
Julian Michael Bass

Agile
Software
Engineering
Skills

Agile Software Engineering Skills

Julian Michael Bass

Agile
Software
Engineering
Skills

Julian Michael Bass
University of Salford
Salford, UK

ISBN 978-3-031-05468-6 ISBN 978-3-031-05469-3 (eBook)
https://doi.org/10.1007/978-3-031-05469-3

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

 -151 3003 a -151 3003 a

https://doi.org/10.1007/978-3-031-05469-3

For Bizunesh, Alfie, Rosa and Jill.

In memory of Kibe, Alfie and Beryl.

Preface

The skills you learn from this book will help establish your career in software
development. You can learn skills for working in self-organising teams, developing
software increments and facilitating agile processes. I see a continuing need for
an introductory book that draws together this wide range of modern technical,
collaboration and software process skills.

The book is aimed at early career software development practitioners. You might
be in work or a student and want to work with others and create beautiful computer
programs.Working with people is challenging. For some, more challenging than for
others. Learning to work in a team, with other people who share all our own frailties,
idiosyncrasies and foibles is an important part of life. The hands-on approach in this
book will help equip you for success in a software development team.

Book Structure

Agile methods comprise three sets of related ideas: roles, artefacts and ceremonies.
Consequently, this book comprises three parts, dedicated to People, Product and
Process.

Part I, which focuses on People, describes project roles and the skills you need to
perform each role. This includes members of self-organising teams, scrum masters,
product owners and activities for managing other stakeholders.

I talk about the skills needed to create Product artefacts in Part II. You can learn
the skills you need to create agile requirements, architectures, designs as well as
development and security artefacts.

The agile development Process, you can use to coordinate your work with
others, is described in Part III. I introduce the skills you need to facilitate an
incremental process and to use software tools for version control and automated
testing. These processes can improve product quality and tools automate aspects of
your development process.

vii

viii Preface

I discuss some more advanced topics in Part IV. These topics include large
projects comprising multiple cooperating teams, automating deployment, cloud
software services and evolving live systems.

IEEE/ACM Computing Curriculum Competencies

This book addresses, at least in part, significant competencies in the IEEE/ACM
Computing Curricula Task Force 2020. Competencies comprise knowledge, skills,
dispositions and tasks. Knowledge in the form of factual understanding is a pre-
requisite for professional practice. The skills are how we apply knowledge to
successfully perform professional activities. Dispositions are the attitudes and
character we display when performing professional activities. Finally, tasks frame
the application of knowledge, skills and dispositions. Some specific competencies
addressed include:

• Computer Science Draft Competencies

– SDF-Software Development Fundamentals
– SE-Software Engineering
– SP-Social Issues and Professional Practice

• Software Engineering Draft Competencies

– Software Requirements
– Software Design
– Software Construction
– Software Process and Life Cycle

• Information Systems Draft Competencies

– Analysing trade-offs
– Designing and implementing information systems solutions
– Leadership and collaboration

• Information Technology Competencies

– ITE-SWF Software Fundamentals

• Master’s in Information Systems Draft Competencies

– Systems Development and Deployment [SDAD]

The focus on competencies, in the book, also draws on the Skills for the
Information Age framework which provides advice for practitioners across the
computing and information technology sectors. The skills in this book link together
topics from university courses in programming, databases and data structures
through an approach informed by practice.

Preface ix

Exercises

You can’t learn new skills just by reading about them. You have to read, practice,
evaluate, reflect and read some more. By practice, I mean apply and then put into
practice. Each chapter has exercises. These exercises are important to help you
acquire the skills you need. Some exercises are performed alone; for some, you will
need to work in a group. Performing the exercises is, perhaps, the most important
part of the book.

Hints, tips and further advice about tackling the exercises are presented at the
end of each chapter. I recommend you plan your approach to each exercise (but do
not look at the hints or tips). Then, actually conduct or perform the exercise (but,
still, do not look at the hints or tips). Reflect on what happened. What went well?
What could have gone better? Make some notes about what happened. Now. Only
now, look at the hints, tips and advice at the chapter end.

Using the Book Parts
The book Parts are pretty much stand-alone. So, if you want, you could start
with Part II on Product. Or, you could start with Part III on Process. If you
have become familiar with the first three parts, then you can look at Part IV
on more advanced topics.

How to Use This Book

You could start at the beginning and read through to the end. But, you don’t have
to. You should read the Introduction in Chap. 1, first. But then you have a choice,
depending on your interests and current skills. You could just carry on to Chap. 2 in
Part I on People. Or, perhaps you could start with Chap. 7 in Part II on Product. Or
maybe, you could start with Chap. 13 on Process in Part III.

Descriptions at the start of each book part give a brief overview of the contents.
Chapter abstracts help you gain a more detailed sense of the overall flow of the
book. Reading the book part introductions and chapter abstracts would be a top-
down approach, which focuses on the holistic structure or organisation of the book.
You could use the top-down approach to plan which book parts and chapters you
would like to explore first.

Alternatively, you could dive straight into one of the chapters that interests you.
This is a bottom-up approach. The bottom-up approach favours starting by getting
into the detail of one interesting issue. I recommend that you work through the
exercises provided in each chapter. The chapter summaries will help you review and
reflect on the skills you have learned.

x Preface

Once you do decide to read a chapter, I recommend a simple five-step approach:

1. Read the chapter text first, taking notes in your learning journal as you go.
2. Perform the exercises (practice the new skills) at the end of each chapter, taking

notes in your learning journal as you go.
3. Review the guidance, hints and tips on each exercise presented at the end of each

chapter while making comments and corrections in your learning journal.
4. Review your learning journal and reflect on your new skills.
5. Make plans for the next stage of your skills development effort.

Hence, I advise that you use each chapter as part of a learning cycle. Learn the
new skills. Apply and use the new skills as you go through the chapters. Reflect on
your learning. Plan what skills you want to learn next.

You will use freely available open-source software tools. This lowers your cost
of entry and helps you understand what benefits you might get from purchasing
(sometimes expensive) commercial tools later.

Acquire Skills with the Exercises
There are nearly 100 exercises in this book. Use the exercises to try out and
apply the skills you need for agile software development.

Some exercises are technical tasks you can try on your own. Some are
exercises in group facilitation or team working. For these exercises, you will
need friends or colleagues to help.

Hints, tips and advice on the exercises are provided at the end of each
chapter, which will help you develop and enhance those skills. Make sure you
try each exercise before you look at any advice or solution provided.

Learning Journal

You should try to make your learning explicit and deliberate. One way to do this
is by using a learning journal. I suggest you create a journal for each of the three
main parts of the book: People, Product and Process. Use the learning journal to
capture your newly acquired skills and experiences, as well as to reflect on your
own learning process.

Tabby Cat Project

The Tabby Cat project integrates and applies the skills from each chapter into
a single case study. The Tabby Cat project was provided by Red Ocelot Ltd., a

Preface xi

software start-up company associated with the University of Salford. You can think
of this as a worked example. The project is to build software for displaying activity
on a source code repository. You can read each Tabby Cat project chapter when you
finish reading each Part. Or, you could read the chapters as a sequence from Chap. 6
and then Chaps. 12 and 17.

Student Group Projects and Hackathons

This book is also to support undergraduate software engineering and computing
student group projects. Students I’ve taught, on the HackCamp at University of
Salford, or the Software Hut at University of Bangor, need to gain a range of
collaboration, technical and build process skills for success. I wrote this book, in
part, to satisfy these needs and because I found it difficult to find a single source
elsewhere.

Prior Knowledge

You should already have the skills to implement software solutions to simple
classroom problems. I assume you know how to code. Or I should say, I make
no attempt to teach you how to code. By which I mean, you should have already
learned the basics of one or two programming languages, at least for a semester or
two.

You will be able to create the syntax of variables, operators, statements and flow
control, in your chosen language. I assume you can create object-oriented classes,
and their run-time instances, that interact with each other and encapsulate data. You
can probably already use data structures, such as collections, and maybe you have
learned how to build a simple database-driven website.

This book is about applying the programming skills you have to your first few
projects. If you don’t have these skills, you can use this book alongside learning
basic programming. Either way, this book will help you acquire the collaboration
and agile process skills you need for success.

Manchester, UK Julian Michael Bass
March 2022

Acknowledgements

Thanks to all my former HackCamp students at the University of Salford and
Software Hut students at the University of Bangor. Several commercial partners
have shown dedicated support to HackCamp, including Kim Massaro, KRM, Andy
Haxby Competa, Mo Tagari, AJ Bell as well as Lester Dias and Kuldeep Padhiar
from Manchester Branch, BCS, the Chartered Institute for IT.

I’m also grateful to many collaborators and colleagues, including Prof Sunil
Vadera, Dr Tarek Gaber, Prof Richard Heeks, Prof Rob Aspin, Prof Ian Allison, Prof
John McCall, Prof Robert Davison, Dr Robert Gittins and Dr Reza Latif Shabgahi.
I learned about all the important principles of systems engineering from Prof Peter
Fleming and Dr Stuart Bennett at the University of Sheffield.

Thanks also to current and former PhD students: Dr Abubakar Dahiru, Dr
Azmi Omar, Dr Charles Ochei, Dr Abdullah Salameh, Dr Scarlet Rahy, Adekunbi
Adewojo, Ruth Macarthy, Abdulhamid Ardo, Ben Monaghan and Tom Bolton.
Some ideas in the book draw on the many thought-provokingmeetings I’ve had, over
the years, with these researchers. Several book chapters are enriched with evidence
from their empirical research investigating software practitioners from around the
world.

I was privileged to learn much from talented technical architects and consultants
working at Chordiant Software. I benefited from the opportunity to work with Add
Energy Ltd. and learned much from these activities. At Add Energy, with Hossein
Ghavimi and Peter Adam, we co-created a scrum-based software innovation
process, and I advised on the development of their AimHi, AssetC and AssetVoice
products. Thanks also to Taha Mansouri who worked in collaboration with the team
at Invisible Systems Ltd.

I am indebted to my colleagues in Red Ocelot Ltd., which is our software start-
up company formed in association with the University of Salford. Red Ocelot is
focused on digital solutions for technical debt. Ben Monaghan kindly implemented
the Tabby Cat project and contributed text to Chap. 12.

xiii

xiv Acknowledgements

Thanks to Amr Hamed who suggested including a case study and provided
thoughtful feedback on several chapters. I also want to thank Salford students,
including Liam Sutton, who provided specific feedback on earlier drafts of chapters
from this book.

Contents

1 Introduction and Principles . 1
1.1 Agile Software Skills . 1

1.1.1 People . 2
1.1.2 Product . 3
1.1.3 Process . 3
1.1.4 Advanced Skills . 4

1.2 Engineering Software . 4
1.3 Tabby Cat Project . 5
1.4 Supporting Resources . 6
1.5 Evidence Underpinning the Book . 6
1.6 Software HackCamp . 6
1.7 Create Yourself a Livelihood . 6
References . 7

Part I People

2 Self-Organising Teams . 11
2.1 Introduction . 11
2.2 Self-Organising Teams . 11

2.2.1 Attributes of Self-Organising Teams . 12
2.3 Groups and Teams . 13

2.3.1 Building Team Performance . 13
2.4 Agile Principles . 15

2.4.1 Sustainable Pace . 15
2.4.2 Collective Code Ownership . 16

2.5 Forming Teams . 16
2.5.1 Accelerating Team Formation . 17
2.5.2 Handling Difference and Conflict . 17
2.5.3 Accelerating Norming . 17

xv

xvi Contents

2.6 Collaboration Activities Within Self-Organising Teams 18
2.6.1 Mentor . 18
2.6.2 Co-ordinator . 18
2.6.3 Translator . 19
2.6.4 Champion . 19
2.6.5 Promoter . 19
2.6.6 Terminator . 19

2.7 Virtual Teams . 20
2.7.1 Principles for Virtual Team Management 20
2.7.2 Preparation for Team Success . 21
2.7.3 Launch . 21
2.7.4 Performance Management . 22

2.8 Communities of Practice . 22
2.9 Exercises . 23
2.10 Hints, Tips and Advice on Exercises . 26
2.11 Chapter Summary . 32
References . 32

3 Agile Roles . 35
3.1 Introduction . 35
3.2 Scrum Master . 35

3.2.1 Process Anchor . 36
3.2.2 Iteration Planner . 36
3.2.3 Stand-up Facilitator . 36
3.2.4 Impediment Remover . 37
3.2.5 Integration Anchor . 37

3.3 Product Owner/On-site Customer . 37
3.3.1 Product Grooming . 38
3.3.2 Prioritiser . 38
3.3.3 Release Master . 38
3.3.4 Communicator . 39
3.3.5 Traveller . 39
3.3.6 Intermediary . 40

3.4 Product Owner Behaviours . 40
3.4.1 Favour Face-to-Face Interactions . 40
3.4.2 Understand and Focus on Real Goals 40
3.4.3 Make Product Owner Teams Well Defined 41

3.5 Other Roles: For Larger Projects . 41
3.5.1 Product Sponsor . 41
3.5.2 Technical Architect . 41

3.6 Exercises . 42
3.7 Hints, Tips and Advice on Exercises . 44
3.8 Chapter Summary . 48
References . 48

Contents xvii

4 Managing Stakeholders . 49
4.1 Introduction . 49
4.2 Managing Upwards . 49

4.2.1 Set Expectations . 50
4.2.2 Confess to Catastrophe . 50
4.2.3 Share Success . 50
4.2.4 Unreasonable Demands . 50

4.3 Managing Outwards . 51
4.4 Contracts . 51

4.4.1 Contracts and Change Requests . 51
4.4.2 Time and Materials Contracts . 52
4.4.3 Outsourcing Contracts . 52
4.4.4 Offshoring Contracts . 53
4.4.5 Academic Contracts . 53
4.4.6 Negotiating Contracts . 53

4.5 Communication Quality . 54
4.5.1 Audience . 54
4.5.2 Narrative . 54
4.5.3 Language . 54
4.5.4 Process . 55

4.6 Communication Tools . 55
4.6.1 Reports . 55
4.6.2 Presentations . 57
4.6.3 Blogs and Wikis . 58
4.6.4 Videos . 59

4.7 Exercises . 59
4.8 Hints, Tips and Advice on Exercises . 61
4.9 Chapter Summary . 64
References . 65

5 Ethics . 67
5.1 Introduction . 67
5.2 What Went Wrong? . 67

5.2.1 Algorithms and Inequality . 68
5.2.2 Platforms and Fake Markets . 68
5.2.3 Errors, Faults and Failures . 69
5.2.4 Criminal and Unethical Behaviour . 69

5.3 Copyright and Patents . 71
5.4 Professional Bodies . 72

5.4.1 BCS Codes of Conduct . 72
5.4.2 ACM Codes of Ethics . 73
5.4.3 Problems with Codes of Ethics . 73

5.5 Activism . 73
5.5.1 Whistle-Blowing . 74
5.5.2 Unions . 74

xviii Contents

5.6 Professional Development . 75
5.6.1 Initial Professional Development . 75
5.6.2 Continuing Professional Development 76
5.6.3 Skills Framework for the Information Age 76
5.6.4 Other Training and Development . 77

5.7 Exercises . 77
5.8 Hints, Tips and Advice on Exercises . 79
5.9 Chapter Summary . 81
References . 81

6 Tabby Cat Project, Getting Started . 83
6.1 Introduction . 83
6.2 Online Repository Activities . 83
6.3 Actually Getting Started . 84
6.4 Sprint Zero . 85
6.5 Subsequent Sprints . 86
6.6 Chapter Summary . 86
Reference . 86

Part II Product

7 Requirements . 89
7.1 Introduction . 89
7.2 Types of Requirements . 90

7.2.1 Functional Requirements . 90
7.2.2 Non-functional Requirements . 90
7.2.3 Incremental Requirements . 91

7.3 Requirements Quality . 92
7.3.1 Requirements Precision . 92
7.3.2 Requirements Consistency . 92
7.3.3 Requirements Completeness . 93

7.4 Use Cases . 94
7.4.1 Use Case Diagrams . 94
7.4.2 Use Case, Descriptions . 95

7.5 User Stories . 96
7.6 User Story Mapping . 97
7.7 Personas . 98
7.8 Exercises . 98
7.9 Hints, Tips and Advice on Exercises . 104
7.10 Chapter Summary . 109
References . 109

8 Architecture . 111
8.1 Introduction . 111
8.2 Architecture in Agile . 112

8.2.1 Refactoring . 113

Contents xix

8.2.2 Rework . 113
8.2.3 Planned Refactoring . 113
8.2.4 Architectural Abstraction . 114

8.3 Design Styles . 115
8.3.1 Client-Server . 115
8.3.2 Repository Architecture . 116
8.3.3 Pipe and Filter . 117
8.3.4 Layered Architecture . 118
8.3.5 Clean Architecture . 118

8.4 Reference Architectures . 120
8.5 Design Principles . 120

8.5.1 KISS Principle . 120
8.5.2 DRY (Do Not Repeat Yourself) . 120
8.5.3 YAGNI (You Aren’t Gonna Need It) . 121
8.5.4 GRASP .. 121
8.5.5 SOLID . 122

8.6 Architecture Implementation . 124
8.7 Exercises . 124
8.8 Hints, Tips and Advice on Exercises . 126
8.9 Chapter Summary . 127
References . 128

9 Design . 129
9.1 Introduction . 129
9.2 Feature-Driven Development . 129
9.3 System Modelling . 130
9.4 Class Diagrams . 131

9.4.1 Deriving Class Diagrams . 131
9.4.2 Domain Models . 132
9.4.3 High-Level Design Class Diagrams . 133
9.4.4 Detailed Design Class Diagrams . 133

9.5 Object Sequence Diagrams . 135
9.6 Design Patterns . 135

9.6.1 Singleton Pattern . 136
9.6.2 Model View Controller . 137
9.6.3 Factory Pattern . 138

9.7 Technology Stack Selection . 138
9.8 Model-Driven Engineering . 141
9.9 Exercises . 141
9.10 Hints, Tips and Advice on Exercises . 146
9.11 Chapter Summary . 148
References . 148

10 Development . 149
10.1 Introduction . 149
10.2 Planning Artefacts . 149

xx Contents

10.2.1 Kanban Boards . 150
10.2.2 Product Backlog . 150
10.2.3 Test Plan . 150

10.3 Iteration Artefacts . 151
10.3.1 Iteration Backlog . 151
10.3.2 User Story Estimates . 151
10.3.3 Burn Down Chart . 151

10.4 Feature Artefacts . 153
10.4.1 Prototypes . 153
10.4.2 Source Code . 153
10.4.3 Unit Tests . 154
10.4.4 Issues . 155

10.5 Release Artefacts . 155
10.5.1 Release Code Binaries . 156
10.5.2 Regression Tests . 156

10.6 Exercises . 156
10.7 Hints, Tips and Advice on Exercises . 159
10.8 Chapter Summary . 162
References . 162

11 Security . 163
11.1 Introduction . 163
11.2 Security Analysis . 164

11.2.1 Security Objectives . 164
11.2.2 Threat Model . 165

11.3 Security Requirements . 165
11.3.1 Security Mitigation Requirements . 165
11.3.2 Abuse Stories . 166
11.3.3 Security Personas and Anti-personas . 166
11.3.4 Risk and Risk Management . 167

11.4 Security Design . 168
11.4.1 Security Patterns . 168

11.5 Security Implementation . 169
11.5.1 Abuse Story Implementation . 169
11.5.2 OWASP Top Ten . 170
11.5.3 Authentication . 170

11.6 Security Evaluation . 171
11.6.1 Manual Security Inspections and Reviews 171
11.6.2 Automated Security Testing . 172

11.7 Agile Security Processes . 172
11.7.1 Roles . 172
11.7.2 Artefacts . 172
11.7.3 Ceremonies . 173

11.8 Exercises . 173

Contents xxi

11.9 Hints, Tips and Advice on Exercises . 174
11.10 Chapter Summary . 175
References . 175

12 Tabby Cat Project: Getting Building . 177
12.1 Introduction . 177
12.2 Requirements . 177

12.2.1 Functional Requirements . 178
12.2.2 Non-functional Requirements . 179

12.3 Architecture . 179
12.3.1 Architectural Style . 180
12.3.2 Client-Server . 182

12.4 Design . 182
12.4.1 Back-End Design . 182
12.4.2 Front-End Design . 184

12.5 Development . 186
12.5.1 Back-End Technologies . 186
12.5.2 Front-End Technologies . 188
12.5.3 Code Organisation . 188

12.6 Security . 191
12.7 Illustrative Implementation . 191
References . 191

Part III Process, Tools and Automation

13 Agile Ceremonies . 195
13.1 Introduction . 195
13.2 Iteration Planning . 195

13.2.1 Prioritisation . 196
13.2.2 Features and Technical Tasks . 196
13.2.3 Estimation . 197
13.2.4 Task Assignment . 199

13.3 Coordination Meetings . 199
13.3.1 Virtual Stand-Up Meetings . 200
13.3.2 Kanban Boards . 201

13.4 Customer Demonstrations . 201
13.4.1 Retrospectives . 202

13.5 Pair Programming . 203
13.6 Test-Driven Development . 204
13.7 Specialist Agile Ceremonies . 204

13.7.1 Spikes . 204
13.7.2 Swarm Programming . 205
13.7.3 Mob Programming . 205

13.8 Exercises . 206

xxii Contents

13.9 Hints, Tips and Advice on Exercises . 208
13.10 Chapter Summary . 210
References . 210

14 Lean . 211
14.1 Introduction . 211

14.1.1 Respecting People . 212
14.1.2 Create Knowledge . 213
14.1.3 Build Quality In . 214

14.2 Value . 214
14.2.1 Non-monetary Value . 215
14.2.2 Value Stream Mapping . 215
14.2.3 Definition of Done . 215

14.3 Waste . 216
14.3.1 Partially Done Work . 216
14.3.2 Superfluous Features . 217
14.3.3 Rework . 217
14.3.4 Hand-Offs . 217
14.3.5 Task Switching . 218
14.3.6 Delays . 218
14.3.7 Defects . 218

14.4 Speed . 218
14.4.1 Work-in-Progress Limits . 219
14.4.2 Work Item Variability . 220

14.5 Lean Start-Up . 221
14.5.1 Bootstrapping . 221
14.5.2 Minimum Viable Product . 221
14.5.3 Pivot . 222

14.6 Exercises . 222
14.7 Hints, Tips and Advice on Exercises . 224
14.8 Chapter Summary . 225
References . 226

15 Version Control . 227
15.1 Introduction . 227
15.2 Content Management . 227

15.2.1 Create a Local Git Repository . 228
15.3 Source Code History . 230

15.3.1 Stage Files for Inclusion in the Version Control
Repository . 231

15.3.2 Commit Files into the Version Control
Repository . 231

15.3.3 Making and Removing a Change . 233
15.4 Source Code Remote Archiving . 234

15.4.1 Version Control Remote Server Archiving 234
15.5 Source Code Sharing . 236

Contents xxiii

15.5.1 Trunk and Branches . 237
15.6 Exercises . 241
15.7 Hints, Tips and Advice on Exercises . 245
15.8 Chapter Summary . 248
References . 248

16 Testing and Test Automation . 251
16.1 Introduction . 251
16.2 Test Planning . 252
16.3 Testing Levels . 252

16.3.1 Unit Testing . 252
16.3.2 Integration Testing . 252
16.3.3 System Testing . 253
16.3.4 Acceptance Testing . 253

16.4 Testing Techniques . 253
16.4.1 Regression Testing . 254
16.4.2 User Experience Testing . 254
16.4.3 Performance Testing . 255
16.4.4 Security Testing . 255
16.4.5 A/B Testing . 256

16.5 Test Automation . 256
16.5.1 Unit Test Automation . 256
16.5.2 Acceptance Test-Driven Development 259
16.5.3 Behaviour-Driven Development . 259

16.6 Exercises . 260
16.7 Hints, Tips and Advice on Exercises . 262
16.8 Chapter Summary . 262
References . 263

17 Tabby Cat Project: Process, Tools and Automation . 265
17.1 Introduction . 265
17.2 Agile Ceremonies and Lean Thinking . 266
17.3 Version Control . 267
17.4 Testing and Test Automation . 267
References . 267

Part IV Advanced Skills

18 Large-Scale Agile . 271
18.1 Introduction . 271
18.2 Distance . 272

18.2.1 Geographical Distance . 272
18.2.2 Temporal Distance . 272
18.2.3 Cultural Distance . 273

18.3 Large-Scale Artefacts . 273
18.3.1 Risk Register . 273

xxiv Contents

18.3.2 Architecture Standards . 274
18.4 Large-Scale Scrum Master Activities . 274

18.4.1 Scrum-of-Scrums Facilitator . 274
18.4.2 Agile Coach . 274

18.5 Large-Scale Product Owner Activities . 275
18.5.1 Product Sponsor . 275
18.5.2 Risk Assessor . 276
18.5.3 Governor . 276
18.5.4 Technical Architect . 276
18.5.5 Technical Product Owner . 277
18.5.6 Product Owner: Market Trends . 277

18.6 Spotify Culture . 277
18.6.1 Squads . 277
18.6.2 Chapters . 279
18.6.3 Tribes . 279
18.6.4 Guilds . 279
18.6.5 Architectural Alignment . 279

18.7 Other Frameworks . 280
18.7.1 Large-Scale Scrum . 281
18.7.2 SAFe . 281

18.8 Chapter Summary . 282
References . 282

19 Cloud Deployment . 283
19.1 Introduction . 283
19.2 Cloud Service Models . 284

19.2.1 Infrastructure-as-a-Service . 284
19.2.2 Platform-as-a-Service . 284
19.2.3 Software-as-a-Service . 285
19.2.4 Serverless Computing . 285

19.3 Cloud-Hosted Application Patterns . 285
19.3.1 Scalability . 285
19.3.2 Multi-Tenancy . 286
19.3.3 Automated Customer On-Boarding . 286
19.3.4 Revenue Generation . 286
19.3.5 ‘n’-Tier Architectures . 287

19.4 Automated Deployment . 287
19.5 Containerisation . 287
19.6 Chapter Summary . 288
References . 288

20 Technical Debt, Software Evolution and Legacy . 291
20.1 Introduction . 291
20.2 Technical Debt . 292

20.2.1 Technical Debt and Agile . 292
20.2.2 Refactoring . 293

Contents xxv

20.3 Software Evolution . 293
20.3.1 Wrappering . 293
20.3.2 Re-engineering . 295

20.4 Legacy Systems . 295
20.5 Chapter Summary . 296
References . 296

21 DevOps . 297
21.1 Introduction . 297
21.2 Build and Deployment Pipelines . 297

21.2.1 Conventional Deployment Team Structures 298
21.2.2 Self-Organising Deployment Team Structures 299

21.3 Pipeline Automation . 299
21.4 Test Integration . 301

21.4.1 Testing New Features . 301
21.4.2 Regression Testing Legacy Features . 302

21.5 Continuous Integration . 302
21.6 DevOps and DevSecOps . 302
21.7 Continuous Delivery and Deployment . 302
21.8 Chapter Summary . 303
References . 304

A Research Methods . 305
A.1 Research Sites . 305
A.2 Data Collection . 305
A.3 Data Analysis . 306

A.3.1 Open Coding . 306
A.3.2 Memo Writing . 306
A.3.3 Constant Comparison . 306
A.3.4 Saturation . 307

References . 307

B Further Reading . 309
B.1 Core Reading . 309
B.2 More Specialist Topics . 310
B.3 Software Engineering Research . 310
References . 311

Index . 313

Chapter 1
Introduction and Principles

Abstract This book is divided into three main parts: people, product and process.
Each of those parts is summarised by a case study chapter, the Tabby Cat project,
which runs through an agile software development process. This chapter explains
the book structure and introduces some key principles of agile software engineering.

1.1 Agile Software Skills

Software is everywhere. Whichever way we look, there is software we depend on.
Transportation, food production, logistics, entertainment and utilities like electricity
and water supply all depend on software. But, there is good software and bad
software. And, my word, there is plenty of bad software! Business information
systems that intelligent people can hardly use. Expensive software development
projects that falter and fail. Security breaches that compromise our personal data.
We can no longer afford to create bad software. Lots of us need to learn how to
create good software. And fast!

This book provides a practical, hands-on, guide to the skills you need to work
as part of a team on an agile software development project. It is inspired by the
needs of early career practitioners who are new (or newish) to making software with
colleagues. We need the ability to create working software in a team and fulfil a
client’s needs. The skills described here will equip you for success in your first few
projects. This book gets you in the game.

The skills you learn here have got people paid work placements (internships) and
employment. These topics will give you good things to talk about in job interviews.
You will have a chance to learn the skills you need to build more sophisticated
software applications. I will show you how to apply some of the latest ideas from
agile, lean and Kanban, DevOps (continuous integration and continuous delivery),
version control, automated testing and cloud deployment, albeit, at an introductory
level.

Software development can be viewed from three perspectives: people, product
and process. Hence, the book has been organised around these three key themes,
with one book Part devoted to each.

© Springer Nature Switzerland AG 2022
J. M. Bass, Agile Software Engineering Skills,
https://doi.org/10.1007/978-3-031-05469-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05469-3_1&domain=pdf

 -151 4612 a -151 4612 a

https://doi.org/10.1007/978-3-031-05469-3_1

2 1 Introduction and Principles

1.1.1 People

When you first learn to program a computer, most of your learning will take place
alone. You will acquire technical skills you need to create a software product.
But, here’s the thing: Building software systems is something people do in teams.
Software engineering is a team sport. As systems grow larger, few people can wait
the time it would take for one person to actually build the thing. Either you enlist
the help of some friends or you work as part a commercial team to build a product.
In this book, you will learn how to collaborate with colleagues to create working
software. Figure 1.1 illustrates the organisation on chapters in the parts of the book.

So, Part I of the book is about people. You will have an opportunity to gain
personal, teamwork and organisational skills for working with people. Skills for
self-organising teams are in Chap. 2. We also need people in roles around our self-
organising teams that aid, support and enable our software development. The skills
used in these roles are discussed in Chap. 3. The teams and their facilitators need to
manage a range of other interested parties, called stakeholders. Stakeholders could
be customers, executives or outsiders to the development process. The skills you
need for managing stakeholders are in Chap. 4. The behaviour and consequences of
the technology sector are increasingly attracting the attention of regulators.Whistle-
blowers, from within technology corporations, have revealed examples of their
employers’ anti-competitive practices and consumer harms. The issues of ethics are
discussed in Chap. 5.

People, Part 1

Product, Part 2

Process, Part 3

Teams
Chap. 2

Other Roles
Chap. 3

Stakeholders
Chap. 4

Ethics
Chap. 5

Requirements
Chap. 7

Architecture
Chap. 8

Design
Chap. 9

Development
Chap. 10

Security
Chap. 11

Ceremonies
Chap. 13

Lean
Chap. 14

Version
Control

Chap. 15

Test
Automation

Chap. 16

Continuous
Integration

Chap. 21

Advanced
Skills
Part 4

Cloud
Deployment

Chap. 19

Large-scale
Agile

Chap. 18

Technical
Debt

Chap. 20

Tabby Cat
Project

Getting
Started
Chap. 6

Get Building
Chap. 12

Process and
Tooling

Chap. 17

Introduction
Chap. 1

Fig. 1.1 Alternative chapter sequences

1.1 Agile Software Skills 3

1.1.2 Product

The technical skills you need, to build Products and systems fromworking code, are
discussed in Part II of the book, as shown in Fig. 1.1. When you start work building
a product, you need to know what it is supposed to do. You can learn about the
skills and techniques for recording and managing requirements in Chap. 7. Maybe
someone (such as a boss, client or some other stakeholder) is going to tell you what
software you are supposed to create. But often what you are told is not detailed
enough or sufficiently clear for you to go ahead and get working. In this case, we
need to embark on a process of requirements discovery.

