining classifier ensembles, (vi) iterative adversarial training heuristics, (vii)
game theoretical adversarial learning, and (viii) robust optimization in regularized
learning that effectively tackle the curse of dimensionality on large datasets and
non-linear classifiers. Future research of data-driven adversarial machine learning
security evaluation is proposed to lie at intersection of software testing, formal
verification, robust artificial intelligence, and interpretable machine learning.

1.3 Stochastic Game Illustration in Adversarial Deep
Learning

Figure 1.2 illustrates the learning process in the game formulation of our research
as a flow chart. The CNNoriginal is trained on training data Xtrain and evaluated
on testing data Xtest to give “learner performance” in the experiments. Figure 1.2

Fig. 1.2 A flow chart illustrating the benefits of a game theoretic learner. The two-player game
is played by a single adversary and one learner. The game produces a final deep learning network
CNNsecure that is better equipped to deal with the adversarial manipulations than the initial deep
learning network CNNoriginal
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illustrates a two-player game. The game has moves executed by each of the
adversaries and the learner during each interaction. In these moves, an adversary
targets the learner by the adversarial sample produced from the evolutionary
operators. The learner then adapts the deep learning operators for the adversarial
data by retraining the CNN on the new cross-validation sample.

A set L of M adversaries L = {L1, L2, L3, . . . , LM } targets this performance
by engaging the CNN in multiple two-player sequential games. In each two-player
game, the CNNs trained on the original and generated data samples and tested
on the adversarial data are CNNmanipulated−cnn and CNNmanipulated−gan, respec-
tively. All these CNNs are given under the umbrella term “manipulated learner
performance.” We find that CNNmanipulated−cnn as well as CNNmanipulated−gan

are significantly worse performing than the original CNN CNNoriginal trained on
the original training and testing data (Xtrain, Xtest ). Thus we conclude adversar-
ial manipulation succeeds in attacking the learner. A new convolutional neural
network CNNsecure is then retrained on (Xtrain + A

∗
S,Xtest + A

∗
S) to adapt to

adversarial manipulations. It is given as “secure learner performance.” CNNsecure

is our proposed model. It is found to be better than the manipulated CNN’s
CNNmanipulated−cnn and CNNmanipulated−gan.

Therefore, we conclude that the new CNNsecure has successfully adapted to
adversarial data generated by multiple adversaries, while the given CNNoriginal

is vulnerable to each adversarial manipulation α∗
i generated by each adversary Li

playing a game i on the given training/testing data distributions. Our algorithm
is able to find a data sample that affects the performance of a CNN. The CNN
that is able to recover from our adversarial attack is better equipped to deal with
unforeseen changes in the underlying data distribution. The game between adversary
and learner allows us to produce adversarial data manipulations for a CNN trained
on the underlying data distribution.



Chapter 2
Adversarial Deep Learning

Deep learning is not provably secure. Deep neural networks are vulnerable to
security attacks from malicious adversaries, which is an ongoing and critical
challenge for deep learning researchers. This chapter studies adversarial deep
learning algorithms in exploiting vulnerabilities of deep neural networks. The core
focus is on a series of game theoretical adversarial deep learning algorithms for
improved network robustness especially under zero-knowledge black-box attack
scenarios. Although there are many recent works that study network vulnerabilities,
few are proposed for zero-knowledge black-box attacks, and even fewer are on
game theoretical-based approach. Even innocuous perturbations in training data
can change the way a deep network behaves in unintended ways. This means that
imperceptibly and immeasurably small departures from the training data can result
in a completely different label classification when using the model for supervised
deep learning. The algorithmic details proposed in this chapter have been used in
game theoretical adversarial deep learning with evolutionary adversaries, stochastic
adversaries, randomized adversaries, and variational adversaries proposed in our
research. In designing the attack scenarios, the adversarial objective was to make
small, undetectable changes to the test data. The adversary manipulates representa-
tion parameters in the input data to mislead the learning process of the deep neural
network, so it successfully misclassifies the original class labels as the targeted class
labels.

Deng [156] surveys existing literature on deep learning for representation
learning and feature learning where a hierarchy of higher-level features or concepts
are defined from lower-level ones. Deep learning models, architectures, and algo-
rithms are categorized into three classes—generative, discriminative, and hybrid
models:

• Generative models characterize the joint probability distributions of the observed
data and their associated classes with high-order correlation properties between
the observed variables and the hidden variables.
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• Discriminative models distinguish between patterns by characterizing the poste-
rior distributions of classes conditioned on the observed data.

• Hybrid models are discriminative models assisted by generative models in a
significant way via better optimization or/and regularization of discriminative
criteria used to learn parameters from data.

Deep learning is also understood by Deng [156] as an extension of previous
research work on shallow architectures solving well-constrained problems such
as generalized linear models, multi-layer perceptrons, support vector machines,
maximum entropy models, conditional random fields, Gaussian mixture models, and
hidden Markov models. For the typical problems addressed by deep architectures,
such shallow architectures and their statistical methods tend to produce intractable
computational algorithms for class inference.

The commonly used deep learning models such as deep belief networks,
variational autoencoders, and convolutional neural network extract structures and
regularities in the input features by avoiding difficulties with global optimization.
Parameter optimization is done by designing a greedy layer-by-layer training
algorithm that helps alleviate the overfitting problem observed in many shallow
architectures training millions of parameters. Thus, deep learning models are useful
for end-to-end learning of intelligent systems embedding domain knowledge and
interpreting uncertainty.

2.1 Learning Curve Analysis for Supervised Machine
Learning

No free lunch (NFL) theorems for supervised learning and optimization [649–651]
state that, averaged over all learning theoretic situations represented in data samples,
machine learning models preferring simple to complex training fail as often as they
succeed. This means that the random process generating training data distribution
may not always be the same as the random process governing the testing data
distribution. There are many alternative models to consider for the analysis of data
mixed with noise. There is no guarantee that the statistical model chosen is the
right one or adequately captures patterns in all the data samples. Smoothing and
regularization techniques are a simple approach to uncover patterns in training data
with a minimum of preconceptions and assumptions as to what those patterns should
be in testing data. In general, we have to contend with a model selection criteria for
the chosen analytics algorithm.

In predictive analytics models built with supervised machine learning algorithms,
the model selection criteria carries out an optimization of the goodness of fit
to a training and a testing data sample. This is called cross-validation which
assumes that a statistical model is as good as its prediction. This model evaluation
scheme is unable to estimate counterfactual predictions when the world changes.
So Fig. 2.1 shows additional validation data samples to compare predicted classes
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Fig. 2.1 Adversarial loss functions training process

with actual classes. In adversarial learning, such comparisons are done with the
adversarial cost functions accounting for both class and cost distribution information
in generating the predictions of supervised learning algorithms. Thus, adversarial
data can be considered to be part of the validation data samples in model selection.
An adversarial training process trains the machine learning models on both training
data samples given by the user and validation data samples created by the adversary.
Further, the validation data samples are used to fine-tune the hyperparameters for
training the machine learning models.

In experimental evaluation of adversarial machine learning, we may run sta-
tistical tests to find counterfactual scenarios in the training data. Causal inference
can also be used to estimate the impact of counterfactual scenarios. For systematic
model selection in machine learning, the counterfactual modeling focus is on
estimating what would happen in the event of a change that may or may not
actually happen in the training data. Such adversarial machine learning models may
sacrifice predictive performance in the current environment for machine learning
to discover new counterfactual features in a changing validation environment for
machine learning. The resultant counterfactual policies comparing training data with
validation data can be used to define new sensitivity analysis, anomaly detection,
and concept drift applications for adversarial learning. Cost-sensitive evaluation
metrics account for severity differences in false alarms versus missed fraud cases.
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Fig. 2.2 Custom loss
functions learning curves

Feature ranking techniques can then guide the contextual signaling of fraudulent
predictions and feature manipulations. They account for the different degrees of
sensitivity of classification algorithms to spurious features in training data samples.

In the presence of adversarial validations, deep learning exhibits slow rate of
convergence and sensitivity to noise. So we ought to create learning curves on
deep learning as in Fig. 2.2 to discover counterfactual features in color-coded
classification baselines showing performance on y-axis for parameter ranges on x-
axis. According to the bias-variance tradeoffs in machine learning, complex models
that tend to overfit noisy data exhibit high variance, while simplistic models that
lack flexibility to approximate complex processes exhibit high bias.

We wish to arrive at a goodness of fit criteria for model selection that is neither
underfitting with high bias nor overfitting with high variance to the training data
samples. Practically, we want to select the regions of Fig. 2.2 that exhibit low errors
on all of training, validation, and testing data samples. Overfitting occurs when
training error is low but testing error is high. Underfitting occurs when testing error
is low but training error is high. In analyzing the prediction error, bias-variance
decomposition separates the analysis of bias and variance in the machine learning
model evaluation. By bootstrapping samples from the data given in cross-validation
experiments, we create training, validation, and testing data samples to estimate
models from the machine learning algorithms. Bagging, boosting, and stacking are
commonly used data sampling methods to create the cross-validation datasets. Bias-
variance decomposition is applicable to the generalization errors resulting from loss
functions in both classification and regression [160].

Learning curves represent the generalization performance of the models pro-
duced by a learning algorithm. Based on estimated probabilities for class mem-
bership, learning curves compare different classification algorithms to explore the
relationship between training dataset size and the learning/induction algorithm.
They allow us to see patterns that are common across different datasets. Without an
examination of the learning curves, we cannot draw conclusions on one algorithm
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being better than another algorithm for a particular application domain. A summary
of learning curve analysis is given by Perlich et al. [491].

Comparison between analytics modeling for robust theoretical evidence is to
be done with performance metrics on the cost imbalance due to misclassification
errors in the predictions. Predictive performance of the model’s ability to distinguish
between adversarial data and training data can be analyzed with accuracy and area
under the receiver operating curve (AUC). Additionally, performance metrics that
reflect the imbalance in class labels can be used to calculate the classification
errors. They include sensitivity, F1-score, and F2-score. Learning curves papers.
It is important to incorporate such data protection safeguards in the analytics value
chain built with cross-validation or hold out testing to choose the “most accurate”
algorithm for analyzing a given dataset.

A cyber risk analytics for the information leaks in deep learning has become nec-
essary to analyze machine learning models trained on sensitive datasets. Learning
curves can consider the bias-variance decomposition in adversarial loss functions
to derive such regularizations in the learning objectives of supervised machine
learning. During model validation experiments, the information divergence between
the validation data samples and the training data samples may be computed as the
discretized data distributions obtained from sampling schemes within adversarial
deep learning.

The extent to which noise on modeling parameters and their training data can
benefit the overall quality of the data distributions in sampling schemes depends
on the specific adversarial noise processes and the nature of the generated target
distribution in game theoretical adversarial learning. Our proposals study the
interplay of adversarial cost function and classification error functions to design
game theoretical classifiers that deteriorate at a slower rate than regular classifiers
on adversarial data. With deep generative modeling of the adversary’s best response
strategies, we construct the data resampling dynamics from measurement studies on
cost-sensitive adversaries for discriminative learning. We simulate encodings of the
resultant decision boundaries as storing-retrieving problems in data mining.

2.2 Adversarial Loss Functions for Discriminative Learning

Adversarial examples can be crafted by experimentation on the loss functions
in deep learning. Such experiments result in empirical data analytics around
adversarial loss functions and corresponding training procedures in discriminative
learning. This research is then applicable to the study of trustworthiness of deep
learning in cyber-physical systems in real-world deployments.

We can formulate and customize the adversarial loss functions with adversarial
learning objective functions solved by optimization algorithms. The adversarial
learning algorithms can then devise training data manipulations with adversaries
targeting to mislead deep neural networks. After demonstrating the vulnerability
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of deep learning in this way, we can propose defense mechanisms to make robust
neural networks.

Specific to supervised learning applications, loss functions evaluate the statistical
error of predictive analytics. Typically, the loss function reduces bias in a predictive
classification model and variance in a predictive regression model [69]. Here,
adversarial loss functions reduce the predictive model’s sensitivity to model noise.

Our proposal is to analyze this type of noise in a game theoretical adversarial
deep learning paradigm. It involves the design of adversarial payoff functions that
generate adversarial data manipulations by optimizing the adversarial cost functions
for different types of adversaries. Such adversaries include evolutionary, stochastic,
randomization, variational, and generative adversaries.

The intuition of our adversarial loss functions is derived from the concept
of actions and moves in game theory. During learning, the attack scenarios are
modeled as moves made by a learning algorithm and countermoves made by an
intelligent adversary. Our game theory studies interactions between independent
self-interested agents or players working toward a goal. Each player has a set
of associated strategies/moves/actions that optimize a payoff function or utility
function for achieving the goal. The game eventually converges to an equilibrium
state from which none of the players have any incentive to deviate.

Through optimizations of the proposed adversarial learning, we can empirically
analyze the discriminative loss functions in deep learning to generate misclassified
data points and hence adversarial manipulations to the training data. Further,
in contrast to traditional deep learning methods, we propose adversarial payoff
functions that are non-differentiable and discontinuous over the search space of
the adversarial manipulations. Within an empirical risk minimization framework
for supervised learning and game theory, we study adversarial loss functions for
discriminative learning involving classification and regression.

Rich data science problems and machine learning features can be engineered
from our algorithms by modeling a wide variety of data analytics application
scenarios involving discriminative learning. For example, we propose adversarial
loss functions to learn moments and cumulants of time-dependent data distributions
in regression modeling. The proposed loss functions can be extended for non-
linear algorithm-oriented approaches to robust regression. The sensitivity of our
loss function could be customized with patterns constructed to improve application-
dependent model selection. Here, deep generative models are helpful for feature
engineering and learning generalizations in specific application domains.

Our adversarial payoff functions can model the discrimination hypotheses around
class labels and their decision boundaries in classification modeling. The proposed
payoff functions optimize the search for data manipulations on an original pixel data
space as well as a latent data space representing pixel distributions by a Gaussian
mixture model. The payoff functions were then optimized by the parameter settings
in simulated annealing, variational learning, and generative learning algorithms. The
deep neural network’s misclassification performance at the time of Nash equilibrium
was measured in terms of t-statistics hypothesized over recall, true positive rate, and
the f1-score of targeted class labels.
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We experimented with adversarial payoff functions over randomized strategy
spaces by changing the Stackelberg game formulation. Here, the attack scenarios
over the strategy spaces determined the convergence criteria of Stackelberg games
over multi-label datasets. In Nash equilibrium, the game converged on adversarial
manipulations that affect testing performance across targeted labels in both two-
label and multi-label classification models. The results led us to a proposal for a
secure learner that is immune to that type of adversarial attack, and an empirical
analysis confirms that this classification model is significantly more robust than a
traditional deep neural network under attack by an adversary.

2.3 Adversarial Examples in Deep Networks

Papernot et al. [480] present a practical demonstration of adversarial samples
known to transfer between deep learning models. Such adversarial examples are
constructed to control the integrity of a target deep neural network (DNN) without
access to the target DNN’s architecture, parameters, and training data. A substitute
DNN is then trained to approximate the target DNN’s learned model. The substitute
DNN also has no knowledge of the probability vectors encoding the target DNN’s
belief of the relation between training input and classes. The attack is defined by
assuming that the adversary can observe target DNN’s outputs given the inputs
chosen by the adversary. The adversary model has access to the same training data
distribution as the target model.

The substitute DNN is trained through a Jacobian-based dataset augmentation
technique. This step in the algorithm is called substitute model training. This dataset
augmentation technique allows adversary to select data points that are representative
of the target DNN’s behavior in the input domain. The adversarial attack is made
tractable by limiting the number of queries put to the target DNN. The queries are
formulated by an efficient search heuristic over the input data domain.

After finding adversarial examples, the algorithm fine-tunes the perturbations in
the adversarial examples to maximize the transferability of adversarial samples.
The fine-tuning is based on the observation that the substitute DNN’s and target
DNN’s cost gradient sign matrices are correlated. This step in the algorithm is called
adversarial sample crafting. In all, the adversarial algorithm goes through phases of
initial collection, architecture selection, labeling, training, and augmentation. The
adversarial algorithm produces a substitute training set that represents the target
model’s decision boundaries.

Two algorithms are implemented to search for the adversarial samples. Both
search algorithms evaluate the target model’s sensitivity to substitute model’s input
so that a small perturbation in the target model’s input achieves the adversarial
misclassification goal. Both search algorithms differ in computational efficiency of
producing adversarial examples. Defenses proposed against such attacks include the
use of adversarial sample training, Jacobian-based regularization and distillation,
and a careful analysis of the distribution of queries.
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Gu et al. [238] study the robustness of DNNs by studying pre-processing and
training strategies accounting for the structure of adversarial examples as well as
the targeted model’s network topology. The pre-processing is done with denoising
autoencoders (DAEs). Autoencoder is chosen as the deep learning model because it
preserves the original non-adversarial data distribution by mapping original training
data back to itself. The experiments in Gu et al. [238] demonstrate that DAEs are
able to remove adversarial noise in DNN training strategies. Furthermore, an end-
to-end training procedure with a penalty function smoothing the adversarial data is
proposed by stacking DAEs into a feedforward neural network called a contractive
autoencoder (CAE). The additional penalty in CAE minimizes the squared norm of
the Jacobian of the hidden representation of input data.

DNNs achieve high performance because deep cascades of non-linear units
allow to generalize non-locally in data-specific manifolds. The ability of DNNs to
automatically learn non-local generalization priors from data is both a strength and
weakness for adversarial learning in real-world environments. Adversarial examples
in DNNs are attributed to the following reasons by Gu et al. [238].

• In high-dimensional data, the smoothness assumption that underlies kernel meth-
ods does not hold for deterministic feedforward neural network architectures

• Applying kernel methods in manifold space does not guarantee local generaliza-
tion in the input space

• Due to cross-model cross-dataset generalization properties of adversarial exam-
ples, the attacker can generate adversarial examples from independent models

• Fewer degrees of freedom in data are captured as the layers of deep neural
network increase

Therefore, according to Gu et al. [238], the challenge in DNN’s design is to train a
deep network that not only generalizes in abstract manifold space to achieve good
recognition accuracy but also retains local generalization in the input space. In
both shallow models and deep models, adversarial examples are also universal and
unavoidable by this definition. Thus, deep learning architectures that are robust to
adversarial data must be trained to incorporate input invariance with respect to the
final network output accounting for adversarial data.

2.4 Adversarial Examples for Misleading Classifiers

Although neural networks achieve high performance by expressing an arbitrary
computation in terms of massively parallel non-linear steps, Szegedy et al. [590]
make observation that neural network layers do not disentangle basis distributions
from semantic information. Szegedy et al. [590] find that deep networks learn
discontinuous input-output mappings so that imperceptible perturbations increase
deep network’s prediction error even when it is trained on different subsets of a
dataset. Such imperceptible perturbations are called adversarial examples. Learning
adversarial examples is intrinsically connected to deep network structure and input
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data distributions. In experiments by Szegedy et al. [590], a significant amount of
adversarial examples were found to be misclassified by deep networks. These adver-
sarial examples were created by changing deep network’s hyperparameter settings
such as the number of layers, weight’s initialization, and weight’s regularization.
Thus, Szegedy et al. [590] conclude that adversarial examples are not the result of a
particular deep learning model’s overfitting.

In high-dimensional input signals to a simple linear model, Goodfellow et
al. [227] observe that many infinitesimal changes to the input from adversarial
examples add up to one large change to the output in deep learning. Goodfellow
et al. [227] hypothesize that deep network classifiers exhibit such linear behavior
in high-dimensional spaces. Adversarial examples are then analyzed as a property
of high-dimensional dot products. Stability of underlying model weights is said
to result in stability of adversarial examples. To get adversarial perturbation, cost
function for training a deep network is linearized around current parameter values.
This method for generating adversarial examples is called fast gradient sign method
(FGSM). In FGSM, the direction of adversarial perturbation is hypothesized to be
more important than its position in the data space. Then, adversarial training of
deep learning models is proposed as a non-linear regularization that secures deep
networks by minimizing their worst-case error on FGSM’s adversarial examples.
Adversarial training is also viewed as an active learning where learning model
obtains new labels for the adversarial examples from a heuristic labeler copying
labels of the nearby points. Papernot et al. [481] introduce a black-box attack
strategy to generate adversarial examples without knowledge of the target deep
neural network internals.

Nguyen et al. [458] generate adversarial examples with evolutionary algorithms
and call them “fooling images.” Fooling images are unrecognizable to human eyes
but classified as recognizable objects with high confidence by deep neural networks
(DNNs). A population of fooling images is evolved by designing an evolutionary
algorithm called multidimensional archive of phenotypic elites (MAP-Elites). MAP-
Elites keeps best individual found so far for each objective. Then it mutates a
randomly chosen organism from the population and replaces the current champion
for any objective if new individual has higher fitness on that objective. DNN’s
prediction score is taken as fitness function in MAP-Elites. For any class that has
been seen before, a fooling image generated with higher prediction score becomes
champion for that class. Image pixels of MNIST dataset and image pixels generated
by compositional pattern-producing network (CPPN) represent the genomes in
MAP-Elites. Various activation functions of a CPPN provide different geometric
regularities to a fooling image. Evolution operators of MAP-Elites determine
topology, weights, and activation units of each CPPN network in population. For
various hypotheses on relations between training dataset and DNN architecture,
prediction scores and Mann-Whitney U tests validate the fooling image distribution
output by MAP-Elites.

Carlini et al. [102] devise white-box as well as black-box attack scenarios
for feedforward neural networks acting as classifiers. Across multiple detection
mechanisms, new adversarial loss functions are proposed for fooling the neural
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network classifiers. Experiments are then proposed to explore the data space and
transferability properties of targeted adversarial examples. To formulate the attacks,
three threat models of zero-knowledge adversary, perfect-knowledge adversary,
and limited-knowledge adversary are defined. A zero-knowledge adversary has
no knowledge of detector’s presence while targeting class label predictions of
the classifier. The zero-knowledge adversary thus acts as a baseline for targeting
any proposed detector. In comparison, a perfect-knowledge adversary has full
knowledge of both classifier parameters and detector’s detection scheme. Perfect-
knowledge adversary thus performs a white-box attack. To perform a black-box
attack, Carlini et al. [102] assume that a limited-knowledge adversary knows
detector’s detection scheme but has no access to trained classifier, trained detector,
or their training data.

The detector schemes studied by Carlini et al. [102] include (i) a second neural
network to classify images as natural or adversarial, (ii) principal component
analysis (PCA) to detect statistical properties of images or network parameters,
(iii) statistical hypothesis tests (such as maximum mean discrepancy tests and
Gaussian mixture models comparing adversarial data distribution with original
data distribution), and (iv) input normalization with randomization and blurring.
A �2 distance between adversarial examples and training examples is assumed to
be the adversarial loss function measuring robustness of defense in the detection
mechanisms. In an iterative gradient descent attack, the adversarial loss function has
an additional regularization term that compares the deep network’s log-likelihood
of predicting target class with the next-most-likely class. A user-defined threshold
on ranked log-likelihood’s then assigns either a high-confidence or low-confidence
to the generated adversarial examples. The evaluation of the properties of the
adversarial examples is recommended to be done according to the following
evaluation criteria:

• Evaluating adversarial examples across multiple datasets (such as MNIST and
CIFAR) with defenses that did not operate directly on pixels

• Evaluating new schemes for strength of an attack which demonstrate an adver-
sary who can generate attacks to evade detection when aware of proposed defense

• Reporting false positive rates in addition to true positive rates in the performance
evaluation.

Here, a neural network is said to be robust if finding adversarial examples that
bypass its detector is a difficult proposition.

Baluja et al. [25] proposed a targeted attack where feedforward neural net-
works called adversarial transformation networks (ATNs) are trained to generate
adversarial examples. ATNs generate adversarial examples that minimally modify
classifier’s outputs given original input. By contrast, Moosav et al. [439] constructed
an untargeted attack technique, i.e., DeepFool, which is optimized by distance
metrics between adversarial examples and normal examples.

In our research in [124, 125], we generate adversarial examples to effect a
poisoning attack on the classification training data. The adversarial examples are
generated by the adversarial manipulations learned during our game theoretical
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attacks on the training process of the learner. In our black-box attack scenarios
generating testing data distributions, no prior knowledge about the learning model
is assumed. Our adversary knows neither the learning model’s training process
nor the learning model’s best response strategies across the Stackelberg game’s
plays. Our adversary does a targeted attack to manipulate multiple positive labels
into a single negative label. The attack strength of our adversarial manipulations is
defined in terms of search randomization parameters in ALS and SA. The scalar
optima in SA are used to generate the vector optima in ALS. The local optima in
ALS converge onto the non-convex stochastic optima solving the Stackelberg game
to produce output of optimal adversarial manipulations. The optimal adversarial
manipulations are able to encode the adversarial data in terms of the multivariate
statistical parameters of a Gaussian mixture model produced in multi-label datasets.

2.5 Generative Adversarial Networks

Goodfellow et al. [226] state that the primary cause of deep learning networks’
vulnerability to adversarial examples is their linear nature in high-dimensional
search spaces. Also the deep learning networks perform poorly on testing data
examples that do not have high probability in the training data distribution. Thus,
adversarial examples can be generated by applying a worst-case perturbation to the
training data. The perturbed input results in an incorrect output prediction with high
confidence. Thus, Goodfellow et al. [226] argue for the need of having an adversarial
training procedure whose objective is to minimize the worst-case error when the
training data is perturbed by the adversary. Goodfellow et al. [226] then formulate
the adversarial training as a min-max game between two deep neural networks. The
resulting deep generative model is called generative adversarial networks (GANs).

A variety of deep generative methods are available to create the perturbation
between training and testing data distributions [485]. Radford et al. [500] propose a
stable GAN called DCGAN. Gulrajani et al. [400] design IWGANwhich undertakes
a theoretical analysis of the generative learning process. Berthelot et al. [46] propose
BEGANwith a new loss function in the training algorithm. Chen et al. [119] propose
InfoGAN which uses generative learning models for unsupervised representation
learning.

Insofar as the learner’s defense mechanisms are concerned, our game formulation
is similar to the GAN game formulation. However, the objective of our research is to
simulate a real adversarial attack scenario on two-label and multi-label classification
model in terms of the cost to the adversary. We seek to increase the classification
performance when the data distribution is changed with a malicious intent. By
contrast, the objective of GAN is to generate synthetic data that is indistinguishable
from the original data. Our objective function has cost and error terms defining the
attack scenarios in adversarial data generation settings. By contrast, the objective
function in GAN is defined in terms of the loss functions of the deep neural networks
learning the given training and testing data distributions.
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In a min-max game formulation, we seek to create the datasets for attack
scenarios in a discriminative learning model and supervised learning problem, while
GAN addresses a generative learning model and unsupervised learning problem.
Furthermore, the generator is the leader of the game in min-max formulation for
GAN, whereas in our min-max formulation, the intelligent adversary leads the
game. While searching for the Nash equilibrium in a min-max game, GANs solve a
convex optimization problem with gradient-based optimization algorithms, whereas
we solve a non-convex stochastic optimization problem with evolutionary learning
algorithms. Thus, we are able to estimate the best cost for the adversary in effecting
the adversarial attack.

Generative adversarial networks (GANs) [226] estimate data likelihood with an
adversarial framework involving a two-player game between a generator network
G and a discriminator network D. IWGAN [241] improves GAN’s estimations with
regularization that does not introduce correlations between generated examples.

The objective of our game formulation with variational autoencoders is not
to improve classification accuracy by augmenting the original data training the
autoencoders. Importantly, we note that the fundamental difference between our
research with variational autoencoders and generative networks objective is deceiv-
ing the classifier rather than mimicking the original data [241, 500]. We solve a
supervised learning problem with variational adversaries, while deep generative
models generally solve either unsupervised learning or semi-supervised learning
problems with generative adversaries.

2.6 Generative Adversarial Networks for Adversarial
Learning

Adversarial examples have been defined for deep generative models [325]. The
distribution of adversarial manipulations in white-box attacks as well as black-
box attacks has been modeled with AdvGAN [659]. A thread of research on
adversarial autoencoders [606] imposes a prior distribution on the output of an
encoder network learning training data, where autoencoder discriminatively predicts
whether a sample comes from its latent space or from prior distribution determined
by the user. By contrast, our game theoretical optimization problem is independent
from a particular training data distribution and classification model.

Larsen et al. [346] propose generative adversarial learning in the reconstruction
loss of a variational autoencoder. Tran et al. [605] propose constraints on the
distance function to train generative adversarial networks in the latent spaces of an
autoencoder. Gregor et al. [233] propose an attention mechanism-based autoencoder
to learn the latent spaces in a sequential variational autoencoder framework. Ha
et al. [246] propose a recurrent neural network for sketch generation in images.
Makhzani et al. [405] propose an adversarial training mechanism for probabilistic
autoencoders.
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A taxonomy of adversarial attack scenarios in deep learning is provided by
Gilmer et al. [219] and Biggio et al. [68]. Our attack scenario with Stackelberg
games proposes new adversarial payoff functions. We represent feature space
for adversarial manipulations in terms of adversarial cost functions, stochastic
operators, and game strategies in a simulated annealing algorithm.

Wang et al. [629] survey theories and implementations of generative adversarial
networks. A taxonomy of the existing generative adversarial network formulations
relevant for the game theoretical adversarial learning algorithms is summarized in
Tables 2.1, 2.2, 2.3, and 2.4. Across the rows in tables, the algorithm comparisons
are made on generator network’s attack scenario, loss function, strategy space,
and objective function. Most of the deep generative models do not analyze data
distributions in terms of game theoretical optimization of the objective functions. In
comparison, our methods propose adversarial payoff functions for optimization and
adversarial cost functions for regularization in the objective functions.

2.6.1 Causal Feature Learning and Adversarial Machine
Learning

Causality methods have been applied to deep learning problems such as semi-
supervised learning and transfer learning. In these problems, informed priors
retrieved from other networks are used to center the weights in hybrid deep
learning networks. Such networks are then used to construct statistical hypotheses
on patterns, structure, context, and content in actual data [431].

Backpropagation learning algorithms for deep networks have been improved
by training probabilistic graphical models. Such training is inherently Bayesian
where prior distributions inform and constrain analytics models predicting posterior
distributions [567]. The improved deep learning algorithms result in a predicted
output informed by causal inference. Within a Bayesian framework, causality
methods also enhance the interpretability of deep networks operating in an uncertain
environment [314].

We are interested in the attack scenarios with latent variable models in game
theoretical adversarial learning. Kumari et al. [336] study white-box attacks at the
level of the latent layers of the adversarially trained image classification models.
Higher robustness at the feature layers is achieved by the adversarial training
of latent layers with an iterative variant of FGSM. By contrast, our research
creates deep generative models for the adversarial manipulations that provide game
theoretical regularizers on the targeted classifier’s loss function.

Chattopadhyay et al. [112] propose a structural causal model for causal influence
of an input feature on a neural network’s output. Such causal influences on the
prediction function’s output are called neural network attributions. They are said to
be more interpretable artifacts of the deep network causations rather than regression
features that primarily map correlations between the input and the output of the
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neural network. In sequence prediction tasks with such a structural causal model,
the causal dependencies between different input neurons are assumed to be jointly
caused by a latent confounder such as a data-generating mechanism applied to time-
series models.

Yang et al. [677] study the pixel-level features for causal reasoning in pixel-wise
masking and adversarial perturbation. Ancona et al. [15] and Lundberg et al. [400]
discuss attribution methods in Shapley values from cooperative game theory.

Our research investigation is in creating such interpretable artifacts of the game
theoretical adversarial manipulations. Toward this end, we have created Granger-
causal features of the regression predictions. In future work, we shall create
predictive baselines in latent variable models of the data-generating mechanisms in
neural network attributions. We expect such baselines shall discover counterfactual
features in application-specific rule-based classifiers.

2.6.2 Explainable Artificial Intelligence and Adversarial
Machine Learning

We are interested in explainable artificial intelligence (XAI) of the deep generative
models applicable to game theoretical adversarial learning in black-box attacks.
Lou et al. [393] introduced generalized additive models (GAMs) as an interpretable
extension of generalized linear models (GLMs). Guidotti et al. [240] survey the
explainability of black-box models. Rudin [533] compares XAI models with
inherently interpretable models. Wang et al. [631] propose hybrid rule sets that
integrate interpretable models with black-box models. Frosst et al. [205] create
a decision tree that generalizes a neural network’s learning. Ribeiro et al. [516]
provide textual anchor explanations for image classification and visual question
answering. Ignatiev et al. [290] propose a constraint reasoning system to explain
predictions.

Strumbelj et al. [573] explain predictions with coalitional game theory. Bulo
et al. [528] define a randomized prediction game that is a non-cooperative game
theoretical formulation in which the classifier and the attacker make randomized
strategy selections according to some probability distribution defined over the
respective strategy set in handwritten digit recognition, spam detection, and malware
detection. Peake et al. [488] create interpretable structure of association rules
from latent factor recommendation system training a matrix factorization black-box
model. Lakkaraju et al. [343] create rule-based models with decision set learn-
ing designed for interpretability of submodular function optimization. Baehrens
et al. [23] propose explanation methods for the decisions of any classification
method. Ribeiro et al. [514] explain predictions of any classifier as a submodular
optimization problem. Shrikumar et al. [556] compute importance scores for neuron
activation in a neural network that show significant advantages over gradient-based
methods. Koh et al. [320] use influence functions from robust statistics to explain
predictions.
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Bastani et al. [35] propose metrics to evaluate the robustness of deep neural
nets. Narodytska et al. [453] create Boolean representation of a deep neural
network to verify its properties. Tomsett et al. [599] survey connections between
interpretability and adversarial attacks. Liu et al. [381] develop adversary-resistant
detection framework by utilizing the interpretation of machine learning models. Tao
et al. [593] propose an adversarial sample detection technique for face recognition
models, based on interpretability. Fidel et al. [194] propose a method for detecting
adversarial examples with SHapley Additive exPlanations (SHAP) values computed
for the internal layers of a DNN. Ilyas et al. [294] attribute adversarial examples
to the presence of non-robust features. Ignatiev et al. [291] demonstrate that the
explanations (XPs) of machine learning (ML) model predictions and of adversarial
examples (AEs) are related by a first-order logic (FOL) framework called hitting set
duality.

2.6.3 Stackelberg Game Illustration in Adversarial Deep
Learning

Figure 2.3 is a flowchart for our adversarial autoencoder-based Stackelberg game
model. A multi-label classifier CNNoriginal (henceforth shortened as CNNo) with
weights w∗ ∈ W is trained on labeled training data Xtrain and evaluated on labeled
testing data Xtest sourced from an image database. CNNo participates in a two-
player game with our game theoretical adversary. Adversary attacks CNNo on a
targeted positive label target = pos by generating optimal attack α∗ ∈ A at Nash
equilibrium for every negative label neg ∈ Neg that targeted positive label pos is
manipulated into. In this research, pos and Neg are class labels where overall =
pos ∪ Neg and A = Enc(Xtrain) is determined by an autoencoder function Enc

trained on Xtrain.
In each iteration of game, adversarial manipulation αbest is generated by a
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adversarial data Enc(Xtrain) + αbest in encoded space. It is then decoded as
Dec(Enc(Xtrain) + αbest ) to be evaluated against CNNo.

Upon convergence game outputs optimal α∗ inferred for each pair of pos and
neg. All α∗’s are then combined to effect a multi-label adversarial attack on CNNo

to output manipulated classifier CNNmanipulated (henceforth shortened as CNNm).
CNNm is finally retrained into secure classifier CNNsecure (henceforth shortened
as CNNs) that is robust to multi-label adversarial attacks.

2.7 Transfer Learning for Domain Adaptation

In machine learning, transfer learning applies learnable knowledge obtained from
one data analytics problem onto another problem. Storing, reusing, and transferring
information and knowledge from previous datasets and tasks have the potential
to improve sample efficiency in new machine learning problems such as those
involving reinforcement learning agents. After supervised learning, transfer learning
is a big driver of success in commercial machine learning and scalable deep learning.
As a form of multi-task learning, transfer learning can be used in supervised learning
to improve the multi-label classification in applications of adversarial machine
learning such as spam filtering and multicriteria classifiers.

Domain adaptation is a field of transfer learning that is applicable to spam
filtering. In it, a source distribution is used to learn a well-performing model for
a target distribution that is related to but different from the source distribution. The
source distribution could be spam emails received by a source user where domain
adaptation seeks to model the spam emails for a different target user. Thus, the
source and target data distributions have the same feature space but different data
distribution in domain adaptation. Unlike domain adaptation, the feature space of
source data for transfer learning can be same as well as different to the target data.

Domain adaptation can be used to model distributional shift in data available
for training and the machine learning algorithms and validating the corresponding
distributional robustness of adversarial learning algorithms. So the modern machine
learning community has several strategies for gaining domain adaptation between
training datasets and validation datasets in practical applications of artificial intelli-
gence. Such strategies lead us to conditional, semi-supervised, weakly supervised,
multimodal, and multi-structured variants of supervised learning algorithms. They
are weaker forms of supervised learning where hand-labeled training data is
not available without mistakes and noise in the class labels [680]. They result
in adversarial machine learning paradigms such as incremental learning, utility
learning, reinforcement learning, and online learning with class and cost distribution
information for transferable feature representations in adversarial examples due
to outlier detection, novelty detection, and change point detection within the
distributional shift’s information filtering. Here, we can inject domain expertise with
functions to label the new generated training data [693].



2.7 Transfer Learning for Domain Adaptation 39

2.7.1 Adversarial Examples in Transfer learning

Tramer et al. [604] propose methods to find the dimensionality of adversarial
examples that can transfer between deep learning models. Adversarial subspaces
with a large number of dimensions are more likely to enable transferability between
deep learning models. A decision boundary analysis of supervised learning is used
to study the limits of transferability between data distributions. Deep learning
models in computer vision are used to craft adversarial examples that humans can
recognize but computers misclassify. Reinforcement learning agents operating in
game theoretical data environments are proposed to make computers misclassify
the adversarial examples. Adversarial examples are found to occur in contiguous
regions of feature subspaces relevant to transfer learning among misclassified
points. These subspaces are found for linear and quadratic models for deep
learning in the digit classification problem using MNIST dataset and the malware
detection problem using DREBIN dataset. Model-agnostic adversarial perturbations
are obtained by shifting training data points in the directions obtained by difference
in the labeled class means in the input feature space. Multiple independent directions
for crafting the adversarial data manipulations are also obtained to measure the
dimensionality of the adversarial subspaces. They are generated with variants of
the fast gradient sign method that constrain adversarial perturbations with lp norms
of the classification loss functions. The transferability of adversarial examples
between deep learning models is studied with distances proposed between decision
boundaries of the undefended models and adversarially trained models.

Ma et al. [667] assess the dimensionality of adversarial examples with distance
distribution of an adversarial example and its neighbors. The decision boundaries
of adversarial subspaces are found to be transferable depending on the proximity
of legitimate data points to them in the adversarial directions. Such transferability
increases with the number of independent orthogonal adversarial directions of these
subspaces. Wang et al. [627] create adversarial examples for transfer learning mod-
els used in the context of image recognition applications such as face recognition,
iris recognition, flower recognition, and traffic sign recognition. Adversarial data
manipulations mimic the internal representation of the target image after transfer
learning.

Papernot et al. [479] train substitute learning models to craft transferable
adversarial examples between several deep learning and machine learning models.
The targeted classifier is designated an oracle that uses reservoir sampling to label
the training datasets and in turn increase efficiency for training the substitutes on
augmented datasets. The augmentation iteration alternates between augmentations
of the datasets used to train the substitute model and the labelings provided by
the oracle to fine-tune the augmentations. Reservoir sampling affects the quality
of the substitute by constraining the number of randomly generated labeling
queries made from the substitute to the oracle. Such a sampling method is suitable
for real-world environments where adversary is constrained by quotas on being
detected by a defender. The transferability of adversarial samples is studied between
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deep neural networks, logistic regression, support vector machines, decision trees,
nearest neighbors, and classifier ensembles. Even commercial machine learning
classifiers hosted by Amazon and Google are considered in the experimental
evaluation. Substitutes are designed for black-box attacks where adversaries target
remote classifiers without knowledge about model architecture, parameters, and
training datasets. Experiments indicate that knowledge transfer occurs between
many machine learning models to a deep neural network mimicking the decision
boundaries of the original classifier.

To study transfer learning with target labels, Liu et al. [388] distinguish between
non-targeted and targeted adversarial examples. Adversarial examples are generated
to transfer to particular target labels as misclassified by deep learning models. Chin
et al. [122] propose a new transfer learning method for fine-tuning the robustness
of transferred neural network obtained from regularizing the pre-trained models in
deep learning. The adversary has access to the pre-trained model’s weights and
architecture but does not have access to task-specific transferred model and query.

Baluja et al. [26] train a neural network called adversarial transformation
network (ATN) to craft a targeted adversarial attack. Instead of solving per-
sample optimization problems to create the adversarial data, ATN creates minimally
modified adversarial examples for every input training image. ATNs accommodate
various threat models such as training black-box and white-box targets over targeted
and untargeted attack scenarios on the rank orders in the target neural network’s
outputs. Further ATN can be trained to generate either an adversarial perturbation
from a variant of residual networks or an adversarial autoencoding of the input
reconstructed with adversarial noise signal.

Wu et al. [654] identify transferable adversarial examples due to the skip
connections in supervised deep learning. Gradients from the skip connections are
proposed to craft the adversarial examples. They transfer to the state of the art in
deep neural networks including ResNets, DenseNets, Inceptions, Inception-ResNet,
and Squeeze-and-Excitation Networks. Furthermore, such adversarial examples
can be combined with existing black-box techniques for adversarial attacks to
obtain improvements in the state-of-the-art transferability methods. Such adversarial
examples raise security concerns in the deployment of deep neural networks in
applications such as face recognition, autonomous driving, video analysis, and
medical diagnosis.

2.7.2 Adversarial Examples in Domain Adaptation

Su et al. [575] propose adversarial domain adaptation with active learning. Impor-
tance sampling combined with adversarial training is used to account for distribution
shifts between domains. It acts as a sample selection scheme for active learning
especially when the target domain does not have as many labeled examples as the
source domain. In the importance sampling, a diversity of samples is generated with
the help of adversarial loss. Such a semi-supervised domain adaptation improves
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classification performance and reduces labeling cost with domain adversarial
learning on object classification and detection tasks.

Zhang et al. [700] extend unsupervised domain adaptation in semantic seg-
mentation with adversarial learning. Pixel-level annotated samples in the source
domain are used to segment unlabeled samples in the target domain. In adversarial
learning, a discriminator is built to distinguish between source and target domains.
A segmentation model then targets to deceive the domain discriminator with deep
learning. The task of semantic segmentation is to assign class labels to all pixels
in an image. Semantic segmentation serves as the backbone for computer vision
systems like autonomous vehicles operating in urban environments. Vu et al. [624]
address the task of unsupervised domain adaptation in semantic segmentation with
losses based on the entropy minimization of the pixel-wise predictions. Adversarial
training analyzes residual nets for semantic segmentation to construct feature maps
on the source domain that are similar to those in the target domain. The neural
network for semantic segmentation is learned on generated images with the content
of the source domain and style of the target domain for which source segmentation
map serves as the ground truth. Several semi-supervised learning paradigms for
domain adaptation can benefit from the design of such adversarial losses.

Yang et al. [678] study domain adaptation in semantic segmentation. Adversarial
learning is used to match the marginal distribution of feature representations
across domains. Attack objectives are proposed on intermediate feature maps that
learn domain-invariant task-discriminative representations. They are supervised by
semantic segmentations in the source domain. By improving robustness of the
supervised learning, transferable adversarial examples fill the gap between domains
from adaptions in the classification decision boundaries. Such an adversarial
learning can also be understood as a form of active learning or hard example
mining where the model minimizes the worst-case error when features are perturbed
by adversaries. Adversarial features are generated by accumulating gradient maps
of the attack objectives in semantic segmentation classifiers. Prediction maps of
adversarial features intended to confuse the segmentation classifier are further
optimized according to an entropy minimization technique that provides extra
supervision in the training objectives.

Kim et al. [315] reformulate the mapping function in domain adaptation for trans-
lating images from one visual domain to another as a conditional image generation
problem for generative adversarial networks (GANs). Proposed DiscoGAN does
not require explicit labels on the images being generated. An image reconstruction
loss is proposed to encourage mapping between multi-modal image domains. A
new GAN architecture is given to define cross-domain relations changing specified
attributes such as hair color, gender, and orientation. So GANs can generate images
of objects in domain adaptation based on specified image characteristics, styles,
and viewpoints. Encoded text description of images can be used as conditional
information to generate images. Pre-trained face recognition modules can also be
used as conditional inputs to GANs.

Sankaranarayanan et al. [539] give a learned embedding for unsupervised domain
adaptation. It is robust to distribution shift between source and target domains.
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Unsupervised data from target distribution is sampled to guide the supervised
learning procedures in data sampled from source distribution. An adversarial
image generation approach learns the feature embeddings with a classification loss
and an image generation procedure. Proposed approach yields better results than
feature embeddings based on denoising autoencoders and domain classifiers. Thus,
adversarial losses can perform domain adaptation.

Mancini et al. [407] discover latent domains for domain adaptation. They
are embedded into a CNN architecture to learn robust target classifiers. Domain
membership information aligns the distribution of CNN feature representations to
a reference distribution. Such classifiers span multiple domain distributions without
the need for labeled training data. Such latent domains represent the manifolds in
source domain images and learn information about their semantic categories. Tzeng
et al. [613] combine discriminative modeling with GAN losses to handle larger
distribution shifts that are not handled by GANs alone. Such adversarial adaptation
methods seek to minimize an approximate domain discrepancy distance through an
adversarial objective for a domain discriminator. This work on adversarial losses
for domain adaptation subsumes previous design choices made in deep learning
for domain adaptation. Domain-specific feature extraction is allowed to be learned
by not sharing the neural network weights between source and target domains. The
target domain classifiers are adversarially trained until they match the source domain
classifier’s predictions. Applications are demonstrated on cross-modality adaptation
tasks.

Shen et al. [554] learn domain-invariant representations with Wasserstein
distance-guided representation learning (WDGRL). By providing an adversarial
objective to a domain classifier, a min-max game is designed for domain adaptation
to make source and target feature representations indistinguishable. The domain
classifier distinguishes between source and target representations whereWasserstein
distance acts as the domain discrepancy measure for adversarial loss. WDGRL is
optimized with iterative adversarial training strategy to minimize the estimated
Wasserstein distance between source and target feature representations. Thus, deep
learning acts as a powerful framework to learn feature representations for domain
adaptation. Specifically, Wasserstein distance is able to relate the source and target
errors.

Wang et al. [635] propose an adversarial objective loss function to bridge
source and target domains by learning a domain-invariant deep representation on
the transferable regions in images. Such a transfer learning is able to produce
a discriminative model that reduces dataset shift between training and testing
distributions. The resulting domain-invariant representations can be embedded into
deep neural network architectures to minimize the discrepancy between source and
target feature distributions with adversarial learning. The attention mechanism in
deep learning is highlighted to extract fine-grained features considering different
regions of images obtained from different domains. A transferable local attention
mechanism is proposed to generate multiple region-level domain discriminators,
and a complementary transferable global attention mechanism is proposed to
generate a single image-level domain discriminator to highlight transferable images.
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Further, the adversarial model training can be extended to multiple discriminators
to enhance the distribution matching where discriminator designs can range from
formidable adversary to forgiving teacher. Here, a min-max game is proposed
between a discriminator and a generator such that the domain discriminator dis-
tinguishes between source and target data, while the generator is a feature extractor
trained adversarially to deceive the domain discriminator. These designs in deep
domain adaptation are an extension to the classical ideas in statistics of defining a
statistical distance in probabilistic metric space. Such a distance is then minimized
by learning a representation of source and target data that is able to bridge the
distribution discrepancy between different domains. Such transferable attention
models based on adversarial loss transferring attention between objects in source
and target domains have applications in image captioning, image segmentation, and
image classification. Resulting deep network classifiers can be trained on labeled
source data domain and generalize well to unlabeled target data domain. They
can be refined further toward classifier adaptation by minimizing the entropy of
class-conditional distribution to be regularized on target domain. The local attention
generation mechanism creates an attentive entropy value for each image’s entropy
loss to enhance the matching of similar images across source and target domains.
The attentive entropy loss is combined with the domain adaptation objective and
the adversarial classification objective to obtain a unified optimized problem for
adversarial training. The optimal solution to create feature representations is then
obtained with a backpropagation procedure on errors that can be computed on
differentiable losses. Such feature representations can be extended into multimodal
optimization problems involving adversarial feature selection in robust machine
learning.

2.7.3 Adversarial Examples in Cybersecurity Domains

Adversarial examples were first created in image classification. Due to depth of
architectures in deep learning classifiers such as CNNs, the interpretability of the
millions of learned parameters in such models comes at a premium. They have
been extended to more complex mechanisms for attacking face recognition, video
action recognition, and physical-world adversarial attacks on road signs. Wei et
al. [640] generate transferable adversarial examples for image and video object
detection. Transferability of the adversarial examples is enhanced by manipulating
the low-level feature maps from multiple layers of the object detectors. An attention
weighting mechanism is integrated into the feature loss to manipulate feature
subregions. A high-level class loss is used to train the generators. The adversarial
example generation is formulated as an image-to-image translation problem. Such
adversarial examples can be created for two common types of models for object
detection categorized as proposal-based models and regression-based models.

Adversarial examples can be crafted by changing pixel-level values in image
classification. They have also been created by applying patches of changes to
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images used in object detection over stop signs, for example. Thys et al. [598]
craft adversarial patches in person detectors. Here, the target classes contain lots
of intra-class variety unlike stop sign’s dataset. Such adversarial attacks can be used
as cloaking devices to circumvent surveillance systems where intruders can sneak
around undetected by holding a small cardboard plate in front of their body aimed
toward the surveillance camera. They can augment the human-annotated images
to determine the model performance for person detection. Such test sets account
for adversarial examples designed to steer the model in the wrong way and further
target to fool the model. Such vulnerabilities in person detection models of a security
surveillance camera can be highlighted as risks of such an attack on the detection
system. The bounding box for adversarial patches is predicted according to an object
score and a class score components in the adversarial losses. Adversarial patches
are then applied to the images after various transformations to fool the detectors
even more. This allows the generation of targeted attacks where data is available
for particular scenes in the footage environment. Some of the factors influencing
an adversarial patch generation are lighting changes, viewing angle differences,
rotations in patch, size of patch. They can change with respect to person size, camera
can add noise or blur the patch. They optimize an image to minimize different
probabilities related to the appearance of a person in the output of a detector. In
experiments, the effects of generated patches are compared with that of random
patches to determine the most effective patches minimizing object loss. Optimizing
the adversarial losses for different detector architectures ensures the transferability
of the adversarial patches.

Elsayed et al. [172] create adversarial examples that transfer from computer
vision models to time-limited human observers. The effect of adversarial examples
in machine learning is investigated in contrast to cognitive biases and optical
illusions in human visual perception studied by neuroscience. So it is possible to
craft adversarial examples with human-meaningful features. They can be designed
to cause a mistake not only in visual object recognition but also in human perception.
Elsayed et al. [172] design psychophysics experiments to compare the pattern
of errors made by humans to the misclassification validations in neural network
classifiers.

Brown et al. [87] create targeted adversarial image patches that can attack any
scene in the physical world to cause an image classifier to output any target class
under a wide variety of mathematical transformations. Prior knowledge of lighting
conditions, camera angle, and classifier types being targeted is not required to
create such a physical-world attack. In image classification tasks, the classifier
must detect the most salient feature in an image to determine its class label. The
adversarial path exploits this feature to produce adversarial features that are much
more salient than objects in the physical world. So large local perturbations that are
not imperceptible can also mislead machine learning classifiers that operate without
human validation. So adversarial examples can be crafted for the physical world
by modeling adversarial examples from physical transformations where robots are
perceiving the world through cameras, sensors, and phones to deal with image,
sound, and video data representations.
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Athalye et al. [19] synthesize 3D adversarial objects that are adversarial over a
chosen distribution of transformations such as viewpoint shifts, camera noise, and
affine transformation. An expectation over transformation algorithm is designed in a
white-box attack scenario where adversary has access to classifier, its gradient, pos-
sible classes, and a space of valid inputs. In the optimization procedure for creating
adversarial examples, the adversarial perturbations are modeled with respect to an
expectation defined on a chosen distribution of transformation functions. Instead
of selecting the log-likelihood of a single example as the optimization objective,
the effective distance between adversarial and original inputs is minimized. This
is the expected or perceived distance as seen by the classifier. The optimal solution
resulting in adversarial data is obtained by a stochastic gradient descent algorithm of
the expected value where the gradient is computed through differentiation through
each of the sampling transformations. Such an adversarial attack scenario treats the
cyber world as a domain whose transformations transfer to the physical world acting
as a codomain. The distribution of transformations acts as a perturbation budget to
produce successful adversarial examples.

Machine learning systems are vulnerable to adversarial attacks especially in
non-stationary adversarial environments within the cybersecurity domains. Beyond
image recognition domains such as deepfakes in detection systems, adversarial
learning applications in the cybersecurity domains include malware identification,
spam detection, risk scoring, SQL injection, ransomware development, biometrics
recognition systems, traffic sign detection, autonomous driving, anomaly detection,
entity classification, dictionary learning, cyber-physical systems, and industrial
control systems. In cybersecurity domains, modifying an API call or an executable’s
content byte might cause the modified executable to perform a different functional-
ity. So adversaries in the cybersecurity domains must implement methods to modify
executable’s features that will not break its functionality due to the perturbed data
samples in feature vectors within URL characters, spam emails, network packets,
phishing detectors, sensor signals, physical processes, etc. Some of the targeted
attacks in neural networks built for cybersecurity domains are dedicated APT
attack, Trojan attack, backdoor attack, and distributed denial-of-service (DDoS)
attack. In cyber-physical systems, adversarial learning applications play a role in
the optimization of critical infrastructure such as electric power grids, transportation
networks, water supply networks, and nuclear plants. In biometrics recognition
systems, adversarial learning has applications in handwritten signature verification,
fingerprint classification, face recognition, sentiment analysis, speaker recognition,
network forensics, and iris code generation. A survey of adversarial attacks in
cybersecurity in contrast to computer vision is given by [656] and [616]. It can
be used to build threat-knowledge databases in sensitive real-time applications for
artificial intelligence and soft computing.



Chapter 3
Adversarial Attack Surfaces

In this chapter, we explore adversarial attack surfaces. We examine how they can
exploit vulnerabilities in machine learning and how to make learning algorithms
robust to attacks on security and privacy of the learning system. To explore the
vulnerabilities, we can simulate various model training processes under a range
of various attack scenarios in supervised and unsupervised settings. Each attack
strategy is assumed to be formulated by an intelligent adversary that is capable
of either feature manipulation, label manipulation, or both. The optimal attack
policy of the adversaries is determined by the solution for optimization problems
that output the adversarial data. We can then apply the knowledge that we learned
to improve and reinforce the learning procedure so as to better defend against
attacks. The sensitivity analysis summarized in this chapter can be used to develop
computational algorithms for optimization objectives and statistical inferences
in adversarial learning algorithm’s capacity for randomization, discrimination,
reliability, and learnability. It creates research pathways into robustness, fairness,
explainability, and transparency of machine learning models.

3.1 Security and Privacy in Adversarial Learning

Evasion Attacks Biggio et al. [54] discuss adversarial security at test time of a
deployed classifier system. Security evaluation is then performed at different risk
levels of non-linear classifier performance in malware detection. A secure classifier
is proposed by using a gradient descent approach on a differentiable discriminant
function. Adversary’s goal is defined in terms of minimizing classifier’s loss
function with positive adversarial samples that cross decision boundary. This model
can also incorporate application-specific adversarial knowledge in the definition of
adversarial attack scenarios. Such adversarial knowledge includes prior knowledge
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about training data, feature representation, type of learning algorithm and its
decision function, classification weights, and feedback from classifier.

Poisoning Attacks In security-sensitive settings, machine learning algorithms
cannot assume training data is from a natural and well-behaved distribution. By
injecting adversarial examples into training data such that testing error increases,
Biggio et al. [66] investigate poisoning attacks against support vector machines
(SVMs) with linear kernel, polynomial kernel, and RBF kernel. A gradient ascent
procedure is used to compute adversarial examples as local maxima of SVM’s
non-convex error surface. In gradient ascent iteration, after each update to attack
example, optimal decision boundary is computed from solution to an incremental
SVM. Search procedure takes many tiny gradient steps. It is stopped when attack
example deviates too much from training data. The changes to SVM’s decision
boundaries due to malicious input are shown to be important in application domains
such as spam, worm, intrusion, and fraud detection.

Xiao et al. [664] propose adversarial label noise to maximize SVM’s worst-
case classification error by flipping labels in the training data. Attack strategies for
creating the adversarial label noise are motivated by a structural risk minimization
framework. In this framework, SVM learning minimizes a sum of a regularizer
risk and empirical risk in data. Here, a regularizer penalizes excessive hypothesis
complexity to avoid overfitting in a convex optimization quadratic programming
problem. The adversary then optimizes empirical risk on malicious data so that
the SVM is misled into shifting decision boundary away from the original data
distribution. Empirical risk optimization is further decomposed into two iterative
sub-problems solved by quadratic programming and linear programming. Further
labels of samples in different classes are flipped in a correlated way to force the
hyperplane forming decision boundary to rotate as much as possible. Adversary is
assumed to have full knowledge of the feature set in the training data with equal
cost assigned to each label flip.

Inference Attacks Shokri et al. [555] investigate privacy breach problem of
commercial classification models leaking information about their training data on
Internet applications. Adversary queries target model as a black-box to retrieve
model’s output on a given input. Such inputs are generated by training shadow
models that imitate the behavior of the target model. In contrast to the black-box
target model, shadow models know ground truth label for the inferred record. The
black-box models are neural network models in Amazon ML and Google Prediction
API trained on datasets of images. The details of black-box models are hidden
from their data owners. The datasets are obtained from retail purchases, location
traces, and hospital inpatient stays. Here, a privacy breach is said to occur if the
adversary can use model’s output to infer the values of sensitive attributes in the
model input. The attribute inference is defined by Shokri et al. [555] in terms of class
membership inference of given data record’s presence in model’s training dataset.
The success of the proposed class membership inference is measured in terms of
attack precision and attack recall of target model. The shadow model is trained
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on a synthetic dataset with a hill-climbing algorithm generating candidate records
which are classified with high confidence by the target model. In each iteration
of hill-climbing, a candidate record is proposed by changing randomly selected
features of latest accepted record. A candidate record is accepted in hill-climbing
algorithm only if it increases the probability of being correctly classified by target
model. Several defense strategies are proposed against class membership queries.
These strategies include restricting prediction vector to top classes, rounding
classification probabilities, increasing entropy of prediction vector such that output
becomes almost uniform and independent of input, and regularizing classification
loss function to penalize large parameters during training.

3.1.1 Linear Classifier Attacks

Dalvi et al. [142] analyze classifier performance by viewing classification as a
game between the classifier adapting to an adversary seeking to make the classifier
produce false negatives. Here, the cost-sensitive adversary is contrasted with the
cost-sensitive classifier where data-generating process in adversarial classification
not only is allowed to change over time but also allows this change to be a function
of classifier parameters. Adversarial classification is thus defined in terms of a
game between two players—the adversary and the classifier—where the classifier
maximizes its payoff function characterized by classifier’s expected payoff over
adversary’s cost parameters.

Dalvi et al. [142] propose that the adversary’s goal is to find a classification
feature change strategy that maximizes adversary’s expected payoff. Adversarial
examples are generated by standard feature selection algorithms with naive Bayes
classifier’s payoff function as evaluation function. The theory of computationally
tractable Nash equilibria strategies in adversarial classification is left as an open
question analyzing the two-player non-zero sum games.

Lowd et al. [394] introduced adversarial learning algorithms for linear classifiers
under attack. The goal of adversarial learning is to learn and attack part of classifier’s
decision boundary by learning feature weights without (i) constructing domain-
specific feature representations and (ii) assuming a stochastic process for training
data distribution.

Lowd et al. [394] assume that adversary can send membership queries to
classifier to distinguish between malicious examples and non-malicious examples.
The computational complexity of possible membership queries is bound by a
polynomial number of line searches along each feature dimension. Adversarial
learning algorithm then minimizes a linear adversarial cost function over non-
malicious instance space to be learned by the adversary. Optimal adversarial
cost function produces non-malicious examples that are most similar to a base
adversarial example accessible to the adversary.

Lowd et al. [394] also demonstrate adversarial training experiments on linear
classifiers like naive Bayes models, support vector machines with linear kernels,
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and maximum entropy models learning Boolean features for spam filtering. The
proposed learning framework (called ACRE) is useful to study both the attacker
or adversary and the defender or classifier. It can be used to determine whether an
adversary can efficiently learn enough about defeating a classifier by minimizing an
adversarial cost function.

3.2 Feature Weighting Attacks

Traditionally, machine learning algorithms assume that algorithm training can be
performed on controlled and high-quality data. In the real world, machine learning
is performed on noisy and uncertain data. Here, a robust classifier can anticipate
noisy features during testing only when it is trained assuming noisy features are
present during training. Moreover, robust classifiers must be dense classifiers that
train on as many informative or important features as possible. Such considerations
are the focus of feature weighting techniques in adversarial environments. Here,
adversarial data created by an intelligent adversary is different from the random
noise found in the natural world.

Since traditional classifiers cannot continuously adjust to changes in adversarial
environments, Kolcz et al. [321] attempt to design classifiers that degrade gracefully
as the distribution of testing data diverges from the distribution of the original
training data. This is done by a feature selection process reweighting less important
features for classification. The feature weighting improves model performance by
making it robust to concept drift in data at the expense of extra computational
cost in the model. The intuition behind this approach is that weight distribution
over features for the learning algorithm reflects the importance of the features for
unsupervised and supervised learning.

Kolcz et al. [321] envision a two-stage approach to robust classifier training
where classifier is used to assign weights to features in the first stage which are
then transformed through feature weighting to induce the final model in the second
stage. The final model satisfies an objective function to be optimized. Since a
single best reweighting scheme for both supervised and unsupervised learning is
not available in the literature, Kolcz et al. [321] experiment with several choices for
feature weighting. The objective function for feature weighting is formally analyzed
by Kolcz et al. [321] as a particular case of regularized risk minimization with a
quadratic form regularizer and convex loss function.

The feature weighting methods in experiments by Kolcz et al. [321] include fea-
ture bagging, partitioned logistic regression, confidence-weighted learning, feature
noise injection, and sample selection bias correction. These details are described
below:

• Feature bagging trains a probabilistic model as arithmetic or geometric mean
of several base models. Each base model is trained on possibly overlapping
subset of the original features. The performance of the bagged model is supposed
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to more robust than the performance of any base model because weights of
less important features will be overwhelmed by the weights of more important
features during the training process.

• Partitioned logistic regression is a special case of feature bagging where feature
subsets and class labels are non-overlapping.

• To prevent undertraining, confidence-weighted learning aggressively updates
weights of rare features in the data by maintaining a normal distribution over
the weight vector of a linear classifiers. The feature weights are updated such
that the Kullback-Leibler divergence between the training data distribution and
testing data distribution is minimized without reducing model performance.

• Feature noise injection alleviates the problem of model overfitting to training data
by introducing artificial feature noise during model training.

• Sample selection bias correction assigns feature weights such that reweighted
training data resembles the available testing data. The correct weights are inferred
without explicit density estimation. However, sample selection bias correction
assumes the testing data is also available during training in the input domain.

Liu et al. [378] design supervised learning algorithms secure to adversarial poison-
ing attacks that do not make independence assumptions on feature distributions.
Poisoning attacks are assumed on both dimensionality reduction and predictive
regression steps. High-dimensional features are projected into a low-dimensional
subspace with high data density. Then linear regression models best characteristics
of data. A matrix factorization algorithm is proposed to recover low-dimensional
subspace in the presence of training data corrupted by both noise and adversarial
examples. A principal component regression uses trimmed optimization to estimate
regression parameters in low-dimensional subspace.

In the adversarial attack scenario proposed by Liu et al. [378], the regression
model can choose its training process and defense strategy without access to training
data before adversarial manipulation. The adversary has full knowledge of training
algorithm and parameters. The adversarial attack scenario is simulated as a zero-sum
Stackelberg game where adversary’s payoff function minimizes a certain budget of
poisoning training data, while regressor’s payoff function is regression accuracy.
The learning process is formally characterized in terms of a model function relating
the adversarial input and the predicted output. A quadratic loss function and a
threshold function bounding loss function are also analyzed in the regression.
An alternative maximization solves the proposed optimization problem on HTTP
logs. The adversarial data is generated by moving training data samples along a
direction to manipulate the regressor until it cannot predict correctly. Results are
benchmarked against robust regression models like OLS linear regression and ridge
regression predictions in the presence of noise.



52 3 Adversarial Attack Surfaces

3.3 Poisoning Support Vector Machines

According to the previously discussed adversarial security mechanisms, poisoning
attacks are causative attacks where specially crafted attack points are injected
into the training data. In a poisoning attack, an adversary cannot access the
training database but can provide new training data. Poisoning attacks compromise
the security of a large-scale learning system that infers hidden patterns in large
complicated datasets to support decision-making with behavioral statistics. Previous
poisoning attacks have been studied with anomaly detection methods.

In the probably approximately correct (PAC) model, the structural risk minimiza-
tion of SVM learning is studied in the context of a convex quadratic programming
problem. The impact of stochastic and adversarial label noise on support vector
machine (SVM) classification errors has been theoretically analyzed under the PAC
learning model. Poisoning attacks in SVMs have been addressed by considering data
sanitization as a form of outlier detection, multiple classifier systems, incremental
learning, and robust statistics. Evasion attacks in SVMs have been addressed by
explicitly embedding knowledge of adversarial data manipulation into the learning
algorithm using (i) game theoretical models for classification, (ii) probabilistic
models of data distribution drift under attack, and (iii) multiple classifier systems.

Biggio et al. [65] demonstrate that an intelligent adversary can predict change in
SVM’s decision function due to adversarial input. Poisoning attacks against an SVM
inject adversarial examples into training data to increase the SVM’s testing error.
The attack proposed by Biggio et al. [65] has an incremental learning technique
with a gradient ascent strategy. The gradient is computed based on properties of
the SVM’s optimal solution. Since the attack depends on gradient (of dot products
between points in input space), the attack is also kernelized by using both linear and
non-linear kernels in the input space. For increasing the testing error, the gradient
ascent procedure converges to local maxima of the non-convex validation error
surface. The proposed gradient ascent strategy assumes that the adversary knows
the training data used by the learning algorithm. In real-world attack scenario, a
substitute training dataset could be used instead of the original training dataset. The
convergence of proposed gradient ascent strategy depends on the smoothness of
SVM parameters and the manifold geometry of data points found in the solution of a
quadratic programming problem. The proposed attack strategy can also be extended
to a coalition of attacks where choosing the best subset of data points for attack is a
subset selection problem.

Huang et al. [664] propose an adversarial learning algorithm for attacks on
SVMs that maximize classification error by flipping labels in the training data.
The proposed contamination attack is a poisoning attack because it targets SVM’s
testing error (also called empirical risk in PAC model) by contaminating the
training data labels. The proposed adversarial data manipulation is called label
noise injection. Two attack algorithms are proposed to account for adversarial
data manipulations. Both algorithms assume that the adversary has access to the
feature set of training data. Each label flip by adversary is assumed to have equal



3.4 Robust Classifier Ensembles 53

cost that is independent of the feature values in the sample. The first algorithm
greedily maximizes SVM’s test error through continuous relaxation of the label
values in a gradient ascent procedure. The second algorithm does a breadth-first
search to greedily construct sets of candidate label flips that are correlated to the
SVM’s testing error. Both algorithms can be understood as a search for labels
that achieve maximum difference between empirical risk for classifiers trained on
original data and contaminated data. The algorithms can also be used to simulate
a constant sum game between the attacker and the classifier whose aim is to,
respectively, maximize and minimize testing error on the untainted test dataset.
Different game formulations can be simulated if the players use non-antagonistic
objective functions. Improvements to the algorithms are possible by the study of an
incremental SVM under label perturbations. The problem of label noise injection
creating the attacker manipulation in an SVM is also related to the classification
problems for SVMs in semi-supervised learning, active learning, and structured
prediction.

3.4 Robust Classifier Ensembles

Biggio et al. [59] propose that an ensemble of linear classifiers can improve
not only accuracy but also robustness of supervised learning. That is because
more than one classifier has to be evaded or poisoned to compromise the whole
ensemble of classifiers. The training strategy evenly distributes the feature weights
between discriminative and non-discriminative features in data. Undermining the
discriminative weights in the classifier can then undermine the accuracy of the
classifier. The objective of robust classifier ensembles is then to find such a correct
tradeoff between robustness and accuracy. Here, an adversary is forced to modify a
large nature of feature values to manipulate the classifier.

Biggio et al. [59] design boosting and random subspace method (RSM) to
distribute weights in the adversarial algorithm. The adversarial behavior is modeled
in terms of two scenarios—a worst-case scenario where the adversary has complete
knowledge of the classifier and an average-case scenario where the adversary has
only an approximate knowledge of the classifier. The ensemble discrimination
function is then obtained by averaging different linear classifiers trained on different
randomly selected subsets of the original feature set.

The averaging method by Biggio et al. [59] to find ensemble performance is
an extension of the idea to use average performance of linear classifier to prevent
overfitting or underfitting in imbalanced data. By reducing the variance component
of classification or estimation error, the randomized sampling used in the algorithm
reduces instability in decision or estimation function. Such a stable decision function
is not supposed to undergo large changes in output for small perturbations in input
data due to adversarial data or stochastic noise.

In Biggio et al. [59], the experimental evaluation has two objectives. The
first objective is to understand the conditions under which randomized sampling



54 3 Adversarial Attack Surfaces

produces an evenly distributed weight distribution in an ensemble of classifiers. The
second objective is to evaluate whether the evenly distributed weights improve the
robustness of classifier’s ensemble as compared to a single base classifier. Thus,
randomization-based sampling techniques are shown to be useful in the design of
pattern recognition systems in adversarial environments.

Biggio et al. [60] extend adversarial environments in linear classifiers to
randomization-based multiple classifier systems (MCS). The MCS combines linear
base classifiers via bagging and random subspace sampling. For improvements to
classification accuracy and robustness, MCS’s weight distributions are investigated
for more even distribution of weight values than single classifier weights. In
worst-case attacks, adversary is assumed to have complete knowledge of the
feature set, classifier parameters, and the decision function. In non-worst-case
attacks, adversary is assumed to have an incomplete knowledge of classifier’s
decision function. Classifier robustness is then evaluated as a function of attack
strength, representing maximum number of features which can be modified by the
adversary. In non-worst-case attacks, adversary approximates feature weights by
overestimating or underestimating the importance of most discriminant features in
classification performance. In worst-case attacks, adversary is supposed to modify
the features to minimize decision function and maximize decrease in the classifier
performance.

Biggio et al. [58] formally measure hardness of evasion for an adversary targeting
pattern classification systems in general and an ensemble classifier architecture in
particular. Hardness of evasion is taken into account in the choice of features and
choice of classifier architecture. It is defined as the expected value of minimum
number of features to be modified by an adversary who seeks to evade classifier.
It is calculated on disjoint subsets of discriminant (class-conditioned iid) features’
weights assumed to be equally distributed among multiple classifiers with the same
decision functions. Classifier parameters are chosen to minimize a classification cost
given in terms of the false positive and the false negative errors.

3.5 Robust Clustering Models

Adversarial clustering problems cannot be solved by clustering stability criteria that
address stochastic noise in dataset, rather than targeted adversarial manipulations.
Biggio et al. [67] devise poisoning and obfuscation attacks for single-linkage
hierarchical clustering. In such poisoning attacks, the adversary’s goal is injecting
adversarial examples in the clustering quality measure. In obfuscation attacks, the
adversary’s goal is to hide data samples in existing cluster by manipulating the
feature values. In these attacks, a cluster is defined as not only the hard partition
(and the soft partition) of partitional clustering algorithms but also as the dominant
sets (and parameterized hierarchy of subsets) in linkage-type clustering algorithms.

Biggio et al. [67] put additional constraints on attack scenarios with a distance
metric between non-manipulated training data and manipulated adversarial data.
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Degree of knowledge of the adversary is encoded by entropy of a probability
distribution in an attack sample. The probability distribution is defined over
the knowledge space of the adversary giving information about the dataset and
its parameterization in the clustering algorithm. Supposing such an adversarial
knowledge, adversary’s goal is an objective function expressed in terms of a (i)
real-valued distance measure between clusterings evaluating attack samples for
poisoning attacks and (ii) non-negative real scalar divergence measure between
attack samples and target samples. Here, a greedy heuristic dendrogram cut criteria
represents the single-linkage hierarchical clustering output as a binary matrix of
probabilities assigning samples to clusters.

3.6 Robust Feature Selection Models

Xiao et al. [663] provide an adversarial framework to investigate poisoning attacks
on feature selection methods such as LASSO, ridge regression, and elastic net.
Such feature selection is used to derive security-sensitive actionable information in
large-scale high-dimensional data-driven technologies like spam detection, malware
detection, web page ranking, and network protocol verification. Xiao et al. [663]
assume feature selection to be a problem of filtering a relevant feature subset
inferring an iid random process for the training data. Feature selection criteria is
then represented as an optimization of an objective function such as classification
error and prediction information gain.

