

REMY LENTZNER

Getting started with SQL
French original title : Bien débuter avec SQL
EDITIONS REMYLENT, Paris, 1ère édition, 2023
R.C.S. 399 397 892 Paris
25 rue de la Tour d’Auvergne - 75009 Paris
REMYLENT@GMAIL.COM
www.REMYLENT.FR

ISBN EPUB : 978-2-38518-037-9

The Intellectual Property Code prohibits copies or reproductions
intended for collective use. Any representation or reproduction in
whole or in part by any means whatsoever, without the consent of the
author or his successors in title or cause, is unlawful and constitutes
an infringement, pursuant to articles L.335-2 and following of
Intellectual Property Code.

This book is dedicated to Anna and Tama

I could not have written it without their support, advice,
encouragements and proofreading.

Graphic illustration : Anna LENTZNER

In the same collection

Improve your PivotTables with Excel

Upgrading your skills with Excel

Improve your skills with Google Sheets

Programming macros with Google Sheets

Getting started with HTML

Getting started with JavaScript

Getting started with PHP & MySQL

Google Docs

Google Slides

Google Gmail

Macros & VBA with Excel

Getting started with WordPress

Getting started with Programming

Getting started with Numbers

Getting started with Pages

Getting started with Keynotes

Upgrading your skills with Word

Upgrading your skills with PowerPoint

Upgrading your skills with Outlook

Getting started with OpenOf�ce Calc

Getting started with OpenOf�ce Writer

Getting started with OpenOf�ce Impress

Getting started with OpenOf�ce Base

Macros & Basic with OpenOf�ce Calc

Getting started with Adobe Acrobat Pro

Getting started with Sparkle

INTRODUCTION

Numerous business people use spreadsheets to enter numbers and
formulas. These numerical data are placed in cells within a group of
columns and rows. When it comes to manipulating values, a
spreadsheet is the ideal tool. But the amount of stored information
will be limited by the maximum number of rows allowed. For
instance, Excel Mac version 16 offers you 1,048,676 rows and
moreover 10,000 columns. This may seem like a lot, but if you have
to manage millions of parts like ship or spacecraft manufacturers,
one spreadsheet won't be enough.

Applications that enable you to store huge amounts of information
are called databases. These are computer tools that manage
information stored in many tables and linked together by
relationships. In this way, data can be pooled, retrieved, queried or
added to. The overall system is designed to secure the information.
For instance, a bank manages all its customers by assigning them
with an individual user number and a password. Each customer can
consult his account, withdraw funds, make transfers and perform
many other operations. Thanks to the Internet network from his
phone, banking operations can be carried out at home, at the of�ce or
while travelling. Each operation is considered as a transaction that
can succeed or fail. To manage these countless transactions, the
computer application must be able to provide an extremely high
degree of security. This is the purpose of a database that links
numerous pieces of information and is called a RDBMS or Relational
Database Management System.

There are several of them in the market such as Oracle, Sybase, SQL
server, MySQL, PostgreSQL and many others.The common language
used by all these information management applications is SQL
(Structured Query Language). It has evolved over time with the
development of operating systems.

SQL is platform independent and has a small instruction set. In 1970,
the professor and mathematician Edgar Frank Codd (1924-2003) was

working as a researcher for the IBM company at the San Jose
laboratory. He wrote a theoretical paper (A relational model of data for
large shared data banks) published in the Association for Computing
Machinery journal. The article laid the foundation for a simple
programming language in English that could handle data stored on
any computer platform.

A few years later, IBM created a prototype for a relational database
called System/R with SEQUEL or Structured English Query Language,
which was later renamed SQL. It is the Oracle Corp. that produced the
�rst marketable version.

SQL is a standardized language that has evolved over time: SQL86,
SQL89, SQL92, SQL1999, SQL2003, SQL2006, SQL2008, SQL2011
and SQL2016. It has adapted to Internet applications that manage
huge volumes of information.

The SQL language is based on relational algebra and is broken down
into different subsets: DDL (Data De�nition Language), DML (Data
Manipulation Language), DCL (Data Control Language) and TCL
(Transaction Control Language).

The DDL or Data De�nition Language groups together the commands
that allow the creation, modi�cation or deletion of table structures,
indexes, views, etc.

A table is the physical information support and the index is a feature
that accelerates searches and permits relations between tables. The
view enables the extraction of data in a flexible and ef�cient way.

The DML or Data Manipulation Language contains the commands
that are used to select and manipulate the data contained in the
database (SELECT, INSERT, DELETE, UPDATE, etc).

The DCL or Data Control Language contains the orders that manage
the security of data access, such as GRANT or REVOKE.

The TCL or Transaction Control Language groups the commands that
manage the validation (or not) of the transactions, such as COMMIT,

or ROLLBACK.

It would be tedious to describe all the SQL commands one after the
other. In my opinion, it is more interesting to discover the most used
commands by doing progressive exercises.

In this book, you will practice with the free MySQL language
accessible to everyone and thanks to the PhpMyAdmin database
management environment, you will be able to manipulate data. I have
chosen the free local MAMP server which you can download on PC or
Mac.

The book is divided into 6 chapters.

Chapter 1 describes how to install the local MAMP server, the
PhpMyAdmin relational database management feature and how to
create a database with its different objects.

Chapter 2 shows how to create a table, enter data, search for
information, and query it using advanced criteria or groupings. You
will learn how to use the SELECT command, that enables you to
select information from one or more tables. With the UPDATE
command, you will perform updates and calculations. You will learn
how to create views, stored procedures and triggers.

Chapter 3 explains the techniques that allow you to de�ne
relationships between tables. You will be able to de�ne foreign keys
and constraints.

Chapter 4 focuses on functions that manipulate text, dates, or
numbers and can be used in SELECT queries. You will learn about the
aggregate functions that are used with the GROUP BY clause.

Chapter 5 looks at more advanced SQL queries. You will discover how
to integrate a SELECT command into another SELECT command. You
will learn how to sort in substrings. You will manipulate several set
queries with the UNION operator as well as the left and right outer
joins between a primary key and a foreign key from two tables.

A glossary summarizes the principal key words of the language

I hope that this book will interest you and enhance your SQL
knowledge.

Do not hesitate to contact me at remylent@gmail.com if you have
any comments or questions about this book.

Enjoy your reading.

The author

TABLE OF CONTENTS
Chapter 1
The working environment

1.1 Installing the local MAMP server
1.2 Starting the phpMyAdmin tool
1.3 Creating a database

Chapter 2
Tables

2.1 The table, the fields and the primary key
2.1.1 Creating a table
2.1.2 Workshop
2.1.3 Adding information to a table
2.1.4 Finding information in a table
2.1.5 Multiple operators
2.1.6 Miscellaneous operators

2.2 The SELECT command
2.2.1 Examples with SELECT
2.2.2 Sorting a column with Order By
2.2.3 Grouping with GROUP By
2.2.4 The HAVING clause

2.3 Managing records
2.3.1 Deleting a record
2.3.2 Copying a record
2.3.3 The UPDATE command

2.4 Calculating
2.4.1 Grouping and totaling
2.4.2 Statistics
2.4.3 Calculating with a condition WHERE
2.4.4 Calculating with UPDATE
2.4.5 Duplicating a table

2.5 The routines
2.6 The views
2.7 The triggers
2.8 The console
2.9 The privileges

Chapter 3
Relationships

3.1 Defining relationships
3.1.1 The BOOKS table

3.1.2 The SHOPS table
3.1.3 Displaying the schema
3.1.4 Creating a foreign key
3.1.5 Creating a relationship
3.1.6 The table constraints
3.1.7 The UPDATE or DELETE constraints

3.2 Multi-table queries
3.2.1 The query window
3.2.2 Performing a query by example

Chapter 4
Functions

4.1 The text functions
4.2 The date functions

4.2.1 Creating a table with dates
4.2.2 Calculations with dates
A) Displaying the number of days between two dates
B) Displaying the number of months between two dates
C) Displaying the number of years between two dates
D) Adding 13 days to a date
E) Subtracting 10 days from a date
F) Subtracting 3 months from a date
G) Adding years to a date
4.2.3 The current date and time
4.2.4 Extracting parts of the date
4.2.5 Day of month, week and year

4.3 Functions about numbers
4.4 The aggregate functions

Chapter 5
Advanced SQL Queries

5.1 A CASE expression in a SELECT
5.2 The COALESCE function and NULL values
5.3 More complex sorting

5.3.1 Sorting with an index
5.3.2 Sorting with several columns
5.3.3 Sorting by substrings

5.4 Ensemble queries
5.4.1 The UNION operator
5.4.2 Creating a table with the UNION operator
5.4.3 The MINUS operator

5.4.4 The IN operator
5.5 Joining several tables

5.5.1 Creating a foreign key
5.5.2 Finding identical names
5.5.3 The LEFT OUTER JOIN operator
5.5.4 The RIGHT OUTER JOIN operator

5.6 Deletions
5.6.1 Removing records in a table
5.6.2 Deleting a table
5.5.3 Deleting an index in a table

5.7 Enumerating objects in a table
Glossary

Chapter 1
The working environment

To work with SQL, you must have a database environment that
enables you to create tables, insert or modify information and run
SQL queries. A database server is therefore necessary whether it is
local or on an Internet platform.

This chapter shows how to use the local and free MAMP server,
where you can work with the relational database system
PhpMyAdmin in order to manipulate SQL.

Once the local server is ready to use, you can create a database,
tables and other objects.

1.1 Installing the local MAMP server
In your favorite browser, search for MAMP then select the link
Downloads - MAMP & MAMP PRO.

Figure 1.1 shows the different platforms that are available to you.

Figure 1.1 : MAMP platforms

Click on the needed MAMP link.
Choose your platform, then install the package on your
computer.

Figure 1.2 shows the MAMP application.

Figure 1.2 : MAMP is ready to start

To start the local server, click on the Start icon. To stop the
server, click on the Stop icon.

The Open WebStart page link will enable you to run the PhpMyAdmin
database manager.

Figure 1.3 shows the different tools that are available at the address :
http://localhost:8888/MAMP/?language=English

Figure 1.3 : MAMP tools

To create a database, use the phpMyAdmin tool.

1.2 Starting the phpMyAdmin tool
Click on Tools / phpMyAdmin.

Figure 1.4 shows the Tools menu.

Figure 1.4 : The Tools menu

Once phpMyAdmin is running, the window is split into 3 parts (�gure
1.5).

In this working environment, you will be able to create your
databases.

Figure 1.5 : The SQL working environment

The window has two important parts: the left panel for the objects
and the central panel for their properties. Notice the home icon at the
top of the left panel.