In the rest of Part II, you can learn about creating software product from
requirements. We use feature-driven development. A feature is a function that the
software must perform. Features provide end-to-end functionality, including front-
end (user experience) and back-end (logic and storage) code.

The scope of a product is the number of features, or requirements, your software
is to provide. We can increase the scope of our project by building new software
features that fulfil more requirements. We can reduce our planned scope by
lowering the number of features we aim to create. A feature is some client-valued
function that the software must perform. Features include end-to-end functionality,
comprising front-end (user experience) and back-end (logic and storage) code. We
think about features as a thin slice through the layers of a business information
system. Normally a feature is small enough that we can implement it in a few days.
Individual features can be collected into larger groups of business-related functions,
sometimes called feature sets or epics. Designing and building software as a series of
features allows us to stay focused on what our users (or clients) actually want. They
can give us feature-by-feature feedback, so we all know that what we are producing
is what is needed. Feature-driven development also facilitates tracking (a benefit to
us and the people providing the funding).

Features are collected into larger groups of business-related functions, forming
increments. Hence, we advocate an incremental approach to software development.
The idea is that we deliver our software as a series of phases or stages. So, an
increment is a code release forming some part of a larger working system.

You can learn about the skills to create a high-level software architecture in
Chap. 8. Here, you can learn about architectural styles. Next, you learn skills
of software design in Chap. 9. We explore some common object-oriented design
patterns. After that, implementation skills are described in Chap. 10. Finally, in
Part II, you learn about the skills you need for building secure systems in Chap. 11.

1.1.3 Process

To ensure software quality, we need a systematic and repeatable Process for
software development. The process helps us meet client needs and ensure we can
deliver a product on time. You need to learn skills about a software process. Our

4 1 Introduction and Principles

goal is to be able to produce software with an appropriate and predictable level of
quality. The software development process skills you need are discussed in Part III
of the book, as shown in Fig. 1.1.

Engineers understand that software development is not just the technical process
of writing computer code, although that is obviously important and central to
what we do. As engineers, we are also concerned with project management and
developing wider processes that are needed to support software production.

Our goal is to employ repeatable development processes. We want to know we
can perform software production over, and over, again. This is why Part III of the
book is focused on the software development process. We advocate an iterative
approach. An iteration is a cycle of activities we use to create the source code,
a little development life cycle of planning, designing, building (code) and testing
used to develop the features within an increment. Obviously writing the working
software is at the heart of this activity. But our feature quality is going to be suspect,
if we have not thought much about the design. Similarly, software that has not been
tested, is not finished. Untested software is not likely to be good.

You will have a chance to learn about agile ceremonies in Chap. 13. While, in
Chap. 14, you can learn the skills you need for using lean approaches. Version
control skills that allow you to establish a revision history and share each other’s
source code are covered in Chap. 15. Finally, in Part III, Chap. 16, testing skills are
described.

1.1.4 Advanced Skills

The advanced skills Chapters stand alone. Consequently, you can read them as a
sequence from Chap. 18 to 21. Alternatively, you can jump ahead to the advanced
skills chapters that correspond to each part. Chapter 18 is about people and how
multiple teams are coordinated on larger projects. Chapters 19 and 20 are about
product and how to deploy software-as-a-service applications to the cloud and
manage evolution in live software products, while Chap. 21 is concerned with
process and how to automate deployment using DevOps.

Hence, this book explores three main areas of software development skills in
the people aspects of team working, the technical aspects of software product
development and how to enable a systematic and repeatable software development
process.

1.2 Engineering Software

Software development is an engineering discipline. Engineers make systematic
use of appropriate theories and methods to solve problems and build solutions
within defined organisational and financial constraints. When we think of software

1.3 Tabby Cat Project 5

Scope
(Features, Increments, Releases)

Quality
(Processes, Version Control, Testing)

Resources
(Time, Budget, People, Teams)

Fig. 1.2 The software triangle

development as an engineering discipline, we recognise the need to consider all
aspects of software production, from early stages of conceptualisation and planning
right through to enhancing live systems and their eventual retirement.

If we have been assigned to a software team in work or college, we have
little control over the resources available. But as the software triangle shown in
Fig. 1.2 illustrates, even with fixed resources, we can balance the effort devoted to
project scope and software quality. We can’t usually increase the number of features
we create and increase product quality at the same time, unless we add time or
resources. Hence, we have to balance conflicting trade-offs. We have to make a
choice between producing additional features or achieving higher quality (assuming
fixed resources).

We can improve quality by investing more effort in source code peer reviews and
additional software testing, for instance. But in some cases, we have to compromise
on quality to get a product to market quickly. On the other hand, our reputation
suffers if we produce poor-quality products.

If you increase scope, with fixed resources, the product quality tends to go
down. Similarly, if you wish to increase quality, either you must increase resources
or reduce project scope. In software development, these conflicting trade-offs are
inherent.

1.3 Tabby Cat Project

The Tabby Cat project is a case study that applies the skills from each chapter [6].
The Tabby Cat software is used to display developer activity on a source code
repository. Tabby Cat is described in Chaps. 6, 12, and 17 and was provided by
Red Ocelot Ltd., our own software start-up which itself emerged from our industrial
collaboration [9].

6 1 Introduction and Principles

1.4 Supporting Resources

The book is supported by a website, which includes instructor resources such
as presentation slides [3]. Further, there are several source code repositories that
support the book. Source code implementations for several of the exercises are
available in GitHub repositories [4] and are referenced in appropriate parts of the
book.

1.5 Evidence Underpinning the Book

I have taught software design to commercial clients in Europe, South Asia and North
America. Further, the book is based on research conducted with software practition-
ers and experts from around the world. Over one hundred practitioner interviews
have informed this book. This research has been published in international peer-
reviewed conferences and journals, notably [1, 2, 5] and more recently [8, 10]. For
more details about the research methods employed, see Appendix A.

This research has enabled several industrial collaborations. These collaborations
have focused on agile innovation processes and cloud-hosted software service
deployment. The collaborations have resulted in the conceptualisation, design and
deployment of several software products.

1.6 Software HackCamp

The Software HackCamp provides an opportunity for students to work together in a
team while tackling a challenge set by a client. The HackCamp has been recognised
as a Practice Highlight by BCS, the Chartered Institute for IT [7]. A 2min video was
produced by The University of Salford on the 2020 HackCamp [11]. More details
and resources for running your own HackCamp are available from [3].

1.7 Create Yourself a Livelihood

The skills you learn in this book can provide a lifetime of fulfilling and creative
work. You could stay local, or travel the world. Your software could aid health
and wellbeing. Your solutions could build communities, strengthen inclusion and
support diversity.

These skills can get you a job. But these skills, with the right dedication and
commitment, can also serve you well if you want to become a freelancer, or a
technology entrepreneur.

References 7

With these skills, you can build products to create commercial revenue. Of
course. But, you can also use software to improve people’s livelihoods, wellbeing
and life chances. Let’s help make the world a better place, one software product at
a time.

References

1. Bass, J.M.: How product owner teams scale agile methods to large distributed enterprises.
Empir. Softw. Eng. 20(6), 1525–1557 (2015). https://doi.org/10.1007/s10664-014-9322-z,
http://link.springer.com/article/10.1007/s10664-014-9322-z

2. Bass, J.M.: Artefacts and agile method tailoring in large-scale offshore software development
programmes. Inf. Softw. Technol. 75, 1–16 (2016). https://doi.org/10.1016/j.infsof.2016.03.
001, http://www.sciencedirect.com/science/article/pii/S0950584916300350

3. Bass, J.M.: http://www.agileskillsbook.com (2022)
4. Bass, J.M.: Julianbass - overview (2022). https://github.com/julianbass
5. Bass, J.M., Haxby, A.: Tailoring product ownership in large-scale agile projects: managing

scale, distance, and governance. IEEE Softw. 36(2), 58–63 (2019). https://doi.org/10.1109/
MS.2018.2885524

6. Bass, J., Monaghan, B.: Tabby Cat GitHub Explorer. Red Ocelot Ltd (2022). https://github.
com/julianbass/github-explorer

7. BCS, The Chartered Institute for IT: University of Salford – HackCamp (2021). https://
www.bcs.org/deliver-and-teach-qualifications/university-accreditation/practice-highlights/
university-of-salford-hackcamp/

8. Rahy, S., Bass, J.M.: Managing non-functional requirements in agile software development.
IET Softw., 1–13 (2021). https://doi.org/10.1049/sfw2.12037

9. Red Ocelot Ltd: Enhancing digital agility (2022). https://www.redocelot.com
10. Salameh, A., Bass, J.M.: An architecture governance approach for agile development by

tailoring the Spotify model. AI Soc. (2021). https://doi.org/10.1007/s00146-021-01240-x
11. The University of Salford: HackCamp 2020: Computer science and software engineering on

Vimeo (2020). https://vimeo.com/395147780

 1364 942
a 1364 942 a

https://doi.org/10.1007/s10664-014-9322-z

 -42 1025 a -42 1025 a

http://link.springer.com/article/10.1007/s10664-014-9322-z

 1481 1191 a 1481 1191 a

https://doi.org/10.1016/j.infsof.2016.03.001
https://doi.org/10.1016/j.infsof.2016.03.001

 99 1274 a 99 1274
a

http://www.sciencedirect.com/science/article/pii/S0950584916300350

 289 1357 a 289
1357 a

http://www.agileskillsbook.com

 1138 1440 a 1138 1440
a

https://github.com/julianbass

 1947 1606 a 1947 1606
a

https://doi.org/10.1109/MS.2018.2885524
https://doi.org/10.1109/MS.2018.2885524

 2221 1772 a 2221 1772
a

https://github.com/julianbass/github-explorer
https://github.com/julianbass/github-explorer

 2416 1938 a 2416 1938 a

https://www.bcs.org/deliver-and-teach-qualifications/university-accreditation/practice-highlights/university-of-salford-hackcamp/
https://www.bcs.org/deliver-and-teach-qualifications/university-accreditation/practice-highlights/university-of-salford-hackcamp/
https://www.bcs.org/deliver-and-teach-qualifications/university-accreditation/practice-highlights/university-of-salford-hackcamp/

 684 2270 a 684 2270 a

https://doi.org/10.1049/sfw2.12037

 1369 2353 a 1369 2353
a

https://www.redocelot.com

 1212 2519 a 1212 2519 a

https://doi.org/10.1007/s00146-021-01240-x

 387 2685 a 387 2685 a

https://vimeo.com/395147780

Part I
People

Software development is a social activity. Software built at any significant scale
requires the involvement of teams. Also, software is built to fulfil people’s needs.
Hence, Part I of the book focuses on people.

Most people engaged in agile software development are members of self-
organising teams. Chapter 2 addresses the skills you need for success in self-
organising teams. You will find out about agile principles of self-organising teams,
forming teams and collaboration activities within teams.

So, while Chap. 2 addresses team members, Chap. 3 focuses on the skills needed
in other agile roles in software development projects. The scrum master is a mentor
and facilitator, supporting the team. While the product owner, thinks and acts like a
customer, prioritising work and approving releases.

Successful software development involves attracting ‘outsiders’ to support the
software development process. I call these outsiders stakeholders. Hence, Chap. 4
focuses on the skills needed to manage these stakeholders.

Finally, we need to consider good practice in terms of ethical behaviour, as
discussed in Chap. 5. The big tech sector risks becoming toxic because of the
negative impacts it can have. We, as a profession, need to think more carefully about
how we affect people’s lives.

The Tabby Cat project is a software for displaying activity on a GitHub
repository. Tabby Cat uses the GitHub application programming interface (API) to
obtain repository data and provides various information display options. In Chap. 6,
we apply the skills we have learned in Part I to this case study project.

10 I People

Other Book Parts

The overall design of this book is around people, product and process. Parts II and III
are, more or less, stand-alone. So, if your main interest is in the technical product,
you could skip to Part II. Also, if the development process is your main concern,
then you might want to skip ahead to Part III. The skills required for some more
advanced agile software engineering topics are described in Part IV.

Chapter 2
Self-Organising Teams

Abstract When groups of people come together to carry out a shared task,
they form teams. Small self-organising teams are the core building block of any
meaningful software development effort. If we need more people, we use multiple
small teams. This chapter describes the skills you need to create self-organising
teams. You will learn about agile principles and how to energise and support teams.
I discuss the benefits of teams comprising diverse skills and virtual teams where
members work remotely.

2.1 Introduction

Agile methods are now the norm for business information system development [4,
5]. Furthermore, most people, working on agile software projects, work in small
self-organising teams. In this chapter, I will explain how teams are formed and how
we can enhance the performance of these teams. I will explore what distinguishes
groups from teams and how team performance can be enhanced.

2.2 Self-Organising Teams

Self-organising teams manage their own achievement of tasks towards a mission or
goal set by the client, customer or organisation. The customer defines the goal. The
team manages its delivery. The priorities around what must be accomplished come
from the business domain, while decisions about how to achieve the goals come
from within the team.

© Springer Nature Switzerland AG 2022
J. M. Bass, Agile Software Engineering Skills,
https://doi.org/10.1007/978-3-031-05469-3_2

11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05469-3_2&domain=pdf

 -151 4612
a -151 4612 a

https://doi.org/10.1007/978-3-031-05469-3_2

12 2 Self-Organising Teams

2.2.1 Attributes of Self-Organising Teams

There are several attributes that define self-organising teams:

1. Autonomy
2. Requisite Variety
3. Learning to Learn
4. Cross-fertilisation
5. Self-evaluation

Self-organising teams have the autonomy to manage and assume responsibility
for their own tasks and experience minimum outside interference in their day-to-
day activities [19]. Only the critical factors that are needed to direct the team are
externally defined [15].

Software development teams face dynamic environments, with changing cus-
tomer requirements and ever-evolving technology stacks. The solutions used on
a previous project might not work for this project. Self-organising teams can be
more adaptable at handling this changing landscape. Hence, self-organising teams
develop a variety of approaches to problem-solving, which they can deploy when
needed. For example, requirements backlogs and Kanban boards, described in
Chap. 10, are used pretty frequently. In contrast, some teams use spikes and pair
programming, from Chap. 13, only when needed.

Conventional organisation form teams into organisational units comprising peo-
ple with the same skill set, as shown in Fig. 2.1a. Self-organising teams, in contrast,
are composed of individual members with diverse skills and specialisations, as
shown in Fig. 2.1b. Agile software development teams include developers, testers
and business analysts. Multidisciplinary teams foster cross-fertilisation within and
also between teams.

Software
Engineering

Division

Requirements
Analysis

Software
Development Testing

Software
Engineering

Division

Team 1 Team 2 Team 3

Functional Teams(a) (b) Multi-disciplinary Teams

Fig. 2.1 Multidisciplinary teams

2.3 Groups and Teams 13

Teams learn to learn when they change the way they look at problems, review
and refine the best work method and reconsider the best outputs to deliver. Agile
practices that help teams learn to learn include retrospective workshops and stand-
up meetings, more on these practices in Chap. 13.

Self-organising teams establish their own goals and keep on evaluating them-
selves such that they are able to devise newer and better ways of achieving
those goals [19]. This self-evaluation is often aimed at improving productivity and
product quality. We find that productivity and product quality are often conflicting
objectives, and achieving the right balance between them requires constant attention.

Diversity in the team is an asset. Teams that develop a single view of the
world are at a disadvantage when confronted with a changing environment. More
effective is where diverse team members interact amongst themselves leading to
better understanding of each other’s perspectives [11].

2.3 Groups and Teams

There are several characteristics that define teams [13]. Let’s very briefly explore
these characteristics:

• Team size
• Skills portfolio
• Common purpose (including shared performance or quality goals)
• Common approach
• Mutual accountability

Teams are small, typically comprising seven plus or minus two members. Larger
groups of people have difficulty interacting constructively as a team. Teams are
used to bring together group members with complimentary skills, as just discussed
in relation to Fig. 2.1. Teams where everyone has exactly the same skills are less
effective than teams with a mix of skills.

Teams are created around a common purpose or a shared set of goals. A mean-
ingful purpose establishes aspiration for the team. Often teams are characterised by
shared commitment to a set of performance or quality goals. Also, effective teams
are committed to a common approach. This is the way they will work together
to achieve their shared goals. Finally, team members are jointly accountable for
outcomes. A team also shares responsibility for its own successes and failures.

2.3.1 Building Team Performance

There are some techniques we can use to build high performance teams. But, we
need to be cautious here. Teams are different and team members are different.
Also, of course, the context in which teams work are different from each other.

14 2 Self-Organising Teams

Consequently, there is no rule book we can follow that automatically creates a high
performing team. We know elite teams when we see them. But we cannot magically
and turn any group into an outstanding team.

Bearing in mind that caveat: what can we do to help create a highly functioning
team? As I mentioned, here are some techniques that can help build team perfor-
mance [8, 13]:

• Establish urgency and direction.
• Select members based on skills and potential (not personalities).
• Pay attention to first meetings and actions.
• Set rules for acceptable behaviour.
• Focus on few short-term performance tasks and goals.
• Update facts regularly.
• Spend (lots of) time together.
• Exploit positive feedback.

Teams tend to work more effectively if there is a shared sense of direction and an
urgency of purpose. Themore strongly the teammembers feel that sense of direction
and urgency, the more effective the team is likely to be.

Effective teams select team members based on their skills. In general, teams need
technical, problem-solving and interpersonal skills. Some team members need to
specialise in each of these three areas. Being more focused on delivery of working
code, you might want to make sure you have:

• Front-end, human-computer interaction and user experience skills
• Back-end, web services and database implementation skills
• Testing and evaluation skills
• Deployment skills to place working code on servers accessible by users

Consequently, in a HackCamp or Hackathon setting, it is much better to choose
team members based on skills, rather than friendship groups.

Software Company Start-up Team Members
In software company start-ups, there is a trendy saying that your team should
comprise a hacker, a hipster and a hustler. The hacker is an innovation
thought leader and brings strong technical skills. The hipster brings graphical
design, visual creative and user experience skills, while the hustler is a deal-
maker and negotiator who can close sales. Okay, so this saying is a bit of
cliché, but it illustrates the benefits of a diverse skill set in your teams.

The set-up phase of the group is very important. Early meetings set the tone for
performance of the group. A calm yet purposeful and collaborative atmosphere is to
be encouraged. Setting the right tone at early stages is healthy and important.

2.4 Agile Principles 15

The team needs to gain consensus on working practices and acceptable
behaviour. A team in which bad behaviour is permitted is not likely to lead to
good success. What is defined as bad behaviour can vary depending on context.
Hence, the group needs to establish its own standards, which may involve inter-
cultural negotiation. But, remember diversity of perspectives is often an asset for
the team.

The team will benefit from some quick wins. What might they be? Look for
opportunities to successfully achieve some early goals or performance enhance-
ments. You need to identify tasks you can complete and improvements you can
make with modest effort, short time-scales and measurable success.

We need to ensure that the team benefits from regular updates of information.
In self-organising agile team, we use daily coordination meetings, in scrum
called stand-ups, to update everyone on status. These information-sharing events
encourage commitment to the team from members, because everyone can see what
everyone else is doing.

Face-to-face time together can help build trust and mutual confidence. Under-
standing challenges from the perspective of different members of the team is
important to ensure collective ownership of problems.

Feedback to the team needs to reinforce the growth, goals or performance
objectives. Early wins can be used to reward yourselves with positive feedback.
The concept of ‘gold stars’ may come from nursery school, but rewards in terms of
celebrating successes and giving kudos really help.

2.4 Agile Principles

We will return to the agile principles of iterative and incremental development in
Part III, but here we are interested in the principles of sustainable pace and collective
code ownership.

2.4.1 Sustainable Pace

There is a school of thought that you can write excellent software by ‘pulling an all-
nighter’. The contention is that you can solve challenging problems, with logically
coherent solutions, in the dead of night or during early hours of the morning (ideally
after an energetic and entertaining night out). Let me share with you a naughty
secret: I have, in the past, been known to work on software development at unseemly
hours.

But honestly, I don’t think ‘pulling an all-nighter’ is a good idea. I certainly don’t
think it is good idea when your boss, through omission or design, prevails on you to
work all night. Okay, so maybe when writing software for self-learning or for your
own entertainment, all-night coding might be okay. A hackathon can be a great way

16 2 Self-Organising Teams

to learn and often involves a short and intensive burst of activity. But for professional
software development, this is not really the way to go.

This realisation, that all-night coding is not ideal, partly informs the concept of
sustainable pace. The idea is that software engineering is a creative activity that
should be conducted when people are awake, alert and fully focused on the job.
This is the idea that creative work needs to be conducted in normal office working
hours and not involve long periods of evening or weekend working. The implication
is that carefully implemented software development processes enable a sustainable
approach to code creation, sustainable over weeks, months and years.

2.4.2 Collective Code Ownership

Code can be written by individuals but, according to the concept of collective code
ownership, should be a resource belonging to the whole team. It is argued that we
should not put names on the modules of software we write. There should be no
impediment to making changes or corrections to code written by others. The team,
as a whole, stands or falls by the software created by its members.

2.5 Forming Teams

There are many models of the processes that happen when people come together
to work in small groups. Perhaps the most well-known is Tuckman’s [20]
comprising:

• Forming
• Storming
• Norming
• Performing
• Adjourning stages

This model is obviously a bit of a simplification but has stood the test of time
remarkably well. During the forming phase, group members create a team with
clear structure, goals, direction and roles so that members begin to build trust.
During the storming phase, frustrations and perhaps conflicts build up. The team
often needs to refocus on its goals, perhaps breaking larger goals down into smaller,
more achievable steps. As the team moves into the norming phase, team members
begin to resolve the differences between their initial expectations and the reality
of the team’s experience. Team members often notice more frequent and more
meaningful communication amongst team members and an increased willingness to
share ideas or ask for help. During the performing phase, there is significant progress
towards team goals, and team members show high commitment to the team’s goals.
Finally, during the adjourning phase, team members complete their deliverables

2.5 Forming Teams 17

(final software, test execution, reports and so on), evaluate performance with a
particular focus on identifying ‘lessons learned’ and celebrate the contributions and
accomplishments of the team.

2.5.1 Accelerating Team Formation

Given this model of small group development, there are steps we can take that
will support this process. During the early stage of coming together as a group,
we can undertake several activities to help establish shared goals and build trust.
The exercises in Sect. 2.9, at the end of this chapter, can help you during this team-
forming stage.

2.5.2 Handling Difference and Conflict

There are three main attributes of techniques for handling disagreements. When
negotiating solutions to differences of opinion:

1. Focus on the problem.
2. Avoid focusing on personalities.
3. Seek solutions that maximise benefit to more of the participants [7].

Taking a vote could seem like a good solution, but the majority within the team
may not be as well informed as an expert. So discussion and learning, while working
towards consensus, is often a better way to reach agreement.

2.5.3 Accelerating Norming

Successful team norming relies on good communication and a shared sense of
purpose within the group. Team members are focused on the task at hand, and not
on conflict resolution and impediments to efficient working. Exercises 2.4 and 2.5,
at the end of this chapter, can help you prepare for this team-norming stage.

18 2 Self-Organising Teams

Theory X and Theory Y
It has been observed that there are two views of organisations [14]. Theory
X describes organisations founded on the idea that people don’t want to
work and need to be coerced or controlled to create good work. Theory X
advocates a hierarchical approach to management structures, where roles are
task oriented, repetitive and inflexible.

Theory Y, in contrast, suggests that people want to work to gain self-
esteem, recognition and satisfaction. In Theory Y, the role of management
is to create a supportive environment in which people can do their best work.
There is less emphasis on command and control structures and more focus on
facilitating opportunities for collaboration.

2.6 Collaboration Activities Within Self-Organising Teams

We will look at the technical tasks performed by teams in Part II. But, in software
development, several collaboration and communication-focused activities within
the self-organising team role have been observed [12]. These activities may be
performed by different team members or by the same team member at different
times. An attribute of more experienced and adept team members could be the
ability to perform more of these activities on behalf of the team.

2.6.1 Mentor

We will find out more, in Chap. 3, about the scrum master role. The scrum master
helps inculcate the use of agile methods in the team. But other members of self-
organising teams must also mentor each other. Perhaps someone new joins the team
and needs advice to get started and feel welcome. Perhaps someone already in the
team needs to learn a new technology. Mentors guide and support team members,
help them become more confident about using agile methods and encourage the
ongoing use of agile practices.

2.6.2 Co-ordinator

The co-ordinator acts as a representative of the team to manage customer expecta-
tions and co-ordinate customer collaboration with the team. The co-ordinator has
to collate team member requests for information from customers (to avoid irritating
duplication of questions) and deal with the whole issue of change request handling.

2.6 Collaboration Activities Within Self-Organising Teams 19

2.6.3 Translator

Translators are needed that can make clear the meaning of business language used
by customers for the benefit of technical team members. Participants in the self-
organising team need to contribute to improved communication between these two
domains. Understanding the business domain of the project is the primary role of
the product owner, as we will see in Chap. 3. But self-organising teams benefit from
gaining this understanding too.

2.6.4 Champion

Champions are team members that advocate for agile methods with senior man-
agement within their organisation. We want senior executive support for the
self-organising agile team. It is hard for agile to flourish without senior management
support. The champion is adept at explaining agile benefits using language and
evidence that is convincing for senior executives.

2.6.5 Promoter

The promoter is a proponent of agile methods with customers. The promoter secures
customer involvement and collaboration to support the efficient functioning of the
self-organising team. Customers play a vital role in identifying and prioritising
requirements, while the promoter ensures that the team gets all the support needed
from customers.

2.6.6 Terminator

Sometimes, teams find themselves with a member who is not a force for good,
someone maybe persistently unproductive or the negative behaviour of this team
member can threaten the wellbeing of the rest of the team. Self-organising teams
are often happy to take damage limitation steps to cover for a team member who is
‘having a bad day’. But if a team member is causing problems over a long period,
then more drastic action may be needed. In the most extreme case, members of the
self-organising team may engage external stakeholders to get support for removing
someone from the team.

20 2 Self-Organising Teams

2.7 Virtual Teams

Periods of self-isolation during the COVID-19 pandemic showed that online
teams can be very effective. Virtual teams are formed, when some or all team
members work remotely and communicate using technology. The time, cost and
environmental impact of daily travel to work is avoided.

As already argued, multidisciplinary teams have become the norm in software
development, as shown in Fig. 2.1b. Consequently, the team employs diverse skills
to deliver a specific product, and communities of practice are used to share
knowledge and experience about their specific skill set or role.

2.7.1 Principles for Virtual Team Management

Virtual teams have advantages such as avoiding work-related travel—where team
members can remain in their preferred home location without the need to co-locate
with work colleagues. The digital nature of agile software engineering work means
the job activities can travel to the skilled people, rather than skilled people travelling
to the work.

However, the absence of informal networking and impromptu opportunities to
meet and socialise can lead to challenges. Consequently, we can identify several
principles for supporting virtual team working [10].

It is particularly important to ensure there is consensus on clear goals with virtual
teams. Sometimes, virtual team members do not have visibility of the range of
activities and responsibilities for other team members. Consequently, it is important
to be alert for inconsistencies in team member goals.

Communication and collaboration processes need to be more carefully imple-
mented for virtual teams. These processes are needed to expose and resolve
misunderstandings and diffuse conflict.

Despite the absence of opportunities for impromptu interaction in virtual teams,
creating opportunities for social communication seems important. Communicating
as a group on different topics and activities and building awareness of other team
members seem to help with goal achievement.

Helping team members build inter-dependence through goal setting and task
design also seems to help with the development of successful teams. Trying to
help team members understand the strengths each person brings to the work helps
overcome disconnectedness.

These activities can be supported by specific training and team kick-off activities
to develop the culture of communication across different aspects of team working.
While work-focused tasks are most important, these other opportunities to build
consensus are also valuable.

2.7 Virtual Teams 21

2.7.2 Preparation for Team Success

There are a number of steps we can take (or tactics we can adopt), to maximise the
chances of team success.

2.7.2.1 Cultural Diversity

Cultural diversity is a feature of globally distributed teams and those in many
urban conurbations in the global north. Cultural ambassadors with experience and
understanding of the different cultures can support communication at times of stress
or tension within the group.Otherwise, cultural awareness and sensitivity are needed
for group members to empathise and build trust.

2.7.2.2 Remote Pair Programming

Often specific software development tasks can be performed by individuals within
the team. Software to implement a screen, database table or a class can be developed.
Many employers like the idea of a ‘full-stack’ developer that can contribute across
the application spectrum (front-end to back-end) and also across the life cycle (from
requirements to test). However, some parts of an application are new, complicated or
critical in some way, which makes a shared thought process attractive. It is a good
idea to identify these difficult tasks during backlog grooming and sprint kick-off
activities, as discussed in Chap. 13.

Tactical use of remote pair programming can be useful tool for managing these
difficult tasks. Set aside time for pair programming during sprint planning. Each
pair programming session needs clear goals and a set agenda before the start. Pair
programming also is a good way to on-board new members of a team.

A basic way of doing remote pair programming is to use any video conferencing
platform that allows screen sharing (popular favourites at the moment include
Microsoft Teams, Skype and Zoom). Customary approaches include:

• Driver/navigator: the driver works on careful implementation of code, while the
navigator is doing a real-time code review while thinking about issues such as
readability and architecture adherence; swap every 30min or so.

• Ping-pong: One person writes a test, while the other person then codes against
the test criteria. Once the test passes, swap roles.

2.7.3 Launch

The launch phase of a virtual team is particularly important. A kick-off phase serves
five main purposes [10]:

22 2 Self-Organising Teams

• Getting acquainted with other team members
• Clarifying the team goals
• Clarifying team member roles and functions
• Discussing efficient communication technologies use
• Developing general teamwork rules

The exercises at the end of this chapter can help you prepare for launching your
team.

2.7.4 Performance Management

In virtual teams, performance is achieved through a combination of goal setting,
participation and feedback on task fulfilment. Performance feedback, on an indi-
vidual and group level, should be frequent, concrete and timely. As examples of
this, in an agile approach, virtual daily stand-ups using a shared Kanban board
show team members group and individual progress towards goals, while customer
demonstrations provide frequent, timely and concrete feedback, as described in
Chap. 13.

Organisation of the group is focused on moderation, facilitation and supporting
communication. Leadership is responsible for information sharing, organisation of
meetings and facilitating communication within the team. Team effectiveness is
enhanced where the team attains goal clarity and lack of goal conflict and also
benefits from good-quality feedback.

It is possible that uninhibited and hostile communication can emerge in virtual
teams. This is discouraged through frequent opportunities for synchronous online
feedback and development of explicit norms and rules for communication.