Xiao et al. [663] define the adversary’s goal in terms of a security violation
which can be categorized as any one of integrity violation, availability violation,
and privacy violation in feature selection. Integrity violation slightly modifies
selected feature subset to facilitate subsequent evasion attack. Availability violation
compromises feature selection algorithm to produce an output feature subset with
largest generalization error. Privacy violation reverse-engineers feature selection
process to infer information about feature subset, training data, and system users.
A targeted attack affects specific feature subset, while indiscriminate attack affects
selection of any feature.

Xiao et al. [663] suppose that adversary’s knowledge can be about assumptions
on training data, feature representation, feature selection algorithm, and feature
selection criteria. Then adversary’s influence can be either causative or exploratory
to affect either training data or testing data, respectively. Here, poisoning attacks for
feature selection manipulate feature values and labels in training data to construct
poisoning samples that will be misclassified subsequently. Evasion attacks for
feature selection manipulate testing data to evade detection by proposing distance
measures and adversarial strategies to compare original data, non-manipulated
attack sample, and attack sample. Such adversarial strategies are expressed in terms
of the adversary’s knowledge, the adversary’s capability, the adversary’s goal, and
the adversary’s influence in affecting the computation of an adversarial loss function
empirically simulating feature selection algorithms on poisoned data.
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For each feature selection algorithm in the experiments, Xiao et al. [663]
optimize an adversarial loss function with a (sub)gradient ascent algorithm solving a
convex optimization problem. The feature spaces are assumed to define continuous
and discrete features and differentiable and non-differentiable features. To evaluate
the feature selection under attack settings, a stability index is proposed to indicate
anti-correlation rankings between feature subsets of the feature selection algorithm.
Experiments show that an adversary can easily compromise feature selection
algorithms that promote sparsity in the feature representation. The poisoning attacks
and evasion attacks are said to mislead model’s decision-making by introducing
model bias and model variance, respectively, into the feature selection algorithm’s
mean squared error decomposition.

Mei et al. [419] poison latent Dirichlet allocation (LDA) corpus so that LDA
produces adversarially manipulated topics in LDA user decisions. Adversarial attack
is formulated as a bilevel optimization problem for variational inference under
budget constraints. It is solved by a computationally efficient gradient descent
method based on implicit functions. The optimization employs a KL divergence
between LDA learner’s word-topic distribution and fully factorized variational
distribution constrained by Karush-Kuhn-Tucker (KKT) conditions. The adversary
poisons training corpus such that topics learned by LDA are guided toward target
multinomial distributions defined by the adversary. Adversary’s goal is to minimize
an attacker risk function which defines the distance between adversarial multinomial
distribution and training multinomial distribution. Adversary’s risk combined with
learner’s KL divergence gives a bilevel optimization framework for constructing
the adversarial examples. Adversarial examples on words and sentences misleading
LDA topics are created on a corpus sourced from the United States House of
Representatives floor debate transcripts, online new year’s wishes, and TREC AP
newswire articles.

3.7 Robust Anomaly Detection Models

Kloft et al. [318] explore adversarial examples for an (online centroid) anomaly
detection algorithm. The adversarial attack scenario is expressed in terms of the
efficiency and the constraints of formulating an optimal attack on outlier detection.
The outlier detection finds unusual events across finite sliding windows in computer
security applications such as automatic signature generation and intrusion detection
systems. A poisoning attack is assumed to create adversarial examples on training
data where a certain percentage of training data is controlled by the adversary.
An anomalous data point is then measured according to the Euclidean distance
from the empirical mean of the training data. The empirical mean is calculated on
training data by a finite sliding window online algorithm for non-stationarity data.
By pushing the empirical mean point toward adversarial examples, the adversary
forces the anomaly detection algorithm to accept anomalous data point as normal
training data.
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Kloft et al. [318] express the relative displacement of original empirical mean in
terms of the attack direction vector between the attack point and the mean point.
A greedy optimal attack is then proposed to locate attack points in a Voronoi cell
on data points that maximize relative displacement of the empirical mean. For a
Euclidean norm, the greedy attack is optimized with either a linear program or
a quadratic program. The mixing of normal points and attack points is modeled
by Bernoulli random variables which are iid in a kernel Hilbert space. The attack
progress is measured by projecting the current empirical mean onto an attack
direction vector. Theoretical analysis is provided for bounding the expectation
and the variance of relative displacement by the number of training points and
attack points in the current sliding window. The adversary is assumed to have full
knowledge of the training data and the anomaly detection algorithm. The anomaly
detector’s defense to adversarial attack is proposed in terms of controlling the false
positive rate.

Rubinstein et al. [532] evaluate poisoning attacks and training defenses for
principal component analysis (PCA)-subspace anomaly detection where principal
components maximize robust measures of training data dispersion. Adversary’s goal
is expressed as increasing false positives and false negatives of model under attack.
A time series of traffic volumes between pairs of points is the dataset representing a
routing matrix. Robust PCA of the routing matrix then identifies volume anomalies
in an abnormal subspace. Adversary’s poisoning strategies consider attacks with
increasing amounts of variance information in the attack scenarios. The weakest
attack strategy knows nothing about the traffic flows and adds random noise as
adversarial examples. In locally informed attack strategy, the adversary intercepts
the information about current traffic volume on network links under attack. In
globally informed attack strategy, the adversary has knowledge of traffic volumes
on all network links and network levels. In short-term attack, the anomaly detector
is retrained for each week of training data during which adversary attacks network.
In long-term attack, anomaly detector’s principal components are slowly poisoned
by the adversary over several weeks. In each attack scenario, the adversary decides
the quantity of data to add to the target traffic flow according to a Bernoulli
random variable. A robust PCA analysis on adversarially altered routing matrix then
produces adversarial examples which are classified as innocuous by the anomaly
detector. A tractable analytic solution to robust PCA is derived by Rubinstein et
al. [532] from an objective function with relaxation approximations maximizing the
attack vectors projected onto normal subspace covariance matrices. A projection
pursuit method then produces feasible solutions for the objective function in
direction of its gradient.

Feng et al. [186] present adversarial outliers for logistic regression. Linear
programming procedure estimates logistic parameters in the presence of adversarial
outliers in the covariance matrix in binary classification problems. Non-robustness
of logistic regression to adversarial outliers is calculated from the maximum
likelihood estimate of log-likelihood’s influence function as well as the loss function
in high-dimensional training data that has been corrupted by the adversarial outliers.
In the attack scenario, adversarial outliers seek to dominate correlations in the
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objective function of the logistic regression model. Robustness bounds are then
derived on the population risk and the empirical risk with Lipschitz continuous loss
functions.

3.8 Robust Task Relationship Models

Zhao et al. [703] propose data poisoning attacks on relatedness of tasks in multi-
task relationship learning (MTRL). Optimal attacks in MTRL solve a bilevel
optimization problem adaptive to arbitrary target tasks and attacking tasks. Such
attacks are found by a stochastic gradient ascent procedure. The vulnerability of
MTRL to adversarial examples is categorized into feature learning approaches, low-
rank approaches, task clustering approaches, and task relationship approaches where
the learning goal is to jointly learn a prediction function. Then MTRL of linear
prediction functions with arbitrary convex loss functions and positive semi-definite
covariance matrices is studied. Adversary’s goal is defined as degradation of the
performance of a set of target tasks by injecting poisoned data to a set of attacking
tasks. Adversary’s payoff function is defined as empirical loss of training data
on target tasks where the adversary has complete knowledge of the target MTRL
model. In the gradient ascent procedure, poisoning data is iteratively updated in the
direction maximizing the adversarial payoff function. The prediction function is a
least squares loss function for regression tasks and squared hinge loss function for
classification tasks. The prediction performance is evaluated by maximizing area
under curve for classification tasks and minimizing normalized mean squared error
for regression tasks.

3.9 Robust Regression Models

Liu et al. [703] study adversarial supervised learning in high-dimensional regression
problems. The target of adversarial manipulation is the training data. The attack
scenario is called poisoning attack. In contrast to robust supervised learning models
that make strong statistical assumptions about the underlying input distribution
and subsequent nature of feature matrix, feature independence, and signal-noise
ratios, the proposed adversarial supervised learning relaxes such assumptions to
approximate the feature matrix with a low-rank matrix suitable for robust regres-
sion. The resultant performance guarantees are compared with robust principal
component regression acting as a baseline model. Such machine learning models
have application in spam filtering, traffic analysis, and fraud detection to enforce
security against powerful adversaries. The learning challenges to be addressed in
algorithm design are that the dimensionality reduction can reliably recover the
low-rank subspace patterns and the regression performed on the subspace can
recover accurate predictions. Further, these design goals have to be achieved despite
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adversarially poisoned samples in the training dataset. Toward these ends, the
authors develop a robust matrix factorization algorithm which correctly recovers the
subspace wherever possible and use its features in a trimmed principal component
regression, which uses the recovered basis and trimmed optimization to estimate
linear model parameters. A noise residual is the solution of robust regression. It is
used to study the interference of adversarial data with the regression model design
and the ability of the adversary to significantly skew the estimator. This leads to the
design of bounded loss function for adversarial learning. The adversary can then
be assumed to create poisoning strategies to trigger the worst-case performance in
the dimensionality reduction algorithm and regression models. The most effective
of such attacks move the data samples along the direction to maximally modify the
learned estimator. Experimental results are compared with linear regression models
designed to be robust to the adversarial data poisoning. Such adversarial learning
models tend to focus more on the defense against adversary to produce adversarial
learning algorithms with distributional robustness rather than setting up the attack
scenarios for validating their misclassification error costs. The non-linear regression
modeling predictions can further benefit from security feature engineering based on
adversarial learning theories involving deep representation learning models such as
factorization machines [511]. Factorization machines are a low-rank approximation
of a sparse data tensor when most of its predicted elements are unknown. In
security feature engineering, they can model the interactions between features using
factorized parameters. They are applicable not only to dimensionality reduction
tasks but also to general prediction tasks in high-dimensional settings. As proposed
by Blondel et al. [73], higher-order factorization machines can be estimated with
dynamic programming algorithms tailored for prediction tasks in adversarial learn-
ing. Applications can be demonstrated for link prediction applications in complex
networks. In game theoretical adversarial learning, the dynamic programming
algorithms can be proposed to study the convergence properties of game theoretical
optima. The game theoretical loss functions and training procedures in such a
research are applicable to the study of learning and resampling dynamics within
neural computing mechanisms tailored to adversarial learning. The complex dynam-
ics expressed in adversarial data distributions can then be modeled as randomization
algorithmics in data mining systems and machine learning models.

Amin et al. [215] study adversarial regression in cyber-physical systems (CPS).
CPS are the critical infrastructure such as electric power grid, transportation
networks, water networks, and nuclear plants. A supervised regression model is
proposed to detect anomalous sensor readings in such infrastructures. Then a game
theoretical model is built on the interaction between the CPS defender and adver-
sary. In it, the defender chooses detection thresholds, while the attacker deploys a
stealthy attack in response. Such an attack is due to carefully modify readings of
compromised sensors that go undetected. Stuxnet attack is given as a well-known
example of targeting physical infrastructure through cyber means. It is defined as
the corruption of sensor readings to ensure that an attack on the controller code
either is undetected or indirectly impacts controller behavior. The learning problem
solves adversarial anomaly detection in the context of integrity attacks on a subset



60 3 Adversarial Attack Surfaces

of sensors in CPS. The supervised regression task in the anomaly detection model
predicts a measurement for each sensor as a function of readings from other sensors.
The robust anomaly detection is modeled as a Stackelberg game between defender
and adversary. An ensemble predictor containing a combination of neural network
regression and linear regression is explored in the regression-based detector. The
adversarial objective is expressed as a mixed-integer linear programming problem.
Thus, an adversarial loss function can be derived for sampling, prediction, and
optimization problems in deep learning regression. Such regression baselines can
be built for multivariate prediction problems in adversarial learning. Stackelberg
games can be used to model the strategic interactions assuming rational agents
in markets on which there is some hierarchical competition. Strategic interactions
between payoff functions for both players reflect the relative ranking of each
player’s application scenario in terms of the final outcome expected in machine
learning. The search space of strategies for each player in a game is normally
assumed to be bounded and convex, and the corresponding payoff function is
assumed to be differentiable. The equilibrium solution for all payoff functions
in the game is determined by the solution to an optimization objective function.
Game theory provides the mathematical tools to model behaviors of the defender
and the adversary behaviors in machine learning in terms of defense and attack
strategies. Game theoretical adversarial learning takes into account tradeoff made
by the attacker between the cost of adapting to the classifier and the benefit from
attack. On the other hand, the tradeoff made by the defender balances between the
benefit of a correct attack detection and the cost of a false alarm.

Zhang et al. [698] consider robust regression models in online and distributed
environments. Here, the data mining applications of adversarial learning theories
have to accommodate new challenges on the data analytics methodologies imposed
by big data, where it is usually impossible to store an entire high-dimensional data
stream or to scan it multiple times due to its tremendous volume and changing
dynamics to the underlying data distribution over time. We would have to consider
the amortized computational cost of pattern mining on high-dimensional and multi-
dimensional data distributions. The pattern validation metrics in adversarial learning
must also consider physical domain knowledge as ground truth for supervised
learning. The modeling will require to learn dense substructures, rare classes, and
condensed patterns over transactional, sequential, and graph datasets where random
process generating training data may not be the same as that governing testing data.
The implemented approach will have to be merged with approaches for adaptive dis-
criminative learning with continuous optimization. Here, the adversarial examples
can be put into sparse, measured, dense attack scenarios for adversarial learning.
They must account for the operational latency-sensitive stream data analytics and
knowledge representation learning over limited resources specified in terms of time,
power, and communication costs. Adversarial manipulations must be defined over
incremental learning and distributed processing of adversarial attacks at big data
speeds and scales. Zhang et al. [698] identify heterogeneously distributed data
corruption due to adversaries. They have proposals for corruption estimation when
the data cannot be entirely loaded into computer memory. The robust regression
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is done with a scalable least-squares regression model that learns a reliable set of
regression coefficients. Online and distributed algorithms are proposed for such
robust regression. The true regression coefficients are recovered with a constant
upper bound on the error of the state-of-the-art batch methods under the arbitrary
corruption assumptions that are not uniformly distributed in the training data mini-
batches provided to the online algorithm.

3.10 Adversarial Machine Learning in Cybersecurity

Adversarial attacks have several applications in computer vision, natural language
processing, cyberspace security, and the physical world [499]. In computer vision,
adversarial attacks are created for image classification [439] and object detec-
tion [665]. In natural language processing, adversarial attacks are created for text
classification [536] and machine translation [168]. In cyberspace security, adversar-
ial attacks are created for cloud services [389], malware detection [235, 526], and
intrusion detection [289].

In the physical world, adversarial attacks are created to scale adversarial training
to large models and datasets [340]. Kurakin et al. [339] discuss physical-world
scenarios with cameras and other sensors as input. Eykholt et al. [177] generate
robust visual adversarial perturbations under different physical conditions for the
real-world case of road sign classification. Here, computer vision tasks act as
control pipelines in physical systems where the main challenge with generating
robust physical perturbations is environmental variability. Melis et al. [420] create
physical-world attacks on robot-vision systems. Sharif et al. [552] create physical-
world attacks on facial biometric systems using face recognition models for
surveillance and access control. Xiao et al. [661] discuss spatial transformation
of adversarial perturbations with Lp distance acting as a metric of the perceptual
quality in the penalizing adversarial perturbations. Akhtar et al. [6] survey adversar-
ial attacks on deep learning in computer vision. In comparison to game theoretical
attacks, the physical-world attacks physically change the appearance of an object
to deceive trained detection. They are restricted to once-only attack plays applied
to targeted threats [580] in the game theoretical settings. They seem applicable to
generating the stochastic search policy in our game with search heuristics such as
Monte Carlo tree search [88] in combinatorial game theory.

Deep learning methods can be used to advance cybersecurity objectives such
as detection, modeling, monitoring, analysis, and defense against various threats
to sensitive data and security systems [406]. Rossler et al. [527] discuss synthetic
image generation and manipulation benchmarks based on DeepFakes, Face2Face,
FaceSwap, and NeuralTextures as prominent representatives for facial manipula-
tions in data-driven forgery detectors. Matern et al. [416] exhibit artifacts from
face tracking and editing to expose manipulations in face editing algorithms like
DeepFakes and Face2Face.
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Further applications of adversarial machine learning in cybersecurity include
malware detection, malware classification, spam detection, phishing detection, bot-
net detection, intrusion detection and intrusion prevention, and anomaly detection.
Tong et al. [600] discuss evasion attacks in PDF malware detection. Melis et
al. [421] apply explainable machine learning models in Android malware detec-
tion. Marino et al. [411] explain incorrect classifications in data-driven intrusion
detection systems. Corona et al. [136] provide a taxonomy of adversarial attacks
in intrusion detection systems (IDSs) and computing infrastructures. Demetrio et
al. [153] propose feature attribution to provide meaningful explanations to the
classification of malware binaries. Fleshman et al. [198] quantify system robustness
of machine learning-based anti-virus products using malware detection models.

3.10.1 Sensitivity Analysis of Adversarial Deep Learning

Understanding the machine learning model is useful to validate its correctness,
detect algorithmic bias and information leakages, and learn new patterns from data.
In complex machine learning models especially, state-of-the-art performance for
the model comes at the price of interpretability. We shall have to tradeoff between
learnability and robustness of the supervised machine learning. By “learnability,” we
mean the ability of the classifier to predict correct labels (without regard to noise),
and by “robustness,” we mean that the prediction is the same with or without noise
(without regard to correctness). The tradeoff we observe is that more learnability
comes at the price of less robustness, and vice versa. Sensitivity analysis is the
study of effects on a dependent variable with respect to changes in the independent
variables. It is useful in the study of black-box attack scenarios in adversarial
learning where the outputs of the learning model and process are an opaque function
of several inputs. That is, the exact relationship between inputs and outputs for
machine learning is not well understood analytically. Sensitivity analysis in machine
learning has a key role to play in the analysis of complex systems for artificial
intelligence. It can be used to determine a model of the system under study. It can
identify model parameters that contribute to data analytics output variability factors.
It can identify the optimal search region of interest in a calibration study on analytics
factors and their interactions. Finally, it can evaluate the analytics models to create
an output distribution of influential responses assessed within analytics methods for
correlation/classification/regression, Bayesian inference, and machine learning. A
review of sensitivity measures such as in the analysis of variance is given by Frey
et al. [130]. As risk assessment methods in adversarial learning representations,
sensitivity measures can be used to prioritize additional data collection, identify
critical control points in the dataset, and verify model validation. Sensitivity analysis
can be done for knowledge discovery, feature ranking, dimensionality reduction, and
model tuning.

In contrast to sensitivity analysis, scenario analysis examines a specific appli-
cation scenario for machine learning in great detail to discover all the relevant
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variables aligned to the scenario. These variables would in turn support the creation
of a knowledge base understanding the full range of outcomes given a specific set
of input variables defining the real-world scenario. By testing the machine learning
models across a wide range of scenarios, sensitivity analysis adds credibility to it
by informing data-driven decision-making toward tangible conclusions and optimal
decisions. Particular attention can be paid to algorithmic bias favoring rare features
with strong sensitivity toward probability estimation errors and adversarial noise
processes. Adversarial training refers to the incorporation of adversarial examples
into the training process of machine learning models. Adversarial training is
sensitive to not only the parameters but also the hyperparameters affecting the
training process. Duesterwald et al. [167] present a sensitivity analysis of the
hyperparameter landscape in the adversarial training of deep learning networks.
Hyperparameter optimization techniques are applied to tune the adversarial training
to maximize robustness while keeping the loss in accuracy within a defined budget.

Wexler et al. [646] develop a What-If Tool that allows analyses of machine learn-
ing systems to probe and visualize their inputs and outputs. It can be used to analyze
feature importance, test performance in hypothesis testing, and visualize model
behavior across multiple input datasets. Such a tool is of interest to practitioners of
machine learning to answer questions on the effect of adversarial manipulations to
data points on modeling predictions. It can also be used to analyze the distributional
robustness of machine learning model across data samples acting as training,
testing, and validation datasets. Users of the What-If Tool have a visual interface
to perform counterfactual reasoning, investigate decision boundaries, and explore
changes to predictions with respect to changes in data points. Thus, it supports the
rapid prototyping and exploration over multiple statistical hypotheses in adversarial
learning. Without access to the modeling details, generalizable explanations can be
generated for adversarial manipulations using such hypotheses in a model-agnostic
manner. This flexibility with explanations and their representations improves the
interpretability of adversarial learning. It can be combined with exploratory data
analysis processes to deal with complexity in input data types, modeling tasks,
and optimization strategies. The workflow for testing hypothetical scenarios in the
What-If Tool supports general sense-making around the data in addition to the
evaluation of performance metrics optimized toward fairness constraints on machine
learning. The data points in output predictions can be visualized with confusion
matrices and ROC curves.

In supervised machine learning, sensitivity analysis studies the probability of
misclassification due to weight perturbations in the learning model caused by
machine imprecision and noisy input. To validate the distributional robustness of
supervised learning on various inputs, sensitivity analysis has been extended into
optimization techniques for neural networks such as sample reduction, feature
selection, active learning, and adversarial learning. After discussing the geometrical
and statistical approaches to machine learning sensitivity analysis, Yeung et al. [685]
showcase its application in dimensionality reduction, network optimization, and
selective learning. Provided a neural network contains the optimal number of hidden
units and is able to construct optimal discriminating boundaries between classes, it
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can be used for feature extraction and rule induction with sensitivity analysis on
informative patterns expressed in terms of the decision boundaries. Engelbrecht
et al. [174] propose a sensitivity analysis on neural network decision boundaries
and present their visualization algorithms. The dynamic patterns discovered from
the sensitivity analysis are used in a selective learning algorithm. Thus, we can
extract accurate rules from trained neural networks. Patwary et al. [486] conduct a
sensitivity analysis-based investigation of semi-supervised learning. A divide-and-
conquer strategy based on fuzziness in the training dataset is shown to improve
the performance of classifiers. Here, a classifier classifies an instance to a class
with a degree of belief on the extent to which the instance belongs to the specific
class. In an initial training step, a classifier is trained on a small volume of training
data with class labels. In a final training step, a large volume of unlabeled data is
used for assigning each data point to one of several class labels. The classifier’s
generalization ability on unseen validation datasets is interlinked with the fuzziness
of a classifier in arriving at its prediction accuracy. Low fuzziness samples from
testing dataset are added to the original training dataset to retrain the learning model
with improved accuracy. Resampling methods are used to study the generalization
error bounds. Such a theory of learning from noisy data can be used to build semi-
supervised learning classifiers involving learning methods such as self-training,
co-training, multi-view learning, expectation maximization with generative mixture
models, graph pattern mining, and transductive SVM.

Suresh et al. [585] propose risk-sensitive loss functions to solve the multi-
category classification problems that minimize both the approximation and estima-
tion error. Here, approximation error depends on the closeness of the prediction to
the actual classifier, and estimation error depends on the closeness of the estimated
input distribution on the underlying input distribution. The error analysis incorpo-
rates the risk-sensitive loss functions into a neural network classifier architecture.
Performances are compared on imbalanced training samples using other well-known
loss functions to approximate the posterior probability. The proposed loss functions
improve the overall and per class classification accuracy. Such risk-sensitive loss
functions on the decision performance are required to extend the results of binary
classification to multi-category classification problems. In neural networks, the
classifier employs loss functions that minimize the expected misclassification for
all classes. Here, the risk-sensitive loss functions measure the confidence level
in the class label prediction and corresponding risk associated with the action
behind every classifier decision. The cost of misclassification is fixed a priori.
In game theoretical modeling, such misclassification costs can be incorporated
into the design of adversarial payoff functions. In multi-category classification
problems, the adversarial payoff functions must be able to deal with strong overlap
between classes in sparse data and high imbalance in samples per class. Neural
network architectures then find joint probability distributions over the observation
data to arrive at an accurate estimation of the desired coded class label. The risk
factors on estimated posterior probability in the loss function designs penalize
the misclassification patterns and their costs. The training process of the classifier
is guided by both a confusion matrix and a risk matrix. Difficulty in obtaining
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the ground truth about original classes in the input data distribution increases the
computational complexity in model development.

Cortez et al. [137] propose visualization for extracting human understandable
knowledge from supervised learning black-box data mining models using sensitivity
analysis. The data mining models considered are neural networks, support vector
machines, random forest, and decision trees. Sensitivity responses are used to
create measures of input importance for both regression and classification tasks
in data mining. Such sensitivity-augmented regression trends and classification
patterns discovered by data mining can be used to improve data-driven decision-
making in the real world. Here, the data-driven analytics model learns an unknown
underlying function that maps several input variables to one output target within
a supervised learning paradigm. Interpretability of the data mining models can
be improved with feature engineering strategies such as extraction of rules and
multidimensional visualization techniques. The proposed sensitivity analysis treats
the machine learning models as black boxes to query them with sensitivity samples
and record the obtained responses. It does not utilize additional information such
as the model fitting criteria and feature importance attributions. The rationale
for sensitivity analysis is that a relevant input should produce substantial output
changes when varying its input levels. Such input relevance is quantified by using a
sensitivity measure. A baseline vector is proposed to capture input interactions with
less computational effort. Sensitivity measures model the target outcome with either
output class labels or the probability of classes. The total area under the receiver
operating characteristic curve (AUC) calculation and the ensemble sampling meth-
ods are used as the sensitivity measure in multi-label classification tasks. Regression
errors such as the mean absolute error (MAE) are used as the sensitivity measure in
multivariate regression tasks. The sensitivity measures are first computed for each
individual class, and then a weighted average is performed to compute a global
sensitivity measure. The effects of these sensitivity measures on tree ranking and
hyperplane separation are then studied in data visualizations for various inputs in
the cross-validation experiments estimating the data mining performance metrics.
Several new sensitivity analysis methods, measures, aggregation functions, and
visualization techniques are proposed. Feature selection methods can be further
designed to improve the relative ranking in the sensitivity measures to guide the
search through the variables relevant for data mining tasks at hand.

Engelbrecht [173] does a sensitivity analysis of the decision boundaries learned
by a neural network output function with respect to input perturbations. A sen-
sitivity analysis of each hidden unit activation function reveals which boundary
is implemented by which hidden unit. Here, a decision boundary is treated as
the region of uncertainty in the classification of input feature space. A unique
discriminating decision boundary can be obtained by pruning an oversized network
that is overfitting the data, by growing an undersized network that is underfitting
the data, or by adding regularization terms to the objective function for machine
learning. Optimal decision boundaries lead to a statistically good generalization
performance of classifiers produced with reference to the equations for decision
boundaries. Data sampling methods on modeling outputs are used to locate decision
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boundaries in terms of the modeling inputs for a classifier. Modeling parameters
that do not define any decision boundary can be pruned since they do not contribute
to the classification function. Selecting patterns in the regions across decision
boundaries, we can perform numerosity and dimensionality reduction in the training
dataset.

Fawcett [180] surveys the characteristics of receiver operating characteristics
(ROC) graphs in a tutorial. ROC curves can be used to organize classifier outputs and
visualize their performance. They are rooted in signal detection theory but have been
adopted by the machine learning community to analyze skewed class distributions,
classification error costs, and cost-sensitive learning in the presence of unbalanced
classes. An ROC graph depicts relative tradeoffs between benefits (true positive
rate) and costs (false positive rate). Since neural networks can be considered as
probabilistic classifiers yielding a relative instance probability or class membership
score, they can be ranked with thresholds to produce a discrete classifier which can
trace a curve through the ROC space to discriminate between positive and negative
instances. A combination of scoring and voting can be produced to augment discrete
classifiers to generate not only a class label but also a probability estimate required
for creating a data point in the ROC curve. While machine learning performance
metrics derived on the confusion matrix are sensitive to changes in the class to
record proportions in the training data, ROC curves are insensitive to changes in
class distribution. Area under an ROC curve (AUC) is equivalent to the probability
that the classifier will rank a randomly chosen positive instance higher than a
randomly chosen negative instance. It is closely related to Wilcoxon test of ranks
and Gini index. AUC can be used to compare several classification baselines. It
is possible for a high-AUC classifier to perform worse in a specific region of
ROC space than a low-AUC classifier. Averaging ROC curves allows us to select
the best classifier for a given training data sample. Using probability estimation
trees, multi-class AUCs can be generated to study the discrimination between
multiple pairs of classes combining pairwise discriminability values. Illustrating
the bounding regions of new classifiers in an ROC graph can be used to direct
rule induction and feature construction in an application domain for data mining.
Such feature engineering can produce pattern discovery in terms of classification
models, association rules, sequential patterns, etc. Such a classifier selection remains
invariant to class skew and error costs which serve as the operating conditions in
cost-sensitive learning. Finally, all conclusions drawn from the ROC curves are
relevant only in the training data samples. Separate performance evaluation of the
machine learning models is required on testing data samples and validation data
samples. Here, adversarial data samples can be considered to be the validation data
samples.

Flach [197] discusses machine learning metrics that are able to optimize tradeoffs
due to skewed class and misclassification cost distributions obtained from machine
learning models in training and deployment. A type of contour plots called ROC
isometric plots are used to analyze and characterize the behavior of a variety of
machine learning metrics. The machine learning metrics are sourced from contin-
gency tables tabulating the model quality statistics in decision tree splitting criteria,
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rule induction patterns, classification, information retrieval, and subgroup discovery.
True and false positive rates are assumed to sufficient statistics for characterizing
the performance of a classifier in any target context. The derived machine learning
metrics are interpreted to add statistical meaning to the conventional metrics. For
example, accuracy calculation is interpreted in terms of expected yield as follows:
(i) Disregarding misclassification costs, accuracy estimates the probability that a
randomly chosen example is correctly classified. (ii) With misclassification costs,
accuracy estimates the probability that a randomly chosen example incurs zero
cost. (iii) With misclassification costs and correct classification profits, accuracy
estimates the probability that a randomly chosen example incurs a profit. Thus, ROC
curves can be used to detect a discriminative signal in the presence of adversarial
noise in adversarial deep learning. They can be used to refine the proposals on game
theoretical modeling that considered misclassification costs. They can be used to
characterize the statistical differences between training and validation data samples
where adversarial datasets act as validation samples skewing the class distributions
in training data samples.

Ribeiro et al. [515] explain modeling predictions by learning an interpretable
model from them. It solves a submodular optimization problem to provide the
trust modeling of a classifier. Building users’ trust in machine learning models is
important because users will not use a black-box model or an individual prescriptive
decision they do not trust. Trust is a vital concern for directly using machine learning
classifiers as tools as well as deploying machine learning models within other
products. Therefore, to evaluate machine learning models in real-world datasets, we
can plan to inspect individual predictions and their explanations acting as metrics
of interest over feature engineering augmenting the performance measures such as
accuracy, precision, recall, and F-score. Ribeiro et al. [515] identify the desired
characteristics of explanation methods. They include interpretable explanations that
provide a qualitative understanding between the input variables and the response,
local fidelity explanations corresponding to the model behavior in the neighborhood
of the instance being predicted, model-agnostic explanations that are able to treat
the learning model as a black box, and global perspective explanations to ascertain
trust in the learning model. Goldstein et al. [224] discuss the visualization of
black-box algorithms with plots such as individual conditional expectation (ICE)
plots and partial dependence plots (PDPs). The techniques for visualization include
decision boundary visualization in high dimensions, visualization of the hidden
layers of neural networks to understand dependencies between the inputs and model
outputs with insights into classification uncertainty, graphical representation of
the contribution of variables to the model fit in support vector machines, game
theoretical approaches to assess the contributions of different features to predictions,
and quasi-regression estimation of black-box functions.

Thiagarajan et al. [597] conduct a sensitivity analysis of deep neural networks.
Prediction uncertainties are analyzed in the sensitivity analysis with probabilistic
networks. The learning objective is to lead to more robust and generalizable
models without compromising on model interpretation. A new regularization of
the predictions is introduced to demonstrate neural networks that generalize to
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unseen data. Finally, the prediction uncertainties are decomposed and explained
in the input domain to improve the validation and interpretation of deep learning
models. The notion of interpretability in this chapter is restricted to understanding
model predictions in terms of simple actionable constructs on the input features.
The experimental results are compared with conventional statistical modeling that
adopts a Bayesian inferencing pipeline on pre-trained models for deep learning with
point estimates. Such approaches may not be able to deal with out-of-distribution
test samples. Prediction uncertainties are classified into epistemic uncertainty also
known as model uncertainty that can be explained given enough training data and
aleatoric uncertainty that depends on noise or randomness in the input sample.
To address aleatoric uncertainty assuming a prior distribution on the inputs, the
authors include mean and variance estimates for the prediction in the sensitivity
analysis. When such sensitivity measures are used as regularizers for the learning
objectives, they are said to lead to better generalization performance. At the same
time, features that contribute maximally to the model uncertainty are tracked. Then
a model that assigns uncertainties to reliable outputs suggests learning problems in
either the training process or the input data. The output of deep learning is taken
to be the prediction of a continuous regression response variable. A conditional
likelihood-based loss function is selected to train the neural network toward such
a response. Feature sensitivities are computed with a first-order Taylor expansion
of the model’s decision function decomposed into relevance scores for each input
feature. The feature sensitivities then regularize the conditional entropy centered
on the critical parameters in the deep neural network’s loss function and training
process. In experimental evaluation of the deep neural networks, the proposed
approach produces improved validation performance compared to baseline models
that did not take uncertainties into account. The effect of masking insensitive
features is calculated from the R-squared statistic measuring the prediction variance
in the dependent variable for regression from each of the independent variables.

Zhang et al. [699] conduct a sensitivity analysis of one-layer convolutional
neural networks (CNNs) for sentence classification. It is unknown how CNNs are
dependent on unexpected changes to input word vector representations, filter region
size, activation functions, pooling strategy, regularization parameters, number of
feature maps, hyperparameters, and other free parameters in the model architecture.
The search space of all possible model architectures is huge. SVM for sentence
classification are used as baseline models to improve the CNN results. The
experimental results can be used to guide hyperparameter optimization techniques
such as grid search, random search, and Bayesian optimization. As part of spam
detection in the real world, Pruthi et al. [498] conduct a sensitivity analysis of word
recognition with recurrent neural networks (RNNs) in the presence of adversarial
misspellings. Adversarially crafted spelling mistakes are created in attack scenarios
such as dropping, adding, and swapping internal characters within word input to
text classification having to deal with adversarial edits. Experiments demonstrate
that an adversary can degrade the classifier’s performance to that achieved by
random guessing. To limit the number of different inputs to the classifier, the
sensitivity analysis reduces the number of distinct word recognition outputs that
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an adversary can induce. Thus, the learning objective is to design a low sensitivity
system with a low error rate. Helton et al. [269] review sampling methods for
sensitivity analysis such as random sampling, importance sampling, and Latin
hypercube sampling. They help in the construction of distributions to characterize
stochastic and subjective uncertainty in the adversarial datasets that propagates
through machine learning models to eventually affect the model predictions.
The sensitivity analysis procedures reviewed include examination of scatterplots,
regression analysis, correlation and partial correlation, rank transformations, and
identification of non-monotonic and non-random patterns.

Xu et al. [670] derive generalization bounds for machine learning algorithms
based on their robustness properties. Here, generalization error can be understood
as an estimation of the risk of learning algorithms. It is empirically measured
in terms of performance errors on the training dataset. Complexity measures on
supervised learning bound the gap between the expected risk and the empirical
risk by the complexity of the hypothesis set for machine learning. They include
Vapnik-Chervonenkis (VC) dimension, Kolmogorov complexity, and Rademacher
complexity. Xu et al. [670] define algorithmic robustness with reference to a min-
max optimization objective found in the theory of robust optimization. Informally,
a learning algorithm is robust if it achieves “similar” performance on a testing
sample and a training sample that are “close.” Many machine learning models such
as LASSO regression, support vector machines, and deep neural networks can be
reformulated to have learning objectives in such a robust optimization framework
to target minimizing the empirical performance error under the worst possible
input perturbation in some properly defined uncertainty set for optimization. Here,
the generalization ability of learning algorithms can be investigated in terms of
the expected value of loss function of the learned hypotheses on samples that
statistically deviate from training samples. In adversarial training settings, such an
expected loss is customized for minimizing the feature manipulations in adversarial
learning and misclassification costs in game theoretical modeling. In other analyses
of machine learning models, the expected loss can be tailored for metric learning,
transfer learning, reinforcement learning, and learning with outliers. The general-
ization bounds on expected loss derived from the proposed algorithmic robustness
framework can handle transfer learning setups due to mismatched datasets in
domain adaptation. They can be extended into investigations on robustness of
unsupervised and semi-supervised learning algorithms.

To correct mistakes in classification settings, Asif et al. [18] create cost-sensitive
classifiers that can be penalized on application-dependent predicted and actual
class labels. A robust min-max game theoretical approach produces classifiers
that minimize the cost of mistakes in classification as a convex optimization
problem. Such an optimization is tractable in comparison to the NP-hard empirical
risk minimization approaches that address the cost of mistakes in cost-sensitive
classification with non-convex loss functions. This is the approach to minimize
expected cost in robust machine learning. It directly minimizes the cost-sensitive
loss on an approximation of the training data. The proposed zero-sum game is
solved using linear programming. The machine learning performance evaluation
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is done on a confusion cost matrix. Cost sensitivity can be used for reweighting
available training data, incorporating confusion costs into the formulation of the
classifier, and boosting an ensemble of weak classifiers to produce a cost-sensitive
learner. Further, the loss functions for training processes can directly incorporate
cost sensitivity into multiclass generalizations of binary classifiers. An adversarial
learning perspective on cost sensitivity brings an added dimension of classification
modeling, statistical estimation, and decision-making under uncertainty. Here, the
relevant adversarial learning methods include maximin model of decision-making
as a sequential adversarial game, mini-max optimization of the regret of decisions,
statistical estimates under uncertainty that minimize worst-case risk, and maximum
entropy models using the logarithmic loss on exponential family distributions.
Probability distributions are estimated as the solutions of such min-max games.
Cost-sensitive learning that incorporates such adversarial learnings becomes more
robust not only to distributional shifts in the dataset but also to uncertainty due
to conditional distributions over labels in the loss function. Without assuming any
closed-form equation in parametric forms for the given data, this approach allows us
to incorporate training data properties and conditional data distributions as classi-
fication constraints due to the adversary’s conditional label distribution. Viewing
the cost-sensitive classification task as a two-player game between an estimator
and an adversary constrains the adversary to choose data manipulation distributions
that match a vector of moment statistics of the underlying input distribution. The
computational complexity of the estimator implicitly grows with the dimensionality
of such constraints. Thoughtful feature selection and regularization can avoid such
issues.

Lundberg et al. [401] present a framework called SHAP (SHapley Additive
exPlanations) for interpreting the predictions in deep learning. An explanation of
a model’s prediction is taken to be a model itself. It is called explanation model and
defines a class of additive feature attribution methods. Game theoretical modeling
then guarantees a unique solution for the entire class of additive feature attribution
methods. Such explanation models use simplified inputs that map to original inputs
through a mapping function. They are solved as penalized linear regression models.
Shapley regression values from cooperative game theory are used to find the feature
importances for linear models in the presence of multicollinearity. Samek et al. [538]
introduce the need for explainable artificial intelligence in AI domains such as image
classification, sentiment analysis, speech understanding, and strategic game playing.
The latest developments for visualizing, explaining, and interpreting deep learning
models are then surveyed. Two sensitivity analysis methods are presented for
explaining predictions in black-box deep learning classifiers. One method computes
sensitivity of prediction with respect to changes in the input. Another method
decomposes the decision in terms of input variables. Das et al. [144] review the
explainable artificial intelligence (XAI) landscape. A taxonomy of XAI techniques
is provided. Their usage to build trustworthy, interpretable, and self-explanatory
deep learning models is surveyed. In addition to the creation of adversarial examples
in misleading classifier decisions, XAI must have a feature engineering realization
centered around ethical, judicial, security reasons. “Interpretability” is defined as a
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desirable quality or feature of an algorithm which provides enough expressive data
to understand how the algorithm works. “Interpretation” is defined as a simplified
representation of a complex domain, such as outputs generated by a machine
learning model, to meaningful concepts which are human-understandable and rea-
sonable. An “explanation” is defined as the additional meta information, generated
by an external algorithm or by the machine learning model itself, to describe the
feature importance or relevance of an input instance toward a particular output
classification. Each explanation should be consistent across similar data points and
generate stable or similar explanation on the same data point over time. So Das
et al. [144] study XAI in production systems of machine learning for trustability,
transparency, bias, and fairness. A deep learning model is considered “transparent”
if it is expressive enough to be human-understandable. Here, transparency can be a
part of the algorithm itself or using external means such as model decomposition or
simulations. “Trustability” of deep learning models is a measure of confidence, as
humans, as end-users, in the intended working of a given model in dynamic real-
world environments. “Fairness” in deep learning is the quality of a learned model in
providing impartial and just decisions without favoring any populations in the input
data distribution. Fairness mitigates biases introduced to the AI decision from either
input datasets or poor neural network architecture.

The game theoretical adversarial learning proposed in this book can be used to
develop computational algorithms for optimization objectives and statistical infer-
ences in adversarial learning algorithm’s capacity for randomization, discrimination,
reliability, and learnability. Studying the computational complexity of the game
theoretical modeling in adversarial learning accommodates research extensions into
robustness, fairness, explainability, and transparency of machine learning models.
We can simulate the variational encodings of the learnable decision boundaries
resulting from game theoretical adversarial deep learning as storing-retrieving
problems in data mining on adversarial manipulations. The trustworthiness of
machine learning in deployment can be simulated by computational optimization
and statistical inference problems in advanced analytics of game theoretical adver-
saries in deep learning. In addition to operation constraints in the security policies,
distance and budget constraints in the adversarial cost functions are our research
interest. Here, constraint-driven game theories and evolutionary computations are
needed to solve multi-objective, constrained, large-scale, and uncertain optimization
problems in black-box attack scenarios.

Further computational difficulties for measuring utility and associated informa-
tion loss can be addressed in game theory formulations. Then decision theory-based
adversarial learning gives adaptive data analytics. After training the learning algo-
rithms on statistically significant datasets produced by game theoretical adversaries,
deep learning can scale and validate the machine learning modeling onto big
data settings with computational models from human-in-the-loop decision-making.
Robust models for data-driven decision-making in game theoretical adversarial
machine learning assume imperfect information is available for learning the model-
ing parameters. They optimize probability distributions on uncertain data to avoid
erroneous estimations. In terms of robust optimization, random variables underlying
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the machine learning features are modeled as uncertainty parameters belonging to
a convex uncertainty set. The data-driven decision-maker is then protected with
the machine learning system built against the worst-case scenario within that set.
Such approaches to construct robustness bounds in adversarial deep learning have
to contend with adversarial examples designed to mislead image classifications to
take unwanted actions. Thus, the robustness in data-driven decision-making can be
researched within adversarial machine learning. We can then design loss functions
in deep learning with game theoretical objectives.



Chapter 4
Game Theoretical Adversarial Deep
Learning

This chapter summarizes the game theoretical strategies for generating adversarial
manipulations. The adversarial learning objective for our adversaries is assumed
to be to inject small changes into the data distributions, defined over positive and
negative class labels, to the extent that deep learning subsequently misclassifies
the data distribution. Thus, the theoretical goal of our adversarial deep learning
process becomes one of determining whether a manipulation of the input data
has reached a learner decision boundary, i.e., where too many positive labels have
become negative labels. The adversarial data is generated by solving for optimal
attack policies in Stackelberg games where adversaries target the misclassification
performance of deep learning. Sequential game theoretical formulations can model
the interaction between an intelligent adversary and a deep learning model to gen-
erate adversarial manipulations by solving a two-player sequential non-cooperative
Stackelberg game where each player’s payoff function increases with interactions
to a local optimum. With a stochastic game theoretical formulation, we can then
extend the two-player Stackelberg game into a multiplayer Stackelberg game with
stochastic payoff functions for the adversaries. Both versions of the game are
resolved through the Nash equilibrium, which refers to a pair of strategies in
which there is no incentive for either the learner or the adversary to deviate from
their optimal strategy. We can then explore adversaries who optimize variational
payoff functions via data randomization strategies on deep learning designed for
multi-label classification tasks. Similarly, the outcome of these investigations is an
algorithm design that solves a variable-sum two-player sequential Stackelberg game
with new Nash equilibria. The adversary manipulates variational parameters in the
input data to mislead the learning process of the deep learning, so it misclassifies
the original class labels as the targeted class labels. The ideal variational adversarial
manipulation is the minimum change needed to the adversarial cost function
of encoded data that will result in the deep learning incorrectly labeling the
decoded data. The optimal manipulations are due to stochastic optima in non-
convex best response strategies. The adversarial data generated by this variant
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of the Stackelberg games simulates continuous interactions with the classifier’s
learning processes as opposed to one-time interactions. The learning process of
the CNNs can be manipulated by an adversary at the input data level as well as
the generated data level. We can then retrain the original deep learning model on
the manipulated data to give rise to a secure adversarial deep learning model that is
robust to subsequent performance vulnerabilities from game theoretical adversaries.
Alternative hypotheses for such adversarial data mining in the game theoretical
adversarial deep learning strategies are provided in cybersecurity applications with
machine learning that is designed for security requirements. The game theoretical
solution concepts lead to a deep neural network that is robust to subsequent
data manipulation by a game theoretical adversary. This promising result suggests
that learning algorithms based on game theoretical modeling and mathematical
optimization are a significantly better approach to building more secure deep
learning models.

Stochastic games defining strategy spaces for adversarial manipulations have
been used to generate adversarial examples [309]. Such a strategy space is defined in
terms of two or more adversaries’ actions and corresponding payoff functions. Each
of such an adversary can engage one or more learners in a game and vice versa.
From the learner’s standpoint, adjusting parameters of a game theoretical model
is computationally less expensive than building a new model that is robust to the
adversarial manipulation. From the adversary’s standpoint, the attack scenarios can
be characterized by the stochastic optimization parameters estimated in the game
theoretical interactions with the learner.

4.1 Game Theoretical Learning Models

The ideas of two-player sequential games (or Stackelberg game) and multiplayer
cooperative games have been employed as game theoretical frameworks train-
ing adversarial learning algorithms. To search for equilibrium in such games
is equivalent to solving a high-dimensional optimization problem. The eventual
model performance is then estimated by stochastic optimization methods based
on computationally efficient heuristic search algorithms. So long as the objective
function is bounded, global optimization methods such as genetic algorithms,
simulated annealing, and stochastic hill-climbing can be applied to search for the
convergence criteria that lead to subgame perfect equilibria.

Globerson et al. [220] discuss a classification algorithm with a game theoretical
formulation. The proposed algorithm is robust to feature deletion according to
a min-max objective function optimized by quadratic programming. In Liu et
al. [385], the interactions between an adversary and data miner are modeled as a
two-player sequential Stackelberg zero-sum game where the payoff for each player
is designed as a regularized loss function. The adversary iteratively attacks the data
miner using the best possible strategy for transforming the original training data.
The data miner independently reacts by rebuilding the classifier based on the data
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miner’s observations of the adversary’s modifications to the training data. Such a
game is repeated until the adversary’s payoff does not increase or the maximum
number of iterations is reached. Liu et al. [387] propose an extension to Liu et
al. [385] where a one-step game is used to reduce the computing time of the minimax
algorithm. The one-step method converges to Nash equilibrium by utilizing singular
value decomposition (SVD). Liu et al. [686] formulate a bilevel optimization
problem from a non-zero sum game on adversarial data transformations. The game
experiments with sparse regularizers for designing robust classification objectives.

A game ends in an equilibrium with payoffs to each player based on their
objectives and actions. The learner has no incentive to play a game that leads to
too many false positives with too little increase in true positives. The adversary has
no incentive to play a game that increases the utility of false negatives not detected
by the learning algorithm. At equilibrium, the adversary is able to find testing data
that is significantly different from the training data, whereas the learner is able to
update its model for new threats from adversarial data.

All players are assumed to act in their rational interest to maximize the payoffs.
This assumption, at every stage of game, eliminates Nash equilibria with non-
credible threats to the learner and creates an equilibrium called the subgame perfect
equilibrium. Here, perfect equilibrium assumes that each player knows about the
other’s utility function. The players’ utility functions vary by application domain.

4.1.1 Fundamentals of Game Theory

Game theory provides the mathematical tools to model behaviors of the defender
and the adversary behaviors in machine learning in terms of defense and attack
strategies. Game theoretical adversarial learning takes into account the tradeoff
made by the attacker between the cost of adapting to the classifier and the benefit
from the attack. On the other hand, the tradeoff made by the defender balances
between the benefit of a correct attack detection and the cost of a false alarm. The
optima in adversarial learning are able to determine what suitable strategy is needed
to reduce the defender’s loss from adversarial attacks. Strategic interactions between
payoff functions for both players reflect the relative ranking of each player’s
application scenario in terms of the final outcome expected in machine learning.
Stackelberg games are usually used to model the strategic interactions assuming
rational agents in markets on which there is some hierarchical competition. The
search space of strategies for each player in a game is normally assumed to be
bounded and convex, and the corresponding payoff function is assumed to be
differentiable. The equilibrium solution for all payoff functions in the game is
determined by the solution to an optimization objective function. Game theory
has application in economics, political theory, evolutionary science, and military
strategy.

Webb et al. [639] present an introduction to game theory. It covers the decision
models and decision processes for determining a rational agent participating in
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static games, dynamic games, and evolutionary games. Various notions of game
theoretical equilibrium lead to either descriptive or prescriptive notions of data
analytics. In formulating a game, we have to define the players, actions and
information available to the players, timing information about interaction between
players that are either simultaneous or sequential, order of play and any repetitions
in the interactions, payoffs to various players as a result of interaction, and
estimations on the costs-benefits of each set of potential choices for all players.
Osborne et al. [476] design a textbook for a graduate course in game theory. It
covers strategic games, extensive games, and coalitional games.

Leyton-Brown et al. [352] define game theory as the mathematical study of
interaction among independent, self-interested agents. The main classes of games,
their representations, and the main concepts used to analyze them are summarized.
A utility theory is developed to modeling an agent’s interests and preference across
a set of available alternatives in games such as normal form games, extensive-form
games, imperfect-information games, repeated games, stochastic games, Bayesian
games, and coalitional games. Agents faced with uncertainty in the learning
environment then define the expected value of the utility function with respect to
the appropriate probability distribution over states. In a simple manner, utility can
be interpreted as the amount of happiness an agent (player) gets from a particular
outcome or payoff. Game theoretical outcomes of interest in the machine learning
system can be categorized within subsets of possible outcomes as solution concepts
such as found due to Pareto optimality and Nash equilibrium. So strategic games
in machine learning ought to model the adversarial learning components such
as a set of players, a set of strategies for each player, and a payoff function
indicating desirable outcomes in the game for a player. The game theoretical
context (due to skill or strategy) of decisions for each player is useful for analyzing
the data-driven decision-making made by machine learning systems under risk.
It has been applied to social sciences to create a rational choice theory as an
adaptation of the philosophy of methodological individualism for maximizing the
utility/currency/value of individual actions among collective behaviors. A choice is
considered to be “rational” in economics if it leads to preference ranking over a set
of items characterizing the alternatives for a decision-maker where all comparisons
are consistent. More advanced consistency notions ought to account for uncertainty
in the learning environments and decision-making over time when a player does not
have precise information and cognitive ability about the outcomes of the choices
and comparisons between them, respectively. So the decision-making processes
in rational choice theory have to be validated on an empirically basis for ideas
such as “reason,” “preferences,” “rationality,” and “learnability” with useful formal
mathematical properties in the machine learning systems.

Depending on the player’s interactions in the game theoretical objectives, the
equilibrium solution is called either a Stackelberg equilibrium or a Nash equilib-
rium. In our research, we apply such a game theoretical modeling to supervised
machine learning problems inferring the decision boundaries and corresponding
data distributions in training data samples and validation data samples. We represent
the costs of participating in the game in terms of the misclassification performances
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and retraining costs in deep learning. Evolutionary search and optimization algo-
rithms are used to solve the game to find adversarial manipulations to training data.
Depending on the importance of the costs incurred to generate an attack and to
retrain the classifier, we find different equilibria solutions for the game. Further, we
assume a black-box attack scenario where the adversary is unable to observe the
classifier’s strategies before choosing its strategy. We then experiment with variants
in the attack scenarios where the defender’s utility losses in the game are inferior to
the utility of the adversary in a non-zero sum game.

Our research extends into Bayesian game models in which players have incom-
plete information about other players. This is more likely as the defender might
not know the exact cost of generating adversarial data and the attacker might not
know the exact classification cost for the defender. They only have beliefs about
these costs. This modeling approach transforms games of incomplete information
into games of imperfect information. Thus, adversarial learning techniques that rely
on a game theory-based framework can be relevant as it models behaviors of the
learner and the adversary based on the benefits and costs incurred for retraining the
model and generating an attacker. Training a classifier with adversarial examples in
synthetic adversarial data is similar to regularization of the classifier. In this context,
game theory provides useful tools to model the behavior of the adversary and the
learner as it includes, on the one hand, the benefit for the adversary to attack and
the cost to generate the adversarial data and, on the other hand, the costs of the
learner to update the model. Thus, game theory-based approaches cast light on the
tradeoff adversaries and learners both made and can be used to assess the risks of
implementing a specific cybersecurity technology for data-driven decision-making.

From a computational point of view, decision-making procedures can be encoded
into algorithms and heuristics simulating rationality effectively. One important way
to study rationality is to propose agents on the assumptions adopted by different
algorithms and heuristics. We can then study the equilibrium of a market of
interactions between such agents as quantification of the impact of algorithms and
heuristics in the data analytics models. Game theory can be used to derive the market
equilibrium mathematically. Such agent-based studies also involve computational
intelligence. Because the combinatorial explosion of the optimal algorithms and
heuristics is usually computationally intractable, our ability to effectively use the
available computational power to find a good solution is determined by the computa-
tional intelligence algorithms that we implement. The level of optimality that we can
reasonably achieve in an agent-driven paradigm then defines our effective rationality
in a machine learning problem. Decision procedures in computational intelligence
can be evolved with evolutionary learning algorithms. They are able to separate
domain-specific knowledge from the reasoning mechanism. Thus, rationality in
the real world can be studied within the context of decision problems in com-
putational intelligence. By visualization of data transformations in computational
intelligence including analysis of perturbation data, fuzzy membership functions can
be designed to mitigate the effect of outliers and perturbations on the classification
decision boundaries by penalizing training errors differently.
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General problem-solvers in computational intelligence are a field of artificial
intelligence in planning. They involve knowledge representation on beliefs, actions,
and their effects, causal reasoning about actions and their consequences, and
resource allocation about timing performance across actions. Finite choice decision
problems are the topic for constraint satisfaction that is at the intersection of
artificial intelligence, logic programming, and operations research. It appears in
applications such as industrial scheduling and production planning. Search and
optimization algorithms can be designed to use constraint satisfaction for finding
efficient solutions. Computational intelligence algorithms called local search pro-
cedures can mimic strategic thinking in human beings. They can automate iterative
improvements to the current situation, look for possible changes experimentally,
and change strategies in response to actual or anticipated changes. Dynamic
procedures for local search can model human rationality and reinforcement learning
with evolutionary algorithms that evolve solutions instead of designing them.
Such procedures can be either evolutionary computation procedures or procedures
generated by evolutionary computation. By specifying stationary and evolutionary
procedures in different agents, we are able to identify trading strategies and market
behaviors. Representation, explanation, reasoning, and learning with computational
intelligence agents ought to ensure the statistical goodness of fit for computational
intelligence algorithms.

Camerer et al. [99] describe game theory as a mathematical system for analyzing
and predicting strategic situations. The game theoretical equilibrium is based on
mutually consistent strategic thinking and best response strategies in the equilib-
rium. Best responses are determined by the beliefs on the optimization of the attack
surfaces of adversaries. The machine learning system is assumed to act rationally
in any given situation. It’s presence as a rational player then changes the game
theoretical optimum reached by both the players and the heterogeneous population
of the adversaries. A reinforcement learning model is proposed to empirically ana-
lyze the predictive power of repeated games. Adversarial examples are interpreted
as counter-examples and deviations from the success criteria. They are able to
dynamically change the parameterization of the game theoretical rationality. The
refinement and selection of game theoretical strategies of a player subject to beliefs
about the strategies of remaining players in the game are then found by stochastic
better response solutions in the path to the statistical equilibrium of a game. The
rationality that can be observed in the game theoretical decision-making for the
learner and the adversaries then leads to a concept of “bounded rationality” that has
information about decisions, payoffs, computational capabilities, and intelligences
in the game theoretical formulation of the learning objectives designed to produce
functional behavior for each player. The resultant game theoretical concept classes
consist of machine learning systems with abilities to learn and evolve over time.

A “reasonable-case” analysis of the adversaries and their optimization con-
straints leads to a quantitative security evaluation of the machine learning methods
expressed in terms of computation of an optimal attack and derivation of an upper
bound on the adversarial risk for statistical learning algorithms. Here, reasoning
frameworks built around knowledge representations of adversarial examples include
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case-based reasoning, rule-based reasoning, and data-driven reasoning. They can
provide not only maximin optimization strategies for learning algorithms but also
provision game theoretical criteria for system design with mathematical program-
ming on discontinuous and noisy fitness functions having multiple types of design,
system, and operational constraints. In addition to operation constraints in the
security policies, distance and budget constraints in the adversarial cost functions
are our research interest. The trustworthiness of machine learning in deployment
can be simulated by computational optimization and statistical inference problems
in advanced analytics with game theoretical adversarial deep learning. It can
also incorporate dynamical system control in black-box optimizations of the deep
learning. Here, constraint-driven game theories and evolutionary computations are
needed to solve multi-objective, constrained, large-scale, and uncertain optimization
problems. Application-specific constraints are determined by decision-making in
data mining. Bymodeling the information leakage as loss functions in deep learning,
our optimization solutions in game theoretical equilibrium are able to formulate the
information leaks of private information available in the AI platforms as adversarial
settings. We also conduct a study of the existing adversarial cost functions with
respect to robustness bounds and privacy budgets in the deep representation
learning models for adversarial learning. We wish to achieve convergence to an
approximation of the target distributions with deep generative learning. The extent
to which adversarial noise can benefit the training process as well as the overall
quality of the distributions generated by game theoretical adversarial learning
depends on the specific nature of the generated target distribution. Here, we can
frame data mining extensions of the adversarial deep learning into web data mining,
time series analysis, cyber-physical systems, autonomous systems manipulation,
multimedia pattern recognition, and network security analytics.

As limited thinking models in economics, such reasoning frameworks have
application in explaining price bubbles, speculation and betting, competition neglect
in business strategy, simplicity of incentive contracts, and persistence of nominal
shocks in macroeconomics. Resultant learning algorithms have application in
explaining the evolution of pricing, repeated contracting, industrial organization,
trust-building, and policy-makers setting inflation rates in macroeconomic insti-
tutions. In economic analysis of market behavior, game theoretical equilibrium is
assumed to exist in models such as supply and demand analysis. The seller’s goal
is profit maximization in the production of goods and services. Opportunity costs
are associated with drawing resource inputs to produce goods. They lead to increase
in prices due to increase in costs of production. Separately, the buyer’s goal is to
maximize utility. Buyer’s purchasing power increases with decrease in market price.
Competition between sellers and buyers on price adjustments leads to an equilibrium
price. Surpluses among sellers force price decreases. Shortages among buyers force
price increases. Here, macroeconomic theory is an area of economics that studies the
employment of resources, price stability, economic growth, and interactions among
nations in the world economy. By contrast, microeconomics describes the economic
behavior and decisions made by individual economic agents. Their behaviors affect
relative prices that act as signals in a market economy to guide production and
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consumption. Such game theoretical analysis is applicable to markets that are the
outcome of strategic interactions rather than stochastic natural processes such as
digital markets, cloud computing, energy marketplaces, and crowdsourcing systems.
Here, computing machines create strategic interactions through communication and
commerce. Resultant statistical inference problems in game theoretical optimization
can benefit from econometrics literature on parametric inference from observed
strategic interactions.

Halpern et al. [248] survey the main themes at the intersection of game theory and
computer science. The computational complexity of modeling bounded rationality
is analyzed with reference to algorithmic mechanism design in game theory. Such
mechanism design has application in combinatorial auctions for voting mechanisms,
spectrum auctions, airport time slots, and industrial procurement. Here, a “mecha-
nism” is a protocol for interactions between players to determine the solution for an
underlying optimization problem. A complex dependence exists between elicited
data and specified behavior in a mechanism. In general, algorithmic game theory
differs from microeconomics in terms of focusing on the optimization problems
with optimal solutions, impossibility results, feasible approximation guarantees, etc.
in Internet-like networks. Narahari et al. [448] write about the application of game
theory and mechanism design to problem-solving in engineering, computer science,
microeconomics, and network science. Illustrative examples are provided for the
key ideas of mechanism design such as social choice theory, direct mechanisms,
and indirect mechanisms. Narahari et al. [449] is another research monograph on
mechanism design theory. Optimal mechanisms are described as a research direction
to optimize a performance metric such as the adversarial payoff functions in
game theoretical adversarial deep learning. Cost-sharing mechanisms are proposed
as a protocol to design computationally efficient adversarial cost functions with
incentives and budgets. Iterative mechanisms can be used to reduce the cost of
computing valuations and allocations in game theoretical adversarial deep learning.

Further research on game theoretical learning can be found in proceedings of
conferences such as Decision and Game Theory for Security (GameSec) and Logic
and the Foundations of Game and Decision Theory (LOFT).

4.1.2 Game Theoretical Data Mining

Fayyad et al. [183] define a framework called knowledge discovery in database
(KDD) to unify data mining algorithms with data analytics activities. KDD is a
design process that utilizes data mining algorithms for the analysis, design, and
discovery of useful patterns in databases. KDD is defined as the overall process
for discovering useful knowledge from data. Data mining is referred to as the
application of specific machine learning theories to particular steps of advanced
problem-solving algorithms in the KDD process. Without the context provided
by KDD process, data mining algorithms can discover meaningless patterns. The
KDD process draws ideas from several research areas of computer science such
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as machine learning, pattern recognition, databases, statistics, artificial intelligence,
expert systems, data visualization, and high-performance computing. The unifying
goal is to extract high-level knowledge patterns from low-level data models in
the context of complex datasets obtained from real-world data sources. Scaling
the mathematical properties of data mining algorithms to large datasets is one
of the primary goals. KDD systems offer statistical procedures for sampling and
modeling data, evaluating hypotheses, and handling adversarial noise processes.
KDD methods employ more search in model extraction to operate in the context
of large datasets with rich data structures. The KDD goals distinguish between
verification of learning hypothesis and autonomous discovery of patterns. The
discovery goal is further grouped into the well-known prediction modeling and
descriptive analytics. The relative importance of prediction and description tasks
varies between data mining applications. The primary data mining methods to
implement applications are selection, extraction, classification, regression, clus-
tering, association, summarization, optimization, randomization, approximation,
dependency modeling, and change detection. The components of a data mining
algorithm are identified as model representation features, model evaluation criteria,
model learning algorithms, and model search methods. Begoli et al. [40] propose
knowledge discovery process to analyze massive data. Design principles are given
for data collection processes, system organization, and data dissemination practices.
They are able to accommodate a variety of analytics methods such as statistical
analysis, data mining and machine learning, and data visualization and exploratory
data analysis in the data analysis pipeline. They can incorporate lightweight
architectures that reduce cost, maximize performance, and track provenance to store,
process, and analyze structured data, semi-structured data, unstructured data, and
polystructured data.

Triantaphyllou et al. [607] discuss efficient and effective methods for data
mining and knowledge discovery (DM&KD) in mathematical logic and artificial
intelligence. Such DM&KD methods have application in the formal verification of
adversarial deep learning. Search techniques and incremental learning algorithms
are discussed to infer monotone Boolean functions, association rules, and guided
learning from adversarial examples and validation examples in adversarial machine
learning. A rejectability graph can be created on the adversarial examples based
on interesting properties derived for positive and negative classes in adversarial
learning. Clique subgraphs are obtained as connected components from decom-
posing the rejectability graph. They provide computational insight into minimizing
the size of the inferred rules on training examples. Thus, the rejectability graph
also provides an intuition for partitioning the original data in large-scale adversarial
learning problems. Maimon et al. [403] survey a taxonomy of data mining methods.
Several data mining algorithms are surveyed for analytics tasks such as data
cleansing, missing value imputation, feature extraction, dimensionality reduction,
feature selection, discretization methods, outlier detection, rule induction, decision
trees, Bayesian networks, regression frameworks, support vector machines, data
visualization, association rules, clustering, classification, frequent set mining, link
analysis, multi-objective optimization, neural networks, reinforcement learning,
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granular computing, fuzzy logic, fractal mining, wavelet methods, information
fusion, model comparison, interestingness measures, query languages, text mining,
data stream mining, spatial data mining, relational data mining, web data mining,
collaborative data mining, and parallel data mining.

L’Huillier et al. [353] introduce adversarial data mining for classification tasks.
It is applied to phishing fraud detection with malicious email messages where
spam filtering techniques are ineffective. An online version of a weighted margin
support vector machine is designed with game theory. In experimental evaluation, it
performs better than the state of the art in online classification algorithms operating
in an adversarial environment. Server-side phishing filtering techniques can incor-
porate such adversarial machine learning theories to extract relevant features from
phishing emails. They can then use data mining algorithms to determine hidden
patterns in the relationships between the extracted features. A game theoretical
data mining framework models the signaling game between the adversary and
the classifier to solve adversarial classification problems. The signaling game
imposes security requirements for sequential rationality on the adversarial payoff
functions. The equilibria and their refinements in dynamic games of incomplete
information can create an online learning theory around the incremental events
presented to an online classifier operating in an adversarial environment. Online
algorithms and generative algorithms have to be considered as the adversarial
machine learning to minimize the computational cost in the cost function design
for the learner even at the expense of lower predictive power for its discriminative
learning. The resultant adversarial classifier has applications in deceptive phishing
and malware phishing for automatic phishing filtering. It has better performance
than countermeasures such as blacklisting and whitelisting, content-based filtering,
network authentication, and encryption.

Bruckner et al. [91] model the interaction between a learner and a generator
in email spam filtering as a Stackelberg competition of adversarial learning. By
accounting for adversarial data distributions generated at application time as well
as training data distributions available for learning, a Stackelberg prediction game
generalizes the existing predictive modeling solutions in the context of email
spam filtering. A non-zero sum game is proposed where the adversary and learner
act sequentially without information about the opponent’s course of action. By
committing to a predictive model, the learner acts as the leader of the game. When
the parameters of learner’s model, adversary’s transformation, and both players’
loss functions satisfy a well-defined mathematical criterion, the prediction game
has a unique Nash equilibrium that can be solved as an optimization problem. The
game theoretical learning solves a bilevel mathematical program with equilibrium
constraints with solutions obtained by sequential quadratic programming methods.
Wang et al. [636] discuss the integration of game theory with data mining, artificial
intelligence, and cybernetics. Incorporating data mining into game theory allows
for the game theoretical analysis of complex data in databases with knowledge
discovery processes of data mining. The learned knowledge is represented by data
mining features such as prediction rules, classification rules, association rules, and
clustering rules. Such representations can lead to operational improvements to the
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game theoretical modeling by supporting data-driven decision-making in adversarial
deep learning. Data mining methods can be applied in evolutionary game dynamics
for not only data pre-processing but also strategy selection in real-world scenarios
selected by data mining features leading to the research area called game mining.
Further, according to the nature of the game theoretical players, the types of game
mining are defined as game content mining, game structure mining, and game usage
mining.

Cesa-Bianchi et al. [108] write a book on prediction of individual sequences tak-
ing ideas from statistical decision theory, information theory, game theory, machine
learning, and mathematical finance. Prediction problems are defined in terms of
short-term evolution of natural phenomena. Formalization of prediction is given in
terms of sequential prediction to be the realization of stationary stochastic process in
statistical decision theory. Here, the statistical properties of the probabilistic process
are estimated from the sequence of past observations to derive prediction rules on
the estimates. The risk of a prediction rule is then defined as the expected values of a
loss function measuring the discrepancy between predicted value and true outcome.
The performance of the predictor is then measured on cumulative loss accumulated
over many loops of prediction. Without an underlying stochastic process for the
predictor, there is no baseline for comparing the predictor’s performance. Such
baselines are then modeled from a class of models called reference forecasters
that incorporate domain expertise to advise on the next outcome. The domain
expert can also include black-box models of unknown computational power and
access to private sources of side information. The class of experts can be a
statistical model built around states of natural phenomena. The difference between
the cumulative loss of an expert and a predictor is defined as regret. Machine
learning strategies are devised to minimize the regret with respect to all experts
in the concept class for adversarial learning. Adversarial robustness can also be
defined in terms of such regret minimization. Randomization prediction algorithms
can then be designed to play repeated games to predict sequential compound
decisions compressing the prediction sequences into compound decisions. Here,
information theory can be utilized to do the data compression with reference to
particular loss functions. A probability distribution is determined over the set of
possible outcomes using Bayesian statistics for maximum likelihood estimation in
online pattern recognition. The stochastic environment generating the prediction
sequences can be studied with game theory. Minimax theorems in game theory can
derive bounds on the performance of sequential prediction algorithms. Generalized
minimax theorems can be used to define performance guarantees for adversarial
deep learning algorithms without assuming any closed-form probability distribution
underlying the adversarial data distributions. Then regret minimization strategies in
game theoretical adversarial learning induce attack-defense dynamics that lead to
several notions of game theoretical equilibria.

Rezek et al. [512] establish a common vocabulary for statistical inference in
game theory and machine learning. Analogies are formed between best responses
in fictitious play and Bayesian inference methods. An update rule for fictitious
variational play is proposed for variational learning algorithms. They exhibit better
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convergence properties in strongly connected graphical models and have application
for clustering a mixture distribution. The optimization objective is solved with
respect to the joint distributions of the learning features chosen by all the players
in the game. Kleinberg et al. [317] present a robust optimization framework for the
evaluation of data mining operations in decision-making such as associations and
clustering with utility functions in game theory. The interestingness and value of the
data mining patterns are determined by the extent to which they can be used for the
data-driven decision-making processes in an enterprise to increase game theoretical
utility/value of decisions made by the enterprise during its interactions with
other agents in the market such as customers, suppliers, employees, competitors,
governments, etc. Such a utilitarian view of data mining needs to address several
research questions in combinatorial optimization, linear programming, and game
theory. Matrix games are proposed to solve clustering problems with approximation
algorithms. Their computational complexity can be improved in an iterative manner
by methods for data sampling and greedy learning. A sensitivity analysis of the
optimization problem is conducted to propose a new interestingness measure for
data mining patterns. It is then developed into a theory of predicting the value of
data mining operations with knowledge discovery methods and artificial intelligence
tools that are able to explicitly account for the goals and objectives of data mining
tasks.

Freitas et al. [202] survey evolutionary algorithms (EAs) that act as stochastic
search algorithms in data mining. Genetic algorithms (GAs) and genetic program-
ming (GPs) are a popular class of EAs that are presented as robust, adaptive
search techniques in solving data mining tasks such as discovery of classification
rules, attribute construction and selection, and clustering. Multi-objective EAs can
find Pareto-optimal solutions in several data mining tasks that are applicable to
crafting the adversarial examples in our research on game theoretical adversarial
learning algorithms. EAs also cope better with diverse attribute interactions in
the adversarial data mining tasks. The custom loss functions proposed for each
adversary type can be modeled as fitness functions evaluating candidate solutions
for adversarial examples according to multiple quality criteria in EAs. Instance-
based machine learning is amenable to the adversarial data representations for data
mining with EAs in a synergistic manner for the design of individual representation,
fitness function, and genetic operators specific to the adversarial data mining task
being solved. By automatically discovering computer programs with GPs, EAs can
be used for algorithm induction going beyond rule induction in adversarial deep
learning.

Ficici et al. [192] distinguish between evolutionary algorithms and co-
evolutionary algorithms in terms of the interactions between co-evolving entities.
Game theory is used to describe such interactions by assuming co-evolution as
an optimization method leading to an extension of the Markov chain models for
evolutionary algorithms. Computational learning theory (COLT) can be used to
analyze competitive games to construct co-evolutionary algorithms dynamics and
constraints. Ficici et al. [190] use evolutionary game theory for feature selection
in co-evolutionary algorithms of data mining. Variable-sum games are proposed
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for linear ranking, Boltzmann selection, and tournament selection of the features.
Boltzmann selection converges onto a polymorphic Nash equilibrium according
to a point attractor from chaos theory in theoretical physics and dynamical
systems. Polymorphic Nash equilibria are Nash equilibria for mixed strategy
games expressing polymorphic data populations. Co-evolutionary algorithms
are understood as a search method or a problem-solver and a model of a
dynamical system. Ficici et al. [191] examine feature selection methods such as
fitness-proportional, linear rank, truncation, and ES selection in the context of two-
population co-evolution with game theoretical learning. The selection methods add
regions of phase space that lead to cyclic dynamics in non-Nash attractors.