By clicking on this home icon, you can change the display language,
thanks to the drop-down list in the Language area.

Figure 1.6 : Changing the language

The other icons enable you to get information about phpMyAdmin
and to set other parameters concerning the databases.

The central panel displays tabs that will allow you to manipulate the
database objects (�gure 1.7).

Figure 1.7 : The objects menu

The following list details these options:

Database. Here you can create new databases.

Figure 1.8 : Creating a new database

SQL. This window allows you to write SQL queries. With
phpMyAdmin, you can see the SQL code that pre�gures any
action.

Figure 1.9 : Writing the SQL code

Status. This feature displays general information about the
started server and the running processes, as well as the status
variables. Other actions are possible to monitor the database
management.

Figure 1.10 : The current status information

User account. This option displays user names, host names,
passwords and privileges. You can create a new user in this
area.

Figure 1.11 : User accounts overview

Export. This feature enables you to export a database in
different formats.

Figure 1.12 : Exporting a database

Import. This option permits you to import a �le into the current
database.

Figure 1.13 : Importing a �le into a database

Settings. You can change the general settings of the system,
for instance, by rede�ning the dialog display.

Figure 1.14 : Managing settings

Replication. This feature allows you to de�ne database
replication settings. It is a process for copying, storing and
saving data between a master and a target database.

Figure 1.15 : Replication settings

Variables. Displays the contents of all system status variables.

Figure 1.16 : The system variables

Charsets. You can de�ne a character set from an international
set.

Figure 1.17 : Choosing the charsets

Storage engine. Several internal storage programs are available.

Figure 1.18 : The storage engines

1.3 Creating a database
Using the PhpMyAdmin system, the following shows how to create a
database called MANAGEMENT:

Start the MAMP server or your own server.
Go to the phpMyAdmin utility.
Click on the Databases tab.

Enter the word MANAGEMENT in the Database area then click

on the Create button (�gure 1.19).

Figure 1.19 : Creating a database

As soon as the database is created, the system offers you to create a
new table with 4 columns by default (�gure 1.20).

Figure 1.20 : Waiting for the creation of tables

A database is a structure that permits the storage of large amounts
of information thanks to an organization in the form of tables.

The tables are structured in columns which are also called �elds.
Tables have numerous properties or attributes. If the information is
well structured, the tables can be linked together by relations or
special joins. This relational feature enables you to link a large
number of tables in order to extract records based on several criteria.

Figure 1.21 shows the creation of a table name FLOWERS with 2
�elds.

Figure 1.21 : Creating a table with 2 �elds

Once the table has been created, you can add data in it. The SQL tab
enables you to view the SQL code created for each action you de�ne
afterwards.

For example, the following code creates a database named
MANAGEMENT:

CREATE DATABASE IF NOT EXISTS MANAGEMENT

or

CREATE DATABASE MANAGEMENT

In brief
To work with a database, you need a dedicated server: local or
remote. The phpMyAdmin database system enables you to
manipulate and create as many databases and tables as you want.
Many system parameters can be modi�ed within this organization.

Chapter 2 will deal with the table structure.

Chapter 2
Tables

This chapter shows how to create tables, columns and
primary/foreign keys that are fundamental inside the structure. You
will be able to enter and modify data while studying the provided SQL
code. You will discover the SELECT and UPDATE commands that
respectively enable you to display data with criteria and modify
information in depth. You will probably be interested in the views
feature and stored procedures which permit to save actions in order
to re-use them if necessary.

2.1 The table, the fields and the primary key
An information system de�nes data that is organized in a structured
way. The information can be manipulated simply thanks to the SQL
language, which has a small number of instructions. With it, you can
insert, modify or delete data. Calculations can also be performed. The
result of an SQL query is a result set or a view that can be saved for
later use.

2.1.1 Creating a table
A table is a group of columns or �elds. A set of rows is called records
or tuples. You can create as many tables as you want in the database,
the only limit is the storage capacity of the database which depends
on the system used.

A table has �elds of different types. For instance, you can specify
numerical, text or date �elds, and within these categories several
subtypes are available.

Figure 2.1 shows these different types.

Figure 2.1 : Field types

The following list details the main types:

VARCHAR. You can enter characters up to the number you
de�ne as a limit.
TEXT. You can enter text.
CHAR. In this type of column, you have to enter exactly the
de�ned number of characters.
DATE. It is a date type �eld.
TIMESTAMP. This column type enables you to enter both a date
and a time.
TINYINT. A tiny integer is therefore a small positive integer with
values from 0 to 255.
SMALLINT. In this type of column, you can enter long integers
in the range -215 to 215-1.
INT. In this type of column, you can enter long integers in the
range -231 to 231-1.
BIGINT. It is a larger positive or negative integer with values
from -263 to 262.
BLOB. It is a �eld that is used to store pictures or sound �les.
BINARY. This type of column enables you to de�ne values
between 0 and 1. It is often used to manage checkboxes.
DECIMAL. This �eld allows you to enter large numbers with a
precision of (+/-)231.
REAL. In this type of column you can enter numbers in the

range −21074 à (2-252)*21023.
FLOAT. Use it if you have memory constraint because it takes
almost half as much space as double.
DOUBLE. Use it if you need more precise and accurate results.

2.1.2 Workshop
Consider a book publisher that works with booksellers. He needs to
have a list of both customers and booksellers.

To perform a good data organization, some rules must be respected:

Each bookseller must have a unique identi�er called the
primary key that is de�ned when the table is created.
Each column must contain only consistent data. For instance,
in an address column, do not put either city or phone number.

Usually a table can have millions of rows but each of them is
identi�ed by a primary key �eld. It can be of text or integer type. It is
more practical to choose the integer type with the auto-increment
feature because the value of the primary key will be increased by 1
each time a new record is created. This auto-incrementing property is
de�ned at the time of the table creation. The primary key is very
important because it also enables you to join data between several
tables.

The table below shows the structure of a bookstore table.
Attribute Description Property

id_bookst int auto-increment primary key

name text 40

address text 40

zip text 10

city text 40

discount decimal

date_contact date

The following procedure shows how to create the bookstore table

according to this structure:

Start the server.
Access PhpMyAdmin.
New / Create Database
Enter the name of the database (prospect) then click on the
Create button (�gure 2.2).

Figure 2.2 : Creating the database.

Click on the Create New table button.
Type the name of the table (bookstore) in the Name table �eld.
Enter the number of columns (7) in the Number of columns
�eld.
Finish with the Create button (�gure 2.3).

Figure 2.3 : Creating the bookstore table

The system displays the columns to be de�ned.

Figure 2.4 : The �elds to de�ne

Notice the column A_I which indicates that the �eld will be auto-

incremented.

Figure 2.5 shows the different �eld names. Once the �elds are �lled in,
�nish with the Save button.

The �rst �eld is the primary key. It is a good idea to specify it with an
INT type and auto-incremented. Thus, each time you will create a new
record, this �eld will be incremented and the unicity will be set
without error.

Figure 2.5 : The different �elds

Caution: The Null checkbox enables you to leave a �eld without
information when editing the record.

Note the SQL Preview button at the bottom left of the window. It
allows you to see the SQL code that creates the table.

CREATE TABLE `PROSPECT`.`BOOKSTORE` (`ID_BOOKST` INT NOT
NULL AUTO_INCREMENT , `NAME` TEXT NOT NULL , `ADDRESS`
TEXT NOT NULL , `ZIP` TEXT NOT NULL , `CITY` TEXT NOT NULL ,
`DISCOUNT` DECIMAL NOT NULL , `DATE_CONTACT` DATE NOT
NULL , PRIMARY KEY (`ID_BOOKST`)) ENGINE = INNODB;

Click on the Save button to �nish.

PhpMyAdmin shows the �eld structure on the left corner (�gure 2.6).

Figure 2.6 : The �eld structure

If you want to change the name of a �eld afterwards, perform the
following:

Select the table.
Click on the Structure tab.
Check the �eld you want the name to change.
Click on the Change link.
Modify the �eld name.
Finish with the Save button.

The SQL code below shows the modi�cation of the CITY �eld using
the ALTER command.

ALTER TABLE `BOOKSTORE` CHANGE `CITY` `CITIES` TEXT
CHARACTER SET UTF8 COLLATE UTF8_GENERAL_CI NOT NULL;

2.1.3 Adding information to a table
To add data to a table, you must use the Insert tab.

Select the table.
Click on the Insert tab.
Enter the data in the dedicated �elds (the big rectangles).
Finish with the Go button.

Figure 2.7 shows the entry of the �rst record. Do not �ll in the primary

key �eld, the system will take care of that automatically.

Figure 2.7 : Adding a record to the table

The SQL code that inserts data is as follows:

INSERT INTO `BOOKSTORE` (`ID_BOOKST`, `NAME`, `ADDRESS`, `ZIP`,
`CITY`, `DISCOUNT`, `DATE_CONTACT`) VALUES (NULL, 'LIBRAIRIE
EYROLLES', '1 RUE THENARD', '75005', 'PARIS', '38', '2/9/21')

The values to insert are surrounded by inverted commas.

Once all the data is entered, you can see a summary by clicking on
the Browse tab. Each line can be modi�ed. Check the line then click on
the Edit link.

Figure 2.8 shows 3 rows entered in the table.

Figure 2.8 : Several rows in the table

Multiple actions are possible regarding records: editing or deleting a
row, adding other information, searching, etc. All operations that can
be done manually with PhpMyAdmin can be done with the SQL
language.

2.1.4 Finding information in a table
A table can contain millions of rows. You can search for information
using the Search tab.

Figure 2.9 shows the �elds in the dialog.

Figure 2.9 : Several rows in the table

There are operators available in the Operator column. Figure 2.10
shows the numeric operators and the text ones.

Figure 2.10 : The different operators

To search for information, choose the needed conditional operator
then enter a value in the Value column. Finish with the Go button. If
the value is found, PhpMyAdmin will display the result.

Figure 2.11 shows a research for the library DECITRE.

Figure 2.11 : Searching a value

The SQL command that performs the upward research is as follows:

SELECT * FROM `BOOKSTORE` WHERE `NAME` LIKE 'DECITRE'

The sign * displays all the table �elds without naming them.

2.1.5 Multiple operators
Several logical operators can be used together to narrow the
research. For instance, suppose you need to list the bookstores
between the years 2021 and 2022 and whose discount was greater
than 30.

Figure 2.12 shows a mix of criteria.

Figure 2.12 : A search with several conditions

SELECT * FROM `BOOKSTORE` WHERE `DISCOUNT` > 30 AND
`DATE_CONTACT` BETWEEN '2021-01-01' AND '2022-12-31'

2.1.6 Miscellaneous operators
The operator IN permits you to search for rows based on multiple
contents inside a single column. For instance, you want to see all the
records coming from two companies.