Communication media need to be selected based on their fit for the task at hand.
Slack [17], for example, has tended to be popular with software developers because
it offers synchronous text-based communications, document sharing and long-term,
archival, information storage, while videoconferencing is better for problem-solving
and creating shared goals. Making astute use of the most appropriate media is
important for team success.

It seems high-performing virtual teams also exhibit high quantity of non-
job-related communication. By engaging in social processes, virtual teams build
cohesion, trust and motivation. One important problem is that it is possible that
non-job-related communication is consequence of high performance in the team.

2.8 Communities of Practice

It is useful to be aware of another type of team that exists within the software
development ecosystem. These are teams with members that do not contribute
to shared work tasks but that nevertheless share ways of working, membership

2.9 Exercises 23

rituals and often shared goals. A community of practice is a voluntary, often rather
unstructured, group that supports and facilitates knowledge and experience sharing.

In the agile development culture developed at the music streaming service
Spotify, the concept of Guilds is introduced that to some extent formalise the
community of practice as part of the development process [18]. The Guilds tend to
be organic and emergent. Guilds vary in size, mission, membership and activities.

2.9 Exercises

Start by creating a learning journal for Part I People, if you haven’t already. Use this
learning journal to keep notes on the things you learn. You can also use the learning
journal to plan your future skills development activities. What are your priorities?
The journal should, eventually, include a section for each book chapter.

It is better not to look at the hints, tips and solutions chapter, at this stage. First
actually perform the exercises (but, still, do not look at the hints or tips). Then
reflect. Only after that, look at the hints, tips and advice in Sect. 2.10.

Exercise 2.1 (Learning Journal)

2.1 The first exercise is to review the material in each chapter. Write a few
notes in your learning journal for this chapter. These could be brief notes, just
a few bullet points. Or perhaps you want to create a longer essay.

Exercise 2.2 (Skills Inventory)

2.2 Work with the other members of your team to identify the various sills
you have between you. As a group, you should discuss two main areas:

1. What are the types of skills and skill categories available within the group?
2. What metrics or experience levels do you use to assess a skill

competency?

Of course, you will want to include on technical skills in your inventory.
What technologies have you worked with? What techniques have you learned
(across the development lifecycle, perhaps)?What do you know already about
agile methods?

Some people might find the following categorisation useful:

1. Software
2. Hardware

(continued)

24 2 Self-Organising Teams

Exercise 2.2 (continued)

3. Networks
4. Information management or storage
5. Processes

Don’t forget to include non-technical skills. Think about your hobbies,
interests and pastimes. What skills have you acquired during these other activ-
ities? These might loosely be called soft skills (administrative, organisational,
social and communication skills, etc.). You might have all sorts of skills that
will be useful to your group. It is best not to be shy about the range of skills
you have. Something you take for granted might be seen as a huge asset to
another member of the group.

In terms of experience levels, you might find the following categorisation
useful:

1. Novice (I was taught a University course on this and completed some
assignments.)

2. Competent (I’ve been using this routinely for a couple of years.)
3. Proficient (I have 3–5 years’ experience with this.)

Create a spreadsheet or use some other way to collate and capture all the
skills in your group. If your group is rather homogeneous, then you might
have a lot of similar skills. With luck, your group is more heterogeneous,
coming from a wide range of different cultures, experiences and previous
backgrounds. A heterogeneous group will likely have a wider range of
different skills that you can draw on.

Exercise 2.3 (Personal Learning Timeline)

2.3 A personal learning time line is a graph of your life so far. Time goes on
the x-axis of your graph. The y-axis represents your learning. High values are
for periods in your life when you learned a lot. Low values are when you did
not learn so much. Best to use a large sheet of paper, such as a sheet of flip
chart paper.

This exercise provides a vehicle for learning about each other’s life story.
You will probably learn some surprising things about friends and colleagues.
This exercise can help you bond with the other members in your group.

1. Start off by working alone to plan your personal learning time line. Think
about the times in your life when you learned a lot. There may be life
experiences or events that caused you to learn about yourself as a person.
There may be specific projects of experiences where you learned a lot

(continued)

2.9 Exercises 25

Exercise 2.3 (continued)

technically. What happened? What did you learn? What about the periods
in your life where you didn’t learn much? Why was that?

2. Draw your personal learning timeline on a sheet of flip chart paper. Think
carefully about what you are willing to share with the other members of
your group.

3. Now, with the other members of your group, take turns to share your
learning time line. Describe the most important periods in your life for
learning.

Exercise 2.4 (Group Behaviour Exercise)

2.4 We need to develop a set of ground rules about what sort of behaviours
are acceptable in the group. Of course, we want the other group members
to treat us with respect. Right? But what does that mean? What is respectful
behaviour? Some members of your group might have very different expecta-
tions than you.

Things you consider normal may, in fact, be strange or even offensive to
others in your group. You should try to find out if there are any culturally
sensitive areas for any members of your group. You should also try to find
out what has annoyed the other group members about working in teams in the
past.

Work as a group to answer the following questions. Depending on the level
of experience within the team, you might want to do some online information
gathering to explore tools and techniques to answer the different questions.
Why not have each group member write a short report on one of the topics?
Use this exercise to learn new skills about ways of working in teams.

1. How will we communicate?
2. How will we collaborate?
3. How will we provide feedback?
4. How will we make decisions?
5. How will we handle conflict?
6. How will we prioritise work?
7. How will we measure our work?
8. How will we recognise or celebrate each other’s contributions?

The outcome is a set of guidelines for methods of working, acceptable
behaviour and conduct within the group. You should list accepted behaviours
about how you would like to be treated by other members of the group. You
should also list any unacceptable behaviours you found out about in your
discussions.

26 2 Self-Organising Teams

Exercise 2.5 (Creating Shared Goals)

2.5 In this exercise, you will try to establish a sense of common purpose in
your group. A well-developed shared mission can help you perform better as
a team.

1. Work independently. Each member of the group writes ‘what would you
like this team to accomplish?’ Write a single accomplishment on each
sticky note.

2. Now, work as a group. First, identify common themes. These are impor-
tant; they are shared goals.

3. Order the accomplishments into priorities. Two categories is enough: high
priority and low priority.

4. Create a two-by-twomatrix (e.g. on a whiteboard). The two axes are shared
vs. individual goals and low- vs. high-priority goals.

5. Use the high-priority, shared goals to create a mission statement for your
team. Try to create a mission statement that is clear, simple and motivating.

Exercise 2.6 (Learning Journal)

2.6 Reflect on the exercises you have completed, from Chap. 2. Make some
notes in your learning journal. Think about what happened during each
exercise. How did it go? What went well? What could have gone better?

2.10 Hints, Tips and Advice on Exercises

2.1 Learning Journal Exercise

In this chapter, we explored

• Self-organising teams
• Agile principles
• Forming teams
• Collaboration activities within self-organising teams
• Virtual teams

You should aim to write down a few comments about the things you learned
in each topic.

2.10 Hints, Tips and Advice on Exercises 27

2.2 Skills Inventory Exercise

There are, at least, three aspects to this exercise. What skills do you have?
What level of expertise do you have in each skill? And, how can we guide
our own professional development in the future? We need some categories
of skills and skill levels. Learning about this will help us identify our
own strengths. We can then use the exercise to focus our own professional
development and training activities.

The Dreyfus model of skills acquisition has five levels: novice, advanced
beginner, competent, proficient and expert [3]. A novice needs close super-
vision. An advanced beginner is able to achieve some steps using own
judgement. Someone competent is able to achieve most steps using own
judgement. Someone proficient is able to take full responsibility for own work
and coach others. An expert is able to go beyond existing standards. This
simple model is probably sufficient for this exercise.

However, in Skills Framework for the InformationAge (SFIA), in contrast,
there are seven skill levels [16]. SFIA identifies level of experience ranging
from entry-level professional through to industry-wide thought leader. The
highest level is aimed at senior executives (such as the Chief Technology
Officer) of large corporations or Government agencies. These levels are:

1. Follow.
2. Assist.
3. Apply.
4. Enable.
5. Ensure and advise.
6. Initiate and influence.
7. Set strategy, inspire and mobilise.

The levels of responsibility are described in terms of five generic attributes:
autonomy, influence, complexity, knowledge and business skills. SFIA pro-
vides a detailed breakdown of expectations at each skills level, developed over
many years. Consequently, SFIA provides lots of useful information about
how to improve your skills.

What about the skill areas themselves? I mentioned that you might want to
consider six categories:

1. Software
2. Hardware
3. Networks
4. Information management or storage
5. Processes
6. Soft (transferable) skills

(continued)

28 2 Self-Organising Teams

But, this might be too tied to specific technologies and not sufficiently focused
on the objectives you are trying to achieve. SFIA also has six categories of
professional skills, but they are more focused on the goal or purpose:

• Strategy and architecture
• Change and transformation
• Development and implementation
• Delivery and operation
• Skills and quality
• Relationships and engagement

These categories are divided into sub-categories and around 100 different
skill areas. For example, the development and implementation category
includes:

• Systems development

– Systems development management
– Software design
– Software development
– Database design
– Network design
– Testing

• User experience

– User experience analysis
– User experience design
– User experience evaluation

• Installation and integration

– Systems integration and build
– software configuration
– Systems installation

I like SFIA (and used it in industry to help me create job descriptions) because
you can use it to learn about how to develop new aspects of your skill set.

For each category, there is a breakdown of how the skill is applied at
the different levels. For example, in the Systems development category and
Programming/software development sub-category:

• Level 2 is described as ‘Designs, codes, verifies, tests, documents, amends
and refactors simple programs/scripts. Applies agreed standards and tools,
to achieve a well-engineered result. Reviews own work’.

(continued)

2.10 Hints, Tips and Advice on Exercises 29

• Level 3 ‘Designs, codes, verifies, tests, documents, amends and refactors
moderately complex programs/scripts. Applies agreed standards and tools,
to achieve a well-engineered result. Collaborates in reviews of work with
others as appropriate’.

• Level 4 ‘Designs, codes, verifies, tests, documents, amends and refactors
complex programs/scripts and integration software services. Contributes
to selection of the software development approach for projects, selecting
appropriately from predictive (plan-driven) approaches or adaptive (iter-
ative/agile) approaches. Applies agreed standards and tools, to achieve
well-engineered outcomes. Participates in reviews of own work and leads
reviews of colleagues’ work’. [16].

As you can see from the above example, the levels in SFIA illustrate a
growth in experience and influence. The SFIA detailed matrix of skills can
also be used to create job descriptions as well as support the personal and
professional development of practitioners.

2.3 Personal Learning Timeline Exercise

I can’t provide a solution to your personal learning timeline exercise, because
it’s, errh, well, personal to you. This about reflecting on difficult or challeng-
ing periods of your life. Think about the lessons you have learned and the
skills you have acquired.

For the timeline, draw peaks to represent periods of intense learning.
The draw troughs to reflect time when you learned less. The peaks might
(or might not) correspond to formal education. You might have peaks for
a first unaccompanied camping trip with friends or organising a big family
gathering. You might have troughs for boring periods of your life.

You can then share your timeline with the other members of your group.
This will give you a framework for learning about each other and your
previous experiences. You can use the timeline to learn about the life histories
of the other team members.

30 2 Self-Organising Teams

2.4 Group Behaviours Exercise

In groups working together for the first time, there could be different
expectations about what constitutes acceptable behaviour. This is particularly
important in groups with members from diverse cultural communities.

Think carefully about acceptable behaviours. Discuss your previous expe-
rience of behavioural norms: what professional behaviours were accepted and
what things did people do or say that caused controversy.

Make a list of unacceptable behaviours. Try to explore areas where mem-
bers of the group might be offended. This might include working practices,
use of language and expectation around meeting attendance and timekeeping.

Finally, make plans for conflict resolution. It is better to consider tactics
for making difficult decisions now while things are quite calm and relaxed.
Try to prepare a plan for decision-making under pressure and when there are
heartfelt disagreements within the group.

2.5 Creating Shared Goals Exercise

Research shows that groups are more effective when they have shared
goals. You might be able to increase the effectiveness of your group by
understanding each other’s goals.

Some group members may have very high expectations, in terms of work
quality and effort. For other group members, it might be more a question
of survival; ‘let’s just get through this’. You might not be able to change
the expectations of other group members, but understanding their perspective
might be useful.

Your group performance might be improved if you can get consensus on
some aspects of group performance, such as quality of work. Some group
members might be happy to accept producing more deliverables than others,
if they feel everyone is committed to producing high-quality outputs.

2.6 Learning Journal Exercise

Think about how you performed in completing the exercises. Where they
easy? Where they challenging? Which areas need some further work? Make
some notes on these thoughts in your learning journal.

Make some notes about the quality of your solutions. Try to identify areas
where you performed well and those where you might benefit from further
reading or other learning.

(continued)

2.10 Hints, Tips and Advice on Exercises 31

If you are serious about becoming a professional practitioner in the
software domain, you need to use your learning journal (or professional diary)
to record your activities. The act of writing things down helps you think more
clearly about what has happened. As you think more clearly, because of your
writing, so you learn more about the skills you are acquiring.

Don’t just write a sequence of events; try to reflect on the skills you used.
The main purpose is not only to create a timeline (although that can be useful
to you later). The purpose is to think about the successes and failure of what
happened. Try to list things that went well. Also write things that did not go
so well. Then, make notes about what you might do differently next time.

Is your learning journal low tech or high tech? I don’t care. You could use
a cloud-hosted software tool accessible from any device (like Evernote [6] or
Trello [1]). Or, you could use a computer office application such as a word
processor. Or, you could buy an expensive pen and nice notebook. Whatever
works for you. I don’t care. But, write a journal.

Is your learning journal personal or team based? Both! Some of your
learning will be personal. Private. Confidential, even. You need to think
about your own reaction to the things you are learning. How did you feel
during the exercise? What made you happy or uncomfortable?Why was that?
Face it, learning is stressful, sometimes. If you don’t challenge your own
boundaries, you’re not really learning anything new. Some, perhaps, more
friendly, sociable or amiable people find working with others easy. Enjoyable
even. I don’t. I find, I can sometimes inadvertently upset people, or they upset
me. Professional relationships can be challenging.

You will want to keep this relationship stuff private, partly because nobody
cares what we think or because nobody needs to know what nonsense is going
on inside our heads and partly because some of your learning will be about
working with others, and that needs to be kept to yourself. If you don’t write
something that should be private, then you’re not really thinking about your
own learning, or you don’t yet have a good enough understanding of the
boundaries between you and others.

But you also need to learn, as a team, together. You need a group Kanban
board (Trello) [1], wiki site or development platform, such as GitHub [9], to
record your group decisions. You might like to use an instant messaging and
file-sharing platform like Slack [17]. These tools allow you to record group
decisions and exchange information with each other. Kanban boards provide
a visual overview of the project status. Using a shared wiki platform you can
share architecture and design models. Instant messaging allows you to ask,
and answer, questions.

32 2 Self-Organising Teams

2.11 Chapter Summary

Most people engaged in a software project will be members of self-organising
teams. So, in this chapter, I have explained some defining characteristics of teams
and some techniques to encourage higher performance from teams. I’ve focused
on team life cycle and team formation issues, as well as looking at some research,
which shows what collaboration activities self-organising teams in software projects
undertake.

Exercises have focused on developing an understanding of the skills available in
your team, developing shared goals to improve productivity and establishing good
behavioural practices within your team.

In Chap. 3, I will look at the other roles that are defined when using agile software
development methods. These roles are important, for supporting self-organising
teams that develop software.

References

1. Atlassian: Trello (2019). https://trello.com
2. Coad, P., LeFebvre, E., De Luca, J.: Java Modeling in Color With UML: Enterprise Compo-

nents and Process. Prentice Hall, Upper Saddle River (1999)
3. Dreyfus, S.E.: Formal models vs. human situational understanding: inherent limitations on the

modeling of business expertise. Office Technol. People 1(2/3), 133–165 (1982). https://doi.org/
10.1108/eb022609

4. Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: a systematic review.
Inform. Softw. Technol. 50(9–10), 833–859 (2008). https://doi.org/10.1016/j.infsof.2008.01.
006

5. Dybå, T., Dingsøyr, T.: What do we know about agile software development? IEEE Softw.
26(5), 6–9 (2009). https://doi.org/10.1109/MS.2009.145

6. Evernote Corp.: Best Note Taking App—Organize Your Notes with Evernote (2019). https://
evernote.com

7. Fisher, R.: Getting to Yes: Negotiating Agreement Without Giving in, 3rd revised edn. Baker
and Taylor, London (2011)

8. Fitzpatrick, B.W., Collins-Sussman, B.: TeamGeek: A Software Developer’s Guide toWorking
Well with Others, 1st edn. O’Reilly Media, Sebastopol (2012)

9. GitHub Inc.: Build software better, together (2019). https://github.com
10. Hertel, G., Geister, S., Konradt, U.: Managing virtual teams: a review of current empirical

research. Hum. Resour. Manag. Rev. 15(1), 69–95 (2005). https://doi.org/10.1016/j.hrmr.2005.
01.002

11. Hoda, R., Noble, J., Marshall, S.: Developing a grounded theory to explain the practices of
self-organising Agile teams. Empirical Softw. Eng. 17(6), 609–639 (2011). https://doi.org/10.
1007/s10664-011-9161-0

12. Hoda, R., Noble, J., Marshall, S.: Self-organizing roles on agile software development teams.
IEEE Trans. Softw. Eng. 39(3), 422–444 (2013). https://doi.org/10.1109/TSE.2012.30

13. Katzenbach, J.R.: The Wisdom of Teams: Creating the High-Performance Organization.
McGraw-Hill, London (2005)

14. McGregor, D.: The Human Side of Enterprise. McGraw-Hill, New York (1960)

 669 1902 a 669 1902 a

https://trello.com

 2196 2234
a 2196 2234 a

https://doi.org/10.1108/eb022609
https://doi.org/10.1108/eb022609

 1481 2483 a 1481 2483 a

https://doi.org/10.1016/j.infsof.2008.01.006
https://doi.org/10.1016/j.infsof.2008.01.006

 493 2732 a 493 2732 a

https://doi.org/10.1109/MS.2009.145

 2416 2815 a 2416 2815 a

https://evernote.com
https://evernote.com

 1432 3314 a 1432 3314 a

https://github.com

 1600 3480 a 1600 3480 a

https://doi.org/10.1016/j.hrmr.2005.01.002
https://doi.org/10.1016/j.hrmr.2005.01.002

 2108 3729 a 2108 3729 a

https://doi.org/10.1007/s10664-011-9161-0
https://doi.org/10.1007/s10664-011-9161-0

 1346 3978 a 1346
3978 a

https://doi.org/10.1109/TSE.2012.30

References 33

15. Morgan, G.: Images of Organization, 1st edn. SAGE Publications, Thousand Oaks, California
(2006)

16. SFIA Foundation: SFIA (2018). https://www.sfia-online.org/en
17. Slack: Where work happens (2019). https://slack.com/intl/en-gb/
18. Smite, D., Moe, N.B., Levinta, G., Floryan, M.: Spotify guilds: how to succeed with knowledge

sharing in large-scale agile organizations. IEEE Softw. 36(2), 51–57 (2019). https://doi.org/10.
1109/MS.2018.2886178

19. Takeuchi, H., Nonaka, I.: The new new product development game. Harv. Bus. Rev. 64(1),
137–146 (1986)

20. Tuckman, B.W., Jensen, M.A.C.: Stages of small-group development revisited. Group Organ.
Stud. 2(4), 419–427 (1977). https://doi.org/10.1177/105960117700200404

 880 143 a 880 143 a

https://www.sfia-online.org/en

 992 226 a 992 226 a

https://slack.com/intl/en-gb/

 2108 392 a 2108 392 a

https://doi.org/10.1109/MS.2018.2886178
https://doi.org/10.1109/MS.2018.2886178

 763 807 a 763 807 a

https://doi.org/10.1177/105960117700200404

Chapter 3
Agile Roles

Abstract Self-organising teams create software. Scrum masters and product own-
ers provide an environment in which teams can work. The scrum master facilitates
team working, mentoring team members and removing impediments. The product
owner engages with clients and markets to define and prioritise requirements. This
chapter explores the scrum master and product owner roles in detail and the skills
needed for them to perform their activities.

3.1 Introduction

In Chap. 2, I discussed self-organising teams and how they work. In this chapter,
we will focus on roles outside the self-organising team and introduce the skills you
need to perform these roles. The scrum master and product owner support the work
of self-organising teams.

3.2 Scrum Master

Scrum masters facilitate the scrum process on behalf of the team, monitor team
status and remove impediments [7, 8]. Practitioners consider the role as central to
the success of the scrum method [2]. You can learn more about the ceremonies that
involve scrum masters later, in Chap. 13.

Research that investigates what scrum masters actually do [2, 6] identifies five
coordination activities: process anchor, stand-up facilitator, impediment remover,
sprint planner and integration anchor. We can now discuss each of these activities in
turn.

© Springer Nature Switzerland AG 2022
J. M. Bass, Agile Software Engineering Skills,
https://doi.org/10.1007/978-3-031-05469-3_3

35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05469-3_3&domain=pdf

 -151 4612 a -151 4612
a

https://doi.org/10.1007/978-3-031-05469-3_3

36 3 Agile Roles

3.2.1 Process Anchor

The process anchor mentors team members in scrum method use. The agile process
is described in Chap. 13. The idea is to nurture, encourage and perhaps gently cajole
people to learn and use agile methods appropriately. This means understanding how
agile methods work, by creating transparency about who is doing what.

The scrum master is not a team leader or supervisor in the conventional sense.
The scrum master does not tell people what to do. However, the scrum master has
to encourage, sometimes recalcitrant team members, to give their productive best.

Agile teams often like to get into a rhythm, known as a cadence. That means
everyone knows what to expect when a week starts with sprint planning or ends
with a customer demonstration. People can plan their work, and perhaps even their
social lives, around this iteration cadence.

3.2.2 Iteration Planner

The iteration planner activity helps select and estimate requirements for implemen-
tation. Iteration planning is described in Sect. 13.2. Everyone on the team is involved
in iteration planning for half a day, or a day, at the start of each iteration; see
Fig. 3.1a. But, the important point to make here is that the scrum master facilitates
the iteration planning process.

3.2.3 Stand-up Facilitator

The stand-up facilitator conducts coordination meetings within a team. Facilitating
a stand-up involves influencing the conduct of the meeting while saying as little
as possible. You can learn more about what happens in a stand-up meeting in
Sect. 13.3.

When meeting participants go off topic, you want to guide them gently back to
the purpose of the meeting. The whole purpose of the stand-up is to discuss and
disseminate the status of the project. Impediments are mentioned, but not discussed
in detail. Do not get drawn into trying to resolve impediments during the stand-up
itself.

You want to be alert for these and other issues that need to be discussed outside
the stand-up meeting and who needs to be involved in those other conversations.
It will be your responsibility to organise and facilitate those other meetings. Make
sure you only involve those who need to be consulted. A common mistake is to let
stand-up meetings go on too long, discussing topics that are not of interests to all
the people involved and (from their point of view) wasting their time.

3.3 Product Owner/On-site Customer 37

3.2.4 Impediment Remover

The impediment remover eliminates work blockages for team members. Imped-
iments are often varieties of missing information or lacking knowledge. So, a
scrum master needs to find out who has the elusive knowledge and convey that
to the blocked team member. This process of information gathering requirements a
combination of networking skills (knowledge of who knows what) and diplomacy
(to convince people too busy or self-regarding to part with information).

3.2.5 Integration Anchor

The integration anchor facilitates amalgamation of software elements. The whole
point of a software development team is to produce software. Right? Of course it
is! So, someone has to glue together all the bits of software being created by the
members of the team. From a feature perspective, each piece of code goes through
a plan, design, build and test lifecycle as shown in Fig. 3.1b. But the scrum master
needs to make sure this code integration happens. This might involve checking up
on someone who has taken on the task regarding the integration issue. You can learn
more about some software tools you can use to help with this in Part III.

3.3 Product Owner/On-site Customer

The central purpose of product ownership is to communicate a business need to
a development team. The development team knows how to design, build, test and
deploy systems, and the product owner comes to know what system needs to be
built. Extreme programming advocates an on-site customer, a client representative

Sprint
Planning

Deploy
Working

Code

A)

Customer
Demonstration

Iteration Duration (Typically 2 -4 Weeks)

Plan Design Build Test Deploy

Daily (Stand-up) Coordination Meetings

Iteration Start Iteration End

Design, Build and Test Features
Retrospective

Requirements

B)

Fig. 3.1 (a) Iteration structure and (b) feature life cycle

38 3 Agile Roles

that is available to the team on a full-time basis [4]. The product owner role is
formally defined in scrum [8]. Product ownership plays a central role in the overall
software development process [5].

I now want to look at some of the activities product owners perform as part of
their role [3]. Taken together, these activities comprise the product owner role.

3.3.1 Product Grooming

In the product grooming activity, the product owner gathers, or elicits, requirements
from business clients in business-to-business contexts. You can learn more about
requirements in Chap. 7. The product owner needs to interact with customers
in order to gather the requirements. For business-to-consumer applications, the
product owner needs to develop detailed awareness of market trends and competitor
behaviour.

However, simply compiling a list of requirements is not sufficient; the require-
ments must also be prioritised according to their value to the business.

3.3.2 Prioritiser

In the prioritiser activity, the product owner ensures that requirements bring
maximum value to the business. In each iteration, the product owner decides
which requirements from the product backlog are going to be most important for
implementation in the next iteration. Sometimes, this involves choosing to prioritise
the needs of one customer group or segment over another. Product owners become
experienced in assessing and prioritising the needs of different segments of the
customer base.

3.3.3 Release Master

In the release master activity, the product owner manages release plans and approves
software source code for release to customers. Early iterations may not have
sufficient code to deploy; see Fig. 3.2. Approving releases requires a decision about
the quality of software (is it good enough to give to customers?) and the scope of
the software (is there enough useful functionality to give to customers?).

3.3 Product Owner/On-site Customer 39

Iteration 1

Code Deployed

No Code Deployed

Code Deployed

Iteration 2

Iteration 3

Plan Design Build TestRequirements

Plan Design Build TestRequirements

Plan Design Build TestRequirements

Fig. 3.2 Iterations and source code releases

3.3.4 Communicator

In the communicator activity, the product owner connects onshore and offshore
stakeholders in the project team to manage geographical distribution. Geographical
distribution is not an ideal attribute for a project team. We would prefer everyone to
be located together in the same site. The ease of communication and movement of
digital goods means that geographical distribution has become a feature of software
development programmes. The product owner, in the communicator activity, uses
audio and videoconferencing and online collaboration tools.

3.3.5 Traveller

In the traveller activity, the product owner spends time with geographically remote
stakeholders gathering first-hand knowledge of their needs and priorities. For
example, a product owner based offshore will sometimes spend time (between 1
and 3 months, depending on the scale of the project) on the client site at the start of
the project, becoming familiar with any special features of the client’s requirements.
The traveller is important for supporting development teams because they are based
at the customer site and can get answers to questions.

40 3 Agile Roles

3.3.6 Intermediary

The product owner, in the intermediary activity, interfaces with senior executives,
driving software development programmes and disseminating domain knowledge to
teams. Domain knowledge is understanding of the business domain or sector of the
application software being created. For example, it might be an application in travel,
financial services or retail. To perform the intermediary activities, product owners
need to have extensive experience of the particular system business domain.

3.4 Product Owner Behaviours

Our research has also identified a set of product owner behaviours. There are traits
that product owners display that are seen as desirable by their line managers.
The three main product owner behaviours we identified are to favour face-to-face
interactions, understand and focus on real goals and make product owner teams
well defined [1].

3.4.1 Favour Face-to-Face Interactions

It is tempting to use digital technologies to overcome geographical distance. Written
communication with email and word processing documents can help you deal with
geographical, temporal and cultural distances. However, understanding, trust and
empathy come from building social capital through face-to-face interactions. It is
very important to spend ‘face-time’ with stakeholders.

3.4.2 Understand and Focus on Real Goals

On successful projects, product owners appear to use influencing skills to keep a
wide range of stakeholders targeted on a specific and focused set of goals. Creating
a set of clear, transparent and objective test criteria allows teams to demonstrate
progress toward project goals. Product owners who are able to stay focused on key
project goals even as inevitable challenges and obstacles arise are highly prized.

3.5 Other Roles: For Larger Projects 41

3.4.3 Make Product Owner Teams Well Defined

As has been suggested, for large projects, the product sponsor, intermediary,
technical architect and other members form a product owner team. The process
of building the product owner team should be explicit and well defined. Product
sponsors should create well-defined processes for product owner team building,
induction of new members and succession planning.

3.5 Other Roles: For Larger Projects

We’ll look at large-scale projects in more detail in Chap. 18. But, there are a couple
of roles it is worth thinking about now: product sponsor and technical architect.

3.5.1 Product Sponsor

The product sponsor is a project funder. In business-to-consumer projects, each
individual customer is a project funder. However, in a business-to-business project,
or an internal project in a large organisation, there is an individual that signs off
funding for a project. Depending on the size of organisation, this individual may be
a company chief officer (chief technical officer, chief financial officer or something)
or perhaps some other senior executive.

You may not see much of the project funder, if you have one. They may be busy
with other responsibilities. But, trust me, the project funder is important. Ultimately,
they are the persons that the team needs to satisfy. So, listen carefully to what they
say. Try to understand the problem being solved, from their point of view. Aim to
see things from their perspective. That way, you stand a better chance of coming up
with a solution that works for them.

3.5.2 Technical Architect

In smaller systems, architecture is often straightforward. You choose an appropriate
architectural style and stick to it. You end up with a clear and simple high-level
design. A design everyone can adopt, without much dissent.

On larger systems, high-level design or architecture becomes much more sophis-
ticated. Different subsystems may have contrasting architectural styles. The choice
of architectural style may be more controversial and less obvious. An experienced
technology leader might be required to have the gravitas to carry the team towards a

42 3 Agile Roles

coherent approach. Hence, the overall system architecture can be much more finely
balanced and complex.

3.6 Exercises

These exercises will help you practise the agile roles discussed in this chapter.
Don’t look at the hints, tips and solutions chapter, at this stage. First actually do
the exercises, then look at the advice in Sect. 3.7.

Exercise 3.1 (Learning Journal)

3.1 As explained in Exercise 2.1, it is a good idea to create a learning journal.
Consequently, for the first exercise in this chapter, write a few notes in your
learning journal for this chapter. What were the most important things that
you learned or found interesting? A few bullet points will be sufficient.

Exercise 3.2 (Iteration Planning Exercise)

3.2 In this exercise, scrum masters and agile coaches practise facilitating
an iteration planning process. The iteration planning process is described in
Sect. 13.2. Team members will collaborate to create technical tasks for each
high-priority requirement. Estimate each requirement. Decide howmany (and
which) requirements you can accommodate in the next iteration. Make sure
someone in the team has chosen tasks to work on. There is more detailed
guidance on how to conduct sprint planning in Sect. 3.7.

Exercise 3.3 (Coordination Meeting Exercise)

3.3 In this exercise, scrum masters practise facilitating a coordination meet-
ing. Coordination meetings are described in Sect. 13.3. The scrum master
makes sure the meeting stays focused on project status. Teammembers should
learn who is working on what. The meetings are often held looking at a (real
or virtual) Kanban board. The scrummaster ensures the meeting lasts no more
than 15min.