Herbert et al. [271] apply game theory techniques to assess the optimization
quality of competitive learning clusters with a self-organizing map (SOM). SOMs
offer a flexible robustness model for clustering with several configurable aspects
in many different applications. It can take advantage of dynamic and adaptive data
structures to decide the neuron updates in competitive learning with reference to
several performance measures and selection criteria in machine learning. Here,
game theoretical learning is used to improve the quality of updates to not only
one neuron but also the entire neuron clusters with a training algorithm called
GTSOM. Garg et al. [210] apply game theoretical techniques to feature clustering.
Features are viewed as rational players in a coalitional game where the coalitions
are the clusters. Clusters are then formed to maximize individual payoffs at the
solution concept called Nash stable partition (NSP). NSP is solved by an integer
linear program (ILP). ILP is modified into a hierarchical clustering approach to
find clusters over a large number of features. Thus, game theory is used in feature
selection to distinguish between relevant and irrelevant features and substitutable
and complementary features.

Shah et al. [550] survey game models in privacy preservation, network secu-
rity, intrusion detection, and resource optimization. Game theory is one of the
approaches to privacy-preserving data mining (PPDM). PPDM has utilized asso-
ciation rules to achieve privacy-preserving distributed association rule mining
(PPRADM) algorithms. Game theory can also be used to design the tradeoffs
between data utility and privacy preservation with a sequential game model. Privacy
games can be designed from Cooperative Game Theory to create Cooperative
Privacy in coalitions. Game theory can be used in the analysis of network attacks
such as browser attacks, denial-of-service (DDoS) attacks, worm attacks, and
malware attacks. Bayesian honeypot game models have been proposed for solving
the problems caused by distributed denial-of-service attacks. Stackelberg models
have been proposed for network hardening problems where the defender optimally
adds honeypots in the network to detect the attacker. Dynamic game models have
been proposed for intrusion detection systems (IDS) in ad hoc wireless network.
IDS optimizations can be categorized into resource allocation optimization, IDS
configuration optimization, and countermeasure optimization. Resource allocation
optimization problems are concerned with optimization of network link sampling,
resource sharing between nodes, cluster defense strategy in sensor networks, etc.
IDS configuration optimization is concerned with optimization of IDS sensitivity,
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survivability, and attack mitigation in wireless sensor network. Countermeasure
optimization is concerned with optimization unavailability time of network nodes,
computation of the optimal response in multi-stage attacks, computation of optimal
countermeasures in a wireless sensor network, etc.

He et al. [262] uses game theory for the keyword auction mechanisms in spon-
sored search to select ads in search engine monetization. The auction mechanism
is formulated within a bilevel optimization framework solved by game theoretical
machine learning. Ad selection is determined by the ranking and pricing ads for
keyword auctions. A Markov model on historical data describes the changes in
advertiser’s bids in response to the auction mechanism. The key performance
indices (KPIs) satisfying the Markov property include signals to the search engine
such as the number of impressions, the number of clicks, and the average cost
per click. Each advertiser is assumed to not have any details of the remaining
advertiser’s bidding behaviors for the keywords in the auction mechanism. Further,
each advertiser has no knowledge of the internals of the auction mechanism.
So mechanism-dependent advertiser behavior models can be built from historical
auction logs. The Markov model is then able to predict future bid sequences.
The auction mechanism is then empirically designed for revenue maximization
on the predicted bid sequences. The empirical revenue model converges when
the prediction time period approaches infinity. A genetic programming algorithm
optimizes the empirical revenue model. Thus, game theoretical machine learning
has application in electronic commerce and artificial intelligence. The genetic
programming algorithm can handle complex, non-linear functional relationships in
the prediction sequences to take best response bid strategies.

Narayanam et al. [451] devise a game theoretical learning algorithm to detect
non-overlapping communities in social networks formed by the actions of rational
individuals in Internet networks. The results are comparable to state of the art in
graph clustering such as due to multilevel partitioning approaches to clustering.
The utility of a node in the community is defined as the number of neighbors
of that node in its community and a weighted fraction of the neighbors in its
community that are connected themselves. Modularity and coverage of nodes are
the performance measures in the clustering experiments for finding communities
in a social network. Bulo et al. [93] extract hypergraph clustering groups by using
game theory to formalize the notion of a cluster. The clustering problem of using
high-order similarities between objects is called the hypergraph clustering problem.
A non-cooperative multiplayer clustering game is devised to discover clustering
quality in accordance with the solution concepts of the game theoretical equilibrium.
Finding the equilibrium of the clustering game is shown to be equivalent to locally
optimizing a polynomial function with linear constraints. Discrete-time dynamics
are used to optimize the polynomial function. Results are compared with clique
expansion methods in edge-weighted hypergraphs. The resultant clusters exhibit
robustness against outliers.

Freund et al. [203] discuss the connections between game theory and online
learning. Randomized prediction problem in online machine learning is defined as
the learning model in which the agent predicts the classification of a sequence of
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items while minimizing the total number of prediction errors. A boosting algorithm
is proposed to combine the learning models obtained from multiple runs across
multiple data distributions. It combines the several selected hypotheses into a final
hypothesis with arbitrarily small error rate. The generalization error of the final
hypothesis can be bounded with reference to the VC theory of computational
learning theory.

4.1.3 Cost-Sensitive Adversaries

Nelson et al. [456] study how an adversary can efficiently query a classifier.
Undetected adversarial examples are crafted at minimum cost to the adversary using
polynomial number of queries in the training feature space. Thus, a cost-sensitive
adversary can discover blind spots of a detector by observing the membership
query responses of the detector for negative labels to construct low-cost adversarial
examples that have maximum impact on the detector’s intended performance.
This problem of finding low-cost negative instances with few queries is termed
the problem of near-optimal evasion. The targeted classifiers are called convex-
inducing classifiers. They include linear classifiers and anomaly detectors that learn
hypersphere decision boundaries. There is no need to reverse engineer the decision
boundary of the classifier. The adversarial objective of query-based optimization is
comparable but not similar to the research area of active learning. The adversary’s
notion of utility to craft adversarial examples is represented by an adversarial
cost function. Lanckriet et al. [344] analyze misclassification probabilities of the
correct classification of future data points in a worst-case setting for classifiers. The
resultant minimax problem is interpreted geometrically as minimizing the maximum
of the Mahalanobis distances between two classes in binary classification problems
optimized by quadratic programs. Classifier robustness is defined on the estimation
errors of means and covariances of the classes. It is found to be competitive with
non-linear classifiers such as support vector machines. This is a discriminative
approach to measuring the adversarial robustness of classifiers. It can be contrasted
with generative approach that makes distributional assumptions about the class-
conditional densities in the adversarial data to estimate and control the relevant
probabilities.

Asif et al. [18] discuss application-dependent penalties for mistakes between
predicted and actual class labels in robust classifiers. The cost of mistakes is
formulated as a convex optimization problem on the non-convex cost-sensitive
loss. This approach to adversarial robustness is contrasted with empirical risk
minimization on a convex surrogate loss that is tractable. But, the statistical
difference between the actual loss and its convex surrogate can lead to a statistically
significant mismatch between the optimal parameter estimation under surrogate loss
function and original performance objective. The penalties for mistakes are repre-
sented as a confusion cost matrix for classification tasks. In contrast to reweighting
methods and mistake-specific losses, the goal for supervised machine learning is to
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minimize the expected misclassification cost. The classifier construction is framed
as a game against an adversarial evaluator. Parameter estimates in the classifier are
expressed as the solution to a zero-sum game payoff parameter efficiently found
by linear programming. Performance bounds are provided on the generalization
error to demonstrate empirical benefits of the proposed approach to classifier
construction. The proposed cost-sensitive learning has an adversarial loss function
that depends on the actual and the predicted classes. It is more general than the
zero-one loss used in binary classification to learn the best class prediction. But
estimating the conditional-class distributions for cost-sensitive learning requires
more training data that is either found in the data source or generated synthetically.
A cost-sensitive learner can be utilized during either training or prediction time to
iteratively reweight the available training datasets so that the classifier is sensitive
to costly mistakes in multi-class prediction tasks. The confusion costs can also
be incorporated into the classification criteria. Cost-sensitive boosting techniques
can combine multiple cost-sensitive weak learners to produce a strong learner.
Here, the adversarial perspective to cost-sensitive classifiers introduces statistical
estimation and decision-making under uncertainty into the classifier construction.
The statistical procedures for data-driven decision-making include Wald’s maximin
model, sequential adversarial games, Savage’s minimax optimization of the regret of
decisions, statistical estimates under uncertainty that minimize worst-case risk, and
maximum entropy modeling for exponential family distributions in the adversarial
loss. Such formulations of adversarial machine learning are robust to adversarial
shifts acting as constraints in the moment statistics of the training feature sets and
uncertainty in the cost-sensitive loss function estimates on the conditional label
distributions. A parameterized cost matrix defines each player’s game outcomes.
The training feature sets can incorporate kernel methods to consider richer feature
spaces that adversarially approximate the training data.

To account for differences in data creation and transmission procedures, De
Silva et al. [148] take into consideration vulnerability characteristics of test data
in the design of adversarial classifier’s countermeasures. So the attack cost structure
can learn in an environment of sensor-to-decision protocols such as in an Internet
of Things system. It can also be used to conduct a vulnerability analysis of the
machine learning system deployed in the real world. The main contribution of the
proposed cost-aware adversarial learning (CAL) framework is projection operator
to mitigate the impact of falsification. It projects falsified test instances to the
space of legitimate feature vectors with reference to an attack cost function acting
as the distance metric. CAL approach is evaluated on Gaussian mixture model
(GMM) with principal component analysis (PCA) and deep neural network (DNN)
classifier. The GMM parameters are estimated using an expectation-maximization
(EM) algorithm on class-conditional distributions. The cost function is defined to be
a quadratic norm function in addition to a L1 norm cost function. Adversarial attack
is assumed to be a white-box attack and a gray-box attack where the architecture
of the deep neural network is known to the adversary but the learned parameters
may or may not be known. Rios Insua et al. [518] review the state of the art in
adversarial classification from the considerations of game theoretical frameworks
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that is contrasted with adversarial risk analysis. The proposed adversarial risk
analysis is a Bayesian decision analysis problem. It does not assume that game
theoretical agents share information about their beliefs and preferences according
to a common knowledge hypothesis in game theoretical frameworks. Adversarial
robustness strategies depend on whether generative or discriminative classifiers
as base models. Monte Carlo (MC) simulation solves for the optimal attack.
Approximate Bayesian computation (ABC) techniques generate adversarial data
distributions. Binary classification problems are evaluated in evasion attack and
integrity-violation attack settings. Here, game theoretical frameworks can make
real-time inference about the adversary’s decision-making process at operation
time. The adversarial risk analysis is suitable for applications having computational
bottlenecks with possible changes in adversary’s behavior being incorporated
into classifier retraining. The proposed adversarial classification has cybersecurity
applications in automation process found in spam detection, autonomous driving,
fraud detection, phishing detection, content filtering, cargo screening, predictive
policing, and terrorism.

Fawzi et al. [181] analyze the robustness of classifiers to adversarial perturbations
to derive upper bounds for adversarial robustness measures on the difficulty of the
classification task. The robustness measures depend on distinguishability measure
between classes. Adversarial instability is attributed to low flexibility of classifiers
in comparison to the difficulty of the classification task. A distinction is made
between robustness of a classifier to random noise and its robustness to adversarial
perturbations. In real-world classification tasks, weak concepts of adversarial
robustness correspond to partial information about the classification task, while
strong concepts capture the essence of fixed classification families such as piecewise
linear functions for the classification task. A more flexible family of non-linear
classifiers and a better training algorithm are found to achieve better robustness.
Experimental evaluation suggests that increasing depth of the neural network
helps with increasing its adversarial robustness but adding layers to an already
deep network only moderately changes the robustness. Biggio et al. [57] improve
classifier robustness with information hiding strategies that introduce randomness
in the decision function. It is used in a multiple classifier system architecture.
A game theoretical formulation between classifier and adversary is proposed for
creating better-performing adversary-aware classifiers. Lack of information about
the exact decision boundary leads to the adversary making too conservative or too
risky choices in deciding adversarial manipulations for a malicious pattern. Thus,
the classifier can benefit by increasing the uncertainty of the adversary. However,
excessive randomization can also lead to a drop in the performance of the selected
classifier. This tradeoff between the randomization strategies is analyzed with a
repeated game of strategies to allow the classifier to retrain according to the strate-
gies selected by the adversary. Schmidt et al. [542] analyze the sample complexity
of robust learning in state-of-the-art classifiers subject to adversarial perturbations.
It is important in analyzing the robustness properties of learning systems deployed
in safety- and security-critical environments. The sample complexity of standard
benign generalization of classifiers is compared with the sample complexity of
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adversarially robust generalization in specific distributional models such as the
Gaussian model and Bernoulli model. Upper and lower bounds are provided as finite
sample guarantees for the sample complexity in case of worst-case distributional
shifts. The existence of an adversary is argued to significantly increase the loss for
any hypothesis in a hypothesis class for classifier design. Less adversarial forms
of robustness such as learning a robust classifier in benign settings are applicable
to problems in transfer learning and domain adaptation. The sample complexity
analysis is extensible with more constrained and lower-dimensional perturbations
in different perturbation sets. Further robustness properties are understood in terms
of the properties of adversarial distributions that make robust generalization hard or
easy in a model class of interest.

Miller et al. [427] examine adversarial active learning to discover strategies
for allocation of finite resources in machine learning for labeling training data
and feature extraction. Active learning techniques are presented in adversarial
contexts where accurate labeling of new content in a timely fashion is required
to maintain detection performance in applications such as anti-phishing platforms
and malicious advertisement detection. In active learning, the learning algorithm
actively engages an oracle to request information for labeling a training dataset.
The learner uses a query strategy for selecting the instance to be labeled. It can
select instances that don’t even occur in the dataset. So the learner is limited to a
pool of observed but unlabeled instances where human labeling is expensive. The
active learning selection strategies can be used to prioritize human labeling by fine-
tuned prioritization algorithms that predict optimal levels of human resources. Noisy
oracles provide weak adversarial environments for active learning. Adversaries
attempt to disguise malicious instances effectively without incurred costs. Defenders
try to efficiently identify malicious instances by measuring features with low cost.
Such an active learning can be modeled within the frameworks for game theoretical
adversarial learning. The cost of measuring features during training or testing is then
a subject for active learning. Here, the query oracle is supposed to label instances
and rate features to improve the performance of the learning system. In a white-
box attack, the adversary is assumed to be able to estimate the decision function
by repeated probing at every round of active learning with arbitrary precision.
The adversary has knowledge of the stochastic process generating the data around
benign and malicious labels but not the actual realizations of the training data.
At every round of the active learning, the adversary injects utmost one instance
in the training set to reflect non-stationarity in the learning process by including
outlying instances of a given label. Oracle types are categorized as expert oracle that
supplies highly accurate labeling supported by expensive technical experts, noisy
oracle representing crowdsourced information with accuracy varying as a function
of instance, and malicious oracle that employs adversarial strategies to mislabel
specific targeted samples. Adversarial sample creation plays a role in designing
malicious oracles producing decoy examples to reduce the quality of active learning.
Miller et al. [428] review adversarial active learning with mixed sample selection
strategies. Such a security-sensitive machine learning has applications in network
intrusion detection systems (NIDS); biometric authentication; email spam; image,
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character, and speech recognition; and document classification. A taxonomy of
training time attacks is called tampering. A taxonomy of testing/use time attacks is
called foiling. In tampering attacks, the adversarial objective is given as mislabeling
oracle predictions on correctly labeled examples and feature manipulations chosen
to bias the learning process with black-box optimizations. The noisy oracles vary
in accuracy when the ground truth is unknown. Uncertainty sampling and Max-
Expected Utility are chosen as the strategies for sample selection criteria in active
learning. In uncertainty sampling, the most uncertain sample receives the most
uncertain score. Random sampling selection criteria act as the baseline. Other
query strategies include density-based, query-by-committee, and variance reduction
sampling methods. Mixed strategies can be devised to discover unknown classes
in the training data. In security applications, such unknown classes are expected
because the data exhibits adversarial drift with non-stationarity properties of the
data distribution that change over time. Adversarial learning techniques address data
drift with sampling techniques such as uncertainty sampling with randomization,
handling noisy labels generated by non-adaptive, covariate shift setting theories
for adaptive adversaries. Here, active learning in adversarial contexts must include
experimentation around learning system performance with respect to real-time
concept drift, performance degradation over time, return on human effort to label
the data, coping with attacks and defenses against malicious adversaries labeling
the data, feature extraction costs in static and dynamic analysis of malware, query
strategy performance to learn a concept and react to its drift, and query strategy
robustness to adversarial manipulations of the human oracle.

Our research into constrained optimization theories in the objective functions for
adversarial learning is driven by the adversary’s capability and control on training
data and validation data taking into account application-specific constraints, effect
on class priors, fraction of samples, and features manipulated by the adversary.
Depending on the goal, knowledge, and capability of the adversary, these constraints
are also classified in terms of attack influence, security violation, and attack
specificity. Such constrained optimization problems on shallow architectures tend
to produce intractable computational algorithms for class estimation and inference
in supervised learning. The proposed adversarial cost functions and adversarial
training procedures necessitate the need for deep learning architectures in the
statistical methods solving the optimization problems in adversarial payoff func-
tions. Cybersecurity approaches to sampling problems in adversarial learning may
then focus on resilience enhancements to Markov chain methods and Bayesian
Stackelberg games. In this context, we can derive robust classification models in
the adversarial learning frameworks.

The evolutionary search algorithms of our research can be extended into Markov
decision processes and cellular automata by an extension of the local optimization
procedures maximizing the adversarial payoff functions. Here, mixture density
networks can express conditional data distributions on latent variables and class
labels in the training data and adversarial data. We can also measure information
divergence between minimal representations of training data and adversarial data
feature embeddings with deep metric learning-based adversarial cost functions.
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We may also enforce a prior distribution on the latent factors for coherent data
generation in supervised learning. The trustworthiness of such machine learning
in deployment can be simulated by computational optimization and statistical
inference problems in advanced analytics with game theoretical adversaries and
dynamical system control in black-box optimizations of the deep learning. We
can then analyze the bias-variance decomposition in adversarial payoff functions
to derive utility bounds for deep learning in a mistake bound framework for
cybersecurity. We study the existing adversarial cost functions with respect to
robustness bounds and privacy budgets in the sparse representation learning models
for adversarial learning. To derive reliable guarantees on the security of neural
networks, we conduct a data-driven adversarial machine learning security evalu-
ation at the intersection of software testing, formal verification, robust artificial
intelligence, and interpretable machine learning. Here, model complexity (otherwise
called generalization error) can be defined as the discrepancy between the out-
of-sample error and the in-sample error in formal verification applicable to the
cyber information processing methods in adversarial learning classification and
optimization problems.

Our game theoretical adversarial learning framework can automate the detec-
tion, classification, generation, and optimization of trustworthy machine learning
in the web and mobile apps. The generative representations in our adversarial
manipulations are able to quantify the security threats that exploit the active and
passive measurements in big data application domains. We model the malicious
activities of adversaries in game theoretical optimization objective functions. Then
the deep learning solutions in equilibrium are able to identify the information leaks
of private information available in the AI platforms. By modeling the information
leakage as loss functions in deep learning, we can formulate adversarial settings in a
game theoretical learning framework. We can include sensitive attack scenarios and
defense approaches from application domains such as biometric recognition into
such a learning theory framework. In this context, we can also explore the privacy-
enhancing technologies that impose controls on data sharing and collaborative
analytics in Internet measurements. Here, we can design data analysis, knowledge
discovery, and machine learning algorithms for data sharing frameworks. In them,
domain constraints can be modeled as adversarial cost functions, and design
constraints can be modeled as adversarial payoff functions. Security information can
be represented with complex networks. Then deep learning baselines can perform
in terms of data mining processes and machine learning features. Secure scalable
federated learning can also be implemented into distributed systems and database
systems. Our research in adversarial learning provides the frameworks to analyze
the security and privacy in machine learning. In a high-performance computing
infrastructure, we can implement it in tools and frameworks for serial algorithms,
parallel algorithms, and distributed computations of big data.
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4.1.4 Adversarial Training Strategies

Zhou et al. [712] survey game theoretical approaches to adversarial machine
learning with particular focus on cybersecurity applications due to attacks from
active adversaries. Such applications include intrusion detection, banking fraud
detection, spam filtering, and malware detection. The corresponding security games
are formed between the learning system and an intelligent adversary where both
players attempt to play best response strategies that maximize their payoffs. Each
player determines an optimal strategy based on prediction of the opponent’s strategy
choice. The adversarial learning process then results in a robust classifier less
susceptible to being misled by adversarial manipulations. Simultaneous games and
sequential games are the most popular security games to study the strategic inter-
actions between the intelligent adversary and the learning system. In Stackelberg
games, either the adversary or the learner is the leader of the game. They can be
extended to single-leader-multi-follower games such as the Bayesian Stackelberg
games.

Alpcan et al. [11] discuss decision-making in high-dimensional high-volume
feature spaces with strategic games in complex systems such as communication
networks, smart electricity grids, cyber-physical systems, and network security.
Here, game theoretical adversarial learning can be used in non-linear optimiza-
tion in large systems of variables where players have limited information and
resources to effectively identify their preference parameters at low cost in dynamic
online settings. The challenges of such limited information are escalated in high-
dimensional datasets for big data analytics. At the same time, the non-linear
optimization problems present computational challenges. So the proposed game
theoretical formulations focus on low-dimensional data representations reduced
with linear transformations such as random projection and sampling methods
in arriving at the Nash equilibrium solution concepts. The novel randomized
projections are constructed to approximately preserve inter-point distances and
inner products used in learning algorithms. Big strategic games and quadratic
games are designed to approximate the solution concepts in optimization. Thus,
large-scale strategic games can study the statistical inference in machine learning
under adversarial contexts. In computer security, such approaches to secure learning
can be contrasted with theoretical frameworks for secure multi-party computation
and differential privacy. They can also conceptualize multiple iteration attack
strategies that seek to mislead classifiers used in spam detection, polymorphic worm
detectors, and network anomaly detectors. Regret minimizing learners and non-
parametric statistical methods that can deal with large numbers of parameters are
also comparable to adversarial learning algorithms. So game theoretical adversarial
learning algorithm design and adversarial machine learning game analysis can
benefit from optimization theories found in robust statistics, online learning theory,
and theory of regret minimization.

Li et al. [355] extend adversarial machine learning to account for operational
constraints in randomized decisions. A conceptual separation is made between



94 4 Game Theoretical Adversarial Deep Learning

learning attacker preferences and operational decisions with respect to machine
learning predictions. The task of adversarial classification with reinforcement is
separated into the task of learning to predict attack preferences and the task of
optimizing operational policy that explicitly abides by the operational constraints on
the predictor. Then adversary’s best response strategies are computed as randomized
operational decisions. Training data is interpreted as the revealed preferences
of the attackers in adversarial evasion. A basis representation is proposed for
compactly estimating the operational decision function in a linear program. A
randomized operational policy explicitly abides by operational constraints. An
iterative constraint generation approach creates the adversary’s best response. Thus,
a principled way to embed randomization into adversarial classification with off-
the-shelf machine learning techniques is introduced. The baseline linear program
estimating the operational decisions has an exponential number of variables and
constraints. Its scalable approximation is arrived at by the Fourier representation
of Boolean functions combined with constraint generation to compute randomized
operational decisions under budget constraints. Hart et al. [253] discuss adaptive
strategies in repeated games that include smooth fictitious play and regret matching.
The empirical distribution of play is a correlated equilibrium with vector payoffs.
Such games can be used for adaptive discriminative learning with continuous
optimization in the game theoretical adversarial learning.

Jia et al. [299] combine Internet of Things (IoT) and advanced data analytics to
learn game theoretical agents utility functions from data. Such data-driven methods
derive utility models from observed decisions in equilibrium with computational
algorithms for statistical inference such as inverse optimization and inverse optimal
control. They can incorporate agile frameworks for analytics development to predict
agents’ behaviors and design incentives to achieve game theoretical objectives in the
forecasts for the agents in shared resource games. Such a game theoretical agent’s
behaviors modeled in an energy game are applicable to demand response programs
in markets such as formed by commodity, energy, and ride-sharing systems. For
example, in a smart building energy game, the occupants consume shared resources
such as lighting, heating, ventilation, and air conditioning. An energy game then
incentivizes to use energy efficiently through monetary rewards on the energy
consumption. The utility functions for individual agents are estimated in a non-
cooperative game on their historical actions. Projected gradient ascent (PGA) is used
to develop an optimal poisoning attack strategy in the utility learning adversarial
algorithm. The utility learning adversarial algorithm synthesizes malicious attack
points to imitate normal behaviors. Stationary conditions on normal behaviors are
expressed as regression residuals. The agents’ decisions and behaviors are then
computed at the Nash equilibrium of the estimated utility functions. A strong
threat model is devised from Kerckhoffs’s principle then targeted by adversaries
who poison training datasets to mislead predictions and achieve malicious goals.
The gradient in PGA is interpreted as training sensitivity capturing the change
in the learned utility models with respect to the adversarial data. Similarly, a
testing sensitivity estimates the variation in the Nash equilibria with respect to
the parameters of an agent’s utility function. PGA is then shown to reduce the
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predictive power of the learned utility functions. Experiments are conducted on
synthetic and real-world game datasets. A powerful attacker can then generate
malicious poisoning attacks that result in large errors in the agent’s behaviors and
predictions that remain indistinguishable from normal actions. A tradeoff is found
between attack efficacy and detectability. This tradeoff is used to propose a defense
mechanism of detecting malicious actions and applying robust learning methods for
utility estimation.

Dritsoula et al. [165] explore an intruder classification game as a security game
where a strategic defender classifies an intruder as spy or spammer based on the
solution to a non-zero sum game. The classifier is designed to detect file server
and mail server attacks. The defender’s objective function randomizes between a set
of thresholds to balance missed detections and false alarms. The attacker tradeoffs
between increasing attack strength and chances of getting caught. Nash equilibria
in mixed strategies are computed for the non-zero sum game in polynomial time.
The focus of the game theoretical framework is attacker classification rather than
intrusion detection. The spammer is a non-strategic player represented with a fixed
and known probability distribution. The spy is a strategic player that selects the
number of attacks on the main target according to an adversarial cost function. The
security game is compared with a signaling and dynamic game with multiple stages
where the players update their beliefs and distributions based on Bayesian statistics.
The spy’s cost matrix influences the best response strategies of the defender in its
payoff formulation. The spammer’s attack distribution influences the spy’s Nash
equilibrium strategy. The defender’s Nash equilibrium strategy is randomization
across a contiguous set of thresholds where the parameters of the game satisfy
conditions for randomizing between the set of thresholds.

4.2 Game Theoretical Adversarial Learning

Dalvi et al. [142] analyzed classifier performance by viewing classification as a
game with the classifier adapting to an adversary, aiming to make the classifier
produce false negatives. Here, a cost-sensitive adversary is combined with a
cost-sensitive classifier to define adversarial classification in a game theoretical
framework. In adversarial classification, the data-generating process is allowed
to change over time such that the data change can be expressed as a function
of classifier parameters. Classifier is then assumed to maximize an expected
payoff over adversary’s cost parameters. In turn, the adversary’s strategy is to find
classification feature changes that maximize adversary’s expected payoff. Nash
equilibria are demonstrated for both sequential games and repeated games where
parameters of both players are known to each other.

Lowd et al. [394] introduced adversarial algorithms to learn a linear classifier’s
decision boundary. An ACRE learning framework is used to determine whether an
adversary can efficiently learn enough about defeating a classifier by minimizing a
linear adversarial cost function. Biggio et al. [66] defined poisoning attacks against
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support vector machines (SVMs) by injecting adversarial examples into training
data. A gradient ascent procedure computes adversarial examples as local maxima
of SVM’s non-convex error surface.

Bruckner et al. [90] proposed prediction games to model interaction between a
learner building predictive models and a data generator controlling data generation
process. Kantarcioglu et al. [310] designed a subgame perfect Nash equilibrium,
which optimizes attribute selection with cost functions in an adversarial classifi-
cation Stackelberg game. Liu et al. [386] modeled competing behavior between a
rational adversary and a black-box data miner as a sequential Stackelberg game.
Chivukula et al. [123] enhanced [386] proposals for deep learning models, while
Yin et al. [687] extended them for sparse attack scenarios. Zhou et al. [709] explored
a nested game framework, where adversarial strategy is chosen according to a
probability of making prediction about classifier’s decision boundary in a single-
leader-multi-follower game.

Kantarcioglu et al. [308] develop a game theoretical framework to analyze
adversarial learning applications such as intrusion detection and fraud detection.
In it, a classifier’s equilibrium performance indicates its eventual success or failure.
A security game is solved to predict the end state of an equilibrium. The conditions
under which an equilibrium exists estimate the classifier performance and adver-
sary’s behavior. So the game theoretical equilibria provide guidance on constructing
classifiers that are useful in data mining and knowledge discovery. The solution con-
cepts to the security games are solved by stochastic simulated annealing and Monte
Carlo integration to find the equilibrium strategies. In experimental evaluation, the
classification cost for misclassifying positive labels is found to be much higher
than that for misclassifying negative labels. Under equal misclassification costs and
equal population size for positive and negative labels, the classifier would minimize
the total number of misclassification errors. Liu et al. [384] model the interactions
and outcome between an intelligent adversary and learning system as a two-person
sequential non-cooperative linear Stackelberg game. The Nash equilibrium solution
concepts are obtained by solving discrete and continuous optimization problems in
the Stackelberg game formulated as a bilevel programming problem. The strategy
space for the adversary can be both finite and infinite. In the infinite case, the players
in the game need not know about all the payoff functions. Genetic algorithms solve
the Stackelberg game for the infinite case.

The unexpected predictions in the training data distribution can be studied in
terms of adversarial learning where perturbations in training data can change the
way a deep network predicts in unintended ways. Rakhlin et al. [504] provide an
online learning no-regret algorithm with game theory. It is called optimistic mirror
descent. It is used for online optimization problems in predictable sequences. It
converges to a minimax equilibrium in a finite zero-sum matrix game in logarithmic
time. So black-box regret guarantees can be found for predictive analytics on
arbitrary sequences representing worst-case performance of the game theoretical
interactions in adversarial deep learning. They can be used to design custom
loss functions for sampling, prediction, and optimization problems in adversarial
deep learning. The benign sequences are due to the smoothness of the inner
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optimization and the corresponding saddle-point optimization structure in game
formulations. Here, predictable/normal sequences refer to benign class labels, and
unexpected/abnormal sequences refer to adversarial class labels. The predictability
of sequences comes from the predictability of gradients in optimization and
convergence criteria to discover the minimax value. The optimization objective
is to minimize cumulative regret between predictable and adversarial sequences
interleaved among the game theoretical payoff sequences for all players partic-
ipating in the security game. In optimistic mirror descent algorithm, Bregman
divergence defined on a custom loss function determines the step sizes in the
predictive sequences and adapts the step sizes to sequences observed so far. We
may also use a custom loss function in the moments and cumulants of data
distributions to explore “abnormal” prediction values and their corresponding causal
feature “explanations” suitable for explainable artificial intelligence. Here, we can
experiment with the feature selection procedures and loss function designs involving
generalized variance, non-parametric Bayesian networks and probabilistic causal
structures in multivariate deep network regression/interpolation between sequences.
Here, attention-based and generative mechanisms in deep learning can be the
regression baselines for the analysis of variance and model evaluation in multivariate
structured prediction. We may also use any descriptive statistics, summary statistics,
sufficient statistics, and order statistics suitable for analysis of variance in the
predictable sequences. Motwani et al. [443] is a standard text on randomized
algorithms for online learning problems in game theoretical adversarial learning.

Blum et al. [74] present a sequential resource-sharing game to achieve social
welfare with privacy-preserving, publicly announced information. The motivating
use case is taken from multi-agent settings in financial decision-making where
players play the game with imperfect information. The idea of social welfare in
the game depends on actions of the past players. Its applicability is then shown
on machine-scheduling and cost-sharing games. Deferentially private information
dissemination is the recommended adversarial defense mechanism that is at the
intersection of mechanism design and privacy-preserving machine learning. A
privacy-preserving mechanism collects information from players to compute an
approximate correlated equilibrium that has advice to the players on optimal plays
according to player types and behaviors. The tradeoff between increase in private
approximate information about the state of play and decrease in social welfare
is analyzed with best response dynamics in greedy matching games that have
noisy cost functions. Unlike adversarial deep learning, the noisy cost functions are
estimated on states of play in the game rather than the payoff of the game abstracting
the values of players’ actions. Thus, we can augment the players’ payoff functions
with state equations of a dynamical system to result in stochastic control in the game
theoretical interactions of the adversarial deep learning.

In our research, we evaluate multi-label adversarial learning algorithms in
stochastic optimization settings. We empirically generate adversarial manipulations
at Nash equilibrium in a constant-sum and a variable-sum sequential Stackelberg
game. Our adversary’s strategy space is determined by evolutionary parameters and
variational parameters learned on the input data distribution. Therefore, the optimal
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adversarial manipulations found by our adversaries define a generative model for
the adversarial data found in classifier’s input data space.

Furthermore, we define adversarial cost functions on a strategy space encoding
original data distribution. Our adversarial payoff functions are optimized by a
simulated annealing algorithm randomizing step changes in adversary’s strategy
spaces. Randomization in our adversarial attack strategies is also defined by the
latent space reconstructing original data distribution with a variational autoencoder
(VAE). The proposed (variational non-linear non-convex) adversarial cost function
leads to better regularization of the adversarial payoff function converging to a Nash
equilibrium in our Stackelberg game.

4.2.1 Multilevel and Multi-stage Optimization in Game
Theoretical Adversarial Learning

Based on visual interpretation of probabilistic classifiers, Di Nunzio et al. [469]
survey the gamification of supervised machine learning techniques to label objects
at an affordable cost that is not time-consuming. A pricing model is devised for con-
structing a reasonably accurate classifier with small size samples of labeled objects
where the performance is comparable to state-of-the-art classification algorithms.
The game is organized into ten levels according to separability criteria between
the positive and the negative classes. The goal in each level is to find the best
classifier maximizing F1-score with the least amount of computational resources.
Liaghati et al. [367] discuss maximin optimization approaches to resilient system
design operating in a co-evolutionary environment. Here, adversarial manipulations
are considered to be unexpected emergent behaviors exhibited by complex systems.
Emergent behaviors arise due to diversity, connectivity, interactivity, and adaptivity
of a system in its environment. Mathematical programming is used in such system
design to optimize the system with respect to complexities and tradeoffs in
the operating environments. Complexity multiple different interactions, problem
formulation, stakeholders, and the operational environment. Such complexities
include multiple players, different interactions between players, learning problem
formulation, stakeholders of the data mining, and the operational environment for
machine learning. In this context, adversarial examples lead to black swan events
in complex systems. System resilience and adversarial robustness are then achieved
by thoughtful, informed design that makes systems effective and efficient in a wide
range of contexts. The definition of resilience is extended to maintain capability in
the face of disruption by absorbing external stresses. Resilience is defined in terms
of probability of recovery according to correct prognostics and correct diagnosis.
Mathematical programming for system design includes mixed integer non-linear
programming, evolutionary algorithms with multiple constraints and non-linear
fitness functions, Bayesian optimization of uncertain security requirements, and
minimax/maximin robust optimization suitable for non-linear problems. The appli-
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cation of game theory to systems engineering leads to the design of systems
where the adversarial operational environment is uncontrollable and uncertain. The
operating environments in the resilient system designs are tested against uniform
distributions derived according to the maximum entropy principle. Air defense
system is chosen as the representative of a complex system operating in adversarial
environments with associated computational costs. Yair et al. [675] interpret the
statistical procedure called contrastive divergence (CD) learning as adversarial
learning where a discriminator classifies whether a Markov chain generated from
the statistical model has been time reversed. CD is also contrasted with the learning
in generative adversarial networks (GANs) to conclude that CD’s update rules
cannot be expressed in terms of the gradients of any fixed objective function.
CD has empirical advantages on maximum likelihood estimation (MLE) due to
short Markov chains initialized at the data samples found across a wide range of
application domains. CD adjusts contrastive distribution to generate samples that
are close to the manifold yet traverse large distances along it.

Multilevel optimization is suitable for competitive games where there is no
chance player. Multi-stage optimization is suitable for cooperative games in which
all players receive the same payoff, but there are chance players. The players’ moves
in a cooperative game alternate between cooperating players and chance players.
Decision problems in game theoretical adversarial learning can be formulated
as optimization problems in multilevel and multi-stage optimization theories that
include multiple independent decision-makers, sequential or multi-stage decision
processes, and multiple possibly conflicting objectives. Here, multilevel opti-
mization has multiple stages, multiple objectives, and multiple decision-makers.
By contrast, multilevel optimization generalizes mathematical programming with
models on decision problems and complexity classes for determining each player’s
move as a solution to optimization problems in game theoretical adversarial
learning. Practical applications for such multi-stage optimization include hierar-
chical decision systems such as government agencies and large corporations with
multiple subsidiaries, controlled optimization systems such as electrical networks,
and biological systems. Multilevel optimization theories also allow us to quantify
the computational resource tradeoffs between privacy and security, adversary cost
and learner cost, and attack scenario and defense mechanism in game theoretical
adversarial learning in terms of duality formulations in optimization such as separa-
tion versus optimization, inverse optimization versus forward optimization, pricing
versus sensitivity, and primal versus dual functions in optimization. Chalkiadakis et
al. [109] write a book on cooperative game theory on the strategic behaviors of self-
interested agents with binding agreements among them. The computational aspects
of cooperative game theory are summarized such as transferable utility in games,
solution concepts such as Shapley value, compact representations for games, and
efficiently computing solution concepts for games. The game theoretical algorithms
suitable for adversarial learning include welfare-maximizing coalition structures,
methods to form coalitions under uncertainty, and bargaining algorithms.

A game can be interpreted as a multi-agent model of relationships between
agent’s actions and incentives. When agents are self-interested, the game models
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an optimization process to describe an uncertain process with an underlying
probabilistic model. Here, multi-objective optimization simultaneously optimizes
multiple objectives to discover Pareto-optimal curves which are a set of points where
each objective function cannot grow larger with decreasing another. In game theory,
each objective function belongs to a separate agent, and the decision variables
are partitioned into the domain of each player’s objective function. Here, pursuit
and evasion games and strategic resource deployment game can be formulated for
algorithmic warfare. Economics games are related to auctions; buying/selling can
be used in computational advertising, resource procurement, stock market analysis,
and dynamic price discovery. Graphical games are designed on network formation
between players in social, corporate, and P2P networks. Recreational games such as
chess, checkers, go involve full information about the opponents. Deb et al. [150]
discuss the real-world applications of evolutionary multi-objective optimization
(EMO). Pareto-optimal solutions are found by an optimization methodology for
EMO that can handle a large number of objectives, a large computational cost, and
difficulty in visualization of the objective space. The EMO procedure progresses
to Pareto-optimal regions by adaptively finding the correct lower-dimensional
interactions. It is implemented with elitist non-dominated sorting GA or NSGA-
II algorithm that can scale to many number of objectives. Such Pareto optima
can model the game’s randomized strategy space in game theoretical adversarial
learning. We can formulate the adversarial manipulations as stochastic optimization
and randomized sampling parameters of a variational autoencoder generating the
adversarial data within a Stackelberg game. Such a game is designed to mislead
the adversary with robust statistics in terms of EMO algorithms such as simulated
annealing (SA) and alternating least squares (ALS). The scalar optima in SA are
used to generate the vector optima in ALS. The strength and relevancy of our attack
scenarios are determined by the performance of the deep learning models under
attack.

Zhang et al. [696] survey the intersection between evolutionary computation
(EC) algorithms and machine learning techniques. They include genetic algorithms
(GA), evolutionary programming (EP), evolutionary strategies (ES), genetic pro-
gramming (GP), learning classifier systems (LCS), differential evolution (DE),
estimation of distribution algorithms (EDAs), ant colony optimization (ACO),
particle swarm optimization (PSO), and memetic algorithms (MA). The machine
learning techniques that use EC algorithms include statistical methods, interpolation
and regression, clustering analysis (CA), principal component analysis (PCA),
orthogonal experimental design (OED), opposition-based learning (OBL), artificial
neural networks (ANN), support vector machines (SVM), case-based reasoning,
reinforcement learning, competitive learning, and Bayesian networks. A taxonomy
is produced for comparing the evolutionary steps enhancing each machine learning
technique. Game theoretical adversarial learning can use the evolutionary steps for
parameter adaptation, operator adaptation, local search, and computational costs
to produce numerical computational methods in evolutionary game theory with
evolutionary adversaries crafting dynamical algorithms for producing adversarial
manipulations. The game theoretical strategy spaces for algorithmic randomization
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and data manipulation in our research are determined by the stochastic operators
in evolutionary algorithms and variational networks defining the attack scenarios.
The evolutionary search algorithms of my research can be extended into Markov
decision processes and cellular automata by an extension of the local optimization
procedures maximizing the adversarial payoff functions. Here, mixture density
networks can express conditional data distributions on latent variables and class
labels in the training data and adversarial data. We can also measure information
divergence between minimal representations of training data and adversarial data
feature embeddings with deep metric learning-based adversarial cost functions.
We may also enforce a prior distribution on the latent factors for coherent data
generation in supervised learning.

4.3 Game Theoretical Adversarial Deep Learning

In Liu et al. [385], the interactions between an adversary and data miner are modeled
as a two-player sequential Stackelberg zero-sum game where the payoff for each
player is designed as a regularized loss function. Each player’s move is based on the
observation of the opponent’s last play. The adversary iteratively attacks the data
miner by best strategy for transforming the original training data. The data miner
reacts by rebuilding classifier based on data miner’s observations of the adversary’s
modifications to the training data. The adversary’s strategy of play is determined
independently by the adversary. The game is repeated until adversary’s payoff does
not increase or the maximum number of iterations is reached.

The maximin problem for optimization proposed in Liu et al. [385] is solved
without making assumptions on the distribution underlying training and testing
data. The empirical evaluation of the optimization algorithm is conducted on image
spam and text spam data. Different settings of loss functions yield different types of
classifiers such as logistic regression with log linear loss function and support vector
machines with hinge loss function. For the chosen loss functions, the optimization
objective is formulated as an unconstrained convex optimization problem. The
optimization problem is solved by the trust region method minimizing objective
function on a constrained neighborhood of polar coordinates. At Nash equilibrium,
the solution of the maximin problem achieves the highest false negative rate and
lowest data transformation cost simultaneously. This leads to robust classification
boundaries at the test time. The weight vector computed at Nash equilibrium also
gives features that are more robust to adversarial data manipulations.

Liu et al. [387] propose an extension to Liu et al. [385] where one-step game
is used to reduce computing time of the minimax algorithm. The one-step method
converges to Nash equilibrium by utilizing singular value decomposition (SVD).
SVD gives orthogonal basis vectors or singular vectors acting as the “principal
components” of training data. Thus, the singular vectors characterize each type
of class present in the training data. The label of a test data is then taken by
Liu et al. [385] to be the training class generating smaller residue vector. This
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SVD-driven classification algorithm is taken to be the initial state of the game
theoretical model. The adversary goal is to transform target class (or positive
class) instances into the negative class. This goal is achieved in the testing data
by shifting positive instances in training data by a small amount such that the class
distribution is skewed toward positive class label. Moreover, the payoff function for
the adversary is formulated as the difference in singular vectors before and after
the adversarial data manipulation. Thus, a rational adversary not only attempts to
minimize the distance between distributions of negative instances and transformed
positive instances but also minimizes the transformation itself. The payoff for the
adversary is then approximately solved using a trust region sub-problem which is
solved using a subspace approximation while avoiding the expensive computation
of the gradient matrix and hessian matrix of the adversary’s loss function and
classifier’s loss function, respectively. In validating the algorithm, the adversarial
examples are constructed to produce high false positive rate for the classifier at the
initial step of the game. At the end of the game, the false positive rate of the learning
algorithm is reduced by taking into account adversarial data manipulations.

Wang et al. [628] assume that the adversary changes any feature of the classifier
at will and pays a cost proportional to the size of the feature subset that has been
changed. Such an attack on classifier is called sparse feature attack in the paper.
The min-max optimization problem is then formulated as a non-zero sum game. In
a non-zero sum game, the gain of classifier is not necessarily the loss of adversary.
Regularized loss functions are proposed for both the data miner and adversary to
make the game’s objective a convex bilevel optimization problem. Both l1 and l2
regularizers are examined with respect to the proposed sparse models. The adversary
is assumed to apply change in data by minimizing the changes to loss function. The
adversary selects an attack strategy with full knowledge of the data miner’s feature
weighting strategy. In regularizing the adversary’s loss function, both the number
of positive samples and the number of negative samples are used to account for
imbalance in the data. Then the data miner chooses the feature weights based on
samples in the manipulated data space. The goal of data miner is to determine a
decision boundary based on continuously manipulated data in each step. The goal
of adversary is to determine a manipulating vector based on a given budget in each
step. These steps are repeated sequentially until convergence. Upon convergence,
the classifier finds feature weights that are robust against the proposed sparse feature
attacks. For solving a l2 regularized least squares objective, the adversary’s data
manipulations are assumed to be bounded by a perturbation matrix of l1 norms that
set a reasonable budget (or accumulated cost) as the convergence criteria for the
adversary. The elements of perturbation matrix are tuned to the input data by cross-
validation over training and testing data ordered in time. The various games are then
simulated by various l1 and l2 regularizers on the perturbation matrix. The choice
of regularizers for the data miner leads to tradeoffs between sparsity and accuracy
and bias and variance of the classifiers. Experimental evaluation validates that game
theoretical classifiers deteriorate at a slower rate than regular classifiers on both
near-future and far-future data.
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Fig. 4.1 A flowchart illustrating the variational Stackelberg game theoretical adversarial learning

To derive the payoff functions in the game, we assume that the adversary has no
knowledge of either the deep neural network layers or loss functions in the deep
learning model. Our proposed game theoretical optimization problems are solved
without making assumptions on the learner’s training and testing data distributions.
The strategy space for algorithmic randomization and data manipulation in our game
is determined by the stochastic operators in evolutionary algorithms and variational
networks defining the attack scenarios.

4.3.1 Overall Structure of Learning Model in Variational
Game

Figure 4.1 is a flowchart of our adversarial learning process that accounts for the
presence of a variational adversary in supervised learning [126]. The final outcome
of our adversarial learning is a CNN classification model CNNsecure (henceforth
shortened as CNNs) that is robust to the adversarial attacks.

We generate the adversarial data in a two-player Stackelberg game between the
adversary and the classifier. The adversary creates a variational model by searching
for adversarial manipulations on encoded training data. Every statistical parameter
of the encoded training data is searched according to a simulated annealing (SA)
procedure. The aggregation of adversarial manipulations to all statistical parameters
in the encoded training data is optimized according to an alternating least squares
(ALS) procedure. The ALS optimization is invoked at each time when the adversary
generates adversarial data Xgen in the Stackelberg game. Xgen acts as a validation
data for the classifier under attack. For every Xgen, the classifier re-optimizes its
training weights to update itself.

The result of such a game theoretical interaction between the learner’s and
classifier’s best moves is quantified by the adversary’s payoff payoffbest . The
adversary engages the classifier in the Stackelberg game as long as the payoffbest

increases. A decrease of payoffbest indicates that Nash equilibrium exit condition
has been reached in the Stackelberg game. At the end of the game, the adversary
has optimal adversarial manipulations from the most recent Xgen. Such manipu-
lations are applied on the training data to obtain attacked training data. Then the
classifier’s learning process adds the attacked data into the original training data
so that the CNNs can be optimally retrained by our adversarial attacks. While the
CNN classifier is trained in the original data space, the adversary generates data
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manipulations in the encoded data space. A variational representation of the encoded
data space allows the adversary to propose a generative model for the adversarial
manipulations.

4.3.2 The Differences Between Our Method and GANs

Although both GAN and our method [126] are based on the framework of game
theory and both of them are seeking for the Nash equilibrium, they have some
great differences. In this section, we summarize these differences into three aspects,
including the model construction, the model optimization, and the optimization
results.

Model Construction Firstly, our variational Stackelberg game is a variable-sum
problem, while the GANs construct a constant-sum game. Secondly, our method
defines the adversary as the game leader, whereas the GAN is led by a generator.
Lastly, the GANs define attack scenarios to discover generative models underlying
given data distribution, while we optimize adversarial payoff functions with evo-
lutionary attack parameters defining our attack scenarios in randomized strategy
spaces.

Model Optimization Firstly, GANs solve a convex optimization problem with
gradient-based optimization algorithms. By contrast, we solve a stochastic optimiza-
tion problem with a simulated annealing algorithm. Specifically, our game’s Nash
equilibrium is computed by solving non-convex optimization problem. Secondly,
during game theoretical adversarial training, we query CNN about the attack
performance errorpos(w), while GANs query CNN to distinguish between “real”
data and “fake” data.

Optimization Results This is the most significant difference between GANs
and our model. Firstly, GAN’s objective at the Nash equilibrium is to learn a
generative model that mimics the original distribution of data, while our method
learns the optimal adversarial manipulations (α

μ∗ , ασ∗ ) that are not the original
true distribution of the data but are manipulations to the original distribution.
Secondly, GAN’s discriminator at Nash equilibrium is unable to classify between
labels, while our classifier is robust to adversarial manipulation, and its defense
performance is measured by errorPos(w). Thirdly, in our black-box attack scenario,
different proposals on adversarial payoff functions and adversarial cost functions
lead to different Nash equilibria for learning objective function and corresponding
adversarial manipulations. In contrast, a GAN always tries to converge to training
data distribution.
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4.3.3 Comparisons of Game Theoretical Adversarial Deep
Learning Models

In our research, game theoretical adversarial deep learning is applied to cyberspace
security classification problems in the training stage and testing stage. Such
problems study feature manipulations, misclassifications costs, and distributional
robustness in adversarial learning applications. Adversarial examples are then
crafted by experimentation on the loss functions in deep learning. The adversarial
loss functions and training procedures in our research are applicable to the study
of trustworthiness of deep learning in cyber-physical system deployment. They can
simulate the cyberspace security safeguards, risks, and challenges as computational
optimization and statistical inference problems. For the sensitivity analysis on such
big data, we can analyze the analytics validation metrics that tune the deep neural
network parameters according to misclassification trends in structured predictions.
Common validation metrics for this purpose include confusion matrix, precision-
recall curve, ROC curve, lift curve, and kappa statistic. We can also define synopsis
data structures on tensors and graphs to derive the adversarial machine learning
features. Our interest is in those data structures that aid similarity search and metric
learning across probability distributions to evaluate the security of machine learning
algorithms according to a design-for-security machine learning paradigm rather
than the traditional design-for-performance paradigm. In this context, causality
and stationarity of Markov chains can be used to define expectation maximization
and minimum description length principles for statistical inference in adversarial
data distributions. We have applied the learned features in clustering, classification,
and association analysis. They can be extended into feature learning for structured
prediction, change detection, event mining, and pattern mining. Here, the learned
features can be one of sampled features, constructed features, extracted features,
inferred features, and predictive features. The adversarial cost optimization over
various types of learned features can be parameterized tractably with custom loss
functions in supervised deep learning models and adversarial cost functions in
robust optimization.

Sun et al. [584] discuss feature selection in machine learning and pattern
recognition that is based on information theoretic features to remove redundant
and irrelevant features from high-dimensional data. A cooperative game theoretical
framework is proposed for feature evaluation and weighting to optimize the learning
performance of dimensionality reduction. Shapley values evaluate the weight of
each feature in interdependent feature subsets to produce a feature selection algo-
rithm. Thus, game theory can be used for the analysis of learned feature’s relevance,
interdependence, and redundancy analysis in adversarial deep learning. In general,
game theoretical feature selection has artificial intelligence applications where
optimal combination of feature selection algorithm and classifiers is necessary for
efficient model selection in machine learning theories dealing with uncertain infor-
mation. Sun et al. [582] develop a cooperative game theory framework to evaluate
the relative feature importance. Information theoretic measurements are proposed to
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distinguish between the redundancy, interdependence, and independence between
learned features. A Banzhaf power index is derived for each feature. It is averaged
over a coalition of feature subsets to which it belongs to propose context of feature
selection within a voting game. The impact of a feature is calculated in terms of
winning coalitions reflecting the feature’s relevance to a target class.

Gore et al. [229] apply cooperative game theory to the feature selection in
the Relief algorithm. By assuming a probability distribution on the training data,
information theoretic measures are derived to rank the learned features, select
feature subsets, and quantify the individual contribution of every feature belong-
ing to a feature subset. Such feature selection based on game theory is useful
for learning target concept to optimize the adversarial criterion functions and
improve adversarial robustness performance to approximate the underlying class-
conditional distributions in adversarial deep learning. By handling the curse of
dimensionality, it can enhance the prediction performance, reduce measurement and
storage requirements, reduce training complexity and prediction time, and provide
better understanding of the stochastic process generating the adversarial data. The
Relief algorithm acts as a discriminator between different classes grouping the
feature subsets. Shapley values decide the feature’s importance across iterations
of the feature selection algorithm computing game theoretical coalitions. Cohen
et al. [132] design a contribution-selection algorithm (CSA) for feature selection
based on multiperturbation Shapley analysis (MSA) framework. Game theoretical
learning assesses the usefulness of features selected according to either forward
selection or backward elimination search algorithms. The CSA algorithm can be
optimized according to performance measures such as accuracy, balanced error rate,
and area under receiver operating characteristic curve. Coalitional games in CSA
lead to a game theoretical iteration estimating Shapley values for features according
to the MSA framework. In experiments, feature subsets are produced to empirically
generate a high-performing classifier.

We design Stackelberg games between two players where one of two players,
a follower data miner (learner), acts in response to the moves of the other player,
an intelligent adversary (adversary) leader, with the goal of converging on an equi-
librium state called Nash equilibrium. We have formulated the objective functions
in (two-player sequential) Stackelberg (zero-sum) games as bilevel optimization
problems, where the game theoretical goal is defined to simultaneously optimize
two payoff functions that influence one another according to a leader-follower
interaction that allows the learner to retrain after each attack. Stochastic search
algorithms are then designed to solve the optimization problems. The optimal
attack policy is thus formulated in terms of stochastic optimization operators and
evolutionary computing algorithms. The adversary’s payoff function simulates their
attack processes, and the learner’s simulates its learning processes. The solution to
attack processes specifies the adversary’s optimal attack policy under constraints.
The solution to learning processes specifies the learner’s gain given the adversary’s
gain under the optimal attack policy. In white-box attack scenarios, attack policies
can be formulated as multiple EM-like steps that attempt to estimate an adversary’s
cost functions (sparse as well as dense) as a black-box attack and a learner’s
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loss functions as a white-box attack. Introducing metric learning models that
measure image representation and information divergence between legitimate and
illegitimate data will allow us to explore white-box substitution attacks on the
expected behavior of loss functions in multi-label classification networks.

4.3.4 Comparisons Between Single Play Attacks and Multiple
Play Attacks on Custom Loss Functions

Adversarial attack technologies exist in computer vision, natural language pro-
cessing, and cyberspace security on multidimensional, textual, and image data,
sequence data, and spatial data. Such problems study feature manipulations, mis-
classification costs, and distributional robustness in malware analysis, concept drift,
object detection, novelty detection, outlier detection, event detection, imbalanced
classification, distribution shifts, rare pattern mining, out-of-distribution example
detection, structured prediction, motif mining, model misspecification, and non-
stationary feature learning. Here, our research into game theory is able to generate
convergence criteria of stochastic search policies and game theoretical optima in
the large-scale robust optimization algorithm design necessary in computational
intelligence of cyber-physical systems. The resulting adversarial loss functions and
training procedures in our research are applicable to the study of trustworthiness of
deep learning deployment and evaluation.

Bear et al. [37] discuss the role of loss functions in rewarding accuracy and penal-
izing inaccuracy. Convex loss functions are found to favor simpler models that have
more bias and less variance. By contrast, concave loss functions are found to favor
complex models that have less bias and more variance. Such optimality tradeoffs
between bias and variance in predicting the target class labels and associated concept
classes shape the objective function landscape of the adversarial loss functions that
inform statistical inference in game theoretical adversarial deep learning. Gener-
ating and explaining the adversarial manipulations requires us to study the effects
of algorithmic bias in deep learning problems and subsequent robust optimization
in adversarial learning problems. The bias-variance decomposition in adversarial
payoff functions can be analyzed to derive utility bounds for deep learning in a
mistake bounds framework for cybersecurity applications of adversarial learning.
We can then express the bias-variance tradeoffs learning robustness, fairness, and
transparency in deep learning frameworks for explainable artificial intelligence.
Here, we can explore the signal filtering, detection, and estimation in tensors with
information divergence mechanisms built around the game theoretical adversarial
manipulations. Domingos [160] presents a unified bias-variance decomposition
applicable to squared loss, zero-one loss, variable misclassification costs, and
adversarial loss functions. It is utilized in the design of decision tree learning,
instance-based learning, and boosting. Loss function is defined as the mathematical
function to measure a model’s cost of predicting a classification label or regression
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value. The goal of machine is stated as producing a model with the smallest possible
loss. The optimal model is obtained by minimizing the expected loss over all the
training examples, validation examples, and adversarial examples. In the case of
zero-one loss, the optimal model is the Bayes classifier with a loss function called
the Bayes rate. Since loss is a function of training dataset, the same adversarial
learning algorithm produces different machine learning models for different training
datasets. This dependency is reduced by averaging the expected loss over several
training datasets that include the adversarial learning datasets. Here, bias-variance
decompositions decompose the expected loss into bias, variance, noise terms that
are computed with a computational algorithm. Adversarial data distributions are
accounted for in the noise term. The bias term is independent of the training set and
is zero for a learner that always makes the optimal prediction. The variance term is
independent of the true value of the predicted variable. It is zero for a learner that
always makes the same prediction regardless of the training set. The distribution
of margins for correctly classifying the predictions with high confidence can then
be used to derive bounds on the generalization error of adversarial loss functions
proposed in game theoretical adversarial deep learning. The smaller the probability
of a lower margin, the lower the bound on generalization error on training examples
augmented with the adversarial examples. Maximizing classification margins and
minimizing misclassification errors are a combination of reducing the number of
biased examples, decreasing model variance on unbiased examples, and increasing
model variance on biased examples. The related work is on adversarial deep learning
theories in data mining patterns and machine learning theories in computational
learning algorithms. It has application in malware analysis, agent mining, intelligent
control, and cyber risk analysis in trust modeling of the security and privacy of
machine learning.

Belkin et al. [43] study the model capacity of neural network’s interpolation with
double descent performance curve’s training regime that subsumes conventional
practice of U-shaped bias-variance risk curves to balance underfitting and overfitting
according to empirical risk minimization. The simplicity of the neural network
predictors is defined over function classes that contain interpolating functions with
regularity or smoothness due to less inductive bias as measured by a function
space norm. The interpolating functions with a smaller norm are considered to be
simpler. Adversarial cost functions on the neural network predictors in adversarial
deep learning settings act as measures of regularization on the inductive bias in
game theoretical adversarial deep learning. Here, margin theory is the related
work to discover the function classes in adversarial classifiers. Research on the
optimality of interpolating predictors is required to extend such function classes
in adversarial regressors approximated by multi-label classifiers with vector valued
outputs and sum of squared losses at each output. Incorporating such interpolation
regimes and their empirical data analytics in adversarial deep learning opens new
computational, statistical, and mathematical avenues of research into the optimality
properties and utility bounds of deep learning predictors. Li et al. [358] investigate
the dimensionality of the parameter space to solve computing problems with neural
networks for supervised, reinforcement, and other types of learning. Such results



4.3 Game Theoretical Adversarial Deep Learning 109

are useful for finding the structure of the objective landscape in adversarial deep
learning with compressed representations of the deep neural networks in black-
box optimizations. Strumbelj et al. [574] use coalitional game theory to explain
individual predictions of classification models. The proposed explanation method
is designed to work with any type of classifier. In machine learning, it can be
contrasted with model-specific explanation methods such as decision rules and
Bayesian networks as well as methods that give explanations in the form of feature
contributions in classifier ensembles such as random forests. In deep learning,
it can be contrasted with rule extraction methods applied to neural networks to
reduce the dependence between end-user requirements (obtained from marketing,
medicine, etc.) and underlying machine learning methods. The notion of a prediction
difference is proposed between current prediction and expected prediction with
respect to the current feature value contribution to the prediction. No assumptions
are made on the prior relevance of individual feature values. The changes in a
classifier’s prediction are decomposed into contributions of individual features using
concepts in coalitional game theory. Narayanam et al. [450] propose to discover
influential nodes acting as learned features in a social network with Shapley values
and cooperative game theory. Shapley values are the solution concepts giving
the expected payoff allocations in the coalitional game designs. The problem of
information diffusion in social networks is addressed for applications such as viral
marketing, sales promotions, and research trends in co-authorship networks for
abstract ideas and technical information with computationally efficient algorithms.
The target node set selection problem finding influential nodes is formulated as a
coverage pattern discovery problem in data mining that models individual decisions
influenced by behaviors of immediate neighbors in the social network. Shapley
value solution concepts satisfy mathematical properties called linearity, symmetry,
and carrier property to discover a fair way of distributing the gains of cooperation
among the players in the coalitional game. Shapley values take into account
all possible coalitional dynamics and negotiation scenarios among the players.
The nodes in social network can be considered to be strategically behaving self-
interested individual entities in an organization functioning according to mechanism
design in game theory. Then the probabilities of a node being influenced by its
neighbors depend on not only the social network communities’ structure but also
private information the node has about its neighbors. The target node set problem
can be used for machine learning applications in marketing, politics, economics,
epidemiology, sociology, computer networking, and databases.

In future work, we shall explore dependence between randomization in our
adversarial manipulations and optimization in our game formulation. At present,
the game theoretical stochastic optima (solving for adversarial data) are determined
by the convergence of the adversarial cost function rather than a classification cost
function. However, multi-label classification cost functions in a multiplayer strategy
space of pure strategies as well as mixed strategies could be another fruitful avenue
of research. Assuming a white-box attack scenario on a CNN classifier would mean
we could guide the parameter settings in a genetic algorithm and an SA algorithm
into application-dependent adversarial data distributions.
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An attack scenario with interactions between multiple cooperating adversaries
gives rise to coalitional games in the one-leader-multiple-follower style with either
single or multiple adversarial objectives. We are also interested in randomization
strategies for robust optimization in multiplayer games that can be decomposed
into prediction games or Stackelberg games. Here, some of the relevant game
theoretical formulations are to be found in literature on evolutionary games, matrix
games, robust games, fuzzy games, Markov games, and Bayesian games. The
dimensionality of multi-label data in these kinds of games can be tackled by training
an adversarial algorithm for dataflow and control-flow parallelization with multiple
processing units. Guided search operators in evolutionary learning might lead to
attack scenarios with parallelization for stochastic optimization in adversarial step
magnitude and direction estimations.

Further, we might also experiment with various classification functions by
changing the deep learning architecture or experiment with multi-objective opti-
mization methods by changing the evolutionary operators in the fitness function
evaluations of stochastic optimization and constraint-driven games. It is possible
that our variational adversaries with Gaussian mixture models could be improved
with customized probabilistic models, such as multinomial mixture models and
mixture density networks for image data representation. User validation criteria of
the generated adversarial data can be represented by deep networks such as the
spatial translation network.

We also plan to investigate the more challenging multiplayer game scenarios
where adversaries simultaneously attack multiple labels. In this multiplayer adver-
sarial learning problem, we want to simulate manipulations that transform a targeted
positive label into any one of many negative labels. The successful attack scenarios
in a strategy space of this type would then inform multiplayer games with mixed
strategies that have two or more labels as manipulation targets given a single learner.
In these scenarios, it is likely that the randomization of strategies and payoffs
in the game formulation would affect the weight regularizations and the decision
boundaries of the learner.

We can also apply game theory and control theory to optimize the numerical
modeling in adversarial deep learning frameworks of iterative attack scenarios and
defense optimizations for dynamics detection, characterization, and prediction in
feature selection. Class labels and knowledge representations have to be generated
for the unknown objects classified as multimodal, multi-view, and multitask pre-
dictions. They would lead us onto combining statistical inference in the training
procedures of deep neural networks with cost-sensitive classifier design and robust
optimization in complex dynamics detection. Custom loss functions in deep learning
can be designed to check distributional robustness measures in adversarial feature
selection.

To apply probabilistic inference in cybersecurity, we shall design custom loss
functions for associative classification with maximum likelihood estimation (MLE).
Associative classification methods are used for rule discovery, rule ranking, rule
pruning, rule prediction, and rule evaluation in frequent pattern mining. In these
methods, a statistically significant frequent pattern is one that is considered both
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informative and non-redundant according to an interestingness measure. Popular
interestingness measures seek to control the rate of false discovery of frequent pat-
terns by counting their frequencies. Common frequency definitions include support,
confidence, lift, leverage, conviction, and improvement. In previous research, we
observed that the risk of false discovery can be assessed by applying a discriminative
learning model to discover the frequent patterns. Minimizing such a discrimination
error allows us to derive statistically significant frequent patterns to assess infor-
mation theoretic loss functions defined over the training data records. We had also
generalized interestingness measures of frequent patterns defined over input data
sample to conditional expectations estimated over data population in the underlying
databases. The conditional expectations determine a convex optimization problem
in terms of an incidence matrix of indicator functions relating data records with
frequent patterns in MLE modeling. We had then proposed update rules and
decision rules to solve such convex optimization problems with iterative scaling
(IS) algorithms. Then the computational complexity of IS algorithms is determined
by the density of the incidence matrix. In this context, we shall integrate frequent
pattern mining with adversarial deep learning to discover condensed representations
of the most informative frequent patterns according to information theory. We
shall also check conditional inference and variational modeling of the frequent
patterns where indicator functions are constrained by fuzzy features. We shall survey
the computational tools in multivariate statistics studying systems of probability
distributions. Then we can design custom loss functions in deep learning with
game theoretical objectives. Previously, we have worked on Granger-causal feature
learning in multivariate time series prediction produced by deep regression networks
for data mining. They learn the empirical risk of a complex system with custom
loss functions. The Granger-causal features in our proposal improve the multivariate
regression error with deep learning. At the same time, the explainable understanding
of input data distributions is improved with descriptive cause-effect relations which
are more informative than correlation coefficients and neural network weights for
explaining the regression results. Here, game theoretical payoff functions measure
player-driven optimizations that improve training and inference in machine learning
and uncertain environments. They also explain the impact of uncertain environments
with reference to a distribution of outcomes, and, in the sense of decision-theoretic
rationality, payoff functions maximize the expected utility for each player in the
game.

4.3.5 Parallel Machines in Reduced Games

Cai et al. [96] discuss the game theoretical equilibria in two-player non-zero
sum games with multiplayer generalization. Min-max theorem is proven for a
multiplayer polymatrix zero-sum game. Nash equilibrium is found by linear
programming. The polymatrix game is defined by a graph whose vertices are
players with associated strategies and edges are two-player games. A player’s payoff



112 4 Game Theoretical Adversarial Deep Learning

is the sum of all payoffs in games adjacent to it. Zero-sum polymatrix games
represent a closed system of payoffs. Equilibrium strategies for the game are max-
min strategies representing no-regret play for all players. Oliehoek et al. [473]
present asymmetric games for the search in co-evolutionary algorithms that does not
require the specification of an evaluation function. In asymmetric games, the current
player’s strategies are conditioned by the actions taken by previous players. Such
co-evolutionary algorithms are useful in algorithmic problems such as game theo-
retical machine learning, concept learning, sorting networks, density classification
using cellular automata, and function approximation and classification. Complex
evaluation cases can be constructed with a search process. High-quality strategies
are developed in the course of the search. The solution concept in the search
process defines which candidate solutions qualify as optimal solutions and which
do not. A game theoretical learning algorithm designs the convergence criteria on
expected utility determined by the solution concepts optimized against an intelligent
adversary. A Nash equilibrium then specifies mixed (randomized) strategies for each
player that have no incentive to deviate given the strategies of other players. So a
game theoretical solution to machine learning problems is a recommendation on
optimal plays for all players. It leads to multi-agent systems with Nash equilibrium
as a solution concept. They can also include Pareto co-evolution to accommodate
multiple adversaries with separate objectives. Best response strategies are solved by
a partially observable Markov decision process, corresponding to finite extensive
form asymmetric games called parallel Nash memory. All possible player beliefs
and transitions between them can be generated in the Markov decision process. An
alternating maximization or coordinate ascent optimization method solves for the
best response strategies.

Bianchi et al. [52] survey algorithmic frameworks called metaheuristics to solve
complex optimization problems in game theoretical adversarial deep learning with
mathematical formulations for uncertain, stochastic, and dynamic information.
Ant colony optimization, evolutionary computation, simulated annealing, and tabu
search are all metaheuristics applicable to the stochastic combinatorial optimization
problems (SCOPs) in generating adversarial manipulations at every iteration of
the adversarial games. In problem-solving with SCOPs, information about the
problem data is partially unknown such as the information available with a learner
about the specific adversary’s strategies. Moreover, SCOPs assume a probability
distribution about the knowledge of the problem data such as the adversary type’s
characterization. SCOPs are solved by dynamic programming. Such metaheuristics
combine several heuristics that are either local search algorithms starting from a
pre-existent solution/move for the learned features or constructive algorithms that
do feature/component construction of a solution for discovering the adversarial
manipulations in game theoretical adversarial deep learning. In comparison with
heuristics, metaheuristics strike a dynamic stochastic balance between effectively
exploiting the search space representing accumulated experience and efficiently
exploring new regions of the search space with high-quality solutions. Convergence
proofs for metaheuristics are useful to derive analytics insight into the working
principles of a computational algorithm. However, they assume infinite computation
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time, memory space, and sample size to be useful in the implementation of
an efficient metaheuristic in practice. Stochastic integer programming, stochastic
dynamic programming, simulation optimization, stochastic partitioning methods,
progressive hedging, and variable neighborhood search are the research areas in
SCOPs. They can be used to extend our research in game theoretical adversarial
deep learning to complex real-world simulations that bridge the gap between theory
and practice.

Martin [412] introduces a metaheuristic to combine stochastic simulated anneal-
ing methods with deterministic local search methods to result in new Markov
chains for global optimization. The new metaheuristic is tested on combinatorial
optimization (CO) problems such as the traveling salesman and graph partitioning
problems having to deal with large data sizes. The iteration of the Markov chain
is called chained local optimization that acts as a generalization of the update
rules in simulated annealing. It is executed in parallel on a local network of
workstations. A distributed memory architecture and a message-passing system
run simultaneous Markov chains to produce a population of candidate solutions by
performing independent searches for profitable moves. The branching and pruning
of Markov chains is shared between the generated populations to duplicate the best
candidates at the expense of worst candidates. The parallel search dynamically
adapts to give most searches to the fastest processors. Suman et al. [579] review
the simulated annealing algorithms for single- and multi-objective optimization
problems to obtain optimal solution and Pareto set of optimal solutions, respectively.
Pareto simulated annealing is summarized. It creates a sample population of
interacting solutions to generate a good approximation to the efficient solution
with the concept of neighborhood probabilistically accepting new solutions. Pareto
simulated annealing can be used to create efficient solutions to the adversarial
manipulations in game theoretical adversarial deep learning. Simulated annealing
can be used in the optimization of multiple and conflicting design objectives in
multiplayer adversarial games with multimodal and non-smooth cost functions in
the adversarial signal processing. Multi-objective simulated annealing algorithms
can accommodate constraint handling in practical problem-solving. Moreover,
the applications of simulated annealing to hybrid pattern recognition and object
classification are also possible. Rajasekaran et al. [503] discuss the concept of
simulated annealing as a family of randomized algorithms. Convergence proofs are
provided for applying simulated annealing in optimization problems with special
graph theoretical properties on the cost function. A nested annealing algorithm is
developed to define a search graph corresponding to the given optimization problem.
Application-dependent “separability” criterion of the search graph into subgraphs
is analyzed to provide tight bounds on the expected behavior of nested annealing.
The converged solutions represent a probability state vector of a Markov chain
representing the nested annealing algorithm.

Fogel et al. [199] discuss simulated annealing for stochastic optimization in the
simulated evolution methods. Simulated evolution is further categorized into genetic
algorithms, evolution strategies, and evolutionary programming and reviewed com-
prehensively. Their implementation on parallel machines and distributed processing
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architectures is also discussed. Choices between objective functions, generation
probability functions, acceptance probability functions, cooling schedules, and
search neighborhoods are given with respect to optimization problems in multiple
application domains. Henderson et al. [270] discuss the theory of cybernetic
optimization and practice of hill-climbing moves in simulated annealing algorithms.
Simulated annealing is compared and contrasted with tabu search and genetic
algorithms. Ram et al. [505] develop parallel simulated annealing algorithms for
complex non-linear optimization problems. Parallel simulated annealing algorithms
are categorized into single trial parallelism and multiple trial parallelism. They
are also categorized into serial-like algorithms, altered generated algorithms, and
asynchronous algorithms based on tradeoffs between cost function accuracy, state
generation, parallelism, and communication overhead. Special-purpose computer
architectures can be designed to offset computationally involved tradeoffs in
annealing algorithms.

For the filtering and estimation, clustering, and classification of the predicted
objects of pattern recognition in the spatio-temporal stochastic processes generating
adversarial features, we have to formulate deep representation learning for game
theoretical adversarial learning. In this context, we can explore adversarial learning
theories with reduced games, submodular functions, wavelet analysis, and adver-
sarial training applications with robust object detection, factorization machines,
dictionary learning, and granular computing. Here, dictionary learning produces
a dictionary of filter elements to reconstruct a highly redundant representation of
the training data with a sparse coding model in the data-driven optimization and
inference problems for adversarial deep learning. Here, factorization machines are
a low-rank approximation of feature engineering a sparse data tensor when most of
its predicted elements are unknown. Here, granular computing is useful to create
data fusion rules on the feature representations of the training data. It can lead
to neuro-fuzzy systems and multi-agent systems in data mining. We can further
investigate the transfer of the statistically significant data fusion rules between
predictive data representations on the spatial resolution and spectral resolution data
distributions of the training manifolds. Here, dictionary learning is a computational
machine learning paradigm that can analyze the multimodal feature generation and
multivariate optimization problems in prediction tasks.