The SQL query below searches for all records where the names of the
BOOKSTORE are DECITRE as well as ALIZE SFL.

SELECT * FROM `BOOKSTORE` WHERE `NAME` IN ('DECITRE', 'ALIZE
SFL')

Figure 2.13 : The operator IN

The values are wrapped with apostrophes.

The opposite of the previous formulation would be written with the
NOT IN operator:

SELECT * FROM `BOOKSTORE` WHERE `NAME` NOT IN ('DECITRE',
'ALIZE SFL')

The �gure below shows another example where you search for all the
bookstores that have their store in an 'AVENUE'.

The operator used is LIKE with the wildcard % feature.

It �nds all expressions that have the word AVENUE, either at the
beginning, in the middle or at the end of the �eld.

Figure 2.14 : The operator wildcard

The SQL expression is as follow:

SELECT * FROM `BOOKSTORE` WHERE `ADDRESS` LIKE
'%AVENUE%'

The operator IS NULL indicates that the �eld contains the value
NULL.

If you want to search for columns that do not contain any value, you
must use the operator ='.

The ! character indicates to negate the expression that follows. For
instance, the operator !=' (different from nothing) searches for
everything that is �lled in.

2.2 The SELECT command
SELECT is the main order of an SQL query. It retrieves a set of results
according to the chosen �elds and the de�ned criteria. With SELECT,
you can specify multiple tables with joins (relationships) that are
written in a WHERE clause.

The complete syntax of the query is as follows:

SELECT list-of-�elds [INTO table_name]

FROM source_table]

WHERE search condition

GROUP BY grouping expression

HAVING condition in the group

ORDER BY sort �eld ASC | DESC

The list below details the different clauses.

SELECT. This clause enables you to de�ne the columns of the
table (or tables) that can be related.
FROM. With this clause you de�ne the tables that are involved
in the query.
WHERE. This clause permits you to de�ne equalities or
comparisons between values. You can place join features
between tables in case relationships are needed between
them.
GROUP BY. This clause enables you to group values in order to
use calculation functions such as sums or averages.
HAVING. This statement allows you to de�ne equalities or
comparisons within a grouping de�ned by the GROUP BY
clause.
ORDER BY. This clause enables the result of a search to be
sorted by one or more columns. The sorting can also be
de�ned in an ascending or descending manner.

UNION, EXCEPT and INTERSECT operators can also be used between
multiple queries to combine or compare their results in a single result
set. They depend on the database system.

Caution. A SELECT query can be included in another SELECT query.

2.2.1 Examples with SELECT
Here are some examples that produce a result set.

1. Displaying bookstores with zip codes beginning with 69.

SELECT * FROM BOOKSTORES WHERE SUBSTRING(`ZIP`,1,2)='69'

2. Displaying the bookstores whose zip code does not start with 69.

SELECT * FROM BOOKSTORES WHERE NOT
SUBSTRING(`ZIP`,1,2)='69'

3. Displaying the bookstores from Lyon (ZIP begins with 69) and Paris
(ZIP begins with 75).

SELECT * FROM BOOKSTORES WHERE SUBSTRING(`ZIP`,1,2)='69'
OR SUBSTRING(`ZIP`,1,2)='75

4. Displaying the bookstores that are given a 30% discount.

SELECT * FROM BOOKSTORES WHERE DISCOUNT=30

5. Displaying the bookstores that have a discount higher than 30%.

SELECT * FROM BOOKSTORES WHERE DISCOUNT>30

6. Displaying the bookstores that have a discount between 35% and
40%.

SELECT * FROM BOOKSTORES WHERE DISCOUNT BETWEEN 35
AND 40

7. Displaying the name of the bookstores and the city.

SELECT NAME, CITY FROM BOOKSTORES

2.2.2 Sorting a column with Order By
A result set is the successful return of an SQL query. It can contain
one or more columns sorted in the ascending or descending
direction.

The example below displays the names of the bookstores sorted
alphabetically from A to Z with the cities.

SELECT NAME, CITY FROM BOOKSTORE ORDER BY NAME ASC

Figure 2.15 : The names are sorted alphabetically.

The DESC operator enables to sort in descending order.

You can also sort within several columns. The following example
displays all the columns by sorting the ZIP column on the �rst 2
characters in ascending order, then the CITY column in ascending
order.

SELECT * FROM `BOOKSTORE` ORDER BY LEFT(ZIP,2) ASC,CITY ASC

2.2.3 Grouping with GROUP By
The GROUP BY operator enables you to group rows according to one
or several criteria.

The operator creates subsets on which calculations will be
performed. The GROUP BY clause takes into account the columns
that are used to compose each subset. It is very easy to count
elements.

The following example counts the number of times a city appears.

SELECT CITY, COUNT(*) as NUMBER FROM BOOKSTORE GROUP BY
CITY

If you want to display the cities excluding duplicates, you can write
the following expression:

SELECT CITY FROM BOOKSTORE GROUP BY CITY

The following table shows the calculation functions that can be used

in group:
Functions Description

AVG Returns the value of the average.

COUNT Returns the number of rows including duplicates and NULL values.

MAX Returns the maximum value.

MIN Returns the minimum value.

SUM Returns the sum of the values.

STDEV Returns the standard deviation.

2.2.4 The HAVING clause
It limits the number of lines displayed after a GROUP BY operation.
Therefore you can act on the rows that come from a grouping
operation.

The following SQL displays the names of the cities and the number of
times the city appears.

SELECT CITY, COUNT(*) AS NUMBER FROM BOOKSTORE GROUP BY
CITY

The following example displays the names of the cities that have 2
bookstores.

SELECT CITY, COUNT(*) AS NUMBER FROM BOOKSTORE GROUP BY
CITY HAVING NUMBER>2

The HAVING command is applied on a group of elements de�ned in
the GROUP BY clause. HAVING accepts calculations on the �elds.

We could have written COUNT(`CITY`) instead of COUNT(*).

2.3 Managing records
You can act on the records thanks to the links Edit, Copy, Delete and
Export.

2.3.1 Deleting a record
To delete a row, perform the following operations:

Select the table.
Click on the Browse tab.
Check the row (or the rows) you want to delete then click on
Delete.
Con�rm with OK.

The SQL code that deletes a row is as follows:

DELETE FROM `BOOKSTORE` WHERE `BOOKSTORE`.`K_LIB` = 7;

2.3.2 Copying a record
Here is the procedure that enables you to copy a row by changing
some values:

Select the table.
Click on the Browse button.
Check the row you want to copy then click on Copy.
Change the values and �nish by clicking on the Go button.

The SQL code uses the expression INSERT INTO.

INSERT INTO `BOOKSTORE` (`ID_BOOKST`, `NAME`, `ADDRESS`, `ZIP`,
`CITY`, `DISCOUNT`, `DATE_CONTACT`) VALUES (NULL, 'DECITRE', '16
AVENUE JEAN DESPARMET', '69371', 'LYON', '38', '2022-02-01');

2.3.3 The UPDATE command
UPDATE enables you to replace one value by another for a whole
group of rows de�ned by a criterion in the WHERE clause.

You have to be careful with this UPDATE command because it acts
on all rows. After the con�rmation, you will not be able to go back,
unless the database (or the table) has been saved.

The syntax is as follows:

UPDATE 'Table name'

SET '�eld' = 'new value'

WHERE condition

Here are some examples with UPDATE.

The following query changes the word TOULOUSE to TOULOUSE
CEDEX in the CITY �eld.

UPDATE `BOOKSTORE` SET `CITY`='TOULOUSE CEDEX' WHERE
`CITY` LIKE '%TOULOUSE%'

The % character is a wildcard.

And to go back :

UPDATE `BOOKSTORE` SET `CITY`='TOULOUSE' WHERE
`CITY`='TOULOUSE CEDEX'

You can also use string functions inside an UPDATE statement.

The following expression transforms the address �eld into upper
case:

UPDATE `BOOKSTORE`

SET `ADDRESS`=UPPER(`ADDRESS`)

The following expression changes the discount to 31% for the
BOOKSTORE between the year 2019:

UPDATE `BOOKSTORE` SET `DISCOUNT` = 31 WHERE
`DATE_CONTACT` BETWEEN '2019-01-01' AND '2019-12-31'

With SQL, dates are always written in the form YYYY-MM-DD.

2.4 Calculating
You can perform calculations with numeric �elds.

The following SQL code creates a table with three �elds: company,
year, turnover.

CREATE TABLE `PROSPECT`.`REPORT` (`ID_ROW` INT NOT NULL
AUTO_INCREMENT , `COMPANY` TEXT NOT NULL , `YEAR` INT NOT

NULL , `TURNOVER` DOUBLE NOT NULL) ENGINE = InnoDB;

Figure 2.16 : Creating a table

Figure 2.17 shows some records inserted in the table.

Figure 2.17 : Some data in the table

Caution. With the Browse feature and only if your table has a primary
key, you can edit data directly by double-clicking on a �eld.

2.4.1 Grouping and totaling
The code below calculates a total of the turnover grouping by
company and with a sort descending. The result of the turnover is
displayed in a column renamed TOTAL.

SELECT `COMPANY`,SUM(`TURNOVER`) AS TOTAL

FROM REPORT

GROUP BY `COMPANY`

ORDER BY TOTAL DESC

Figure 2.18 shows the result.

Figure 2.18 : Grouping and calculating

2.4.2 Statistics
The code below shows how to extract statistics thanks to several
functions

SELECT `COMPANY`,SUM(`TURNOVER`) AS TOTAL,
AVG(`TURNOVER`) AS AVERAGE, MIN(`TURNOVER`) AS MINIMUM,
MAX(`TURNOVER`) AS MAXIMUM

FROM REPORT

GROUP BY `COMPANY`

Figure 2.19 shows the result.

Figure 2.19 : Statistics

2.4.3 Calculating with a condition WHERE
The clause WHERE enables you to select records according to a
logical condition.

The code below calculates a raise of 2% from the turnover solely for
both the year 2020 and a turnover > 20000.

SELECT *,`TURNOVER`*1.02 AS 'RAISE 2%' FROM `REPORT` WHERE
`YEAR` LIKE '2020' AND `TURNOVER` > 20000;

Figure 2.20 shows the result.

Figure 2.20 : Calculating after two logical conditions

2.4.4 Calculating with UPDATE
The UPDATE clause modi�es the data for all the records or a group of
records de�ned with the clause WHERE.

Be careful with UPDATE because once completed, you cannot reverse
the action.

You can de�ne a calculation in the UPDATE expression. For instance,
the code below adds 8% to all turnover for the year 2020.