3.6 Exercises 43

Exercise 3.4 (Customer Demonstration Exercise)

3.4 Practise facilitating a customer demonstration. You can learn more
about customer demonstrations in Sect. 13.4. You might want to rehearse
the demonstration, so you can advertise the new features of your working
software in a positive light. Make sure you record all the feedback you are
given. Review all the feedback later, and action any comments you have been
given.

Exercise 3.5 (Retrospective Exercise)

3.5 Practise facilitating a retrospective. You can learn more about retrospec-
tives in Sect. 13.4.1. Collect feedback from team members on what went well
in the last iteration. Collect feedback on areas for improvement. Try to identify
consensus on areas for improvement and create one action point for each.

Exercise 3.6 (Requirements Elicitation Rehearsal Exercise)

3.6 In this exercise, a product owner will rehearse facilitating a fictitious
requirements elicitation workshop (focus group). You might want to learn
more about requirements by reading Chap. 7. Identify who are going to be
your key informants (possibly friends or colleagues, for this exercise). Before
the workshop, prepare a logical set of open-ended questions.

The scenario for this fictional exercise is: ‘what activities do you do in
the morning between waking up and arriving at work, university or college?’
The objective of the workshop is to identify 10–15 activities that the members
of your focus group perform in the morning (assuming you wake up in the
morning). Make sure you have arranged someone to record the answers you
are given in the workshop.

During the workshop, lead the discussion through your questions. Ask
some open-ended questions to see if there are topics your informant wants
to tell you about, which you didn’t realise were important. There are some
more detailed hints and tips on how to conduct requirements elicitation in
Sect. 3.7.

44 3 Agile Roles

Exercise 3.7 (Requirements Gathering Workshop Exercise)

3.7 In this exercise, a product owner will facilitate a requirements gathering
workshop (focus group) for your team. As I mentioned in Exercise 3.6, you
can learn more about requirements by reading Chap. 7. Choose a specific epic
(large use case or user story) that will be needed as part of your project.
Before the workshop, make lists of questions and discussion topics to explore
the epic user story. The discussion topics should be areas of uncertainty (or
where there is disagreement) in current understanding of the requirements.
The objective is to achieve concise, clear and complete understanding of the
selected epic.

Exercise 3.8 (Requirements Prioritisation Exercise)

3.8 As a product owner, practise prioritising different user stories. You will
need a real (or imagined) product backlog of user stories. Collect closely
related user stories into groups. If you have only one group, either your project
really is trivially simple or you have not thought about the requirements in
sufficient detail. Assuming you have more than one group of requirements,
this exercise involves building an imaginary increment based on one group
first. What would the product look like at the end of the first increment?

Exercise 3.9 (Learning Journal)

3.9 Reflect on these exercises from this chapter. Think about what happened
during each exercise, and make some notes in your learning journal.

3.7 Hints, Tips and Advice on Exercises

3.1 Learning Journal Exercise

The focus of this chapter has been on the facilitation activities within the
scrum master and product owner roles in scrum.

Reviewing these activities can help you make sure that your team is
provided with the support it needs to function effectively.

(continued)

3.7 Hints, Tips and Advice on Exercises 45

If you notice gaps in the skills available, then you can attempt training
or professional development in these areas. A knowledgeable proxy product
owner can fill gaps in support activities meant to be performed by your actual
product owner.

3.2 Sprint Planning Exercise

The sprint planning is a cyclic process comprising four phases:

• Select the highest priority requirement, and decompose it into technical
tasks.

• Estimate the effort required to implement each technical task.
• Combine technical task estimates into an estimate for each requirement.
• Ensure that all the technical tasks have been accepted as a work item by

someone on the team.

Repeat this cycle for each high-priority requirement, until no further effort
for completing technical tasks in the iteration.

Look at the high-priority requirements on your backlog. The prioritisation
will have been done by the product owner. For each requirement, create the
full set of technical tasks needed for implementation.

As you develop a list of technical tasks for each requirement, you can more
accurately estimate the effort needed to implement the requirement. Think
about which method you want to use for estimation (story points or T-shirt
sizing). Practise and rehearse using your chosen method on a toy example
before you use it on a project. The purpose of estimating is to help youmonitor
an equitable allocation of work to team members and to ensure your team will
not be over (or under-)-utilised during the next iteration.

Once estimation is complete, you can choose a specific set of requirements
for the next iteration. This might be straightforward. Or, there may be some
tasks forced upon you by dependencies. So, you need to implement something
that is only needed right now in order to finish something else. Or, you may
need to pull up some smaller tasks because you do not have team capacity
to undertake another large task. So, as you can see, there are some trade-offs
here.

Finally, team members have to choose work tasks. Remember scrum
masters don’t assign work. But they do need to ensure all tasks are assigned
to someone. So some encouragement or cajoling might be needed to get all
the tasks taken up by someone.

46 3 Agile Roles

3.3 Stand-Up Meeting Exercise

Remember the stand-up meeting ground rules. Everyone should answer the
following three (or four) questions: (1) What have I been doing since the
last stand-up? (2) What will I be doing between now and the next stand-up?
(3) Are there any impediments preventing me from making progress? And,
maybe, (4) am I going to create any blockers that might impede others?

When facilitating, listen carefully to the discussion. If anyone diverts onto
other topics, make sure you make a note of the issue and set up a separate
meeting for that discussion. Steer people (firmly, but politely) back onto the
three questions.

3.4 Customer Demonstration Exercise

Here is a bit of a checklist of things you need to remember to do to prepare
for the customer demonstration.

• Rehearse and time the demonstration before you show the customer.
• Make sure you have arranged a good venue. Is the customer demonstration

online or face to face? If online, rehearse the technology setup. If in a
venue, make sure it is booked for your exclusive use.

• Make sure that all the team members and product owner are available and
aware of the time and venue.

• At the start, briefly introduce the demonstration purpose, and review the
requirements you were supposed to implement (the iteration backlog).

• Demonstrate the features of the software.
• Describe the quality assurance activities performed (code reviews, testing

on so on).
• Describe any requirements that you were unable to implement for any

reason and any known bugs or issues.

Conduct the customer demonstration. Carefully note any feedback obtained
from the product owner (or customer). Check if the product owner requires
any further quality assurance actions before release. If not, seek approval for
the software release.

3.5 Retrospective Exercise

There are several ways of conducting retrospectives, but you might consider
using the following steps:

(continued)

3.7 Hints, Tips and Advice on Exercises 47

• Everyone in the team privately writes three sticky notes: ‘things we should
continue to do’.

• Collect all the sticky notes (which should be anonymous) together on a
blank whiteboard (physical or virtual).

• Everyone writes three sticky notes: ‘potential areas for learning or
improvement’.

• Collect all the sticky notes together on a blank whiteboard.
• Spend a few minutes, as a group, reviewing all the sticky notes.
• Try to collect the ‘potential areas for learning or improvement’ into groups

or categories. Look for themes.
• Choose the top three ‘potential areas for learning or improvement’. The

top three are likely to be areas of consensus or at least mentioned on more
than one sticky note.

• Create one action point for each of the top three ‘potential areas for
learning or improvement’.

You should encourage implementation of the three action points during the
coming iteration. The scrum master should remind the team members about
the action points during the iteration, to help learning and improvement.

3.6 Requirements Gathering Workshop Exercise

The purpose of the workshop might be simply to gain better understanding
of what is needed. Or, the workshop might be designed to resolve differences
in opinion within your among project stakeholders, about the meaning of a
specific requirement.

We’ll find out more about requirements in Chap. 7. We want a discussion
about customer needs and the services that the software should provide.

Use the workshop to explore customer acceptance test criteria. How will
you, or the customer, know when the epic is complete? Test criteria will help
define automated test conditions.

3.9 Learning Journal Exercise

Before you look at these hints and tips, think about how you performed in
completing the exercises. Where they easy? Where they challenging? Which
areas need some further work? Make some notes on these thoughts in your
learning journal.

(continued)

48 3 Agile Roles

After you look at these hints and tips, make some further notes about the
quality of your solutions. Try to identify areas where you performed well and
those where you might benefit from further reading or other learning.

3.8 Chapter Summary

In this chapter, I have explained the scrum master and product owner roles. I have
described how the scrum master facilitates teamwork, mentors team members and
removes impediments. We do not advocate having a team leader when using agile
methods. In contrast, the scrum master facilitates the self-organising team discussed
in Chap. 2.

The product owner, in contrast, defines and prioritises requirements. The product
owner reviews demonstrations of working code at the end of each sprint and decides
if code quality is sufficient for release to customers. The exercises have focused on
facilitating stand-up meetings, customer demonstrations and sprint planning.

Should we do our best to build a good solution? Yes, of course. Should we tell our
boss if we are failing to achieve this goal? Well, yes. It might not be pleasant. But
we need to be able to communicate good news, bad news and technical decisions.
In Chap. 4, we will learn about managing other people that are interested in the
software development process, people we call stakeholders.

References

1. Bass, J.M., Haxby, A.: Tailoring product ownership in large-scale agile projects: managing scale,
distance, and governance. IEEE Softw. 36(2), 58–63 (2019). https://doi.org/10.1109/MS.2018.
2885524

2. Bass, J.: Scrum master activities: process tailoring in large enterprise projects. In: 2014 IEEE
9th International Conference on Global Software Engineering (ICGSE), pp. 6–15 (2014). https://
doi.org/10.1109/ICGSE.2014.24

3. Bass, J.M.: How product owner teams scale agile methods to large distributed enterprises.
Empirical Softw. Eng. 20(6), 1525–1557 (2015). https://doi.org/10.1007/s10664-014-9322-z

4. Beck, K., Andres, C.: Extreme Programming Explained, 2nd edn. Addison Wesley, Boston
(2004)

5. Hoda, R., Noble, J., Marshall, S.: The impact of inadequate customer involvement on self-
organizing agile teams. Inform. Softw. Technol. 53(5), 521–534 (2011). https://doi.org/10.1016/
j.infsof.2010.10.009

6. Noll, J., Razzak, M.A., Bass, J.M., Beecham, S.: A study of the scrum master’s role. In: Product-
Focused Software Process Improvement, pp. 307–323. Lecture Notes in Computer Science.
Springer, Cham (2017)

7. Schwaber, K., Beedle, M.: Agile Software Development with Scrum, 1st edn. Pearson, Upper
Saddle River (2002)

8. Schwaber, K.: Agile Project Management with Scrum, 1st edn. Microsoft Press, Redmond
(2004)

 1669 2951 a 1669 2951
a

https://doi.org/10.1109/MS.2018.2885524
https://doi.org/10.1109/MS.2018.2885524

 2416 3200 a 2416 3200
a

https://doi.org/10.1109/ICGSE.2014.24
https://doi.org/10.1109/ICGSE.2014.24

 1313 3449
a 1313 3449 a

https://doi.org/10.1007/s10664-014-9322-z

 1947 3782
a 1947 3782 a

https://doi.org/10.1016/j.infsof.2010.10.009
https://doi.org/10.1016/j.infsof.2010.10.009

Chapter 4
Managing Stakeholders

Abstract This chapter describes relationship management skills. Relationships
with customers, clients, bosses, supervisors and other stakeholders interested in
the software we create. The chapter will provide some basic techniques for
communication with people outside your team. We will explore how to manage
software demonstrations and create presentations, reports, online resources and
videos.

4.1 Introduction

Your team members, and the solutions you create, will benefit from skills you
acquire in managing relationships with other people outside your team. Here, I am
thinking about relationships with bosses, clients, academic supervisors or others
who have an interest in your work.

Of course, Chap. 2 has explored skills needed to manage relationships within
your self-organising team. In addition Chap. 3 discussed scrum master and product
owner roles. Here, we consider managing upwards, managing outwards, contracts
and communication skills.

4.2 Managing Upwards

Somebody, somewhere is going to be your customer, boss or academic supervisor.
It is a good idea to think about who that is and what they want. For a software
developer working as part of a team in a large company, you will have a clearly
defined line manager, but the customer might seem rather remote. For a freelance
software developer, in contrast, there is a customer but no obvious outside boss.

We should learn what the customer wants, either by talking to customers directly
or by identifying a surrogate that understands customers well. Usually, as software
development specialists, we are trying to solve somebody else’s problem. If we don’t
understand, or worse misunderstand, the problem, then our solution will be poor at

© Springer Nature Switzerland AG 2022
J. M. Bass, Agile Software Engineering Skills,
https://doi.org/10.1007/978-3-031-05469-3_4

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05469-3_4&domain=pdf

 -151 4612
a -151 4612 a

https://doi.org/10.1007/978-3-031-05469-3_4

50 4 Managing Stakeholders

best. A deep understanding of the problem we are trying to solve will significantly
improve our chances of success. In managing upwards, there are four main issues to
consider: expectations, crises, successes and unreasonable demands.

4.2.1 Set Expectations

Set realistic expectations about what you are going to achieve. Don’t promise to
deliver things you can’t fulfil. It is better to set expectations low and then over-
deliver. Rather that, than setting high expectations and failing to deliver. Identify
risky areas, areas where you are uncertain or engage with high degree of novelty.
Make public these areas of risk. You never know, some risky things might not be
important to your stakeholders. By pointing out they are risky, your client might
remove them from the project scope.

4.2.2 Confess to Catastrophe

Hopefully, you will never have a catastrophe. But if something goes wrong, it is
better to confess sooner rather than later. The idea is to give your boss, client or
other stakeholders as much time as possible to help you plan a recovery strategy.
Trying to hide a mistake or misstep is a risky strategy. It is dishonest and you might
get found out. Better to work with your stakeholders and try to come up with a way
forward.

4.2.3 Share Success

Make sure you share your successes. When you achieve a technical breakthrough,
tell people about it. Hopefully, your customer, boss or academic supervisor will be
pleased to share your success, by which I mean they will be happy for you. It is
important for them to understand amount of work required to achieve that success.

4.2.4 Unreasonable Demands

Fend off unreasonable demands. It might be that your client thinks your team is
superhuman or that your team is willing to work 24 h a day, for 7 days a week.
Perhaps your client does not know if it is possible to create an entire enterprise
resource planning system during a weekend Hackathon.

4.4 Contracts 51

So, you need to educate and inform. Explain how much work is involved. You
need to create a detailed breakdown of each work item involved. Each work item
needs its own estimate of effort, see Sect. 13.2. In this way, you can encourage your
customer, boss or academic supervisor to prioritise the work items they really care
about and de-emphasise those that are less important.

4.3 Managing Outwards

There are lots of other stakeholders that can support your software development
activities. In a commercial setting, you might interact with personnel, finance and
payroll departments. In an academic setting, you might deal with people from
careers, library and the registrar’s department. Try to win support for your team from
these other stakeholders. Your project will go more smoothly if these stakeholders
can be convinced to help you, in spite of their own problems, priorities and
pressures. You will want your team to look professional and efficient, so respond
to enquiries promptly and with courtesy.

There might also be peer groups, other teams that might be working on similar
projects. What can you learn from these other groups? I’m not suggesting that you
unscrupulously copy other people’s work. But, there might be an approach they are
taking that you can apply and learn from.

4.4 Contracts

Contracts are legal agreements between parties. Negotiating large contracts involves
specialist legal advisers. Never sign a contract you don’t understand. Always get
knowledgeable and impartial advice. There are two main categories of contract that
govern the procurement of software: fixed-price, fixed-scope and time and materials.

4.4.1 Contracts and Change Requests

A fixed-price, fixed-scope contract, as the name suggests, ensures the financial
value is known in advance for a clearly defined set of software requirements to
be implemented. Usually a delivery date is specified too. Simplistically, this is the
clearest arrangement. The client says ‘these are the software features I want’, and
the software provider says ‘this is how long it will take to build and how much it
will cost you’. Simple. What could possibly go wrong?

Well, a fixed-price, fixed-scope contract requires agreement on a detailed set of
requirements. These requirements need to be specified before any code is written.
Who writes the requirements specification? The client? The vendor? As a vendor,

52 4 Managing Stakeholders

are you getting paid for developing software according to your interpretation of the
requirements? No, of course not. You are getting paid for the client’s interpretation
of the requirements. So, you had better understand what the client means. Okay, so
what if you, as a vendor, write the requirements specification? Fine. But who pays
for writing the specification? You? Or, the client?

Finally, as we know, change is going to happen during the project. Things out
there in the real world are going to happen. A new browser version will be released.
A new operating system release will come along. You manage this process by
using change requests. A change request is a documented (and funded) change
to the contract specification. Each time the client changes their mind about the
specification, you have to estimate and cost all the consequent changes.

So now, instead of creating software, you are running a whole little industry:
gathering, estimating, implementing and testing changes to the original specifica-
tion. But despite the problems with fixed-scope contracts, they remain very popular
because of their apparent clarity and simplicity.

4.4.2 Time and Materials Contracts

To overcome some problems with fixed-price, fixed-scope projects, people use time
and materials contracts to manage client and vendor relationships. Here, there is
no fixed-scope specification. Instead, the software development team charges by the
hour. The client adopts a product owner role, establishing, prioritising andmanaging
requirements. The team creates features requested by the product owner, iteration by
iteration.

Time and materials contracts avoid the need to manage change requests.
Consequently, effort is focused on developing working code. Good. But it is a bit
challenging convincing clients to buy the software. Initially, they will not know
what they will get, how much it will cost or when they will get it. This requires
considerable trust between the client and vendor. And so, we come full circle, back
to fixed-price, fixed-scope contracts.

4.4.3 Outsourcing Contracts

Outsourcing is the generic term for buying products or services from third parties.
Corporations often outsource their catering, cleaning and so on. If you are not a
technology organisation, it can be attractive to outsource IT provision and software
development to a specialist third party. There are large international companies that
make a good living from these arrangements.

4.4 Contracts 53

4.4.4 Offshoring Contracts

It is often said you should outsource to organisations like yours. Similar size,
conveniently local. Small companies find it risky to outsource to big companies; they
are too expensive, they will ‘eat you for breakfast’. And, yet, some organisations
find outsourcing attractive, sometimes to far-flung, cheap and often exotic locations.
Digital goods and the availability of excellent technical skills and computer
networks make this possible.

You can get excellent value for money by offshoring your software development
needs in this way. But new challenges caused by inconvenient time zones and
significant geographical distances can emerge. There is also an environmental cost
to the extensive travel involved in building trust through long-distance relationships.

4.4.5 Academic Contracts

There are also contracts in a university or college setting. Some institutions use
learning agreements, between students and teaching staff, to help set expectations
and establish norms of learning and teaching behaviour. Education institutions also
commonly have course, programme or module descriptions for teaching staff and
other stakeholders. These course descriptions often include various forms of aims
or learning objectives. It is a good idea, of course, to familiarise yourself with the
aims and objectives of the courses that you are studying.

4.4.6 Negotiating Contracts

The key to negotiating, actually whether it is within your team or beyond, is to
understand everyone involved. We all have our own goals, hopes and fears. So,
we need to try to understand the world from the perspective of other people in
the negotiation. Good negotiators seem to be able to imagine the needs, wants and
goals of others in the negotiation. This means focusing on the interests of everyone
involved, not taking positions in the negotiation.

Understanding others does not mean giving in or capitulating. Negotiating only
to win on your terms is short-sited and transactional. Better, to search for ways that
everyone can move closer to their desired outcome. Successful negotiation comes
where everyone benefits. You are looking for imaginative ways in which everyone
wins. You want to invent options for mutual gain. This helps you build strong and
lasting relationships.

Try to use practical and objective criteria as the basis for negotiations. The criteria
should create the basis for a fair settlement. Focus on the search for criteria that
enable you to reach a mutually beneficial agreement.

54 4 Managing Stakeholders

4.5 Communication Quality

There are several ways to improve the quality of our communications. Here, we
focus on audience, narrative, language and process.

4.5.1 Audience

For your communication to be effective, you need to understand your audience and
their expectations. The vocabulary, terminology and jargon need to be appropriate
for them, and, crucially, may not be the same as yours. Howmuch does the audience
know about your subject? If they are experts, don’t spend too much time on the
basics of your topic. If the audience are not specialists in your area, then avoid
using technical jargon.

4.5.2 Narrative

Why are you writing a report? To convey an argument. That argument might
be: ‘I’ve done enough good quality work that I am entitled to a good grade at
University’. Or, it might be: ‘I’ve done a diligent and thorough job of work, so
you should give me a promotion or pay rise’. Okay, so maybe you don’t want to
make those arguments explicit. But you should think carefully about the argument
you do want to convey.

The argument should be developed in logical steps and should be supported by
evidence. You can sometimes adopt a journalistic device and summarise the main
argument at the outset [6].

4.5.3 Language

Use good language skills in your technical communications. Mistakes in grammar
and punctuation undermine your effort to make a good argument and present a
professional image. You need to ensure you follow conventions in English language
usage and punctuation [9]. This is a particular challenge if your communications are
not in your first language. Enlisting the help of a native speaker, to proof read your
writing, is a good tactic.

4.6 Communication Tools 55

4.5.4 Process

Productive writers tend to write and then edit their work. Focus, first on getting
words on paper. Then, focus on revising and editing [2]. Using analogy to iterative
software development, try to achieve cycles of writing activity followed by editing.
Write. Edit. Write. Edit. These cycles will help you improve the quality of your
writing. You can’t write the finished product first time.

4.6 Communication Tools

In professional life, we communicate with others to convey information and
ideas, convince financiers to invest resources and sell solutions to customers. We
practice various forms of communication for university assessments, such as essays,
laboratory reports and dissertations.

4.6.1 Reports

Non-fiction writing is partly about writing design concepts such as clarity and
simplicity but also a matter of basic principles such as grammar, punctuation and
paragraph structure [12].

4.6.1.1 Report Composition

Good scientific writing is truthful, evidence-based, clear and simple. Clear writing is
an indicator of clear thinking. It is wise to follow the guidance given by proponents
of this writing style [8, 11, 12]. As I have already said, write and then edit your
writing.

The paragraph is the basic unit of composition. A paragraph focuses on one topic.
Each paragraph benefits from a topic sentence, which summarises the subject. The
topic sentence is followed by further expansion. A good paragraph concludes with
a summary sentence that reinforces the topic sentence.

Use the active voice. An active voice is more direct, forcible and vigorous than
passive writing. This can be controversial. For academic writing, ‘use the third
person’ is often given as advice. But you can see that ‘I used an object-oriented
design method’ is clearer than ‘an object-oriented design method was used in this
project’. Use active voice where you can.

Make statements positive. Avoid hesitating, evasive and non-committal language.
You might say ‘the performance did not fluctuate as user numbers seemed to vary’.
It is better to say ‘performance was constant, despite varying user numbers’.

56 4 Managing Stakeholders

Remove unnecessary words. Make your writing concise. Making your argument
with the fewest possible words leads to strong, direct writing. These composition
guidelines are to make life easier for the reader [1, 3]. Don’t forget: Write first, to
get the ideas down on paper, and then edit your writing to improve composition and
clarity.

4.6.1.2 Report Content

As well as a front sheet, and a table of contents, a report of any length will likely
need an abstract or executive summary. The abstract summarises the content of the
entire report and consequently should be written at the end when you know what
the report actually says. A structured abstract comprises context, goal, methods,
results and conclusions. The context describes the domain or application area of the
report. The abstract then summarises the problem solved or goal of the project. Next,
provide a brief overview of the methods or approach you took. Then, summarise
your findings or results. Finally, summarise your conclusions.

Next, your report needs an introduction. An introduction has two main purposes.
Firstly, provide a brief overview of the motivation or justification for performing
the work. Include some evidence supporting the significance of the problem you
are solving. Use references to sources and provide a bit more detail than given in
the abstract. Secondly, summarise the main outcome, result or conclusion of the
report. You might describe the main results from some experiments and discuss
their implications. Or, you might provide an overview of the features of a system
you have built showing how they solve the problem you confronted.

A report often requires a survey of the literature or field. Present the survey as
if it were a funnel. You need to start off with the broader (wider) topics and then
gradually focus on the specific area of your project. A weak literature review will
describe each source in turn. A stronger literature review will organise a collection
of sources into themes and then compare and critically discuss each theme.

Your report needs to describe the approach you took. In medical research, this
is referred to as ‘methods and materials’. You are supposed to provide enough
information that someone could repeat your work and consequently get a similar
outcome. Justify your choice of approach to solving the problem.

The main body of the report focuses on the findings of your work. You might be
advocating a new approach or justifying a technology choice. Here you can weigh
up the advantages and disadvantages of the various options. For a design and build
type project, you will have a series of chapters describing the requirements, design,
implementation and evaluation phases of development. In a more scientifically
oriented project, you might describe the results of a series of experiments you have
conducted.

You will then, likely, discuss or analyse your findings. If you have research
questions, you can answer them here. If not, you discuss your findings in relation
to other published results and describe the implications of your proposals in the
context of the problem you are trying to solve.

4.6 Communication Tools 57

Finally, the conclusions has three main purposes: summary, conclusions and
future work. As reports get bigger, a carefully selected re-statement of ideas
becomes an important means of giving emphasis. Never copy and paste within the
report. We don’t want to read the same sentence or paragraph twice. But, briefly
re-stating the context, aims, methods and findings shows that you understand the
most important elements of the project. You can then describe the lessons you have
learned from the project. What aspects of the project went well? What aspects of the
project proved to be more challenging than expected? At a fundamental level, was
the method you selected appropriate? It is helpful to discuss anything you would
do differently if you were asked to do the whole project over again (but this time
with the benefit of hindsight). At the end of your conclusions, include next steps
for the project or future work. Your report conclusions are important because you
summarise the whole project and describe the implications of your work in the
context of the problem you were trying to solve.

4.6.2 Presentations

Presentations play an important role in modern professional life. You might be
presenting to win over your team to a new reference architecture for a project.
This might involve describing the benefits and features of the new architecture.
There is more on reference architectures in Sect. 8.4. You could be trying to explain
something, show something or sell something. The format is similar.

4.6.2.1 Presentation Types

There are some circumstances where a presentation can be given without any
supporting materials, for example, where the presentation is informal or very short.
An example is the agile customer demonstration, discussed further in Sect. 13.4. In
a customer demonstration, we focus our attention on demonstrating working code.
Usually, however, presentation slides of some kind are used.

4.6.2.2 Presentation Content

Visually appealing imagery can play an important part in engaging with your
audience [5]. Choose imagery that is relevant to your topic and that reinforces your
argument. For important presentations, you can obtain photographs and diagrams
from commercial or open access visual media repositories [10]. Sometimes, a
presentation containing only images, and no words, can work well. Your imagery
needs to complement and emphasise the narrative you are telling. You want to select
imagery that reinforces, rather than distracts from, your message.

58 4 Managing Stakeholders

Avoid using too many words in your presentation. Do you want the audience to
be reading or listening to the presenter? Commercial trainers follow the five by five
rule. That means no more than five rows of text on each slide. Each row of text
should have less than five words. These days, presentations with even fewer words
are common. Use words for emphasis.

4.6.2.3 Presentation Delivery

Your presentation needs to engage your audience. Use eye contact and engage the
entire audience. Don’t just look at one person all the time. Make your presentation
flow smoothly, and present your content confidently. Avoid a halting or hesitant
delivery style.

Your audience will be more attentive if they are calm, relaxed and focusing on
the presenter. Watch the body language of your audience, and be alert for signs of
boredom or distraction. Is the audience being distracted by noise from elsewhere?
Is it too hot (or too cold) in the room? Create an atmosphere where the audience is
listening.

4.6.2.4 Presentation Rehearsal

For a presentation of any significance, you will want to practice, especially when
you present as a team. Make sure you stick to the agreed duration. Check for
consistent presentation materials and content, and practice handing over from one
presenter to another. Make a plan for when things don’t work or go according to
plan. When travelling abroad to give presentations, I used to carry paper copies of
materials in case projectors or electronics failed.

4.6.3 Blogs and Wikis

Various editable onlinewriting platforms have become popular to support communi-
cations in software development teams. Tools and platforms fall in and out of favour.
At the time of writing, Slack is popular with development teams because it enables
instant messaging, content sharing and archiving [7]. Our research suggests that
while Slack is popular within development teams, in contrast, managers, executives
and client-facing relationshipmanagers prefer face-to-face interaction, or audio- and
videoconferencing infrastructure [4].

Content management systems enable sharing of audio-visual or multimedia
content as well as written material. Diagrams, videos and recording of workshops
can be hosted online as part of a project repository. Such resources are typically
hosted behind firewalls on secure intranets to avoid public disclosure.

4.7 Exercises 59

4.6.4 Videos

Video and multi-media presentations have become commonplace in professional
circles. Video can support sales, provide news and information as well as engage
new audiences. The cost of video production has declined, while audiences have
also become more accepting of lo-fi or improvised production values.

4.7 Exercises

Working through these exercises will help you acquire skills for managing stake-
holders, as discussed in this chapter. First do the exercises, then reflect on what you
have learned. Finally, look at the advice in Sect. 4.8.

Exercise 4.1 (Learning Journal)

4.1 As in each chapter, the first exercise is to write a few notes in your
learning journal for this chapter. Write about anything you found useful.

Exercise 4.2 (Presentation Review)

4.2 Film yourself making a presentation. This is probably best done on a
practice presentation. But, make the rehearsal as realistic as you can. After the
presentation, carefully review the video. What can you learn from watching
the video that will help you improve your presentation skills?

Exercise 4.3 (Writing Exercise, Free)

4.3 For 10 or 15min, write about anything that comes into your head.

Exercise 4.4 (Writing Exercise, Focused Free)

4.4 For 10 or 15min, write anything you can think of, relating to the topic of
interest.

60 4 Managing Stakeholders

Exercise 4.5 (Non-fiction Writing Exercise)

4.5 For 10 or 15min, write about a skill, or area of expertise, that you
have acquired. You should assume that your reader is not knowledgeable in
this area, so avoid using jargon. Try to avoid your writing sounding like a
dry instruction manual. Break down your skill or expertise into a series of
understandable steps. Try to describe as many aspects of this skill as you can.

Exercise 4.6 (Edit Your Writing)

4.6 Take an example of something you have already written. Perhaps a
previous report or assignment, or even the previous exercise. Sentence-by-
sentence go through your writing removing needless words. Try to make the
same arguments or address the same topics, but use fewer words.

Strengthen your paragraph structure. Make sure each paragraph sticks to
only one topic. Ensure your paragraph starts with a topic sentence. Try to
expand on the topic with each sentence in the paragraph. Can you finish each
paragraph with a summary sentence?

Compare your writing before and after the exercise.

Exercise 4.7 (Video Production Exercise)

4.7 For a bit of fun, make a documentary-style video explainer about your
team. Your documentary should be 2–4min long. You are aiming for short
and interesting rather than long and dull.

Step 1: Script

Create a script. Answer questions about your team members. Who are you?
Where do you come from? What are the passions in your lives? Why have
you come together as a team? How do you plan to tackle your project? What
will your roles in the team be? Describe the special skills you have. You can
interview each other asking and answering questions. Or, perhaps you can do
head and shoulders shot facing the camera. Can you walk around talking or
stand in front of some iconic location?