A better randomization, convergence, and parallelization in the game theoretical
optimization algorithm’s step magnitudes would generate better stochastic policies
in the game theoretical equilibria. Here, Stackelberg games of the optimum
adversarial payoff functions would lead to Nash and Stackelberg equilibria and
Pareto optima in the game’s randomized strategy space. Our research interest in
data mining is in predictive modeling with stochastic games and adversarial deep
learning. Our data mining methods are then able to accommodate new challenges
on the analytic methodologies imposed by big data models, where it is usually
impossible to store an entire high-dimensional data stream or to scan it multiple
times due to its tremendous volume and changing dynamics to the underlying
data distribution over time. Here, parallel algorithms and distributed computing
would also yield a significant reduction in the amortized computational cost of
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adversarial pattern mining on high-dimensional and multidimensional data. The
choice of programming models on parallel machines is between data parallelism,
task parallelism, and graph parallelism. The implementation detail for distributed
data analytics in adversarial deep learning ought to consider the pattern mining
development frameworks for the serial data analytics on big data. They include
machine learning assumptions on the data model, memory model, programming
model, communication model, execution model, and computing model of convert-
ing the serial algorithm to parallel algorithm in adversarial deep learning.

A hybrid deep network architecture can be proposed for semantic composition
over the input event sequence in deep learning semiotics. Here, we would need
to learn distributed representations of the multi-relational data extracted from
knowledge bases. We plan to design unsupervised learning models for motif mining
with biclustering and evolutionary clustering, multilevel clustering, and model-
driven clustering. To create supervised learning with such motifs, we shall focus
on compression methods and optimization methods within kernel learning and deep
learning. The relevant theory of data mining is in multilevel clustering, multilevel
graph partitioning, quasi-clique detection, and dense subgraph discovery. We may
scale such game theoretical adversarial deep learning to big data settings with data
sampling methods that can address the data dimensionality and data granularity
for multiprocessing and embarrassingly parallel batch processing over tensors and
graphs. The related research work is in a study of sampling methods such as
undersampling, oversampling, uncertainty sampling, reservoir sampling, structural
sampling, etc. The big data solutions would involve data engineering operations
for caching, sorting, indexing, hashing, encoding, searching, partitioning, sampling,
and retrieval in incremental models, sequence models, and ensemble models for
cost-sensitive adversarial learning with probabilistic models.

4.4 Stochastic Games in Predictive Modeling

The interaction between an adversary and the classifier has been modeled as a
Stackelberg game. Here, adversary’s role is not that of a static data generator but an
intelligent agent making deliberate data manipulations to evade classifiers. Failure
of considering adversarial evasion in classifier design exposes security concerns
in fraud detection, computer intrusion detection, web search, spam detection, and
phishing detection applications. Re-learning classifier weights is a weak solution to
robust classification since evasion attacks are generated at cheaper and faster rate
than re-learning.

Li et al. [354] proposed a feature cross-substitution attack to demonstrate
objective-driven adversaries exploiting limitations of feature reduction in adversar-
ial settings. Adversary is able to query the classifier according to a fixed query
budget and a fixed cost budget. An adversarial evasion model with a sparse
regularizer is then presented. Constructing the classifier on feature equivalence
classes rather than feature space is proposed as a solution to improve classifier
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resilience. Another solution proposes bilevel Stackelberg game of interactions
between classifier and a collection of adversaries. Stackelberg game is solved by
mixed-integer linear programming with constraint generation.

Bianchi et al. [107] presented repeated games for random prediction problems.
The problem of sequential prediction is modeled in the framework of Nash
equilibrium found in normal form games. Specific min-max theorems are discussed
to analyze two-player zero-sum games. A mistake bounds framework is provided
to analyze game theoretical learning algorithms. Bruckner [89] proposes prediction
games to model the interaction between a learner who builds the predictive model
and the adversary who controls the process of data generation. Prediction games
framework allows explicit models on game theoretical players’ interests, actions,
knowledge, and decisions. Then the generalization error of a predictive model is
analyzed in terms of the Nash equilibrium by solving non-cooperative two-player
static and dynamic Stackelberg games. Stochastic two-player zero-sum games
incorporating multiple adversaries were analyzed by Ummels [615]. Cai et al. [713]
analyzed polymatrix games that provide multiplayer generalizations to two-player
zero-sum games. The corresponding Nash equilibrium strategies may deviate from
max-min optimization and are obtained from linear programming solutions.

Zhou et al. [713] surveyed two-player and multiple-player Stackelberg games
in adversarial learning algorithms and cybersecurity applications. The interaction
between an adversary and a classifier is modeled as one or more of simultaneous
games and sequential games where the adversary can be either a leader or a follower
in the game. Alpcan et al. [12] presented large-scale strategic games’ and reduced
games’ computation consumption and information limitation on Nash equilibrium
solutions. Oliehoek et al. [474] proposed a deep generative adversary with resource-
bounded best responses and Nash equilibrium on synthetic data. The generative
adversary has a generator network and a discriminator network in a supervised
learning problem and operated on discrete data. Specifically, the generator network’s
loss function depends only the “fake” data, whereas the discriminator network’s
loss function depends on both “real” data and “fake” data. Both the generator and
discriminator participate in a zero-sum strategic-form game where each player’s
payoff function is defined on a mixed strategy space.

Papernot et al. [482] provided a threat model summarizing various attack
scenarios in adversarial learning algorithms. The threats to machine learning models
are adversarial manipulations, which are generated during both training process
and inference process. In the training stage, adversaries can manipulate the data
collection processes by injecting adversarial examples into the training data with
intent of modifying learning model’s decision boundaries. In the inference stage,
adversaries can plan black-box or white-box attacks on learning model’s parameters
to cause distribution drifts between training data distribution and runtime data
distribution. Papernot et al. [482] also proposed no free lunch theorem and probably
approximately correct model for adversarial learning. Yang et al. [679] analyze
the Nash equilibrium of a differential dynamical system modeling the advanced
persistent threat (APT) cyberattack scenario.
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Bowling et al. [82] discuss policy learning in multi-agent environments using
stochastic games. The rationality and convergence of the learning agents are
formulated to design a policy hill-climbing algorithm. The multi-agent learning
problem devises learning algorithms for the agent of interest in the presence
of other learning agents outside its control. Such a learning is considered to
have a moving target for the optimal policy that has to account for changes in
other agents’ adaptation, while the learning agent is training. Here, stochastic
games are a multi-agent extension of Markov decision processes (MDPs) suitable
for single-agent learning such as Q-learning. Such stochastic games have utility
in adversarial reinforcement learning. They can be improved with ideas from
evolutionary game theory such as adjusted replicator dynamics, and randomized
weighting algorithms can be introduced into game theoretical adversarial deep
learning to redistribute weights with multiplayer games. Bowling et al. [81] develop
the learning behaviors of multi-agent systems adapting to non-stationary environ-
ments. The relevant techniques for solving stochastic games to find equilibria are
given from references in game theory and reinforcement learning research areas.
Similarities and differences between the computational algorithms of these research
areas are identified. The assumptions on control and limitations on belief of such
computational algorithms can be applied into game theoretical adversarial deep
learning. Resultant stochastic games are an extension of the simpler general-sum
matrix games solved by quadratic programming in game theory. In game theory,
they represent the interaction between a learner and its environment to find the
equilibrium value of the game formulations but not the equilibrium policies under
either physical or rational limitations. In contrast, reinforcement learning does
not assume knowledge of the learning environment. The reinforcement learning
agents act based only on observations of transitions between learner states and
reward functions on actions. The reinforcement learning agent’s goal is to find the
optimal policies at the game’s equilibrium. Finding solution concepts to stochastic
games that have opponent-dependent modeling also requires the investigation of
generalization and approximation techniques on complex datasets that have implicit
assumptions and limitations for adversarial deep learning.

We propose new non-convex best responses in every play of the prediction
game solving for the adversarial manipulations. Our bilevel stochastic optimization
problem in the prediction game is formulated as a repeated sequential variable-sum
two-player Stackelberg game. The optimization problem is solved by an alternating
least squares (ALS) search procedure that continuously attacks retrained classi-
fier with adversarial manipulations optimized until Nash equilibrium. The ALS
procedure evaluates candidate adversarial manipulations generated by a simulated
annealing (SA) procedure for an increase in adversarial payoff function over the
targeted class labels. Therefore, the adversarial data generated in the Stackelberg
game simulates continuous interactions rather than one-time interactions with the
learning processes of the classifier.
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4.4.1 Computational Learning Theory Frameworks to Analyze
Game Theoretical Learning Algorithms

Johnson et al. [304] conduct an analysis of behavioral measures of trust and
trustworthiness with “trust games” and “investment games” in organizations, econ-
omy, and society. Increasing trust increases efficiency by lowering costs. Shared
willingness due to trustworthy behaviors leads to better economic outcomes per
capita. Aggregated trust is found to lead to efficient judicial systems, higher-quality
government bureaucracies, lower corruption, and greater financial development.
Other models of behavior incorporate fairness preferences into players’ utilities.
In them, theories of equity lead to predictions on behavioral differences when
the endowments are unequal. The trust games must produce a positive rate of
return on trust as welfare gain that facilitates further exchange. Trustees respond
to every possible behavior from the counterpart to define fair behavior. The
counterpart can be a simulated counterpart in adversarial environments. The process
of thinking through behavioral implications of every possible outcome changes the
players’ perception of the game and leads to data-driven decision-making. When
the guarantee of anonymity among players is eliminated, behavior is motivated
by factors such as individual’s concern for their reputation, reciprocating past
kind acts, and a fear of retribution. Probability of benefits in future exchanges
between players motivates expected payoff from a counterpart player’s behavior in
addition to trust in the counterpart. Descriptive statistics for trust and trustworthiness
are produced following an ordinary least squares regression specification of the
trust game payoffs. Outliers and adversarial distributions in such evaluation data
significantly bias the parameter estimates. Adversarial manipulation checks ought
to verify the adversarial examples to distinguish between simulated and human
counterparts to specify the trust game payoffs. Here, adversarial robustness and
interaction effects found from game theoretical adversarial deep learning solutions
augment the heuristic decision-making strategies and rules of thumb embodied in a
culture as strategies for trusting or mistrusting.

Balduzzi et al. [24] present a common language for describing and analyz-
ing game theoretical algorithmics in deep learning. Backpropagation training of
deep neural networks is expressed in terms of distributed optimization in game
theory, communication protocols to track zeroth-order, first-order, and second-
order derivative information. Function semantics and optimization representations
are formalized in grammars for games to specify a formal language for the
structure of deep learning algorithms. Probabilistic graphical models and factor
graphs are used to capture structural features of multivariate distributions and
their design and analysis in algorithms for probabilistic inference. Gradient-based
optimization is primarily addressed to derive the computational primitives that can
shift architecture design focus from low-level algorithm design in neural networks
to high-level mechanism design in learning systems. The black-box computational
model to analyze the computational complexity of optimization methods is a
more abstract view on optimization than the Turing machine model. It specifies
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a communication protocol that tracks the frequency patterns about queries made
by an algorithm to the adversarial/learning optimization objective. Here, zeroth-
order black-box optimization methods respond with information about value of
function at the query point, while first-order gray-box optimization methods respond
with information about gradient information of function. Game theory formulation
for the optimization objectives allow non-convex losses that can be formulated
as a game at many different scales in the neural network architectures where
particular layers of the neural network are solving a convex optimization problem.
Structuring rules for the compositionality of adversarial deep learning objectives can
be then formalized with the distributed communication protocols and grammars.
The resulting feedforward computation is captured in a computation graph data
structure that structures queries and responses into query and response graphs,
respectively. The communication protocol specifies how data mining information
flows through the query and response graphs without specifying players’ utilities of
the information. Grammars on the distributed communication protocols guarantee
that the response graph encodes sufficient information for the players to jointly
converge to a game theoretical solution concept for the learning objective function
and associated adversarial payoff functions. A grammar can be specified for the
players’ interactions and error backpropagation in each game to perform a specific
data analytics task. The players then jointly encode data mining knowledge about the
task. The grammars can also include probabilistic and Bayesian formulations along
with methods for unsupervised pre-training. Practicable examples of the grammars
are demonstrated for the learned objectives in supervised deep learning models,
variational autoencoders and generative adversarial networks for unsupervised
learning, and deviator-actor-critic model for deep reinforcement learning.

Hazan et al. [261] discuss regret minimization in repeated games with non-
convex loss functions. Such repeated games can be used to design multiplayer games
in adversarial deep learning. The notion of a regret in adversarial deep learning is
computationally intractable in general. Thus, a formulation for regret is defined for
efficient optimization and convergence to an approximate local optimum. Regret
minimization in games corresponds to repeated play in which a player accumulates
average loss that is proportional to the best response decision in hindsight. Regret
is a global optimization criterion chosen by a player over its entire decision
set. If the loss function computing the player’s payoff subject to other player’s
actions is convex, then the regret criteria are computationally intractable, and they
converge to game theoretical solution concepts such as Nash equilibrium, correlated
equilibrium, and coarse correlated equilibrium. A local regret criterion is defined
to predict playing points with small gradients on average. An algorithm incurring
the sublinear local regret in time has a small time-averaged gradient in expectation
for every randomly selected iterate. A notion of time-smoothing captures non-
convex online optimization under limited concept drift. By contrast, non-convex
continuous optimization algorithms on the players’ loss functions focus on finding
a local optimum since finding the global optimum is a NP-hard problem. Stochastic
second-order methods are used for such non-convex optimization. They converge
onto approximately stationary solution concepts in the adversarial deep learning
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procedures. The local equilibrium is smoothened with respect to past iterates. The
smoothening procedure corresponds to form an experience replay in reinforcement
learning. The solution concept captures a state of iterated game play where each
player examines the past actions played and no player can make deviations to
improve the average performance of current play against the opponents’ historical
play. The learning algorithm is assumed to have access to a noisy stochastic gradient
oracle.

Xu et al. [671] investigate the problem of adversarial learning from noise-injected
data without assuming a specific adversary type at the learning stages. Information
theoretic limits of adversarial robustness called Le Cam type bounds are derived.
This work is comparable to other theoretical work in computational learning theory
for adversarial learning such as deriving generalization bounds for adversarial
learning at test time, robustness certification for statistical inference in adversarial
learning, robustly PAC learnability of VC classes, and analysis of the noise injection
in neural network training at inference time. The adversary is assumed to have a
budget on how much noise is injected into the data. This budget is related to the
total variation (TV) distance between the original data distribution and the noise-
injected data distribution. TV is a statistical distance that is used in the study of
the upper and lower bounds for adversarial robustness in learning problems such
as mean estimation, binary classification, and Procrustes analysis. Noise injection
methods are restricted to multivariate Gaussian and multivariate uniform noise. An
expected risk is estimated in minimax optimization frameworks to derive Le Cam’s
bound.

Scutari et al. [545] survey optimization methods in communication systems and
signal processing. Equilibrium models in cooperative and non-cooperative game
theory are used to describe scenarios with interactive decisions in applications such
as communications and networking problems, power control and resource sharing
in wireless/wired and peer-to-peer networks, cognitive radio systems, distributed
routing, flow, and congestion control in communication networks. Variation inequal-
ity (VI) theory is utilized as a general class of problems in non-linear analysis
of such applications in wireless ad hoc or per-to-peer wired networks, cognitive
radio (CR) networks, and multihop communication networks. Then the existence
and uniqueness of the game theoretical equilibrium are investigated to devise the
convergence properties of iterative distributed algorithms. Such algorithms can
also be designed for game theoretical adversarial deep learning with variational
adversaries.

Hinrichs et al. [273] discuss transfer learning between game domains so that
structural analogy from one learned game speeds up the learning of another related
game. Minimal ascension and metamapping are the proposed techniques to transfer
analogy matching representations between games with different relational vocab-
ulary. Minimal ascension finds local match hypotheses by exploiting hierarchical
relationships between predicates. Metamapping is a generalization of minimal
ascension to use all available structural information about predicates in a knowledge
base. The game domains range from physics problem-solving to strategy games.
Transfer learning is defined as the problem of finding a good analogy representation
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between the source and target domains and using that knowledge representation
to translate symbolic representations of learned knowledge from the source to the
target that have very different surface representations. A cognitive theory called
structure mapping is used to describe the analogies following human analogical
processing and similarity judgments. The mappings include candidate inferences
that represent information projected from source to target domains. Non-identical
matches between analogies are considered when they are part of a larger relational
structure that can be transferred. So structure mapping depends on symbolic,
structured representations of the data that include a vocabulary for representing
a hierarchy of predicates, set relations, and constraints on types of arguments to
predicates. Higher-order predicates such as logical connectives, argument structure,
planning, and discourse relationships are assumed to be the same across source
and target domains. Game theoretical solution concepts then support qualitative
and analogical reasoning on the mappings with compositional strategies in transfer
experiments on a finite state machine. The finite state machine then creates a
declarative understanding of the most efficient transfer learners at level of actions
and effects, threats and hazards, progress toward learning goals, and dynamic
analysis of game traces. A static domain analysis with the games leads to path
planning and quantity planning in spatial coordinates, ordinal relations, movement
operators, and potential influences on these quantities. A static domain analysis
produces compositional strategies when source-target domains are not isomorphs.
It empirically constraints the search space for automated learning strategies in
graph reachability heuristics. By contrast, a dynamic domain analysis verifies the
provenance of transferred strategies to replace failed strategies in a new domain with
learning goals. A dynamic domain analysis with the games leads to explicit learning
goals for knowledge acquisition on the effects of an action, applicability conditions
of an action, and decomposition of a goal into subgoals. The dynamic domain
analysis operates at a higher-level search space than the state machine representation
to drive more efficient exploration. The dynamic domain analysis regresses through
the game execution trace to explain an effect and construct a plan to achieve an effect
according to preference heuristics. Learned sequences can accommodate unforeseen
effects of actions due to adversarial responses where the behavior of adversaries
is incompletely known. Initial experiments can then be performed bottom-up to
learn action effects and preconditions of actions. Then they can include action-level
learning goals to decompose the performance goal of a game to develop a winning
strategy and credit assignment with automated reasoning. The improvements made
by transfer are characterized by a normalized regret score. A higher regret score
indicates that the transfer was beneficial.

Learnability of non-convex optimization landscapes is a topic for future work in
game theoretical adversarial deep learning. We can explore the convergence criteria
in generalization errors and sampling complexities of the concept classes in game
theoretical adversarial deep learning. We can analyze the optimal size of the training
data to predict the future behavior of an unknown target function in adversarial
deep learning such that the hypothesis function in game theoretical optimization is
probably approximately correct. Here, our research into deep generative models and
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adversarial autoencoders can be extended into a study of the hypothesis functions
in generative adversarial learning. Cybersecurity generalization of the generative
adversarial learning includes modeling structures in convolutional, conditional,
bidirectional, and semi-supervised deep generative models such as GANs and
adversarial autoencoders. Interpreting our classes of stochastic optimization prob-
lems as the synaptic weights of fuzzy variables leads us to update rules based on
fuzzy learning algorithms that create an associative memory in the concept classes.
Here, we shall compare our solutions with machine learning baselines such as the
inclusion of noise in the optimization procedure, the simplification of the function
landscape by increase of the model size, the schemes for derivative-free stochastic
optimization, and data resampling in the context of variational learning algorithms.

4.4.2 Game Theoretical Adversarial Deep Learning Algorithms
in Information Warfare Applications

Pawlick et al. [487] survey game theory to model defensive deception for cyberse-
curity and privacy in ubiquitous and wearable computing. A taxonomy of deception
is given as perturbation, moving target defense, obfuscation, mixing, honey-x, and
attacker engagement. It categorizes the information structures, agents, actions, and
duration of deception for its game theory modeling. Deception research is conducted
in military applications, psychology, criminology, cybersecurity, economic markets,
privacy advocacy, and behavioral sciences. Such deception is commonplace in
adversarial or strategic interactions of cybersecurity where one party has informa-
tion unknown to the other. Attack vectors with such deception have the potential
to turn Internet of Things devices into domestic cyber weapons. Cyberattacks can
be devised to physically affect critical infrastructure such as power grids, nuclear
centrifuges, and water dams. Adversaries obtain information about their targets
through reconnaissance where deception counteracts any information asymmetry.
Game theory models the deceptive interactions as strategic confrontations of conflict
and cooperation between rational agents. Each player in the game of cybersecurity
and privacy makes decisions that affect the welfare of the other players. Game
theory is able to model the essential, transferable, and universal aspects of defensive
deception in cyberspace. One-shot and multiple-interaction games lead to static
and dynamic deception, respectively. Deception techniques include impersonation,
delays, fakes, camouflage, false excuses, and social engineering. The stages in
a malicious deception include design of a cover story, planning, execution, and
monitoring. Stackelberg, Nash, and signaling games are the most common game
theoretical models with two-player dynamic interactions. Application domains
include adversarial machine learning, intrusion detection systems, communications
jamming, and airport security.

Nguyen et al. [462] investigate strategic deception from adversary who has
private information in repeatedly interacting with a defender. The sensitive private
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information with adversary is representative of real-world security domains charac-
terized by imperfect information due to uncertainty about actions and characteristics
of opponents. Here, deceptive behaviors can manipulate the outcome of learning
to the long-term benefit of a manipulative adversary. The strategic deployment
of adversarial deception can be modeled with finitely repeated security games.
The defender has incomplete information and underlying uncertainty about the
adversary type. At every iteration of the game theoretical interaction between
adversary and defender, the defender updates belief about the adversary type based
on historical attack data collected at previous iterations. The defender chooses an
action to play based in the updated beliefs. The adversary’s goal is to optimize an
expected utility leading to a perfect Bayesian Nash equilibrium.

Ferguson-Walter et al. [188] discuss how deception in cyber defense balances
asymmetric disadvantages by making the adversary’s job harder. Cyber deception
adds uncertainty about true information by adding misinformation. Cyber deception
impacts the decision-making of the adversaries to waste their time, effort, and
resources. Cyber deception used by the defender imparts incorrect beliefs to the
adversary at every stage of the cyber kill chain in multi-vector multi-stage attacks.
Artificial intelligence, computer security, and behavioral science in adaptive or
active cyber defenses proactively and dynamically implement predictive defensive
strategies without human intervention. Surprise due to unexpected results is an
important element to disrupt or delay the attacker’s decision processes and actions
giving the defender’s more time and opportunity to respond and react. Adaptive
techniques then detect attacker’s response to the cyber deception, to alter the method
of deception accordingly. Along with surprise, causing frustration, confusion, and
self-doubt are more ways to affect the attacker in cyber deception that exploit
the adversary’s cognitive biases to craft cognitive overload. In cyber deception
research, decoy systems include honeypots and honey-tokens, replay attacks, packet
crafting and altered payloads, tar-pitting, and false documents. They create a decoy
environment for the adversary with realistic, lightweight virtual systems that appear
to be real systems running real services. They are deployed alongside real systems
to increase the chances of an adversary being detected and mitigated quickly. They
also provide asymmetric advantage to cyber defenders by reducing the chances of a
real asset being attacked by distracted adversaries. They also increase the chances
of adversaries to reveal themselves by taking additional actions. Autonomous cyber
deception systems provide such cyber deception that is adaptive to each adversary
type’s strategies and preferences in the cyber defense landscape. A cyber deception
strategy requires sensors and actuators making decisions on how and when to
adapt. Sensors collect behavioral-based post-exploitation adversarial activity such
as scanning activity, login attempts, and stolen passwords and deploy decoys
such as honey-tokens. Actuators take automated action on a network or a host.
Decoy actuators make configuration changes, change IP addresses, open/close ports,
add/remove services, spoof the operating system, and create new decoys. Such
adaptive cyber defensive systems must consider the co-evolution of multi-step,
multi-stage attack/defense situations where defender moves are simulated many
steps in advance of the attacker actions. Here, advanced defender goals include
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preference elicitation about the attacker goals and topological misinformation about
incorrect beliefs in the network topology. They can be incorporated into the task
of adversarial classification with reinforcement in game theoretical adversarial deep
learning with hypergames where the learning algorithm predicts attack preferences.
In game theory, intentional deception and misperception utilities are formalized as
hypergames where deception is a component of the strategies in play. Hypergames
formulate defender goals, observations, subgames, and individual strategies defined
in game contexts consisting of an adversary context and a defender context
that present player-specific perspectives of the game. Through observation of the
attacker, the defender tries to infer the attacker’s beliefs over time and apply them
in future decision-making. The attacker’s beliefs are used to estimate the state of
the adversary types as well as attacker’s perceived payoffs with knowledge of the
game tree and attacker perceptions. The defender then dynamically manipulates the
game board with update rules to change its iterative payoffs associated with next
possible actions. The decisions made by the defender in an online learning solution
alter the actions taken by the attacker, limit the strategies available to the attacker
at the next time step, and manipulate the payoffs received by the attacker. Thus,
hypergame concepts can investigate attack trees according to defender goals on
deception rather than adversarial goals on manipulation where there are resource
allocation costs associated with each play.

Cybenko et al. [139] edit a book about adaptation techniques (AT) such as mov-
ing target defenses (MTD) to engineer adversarial machine learning systems with
randomization for security and resiliency purposes. Adaptive cyber defense (ACD)
is categorized into adaptation techniques (AT) and adversarial reasoning (AR)
for adversarial learning in operational learning systems. AR combines machine
learning, behavioral science, operations research, control theory, and game theory to
compute strategies in dynamic, adversarial environments. ACD techniques force the
adversaries to re-assess, re-engineer, and re-launch cyberattacks. A game theoretical
and control-theoretic analysis for tradeoff analysis of security requirements in ACD
presents the adversaries with optimized and dynamically changing attack surfaces.
Prototypes and demonstrations of ACD technologies are presented in several real-
world scenarios.

Dasgupta et al. [146] conduct a high-quality survey of game theory-based mod-
eling of adversarial learning. A supervised machine learning algorithm’s prediction
mechanism is summarized. But the ideas are application to other machine learning
mechanisms in clustering, ranking, or regression. A taxonomy for adversarial
machine learning is characterized in terms of influence, specificity, and security
violation dimensions across adversary types. The influence dimension specifies
causative and exploratory attacks on learner vulnerabilities to create modified
training data and testing data called adversarial data. Adding adversarial data to
the learning process of a classification leads to an incorrect classifier that outputs
classification errors. Adversarial learning to create secure classifiers is then modeled
as a two-player, non-cooperative game. The utility functions of each player reveal
the player’s preferences over various outcomes of the game expressed in terms of
joint actions of all players in the game. The outcome of a game is the strategy
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selected by each player. The most popular optimization criterion to calculate the
outcomes is Nash equilibrium that assumes the outcomes to be best response
strategies of rational players. The Nash equilibrium is solved for as a search and
optimization problem. In two-player, zero-sum games, the utilities of all players
sum to zero at every iteration of the game. In adversarial learning with zero-sum
games, the gain in utility for a learner comes at the cost of loss of adversary’s
utility and vice versa. This observation leads to a minimax theorem for finding
the Nash equilibrium in a zero-sum game. The minimax outcome is represented
as a constrained optimization problem solved by a linear program. The minimax
theorem does not hold for general-sum non-zero sum games. Because the classifier
reacts to adversarial manipulations, the strategy selection in adversarial learning
is most frequently modeled as a sequential move game rather than a simultaneous
move game. In sequential move games, the follower player has information about
the strategies selected by the leader player. Such information is used in the
optimization of the player’s utility functions. However, the leader has to incorporate
uncertainty about the follower’s strategies leading to Bayesian games. In the normal
form Bayesian game, each player has information about utilities of the other
competing players. Based on this information, we can calculate the expected utilities
conditioned on player types for each player. Security games in cybersecurity are
related to Bayesian games for adversarial learning. In security games, the learner
is a defender protecting a set of targets from an adversary called the attacker. The
defender has to do resource allocation within budget and operational constraints.
In general, the learner’s utility is calculated on the payoff/value of a learner for
correctly classifying the input. Similarly, the adversary’s utility is defined as the
payoff/value of misclassification of an adversarial input presented to the learner.
The learning problem is then formulated as a constrained optimization problem. It is
solved as a mixed-integer linear program for the adversary and a robust classification
strategy for the learner. Adversarial approaches that avoid reverse engineering
black-box classifier’s decision boundaries search over an adversarial cost space to
determine a minimum set of adversarial examples. Moving target defense extends
the resultant learners to employ randomization over multiple classifiers instead of
tuning the parameters of a single robust classifier. Adversary can also generate
data by selecting, removing, or corrupting features from the input dataset. The
learner’s objective is to then find an optimal set of features that minimize its loss
function. When the learner does not have access to the entire training data, the
learning objective becomes an online learning problem. We can then analyze the
runtime and sample complexity of online learners pitted against different adversary
types with their own adversarial cost functions and adversarial example generation
functions. Here, the learner can know about the adversarial cost functions but not its
own ground truth or input distribution. Adversarial training of deep neural networks
leads to deep learning games. They can be formulated as a repeated zero-sum game.
Iterations on repeated plays are then used to adjust the weights of a neural network’s
edges to converge onto the Nash equilibrium with exponentiated weight and
regret matching optimization algorithms. Adversarial robustness of deep learning
classifiers can also be improved by adversarial data generators that are used along
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with adversarial learning procedures. The most common adversarial data generators
use perturbation techniques on valid examples, transfer adversarial examples across
different learner models, and extend generative adversarial networks. Here, game
theory models can be formulated to be informed by modeling and reasoning costs
such as cost to solve for Nash equilibrium, cost to maintain game play history,
cost to build opponent models from the history of game theoretical interactions,
and expenses incurred by the adversary to access legitimate resources. Transfer
learning can be combined with adversarial learning in real-world applications to
create learning systems on sparse training data that make classification predictions
correctly without requiring information-rich data sources. Domain adaptation can be
applied to adversarial learning to reliably transfer the robust learners mapped out in
the dense source domain to the sparse target domain. The application for combining
transfer learning with adversarial learning includes email spam classifiers, social
network sentiment analysis tools, and image and sensor data recognition systems on
autonomous vehicles.

Hamilton et al. [249] discuss the application in the tactical analysis of informa-
tion warfare. Game theory algorithms can be developed in military applications to
predict future attacks across many possible scenarios and suggest courses of action
(COA) in response to the most dangerous possibilities. COA generation techniques
can benefit from adversarial learning. Game theoretical frameworks allow detailed
analysis of what-if scenarios of chains of events to find exceptions to general rules
in cyber-wargaming systems. Such analysis determines the likelihood, method,
and cost of scenarios such as intelligence-gathering in attack phase, targeting of
the command and control system, data corruption, and denial-of-service attack to
prevent the kinetic warfare planning process. Pruning techniques are required to
reduce the search space in evaluating complex max-max games so that the most
promising node in the game tree is expanded to queue its children for the analysis
of the most promising move that is most likely to be predicted in a given real-world
scenario. Reinforcement learning techniques can be used to iteratively increase the
depth of the game tree and set the corresponding evaluation characteristics to learn
which depth best predicts the opponent behavior. Here, the assumption in the design
of the defender’s evaluation function is that the opponent’s evaluation function uses
a subset of the heuristics of the defender’s evaluation function with changes in
optimality weights.

Schlenker et al. [541] introduce a cyber deception game in network security. It
is solved with mixed-integer linear program solution and a fast greedy minimax
search algorithm. This game theoretical adversarial learning framework for service
obfuscation can be used dynamically to create asymmetric information about the
true state of a network in addition to static measures of network security such as
whitelisting applications, locking permissions, and patching vulnerabilities. Related
work is in honeypot selection games, adversary signaling games, and annotated
probabilistic logic models on attacker’s scan queries. The cyber deception game
is a zero-sum Stackelberg game between a network administrator defender and a
hacker adversary. Nguyen et al. [463] allocate limited security countermeasures to
protect network data from cyberattack scenarios modeled as Bayesian attack graphs.
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Multi-stage interactions between a network administrator and cybercriminals are
formulated as a security game. Parameterized heuristic strategies are enumerated
to exploit the topological structure of attack graphs. Sampling methods are used
to overcome the difficulties with computational complexity in predicting opponent
actions. In computer security, attack graphs are graphical models that decompose an
ontology of complex security scenarios into a taxonomy of simple and quantifiable
actions. Attack graphs on the adversary’s actions are suitable for designing a moving
target defense (MTD) for the defender where proactive tactics are employed to
dynamically change the system configurations. Bayesian attack graph formalism
models adversarial deep learning problems as simultaneous multi-stage attack
graph security game. The vertices in the attack graph represent security conditions
of a network system. Edges represent relationships among security conditions.
Attack graphs represent the network vulnerabilities in complex security scenarios.
The defender protects a set of goal nodes in the attack graph with deployed
security countermeasures. Meanwhile, attacker progress selects vertices in attack
graph. Security problems are analyzed as equilibrium solutions to dynamic games
and stochastic games on the attack graphs with complete/incomplete/imperfect
information that is partially observable. Parameterized heuristics estimate the attack
value for each vertex based on attack values of neighboring vertices, where attack
values correspond to the importance of each vertex in the security game. Attack
paths for the attacker are selected by sampling methods. At each time step, the
defense strategies are updated by particle filtering to reflect the defender’s belief
about the outcome of the players’ actions in previous time steps. A new defense
action is generated from solution concepts of security games based on updated
belief and the defender’s assumption about the attacker’s strategy. The adversarial
robustness of the defense strategies depends on uncertainty regarding game states
and attacker’s strategies. Such complex security games encapsulate a dynamic
security environment with uncertainty as a stochastic process over multiple time
steps.

Kulkarni et al. [335] discuss planning problems in AI systems. The obfuscation
plans are executed in adversarial situations to protect privacy. The adversarial
settings include mission planning, military intelligence, reconnaissance, etc. The
legible plans are executed in cooperative situations to aid understanding. Obfuscated
plans are consistent with at least k goals from a set of decoy goals at the end
of the observation sequence. Legible plans are consistent with at most j goals
from a set of confounding goals at the end of the observation sequence. Plans are
computed from the point of view of a partially informed observer who operates
in a belief space. For every action taken by the learning agent and an associated
state transition, the observer receives an observation. Related work is in privacy
preservation in distributed multi-agent systems, motion planning, and robotics.
Goal obfuscation is related to plan recognition literature for noisy action-state
observations. “Explainable planning” model’s the observing or interacting human’s
understanding of a planning agent for human-aware multi-model planning.

Zhang et al. [697] survey the intersection of differential privacy and game theory
to construct adversarial manipulations in machine learning with mechanism design.
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Such adversarial manipulations consider the cost-benefit tradeoffs between privacy
violations and security breaches in devising adversarial robustness. Differential
privacy limits the expected gain that can be derived for strategic manipulations
of the adversarial payoff functions in a security game. Privacy-aware agents in
a security game have privacy preferences explicitly formulated in their privacy-
aware payoff functions. So they can make tradeoffs between privacy and utility.
Mechanism design problems with differential privacy for privacy-aware agents
can be combined with the optimization problems in game theory. They include
strategy selection, information implication, truthfulness incentivization, privacy cost
estimation, private data trading, and game learning. Ye et al. [681] propose a
differentially private game theoretical approach to cyber deception. The defender
uses differential privacy mechanisms to obfuscate the configurations of systems.
The attacker uses Bayesian inference to infer the real configurations of systems. An
imperfect information game is used as the cyber deception game with the goal of
hiding information about system configurations rather than stopping a cyberattack or
identifying the attacker. It can be extended to dynamic security games with multiple
defenders and multiple attackers.

Rass et al. [506] investigate matrix games as a risk mitigation tool for advanced
persistent threat (APT) defense. APT combines multiple attack vectors such as
social engineering or malware from topological vulnerability analysis to result in
uncertainty of qualitative expert risk assessments, unknown adversarial incentives,
and current system state. Game theoretical adversarial learning optimizes the simul-
taneous defenses against a stealthy invader using a set of known paths in APT attack.
The attack paths are a sequence of vulnerabilities. Graph entropy measures on
missed attack paths can measure the uncertainty of network complexity and residual
risks from exploits of vulnerabilities that are not yet known to result in attack
paths called zero-day exploits. Zero-day exploits are dealt with by a combination of
domain knowledge, expert opinion, experience, and information mining, combined
with suitable mathematical models of risk acceptance thresholds and loss function
distributions in adversarial machine learning. Cyber threat intelligence and domain
expertise are fundamental concepts upon which the loss function distributions are
measured empirically by human reasoning and experience. Such human reasoning
is fuzzy rather than crisp leading to multimodal data distributions. Numerical
performance measures for machine learning are insufficient to deal with APT attacks
since a lot of reliable statistical data on cybersecurity incidents is not available
in real-world applications. Countermeasures against APTs may be identified but
not always possible, feasible, or successful. So the defense mechanisms have to
assume a worst-case behavior of the attacker that may not fit into a Bayesian or
sequential game formulation. The APT mitigation game is discrete time for the
defender and continuous time for the attacker. The adversarial data is qualitative
fuzzy expert knowledge formulated from a taxonomy or a simulation or both. There
is a strong asymmetry between the information known to the attacker and defender.
Such an APT mitigation game is modeled as a game of complete information but
uncertain payoffs. The uncertain payoffs are probability distributions rather than real
numbers. APT mitigation game modeling can be extended to multi-criteria games
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with optimal tradeoffs between multiple goals that include security requirements
such as confidentiality vs. integrity vs. availability, adversarial cost functions in the
attack graph about the level of skills required to mount an attack, and ordered set
of fixed loss categories that apply to all adversarial and learning goals of interest.
Here, the game structure is assumed to follow a stochastic process so that the
loss distributions constituting the game structure are stationary distributions of the
stochastic process under the chosen convergence criteria.

Huang et al. [286] propose a dynamic game framework for long-term interactions
between a stealthy attacker and a proactive defender formulated as a multi-
stage game of incomplete information where each player has private information
unknown to the other. The players act strategically according to beliefs formed
by multi-stage observation and learning. A perfect Bayesian Nash equilibrium
is the solution concept computed by an iterative optimization algorithm. The
stealthy attacker is an APT attacker who has knowledge of the defenders system
architecture, valuable assets, and defense strategies. So APT attacker strategies are
tailor-made to invalidate cryptography, firewalls, and intrusion detection systems.
APT attackers can disguise as legitimate users in the long term. Multi-stage APT
models dividing the attack sequences are classified into attack sequences, or phases
are available in the open-source intelligence communities. They include Lockheed-
Martin’s cyber kill chain, MITRE’s ATT&CK, and NSA/CSS technical cyber
threat framework. During a reconnaissance phase, the attacker (also called threat
actor) collects open-source or internal intelligence to identify valuable targets.
Then the attacker escalates privilege to propagate laterally in the cyber network to
access confidential information or inflict physical damage. A system defender must
incorporate defensive countermeasures across all the phases of APTs with a defense-
in-depth strategy. On identifying the utility and strategies of the attackers, game
theory provides a quantitative and explainable framework to the system defender to
design proactive defense response under uncertainty with better tradeoffs between
security and usability. By contrast, rule-based and machine learning-based defense
methods cannot deal with uncertainty in the multi-stage impact of defense strategies
on both legitimate and adversarial users. Such multi-stage impact is seen in artificial
intelligence, economy, and social science where multi-stage interactions occur
between multiple agents with incomplete information.

Bohrer et al. [75] apply constructive differential game logic to derive structured
proofs in cyber-physical systems (CPS) for safety-critical applications such as
robotics, automotives, aviation, spaceflight, medical devices, and power systems.
Such formal methods of verification ensure the correctness of learning properties
of system models in the implementations of CPS on embedded processors such
as in autonomous driving and ground robotics. Here, game theory is used in the
analysis of differential equations without closed-form solutions. Game proofs in
an adversarial environment then create security warranties for a learning system
against different adversary types who violate the system’s correctness criteria with
manipulation of timing, sensing, control, and physics in hybrid games. Wellman et
al. [643] explore causal dependence structure in private information signal patterns
on underlying agent states that can act as the epistemic types of adversarial agents. A
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Bayesian game is then formulated with the private information. Probabilistic graph-
ical models (PGMs) are used to model the private information. Their dependence
structure is able to quantify adversarial agents who reason about their own payoff
function values conditioned on the information available on other agents’ payoff
function values. Bayesian networks are the PGMs used to not only interpret but also
generate signal patterns on the private information of players. Thus, PGMs provide
a qualitative framework for analyzing the probabilistic dependencies between
structural decisions and private signal’s game theoretical learning situations. Their
graphical structures allow reasoning about the implications of a game situation.
Applications are evaluated for prediction markets and auctions that augment the
graphical structures with patterns of reasoning available in these domains to suggest
generalization of the results in the applicable adversarial deep learning. Jordan et
al. [305] conduct an empirical analysis of complex games. The value of empiricism
in games lies in the effective exploration of a set of strategies. So generic exploration
policies are proposed for strategy exploration in empirical games. They find a
best response with minimum regret profile among previously explored strategies.
Stochastic best response strategies lead to an effective exploration of the strategy
space. So empirical game theoretical analysis (EGTA) can augment expert modeling
with empirical sources of knowledge such as high-fidelity data obtained from
real-world observations. EGTA games are procedural descriptions of strategic
environments. The simulation and search statistics in EGTA can combine with
game theoretical solution concepts to characterize the strategic properties of an
application domain for adversarial deep learning. An augmented restricted game
is defined as a base game to encapsulate EGTA. Additional strategies are generated
with reinforcement learning.

Prakash et al. [497] examine the interplay between attack and defense strate-
gies in moving target defense (MTD). Multiple game instances are explored by
differences in agent objectives, attack cost, and attack action detectors. Such MTD
techniques incorporate probabilistic attack progressions to develop effective policies
for deploying and operating machine learning systems in specific adversarial
contexts. The behaviors of rational players vary with game theoretical learning
features such as system configurations, environmental conditions, agent objectives,
and technology characteristics. The systematic simulations in game theoretical
learning frameworks can accommodate computational complexities and information
uncertainties in learning dynamics of game formulations that are analytically
intractable. The adversarial payoff functions in MTD allow tradeoffs between
objectives of control and availability. They can incorporate assessments of overall
system state as adversarial cost functions. In addition to learning objectives of the
adversary and defender, security requirements of the learning system are interpreted
as preference patterns of the agents in the MTD game. For example, confidentiality
of the learning system is interpreted as defender’s strong aversion to allow the
attacker to control machine learning servers. Availability is interpreted as the
defender’s control on a fraction of servers that are not down. A weighting scheme
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then incorporates tradeoffs between confidentiality and availability in the game
formulation. Parameterized families of heuristic strategies are defined by structures
and patterns of behavior over time so that they specify the policies of action
executing the player’s choices among strategies. A restricted game on a selected
set of strategies then systematically refines strategy exploration through an iterative
process of empirical game analysis. Strategy profiles and validation criteria then
emerge according to a game theoretical reasoning process in complex adversarial
environments. They can be extended toward sophistication in attacker and defender
policies with intent inference, explicit reasoning about threats and counter-threats,
and utility models for stochastic downtimes. Roeder et al. [520] propose a method
to reduce the shared vulnerabilities between servers called proactive obfuscation.
Semantics-preserving code transformations are used to generate diverse executables
that bound the number of compromised servers by restarting them periodically.
Proactive obfuscation thus makes an adversary’s job harder by randomly restarting
servers to a fresh state. It is demonstrated in a distributed firewall and a distributed
storage based on state machine replication. Costs implicit in proactive obfuscation
are evaluated by measuring the system performance. The proposed proactive obfus-
cation technique can be easily integrated into replica management protocols suitable
for adversarial environments. It can incorporate all of address reordering, stack
padding, system call reordering, instruction set randomization, heap randomization,
and data randomization as defenses against adversarial examples in commercial
operating systems. Replica failures are categorized into crashed and compromised
replicas. Compromised replicas fall under the control of an adversary. This is called
Byzantine failure in the fault-tolerant operating systems literature. The failure model
has a compromise threshold that bounds the number of compromised replicas.
However, an adversary with access to an obfuscated executable can breach the
compromise threshold by generating a customized attack to eventually compromise
all replicas. To avoid such an adversarial attack, proactive obfuscation reboots
replicas across epochs whose configuration changes over time according to a
MTD. Data confidentiality is enforced by storing encrypted data on a server with
a different per-server key. Then cryptography techniques can be developed to
perform computations on such encrypted data. However, proactive obfuscation
cannot defend against all denial-of-service (DoS) attacks that can saturate resources
like networks that are not under the control of replicas. To guarantee that the replica
refresh happens in a bounded amount of time, some of the operating architectural
components are made synchronous by satisfying strong synchronicity properties
such as bounded-rate clocks, synchronous processors, timely links, reboot channels,
etc. The proactive obfuscation mechanisms are described in a real distributed system
to give rise to bounded adversaries evaluating the obfuscation technology.
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4.4.3 Game Theoretical Adversarial Deep Learning Algorithms
in Cybersecurity Applications

Now, we turn attention to cybersecurity applications of game theoretical adversarial
deep learning.

Liang et al. [369] review the game theoretical frameworks for handling network
attacks with intrusion detection systems (IDSs) and intrusion prevention systems
(IPSs). The application scenarios are categorized as attack-defense analysis and
security measurement. The game models are summarized as cooperative games
and non-cooperative games. Here, IDSs analyze a cyberattack with methods such
as attack signature identification, pattern detection, and statistical analysis. The
network administrator acts as the defender in adversarial deep learning. Secu-
rity measurement reports are created on network security measurements such as
evaluation of the confidentiality, integrity, availability, vulnerability, and security
risks in the network. Game theory is used in attack-defense analysis of the
risk assessment and data-driven decision-making in networking applications with
signal game models for predicting actions of the attackers and determining the
decisions of the defenders. Based on the number of stages, the game models
are classified as static/strategic game that is a one-shot game with imperfect
information, dynamic/extensive game with multiple stages and moves that are
finite or infinite, and stochastic game according to a transition probability matrix
between states where players take actions and receive payoffs. The basic elements
of the game theoretical equilibrium to be defined by the adversarial algorithm
designer are players, actions, payoff, and strategies. Manshaei et al. [409] orga-
nize computer network security into the security of physical and MAC layers,
self-organizing networks, intrusion detection systems, anonymity and privacy,
economics of network security, and cryptography. The game theoretical equilibrium
analysis and security mechanism designs are presented for each security category
of the emerging problems in computer networking. The network agents are enu-
merated as individuals, devices or software, and decision-makers that can act in a
cooperative, selfish, or malicious manner. Security decisions based on game theory
approaches arrive at security and privacy solutions for limited resource allocation,
perceived risk balancing, and underlying incentive mechanism design. Depending
on the information about adversary types available to the decision-makers, security
games support the formal decision-making, algorithm development, and adversarial
machine learning of predicting attacker behavior and interactions between attackers
and defenders in terms of action spaces and goals of the decision-makers. The
security game formulations can vary between simple deterministic games, complex
stochastic games, and limited information games in application focus areas such as
jamming and eavesdropping in wireless networks, collaborative intrusion detection
systems, cooperative location privacy, tor path selection, cryptography in multi-
party computation, revocation in mobile ad hoc networking, and vehicular network
security. The security games are then formulated in terms of finite repeated prisoner-
dilemma game, Stackelberg leader-follower game, fuzzy game, repeated zero-sum
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games, stochastic general-sum game, stochastic non-zero sum dynamic game, two-
player Stackelberg stochastic game, Bayesian game, coalitional game, variable cost
game, incomplete information game, fictitious game, cheap talk game, etc. The
equilibrium analysis of the games then provides analytics insight into decisions on
issues such as security investment and patch management in complex networking
systems. Roy et al. [530] present a cyberspace taxonomy for classifying the game
types used in the defense mechanisms of next-generation network security and
secure computing. Static games are analyzed with respect to complete imperfect
information and incomplete imperfect information. Dynamic games are analyzed
with respect to complete perfect information, complete imperfect information,
incomplete perfect information, and incomplete imperfect information.

Otrok et al. [477] propose a game theoretical learning model for host-based
intrusion detection systems (HIDS) to offset high computation cost in the generation
and detection of false alarms for resource-limited systems such as wireless mobile
devices. Dynamic, non-cooperative, multi-stage, incomplete information games
are formulated for a mobile ad hoc network (MANET) according to a Bayesian
probabilistic model and a Dempster-Shafer probabilistic model for the mathematical
representation of uncertainty and risk management where the identity of the attacker
is unknown. The game solution concepts determine the posterior belief function
values of a user to determine misbehavior by decreasing false positives, increasing
attacker detection accuracy, and optimizing resource consumption efficiency in
HIDS. Perfect Bayesian equilibrium computes a set of strategies that are optimal
with respect to the estimated beliefs taken to be probabilities. Once the belief mea-
surement reaches a predefined risk threshold, the HIDS gets to decide whether a user
is an attacker or not. The belief measurement is obtained from evidence observed
from a data source. A belief fusion algorithm combines belief measurements to
generate a final belief of the problem domain. At the cost of extra computational
resources, such a final belief measurement is more precise than Bayesian posterior
likelihoods. The HIDS game elements are players and type space, strategy space,
prior beliefs, utility functions, and HIDS detection rate.

Nguyen et al. [461] discuss a zero-sum Stackelberg security game optimizing
a double oracle method on exponentially large action spaces to allocate botnet
detection resources in a game theoretical solution for the defense policies. Two
botnet data exfiltration scenarios are proposed to represent single and multiple path
attack vectors for stealing sensitive network data. Mixed-integer linear programs
optimize the defender’s and attacker’s best response oracles. Greedy heuristics
approximate and implement the oracles. L’Huillier et al. [353] utilize dynamic
games of incomplete information in phishing fraud detection such as email scams
to get private information. A weighted margin support vector machine acts as
the adversarial classifier for content-based filtering of phishing. Phishing filtering
over data streams of messages is based on online algorithms, generative learning
algorithms, and discriminative learning algorithms based in game theoretical adver-
sarial deep learning. Here, phishing can be categorized into deceptive phishing and
malware phishing. Deceptive phishing in turn is categorized into social engineering,
mimicry, email spoofing, URL hiding, invisible content, and image content. A



134 4 Game Theoretical Adversarial Deep Learning

perfect Bayesian equilibrium is proposed as the solution concept to the adversarial
classification signaling game. The players behave according to a notion of sequential
rationality where information sets in an extensive-form game determine Bayesian
beliefs about the equilibrium strategies defined in terms of joint optimal strategies
for each agent as well as beliefs for each agent at each information set at which the
agent has to make a move. Then signaling security requirements are imposed on the
classifier design that accounts for optimal defense strategies defined by a probability
distribution over the classifier’s actions in the game. The adversary’s actions then
maximize a utility function according to the signaling requirements. The adversary’s
beliefs follow a Bayesian rule. A quadratic program-solver implements an online
algorithm for sequential minimal optimization in the weighted margin support
vector machine. The phishing corpus is analyzed for structural properties about
the body parts of the message, link analysis around IP addresses in the message,
programming elements such as HTML, JavaScript forms used in the message,
and recommended spam thresholds. Word list frequencies and clustering features
representing a phishing strategy are used as the inputs to the adversarial classifier.

Nagurney et al. [447] develop a supply chain network game theory model
between retailers and demand markets to maximize expected profits. Optimal
product transactions and cybersecurity investment cost functions are recommended
with respect to non-linear budget constraints. The consumer preferences are given
by demand price functions that show product demands and cybersecurity levels
in the supply chain networks. The vulnerabilities of the supply chain network as
well as competing retailers are formulated as a variational inequality problem.
Nash equilibrium finds optimal expressions for product transactions, security levels,
and budget constraints. A sensitivity analysis with adversarial examples quantifies
changes in budget, changes in demand price functions, financial damages on
product transactions, and reputation costs on cybersecurity investments. Wang et
al. [634] present an agent-based spoofing model for price manipulation in financial
markets. Here, human traders work through a limit order book that has private
information and noisy observations about complex market environment for financial
instruments. Game theoretical agents then follow two distinct trading strategies. A
non-spoofable zero intelligence (ZO) strategy ignores the order book. It acts as the
modeling baseline. A manipulable heuristic belief learning (HBL) exploits the order
book to predict price outcomes. HBL is applied to a complex market environment in
the full cycle of an order with persistent orders, combined private and fundamental
values, noisy observations, stochastic arrivals, and ability to trade multiple units
with buy or sell flexibility. A game theoretical analysis on the simulated agent’s
payoffs is computed across parametrically different environments for market models
to measure the effect of spoofing on market performance according to solution con-
cepts found in strategic equilibria. Simple spoofing strategies on trading behavior
and market efficiency are shown to mislead traders, distort prices, and reduce total
surplus. HBL traders can also benefit from price discovery and social welfare in
the game theoretical machine learning. A market mechanism design is proposed
to disincentivize manipulation. Then trading strategy variations are proposed to
improve the robustness of learning from market information. Thus, adversarial
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deep learning has the potential to transform financial market landscape (such as
foreign exchange and commodity markets) from a human decision ecosystem
to an algorithmic trading technology with game theoretical agent-based market
models. Automated trading platforms can not only improve market efficiency but
also increase market risk and market fluctuations due to manipulative practices
around vulnerabilities driven by algorithms. Spoofing is defined as the submission
of a large number of spurious buy/sell orders with intent to cancel them before
execution, thus corrupting the limit order book’s signal on supply and demand.
Spoof orders are typically placed outside the current best quotes to mislead investors
before any market movement can trigger a trade. Experimental evaluation is around
a continuous double auction market model with a single security traded. The
market mechanism is designed to have key elements of market microstructure
conditions such as fundamental shocks and observation noise. Spoofing the limit
order book is interpreted as decision-time attacks on machine learning models to
generate adversarial examples with domain constraints on the order streams. Market
equilibrium behavior is then specified by game theoretical adversarial deep learning
aspects around the market context for balancing the robustness and efficacy of
machine learning from order information with cloaking mechanisms. Related work
is on adversarial linear regression with multiple learners by Tong et al. [602].

Nisioti et al. [465] present a data-driven decision support framework called
DISCLOSE for optimizing forensic investigations of cybersecurity breaches. DIS-
CLOSE maintains a threat intelligence information repository of tactics, techniques,
and procedures (TTPs) specifications. Adversarial TTPs are obtained for complex
attacks with multiple attack paths from interviewing cybersecurity professionals,
MITRE ATT&CK STIX repository, and Common Vulnerability Scoring System
(CVSS). Here, game theoretical adversarial deep learning acts as a reasoning
hypothesis increases the efficiency of the forensic investigation by decreasing the
time and resources for robust reasoning process about the logical links between
the uncovered evidence in an objective manner. The game theoretical strategic
reasoning can be contrasted with reasoning frameworks in machine learning such
as case-based reasoning, ruled-based reasoning, data-driven reasoning, etc. Here,
rule-based reasoning is framed from a combination of predefined rules, models, and
previous data. Probabilistic relation between available attack actions, findings of
a forensic investigation, benefit and cost of each inspection, and budget available
to the investigator are considered in the DISCLOSE decision support framework.
Liu et al. [383] conduct a systematic survey of security threats in machine learning
from the learning theoretic aspects of training/reasoning and testing/inferring phase.
Particular emphasis is on the data distributional drifts caused by adversarial samples
and subsequent sensitive information violations in statistical machine learning algo-
rithms. The adversarial capability to create adversarial manipulations according to
adversarial objectives is qualified by the impact of causative or exploratory security
threats, percentage of the training and testing data controlled by the adversary, and
extent of features and parameters known to the adversary. Attack types are then
categorized as causative attacks, exploratory attacks, integrity attacks, availability
attacks, privacy violation attacks, targeted attacks, and indiscriminate attacks.
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Current defensive techniques for machine learning are categorized into security
assessment mechanisms, countermeasures in the training phase, countermeasures
in the testing or inferring phase, data security, and data privacy. They are essential
in the design of intelligent systems that learn frommassive data with high efficiency,
minimum computational cost, and reasonable predictive or classification accuracy.

Xue et al. [674] conduct a survey of security issues in machine learning systems
to summarize countermeasure defenses, secure learning techniques, and security
evaluation methods. The machine learning security threats and attack models are
categorized into training set poisoning, backdoors in the training set, adversarial
example attacks, model theft, and recovery of sensitive training data. Adversarial
examples are defined to be an intrinsic property of the deep learning models. Model
overfitting is then found to have an important influence on recovering sensitive
training data by an adversary who can carry out membership inference attacks
and model inversion attacks. The threat models, attack approaches, and defense
techniques for machine learning systems are systematically analyzed to produce
cyber threat intelligence across multiple stages of the cyber kill chain. Adversarial
example attacks are found for email spam filtering, Android malware detection,
biometric authentication systems, face recognition systems, road sign recognition,
cellphone camera recognition, voice control systems, and 3D object attacks. They
are contrasted with backdoor attacks and Trojan attacks to create malicious data for
the target models. Future research directions are given as attacks under real physical
conditions, privacy-preserving machine learning techniques, watermarking-based
intellectual property (IP) protection of deep neural networks, remote or lightweight
machine learning security techniques, and systematic machine learning security
evaluation methods to produce underlying reasons for the attacks and defenses
on machine learning. Deep learning attacks can be crafted with deep generative
models such as GANs to break a distributed or federated learning framework.
Game theoretical adversarial deep learning is categorized as a defense technique
to simulate attacks, create robustness strategies, and detect abnormal features in
classifier design. It is contrasted with other defense techniques such as data saniti-
zation, input anomaly detection, input pruning and model fine-tuning, adversarial
retraining, defensive distillation, gradient masking, and input randomization. It
can also be combined with defensive techniques for protecting sensitive data such
as cryptography, steganography, distributed machine learning frameworks, trusted
platforms, and processors. Security evaluation of machine learning algorithms can
also benefit from the training, testing, and validation datasets generated by the game
theoretical adversarial deep learning within a design-for-security rather than the
design-for-performance paradigm for machine learning. Security evaluation curves
can also be created around the performance measures for machine learning and
cost functions for adversarial deep learning to characterize the learning system
performance, robustness, security, and privacy evaluation metrics calculated in the
presence of various adversary types having different attack strengths and knowledge
levels.



4.5 Robust Game Theory in Adversarial Learning Games 137

4.5 Robust Game Theory in Adversarial Learning Games

In a Stackelberg game, adversarial strategies are modeled and solved for the solution
rationale and decision-making problem defining the Nash equilibria. The solution
space for Nash equilibria is expressed in terms of the necessary and sufficient
conditions for game players’ convergence criteria [557]. Typical convergence
criteria are (i) zero-sum game vs non-zero sum game; (ii) two-player vs multiplayer
game; (iii) static game vs evolutionary game; (iv) sequential game vs continuous
game; and (v) deterministic game vs stochastic game. Typical players’ strategies
consider cases where a pair of players (i) do not know each other’s performance
criteria; (ii) compute each other’s strategies at different speeds; (iii) have linear
and non-linear payoff functions that may or may not be discontinuous; and (iv)
participate in a game with distributed control vs decentralized control. In such
games, the Stackelberg strategies and Nash equilibria are analyzed in terms of
the structural properties of the coefficient matrices of higher-order matrix-Riccati
differential equations.

The optimization of such game theoretical payoff functions presents a complex
problem in optimization theory. Such problems are often modeled as decision
problems in non-cooperative differential games [86]. The solutions to these prob-
lems are presented as Pareto optima, Nash and Stackelberg equilibria, and co-co
(cooperative-competitive) solutions for the payoff function.

The Riccati differential equations are also analyzed as differential games in
optimal control theory. If the game theoretical players can observe state of the
control system, then the Nash equilibrium is computed according to an open-loop
solution for the control system. If the game theoretical players cannot consider
feedback strategies, then the Nash equilibrium is computed according to a closed-
loop solution for the control system. Principles of dynamic programming are used
as the computational methods finding the game theoretical optima to the necessary
and sufficient conditions for optimal control system.

Furthermore, partial differential state equations of the control system can
augment the player’s payoff functions to result in stochastic control [9] in game
theoretical interactions. Here, the game theoretical equilibria are determined by the
necessary and sufficient conditions on the coefficients solving for the Stackelberg
Riccati differential, difference, and algebraic equations [206]. The study of such
equilibria and their numerical computational methods is the subject of evolutionary
and differential game theory [34].

Zhou et al. [710] model multiple types of adversaries in a nested Stackelberg
game framework. A single-leader learner has to deal with multiple-follower adver-
saries. The solution to the game is an optimal mixed strategy for the leader to play
in the game. The solution of a two-player Stackelberg equilibrium solution is used
as the strategy in a multiplayer Bayesian Stackelberg game. The Stackelberg game
is solved as a mixed-integer quadratic programming (MIQP) problem.

Ratliff et al. [507] characterize Nash equilibria in continuous games over
non-convex strategy spaces. Sufficient conditions are given for differential Nash
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equilibria. They require the evaluation of player costs and their derivatives. A
dynamical systems viewpoint is taken to analyze the convergence of best response
strategies to a stable equilibrium. The results in non-linear programming and
optimal control provide first- and second-order necessary and sufficient conditions
for local optima assessed as critical points of real-valued functions on training
data manifolds. Such continuous games arise in building energy management,
pricing of network security, travel-time optimization in transportation networks, and
integration of renewables into energy systems. Coupled oscillator models are chosen
for illustrating the system properties of continuous games. They have application in
power networks, traffic networks, robotics, biological networks, and coordinated
motion control. Dianetti et al. [158] investigate the existence of Nash equilibria in
monotone-follower stochastic differential games where each player has submodular
costs. The monotone-follower problem tracks a stochastic control process to
optimize a performance criterion. It has applications in economics and finance,
operations research, queuing theory, mathematical biology, aerospace engineering,
and insurance mathematics. It can allow explicit feedback strategies to compute
equilibria in open-loop and closed-loop strategies in irreversible investment games.

Schuurmans et al. [544] introduce deep learning games. The optimization of
supervised deep learning models is expressed as the Nash equilibrium in a game.
A bijection is established between the Nash equilibria of a simultaneous move
game and KKT points of a directed acyclic neural network in deep learning. Then
a step-free regret matching algorithm is proposed for stochastic training to produce
sparse supervised learning models in deep learning. Thus, supervised learning is
reduced to game playing. A one-shot simultaneous move game is defined for a one-
layer learning problem. Regret minimization can also decompose multiplayer games
into multiple two-player games. Lippi [373] uses statistical relational learning
(SRL) frameworks in the description and the analysis of games. SRL combines
first-order logic with probabilistic graphical models to handle uncertainty in data
and its representation dependencies. SRL can be used in games such as partial
information games, graphical games, and stochastic games. Inference algorithms
in SRL such as belief propagation or Markov chain Monte Carlo can be used
for opponent modeling, finding Nash equilibria, and discovering Pareto-optimal
solutions. SRL produces probabilistic logic clauses to describe the strategies in
a game as a high-level, human-interpretable formalism. Games are described as
domains of interests, strategies, alliances, rules, relationships, and dependencies
among players. Techniques from inductive logic programming can then extract
rules from a knowledge base of logic predicates that aid probabilistic reasoning in
data-driven decision-making. SRL can also be combined with game theory to learn
model structures from data. Some of the SRL methodologies suitable for strategic
reasoning in game theory are Causal Probabilistic Time Logic (CPT-L), Logical
Markov Decision Programs (LOMDPs), DTProbLog, Infinite Hidden Relational
Trust Model (IHRTM), Infinite Relational Models toward trust learning, Relational
Reinforcement Learning, Probabilistic Soft Logic, and Independent Choice Logic
(ICL). SRL can also handle uncertainty in data to handle game models with
incomplete or unknown information. In machine learning, SRL has applications
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for collective classification such as in link prediction, object classification, and
group detection in application domains such as social networks, bioinformatics,
chemoinformatics, natural language processing, and the semantic web. Maximum
a posteriori (MAP) inference is facilitated by SRL for game theoretical adversarial
deep learning with Nash equilibria and Pareto optima in strategic games containing
Markov logic. Bector et al. [38] write a text on fuzzy games. It includes fuzzy
decision theory and fuzzy mathematical programming that have application in game
theoretical adversarial deep learning operating in a fuzzy learning environment.
Bonanno et al. [78] discuss the epistemics of game theory. It is useful in defining
the rationality and reasoning of adversary types in game theoretical adversarial deep
learning. The players’ probabilistic beliefs and cardinal preferences can be analyzed
both semantically and syntactically in terms of mutual recognition of rationality
between them.

Tsipras et al. [609] prove that a tradeoff exists between adversarial robust-
ness and learning performance in the design of robust classifiers. The resulting
costs lead to computationally expensive training methods in adversarial learning.
Adversarial robustness is defined in terms of low values for expected adversarial
loss. Adversarially robust training acts as a data augmentation to regularize the
learning model and lead to a better analytics solution. There is a close connection
between adversarial robustness and sample complexity of robust learning using
generative assumptions on the data. Robust learning models have clean feature
interpolations similar to those obtained from deep generative learning. Ye et
al. [684] discuss model compression that preserves adversarial robustness with
concurrent adversarial training and weight pruning. It can be used for security-
critical deep learning scenarios in resource-constrained embedded systems such as
mobile phones, IoT devices, personal healthcare wearables, autonomous driving,
unmanned aerial systems, etc. Weight pruning exploits sparsity in deep neural
networks to prune connection weights without noticeable performance degradation.
Adversarially trained model is observed to be less sparse than naturally trained
model. Moreover, adversarial training requires more network capacity than to
achieve strong adversarial robustness than for correctly classifying benign examples
only. ADMM (alternating direction method of multipliers)-based weight pruning is
proposed. Brand et al. [83] introduce an iterated matching pennies (IMP) game to
analyze adversarial learnability, conventional learnability, and approximability. The
“completeness” of learnability is discussed in terms of language identification and
statistical consistency in the limit. Any computable prediction method cannot be
complete. A Turing machine can learn any computable language. Such a notion
of learnability is important in statistics, econometrics, machine learning, inductive
inference, and data mining. In this context, game theoretical adversarial deep
learning can be used in learnability and approximability problems when players
are trying to learn from each other by observations.
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4.5.1 Existence and Uniqueness of Game Theoretical
Equilibrium Solutions

Nash et al. [455] is the original paper defining equilibrium solution concepts in
multiplayer games with pure strategies. Mixed strategies then become probability
distributions over pure strategies. Nash et al. [454] discuss non-cooperative game
theory without coalitions. Each player acts independently rather than as a coali-
tion without communication or collaboration with other players. The equilibrium
solution concepts are then a generalization of those in two-player zero-sum games.
Several solution concepts are developed to satisfy the learning hypothesis in game
theoretical adversarial deep learning such as with geometrical form solutions and
contradiction analysis on equilibrium strategies. Transferability and comparability
between adversarial payoff functions are also a line of enquiry to contrast game
theoretical equilibrium solutions in real-world applications. Dynamical systems of
non-cooperative games can be developed for reducing cooperative games with pre-
play negotiations in the cooperative game that become plays in a non-cooperative
game to describe all the players’ payoffs in an infinite game.

Medanic et al. [418] develop explicit expressions of open-loop multilevel
Stackelberg strategies for control in deterministic sequential decision-making prob-
lems. Continuous linear systems are solved by quadratic optimization criteria to
characterize the Stackelberg controls. Higher-order square-matrix Riccati differ-
ential equations are also formulated to characterize the Stackelberg controls with
coefficient matrices in a dynamical system used for the statistical inference of their
structural properties. The strategies selected in the decision-making sequence for a
player are available to the other players after the current play. The dimensionality of
the associated dynamical system represents a differential constraint for determining
the optimal strategies of next control in the decision-making sequence produced by
subsystems in an interconnected learning system.

Freiling et al. [201] study the existence and uniqueness of Stackelberg equi-
librium in a two-player differential game with open-loop information structure.
Sufficient existence conditions are derived for open-loop equilibrium to solve
Riccati matrix differential equations. Time-invariant parameters are discussed to
address concept drift in the equilibrium solutions. The equilibrium solutions can be
extended with non-cooperative game theory having different hierarchical structures,
cost functions, and sample data information patterns in Stackelberg differential
games. A linear differential equation describes constraints to the state vector in
the game. The payoff functions are constructed to satisfy necessary and sufficient
conditions on the solution concepts obtained by solving differential equations.

OReilly et al. [475] study the dynamics of cyber adversaries to harden cyber
defenses according to adversarial robustness criteria. The dynamics are formu-
lated as a competitive co-evolutionary system that generates many arms races
for harvesting robust solutions. The co-evolutionary process is crafted in the
context of network cybersecurity scenarios where the defender leverages artificial
intelligence (AI) to gain competitive advantage in an asymmetric adversarial
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environment. Adversarial AI deploys defensive (worst-case, average-case) tradeoff
configurations to anticipate multiple possible adversarial behaviors with reference
to their expected impact, goal, strategies, or tactics. The expected impact can be
a combination of financial cost, disruption level, or outcome risk. Ranks for the
defensive configurations are generated from stochastic search methods to explore
the strategy space in simulated competitive engagements of adversaries’ behavior.
The competitive engagements are between adversarial populations that undergo
selection based on performance and variation to adapt. Co-evolutionary logic
then results in population-wide adversarial dynamics where adversaries engage
and measure their outcomes with reference to other adversaries. Robust defensive
configurations are thus formed by co-evolutionary algorithms that help generate
diverse behavior. The diversity of behaviors is measured by “solution concepts”
of adversarial robustness. There is a fixed budget of computation or time for
each adversarial engagement. Modeling-simulation use cases on adversarial threats
and defensive models in computer security then support adversarial deep learning
emulation with varying model granularity. Such levels of granularity include denial-
of-service attacks in a peer-to-peer network, device compromise in an enterprise
network, and deceptive defense against internal reconnaissance of an adversary in
a software-defined network. The co-evolutionary search algorithm’s convergence
criteria also facilitate visualizations and comparisons of adversarial behaviors in
generative adversarial dynamics. In experiments, the attacker and defender strate-
gies are coevolved in the context of a single, custom, abstract computer network
defense simulation. Gaussian process estimation estimates the uncertain adversarial
engagements. A recommender technique is used to approximate the adversary’s
fitness functions. A spatial grid is used to reduce the search space over pairwise
engagements of interest. Adversarial engagements are cached to work within a fixed
time fitness evaluation budget. The engagement environment supports problem-
specific network testbeds, simulators, and models. The behavioral action sequences
for attack and defense are expressed with a Backus-Naur form (BNF) grammar
that is a context-free grammar representation of adversarial behaviors as data-
driven decision-making rules. The BNF grammar communicates adversarial deep
learning functionality and enables conversation journeys and model validations in
an application domain of discourse. The BNF grammar, engagement environment,
and fitness function vary with adversary types. Their modularity and reusability lead
to efficient software engineering and problem-solving advantages. The competitive
co-evolution fitness functions and solution concepts are dependent on the context
of adversarial engagements. The “best” solutions compendium is obtained from a
ranking and filtering process on the solution concepts.

Cotter et al. [138] discuss theories of constrained optimization that have
application in Neyman-Pearson classification, robust optimization, and fair machine
learning. A two-player non-zero sum game is solved to model optimization
parameters with non-differentiable constraints on convergence rates and losses
counts/proportions of regret minimization. The machine learning fairness problem
is formulated as the minimization of empirical loss subject to data-dependent
fairness constraints that are not differentiable. A deep neural network with non-
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convex objective functions is used for modeling the machine learning problems.
The constraints are expressed with functions of indicator random variables. The
game theoretical equilibria then define stochastic classifiers. Syrgkanis et al. [587]
investigate correlated equilibria in multiplayer normal form games embedded into
regularized learning algorithms and their black-box reductions. No-regret learning
is utilized to make players’ decisions. The regret bounds are found in adversarial
environments with no-regret algorithms such as multiplicative weights, mirror
descent, and follow the regularized/perturbed leader. The no-regret dynamics lead
to faster convergence rates for regularized learning algorithms. Their black-box
reductions in game theoretical environments preserve the convergence rates while
maintaining the regret bounds on adversarial robustness. Results are compared
against a simultaneous auction game in terms of utilities, regrets, and convergence
to equilibria. The welfare of the game is the result of a variable-sum allocation of
payoffs and resource matching corresponding to an unweighted bipartite matching
problem.