UPDATE REPORT

SET `TURNOVER`=1.08*`TURNOVER`

WHERE `YEAR`='2020'

2.4.5 Duplicating a table
It is a good idea to copy a table before acting on it with the UPDATE
order.

Follow the steps below to copy any table:

Select the table to copy.
Click on the Operation tab.
Type the name of the new table
Go to perform the operation.

Figure 2.21 shows the settings. You can copy the structure only, the
structure and the date or the data only. You can add the constraints
and the privileges if needed.

Figure 2.21 : Copying a table

2.5 The routines
To save the SQL code that contains an UPDATE order, you can create

a routine (also called stored procedure) that will be saved in the
database. A routine is always de�ned with a name and is invoked by a
CALL command inside another routine.

When a SQL query is performed, it is only kept in memory for the
current session. On the contrary, a routine is permanently stored in
the database.

Follow the steps below to create a routine with PhpMyAdmin:

Select the database.
Click on the Routines tab.
Click on Create new routine.

Figure 2.22 shows the dialog box that requests information.

Figure 2.22 : Creating a routine.

Enter the routine name, for instance, enter the expression
CALCULATION1.
Choose whether the routine is a procedure or a function. With a
function, parameters are de�ned. Here, it is a routine.
Click on the Drop link at the right corner to delete the parameter
line.
In the De�nition area, copy the SQL code that updates the data.

Check Is deterministic. A calculation function that returns an
average is deterministic because you know exactly what will
happen. On the other hand, a calculation that depends on the
current date is not always deterministic. In the case of an
update order of a column in relation to others, you can check
this parameter.

Figure 2.23 : The routine body

De�ner. Specify the name of the person who creates the
routine.
Security type. With DEFINER, the person who creates the
routine or the function must have the necessary rights. With
INVOKER, it is the person who starts the routine or the function
who must have the necessary rights.
SQL data access. With the NO SQL setting, the database is not
relational and is intended for Big Data. It is another form of
storage that is used by applications (Facebook or others) that
do not structure data in a SQL form. With the CONTAINS SQL
parameter, the routine contains SQL statements that do not
involve reading or writing data. With the READS SQL DATA
parameter, the procedure contains SQL statements that read
data. With the parameter MODIFIES SQL DATA, SQL
expressions (UPDATE, INSERT, DELETE or ALTER) can write
data.
Comments. Specify remarks if necessary.
Finish by clicking on the Go button.

Click the Edit button to return to the dialog box.

Figure 2.24 shows the name of the new routine stored in the
database.

Figure 2.24 : The routine is stored in the database

To see the SQL code created automatically, select the routine then
click on Export. Figure 2.25 shows the code.

Figure 2.25 : The code of the stored procedure

DELIMITER $$

CREATE DEFINER=`root`@`localhost` PROCEDURE
`CALCULATION1`()

DETERMINISTIC

UPDATE REPORT

SET `TURNOVER`=1.08*`TURNOVER`

WHERE `YEAR`='2020'$$

DELIMITER ;

To perform a routine, click on the Execute button.

It is possible to call a routine from another with the CALL statement

The code below calls the routine CALCULATION1.

DELIMITER $$

CREATE DEFINER=`root`@`localhost` PROCEDURE `LAUNCH`()

MODIFIES SQL DATA

DETERMINISTIC

CALL CALCULATION1()$$

DELIMITER ;

In general when writing SQL statements, a semicolon is used to
separate them. But in a routine, you have to rede�ne this separator
character. Thus, the whole set of statements is considered as a single
block.

2.6 The views
Views are virtual tables created by assembling other tables according
to several criteria. Views are created using a SELECT query and can
be saved for re-use. For instance one view can display certain
columns of a table while another view can perform calculations.

The general syntax of a view is as follows:

CREATE

[OR REPLACE]

[ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]

[DEFINER = { USER | CURRENT_USER }]

[SQL SECURITY { DEFINER | INVOKER }]

VIEW view_name [(column(s))]

AS query_select

[WITH [CASCADED | LOCAL] CHECK OPTION]

The following list details the different parameters of this syntax:

OR REPLACE. If a view exists, it is deleted and replaced by the
new one.
ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}. The
UNDEFINED parameter is the default value. The MERGE
parameter uses the SQL query that was used to create the

view as the basis for the operation. The result set comes from
the table speci�ed in the query. The TEMPTABLE parameter
uses a temporary table created to store the results. It enables
faster release of locks that apply to the underlying tables. With
the MERGE value, the result set will be editable unlike the
TEMPTABLE value.
DEFINER = { USER | CURRENT_USER }. This parameter
enables you to assign a creator to the view which is
CURRENT_USER by default.
SQL SECURITY { DEFINER | INVOKER }. This parameter allows
you to de�ne the user's rights.
WITH [CASCADED | LOCAL] CHECK OPTION. This parameter
checks the constraints speci�ed in the WHERE clause of a
modi�able view, when modifying its data. The CASCADED
parameter is the default value. It allows to check the constraint
for the view as well as for the underlying derived views. With
the LOCAL parameter, the constraint is checked only on the
view and not on its derivatives.

The notions of referential integrity constraints will be explained in the
next chapter.

Once the view has been created, it can be modi�ed with the ALTER
VIEW command.

To delete a view, use the DROP VIEW expression.

The following steps show how to create a view with the SQL code:

CREATE VIEW `FEBRUARY` AS

SELECT * FROM `REPORT` WHERE `COMPANY` LIKE 'TRAORI'

Once the query is run, you will see a new feature inside the database
that allows you to create or edit views.

Figure 2.26 : Creating a view from the database

You can save as many views as you wish.

2.7 The triggers
A trigger is a sequence of stored code that the database server runs if
a speci�c event occurs (UPDATE, INSERT or DELETE). For instance,
one can imagine that before inserting a row in a table, some controls
must be tested. Triggers are de�ned and stored at the database level.

You can create them both with PhpMyAdmin or SQL.

The following list details the creation of a trigger:

Select the database.
Click on the Triggers tab.

Click on the Create new trigger button.

Figure 2.27 shows the dedicated dialog box.

Figure 2.27 : The trigger parameters

The list below shows the parameters to be �lled in:

Trigger name. In this �eld, enter the name of the trigger.
Table. Use the drop-down list to choose the name of the table.
Time. Use the drop-down list to choose when (BEFORE or
AFTER) the trigger should be activated.
Event. Choose the event that will activate the trigger (INSERT,
UPDATE or DELETE).
De�nition. In this �eld, place the code that the database server
will run.
De�ner. Indicate the user (he must have the rights) who can run
the trigger.
Finish with the Go button to create the trigger.

Afterwards you will be able to modify or delete the trigger. An Export
button enables you to view the trigger code.

The code below shows the syntax that can be changed according to
the database system.

CREATE

TRIGGER=TRIGGER_NAME

DEFINER = USER_NAME

INSERT | UPDATE | DELETE

BEFORE or AFTER

ON TABLE_NAME

THE CODE

For instance, the following code replaces a value after an update
action on a table:

DELIMITER //

CREATE TRIGGER TEST AFTER INSERT ON STUDENT

FOR EACH ROW

BEGIN

SET STUDENT.TOTAL = '12'

END//

DELIMITER;

The SQL code can be tested with the console feature that allows you
to test any action.

2.8 The console
If you want to test a SQL query and study the result, you use the
console that is located at the bottom of the window as shown �gure
2.28.

Figure 2.28 : The console

By default the query is running with the keys CTRL ENTER but you can
change it with the options (�gure 2.29).

Figure 2.29 : The console options

If you want to modi�y the previous code, place the pointer on the line,
then click on the Edit link.

The console is a very practical feature to test the SQL code directly.

2.9 The privileges
There are orders that give (or not) a right to manipulate the tables and
even more so, all the database objects. You can de�ne several
privileges to several accounts on several tables with the SELECT,
UPDATE, DELETE and INSERT clause.

The main command is GRANT.

To see all the possible privileges and the SQL code associated to user
accounts, follow the steps below:

Select a table.
Click on the Privileges tab.

Figure 2.30 shows the available privileges scope.

Figure 2.30 : Privileges for users

In case of several users, privileges can be granted. For instance some
people have the right to see information from the tables, but cannot
change the data.

When you want to grant privileges, you must determine the actions
for each table.

Click on Edit privileges.

Figure 2.31 shows the available actions. Each checkbox allows you to
de�ne the granting degree in a very speci�c way.

Figure 2.31 : Granting privileges

You can prevent the user from selecting, inserting, updating or
deleting data from the tables. You can de�ne the rights to modify the
table structure and so on.

The following code gives the rights to use the SELECT clause for the
user remy with database propects.

GRANT SELECT ON `prospect`.* TO 'remy';

In brief
In this chapter you have studied how to create tables and �elds. The
SQL language proposes a simple set of instructions that you can
discover thanks to the PhpMyAdmin environment. Routines and
views enable you to save actions for re-use.

Chapter 3 will treat the techniques of relations between tables thanks
to SQL schemas and joins.

Chapter 3
Relationships

This chapter shows how to create relationships between tables using
joins and SQL.

3.1 Defining relationships
As we saw in the previous chapter, a database is used to store
various information in tables. The following is a list of important rules
when dealing with tables:

Rule 1. Never repeat the same information in more than one
table.
Rule 2. Respect the consistency of information in each column
of a table. For instance, do not put invoice dates in a column
that should contain city names.
Rule 3. De�ne a primary key for each table created. Prefer an
auto-incrementing �eld that increases the previous value by 1,
each time a new record is created.
Rule 4. A relationship between two tables is always created
between the primary key of the �rst table and a foreign key of
the second. The foreign key is formed by one or more columns
of the second table.

The most common types of relationships you may encounter are the
following:

The 1-to-1 relationship. A value in the primary key column of a
�rst table is linked to the same value in a column of a second
table.

Figure 3.1 : The 1 to 1 relationship

This 1 to 1 relationship is used when two tables contain different
columns, linked together by an identical number stored in each table.
This case rarely occurs because usually all columns are stored in one
table.

The 1-to-many relationship. A value in a table 1 is linked to
several identical values in a table 2.

Figure 3.2 : The 1-to-many relationship

This 1-to-many relationship is very common in daily information
management. For instance, imagine a manager who deals with
several buildings. For each building, he will have to know information
about apartments, tenants, owners etc. An other example could be
the management of several company departments such as
communication, general services, human resources, legal and so on.

The organization de�ned by the form of 1-to-many must respect a
parent-child rule.

The parent table is the one that has a primary key �eld.
The child table is the one that has a foreign key �eld in addition
to its own primary key.

The primary/foreign key pairing de�nes a relationship. Keep in mind

that both primary/foreign key columns must have the same �eld type.