Step 1: Storyboard

Create a storyboard, a series of drawings or diagrams showing the locations
you plan to use and the action you want to show. You do not have to
be an artist. You can use stick figures and written labels to overcome any

(continued)

4.8 Hints, Tips and Advice on Exercises 61

Exercise 4.7 (continued)

shortcomings in artistic merit. The purpose of the storyboard is to help you
think about the story, locations and action you want to show.

Step 2: Shoot Footage

Use any smart phone or DSLR you have available to shoot your video. Make
sure your filming locations are safe and that you have appropriate permissions.
Try to choose locations that support your story.

Step 3: Soundtrack

Record sound and music to support your video. Make sure you own the
copyright of any audio resources you use. You may also want a smart phone to
record audio live, or in separate recording sessions (perhaps for voice-overs).

Step 4: Edit

You can use free online clip editing tools to edit your video. Think about
pacing. You want to avoid long dull sequences, but too much motion and too
many quick cuts from one thing to another will be distracting and difficult to
follow.

Step 5: Disseminate

Review the quality of your video. Show it to a few friends or family members.
Are you confident the content is appropriate and the quality good enough?You
may need to seek approvals (boss or academic supervisor) depending on your
context. If you are comfortable that your reputation is going to be enhanced
(and not damaged), then post your video to a sharing platform.

Exercise 4.8 (Learning Journal)

4.8 Reflect on the exercises you have completed from this chapter.What went
well? What could have gone better?What would you do differently next time?
Make a few notes in your learning journal.

4.8 Hints, Tips and Advice on Exercises

As you become a technology professional, you will be increasingly called upon to
communicate ideas to different audiences. Use the advice below to further develop
your communication skills to manage stakeholders.

62 4 Managing Stakeholders

4.1 Learning Journal Exercise

Stakeholders are people interested in the software development project but
not direct participants in the team. We need to develop the skills needed to
manage our relationships with these interested parties.

In this chapter, we have considered managing upwards, managing out-
wards, contracts, communication quality and communication tools. Write a
few notes about what you have learned on these topics.

4.2 Presentation Review

Look carefully at the video of your presentation. Are you maintaining eye
contact with your audience? Are you prone to annoying hand gestures? What
are your hands doing? What are you wearing? Are your clothes appropriate
for your audience? Do you have any verbal ticks (such as hesitancy or often
repeated phrases) that might irritate your audience?

Are you using multimedia aids to support your presentation?Do the sounds
or visual aids reinforce the presentation?Do the sounds or visual aids distract?
Or, perhaps worse, do the sounds or visual aids undermine the presentation?

How is your body positioned? Are you standing in front of any visual
aids? Are you static or moving around? Is any movement supporting the
presentation?

Try to learn from watching the video and perhaps repeat the exercise.

4.3 Free Writing

Apparently, writing (as in generating written words) and editing (correcting,
reformatting, re-phrasing) use different parts of the brain. The idea of free
writing is to only use the creative part of the brain that helps you produce
written material.

The purpose of this exercise is to generate as many words as you can.
Consequently, during the free writing exercise, it is important to focus only
on writing words. Some research suggests that free writing is useful to help
you overcome writer’s block.

Do not stop writing to correct grammar or spelling. Just keep writing. If
you can think of anything to write about, just write about that!

Some psychologists suggest that you should start each period of writing
with a 10-min free writing session. The idea is to get you in the mood for
churning out words. Any words. Just get words down on paper (or, more
likely, on screen). See how it works for you. If you like it, do it again.

4.8 Hints, Tips and Advice on Exercises 63

4.4 Focused Free Writing

This approach is development of the free writing in Exercise 4.3 and can also
help you overcome writer’s block. Use this focused free writing to get you in
the mood for generating words.

Don’t worry about grammar or spelling. Don’t stop to make any correc-
tions. Just write down everything that comes into you head on the chosen
topic. Get as many words as you can on paper (or on screen).

In this focused free writing approach, there is a second stage. After the
10- or 15-min writing window, you can review what you have written. Try
to extract the aspects of your chosen topic you have covered. Some people
call this reverse headlining. Extract bullet points, each representing a different
aspect of your topic, from your focused free writing words.

Now, in this second stage, you can edit the randomflow of words into some
structure. Organise the writing into sections or a timeline, depending on the
subject at hand.

As a result of organising your focused free writing, you should start to
notice gaps or areas where you can then provide even more detail in the
writing. These new areas can even become the topics for your next focused
free writing exercise.

4.5 Non-fiction Writing

This exercise is designed to help you generate written material about some-
thing familiar. You should be as descriptive as possible. For example, if you
are writing about a skill, try to answer questions like:

• What is the skill you have learned?
• Why is it useful or important?
• How do you feel when you exercise the skill?
• When did you learn the skill?
• Where do you exercise the skill?
• Who is involved when you rehearse your new skill?

On the other hand, if you are writing about a technology, answer questions
like:

• What are the advantages (or strengths) of this technology?
• What are the disadvantages (or weaknesses) of this technology?
• How widely used in the technology?
• How easy is the technology to learn? (Are there plenty of learning

resources available?)

(continued)

64 4 Managing Stakeholders

• How easy is the technology to use?
• Why have you chosen to use this technology? (Justify you choice.)

Trying to answer all these questions in your non-fiction writing can help
you develop your descriptive vocabulary skills.

4.6 Edit Your Writing

You might start by editing one of your focused free writing exercises, from
Exercise 4.4.

Try to apply the following style rules:

• Remove needless words.
• Ensure paragraphs only address one topic.
• Ensure paragraphs start with a topic sentence (and perhaps end with a

summary sentence).
• Write in positive terms (‘do this’ is more powerful in writing than ‘don’t

do that’).

Some people suggest you should try to reduce the length of your writing by
10%. This improves focus and makes the writing stronger and more direct. I
am confident that applying the writing style guidelines from [8] or [12] will
help you improve the clarity of your writing.

4.8 Learning Journal

Before you look at these hints and tips, think about how you performed in
completing the exercises. Where they easy? Where they challenging? Which
areas need some further work? Make some notes on these thoughts in your
learning journal.

After you look at these hints and tips, make some further notes about the
quality of your solutions. Try to identify areas where you performed well and
those where you might benefit from further reading or other learning.

4.9 Chapter Summary

In this chapter, I have explored the relationship between your team and the outside
world. In a work environment, you might be trying to satisfy your boss or a
client, or, you might be in a university, trying to satisfy academic supervisors. In

References 65

each case, you want your team to produce the best it is capable of and get the
recognition you deserve. This is achieved by managing your relationships with
these outside stakeholders. Keep your relationships professional, and keep interested
parties informed of your progress towards goals.

Communication skills play an important part of managing relationships with oth-
ers. Use appropriate means of communication and make sure your communications
are right for your audience. Simplicity of message, clarity and presentation quality
are key objectives.

References

1. Clark, R.P.: Writing Tools: 50 Essential Strategies for Every Writer. Little Brown Book Group,
reprint edn. (2010)

2. Elbow, P.:WritingWith Power: Techniques for Mastering theWriting Process, 2nd edn. Oxford
University Press, New York (1998)

3. Purdue University: Welcome to the Purdue University Online Writing Lab (OWL) (2019).
https://owl.english.purdue.edu/. Accessed 9 Oct 2019

4. Rahy, S., Bass, J.: Information flows at inter-team boundaries in agile information systems
development. In: Themistocleous, M., Rupino da Cunha, P. (eds.) Information Systems:
EMCIS 2018. Lecture Notes in Business Information Processing, vol. 341, pp. 489–502.
Springer, Limassol, Cyprus (2019). https://doi.org/10.1007/978-3-030-11395-7_38

5. Reynolds, G.: Presentation Zen: Simple Ideas on Presentation Design and Delivery, 2nd edn.
New Riders, Berkeley (2011)

6. Schimel, J.: Writing Science: How to Write Papers That Get Cited and Proposals That Get
Funded. OUP USA, Oxford; New York (2011)

7. Slack: Where work happens (2019). https://slack.com/intl/en-gb/
8. Strunk, William, Jr., White, E. B.: The Elements of Style, 4th edn. Longman, Boston (1999)
9. Truss, L.: Eats, Shoots and Leaves. Fourth Estate, London (2009)
10. Wikimedia Commons: Wikimedia Commons (2019). https://commons.wikimedia.org
11. William Strunk Jr.: The elements of style. http://www.bartleby.com/141/ (1918). Accessed 12

Sept 2014
12. Zinsser, W.: On Writing Well: The Classic Guide to Writing Nonfiction. Harper Collins

Publishers, New York, 25th Anniversary edn. (2006)

 -42 1674
a -42 1674 a

https://owl.english.purdue.edu/

 972 2006 a 972 2006 a

https://doi.org/10.1007/978-3-030-11395-7_38

 992 2421 a 992 2421 a

https://slack.com/intl/en-gb/

 1473 2670 a 1473
2670 a

https://commons.wikimedia.org

 1166 2753 a 1166 2753
a

http://www.bartleby.com/141/

Chapter 5
Ethics

Abstract Software is getting a bad name. Corporate personal data collection is
justified for one purpose but then somehow finds it way into other purposes. Security
breaches mean personal data escapes into the public domain. Technology is blamed
for spreading fake news that has resulted in mayhem and death. Democracy is
undermined. We need to think about our responsibilities as technologists. We are
sometimes slow to understand the power of the software we create. We need to
focus more carefully on how to create software for good. In this chapter, I will
explore some issues to help us decide where to draw the line.

5.1 Introduction

The term ethics is about doing the right thing. For some people, ethics is about being
a professional: being seen to act like a professional, doing goodwork, being reliable,
seeing a project through to successful completion and so on. For other people, ethics
is about protecting stakeholder interests and those of the wider public.

In recent years, technology sector influence has grown significantly. We are
seeing increasing calls for the technology sector to be held accountable in areas
less related to professionalism and more associated with issues like justice, equality
and fairness.

5.2 What Went Wrong?

These days, you have to try really quite hard to get sufficiently ‘off-grid’ to not
benefit from somebody’s software. Software can bring us benefits in virtually all
walks of life. But as software technologies become more pervasive, concerns grow
that some aspects are not really serving some stakeholders well or fairly.

© Springer Nature Switzerland AG 2022
J. M. Bass, Agile Software Engineering Skills,
https://doi.org/10.1007/978-3-031-05469-3_5

67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05469-3_5&domain=pdf

 -151 4612
a -151 4612 a

https://doi.org/10.1007/978-3-031-05469-3_5

68 5 Ethics

The non-hierarchical and open access ethos of early Internet technologies has
set public expectations that Internet services are provided with no financial cost.
Many of these services, such as Internet search, mapping and social media, are
highly valued by users and becoming difficult to avoid. Of course, these services
are not actually free to provide. It’s just that the transaction may not be obvious
to everyone. The emergence of ‘free’ services, as John Honeyball, from PC Pro
magazine [9], succinctly puts it, means that ‘you are the product’ [5]. The ‘free’
services are actually designed to obtain data about users, for example, so that they
can be more effectively targeted by advertisers.

This process has, perhaps surprisingly, created some of the largest commercial
organisations ever seen. For some, this has become known as surveillance capital-
ism [22]. Many of these organisations have been penalised by regulators or legal
authorities for their lack of transparency or for monopolistic (anti-trust) behaviour.
Some argue that the penalties imposed have been trivial considering the size and
revenues of the organisations punished in this way.

5.2.1 Algorithms and Inequality

Researchers have found that search engines reinforce ethnic [12] and gender
stereotypes. The near monopoly domination of Internet search engines like Google,
which are motivated by sales of online advertising, does not offer a level playing
field for ideas, identities and activities. In 2011, a Google search for ‘girls’ produced
innocuous listings relating to fashion and health. In contrast, a search for ‘black
girls’ produced a list dominated by pornographic websites. By 2012, the search
algorithm had been changed, and the results listing produced by a search for ‘black
girls’ had changed to something innocuous, whereas a search for ‘Asian girls’ still
produced a listing dominated by pornographic sites.

5.2.2 Platforms and Fake Markets

Platforms have created newmarkets in sectors such as ride hailing (Uber), temporary
overnight accommodation (AirbnB) and even creative work (Amazon MTurk,
Upwork, RentACoder and so on). These platforms can provide good experiences
for consumers and service providers alike. But there have also been critiques [20].
Work has been commissioned but has gone unpaid. Platform workers have been
barred without explanation or recourse to appeal. There have been concerns that
platform workers spend a lot of time searching for job that meet their skill set and
then creating proposals. The platform workers are then rewarded with relatively
small jobs on low rates of pay.

5.2 What Went Wrong? 69

5.2.3 Errors, Faults and Failures

As the public comes to rely on IT ever more, when large systems fail, it attracts
attention. IT outages in the financial services sector, for example, have denied
millions of customers access to their bank accounts. In some cases, outages have
prevented customers from obtaining cash or companies paying salaries to their staff.
An IT outage at one major airline grounded flights and stranded around 75,000
passengers.

Outages affecting millions of people can attract significant publicity, adversely
affecting company reputations and share prices (the value of the company). Finan-
cial regulators have questioned executives, in the banking sector, and senior
executives have left their jobs.

The consequences of failure in safety critical applications is even more severe.
A fault in the user interface design of a Canadian computer-controlled radiation
therapy machine allowed operators to accidentally administer fatal overdoses.
Several patients died, and the equipment manufacturer no longer exists.

At the time of writing, anti-stall software has been implicated as being respon-
sible for two commercial airliners killing over 300 people. The Boeing 737 MAX
8 aircraft had software designed to push the aircraft nose down, to reduce the risk
of a stall. Evidence to a US congressional hearing revealed this software relied on
a single sensor, a so-called, single-point-of-failure. Fears have been expressed that
sensor failure could cause the anti-stall software to push the aircraft into a dive.

5.2.4 Criminal and Unethical Behaviour

Some unethical behaviour can be viewed as borderline. Such professional lapses can
result in disciplinary action by regulators or employers. Such unethical behaviour is
narrow in scope and has limited impact on an organisation’s customers, consumers,
users or reputation.

Criminal action has resulted in jail terms for IT staff members. There are six
main categories of unethical behaviour on software engineering projects [15]:

• Lying
• Computer fraud and unauthorised access
• Information theft
• Espionage
• Sabotage
• Subversion of project goals

Lying is almost never admitted to in software engineering projects. In fact, the
word is almost always avoided at all costs. However, it has a long tradition in
the technology sector. Developers exaggerate progress, project managers ‘sanitise’
status reporting and sales people advertise software benefiting from features that

70 5 Ethics

have yet to be implemented. In some cases, there is a fine line between an optimistic
account and reality. Sometimes there appears to be outright fabrication.

Agile methods can help combat various forms of lying by creating a culture of
transparency and openness. Estimation effort is targeted on short-term increments
rather than attempting to create detailed estimates for far-off features. Poor-quality
estimates are quickly exposed, within weeks, rather than months. Daily coordination
meetings help ensure transparency on project status. Optimistic assessments of
progress are quickly exposed. Finally, time and materials contracts (see Sect. 4.3)
make it more attractive to sell the effort needed to create new features, rather than
attempt to sell features that don’t actually exist.

An important area of public concern is the criminal use of software-intensive
infrastructure. Various forms of bank fraud and monetary theft are serious threat.
There have been high-profile cases of unauthorised access to various computer
systems operated by public, government and even military authorities. Perpetrators
can be cyber joyriders, or sometimes there is the suspicion of corporate or
governmental actors. Criminal techniques for credit card fraud can include:

• Cracking a server—obtaining card details from databases
• Phishing—enticing victims to hand over credit card details to a fake website
• Spear phishing—targeting high-net-worth individuals to obtain card details
• Pharming—creating a fake website for a well-known financial services provider
• Spyware—malicious software that captures details from victims

Social engineering is the use of various forms of trickery or deception to persuade
people to divulge confidential information. Culprits can seek to gather a range of
personal information on each data item being used to gather other more sensitive
items. An important mitigating strategy is to educate users that IT support staff will
never seek passwords.

Information theft can include sensitive corporate intelligence or development
artefacts, such as source code. Sensitive information might include client lists,
employee records or pricing details, which could give competitors an advantage.
Source code or design artefact thefts are also forms of information theft. Actually,
like other digital products, the rightful owner still has the original, but the culprit has
misappropriated a copy. Good software system security measures can detect unusual
usage patterns such as bulk file downloads.

Open-source software takes an alternative approach. In open-source, the software
is a consequence of the expertise and process used during creation. Hence, the
business model is either based on specialist skills used to create the source code
or on providing consulting or support services around the code.

Espionage and industrial espionage is the gathering of confidential material from
a foreign country or competitor company. Diplomats have been expelled as a result
of allegations of state-sponsored cyber-intelligence gathering. There have been
numerous cases of employees moving company and taking corporate intelligence
with them. Non-compete contracts are a common tactic that prohibit employees
from working in a specific business domain for a period of time.

5.3 Copyright and Patents 71

Sabotage is usually perpetrated by insiders as a form of revenge or retribution.
Employees receiving poor performance reviews or not getting the pay rise they feel
they deserve have taken matters into their own hands in the past. Sabotage can
take the form of data tampering, data destruction and publication of confidential
data. Software developers have placed bombs in source code, left the company and
then tried to profit from fluctuations in former employer’s share price resulting in
jail terms. Disgruntled ex-employees have also been sent to prison for publishing
confidential data, private personnel data for former colleagues.

Stakeholders who want a project to fail are called subversive stakeholders [15].
Subversive stakeholders are not merely incompetent; they take deliberate actions
to undermine the project. There are occasions where conflicts of interest lead to
subversive behaviour. This is where one or more stakeholder group is not aligned
with the interests of the project sponsor. For example, new software may put jobs
at risk and cause people additional workload or loss of control. In these cases,
stakeholdersmay not share a project team’s enthusiasm for the new software project.

However, on occasion there seems less justifiable reasons for subversion. It
is sometimes open to doubt about the true motives for the subversive’s actions.
Subversives may act out of a desire to resist change, undermine corporate goals and
exact revenge for some perceived former problem, or because of rivalry between
colleagues, competition between organisational or business units (for resources or
influence). Less commonly, senior management may not be sufficiently committed
to shared goals. Entirely malicious subversion seems to be quite rare but is not
unknown.

Subversion is best mitigated by good stakeholder analysis, quality communica-
tion and support from senior management. An understanding of psychology and
organisational theory is helpful to identify potential challenges. Software projects
that bring benefits to a wide range of the stakeholders involved and where support
is given to those who are disadvantaged are more likely to have a happy outcome.

5.3 Copyright and Patents

Many territories have legal restrictions protecting various forms of intellectual
property. It might seem superficially attractive to download free copies of the latest
films from a torrent site. However, it becomes less attractive when you made the
film and people evade payment for your product.

The same is true for software. If you work hard to create an exciting new software
product, you are entitled to expect reasonable payment for your labours. You need
to make sure you receive your licence payments; it is often easier to ensure payment
by using online software service deployment models.

By the same logic, we have to protect the intellectual property belonging
others. We must keep private information shared with us by clients confidential.
We take all reasonable precautions about preserving the confidentiality of such
information. Keeping privileged information confidential is an important part of

72 5 Ethics

being a professional. In many parts of the IT industry, we can be exposed to highly
sensitive data. It is our responsibility to ensure that data is kept safe and secure.

5.4 Professional Bodies

There are a choice of professional bodies that support and encourage professionals
in the computing, IT and software sectors. These bodies offer services to their
members and advocate for the wider discipline. These bodies include:

• Association for Computer Machinery (ACM) [2]
• British Computer Society (BCS), the Chartered Institute for IT [4]
• Institution for Engineering and Technology (IET) [21]
• Institute for Electrical and Electronic Engineering, Computer Society (IEEE CS)

[10]

These bodies have members from around the world and often have member
groups, such as branches and specialist groups, organised around geographies and
technical specialisms, to create opportunities for practitioners to meet, network and
exchanges ideas about the field. Many of these bodies organise conferences and
journals to publish the latest research in the field.

The International Federation for Information Processing (IFIP) [11] also supports
the discipline but is not membership body for practitioners. In contrast, IFIP
comprises professional bodies from around the world. So, BCS and ACM, for
example, are members of IFIP. IFIP also has working groups covering many
technical specialisms along with conferences and journals.

By becoming members of the professional bodies, IT professionals agree to
uphold certain standards of practice. Often this involves making commitments
around honesty and integrity. A member breaching the standards could be expelled.

5.4.1 BCS Codes of Conduct

BCS, the Chartered Institute for IT, has created a code of conduct for members. The
six-page code has a specific section on public interest which states [3]:

“you shall:

• have due regard for public health, privacy, security and wellbeing of others and the
environment;

• have due regard for the legitimate rights of third parties;
• conduct your professional activities without discrimination on the grounds of sex,

sexual orientation, marital status, nationality, colour, race, ethnic origin, religion, age
or disability, or of any other condition or requirement; and

• promote equal access to the benefits of IT and seek to promote the inclusion of all sectors
in society wherever opportunities arise. . . ’

5.5 Activism 73

This implies a duty of care, by IT professionals, towards the wider public. There are
also sections about competency [3]:

You shall:

• only undertake to do work or provide a service that is within your professional
competence.

• NOT claim any level of competence that you do not possess.

An important requirement for professionals is the need to keep their skills up to
date. As the BCS code puts it [3]: ‘you shall develop your professional knowledge,
skills and competence on a continuing basis, maintaining awareness of technological
developments, procedures, and standards that are relevant to your field’. The BCS
and other professional bodies place a responsibility on IT practitioners to keep their
knowledge and skills up to date.

5.4.2 ACM Codes of Ethics

The ACM code of Ethics, like that of the BCS, has a commitment to public
interest but also makes the case for professional responsibility in handling personal
information:

‘a computing professional should become conversant in the various definitions and forms of
privacy and should understand the rights and responsibilities associated with the collection
and use of personal information.’

5.4.3 Problems with Codes of Ethics

At the start of this chapter, I alluded to some of the problems that have heightened
public concerns about the software sector: data breaches, service outages, misuse of
data and so on. The negative impacts on members of the public I mentioned have
happened despite the existence of professional bodies and their professional codes.

There is increased awareness, among professional bodies, of public disapproval
of ethical lapses in the technology sector. Several professional bodies now provide
help desks or contact points for practitioners facing an ethical dilemma.

5.5 Activism

Software engineers have used various forms of activism to address ethical transgres-
sions. Some employees have organised petitions, to gather support strengthening
ethical positions.

74 5 Ethics

For example, in 2018, thousands of Google employees signed a letter ‘protesting
the company’s involvement in a Pentagon program that uses artificial intelligence
. . . to improve the targeting of drone strikes’ [19].

Google employees in 2019 signed a petition opposing provision of cloud services
to US Customs and Border Protection (CPB) [13]. The petitioners cite ‘human rights
abuses at the US Southern border. . . caging and harming asylum seekers, separating
children from parents [and] illegally detaining refugees’.

Some employers have very actively discouraged union membership. But there
have been signs of renewed interest in unions, for example, in the gig economy.
Delivery drivers in the UK and ride share drivers in the USA have attracted publicity
for campaigns to obtain sick pay and paid holidays. Arguably, this activism has led
to changes in employment law in California, regarding the definition of an employee
and the responsibilities towards contractors.

5.5.1 Whistle-Blowing

Whistle-blowing is the act of exposing ethical wrong-doing with the aim of halting
the behaviour. Whistle-blowing needs to be motivated by a commitment to the
public good. Whistle-blowers must carefully evaluate the wrongs they seek to
expose and choose a suitable outlet.

Whistle-blowing carries risks for the whistle-blower. There is a danger that senior
management will be unwilling or unable to tackle the bad behaviour and instead
focus on ‘shooting the messenger’. Legal authorities, in the current climate, are
likely to be supportive of those that expose financial or sexual misconduct.

5.5.2 Unions

Trade unions have not been popular in the technology sector. Trade unions are
membership bodies committed to employment protection for their members. They
offer legal support for their members in certain employment disputes and can offer
a means for employees to work together to address employment-related and wider
concerns.

There have been persistent stories about poor working conditions in the technol-
ogy sector. For example, allegations that Amazon delivery drivers are unable to find
time for toilet breaks have led to some public relations controversies [14].

Trade unions have, in recent years, enjoyed some success in tackling unfair
practices employed by technology companies. For example, the App Drivers and
Couriers Union successfully challenged Uber in the UK Supreme Court [1].
Subsequently, the company announced plans to pay minimum wage, holiday pay
and pensions [7]. Trade unions can play an important role in providing employees a
voice, a forum to discuss concerns and providing workplace advice.

5.6 Professional Development 75

5.6 Professional Development

Establishing a consistent set of skills standards in the technology sector is desirable
to raise standards and enhance the reputation of the field. The UK Engineering
Council has defined a set of standards for technicians and engineers, which can be
applied in the digital technology sector [8]. The council holds national registers of
over 222,000 Engineering Technicians (EngTech), Incorporated Engineers (IEng),
Chartered Engineers (CEng) and Information and Communications Technology
Technicians (ICTTech). The standards are publicly available and used by profes-
sional bodies, whose members wish to obtain certification.

Achieving such certification can improve earnings, provide promotion opportu-
nities, enhance status, offer evidence of expertise and demonstrate commitment to
the profession.

Acquiring the knowledge, skills and competencies required to achieve these
standards involves cycles of planning, acting and reflecting. More specifically, you
need to:

• Identify targets, the skills and competencies you want to learn
• Acquire knowledge
• Rehearse skills
• Reflect
• Repeat

In this way, over time, you can achieve the standards required to attract
certification. Any professional development activity starts with a self-assessment
of your current capabilities [17].

5.6.1 Initial Professional Development

Initial professional development is required to meet the requirements defined by
professional bodies. Master’s level educational attainment is typically required to
meet the Chartered Engineer requirements. Then, evidence is needed of a sustained
level of responsibility within the profession. Details of the syllabus and reading lists
are often available online.

For members of the BCS, SFIA Plus provides examples of volunteering and other
activities that can be used to gain experience beyond your current role [6]. Identify-
ing and using such opportunities create stretch tasks where new competencies can
be rehearsed.

76 5 Ethics

5.6.2 Continuing Professional Development

For professionals that achieve chartered status, continuing professional development
(CPD) is required to keep skills up to date. Usually, CPD must be recorded to
provide evidence of an ongoing commitment to skills enhancement.

5.6.3 Skills Framework for the Information Age

The Skills Framework for the Information Age ‘describes the skills and competen-
cies required by professionals in roles involved in information and communication
technologies, digital transformation and software engineering’ [16].

The framework comprises seven levels, as shown in Table 5.1. Each level, in turn,
is defined in terms of responsibilities, autonomy, influence, complexity, knowledge
and business skills, as shown in Table 5.2, for Level 1. Consequently, each skill has
a rich description of competencies and responsibilities.

Table 5.1 Levels in skills
framework for the
information age [16]

Levels Definitions

7 Set strategy, inspire, mobilise

6 Initiate, influence

5 Ensure, advise

4 Enable

3 Apply

2 Assist

1 Follow

Table 5.2 Level 1 dimensions in skills framework for the information age [16]

Autonomy Works under supervision. User little discretion. Is expected to seek
guidance in unexpected situations

Influence Minimal influence. May work alone or interact with immediate colleagues

Complexity Performs routine activities in a structured environment. Requires
assistance in resolving unexpected problems

Knowledge Has a basic generic knowledge appropriate to area of work. Applies newly
acquired knowledge to develop new skills

Business skills Has sufficient communication skills for effective dialogue with others.
Demonstrates an organised approach to work. Uses basic systems and
tools, applications and processes. Contributes to identifying own
development opportunities. Follows code of conduct, ethics and
organisational standards. Is aware of health and safety issues. Understands
and applies basic security practice

5.7 Exercises 77

5.6.4 Other Training and Development

While professional body certifications and memberships can help with career
development, there are a wide range of commercial certifications and massive open
online courses (MOOCs) that can help with more specific skills. Some commercial
certifications are well respected but are often focused on specific product versions
and tend to be expensive. While MOOCs from reputable providers can be of high
quality and up to date, the dropout rates are very high due in part to the online
delivery format.

5.7 Exercises

Completing these exercises will help you apply the skills in ethics you are acquiring
from this chapter. Remember, it is best if you don’t look at the hints, tips and
solutions chapter, at this stage. I suggest you do the exercises, then look at the advice
in Sect. 5.8.

Exercise 5.1 (Learning Journal)

5.1 For this exercise, write in your learning journal about anything you found
useful from this chapter.

Exercise 5.2 (Code of Ethics Review Exercise)

5.2 Choose a code of ethics from one of the professional bodies, such
as the BCS, the Chartered Institute for IT, the Institute for Electrical and
Electronic Engineers, the Association for Computer Machinery or Institution
of Engineering and Technology. Review the code of ethics. Sometimes, the
codes of ethics have different names, such as a code of conduct (for members).
How does the code address responsibilities of IT professionals toward:

• The general public at large?
• Their own ongoing professional and career development?
• The legal and regulatory framework within which they work?

What other kinds of responsibilities are described in the code of ethics?

78 5 Ethics

Exercise 5.3 (Intellectual Property Exercise)

5.3 Presumably you are working on (or planning to work on) a software
development project. This project will involve you generating intellectual
property. Who does that intellectual property belong to?

If you are a student, find out about your institution’s rules on intellectual
property. If you are an employee, what rules apply to you? Think about the
steps you would need to take to own your intellectual property.

Exercise 5.4 (Stakeholder Analysis Exercise)

5.4 Practice conducting a stakeholder analysis. Choose a project you are
currently working on (or that you have worked on before). Identify each
project stakeholder. For each stakeholder, identify their specific interests in
the project.

Exercise 5.5 (Skills Mapping to SFIA)

5.5 Revisit the output of the team skills inventory you performed in Exer-
cise 2.2. Map the skills you have identified within the team onto the Skills
Framework for the Information Age (SFIA) [18]. Now review the other skills
categories in SFIA; are there any important skills groups that are missing from
your team? What can you do to address any missing skill groups?

Exercise 5.6 (Learning Journal)

5.6 What happened during each exercise from this chapter? What went well?
What could have gone better? What did you learn? Make some notes in your
learning journal.

5.8 Hints, Tips and Advice on Exercises 79

Exercise 5.7 (Learning Journal)

5.7 Reflect on the chapters in Part I. Reflect on what you have learned about:

• Self-organising teams
• Roles, such as scrum master and product owner
• Managing stakeholders
• Ethics

Make some notes in your learning journal about each of these topics.

5.8 Hints, Tips and Advice on Exercises

5.1 Learning Journal Exercise

In this chapter, we have discussed ethical concerns about ‘big tech’, copyright
and patents, professional bodies, activism and professional development.

Write some notes on what you have learned about each topic.

5.2 Code of Ethics, Review

Briefly, professional bodies like their members to have a positive impact on
the public. Professional bodies want their members to avoid bringing their
profession into disrepute through any behaviour that negatively affects people
outside the profession. While different professions may have higher or lower
perceived status in society, the professional bodies themselves want to raise
the status of the members where possible.

At early stages of your career, it can be hard to realise, but your career
development is your own concern. Professional bodies often provide groups
and resources to support opportunities for professional development, but it
is up to members to identify their own needs and take advantage of these
opportunities.