Many games of interest in adversarial deep learning lie beyond tractable mod-
eling and reasoning. Wellman et al. [642] investigate the gaps between strategic
reasoning and game theory. Computational complexity in automated reasoning is
shown to be due to number of agents, size of strategy sets and policy spaces, degree
of incomplete and imperfect information, and expected payoff computations in a
stochastic environment for adversarial learning. Empirical games are introduced
as game simulators that perform strategic reasoning through interleaved simulation
and game theoretical analysis. The building block for adversarial deep learning is
an interaction scenario where payoff information is obtained from data in observa-
tions and simulations. Constructing and reasoning about empiric games presents
interesting sub-problems in simulation, statistics, search, and game theoretical
adversarial deep learning analysis. Empiric game formulations are decomposed
into strategy space parametrization over continuous or multidimensional action
sets and imperfect information conditioned on observation histories. Strategy space
parametrization is done with candidate strategies in baseline or skeletal structures
for parametric variations on the game search architecture such as truthful revelation
of payoffs, myopic best response strategies, and game tree search in minimax and
max-max optimization. Estimation of precise, rigorous, and automated empiric
game techniques is recommended to be done with statistical techniques such as
Monte Carlo analysis in active learning of strategy choices by adversary types,
adjusting for cyber-observable factors with known effects on payoffs, applying
control variates to measure demand-adjusted payoffs, hierarchical game reductions
to affect computational savings, information theoretic criteria for selecting strategy
profiles, and regression in game estimation to generalize payoffs across very large
profile spaces given available data. Vorobeychik et al. [623] investigate games
with real-valued strategies where payoff information is learned on a sample of
strategy profiles. The payoff function learning problem is formulated as a standard
regression problem with known structure in a multi-agent environment. Learning
performance is measured with respect to relative utility of prescriptive strategies
rather than accuracy of payoff functions. The relative utility of strategies is also
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estimated as the target of supervised learning and as a learning model selector.
Thus, game theoretical equilibrium solutions can be determined from a database
of game playing experience rather than a specification of strategic interactions
in a game. Determining such equilibrium solutions then becomes the target of
machine learning applied to games with intractably large or infinite strategy sets
defining continuous agents. The equilibrium solutions can be used to represent
multi-stage games as one-shot games with strategy sets that are functions of
all possible histories of play. Game payoff data is obtained from observations
of other agents playing the game and simulations of hypothetical runs of the
game. The payoff function approximation task for data mining is then defined
as selecting a function from a candidate set to minimize a measure of deviation
from a true payoff function representing a black-box or an oracle in adversarial
deep learning. Polynomial regression, local regression, and support vector machine
regression are used to compute the pure Nash equilibria. The learned functions
are initially restricted to finite strategy subsets. Replicator dynamics search for
a symmetric mixed equilibrium with an iterative evolutionary algorithm. After a
fixed number of iterations, the approximate Nash equilibrium in a payoff matrix
over discrete strategy subsets is treated as a learned game. Therefore, regression
and discriminative learning methods in supervised learning offer generalization of
game theoretical adversarial deep learning to infinite set strategy spaces beyond
directly available experience for machine learning. Target functions that support
tractable equilibrium calculations can be formulated with deep learning to support
“learnability” of adversarial payoff functions according to learning tradeoffs found
in various adversarial environments.

Our research into game theoretical adversarial deep learning tradeoffs between
the learnability and the robustness of discriminative learning. By “learnability,” we
mean the ability of the classifier to predict correct labels (without regard to noise),
and by robustness, we mean that the prediction is the same with or without noise
(without regard to correctness). The tradeoff we observe is that more learnability
comes at the price of less robustness and vice versa. The major aim of our research
is development of game theoretical adversarial deep learning algorithms applicable
to cyberspace security data mining problems. We develop game theoretical payoff
functions modeling the decision boundaries of supervised machine learning. They
explore the systems theoretic dependence between randomization in adversarial data
manipulations and generalizability in black-box learner optimizations with respect
to the proposed game theoretical adversarial deep learning. Such robust optimiza-
tions study the theories for robustness, fairness, explainability, and transparency
in machine learning with prediction games. Here, we develop adversarial learning
algorithms for reliability, learnability, efficiency, and complexity in discriminative
learning. Resultant game theoretical adversarial deep learning is applied to classifi-
cation and optimization problems in data analytics.

The optimal results of sample complexity in the game theoretical formulations
depend on the optimization methods and target data distributions of the loss
functions computed in Nash and Stackelberg equilibria. A better stochastic policy
in the game theoretical equilibria would lead to (cooperative-competitive) solutions
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in (differential dynamical) systems modeling. Here, we can compare the game
theoretical adversarial learning solutions with machine learning baselines such
as the inclusion of noise in the optimization procedure, the simplification of the
function landscape by increase of the model size, the schemes for derivative-free
stochastic optimization, and data resampling in the context of variational learning
algorithms. We can also explore randomization strategies for robust optimization
in multiplayer games that can be decomposed into prediction games or Stackelberg
games. They are often modeled as decision problems in non-cooperative differential
games.

4.5.2 Optimal Control Theory and Robust Game Theory

Huang et al. [288] describe dynamic games for control system design that is
decomposable into cyber, physical, and human layers. Cross-layer design issues
give rise to security and resilience challenges in critical infrastructures. Such
critical infrastructures are seen in industrial control systems in sectors such as
electric power, manufacturing, and transportation. Here, the control system’s view
of design takes the perspective of sensing, control, and plant dynamics integrated in
a feedback loop in the physical layer. The control design techniques such as robust
control, adaptive control, and stochastic control deal with information uncertainties,
physical disturbances, and adversarial noise in the feedback loop. Adversarial noise
is seen in the cyber layer with communication and networking issues between
sensors and actuators as well as among multiple distributed agents. By contrast,
the human layer is concerned with supervision and management issues such as
coordination, operation, planning, and investment. The management issues include
social and economic issues, pricing and incentives, and market regulation and
risk analysis. In cloud-enabled autonomous systems, service contracts for security
services can include incentive-compatible attack-aware cyber insurance policies
that can be designed with game theoretical adversarial learning to maximize social
welfare and alleviate moral hazard. Adversaries exploit attack surfaces of the control
systems to exploit zero-day vulnerabilities in autonomous systems such as self-
driving vehicles. Game theory provides frameworks for strategic interaction among
components in a complex system to quantify tradeoffs of robustness, security,
and resilience in system performance within adversarial environments for control
systems. In game theoretical frameworks, secure and resilient control design is
viewed as an extension to robust control design. Application focus areas are
enumerated as heterogeneous autonomous systems, defensive deception games
for industrial control systems, and risk management of cyber-physical networks.
The objective of resilient control systems is to have performance guarantees and
recovery mechanisms when robustness and security fail due to adversarial attacks
and system failures. Here, a robust control system can withstand uncertain param-
eters and disturbances due to design-for-security machine learning paradigm. The
defense mechanisms in robust control system design span cryptography, detection,
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solution architecture, and communication protocols. The physical systems design
is governed by differential-algebraic equations for applications such as multibody
robotic systems, power network systems, and water distribution systems. Hence,
the learning dynamics can be described with Markov decision processes, difference
equations, and partial differential equations in game theoretical adversarial deep
learning. The game theory literature can be combined with cognitive, memory, com-
putational, and psychological aspects of the human decision-making process. Here,
prospect theory incorporates loss aversion in human decisions and differentiates
the perception of losses from the utility of the gains. Attention mechanisms that
incorporate limited cognition of the online human decisions can also be incorporated
into the game theory. The decentralized ownership of the control system services
can provision effective sharing and utilization of the resources of computational,
communication, and sensing infrastructures. Then implementation and investment
in adversarial deep learning for security then enable high-quality service offerings
by mitigating security risks at service levels of control systems. It also prevents
the real-time propagation of cyber risks at various socioeconomic scales. Games
in autonomous system that consider all such security requirements are designed to
achieve the Gestalt Nash equilibrium (GNE). GNE is a game theoretical equilibrium
solution concept where no player has an incentive to deviate from the optimal
solution. Such solutions are to be found in not only the modular game defined by
local agent-agent interactions but also the integrated game defined by the global
system-system interactions. It seeks to find a self-adaptability, self-healing, and
agile resilience for the heterogeneous autonomous systems faced with multi-stage
stealthy attacks such as APTs in adversarial environments.

Dynamic programming principles can be used to efficiently study the con-
vergence properties of the game theoretical optima. In a variational adversary
framework, game theoretical modeling can also be used to solve sampling problems
in differential privacy mechanisms. The machine learning task is to produce
an adversarial sample in the latent space of the variational method according
to an implicitly defined distribution that is important for both optimization and
classification of the adversarial manipulations in the machine learning. We can then
solve it by presenting a framework of deep generative learning and its differential
learning scheme in decision problem’s non-cooperative differential privacy games.
Further, the differential privacy games can be analyzed in terms of optimal control
theory. If the game theoretical players can observe state of the control system, then
the Nash equilibrium is computed according to an open-loop solution for the control
system. If the game theoretical players cannot consider feedback strategies, then the
Nash equilibrium is computed according to a closed-loop solution for the control
system. Principles of dynamic programming are used as the computational methods
finding the game theoretical optima to the necessary and sufficient conditions
for optimal control system. Furthermore, partial differential state equations of the
control system can augment the player’s payoff functions to result in stochastic
control in game theoretical interactions. Here, the game theoretical equilibria are
determined by the necessary and sufficient conditions on the coefficients solving
for the Stackelberg Riccati differential, difference, and algebraic equations of the
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equilibria. The study of such equilibria and their numerical computational methods
is the subject of evolutionary and differential game theory. Then we shall translate
such stochastic methods into the language of adversarial learning with variational
adversaries. A privacy-centric enhancement of the learning capacity, randomization
strategies, and payoff functions in the game formulations would affect the weighting
regularizations and the decision boundaries of the machine learning algorithms
provided as services. Systems theory motifs from non-linear signal processing and
control theory statistics relevant for the adversarial data mining application may
also be defined from the domain knowledge. In this context, we propose to explore
wavelet decompositions and maximum entropy modeling of the data distributions.

Grunwald et al. [236] develop a decision theory by connecting maximum entropy
inference to minimizing worst-case expected loss in zero-sum restricted games
between the player’s decision-maker and nature. The decision theory is used to
derive loss functions that can be used in adversarial deep learning. The maximum
entropy distribution defines the decision-maker’s minimax strategy. A generalized
relative entropy measure is introduced for the decision-theoretic definition of
discrepancy and loss function. The generalized relative entropy is comparable to
other entropy optimization frameworks such as Renyi entropies and expected Fisher
information. Franci et al. [200] typecast the training of generative adversarial net-
works (GANs) as a variational inequality problem with stochastic Nash equilibrium
solution. A stochastic relaxed forward-backward training algorithm is proposed
for GANs. Cai et al. [98] conduct a survey of the state of the art in GANs from
security and privacy perspective. The game theoretical optimization strategy in
GANs is used to generate high-dimensional multimodal probability distributions
that have important applications in mathematics and engineering domains. In the
GAN-based methods in adversarial deep learning, the generators can be used to
not only craft adversarial examples but also design defense mechanisms. In data
privacy research, GAN-based methods can be used in image steganography, image
anonymization, and image encoding. Variational generative adversarial network
(VGAN) and variational autoencoder (VAE) can be built to strike a balance
between privacy and utility in synthesized images. In model privacy research, GAN-
based methods can be used to protect the learning model privacy anonymization
and obfuscation. In application domains of adversarial deep learning, GANs can
generate adversarial malware examples with data compression and reconstruction,
fake malware generation, and malware detection. They can be used to construct
bio-information systems for authentication; financial fraud detection problems in
credit card fraud, telecom fraud, and insurance fraud; botnet detection; and network
intrusion detection.

The adversarial noise characteristics can be defined with respect to the following
notions of noise in future research on game theoretical adversarial deep learning
where game theoretical learning models involve evolutionary adversaries, stochastic
adversaries, and variational adversaries targeting the misclassification performance
of deep neural networks and convolutional neural networks. The extent to which
noise on model parameters and training data can benefit the overall quality of
the data distributions generated by game theoretical adversarial learning depends
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on the specific adversarial noise processes and the nature of the generated target
distribution.

• Adversarial noise is spam, outlier, discontinuity, and costly
• Adversarial noise is not ground truth, not signal, and non-iid
• Adversarial noise is fake data and false discovery
• Adversarial noise is unexpected prediction and information leak
• Adversarial noise is residual error and unknown object
• Adversarial noise is rare class and sparse structure
• Adversarial noise is complex motif and wrong decision
• Adversarial noise is misclassification example and incorrect regression value
• Adversarial noise is randomized sample and latent variable
• Adversarial noise is due to an underlying stochastic process
• Adversarial noise is statistically insignificant
• Adversarial noise cannot be explained

Ge et al. [213] formulate game design methods for robust quantum control played
between the uncertainties (or noises) and the controls in quantum hardware. Lloyd
et al. [392] introduce quantum generative adversarial networks where generator
and discriminator are equipped with quantum information processors. Romero et
al. [523] introduce variational quantum circuit to mimic the target distributions.
Such variational circuits for encoding classical information into quantum states
are very useful in machine learning applications such as adversarial classification.
We can run costly computational learning algorithms or their BLAS subroutines
efficiently on a quantum computer. Quantum generalizations of the adversarial
deep learning on quantum data distributions would involve quantum sampling,
quantum information, and quantum causality modeling to analyze the bias-variance
decomposition in adversarial payoff functions applicable into the computational
optimization of randomized prediction games. We can derive utility bounds for
quantum neural network’s deep learning in an empirical risk minimization frame-
work and a mistake bounds framework. We can also define quantum-enhanced
learning through interactions in an agent-environment paradigm of the quantum
computation to derive separability criteria in the neural computing mechanisms and
their generalization error due to quantum measurements. We can develop a theory
of sample complexity, formal verification, and fuzzy automata in the adversarial
models with reliable guarantees proposed on the quantum generative adversarial
learning in quantum neural network’s training and optimization. We can create
special-purpose quantum information processors such as quantum annealers that are
well matched to adversarial deep learning architectures. Hybrid classical-quantum
learning schemes would quantify the learnability of the quantum neural networks
in non-convex optimization landscapes from the perspective of the generalization
error and the estimation error due to quantum measurements. The implementation
of trainable unitaries over parameterized quantum circuits can then be analyzed with
a no-regret property in the tolerable error of the generated data. Then quantum
information processing tasks may be reformulated as discriminative learning,
generative learning, and adversarial learning problems with separability criteria
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to distinguish entanglement for specific quantum states characterized in structured
data and computational efficiency. Quantum generalization of generative adversarial
networks (GANs) to the quantum mechanical regime include modeling structures in
convolutional, conditional, bidirectional, and semi-supervised GANs using quantum
circuits. Quantum approaches to generative modeling problems in game theoretical
adversarial deep learning may then focus on variational quantum algorithms with
Markov chain methods in adversarial training and Bayesian Stackelberg games
in adversarial deep learning. We can also characterize the problem of quantum
classification in the presence of noise. Then we can study the tradeoff between
learnability and robustness of the adversarial machine learning. Efficient quantum
information science algorithms with such basis classifiers would help us deal with
“big data” in the quantum computers. To derive reliable guarantees on the security
evaluation of the quantum neural networks, we can derive generalization errors for
the quantum adversarial learning problems with formal verification. A quantum
enhancement of these computation procedures in adversarial deep learning can
create quantum adversarial machine learning algorithms with inner products of
big data, learned row-rank quantum states, unitary transformations as the storing-
retrieving problems in data mining, and state/process tomography of quantum
measurement learning tasks.

The following adversarial deep learning design tradeoffs must be addressed in
future work as notions of benefits and costs incurred for retraining the model and
generating an attacker.

• Attacker tradeoff: cost of adapting to the classifier and the benefit from attack
• Defender tradeoff: benefit of a correct attack detection and the cost of a false

alarm
• Interaction tradeoff: search space of strategies, payoff functions, costs of par-

ticipating in the game, relative ranking of each player inferring the decision
boundaries, black-box attack scenario where the adversary is unable to observe
the classifier’s strategies before choosing its strategy

• Equilibrium tradeoff: optimization objectives, misclassification performances,
and retraining costs in deep learning

• Utility tradeoff: defender’s utility losses in the game are inferior to the utility of
the adversary and importance of the costs incurred to generate an attack and to
retrain the classifier

• Discrimination tradeoff: more learnability comes at the price of less robustness

To characterize the adversarial data signals in experimental data, we could also
estimate the Lyapunov spectra exponents and attractor networks with deep learning
models and predictive analytics processes. Here, we can explore the spectral signal
processing techniques for (i) describing the complex dynamics in game theoretical
solution concepts as modeling errors in multivariate prediction with deep learning,
(ii) feature extraction for the machine learning models on the underlying data distri-
bution generating and validating model training, (iii) reconstructing the differential
equations as dynamical models of the training data available for adversarial training,
and (iv) energy landscape analysis with data distribution schemes and data indexing



4.5 Robust Game Theory in Adversarial Learning Games 149

structures for static and dynamic data that reduce the communication cost and
increase the load balancing in distributed memory systems. We would need to create
statistical validation criteria for such machine learning with reference to application
domain knowledge. In this context, we can explore evaluation metrics in data mining
applied to adversarial data modeling in cybersecurity applications.



Chapter 5
Adversarial Defense Mechanisms for
Supervised Learning

In this chapter we explore neural network architectures, implementations, cost
analysis, and training processes using game theoretical adversarial deep learning.
We also define the utility bounds of such deep neural networks within computational
learning theories such as empirical risk minimization, mistake bounds frameworks,
and no-regret learning. Here mistake bounds framework with no-regret property for
online learning provides tolerable error and update rules for training the neural nets
on the generated adversarial data. Then cyberspace information processing tasks
may be reformulated as discriminative learning, generative learning, and adversarial
learning baselines with respect to separability criteria characterizing the structured
datasets and computational efficiency for crafting the adversarial loss functions.
Proactive defense techniques for each adversarial example are also summarized
to construct defense-in-depth environments with adversarial signalling games for
mitigating cyberattacks by adaptive adversaries. They can be incorporated into a
design-for-security paradigm for machine learning hypotheses to complement the
classical design-for-performance paradigm to produce multiple levels of defense
against cyberattacks with reference to learning system perspective security goals.
We present a vast amount of related literature on the computational optimization
algorithmics in defense mechanisms for security requirements in game theoretical
adversarial deep learning in a very organized fashion. They can be used for
digital forensics, vulnerability identification, impact analysis, risk mitigation, cyber
security metrics, data and model development, penetration testing, and semantic
interoperability in cybersecurity applications. We point out many applications,
limitations of the current methods, promising future directions for game theoretical
adversarial deep learning countermeasures development, and technology evaluation
in substantial detail. The formalized adversarial deep learning assumptions for
robust games can track attack surface generation, capacity, and specificity in safety-
critical multitask objectives for adversarial robustness in loss functions design
within critical infrastructures protection mechanisms. The resultant algorithmic
decision-making clarifies the learning system’s capabilities for efficiency, objectiv-

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Sreevallabh Chivukula et al., Adversarial Machine Learning,
https://doi.org/10.1007/978-3-030-99772-4_5

151

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99772-4_5&domain=pdf

 -2016 61494 a -2016 61494
a
 


152 5 Adversarial Defense Mechanisms for Supervised Learning

ity, and control to a specific audience to enable accuracy, fairness, accountability,
availability, integrity, confidentiality, stability, reliability, safety, maintainability,
and transparency. In this context, the adversarial deep learning can be formulated
according to the principles of composite AI and explainable AI that improve
efficiency of supervised learning, reinforcement learning, generative learning, and
game theoretical learning with knowledge representations for reasoning about
privacy, trust, and security optimization metrics.

Brendel et al. [84] categorize threat models generating adversarial perturbations
into (i) gradient-based attacks relying on detailed model information, (ii) score-
based attacks relying on confidence scores such as class-conditioned probabilities,
(iii) transfer-based attacks relying on substitute models for target models, and (iv)
proposed decision-based attacks relying on information about final model decision.
Proposed decision-based attacks are called boundary attack and applied to blackbox
models for target model.

5.1 Securing Classifiers Against Feature Attacks

Li et al. [354] demonstrate limitations of feature reduction in adversarial settings
with objective-driven adversaries. Each adversary is supposed to be able to substi-
tute across similar features in a feature cross-substitution attack. Adversary is also
assumed to be able to query classifier according to a fixed query budget and cost
budget. An evasion model with sparse regularizer is presented in adversarial setting.
Constructing classifier on feature equivalence classes rather than feature space is
proposed as a solution to improve classifier resilience to evasion model. Another
solution proposes bi-level Stackelberg game of interactions between classifier and
a collection of adversaries. Stackelberg game is solved by mixed-integer linear
programming with constraint generation. Adversaries’ objectives are inferred from
(query budget and cost budget) constraint generation converging to local optima on
training data.

Globerson et al. [220] analyze classifier robustness with a game theoretical
formulation. For a classifier trained on multiple features with varying importance,
any single feature is not given too much weight during testing. Adversary is
supposed to be able to delete features in testing data that were present in training
data. Then a classifier is constructed which is optimal under a worst-case feature
deletion scenario. Such a scenario is formulated as a solution to a two-player
game between classifier and feature deleter with a minmax objective. Classifier
chooses actions that give robust classifier parameters. Feature deleter chooses
to delete features that are most harmful to classifier performance. Structure of
uncertainty in game convergence is related to existence vs non-existence of a
feature. A support vector machine with regularized hinge loss and linear constraints
is taken to be the training objective for classifier. Game deletes features that lead
to maximum decrease in classifier loss. Cooperative games with Shapley value
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objectives measuring performance change after deleting a feature are an alternative
to the proposed minmax objectives deleting multiple features simultaneously.

Given an evasion attack scenario, Zhang et al. [691] investigate impact of feature
reduction on classifier security, if adversary-aware feature selection is not present in
classifier training. A smaller feature set is shown to significantly worsen classifier
performance under attack which may usually not be the case for a classifier not
under attack. Classifier security model is expressed as a regularizer to be opti-
mized and estimated along with classifier’s generalization capability during feature
selection process. It is implemented as a wrapper-based feature selection method
using forward selection and backward elimination of features suitable for both linear
and non-linear classifiers with differentiable discriminant functions. Evasion attack
scenario is considered an exploratory integrity attack on the testing data fed to a
classifier trained on original training data. Optimal evasion strategy is formulated as
an optimization problem minimizing the distance between the adversarial examples
and the training data such that classifier’s discriminant function misclassifies
adversarial examples. An adversary-aware feature selection approach maximizes
not only the generalization capability of the classifier but also the classifier security
against evasion attacks. Here the classifier security is weighted by application-
specific constraints and parameters, while the classifier generalization capability
is estimated according to the application-dependent discriminant functions and
performance measures. Instead of searching for best evasion point by querying
classifier with candidate samples of a blackbox search approach, computationally
efficient adversarial algorithms are devised to exploit adversary’s knowledge of
targeted classifier’s objective function. They are defined by choices for distance
function between adversarial examples and training data and feature representation
in classification algorithm. A gradient descent procedure finds gradient steps that
reduce distance between adversarial data and training data while projecting current
point onto feasible domain of adversarial examples as soon as discriminant function
misclassifies it. Initial attack point in gradient descent is set to closest sample
that is either classified as legitimate or classified as malicious. Performance of
true classifier gracefully decreases against attacks of increasing attack strength
determined by upper bound on maximum amount of adversarial modifications and
lower bound on misled classifier confidence. A most gracefully degraded classifier
is expected to be most secure after retraining on training data as well as adversarial
examples. Experiments validating student’s t-tests and classification accuracies of
feature weight distributions are conducted on TREC 2007 email corpus consisting
of legitimate and spam emails. Application-specific constraints on data distributions
make it harder for adversary to imitate feature values of legitimate class eventually
leading to a low probability of evading detection.
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5.2 Adversarial Classification Tasks with Regularizers

Demontis et al. [154] analyze evasion attacks of linear classifiers in a robust
optimization framework. Relation between sparsity of feature weights and defense
of linear classifiers is investigated to propose a regularizer. Linear classifiers are
chosen in adversarial learning algorithm due to their interpretable decisions obtained
from the low storage, processing time, and power consumption in mobile and
embedded systems. Adversary is supposed to have complete knowledge about
target classifier’s training data, feature set, and classification algorithm. Adversary’s
capability of modifying data is given as an application-dependent data constraint.
Typically, such data constraints are defined as �1 and �1 norms on number of
modified features called sparse and dense attacks, respectively. Adversary’s attack
strategy is formulated as an optimization problem minimizing target classifier’s
discriminant function for data subject to a distance constraint between adversarial
examples and the original data. With an idea of finding sparse and uniform weights,
a linear convex combination of �1 and �∞ norms is proposed as a robustness
regularizer for adversary’s attack strategy. Behavior of such regularization against
evasion attacks on a support vector machine classifier with hinge loss is then
investigated in classification applications for handwritten digit classification, spam
filtering, and malware detection. Performance measurement in adversarial settings is
done with area under the ROC curve combined with a sparsity and security measures
proposed on classifier’s weight distributions.

Krause et al. [329] present an information-theoretic objective function to train a
discriminative probabilistic classifier called Regularized Information Maximization
(RIM). RIM is applied as a clustering framework that accommodates different
likelihood functions, balances class separation, and incorporates partial labels for
semi-supervised learning. Such discriminative clustering techniques represent the
boundaries between clustering categories available in the real-world applications of
clustering. They include techniques such as spectral graph partitioning, maximum
margin clustering, and neural gas models. Here the unsupervised learning of clus-
tering problems is formalized as a conditional probabilistic model that is suitable
for multi-class discriminative clustering. The objective function then maximizes the
mutual information between empirical data distribution on the inputs and induced
label distribution from the model selection. It is constructed to satisfy mathematical
properties for optimization such as decision boundaries should not be located in the
input space that is densely populated with data points and clustering configurations
in which category labels are evenly distributed across the classes are preferred.
Further a regularizing term is introduced to penalize conditional models with
complex decision boundaries in the model selection. It depends on the specific
choice of the conditional probability distribution being estimated. In multi-class
classification problems, prior beliefs about non-uniform class label proportions are
encoded as relative entropy terms in RIM’s non-convex objective function.

Xu et al. [668] create regularized support vector machines (SVMs) within a
robust optimization formulation based in uncertainty sets. Such SVMs have protec-
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tion to noise and overfitting. They minimize a combination of the training error and a
regularization term. The regularization term is typically a tensor norm. It restricts the
complexity of the classifier’s function class to support generalization performance.
It regards the testing data samples as perturbed copies of the training data samples.
Therefore bounding such a perturbation reduces the gap between classification
errors. Structural risk minimization approach is a regularization technique that
minimizes a bound on the generalization error based on the training error and a
complexity term. The proposed robust SVM performs a minmax optimization over
all possible disturbances between training and testing data samples. Stability of the
SVM against a specific perturbation that can be estimated is a related robustness
notion that is also studied. The training loss plus the regularization penalty is the
regularized loss for training the robust SVM.

Yan et al. [676] propose adversarial margin maximization (AMM) networks
having an adversarial perturbation-based regularization of the adversarial learning.
A differentiable formulation of the perturbation is backpropagated through the
regularized deep nets. Such maximum margin classifiers tend to have better
generalization performance due to intra-class compactness and inter-class discrim-
inability. The proposed adversarial defense mechanism is able to generalize to
multi-label classifiers so long as a target label is properly chosen for the adversarial
perturbation. Zhong et al. [707] embed a margin-based regularization term into the
classification objectives of deep neural networks. The regularization term has two
steps of optimizations to find potential perturbations in an iterative manner. Large
margins in the adversarial classification guarantees the inter-class distance and the
intra-class smoothness in the embedding space to improve the robustness of deep
nets. A cross-entropy loss function is jointly optimized with a large margin distance
constraint acting as the regularization term. Classifier robustness is tested under
conditions of feature manipulation and label manipulation.

Alabdulmohsin et al. [7] discuss reverse engineering attacks against classifiers
with fixed decision boundaries. Then randomization in the classification due to
semidefinite programming in a distribution of classifiers is formulated to mitigate
adversarial risks and provide reliable predictions with a high probability. The
authors investigate the tradeoffs between the predictive accuracy and variance of
the classifier distribution. The reverse engineering attacks proposed are classified
under exploratory attack scenarios where the adversary is manipulating testing
data distribution. The proposed classification system attempts to make reliable
predictions while revealing as little information about the decision boundaries as
impossible. The problem learning with a distribution of classifiers is formulated as
a convex optimization problem. The defense of the classification system is com-
pared with adversarial classification, kernel matrix correction, ensemble learning,
multiple-instance learning, and game theoretical adversarial learning mechanisms.
Here exploratory defense strategies are said to cause disinformation about the choice
of training data, features, cost function, and learning algorithm. Another exploratory
defense strategy is to increase the complexity of the hypothesis space for the
adversary without causing overfitting for the classifier. In such a case, randomization
strategies would estimate a probability of selecting a class label instead of predicting



156 5 Adversarial Defense Mechanisms for Supervised Learning

it as a binary label. The objective of a successful randomization would be to
increase the adversary’s reverse engineering effort without increasing the classifier’s
predictive error rate. Furthermore an active learning algorithm is proposed for the
adversary to make target queries on the classifier. Here query selection strategies
are based on random sampling, selective sampling and uncertainty sampling where
the adversary knows that the defender uses a randomized classifier. Once learning
is completed by the defender, it is able to mitigate adversarial risks due to the
reverse engineering attack by picking a classifier at random from the distributions
of classifiers for every query observed from the adversary’s side. Linear classifiers
are used to build the ensemble of a distribution of classifiers. In the experimental
evaluation, accuracy-variance tradeoff curves are created to analyze the Pareto opti-
mality points of the classification system. Every such Pareto-optimal point is a sound
strategy for defending the classification system. By drawing classifiers at random
from a distribution with large variance, the adversary’s computational complexity
to carry out the proposed reverse engineering attacks increases significantly at little
increase in computational cost for the learning system. Such classification models
are suitable for deployment in security-sensitive applications such as spam filtering,
intrusion detection, and fraud detection.

Zhang et al. [695] propose an adversarial training to employ least adversarial
data for updating the learning model. The adversarial learning objective derives
an upper bound for the adversarial risk. The adversarial risk trains a deep neural
network using the wrongly predicted adversarial data minimizing loss and correctly
predicted adversarial data maximizing loss. Projected gradient descent (PGD)
with early stopping is used to create the adversarial data in the training process.
Curriculum learning is used in the proposed adversarial training strategy to improve
the adversarial robustness of deep neural networks. That is, the deep neural networks
initially learn from milder adversarial data and then gradually adapt to stronger
adversarial data. Sinha et al. [560] do a theoretical analysis of distributionally robust
optimization for adversarial training. The training procedure augments modelling
parameters with worst-case perturbations to the training data. It converges to
learning models that achieve robustness with small statistical or computational cost
relative to empirical risk minimization.

Tsipras et al. [609] study the tradeoffs between standard generalization per-
formance and adversarial robustness to adversarial examples in machine learning.
The argument presented is that robust classifiers learn statistically different rep-
resentations than standard classifiers. The goal of adversarial learning is defined
as training models with low expected adversarial loss in the presence of worst-
case input perturbations as adversarial examples. Standard classifiers are shown to
take advantage of features that are weakly correlated to the class label to achieve
standard accuracy. By contrast adversarial manipulations can simulate distribution
of the weakly correlated features as if they belong to the wrong class. Thus any
standard classifier that aims for high accuracy has to rely on non-robust features
that can be arbitrarily manipulated. Furthermore such a tradeoff between standard
and adversarial accuracy is inherent to the underlying data distribution itself and
is not due to having insufficient samples for training. The adversarial examples
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generated from perturbing such non-robust features will transfer across all the
classifiers that rely on features that are weakly correlated with the correct class
label. In finite training data, such brittle features can even arise due to noise.
Therefore the adversarial perturbations can be interpreted as invariance properties
that a robust model satisfies. Robust training that achieves small loss for all
the perturbations can be viewed as a method to embed certain invariances in a
standard classification model. In this context, the authors observe that gradients for
adversarially trained neural networks align with the perceptually relevant features
of the input image. So we can interpret adversarial perturbations as producing
salient characteristics of samples belonging to the interpolated target class. Such
an explanation cannot be given in standard models where adversarial examples
appear as noisy variants of the input image. The interpolated target classes can be
represented with deep generative models such as generative adversarial networks
and variational autoencoders involving adversarial manipulations into the learned
representations. The loss landscape of robust learning models can then be used to
smoothly interpolate between classes. Studying the generative assumptions in the
data allows us to provide upper bounds on classifier robustness that is able to account
for sample complexity of robust learning.

5.3 Adversarial Reinforcement Learning

Reinforcement machine learning is the study of intelligent agents and their actions
in a simulated environment such that a notion of cumulative reward is maximized
in the interactions between the agent and the environment. Instead of input/output
labels required in supervised machine learning, reinforcement learning’s focus is
to find a balance between exploration and exploitation of patterns. Reinforcement
learning can be interpreted as sampling-based methods to solve optimal control
problems. The goal of reinforcement learning is to learn a policy that maximizes
the expected cumulative reward and minimizes long-term regret. An intelligent
agent in reinforcement learning has to randomly select actions without reference
to an estimated probability distribution. Associative reinforcement learning tasks
combine supervised learning with reinforcement learning. In game theoretical
modelling, reinforcement learning can be used to produce error estimates on the
optimization with reference to bounded rationality.

Chen et al. [118] review adversarial attacks taxonomy on reinforcement learning.
The adversarial examples are classified into implicit adversarial examples that
add imperceptible adversarial manipulations to mislead the learner and dominant
adversarial examples which add physical world perturbations to change the local
information available to reinforcement learning. The adversarial attack scenarios
are classified into misclassification attacks to target a neural network performing
reinforcement learning and Targeted attacks to target a particular class label in
training that is misclassified into the target class label selected by the adversary. The
learning model trained according to reinforcement learning policies is called the
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target agent. Q-Learning is a popular training algorithm for reinforcement learning.
It proposed updates to a Q-value representing cumulative reward of the target agent.
Through an iterative learning process, the target agent maximizes the Q-value by
finding a best path to the goal. It can be represented by utility functions that
evaluate strength and weakness of actions in a particular state. Deep Q-Network
is a deep learning enhancement to Q-Learning. It gives rise to deep reinforcement
learning with deep learning network’s loss functions defining the Q-value utilities.
The (asynchronous advantage actor-critic) A3C algorithm utilizes the actor-critic
framework to improve the training process in deep reinforcement learning. Trust
Region Policy Optimization (TRPO) is able to control the changes in reinforcement
learning policies from an information-theoretic KL divergence the old and the new
policies. The subsequent literature review by Chen et al. [118] shows that the fast
gradient sign method (FGSM) can be adapted to reinforcement learning systems
and adversarial examples can be crafted for Q-learning paths from the gradient
of the maximum Q-value for each point on the path. A policy induction attack is
summarized for Deep Q-Networks. Adversarial defense mechanisms are proposed
due to adversarial training variants and learning objective regularizations in the
adversarial loss functions for deep reinforcement learning. In such attack settings,
complete blackbox threat models are quite rare. Variations of adversarial training
and regularization terms in the objective function, modifying network structure such
as defensive distillation, and deep generative modelling that produces adversarial
examples are the most common defense mechanisms. Application domains for such
adversarial machine learning include natural language understanding, image under-
standing, speech recognition, autonomous driving, target-driven visual navigation,
game playing, trading systems, recommender systems, dialogue systems, inventory
management, and automatic path planning. A survey of game theoretical solution
concepts in multi-agent deep reinforcement learning is given by Lu et al. [396].

Dai et al. [141] focus on adversarial attacks that modify the combinatorial
structure of data in application domains involving graph data structures. A rein-
forcement learning-based attack method is proposed to craft an attack policy from
the prediction feedback of the target classifier. The target classifier is built with
graph neural network models performing graph-level and node-level classification
tasks. The family of supervised learning models being analyzed has an application
in transductive tasks and inductive tasks. Unlike adversarial attacks on images that
are of continuous datasets, the adversarial attacks on graphs have to belong to
discrete datasets. Such adversarial manipulations are done by sequentially adding or
dropping edges from the graph. The quadratic time complexity of the action space
over the graph nodes is addressed with graph decomposition-based techniques.
Threat models are classified into (i) white-box attack where the adversary has
access to the internals of the target classifier including prediction labels, gradient
information, etc., (ii) blackbox attack where only the prediction of the target
classifier is available to the adversary, and (iii) restrict blackbox attack where
the adversary can do blackbox queries on some of the samples to be able to
create adversarial manipulations on the remaining samples. Non-targeted attacks
are the focus of the adversarial manipulations. The research can be extended
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to targeted attacks also. A cross-entropy loss function is used in the classifier
training. Graph-level and node-level feature embeddings are used to train the
graph neural networks. Graph equivalence indicators are proposed to qualify the
classification semantics before and after the adversarial manipulations. A reward
function is proposed for the adversary acting as a reinforcement learning agent.
A Q-learning algorithm then learns a Markov decision process (MDP) solving a
discrete optimization problem with finite horizon. Each adversarial sample that
is generated defines such an MDP. To learn a generalizable adversary, the Q-
function learning objective in the Q-learning is generalized to transfer over all
the adversarial samples and their corresponding MDPs. Further, a blackbox attack
method is proposed with a genetic algorithm for zero-order optimization scenarios.
The optimization objectives in such zero-order optimization scenarios are solved
with derivative-free optimization algorithms. A finite difference method on the
function values is used to estimate gradients formed by directional derivatives of the
targeted loss function. Convergence criteria for such estimations depend on iteration
complexity of the optimization and query complexity of the function evaluation. The
unconstrained versions of the derivative-free optimization algorithms such as the
alternating direction method of multipliers (ADMM) minimize an empirical average
loss function that is non-convex. Bi-level versions of the derivative-free optimization
algorithms formulate game theoretical objective that is typically a minmax function
in blackbox attacks. It is solved with algorithms such as the zeroth-order stochastic
coordinate descent [116]. The computational complexity of these algorithms is
addressed by techniques such as dimensionality reduction and importance sampling.
The algorithms for game theoretical adversarial deep learning are also comparable to
such formulations for the objective function studying adversarial robustness of cost-
sensitive classifiers. A regret minimization framework [179] can be used to address
computational complexity issues faced by such game theoretical adversaries.

Mandlekar et al. [408] synthesize white-box attacks in deep reinforcement
learning policies. Behzadan et al. [41] demonstrate adversarial examples that
are transferable across various Deep Q-Networks. The spatiotemporal features
of the training process are conjectured to provide defense mechanisms against
such adversarial examples. Kos et al. [327] create poisoning attacks over time
in deep reinforcement learning. The adversarial examples in image classification
settings are compared with adversarial examples in reinforcement learning settings.
Learning agent’s policy resilience through retraining is also investigated. Ilyas et
al. [293] improve blackbox attack scenarios with bandit optimization-based gradient
estimation. Pinto et al. [494] train a reinforcement learning agent in the presence of
a destabilizing adversary. The adversary applies differences in training and testing
conditions as disturbance forces in the reinforcement learning. The policy learning
trajectory is then formulated as solution to a two-player zero-sum Markov game.
Li et al. [356] discuss operational constraints in the adversarial evasion of security
policies. The task of adversarial classification is separated into the task of learning
to predict attack preferences and the task of optimizing operational policy that
explicitly abides by the operational constraints on the predictor. Then adversary’s
best response strategies are computed as randomized operational decisions.
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Jun et al. [306] propose reward-manipulation attack protocols in online learning
with limited feedback. The adversarial objective is to promote or obstruct actions
chosen by a stochastic contextual bandit algorithm. Ma et al. [402] propose data
poisoning attacks to hijack the behavior of a contextual bandit in an online recom-
mender system. The adversarial data is found by solving a quadratic program with
linear constraints. Lin et al. [372] propose adversaries that lure the agent through a
preferred sequence of actions to a designated target state. A generative model is used
to plan and predict the future states of the agent. Ho et al. [275] propose a generative
learning framework to learn imitation learning policies from expert trajectories. The
policies are learnt by generative algorithms that bypass learning of the cost functions
of the maximum causal entropy in inverse reinforcement learning. Goyal et al. [230]
train the generator in generative adversarial networks with a temporal difference
(TD) objective rather than gradients of the discriminator. Pfau et al. [492] view
generative adversarial networks as actor-critic methods where actor cannot affect
the reward. Finn et al. [196] reformulate minmax games in deep generative models
as bi-level optimization problems.

Bowling et al. [81] report an analysis of stochastic game theory in multi-agent
reinforcement learning. While the actions of a single intelligent agent can be
modelled as a Markov decision process that is stationary, multi-agent environments
have to model non-stationary data distributions among multiple interacting agents.
Here stochastic games would be a natural extension to Markov decision processes
that include multiple agents. Such stochastic games would in turn be extensions of
matrix games. A stationary strategy can be evaluated in such matrix games only
if the other players’ strategies are known in advance. Otherwise the matrix games
would involve non-stationary environments. Furthermore such games can involve
pure or mixed strategies. Two types of matrix games relevant for non-stationary
data analytics are collaborative and competitive matrix games categorized according
to their payoff functions definitions. Zero-sum games and general-sum games are
purely competitive games. Their solutions are expected values of payoff functions
found with linear programming and quadratic programming, respectively. Multi-
agent reinforcement learning learns stochastic policies that map current state of
the multiple agents to a probability distribution over their actions. The stochastic
policies can be analyzed with matrix games extended to multiple states involving
stochastic games. Each state in a stochastic game can be understood as a matrix
game played with joint payoffs of the multiple agents transitioning between states.
The equilibria strategies tend to solve computational complex problems requiring
randomization, generalization, and approximation techniques in the adversarial
machine learning.

Lanctot et al. [345] propose that multi-agent reinforcement learning (MARL) is
required to achieve artificial general intelligence. The authors investigate a type of
MARL called independent reinforcement learning (InRL) that has agents treat their
machine learning experience as non-stationary environments. A learning algorithm
is then designed for game theoretical best responses computed for mixtures of
policies generated in deep reinforcement learning. Thus game-theoretic modelling is
used in the policy selection of reinforcement learning. The algorithmic analytics are
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empirically benchmarked against related algorithms in the literature such as iterated
best response, double oracle, and fictitious play. A machine learning performance
measure called joint policy correlation is proposed to reduce overfitting in InRL
generalizing from training to execution. The InRL formulation of reinforcement
learning treats each learner agent as being oblivious to the remaining agents to be
able to treat all of its interactions as belonging to the localized data distributions
in non-stationary environments. Such local environments lead to non-stationary and
non-Markovian conditions in the convergence criteria on adversarial loss functions
derived for several computational algorithms. Then the reinforcement learning
policies for the InRL can overfit to the non-stationary environment represented in
remaining agent’s policies resulting in a subsequent loss in generalization perfor-
mance. Dynamically reacting to agent’s behaviors are addressed in InRL with partial
observability in the multi-agent settings. To deal with such sampling dynamics,
researchers have to often resort to approximations in the learning algorithms
faced with intractable computations. Lanctot et al. [345] use empirical game-
theoretic modelling over meta-strategy distributions to compute best responses over
a distribution of policies in deep reinforcement learning. A training process with a
centralized and empirical payoff table is assumed for distributed and decentralized
policy executions. The proposed double oracle algorithm uses deep neural networks
as function approximators across game theoretical iterations computing the payoff
matrix on approximate best response strategies. Joint policy correlation matrices are
calculated to avoid overfitting in the learning process.

Tuyls et al. [612] analyze complex multi-agent interactions with empirical game
theoretical analysis. The number of data samples required approximate the under-
lying game converging to a Nash equilibrium is examined. Each agent is treated
as a player with a payoff matrix. First-order dynamical systems in evolutionary
game theory formulate the meta-game of complex interactions. Tuyls [611] survey
the use of evolutionary game theory in reinforcement learning and multi-agent
systems. Kononen [324] constructs learning methods in Markov games for multi-
agent reinforcement learning. The particular type of mathematical games proposed
is matrix games. The Stackelberg equilibrium concepts in such games are solved
by methods of mathematical programming in Markov games. Such Markov games
extend Markov decision processes to optimization over multi-state repeated games.
The update rules for optimizing the parameters in Q-learning’s iteration within
online environments are then presented.

Nowé [467] analyzed the optimal policy of an agent operating in a multi-agent
reinforcement learning environment with game theory. Here the agent has to contend
with a stochastic non-stationary computational environment that varies with the
policies of the other agents. So the agents have to discover statistically good solu-
tions for machine learning by either coordinating or competing with other agents.
The game theoretical optima found at the Nash equilibrium in such environments
are analyzed with respect to computational algorithms for stateless games with Q-
learning automata, Markov games with policy gradients, and joint action learning
in repeated games. Unlike zero-sum games, such games are general-sum games
without special restrictions on the competition between players participating in the
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game. The solution concepts for such games are found by learning the best response
strategies for each player that maximizes the current payoff with respect to current
strategies of opponents in the game. Nash equilibrium and regret minimization
are the most popular equilibrium concepts for the game theoretical reinforcement
learning. It has applications in multi-agent systems. Regret refers to the difference
between expected and actual payoffs for an agent. The expected payoff is calculated
on various strategies fixed in the game that are either pure or mixed in the search
spaces for machine learning. The actual payoff is computed empirically during the
game’s execution. The accumulated regret is optimized in regret-based learning
approaches. Popular algorithms that combine stochastic games with reinforcement
learning are Minimax-Q [374], Nash-Q [283], Fictitious Self-Play [267, 268], and
counterfactual regret minimization [163].

Song et al. [563] propose imitation learning algorithms multi-agent actor-critic
settings. In imitation learning, the agent learns desired behaviors by imitating
and expert. The expert optimizes an underlying reward function approximately.
The imitating agent learns policies through reinforcement learning. In multi-agent
settings, the reward function optima depends on non-stationary environments with
multiple optimum solutions. The imitation learning algorithms of a single agent
can be extended to multi-agent settings within generative adversarial training
frameworks. The authors map imitation learning to a two-player game between
a generator and a discriminator. The generator controls the policies of all the
distributed agents. The discriminator is a classifier for each agent that distinguishes
between agent and expert behavior. The discriminator maps state-action pairs to
scores. Discriminators can also incorporate prior information about cooperating and
competing agents. To maximize its adversarial reward function, the generator tries
to fool the discriminator with synthetic trajectories. Maximum entropy modelling
forms the loss function for the maximum likelihood estimation in the proposed
imitation learning. Adversarial training is used to incorporate prior knowledge
about the multi-agent settings with an indicator function in the augmented reward
regularizer within the minmax game for reinforcement learning. A policy gradient
algorithm called Kronecker-Factored Trust Region is the optimization algorithm
solving for the game theoretical equilibrium concepts. Imitation learning is also
called inverse reinforcement learning (IRL).

Multiarmed bandits [79] are a simplified version of reinforcement learning that
can benefit from adversarial training. Multiarmed bandit algorithms output an action
for the agent without using any information about the state of the environment called
context. Contextual bandits [364] extend multiarmed bandits by making output
decision conditional on the state of the environment. This allows us to personalize
each decision to a situation based on previous observations. The contextual bandit
algorithm observes a context, makes a decision, chooses an action from a distri-
bution of alternative actions, and observes an outcome of the decision. A reward
function value is associated with every decision. The machine learning goal is to
maximize average reward. Unlike supervised learning, contextual bandit algorithms
do not have all the reward values for every possible action. In machine learning, con-
textual bandits have applications in hyperparameter optimization, feature selection,
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algorithm selection, active learning, collaborative clustering, and reinforcement
learning. Adversarial contextual bandits create adversarial manipulations on the
contexts and rewards of contextual bandits. The “regret” for a game theoretical
player compares the cumulative reward for adversarial contextual bandits to the
best reward in the hindsight that is possible for a policy class. Regret bounds can be
derived as confidence scores on the solution concepts in game theoretical adversarial
learning applied to contextual bandits solving sequential decision-making problems.

Seldin et al. [546] adversarially contaminated stochastic regimes for multiarmed
bandits. Multiple control levers are proposed to update learning rate, empirical
regret, and adversarial loss. Worst-case performance and regret bounds of ran-
domized algorithms for stochastic bandits in the adversarial regimes are then
investigated. House [280] has produced a thesis on game-theoretic approaches to
multiarmed bandit scenarios. Here adversary is a rational, competitive controller
who reduces the learner’s payoffs. An analysis of the plays of the learner and
counter plays of the adversary then discovers information about exploration and
exploitation in long-term payoffs for a broad class of games. Matrix reconstruction
and matrix completion techniques are applied to estimate the long-term payoffs.
They take into account non-zero cost of learning that is comparable to opportunity
cost in economics. Andersen et al. [16] investigate the capabilities of convolutional
neural networks to extract useful features in deep reinforcement learning. Real-
time strategy games are chosen as the application domain for short- and long-term
planning. A Deep Q-Learning architecture is proposed as the solution.

Auer et al. [21] extend Deep Q-Learning architectures to the study of strategies
that can guarantee the expected long-term payoff in multiarmed bandit problems
for gamblers or players. A gambler’s purpose is described as maximizing the total
reward over a sequence of trials where each arm of the bandit has a different
distribution of rewards. The adversary controls the generation of rewards associated
with each arm at each time step. Adversary has access to unbounded computational
power to generate the underlying stochastic process. The performance of the player
is measured in terms of regret that is the difference between cumulative reward
scored by the player and the total reward scored by the best arm. Such a regret
is computed specific to the sequence of payoffs generated by the adversary. A
lower bound and upper bound are provided for the computational complexity of
the algorithm’s regret in a partial information game. Such an adversarial bandit
problem can be analyzed as a unknown repeated matrix game. In such a game, the
player has no prior knowledge of the adversary. By contrast, the adversary is playing
a repeated game against the player with complete knowledge of the game and
unbounded computational power. Here value of the game for the player is the best
possible expected payoff. A randomized strategy is computed through mathematical
programming to achieve such a payoff.

Ilyas et al. [293] integrate blackbox adversarial example generation with bandit
optimization involving priors on the distribution of the gradient of the targeted
loss function. Such a blackbox threat model can only issue classification queries to
the targeted network. By contrast, white-box attacks which exploit full knowledge
of the gradient of the targeted loss function to create adversarial examples. Here
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targeted attacks in adversarial examples induce classification of the target class
that is not the original class, while untargeted attacks induce a misclassification in
general. To create query-efficient blackbox attacks, a least squares method from
signal processing is proposed as the optimal solution to the gradient estimation
problem generating adversarial examples. Incorporating data-dependent priors in
the blackbox attack leads to query-efficient solutions in comparison to the state
of the art. A finite difference method based on least squares regression produces
information-theoretical gradient estimates of the targeted loss functions within an
iterated projected gradient descent (PGD) attack scenario. The least squares model
is solved with a bandit optimization algorithm.

For personalized ranking and attention modelling, Bouneffouf et al. [80] create
contextual bandit with restricted context limited to a fixed feature subset accessible
by the learner at each iteration. Such features are designed to handle stationary
and non-stationary environments. The learning problem is to select the best feature
subset so that overall reward is maximized by exploring both the feature space
and the arms space. He et al. [266] propose personalized ranking with adversarial
objectives for matrix factorization in recommender systems. Adversarial perturba-
tions are crafted on the embedding vectors of users and items recommendations
in collaborative filtering. Thus new training methods for personalized ranking can
lead to robust recommender models. They can be extended to generic feature-
based models like neural factorization machines that support a wide range of
recommendation scenarios. Thus personalized ranking with adversarial learning
has application in information retrieval tasks such as robust recommendation, text
retrieval, web search, question answering, and knowledge graph completion.

5.3.1 Game Theoretical Adversarial Reinforcement Learning

Research into game theoretical adversarial learning can be extended into reinforce-
ment learning since the game theoretical objective functions of adversarial machine
learning can be interpreted as bi-level optimization problems [134] solved by actor-
critic methods [323] of decision theory. The task of adversarial classification with
reinforcement can be separated into the task of learning to predict attack preferences
and the task of optimizing operational policy that explicitly abides by the operational
constraints on the predictor. Then adversary’s best response strategies are computed
as randomized operational decisions [716]. To study the theories of robust machine
learning, we can develop computational objectives and statistical inference models
in randomized prediction games for adversarial algorithms discrimination, learn-
ability, and reliability. We can compare and contrast the blackbox optimizations in
game theoretical adversarial learning with multi-agent deep reinforcement learning
for model generalizability. Here the research into constrained objective functions for
adversarial learning is driven by the adversary’s capability and control on training
data and validation data taking into account application-specific attack scenarios
such as effect on class priors, fraction of samples, and features manipulated by
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the adversary. Depending on the goal, knowledge, and capability of the adversary,
these scenarios are also classified in terms of attack influence, security violation,
and attack specificity. Such constrained optimization problems on shallow archi-
tectures tend to produce intractable computational algorithms for class estimation
and inference of the adversarial cost functions. They necessitate the need for
deep learning architectures in the statistical methods solving the optimization
problems in adversarial payoff functions. In addition to operation constraints in the
security policies, distance and budget constraints in the adversarial cost functions
are also a research direction. The model update rules derived from the attack
scenarios could impact the convergence of the training process in terms of tradeoffs
between learnability and robustness of the proposed discriminative learning. We
can characterize the problem of discrimination in the presence of noise in terms
of a set of robust points where data encoding is a type of problem-specific error
mitigation strategy in cybersecurity classifiers. Then we shall incorporate non-
linearities in the classification through representing data with non-linear functions.
Such an arrangement would also allow us to explore multiple choices of variational
encodings of the learnable decision boundaries. Here, game theoretical payoff
functions measure player-driven optimizations that improve training and inference
in machine learning and uncertain environments. They also explain the impact of
uncertain environments with reference to a distribution of outcomes, and, in the
sense of decision-theoretic rationality around decision boundaries, payoff functions
maximize the expected utility for each player participating in the game.

Contextual bandits can be combined with game theoretical adversarial learning to
analyze multimodal, weakly supervised, noisy, sparse, and multi-structured training
datasets found in deep knowledge representation learning over dynamic streams and
complex networks. Bias-variance decomposition in the adversarial payoff functions
can derive regret bounds and utility bounds for such deep learning networks.
Furthermore, user or player feedback can be integrated into machine learning
performance measures as validation metrics for personalized recommendation and
adversarial ranking. Game theoretical adversarial learning can be used to explore
neural network architectures and adversarial cost functions in the training processes
implementing the data analytics for such cyber information processing tasks. Here
mistake bounds framework with no-regret property for online learning provides the
theoretical tools to analyze the tolerable error and update rules for the generated
adversarial data. We can also define the utility bounds of neural networks within
an empirical risk minimization framework for adversarial learning. Then cyber
information processing tasks may be formulated as discriminative learning problems
with separability criteria characterized by computational efficiency on structured
data. Thus adversarial deep learning can create mistake bounds frameworks in
cybersecurity applications. Here randomized prediction games can formulate the
learner of robust rank aggregation. We can express the learning robustness, fairness,
explainability, and transparency with game theoretical adversarial learning. Atten-
tion mechanisms in the deep generative modelling of the variational adversary’s best
response strategies can simulate and validate the learning environment for contex-
tual bandits. Payoff functions can be proposed for the knowledge representations
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generated by deep learning networks for the objects in multimodal, multiview, and
multitask predictions.

In transfer learning and stochastic optimization over the adversarial examples,
deep reinforcement learning has common objectives as game theoretical adversarial
deep learning. The reinforcement learning actions are typically expressed as a
Markov decision process. It uses dynamic programming techniques in implemen-
tation. Sampling problems in adversarial learning can thus focus on resilience
enhancements to Markov chain methods. Game theoretical modelling can focus
on integrating Bayesian Stackelberg games and Markov Stackelberg games with
reinforcement learning. In cybersecurity classifiers, adversarial cost functions can
be investigated for reinforcement learning that robustness bounds to adversarial
representations. In deep generative learning with Markov decision processes, we
can construct resampling dynamics variational autoencoders used in adversarial
learning as an alternative to derivative-free stochastic optimization methods in game
theoretical modelling of adversaries. The stochastic optimization in game theoretical
learning can benefit from the Markov security games. The game theoretical payoff
functions over complex systems can benefit from the learning models involving a set
of autonomous agents interacting in the shared environment within multi-agent rein-
forcement learning. Multi-agent environments are inherently non-stationary. The
causality and stationarity of the Markov decision processes can be explored within
adversarial settings based on principles for statistical inference such as expectation-
maximization, minimum description length, maximum likelihood estimation, and
empirical risk minimization. They have applications in data mining tasks such as
classification, regression, association rule mining, and clustering.

Computational algorithms in evolutionary game theory and numerical methods
in differential game theory can augment the game theoretical payoff functions with
partial differential state equations of a dynamical system modelling the complex
interactions in stochastic control as game theoretical objective functions. Then
principles of dynamic programming can be used to study the convergence properties
of game theoretical optima. Reliability guarantees can be developed for the solution
concepts according to theories of sample complexity, formal verification, and
fuzzy automata in the adversarial learning. Variational methods and generative
models can represent the adversarial manipulations in the solution concepts for the
adversarial losses and feature embeddings in cybersecurity. Proper quantification
of the hypothesis set in decision problems of such research leads us into various
functional problems, oracular problems, sampling tasks, and optimization problems
in the game theoretical adversarial learning. Here we can compare the solutions
with machine learning baselines such as the inclusion of noise in the optimization
procedure, the simplification of the function landscape by increase of the model
size, the schemes for derivative-free stochastic optimization, and data resampling
in the context of adversarial learning algorithms. The game theoretical adversarial
learning frameworks of iterative attack scenarios and defense optimizations would
then be able to apply game theory to the dynamics detection, characterization, and
prediction in a dynamical system. The complex dynamics detected would lead us
onto adversarial training procedures for the robust optimization of deep neural
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networks. In cost-sensitive classifier design, we can define custom loss functions
to find trends, ranks, changes, and events in the data distributions underlying the
dynamic patterns mined from the data.

5.4 Computational Optimization Algorithmics for Game
Theoretical Adversarial Learning

In generalized least squares models and generalized linear models for predictive
analytics, classification loss functions optimize the class-conditioned data likelihood
functions [244, 257] of the targeted deep networks. In this book, the adversarial
cost functions regularize such likelihood functions with norms, gradients, and
expectations of game theoretical objective functions inferred on the adversarial
loss functions. The types of such objective functions determine the types of
adversaries participating in prediction games with the classifier. In this book we have
proposed adversaries solving for evolutionary objectives and variational objectives
in the prediction games. The optimal values for the objectives are searched by
evolutionary algorithms such as genetic algorithms, simulated annealing algorithms,
and alternating least squares algorithms.

In this section we review additional computational algorithms, stochastic oper-
ators, and convergence criteria for computational optimization in deep learning
models. Such a study is expected to lead us to better randomization, convergence,
and parallelization in computation of the step magnitude and the step direction in
our stochastic optimization methods [566]. In designing the iterative update rules
of optimization algorithms and fitness functions solving for systems of equations,
we are interested in robust optimization, numerical optimization, and non-linear
optimization. In addition to game theoretical models, deep learning optimizations of
our interest include utility functions found in expectation-maximization algorithms,
maximum entropy models, learning classifier systems, deep factorization machines,
and probabilistic graphical models.

Fogel [199] categorizes the simulated evolution techniques in stochastic opti-
mization of neural networks. Depending on the facet of natural evolution (i.e.,
viewed as optimizing problem-solving process), the techniques are called genetic
algorithms, evolution strategies, and evolutionary programming. These techniques
do not use higher-order statistics of the fitness function to converge onto opti-
mal solutions. These techniques are not as sensitive as gradient-based methods
to adversarial perturbations in the fitness function. Pirlot [495] describes the
strengths and weaknesses in simulated annealing (SA), Tabu Search (TS), and
genetic algorithms (GAs). Ledesma et al. [351] review the procedure to practically
implement simulated annealing. Bandyopadhyay et al. [29] use simulated annealing
to minimize misclassification rate across decision boundaries in pattern classifica-
tion. A deterministic annealing algorithm is proposed by Rose [525] to optimize
the problems related to clustering, compression, classification, and regression. A
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hybridization of GA and SA is given by Adler [2]. SA is combined with local search
methods into a Markov chain by Martin et al. [413]. Back et al. [22] and Beyer
et al. [51] survey developments in evolution strategies (ESs) that allow correlated
mutations in GA. Das et al. [145] review all major theoretical studies and algorithm
variants of differential evolution (DE) applied to multi-objective, constrained, large-
scale, and uncertain optimization problems. Pelikan et al. [489] propose linkage
learning across candidate solutions in evolutionary computations.

Zhang et al. [696] survey machine learning problems in an evolutionary com-
putation framework. Goldberg [221] provides more detail on applications of
genetic algorithms in machine learning. Michalewicz [425] discusses numerical
optimization of the genetic operators to lead to evolutionary programs. Bandaru
et al. [27, 28] describe descriptive models and predictive models for data mining
in multi-objective optimization datasets. Bertsekas [47] discusses derivative-free
stochastic optimization problems. Nemirovski et al. [457] discuss convex-concave
stochastic optimization of objective functions given in the form of an expectation
integral. Sinha et al. [559] review evolutionary solutions to bi-level optimization
problems. Suryan et al. [586] review evolutionary algorithms in inverse optimal
control theory that has applications in game theory.

The operation of evolutionary algorithms in constrained environments is ana-
lyzed by Eiben [3]. Cantu-Paz [100] provides a survey of parallel constructions in
genetic algorithms. Ocenasek et al. [470] survey the designs for parallel estimation
of distribution algorithms. Sudholt [159] introduces design and analysis of parallel
evolutionary algorithms on multicore CPU architectures. Genetic algorithms have
been implemented in embarrassingly parallel programming models such as MapRe-
duce [189, 618]. Whitley et al. [647] give guidelines for debugging and testing
evolutionary computations. The no free lunch theorems for optimization [650] apply
to the comparisons between optimization criteria of evolutionary computations.
Whitley et al. [470] provide a theoretical analysis of the research problems, objective
functions, and optimization algorithms in evolutionary computations. Comon et
al. [135] propose an enhanced line search (ELS) principle to apply the alternating
least squares (ALS) algorithm in iterative optimization of non-linear systems of
equations represented by tensor decompositions. A theoretical analysis of simulated
annealing (SA) solving for Boltzmann machine and Cauchy machine is given by
Tsallis et al. [608].

5.4.1 Game Theoretical Learning

Algorithmic game theory (AGT) [464] is a research area that spans game theory
and computer science. It is concerned with the design and analysis of algorithms
in strategic environments. Typically the input to the algorithm is distributed among
multiple players or agents who have stakes in the algorithm’s output. The analysis
aspect of AGT applies game theoretical tools such as the best response dynamics in
the implementation and analysis of algorithms. The design aspect of AGT is about
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the computational modelling of the game theoretical properties and algorithmic
patterns in the design and improvement of algorithms complexities. Internet-based
interactions between computing agents can be modelled with the game theoretical
equilibria associated with the data analytics modelling. Computational social choice
is a research area that extends the game theoretical models to multi-agent systems
that aggregate individual agents’ preferences within online mechanisms.

5.4.1.1 Randomization Strategies in Game Theoretical Adversarial
Learning

Grunwald et al. [237] show the equivalence between maximum entropy modelling
and minimizing worst-case expected loss from an equilibrium theory of zero-sum
games for loss functions and decision problems. A generalized relative entropy
with regularity conditions is proposed to analyze robust classifiers that minimize
divergence between distributions. Aminmax theorem is then proposed for Kullback-
Leibler divergence between training data and adversarial data distributions treated
as a generalized exponential family of distributions. This gives a decision-theoretic
interpretation of maximum entropy principle where the adversarial loss function
is not only regarded as a logarithmic score. A decision-theoretic definition of
discrepancy or relative entropy between probability distributions for training and
adversarial data generalizes Bregman divergences to loss functions in machine
learning. Maximum entropy modelling is considered to be a version of robust Bayes
classifiers.

Cost-sensitive classifiers in machine learning have benefitted from zero-sum
game properties in game theory. Adversarial learning algorithms have made
improvements on the minmax game formulations to arrive at robust classifiers.
Rezek et al. [513] point out the equivalence between inferences drawn on previous
observation made in game theory and machine learning. Smooth best responses in
fictitious play of repeated games are contrasted with Bayesian inference methods
of machine learning integrated over adversarial distributions rather than empirical
averages. Then game theory is used in the analysis and design of variational learning
algorithms. For clustering a mixture of distributions, the variational learning
algorithms exhibit strong convergence properties and update rules. Proposed
solutions are closely related to developments in probabilistic graphical models.
So probabilistic graphical models can lead to efficient algorithms for calculating
the Nash equilibrium in large multiplayer games for supervised machine learning.
In general machine learning algorithms design for stationary environments in an
idealized academic setting can benefit from a game theoretical analysis of non-
stationary scenarios often found in dynamic real-world applications of machine
learning techniques.
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5.4.1.2 Adversarial Deep Learning in Robust Games

Bowling et al. [82] examine multi-agent reinforcement learning using a framework
of stochastic games. Stochastic games are treated as an extension of Markov
decision processes to multiple agents. The reinforcement learning of an agent’s
policy in the presence of other learning agents is analyzed for learning properties
called rationality and convergence. To play a part in arriving at the equilibrium
solution, the rationality property requires a player to adopt a best response strategy
to learn a policy given remaining players have played stationary strategies. The
convergence property ensures that all the players participating in the stochastic
game eventually end up in a stationary policy conditioned on other players’ learning
algorithms. If both these properties are satisfied, then all the players are guaranteed
to converge to a Nash equilibrium. Each state in a stochastic game is viewed as
a matrix game. The game theoretical players transition from one matrix game
to another matrix game after receiving payoffs determined by their joint action.
The reinforcement learning algorithms considered are single-agent learners, joint
action learners, and d minimax-Q. A variable learning rate is used to update the Q-
value estimates in policy hill-climbing. It is comparable to randomized weighting
algorithms in evolutionary game theory that redistribute weights among mistaken
experts.

Stochastic game may be defined as a collection of normal-form games that
the agents play repeatedly. It can be represented as a probabilistic automaton in
which states are the games and transition labels are joint action-payoff pairs. A
repeated game such as the iterated prisoner’s dilemma is a stochastic game with
only one state. A Markov decision process is a stochastic game with only one
player. A deterministic strategy specifies a choice of action for the game theoretical
player. A mixed strategy is a probability distribution over deterministic strategies.
Nash equilibrium of sequential games has been extended to the solution concept
for stochastic games called Markov perfect equilibrium. Stochastic games can be
combined with Bayesian games to arrive at a Bayesian Nash equilibrium. Stochastic
two-player games on directed graphs are used to model discrete systems operating
in an unknown adversarial environment. The discrete system configurations and its
adversarial environments are represented as the vertices of the directed graph. The
transitions between nodes correspond to joint actions within the discrete system. A
path in the directed graph corresponds to an execution of the operational system.
A variety of solution concepts such as positional equilibria, stationary equilibria,
randomized equilibria, and finite-state equilibria [615] are possible in the stochastic
games.

Lippi et al. [373] propose models and algorithms from statistical relational
learning (SRL) as tools for the analysis and design of game theoretical modelling
in stochastic games. So first-order logic and probabilistic graphical models such
as Bayesian networks or Markov networks can represent the uncertainty in games
due to dependencies between random variables. Statistical inference algorithms
from SRL such as variational methods can find Nash equilibria and Pareto-optimal
solutions to game theoretical adversarial learning problems. Here Pareto-optimal
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equilibrium to the games are a set of strategy profiles for the players where
no can increase their payoff without decreasing the payoff of another player. In
contrast, Nash equilibrium is reached when the profile chosen by every player in
the game is the best response with respect to profiles chosen by the remaining
players. Both Pareto-optimal and Nash equilibrium can be extended to multiplayer
games. Structure learning algorithms from SRL such as Markov logic networks
can produce interpretable probabilistic logic clauses to describe the strategies
of an adversary at a high level to humans. Here graphical games apply game
theoretical models to combinatorial graphs in machine learning and Monte Carlo
tree search can predict the evolution of game theoretical adversarial manipulations.
Graphical games consider players as nodes in a graph and edges represent their
interactions. So the payoff of a player depends on that of its neighbors rather
than all the players in the game. This leads to several local payoff matrices for a
player. Logic formalisms in SRL such as inductive logic programming can address
knowledge representation learning on games to describe domain of interest in game
theory such as strategies, alliances, rules, relationships, and dependencies among
players. They can also discover information about the external environment for
adversarial learning. Probabilistic reasoning is also useful to deal with missing
or incomplete information for decision-making in game theoretical modelling
for machine learning. So SRL has application in decision-making scenarios over
reinforcement learning and adversary modelling. Markov logic in game theoretical
adversarial learning allows us to model adversarial knowledge in terms of logic
predicates about evidence (known facts) or query (facts to be inferred). It can be
extended to decision-theoretic framework attaching utility functions to first-order
clauses in Markov logic decision networks. Expectation-maximization algorithms
can be constructed to infer the value of logic predicates. Their relational nature can
be exploited to model collective classification algorithms in multiplayer games with
interpretable strategies for real-world applications.

Aghassi et al. [4] propose distribution-free robust optimization to contend with
payoff uncertainty in incomplete-information games. A robust optimization equilib-
rium is analyzed for finite games with a bounded polyhedral payoff uncertainty set.
Such an equilibrium can be contrasted with non-cooperative, simultaneous-move,
one-shot, finite games with complete information leading to a Nash equilibrium.
At Nash equilibrium the game theoretical players maximize expected payoff with
respect to the probability distributions given by mixed strategy spaces. Such
worst-case expected utility models are well-suited for analyzing decision-theoretic
situations characterized by uncertainty modelling around the adversarial risk assess-
ments in distributional information available for machine learning as training,
testing, and validation datasets. Here sources of uncertainty in the modelling are
due to uncertainty in each player payoffs given tuples of actions, uncertainty
in players’ behaviors, and prior probability distributions around multiple player
configurations. To solve incomplete-information games, distribution-free decision
criterion of minimax regret is used for the optimization of online learning. The
robust game proposed by Aghassi et al. [4] is comparable to such online games.
The performance validation criteria for machine learning designed with such game
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theoretical modelling is then expressible in terms of a player’s worst-case expected
payoff. The game theoretical equilibria are formulated as dimension-reducing,
component-wise projection of the solution set for a system of multilinear equations
and inequalities. They can be extended to robust finite games that have additional
private information about player’s beliefs.

Cohen et al. [133] conduct a multiperturbation Shapley value analysis to
estimate usefulness of features in forward selection and backward elimination of
feature selection algorithms. The filtered features are able to optimize performance
measures over unseen data such as accuracy, error rate, and area under ROC curve.
Thus game theoretical modelling of feature selection can do a dimensionality reduc-
tion to create feature subsets for enhancing the prediction performance, reducing
measurement and storage requirements, reducing training and prediction times,
providing better understanding of the underlying data distribution, and producing
a data visualization of relevant features. Shapley value of a feature measures its
performance in a feature subset. Bounded sets theory is combined with Shapley
value estimation to discover an efficient algorithm for extracting robust features
in classification problems. Pruning irrelevant features decreases the generalization
error of the classifiers. A distribution of feature contributions is used to guide the
feature selection algorithms. Adversarial noise can play a major role in manipulating
such a distribution to craft low-performing classifiers.

Sun et al. [583] propose a cooperative game theory-based framework to evaluate
the discriminatory power of each feature in the context of interrelated features for a
feature selection filter. Such a filter can be integrated with any learning algorithm to
produce an efficient classifier. A solution for cooperative game constructs a value for
each player to create a characteristic function measuring the player’s contributions to
the game. Conditional mutual information is the reweighting mechanism to evaluate
class-dependent relevance of a feature to a feature subset that has been selected
previously in the learning algorithm. Banzhaf power index is assigned to each
feature based on its marginal contribution to intrinsic correlation properties among
features such as causality, interdependence, and independence. Such feature subsets
are then used to calculate the proportion of winning coalitions in the payoff function
calculation. Dynamic programming is used to implement the cooperative game with
reduced time complexity.

Chalkiadakis et al. [110] give a survey of computational algorithms in coop-
erative game theory. Particular emphasis is placed on efficiently computing solu-
tion concepts and compact representations for games. An overview of welfare-
maximizing algorithms for game theoretical adversarial learning forming coalitions
and bargains is also provided. Combinatorial optimization in machine learning prob-
lems can benefit from the discussion on induced subgraph games, minimum cost
spanning tree games, and network flow games. Dynamic programming approaches
to optimal coalition structure generation are also discussed. They can be adapted to
anytime algorithms that produce incrementally better solutions with more time or
computational resources.

Garg et al. [211] develop game theoretical modelling for feature clustering.
Features are viewed as rational players of a coalitional game and coalitions are
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interpreted as clusters. Nash stable partition (NSP) is the solution concept from
coalitional game theory is used to provide a final clustering configuration of the
features. Desirable properties in the clusters can be chosen with reference to the
various game theoretical payoff functions. NSP is found by solving an integer linear
program (ILP). A hierarchical clustering approach is then proposed to scale the
clustering with graph partitioning. All features selected in a cluster are relevant and
complementary to each other. To perform feature extraction using the clustering
technique, a feature ranking of the feature clusters is also proposed.

Bector et al. [39] review fuzzy mathematical programming in game theoretical
modelling. Fuzzy sets can be applied to research areas such as mathematical
programming and matrix game theory that occur at the interface of game theory
and decision theory. Fuzzy environment can provide generalization to the linear and
quadratic programming solving game theoretical objectives in constrained matrix
games within two-player non-zero sum games having fuzzy goals. Matrix games
with fuzzy payoffs can model multi-objective linear programming problems in
adversarial learning. Several solution concepts for such fuzzy matrix games are
then described. Fuzziness of the decision function for an adversarial classifier
can be modelled with respect to adversarial learning objectives, environments,
and constraints. It leads to fuzzy mathematical programming problems in game
theoretical adversarial learning. For instance, fuzzy preference relations can be used
for knowledge representation learning algorithms over multimodal datasets to even-
tually solve modality constrained mathematical programming problems formulating
the game theoretical models in machine learning. Computational algorithms must
be developed to find the optimal solutions for such fuzzy optimization problems in
game theoretical adversarial learning.