3.1.1 The BOOKS table
Figure 3.3 shows a table with 4 �elds to manage different books.

Figure 3.3 : The BOOKS table

The �rst �eld ID_BOOKS is the primary key of the table. It is de�ned as
auto-incremented.

The code below creates this table.

CREATE TABLE `prospect`.`BOOKS` (`ID_BOOKS` INT NOT NULL
AUTO_INCREMENT , `TITLE` TEXT NOT NULL , `ISBN` TEXT NOT
NULL , `INSTOCK` INT NOT NULL , PRIMARY KEY (`ID_BOOKS`))
ENGINE = InnoDB;

Figure 3.4 shows four inserted records

Figure 3.4 : The data in the BOOKS table

The code below shows how to insert a record.

INSERT INTO `BOOKS` (`ID_BOOKS`, `TITLE`, `ISBN`, `INSTOCK`)
VALUES (NULL, 'GETTING STARTED WITH NUMBERS',
'9782490275694', '20'), (NULL, 'GETTING STARTED WITH PAGES',
'9782490275700', '9');

The primary key is automatically incremented.

3.1.2 The SHOPS table
A publisher sells books to several shops. To know the information of
each of them, a table is necessary.

Figure 3.5 shows the structure of the SHOPS table.

Figure 3.5 : The SHOPS table

The list below details the different �elds:

ID_SHOPS. It is the primary key of the table which totally
identi�es each record.
S_NAME. It is the name of the shop.
CITY. It is the city of the shop.
CONTACT. It is the contact of the shop that can be empty if
necessary.
ID_BOOK. This number de�nes a book that is sold to the
shop.This �eld is the foreign key that will be linked to the
primary key of the BOOKS table.
Quantity. It is the number of books sold to a shop.

TITLE. It is the name of the book that can be empty because it
will come from the table BOOKS.

Figure 3.6 shows several records inserted in this table.

Figure 3.6 : The data of the SHOPS data

To retrieve data from the two tables, you need to create a relationship
between them.

3.1.3 Displaying the schema
The schema is a chart that shows the representation of the linked
tables. Several tools are at your disposal.

Follow the steps below to view the schema:

Select the database.
Click on the Designer tab.
Click on the �rst icon at the left corner.
Show/Hide tables list
Uncheck the tables that are not necessary.

Figure 3.7 shows the tools available.

Figure 3.7 : The two tables BOOKS and SHOPS in the schema

Some icons are dedicated to the creation of relationships.

3.1.4 Creating a foreign key
A �rst table can only be linked to a second table if the following
conditions are set:

The �rst table has a primary key.
The second table has a foreign key with the same type that the
primary key.

In the previous diagram, the BOOKS table has a primary key called
ID_BOOKS. It can be linked to the ID_BOOK �eld which can have a
different name. Here, the two �eld names are not exactly the same.

To create a foreign key, perform the following steps:

Display the structure of the table that contains the next foreign
key.
Check the �eld.
Click on the Index button.
Go

Figure 3.8 shows the index characteristics.

Figure 3.8 : Creating an index for the foreign key

3.1.5 Creating a relationship
To create a link between the two tables, you must use the tool Create
relationship in the Designer feature

Select the database.
Click on the Designer tab.
Click on the �rst icon at the left corner.

Show/Hide tables list
Uncheck the tables that are not necessary.

Click on Create relationship.
Click on the primary key.
Click on the foreign key.
OK
Click on Toggle relationship lines.
Double-click on the database name to reload it.

Figure 3.9 shows the link between the two tables.

Figure 3.9 : The relationship lines

3.1.6 The table constraints
When creating a table, you can specify constraints that will be applied
to the data. These are rules that apply to the columns in a table, or at
the level of the table itself. A constraint ensures the accuracy and
reliability of the information in the database.

The most common constraints are

NOT NULL. A column may or may not contain NULL values. A
NULL constraint allows you to leave the �eld blank. If you want
the column to be �lled in, specify NOT NULL in the line of code.

The following code modi�es the structure of the table SALES:

ALTER TABLE `SALES` CHANGE `display_rate` `display_rate`
DECIMAL(10,2) NOT NULL;

DEFAULT. This constraint provides a default value for a column
when the INSERT INTO statement does not provide a speci�c
value.

ALTER TABLE `SALES` CHANGE `display_rate` `display_rate`
DECIMAL(10,2) NOT NULL DEFAULT '30';

UNIQUE. The UNIQUE constraint prevents two rows from
having identical values in a column.

ALTER TABLE `SALES` ADD UNIQUE(`CODE1`);

CHECK. This constraint sets a condition that must be checked
at record validation time. If the condition fails, the record is not
validated.

ALTER TABLE LIBRARIES ADD CONSTRAINT chk_remise CHECK
(discount>=30)

INDEX. An index is used both to enhance the search of a value
and to create a foreign key. The index can be created using a
single column or a group of columns.

ALTER TABLE `LIBRARIES` ADD INDEX(`CONTACT`);

PRIMARY KEY. A primary key constraint speci�es that a column
will be used as a unique, non-NULL identi�er for a record. A
primary key automatically creates a unique B-tree index.

The following shows the creating of a primary key:

CREATE TABLE OUTPUT (

x integer, y integer, z integer,

PRIMARY KEY (x, z)

);

FOREIGN KEY. A foreign key constraint indicates that the values
in a column (or group of columns) must match the values that
appear in the rows of another table (usually at the primary key
level).

ALTER TABLE SALES

ADD CONSTRAINT bookstore_code

FOREIGN KEY (bookstore_code)

3.1.7 The UPDATE or DELETE constraints
When a primary key of a table is linked to a foreign key of another
table, you can apply foreign key constraints of type DELETE or
UPDATE. It is often referred to as Referential Integrity.

If a primary key points to several identical values at the foreign key
level, you can say that the parent (primary key) has several children
(foreign key).

What happens if you change the value of a parent? Will there be any
repercussions towards the children ?

What happens if you delete a parent record ? Will there be children
deleted ?

With an UPDATE constraint, any change to the parent primary key (if
it is possible) will change the values of the children's foreign key �eld.

With a DELETE constraint, any deletion of a parent record will delete
all the children's records linked.

Perform the steps below to investigate them:

Select the database.
Check the table that contains the primary key (BOOKS).
Click on the Structure link at the right of the table name.
Click on the Relation View button.

Figure 3.10 shows the settings.

Figure 3.10 : Setting up foreign key constraints

You must de�ne a constraint name, the primary key column, the
database name, the table that contains the foreign key and �nally the
foreign key column name.

For a delete constraint, click on the ON DELETE drop-down list. For a
modi�cation constraint, click on the ON UPDATE drop-down list. The
possible values are: CASCADE, SET NULL, NO ACTION and RESTRICT.

The SQL Preview button shows the code that will be executed.

The list below details the different parameters:

CASCADE. If a parent record is deleted or modi�ed, all children
will be also deleted or modi�ed.
SET NULL. A foreign key with this parameter means that if a
record is deleted, the one that matches it will have a NULL
value, but will not be deleted.
NO ACTION. This means that no action is performed on the
child record, if the parent record is deleted or modi�ed.
RESTRICT. This parameter prevents a parent from being
deleted if it has children.

The following code creates a constraint between both BOOKS and
SHOPS tables.

ALTER TABLE `BOOKS` ADD CONSTRAINT `CONST1` FOREIGN KEY
(`ID_BOOKS`) REFERENCES `SHOPS`(`ID_SHOPS`) ON DELETE
RESTRICT ON UPDATE CASCADE;

3.2 Multi-table queries

Once the relationships between the tables are well de�ned,
PhpMyAdmin enables you to visually query the columns. A SQL query
is created automatically and nothing prevents you from modifying it.

3.2.1 The query window
Perform the following steps to create a query based on multiple
tables:

Select the database.
Click the Query tab.

The Query window is divided in three parts in which you can de�ne
the tables, the columns and the criteria.

The Update Query button will display the code SQL.

Figure 3.11 shows the structure that enables you to de�ne the tables.

Figure 3.11 : Specifying tables and �elds

The Update query button will display the SQL query in the dedicated
white area.

The Submit query button will run the instructions. The result will
appear at the bottom of the window.

The code below shows the shops to which books have been sent.

SELECT `SHOPS`.`S_NAME`, `BOOKS`.`TITLE`, `SHOPS`.`QUANTITY`
FROM `SHOPS` LEFT JOIN `BOOKS` ON `SHOPS`.`ID_BOOK` =
`BOOKS`.`ID_BOOKS`;

Figure 3.12 : Information from several tables

3.2.2 Performing a query by example
You can also de�ne the tables and the columns thanks to the visual
query system called Query by Example.

Select the database.
Click on the Query tab then choose Query by Example.

Figure 3.13 shows this visual feature.

Figure 3.13 : The query visual feature

SELECT `SHOPS`.`S_NAME`, `SHOPS`.`CONTACT`, `SHOPS`.`CITY`

FROM `SHOPS` ORDER BY `SHOPS`.`S_NAME` ASC

In this example, the name of the shops, the contacts and the city are
displayed. An ascending sort is applied to the name. It is possible to
add criteria in the query with the WHERE order.

In brief
Tables can be linked together by relationships de�ned at the database
level. A relationship always starts from the primary key of a �rst table
to a foreign key of a second table. They are automatically used when
queries are created and enable access to all the �elds in the relational
schema.

Chapter 4 will deal with the functions that can be used in a SQL
expression.

Chapter 4
Functions

This chapter deals with different functions of text, numerical and date
types that can be used in a SQL expression.

4.1 The text functions
They enable you to manipulate strings of characters inside the �elds.

ASCII(). Returns the ASCII numerical value of the �rst character
of the string.

The query below displays: the name of the libraries, the �rst character
of the name (sorted out), and the corresponding ASCII code.

SELECT `S_NAME`, LEFT(`S_NAME`,1), ASCII(`S_NAME`) FROM
`SHOPS` ORDER BY `LEFT(``S_NAME``,1)` ASC

Figure 4.1 : ASCII code extraction

The LEFT() function extracts several characters of the �eld from the
left.

TRIM(). This function removes the invisible characters at the
beginning and at the end of the string, such as space, tab, line
feed or carriage return.

SELECT `S_NAME`, TRIM(`S_NAME`) FROM `SHOPS`

CHAR_LENGTH(). Counts the number of characters in a string.

SELECT `TITLE`, CHAR_LENGTH(`TITLE`) FROM `BOOKS`

Figure 4.2 : Displaying the number of characters in a string

CONCAT(). This function enables you to concatenate (paste)
several strings together.