Students have the advantage of a syllabus that has been prepared by
their college or university. Hopefully, the syllabus is up to date and has
been reviewed (or accredited) by a professional body. Employees in large
companies may be able to get advice on opportunities for formal training
courses from a training department. Nevertheless, it is up to professionals to

(continued)

80 5 Ethics

identify their own needs and create plans to update existing skills and acquire
new knowledge.

Professional bodies will encourage you to become aware of the legal and
regulatory framework within which you work. They want their members
to stay on the right side of the law to avoid damaging their professional
reputation. You should seek out the opportunities professional bodies provide
to keep up to date with the legal or regulatory landscape and changes.

5.3 Intellectual Property

If you are an employee, the intellectual property will likely belong to your
employer. If you are a student, policies can vary from university to university
and from country to country about who owns the intellectual property. If you
are working as part of a start-up company, spin-up or spin-out, then you might
own your intellectual property.

5.4 Stakeholder Analysis

When you identify project stakeholders, you might think about:

• Shareholders
• Executive management team
• Line managers
• Employees
• Customers
• The general public
• Government
• Financial institutions
• Non-governmental organisations, activists and pressure groups

Try to think about the specific interests in the project of each of these
stakeholder groups.

5.5 Skills Mapping to SFIA

You might find some aspects of mapping your skills inventory to SFIA
surprising. Your inventory, for instance, might include PHP developer, Java
developer and Javascript HTML/CSS developer. In SFIA, these will all map

(continued)

References 81

to the developer role. Think about these relationships. Is there a one-to-one
relationship between your inventory and SFIA?

Further, I expect there will be roles in SFIA you had not previously
considered. There are actually a wide range of technical and business roles
in the IT and software sector. Make some notes in your learning journal about
two or three unfamiliar job roles in SFIA that would be useful to your project.

5.9 Chapter Summary

Software and digital technologies have been enthusiastically adopted in many walks
of life and have the potential to bring significant benefits. However, there are
also risks that technology can amplify unfairness, inequality and disadvantage.
Marginalised groups can find their undervalued status even further undermined by
the introduction of new software systems. The rich and powerful are disproportion-
ately empowered to exploit technology to their advantage. Our responsibility, as
software professionals, is to educate ourselves to understand these risks and where
possible initiate mitigation.

References

1. ADCU: App drivers & couriers union (2020). https://www.adcu.org.uk/
2. Association for Computing Machinery: Association for Computing Machinery (2019). https://

www.acm.org/
3. BCS – The Chartered Institute for IT: BCS code of conduct (2019). https://www.bcs.org/

membership/become-a-member/bcs-code-of-conduct/
4. BCS – The Chartered Institute for IT: BCS, The Chartered Institute for IT (2019). https://www.

bcs.org/
5. BCS – The Chartered Institute for IT: Surveillance Capitalism – A Panel Discussion

– Manchester Branch (2019). https://www.bcs.org/events-calendar/2019/march/surveillance-
capitalism-a-panel-discussion-manchester-branch/

6. BCS, The Chartered Institute for IT: SFIAplus – IT skills framework (2021). https://www.bcs.
org/membership/sfiaplus-it-skills-framework/

7. Butler, S.: Uber to pay uk drivers minimum wage, holiday pay and pension (2021). http://
www.theguardian.com/technology/2021/mar/16/uber-to-pay-uk-drivers-minimum-wage-
holiday-pay-and-pension

8. Engineering Council: Engineering council (2020). https://www.engc.org.uk/
9. Future Publishing Ltd.: PC Pro magazine | meet the team (2022). http://subscribe.pcpro.co.uk/

meettheteam
10. IEEE Computer Society: IEEE Computer Society (2019). http://www.computer.org/
11. International Federation for Information Processing: IFIP – Home (2019). https://www.ifip.

org/
12. Noble, S.U.: Algorithms of Oppression: How Search Engines Reinforce Racism. NYU Press,

New York (2018)

 1264 2568 a 1264
2568 a

https://www.adcu.org.uk/

 2416 2651 a 2416 2651
a

https://www.acm.org/
https://www.acm.org/

 2026 2817 a 2026 2817 a

https://www.bcs.org/membership/become-a-member/bcs-code-of-conduct/
https://www.bcs.org/membership/become-a-member/bcs-code-of-conduct/

 2251 2983 a 2251 2983
a

https://www.bcs.org/
https://www.bcs.org/

 838 3232 a 838 3232 a

https://www.bcs.org/events-calendar/2019/march/surveillance-capitalism-a-panel-discussion-manchester-branch/
https://www.bcs.org/events-calendar/2019/march/surveillance-capitalism-a-panel-discussion-manchester-branch/

2139 3398 a 2139 3398 a

https://www.bcs.org/membership/sfiaplus-it-skills-framework/
https://www.bcs.org/membership/sfiaplus-it-skills-framework/

 2444 3565
a 2444 3565 a

http://www.theguardian.com/technology/2021/mar/16/uber-to-pay-uk-drivers-minimum-wage-holiday-pay-and-pension
http://www.theguardian.com/technology/2021/mar/16/uber-to-pay-uk-drivers-minimum-wage-holiday-pay-and-pension
http://www.theguardian.com/technology/2021/mar/16/uber-to-pay-uk-drivers-minimum-wage-holiday-pay-and-pension

 1393 3814 a 1393 3814 a

https://www.engc.org.uk/

 1807 3897
a 1807 3897 a

http://subscribe.pcpro.co.uk/meettheteam
http://subscribe.pcpro.co.uk/meettheteam

 1600 4063 a 1600 4063 a

http://www.computer.org/

 2139 4146 a 2139 4146
a

https://www.ifip.org/
https://www.ifip.org/

82 5 Ethics

13. No GCP for CBP: Google must stand against human rights abuses: #NoGCPfor-
CBP (2019). https://medium.com/@no.gcp.for.cbp/google-must-stand-against-human-rights-
abuses-nogcpforcbp-88c60e1fc35e

14. O’Neil, L.: Amazon’s denial of workers urinating in bottles puts the pee in
PR fiasco (2021). http://www.theguardian.com/lifeandstyle/2021/mar/25/amazon-bottles-pee-
tweet-warehouse-workers

15. Rost, J., Glass, R.L.: The Dark Side of Software Engineering: Evil on Computing Projects.
John Wiley & Sons, Hoboken (2013)

16. SFIA Foundation: The global skills and competency framework for a digital world (2003).
https://sfia-online.org/en

17. SFIA Foundation: Self-assessment guidelines (2003). https://sfia-online.org/en/tools-and-
resources/using-sfia/sfia-assessment/self-assessment-guidelines

18. SFIA Foundation: SFIA (2018). https://www.sfia-online.org/en
19. Shane, S., Wakabayashi, D.: ‘The Business of War’: Google Employees Protest Work for

the Pentagon. The New York Times (2018). https://www.nytimes.com/2018/04/04/technology/
google-letter-ceo-pentagon-project.html

20. Srnicek, N.: Platform Capitalism. Polity Press, Cambridge (2016)
21. The IET: IET – Home (2019). https://www.theiet.org/
22. Zuboff, P.S.: The Age of Surveillance Capitalism: The Fight for a Human Future at the New

Frontier of Power, main edn. Profile Books, London (2019)

 339 60 a 339 60 a

https://medium.com/@no.gcp.for.cbp/google-must-stand-against-human-rights-abuses-nogcpforcbp-88c60e1fc35e
https://medium.com/@no.gcp.for.cbp/google-must-stand-against-human-rights-abuses-nogcpforcbp-88c60e1fc35e

 469 309 a 469 309 a

http://www.theguardian.com/lifeandstyle/2021/mar/25/amazon-bottles-pee-tweet-warehouse-workers
http://www.theguardian.com/lifeandstyle/2021/mar/25/amazon-bottles-pee-tweet-warehouse-workers

 -42 724 a -42 724 a

https://sfia-online.org/en

 1604 807 a 1604 807 a

https://sfia-online.org/en/tools-and-resources/using-sfia/sfia-assessment/self-assessment-guidelines
https://sfia-online.org/en/tools-and-resources/using-sfia/sfia-assessment/self-assessment-guidelines

 880 973 a 880 973 a

https://www.sfia-online.org/en

 1195 1139 a 1195 1139 a

https://www.nytimes.com/2018/04/04/technology/google-letter-ceo-pentagon-project.html
https://www.nytimes.com/2018/04/04/technology/google-letter-ceo-pentagon-project.html

 826 1388
a 826 1388 a

https://www.theiet.org/

Chapter 6
Tabby Cat Project, Getting Started

Abstract In this chapter, we consider forming a team to create the Tabby Cat
case study project. This project will create an opportunity to apply the ideas from
the chapters in Part I of the book. We will apply the self-organising team, scrum
master and product owner roles to the Tabby Cat project. We will also explore
managing stakeholders and professional issues. Tabby Cat is software for displaying
activity from an online source code repository. You can download information about
commits on the repository and display the data using various filters and searches.

6.1 Introduction

This case study allows us to summarise and apply the most important ideas we have
covered in Part I. Here, you can learn more about agile roles, the self-organising
team, managing stakeholders and professional issues.

This case study is based on software developed by Red Ocelot Ltd. [1]. In
Chap. 12, you can learn about the case study requirements, design and implementa-
tion.

6.2 Online Repository Activities

Your aim is to form a team and create the Tabby Cat product. Tabby Cat is a skeleton
software service for obtaining and displaying activity on a GitHub repository. Tabby
Cat can connect to any public GitHub repository and extract data on commits, issues
and metrics.

Once the data is extracted from GitHub, a listing can be produced. This listing
can help understand the focus of developer activity on the target repository.

© Springer Nature Switzerland AG 2022
J. M. Bass, Agile Software Engineering Skills,
https://doi.org/10.1007/978-3-031-05469-3_6

83

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05469-3_6&domain=pdf

 -151 4612 a -151 4612
a

https://doi.org/10.1007/978-3-031-05469-3_6

84 6 Tabby Cat Project, Getting Started

Review Your Learning Journal

I have recommended that you create and update a learning journal when you
do the exercises in each chapter (see Exercise 2.1). Now is a good time to
reflect on your journal

• Re-read your learning journal from the chapter exercises in Part I of the
book.

• Think about what went well when you did the exercises.
• Think about what didn’t go so well.
• Make some notes, in your learning journal, about the strengths and

weaknesses of your work in these areas.
• Create some actions or set some targets for your future learning.

6.3 Actually Getting Started

Team members can be selected or assigned to you. Even if team members are
friends, you will likely want to learn more of their likes and dislikes in terms
of project work. I recommend you start by conducting a skills inventory of the
members of your group. Consequently, your starting point should be to read Chap. 2
and complete Exercise 2.2.

Now complete Exercise 2.3, to learn more about the other members of your team.
It is especially important in diverse teams to develop empathy and trust with other
team members. This is best achieved by understanding each other’s backgrounds
and experiences.

Team Diversity

Software teams with a diverse membership are more likely to perform well.
Diversity within the team brings different perspectives and complimentary
ideas. Attracting team members with diverse skills should be a high priority.

6.4 Sprint Zero 85

Next conduct Exercise 2.4. It is wise to establish conventions about how to
work together and how to resolve differences. Conflict can arise within your
team. You hope team members will be passionate about the work. But, passionate
individuals may champion very different approaches that they feel very strongly
about. Consequently, conflict can arise on issues where there is no clear and obvious
right or wrong answer. In these cases, conflict resolution strategies can be helpful to
diffuse confrontation and help the team reach consensus.

Then, conduct Exercise 2.5. Teams that have strong shared sense of common
purpose tend to perform best. Try to create consensus within the team on purpose.
For example, are student groups trying to a good mark? Or, are some student
group members going to be satisfied with a bare pass grade? Such differences in
expectations can lead to conflict with the team.

Don’t Ignore Team Building Activities

Strongly technical team members may be tempted to skip or scrimp on team
building activities. This is a bad idea. Solving technical problems within a
group is much harder than working alone, while the potential for a team to
achieve fantastic results is also greater. The investment in team building is
worthwhile.

6.4 Sprint Zero

There’s no such thing as a Sprint Zero. But, it is a useful metaphor for starting
your first iteration. Sprint zero is where you work together to prepare for software
development on the Tabby Cat project.

Now is a good time to read Chap. 3, if you haven’t already. If you have not been
assigned a scrum master, you need to choose one. As you learned in Chap. 3, the
scrum master facilitates ceremonies within the team.

First, your team can practise sprint planning, as discussed in Exercise 3.2. The
sprint planning process is described in Chap. 13. Then, your scrum master can
organise and facilitate daily stand-ups, drawing on Exercise 3.3. You may not have
any software to demonstrate at the end of Sprint Zero, so you may not want to run
a customer demonstration (if you do, though, you can look at Exercise 3.4). But,
you should probably conduct a Sprint Zero retrospective. There is more information
about conducting a retrospective in Exercise 3.5.

Next, you need a product owner. The product owner could be a real customer or
perhaps a supervisor or an academic running your course. If the product owner is

86 6 Tabby Cat Project, Getting Started

not obvious, then you need to create a proxy product owner role. Choose the person
with the most knowledge of the Tabby Cat project domain.

Finally, work with your product owner to undertake requirements gathering
workshops, such as those described in Exercises 3.6 to 3.8. You will learn more
about requirements, when you read Chap. 7. Specific requirements for the Tabby
Cat project are discussed in Chap. 12.

6.5 Subsequent Sprints

Now read Chap. 4, if you haven’t already. Someone in your team can focus on
working through Exercises 4.2 to 4.6. This person can think about how the team
will record important decisions, such as design decisions, and how you will report
to stakeholders on your activities.

The Tabby Cat project may not have serious ethical dilemmas, but read through
Chap. 5 in order to consider ethics issues that might arise. In particular, think about
the skills you have in the team. Perform Exercise 5.5, and consider any skills gaps
you identify. Is there any training members of the team can undertake to address
missing skills?

6.6 Chapter Summary

The Tabby Cat project will create a skeleton software system for connecting to a
public GitHub repository, extracting source code activities and making a display.

In this chapter, we have explored a range of tactics to help you form a team
to work on the Tabby Cat project. If you have applied the knowledge and skills
described, you will be working as a self-organising team with a scrum master and a
product owner. You will also have completed a Sprint Zero and practised running a
few team meetings.

In Part II of the book, we will explore the technical skills you need for an
agile project. I’ll explore requirements in Chap. 7, high-level design or architecture
in Chap. 8, design in Chap.9, development in Chap. 10 and security in Chap. 11.
Discussion of this technical side of the Tabby Cat project will continue in Chap. 12.

Reference

1. Red Ocelot Ltd: Enhancing digital agility (2022). https://www.redocelot.com

 1334 4056
a 1334 4056 a

https://www.redocelot.com

Part II
Product

While Part I of the book focused on people, Part II of the book is about product.
We have to acquire skills in defining the needs our system intended to fulfil and the
techniques for creating a software solution.

First, in Chap. 7, there is a discussion of requirements gathering and management
for incremental delivery. You will learn about distinguishing functional and non-
functional requirements. Specifically, you will learn about employing use cases and
user stories for capturing and discussing requirements.

Next, Chap. 8 explores approaches to high-level architectural styles, such as
client-server and layered architectures. You can learn about some of the most
important design principles, such as the SOLID approach.

Then Chap. 9 considers lower-level system design, most notably object-oriented
modelling and how to derive a design from a domain model. You can learn about
design patterns, such as object factories and the model-view-controller.

Incremental development issues are discussed in Chap. 10. You can learn about
the artefacts development teams create while building software systems. This will
cover topics like Kanban boards, backlogs and burndown charts.

In contrast, Chap. 11 looks at security issues and the concept of a secure-by-
design agile development process. We’ll look at creating abuse user stories to model
potential threats and guidance on secure implementations.

In Chap. 12, the ideas from Part II are applied to the Tabby Cat case study. I
explore the technical skills needed to read activity data from an online software
source code repository and display the information with various filter options.

88 II Product

Other Book Parts

As I have emphasised, the overall design of this book is around people in Part I,
product in Part II and process in Part III. These parts of the book are stand-
alone, more or less. So, if your main interest is in the social aspects of software
development, for instance, then you might want to skip back to Part I. On the other
hand, if your main interest is creating a systematic software development process,
then you might want to skip ahead to Part III. Some more advanced topics, such
as large-scale agile, cloud deployment and continuous integration, are described in
Part IV.

Chapter 7
Requirements

Abstract Our customers, clients, users or bosses give us requirements that define
the needs our software must fulfil. We need to understand when to use outline
requirements, for longer-term planning, and when we need full detail, for the
requirements we are going to implement now. Hence, we adopt an incremental
approach to managing requirements. We often analyse requirements using user
stories and use cases. User stories are great for helping our customers prioritise and
communicate about the software needs. However, developers find use cases useful
for learning how to elaborate our requirements in more detail.

7.1 Introduction

Requirements engineering is the process of establishing what services our customers
want. Further, we also need to understand the constraints within which our system
must operate.

Most requirements elicitation involves asking questions. Sometimes, there is a
single individual you can go to, such as a product owner, more on that role in
Sect. 3.3. Sometimes, we need to ask a group of people (that might have different
opinions). In that case, we run a requirements workshop. In both cases, we need
to prepare ourselves. What questions do we want to ask? How will we record the
answers? During the workshop, we need to keep the discussion focused and on topic
and at the same time entice as much detail as possible from the informants.

Journalists and others try to make sure they get answers to questions by using
the following list: who, what, when, where, why and how?. In terms of requirements
elicitation: Who does something?What do they do? When do they do it? Where are
they when they do it? Why do they do it? How do they do it? If we are responsible
for developing an entirely new and novel system, however, there may be no one
you can ask. In such cases, we have to use our imagination and creativity to create
requirements.

There are two main approaches to recording and managing requirements: user
stories and use cases. Both have benefits and advantages but also some drawbacks.
Hence, it is good to learn about both techniques, even if you end up choosing only

© Springer Nature Switzerland AG 2022
J. M. Bass, Agile Software Engineering Skills,
https://doi.org/10.1007/978-3-031-05469-3_7

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05469-3_7&domain=pdf

 -151 4612 a -151 4612
a

https://doi.org/10.1007/978-3-031-05469-3_7

90 7 Requirements

one to use on your project. You can learn more about use cases in Sect. 7.4 and user
stories in Sect. 7.5.

7.2 Types of Requirements

We want to explore requirements from the perspective of the functions a system
must perform as well as the constraints under which it must operate. We will also
explore how to tackle requirements in an incremental development setting.

7.2.1 Functional Requirements

Functional requirements are statements that describe the services the software
should provide. This might involve things like how the software will respond to
particular sets of inputs, how data should be transformed and what the software
does in particular situations. Obviously, the name functional requirement is derived
from the functions the software performs.

I will talk more about feature-driven development, in Sect. 9.2; this is about
developing one particular service at a time. A feature is some client-valued function
that the software must perform.We tend to favour descriptions of functionality from
a perspective outside the software. We are usually interested in externally visible
behaviour.

7.2.2 Non-functional Requirements

In contrast with functional requirements, non-functional requirements are system-
wide quality attributes. Non-functional requirements are not concernedwith specific
features, but rather cross-cutting qualities of the system as a whole. Non-functional
requirements might include the length of time allowed to perform functions,
the availability (or uptime) of the system or compliance with legal standards or
regulations. Sometimes, it is good to think of non-functional requirements as system
constraints. The software is not allowed to operate outside those constraints (such
as response times, availability or regulations).

Non-functional requirements often have an impact on the overall design ethos of
software. A primary flight control system for a commercial passenger aircraft is not
built using the same sort of approach to design as a simple mobile phone game.

You can manage non-functional requirements as artefacts in your agile process
[4]. That means creating non-functional requirement user stories and tracking them
using your Kanban board-like functional features, as discussed in Chap. 13.

7.2 Types of Requirements 91

Caution!

Safety-critical or safety-related systems are those which could adversely
affect our environment or conceivably injure, harm or even kill people.
Some applications areas are obviously safety critical; think of medical,
transportation (cars, trains, boats and planes) and nuclear power.

The non-functional requirements of safety-critical applications are beyond
the scope of this book. There are several specialist techniques that are required
for designing and implementing safety-critical systems. In this book, you can
walk through the skills you need to create your first software system, working
as part of a team. The skills described here are a necessary but not sufficient
set of skills for working on safety critical systems. Specialist safety-critical
skills are beyond the scope of these chapters.

7.2.3 Incremental Requirements

We have a dilemma about how to handle requirements on agile projects. On the one
hand, we can’t build the software without complete and detailed information about
what the system is supposed to do. On the other hand, it takes a long time to create
a detailed specification of requirements for the whole system, and we find some of
the requirements changing as we go along.

So, we need more detail about what we are going to build now, but we can live
with less detail now, about what we are going to build later. But, hang on. The non-
functional requirements are cross-cutting. Non-functional requirements affect the
whole system. So, we need to be very careful here.

We do need full detail about the non-functional requirements at the outset. We
need to ensure our initial software designs take into account the constraints under
which our system will operate. But it is also true that defining detailed specifications
for functions we won’t be implementing until later in the project is not necessary (so
long as they aren’t going to dramatically change our understanding of the constraints
on the software).

So, we arrive at a point where we need detail about the non-functional require-
ments from the start but that we can adopt a, sort of, moving window approach to
functional requirements. We can develop an outline, overview or fuzzy description
of the functionality of the whole system. Then, for the high-priority features we are
going to work on first, we need to obtain all the detail.

92 7 Requirements

7.3 Requirements Quality

I have argued we need to be aware of two types of requirements (functional and
non-functional) and treat them differently. At the outset, we only need an overview
of all the functional requirements. But, we must acquire a detailed view of the non-
functional requirements for the whole system from the start. Further, just to be clear,
we also need full details of the functionality we are going to implement now.

7.3.1 Requirements Precision

Imprecise requirements are bad news, when we build software. If requirements are
ambiguous, the development team may interpret the requirements differently from
users or clients. This means we end up building something that does not really meet
the needs of the client. And that is the bad news. We end up building a poor-quality
product, poor quality because the software does not meet the need (not poor quality
in the sense that there are defects in our code). So, when the time comes to build
functionality, we need the detail about what it is meant to do.

In large-scale projects, with multiple cooperating teams, ambiguous require-
ments can be interpreted differently by different teams. This can lead to confusion
between the teams and even source code defects. This is discussed further in
Chap. 18.

7.3.2 Requirements Consistency

Inconsistency in requirements creates big problems for a software development
project. If our understanding of requirements in one place is contradicted by a
requirement some place else, fear, uncertainty and doubt are sure to follow.We have
to go back to finding out which is the correct understanding of the requirements. Or
sometimes, they are both correct but under different circumstances. So we need to
figure out when each situation is true.

A common challenge is using consistent terminology. When talking about
requirements, we have to use the same names for things all the time. Err, consis-
tently. Right? If we start using a different name for something, our colleagues may
think it is, in fact, a different thing.

7.3 Requirements Quality 93

7.3.3 Requirements Completeness

Finally, another killer for software projects is incomplete requirements. What we
really want to avoid is discovering significant new requirements part way through
the project. Significant requirements are the ones that dramatically affect the
underlying assumptions of the system or the constraints under which the system
operates. Usually, this means we don’t want to discover an important non-functional
requirement when we have already started building the software.

When new functional requirements give us big surprises, part way through
a software project, it can also be damaging to a healthy life and happiness.
It’s fine if we discover our software needs to handle CustomerAge as well as
CustomerDateOfBirth. We can just do a little calculation to get CustomerAge
from CustomerDateOfBirth. No big deal. If on the other hand we find out (part
way through our website development project) that customers need to be able
to tell us their date of birth using a voice interface, then that might have rather
bigger implications. Discovering whole new ways of collecting (inputting) data or
disseminating results (outputting data) is never good when a project is already under
way. We try to understand all required interfaces the outside world, at an early stage
of the project.

When big surprises happen, we need additional time and resources to take care of
these new functions.We might need team members with a whole new skill set (at the
time of writing building voice or audio activated user interfaces is still not exactly
mainstream). We might need to reconsider some design assumptions. Worse, big
surprises might mean we need to re-design and re-implement parts of the software
that we thought we had already finished. No one looks good in this situation. The
development team looks like we don’t knowwhat we are doing, and managers rarely
enjoy paying for things to be done over and over again. I hope you can detect the
tone of understatement here. On large-scale projects, big surprises during the project
can be career limiting.

•! Attention

We must acquire complete, consistent and detailed non-functional require-
ments at the start of the project. We also need complete, consistent and
detailed functional requirements for the software we are going to build over
the next few weeks. However, at the outset, an outline picture of functional
requirements for the rest of the software system is sufficient. This is provided
we understand all the interfaces to the outside world or other systems our
software must interact with.

94 7 Requirements

7.4 Use Cases

A use case is a user interaction scenario, a situation in which a user wants to
achieve something by using our software. The use case provides a description of
how someone or something outside the software triggers some response. The user
usually has some goal or purpose in mind that is made explicit in the use case.

Use cases have two elements: a use case diagram for the whole system and a
detailed use case for each specific interaction scenario. The idea here is that the use
case diagram is addressing issues of completeness and to some extent consistency,
while individual use case scenarios are addressing consistency (again) and precision
or detail in the requirements.

7.4.1 Use Case Diagrams

A use case diagram shows users of the system. We give the users a special name
actors. The actors are shown as stick figures and are usually organised on the left
or right edge of the use case diagram. In Fig. 7.1a, you can see an actor called
customer. There are two use cases in Fig. 7.1a: Rent and Return. The oval shapes
represent the use cases. The words Rent and Return are actually use case titles.
Finally, the connecting lines, in Fig. 7.1a, show us that the Customer actor can
perform both use cases Rent and Return.

Customer

Rent

Return

Actor Use Case (Title)

Actor can perform
this Use Case

A)

Rent

Return

Agent Customer
Valet

Vehicle

B)

Customer actor does not
perform this Use Case

Actor
Name

System Boundary

Fig. 7.1 Two simple use case examples. (a) Simplified use case diagram. (b) Car rental desk use
case diagram

7.4 Use Cases 95

The use case shown in Fig. 7.1b is getting slightly more realistic. There
are two actors, Agent and Customer, and three use cases, Rent, Return
and Valet Vehicle. Notice that there is no connecting line between the
Valet Vehicle use case and the Customer. This tells us that the Customer
actor, in this illustrative car rental system, is not required to valet their own vehicle
when they return it. The use cases that are in scope for a project are often indicated
by including a system boundary box on the use case model.

7.4.2 Use Case, Descriptions

Each Use Case is described in more detail in tables. The table templates vary from
place to place; I show an example in Table 7.1. It is customary to complete the use
case table in full.

The use case title is the name of the use case. The name is often quite succinct,
but it needs to be unique. Each use case title corresponds to the one shown in the
use case diagram, of course.

The primary actors are listed next. A primary actor initiates the use case. As
with the use case title, it is important to make sure the actors in the use cases
correspond to the actors shown in use case diagram. Sometimes, people add a row
to list secondary actors. Secondary actors are required to complete a use case but do
not initiate the use case.

The actors are followed by a goal for the use case. The goal describes the purpose
of the use case from the user’s perspective.What is it that the user is trying to achieve
when they perform the use case?

Table 7.1 Example use case template

«text for the use case title goes here, corresponds to use case

Use case title diagram»

Primary actor(s) «Actor corresponds to use case diagram»

Secondary actor(s) «If appropriate»

Goal

Scope

Preconditions

Postconditions

Main success scenario 1.

2.

3.

Extensions 1a.

2a.

3a.

96 7 Requirements

The scope represents a boundary for the use case. What is included or not
included in the use case? Preconditions must be true before the use case runs.
Postconditions must be true after the use case has completed.

The main success scenario gives the steps that form an interaction scenario in
which nothing goes wrong. Each of the numbered steps reflects a stage in a user
interaction with the system.

Finally, the extensions describe the things that can go wrong, or unexpectedly,
in each step of the main success scenario. Each numbered step in the extensions
corresponds to a numbered step in the main success scenario. Meaning, extension
step 2 is a non-successful variation on step 2 in the main success scenario.
Extensions must be something the system can actually detect for itself [1]. Also,
there is no point in describing an extension the system can’t actually handle.

7.5 User Stories

A user story is also written from the perspective of a person who actually uses
software. But, whereas use cases are described as being semi-formal, a use case
is informal because it is written in simple (natural, non-technical) language. In a
way, we can think of a user story as being a handle, or variable name, representing
some collection of functions that the software will perform. Let’s look at a couple
of simple, fictitious, examples:

User Story 1
As a <holidaymaker>, I want to <book a flight>, in order to <enjoy
a holiday>.

Notice that User Story 1 has three parts: the user, in this case a <holidaymaker>,
followed by an action, <book a flight>, followed by an objective or purpose to
<enjoy a holiday>. Actually, there are lots of different templates for user stories,
but this is the one I tend to use. . .

User Story 2
As an <actor>, I want to <perform an action>, in order to <gain
some value>.

7.6 User Story Mapping 97

Sometimes, people might be tempted to write a user story like this:

User Story 3
As a <user>, I want to <book a flight>, in order to <get a flight>.

We try to avoid using the generic name<user> in our user stories. Why? Because
a user is not a specific enough description of the person or thing interacting with
our software. We’ll explore this idea in more detail in Sect. 7.7, when we talk about
personas.

But to make things clearer, let’s imagine that our travel booking system in User
Story 1 might also have another user story, like this:

User Story 4
As a <business traveller>, I want to <book a flight>, in order to
<have a business trip>.

In both User Story 1 and User Story 4, someone wants to book a flight. So you
might think it would be a simplification to merge them both into User Story 3. But
perhaps, the <business traveller> in User Story 4 is going to be invoiced through
their company, whereas the <holidaymaker> in User Story 1 has to pay online with
a credit card. These extra details are not yet obvious from the user stories we’ve
presented. But this illustrates the benefits specific user segments have in our user
stories.

So, how do we show these extra details (e.g. card payment or corporate billing)
in a user story, then? We often add acceptance test criteria to the user story. We’ll
discuss the skills you need to perform testing in Chap. 16.

7.6 User Story Mapping

Once you have established a series of user stories, it is a good idea to plan out
a user journey through the features [3]. The challenge we are trying to avoid is
creating increments with valuable features but that don’t provide a useful end-to-
end journey for the user. We are going to try and build a matrix of user stories
organised according to their order in a user journey and their criticality, as shown in
Fig. 7.2.

98 7 Requirements

Usage Sequence (User Journey)

Criticality

Always Used

Seldom Used

User Story
3

User Story
2

User Story
1

User Story
5

User Story
4

Frequently Used
Features

User Story
6

Seldom Used
Feature

Fig. 7.2 User story mapping (Adapted from [2])

7.7 Personas

Personas are fictional characters that you create to represent user segments or types
of actor interacting with you system. The idea is to help you think about using your
system from someone else’s perspective. Personas arise from your research into
typical user behaviour. What are their goals, objectives and motivations in using
your system? By developing different personas, you can articulate the different
needs user groups have.

The persona comprises a photo or cartoon image to represent this user as an
individual. You can then write fictional details about the persona’s age, gender,
ethnicity, education, lifestyle, interests, values, goals, needs, limitations, desires,
attitudes and patterns of behaviour, as appropriate for your application software.