Perc et al. [490] survey cooperation in evolutionary game theory to solve prob-
lems called social dilemmas that represent interaction stochasticity between game
theoretical players. An evolution of strategies, promoters of cooperation, and co-
evolutionary rules are used to express the emergence of cooperation and defection
in evolutionary games. Dynamical interactions between players can be studied with
the co-evolutionary rules over complex networks representing interaction network,
data population growth, mobility of players, and aging of players. Ficici et al. [193]
introduce game theoretical modelling in co-evolutionary memory mechanisms. The
collection of salient traits of memory is represented as a mixed strategy. The memory
embodies solution of co-evolutionary process obtained at Nash equilibrium. The
memory can be subject to resource limitations during training. Memory and drift
in co-evolution are interpreted as sampling errors and variational biases in game
theoretical modelling. Sensitivities and contingencies around the fitness function
evaluation of co-evolution processes can cause a machine learning system to learn,
forget, and relearn the memory traits in a cyclic fashion. The solution concept in
game theory then represents collection of memory traits belonging to a desired
or correct set. The proposed “Nash memory” mechanism accumulates a collection
of the traits as best response strategies. Nash equilibrium strategies provide best
response solutions expressing the security level of the evolutionary game as a
highest expected payoff reached by all the players acting as a collective. This
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security level is also known as the value of the game. A search heuristic is designed
on the co-evolving population that is able to relieve the population of the burden
of representing the solution and concentrate on search to improve the solution
represented by the memory. Polynomial time algorithms are used to solve a zero-
sum game with linear programming. The strategy space for finding Nash memory
may be finite or infinite, countable, or uncountable. Herbert et al. [272] propose
game theoretical modelling for competitive learning in self-organizing maps (SOM).
The focus of the training process in SOM-based clustering is to find a neuron that
is most similar to the input vector. The proposed extension GTSOM evaluates the
overall quality of the SOM by arriving at a globally optimal position using game
theory to propose dynamic and adaptive update rules to the neuron weights that
are able to account for density mismatch in clustering problems. The clusters are
described in terms of the actual input data and the neurons associated with the data.
Game theory is able to rank the neurons to determine the neurons providing greatest
increase in SOM quality according to distance from the input vector. Additional
quality measures on the neurons can also be introduced to consider related feature
maps extracted from the data. Game theoretical strategies are proposed to adjust the
learning rate of the SOM such that the input vector will have an increased likelihood
to be closer to a different neuron in the next iteration of the training algorithm. A
set of game theoretical actions details the clustering neighborhood and density to
distinguish or diminish the desired clusters. Training terminates if the SOM has
reached a user-defined threshold for the clustering quality preferences.

Schuurmans et al. [544] investigate connections between supervised deep learn-
ing methods and game theory. No-regret strategies in game theoretical modelling are
found to be effective stochastic training methods for supervised learning problems.
Regret matching is proposed as an alternative to gradient descent to efficiently
optimize the stochastic performance of supervised deep learning. A supervised
learning process over a directed acyclic neural network with differentiable convex
activation functions is expressed as a simultaneous move game with simple player
actions and utilities. Players choose their actions independent of actions taken
by other players. The cumulative regret for each player is defined in terms of
their expected utility function. Domain experts and nature can also be accounted
for in the mapping of strategies and actions for the learner. A close correspon-
dence is found between convex online learning and two-person zero-sum games.
Exponentiated weight algorithm and regret matching are proposed as constrained
training algorithms for supervised learning. Training results about the regret bounds,
convergence criteria, and global optima of the constrained training algorithms
are compared with projected stochastic gradient descent and stochastic gradient
descent. The constrained training algorithms are found to be highly competitive
in high-dimensional sparse feature spaces in supervised learning networks. Nash
equilibrium is guaranteed to be one of the local optima if not the global optima
for the deep neural network training. Regret-matching algorithms in evaluation are
found to achieve lower misclassification errors than standard deep learning methods.
However, the proposed theory does not apply to neural networks with non-smooth
activation functions within several hidden layers.
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To arrive at the global optima, Oliehoek et al. [472] model generative adversarial
networks (GANs) according to finite games in mixed strategies. The proposed
solution concept monotonically converges to a resource-bounded Nash equilibrium
that is saddle points in mixed strategies. The solution concepts can be made more
accurate with additional computational resources for approximate best response
computations. The proposed training algorithm for deep generative modelling is
able to avoid common problems such as mode collapse, mode degeneration, mode
omission, and mode forgetting. The proposed game-theoretic method is called
Parallel Nash Memory. It can be exploited to produce improvements in the robust
training metrics of classifiers/generator networks performance. The discriminator
and the generator models can then be updated according to the best response strategy
at each iteration. They can explicitly limit the allowed strategies with finite-state
machines. The resulting robust models yield better generative performance at the
same total complexity and are closer to a global Nash equilibrium. They can be
extended with zero-sum polymatrix games and reduced games with adversarial data
guiding the training.

Hsieh et al. [281] also propose training strategies for GANs to discover mixed
Nash equilibria. Further sampling methods are proposed to solve the mixed strategy
games. The proposed mean-approximation sampling scheme can augment the global
optimization frameworks for game theoretical adversarial learning. Specifically,
a mean-approximation sampling scheme for bi-affine games is investigated to
provision practical training algorithms for GANs. The robust training reformulates
the GAN distributions over finite strategies as probability measures over continuous
parameter sets. A sampling method called entropic mirror descent estimates such
probability measures in a tractable manner. Thus the robust training reformulates
the training dynamics of gradient-based algorithms into minmax programs solved
with mathematical programming and algorithmic game theory. In the experiments,
the stationary optima found by gradient-based algorithms such as SGD, Adam, and
RMSProp are found to be not locally or globally minmax optima. This leads to
further development in the intuitions of non-convex optimization applied to machine
learning validations.

Tembine et al. [595] present an interplay between distributionally robust games
and deep generative adversarial networks. A Bregman discrepancy between adver-
sarial and training data distributions is constructed to avoid using a second derivative
of the objective function in the optimization algorithm applied to GANs. GANs are
formulated as distributionally robust games in adversarial multi-agent settings. The
players in the strategic-form game are the neuron units. The plays are the learned
weights. The game theoretical objective functions are loss functions obtained from
the mismatch between the output and real data measurement. The convergence
rate of the proposed deep learning algorithm is derived using a mean estimate.
Mean-field learning is seen as a candidate class of algorithms to be investigated
for high-dimensional deep learning with games theoretical adversaries acting as
decision-makers. f-divergence and Wasserstein metric are used in the experimental
evaluation to find the mismatch between generated data and true data. So the hidden
layers in a neural network are seen as dynamic interactive environments represented
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as games. The multimodal output functions in the deep neural networks introduce
further difficulties in the game theoretical optimizations of strategic and interdepen-
dent parameters in the neural network training algorithms. Misalignment between
the updates of the components of neural networks training motivates the need
for game-theoretic payoffs in training algorithms such as error backpropagation,
stochastic gradient descent, and mean-field or population-based algorithms (such as
genetic, swarm, and simulated annealing). The estimation of the expected value of
the gradient in the derivative-based methods further requires sampling methods such
as Monte Carlo sampling, reinforcement learning, or population-based sampling
integrated with continuous action multi-agent adversarial games. Starting from
various dimensions of dynamical systems, such a strategic deep learning or deep
game-theoretic learning is also useful in addressing hyper-parametrization, curse
of dimensionality, and error propagation. The relevant game-theoretic solution
concepts for the data-driven model-based strategic deep learning across various
threat models include Nash equilibrium, Stackelberg solution, Pareto optima, Berge
solution, bargaining solution, and correlated equilibrium.

5.4.1.3 Robust Optimization in Adversarial Learning

Xu et al. [669] regularize support vector machines within a probabilistic robust
optimization formulation for classification. The robust optimization minimizes the
worst possible empirical error on the true underlying distribution of the training data
samples mixed with non-i.i.d. (potentially adversarial) disturbance. The proposed
robust optimization offers protection to noise, helps control overfitting, and leads to
generalization performance. The regularization terms solve for non-box-type uncer-
tainty sets. A chance-constrained classifier is the outcome of the robust optimization.
It is a classifier with probabilistic constraints on misclassification rates. A Bayesian
setup selects the regularization coefficients without cross-validation. This research
contrasts with classifier regularization bounding the complexity of the function class
in a PAC structural risk minimization approach to classification. Robustness is due
to a minmax optimization performed over all possible disturbances. The robustness
bounds on corrupted samples are able to deal with non-i.i.d. data where training
samples and the testing samples are drawn from different distributions, or some
adversary manipulates the samples to prevent them from being correctly labelled.
Results are compared with robust statistics such as the influence function approach
for a regression estimator or a classification algorithm constructed under a small
perturbation of the statistics model consisting of non-smooth loss functions. In
algorithm design, the proposed robust optimization has the additional advantage
of robustifying a learning algorithm when the nature of the perturbation is known
a priori or can be well estimated. The statistical consistency proofs on the robust
learning in the sample space replace metric entropy, VC dimension, and stability
conditions in the feature space for support vector machines with robustness
conditions on the expected classification error and regularized loss. Such a view
of robust classifiers is able to derive sample complexity bounds for a broad class of
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algorithms in supervised learning. It forms explicit links between regularization and
robustness in pattern classification.

In binary feature spaces, Li et al. [357] represent rational, objective-driven
adversaries based on mixed-integer linear programming with constraint generation.
An iterative retraining framework is then proposed for adversarial loss minimization
in evasion attacks. The resulting game theoretical model is called Stackelberg
game multi-adversary model. A new adversarial cost function is proposed to allow
feature cross-substitution making a tradeoff between feature selection through
sparse regularization and adversarial evasion. The proposed bi-level optimization
problem does not require modifications in the learning algorithm. The adversarial
risk function on training data models a collection of adversaries. It computes
the empirical risk of machine learning in adversarial settings. A non-zero sum
Stackelberg equilibrium is found between a single defender (classifier) and multiple
followers (evaders) operating within high-cost budgeting constraints. Robustness
regularization of the learning algorithm is comparable to robust statistics calculated
on data contamination in a worst-case sense for both discrete and continuous
features.

Vorobeychik et al. [622] characterize optimal randomization schemes in adver-
sarial classification. The classifier acts as a defender against adversarial reverse
engineering and classifier manipulation. In the experiments, the defender’s optimal
policy is to either randomize uniformly for targeted attacks after ignoring the
baseline classification accuracy, or not to randomize at all but choose the better
classifier for observed (or inferred) classification correctness and defense against
indiscriminate attacks. Such a defense mechanism is of interest in machine learning
techniques for cyber (or physical) security such as intrusion detection, spam
filtering, and malware generation framed as prediction tasks. In such security
domains, the adversary will actively undermine the classifier with evasion and
sabotage leading to misclassification patterns and labels. The adversarial classifier
can then leverage game theoretical modelling of the learner-attacker interactions,
study the algorithmic complexity of the adversarial attack scenarios, and propose
randomization-based classifiers. Further an adversarial query-based reverse engi-
neering of efficiently learn the linear classifier used by the defender to solve convex
optimization problems in learnable classes is also proposed. It has application
in randomization-based cybersecurity domains such as moving target or dynamic
defense classification schemes. Here experimental evaluation finds that the better
the baseline performance of classifiers, the worse the performance after a targeted
attack such as spear phishing. The error rates after targeted attack exploiting
misclassifications do not directly depend on the baseline error rate of the classifiers
determining the operational security postures.

Hashimoto et al. [255] propose a distributionally robust risk optimization. It
minimizes the worst-case risk over all distributions close to the empirical distri-
bution representing training data. The risk mitigation strategy addresses the effect
of minority classes in average loss and accuracy calculations called representation
disparity. It is observed in face recognition, language identification, dependency
parsing, part-of-speech tagging, recommender systems, video captioning, speech
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recognition, and machine translation. The risk mitigation classifiers tend to achieve
fairness in supervised learning over protected labels through constraints calibration
into the robust optimization criteria. The distributionally robust risk optimization
can accommodate adversarial and high-noise settings to design fair algorithms on
unknown latent groups. Minimizing expected risk in machine learning may produce
models with very poor performance on worst-case inputs. Uesato et al. [614]
define a tractable surrogate objective to the true adversarial risk which tends to be
computationally intractable. Optimizing the adversarial risk motivates the study of
machine learning model’s performance on worst-case inputs. Such an adversarial
risk has application in high-stakes situations involving machine learning systems
for malware detection, computer vision, robotics, natural language processing, and
reinforcement learning.

Wong et al. [652] propose deep ReLU-based classifiers robust against norm-
bounded adversarial perturbations on the training data. A robust optimization
procedure minimizes the worst-case loss over a convex outer approximation of the
set of final-layer activations achieved by norm-bounded perturbation to the input.
It is solved with a linear program represented as a deep neural network trained
by backpropagation of errors. The class predictions of such robust classifiers are
proved to not change within the convex outer bound to the loss function values
called “adversarial polytope.” Such a worst-case loss analysis of neural networks
is valid even for their deep counterparts including representation layers such as
convolutional layers. This research is an attempt at deriving tractable robustness
bounds for adversarial perturbation regions across the layers in deep networks.
It is contrast to research work on combinatorial solvers to verify properties of
neural networks. They include satisfiability modulo theories (SMT) solvers and
integer programming approaches. However, the state of the art in such verification
procedures is too computationally costly to be integrated easily into the current
robust training procedures. The data analytics task to solve such convex robust
optimization problems is to solve an optimization problem where some of the
problem data is unknown but belongs to a bounded set. Provable robustness bounds
on the adversarial error and loss of a classifier are derived from the dual solutions
of the optimization problem. They can be used in the definition of provable
performance metrics measuring robustness and detection of adversarial attacks in
custom loss functions evaluated on training, testing and validation datasets.

Sinha et al. [560] propose a distributionally robust optimization problem based
on the Wasserstein distance metric. It can be augmented into the adversarial training
procedure of machine learning model’s parameter updates faced with the worst-
case perturbations to the training data. It is able to achieve provable robustness
to smooth loss functions with little adversarial cost relative to the empirical risk
minimization of the learning loss. It can be used to provide certifying guarantees
on computational and statistical performance of adversarial training procedures.
Adversarial examples are formed due to a Lagrangian worst-case perturbation of
smooth loss functions. The proposed approach to distributional robustness is related
to parametric optimization models constrained on moments, support, and directional
deviations in training data distribution. It is also related to non-parametric measures



5.4 Computational Optimization Algorithmics for Game Theoretical. . . 179

for distance between probability distributions such as f-divergence, Kullback-
Leibler divergence, and Wasserstein distance.

Rauber et al. [508] create a Python package to generate adversarial perturbations
and compare the robustness of machine learning models. The Python package has
modules for creating a model on input data, making predictions on output as class
probabilities, a misclassification criterion to define adversarial examples, a distance
measure on the size of the adversarial perturbations, and an attack algorithm to
generate the adversarial perturbation given the input, label, model, and adversarial
criterion. Attack algorithms perform hyperparameter tuning to find the minimum
perturbation.

5.4.2 Generative Learning

Goodfellow et al. [225] summarize the need for regularization in deep learning.
Regularization in deep learning is discussed with reference to underfitting, over-
fitting, bias, variance, and generalization to control the computational complexity
of machine learning models. Regularized machine learning models perform well
on not only the training data but also on new inputs. Regularization terms in the
training objective functions are penalties and constraints designed to tradeoff the
reduction in the test error with possible increase in train error. Sparse representa-
tions, noise robustness, dataset augmentation, adversarial training, semi-supervised
learning, multitask learning, and manifold learning are listed as some of the novel
regularization techniques to introduce regularization into adversarial learning losses.

Goodfellow et al. [225] also survey the use of analytical optimizations special-
ized to improve the training procedures in deep learning. They take gradient-based
optimization as a comparison baseline in the benchmarking experiments. Their
objective is to find the neural network parameters that reduce a cost function
involving a performance measure evaluated on training dataset, regularization
terms evaluated on training dataset, and adversarial losses evaluated on validation
dataset. Here optimization algorithms must contend with parameter initialization
strategies, adaptive learning rates during training, and information contained in
the second derivatives of the cost function. The goal of an optimized machine
learning algorithm can be said to be to minimize the expected generalization error
by computing the average training error called empirical risk. The empirical risk
minimization tends to overfit to the training dataset. This must be accounted for in
the convergence criteria for optimization leading to batch, incremental, stochastic,
online, deterministic, and randomized optimization algorithms for deep learning
on dynamic data streams. Ill-conditioned problems, local minima, saddle points,
exploding gradients, and inexact gradients are listed as some of the theoretical
challenges in the optimization algorithms design. Machine learning paradigms such
as curriculum learning, generative learning, metric learning, and transfer learning
are useful to solve such problems with specialized neural network architectures.
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Wang et al. [637] discuss the relation between robustness and optimization of
secure deep learning. Adversarial training with projected gradient descent (PGD)
attack is chosen as the minmax optimization problem. The inner maximization
problem generates adversarial examples by maximizing the classification loss. The
outer minimization computes model parameters by minimizing the adversarial loss
on adversarial examples. First-order stationary condition (FOSC) having closed-
form solution for constrained optimization is proposed as such an adversarial loss.
It constructs a dynamic training strategy for robust learning with a gradual increase
in the convergence quality of the generated adversarial examples. As a defense
mechanism, the adversarial training technique is comparable to moderately robust
techniques such as input denoising, gradient regularization, Lipschitz regularization,
defensive distillation, model compression, and curriculum adversarial training. The
selected PGD attack scenario is comparable to fast gradient sign method (FGSM),
Jacobian-based saliency map attack (JSMA), C&W attack, and Frank-Wolfe-based
attack. Gradually increasing the computational hardness of adversarial examples is
an idea based in the curriculum learning paradigm for machine learning. It leads to a
speed up in convergence and improves generalization of deep learning networks. A
learning curriculum within a sequential ordering mechanism is designed for adver-
sarial training. The experimental results of the adversarial training are benchmarked
against the state-of-the-art attacks on WideResNet.

5.4.2.1 Deep Generative Models for Game Theoretical Adversarial
Learning

Kunin et al. [337] study the loss landscape in regularized linear autoencoders (LAE)
acting as models for deep representation learning. Autoencoders are trained to
minimize the distance between the data and its reconstruction. They learn a subspace
spanned by the basis vectors learnt from the training data. LAE is connected
with rank-reduced regression models like principal component analysis (PCA).
L2 regularization’s effect on orthogonality patterns in the encoder and decoder is
investigated. LAE are interpreted as generative processes. Denoising autoencoder
and contractive autoencoder are discussed as variants of LAE.

Vincent et al. [621] stack layers of denoising autoencoders in deep neural
networks that is able to demonstrate a lower classification error. Higher-level
representations of the training data are obtained from the denoising criteria acting as
an unsupervised objective for feature detectors. It is able to boost the performance
of support vector machines in multi-label classification. The reconstruction errors
in the proposed denoising autoencoder can be considered to be an improvement
on log-likelihood estimations in stochastic restricted Boltzmann machines utilizing
contrastive divergence updates. The infomax principle from independent component
analysis is exploited as the denoising criteria maximizing the mutual informa-
tion between input random variables and higher-level representations. Empirical
average of mutual information on training samples is taken as the unbiased
estimator for unsupervised learning. The encoder’s loss function is expressed as an
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affine+sigmoid function, while the decoder’s loss function is expressed an affine
with squared error loss or affine+sigmoid with cross-entropy loss. Minimizing
the reconstruction error combines the encoder and decoder loss functions while
training the stacked autoencoder. Such a reconstruction error is equivalent to
maximizing a lower bound on the mutual information between input and learnt
representation. A lower-dimensional learnt representation can be considered as a
lossy compressed representation of the input. The learnt representation can be
sparse coding representation, dense compressed representation, and variable-size
representation that is suitable for extracting useful features in the construction
of deep neural network classifiers. Successful unsupervised regularized denoising
criteria define and learns the data manifolds. Adversarial examples are likely to be
farther from the data manifolds than training examples. A data corruption process
can be parameterized into the denoising-based training signals given to the deep
denoising autoencoder’s learning algorithm.

Kingma et al. [316] introduce stochastic variational inference for efficient learn-
ing in directed probabilistic models for autoencoders. An approximate inference
model is proposed for i.i.d. datasets leading to intractable posterior distributions
in maximum likelihood estimation and maximum a posteriori inference where
expectation-maximization algorithms cannot be used. A pattern recognition model
in a probabilistic encoder is optimized to perform efficient approximate posterior
inference without resorting to expensive sampling methods. It has applications in
adversarial learning recognition, denoising, inpainting, representation, and visual-
ization within online, non-stationary settings. The proposed autoencoder mimics
hidden random processes underlying the training data distribution to generate
artificial variational data that resembles the observed training data. It can be
extended toward deep generative architectures, dynamic Bayesian networks, and
supervised learning with latent variables and complicated noise distributions.

Variational Inference Alain et al. [8] suggest that autoencoders learn the local
manifold structure of the data distribution underlying the training data. So a
regularized reconstruction function in autoencoders is able to characterize the shape
of the probability density function generating the data as a vector field around a
manifold. The autoencoder captures the derivative of the log density with respect
to the input as a denoising score matching function. The score matching function
arises out of tradeoffs between minimizing reconstruction error and regularizing the
autoencoder. The autoencoder training criteria are taken to be a tractable alternative
to maximum likelihood estimation. The autoencoder can act as an implicit density
model to sample the essence of the target data distribution underlying the training
data.

In neural generative models, Mondal et al. [438] hypothesize that the dimension-
ality of the autoencoder’s latent space has affects the quality of generated data. The
quality of generated data is compared between autoencoder models and generative
adversarial networks. Optimal performance is obtained when dimensionality of the
latent space of the autoencoder matches with that of the generative latent space. A
Mask Adversarial Auto-Encoder (MaskAAE) is proposed to satisfy such conditions
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by masking the spurious latent dimensions. Thus deep variational methods can
be considered as probabilistic generative models. The latent space representation
of data is due to a deterministic or stochastic encoder. The generated data is
from a decoder realizing a learnable family of function approximators. The data
distribution in the latent space follows a known probability distribution from which
sampling is feasible. The algorithmic masking procedure minimizes norm-based
reconstruction error and divergence metrics such as JS divergence, KL divergence,
or Wasserstein’s distance between a masked mixture density prior distribution and
the masked encoded latent distribution.

Zhao et al. [701] train deep latent variable models for discrete structures such
as text sequences and discretized images in textual style transfer. They are exten-
sions of the Wasserstein autoencoder framework and formalize the autoencoder
optimization problem as an optimal transport problem. Different fixed and learned
prior distributions from parameterized generators in the adversarially regularized
autoencoder can target generative representations in the output space. A transfer
learning-based parametric generator is trained to ignore targeted attributes of the
input. It can be used for sentiment or style transfer between unaligned source
and target domains. Image and sentence manipulations can be done in the latent
space via interpolation and vector arithmetic to induce change in the output space.
Constructing the style of interpolation requires a combinatorial search. A latent
space attribute classifier is introduced to adversarially train the encoder. Such
autoencoders accommodate smooth transformations in adversarially regularized
continuous latent space to produce complex modifications of generated outputs
within the data manifold. An information divergence measure such as the f-
divergence or Wasserstein distance minimizes the divergence between learned code
distributions of the true and model distributions. The cross-entropy loss in the
autoencoder upper bounds the total variational distance between the model/data
distributions. Discrete decoders such as recurrent neural networks can be incorpo-
rated into the model distributions. Here non-differentiable objective functions are
solved by policy gradient methods in reinforcement learning and Gumbel-Softmax
distributions to approximate the sampling of discrete data. The autoencoder learning
can be interpreted as learning a deep generative model with latent variables so long
as the marginalized encoded space is the same as the prior. Adversarial regulariza-
tion has an impact on discrete encoding, smoothness of encoder, reconstruction in
decoder, and output manipulation through prior. The resulting deep latent variable
models are sensitive to the training setup and performance measures. Improving
their adversarial robustness shall lead to models for complex discrete structures such
as documents.

Mescheder et al. [423] unify variational autoencoders (VAEs) and generative
adversarial networks (GANs). VAEs are expressed as latent variable models to learn
complex probability distributions from training data. An extension called adversarial
variational Bayes (AVB) with an interpretable inference model is proposed. It has an
auxiliary discriminative network formulating maximum likelihood estimation as a
two-player game not unlike the game in GANs. The proposed deep generative model
is better than generative models such as Pixel-RNNs, PixelCNNs, real NVP, and
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Plug & Play generative networks. In log-likelihood estimation, it has the advantage
of GANs to yield generative representations of the training data as well as that
of VAEs to yield both a generative model and an inference model. Here a highly
expressive inference model combined with a strong decoder allows the VAE to
make use of the latent space representations in arriving at the reconstruction error.
An adversarial loss in the inference model encourages the aggregated posterior
to be close to the prior over the latent variables. Bayesian parameter estimation
approximates the posterior distribution as a probabilistic model. It can approximate
the variational lower bound for learning a latent variable model minimizing the
KL divergence between the training and latent data distributions. The probabilistic
model is able to learn multimodal posterior distributions and generate samples for
complex datasets. A deep convolutional network is used as the decoder network.
The encoder network architecture consisting of a learned basis noise vectors is able
to efficiently compute the moments of latent data distribution that is conditioned
on the input data distribution. The inference model can represent any family of
conditional distributions over the latent variables. The experimental validation is
benchmarked against the annealed importance sampling (AIS) method for decoder
based generative models.

Blei et al. [72] discuss the utilization of variational inference and optimization in
Bayesian statistics for estimating computationally expensive posterior probability
densities. Variational methods are found to be faster than sampling methods such
as Markov chain Monte Carlo. They measure the information divergence between
the approximated data distribution to the posited family of target densities. Here
mean-field variational inference is applicable to exponential family models such as
maximum entropy models forming the loss functions in machine learning. They
can be used in the stochastic optimization of game theoretical adversarial learning.
Grunwald et al. [237] show a equivalence theory between maximizing a generalized
relative entropy and minimizing worst-case expected loss that is based on zero-sum
games between decision-maker and Nature. Robust Bayes acts are found to mini-
mize discrepancy or divergence between distributions maximizing entropy. They are
expressed as solutions to minmax theorems on Kullback-Leibler divergence com-
puted for a generalized exponential family of target densities. The minmax theorems
are called redundancy-capacity theorems in information theory. Generalized relative
entropy is an uncertainty function associated with the loss function for training
machine learning models. Additive models for statistical inference that are based
on Bregman divergences are special cases of the generalized exponential families.
They can be used to derive scoring rules such as Brier score and Bregman score
in the decision problems for multi-label classification. A Pythagorean property of
Kullback-Leibler divergence leads to an interpretation of minimum relative entropy
inference as an information projection operation between adversarial and training
data distributions on discrete sample spaces. It can be extended with entropy-related
optimization problems based in information theory about moment inequalities and
generalized entropy families. Such generalized entropies include Renyi entropies
and Fisher information interpreted from a minimax perspective.
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Adversarial Autoencoders Bengio et al. [45] discuss denoising and contractive
autoencoders for the implicitly learnt density function estimating the underlying
data-generating distribution. It can handle both discrete and continuous-valued
features with arbitrary corruptions. The reconstruction losses are seen as log-
likelihood estimation. Regularization of the reconstruction prevents the autoencoder
from learning a simple identity function and instead behaves as a feature learner for
supervised learning. In a probabilistic interpretation of autoencoders reconstruction
loss, the denoising reconstruction error estimates the energy function for score
matching within a Gaussian restricted Boltzmann machine.

Mnih et al. [434] propose a non-iterative approximate inference method to train
sigmoid belief networks. It implements efficient exact sampling from the variational
posterior in a feedforward network. The training algorithm updates both the neural
network model and the inference network by maximizing a variational lower bound
on the marginal log-likelihood. Experimental results are shown to be better than
a wake-sleep algorithm for stochastic training. Several baselines are explored for
variance reduction in the inference network corresponding to a decoder. Such
variational objectives can be used to train probabilistic encoders in adversarial
learning. They are designed within information-theoretic frameworks such as the
minimum description length for encoding non-stationary data distributions.

Adversarial examples lead to an increase in the generalization error and inference
time of deep learning networks. Kyatham et al. [341] propose a defense mechanism
against adversarial examples based on regularized latent space generative models.
It involves an adversarial filter that encodes a quantized latent space from the data a
manifold subject to adversarial manipulations. The adversarial filter is not accessible
to either than adversaries or the classifier. It has a variational inference mechanism
in a regularized, quantized, generative latent space to remap the encoded adversarial
data to the true training data manifolds. The adversarial robustness of the decoded
data is demonstrated in various attack scenarios involving white-box and blackbox
methods. Thus variational autoencoders can be used to explore the feature subspace
consisting of adversarial examples. Such feature subspaces can be incorporated
into adversarial retraining that is robust to first-order adversaries but is unable
to defend against blackbox attacks. Blackbox attacks can also be optimized to
circumvent robustness toward obfuscated gradients obtained from an approximation
of derivatives in function approximation, reparameterization, and computation of
its expectations. The proposed latent space encoder preserves the distance between
samples under a metric space transformation from data to latent manifolds. The
encoder is used in a quantized generative model that allows a stochastic exploration
of a large neighborhood in the latent space. The latent codes are then mapped back
to the legitimate data. Thus a decoder can be used to convert adversarial examples
into approximate non-adversarial samples. The proposed inference model is called
Lipschitz constrained quantized variational autoencoder (LQ-VAE). With a simple
binary quantization of the latent space, it can be used an adversarial detector.

Gulrajani et al. [242] present PixelVAE that has an autoregressive decoder based
on PixelCNN. PixelVAE is able to learn a useful latent representation for natural
image modelling with fine details. PixelVAE can be extended to have multiple
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stochastic layers to model not only output pixels but also higher-level latent feature
maps. Autoregressive conditional likelihoods are explored in the context of data
analytics applications such as sentence modelling. The output distributions for
the generative and inference networks can be decomposed and factorized over
the latent variables to derive a log-likelihood for the reconstructed data that is
regularized by a KL divergence of the approximate posterior over latents with an
autoregressive prior. The latent representations of the input data are applicable to
deep representation learning in semi-supervised classification.

Hou et al. [278] propose a loss function for VAEs that enforces a deep feature
consistency preserving the spatial correlation characteristics of the input to give
better perceptual quality. The hidden features of a pre-trained deep convolutional
neural network (CNN) define a feature perceptual loss for VAE training. Instead
of reconstructing pixel-by-pixel measurements, the feature perceptual loss defines
a difference between hidden representations of images that have been extracted
from a pre-trained deep CNN such as AlexNet, VGGNet, and ImageNet. Latent
vectors obtained from such a VAR achieve state-of-the-art performance in facial
attribute prediction. The distribution of the latent vectors can be controlled accord-
ing to a KL divergence from Gaussian random variables. It is combined with
a reconstruction loss to train the VAE. Then attribute-conditioned deep VAEs
such as deep recurrent attentive writer (DRAW) [232] can be extended to semi-
supervised learning with class labels that combines attention mechanism with a
sequential variational autoencoding framework. The performance of VAEs can also
be improved with discriminative regularization of the reconstruction loss achieved
by GAN discriminator on the learned feature representation in VAEs. Feature
perceptual loss can be defined by neural style transfer and classification scores on
individual features from pre-trained deep CNNs.

Hou et al. [279] extend the deep feature consistent VAE to implement a
deep convolutional generative adversarial training mechanism that learns feature
embeddings in facial attribute manipulation. A multiview feature extraction strategy
is then proposed to extract effective image representations useful in facial attribute
prediction tasks. Such a generative model for an image database is useful for
generating realistic images from random inputs, compressing the database into the
learned parameters of a model, and learning reusable representations of unlabelled
data that are applicable into supervised learning tasks such as image classification.
The proposed discriminator balances outputs between image reconstruction loss
and adversarial loss. The proposed VAE can linearly learn semantic information
of facial attributes in a learned latent space. It can extract discriminative facial
attribute representations. Images can be transformed between classes by a simple
linear combination of their latent vectors. Attribute specific features can be encoded
for annotated images to manipulate related attributes of a given image while fixing
the remaining attributes. Thus the adversarial training proposed in the VAE can be
conditioned on class labels and visual attributes obtained from the data manifold of
natural images.

Larsen et al. [347] present an autoencoder that can measure similarities in data
space based on learned feature representations. The representations are obtained
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by combining a variational autoencoder (VAE) with a generative adversarial
network (GAN) into an unsupervised generative model. In the reconstructed data
distribution, element-wise errors are replaced with feature-wise errors that offer
invariance toward image translation. The training results produce latent image
representations with disentangled factors of variation. High-level visual features
can be modified using vector arithmetic. The VAE decoder and GAN generator
share parameters that are trained jointly. Thus generative models can be improved
with learned similarity measures included into the reconstruction quality metrics
on object classes. At the same time, GANs discriminator can be used to measure
sample similarity. The proposed method can also be interpreted as GAN learning
complex data distributions with the priors constrained by a VAE.

Tran et al. [605] propose a formulation where reconstructed samples from an
autoencoder (AE) are input as “real” samples for the discriminator in a GAN. This
affects the convergence criteria of the GAN. Further, a latent data distance constraint
is put on the encoder network. It minimizes the distance between latent samples and
data samples. A discriminator score distance constraint aligns the distribution of
the generated samples with the real data samples. Both the constraints guide the
generator of the proposed Dist-GAN to synthesize samples similar to the training
data distribution. Thus the adversarial training process in GANs can be combined
with AEs to produce samples of a data distribution without explicitly estimating it.
The dimensionality reduction in AEs can be used to balance the discriminator and
generator capacities leading to convergence issues such as gradient vanishing and
mode collapse. The competitive scores produced by the discriminator in a stable
Dist-GAN can be used to find multimodal differences between the adversarial and
training data distributions. The information divergence measures such as the KL
divergence and the JS divergence can be combined with the reconstruction loss of
an AE to train an empirical inference model. Here, game theoretical adversarial
loss can be interpreted as a regularization term. Coupling the AE with that of
the discriminator in GAN allows us to study the convergence conditions of game
theoretical adversarial learning from the perspective of computer vision tasks.

Makhzani et al. [404] propose a probabilistic autoencoder called adversarial
autoencoder (AAE). It performs variational inference by matching the aggregated
posterior of the autoencoder with an arbitrary prior distribution acting as a reg-
ularization term. An encoder learns to convert the data distribution to the prior
distribution acting as the encoding distribution. The decoder learns a deep generative
model that maps an imposed prior to a posterior distribution matching the original
data distribution to a decoding distribution. The decoder of the AAE learns a deep
generative model such as generative moment matching networks and generative
adversarial networks. Recognition networks can predict posterior decoding distri-
butions over latent variables. The autoencoder is trained with a reconstruction error
criterion between the model distribution and a data distribution. It is combined with
an adversarial training criterion that discriminatively predicts whether a generated
sample arises from the hidden code of an autoencoder or from a sampled distribution
specified by the user. The adversarial training procedure consists of a reconstruction
phase for training the autoencoder followed by a regularization phase for smoothing
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the adversarial network. The reconstruction phase updates the encoder and the
decoder to minimize the reconstruction error of inputs. The regularization phase
updates discriminative network to distinguish between true samples generated using
prior and generated samples that are the hidden codes computed by the autoencoder.
Then the generator is updated to confuse the discriminative network. The generator
of the adversarial network is also the encoder of the autoencoder. After training,
the decoder of the autoencoder defines a generative model that maps an imposed
prior to the data distribution. The encoder can be one of a deterministic function, a
stochastic distribution such as the Gaussian posterior, and a universal approximator
of the posterior that combines both training and adversarial data distributions. A re-
parametrization trick is used in the back-propagation of error through the encoder
of a stochastic distribution. In case of a universal approximator of the posterior,
the adversarial training procedure is interpreted as an efficient method of sampling
from the aggregated posterior. The imposed prior can be a complicated distribution
in a high-dimensional space such as the swiss roll distribution without an explicit
functional form for the distribution. The reconstruction phase of the adversarial
training can also incorporate class label mixtures information to better shape
the distribution of the hidden code. Here, a semi-supervised classifier minimizes
the cross-entropy cost calculated on conditional posteriors estimated for each
labelled mini-batch. AAE designs demonstrate that deep generative models can be
adversarially trained with not only sampling methods such as restricted Boltzmann
machines but also variational methods such as importance weighted autoencoders.
The proposed AAE is shown to have applications in semi-supervised classification,
unsupervised clustering, dimensionality reduction, and data visualization.

Scutari et al. [545] analyze game theoretical modelling as a set of coupled
convex optimization problems in applied mathematics. Such convex optimization
problems are widely studied in signal processing for the design of single-user and
multiuser communication systems. Here, cooperative and non-cooperative game
theory approaches can be used to model the equilibria in communications and
networking problems. Such optimizations can also be generalized to variation
inequality problems in non-linear analysis. Thus signal processing can be used in the
study of the existence and uniqueness of the Nash equilibrium in game theoretical
adversarial learning. Further, iterative distributed computational algorithms can be
designed to study the convergence properties and equilibrium programming of the
game theoretical modelling. The related adversarial learning applications also have
relevance in signal processing and communication applications such as resource
sharing in multihop communication networks, cognitive radio networks, wireless
ad hoc networks, and per-to-peer wired networks.

Gidel et al. [217] explore variational inequality framework as a saddle point
optimization method for designing adversarial training. GANs training is extended
to include variational inequalities averaging and extrapolation. In mathematical
programming, variational inequality problems generalize the stationary conditions
for two-player games. At stationary points the directional derivative of cost func-
tion is non-negative in any feasible direction for the optimization. They can be
generalized to continuous vector fields. The variational inequality problem finds an
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optimal set on the vector fields. The game theoretical modelling in deep generative
modelling can be explored within the variational inequality framework to produce
stochastic variational inequalities with bounded constraints and regret minimization
in online learning. Here non-zero games are the GANs learning objectives. Vari-
ational inequalities can be leveraged in various practical optimization algorithms.
Harker et al. [252] review finite-dimensional variational inequality problems in
game theory especially for non-linear models. Solving for equilibrium models
is a topic called equilibrium programming in non-linear optimization. They can
be used to produce numerical computational methods to study the convergence
properties of game-theoretic equilibria. Sensitivity and stability analysis of the
equilibria to changes in model parameters is an important part of the existence and
uniqueness of the solution. The resultant numerical modelling can be integrated
into a game theoretical adversarial learning to optimize the dynamics modelling and
computation in iterative attack scenarios and defense mechanisms. Daniele [143]
recontextualizes dynamics modelling as evolutionary variational inequalities within
dynamic networks evolving over time. The dynamics modelling has applications in
finance, economics, computer science, and mathematics.

Distributional Smoothing Features Vincent et al. [620] extend unsupervised
pre-training to unsupervised learning of representations such that the learned
representations are robust to partial corruption of the input pattern. Deep generative
models are then created by stacking denoising autoencoders for manifold learning.
A higher-level representation of observed patterns is produced by optimizing a
local unsupervised learning criterion. Global training criteria are then proposed
for optimizing the performance appropriate to the task at hand. The unsupervised
representations act as an initialization for the optimization algorithms that are able
to avoid poor solutions. Restricted Boltzmann machines trained by contrastive
divergence and various autoencoders are found to benefit from such a training
process. An information-theoretic perspective is then provided for analyzing the
robust autoencoders that efficiently model complex data distributions and demon-
strate superior generalization performance on dependencies in the data distributions
characterizing the observed input. The proposed denoising procedure is comparable
to training dataset augmentation with adversarial patterns. But the denoising
procedure does not use any prior knowledge about the image topology and class
labels for supervised learning. To deal with corruption due to noise that is adversarial
or otherwise, the denoising procedure does not produce smooth functions for
regularization but learns the robustness information in variational inference over
large, non-additive, destruction of information. A reconstruction cross-entropy is the
training objective. It maximizes a lower bound on the mutual information between
training loss and adversarial loss. However, deep directed graphical models continue
to pose optimization challenges in deep generative modelling especially for learning
high-level concepts from multimodal inputs.

Zhao et al. [705] propose deep generative models that can learn from feature
hierarchies in supervised learning tasks. Multiple layers of latent variables are
trained with variational methods. Unlike discriminative methods that learn invariant
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and local feature hierarchies, the proposed variational methods learn interpretable
hierarchical features preserving information on natural image datasets. The learnt
representations can be generalized to adversarially trained models that support
statistical inference. The hidden layers of latent variables are characterized in two
designs. The first design recursively stacks generative models assuming that the
bottom layer alone contains information to reconstruct the data distribution and the
information does not depend on the specific family of distributions used to define
the hierarchy. The second design focuses on single-layer latent variable models in
which high-level features are positioned to certain parts of the latent code and low-
level features to others. This approach is called variational ladder autoencoder. It
maximizes a marginal log-likelihood over the training dataset. The likelihood is
complex and intractable for generative models. The marginalization is due to the
latent variables of the autoencoder. Following a variational inference model, an
evidence lower bound (ELBO) involving Kullback-Leibler divergence is optimized
as a solution for the intractable marginal likelihood optimization. Such an inference
is shown to produce learned structured representations that are better than assuming
a Markov independence structure in the latent variables to factorize the inference
distribution according to an autoregressive hierarchical variational autoencoder.

Sønderby et al. [562] propose a ladder variational autoencoder for unsupervised
learning of feature representations. It recursively corrects the generative distribution
with a data-dependent approximate likelihood. A predictive log-likelihood provides
lower bound to the bottom-up inference in layered variational autoencoders. It can
also be used in the design of a deep distributed hierarchy of latent variables in
inference and generative learning models. The hierarchies of conditional stochastic
variables in such VAEs are interpreted as a computationally efficient representation
of factorized models. They approximate a variational approximate posterior lower
bounding the intractable true posterior. It is estimated by dependency structure mod-
elling between bottom-up likelihood inference and top-down generative information
modelling in deep learning. Such a parameterization of the VAEs allows interaction
between the bottom-up and top-down signals like in the variational ladder autoen-
coder. The generative performance of the variational distributions is compared
with VAE baselines such as variational Gaussian processes, normalizing flows,
importance weighted autoencoders, and auxiliary deep generative models. The KL
divergence bounding the log-likelihood training criterion is approximated using
Monte Carlo sampling. A stochastic backpropagation algorithm is used to optimize
the generative and inference parameters. In the VAE inference, each stochastic layer
is specified as a fully factorized Gaussian distribution. Variational regularization
terms are introduced into the loss function for generative log-likelihood distri-
bution estimators. This model can also accommodate explicit parameter sharing
between inference and generative distributions to produce recursive variational
distributions with attention mechanisms such as in the deep recurrent attentive writer
(DRAW) [232]. In game theoretical adversarial learning, such attention mechanisms
create best response strategies for the adversary as randomized operational decisions
while the cost-sensitive classifier learns representations for multimodal, multiview,
and multitask distributions.
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Zhou et al. [708] propose a deep autoencoder to distinguish between high-
quality reconstructed data and outliers. It is able find random anomalies as well
as structured corruptions with unsupervised anomaly detection algorithms. It is
an extension of denoising autoencoders and maximum correntropy autoencoders
where the reconstruction cost is a noise-resistant entropy. By defining a non-linear
projection to a low-dimensional hidden layer, the proposed robust autoencoder is a
non-linear version of robust principal component analysis. It produces a non-linear
representation of the data suitable for producing lower reconstruction error rates on
complicated input distributions. An alternating direction method of multipliers is
the optimization algorithm used to train the autoencoder. Such robust autoencoders
can be used to detect cyberattacks in network data. Lin [371] provides an overview
of rank aggregation methods. They act as stochastic search methods to combine
different optimization criteria in stationary distributions. Distance measures are used
to aggregate ranked lists. The orders of elements in an optimal list are specified
in a probability matrix parameterized by cross-entropy Monte Carlo information
divergence criteria between training and adversarial distributions. Gregor et al. [234]
introduce deep autoregressive networks to learn hierarchies of distributed represen-
tations from data. A parameter estimation algorithm based on minimum description
length (MDL) maximizes a variational lower bound on the log-likelihood estimated
on the training data. The encoder’s representation plays the role of a variational
distribution that is concise and irredundant from an information-theoretic point of
view. Autoregressive structure in the latent variables captures dependencies between
activation units of the same layer.

In the multivariate statistics literature studying systems of probability distribu-
tions, copulas model multivariate distributions. Copulas construct joint distribu-
tions with different dependence structures such as tail dependency modelled as
marginal distributions. Vine copulas allow arbitrary density estimation. Entropy-
based information-theoretic measures such as the mutual information can be
contrasted with copula to quantify the multivariate dependencies between features
involved in multiple regression over joint data distributions. Tagasovska et al. [591]
introduce vine copula autoencoder to estimate the multivariate distribution of the
encoded data. A generative model combines the estimated distribution with a
decoder. As an implicit generative model, vine copulas do not impose as many
restrictions as variational methods on training in the latent space. They do not
make explicit distributional assumptions on the decoder of the data generative
process. They act as a flexible tool for constructing features in high-dimensional
multivariate distributions. New data can be constructed by decoding the random
samples generated by the vine copula. Selection of copula families allows flexibility
in modelling and exploration of parameter values in the autoencoders design using
adversarial training mechanisms.

Wieczorek et al. [648] apply a copula transformation in the latent space of an
autoencoder to construct sparse representations of the features. Such representations
of data extract compact, sparse, interpretable features in machine learning. The
sparse features are combined with deep information bottleneck principle in vari-
ational inference to derive information-theoretic limits on deep learning networks
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efficiency. Variational lower bounds are derived on the information bottleneck
optimization problem formulated as mutual information between adversarial and
training data distributions. It involves entropy term on discrete features, differential
entropy term on continuous features, and marginal copula entropy term on the latent
features. Copula augmentation of variational autoencoders is proposed to provide
resilience to adversarial attacks due to a positive influence on the convergence rates
of the autoencoder.

Hua et al. [284] develop reduced-rank estimators and filters for subspace
computation. The proposed alternating power (AP) method for computing reduced
ranks is computationally more efficient than existing methods in the literature. Such
a rank reduction is shown to have application in a multivariate system with a large
number of sources and receivers where the internal structure and interference of
multipath signals is represented with a reduced-rank channel matrix. Such systems
implicitly require to reduce the model complexity to offset computational load. Thus
reduced-rank estimation and filtering are useful in a variety of signal processing
applications requiring data/model reduction, robustness against adversarial noise
and modelling errors, and high computational efficiency. Here adversarial deep
learning in reduced-rank estimation can be contrasted with the more conventional
methods as a computationally efficient representation learning procedure for rank
estimation such as eigenvalue decomposition (EVD), singular value decomposition
(SVD), and subspace decomposition (SSD) techniques. Furthermore, the proposed
AP method for optimization is an alternative to the gradient searching methods
used in the optimization of adversarial learning. It extends the iterative quadratic
minimum distance (IQMD) approach to optimization of the loss functions in
adversarial deep learning.

Luedtke et al. [397] construct adversarial Monte Carlo meta-learning (AMC)
for computationally intensive statistical procedures in frequentist and Bayesian
approaches that require optimizing maximum likelihood estimators and sampling
from an intractable probability distribution, respectively. Here statistical problems
are formulated as two-player games in which Nature adversarially selects a distri-
bution for a statistician to answer scientific question using data drawn from this dis-
tribution. Optimal solutions are found by players’ strategies parameterized by deep
neural networks. The worst case for sampling complexity in the data-generating
mechanisms is found when the performance of the statistical procedure is least
desirable. Such sampling complexity problems are solved by minimax optimization
procedures that are statistically equivalent to Bayes procedures derived from a least
favorable prior on a quantity of interest that is most difficult to compute. To establish
rates of convergence and performance guarantees on such least favorable priors,
automation methods are designed over a restricted class of priors prespecified on a
finite set of distributions in statistical decision problems. The proposed AMC can be
used to incorporate adversarial strategies in the tuning, selection, and optimization
of supervised learning procedures. The adversarial data-generating mechanism can
be constructed from a statistical model. Such a statistical framework for adversarial
learning is illustrated in three classes of statistical problems: point estimation,
prediction, and confidence region construction. A minimax risk is optimized on
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the class of possible learning procedures. In general, such an optimization is
non-deterministic polynomial time (NP) hard. A variety of adversarial strategies
are hypothesized to deal with such computational complexities in the learning
procedures by numerical optimization. One such strategy iteratively improves on the
maximal risk of the statistical procedure. Nested minimax algorithms to numerically
construct a minmax procedure are another strategy. Another strategy uses alternating
algorithms to hybridize the nested minimax and maximin algorithms. Therefore
optimal statistical procedures for data mining can be constructed with adversarial
deep learning especially when existing statistical procedures tend to fail.

Romano et al. [521] analyze the stability of deep-learning classification machines
like CNNs. They find links between stability of the classification to noise and
the underlying structure of the signal. Such links are quantified in terms of
dictionary learning of sparse representations of data. Thus the research areas
of sparse representation learning and dictionary learning can be can be used to
analyze the sensitivity of regressors and robustness of classifiers to adversarial
perturbations. A robustness bound on the energy of the noise is found to be a
function of the sparsity of the signal and its characteristics expressed as weights
of a dictionary representation. Parseval networks are then found to be an empirical
regularization to improve the classification stability. Sparse solutions and incoherent
dictionaries/filters on the incoming signals are proposed as the solutions to construct
robust neural networks on the adversarial noise. Guo et al. [243] reveal relationships
between sparsity of deep classifiers and their adversarial robustness. Higher sparsity
is found to imply better robustness in non-linear deep neural networks. Sparse
classifiers are not only computationally efficient but also theoretically attractive.
They can be used in the design of defense mechanisms in adversarial deep learning
such as adversarial training, knowledge distillation, detecting and rejecting, gradient
masking, and randomization. Here inefficiency leads to redundancy in the deep
classifier designs with network pruning and weight tensors regularization.

Kreutz-Delgado et al. [330] develop data-driven learning of domain-specific
dictionaries for maximum likelihood and maximum a posteriori estimation. As a
generalization of vector quantization, the dictionary elements are interpreted as con-
cepts, features, or words representing the events encountered and signals generated
in the adversarial environment. Experimental evaluation shows that the proposed
representation learning algorithms based on underdetermined system solvers per-
form better than independent component analysis (ICA) methods. Moreover the
dictionaries result in both higher compression (fewer bits per pixel) and higher accu-
racy (lower mean square error). The environmentally meaningful dictionaries are
obtained physically or biologically by maximizing the mutual information between
the set of these vectors and the signals generated by the environment. A minimal
spanning set of linearly independent vectors or dictionaries represents the measured
signals of interest with noise reduction and data compression. Matching a source
signal to a sparse dictionary can also be understood as maximum entropy modelling
of its statistical structure. The resulting dictionary estimates are then termed as
approximate maximum likelihood estimates of the source signal. Adaptive filtering
literature for the current dictionary estimate can also be used to track the sensitivity
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of learning to the adversarial noise with data-driven corrections. The use of learned
dictionaries is also compared with the use of predefined wavelet dictionaries to
recreate the observed sensor signals with separability and factorizability in the data
distributions for discriminative-generative modelling in game theoretical adversarial
deep learning. Applications are found for the resultant multimodal loss functions,
multiview cost functions, and multitask objective functions in biomedical imaging,
geophysical seismic sounding, and multitarget tracking.

Zou et al. [718] sparse principal component analysis (SPCA) use the lasso to
produce modified principal components with sparse loadings. SPCA is formulated
as a regression optimization framework with computationally efficient algorithms
on multivariate data. Regression criteria identifying important variables rather than
simple thresholding on explained variance are used to derive the leading principal
components. Without sparsity constraints, the method reduces to PCA. Sprechmann
et al. [568] create a clustering framework with dictionary learning and sparse
coding. The representative points for clustering are modelled in terms of data
distributions represented in one dictionary for each cluster. Thus the entire clustering
configuration is modelled as a union of learned low dimensional subspaces and
their data points. Learned dictionaries make the unsupervised clustering framework
suitable for processing large datasets in a robust manner. An EM-like iterative
optimization algorithm is designed to separate the clusters into the dictionaries.
The dictionaries are also used in a new measurement of representation quality that
combines sparse coding, dictionary learning, and spectral clustering for both hard
and soft clustering.

5.4.2.2 Mathematical Programming in Game Theoretical Adversarial
Learning

Evolutionary algorithms (EA) have been used in stochastic optimization to generate
rule-based data mining models with attribute interactions [694]. The EA-based
stochastic search and optimization algorithms are evolutionary programming (EP),
evolutionary strategies (ES), genetic algorithms (GA), differential evolution (DE),
estimation of distribution algorithm (EDA) and swarm intelligence (SI) algo-
rithms [258, 641].

In our adversarial algorithm, the search and optimization algorithm is either
a genetic algorithm or a simulated annealing algorithm. The adversarial data
samples are generated by the selection, crossover, mutation search operators in the
genetic algorithm and the annealing search operator in the simulated annealing
algorithm. By using probabilistic hill-climbing algorithms over Markov chains
in multivariate models, the current search operators can be extended to define
explicit probabilistic distributions performing a complex neighborhood search for
the candidate solutions [10].

Harada et al. [251] analyze the advances in parallel genetic algorithms (PGAs).
PGAs can be used as optimization algorithms when the target goal function is
non-derivable, non-continuous, and ill-defined and does not have any analytical
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expression. They can incorporate high-dimensionality search space, customized
operators for the application, complex datasets in the search algorithm, and non-
linear restrictions on the optimization objective. Here they can profit from par-
allelization and distributed processing platforms such as multiprocessors, GPUs,
FPGAs, clusters, grids, and clouds by saving on the search and optimization saving
on function calls and numerical computations. The optimization API to implement
PGAs can be categorized into parallel computing, distributed computing, MPI,
and CUDA. Such implementations run on uniprocessors, parallel computers, and
workstation networks. They enable the development of the state-of-the-art opti-
mization algorithms for single-objective, multi-objective, and parallel algorithms
in an object-oriented architecture. PGAs solve problems in real-world applications
such as data mining, path finding, road traffic, land-use planning, nanoscience,
electronics, building structure, and power systems. PGAs are useful for feature
selection, hyperparameter optimization, and feature engineering in data mining.
They lead to applications in big data analytics, deep learning, computational intel-
ligence, and data provenance with adversarial machine learning. The active areas
for research in PGAs are scalability to high-dimensional datasets, robustness of the
optimization results to changes in the algorithms’ parameters due to uncertainties in
the data and dynamic learning environments, evaluation of multi-objective functions
to efficiently construct diverse and high-quality solutions in multicriteria decision-
making, analysis of algorithmic tradeoffs such as usability/efficiency in designing
the search, parallel algorithms and learning metrics in big data solutions, data
processing and algorithmic analysis in PGAs on fog/edge computing devices and
services, PGAs for high-performance computing that combines exact/approximate
algorithms for synchronous/asynchronous communication policies, and microser-
vices architectures building complex solutions with PGAs acting as web services
provisioning validated optimization.

The most popular evolutionary algorithms for machine learning optimization
are Stochastic hill-climbing, simulated annealing, and genetic algorithms. Gold-
berg [222] discuss the use of genetic algorithms in stochastic optimization of
machine learning. Evolutionary mechanisms are simulated in a computer with data
populations containing solution characteristics that are evolved over generations of
such populations training a machine learning model in an environment of objective
functions for optimizing the populations. It is an iterative optimization algorithm
where each individual solution is characterized by a fitness function value. It
will converge to a solution if the population and its learning objectives are well-
defined. Here genetic algorithms work on a population of many possible solutions
simultaneously. They require to compute the fitness function values without needing
auxiliary information such as derivatives of the objective function. They then use
probabilistic update rules to evolve randomization into the candidate solutions. Here
deep learning can be used to represent the training data as solution populations
for genetic algorithm. Extensions of the genetic algorithms to multi-objective
optimization result in Pareto-optimal solutions. The concept of optimization in the
genetic algorithms can be expanded to select not only the modelling parameters
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but also the fitness function and optimization technique as part of the adversarial
machine learning problem.

Michalewicz [426] surveys the evolutionary programming techniques to incor-
porate problem-specific knowledge as specialized operators in genetic algorithms.
They lead to evolution programs that are probabilistic algorithms extending the prin-
ciples of genetic algorithms. The specialized operators can be used for numerical
optimization, model tuning, constrained search, strategy learning, and multimodal
optimization in game theoretical adversarial learning. Here deep learning networks
can go beyond binary encoding of the populations to represent features for machine
learning in fuzzy, numerical, computational operators for evolution programs. The
players associated with particular strategies in game theoretical modelling can
be represented as the population in evolution programs. The adversarial payoff
functions can then act as the fitness functions evaluating individual solutions to
be selected for the next generation. Better strategies can be constructed by mating
players across generations. Representations of the strategies can be randomized with
genetic operators. A player’s regret minimization is determined by the average of
payoffs it receives over all the games it plays. In this manner evolution programs can
be used to solve multi-label multiplayer games in supervised adversarial learning
with simultaneous optimization of multiple objectives in real-world decision-
making problems. Symbolic empirical learning is a research area in evolutionary
programming that can induce classification rules for supervised learning. In contrast
to such symbolic classifier systems that maintain explicit knowledge in a high-level
descriptive language, statistical models represent knowledge as a set of examples
and statistics associated with them and connectionist models represent knowledge
among the weights assigned to neural network connections. The symbolic empirical
learning applied to a classifier system has to define rule-based systems such as a
detector-effector system to encode-decode training data to a genetic representation
of solutions, a message system on inputs to the genetic algorithm, a rule system
producing a population of classifiers, a credit system on evolving solutions across
generations, and a genetic procedure to generate populations for the various rule-
based systems. Here evolution programs can be used to model the behavior of
a game theoretical attack scenario in supervised adversarial learning. Problem-
specific feature representations and specialized operators for evolution programs can
apply evolutionary algorithms in finite-state machines for numerical optimization,
machine learning, iterated games, optimal control, signal processing, cognitive
modelling, engineering design, system integration, and robotics. Strategic oscil-
lation is a constrained optimization approach that is applicable to combinatorial
and non-linear optimization problems solved with evolution programs. It attaches
a feasibility/infeasibility context to cost-sensitive design of neighborhood search
and stochastic optimization in evolution programs. The configuration of rule-
based systems for selecting a region to be traversed and the direction of traversal
are determined by the ability to approach and cross the feasibility frontier from
different directions. Retracing a prior trajectory is avoided by mechanisms of
memory and probability. A constructive process for reaching the feasibility frontier
is accompanied by a destructive process for dismantling its structure resulting in



196 5 Adversarial Defense Mechanisms for Supervised Learning

a strategic oscillation around the boundary. Such strategic oscillations can be used
to guide the increase in adversarial payoff functions around classifier boundaries
around with a search procedure probing the depths of associated regions. Problem
constraints on such search can bound and penalize the search with a constraint
set on vector-valued functions. Tradeoffs between different degrees of violation of
the component constraints can be allowed according to their feature importance
scores. Such problems are called constraint satisfaction problems in evolution
programs and are comparable to constraint programming techniques in mathemat-
ical optimization. Therefore game theoretical adversarial deep learning can benefit
from evolutionary techniques for function optimization with self-adapting systems
incorporating control parameters into solution vectors, co-evolutionary systems
where evolutionary processes are connected across populations, polyploid structures
incorporating memory of non-stationary environments into individual solutions, and
massively parallel programming models embedding evolutionary computation.

McCune et al. [417] present a survey of vertex-centric programming model
in distributed processing frameworks for complex networks. It consists of inter-
dependent components to compute iterative graph algorithms at scale. Thus we
can evaluate the sensitivity of adversarial loss functions with respect to the
connectivity structure discovery, representation, visualization, and evaluation of the
game theoretical modelling on complex networks. In the context of adversarial
machine learning over graph pattern mining dynamics, we can explore functional
programming constructs suitable for distributed processing such as MapReduce
and bulk synchronous parallel. The choice of programming models is between
data parallelism, task parallelism, and graph parallelism. Haller et al. [247] discuss
the challenges of implementing parallel and distributed machine learning with
functional programming abstractions. The implementation detail for distributed data
analytics ought to consider machine learning assumptions implicit in the data model,
memory model, programming model, communication model, execution model, and
the computing model of the parallel and serial algorithms. The relevant features
learning methods include samples, trees, clusters, wavelets, kernels, splines, nets,
filters, wrappers and factors in data series, sequences, graphs, and networks. The
game theoretical modelling will require to learn dense substructures, rare classes,
and condensed patterns over transactional, sequential, and graph datasets where
random process generating training data may not be the same as that governing
testing data. Miller et al. [430] discuss parallel programming models tailor-made
for machine learning implemented in the Scala programming language. They would
have to support distributed graph processing, provide parallel bulk operations on
generic collections, and create a parallel domain-specific language for machine
learning on heterogeneous hardware platforms. Scala language’s features to archi-
tect and distribute parallel run time systems for machine learning are also covered.
For game theoretical modelling, we would have to design unsupervised learning
mechanisms with motif mining models such as biclustering and evolutionary
clustering, multilevel clustering and model-driven clustering. To create supervised
adversarial learning models with such motifs, we can focus on compression methods
and optimization methods within kernel learning and deep learning. The relevant



5.4 Computational Optimization Algorithmics for Game Theoretical. . . 197

theory of data mining is in multilevel clustering, multilevel graph partitioning,
quasi-clique detection and dense subgraph discovery. Data indexing structures for
dynamic data would also reduce the communication cost and increase the load
balancing in such distributed memory systems.

Mohamadi et al. [436] construct a fuzzy classification system with simulated
annealing. The discovered knowledge is in the form of if-then prediction rules of
a symbolic knowledge representation. They can be evaluated for several statistical
significance criteria such as the degree of confidence in the prediction, classification
accuracy rate on unknown-class instances, and interpretability of the approximate
reasoning method of fuzzy systems. Any tailored membership functions can be
developed in the fuzzy classification system for a given pattern classification
problem. The simulated annealing does a global search of the classification problem
to escape local optimum. A genetic algorithm needs polynomial time on average.
Beyer et al. [50] conduct a complexity analysis of evolutionary algorithms in con-
tinuous and discrete search spaces. Such a theoretical approach to design can help us
understand and teach evolutionary algorithms as probabilistic optimization methods
in computational intelligence. A first analysis is around a performance measure
called progress velocity. It is the average distance in the search space traveled
in the useful direction per function evaluation. Self-adaptation and an associated
success probability of the mutation strength consider the objective function as a
blackbox for optimization. In a blackbox algorithm, all the calculations are free,
and only the sampling is charged. Finally the statistical goodness of the solution
found by evolutionary algorithms depends on knowledge or ignorance of the
problem characteristics represented as machine learning features for optimization.
To account for such design issues, a complexity analysis predicts the behavior
of evolutionary algorithms after a dynamical system. The concept of convergence
order in optimization theory provides bounds to the fitness noise and evolutionary
dynamics. As randomized algorithms we can associate a success probability of
reaching the optima to evolutionary algorithms. Given a probability distribution
of the inputs, the randomization is lower bounded for the worst-case expected
optimization time. In practice they evolve approximate solutions under hardware
restrictions. In this sense evolutionary algorithms can be designed as amelioration
techniques.

Xue et al. [672] survey the state-of-the-art on evolutionary computation as
a global search technique for feature selection in a large search space. Such
a feature selection has application in several machine learning tasks such as
classification, clustering, regression, and prediction. Genetic algorithms, particle
swarm optimization, and ant colony optimization are the most popular evolutionary
computation methods in feature selection. They can be integrated and embedded
into classifier learning as embedded approaches to feature selection. Then genetic
programming acts as an optimization technique for machine learning. Learning
classifier systems are able to benefit from the embedded feature selection. Here
feature interactions to target concept are evaluated with optimal feature subsets
evaluated with evolutionary computation. Evolutionary algorithms have a role to
play in the search for feature subsets as well as their evaluation criteria where the
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objective is to maximize the classification accuracy while minimizing the number
of features. Therefore feature selection with evolutionary methods can be treated as
a multi-objective problem that must find a set of non-dominated tradeoff solutions.
They do not need to make assumptions about the search space such as whether
it is linearly or non-linearly separable and differentiable. Their population-based
mechanisms can produce multiple solutions in a single run that can be parallelized.
But there is a need to increase the stability of the evolutionary algorithms that tend
to select different features from different runs. This design issue also increases the
computational complexity of evolutionary algorithms on real-world tasks with a
large number of features. The performance evaluation measures for evolutionary
computing in machine learning are sourced from information theory, correlation
measures, distance measures, fuzzy set theory, and rough set theory. They lead to
applications in image and signal processing, face recognition, human action recog-
nition, speaker recognition, handwritten digit recognition, personal identification,
biomarker detection, disease diagnosis, email spam detection, network security,
language learning, and power system optimization.

Suman et al. [579] review optimization algorithms based on simulated annealing
for single and multi-objective optimization problems. A probability calculation to
build the annealing schedule is discussed across various algorithms. The annealing
schedules can be used to obtain a Pareto set of solutions for multi-objective
optimization problems. A study of the computational results and performance
environment of simulated annealing can suggest improvements to the annealing
schedules. Simulated annealing takes less time than genetic algorithm because
it finds optimal solutions by point-by-point iteration rather than search over a
population of individuals. It can be considered as a randomized heuristic approach
to combinatorial optimization problems such as the travelling salesman problem.
It can efficiently accommodate multiple and conflicting design objectives in multi-
objective optimization problems such as integrated circuits layout. Gradient- and
Hessian-based methods are ineffective in signal processing applications involving
optimization problems with multimodal and non-smooth loss functions. The adap-
tive simulated annealing is an optimization tool in such non-linear optimization
problems. It can be applied to not only optimization problems but also in object
classification and pattern recognition where distance metrics can be the objec-
tive functions. Simulated annealing can be combined with genetic algorithms to
provide efficient solutions exploring the neighborhood of simulated annealing in
multicriteria problems where genetic algorithms adjust the parameters tuned for
each objective in each iteration. Such genetic algorithms can model the sample
population of interacting solutions while the simulated annealing accepts feasible
solutions with some probability determined by an annealing schedule.

Deb [149] discusses the challenges in multi-objective optimization especially
when the objectives are in conflict with one another. Then they give rise to tradeoff
optimal solutions with or without optimization constraints called Pareto-optimal
solutions. Evolutionary multi-objective optimization is the research area studying
such problems. Unlike gradient-based methods, evolutionary multi-objective opti-
mization does not require any derivative information to find the optimal solution. It
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can solve multimodal problems and normalize decision variables with an evolving
population utilizing the minimum and maximum values of objective and constraint
functions. It can incorporate both stochastic and deterministic operators that tend
to converge to desired solutions with high probability. Such operators include
selection, crossover, mutation, and elite preservation. The use of a data population
in the search mechanism of the evolutionary optimization is implicitly amenable to
embarrassingly parallel programming over different regions of the search space. It
can solve real-world optimization problems involving non-differentiable objectives
and discontinuous constraints, non-linear solutions, discreteness, scale, random-
ization in the computation, and uncertainty in the decision. A mathematical
concept called partial ordering defines the non-dominating Pareto-optimal solu-
tions in evolutionary multi-objective optimization. The convergence criteria of
evolutionary multi-objective optimization can be combined with mathematical
optimization techniques to produce dynamic optimizers. Such evolutionary multi-
objective optimization algorithms are explainable with respect to an application
such as spacecraft trajectory design. They are evaluated with performance measures
on the Pareto-optimal front such as error ratio, distance from reference set,
hypervolume, coverage, R-metrics, etc. Evolutionary multi-objective optimization
algorithms can deal with stochastiticies in problem parameters, decision variables,
feature dimensions, and convergence properties with a probabilistic scoring of the
objective and constraint function values finding imprecise solutions in uncertain
environments. Such procedures are called stochastic programming methods leading
to robustness frontier in the optimal solutions. It is practically solved with bi-level
optimization formulations in many areas of science and engineering.

Kelley [313] does a mathematical analysis of the necessary and sufficient condi-
tions in iterative optimization. The optimization algorithms for noisy objectives and
bounded constraints is summarized. Sra et al. [570] discuss the role of optimization
methods in machine learning. Stochastic gradient descent methods are summarized
for non-smooth convex large-scale optimization. Regret minimization methods are
proposed to select, learn, and combine features to optimize loss functions in machine
learning. The need for approximate optimization and its asymptotic analysis is given
for large-scale machine learning. Finally the relationship of robustness learning and
generalization error and its role in robust optimization with adversarial learning is
presented. Online optimization and bandit optimization are proposed as the methods
to deal with adversarial noise and label noise in supervised learning.

Koziel et al. [328] review the research area called computational optimization.
Computational optimization models and algorithms try to make optimal use of
available resources to maximize the profit, output, performance, and efficiency while
minimizing the cost and energy consumption. Search algorithms are the practical
tools to reach the optimal solutions in computational optimization. They have to
cope with uncertainty in real-world systems with robust designs for the objective
functions in the computational optimization. Convex optimization techniques that
are widely used in machine learning are special cases of computational optimization.
Satisfactory designs for robustness have to create optimization methodologies that
can make do with limited computational resources and analytically intractable
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objectives. Such optimization methodologies consist of model, optimizer, and
simulator components. Mathematical or numerical model is a representation of the
real-world problem. Optimizer is the algorithm finding optimal solutions. In the
search processes, optimizer generates and searches for new solutions from a known
solution. Evaluator or simulator is the computational tool that is efficient in the
utilization of the overall computing time and cost. It is typically involved in the
evaluation of objective function values. The no free lunch theorems for machine
learning and optimization state that there is no possibility of a single universal
model, optimizer, and simulator being applicable to all the variety of optimization
problems. Here optimization algorithms and their improvements can be catego-
rized into derivative-based methods or derivative-free methods, trajectory-based
or population-based methods, deterministic or stochastic methods, memoryless or
history-based methods, and local or global methods.

Derivative-free optimization algorithms are benchmarked with trajectory plots.
Moré et al. [442] propose data profiles as a benchmarking tool to analyze the
performance of derivative-free optimization solvers when there is a limited amount
of computational budget for the benchmarking problems. They can be combined
with convergence criteria to evaluate decreases in the objective function values with
expensive function evaluations in smooth, noisy, and piecewise-smooth problems.
Performance profiles evaluate solver performance for different levels of discrim-
inative accuracy. The dominant computational cost is due to number of function
evaluations per iteration. Performance profiles and data profiles are cumulative
distribution functions comparing different solvers. Unlike performance profiles, data
profiles express the computational budget to reach a given reduction in function
value in terms of simplex gradients for all the solvers. The data plots complement the
relative performance measures of performance plots with computational budgets.
Kyrola et al. [342] propose a parallel coordinate descent algorithm for minimizing
L1 regularized losses called Shotgun. An empirical study of Shotgun is performed in
Lasso and sparse logistic regression problems. It proves to be a scalable optimization
method.

Oliehoek et al. [473] present the game-theoretic solution concepts to guar-
antee progress in co-evolutionary algorithms. Co-evolutionary algorithms are an
approach to evolutionary computation that searches for optimal solutions to test-
based problems without the need to specify a fitness function. In game theoretical
adversarial learning, co-evolutionary algorithms can analyze the desired solu-
tion concept maximizing expected utility in learning in games, concept learning,
function approximation and classification, and density classification using cellular
automata. Pareto-co-evolution associates each test with a separate objective where
the set of non-dominated solutions is the specified solution concept. In multi-agent
systems, Nash equilibrium is the solution concept specified in two-player games.
It recommends a randomized mixed strategy for each player participating in the
game. A Parallel Nash Memory is presented by Oliehoek et al. [473] to analyze
the solution concept in asymmetric games. It recommends a best response strategy
from a partially observable Markov decision process constructed for finite extensive
form games. The extensive form representation shows a tree representation of the
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game theoretical interactions in an application. A co-evolutionary algorithm is
used not only as a search heuristic but also as a test of the memory mechanism
in Parallel Nash Memory. It is able to identify the best response strategies. The
Markov decision process is then solved using dynamic programming techniques
such as value iteration. Then the Parallel Nash Memory procedure reduces to
coordinate ascent or alternating maximization. Cai et al. [97] propose a multiplayer
generalization of zero-sum minimax games to zero-sum polymatrix games. A
polymatrix game is defined by a graph where the vertices are the players and
the edges are two-player games. Given a strategy profile for all the players, the
payoff for each vertex is the sum of the payoffs of all the games in its adjacency
list. The payoffs for all the players add up to zero. Different game theoretical
equilibria assign different payoffs to players in zero-sum polymatrix games. No-
regret learning algorithms are used to find the Nash equilibrium in zero-sum
polymatrix games. Bertsekas et al. [48] provide numerical methods for parallel
and distributed computation in game theoretical modelling. Dynamic Programming,
Markov decision processes, and stochastic optimization algorithms can be used
to design asynchronous iterative methods in game theoretical adversarial learn-
ing. Bisseling et al. [70] explain the bulk synchronous parallel model and its
message-passing interface for embarrassingly parallel programming in the scientific
computations for game theoretical adversarial deep learning. The computational
optimization cost of parallel programming with low-rank tensor approximations is
expressed as computation cost, communication cost, and synchronization cost.