SELECT `ID_SHOPS`, CONCAT(`S_NAME`, '-' ,`CITY`, '-' ,`CONTACT`)
FROM `SHOPS` WHERE 1;

Figure 4.3 concatenates the �elds separated by a dash.

Figure 4.3 : Concatenating of several �elds

ELT(). This function returns a string from a speci�ed index.

The following code returns information based on the value 2 (that is
the city) inside the �elds separated by a comma:

SELECT ELT(2,`S_NAME`, `CITY`, `CONTACT`, `ID_BOOK`, `QUANTITY`,
`TITLE`) FROM `SHOPS` WHERE 1;

Figure 4.4 : Retrieving information according to an index

FORMAT(�eld, decimals). This function formats a value
according to the number of decimals.

SELECT `TITLE`, FORMAT(`INSTOCK`,2) FROM `BOOKS` WHERE 1;

Figure 4.5 : Formatting a �eld

SUBSTR(string, position, length,). This function extracts a
substring from a given position with a de�ned length.

For instance, the following SQL expression extracts the
numbers from the ISBN number then inserts a dash every 2
digits.

SELECT `ID_BOOKS`, `TITLE`, `ISBN`,
CONCAT(SUBSTR(`ISBN`,1 ,3),"-",
SUBSTR(`ISBN`,4,1) ,"-",
SUBSTR(`ISBN`,5,5),"-",
SUBSTR(`ISBN`,10,3),"-",
SUBSTR(`ISBN`,13,1))
FROM `BOOKS`;

Figure 4.6 shows the result.

Figure 4.6 : Extraction of a substring

LCASE(string). This function transforms the text into lower
case.

SELECT S_NAME, LCASE(S_NAME) FROM BOOKS

UCASE(string). This function transforms any lower case text

into upper case.

SELECT S_NAME, UCASE(S_NAME) FROM BOOKS

RIGHT(string,length). This function extracts characters from the
right.

The following code extracts the last 3 characters of the name:

SELECT RIGHT(S_NAME,3) FROM BOOKS

LENGTH(string). This function returns the length of the string.

SELECT LCASE(S_NAME), RIGHT(LCASE(S_NAME),3),
LENGTH(LCASE(S_NAME)) FROM BOOKS

Here, two functions are embedded.

REPEAT(string , number). Returns a string repeated a number of
times.

SELECT `ID_BOOKS`, `TITLE`, REPEAT("X",5),`ISBN` FROM `BOOKS`;

REPLACE(input string, text to replace, replacement string). This
function replaces alphanumeric characters in a string.

For instance, one can imagine email addresses that end with .com.
You want replace .com by .fr using the UPDATE command.

SELECT `EMAIL`, REPLACE(`EMAIL`,".COM",".FR") FROM LIBRARIES

The example below uses the UPDATE command.

UPDATE LIBRARIES SET `EMAIL2`=REPLACE(`EMAIL`,".COM",".FR")

REVERSE(string). This function reverses the direction of the
letters in the whole expression.

SELECT `TITLE`, REVERSE(`TITLE`) FROM `BOOKS`;

Figure 4.7 : The REVERSE function

4.2 The date functions
They enable you to manipulate both dates and times. For instance
you can perform calculations such as adding a period to a date or
extracting a part of a date.

4.2.1 Creating a table with dates
Figure 4.8 shows the structure of a table that contains the name of
employee, a starting date and an ending date. Several SQL functions
can manipulate these dates and perform calculations.

Figure 4.8 : The training table structure

Figure 4.9 shows the data entered in this table.

Figure 4.9 : Training dates

4.2.2 Calculations with dates
A) Displaying the number of days between two dates

SELECT `ID_ROW`, `NAME`, `D_START`, `D_END`,
`D_END`-`D_START` FROM `TRAINING`;

Figure 4.10 : Difference between two dates

You can also use the TIMESTAMPDIFF function to display the
number of days between two dates.

SELECT `ID_ROW`, `NAME`, `D_START`, `D_END`,
TIMESTAMPDIFF(DAY,`D_START`,`D_END`) FROM `TRAINING`;

B) Displaying the number of months between two dates

SELECT `ID_ROW`, `NAME`, `D_START`, `D_END`,
TIMESTAMPDIFF(MONTH,`D_START`,`D_END`) FROM `TRAINING`;

Figure 4.11 : Number of months between two dates

C) Displaying the number of years between two dates

SELECT `ID_ROW`, `NAME`, `D_START`, `D_END`,
TIMESTAMPDIFF(YEAR,`D_START`,`D_END`) FROM `TRAINING`;

Other possible parameters for the TIMESTAMPDIFF function are:
SECOND, MINUTE, HOUR, DAY, WEEK, MONTH, QUARTER and YEAR.

D) Adding 13 days to a date

SQL proposes the expression INTERVAL with parameters to add a
value to a date. Use the sign + in the formula.

SELECT `ID_ROW`, `NAME`, `D_START`, `D_START` + INTERVAL 13
DAY FROM TRAINING;

Figure 4.12 : Adding a value to a date

E) Subtracting 10 days from a date

SQL proposes the expression INTERVAL with parameters to subtract
a value from a date. Use the sign - in the formula.

SELECT `ID_ROW`, `NAME`, `D_START`,
`D_START` - INTERVAL 10 DAY FROM TRAINING

F) Subtracting 3 months from a date

The INTERVAL function also enables you to subtract months from a
date. The following SQL expression subtracts 3 months from the
date:

SELECT `ID_ROW`, `NAME`, `D_END`, `D_END` - INTERVAL 3 MONTH
FROM TRAINING;

Figure 4.13 : Subtracting months from a date

G) Adding years to a date

In the same way, you can add years to a date with the INTERVAL
function.

SELECT `ID_ROW`, `NAME`, `D_END`, `D_END` + INTERVAL 2 YEAR
FROM TRAINING

Figure 4.14 : Adding years to a date

4.2.3 The current date and time
Use the CURRENT_DATE function to retrieve the current date.

SELECT `NAME`, `D_START`, `D_END`, CURRENT_DATE FROM
`TRAINING` WHERE `D_END`>CURRENT_DATE;

Figure 4.15 : The current date function

The CURRENT_TIME() function returns the time.

SELECT `NAME`, `D_START`, `D_END`, CURRENT_TIME FROM
`TRAINING`;

Figure 4.16 : The current time function

The CURRENT_TIMESTAMP() function groups the two forms.

SELECT `NAME`, `D_START`, `D_END`,
CURRENT_TIMESTAMP() FROM `TRAINING`;

Figure 4.17 : The current_timestamp function

4.2.4 Extracting parts of the date
You can use the DATE_FORMAT function with parameters to extract
several parts of the date.

The syntax is as follows:

DATE_FORMAT(CURRENT_TIMESTAMP, 'parameter')

The table below shows the parameters:
Parameter Description

%k The hour

i The minute

%s The second

%d The day

%m The month

%Y The year

The following code displays the hour, minute and second of the
current date:

SELECT CURRENT_TIMESTAMP,

DATE_FORMAT(CURRENT_TIMESTAMP, '%k') as hour,

DATE_FORMAT(CURRENT_TIMESTAMP, '%i') as minute,

DATE_FORMAT(CURRENT_TIMESTAMP, '%s') as second

FROM `TRAINING`

The expression as minute is an alias i.e. an expression that renames
the column.

Figure 4.18 : Extracting of the hour, minute and second

The following code displays the day, the month, and the year of the
D_END date.

SELECT NAME,`D_END`, DATE_FORMAT(`D_END`,'%d') AS DAY,
DATE_FORMAT(`D_END`,'%m') AS MONTH,
DATE_FORMAT(`D_END`,'%Y') AS YEAR FROM `TRAINING`;

Figure 4.19 : the day, the month and the year

4.2.5 Day of month, week and year

The functions DAYNAME, DAYOFWEEK and DAYOFYEAR return
respectively the name of the day, the number of the day in the week
(1 for Sunday, 2 for Monday, etc.) and the number of the day in the
year.

SELECT NAME,`D_START`, DAYNAME(`D_START`),
DAYOFWEEK(`D_START`), DAYOFYEAR(`D_START`),
DAYOFMONTH(`D_START`) FROM TRAINING;

Figure 4.20 : Other results

4.3 Functions about numbers
Several functions enable you to act on numerical values.

The table below details them:
Functions Description

ABS Returns the absolute value of the expression.

ACOS Returns the cosine arc of a number.

ASIN Returns the sine arc of a number.

ATAN Returns the tangent arc of a number.

AVG Returns the average.

CEIL Returns the smallest integer value of a number.

COS Returns the cosine of a number.

COT Returns the cotangent.

COUNT Counts a series of values.

DEGREES Converts a radian value into degrees.

DIV Returns the result of integer division.

EXP Returns a value to the power.

FLOOR Returns the largest integer value.

GREATEST Returns the largest value of a series of arguments.

LEAST Returns the smallest value of a series of arguments.

LN Returns the natural logarithm of 2.

MAX Returns the maximum value of a series of values.

MIN Returns the minimum value of a series of values.

MOD Returns the remainder of the division of a number by another.

PI Returns the value of Pi.

POWER Returns the value of a number increased to the power of another.

RADIANS Converts a value from degrees to radians.

RAND Returns a random number between 0 and 1.

ROUND Returns a number rounded to a certain number of decimal places.

SIGN Returns the sign of a number.

SIN Returns the sine of a number.

SQRT Returns the square root.

SUM Calculates the sum of a series of values.

TAN Returns the tangent of a number.

TRUNCATE Truncates a number to a certain number of decimal places.

The following code rounds the column price to one decimal with the
ROUND and TRUNCATE commands.

SELECT `order`, `price`, ROUND(`price`,1), TRUNCATE(`price`) FROM
`SALES`

The next code calculates the sum, the average the maximum and the
minimum of a column by rounding to 0 decimal places.

SELECT ROUND(SUM(`price`),0) , ROUND(AVG(`price`),0) , ROUND(
MAX(`price`),0) , ROUND(MIN(`price`),0) FROM `SALES`

Column can be renamed with the AS expression considered as an
alias.

SELECT

ROUND(SUM(`price`),0) AS SUM,

ROUND(AVG(`price`),0) AS AVERAGE,

ROUND(MAX(`price`),0) AS MAXIMUM,

ROUND(MIN(`price`),0) AS MINIMUM

FROM `SALES

4.4 The aggregate functions
These functions are used to calculate a numerical value within a
column, by grouping records according to one or more criteria.

The calculation functions are the following:

COUNT() or COUNT(*) : number of values
SUM() : sum of values
MAX() : maximum value
MIN() : minimum value
AVG() : average of the values

The structure used for the queries is :

SELECT �elds

FROM table

WHERE conditions

GROUP BY �elds

HAVING conditions

ORDER BY �elds

The GROUP BY clause is used to group records. The COUNT function
can be applied to count elements. The SUM function will be used to
calculate totals, as will the AVG function that will be used to return an
average of the values.