In an online travel booking system, for example, you might distinguish between
‘frequent fliers’ and ‘vacationers’. Frequent fliers tend to be business travellers.
This implies solo travel, metropolitan destinations, short-notice trips, late changes
of plans and corporate billing. However, we might assume that vacationers are more
likely to travel in groups; favour rural, beach or mountain destinations; make fewer
more infrequent trips; and accept online credit card payment. We can use personas
to tease out more details about these different use groups and their needs.

7.8 Exercises

You should start by creating a learning journal for Part II Product, if you haven’t
already. In the learning journal, keep notes on the things you learn. Use the learning
journal to plan your future skills development activities.

7.8 Exercises 99

Don’t forget: it is better not to look at the hints, tips and solutions chapter, at this
stage. First, do an exercise. Next, reflect on that exercise. Then, look at the hints,
tips and advice in Sect. 7.9.

Exercise 7.1 (Learning Journal)

7.1 The first exercise for each chapter is to review the material and write in
your learning journal. Make some brief notes for the material in this chapter.

Exercise 7.2 (Use Case Diagram Exercise 1: Student Record Information
System)

7.2 A student record information system is used to manage student progres-
sion. Students register for option modules and programmes. Modules have
lecturers. Students can transfer from one option module to another within
the first 4 weeks of the semester. Modules are assigned to a year with a
programme by administrators. Lecturers upload marks for mandatory and
option modules which are then ratified by administrators on behalf of exam
boards.

Exercise Tasks Your objective is to analyse the scenario above and build a
use case model by doing the following tasks:

1. Identify and name the actors of the system.
2. For each actor in the system, identify and name the use cases for the actor.
3. Draw a simple use case diagram for the system.

Exercise 7.3 (Use Case DiagramExercise 2: Library Information System)

7.3 A library information system is used to manage holdings (comprising
books, multi-media recordings,magazines and journals) in both hard copy and
online form. Holdings registered in the information system can be searched
using titles, keywords and holding type. Senior librarians are responsible
for archiving old, damaged and unused holdings as well as purchasing new
holdings. Librarians register purchased holdings on the library information
systems. Borrowers can borrow and return holdings.

Exercise Tasks Your objective is to analyse the scenario above and build a
use case model by doing the following tasks:

1. Identify and name the actors of the system.
2. For each actor in the system, identify and name the use cases for the actor.
3. Draw a simple use case diagram for the system.

100 7 Requirements

Exercise 7.4 (Use Case Diagram Exercise 3: Flight Travel Booking Sys-
tem)

7.4 The Flight Travel Booking System (FTBS) provides online services to
travellers for flight and hotel reservations using a reservations transaction
handling system such as Amadeus or Sabre. Travellers can search, reserve,
book and cancel flights. Traveller cancelations can be performed up to 24 h
before departure. Frequent fliers can cancel reservations with no penalty
within 6 h of departure.

Exercise Tasks Your objective is to analyse the scenario above and build a
use case model by doing the following tasks:

1. Identify and name the actors of the system.
2. For each actor in the system, identify and name the use cases for the actor.
3. Draw a simple use case diagram for the system.

Exercise 7.5 (Use Case Diagram Exercise 4, Advanced: Flight Broker
System)

7.5 A travel agent wishes to expand its business by investing in an online
flight reservation system. The agency works as a broker for booking and
selling flight tickets using a number of airline companies around the world.
In order to locate the requested flight, the agency communicates with air
companies to retrieve their flight schedules and seat availability.

The agency has two types of clients, individual and corporate clients.
Individual clients often request to search for an appropriate flight and compare
prices. When searching for a flight, the user may want to sort the results by
price, airlines or number of connections.

After choosing the desired flight from the results, they could make initial
booking or progress to purchase and payments. Alternatively, they could
cancel the search. The system should maintain a database of client accounts
through which clients could retrieve all their current bookings and/or past
journeys. They may also use the system to cancel or amend a journey; this
is dependent on the type of ticket they have purchased. The system should
support the following ticket types:

• Full fare ticket, a 1-year open fully refundable and changeable ticket
• Open ticket, a 3-month open ticket which may be changed or refunded

subject to 20% administration charge
• Saver ticket, valid for one trip and may not be changed

(continued)

7.8 Exercises 101

Exercise 7.5 (continued)

Corporate clients enjoy the services of individual clients plus additional
ones. They benefit from a 30-day credit facility; the credit amount varies
for different clients. A corporate client may purchase tickets using credit or
direct payment. If using credit payments, corporate clients may only purchase
new tickets if they have not exceeded their credit limit and they do not have
any outstanding payments exceeding the 1-month period. They may also use
the system to request credit increase. Such request is rejected if the client
has outstanding payments exceeding the 1-month period; otherwise, it is
forwarded to the agency’s staff for processing.

The system may also be used by the agency’s staff (agents) to query
the system for outstanding bookings pending confirmation or payment. The
agents use the information for following up the bookings with clients. The
agents may also use the system to retrieve outstanding corporate accounts for
following up the settlement of such accounts.

Exercise Tasks Your objective is to analyse the scenario above and build a
use case model by doing the following tasks:

1. Identify and name the actors of the system.
2. For each actor in the system, identify and name the use cases for the actor.
3. Draw a detailed use case diagram for the system. Make sure you include

actor and use case relationships. You may want to use a software tool to
create the use case diagram. A list of UML modelling tools, some of which
are open source, is available from [5].

Exercise 7.6 (Use Case Exercise 1: Student Record Information System)

7.6 Use the student record information system scenario in Exercise 7.2.
Exercise Tasks Your objective is to analyse the scenario and write a use

case by doing the following tasks:

1. Describe the goal and scope of the use case.
2. Write a series of steps describing the main success scenario.
3. Write extensions describing any error (or exception) scenarios.
4. Identify postconditions for the use case.
5. Can you identify any preconditions for the use case?

102 7 Requirements

Exercise 7.7 (Use Case Exercise 2: Library Information System)

7.7 Use the library information system scenario in Exercise 7.3.
Exercise Tasks Your objective is to analyse the scenario and write a use

case by doing the following tasks:

1. Describe the goal and scope of the use case.
2. Write a series of steps describing the main success scenario.
3. Write extensions describing any error (or exception) scenarios.
4. Identify postconditions for the use case.
5. Can you identify any preconditions for the use case?

Exercise 7.8 (Use Case Exercise 3: Flight Travel Booking System)

7.8 Use the Flight Travel Booking System (FTBS) scenario in Exercise 7.4.
Exercise Tasks Your objective is to analyse the scenario and write a use

case by doing the following tasks:

1. Describe the goal and scope of the use case.
2. Write a series of steps describing the main success scenario.
3. Write extensions describing any error (or exception) scenarios.
4. Identify postconditions for the use case.
5. Can you identify any preconditions for the use case?

Exercise 7.9 (Use Case Exercise 4, Advanced: Flight Broker System)

7.9 Use the flight broker system scenario from Exercise 7.5.
Exercise Tasks
Your objective is to analyse the scenario above and build a use case model

by doing the following tasks:

1. Describe the goal and scope of the use case.
2. Write a series of steps describing the main success scenario.
3. Write extensions describing any error (or exception) scenarios.
4. Identify postconditions for the use case.
5. Can you identify any preconditions for the use case?

7.8 Exercises 103

Exercise 7.10 (User Story Exercise 1)

7.10 Use the scenarios from Exercise 7.2 to create a set of user stories.

Exercise 7.11 (User Story Exercise 2)

7.11 Use the scenarios from Exercise 7.3 to create a set of user stories.

Exercise 7.12 (User Story Exercise 3)

7.12 Use the scenarios from Exercise 7.4 to create a set of user stories.

Exercise 7.13 (User Story Exercise 4, Advanced)

7.13 User Story Exercise 2, Advanced Use the scenario from Exercises 7.5
to create a set of user stories.

Exercise 7.14 (User Story Mapping Exercise)

7.14 Think of all the activities you perform between when you get up in the
morning and when you arrive at work or class. For each activity, you create
one user story, such as brush teeth, get dressed or catch train. Write each user
story on a sticky note (one story per sticky note). These simplified user stories
are suitable for this activity. We don’t need to use the full template ‘As a <user
role>, I want to <scenario objective>, In order to <achieve business value>’.

Exercise TasksYou could do this exercise on your own, but it is much better
as a group activity. Each group member creates user stories for the morning
activities, as described above.

Now share your user stories with the rest of the group. Arrange all the user
stories into a logical sequence. You can do this by placing the sticky notes on
a white board or sheet of flip chart paper, if there is enough room.

Arrange the sticky notes from left to right. The left-hand side comprises
activities conducted earlier. The right-hand side is for activities conducted
later. You know, get dressed comes before (to the left of) leave house. Well,

(continued)

104 7 Requirements

Exercise 7.14 (continued)

get dressed comes before leave house for most people, anyway. You can
remove or group duplicate (or similar) user stories.

You should be able to make a single row of user stories from earliest
activities, such as wake up or switch off alarm through to latest activities,
such as arrive at work. Now draw a long horizontal line under the row of user
stories.

Now imagine you were running really late. You have to get up and leave
home in a big hurry. What are the essential activities you must perform?What
activities could you skip if you really had to? Move the optional activities to
below the line, leaving the crucial and essential activities above the line.

The row of essential activities you are left with above the line represents
a minimum viable product (MVP). The MVP is the minimum set of essential
activities required to make things work.

Exercise 7.15 (Learning Journal)

7.15 Make some notes in your learning journal about what you learned from
the exercises in this chapter.

7.9 Hints, Tips and Advice on Exercises

7.1 Learning Journal

In this chapter, we have explored types of requirements, requirements quality,
use cases, user stories, user story mapping and personas. Try to write a few
comments about the things you have learned in each of these topics.

This book is aimed at early career practitioners, so we have tended to focus
on functional requirements. That does not mean we should forget about the
challenges presented by non-functional requirements.

7.2 Use Case Diagram Exercise 1

See example solution in Fig. 7.3. Yours may not be identical, of course, but
hopefully you have more or less the same use cases and actors.

7.9 Hints, Tips and Advice on Exercises 105

Student

Lecturer

Upload
Marks

Administrator

Register

Transfer

Module Year
Assignment

Ratify
Marks

Fig. 7.3 Use case diagram Exercise 1 example solution

Senior
Librarian

Librarian

Search

Borrower

Archive

Purchase

Borrow

Return

Fig. 7.4 Use case diagram Exercise 2 example solution

7.3 Use Case Diagram Exercise 2

See example solution in Fig. 7.4. As in Exercise 1, yours may not be identical,
but hopefully, you have more or less the same use cases and actors.

7.4 Use Case Diagram Exercise 3

See example solution in Fig. 7.5. Hopefully, your diagram has more or less
the same use cases and actors.

7.6 Use Case Exercise 1

See example solution in Table 7.2. Hopefully, yours looks pretty similar.

106 7 Requirements

Frequent
Flier

Traveller

Search

Reserve

Book

Cancel

Fig. 7.5 Use case diagram Exercise 3 example solution

Table 7.2 Use case Exercise 1 example solution

Use case title Option module transfer

Primary actor Student

Goal Change selected option module

Scope Student record information system

Preconditions First 4 weeks of semester

Postconditions Student transfer to new option completed

Main success scenario 1. Student selects option module to drop

2. Student selects new option module

3. New option module selection approved by timetabling

4. New option module selection approved by academic
programme leader

Extensions 3a. New option module creates timetable clash and hence not
approved

4a. Programme leader does not approve new module selection

7.7 Use Case Exercise 2

Yours should look like the example solution in Table 7.3.

7.8 Use Case Exercise 3

Again, with luck, yours looks like the example solution in Table 7.4.

7.9 Hints, Tips and Advice on Exercises 107

Table 7.3 Use case Exercise 2 example solution

Use case title Holdings purchasing

Primary actor Senior librarian

Goal Select and order new holdings

Scope Library information system

Preconditions

Postconditions New holdings ordered from publishers

Main success scenario 1. Review recommendations from subject librarians and
academics

2. Obtain publisher and price information for each
recommendation

3. Check price of recommended holding

4. Produce purchase order

5. Send purchase order to publisher of recommended holding

Extensions 2a. Unable to find publisher or price information

3a. Purchase price exceeds remaining budget, hence unable to
purchase

Table 7.4 Use case Exercise 3 example solution

Use case title Flight booking

Primary actor Traveller

Goal Make flight booking

Scope Flight travel booking system (not including airline reservation
systems, such as Amadeus and Sabre)

Preconditions Flight search complete and on-screen

Postconditions Itinerary confirmation and e-ticket sent to traveller

Main success scenario 1. Select chosen flight from search results

2. Produce itinerary based on flight selection

3. Request seat availability airline reservation system (Amadeus
or Sabre depending on airline of flight selected)

4. Traveller selects seat configuration

5. Produce final itinerary included seat selection

6. Traveller confirms final itinerary

7. Invoke payment gateway (collect online payment)

8. Send seat reservation to airline reservation system

9. Confirm airline seat reservation

10. Send booking confirmation and confirmed itinerary to
traveller

Extensions 7a. Payment authorisation declined

9a. Airline does not confirm seat reservation

108 7 Requirements

7.10 User Story Exercise 1

Here are the user stories from the scenario in Exercise 7.2.

• As a student, I would like to Register for a course, in order to advance
my career.

• As a student, I would like to Transfer from one option module to
another, in order to more closely match my interests.

• As a lecturer, I would like to Upload marks, in order for students to
progress through their course.

• As an administrator, I would like to assign modules to years, in
order for students to progress through their course.

• As an administrator, I would like to ratify marks, in order for
students to progress through their course.

7.11 User Story Exercise 2

Here are the user stories from the scenario in Exercise 7.3.

• As a senior librarian, I would like to Archive holdings, in order to
make space for new items.

• As a senior librarian, I would like to Purchase new holdings, in
order to offer borrowers the latest materials.

• As a senior librarian, librarian or borrower, I would like to
Search holdings, in order to find materials.

• As a borrower, I would like to borrow holdings, in order to enjoy
materials.

• As a borrower, I would like to return holdings, in order for others to
enjoy the materials.

7.12 User Story Exercise 3

Here are the user stories from the scenario in Exercise 7.4.

• As a frequent flier or traveller, I would like to reserve flights,
in order to achieve my travel goals.

• As a frequent flier or traveller, I would like to book flights, in
order to achieve my travel goals.

• As a frequent flier or traveller, I would like to search flights,
in order to achieve my travel goals.

(continued)

References 109

• As a frequent flier or traveller, I would like to cancel flights,
in order to recover money due to changing plans.

7.10 Chapter Summary

In this chapter, I explored requirements gathering. I distinguished functional require-
ments (what the system is meant to do, the activities the system performs) from
non-functional requirements (which are attributes of the system such as security,
reliability, performance, maintainability, scalability, and usability.) I introduced two
main approaches to eliciting and managing requirements: use cases and user stories.
Use cases provide a way of creating detailed descriptions of people interacting with
our software. User stories are simple placeholders that encourage conversations
about requirements with non-specialist system stakeholders.

I introduced user story mapping which you can use to link user stories into
longer end-to-end goals of using the system. User story mapping can also help
you prioritise user stories, when creating a minimum viable product. Personas, in
contrast, help you put yourself in the mind-set of your users. Your research identifies
different types of users, or users with different goals. Personas help you articulate
needs of these different groups.

References

1. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley Professional, Upper Saddle River
(2000)

2. Patton, J.: It’s all in how you slice it. Better Softw. Mag. 2005(01) (2005). https://www.
stickyminds.com/better-software-magazine/its-all-how-you-slice-it

3. Patton, J.: User Story Mapping: Discover the Whole Story, Build the Right Product, 1st edn.
O’Reilly Media, Sebastopol (2014)

4. Rahy, S., Bass, J.M.: Managing non-functional requirements in agile software development. IET
Softw., 1–13 (2021). https://doi.org/10.1049/sfw2.12037

5. Wikipedia: List of Unified Modeling Language tools (2019). https://en.wikipedia.org/wiki/List_
of_Unified_Modeling_Language_tools. Page Version ID: 909970969

 2251 2934 a 2251 2934
a

https://www.stickyminds.com/better-software-magazine/its-all-how-you-slice-it
https://www.stickyminds.com/better-software-magazine/its-all-how-you-slice-it

 522 3350 a 522 3350 a

https://doi.org/10.1049/sfw2.12037

 1634 3433 a 1634 3433
a

https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools
https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools

Chapter 8
Architecture

Abstract In this chapter, we explore software structuring skills that help achieve
software requirements and manage change. Organising software structure can
simplify communications and enable team members to work on different parts
of the project at the same time. Software features are independent end-to-end
fragments of the functionality of the system. In feature-driven development, end-
to-end fragments are worked on by different team members, in parallel. Other
structures, or architectures, can also reduce dependencies between one part of the
system and another. Structures discussed include client-server, pipe and filter and
layered architectures as well as design patterns such as the model-view controller.

8.1 Introduction

Software architecture concerns the overall structure and organisation of the system.
On the one hand, architecture is a process, the creative and design activities involved
in making an architecture or system structure. In this view, architecture is a set of
high-level system design activities.

On the other hand, architecture is one or more outputs or deliverables, a set
of architecture design models that describe how the system is organised as a set
of communicating components. In this view, architecture is a set of development
artefacts, skeleton software systems, drawings or reports used to convey the desired
system structuring.

Architectural design happens early in the development process. It overlaps with
requirements gathering and often needs to be revisited later during development or
production as a refactoring activity. Architectural design requires consultation with
stakeholders and is needed to:

• Provide a software infrastructure to meet non-functional requirements
• Enable everyone to clearly picture the overall organisation of the system
• Simplify software development collaboration between more than one person or

team

© Springer Nature Switzerland AG 2022
J. M. Bass, Agile Software Engineering Skills,
https://doi.org/10.1007/978-3-031-05469-3_8

111

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05469-3_8&domain=pdf

 -151 4612
a -151 4612 a

https://doi.org/10.1007/978-3-031-05469-3_8

112 8 Architecture

Moving Beyond Monolithic Software
When we start learning programming, our efforts can tend to towards a
monolith. Our code tends to be organised into one centralised location. We
might have an overcomplicatedmain method in a Java program. Or, we might
implement one class where the bulk of activity is concentrated.

Working as part of a team brings into sharp relief the limitations of this
approach. We need to create a space where different team members can
contribute working code without everyone tripping up and falling over each
other. Architecture can address this problem. By dividing our system into a
set of logical moving parts, we can work together more effectively.

Themoving parts of the system interact through interfaces. We might build
part of our system around a set of services that provide data and business-logic
functionality to the client side of our system. Once, we create this client-server
relationship within our system, we can have one team member focus on the
front end and one on the back end and reduce overall system development
time.

Making architecture explicit has three main benefits or objectives:

• Stakeholder communication
• System analysis
• Large-scale reuse

As I have hinted, architecture is both a design process and a resultant artefact.
The architecture design process needs to involve different stakeholders. We need
to obtain advice and support from clients, providers of other software services,
service hosting and operations specialists and security specialists in order to design
a successful architecture.

Further, the architecture enables analysis to ensure non-functional requirements
are achieved. We can stress-test aspects of our architecture or an architectural
skeleton of our system. We can gather empirical data to support our design decisions
regarding performance and data volumes.

Finally, we need to be able to reuse parts of our system. We always seem to be
under pressure to produce more good-quality software with fewer resources. Reuse
is always an import goal, because we can, in principle, enhance productivity. We
may be able to reproduce the same architecture over multiple product instances.

8.2 Architecture in Agile

A significant effort on architecture prior to starting development work, in agile, has
the pejorative name big design upfront. Big design upfront has a bad reputation. We
invest effort without developing working code. Customers can’t realistically give us

8.2 Architecture in Agile 113

feedback on our architecture designs. Evaluating architecture, at the design stage, is
tricky. Can you detect the tone of understatement there?

8.2.1 Refactoring

Refactoring is where the system is re-structured and re-organised without changing
any functionality. Refactoring is a necessary part of incremental development.
As new features are added, periodic refactoring enhances code understanding,
maintainability and extensibility [4].

It is desirable to invest effort in tidying up the structure of system from time
to time. Failure to undertake periodic cleaning results in a code mess few can
understand and fewer dare alter. Team members include refactoring tasks in their
backlogs of work items to be performed in future development iterations.

8.2.2 Rework

Rework is not the same as refactoring. Rework is repeating the same work over
again, in the worst case, because it was poorly done in the first place. Nobody likes
rework. Managers hate rework because it is a needless cost. Self-organising team
members dislike rework because it is a sign of poor-quality craft.

Experienced teams are often working on applications that are similar to others
that they have built before. Hence, architecture tends to be inherited and refined from
previous efforts. Obviously, everyone wants to be sure the inherited architecture is
good. Hence, some effort to evaluate architecture quality is needed for working or
live systems.

But what are we to do if we are learning with an inexperienced team or in a new
application domain?We don’t have any reliable architecture to inherit from previous
efforts. Well, think about the trade-offs. Too much upfront design might be a waste
of resources. But, we might end up refactoring the design every iteration. And that
could result in excessive rework.

For sure, you mustn’t attempt to create a fully articulated, detailed architecture
design. If we try to create detailed architecture designs, they may turn out to be
useless. We would need to consider features that will not be implemented for months
ahead. Things change. Stuff happens. Planned features never get built. The days are
gone when we can afford to design architectures for features that are never going to
be implemented.

8.2.3 Planned Refactoring

Better that we try to understand what features are going to have a big impact on the
architecture. Then, develop an outline architecture, with a release plan, or roadmap

114 8 Architecture

for re-architecting when significant feature enhancements are required. That way,
those enhancements can be dropped (or replaced) if the features turn out to be
superseded.

This planned refactoring approach allows the team to consider, externalise and
explain the need for architecture re-design at significant stage of the project. Planned
refactoring allows you to start delivering working code using a simple architecture
to start with. But planned refactoring also requires that you think carefully about the
implications of non-functional requirements and features on architecture.

8.2.4 Architectural Abstraction

At one level, architecture is about the structure of individual services, applications
and programs. At this level, we are concerned with the internal structure and
decomposition of a single program.

At another level, architecture is about sophisticated enterprise systems that
comprise systems of systems. Enterprise systems often involve interacting collec-
tions of programs harnessed to create some overarching and coordinated set of
functions. Typically, enterprise systems are hosted on multiple servers and managed
by different service providers.

Hence, we use architecture to simplify and clarify different levels of abstraction.
In larger, more sophisticated systems, we use higher-level design styles that define
the overall structure of an entire software product and within that use more specific
architectural approaches such as design patterns. We will discuss object-oriented
design patterns in more detail in Chap.9.

It’s All About the Interfaces
Design styles depend on clearly defined interfaces between the components of
our system. These architectural styles help us understand and define the way
components in our systems interact.

Some interfaces take the form of application programming interfaces
(APIs). In an API, the focus is on method naming as well as calling and return
parameters. In other design styles, there is more emphasis on data structures
during interface design.

As we start to gain experience, we need to create a skeleton architecture
and experiment with the interfaces between components. Once our skeleton
architecture is working, we can start adding functionality to meet the require-
ments defined by our client.

8.3 Design Styles 115

8.3 Design Styles

Design styles are reusable structures or overarching organisational approaches that
recur in specific application classes. It can save a lot of time and heartache if your
application fits into one design style or another. Each design style implies a set of
rules or conventions that team members must follow, for the style to work. The
common thread between the design styles is dividing the system into a series of
subsystems or components, which interact through well-defined interfaces.

Using a design style has several benefits. The overall structure of complex system
is simpler to explain and understand if a well-known design style is employed. On-
boarding new team members and inducting novice developers is easier when the
overarching structure of the system is simple and straightforward. Using a design
style is an example of architectural reuse, where multiple system implementations
have a shared overall structure.

An important benefit of design styles is in separation of concerns and maintain-
ability. Functionality for one purpose is located in one component. This gives clarity
and avoids redundant software source code. Specific components can be replaced,
assuming consistent inputs and output data formats, without disrupting the rest of
the system. Again, maintainability can be improved if an additional component can
be introduced, without disrupting everything else.

In addition, different teams, or team members, can work on specific components
in parallel, providing the input and output interfaces have been agreed in advance.
Architecture also plays an important role in collaboration between teams on large-
scale projects [9]. Carefully designed architecture can dramatically reduce the time
required to develop the overall system. In summary, design styles offer benefits in
terms of simplicity, reuse, maintainability and separation of concerns [10].

8.3.1 Client-Server

Various configurations of the client-server architectural style have emerged as a
ubiquitous approach to accessing software services using Internet technologies, as
shown in Fig. 8.1. One or more servers provide services to clients which might
include mobile device applications (Mobile Apps) or web browsers.

Hence, functionality is collected into services, which may be delivered from
separate servers [8]. We will discuss deploying services to cloud-hosted servers in
a bit more detail in Chap. 19. Services can also be replicated on multiple servers to
support increased loads. In corporate settings, the client-server approach simplifies
the provision of utility services such as printing or email.

Availability of standardised and inexpensive network technologies have made
client-server architectural style very popular. In fact, we use the client-server
approach in the Tabby Cat project in Chap.12. Despite this, there are some
drawbacks with the approach. Services are vulnerable to denial of service attacks.

116 8 Architecture

Client 1

Server 1

Server 2

Server n

Internet

Client 2

Client m

Client 3

Fig. 8.1 Client-server architectural style

Further, performance is subject to varying network bandwidth and so can be difficult
to predict and manage, particularly during peak periods.

8.3.2 Repository Architecture

For some applications, it is fine if the various components manage their own data
stores. But in very data-intensive applications, where a consistent view of shared
data is required by all components, then a repository architectural style can be
attractive. In the repository architecture, components do not interact with each other
directly. Rather, all interactions happen through repository data transfers, as shown
in Fig. 8.2.

Components do not need to be aware of each other, supporting separation of
concerns. Changes to repository data made by one component are available to
other components. The centralised storage model simplifies handling of services
like backup and data archiving.

A drawback with this approach is that the repository is an obvious single point
of failure for the whole system. Any corruption of repository data affects all the
components.

You can mitigate risk by creating a distributed repository, with data shared
across multiple servers, but that introduces new technical problems such as ensuring
consistency of information within the repository. In some technologies, such as
Apache Kafka [1], availability is ensured using distributed data structures and
redundant layers.

8.3 Design Styles 117

Component 3 Component 4

Component 5

Component n

Component 2

Component 1

Repository

Fig. 8.2 Repository architectural style

8.3.3 Pipe and Filter

The pipe and filter architectural style comprises a chain of transformation compo-
nents that each process input data to produce some output, as shown in Fig. 8.3a. The
chain is often sequential, leading to a batch processing model. More sophisticated
implementations can perform transformations in parallel, on different data items, in
a more complex data-flow model.

The main challenge is to organise the process into a set of discrete processing
stages that is each responsible for a specific transformation. Incremental develop-
ment is supported, by starting with a few simple transformations. Further processing
stages can be added as the software matures. Conventionally, the pipe and filter style
used a batch model processing one item at a time. More recently, processing streams
tend to be used.

The pipe and filter architectural style does have disadvantages, which include:

1. Unsuitability for interactive systems.
2. Input parsing and output unparsing are required at each stage.
3. Agreed standard input and output data formats are needed.

Despite these shortcomings, pipe and filter architectures are often used in appli-
cations such as computer language translators and compilers. You can implement a
skeleton pipe and filter architecture in Exercise 8.2. Have a go at the exercise first,
but I’ve put an illustrative solution on GitHub [2].

118 8 Architecture

Transformation 1 Transformation 2 Transformation 3 Transformation n

A)

Persistence Layer

B)

Application Logic Layer

Server-side Presentation Layer

Client-side Presentation Layer

Fig. 8.3 Example architectural styles. (a) Pipe and filter architecture. (b) Layered architecture

8.3.4 Layered Architecture

When using the layered architectural style, related functionality is grouped into a
series of levels, as shown in Fig. 8.3b. Each layer provides an agreed set of services
to the layer above. In contrast with the unidirectional pipe and filter architectural
style, data flows are bidirectional. Data can flow down through the layers, as well as
up. Lower levels provide services to the next layer up, in the system.

The layered architecture requires discipline to ensure that all team members
adhere to the model. The maintainability benefits of the layers are lost if service
calls jump over a layer and access underlying services. On the other hand, there is a
performance cost to passing data through multiple layers for each request. You can
implement a skeleton layered architecture in Exercise 8.2.

8.3.5 Clean Architecture

In the clean architecture approach [7], there is a recognition that the application
needs protecting from web interfaces and user interface frameworks in much the
same way. Consequently, instead of having clients at the top and databases at the
bottom, as we do in the n-tier architecture, we form an onion ring perspectives with
all the interfaces around the outside, as shown in Fig. 8.4.

8.3 Design Styles 119

Entities

Use Cases

Increasing Risk
Of Change

Controllers &
Gateways

Web, Databases &
External Interfaces

(1) User Interface
(Browser) Request

(2) Resultant
Database Call

Increasing
Abstraction Levels

4

3

2

1

5

6

7

Fig. 8.4 Clean architectural style (Adapted from [7])

Using this model, we have entities in the centre, surrounded by use cases. Then
we have a ring for our gateways and controllers. Finally, as I mentioned, the web,
databases, devices and other external interfaces form a ring around the outside.
The idea is that we may want to swap relational database management system
technology in the future. We should not have to re-write the whole application if
we want to do that.

Thus, referring to Fig. 8.4, we can imagine a scenario where a user presses a
button to request some information stored in a database. When the button is pressed,
our user interface (1) calls a controller (2). The controller calls a use case (3) which
uses an entity (4) and then (5) calls a database gateway (6). Finally, the gateway calls
the database (7) to search for the requested data. The requested data might then be
passed back in through the rings to an entity and back out through rings to the user
interface.

Entities in the architectural style are abstract enterprise logic. The use cases
encapsulate application specific functionality and business rules. The controllers and
gateways provide managed interfaces to the outside world such as drivers, databases
and the web. This is a useful architectural style for business information systems and
will be applied to the Tabby Cat project in Chap. 12.

120 8 Architecture

8.4 Reference Architectures

A reference architecture is a highly documented skeleton of the overall system, or
some technically demanding aspects of the system. Reference architectures include
examples of using specific interfaces, APIs or services in the system. The purpose of
the reference architectures is for induction of newmembers to the team and to ensure
everyone understands the rules or conventions implied by the system architecture.

8.5 Design Principles

It is worth pausing here to consider three general design principles, which are good
practice regardless of the implementation technology being used:

• KISS
• DRY
• YAGNI

but also two more detailed sets of object-oriented design principles (GRASP and
SOLID) that help to simplify system maintenance.

8.5.1 KISS Principle

KISS is an acronym for Keep It Simple, Stupid. The acronym reminds us to avoid
unnecessary complexity in our designs. Our design need contain only enough
complexity to achieve our requirements, and no more.

8.5.2 DRY (Do Not Repeat Yourself)

We try to avoid repetition in software development. Repetition means multiple-
source code fragments performing a similar task. This becomes a challenge when
maintenance is needed, since changes must be made in more than one place. The
DRY principle applies to all aspects of our development work and includes scripts,
tests, databases as well as source code.