Research into computational algorithms for optimization creates numerical
methods with best possible characterization of the machine learning features in the
solutions and then reduces an estimation of the modelling errors for the complexity
classes designing the optimal solutions. The amount of computational work involved
in realizing the algorithm depends on the information in the data type under
consideration. It comprises not only the computational work involved in obtaining
the information on initial data but also the amount of work involved in processing the
information in a machine learning model. Here game theoretical adversarial learning
analyzes the stability and robustness of a machine learning algorithm in relation to
the principal terms of the estimation error of computation. The genetic algorithms
in the game theoretical modelling can be combined with optimization techniques
like simulated annealing utilizing both line search and trust region methods to
craft the adversarial manipulations. In a study of the convergence properties of
the game theoretical optima, the genetic algorithms can also be replaced with
derivative-free stochastic optimization algorithms such as pattern search, multilevel
coordinate search, and differential evolution. Numerical computational methods
in evolutionary and differential game theory can augment the adversarial payoff
functions with partial differential state equations of a dynamical system to result
in stochastic control in the game theoretical interactions. Stackelberg Riccati
differential, difference, and algebraic equations of the game theoretical equilibria
can be modelled as the attack scenarios of adversarial learning with variational
and generative adversaries. Mathematical optimization under uncertainty can be
the view taken as a defense mechanism for the machine learning that is made
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robust by including optimization algorithms such as stochastic programming,
non-linear programming, fuzzy programming, adaptive robust optimization, and
data-driven robust optimization in its adversarial training procedures. A privacy-
centric enhancement of the learning capacity, randomization strategies, and payoff
functions in the game theoretical formulations of classifiers would affect the
reweighting regularizations and corresponding decision boundaries of the machine
learning algorithms provisioned as cloud services.

5.4.2.3 Low-Rank Approximations in Game Theoretical Adversarial
Learning

An adversary can explore the signal filtering, detection, and estimation in tensors to
express the machine learning robustness, fairness, explainability, and transparency.
Here tensor representations of the training data distributions in deep learning
networks explore the structure and context underlying data with learning and
optimization theories based on tensors algebra sensitivities of the loss functions
in machine learning. Tensor can be understood as a multidimensional array. Each
direction in a tensor is called a mode. The number of features in a mode is called
dimension. Rank of a tensor is the total number of covariant indices of a tensor. Rank
is the minimal number of modes in a tensor. Rank is independent of the number of
dimensions of the feature space underlying the tensor. Rank of a tensor is also called
order or degree of the tensor. In various applications, tensors are decomposed into
lower-order tensors using abstract algebra.

From the perspective of supervised machine learning, the tensor algebra can
be based in computational learning theories of machine learning models and data
mining tasks. In game theoretical adversarial learning, the applications of tensor
decompositions are of interest in the study of the bias-variance tradeoffs in the
adversarial payoff functions for mathematical optimization. We can attempt to
explain the tensor decompositions in the adversarial manipulations to learn about
the effects of algorithmic bias in deep learning. Subsequently robust optimization
theories can be proposed for randomization-based adversarial deep learning. Such
deep learning theories would also have application in the data mining tasks such
as novelty detection and feature extraction. Here factorization machines are a low-
rank approximation of the feature engineering in a sparse data tensor when most
of its predicted elements are unknown. Here granular computing is useful to create
data fusion rules on the feature representations of the training data. It can lead to
neuro-fuzzy systems and multi-agent systems in data mining.

We can further investigate the transfer of the statistically significant data
fusion rules between predictive data representations on the spatial resolution and
spectral resolution data distributions of the training manifolds. Complex structure
temporal data in cybersecurity can also be represented as dynamic multidimensional
graphs for positive unlabelled learning. Such graphs can be interpreted as both
a complex network and a complex tensor in data mining. They require the use
of distributed big data processing for graph mining and deep learning. Here we
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can do graph data mining in terms of graph sampling, graph partitioning, graph
compression, graph clustering, and graph search. We may scale the machine
learning with data sampling methods that can address the data dimensionality and
data granularity for multiprocessing and embarrassingly parallel batch processing
over tensors and graphs. The related work is in a study of sampling methods such as
undersampling, oversampling, uncertainty sampling, reservoir sampling, structural
sampling, etc. The big data solutions would involve data engineering operations
for caching, sorting, indexing, hashing, encoding, searching, partitioning, sampling
and retrieval in incremental models, sequence models, and ensemble models for
cost-sensitive learning with graphical models. For the Sensitivity analysis on big
data, we can analyze the prediction validation metrics that tune the deep neural
network parameters according to misclassification trends in structural datasets.
Common validation metrics include confusion matrix, precision-recall curve, ROC
curve, lift curve, and kappa statistic. Here we find literature on sequence learning
and discriminative learning for modelling the feature extractions and regression
residuals. For deep representation learning of the such data distributions, we can
decompose the historical data into recent, frequent, and supervised patterns. Here
we can experiment with discretization methods such as sliding windows, dynamic
time warping and time frequency methods like wavelets, and shapelets. We may
then treat data distributions as 1D vector or 2D tensors in deep learning to extend the
collaborative filtering on end-user feedback into data cubes acting as data structures
for distance metric learning.

We can also define synopsis data structures on tensors and graphs to derive the
machine learning features. The synopsis data structures would aid similarity search
and metric learning in complex network analysis. In this context we can explore
the causality and stationarity of Markov chains with expectation-maximization and
minimum description length principles for statistical inference. The analytics results
are applicable in data mining tasks such as clustering, classification, and association
analysis. We can extend them into feature learning for structured prediction, change
detection, event mining, and pattern mining with deep learning. Here the learnt
features can be one of sampled features, constructed features, extracted features,
inferred features, and predictive features. In terms of the modelling parameter
estimation, regularization parameters would do dimensionality reduction, while
learning parameters do predictive classification and regression. Combining all these
parameters in a data mining model would allow us to do sensitivity analysis of
the model for different data samples. The error minimization over various types
of parameters can be modelled as loss functions in classification models and cost
functions in optimization models for game theoretical adversarial deep learning.
The relevant deep neural networks include feature-based models and memory based
models. The choice between deep neural nets for data mining is determined by
statistical hypothesis testing methods in data analytics methods. Such methods
include maximum likelihood estimation, sequential hypothesis tests, shift invariant
methods, support vector machines, and tensor decomposition methods.

Grasedyck et al. [231] produce a literature review of low-rank tensor approxi-
mation techniques in scientific computing. A particular emphasis is put on tensors
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induced by the discretization of multivariate functions representing the solution
to high-dimensional partial differential equation. Higher-order tensors suffer from
the curse of dimensionality. So they have to be approximated with a compression
scheme such as the tensor decompositions in low-rank tensor techniques. Such
techniques have several applications such as in the approximation solutions of
multidimensional integrals, multidimensional convolution, partial differential equa-
tions, Schrodinger equations, stochastic automata networks, computational finance,
multivariate regression, wavelet analysis, and adversarial deep learning. Some of the
popular low-rank tensor decompositions to improve the robustness of adversarial
learning and efficiency of deep learning are CP decomposition, Tucker decomposi-
tion, tensor train decomposition, and tensor networks. The computational algorithms
finding the decompositions include iterative methods combined with truncation,
optimization-based algorithms, discretization algorithms, dynamical algorithms,
successive rank-1 approximation, and blackbox approximation. They can be used
to modify, improve, and study the convergence of the alternating least squares
search and optimization procedure in the adversarial deep learning with variational
adversaries. Thus they can produce low cost adversarial payoff functions for sparse
attack scenarios. In this context, we can derive robust classification models in the
game theoretical adversarial learning frameworks. We can conduct a study of the
existing adversarial cost functions with respect to robustness bounds and privacy
budgets in the sparse representation learning models for adversarial learning. Here
we can also formulate data mining extensions of my adversarial learning into web
mining, time series analysis, cyber-physical systems autonomous navigation and its
manipulation, multimedia pattern recognition, and network security analytics. Such
game theoretical modelling is useful in the adversarial deep learning over multi-
modal, weakly supervised, noisy, sparse, linked, streaming, and multi-structured
datasets. We can apply resultant sampling dynamics into the privacy-preserving
data mining and fuzzy signal processing of noisy, sparse, soft matching patterns as
feature embeddings in cybersecurity. The cybersecurity solutions can be provisioned
as cloud services proposing security orchestrations in service-oriented architectures.
The relevant machine learning paradigms include incremental learning, online
learning, reinforcement learning, and utility learning on stream data. The related
work is in data stream mining with class and cost distribution information for
features, anomalies, novelties, changes, and communities in the stream.

Nouy [466] provides a survey of low-rank tensor methods to approximate
functions expressed as two-order tensors for vector-valued functions, or higher-
order tensors for multivariate functions. The low-rank approximations in vector-
valued functions are computed by projection methods based on samples of the
function or on equations satisfied by the function. In multivariate functions, the low-
rank approximations correspond to model order reduction methods. They include
reduced basis, proper orthogonal decomposition, Krylov subspace, balanced trunca-
tion methods, and proper generalized decomposition. Such models have application
in sensitivity analysis, uncertainty quantification, and non-linear optimization in
game theoretical adversarial learning. Model order reduction methods can act
as sparse approximation methods selecting a dictionary of functions that exploit
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prior information on adversarial manipulations on low-rank manifolds. Depending
on the computational complexity of these methods in dealing with the curse
of dimensionality, there have been evolved several notions of ranks in the low-
rank approximations of the multivariate functions applicable to machine learning.
The low-rank approximations can be obtained by tensor completion methods
that reconstruct the tensor by the minimization of a least squares loss function.
Their dual approaches can produce game theoretical regularizations of the rank
minimization problems. A challenging question on computational complexity of
such approaches is the number of samples required for a stable reconstruction
of the low-rank approximations. Low-rank truncation methods can systematically
limit the storage and computational complexity in the algebraic operations. They
require a solution of optimization problems on a low-dimensional manifold with
greedy constructions of the low-rank approximations. The resulting adversarial
algorithms can be analyzed as inexact versions incorporating data perturbations
in the machine learning. Characterizing the game theoretical adversarial learning
in such approximation classes yields a class of adversarial loss functions with
algebraic or exponential convergence rates. Here dictionary learning produces a
dictionary of filter elements to reconstruct a highly redundant representation of
the adversarial data distribution with a sparse coding models in the data-driven
optimization & inference problems. As a computational machine learning paradigm,
dictionary learning can analyze the multimodal feature generation and multivariate
optimization problems. To characterize the data signals in experimental data, we
could also estimate the Lyapunov spectra exponents and attractor networks with
deep learning models and predictive analytics processes. We can explore the
spectral signal processing techniques for describing the complex dynamics in game
theoretical interactions as features extracted on the underlying data distribution
generating and validating the adversarial manipulations. Further, we can reconstruct
the differential equations underlying game theoretical models as dynamical systems
of the training data distributions. An optimization landscape analysis of the data
distributions with tensor indexing structures on static and dynamic data can reduce
the communication cost and increase the load balancing in distributed memory
systems for embarrassingly parallel processing of the game theoretical adversarial
deep learning. The iterative updates to the low-rank approximations can be obtained
from tradeoffs between learnability and robustness of supervised deep learning.
We can characterize the cybersecurity problems of discrimination in the presence
of adversarial noise in terms of a set of robust points where data representations
showcase a type of problem-specific error mitigation mechanism in the classifier
design. Such an arrangement would also allow for exploring multiple choices
of variational encodings of the learnable decision boundaries in game theoretical
modelling.

Filisbino et al. [195] model multidimensional image databases with tensor
decomposition. Ranked tensor components act as a dimensionality reduction tech-
nique. They can be used to estimate the covariance structure of a database with a
concurrent subspace analysis. They can also compute the discriminant weights of
separating hyperplanes in it through a discriminant principal component analysis.
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Such non-linear dimensionality reduction generalizes adversarial machine learning-
based in linear dimensionality reduction techniques such as principal component
analysis (PCA), linear discriminant analysis (LDA), and multidimensional scaling
(MDS) solving for a linear optimization criterion. They are classified as subspace
learning methods in machine learning. A tensor representation for images can
be proposed with subspace learning methods such as singular value decomposi-
tion method (SVD), concurrent subspace analysis (CSA), multilinear independent
components analysis (MICA), multilinear principal component analysis (MPCA),
tensor discriminant analysis (TDA), and tensor rank-one decomposition. Such
image representations have application in face and gait recognition, digital number
recognition, signal processing, content analysis, and anomaly detection in data
mining. The analytics task is to identify the most discriminant “directions” in the
tensor analysis applied to a particular classification task. This is a feature ranking
method in a projected subspace for classification that identifies the most discrim-
inant “directions” rather than the highest variance features in the data samples.
The machine learning models checks the alignment of the ranked tensor principal
components with separating hyperplane directions determined by the corresponding
discriminant weights. Kernel methods such as support vector machines can create
the hyperplane directions.

Srebro et al. [571] approximate a target matrix with a weighted low-rank matrix.
An expectation-maximization (EM) procedure parameterizes the approximation that
may not have a closed-form solution. The weighted low-rank matrix is used in
training a linear factor model, a logistic regression, and a mixture-of-Gaussians
noise model. Singular value decomposition (SVD) is one such approximation
where the Frobenius norm to the target matrix is minimized. The weighting of the
approximation is influenced by adversarial noise leading to a better reconstruction
of the underlying probabilistic structure and statistical distribution in the data. The
weights can also arise out of constraints on the approximation encoded as features
of varying importance. They can be also due to the noise variance and algorithmic
bias in the training data. Here game theoretical modelling can be used to optimize
the approximation and weighting when the noise model associated with the matrix
elements are unknown. Its results can be benchmarked against the comparable
alternating-optimization methods. The alternating-optimization methods view the
weighted low-rank approximation problem as a maximum-likelihood problem with
missing values. The target matrix weights are mapped to a 0/1 configuration where
observed elements have weight 1 and missing elements have weight 0. The weighted
cost of a matrix is equivalent to the log-likelihood of the observed elements. An
EM algorithm updates a parameter matrix in the expectation step to maximize the
expected log-likelihood of a data matrix where the missing values are imputed
according to a distribution imposed by the current estimate of the log-likelihood.
In the maximization step, the data matrix is reestimated as a data-driven weighted
low-rank approximation. Such a probabilistic system can be extended to several
target matrices in an EM learning framework. The maximum likelihood is then
estimated on a low-rank approximation of their average if the target matrices can
be fully observed. If some of the target matrices are not fully observed, the EM
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algorithm can be used to fill in the missing values in the target matrices that are in
turn estimated as a low-rank approximation. The iterative updates to the target and
weight matrix can be based on variational bounds on estimating the log-likelihood.
Therefore we can mix weighted low-rank approximation iterations and variational
bound iterations while still ensuring convergence for both.

Tsourakakis [610] improve the Tucker decomposition to analyze multi-aspect
data and extract latent factors. A new sampling algorithm computes the decom-
positions in tensor streams where the tensor does not fit in the available memory.
The Tucker decomposition is formulated as a non-linear optimization problem.
It is solved with a computationally expensive alternating least squares (ALS)
optimization algorithm. The ALS procedure is sped up with randomized algorithms
that select columns according to a biased probability distribution for tensor decom-
positions. They can be interpreted as generalizations of low-rank approximation
methods. Further the randomized algorithm is amenable to embarrassingly parallel
processing on tensor streams. Such low-rank approximations represent statistically
significant portions of the training data obtained from real-world processes. They
have application in data mining tasks such as network anomaly detection. Here
outliers are detected relative to the subspace spanned by the principal components
in the training data.

Zou et al. [717] propose sparse principal component analysis (SPCA) where an
elastic net produces modified principal components with sparse loadings. Principal
component analysis is conducted as a regression-type optimization problem. Such
a SPCA has applications in handwritten zip code classification, human face
recognition, gene expression data analysis, and multivariate data analysis. Richtarik
et al. [517] benchmark eight different optimization formulations for SPCA and
their efficient parallel implementations on multicore, GPU, and cluster. The robust
formulations use objective functions that are functions of the covariance matrix.
An alternating maximization method is the optimization algorithm. It measures
data variance using L1 and L2 norm. Anandkumar et al. [14] propose robust
decomposition of a tensor into low-rank and sparse components. The proposed
method does a gradient ascent on a regularized variational form of the eigenvector
problem. The regularized objective satisfies convexity and smoothness properties
for optimization. Empirical moments in probabilistic are represented as higher-
order moment tensors to be decomposed. Then corruptions on the moments are
assumed to occur due to adversarial manipulations or systematic bias in estimating
the moments. The experimental results are compared with robust matrix PCA on
flattened tensor and matrix slices of the tensor. They have applications in image
and video denoising, multitask learning, and robust learning of latent variable
models. Romano et al. [522] analyze the robustness of a classifier to adversarial
perturbations by using the theory of sparse representations. Bounds are derived on
the performance of the adversarial learner’s properties and structure in regression
and classification. The bounds are shown to be a function of the sparsity of the
signal and the characteristics of the filters/dictionaries/weights on the incoming
signals. They unveil the data model governing the sensitivity to adversarial attacks.
Adversarial regularization mechanism based on sparse solutions and incoherent
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dictionaries is proposed to improve the stability of the robust learner dealing with
adversarial noise. The relation of the intrinsic properties of the signal to the success
of the classification task is explored as a generative model. The stability of the
classification model is studied in both binary- and multi-class settings.

Kreutz-Delgado et al. [331] develop data-driven algorithms for domain-specific
dictionary learning. They perform maximum likelihood and maximum a posteriori
estimation. Priors are obtained from sparse representations of environmental signals
matched with a dictionary as concepts, features, and words. In experimental evalua-
tion the proposed dictionary learning has better performance in signal-to-noise ratios
than independent component analysis methods. Images encoded with a dictionary
have higher compression (fewer bits per pixel) and higher accuracy (lower mean
square error). The dictionary provides succinct sparse representation for most
statistically representative signal vectors in the data-generating environment. The
statistical structure in the generated signals spanning a learning environment is
represented with a set of basis vectors spanning a lower-dimensional manifold
of meaningful signals in a dictionary. The dictionary learning maximizes the
mutual information between the basis vectors and the generated signals. Projecting
the signals onto the dictionary results in noise reduction and data compression.
The tensor decomposition problem in dictionary learning is to produce low-rank
approximations completing the dictionary. The signal representation problem as
an entropy minimization elaborates the statistical structure in data distributions. It
can also be viewed as a generalization of vector quantization. Stochastic generative
models can be developed in deep learning to solve such problems. A combination
of expectation-maximization and variational approximation techniques can also be
used in the dictionary learning.

Luedtke et al. [398] propose adversarial Monte Carlo meta-learning to construct
optimal statistical estimation procedures in problems like point estimation and
interval estimation. A two-player game is formulated between Nature and a
statistician. Neural network parameters are repeatedly updated across the game
interactions to arrive at a representation of the finite observed samples in numerical
experiments. Thus adversarial learning can be incorporated into frequentist and
Bayesian approaches of measuring the machine learning performance. In frequentist
approaches adversarial learning can solve for the worst-case performance of
maximum likelihood estimators expressed as a minimaxity optimization criterion.
In Bayesian approaches adversarial learning can approximate posterior probability
distributions where minimax optimization derives Bayes procedures from least
favorable mixtures of priors. Here maximum empirical risk of a statistical procedure
can be determined from its least favorable distribution. Minimax adversarial learn-
ing algorithms iteratively update such risks to improve of machine learning models.
New statistical procedures can be constructed for data mining tasks in a cost-
effective manner using deep adversarial learning. For instance, Zhou et al. [711]
present a sparse relevance vector machine ensemble for adversarial learning. During
model training, it is able to model adversarial attacks with kernel parameters.
A concept drift in the directions of kernel parameters minimizes the likelihood
of positive (malicious) data points. It is used in the learning of weights in a
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relevance vector machine. Here game theoretical modelling can be said to be
solving a constrained optimization problem. Such optimization can be contrasted
with non-game-theoretic methods making assumptions about the distribution of
the adversarially corrupted data, available computing resources, and adversary’s
knowledge of the targeted machine learning model. Here relevance vector machine
(RVM) ensemble acts as a sparse linearly parameterized model for adversarial
learning. RVM has a prior over the weights to be estimated expressed as a set of
hyperparameters associated with the weights. Training data points associated with
non-zero weights are called relevance vectors. Yin et al. [688] limit the cost of
constructing adversarial manipulations with sparse feature attacks in a non-zero sum
game with budgeted adversaries. The non-zero sum game solves a robust regression
problem.

Gemulla et al. [214] factor large matrices in an iterative stochastic optimization
algorithm extending gradient descent. The low-rank approximation is produced by
minimizing a loss function that measures the difference between original input
matrix and product of the factors returned by the factorization algorithm. A stratum
loss is defined on the loss computed on each stratum that expresses the input
matrix as a union of pieces. The convergence criteria are studied with reference
to stochastic approximation theory and regenerative process theory. The gradient
descent variant is specialized to a matrix factorization algorithm that can be fully
distributed and run on web-scale datasets. Thus low-rank matrix factorization is
very useful in big data analytics involving massive datasets on the Internet. Such
analytics tasks discover and quantify the interactions between two given entities in
“dyadic data” found in applications such as topic detection, keyword search, and
news personalization. The training loss can be regularized with several factorization
methods suitable for the emerging distributed processing platforms. He et al. [265]
propose neural factorization machines for categorical predictors with highly sparse
binary features. NFM model the feature interactions representing non-linear and
complex structure in real-world data. Deep neural networks are able to model the
higher-order feature interactions as low-rank tensors. They are able to augment and
subsume combinatorial features combining multiple predictor variables in machine
learning feature engineering. The deep learning models are able to generalize to
unseen feature combinations by embedding high-dimensional sparse features into a
low-dimensional latent space. The NFMs have application as embedding methods
for sparse data prediction in online advertising, microblog retrieval, and open
relation extraction. They can learn non-linear feature interactions by embedding the
latent feature vectors into various deep neural network architectures constructed
to improve learning and generalization ability. Thus they are better than linear
models to learn feature interactions such as higher-Order FM and Exponential
Machines. In classification, regression, and ranking tasks, they can regularize loss
functions such as hinge loss, log loss, pairwise personalized ranking loss, and
contrastive max-margin loss. Therefore factorization machines are suitable for
modelling high cardinality and sparsely observed adversarial data distributions.
They can represent datasets found in text analysis and recommender systems with
a low-rank approximation of a matrix or a tensor. They enable a variety of business
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analytics tasks involving sparse data such as recommendation and prediction. He et
al. [266] propose adversarial personalized ranking (APR) to enhance the robustness
of a recommender model. APR enhances the feature ranking methods used in top-k
recommendation with adversarial training. Bayesian personalized ranking (BPR) is
taken as the learner participating in a minimax game with an adversary who crafts
adversarial perturbations on model parameters to maximize the BPR objective func-
tion. Adversarial perturbations are obtained from embedding vectors of users and
items contributing to collaborative filtering. Adversarial training is able to improve
the generalization error of personalized ranking in robust recommender models.
The top-k recommendation lists are evaluated with performance measures such
as hit ratio (HR), normalized discounted cumulative gain (NDCG). The statistical
significance testing in personalized ranking lists for multimedia recommendation is
performed with one-sample paired t-test. Making a recommender model resistant to
adversarial examples results in a robust and stable predictive function improving
the generalization performance in information retrieval. APR can be combined
with NFMs to support recommendation scenarios such as cold-start, context-aware,
session-based recommendation. It has application in information retrieval tasks such
as text retrieval, web search, question answering, and knowledge graph completion.

5.4.2.4 Relative Distribution Methods in Adversarial Deep Learning

In computational learning theory, distributional learning theory is a framework
for learning distributions from samples. It can be exploited in game theoretical
adversarial deep learning for designing approximation algorithms targeting machine
learning models. We summarize relevant ideas in distance metric learning and deep
metric learning.

Goldberger et al. [223] propose a learned distance metric used within a stochastic
neighbor selection rule in nearest neighbor methods for classification. It is a low-
rank representation of the data that is able to reduce the storage and search costs
in forming the nearest neighbors. The leave-one-out performance is the evaluation
measure optimized on the training dataset. The distance metric produces a distance
matrix on training dataset that is symmetric positive semidefinite matrix used in the
calculation of a Mahalanobis distance. It estimates a transformation of the input
space where nearest neighbor classifications performs well. The stochastic neighbor
selection rule gives soft assignment of neighbors in a supervised learning objective
function. Maximizing the supervised learning objective function is equivalent to
minimizing the L1 norm between the true class distribution in the underlying data
and the stochastic class distribution induced on the training dataset. Maximizing the
objective corresponds to error free classification of the entire training dataset. The
proposed low-rank distance metric is comparable to dimensionality reduction tech-
niques like factor analysis, principal components analysis, independent components
analysis, linear discriminant analysis, and relevant components analysis. It solves
a constrained optimization problem without making parametric assumptions about
structure of class distributions and decision boundaries.
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Chopra et al. [128] construct a trainable similarity metric for recognition and ver-
ification applications. The similarity metric learns a function to map input patterns
into target space such that L1 norm in the target space approximates the semantics
distance in the input space. The mapping function is architected as a convolutional
neural network that is robust to geometric distortions. A discriminative loss function
minimizes the similarity metric for a face database with high variability in pose,
lighting, expression, position, and artificial occlusions. The loss function is derived
from energy-based models (EBMs). In comparison to generative models, EBMs
do not need to estimate normalized probability distributions over the input space.
Such approaches to recognition tasks are suitable for datasets where the number of
categories is large and the number of samples per category is small.

Xing et al. [666] propose a distance metric learning problem over (dis)similar
relationships side information in data points. The distance metric learning is framed
as a convex optimization problem with efficient solutions. The learned metric is
trained over the full feature space of the inputs rather than a feature embedding
derived from the training dataset. So it generalizes more easily to previously
unseen data. Experimental evaluation is carried out on variants of K-means such
as constrained K-means, K-means + metric, and constrained K-means + metric.

Ye et al. [682] propose instance specific distance metric learning in nearest
neighbor methods. It assigns multiple metrics to different localities in the training
data. The proposed Instance Specific METric Subspace (ISMETS) spans the metric
space in a generative manner. It induces a metric subspace for each instance
by inferring the expectation over the metric bases in a Bayesian manner. The
statistical inference is done according to a variational Bayes framework. The
posterior demonstrates advantages of interpretability, effectiveness, and robustness.
In multimodal data analytics, such a distance metric learning is comparable to
constrained convex programming, and information-theoretical approaches such
as maximum entropy modelling. It can predict distance metrics for unseen test
instances inductively as well as transductively. It can incorporate parallelization
techniques and approximation tricks.

Shen et al. [553] propose a boosting-based technique for learning a quadratic
Mahalanobis distance metric. Semidefinite programming solution is given to the
boosting. It expresses positive semidefinite matrices as a linear combination of
trace-one rank-one matrices. They act as weak learners within an efficient and
scalable boosting-based learning process. The proposed semidefinite programming
can incorporate various types of constraints for rank aggregation in classification
and regression loss functions. Such a distance metric learning is closely related to
subspace methods like principal component analysis, linear discriminant analysis,
locality preserving projection, and relevant component analysis. They can be
interpreted as projections of data from input space to a lower-dimensional output
space while preserving the neighborhood structure of the training dataset in an
information-theoretical sense. Here supervised distance metric learning utilizes
side information presented as constraints on the optimization problem. A sparse
greedy approximation algorithm solves the optimization problem in an AdaBoost-
like optimization procedure for semidefinite programming.
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Sriperumbudur et al. [572] analyze integral probability metrics (IPMs) as
measurable functions of distance between two probability distributions. IPMs a
generalization of popular distance metrics such as KL divergence, Φ−divergences,
Hellinger divergences, Renyi divergences, Kantorovich metric, Fortet-Mourier met-
ric, Stein discrepancies, Lipschitz distance, total variation distance, Fisher distance,
and kernel distance. Their empirical estimators are useful in machine learning to
compute the distance between training and adversarial data distributions. In binary
classification IPMs are applicable to the empirical risk and smoothing optimization
between class-conditional distributions. Thus badness of a statistical fit to the
training dataset can be measured by probability divergence measures such as IPMs.
It has applications for model selection in classifier design and density estimation in
adversarial attack scenario. It has implications for the convergence criteria of game
theoretical adversarial learning in particular and generative adversarial learning in
general. An appropriate choice of the probability divergence measure gives a statis-
tical significance test statistic on alternative hypothesis for the adversarial training,
an efficient loss function to target in the adversarial learning, and the convergence
behavior for game theoretical modelling. In this context, the mathematics around
“distance,” “metric,” and “divergence” between adversarial datasets and training
datasets is of interest to model relative distributions obeying the triangle inequality
in game theoretical adversarial learning.

Liu et al. [380] survey transfer metric learning to analyze multimodal data
in multimedia applications where the target domains are in classification and
searching tasks for data analytics. In contrast to transfer metric learning algorithms,
distance metric learning algorithms rely on the label information in the target
domain for model training. Transfer metric learning can deal with limited label
information with multiview learning. The multimodal feature representations for
prediction with transfer learning have application in multimedia such as sentiment
analysis, opinion mining, deception detection, Internet fraud detection, and online
product searching. The goal of transfer learning is improving the learning per-
formance for tasks/domains of interest by applying knowledge/skills learnt from
related tasks/domains. Here transfer metric learning allows knowledge transfer
with distance estimation for both linear and non-linear target metrics to guide
multimodal classification and multimedia search applications in the target domains.
Few labelled samples are used in combination with large amounts of unlabelled
datasets in the multimodal classification loss functions. Further a ranking based
loss function analysis is conducted for the multimedia search applications. SIFT
features such as visual words, wavelet texture, and textual tags are derived as the
multimodal features. The divergence minimization for distance computation on
multiple domains is categorized as representation-based divergence minimization,
distance-based divergence minimization, and Kernel-based divergence minimiza-
tion. The divergence minimization problems are solved with optimization methods
such as canonical correlation maximization, Burg matrix divergence minimization,
Bregman divergence minimization, log-determinant divergence minimization, and
Von Neumann divergence minimization.
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Bellet et al. [44] survey the utility of distance metric learning in machine
learning, pattern recognition, and data mining. Metric learning is a research area
that automatically learns the distance metrics from data. Supervised Mahalanobis
distance metric learning is a baseline for comparison with the learnt metrics.
Variants of metric learning algorithms include those for non-linear metric learning,
similarity learning, edit distance learning, local metric learning, multitask metric
learning, and semi-supervised metric learning. In the context of adversarial learning,
metric learning allows us to derive generalization guarantees to the machine
learning model’s performance. Kulis et al. [334] provide another survey of tuning
a learned distance metric to a particular task in data analytics in a supervised
manner. Supervised metric learning is based on labelling information regarding
the distances of the transformed data. It is of special interest in scaling the data
analytics to high-dimensional feature spaces in computer vision, image retrieval,
face recognition, pose estimation, text analysis, music analysis, program analysis,
and multimedia. Metric learning has extensions in non-linear regression, feature
ranking, dimensionality reduction, database indexing, and domain adaptation. Deep
learning networks have an important role to play in the development of metric
learning methods.

Hoffer et al. [277] propose a triplet network deep learning model to learn
useful representations by distance comparisons. It is applied in the learning of a
ranking in image information retrieval. The similarity function is induced by a norm
metric embedding for multi-class-labelled dataset. A deep network is the embedding
function. It finds the L2 distance between inputs of two labels and the embedded
representation of a third label input acting as a reference label. The neural network
architecture allows this analytics task to be expressed as a two-class classification
problem where the objective of the loss function is to learn a metric embedding
that measures the proximity to the reference label. A back-propagation algorithm
updates this learning model. The model learns comparative measures rather than
class labels between labelled data distributions. This learning mechanism can be
leverages to classify new data sources with unknown labels.

Chen et al. [120] propose a discriminative metric-based generative adversarial
networks (DMGANs) that use probability-based methods for generating real-like
samples in image synthesis tasks. A generator is trained to generate realistic samples
by reducing the distance between real and generated samples. The discriminator
acts as a feature extractor that is learning a discriminative loss constrained by an
identity-preserving loss. The discriminative loss maximizes the distance between
real and fake samples in the feature space. The identity-preserving loss calculates
distance between samples and their centers. The centers are updated during the
GAN training. It maps the generated samples into a latent feature space used to
label the samples. Thus DMGAN recovers the implicit distribution of the real data.
It learns representative features in a transformed space. The proposed identity-
preserving loss can be contrasted with triplet loss and contrastive loss that learn
intra-class variations by constraining the distance between their samples. Thus
GANs can be improved from the perspective of deep metric learning. Such GANs
have applications in image generation, image super-resolution, image-to-image
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translation, object detection, and face recognition. By deriving back-propagation
signals through a competitive process, GANs do not require intractable probabilistic
computations unlike deep Boltzmann machines and generative stochastic networks.

Nowozin et al. [468] interpret GANs as generative neural samplers where
probabilistic models implement the sampling. Such probabilistic models produce a
sample from a random input vector where the probability distribution is defined by
the neural network weights. The GANs can produce samples but cannot compute
their likelihoods. From the perspective of estimating likelihoods, the proposed f-
GAN generalizes adversarial training methods in GANs to a variational divergence
estimation process. f-GAN uses a f-divergence to train the generative neural
samplers. The f-divergence can be replaced with various choices of divergence
functions resulting in changes to the training complexity and the quality of the
obtained generative models. A decision threshold is used to classify the gen-
erator samples. The proposed variational divergence minimization can perform
sampling, estimation, and likelihood evaluation with GANs. It is comparable to the
combination of mixture density networks with recurrent neural networks to yield
generative models of handwritten text. It improves existing probabilistic models for
deep learning such as real-valued neural autoregressive density estimator, diffusion
probabilistic models, and noise contrastive estimation. It can be combined with
VAEs for efficient inference. It can extend optimization objectives such as the kernel
maximum mean discrepancy with total variation metric, the Wasserstein distance,
and the Kolmogorov distance.

Fedus et al. [184] view GAN equilibrium as Nash equilibria rather than diver-
gence minimization between the training distribution and the model distribution. So
a game theoretical modelling of the GAN equilibrium is shown to improve minimax
GANs in terms of sample quality and diversity. Adversarial cost functions are
combined with the minmax objective of the game as non-saturating regularization
functions so that generated samples are produced with a high probability of
being real. A gradient penalty on data manifold analyzed from the perspective of
regret minimization is chosen as the non-saturating regularization objective. A no-
regret algorithm approximates the discriminator in GAN to be linear around the
data manifold. The trajectory to the Nash equilibrium is does not correspond to
gradually minimizing the information divergence. Instead the GAN training dynam-
ics optimize different distance metrics regularized by adversarial cost functions.
Therefore we can measure information divergence between minimal representations
of training data and adversarial data feature embeddings with deep metric learning-
based adversarial cost functions. We may also enforce a prior distribution on the
latent factors for coherent data generation in generative learning.

Bojanowski et al. [76] introduce Generative Latent Optimization (GLO) to train
deep convolutional generators using reconstruction losses. GLO is an alternative
to the adversarial optimization scheme in GANs. GLO allows linear interpolations
in the noise space into semantic interpolations in the image space, allows linear
arithmetic in the noise space, and predicts target images from learnable noise
vectors. In the experimental evaluation, GLO is compared with principal component
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analysis (PCA), variational autoencoders (VAE), and GANs. The mode collapse in
GANs is investigated with a reconstruction criterion.

Bauso et al. [36] formulate distributionally robust games using f-divergence
in multiplayer games between training distribution and adversarial distribution
scenarios. Each player has to contend with a worst-case distribution called the
adversarial distribution. Bregman learning algorithms speed up the computation of
robust equilibria. The adversarial learning scenarios are selected by nature assumed
to be a virtual player solving a non-convex non-concave objective function. A triality
theory is proposed for the dimensionality reduction of the robust game. A swarm
algorithm estimates the expected gradient solving for adversarial manipulations.

Kamath et al. [307] study the loss functions in the problem of distribu-
tion approximations in statistical learning where a distribution is approximated
from its samples. In compression applications the Kullback-Leibler divergence
is recommended as the relevant loss function. In classification applications the
L1 and L2 losses are recommended as the relevant loss function. In generative
learning the f-divergences are recommended as the relevant loss function. Here
the minmax cumulative loss for a given loss function and the optimal estimator
achieving has practical importance in training machine learning models. Sugiyama
et al. [576, 577] discuss the approximation of two probability distributions from their
samples. This is a problem with implications for statistics, information theory, and
machine learning. Kullback-Leibler divergence of maximum likelihood estimation
models is compared by the authors with Pearson divergence, L2-distance for
efficiency, robustness, and stability. Here proper distances must satisfy the triangle
inequality that is an extension of the Pythagorean theorem to various geometric
metric spaces. They must not be sensitive to outliers. They must not be numerically
unstable. They must have a relative density ratio function that is bounded and
computationally efficient. The authors survey several data analytics applications
utilizing the divergence measures such as change-point detection, salient object
detection, and class balance estimation in several data mining tasks such as feature
extraction, clustering, independent component analysis, causal feature learning,
independent component analysis, and canonical dependency analysis. Direct diver-
gence approximation in combination with dimensionality reduction is said to be a
better strategy in experiments rather than naive density estimation of distributions
from samples. The difference between such statistical distances and information
divergences is their effect on the convergence criteria in the sequences of learned
probability distributions estimated by generative models and variational methods.
The divergences being optimized are typically discontinuous with respect to the
generator’s parameters. So novel ways for practically estimating the infimum and
supremum of the relative density ratio function are to be devised in adversarial deep
learning-based on metric geometry, applied probability, and statistics.
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5.5 Defense Mechanisms in Adversarial Machine Learning

Zhang et al. [690] propose defense mechanisms in adversarial data manipulations
at test time. Such evasion attacks obfuscate the content of spam emails and
exploit code embedded in malware samples and network packets. Classifier security
is found to worsen with feature selection. So security properties of the feature
selection are investigated against evasion attacks. A wrapper-based implementation
is proposed to incorporate the adversarial manipulation strategies in spam and
malware detection with adversary-aware feature selection in classifiers with both
linear and non-linear discriminant functions. In security-sensitive data mining
tasks, selecting the relevant subset of features improves classifier’s generalization
performance, reduces computational complexity of learning, and allows better
understanding of the modelling detail. During the feature selection process, clas-
sifier security is modelled as a regularization term to be optimized along with the
classifier’s generalization capability. The distance between manipulated sample and
legitimate sample and constraints on the classifier and feature representations is
used to develop efficient adversarial algorithms in blackbox attack settings. Security
evaluation of the adversarial classifier is conducted against the attacks of increasing
strength. It is correlated with a figure of merit called hardness of evasion. Here
L1 norm promotes sparsity in the adversarial manipulations in contrast to L2
norm. Countermeasures for evasion attacks explicitly incorporate knowledge of the
adversarial manipulations into learning algorithms. They include game theoretical
adversarial learning algorithms, probabilistic models of the hypothesized attack
strategy, combination of weaker classifiers in multiple classifier systems, and data
sanitization based on robust statistics.

Biggio et al. [55] conduct a security evaluation of support vector machines
(SVMs) incorporated in real-world security systems. They are involved in an arms
race in security application domains such as malware detection, intrusion detection,
and spam filtering with increasing complexity and exposure. Thus machine learning
patterns must be incorporated into the security applications to complement tradi-
tional signature-based detection on unfiltered samples and unpopular attacks. The
attack patterns are categorized as poisoning attacks that mislead the learning algo-
rithm, evasion attacks that evade detection at deployment time, and privacy breaches
that gain information about the modelling details. Here adversaries manipulate data
to exploit vulnerabilities in learning algorithms that make stationarity assumptions
in performance evaluation-based techniques like cross-validation, bootstrapping,
and empirical risk minimization. Adversary-aware designs of SVMs are designed
as the countermeasure techniques. A differential privacy framework is proposed as
a countermeasure for privacy attacks. A survey of the arms race between adversary
and classifier is detailed in terms of the machine learning features being exploited in
image spam classifiers and outlier detectors in computer networks. In this context,
adversarial learning problems can be considered as a proactive arms race where the
classifier anticipates the adversaries’ moves. Security evaluation of the adversarial
learning solutions is conducted with application-dependent criteria represented
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within the hypothesized attack scenarios. Attack impact is evaluated in terms of
bounded loss functions on labelled datasets that act as aggregated statistics of
sensitive data.

Biggio et al. [53] view poisoning attacks as a type of outliers in training data.
Weighted bagging ensembles are then proposed as countermeasures against poison-
ing attacks. Thus the problem of designing robust classifiers is formulated in terms
of mitigating outlier samples in training data by reducing the variance component of
estimation or classification or regression error. Thus robust statistics can reduce the
effect of poisoning attacks in training data. Cybersecurity applications are shown
in spam filtering and intrusion detection. The intrusion detection is focused on
web applications in security-critical environments like medical, financial, military,
and administrative systems. The objective of the adversary submitting malicious
queries is to access confidential information or cause a denial of service. Biggio
et al. [61] design robust classifiers by generating a data distribution for adversarial
classification tasks from a maximum likelihood estimation model. Cybersecurity
applications are in biometric identity verification and spam filtering. The class labels
for supervised learning are malicious (M) or legitimate (L) to classify the user as
accessing a computer system as “genuine” (L) or “impostor” (M). Spam detection
baselines for a naive Bayes text classifier are good word insertion (GWI) and bad
word obfuscation (BWO) against text-based spam filters. Countermeasures modify
classification algorithms in their training phase. The baselines in biometric traits
are spoof attacks against multimodal biometric systems for identity verification.
They are considered to be exploratory integrity attacks. Performance is evaluated
using the receiver operating characteristic (ROC) curve, which shows the percentage
of accepted genuine users (genuine acceptance rate, GAR) as a function of the
percentage of accepted impostors (false acceptance rate, FAR), for all values of the
decision threshold.

Dekel et al. [151] present robust classifiers that approximate the learning problem
with linear programming that is analyzed to provide statistical risk bounds on the
divergence between training and classification data distributions. The statistical
learning in a perceptron then deals with the online learning variant of the problem.
A L∞ regularization scheme is used to balance sparsity and density in the classifier
learning susceptible to adversarial feature-corrupting noise. Minimizing empirical
risk is formulated as a combinatorial optimization problem. The online classifier
is restricted to a hyper-cube to control its complexity. Test instances are corrupted
by a greedy adversary. Computational tradeoffs are seen on the robustness of the
classifiers training on sparse and dense data. Xu et al. [669] demonstrate equivalence
between regularized support vector machines (SVMs) and robust optimization
formulations. Robustness is said to be the reason for generalization performance
in SVMs for a class of non-boxed type uncertainty sets. Robust optimization theory
is used to motivate the construction of regularization terms in machine learning
for non-i.i.d learning settings. Testing samples are considered to a perturbation
of training samples. Such formulations of SVMs are based on chance-constrained
classifiers. In minimizing an upper bound on the expected classification error, they
are mathematically equivalent to minmax formulations of the optimization problem
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in game theoretical modelling. A robust optimization view of SVMs can derive
sample complexity bounds for a broad class of classification algorithms. However,
the robustness in feature space that is guaranteed by the regularization process
does not guarantee robustness in the observation space due to “non-smooth” feature
mappings in certain kernels.

Demontis et al. [155] link the developments in robust optimization with sparsity,
regularization, and security of linear classifiers. The linear classifiers are used in
embedded systems and mobile devices for their interpretability of decisions, low
processing time, and small memory requirements. The sparsity of feature weights is
found to have a desirable effect on not only the processing cost but also the security
of the linear classifiers. Robust optimization is shown to have an effect on classifier
regularization where evasion attacks are considered as a form of adversarial noise.
Thus the problem of adversarial machine learning is to select the optimal regularizer
against different types of adversarial noise. The adversarial cost of modifying the
data is expressed in terms of L1 norm yielding a sparse attack that is proportional
to the e distance between the original and modified sample in Euclidean space.
The attack strategy is to minimize the classifier’s discriminant function so that a
malicious sample is classified as a legitimate sample with high confidence. The
robust optimization problem is defined in terms of the bounded perturbations
of the training data and the associated uncertainty set including L1 balls. The
learning problem is to minimize the discriminative loss for a two-class classification
problem under worst-case, bounded perturbations of the training data. The proposed
regularizer is shown to tradeoff feature sparsity with computational cost of the
security evaluation. Cybersecurity applications are shown for handwritten digit
classification, spam filtering, and PDF malware detection.

Feng et al. [187] propose a robust logistic regression algorithm. It is robust to
adversarial outliers in a corrupted covariate matrix. A simple linear programming
procedure learns the logistic regression parameters in binary classification problems.
It is compared with an iterative reweighted method for optimizing the logistic
regression. The adversarial outliers are arbitrary, unbounded, and not from any
specific distribution. They skew the parameter estimation in logistic regression
to decrease its performance. The resultant regression curve is far away from the
ground truth. The labelled predictions on inliers are wrong. The loss functions in
logistic regression are 0-1 loss, hinge loss, exponential loss and logistic loss. Instead
of likelihood inference, robust estimators and their regression parameters can be
proposed by robustly estimating the linear correlation statistics such as the covariate
matrix. Theoretical bounds can be derived by empirical and population risks bounds
on the logistic regression. The proposed robust estimator scales to large problems
contain corrupted training samples in a computationally efficient manner.

Barreno et al. [32] give a taxonomy of attacks as well as defenses on machine
learning algorithms and systems. Machine learning models offer benefits by being
trained on novel differences between normal (known good) and attack (known
bad) data distributions. The hypothesis space or function class for such supervised
machine learning models consist of lookup tables, linear functions, polynomials,
Boolean functions, and neural networks. The learning theoretic tradeoffs are
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between explanation and generalization. They have applications in spam email
filtering, fault detection, intrusion detection, virus detection, web services, agent
systems, and cluster monitoring that have to contend with dynamically changing
data patterns. More complicated learning algorithms train with continuous streams
of unlabelled points in an online learning paradigm for semi-supervised learning.
The feature space for constructing the decision boundaries between normal and
attack data points is a metric space on distances between points. Regularization
is proposed as the defense mechanism in causative attacks, while randomization
is recommended in exploratory attacks. Smoothing the learner’s solution removes
the complexity exploitable by an adversary. Targeted attacks are more sensitive
to variations in the decision boundary. Preprocessing on prior distributions can
encode domain knowledge in baselines for learner estimation. Randomization in
the positioning of the decision boundary is suggested as a defense mechanism
in targeted attacks. Publicly available digital watermarks verification algorithms
must also deal with the sensitivity of the targeted attacks. A large number of
misclassified data points are indicative of causative attacks. Causative attacks can
be mitigated with a test dataset consisting of well-known intrusions. Exploratory
attacks are characterized by sudden large clusters near the decision boundary.
They can be detected by running a clustering algorithm on the classifier’s training
dataset. Detecting such attacks gives the learner information about the adversary’s
capabilities that can be used in defense mechanisms. Game theoretical models such
as deception games formalize such information as adversarial data manipulations
constructed by each player. They involve partial information for each player and
its influence on information seen by other players. Such information is encoded
as probability distributions and discretization states in adversarial payoff functions
where a cost is associated for changing features in attack points for the adversary and
measuring each feature in the data for the learner. In more complicated games, the
learner can confuse the adversary’s estimates of the learner’s states. The goal of the
learner is to permit “honeypot” intrusions to trick the adversary and prevent it from
learning the decision boundary. In such a case, the roles of the learner and adversary
are reversed. The cost of countermeasures is said to depend on the impact of
legitimate data on the learning process. A learner including prior information loses
adaptability to new data. At the same time a learner that accommodates information
from the training data becomes more vulnerable to attack. Thus we have to consider
factors on security and secrecy of the decision boundary in the learning process for
retraining. It includes tradeoff between the amount of training data for the learner in
training and the secrecy of the resultant learner in deployment. Relationship between
multilevel retraining and adversary’s domain knowledge is an open problem for
research. We can produce information-theoretic bounds on the information gained
by an adversary by observing the behavior of the learner on particular data points.
Depending on the classification details of the learner in realistic settings, it may be
possible to attack confidence limits with the strength of its predictions. Adaptive
weighting mechanisms in game theory such as aggregating algorithm and weighted
majority algorithm can combine advice from a set of experts to predict a sequence
of game theoretical interactions that have a learning performance comparable to the
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best expert in adversarially chosen sequences. Control systems are an alternative to
game theory applicable to search oriented expert systems in military command and
control.

Biggio et al. [62] conduct a survey of complex systems for pattern recognition in
adversarial settings. Here adversaries can devise attacks to exploit either preprocess-
ing steps such as parsing errors or complicated vulnerabilities in learning algorithms
such as denial of service, missing detection, and malicious samples or events.
Then reactive and proactive security paradigms can be exploited by the learner
to improve its security by design. The system analysis and design components
for pattern recognition is centered around data collection of training data and its
ground truth, preprocessing to extract structural components, feature extraction
on parsed samples, feature selection with or without human supervision, learning
algorithm to build a classifier from a labelled dataset, and a decision rule to assign
labels to an input test sample based on a thresholding strategy on the classifier’s
score. The components can be deployed at different physical locations so that an
adversary can target the communication channels requiring remote authentication
and security protocols for human supervision. An attack surface can be constructed
for all these operational vulnerabilities. It is useful for creating statistical hypotheses
on the adversary’s goal and knowledge of the target system and its capabilities
to manipulate data causing system failure. The feedback on classifier’s decisions
can improve the adversary’s knowledge on how the pattern recognition systems
are implemented, where they are deployed, and when they operate. Thus the
weakest security link of pattern recognition systems is not always the learning or
classification component. Learning with such invariances is essential to a minimax
approach with high computational complexity in game theoretical adversarial deep
learning. It has applications in user authentication, computer vision and forensics,
sentiment analysis, and market segmentation.

Barreno et al. [30] present a taxonomy of attacks on machine learning systems.
It can be used to structure the costs for the adversary and the learner in build-
ing secure learning systems resilient to attacks. The learner’s analysis of errors
assumes a binary classification setting. Its extension to multi-label settings is not
straightforward. In retraining procedures, the classifier interleaves training with
evaluation. Such a retraining can be analyzed within (regularized) empirical risk
minimization frameworks. Empirical risk is calculated as the expected loss of a loss
function approximating the true cost. The regularization of empirical risk prevents
overfitting to training data with notions of hypothesis complexity on non-stationary
data distributions. The threat model posed by the adversary is expressed in terms of
attacker goal/incentives and attacker capabilities. The choices made by the adversary
and the learner are presented as domain-specific strategies with associated cost
function assessing them. For example, the learner model maybe a support vector
machine with a chosen kernel, loss, regularization, and cross-validation plan in the
learning hypothesis. The adversary then chooses a statistical procedure to produce
a data distribution on which to evaluate and validate the learning hypothesis. The
statistical procedure may also treat the learner as an oracle that provides labels to
query instances in probing attacks. With probing, the adversary may find high-cost
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data points for the learner. Here one-shot games minimize adversarial cost when
each move happens, while iterated games minimize total accumulated cost found
by playing a game that repeats several times. The authors summarize such costs
and their practical considerations in several game theoretical models for causative
availability attacks and exploratory integrity attacks. Their defense mechanisms
in adversarial classifiers change the likelihood function of the learner so that it
can measure each feature at a different known cost. The adversary then plays
optimally against the original cost-sensitive classifier. Here the research area of
robust statistics can compare the candidate procedures to design procedures for
achieving robust learners. It can be used to develop an information theory for secure
learning systems that can measure the information leakage in terms of number of
bits. It can also quantify the empirical risk associated with side channel attacks on
the leaked information.

5.5.1 Defense Mechanisms in Adversarial Deep Learning

To create robust machine learning in malware detection, Tong et al. [601] identify
conserved features that cannot be modified without compromising malicious func-
tionality. They are used to construct a successful defense against a realizable evasion
attack. Machine learning robustness is then generalized to multiple realizable
attacks to do model hardening with a feature space accounting for a series of
realizable attacks in robust optimization. A collection of feature extractors is
designed to compute numerical vector values and associated object labels for
features from corresponding input entities. Depending on the assumptions about
the learning algorithm and the adversarial model, evasion defense is classified into
game-theoretic reasoning, robust optimization, and iterative adversarial retraining.
Generalizability of evasion defenses is evaluated over feature space models of
evasion attacks that are realizable. Structure-based PDF classifiers on binary
features of structural properties in PDF files as well as content-based PDF classifiers
on PDF metadata and content are used to distinguish between benign and malicious
instances. Realizable evasion attacks are crafted with EvadeML that has blackbox
access to the classifier, mimicry attack that manipulates a malicious PDF file
using content injection to resemble benign PDF file, MalGAN to generate malware
examples, reverse mimicry attack to inject malicious payloads into target benign
files, and custom attack to replace entries in attack PDF files with hexadecimal
representations that obfuscate tags for code execution in PDF. Iterative adversarial
retraining is selected as the defense mechanism to produce a robust classifier.
Chaowei et al. [111] leverage spatial context information in semantic segmentation
to detect adversarial examples even when dealing with a strong adaptive adversary.
The hypothesis for the defense mechanism is that adversarial examples in different
machine learning tasks contain unique statistical properties that provide in-depth
understanding of the potential defensive mechanisms. In semantic segmentation
tasks, this translates to giving prediction labels to each pixel in an image subject to
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contextual information in its spatial neighborhood. Ground truth adversarial targets
are then defined in a real-world autonomous driving video dataset. Adversarial
examples are found to be not transferable between the detection strategies with deep
learning among variety of segmentation tasks/scenarios.

He et al. [264] conclude that an ensembling defense combining multiple weak
defenses does not create a strong defense to a variety of adversarial examples
crafted by an adaptive adversary. Feiman et al. [185] propose to detect adversarial
examples from density estimates on the feature space of the last hidden layer.
Bayesian uncertainty estimates are also used to detect adversarial samples in low-
confidence regions of the input space. By contrast, Raghunathan et al. [501] produce
robustness certificates for a neural network whose defense mechanism is based on
regularization and adversarial training. The certificates ensure error due to adversar-
ial attack is bounded by a certain value for a variety of adversarial examples. Here,
adversarial training is said to minimize a lower bound on the worst-case loss due
to which it cannot generalize to new attacks designed to mislead an optimizer. The
certificate on the adversarial loss is a semidefinite relaxation on the optimizer that
can be computed efficiently. It is contrasted with upper bounds on the adversarial
loss due to spectral and Frobenius norm. Related work is found in the control theory
literature on verifying robustness of dynamical systems. Lyapunov functions can be
used to model the evolution over time of the activation values in a neural network as
a time-varying dynamical system so that adversarial loss bounds can be understood
in terms of stability proofs on the trajectory of this system. Certification methods on
stability and performance of model families in machine learning systems can also
benefit from safety verification and controller synthesis procedures around robust
data representations used in robotics for critical infrastructures. Miyato et al. [433]
propose a new regularization method for adversarial training without overfitting.
A virtual adversarial loss is defined on the robustness of the conditional label
distribution around each input data point. The regularization term is interpreted
as a prior distribution about the a priori knowledge or belief about the learning
model. The specific belief taken from the laws of physics is that the class-conditional
posteriors of the machine learning system are smooth with respect to the spatial
and/or temporal inputs. A local distributional smoothness of output distribution with
respect to the input distribution is defined to be the divergence-based distributional
robustness of the model against virtual adversarial direction. Virtual adversarial
direction is interpreted as the most anisotropic direction giving a “virtual” label
to an unlabelled data point. Resultant adversarial noise regularization improves the
generalization performance in semi-supervised tasks of image classification.

Papernot et al. [484] introduce defensive distillation to defend deep neural
networks against adversarial samples. It is a training procedure for deep nets using
knowledge transferred from a different deep net. The motivation for distillation is to
reduce the computational complexity of deep learning architectures by transferring
knowledge from larger to smaller architectures so that deep learning can be deployed
on resource-constrained cyber-physical devices. Defensive distillation applies this
idea to extract knowledge from a deep neural network for improving its resilience.
The knowledge transfer is used to reduce the amplitudes of the deep net gradients
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exploited by the adversaries. Thus models trained with defensive distillation are
less sensitive to adversarial samples. As a security countermeasure, it leads to
smoother classifier models with improved generalizability properties. Defensive
distillation leads to two folds during training called direction sensitivity estimation
and perturbation selection where adversarial goal is assumed to be misclassifying
samples from a specific source class into a distinct target class. The transferred
knowledge consists of not only the weight parameters learnt by the deep net
but also the encoded class probability vectors produced by the network during
training. Soft class probabilities are better than hard class labels because they hold
relative information about entropy of classes in addition to each sample’s correct
class. Such information on class-conditional probabilities can be used to guide
the convergence of the deep net to an optimal modelling solution that enhances
classification robustness. To deal with optimization attacks with new objectives and
optimizers, Papernot et al. [478] extend the folds in Papernot et al. [484] to add
an outlier class to mitigate adversarial examples and provide uncertainty estimates
in neural networks through stochastic inference. By transferring both knowledge
and uncertainty, the extended defensive distillation does not need the defender to
generate adversarial examples according to heuristics.

Tramer et al. [603] introduce ensemble adversarial training to augment the
training data with adversarial perturbations transferred from other pre-trained
models. Including blackbox attacks in such adversarial perturbations significantly
improves the transferability of the adversarial examples. Such a defense mechanism
is useful in the costlier multistep attacks. Fast gradient sign method (FGSM) and
its variants such as single-step least-likely class method (Step-LL) and iterative
attack (I-FGSM or Iter-LL) are used to create adversarial examples. Both white-
box and blackbox adversaries are used to evaluate the robustness gains in defense
strategies. Thus adversarial training is improved by decoupling adversarial examples
generation from the model training. At the same time, interactive adversaries
are also proposed to include queries on the target model’s prediction function in
their attack. Wu et al. [655] propose highly confident near neighbor framework to
combine prediction confidence information and nearest neighbor search to reinforce
adversarial robustness. Meng et al. [422] propose MagNet framework for the
defense mechanism. It includes separate detector networks and a reformer network
to detect the adversarial examples. The detector networks are autoencoders to learn
the data manifold of normal examples without assuming any particular stochastic
process for generating them. They are trained according to a reconstruction loss
criterion that approximates the distance between input and manifold of normal
examples. The reformer network is another autoencoder that moves adversarial
examples toward the data manifold of normal examples to correctly classify them.
Based on cryptography ideas, defense via diversity is advocated to randomly pick
one out of several defenses at run time in a gray-box attack. Carlini et al. [105] are
then able to construct transferable adversarial examples for MagNet and adversarial
perturbation elimination GAN (APE-GAN). Based on distance metrics, Carlini et
al. [106] also succeed at constructing adversarial examples for defensively distilled
networks.
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Metzen et al. [424] augment deep neural networks with a detector network.
It does binary classification between genuine data and adversarial data to detect
a specific adversary type. It can act as a method for hardening detectors against
dynamic adversaries. Cisse et al. [131] introduce Parseval networks for empirical
and theoretical analysis of the robustness of predictions made by deep nets subject to
adversarial perturbations. They act as a regularization method with orthonormality
constraints for reducing the effect adversarial manipulations. Similarly, Gu et
al. [239] propose a Deep Contractive Network (DCN) acting as a smoothness
penalty on adversarial training. DCN is an extension of contractive autoencoder
(CAE) that has the ability to remove adversarial noise. Thus ideas from ideas from
denoising autoencoder (DAE), contractive autoencoder (CAE), and marginalized
denoising autoencoder (mDAE) provide a strong framework for adversarially
training deep neural networks with a robustness criteria tuned toward human
perception. By contrast, Kos et al. [326] create adversarial examples in the latent
space for deep generative models such as variational autoencoders (VAEs) and
generative adversarial networks (GANs). Xiao et al. [660] propose AdvGAN to
generate adversarial examples with conditional adversarial networks in semi-white-
box and blackbox attack scenarios. Jin et al. [303] propose APE-GAN to defend
against adversarial examples in white-box attack scenarios. The generator alters
adversarial perturbations with tiny changes to input examples. The discriminator
is optimized to separate clean examples and reconstructed examples without
adversarial perturbations. A loss function is invented to make adversarial examples
consistent with original images data manifold. APE-GAN can be combined with
other defense mechanisms such as adversarial retraining.

Assuming the hypothesis that adversarial examples lie in the low probability
regions of the training distribution, Song et al. [565] design PixelDefend to move
maliciously perturbed images back to the distribution seen in the training data. A
generative model computes probabilities of all training images. Such a probability
density is used to rank the adversarial examples created by a variety of attacking
methods. A constrained optimization problem that is intractable is formulated
to purify the adversarial examples. It is approximated with a greedy decoding
procedure. Results are compared with other defense mechanisms in the literature
such as adversarial training, label smoothing, and feature squeezing. Bojanowski
et al. [77] introduce a Generative Latent Optimization (GLO) framework to train
generators using reconstruction losses. It is useful in interpolating between training
samples and adversarial examples. It also permits linear arithmetic between noise
vectors in the latent space to study interpolations of adversarial examples without
the need for an adversarial game between the generator and the discriminator. The
generator then translates the linear interpolations in the noise space into semantic
interpolations in the image space. The learnable noise space is able to disentangle
the non-linear factors of variation of image space into linear statistics. Kyatham
et al. [341] incorporate adversarial perturbations to a regularized and quantized
generative latent space to then map it to the true data manifold. A defense mech-
anism based on generative autoencoders then is able to circumvent disadvantages
of related defense mechanisms such as approximation of derivatives in adversarial
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training and reparameterization of expectations in adversarial filtering. The latent
encoder preserves distances in a metric space on the latent and the data manifolds.
It allows stochastic exploration of the latent neighborhood of a known distribution.
Multiple decoders are used to easily explore a data sample in the latent space and
remap it back to a data point in the legitimate data. The latent space exploration can
be conducted with variational inference performed by learned hierarchical latent
representations of the data such as in ladder variational autoencoders [561] and
Mask Adversarial Auto-Encoder [438].

Fawzi et al. [181] provide a theoretical framework for analyzing the robustness
of classifiers subject to adversarial perturbations. Upper bounds for robustness
are established for linear and quadratic classifiers. Robustness is expressed as
a distinguishability measure between the classes. For linear classifiers it is the
distance between means of the classes. For quadratic classifiers it is the distance
between the matrices of second order moments of the classes. Robustness bounds
for the classifiers are established independent of the learning algorithms and defense
mechanisms. De Silva et al. [148] propose an attack-cost-aware adversarial learning
(CAL) countermeasure to design attack-resilient classifiers. The attack cost structure
information is obtained from vulnerability analysis of a machine learning system.
CAL framework projects potentially falsified test instances onto space of legitimate
feature vectors with an attack cost function acting as the distance metric. The
projection operator can be interpreted as a generalized likelihood ratio test. CAL
framework is applicable to any classification technique. Insua et al. [519] provide
an adversarial risk analysis for adversarial classification that can be considered to be
an alternative to game-theoretic frameworks. The attack scenarios are restricted to
exploratory attacks and integrity violation attacks. A Bayesian approach to adver-
sarial classification is taken to propose generative classifiers. A frequentist approach
to adversarial classification is taken to propose discriminative classifiers. Expected
utilities associated with the adversary’s worst consequences are the optimization
criteria. Generative models of samples in the adversarial data distribution lead
to computational difficulties on high-dimensional data. So adversarial examples
are algorithmically sampled from regions of high adversarial loss with a noise
term to account for the defender uncertainty over attacker model. The attacker
uncertainty over defender model is accounted by scalable Bayesian approaches
to deep learning. In general, application-specific assumptions are reduced to a
minimum while learning the adversarial utilities and probabilities in a Bayesian
paradigm. Such adversarial risk analysis allows us to combine Bayesian methods
with game theoretical adversarial deep learning.

Schmidt et al. [542] study the information-theoretic sample complexity of adver-
sarially robust learning independent of the training algorithm or the model family.
Due to statistical nature of deep learning, adversarial examples are said to provably
occur in every learning approach. A lower bound is established on the hardness
of robustness in deep classifiers that correspond to a restricted adversary applying
worst-case distribution shifts. The adversary is not adaptive to the classifier settings.
Thus a clear gap can be demonstrated between robust and standard generalization
for the hypothesis classes and distributional classes in adversarial machine learning.
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As a result defense mechanisms must be tailor-made for a particular adversary
type and a specific training dataset. Adding prior information on the robustness
tradeoffs into the model architecture can help create robust classifiers. Wong et
al. [653] address robustness gaps between real-world perturbations and datasets
typical to adversarial defenses with learnable perturbation sets. A conditional
generator defines the perturbation sets over a constrained region of the latent space.
The conditional generator is a conditional variational autoencoder. It can generate
perturbations at different complexities and scales starting from baseline image
transformations. As a threat model, learning perturbation sets with quantitative
metrics is empirically and certifiably robust to adversarial manipulations, variations,
and corruptions. Seshia et al. [548] argue for the need of semantic and context
specifications of machine learning systems in resource-constrained environments.
System-level semantic specifications about the adversarial manipulations can be
used to produce not only the misclassified labels but also semantic information
on system-level implications. Such a semantic adversarial approach is useful for
adversarial learning applications in embedded systems involving Internet of Things
(IoT) devices and cyber-physical control systems (CPCS). Then the components of
adversarial robustness around system-level specifications in the training algorithm
can be expressed as semantic modification space, semantic loss functions for
training, and semantic data set augmentation. Probabilistic programming languages
can be used to guide the semantic adversarial learning by representing distributional
assumptions regarding data generation, inference, and verification. Algorithmic
methods can be used in the design and analysis of AML/A2I-based learning
systems. Formal specification of deep learning models and machine learning
systems can also benefit from exploring tradeoffs between semantic robustness and
resource-efficient implementation in error-resilient system design.

Rouhani et al. [529] propose an automated framework DeepFense for the efficient
and safe execution of deep learning in critical and time-sensitive applications such
as unmanned vehicles, drones, and video surveillance systems. DeepFense leverages
modular redundancies in hardware/software/algorithm co-design to achieve just-
in-time performance in resource-constrained settings. Online adversarial sample
detection is evaluated on FPGAs and GPUs. Each modular redundancy learns the
probability density function of typical data points and associated rare/risky regions
with dictionary learning. In addition to machine learning performance validation,
the system performance is customized toward latency, energy consumption, and
memory footprint around the underlying hardware resource provisioning. Learn-
ability tradeoffs are found between not only system performance and adversarial
robustness but also resource limitation and model reliability of the machine learning
system. Robustness of the adversarial deep learning ought to confirm with the
user-defined and/or hardware-specific optimization constraints. FPGAs are used to
provide fine-grained parallelism and just-in-time response in the adversarial defense
mechanisms. Deep learning benchmarks are then showcased against the state-of-
the-art adversarial attacks. A Markov chain of defender modules is used to mitigate
adaptive adversary attacks. DeepFense is presented as an unsupervised learning
method for smoothing the decision boundaries to remove the adversarial noise
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variables. It is shown to improve the robustness of the deep learning models by
learning the adversarial data density in the latent space due to adaptive attacks on
the existing online defense mechanisms. Ghafouri et al. [216] propose supervised
regression as a defense mechanism to detect sensor reading manipulations in cyber-
physical systems (CPS). The interaction between CPS defender and attacker is
modelled as a Stackelberg game where the defender chooses approximately optimal
decision thresholds using supervised regression and adversarial anomaly detection
to increase the machine learning system’s resilience. Such interactions can be
used to develop heuristic algorithms for resilient detectors with regression-based
modelling in sensor networks. The resultant resilient detectors can be used to specify
strong constraints on the feasible sensor manipulations by leveraging relationships
among measurements from multiple sensors.

Taran et al. [594] propose a new defense mechanism based on second Kerck-
hoffs’s cryptographic principle. It leads to a gray-box attack scenario where the
adversary has access to the classification predictions, training/testing data, and
class labels for machine learning but not the corresponding cryptographic secret
key encrypting the knowledge of the defense mechanism parameters. The secret
key imposes a preprocessing encoder block that can be implemented as a data-
independent transformation in various ways due to which the adversary is not
able to decrypt the parameters of a classifier’s defense mechanism in a reasonable
amount of time within the available modern computational means. The proposed
cryptographic defense mechanism can be integrated with defense via retraining,
defense via detection and rejection, defense via input preprocessing, and defense via
regeneration. Thus integrating asymmetric cryptography with adversarial learning
leads to an information advantage of the defender/learner over attacker/adversary.
The entropy of the secret key is higher than the entropy of the adversarial signal. Its
data transformation is non-differentiable. To further protect the defense mechanism,
the classifier system’s architecture is assumed to be not accessible to the adversary.
This leads to the design of learning protocols with cryptographic principles in pat-
tern recognition systems deployed on protected servers or special devices or chips
for adversarial learning applications such as digital watermarking, cryptanalysis,
digital forensics, steganalysis, and device identification. Xu et al. [671] investigate
the information-theoretic limits of adversarial learning. It has applications in
solution domains such as computer vision, video surveillance, natural language
processing, voice recognition, and cybersecurity. It is also applicable to learning
problems such as classification, regression, feature embeddings (in words and
nodes), and generative models. The adversary is supposed to have an attack budget
on the adversarial noise that can be injected at learning time. The attack budget is
expressed as a statistical distance called the total variation distance (TVD) between
the original data distribution and the noise-injected data distribution. Related work
on the statistical limits of adversarial robustness includes generalization bounds for
adversarial learning, robustness certification for inference, robustly PAC learnability
of VC classes, and analysis of the effect of injecting noise in the network at inference
time.



228 5 Adversarial Defense Mechanisms for Supervised Learning

Jha et al. [297] create satisfiability modulo theories (SMT) solvers with a
combination of oracle-guided learning from examples and constraint-based synthe-
sis from components in a machine learning library. Such an automatic synthesis
of programs for program deobfuscation is useful in the formal verification of
adversarial learning. A validation oracle checks whether the machine learning
program is correct or not based on adversarial learning security requirements. It
has connections to optimization procedures in computational learning theory and
bit-manipulating programs. In a non-stationarity adversarial environment, Lowe et
al. [395] explore deep reinforcement learning methods for multi-agent domains.
Actor-critic methods can be adapted for adversarial learning to learn policies
around game theoretical interactions in adversarial deep learning over complex
multi-agent coordination. They solve for robust multi-agent policies in cooperative
and competitive attack scenarios from emergent behavior and complexity in co-
evolving agents. Thus reinforcement learning is applicable to adversarial learning
environments with multiple adversaries.

Li et al. [361] create robust malware detectors for adversarial examples on
Android malware. A combination of a variational autoencoder (VAE) and a multi-
layer perceptron (MLP) is used to design a novel loss function that disentangles
the features of different malware classes. The feature space of Android malware is
represented in a discrete fashion. The proposed defense mechanism computes a sim-
ilarity metric between benign and malicious examples while preserving malicious
functionality. The final classification model simultaneously does malware detec-
tion and adversarial example defense. Hassan et al. [256] address trust-boundary
protection to allow user access privilege in Industrial Internet of Things (IIoT) envi-
ronments. Adversaries can use model skewing techniques to generate adversarial
examples on the attack surface in the IIoT network. A downsampler-encoder-
based cooperative data generator is used to create the adversarial examples in IIoT
devices. Such IIoT devices include IoT devices such as sensors, programmable logic
controllers, actuators, intelligent electronic devices, and cyber-physical systems
(CPS) in industrial operations. CPS include subsystems and processes for design,
infrastructure, monitoring and control, scheduling, and maintaining the value chain
of data analytics for precise control of physical processes, autonomous management
of industrial system collaboration, less expensive production data collection, and
intelligent processing in real time. The vulnerabilities and threats of such industrial
protocols, networks, systems, and services are open to exploitation by adversaries.
They are further exacerbated by existing security loopholes in conventional IT
systems. Here defense mechanisms in adversarial deep learning are used to uphold
security objectives of IIoT data such as confidentiality, integrity, and availability.
Further applications of adversarial deep learning are given by Abusnaina et al. [1]
and Martins et al. [414]. Abusnaina et al. [1] analyze IoT malware detection with
control flow graph (CFG)-based features. A graph embedding and augmentation
method is used to generate and embed adversarial examples into training data of
IoT software. CFG features allow the exploration of IoT malware through graph
theory and machine learning. Martins et al. [414] analyze the generation and
detection of adversarial examples in intrusion and malware detection scenarios.
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For the generation of adversarial examples, machine learning algorithms are
categorized into symbolists such as decision tree, connectionists such as neural
network, evolutionaries such as genetic algorithms, Bayesians such as naive Bayes,
analogizers such as k-nearest neighbors. Adversarial defenses for malware and
intrusion detection are given as adversarial training, gradient hiding, defensive
distillation, feature squeezing, transferability block, universal perturbation defense
method, and MagNet autoencoders.

5.5.2 Explainable Artificial Intelligence in Adversarial Deep
Learning

Tan et al. [592] discuss attention maps in computer vision tasks. A geometric prior
on the spatial context for a pixel is modelled as a novel self-attention module.
It does not require the computationally expensive positional encoding of content-
driven attention maps constructed with queries and keys. The self-attention training
concept is applicable to not only computer vision tasks but also natural language
processing tasks. In image recognition tasks, it is categorized into channel attention
and spatial attention. Sen et al. [547] conduct a quantitative assessment of human
versus computational attention mechanisms in text classification tasks. They are
contrasted on overlap in word selections, distribution over lexical categories, and
context-dependency of sentiment polarity. The attention mechanisms are useful
for interpretability about the modelling details such as model debugging, archi-
tecture selection in natural language processing (NLP) tasks such as language
modelling, machine translation, document classification, and question answering.
They create explainable attention scores for the model predictions that can be
linked with the feature importance measures on dimensionality reduction. Human
attention is measured from the perspectives of measures for behavioral similarity,
lexical (grammatical) similarity, and context-dependency sentiment polarity. Resul-
tant attention maps are compared with attention-based recurrent neural networks
(RNNs). Bidirectional RNNs with attention mechanisms are found to be similar
to human attention according to the human attention measures. An attention
map is defined as a vector with sequence of words associated with positions in
the text. Neural networks can produce the attention maps by computing either
probability distributions or bitwise operations on the word sequences. The NLP
prediction tasks become more difficult on long text as the accuracy and similarity
scores of the models decrease. Lin et al. [370] create RankGAN to generate
natural language descriptions of human-written and machine-written sentences. The
discriminator does a relative ranking of the text to help create a better generator.
Such relative ranking information can benefit from rank aggregation methods used
in the distributional smoothing of adversarial learning features.