Figure 4.21 shows the structure of a table SALES with the name of
the seller, his sector, the amount and the city of each sale.

The �eld ID_SALE is the primary key and speci�es each row.

Figure 4.21 : The structure of the table SALES

Figure 4.22 shows some data entered in this table.

Figure 4.22 : The data

The following query counts the number of rows by name:

SELECT NAME, COUNT(`NAME`)FROM `SALES` GROUP BY `NAME`;

Figure 4.23 : Number of rows by name

The following query displays the name of each seller:

SELECT NAME FROM `SALES` GROUP BY `NAME`;

Figure 4.24 : The name of the sellers

The following query displays the sum and the average of amounts
grouping by sector and in the result, the average must be greater or
equal than 6000 and the sector equal to 'SOUTH':

SELECT `SECTOR`, SUM(AMOUNT) AS TOTAL, AVG(AMOUNT) AS
AVERAGE FROM `SALES` GROUP BY `SECTOR` HAVING (AVERAGE
>= 6000 AND SECTOR LIKE 'SOUTH');

The query uses the HAVING clause to test values inside a result set.

Figure 4.25 shows the result.

Figure 4.25 : Grouping by sectors and testing a result set

The following query selects a �rst result set that will be used inside a
WHERE clause. Here, two SELECT are embedded:

SELECT `SECTOR`, `AMOUNT`, `NAME` FROM SALES WHERE
`AMOUNT`> (SELECT AVG(`AMOUNT`) FROM SALES);

Figure 4.26 : Two SELECT expressions are embedded.

In brief
In this chapter you have studied text, numerical and date functions
that you can use in SQL queries. Aggregate functions enable you to
group information by using the GROUP BY clause.

Chapter 5 will expose advanced SQL queries.

Chapter 5
Advanced SQL Queries

This chapter focuses on complex SQL expressions that can enhance
your productivity and your skills.

5.1 A CASE expression in a SELECT
You can embed a CASE condition within a SELECT expression to
retrieve results based on multiple conditions.

The following SQL expression tests whether sales are greater than
several values by returning a text corresponding to the status of the
salespeople:

The CASE expression begins the series of conditional tests and
�nishes with the END command. The result of the condition is
assigned to an alias.

SELECT `NAME`,`AMOUNT`,

CASE WHEN `AMOUNT` >5000 THEN 'VERY WELL'

WHEN `AMOUNT` >2000 THEN 'CAN BE BETTER'

ELSE 'TRAINING'

END AS STATUS FROM SALES;

Figure 5.1 : A testing CASE expression

5.2 The COALESCE function and NULL values
This very powerful function enables you to replace NULL values with
other values. The following query replaces NULL values with the value
0 in the sales column:

Figure 5.2 shows the �eld AMOUNT containing NULL values.

Figure 5.2 : NULL values in a �eld

The code below displays 0 in place of NULL.

SELECT COALESCE(`AMOUNT`,0) FROM SALES

Figure 5.3 : NULL are replaced with 0

Another way to perform this operation is with a SELECT CASE
expression.

SELECT CASE

WHEN `AMOUNT` IS NULL THEN 0

ELSE `AMOUNT`

END

FROM SALES

It is much more interesting to use the COALESCE function.

To change the value inside the table, use the UPDATE clause.

UPDATE SALES SET AMOUNT = COALESCE(`AMOUNT`,0)

5.3 More complex sorting
In the previous chapters you have learned that sorting a SQL query is
done using the ORDER BY clause. It can also be applied to text, date
or numerical values in an ascending (ASC) or a descending (DESC)
direction.

5.3.1 Sorting with an index
It is not necessary to specify the name of the column used as a
criterion to sort out a �eld because you can specify a number that
corresponds to its position in the SELECT clause starting from 1.

For instance, the following expression sorts the �elds by the third
column:

SELECT `SECTOR`,`NAME`,`AMOUNT` FROM SALES ORDER BY 3
DESC;

Figure 5.4 shows the result.

Figure 5.4 : Sorting according to an index

5.3.2 Sorting with several columns
You can also sort with several columns. To do this, separate the �elds
by commas. The priority is de�ned from left to right.

The SQL code below sorts the rows of the table according to three
�elds.

SELECT `SECTOR`,`CITY`,`AMOUNT`,`NAME` FROM SALES ORDER BY
`SECTOR`,`CITY`,`AMOUNT` DESC;

Figure 5.5 : Sorting with three �elds

5.3.3 Sorting by substrings
It is quite possible to sort by substrings using the string manipulation
functions.

The following code sorts by the �rst two characters of the �eld
SECTOR.

SELECT LEFT(`SECTOR`,2),`AMOUNT` FROM SALES

ORDER BY LEFT(`SECTOR`,2) DESC

Figure 5.6 : Sorting by two �rst characters

The following code sorts by the last character of the �eld SECTOR
from the right.

SELECT RIGHT(`SECTOR`,1), `AMOUNT` FROM SALES ORDER BY
RIGHT(`SECTOR`,1) DESC

Figure 5.7 : Sorting by the last character

The following code sorts by two characters of the �eld starting at the
2nd character.

SELECT `SECTOR`, SUBSTRING(`SECTOR`,2,2),`AMOUNT` FROM
SALES ORDER BY SUBSTRING(`SECTOR`,2,2) DESC;

Figure 5.8 : Sorting by a substring

5.4 Ensemble queries
With SQL, you can act with two tables using the following set
operators: UNION, INTERSECT and MINUS or EXCEPT.

UNION. The union query enables you to join information from
two tables end to end, systematically eliminating duplicates.
INTERSECT. This command allows you to obtain the
intersection of the results of two queries by retrieving the
common records. The two queries must have the same
number of columns and same type of �elds presentation.
MINUS. Retrieves the records of a �rst query without including
the results of a second query.

5.4.1 The UNION operator
The syntax is as follows:

SELECT �eld1, �eld2, �eld3, etc

FROM Table1

UNION

SELECT �eld1, �eld2, �eld3, etc

FROM Table2

Figure 5.9 shows a table BOOKS2020 that contains book titles.

Figure 5.9 : The table BOOK2020

Figure 5.10 shows a table BOOKS2021 that contains other book
titles.

Figure 5.10 : The table BOOK2021

The two tables have the same structure and the same �eld names
except the primary key. Only one book is common to both tables
(GETTING STARTED WITH ADOBE ACROBAT PRO).

To group all the book titles from the two tables, a UNION query is
needed.

SELECT `NAME`,`PRICE`,`QUANTITY` FROM BOOK2020

UNION

SELECT `NAME`,`PRICE`,`QUANTITY` FROM BOOK2021

Figure 5.11 shows the result:

Figure 5.11 : The result of a UNION query

The UNION query can be sorted as follows:

SELECT `NAME`,`PRICE`,`QUANTITY` FROM BOOK2020

UNION

SELECT `NAME`,`PRICE`,`QUANTITY` FROM BOOK2021 ORDER BY
`NAME`

Figure 5.12 : The result of a UNION query can be sorted

5.4.2 Creating a table with the UNION operator
To extract the data from a UNION query result to a new table, you can
use the CREATE TABLE AS clause, as shown in the query below:

CREATE TABLE THE_GROUP AS

SELECT `NAME`,`PRICE`,`QUANTITY` FROM BOOK2020

UNION

SELECT `NAME`,`PRICE`,`QUANTITY` FROM BOOK2021

In this example, a new table called THE_GROUP will be created and
will contain all the data coming from the two tables.

5.4.3 The MINUS operator
The SQL MINUS operator is used to return all rows in a �rst SELECT
statement that do not exist in a table 2. In other words, the MINUS
operator removes the results from the second dataset.

The syntax is as follows:

SELECT * FROM table1

MINUS

SELECT * FROM table2

The MINUS does not work in every database system.

5.4.4 The IN operator
The IN operator enables you to retrieve values based on a choice. For
instance, the following SQL query retrieves records only for the cities
PARIS and NICE from the table SALES.

SELECT * FROM SALES WHERE `CITY` IN ('PARIS','NICE')

ORDER BY `CITY`

Figure 5.13 : The operator IN

The following query shows the opposite with the NOT operator:

SELECT * FROM SALES WHERE `CITY` NOT IN ('PARIS','NICE')

The IN operator is equivalent to the OR operator.

SELECT * FROM SALES WHERE (`CITY` = 'PARIS' OR `CITY` = 'NICE')

and its opposite:

SELECT * FROM SALES WHERE NOT (`CITY` = 'PARIS' OR `CITY` =
'NICE')

5.5 Joining several tables
When tables have common values, you can join them inside a query
thanks to a primary key that points to a foreign key. The primary key
has unique values and the foreign key has duplicated values.

Figure 5.14 shows the structure of a table called PEOPLE that
contains two �elds: THENAME and SPORT. The �rst �eld is the
primary key. Both the �elds are of type VARCHAR.

Figure 5.14 : The table PEOPLE structure

Figure 5.15 shows the data.

Figure 5.15 : The table data

For each person, several sport trainings are scheduled. A training
starting date and a location will be de�ned. Because there are several
trainings, a second table PLANNING will store the dates and the
location.

The structure of this second table contains the following �elds:

F_NAME. It is the name of the person and it is also a foreign key
that will be de�ned later in order to join the two tables.
STARTDATE. It is the starting date of the training.
LOCATION. It is the location of the training

Figure 5.16 shows the structure of the table PLANNING.

Figure 5.16 : The structure of the second table

Figure 5.17 shows the data inside this second table.

Figure 5.17 : The second table

In this table, two names (ABIGAIL and CHARLES) are not in the �rst
table. Thanks to the LEFT JOINT and the RIGHT JOINT, SQL allows
you to easily control the content between the two tables.

5.5.1 Creating a foreign key
To join two tables in a SQL query, a primary key (from the �rst table)
must point to a foreign key (from a second table).

To create a such foreign key, follow the steps below:

Display the structure of the second table PLANNING.
Check the �eld F_NAME.
Click on the Index link (�gure 5.18).

Figure 5.18 : Creating an index

Click on the Go link to �nish.

Figure 5.19 shows the index settings. In this case, the column Null is
speci�ed to No. It means that you cannot enter an empty value for the
name.

Figure 5.19 : The index settings

Once the index has been de�ned, you can create queries with
relations between tables.

5.5.2 Finding identical names
The next query extracts information from two tables by establishing a
relation from the primary key to the foreign key, using the WHERE
clause. The result will display the same names.

SELECT PEOPLE.THENAME, PEOPLE.SPORT, PLANNING.F_NAME,
PLANNING.STARTDATE, PLANNING.LOCATION FROM
PEOPLE,PLANNING WHERE
PEOPLE.THENAME=PLANNING.F_NAME

Figure 5.20 shows the result from both tables.

Figure 5.20 : Data coming from two tables

The SQL query below displays the �elds using another syntax with
the INNER JOIN expression.

SELECT F_NAME, STARTDATE, LOCATION, PEOPLE.SPORT

FROM PLANNING

INNER JOIN PEOPLE

ON PEOPLE.THENAME=PLANNING.F_NAME

Figure 5.21 shows the result.

Figure 5.21 : Linking data with INNER JOIN

Such a relation (or joint) �nds the values of the keys common to both
tables either with the WHERE clause or with the INNER JOIN
expression.

5.5.3 The LEFT OUTER JOIN operator
If you want to search for information from two tables, taking all the
keys from the left table, you must write the following query with the
LEFT OUTER JOIN ON clause:

SELECT PEOPLE.THENAME, PEOPLE.SPORT, PLANNING.F_NAME,
PLANNING.STARTDATE, PLANNING.LOCATION
FROM PEOPLE LEFT OUTER JOIN PLANNING
ON PEOPLE.THENAME=PLANNING.F_NAME

Figure 5.22 shows the data that does not match between the two
tables. The result is a NULL value in the column.

Figure 5.22 : The result from a LEFT OUTER JOIN clause

SQL considers the primary key (THENAME) and searches for the
matching foreign key (F_name). If it is not the case, a NULL value is
displayed.

5.5.4 The RIGHT OUTER JOIN operator
In the opposite direction, SQL will display all the foreign keys and
searches the primary keys that match.

SELECT PEOPLE.THENAME, PEOPLE.SPORT, PLANNING.F_NAME,
PLANNING.STARTDATE, PLANNING.LOCATION
FROM PEOPLE RIGHT OUTER JOIN PLANNING
ON PEOPLE.THENAME=PLANNING.F_NAME

Figure 5.23 shows the result where all the foreign keys
(F_NAME) are displayed and the primary keys that match
(THENAME). The value NULL is set to the contrary.

Figure 5.23 : The result from a RIGHT OUTER JOIN clause

These features can be very interesting in case errors are found in the
database between primary and foreign keys that do not match.

5.6 Deletions

SQL enables you to delete records but also other objects like table
constraints.

The following examples show you how to perform deletions:

5.6.1 Removing records in a table
Use the DELETE order to remove records from a table. Other clauses
are possible in the SQL query

The following example deletes all the records for which the date is
less than '2023-02-01'

DELETE FROM PLANNING WHERE `STARTDATE` < '2023-02-01'

5.6.2 Deleting a table
The DROP command allows you to delete a table inside the database.
The following code deletes the table
THE_GROUP in the PROSPECT database

DROP TABLE `PROSPECT`.`THE_GROUP`

5.5.3 Deleting an index in a table
The ALTER command is used with a DROP command to delete an
index.

ALTER TABLE PLANNING DROP INDEX `F_NAME`

5.7 Enumerating objects in a table
SQL enables you to display embedded information in tables, such as
index or key names.

The following code shows the index from the table PEOPLE:

SHOW INDEX FROM PEOPLE

Figure 5.24 shows the result.

Figure 5.24 : A list of indexes

You can display other parameters with the feature called
INFORMATION_SCHEMA.STATISTICS.

SELECT * FROM INFORMATION_SCHEMA.STATISTICS

WHERE table_name = 'PEOPLE'

Figure 5.25 shows the result:

Figure 5.25 : Statistics information

In brief
A CASE condition that can be applied to a SELECT query. The NULL
values can be managed with the COALESCE function. It is possible to
sort data with substring functions. The UNION query allows you to
retrieve information from two tables with the same structure. The
JOIN clause permits to link a primary key to a foreign key in many
ways.

Glossary
ACID Acronym for Atomicity, Consistency, Isolation and Durability. It concerns transactions in a database.

AGREGAT Information returned by a statistical calculation and grouped by another criteria.

ALIAS Enables a column to be renamed for greater clarity.

ASC Enables a column to be sorted in the ascending direction.

ASCII American Standard Code for Information Interchange. It is an American standard used for coding
alphanumeric characters. ASCII codes are essential for computer keyboards.

ATTRIBUT A column in a table.

DATABASE It is a structured set of data stored on a server or computer. A database is intended to meet the
needs of users in a context of sharing and security.

CARDINALITY Number of rows in a table.

CATALOG It is a collection of SQL schemas.

CLAUSE A command in a SELECT query.

CLIENT It is a process that establishes a session to communicate with a database.

CLUSTER It is a group of networks or nodes that distribute a workload.

COMMIT To commit a transaction.

CONSTRAINT It is a type of constraint de�ned on a table. For instance, you can restrict the values allowed in a
column.

DDL Data De�nition Language. It is the acronym that designates all SQL commands that can modify the
structure of tables (CREATE TABLE, ALTER, DROP, INDEX, etc).

DELETE To delete records in a table.

DML Data Manipulation Language. It is the set of SQL commands that manipulate records in a table
(INSERT, UPDATE, DELETE, SELECT, etc).

DSC Enables a column to be sorted in the downward direction.

FOREIGN KEY It is a constraint de�ned on one or more columns and used to create a relationship between two
tables, in the context of a one-to-many relationship.

FROM Enables you to de�ne the tables that are involved in the SQL query.

FUNCTIONS These are functions that enable you to act on characters, dates or numbers. The functions can be
used in a query.

GRANT Enables you to grant rights to users or applications. This feature is part of the toolkit to enhance the
security of the database.

GROUP BY Enables you to group records based on a common criterion.

INSERT Inserts information into a table.

INTEGRITY
REFERENTIAL

This value integrity mechanism intervenes between a primary key and a foreign key as part of a
constraint. You can restrict the modi�cation or deletion of their values.

ORDER BY Enables you to sort columns.

OUTER JOIN Enables you to create joins between tables via the primary and foreign key pair. It can be an equal
join or an outer join, right or left.

PL/SQL Procedural Language / Structured Query Language. It is the proprietary procedural language of

Oracle databases.

PRIMARY KEY It is a table constraint that guarantees the uniqueness of the row. It can be auto-incremented and is
used in joins between tables.

PROCEDURE A stored procedure enables you to save a group of SQL commands. One can re-use the code that
has been created.

RELATION It is a logical link between two tables through a foreign key and a primary key. Relationships can also
be set up by joins.

REQUEST It is a request formulated in a language to provide a result. It can also be a command to the server in
order to perform a task.

REVOKE Enables you to revoke rights to users or applications.

ROLLBACK Cancel a transaction.

SCHEMA It is the objects organization in the database.

SELECT It is the main order when retrieving data from one or more tables.

SERVER A group of applications that provide access to information in a multi-user context.

RDBMS Relational Database Management System. It contains tables and information that can be linked
through the SQL language.

SQL Structured Query Language. It contains a small set of instructions capable of querying data on
multiple platforms within a relational database management system.

TABLE It is a data structure containing a collection of information of the same kind. A table contains rows
or records.

TRANSACTION A set of SQL code that determines actions that are completely independent of other transactions.

TUPPLE A record organized into columns also called attributes.

UPDATE Enables you to update information in a table.

VIEW It is a virtual table created with the SELECT command. It can be saved for re-use.

WHERE Enables you to de�ne logical conditions to retrieve a speci�c result set.

I hope that this book about the SQL language has met your
expectations and will enable you to manage your future relational
databases.

Do not hesitate to contact me at REMYLENT@GMAIL.COM if you
have any comments or questions.

I will be sure to answer you.

	Chapter 1The working environment
	1.1 Installing the local MAMP server
	1.2 Starting the phpMyAdmin tool
	1.3 Creating a database

	Chapter 2Tables
	2.1 The table, the fields and the primary key
	2.1.1 Creating a table
	2.1.2 Workshop
	2.1.3 Adding information to a table
	2.1.4 Finding information in a table
	2.1.5 Multiple operators
	2.1.6 Miscellaneous operators

	2.2 The SELECT command
	2.2.1 Examples with SELECT
	2.2.2 Sorting a column with Order By
	2.2.3 Grouping with GROUP By
	2.2.4 The HAVING clause

	2.3 Managing records
	2.3.1 Deleting a record
	2.3.2 Copying a record
	2.3.3 The UPDATE command

	2.4 Calculating
	2.4.1 Grouping and totaling
	2.4.2 Statistics
	2.4.3 Calculating with a condition WHERE
	2.4.4 Calculating with UPDATE
	2.4.5 Duplicating a table

	2.5 The routines
	2.6 The views
	2.7 The triggers
	2.8 The console
	2.9 The privileges

	Chapter 3Relationships
	3.1 Defining relationships
	3.1.1 The BOOKS table
	3.1.2 The SHOPS table
	3.1.3 Displaying the schema
	3.1.4 Creating a foreign key
	3.1.5 Creating a relationship
	3.1.6 The table constraints
	3.1.7 The UPDATE or DELETE constraints

	3.2 Multi-table queries
	3.2.1 The query window
	3.2.2 Performing a query by example

	Chapter 4Functions
	4.1 The text functions
	4.2 The date functions
	4.2.1 Creating a table with dates
	4.2.2 Calculations with dates
	A) Displaying the number of days between two dates
	B) Displaying the number of months between two dates
	C) Displaying the number of years between two dates
	D) Adding 13 days to a date
	E) Subtracting 10 days from a date
	F) Subtracting 3 months from a date
	G) Adding years to a date

	4.2.3 The current date and time
	4.2.4 Extracting parts of the date
	4.2.5 Day of month, week and year

	4.3 Functions about numbers
	4.4 The aggregate functions

	Chapter 5Advanced SQL Queries
	5.1 A CASE expression in a SELECT
	5.2 The COALESCE function and NULL values
	5.3 More complex sorting
	5.3.1 Sorting with an index
	5.3.2 Sorting with several columns
	5.3.3 Sorting by substrings

	5.4 Ensemble queries
	5.4.1 The UNION operator
	5.4.2 Creating a table with the UNION operator
	5.4.3 The MINUS operator
	5.4.4 The IN operator

	5.5 Joining several tables
	5.5.1 Creating a foreign key
	5.5.2 Finding identical names
	5.5.3 The LEFT OUTER JOIN operator
	5.5.4 The RIGHT OUTER JOIN operator

	5.6 Deletions
	5.6.1 Removing records in a table
	5.6.2 Deleting a table
	5.5.3 Deleting an index in a table

	5.7 Enumerating objects in a table

	Glossary