The attention maps in deep learning can be contrasted with the feature maps
as described by Thaller et al. [596] for analyzing the design patterns in recurrent
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software development problems. Feature maps are software representations based
on microstructures that are human- and machine-comprehensible. A vector space
over micro-structures in a feature map can be defined as the high-dimensional
feature space for detecting instances of design patterns in source code with machine
learning. Thus machine learning-based pattern descriptions can be used to solve
high-level object-oriented (OO) architectural problems around creation, structure,
or behavior of classes and objects. The semantics in pattern descriptions contains the
name, intent, motivation applicable to structures, participants, and collaborations in
the source code. They are used to make design decisions and documentation ratio-
nales during software product development. Retrieving such encoded information
with design pattern detection (DPD) is useful in the redevelopment and maintenance
of software products. DPDs find structures and dependencies in the source code
to produce abstract semantics graph (ASG) highlighting the algorithms and their
moving parts for improving the system performance. Burnap et al. [94] develop
self-organizing feature maps (SOFM) to distinguish between malicious and trusted
portable executable software samples. The machine learning features are created on
bytes and packets in the footprint left behind by a computer system during execution
over CPU, RAM, swap, and network. Unlike features derived from API calls, such
execution features cannot be obfuscated easily in APT style attacks. SOFMs capture
topographic neighborhoods in the data separated by fuzzy boundaries between
machine activity classes. The SOFMs are able to address the plasticity-stability
dilemma for a learning system that needs to adapt to environment while main-
taining the efficacy of stable function. Utilizing topographical neighborhoods as
fuzzy feature sets in machine classification algorithms improves the generalization
behavior of the learning algorithms on unseen samples in malicious payload such
as polymorphic malware. SOFMs can also be used for data visualization and
exploration in security operation centers. Dotter et al. [164] try to attribute the
adversarially perturbed inputs to particular attack methods in an attempt to expose
the attack algorithm, model architecture, and hyperparameters used in the attack
over a supervised learning framework. Cyber attribution indicators are obtained for
tradecraft and malware tactics, techniques, and procedures (TTPs) that leave behind
particular identifying signals and signatures. Such attribution of attacks can be used
alongside other cyber indicators of tradecraft such as intent and infrastructure. Here
adversarial deep learning techniques in attribution classifier design can automati-
cally reverse engineer the tool-chains for adversarial attribution behind cyberattacks
such as deepfakes, multimedia falsification, adversarial machine learning attacks,
and information deception attacks. The attack attribution on the adversarial dataset
is expressed as attack algorithm attribution, hyperparameter attribution, model
attribution, and norm attribution.

Samek et al. [538] develop sensitivity analysis methods for visualizing, explain-
ing, and interpreting deep learning models to increase the transparency of their
predictions. Interpretability and explainability of trustworthy artificial intelligence
applications is an emerging discipline in machine learning that computes the
sensitivity of the prediction with respect to changes in the input. Deep learning
models act as a blackbox system by default. There is an urgent need to understand
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the learnings of a model and explain its individual predictions to advance machine
learning models beyond neural networks. Such methods for explainable artificial
intelligence are required in machine learning systems for the verification of the
system’s decision-making, improvement of the system architectures, knowledge
transfer of the learning of the system to a human user, and compliance of algo-
rithmic decisions to privacy regulation. Thus the relation between generalizability,
compactness, and explainability of the learned representations in adversarial deep
learning is an active area of research. Ancona et al. [15] use Shapley values from
cooperative game theory to assign relevance scores in attribution methods. They
quantify the “relevance” or “contribution” of each input feature in a given input
sample. The target output in a classification task is chosen to be the prediction
with the highest output probability that is associated with the parts of the input
most relevant for the prediction. The relevance scores also contain information
to assess the input for evidence that supports or rejects a predicted class label.
The attribution methods can also be subject to adversarial attacks without reliable
quantitative metrics based in ground truth to evaluate the explanations. Here
Shapley values act as a self-evident property of the explanations designed for
stronger theoretical guarantees on their reliability. Shapley values can be assigned
to attributes such that certain desirable axioms are satisfied on the completeness,
symmetry, linearity, continuity, and implementation invariance of the attribution
methods. Choras et al. [129] discuss the lack of fairness and explainability in
the state-of-the-art algorithms for machine learning and artificial intelligence in
several application domains that use deep learning capabilities to solve detection
or prediction tasks. Here the security frameworks in adversarial machine learning
can introduce disinformation to mislead the deep learning results. Fairness in
artificial intelligence is then concerned about ethical and legal frameworks around
the disinformation that can be maliciously spread in the society at large. The
algorithmic bias resulting from the bias of human operators providing data with
misrepresentations and discriminations leads to unfairness in artificial intelligence.
Here there is a need to create training datasets without skewed samples, tainted
examples, and limited features leading to sensitive biased attributes in the training
algorithm and subsequent sample size disparity in the classification algorithm. So
machine learning fairness is to be defined according to notions of unawareness,
group fairness, and counterfactual fairness in the mathematical formulations of
adversarial deep learning. Here the counterfactuals due to adversarial machine
learning can be modelled as causal graphs explaining the predictions of supervised
deep learning. In this context, game theoretical adversarial deep learning procedures
provide a statistical framework for optimizing the tradeoffs between accuracy and
fairness measures on the machine learning system performance. They can construct
fair classifiers with reference to a sequence of cost-sensitive classification problems
providing randomized classifiers with the lowest empirical error within the desired
optimization constraints. Arrieta et al. [17] survey the literature on explainable AI
(XAI) and provide a taxonomy on recent contributions in deep learning. It leads onto
the broader concept of responsible artificial intelligence around methodologies for
the large-scale implementation of artificial intelligence in real-world organizations
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with fairness, explainability, and accountability built into the artificial intelligence
for every regulated industry in each economic activity sectors. Interpretability
as a design driver in machine learning supports impartiality in decision-making,
facilitates the provision of learnable robustness, and acts as an insurance on the
underlying truthful causality existing in the model reasoning. Samek et al. [537]
provide another review of XAI in deep neural networks.

Ribeiro et al. [515] learn a local interpretable model around a classifier’s
predictions. It explains individual predictions as the solutions to a submodular
optimization problem. The utility of such explanations is validated in the experi-
ments assessing trust in machine learning blackboxes by understanding the reasons
behind the predictions. A local interpretable model-agnostic explanations (LIME)
framework is presented to the problems of “trusting a prediction” to take action
based on it, “trusting the model” to behave in reasonable ways when deployed
in the real world. Interpretable representations for textual and visual artifacts are
produced as explanation tensors for each input instance such that domain- and
task-specific interpretability criteria are accommodated. LIME has applications in
recommendation systems for speech, video, and medical domains to design human-
in-the-loop machine learning systems. Hartl et al. [254] introduce feature sensitivity
measure called adversarial robustness score (ARS) for sequential network flow data
in intrusion detection systems (IDS). It is useful as a feature importance measure
used in the generation of adversarial samples for recurrent neural networks (RNNs).
ARS can be used alongside accuracy to evaluate security-sensitive machine learning
systems. It improves upon explainability methods such as partial dependence plots
(PDPs) for sequential data. Proposed defense mechanisms use ARS to leave out
the manipulable features, reduce the attack surface, and harden the resulting IDS.
Melis et al. [421] evaluate trust in Android malware detectors as they transition from
performing well on benchmark data to being deployed in an operating environment.
A gradient-based approach identifies the most influential local features to increase
accuracy without losing interpretability of decisions. The explanations can provide
insights into vulnerabilities of any blackbox machine-learning model used for
malware detection. Demetrio et al. [153] provide feature attribution to each decision
made for the classification of malware binaries. The explanations are then used to
generate adversarial malware binaries that are better than the state-of-the-art attack
algorithms against deep learning algorithms that provide highly non-linear decision
functions. Contributions of each feature to the label of a data point are calculated
with respect to baselines that create ground truth for the modelling. Adversarial per-
turbations then increase the contributions computed for the modelling output on the
modified features in the baselines. Sensitivity axioms are created for the baselines to
guide the training algorithm of back-propagating errors through the neural network.
Integrated gradients are used to explain the classification results. However, the
explainable models continue to be vulnerable to adversarial manipulations. Marino
et al. [411] generate explanations for misclassifications in data-driven intrusion
detection systems. The explanations provide reasonings behind the misclassification
and match them with expert knowledge. The explanations are applicable to any
classifier that has gradients. They can be used in digital forensics and vulnerability
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assessment of the underlying machine learning system. Such XAI makes use of data
visualizations and natural language descriptions to explain the reasoning for the
decisions made by the machine learning systems. The reasoning can be understood
by a human and be used for simplifying the knowledge discovery process in data.
It can also be used to produce debugging diagnostics on the machine learning
system. Explanations are assumed to be the minimum modifications required to
correctly classify the misclassified samples. The adversarial manipulations are
used to visualize the learning features that are responsible for misclassification.
Misclassifications are frequently found to occur between samples with conflicting
data characteristics.

Liu et al. [382] investigate model interpretation to support an adversarial
detection framework explaining predictions in the target machine learning model.
Adversarial training is then used to improve the robustness of the detectors on
adversarial samples. Feature manipulation costs are estimated to categorize adver-
sary types. Existing detection frameworks are categorized into feature engineering
methods that are vulnerable to adaptive adversaries, game theoretical interactions
between detectors and adversaries where the modelling specifics vary with the
machine learning classifier architectures, and deep neural network defenses such as
adversarial training, defensive distillation, and feature squeezing. Misclassified data
points are seeded from evasion-prone samples likely to shift across the decision
boundary. Adversarial attacks are constructed on perturbation directions based on
model interpretation of input data instances classified as benign or malicious.
Lundberg et al. [399] propose a game theoretical framework called SHAP (SHapley
Additive exPlanations) to study the tradeoffs between accuracy and interpretability
in deep learning outputs. SHAP computes additive feature importance measure for
each prediction as Shapley regression values. Sampling approximation is made
in the computation of the Shapley values. Shapley value estimation methods are
augmented with feature attribution methods satisfying desirable properties on the
explanations such as local accuracy matching explanation model with the original
model, missingness to disallowmissing features to have any impact, and consistency
on input’s attribution with respect to changes in the model state due to other
inputs. Then cooperative game theory is used to mathematically prove do not
violate accuracy and interpretability requirements where Shapley values act as the
conditional expectation functions of feature importance in the original model. The
conditional expectation functions are approximated with model-specific methods
such as Shapley sampling values, Kernel SHAP, Max SHAP, and Deep SHAP.
Model-agnostic approximations are obtained from a quantitative input influence
method that is a sampling approximation of a permutation version of the classic
Shapley value equations. Joint estimation of SHAP values with regression provides
better sample complexity/efficiency than direct use of classical Shapley equations.
Thus game theoretical explanations of the adversarial deep learning provide avenues
to create new explanation model classes.

Beyazit et al. [49] propose interpretable representations learned by a deep gener-
ative model by extracting independent marginals as well as causality entanglement
features in the training data. A training regularizer then penalizes disagreement
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between the extracted feature interactions and a given dependency structure in
the training data. The regularizer imposes structural constraints on the latent
space of feature interactions to give better than state-of-the-art generalization
performance. The feature interactions use a Bayesian network to calculate the max-
imum likelihood parameters measuring the disagreement between latent space and
training space. Mutual information maximization in InfoGAN extracts the visually
meaningful features and their manipulations. The dependency structure model’s the
relationship between observed and salient features of the data. The dependency
structure acts as an additional learning constraint on the training of InfoGAN. A
likelihood function for the generator measures the probability of the training data
given the best data generator model. The feedforward pass of the InfoGAN is seen
as a mapping from the space of the observed variables to a decision. The objective
function for the data-generating distribution produces data instances that fit mean
squared error (MSE) for linear Gaussian models. A structural loss function acts
as the regularizer of InfoGAN training. Optimal graph structures can be designed
in the latent space to explore salient features. Such interpretable representations
can be utilized in transfer learning, zero-shot learning and reinforcement learning.
Molnar [437] surveys the model-agnostic methods for interpreting blackbox models
in deep learning. They include feature importance, accumulated local effects,
Shapley values, and LIME. The results of the interpretation methods include feature
summary statistic, feature summary visualization, learned weights, counterfactual
explanations, and white boxes. Typically the interpretation methods for deep neural
networks are model-specific and restricted to specific model classes. Model-agnostic
methods for interpretation of machine learning techniques in general include partial
dependence plots, accumulated local effect plots, feature interaction (H-statistic),
functional decomposition, permutation feature importance, and global surrogate
models. Neural network interpretation is expressed in terms of learned features,
pixel attribution (saliency maps), influential instances, counterfactual explanations,
and adversarial examples.

Bitton et al. [71] conduct a threat analysis of machine learning production
systems. The threat model enumerates machine learning assets, potential adver-
saries, adversarial objectives, learning goals, and attack scenarios in learning
systems. A scoring system is designed for various adversarial attacks. It uses an
analytic hierarchy process (AHP) for ranking attack attributes of cybersecurity
experts. Then an attack graph generation framework called MulVAL is developed
as a logical attack graph to incorporate the effects of cyberattacks in machine
learning production systems for several use cases in cybersecurity, fraud detection,
financial trading, personalized marketing, resource optimization, healthcare, and
autonomous vehicles. Misleading critical decisions made around these use cases
has a statistically significant impact on contingency planning, business continuity,
revenue streams, and even human lives. In addition to bugs in the machine learning
systems, they must also contend with logical vulnerabilities in the underlying ML
algorithms. Adversaries can exploit such bugs and vulnerabilities as attack scenarios
for adversarial machine learning. Therefore machine learning systems must be
equipped with tactical and strategic tools to analyze, detect, protect, and respond
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to cyberattacks. Such tools have been developed as frameworks and libraries like
CleverHans adversarial examples library, Adversarial Robustness Toolbox, Foolbox
toolbox, SecML library, and MLsploit. Currently they implement algorithms to
generate and discriminate adversarial examples. But they ought to be extended to
quantify the risk machine learning systems, conduct cybersecurity threats modelling
in specific deployments and target environments for machine learning algorithms,
and quantify different attributes of the attack technique such as attacker model,
attack impact, and attack performance. Here the characteristics of the machine
learning production pipeline can be expressed as elements of data, deployment,
delivery, and orchestration to create threat analysis ontology for asset, vulnerability,
attacker, capability, impact, threat, and attack technique. The MulVAL framework
analyzes logical attack graphs to automatically extract information from formal
vulnerability databases and network scanning tools. It enumerates all possible attack
paths in a polynomial time on new and emerging attack scenarios. MulVAL is useful
in the design of risk assessment and countermeasure planning algorithms validated
with explicit interaction rules and predicates for attack modelling in the Datalog
programming language. Elitzur et al. [171] analyze cyber threat intelligence (CTI)
on previous attacks for attack reconstruction in tools on unobserved attack patterns
that can augment alert correlations and data visualizations for cybersecurity analysts
studying the attack hypotheses in the digital forensics of adversarial machine
learning with cyber kill chains. An Attack Hypothesis Generator (AHG) constructs
a knowledge graph on the threat intelligence to generate attack hypotheses in a
security information and event management (SIEM). Here CTI is categorized into
strategic threat intelligence, operational threat intelligence, tactical threat intelli-
gence, and technical threat intelligence. They are used to construct knowledge graph
to support adversarial reasoning with graph mining features on topological similar-
ity, correlation, and frequent patterns. Executing Semantic Web Rule Languages
on the knowledge graphs can be used in the data-driven analytics of logic-based
deductive inference rules. Link prediction and collaborative filtering in knowledge
graphs can improve the attack hypothesis generation with attack scenarios that are
likely to occur. Matern et al. [416] create visual artifacts that can be used in statistical
forensics tools to expose adversarial manipulations in Deepfakes. The adversarial
goal in automatic video generation is to create a malicious manipulation to convey
a semantic message within a video that is not originally intended in the training
material. Here image forensics search physical or statistical image artifacts to form
statistical fingerprints, validate noise priors, and learn specific manipulation traces
on the residuals of an image to detect adversarial manipulations. The proposed
visual artifacts are categorized into computer vision problems such as global
consistency, illumination estimation, and geometry estimation. Kamath et al. [307]
address a theoretical question in statistical learning on how a distribution can be
approximated with its samples. Smooth loss measures are proposed for distribution
approximations. For compression and investment applications, the relevant loss
is Kullback-Leibler (KL) divergence. For classification it is L1, L2, Hellinger,
chi-squared, softmax losses. For adversarial learning, the least worst-case loss
for a game theoretical optimal estimator for adversarial deep learning is minmax



236 5 Adversarial Defense Mechanisms for Supervised Learning

loss. For online learning in resource-constrained environments, the loss is minmax
cumulative loss based on statistics and information theory to minimize losses over
successive estimates.

Katzir et al. [311] quantify the adversarial resilience of machine learning systems
with formal methods applicable to multisensory fusion systems. A model robustness
(MRB) score is proposed for evaluating the adversarial resilience to control
resilience vs accuracy tradeoffs in dynamic malware classification. An adversary-
aware feature selection aims to find feature subsets for which the adversary’s
budget is insufficient to create adversarial manipulations, classifier generalization
is maximized, and training dimensionality is minimized. Then the MRB is used as
the resilient feature selection criteria. An experimental evaluation is then conducted
on feature manipulation costs for the adversary to target resilient and non-resilient
features of adversary resilient classifiers in cyber defense systems with multisensor
fusion. Sadeghi et al. [534] survey the intersection of computational intelligence and
machine learning in autonomous vehicles, assistive robots, and biometric systems.
Here the misclassifications due to adversarial attacks result in erroneous decisions
and unreliable operations. Adversarial machine learning systems can be categorized
in a fine-grained manner according to the input dataset, the ML architecture,
the adversary’s specifications, the attack generation methodology, and the defense
strategy. Cho et al. [127] propose security and dependability metrics as key metrics
for building trustworthy machine learning systems in multi-domain environment
spanning hardware, software, network, human factors, and physical environments.
The trustworthiness metric framework supports ontology-based framework for trust,
resilience, and agility. It can be used in vulnerability assessment, computational
red teaming, and measurement of trustworthy systems. The trustworthy metrics (or
measurements) can be used in the validation of adversarial machine learning for
objectivity based on certainty, efficiency based on quantification, and control based
on feedback. They act as data attributes about the quality of a system such as usabil-
ity, manageability, functionality, performance, dependability, adaptability, security,
and cost. They can incorporate security requirements such as availability, integrity,
confidentiality, reliability, availability, integrity, safety, and maintainability. Data
provenance techniques can also be included with the trustworthy metrics to evaluate
trustworthy information sharing in socio-technical systems and cyber sensing.
Definitions of data provenance can be used to attest to the data quality assertions.
They connect reliability and reproducibility of data analytics applications with data
origin and ownership, modelling validation, and justification of unexpected results.

Ye et al. [683] create instance specific distance learning methods suitable
for different local optima on the adversarial algorithms designed for statistical
properties in the true data distribution. The proposed ISMETS (Instance Specific
METric Subspace) spans the whole metric space for distance learning in a generative
manner. It learns the metric subspace for each instance by inferring expectations
of distributions in variational inference over metric bases according to a Bayesian
paradigm for induction and transduction. The metric subspaces are useful for under-
standing the interpretability and robustness of the results in adversarial deep learning
with latent allocation variables incorporating side information. Parallel program-
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ming techniques and numerical approximation methods can also be incorporated
into the metric learning framework to extend it to high-dimensional datasets. Such
distance metric learning algorithms can be further used to constrain the optimization
costs in adversarial payoff functions to solve multi-objective, constrained, large-
scale, and uncertain optimization problems for adversarial deep learning. Sugiyama
et al. [578] discuss the importance of computing divergence approximators between
probability distributions types from their samples in machine learning, information
theory, and statistics. The divergence estimators have data mining applications on
data analytics distributions such as change-point detection, class-balance estimation,
feature selection and extraction, clustering, object matching, independent compo-
nent analysis, and causal direction estimation. The divergence is estimated in a
computationally efficient manner without approximating the underlying probability
distributions. While Kullback-Leibler divergence is the most popular of such
divergence approximators, other approximators such as Pearson divergence and L2-
distance measures are also useful in machine learning due to their stability and
robustness properties. The divergence measures can be called a distance for metric
learning when they satisfy the mathematical properties of non-negativity, non-
degeneracy, symmetry, and triangle inequality. In adversarial generative learning,
we wish to achieve convergence to an approximation of the target distributions
with deep learning. Hence statistical distance measures and relative distribution
methods represent a suitable measure to evaluate the generalization performance
of the target distribution. Tzeng et al. [613] apply adversarial learning methods to
domain adaptation to understand domain shifts due to dataset/algorithmic biases.
Thus adversarial deep learning can be used to generate complex samples across
diverse domains. Generalization performance of the adversarial deep learning can
be improved by minimizing the divergence between training, testing, and validation
domains with suitably designed adversarial losses. Thus adversarial adaptation
generalizes prior approaches to domain adaptation. Such an adversarial adaptation
called Adversarial Discriminative Domain Adaptation (ADDA) is proposed by
Tzeng et al. [613]. ADDA can be used to represent the source and target domains in a
common feature space. It can also be used to reconstruct target domain from source
representations. Here generalized adversarial adaptation minimizes an approximate
domain discrepancy in the adversarial objective for the learning algorithm. We
can also measure the information divergence between minimal representations of
training data and adversarial data feature embeddings with deep metric learning-
based adversarial cost functions for domain adaptation. We may also enforce a prior
distribution on the latent factors for coherent data generation in supervised deep
learning.

Hayes et al. [259] apply adversarial training for image synthesis in stegano-
graphic algorithms expressed as discriminative learning tasks constructing robust
steganalyzers. Steganography is concerned with hiding information by embedding
it within a non-secret medium. Both steganography and cryptography provide
privacy-preserving methods for secret communication. A steganography message
is encrypted with cryptography methods before embedding it in the non-secret
medium such as a cover message with texts and images. The embedded message
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is statistically no different from a random string. A steganographic message is then
decoded to reveal the ciphertext of the message. The ciphertext is then decrypted
with a cryptographic key. Steganographic algorithms then seek to minimize per-
turbations in the embedding medium. The proposed discriminative learning task
embeds the secret message in a cover message with an algorithm to generate a
steganographic image. The adversary learns weaknesses in the embedding algorithm
to distinguish cover images from steganographic images. Thus adversarial training
in steganalysis techniques is used to model the cover distribution correctly. Modesitt
et al. [435] combine cryptography with adversarial deep learning for applica-
tions in cryptanalysis and encryption. Deep neural networks perform symmetric
encryption in an adversarial environment. They play cryptographic games with an
adversary to detect cryptographically insecure communication based on ciphertext
indistinguishability. Neural Steganography is then provided to create steganographic
algorithms in the presence of adversarial networks. Krause et al. [329] learn a
probabilistic discriminative classifier called Regularized Information Maximization
(RIM) from an unlabelled and partially labelled dataset. RIM has an information-
theoretic objective function to balance class separation, class balance, and classifier
complexity in different class-conditional likelihood functions. RIM can also be
interpreted as discriminative clustering algorithms to represent the boundaries
between categories. Existing discriminative clustering algorithms such as spectral
graph partitioning and maximum margin clustering are not probabilistic models
like RIM. RIM maximizes the mutual information between empirical distribution
on the inputs and induced label distribution regularized by a complexity penalty.
The regularization term penalizes complex decision boundaries to yield sensible
clustering solutions. Relative entropy is used to accommodate prior beliefs on label
distribution in multi-class classification problems for semi-supervised learning as
a cross-entropy regularization term. RIM leads to efficient, scalable optimization
procedures for automatic model selection determining the number of clusters. The
clustering results are compared with ground truth labels on the dataset categories
with an adjusted Rand index (ARI) comparing statistical inference clusters with the
ground truth labels. Resulting semi-supervised methods are found to significantly
improve the classification performance of supervised baselines when the number of
labelled examples is small.



Chapter 6
Physical World Adversarial Attacks
on Images and Texts

During the past decades, deep neural networks (DNNs) have shown great success
in a wide range of applications, including image classification in the computer
vision (CV) domain [263, 282, 558] and text recognition in the natural language
processing (NLP) field [157, 276]. However, recent researches have shown that
DNNs are immensely brittle toward adversarial examples primarily in the image
domain [228, 589]. For example, Goodfellow et al. [228] demonstrated that adding
nearly zero noises to a panda image can mislead the GoogLeNet to incorrect label
(gibbon) with high confidence (99.3%). This phenomenon raises great concern
about DNNs security implementation and attracts much attention in the CV
community since 2014. In the literature, numerous approaches have been proposed
to generate adversarial examples to attack DNNs (aka, the attack branch) and design
corresponding mechanisms to defense these potential attacks (aka, the defense
branch). In this chapter, we focus on the adversarial attack direction to craft high-
quality adversarial examples in both the CV domain and the NLP domain.

6.1 Adversarial Attacks on Images

Adversarial attack is an effective strategy to investigate the properties of DNNs and
promote their security and integrity applications. Adversarial attack on images aims
to generate adversarial examples by adding subtle pixel perturbations to the clean
images so that the well-trained deep learning model makes wrong predictions [5]. In
image classification, Szegedy et al. [589] first revealed an intriguing weakness that
DNNs’ input-output mappings are extremely discontinuous—a human impercepti-
ble perturbation is enough to cause the neural network to make misclassification
(Fig. 6.1). Even worse, the same perturbation on the image can fool multiple DNNs
although they have different network architectures. This result implies the current
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Fig. 6.1 Successful
adversarial examples from
[589] to mislead AlexNet
[332]. The perturbations are
almost imperceptible by
human vision system, but the
AlexNet predicts the
adversarial examples as
“ostrich, struthio, camelus”
from top to bottom

DNNs are highly unstable toward adversarial attacks and attracted great interest in
the CV community.

Based on [589], a number of approaches for image adversarial attacks have
been proposed, such as gradient-based attack [161, 228, 338, 441, 658], score-
based attack [260, 292, 452], decision-based attack [85, 113, 114, 360, 543], and
transformation-based attack [115, 175, 630, 662]. Most of these attack strategies
compute perturbations for each single image by using existing dataset. Compared
with single image attack, crafting universal perturbation for a group of images
belonging to the same class is more challenging [440]. Additionally, most of
existing attack mechanisms are evaluated on public datasets rather than the physical
world environment, where the latter setting is more complex. In this character, we
introduce a novel image-agnostic attack module to generate natural perturbations
for traffic sign attack. This attack module can generate a universal perturbation for
a group of road signs, which is feasible for real-world implementation. Empirical
results on both public datasets and physical world pictures demonstrate that the
method outperforms baselines in terms of attack success rate and perturbation cost.
By using the soft attention module, it generates more natural perturbations, which
look like tree shadows by human drivers.

In this section, we review four kinds of adversarial attack methods on images,
i.e., gradient-based attack (6.1.1), score-based attack (6.1.2), decision-based
attack (6.1.3), and transformation-based attack (6.1.4).
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6.1.1 Gradient-Based Attack

Gradient-based attack [161, 228, 338, 441, 658] seeks for the most sensitive perturb-
ing direction for an input data according to the gradient of loss function. Goodfellow
et al. [228] proposed the well-known fast gradient sign method (FGSM), which
determines the perturbation direction (increase or decrease) for each pixel by
leveraging the gradient of the loss function. They argued that the vulnerability of the
neural networks is due to the linear nature instead of non-linearity or overfitting. To
achieve efficiency, FGSM is designed for learning perturbations via a single gradient
step. Although this procedure accelerates the adversarial training, it often fails to
find the minimal perturbation and results in high perturbation cost [104].

Kurakin et al. [338] refined the FGSM by repeating the gradient step many
times with a smaller step size in each iteration. This iterative FGSM (I-FGSM)
misleads the classifier in a higher rate with relatively smaller perturbations. Kurakin
et al. also shown that the proposed I-FGSM can mislead the target classifier even
for the physical world systems. Specifically, they printed the generated adversarial
example on papers and taken their photos with cell phone camera. The reported
results elaborate that a large fraction of these photos are incorrectly classified by an
ImageNet Inception classifier [588]. The DeepFool method [441] further reduces the
perturbations strength by iteratively searching for the distance between a clean input
to its closest classification hyperplane. However, the greedy optimization strategies
in both I-FGSM and DeepFool are easily leading to a local optimum.

Dong et al. [161] designed the momentum I-FGSM (MI-FGSM), which employs
a velocity vector to memorize all the previous gradients during iterations to escape
from poor local maximum. Besides the white-box attack, Dong et al. also explored
the blackbox attack by improving the transferability of adversarial examples. To
improve the transferability, they studied momentum iterative methods for attacking
an ensemble of models instead of only one model. The theoretical foundation is that
if the generated adversarial example can fool all the ensemble models, it is more
likely to achieve success attack on an unknown model, as the transferability is the
fact that different machine learning models learn similar decision boundaries around
a data point.

Recently, Xiang et al. [658] embedded the FGSM into the gray-box attack
scheme, where the victim network structure is inaccessible but can be derived by the
side-channel attack (SCA). Specifically, the SCA is a technique that derives internal
knowledge via hardware side-channel information, such as time/power consumption
and electromagnetic radiation. Although SCA cannot exactly reveal the parameter
weights or loss function, it can derive the basic network structure. Therefore, it is
more practical than a white-box attack, as the network structure is usually unknown,
yet superior to the blackbox model where no information is available.
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6.1.2 Score-Based Attack

Score-based attack [260, 292, 452] relies on the output scores (e.g., predicted
probability) instead of the gradient information in constructing adversarial pertur-
bations, without access of either model architecture and model weights. Narodytska
et al. [452] applied the confidence score to guide a greedy local search method,
which finds a few pixels (even single pixel) that are most helpful in generating
perturbations. It adopts the “top-k misclassification” criteria, which means the
search procedure will stop until it pushes the correct label out of the top-k scores.
One shortcoming for single pixel attack is that the perturbed pixel may outside of
the expected range.

Hayes and Danezis [260] trained an attacker neural network to learn pertur-
bations, which then used to attack another blackbox target network. The attacker
model is trained to minimize the difference between the original input image and
the output adversary image, where the output image can mislead the target model.
To achieve this, they defined the loss function by combining the output confidence
scores of both networks, i.e., the reconstruction loss and misclassification loss.
The reconstruction loss measures the distance between the input and output of the
attacker model to ensure the adversarial output looks similar with the clean input.
The misclassification loss is defined according to the type of attack (targeted or
untargeted) to make high-attack success rate.

Ilyas et al. [292] considered three more realistic scenarios than typical blackbox
settings, including (1) the query-limited setting, (2) partial information setting, and
(3) label-only setting. Specifically, the query-limited setting means the attacker
has limited number of queries to the classifier, the partial information setting
indicates that the adversary only know the top-k probabilities, and the label-only
setting denotes the attacker only has access to the top-k labels but does not know
their probabilities. For the query-limited setting, the authors employed the natural
evolution strategy (NES) to estimate the gradient and generate adversarial examples.
To solve the query-limited setting, the authors started from an instance of the
target class instead of the original input, so the top-k class will be appeared in the
prediction results. For the label-only setting, they further defined the Monte Carlo
approximation to estimate the proxy score of softmax probability.

Based on [292], Zhao et al. [704] proposed a zeroth-order natural gradient
descent (ZO-NGD) algorithm to perform adversarial attacks. Specifically, it mul-
tiplies the natural gradient with the Fisher information matrix (FIM) to optimize
the probabilistic models. Then it incorporates FIM with the second-order natural
gradient descent (NGD) to achieve high query efficiency.
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6.1.3 Decision-Based Attack

Decision-based attack [85, 113, 114, 360, 543] requires only the model classification
decision (i.e., the top-1 class label) and frees the need of either model gradient or
their output scores. One typical work is the boundary attack [85], which starts with
an adversarial point, i.e., an image selected from the target class. Then it reduces the
noise by implementing the random walk along the decision boundary while staying
adversarial. This method adds minimal perturbations (in terms of L2-distance)
compared with gradient-based methods and requires almost no hyperparameter to
tune. However, it needs much more iterations to deliver the final adversarial example
due to the slow convergence.

Different from boundary attack that minimize perturbations in terms of the L2-
norm, Schott et al. [543] proposed a novel decision-based attack, i.e., pointwise
attack, that reduces noises by minimizing the L0-norm. It firstly initializes the start-
ing point with salt-pepper noise or Gaussian noise until the image is misclassified.
Then it repeatedly resets each perturbed pixel to clean image while making sure the
noisy image still adversarial. This procedure goes on until there is no pixel can be
reset anymore.

Chen and Jordan [113] developed the boundary attack [85] and proposed an
unbiased estimation of the gradient direction at the decision boundary using binary
search. They analyze the estimation error when the sample is not exactly lying at the
boundary and named their method as Boundary Attack ++. Compare with boundary
attack, Boundary Attack ++ not only reduces the number of model queries but also
able to switch between L2 and L∞ distance by designing two clip operators.

In [114], Chen et al. employed the binary information of the decision boundary to
estimate the gradient direction and presented the decision-based HopSkipJumpAt-
tack (HSJA). This method is designed for both targeted or untargeted attack by
minimizing the distance of L2 or L∞. Specifically, HSJA is an iterative algorithm,
where each iteration contains three steps: the gradient direction estimation, the
geometrical step-size search, and a binary method for boundary search. This method
achieved competitive results by attacking popular defense mechanisms, while its
query efficiency needs improvement.

Li et al. [360] pointed out that the large number of query iterations for boundary-
based attack is due to the high dimensional input (e.g., image). Thereby, three
subspace optimization methods (i.e., spatial subspace, frequency subspace and
principle component subspace) are explored in their Query-Efficient Boundary-
Based Blackbox Attack (QEBA) for perturbation sampling. In particular, the spatial
subspace leverages linear interpolation to reduce the image into a low-dimensional
space. The second frequency subspace is obtained by discrete cosine transformation
(DCT), while the third one selects major components with principle component
analysis (PCA).
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6.1.4 Transformation-Based Attack

Finally, transformation-based attack [115, 175, 630, 662] crafts adversarial images
by shifting pixels’ spatial location instead of directly modifying their value. For
example, Xiao et al. [662] proposed the spatially transformed adversarial (stAdv)
method, which measures the magnitude of perturbations via local geometry distor-
tion instead of the Lp-norm. The reason is that the spatial transformation on an
image often leads to large Lp loss, but such perturbations are visually imperceptible
to human and hard to be defend. For each pixel, its spatial location can be moved
to four-pixel neighbors, i.e., top-left, top-right, bottom-left, and bottom-right. The
stAdv constructs an objective function to minimize the local distortion and solve
this minimizing problem with the L-BFGS optimizer [379].

Engstrom et al. [175] also found that simply rotating or translating a natural
image is enough to fool a deep vision model. To simultaneously perform the
translation and rotation, the author defines three parameters where two parameters
for translation and one angle parameter to control the rotation. Then they designed
three distinct ways to optimize these parameters, including the first-order method,
the grid search, and the worst-of-k selection. The first-order method needs full
knowledge of the classifier to compute the gradient of loss function, while the
second and third strategies can perform under blackbox settings.

Wang et al. [630] investigated the effect of image spatial transformation on the
image-to-image (Im2Im) translation task, which is more sophisticated than pure
classification problem. They revealed that the geometrical image transformation
(i.e., translation, rotation, and scale) in the input domain can cause incorrect color
map of Im2Im framework in the target domain. Different from the previous works
that depend only on the spatial transformation,

Chen et al. [115] integrated linear spatial transformation (i.e., affine transfor-
mation) with color transformation and proposed a two-phase combination attack.
Except the affine transformation, the authors defined the color transformation as
the change of illumination, because these adjustments do not change the semantic
information of an image. Besides, since the Lp-norm is inappropriate for measuring
the adversarial quality in transformation attack, the authors employed the structural
similarity index (SSI) [638] to measure the perceptual quality. These adversary
models can be potentially applied to protect social users’ interaction for influence
learning [95, 362].

Based on attacker’s knowledge, these methods can be divided into white-box
attack, blackbox attack and gray-box attack. Specifically, white-box attack assumes
attackers know everything about the victim model (e.g., architecture, parameters,
training method, and data), blackbox attack assumes the adversary only knows the
output of the model (prediction label or probability) given an input, and gray-box
attack means the scenario where the hacker knows part of information (e.g., the
network structure) and the rest (e.g., parameters) is missing. Based on attacker’s
specificity, these methods fall into targeted attack where the model outputs a user-
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Table 6.1 Summary of the properties for different attacking methods. The properties are Targeted
attack, Untargeted attack,White-box attack, Blackbox attack and Gray-box attack

Properties

Attacking methods Targeted Untargeted White Black Gray

FGSM [228] � � �
I-FGSM [338] � � �
DeepFool [441] � �
MI-FGSM [161] � � � �
Xiang et al. [658] � �
Narodytska et al. [452] Top-k misclass �
Hayes and Danezis [260] � � �
Ilyas et al. [292] � �
Zhao et al. [704] � �
Boundary Attack [85] � � �
Pointwise attack [543] � �
Boundary Attack ++ [113] � � �
HSJA [114] � � �
QEBA [360] � �
stAdv [662] � �
Engstrom et al. [175] � �
Wang et al. [630] � �
Chen et al. [115] � �

specified label, or untargeted attack where the model is misled to any label other
than the correct label. A summary is provided in Table 6.1.

6.2 Adversarial Attacks on Texts

Compared with adversarial image attack, the vulnerability of deep learning models
in text recognition is greatly underestimated. There are some difficulties in crafting
text adversarial samples. Firstly, the output of a text attack system should meet
various natural properties, such as lexical correctness, syntactic correctness, and
semantic similarity. These properties make sure the human prediction will not
change after the adversarial attack. Secondly, the words in text sequences are
discrete tokens instead of continuous pixel values in image space. Therefore, it is
infeasible to directly compute the model gradient with respect to every word. A
direct roundabout method is mapping the sentences into continuous word embed-
ding space [483], but it cannot ensure that words closed in the embedding space
are syntactically coherence to readers [13]. Thirdly, making small perturbations on
many pixels may still yield a meaningful image from the view of human perception.
However, any small changes, even a single word, on text document can make a
sentence meaningless.
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The first attempt of text attack can be traced back to 2016, when Papernot
et al. [483] investigating the robustness of recurrent neural networks (RNNs) in
processing sequential data. In this work [483], Papernot et al. proved that the
RNNs can be 100% fooled by averagely changing 9 words in a 71-word movie
review for sentiment analysis task. Since 2016, several lines of works have been
proposed to generate adversarial text examples, including the character-level attack
[42, 169, 209], word-level attack [13, 302, 333, 483, 509], and sentence-level
attack [300, 625]. Table 6.2 elaborates three adversarial examples generated by
different attack strategies. Specifically, character-level attack generates adversarial
texts by deleting, inserting, or swapping characters. However, these character-level
modifications lead to misspelled words, which can be easily detected by spell check
machines. Sentence-level attack concatenates an adversarial sentence before or after
the original texts to confuse deep architecture models, but they usually lead to
dramatic semantic changes and generate human incomprehensible sentences. To
address these drawbacks, most recent studies have focused on the word-level attack,
which replaces the original word with another carefully selected one. However,

Table 6.2 Three successful adversarial text examples generated by the character-level attack,
sentence-level attack, and word-level attack strategies

Character-level attack modifies input character from “p → B” [169].

Original: Chancellor Gordon Brown has sought to quell speculation over who should run
the Labour Party and turned the attack on the opposition Conservatives.

Adversarial: Chancellor Gordon Brown has sought to quell speculation over who should run
the Labour Party and turned the attack on the oBposition Conservatives.

Sentence-level attack adds one sentence at the end of the input [300].

Original: Peyton Manning became the first quarterback ever to lead two different teams to
multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age
39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl
XXXIII at age 38 and is currently Denver’s Executive Vice President of Football Operations
and General Manager.

Adversarial: Peyton Manning became the first quarterback ever to lead two different teams
to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at
age 39. The past record was held by John Elway, who led the Broncos to victory in Super
Bowl XXXIII at age 38 and is currently Denver’s Executive Vice President of Football
Operations and General Manager. Quarterback Jeff Dean had jersey number 37 in Champ
Bowl XXXIV.

Word-level attack replaces input word from “f unny → laughable” [509].

Original: Ah man this movie was funny as hell, yet strange. I like how they kept the
shakespearian language in this movie, it just felt ironic because of how idiotic the movie
really was. this movie has got to be one of troma’s best movies. highly recommended for
some senseless fun!

Adversarial: Ah man this movie was laughable as hell, yet strange. I like how they kept the
shakespearian language in this movie, it just felt ironic because of how idiotic the movie
really was. this movie has got to be one of troma’s best movies. highly recommended for
some senseless fun!
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existing word substitution strategies are far from perfect in achieving high-attack
success rate and low substitution rate.

In this section, we review the related text attack methods, including character-
level attack (6.2.1), sentence-level attack (6.2.2), word-level attack (6.2.3), and
multilevel attack (6.2.4).

6.2.1 Character-Level Attack

Firstly, character-level attack [42, 169, 170, 209, 218] generates adversarial text by
deleting, inserting or swapping characters. Belinkov and Bisk [42] devised four
types of synthetic noise: (1) swap two adjacent characters but exclude the first and
last letters (e.g., noise → nosie), (2) randomize the order of all the letters in a
word except for the first and last (e.g., noise → nisoe), (3) fully random a word
including the first and last characters (e.g., noise → iones), and (4) keyboard
typo that randomly replace one letter in each word with an adjacent key (e.g.,
noise → noide). These strategies can mislead the neural machine translation
(NMT) models in a large degree. However, they modify every word of an input
sentence as they can, which leads to a high perturbation loss. For example, the
“swap” of two letters is applied to all words with length ≥ 4, as it does not alter
the first and last letters.

To reduce the distortion degree, Ebrahimi et al. [169] proposed HotFlip, which
represents every character as a one-hot vector and proposes two character oper-
ations, i.e., the character insertion and character deletion. Specifically, HotFlip
estimates the best character change (aka, atomic flip operation) by computing direc-
tional derivatives with respect to one-hot vector representation. Then it employs a
beam search to find a sequential of manipulations that can perform well together
to confuse a well-trained classifier. Besides, the HotFlip sets the upper bond of
character flips as 20% for each training sample to restrict the manipulations.

To minimize the edit distance and reduce the distortion degree, Gao et al. [209]
designed a blackbox DeepWordBug and made the text perturbations only on those
highest important words. Specifically, it evaluates the word importance score by
directly removing words one by one and comparing the prediction changes. The
DeepWordBug modifies words by following four character operations, including
(1) replace a letter in the word with a random letters, (2) delete a random character
in the word, (3) insert a random letter in the word, and (4) swap two adjacent letters
in the word. They defines the edit distance as the Levenshtein distance, so the edit
distance for (1), (2), and (3) is 1, but this distance for (4) is 2.

Gil et al. [218] exhibited that the HotFlip method that designed under the
white-box setting can be applied to performing blackbox attack via an efficient
distillation. This white-to-black procedure contains three steps: firstly, train a source
text classification model and a target blackbox model; secondly, craft adversarial
examples by attack the source model with HotFlip under white-box; and, thirdly,
train an attacker to generate new adversarial examples to attack the black box target
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model. The attacker is trained using the (input, output) pairs with a carefully
designed cross-entropy loss function, where the input denotes the original input
word and the output is the modifications made in the second step.

Eger et al. [170] proposed Visual Perturber (VIPER) algorithm to replace
characters with their visually similar symbols, which is commonly used in Internet
slang (e.g., n00b) and toxic comment (e.g., !d10t), etc. The advantages of visual
attack include the needless of any linguistic knowledge beyond the character level
and the less damaging to human perception and understanding. The visually similar
symbol candidates are selected from three character embedding space, including
the image-based character embedding space (ICES), description-based character
embedding space (DCES), and easy character embedding space (ECES). The ECES
achieves the maximal effect on the target model by appending symbol below or
above a character (e.g., c → ĉ), but these perturbations need manual selection.

However, one common drawback for character-level attacks is that they breaks
the lexical constraint and leads to misspelled word, which can be easily detected and
removed by a spell-check machine installed before the classifier.

6.2.2 Sentence-Level Attack

Sentence-level attack [250, 300, 348, 564, 625, 632] concatenates an adversarial
sentence before or more commonly after the clean input text to confuse deep
architecture models. For example, Jia and Liang [300] appended a compatible
sentence to the end of paragraph to fool reading comprehension models (RCM).
The adversarial sentence looks similar to the original question by combining altered
question and fake answers, aiming to mislead RCM into wrong answer location.
Nevertheless, this strategy requires a lot of human intervention and cannot be fully
automated, e.g., it relies on about 50 manually defined rules to ensure the adversarial
sentence in a declarative form.

Wallace et al. [625] sought for the universal adversarial triggers, i.e., input-
agnostic sequences, which causes a specific target prediction when it is concatenated
to any input from the same dataset. The universal sequence is randomly initialized
and iteratively updated to increase the likelihood of the target prediction using token
replacement gradient as HotFlip, while this method fails to guarantee a semantically
meaningful output to human perception and often generates irregular text (e.g.,
“zoning tapping fiennes”).

Recently, Song et al. [564] proposed the Natural Universal Trigger Search
(NUTS) to craft fluent trigger that carries semantic meanings. The NUTS employs a
pre-trained adversarially regularized autoencoder (ARAE) to generate triggers and
adopts a gradient-based search to maximize the loss function of the classification
system. During optimization, multiple independent noise vectors (256 vectors in
their experiment) are firstly initialized. Then those optimized candidate triggers are
re-ranked according to both of the classifier accuracy and the naturalness.
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Wang et al. [632] proposed Controlled Adversarial Text Generation (CATGen)
model that generated adversarial sentence by changing a controllable attribute of
the input sentence. To be specific, the CATGen contains two main modules, i.e.,
an encoder-decoder framework for text generation and an attribute classifier. The
encoder and decoder are both RNNs to learn a copy an input sentence. The attribute
classifier is trained on an auxiliary dataset, aiming to learn controllable attributes
(e.g., category, gender, domain) that are irrelevant to the task-label (e.g., positive,
negative). For example, by changing the attribute from “Kitchen” to “Phone,” the
input sentence “amazing knife, used for my edc for a long time, only switched
because i got tired of the same old knife (Pos.)” becomes “amazing case. used for
my iphone5 for a long time, only problem because i got tired of the same old kindle
(Neg.).”

Except for the classification task, Han et al. [250] investigated the adversarial
attack for the structured prediction tasks in NLP and proposed a sequence-to-
sequence (seq2seq) sentence generator. Different from the classification task, one
special challenge for the structured prediction models is the structured output of the
prediction model is more sensitive to small perturbations in the input sentence. For
example, shifting only one word of the sentence “I am a writer” to “I fire a writer”
makes the dependency parser delivering different parse tree. To solve this problem,
the seq2seq generator is trained by reinforcement learning and taking the parse tree
as one term of the reward function. Then it can be used to produce adversarial
sentences directly given an input sentence without access the victim model, i.e.,
acting as an online attacker.

Le et al. [348] explored the robustness of neural fake news detection models
and proposed the Malcom framework to generate adversarial comments. Fake news
are usually consist of a title, content, comments, and replies, where the title and
content are unchangeable if the attacker is not the publisher. However, an adversary
can make any malicious comments for the published article. As a part of input, the
adversary comment can mislead the same detector without the ownership of the
target article. To ensure the adversary comment is relevant to the article, Malcom
train a conditional text generator together with a STYLE module and an ATTACK
module by designing an objective function under white-box. This white-box attack
can also be transferred to some unknown fake news classifiers under blackbox
settings.

Additionally, the sentence-level attack usually appears in other NLP tasks, such
as natural machine translation (NMT) [296] and question answering (QA) [207].
However, as these methods manipulate text document on sentence level, they usually
lead to high perturbation cost and significant semantic changes.

6.2.3 Word-Level Attack

Word-level attack [13, 212, 302, 359, 365, 483, 509, 689] replaces original input
words with carefully picked words. The core problems are (1) how to select proper
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candidate words and (2) how to determine the word substitution order. Incipiently,
Papernot et al. [483] projected words into a 128-dimension embedding space and
leveraged the Jacobian matrix to evaluates input-output interaction. However, a
small perturbation in the embedding space may lead to totally irrelevant words since
there is no hard guarantee that words close in the embedding space are semantically
similar. Therefore, subsequent studies focused on synonym substitution strategy
that search synonyms from the GloVe embedding space, existing thesaurus (e.g.,
WordNet and HowNet), or BERT masked language model (MLM).

By using GloVe, Alzantot et al. [13] designed a population-based genetic
algorithm (GA) to imitate the natural selection. The optimization procedure starts
from the initial generation by a set of distinct word modifications. In every next
generation, crossover, and mutation are employed for population evolving and
candidate optimization. Particularly, the crossover takes more than one parent
solution to produce one child solution, and the mutation is designed for increasing
the diversity of population members. Jin et al. [302] presented TextFooler, which
collected substitution candidates from GloVe embedding space. Different from
the GA, TextFooler determines the word substitution order by calculating the
word importance score (WIS). Specifically, the WIS is defined as the reduction
of the true label probability and the increase of the wrong label score by iter-
atively deleting each input word. However, the GloVe embedding usually fails
to distinguish antonyms from synonyms. For example, the nearest neighbors for
expensive in GloVe space are {pricey, cheaper, costly}, where cheaper is its
antonym. Therefore, Glove-based algorithms have to use a counter-fitting method
to postprocess adversary’s vectors to ensure the semantic constraint [444].

Compared with GloVe, utilizing well-organized linguistic thesaurus, e.g.,
synonym-based WordNet [429] and sememe-based HowNet [162], is more
straightforward way. Specifically, the WordNet [429] is large lexical dataset of
English, in which nouns, verbs, adjectives, and adverbs are grouped into sets of
cognitive synonyms (synsets). HowNet [162] annotates words by their sememes,
where the sememe is a minimum unit of semantic meaning in linguistics. Ren
et al. [509] sought synonyms for each input word from the WordNet synsets and
determined the replacement priority of the input words by calculating the probability
weighted word saliency (PWWS). Then they sequentially substitute each word with
the best candidate following the PWWS descending order until find a successful
adversarial sample. Zang et al. [689] manifested that the sememe-based HowNet
can provide more substitute words than WordNet and proposed the particle swarm
optimization (PSO) to determine which group of words should be attacked. In PSO,
each sentence is treated as a particle in a search space, and each dimension of the
particle corresponds to a word. Therefore, a successful adversarial example can be
found by gradually optimizing the particle’s location.

Some recent studies utilized BERT masked language model (MLM) to generate
contextual perturbations, such as BERT-Attack [365] and BERT-based adversarial
examples (BAE) [212]. The pre-trained BERT MLM can ensure the predicted
token fit in the sentence well but unable to preserve the semantic similarity. For
example, in the sentence “the food was [MASK],” predicting the [MASK] as good
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or bad is equally fluent but resulting in opposite sentiment label. Besides, both of
BERT-Attack and BAE adopt a static word replacement order guided by the word
importance score (WIS), leading to redundancy word substitution. The difference
lies in that Garg and Ramakrishnan [212] defined the WIS as probability decrease
of the correct label after deleting a word, while Li et al. [365] replaced each of the
original words by a dummy symbol [MASK].

In addition, Li et al. [359] presented the ContextuaLized AdversaRial Example
(CLARE) model to generate fluent adversarial output via a mask-then-infill pro-
cedure. Instead of using the BERT MLM, the CLARE employs the pre-trained
RoBERTa [390] MLM to provide the contextualized infilling words. The CLARE
adopts three text perturbations, i.e., replace, insert, and merge, which are replace an
input token, insert a new token, and merge a bigram. For each input word, CLARE
will try all these three perturbations and select the one that minimizes the gold
label’s probability.

6.2.4 Multilevel Attack

Multilevel attack combines at least two of the above three attack strategies to
create adversarial text [363, 368, 626]. Unlike the single strategy, multilevel
attack algorithms are relatively more complicated and computationally expensive
[633]. For example, Liang et al. [368] presented to dress up text input on both
character-level and word-level via three strategies, i.e., insertion, modification,
and removal. These strategies are applied on those hot characters and hot words
(i.e., classification-important items) that identified by leveraging the cost gradient.
Besides, they proposed a natural language watermarking technique to improve the
readability and utility of the adversarial text, e.g., inserting semantically empty
phrases. It is worth mentioning that using a single strategy (e.g., removal) is often
insufficient to fool a classifier and combining three strategies is essential to crafting
subtle adversarial samples. However, there lacks a clear optimization principle about
how to combine these strategies.

Li et al. [363] proposed the TextBugger that modified the benign text on both
word-level and character-level. Specifically, it defines five kinds of bug perturbation
methods, including (1) insert a space into the word, (2) delete a random character
of the word except the first and last character, (3) swap two adjacent letters of a
word, (4) replace characters with visually similar characters, and (5) replace a word
with its k-nearest neighbors in the GloVe embedding space. For each input word, it
selects the best bug from these five strategies as the one that reduces the ground truth
probability the most. The final adversarial output is crafted by iteratively repeating
this procedure on every input word.

Wang et al. [626] presented a tree-based attack framework T3 that perturbed
text on both word-level (T3(WORD)) and sentence-level (T3(SENT)). The core
component of T3 is a pre-trained tree-based autoencoder, which can convert the
discrete text space into a continuous semantic embedding space. This solves the
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Table 6.3 Summary of the properties for different text attacking methods. The properties are
Targeted attack, Untargeted attack,White-box attack, and Black-box attack

Properties

Attacking methods Targeted Untargeted White Black

Belinkov and Bisk [42] � �
HotFlip [169] � �
DeepWordBug [209] � �
Gil et al. [218] � � �
VIPER [170] � �
Jia and Liang [300] � �
Wallace et al. [625] � �
NUTS [564] � �
CATGen et al. [632] � �
Han et al. [250] � �
Malcom [348] � � �
Papernot et al. [483] � �
Alzantot et al. [13] � �
TextFooler [302] � �
PWWS [509] � �
PSO [689] � �
BERT-Attack [365] � �
BAE [212] � �
CLARE [359] � �
Liang et al. [368] � � �
TextBugger [363] � � �
T3 [626] � �

discrete input challenge so that the gradient-based optimization method can be
used to find an adversarial embeddings. Finally, the adversarial embeddings can
be mapped back to the adversarial text by a tree-based decoder with a set of tree
grammar rules. The high-attack success rate is achieved by a sequence of iterations.

Similar to image attack, the typical properties of these text attack methods are
summarized in Table 6.3. As we can see from Table 6.3 that most of existing text
attack methods are designed for untargeted attack.

6.3 Spam Filtering

6.3.1 Text Spam

Email spam filtering has been analyzed as a lazy learning problem in concept
drifts [152]. Kazemian et al. [312] compare machine learning techniques to detect
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malicious web pages. Adversarial examples in reading comprehension systems
are analyzed by Jia et al. [301]. Chen et al. [117] discuss adversarial examples
in machine-learning classifiers for malware detection. Miyato et al. [432] discuss
adversarial training with adversarial examples on word embeddings in a recurrent
neural network. Dasgupta et al. [147] adversarial attack scenarios in text classifica-
tion for sentiment analysis on social media sites. Cheng et al. [121] craft adversarial
examples for sequence-to-sequence (seq2seq) models.

Our method is not specific to any particular data source. We experiment with
image databases, text databases, and time series databases.

6.3.2 Image Spam

The image spam detection problem is a part of content-based filtering of multimedia
data in adversarial environments. Such multimedia data is often produced on the
Internet communities and mobile networks. According to the survey by Attar et
al. [20], image spam is created by embedding spam text message into images. The
adversarial objective is to prevent text recognition by optical character recognition
software. Keyword detection, text categorization, image classification, and near
duplicate detection are the existing techniques for image spam detection. In applying
these techniques to adversarial learning, the underlying assumption is that the text in
legitimate images (and corresponding features discriminating between spam images
and legitimate images) is unlikely to be obfuscated with adversarial features.

The adversarial features can also be built on the rationale of content-based image
retrieval where search for either spam images or legitimate images is driven by a set
of low-level features found in query images. In such methods, the distance between
a query image and templates in database is computed for each feature space and
compared to a threshold to decide whether an image is a spam image or a legitimate
image. Thus, the generalization capability of the adversarial learning algorithms
over image spam strongly depends on choice of proper features for adversarial
data manipulation. In the existing literature, the choice of features depends on
assumptions about properties which best discriminate between spam images and
legitimate images. The most commonly used features include text obfuscation, text
area, low-level image properties (like color, texture, etc.), image similarity, image
regions similarity, and image metadata. The relevant features are then selected based
on results concerning classification accuracy, true positive rate, false positive rate,
precision, and recall. The most common classifiers include support vector machines,
decision trees, maximum entropy models, and Bayesian networks.
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6.3.3 Biometric Spam

Biometrics is an area of research where security is a major issue. Security in
biometrics is determined by the vulnerability of pattern classification methods.
Biggio et al. [64] investigate attacks and defenses for adversarial learning in adaptive
biometrics systems. The attacks in an adaptive biometrics system pertain to either
the recognition of biometrics or the changes of biometric traits over time. To
effectively deal with these attacks, the stored biometric templates ought to match
the claimed identities submitted during verification.

The attack points found during the process of matching biometrics identity
are categorized by Biggio et al. [64] as sensor input, feature extraction, template
database, matching algorithm, template update, scoring rule, and scoring thresholds.
In adaptive biometrics additional attack points include template theft and malware
infection disregarding intrinsic failures. These attacks are further classified into
attacks on sensors, interfaces and channels connecting modules, processing modules
and algorithms, and template databases.

Following attacks are seen in adaptive biometric systems:

• Spoofing attacks fabricate a fake biometric trait to impersonate an enrolled client.
• Replay attacks stage stolen biometrics as features in the matching algorithm.
• Hill-climbing attacks affect the communication channels by iteratively sending

perturbed data to the matching algorithm and retaining data that gives maximum
matching score. The iterations in attack continue until convergence of the
optimization method used by the adversary.

• Malware infection attacks exploit well-known software and hardware vulnera-
bilities through hacking techniques and programming practices.

• Template theft attacks target improperly protected template databases that are
not encrypted.

Biggio et al. [64] then go onto characterize attacks in biometric systems according
to the security framework discussed by Vidyadhari et al. [619]. A spoofing attack
scenario, a poisoning attack scenario, and an evasion attack scenario are discussed
as a motivation for adversarial learning algorithms in secure-by-design biometric
systems. Pattern matching algorithms in secure-by-design biometric systems are
recommended to be designed ground up according to the considerations in statistical
databases. Such considerations include learning with invariances, error tolerance in
PAC learning, and online learning with game theory.



Chapter 7
Adversarial Perturbation for Privacy
Preservation

While adversarial examples (AEs) or adversarial perturbations (APs) are usually
treated as a security risk up to date, they can also serve as privacy protection
tools when facing deep learning-based privacy attacks. This chapter will first
introduce a privacy model for visual data, one of the most important types of data
in deep learning applications. Then we will discuss AP-based privacy protection
mechanisms that incorporate different levels of privacy. While the research on this
topic is still in its infancy stage, this chapter will overview the state-of-the-art works
and shed light on future research.

7.1 Adversarial Perturbation for Privacy Preservation

Due to their unprecedented accuracy, deep learning methods have become the
basis of new AI-based services on the Internet in big data era. Meanwhile, it
raises obvious privacy issues. The deep learning-assisted privacy attack can extract
sensitive personal information not only from the text but also from unstructured
data such as images and videos. This prompts us to revisit the privacy challenges in
a big data era with various intelligent technologies emerging [375]. In particular, the
emerging deep learning technique can “automatically collect and process millions
of photos or videos to extract private/sensitive information from social networks.”
Therefore, thoroughly investigating the privacy problem in the context of deep
learning is an urgent need.

Although most of the existing research work considered adversarial examples
(AEs) or adversarial perturbations (APs) as attack methods that threaten the system
security, AP can also serve as a privacy protection tool when facing the deep
learning-based privacy attacks. The fundamental idea of AP is to generate a
small but intentional worst-case disturbance to an original image, which misleads
CNN-based recognition models without causing a significant difference perceptible
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to human eyes. Therefore, it is feasible to design AP-based privacy protection
mechanisms against privacy attacks.

There has been some recent work that uses adversarial perturbations as a method
for image privacy protection [376, 502]. Liu et al. [391] proposed an algorithm
that is against automatic detection using adversarial examples based on the “Faster
RCNN framework.” Oh et al. [471] set up a game theoretical framework and
studied the effectiveness of adversarial image perturbations for privacy protection.
Shafahi et al. [549] presented an optimization-based method for crafting poison
images, in which just one single poison image could control classifier behavior. Jia
et al. [298] proposed a two-phase framework called AttriGuard to defend against
attribute inference attacks launched by a classifier. Liu et al. [377] investigated
schemes for using adversarial examples in ML systems so that they cannot identify
the sensitive information from images. Li et al. [366] proposed to use adversarial
perturbation for face de-identification. Komkov and Petiushko [322] showed that
carefully computed adversarial stickers on a hat could reduce its wearer’s likelihood
of being recognized. Zhu et al. [715] introduced a new “polytope attack” in which
poison images were designed to surround the targeted image in the feature space.
Xue et al. [673] proposed to use adversarial perturbation to protect multiple private
objects in street view images. Friedrich et al. [204] proposed a privacy-preserving
shareable representation of medical texts for a de-identification classifier. Fawkes
[551] helped users wearing imperceptible “cloaks” to their own photos before
releasing them. When used to train facial recognition models, these “cloaked”
images produce functional models that consistently cause normal images of the user
to be misidentified.

As almost all existing AP-based privacy protection research focus on visual
data, especially image data, the discussion in this chapter will also be conducted
in the context of images and videos. We will first briefly define privacy model in
visual data and then introduce three different groups of AP-based privacy protection
mechanisms.

7.1.1 Visual Data Privacy Model

Before we start to discuss the privacy protection methods, it is important to first
clarify and model image and video privacy. As defined in GDPR [176], privacy is
defined as something that are related to personal identities. In this sense, a single-
level privacy model is not always necessary, nor is it enough for an image or video.
For example, a street view image containing an individual’s face is private as a
whole, but it also contains much non-private information. In this case, using image-
level privacy may be too strong for practical use. If we are able to ensure the face
is anonymous, the whole image can be used as part of the street view service.
Therefore, it is more general to use a multilevel visual privacy model. The idea
is to define a three-level privacy model as follows:
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• File-level privacy: an image or a video.
• Object-level privacy: faces, people, car, etc.
• Feature-level privacy: identity, appearance, pose, etc.

From the first to third level, the model changes from a coarse-grained one to a
fine-grained one. Based on this multilevel privacy model, we can divide existing
AP-based into three groups and discuss them in next subsection, respectively.

7.1.2 Privacy Protection Mechanisms Using Adversarial
Perturbations

7.1.2.1 File-Level Privacy Protection

For file-level privacy protection, we aim to mislead the deep learning tool to a wrong
image class. We consider the scenario of social networks [376]. In more detail,
users post images on social network platforms. Suppose an attacker collects images
through a crawler and use DNNs to mine sensitive information. Figure 7.1 shows
an example of such system architecture. When a user shares an image on social

Fig. 7.1 An example of the system architecture for AP-based file-level privacy protection
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networks without any preprocessing on the original image, an adversary equipped
with DNNs can automatically obtain useful information from this image (i.e., this
is a giant panda with high confidence, indicating a likely event of visiting a zoo).
Other sensitive information such as the user’s activity, location or even name can be
detected by similar powerful deep learning models. In order to prevent the privacy
leakage, we will add adversarial perturbation to the original image, so the released
image can mislead the DNN models to get the wrong information. Meanwhile, we
hope to keep the noise as small as possible so that it has a minor impact on the image
quality and user experience.

We can define this file-level privacy protection problem as a optimization
problem whose target is to minimize the probability of the perturbed image being
correctly classified by the attacker, i.e.,

P1: min Pr(classp = classX|o),

where o is the observation, classp is the predicted class of the adversary, and classX
is the true class of the original image X.

The output of P1 will be a number between 0 and 1, where “0” means completely
private and “1” indicates no privacy.

There are many different methods to generate the noise for the adversarial
example, among which the most widely used one is the fast gradient sign method
(FGSM).

Let θ be the parameters of a model, X the input to the model, y the targets
associated with X (we can randomly pick up a class that we want to mislead the
deep learning model), and J (θ;X; y) be the cost function (output) used to train the
neural network [228]. The cost function can be linearized around the current value
of θ , obtaining an optimal max-norm constrained perturbation of

η = εsign(∇XJ (θ;X; y)),

where ε is a small scalar which keeps the noise imperceptible to human eyes and
∇X is the gradient of the cost function J with regard to the input image X,

∇XJ (θ;X; y) = ∂J

∂X
.

And the release image is generated by

X′ = η + X.

Figure 7.2 gives an example of the result of the file-level privacy protection. The
deep learning model has high confidence (92.42%) to classify the original image as
“minibus.” And when we add a small noise using FGSM, it will be misclassified as
a “washbasin” with even higher confidence (99.37%).

Existing research results show that AP-based methods can achieve good privacy
protection against the deep learning tools at the cost of adding a small amount
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Fig. 7.2 An example of the result of the file-level privacy protection (the colors of noises are
amplified by normalization otherwise they would be hard to see)
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Fig. 7.3 Framework of AP-based object-level privacy protection algorithm

of noise that is imperceptible to human eyes [376]. And the effectiveness of the
proposed method is especially good with images of complex structures and textures.

7.1.2.2 Object-Level Privacy Protection

File-level privacy protection is suitable for simple images that contain only one
major object. In practice, there are generally multiple objects in a given image,
especially for social network images. And some of the objects are privacy-sensitive,
while others might be privacy-insensitive. In this case, we can use an object-level
privacy protection framework to solve the problem [673].

As shown in Fig. 7.3, the framework can consist of two major steps: (i)
identifying private objects in the image and (ii) image privacy protection using
adversarial perturbation.
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For the first step, a DNN-based object detector can be used. If we have an input
image X, the output of the object detection module is represented as

C(X) =

⎛
⎜⎜⎜⎝

x1 y1 w1 h1

x2 y2 w2 h2
...

...
...

...

xn yn wn hn

∣∣∣∣∣∣∣∣∣

c1

c2
...

cn

⎞
⎟⎟⎟⎠ ,

where xi , yi , wi , and hi represent the up left corner x-coordinate, y-coordinate and
width, and height of anchors, respectively. i is the index of the regions of interest
(ROI) (i = 1, 2, . . . , n), which is equivalent to the number of objects in the image.
cj is the class label (e.g., cat, dog, face).

It is worth noting that many object detectors such as Faster RCNN [510] treat
background as a class, i.e., cbg . threshold is used to deal with the unrecognizable
area that may appear. If the probability of all classes is less than threshold, it is
recognized as the background.

Then we define what are private objects according to GDPR:

• Personal identity—license plate, phone number, address, etc.
• Biometrics—face, calendar data, fingerprints, retinal scans, photos, etc.
• Electronic records—cookies, IP locations, mobile device IDs, social network

activity records

According to this definition, all classes in the object detection output are divided
into two subsets: Cprivate is the set of private classes, and Cnon−private includes
non-private classes.

Then in the second step, a small adversarial perturbation δX targeting on private
objects is applied to generate the privacy-free image Xpr = X + δX, so that
only non-private information can be detected when passing Xpr through an object
detector, i.e.,

C(Xpr) =

⎛
⎜⎜⎜⎝

x1 y1 w1 h1

x2 y2 w2 h2
...

...
...

...

xn yn wn hn

∣∣∣∣∣∣∣∣∣

c
pr

1
c
pr

2
...

c
pr
n

⎞
⎟⎟⎟⎠ ,

where ∀cj ∈ Cprivate : c
pr
j = cbg .

Based on the above-described framework, our target is to fool the network by
changing the class of the private objects to background, while the non-private
objects are recognized as their original classes. Meanwhile, the added noise δX

should be small so that it is imperceptible for humans. Hence, the problem can be
formulated as follows:

argmin
δX

‖δX‖2
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s.t.: ∀cj ∈ Cprivate : c
pr
j = cbg

∀cj ∈ Cnon-private : c
pr
j = cj

An AP-based image privacy protection algorithm can be used to solve the above
problem. As shown in Fig. 7.3, the object detector finds all objects in the image at
the beginning. Then, we replace the label of the private objects with the background
and use the corresponding loss function to calculate the gradient. Then the noise
is updated according to the gradient. Finally, the perturbed image is generated, in
which all privacy objects are treated as background by the object detector.

The key part of the algorithm is to trick the classification loss (Lcls) so as to
mislead the object detector recognizing the privacy objects to background, as shown
in Eq. (7.1):

Lcls = 1

n

∑
i

En(pi, p
∗
i ) + λ

∥∥X − Xpr
∥∥
2 , (7.1)

where pi = [pi1, . . . , pim] is the probability of the content of an anchor being
recognized as each class. p∗

i is one-hot encoded (p∗
i = [0, 0, . . . , 1, . . . , 0, 0]), in

which 1 appears in the position where we set the class as the correct class. p∗
i will

be generated according to ground truth label if the object is non-private, while it will
be changed to the background if the object is private. n is the total number of objects
in the image so that the entropy will be averaged over all anchors. Next, we can use
Lcls to generate the perturbation, using the fast gradient sign method (FGSM) [228].

Using the targeted FGSM, the perturbation can be calculated in the direction of
the gradient:

δX = −εsign(∇XLcls) = −εsign(
Lcls

∂X
),

where ε is the step parameter that scales the noise. Therefore, the generated image
will be:

Xpr = X + δX = X − εsign(
Lcls

∂X
)

7.1.2.3 Feature-Level Privacy Protection

In some other cases, we only need to change certain features in image or video,
using the human imperceptible adversarial perturbation. A typical example is to
change the person’s identity (against the face recognition system) in the image while
keeping the appearance visually unchanged.

A face recognition system is a technology that is capable of recognizing or
authenticating a person from an image or a video frame. With recent advanced
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Fig. 7.4 Illustration of a typical face recognition system and the process of generating adversarial
image perturbation

deep learning neural networks, the accuracy of artificial intelligence-based face
recognition systems has begun to surpass human accuracy in some benchmark tests.
As a result, they are beginning to see a wider range of uses in many applications,
such as access control and security monitoring.

Figure 7.4 depicts a typical face recognition system. When an input image is
received, it first detects the position of the face and crops the face to the size that is
aligned with the system settings. The DNN is used to calculate a face embedding
(a numerical vector representing the facial features) from the face image. Then the
system can calculate the distance between the embedding of the input face and any
given embedding from the system database. The distance is converted to a vector
containing two soft values that indicate the face recognition result: if the first value
is greater than the second one, then the two embeddings are from images of the same
person. Otherwise, they are the images of two different persons.

In a sense, the face recognition system is similar to the person in performing the
task of recognizing another person: the person compares the new image with their
memory. If the image looks close to someone in their memory, they reckon it as the
same person. The only difference is how DNN and humans measure the “distance”
between images.

From the privacy protection perspective, we aim to add noise to the original
image so that the face recognition system cannot identify the person correctly. In
more details, based on the privacy protection successful rate metric, the proposed
image privacy protection problem can be formulated as:

P2: max Pr(IDX′ �= IDX), (7.2)

where IDX is the identity of the original image and IDX′ is the identity of the image
with perturbation.
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The adversarial perturbation can be generated with FGSM algorithm or a more
powerful method, i.e., the multistep variant FGSMN , which is essentially projected
gradient descent (PGD) on the negative loss function [338].

In PGD, the FGSM will be repeated for N times or until the absolute value of
noise reaches a predefined upper bound, i.e.,

X′
0 = X

X′
n = X′

n−1 + εsign(∇XJ (θ;X′
n−1; y))

= X′
n−1 + ηn−1, 1 ≤ n ≤ N.

An illustration of the process of is shown in Fig. 7.4. First, a different person was
specifically or randomly selected. Then the embedding vector of this adversarial
face will be calculated and used as the value of y. The image with adversarial
perturbation is generated by the PGD algorithm and finally tested using the face
recognition system.

7.1.3 Discussion and Future Works

Although AP-based methods have shown superb effectiveness of privacy protection
even at imperceptible noise level, there are currently two major issues with this
group of methods: (1) these methods depend highly upon the accessibility to target
systems, so can only be guaranteed for target-specific recognizers (i.e., requiring
white-box knowledge), and (2) the transferability of adversarial perturbation, i.e.,
its effectiveness on alternative unknown models are not as good as against the target
model.

To solve the above issues, some papers [287, 295] have transferred the calculation
of noise direction from the output layer to the intermediate layer of the model.
This can avoid the differences between models, thereby increasing transferability.
Pidhorskyi paper [493] studied the potential of adding adversarial perturbations on
feature level of images. As different DNNmodels have similar outputs in the feature
levels, it will also increase the transferability.

From the privacy protection perspective, there are some other mechanisms. For
example, there are some researchers who start to use GAN to generate content
to replace the sensitive information in the images [101, 581, 645, 706]. Sun et
al. [581] proposed GAN-based head inpainting to remove the original identity.
Additionally, there recently have been a few attempts to combine the DP notion
with image privacy. Fan [178] proposed an ε-differential private method in the
pixel level of the image. However, making image pixels indistinguishable does
not make much sense in practice, and the quality of the generated image is quite
low. It will be an interesting topic to compare the different privacy protection
mechanisms. Finally, after the first stage of image privacy protection, research on
video privacy protection has also started [644]. As directly applying existing image
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privacy protection methods to videos will introduce high computational complexity
and big latency, designing more effective video privacy protection mechanisms is
also promising research directions.
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