8.5 Design Principles 121

8.5.3 YAGNI (You Aren’t Gonna Need It)

Software engineers have the habit of predicting future needs of clients and imple-
menting software features in anticipation of those future requirements. This is not
a good practice because sometimes we invest effort in preparing for future features
that never come. This results in bloated software source code.

Instead, only functionality needed now must be implemented. This improves
productivity against the requirements that have actually been prioritised and also
helps keep things simple to accommodate future changes.

8.5.4 GRASP

The General Responsibility Assignment Software Patterns (GRASP) principles,
proposed by Craig Larman, provide a mental model to help object-oriented design
[5]. The GRASP pattern comprises:

• Controller
• Creator
• Indirection
• Information expert
• Low coupling
• High cohesion
• Polymorphism
• Protected variations
• Pure fabrication

The controller is a non-user interface object responsible for handling system
events. For example, use cases to Create Customer or Archive Customer could
be performed within a single Customer Controller class. The controller class
performs appears in the ubiquitous Model, View, Controller class and its
variants used in web application design.

Creating objects is a common activity in object-oriented systems. In simple
systems, constructor methods are used to instantiate objects at runtime. In larger
systems, where numerous objects of similar types need to be instantiated at runtime,
factory patterns are used. The factory pattern provides a single component for object
instantiation (see more in Sect. 9.6.3).

The indirection principle supports reuse and reduces coupling between classes
that interact, rather like the way the Controller mediates between the Model
and the View in the Model, View, Controller pattern. The indirection principle
advocates placing an intermediate object between classes that directly interact.

The information expert principle recommends that classes should be assigned
responsibility for operations where they have the information needed to fulfil it.

122 8 Architecture

Simply put, classes contain operations that need to be performed on the data they
encapsulate.

In general, in object-oriented design, we seek to minimise coupling andmaximise
cohesion. That is, we want to minimise coupling between classes and maximise
cohesion within a class. When we loosely couple different classes, we try to
minimise their dependency upon one another. This helps minimise propagation of
change through our system, when we make modifications. The contents of cohesive
classes are strongly related and highly focused.

Object-oriented programming languages support polymorphism, in which a
single interface is used for entities of different types. For example, we can
create constructors for our classes, which accept different parameters. The specific
constructor executed is assigned automatically at runtime.

We try to improve the maintainability of our system by using stable interfaces
around aspects of the system we think are likely to change. Hence, we protect our
system from variation. The interface minimises the effect of later changes rippling
through our system.

A pure fabrication class, according to the GRASP principles, does not directly
correspond to a concept in the problem domain but rather provides a service to other
classes in the system.

8.5.5 SOLID

The SOLID acronym was introduced around 2004 by Michael Feathers, to help
you remember good principles of object-oriented design [6]. The SOLID principles
have some overlap with Larman’s GRASP patterns [5]. The SOLID acronym [11]
is derived from:

• Single responsibility
• Open-closed
• Liskov substitution
• Interface segregation
• Dependency inversion

The single-responsibility principle dates back to the days of structured program-
ming. Simply put every class should have only one responsibility. Consequently,
there can only be one reason to change a class. This is another way of expressing
high cohesion within a class.

The open-closed principle is a restatement of the Protected Variations principles
fromGRASP, mentioned in Sect. 8.5.4.We want to achieve a design in which classes
are open for extension but closed for modification. We can use generalisations, such
as inheritance or delegate functions, to extend classes.

The Liskov substitution principle is related to another idea in object-oriented
software design, called design by contract. The idea is that children classes, which
inherit properties from parents, can be substitutable for parents. For example, if the

8.5 Design Principles 123

class Fast Car is a subtype of Car, then a Fast Car object can be used anywhere
that Car object is used.

This principle imposes some restrictions on what we can do in child class
interfaces, regardless of what the programming language actually allows. For
instance, preconditions cannot be strengthened in the subtype, and postconditions
cannot be weakened in the subtype.

Interface segregation is one way to achieve high cohesion in user interface design
(see Coupling and Cohesion in Sect. 8.5.4). User interface software is developed
specifically for a client, such that no client is forced to depend on methods it does
not use. The interface segregation principle encourages us to develop role-based
interfaces. This decouples different clients to simplify software maintenance and
evolution.

The dependency inversion principle suggests that our code depends on abstrac-
tions not on concrete details [6]. Hence, we introduce interfaces or abstract classes
as a level of indirection between components that would otherwise be rather tightly
coupled. This idea is illustrated in Fig. 8.5. In Fig. 8.5, (a) the layers are rather tightly
coupled. Changes in one layer ripple through to another. In contrast, if we look at
Fig. 8.5, (b) changes to the implementation of the concrete application logic layer,
for instance, have less impact on the server-side presentation layer.

Server-side
Presentation

Layer

Application
Logic Layer

Persistence
Layer

Server-side
Presentation

Layer

<<Interface>>
Application

Logic Interface

Persistence
Layer

Application
Logic Layer

<<Interface>>
Persistence

Interface

A)

B)

Fig. 8.5 Dependency inversion pattern. (a) Conventional layer pattern. (b) Dependency inversion
pattern

124 8 Architecture

8.6 Architecture Implementation

Once we have selected an architectural style, we can build a reference architecture
comprising a simple skeleton of the overall system. We can use the reference
architecture to discuss, qualitatively assess and perhaps validate the chosen design
style. The skeleton is used to illustrate the interfaces between main components.
Usually, in production software, a reference architecture will include source code
documentation which discusses conventions, such as naming.

Before we can start designing specific features, we need some overall structure
in the system. We need an overall organisation for the system. A novice may start
with little or no structure and hope to refactor, through successive increments, until
a nice structure emerges. But the danger here is that there won’t be time to refactor.
So, better to create a simple structure that everyone can use and play along with.
Later refactoring may still be necessary. But, some structure at the start is a recipe
for success. So, when we start designing features, in Chap. 9, let’s assume you have
a simple architecture in place already.

8.7 Exercises

Now complete these exercises on the material from Chap. 8. This will help you
consolidate your skills in architecture. Remember, don’t look at the hints, tips and
solutions chapter, just yet. Have a go at the exercises, then look at the advice in
Sect. 8.8.

Exercise 8.1 (Learning Journal)

8.1 Write down what you have learned about the material in Chap. 8 for your
learning journal.

Exercise 8.2 (Pipes and Filters Exercise)

8.2 For learning and experimental purposes, implement a skeleton pipes and
filter design.

Exercise Tasks Use any programming language of your choice. I’m
choosing to use Java.

• Create three filter classes that accept a string input and create a string
output. The string manipulation can be simple. Let’s say each filter

(continued)

8.7 Exercises 125

Exercise 8.2 (continued)

adds one word to the string. The final output should be ‘my initial
string: one, two and three’.

• You could create a parent class from which the three filter classes could
inherit.

• Finally, create a mainmethod or unit tester to execute the pipeline. Check
the output produces the correct string.

• Now, implement a new version of the second filter class. The final output
should now be ‘my initial string: one, two and three’.
Notice that you can revise the string manipulation in the second filter
without changing the other filter classes.

This example is sufficiently simple that a pipeline of filter classes is not really
required, of course. But the intention is to build something simple to help you
understand the principles of this architectural style.

Exercise 8.3 (Layered Architecture Exercise)

8.3 For learning and experimental purposes, implement a skeleton layered
architecture design.

Exercise Tasks Use any programming language of your choice. I’m
choosing to use Java.

• Create a three-layered architecture that accepts a string input and creates a
string output. The string manipulation can be simple. Let’s say each layer
adds one word to the string. The final output should be ‘my initial
string: one, two and three’.

• You should access each layer using a simple interface.
• Finally, create a main method or unit tester to invoke the highest level

layer. Each layer should then invoke the next lower level. Check the output
produces the correct string.

• Now, implement a new version of the middle layer class. Notice that you
can revise the string manipulation in the middle layer without changing the
other layer classes.

This example is sufficiently simple that a layered architecture is not really
required. But the intention is to build something simple to help you understand
the principles of the architectural style.

126 8 Architecture

Exercise 8.4 (Programming Language Choice)

8.4 Choosing a programming language is an aspect of technology stack
selection. Write a brief technical report on your choice of programming
language.

Exercise 8.5 (Learning Journal)

8.5 Think about the exercises from Chap. 8. Reflect on the exercises you have
completed. Make some notes in your learning journal.

8.8 Hints, Tips and Advice on Exercises

8.1 Learning Journal

In Chap. 8, we have discussed agile architectures, design styles, technology
stack selection (where you have the opportunity to exercise that choice),
reference architectures, design principles and architecture implementation.

Take a few minutes to write some notes on what you have learned about
each of these topics.

8.2 Pipes and Filters Exercise

A very simple illustration of the pipes and filter style is implemented here [2].

8.3 Layered Architecture Exercise

A very simple illustration of the layered architecture style is implemented
here [3].

8.9 Chapter Summary 127

8.4 Programming Language Choice

Your brief report should, at least, include:

• Advantages (or strengths) of your chosen language
• Disadvantages (or weaknesses) of your chosen language
• Range and suitability of learning resources (tutorials, examples)
• Materials available to support language use (language reference, language

enhancement releases)
• Language compatibility (or support) for preferred development environ-

ments,
• Summary and recommendations

It is good to learn new programming languages and technologies. However,
using a language you already know is often much quicker and more efficient.
Learning a new language in a HackCamp or Hackathon setting (with a short
time scale and emphasis on solution delivery) adds stress. Better to learn lots
about a new language ‘offline’, and after that, you can apply your new skills
in a project setting.

8.9 Chapter Summary

Architectural design is the process of creating a high-level structure or organisation
for our system. Defining a simple set of interacting components helps you achieve
non-functional requirements. Failure to impose an overarching design style results
in monolithic applications, which are difficult to understand or maintain.

Choosing an architectural style can help team members understand the structure
of the system. Well-understood component interaction models also make it easy to
divide work between multiple developers or teams.

We can often inherit architectural styles from one software product or version
to another. This is a valuable form of reuse. Our high-level software organisation
is already defined, and everyone can understand the basic model being used. This
eases induction of new team members and support for novice developers. Further,
navigation around the software source code is simplified.

Each style implies some rules or conventions everyonemust follow. This includes
appropriate use of folder structures and naming conventions. For example, when
using a repository architectural style, componentsmust only communicate with each
other through the repository. The approach falls down, if people do not follow these
conventions, and system maintenance becomes a nightmare.

In object-oriented system design, there are also several design principles we
employ. The GRASP and SOLID concepts provide checklists of good practices
to use in our designs. Becoming familiar with these practices and adopting them
in appropriate settings will help improve the quality and maintainability of our
software.

128 8 Architecture

We are now ready to move from high-level architectural design to more detailed
design concerns.

References

1. Apache Software Foundation: Apache kafka (2017). https://kafka.apache.org/
2. Bass, J.M.: Pipeandfilterexample (Jan 2022). https://github.com/julianbass/

PipeAndFilterExample
3. Bass, J.M.: Layeredarchitectureexample (Jan 2022). https://github.com/julianbass/

LayeredArchitectureExample
4. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving the Design

of Existing Code, 1st edn. Addison Wesley, Reading, MA (Jun 1999)
5. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and

Design and Iterative Development, 3rd edn. Prentice Hall PTR, Upper Saddle River, NJ (2004)
6. Martin, R.: Clean Code: A Handbook of Agile Software Craftsmanship, 1st edn. Prentice Hall,

Upper Saddle River, NJ (Aug 2008)
7. Martin, R.C.: Clean Architecture: A Craftsman’s Guide to Software Structure and Design, 1st

edn. Addison-Wesley (Sep 2017)
8. Richardson, C.: Microservices Patterns: With Examples in Java, 1st edn. Manning (Oct 2018)
9. Salameh, A., Bass, J.M.: An architecture governance approach for agile development by

tailoring the Spotify model. AI & SOCIETY (Jun 2021). https://doi.org/10.1007/s00146-021-
01240-x

10. Sommerville, I.: Software Engineering, 10th edn. Pearson Education, Harlow (2015)
11. Wikimedia Foundation: (Mar 2021). https://en.wikipedia.org/w/index.php?title=SOLID&

oldid=1014595482, page Version ID: 1014595482

 1451 659 a 1451 659 a

https://kafka.apache.org/

 1778 742 a
1778 742 a

https://github.com/julianbass/PipeAndFilterExample
https://github.com/julianbass/PipeAndFilterExample

 1778 908 a 1778 908 a

https://github.com/julianbass/LayeredArchitectureExample
https://github.com/julianbass/LayeredArchitectureExample

1582 1904 a 1582 1904 a

https://doi.org/10.1007/s00146-021-01240-x
https://doi.org/10.1007/s00146-021-01240-x

 1130 2153 a 1130 2153 a

https://en.wikipedia.org/w/index.php?title=SOLID&oldid=1014595482
https://en.wikipedia.org/w/index.php?title=SOLID&oldid=1014595482

Chapter 9
Design

Abstract Having created a high-level structure or adopted an architectural style,
in Chap. 8, we can now create some designs to meet our requirements. We will
create class diagrams and object sequence diagrams to understand how our software
will be structured and how the moving parts interact during runtime. We will also
implement some design patterns to solve well-established problems that recur in
objective-oriented systems. We will run through some examples and exercises.

9.1 Introduction

As part of our software development process, we’ve established requirements using
the skills in Chap. 7. Then, once we have developed a high-level structure or selected
an architectural style, as discussed in Chap. 8, we can build a reference architecture
comprising a simple skeleton of the overall system. We can use the reference
architecture to discuss, qualitatively assess and perhaps validate the chosen design
style. Now, we can start designing specific features.

9.2 Feature-Driven Development

Features are independent pieces of functionality that provide an end-to-end service
to an external actor. We can now start to populate our skeleton architecture with
features from our functional requirements. Features provide value to users and
customers and offer end-to-end fulfilment of a user need. Each feature can be
designed, implemented and tested independently [3]. Incremental development
consists of implementing features one after another.

In a layered architecture, we talk of features as a thin-slice through the system.
Each layer contributes some functionality to a feature, corresponding to the
responsibilities of that layer. Similarly, we can think of a data fragment making
its way through a pipes and filters pipeline. The thin-slice in this context is an
information fragment being processed and transformed by the stages of the pipeline.

© Springer Nature Switzerland AG 2022
J. M. Bass, Agile Software Engineering Skills,
https://doi.org/10.1007/978-3-031-05469-3_9

129

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05469-3_9&domain=pdf

 -151 4612
a -151 4612 a

https://doi.org/10.1007/978-3-031-05469-3_9

130 9 Design

A feature is not a prototype. A feature comprises working code, whereas a
prototype might be a low-fidelity mock-up. A prototype might have some values.
But, in agile, we prefer to focus on working code.

We can create acceptance tests for features. Finally, we can demonstrate features
at the end of each iteration and gain meaningful feedback from stakeholders.

We can’t demonstrate a sub-system. We can’t demonstrate a database with no
user interface, for example, just as we can’t demonstrate a user interface that has no
data storage or business logic behind it. That’s why in feature-driven development,
we always focus on end-to-end functionality. Collect some specific piece of data
from a user, manipulate that data, store it, manage it, transform it and let’s see the
result. A client or user should be able to understand the goal of a feature and, when
that working code is demonstrated, give us feedback.

9.3 System Modelling

System modelling is where you develop visual representations of the context or of
system you are creating. Each model provides a different view or perspective of the
system. Models usually use some kind of graphical notation, which is often based
on one of the Unified Modelling Languages (UML).

Models are most useful for their ability to stimulate discussion, and ultimately
consensus, on what something does or how something works. Models can record
decisions about design choices, for example. But it is the role of models in the
process of discussion that is most important.

We tend to think of two main types of model: static and dynamic. Static models
depict unchanging aspects of the system such as its internal structure, whereas
dynamicmodels help us understand the runtime behaviour as the system is executed.

We can construct models of the world as it exists before our system is imple-
mented, known as ‘As Is’ or domain models. These models are used at early stages
of the development process, perhaps during the requirements phase, to clarify what
happens in the real-world domain. As Is models allow us to consider strengths and
weaknesses of current arrangements and develop requirements for the proposed new
system.

More importantly for our concern now is the construction of ‘To Be’ models,
models that describe static or dynamic aspects of the proposed new system.
The To Be models describe things that don’t yet exist. They provide conceptual
visualisations of the system that is yet to be constructed. As such, they are used to
develop ideas, consider design trade-offs and communicate within the team.

We can identify four views of the system, which we might want to model:

• Interaction perspective
• External perspective
• Structural perspective
• Behavioural perspective

9.4 Class Diagrams 131

Chapter 7 explored user stories, use cases and use case diagrams for modelling
interactions between our proposed system and the outside world. Now I can talk
about models from structural and behavioural perspectives.

9.4 Class Diagrams

Class diagrams are used to create structural models that visualise the organisation
of a system or the current environment. We can develop our ideas about the
components that make up a system and their relationships with each other. We can
use our model development to discuss the design of the overall system architecture,
as described in Chap. 8.

Class diagrams are used to develop object-oriented systems. The diagrams show
the classes in the system and their associations. A class is a generalisation of
an object instance that exists in the system. Also, an association represents a
relationship between two classes.

When you develop class diagrams during early stages of the software engineering
process, objects represent something that exists in the real world. In a car rental
application, this might include cars, rental agreements, invoices, payments and so
on.

9.4.1 Deriving Class Diagrams

Where do the class diagrams come from? Well, from requirements (use cases or
user stories), of course. But how? The trick, I learned from some very clever and
experienced architects, is to look for nouns and verbs. What? I know! Nouns and
verbs? What are they? I’m not very good at English grammar, so perhaps I’d better
explain.

9.4.1.1 Noun and Noun Phrases

Nouns are words that describe a person, place, thing, quality or idea. In software
design, when we see nouns in our requirements, we are thinking of things that might
appear in the system we are developing or in its application domain.

For example, if we think about banking, the noun account might be imple-
mented as a bank account in our software. Similarly, in an online travel booking
system, the noun ticket might be implemented as a passenger ticket in our
software. In the English language, there are more nouns than any other kind of
word.

132 9 Design

Nouns are implemented in software as data items (attributes), data structures or
classes. During the design process, we can decide which nouns become classes and
which ones become attributes. We might employ decisions about cohesion, coupling
and encapsulation in order to make such decisions.

9.4.1.2 Verb and Verb Phrases

In contrast, verbs describe actions. As kids, we called them doing words. In software
engineering, verbs that appear in our requirements might end up being implemented
as methods or operations.

For example, if we think about banking, the verbs open or close might be
implemented as operations on a bank account in our software. Thinking of an online
travel booking system, the verbs purchase or cancel might be implemented as
operations on a passenger ticket in our software.

9.4.2 Domain Models

These models of the real world, as it exists before our system is implemented, are
often called conceptual models [6] or are prepared for domain analysis [7].

Figure 9.1a shows two simple classes, named car rental customer and
hire agreement, and a one-to-one association. This tells us that each customer
can have only one (and actually must have exactly one) rental agreement. Can you
hire more than one car at a time? Well, you could, I suppose. For example, if you
need a hire car and then are going to need a van to move something big or heavy,
that means allowing the rental car to sit unused while you use the van, which seems
extravagant to me. But, it is certainly difficult to actually drive two cars at the same
time, so maybe this one-to-one mapping relationship is okay.

Figure 9.1b shows a more detailed class representation with attributes (encap-
sulated data) and methods (operations the class can perform). This class shows the
conventional representation of a class in the UML, with three boxes: the name box
at the top, the attributes box in the middle and methods at the bottom.

Things get more useful in Fig. 9.2, where the class diagram shows a general-
isation or inheritance relationship. A Corporate Car Hire Agreement inherits
methods and attributes from Car Hire Agreement. Consequently, we think of the
Corporate Car Hire Agreement as a specialisation of Car Hire Agreement.

We can use class diagrams to model other relationships, such as composi-
tion. A car might be made up of engine, transmission, body, wheels and
fuel tank components, as shown in Fig. 9.3.

9.4 Class Diagrams 133

Car Hire
Agreement

1 0…*Car Rental
Customer

A)

Car Hire
Agreement

carHired
hireDate
returnDate
Location
Notes
…

setHireDate ()
getHireDate ()
createAgreement ()
archiveAgreement ()
…

B)

Attributes
Class
Name

Methods

Fig. 9.1 Simple Car Rental Classes. (a) Simple Classes and an Association. (b) Car Hire
Agreement Class (Incomplete)

9.4.3 High-Level Design Class Diagrams

At an early stage of the design process, class diagrams are used to model real-
world entities that will be implemented into the software. This is in contrast with
requirements modelling, where our focus is on the As Is context. Our focus, during
the design is on the To Be structure of the system. The goal is to identify and name
classes and their associations and then to find and name attributes and operations
which will be implemented as methods.

9.4.4 Detailed Design Class Diagrams

Then, as the design process progresses, the class diagrams are annotatedwith further
details, such as the attribute data types, method call and return parameter date types.
So the goal is to make detailed decisions about the class diagrams such that they can
be implemented in software.

134 9 Design

Individual
Car Hire

Agreement

Corporate
Car Hire

Agreement

Car Hire
Agreement

Hire Date
Return Date
Loca�on
Notes
…

setHireDate()
getHireDate()
createAgreement()
archiveAgreement()
…

fleetHired[] CarHired

setHiredCar()addCarsToFleet()

Fig. 9.2 Car Rental Agreement Inheritance

BodyEngine

Car

Maker
Range
Model
Notes
…

engineType
…

bodyShape
…

Transmission

gearboxType
…

Fig. 9.3 Class Diagram Illustrating Composition Relationships

9.6 Design Patterns 135

Car Rental Desk
Receptionist

HireAgreement RentalDeskLocation

createHireAgreement ()

getLocation ()

Terms&Conditions

getLocalTs&Cs ()

Location

LocalTs&Cs

HireAgreement

Fig. 9.4 International Car Rental Agency, Sequence Diagram

9.5 Object Sequence Diagrams

Sequence diagrams are used to model the interactions between actors and objects
within the system. This is modelling dynamic behaviour. Generally, a sequence
diagram corresponds to a specific use case. The actors and objects involved are
listed along the top of the diagram. The interactions are shown by using annotated
arrows. The diagram in Fig. 9.4 shows the interactions involved in a car rental desk
receptionist creating hire agreement for a customer.

9.6 Design Patterns

Design patterns are reusable descriptions of abstract design fragments solving
problems that re-occur in different application domains [5]. A pattern is the
description of a problem and the essence of its solution. The patterns often include
object-oriented characteristics such as inheritance or polymorphism expressed using
UML class and sequence diagrams. Design patterns fulfil a really useful function on
object-oriented design [6].

An objective of design patterns is to provide best practice solutions to recurring
problems identified. The pattern captures experience of implementing good-quality
solutions to the problem at hand. Hence, patterns are designed to provide a best

136 9 Design

practice solution to common problems. This helps so that developers do not have to
struggle to find a new solution, to a well-known old problem, every time they build
a new software system. Patterns enable design reuse.

In [5], the catalogue, for each pattern, contains a:

• Name, a meaningful identifier
• Problem description
• Solution description, a template for a design solution
• Consequences, results and trade-offs of applying the pattern

The elements included in design patterns vary from catalogue to catalogue.

9.6.1 Singleton Pattern

A simple design pattern to implement is the Singleton; as the name suggests, it is
used to ensure only one instance of the class is created. For example, perhaps your
class is a printer driver, and we only want one instance in the system to interact with
the printer. In this case, we use a Singleton class, as shown in Fig. 9.5.

When using a conventional constructor, we use the new keyword to create
an instance of an object. However, we made the constructor Private in the
Singleton class, so using the new keyword generates a compile time error, since
the Constructormethod is not visible, shown in Fig. 9.6.

Fig. 9.5 Implementation of Singleton Class

9.6 Design Patterns 137

Fig. 9.6 ERROR: Instantiation of Singleton Object (incorrect)

Fig. 9.7 Correct Instantiation of Singleton Object

The correct way to instantiate the Singleton object is to use the getInstance()
method, as shown in Fig. 9.7.

Hence, we have ensured only one instance of the Singleton is ever created.

9.6.2 Model View Controller

In interactive systems, such as database-driven web applications, model-view
separation is a good design principle [6]. We want to be able to manage and store
data separately from the display of that information. This is a good separation of
concerns.

We might want to display data on different, multi-channel devices (such as tablets
and mobile phones as well as conventional web browser-supported devices). We
don’t want to pollute our underlying data model with intricacies of these data display
issues. Conversely, if we want to migrate from one underlying SQL database system
to another, we would prefer not to have to re-write the whole user interface.

The model-view controller design pattern, a simplified version of which is shown
in Fig. 9.8, helps us implement this model-view separation design principle. We
introduce a set of controller classes that manage the interaction between the views
and the model.

138 9 Design

Internet

Browser

Controller View

controllerMethods() viewMethods()

Model

modelMethods()

Model
Edits

Model
Queries

User Inputs View Display

View Modification
Messages

Fig. 9.8 Model View Controller Design Pattern (Adapted from [5])

9.6.3 Factory Pattern

A Factory creates and returns objects of a particular type. The Factory is
an implementation of a Creator pattern mentioned in Sect. 8.5.4. For simple
systems, using Constructor methods in your classes is fine. But in larger and
more sophisticated systems, a Factory gives us a single point in the system for
maintaining creation source code for a family of similar objects.

For example, look at Fig. 9.9; here we have a class for creating instances of the
type Cars. The interface class is shown in Fig. 9.10.

An example implementation of the Car interface is in Fig. 9.11. Now, we can
look at the Factory itself, as shown in Fig 9.12. Finally, how do we create instance
of the Car? We simply call the getCar() method, as shown in Fig. 9.13; the full
code is available from [2].

In this simple example, this does not seem much clearer than using a constructor.
Imagine, if we had a large number of Car classes to create. To make changes, if
needed, to all the Constructor methods would be time-consuming. In contrast,
the Factorymethod would give us a single point of maintenance.

9.7 Technology Stack Selection

The technology stack is a range of programming languages, frameworks, libraries,
development environments and deployment environments used on your project. If
you are working in an academic, HackCamp or Hackathon environment, choosing
the best technology stack will be an important team decision.

9.7 Technology Stack Selection 139

<<interface>>
Car

model() : String

FastCar

model() : String

CoolCar

model() : String

FamilyCar

model() : String

CarFactoryDemo

main()

CarFactory

getCar()creates

Fig. 9.9 Factory Pattern for Creating Cars (Adapted from [5])

Fig. 9.10 Car Interface Definition

Fig. 9.11 Car Interface Implementation

If you work in the commercial sector and join an existing project team, you
probably won’t get much say in the project technology stack. The company
will probably have already selected technologies. You can focus on familiarising
yourself with the chosen technology stack.

140 9 Design

Fig. 9.12 Car Factory Implementation

Fig. 9.13 Using the Car Object Factory

However, if you do need to select the technology stack for a Hackathon,
HackCamp or project, there are two main steps:

1. Identify the current skill set within the team. You can do Exercise 2.2 to produce
a skills inventory from Chap. 2.

2. Collect evidence and assess the Pros/Cons of the technologies your team
members currently know.

In addition, when choosing your technology stack, there are four main technol-
ogy issues to think about:

• Consider how candidate technologies impact your chosen delivery model (instal-
lable desktop application, web app, cloud-hosted service and so on).

• Consider how candidate technologies impact your functional and non-functional
requirements.

• Consider how candidate technologies contribute to achieving your architectural
goals.

• Consider how candidate technologies impact your product/project goals.

9.9 Exercises 141

In a HackCamp or Hackathon setting, where you need to deliver a project
solution in a short time, then sticking with technologies you know is a good
idea. The technology stack has to meet project requirements. But, a somewhat
inappropriate technology stack that your team already knows and allows you to
make progress is better than spending the time sitting around learning new skills
when time is limited.

If the candidate technology stack that team members know does not meet project
requirements, then you will have to select and learn something new. This is best
accomplished before a project starts. But if that is not possible, then you will have
no alternative and will have to learn new technologies, as you go.

9.8 Model-Driven Engineering

Model-driven engineering is where we can automatically generate a complete or
partial system from our system models. These days, good software development
tools (such as integrated development environments: Eclipse [4], NetBeans [1], etc.)
allow the automatic generation of skeleton classes and certain methods, such as
accessor (getter()) and mutator (setter()) methods.

In certain domains, for example database design, commercially available tools
allow you to draw diagrams representing storage structures which are then auto-
matically implemented as database tables at the press of a button. Such graphical
software tools for creating databases are domain-specific examples of the more
general, model-driven engineering, concept.

9.9 Exercises

Now for some exercises on software design from Chap. 9. You should work through
these exercises to sharpen your design skills. Once you are done, have a look at the
hints, tips and solutions in Sect. 9.10.

Exercise 9.1 (Learning Journal)

9.1 Make some notes about what you learned from Chap. 9, in your learning
journal.

142 9 Design

Exercise 9.2 (Class Diagram, Student Record Information System)

9.2 A student record information system is used to manage student progres-
sion. Students register for option modules and programmes. Modules have
lecturers. Students can transfer from one option module to another within
the first 4 weeks of the semester. Modules are assigned to a year with a
programme by administrators. Lecturers upload marks for mandatory and
option modules which are then ratified by administrators on behalf of exam
boards.

Exercise Tasks I used this scenario, in Chap. 7, to create use cases and a
use case diagram. We can use the same scenario to create a class diagram.
Consequently, your objective is to analyse the scenario above and build class
model by doing the following tasks:

1. Identify nouns in the scenario.
2. Identify the verbs in the scenario.
3. For each noun, decide which should be classes and which should be

attributes of classes.
4. For each verb, identify method names and which class should comprise

each operation.

Be careful about which class you put the methods into. Do you put methods
into the calling class? Or, should methods be operations on data encapsulated
by a class? It is better when classes have responsibility for operations on the
data they encapsulate.

Exercise 9.3 (Class Diagram, Library Information System)

9.3 A library information system is used to manage holdings (comprising
books, multi-media recordings,magazines and journals) in both hard copy and
online form. Holdings registered in the information system can be searched
using titles, keywords and holding type. Senior librarians are responsible
for archiving old, damaged and unused holdings as well as purchasing new
holdings. Librarians register purchased holdings on the library information
systems. Borrowers can borrow and return holdings.

Exercise Tasks Again, you saw this scenario, in Chap. 7. We can use this
scenario to create a class diagram. Consequently, your objective is to analyse
the scenario above and build class model by doing the following tasks:

1. Identify nouns in the scenario.
2. Identify the verbs in the scenario.

(continued)

9.9 Exercises 143

Exercise 9.3 (continued)

3. For each noun, decide which should be classes and which should be
attributes of classes.

4. For each verb, identify method names and which class should comprise
each operation.

As in Exercise 9.2, be careful about which class you put the methods into.
Do you put methods into the calling class? Or, should methods be operations
on data encapsulated by a class? It is better when classes have responsibility
for operations on the data they encapsulate.

Exercise 9.4 (Class Diagram, Flight Booking System)

9.4 The Flight Booking System (FBS) provides online services to travellers
for flight and hotel reservations using a reservations transaction handling
system such as Amadeus or Sabre. Travelers can search, reserve, book and
cancel flights. Traveller cancelations can be performed up to 24 hours before
departure. Frequent fliers can cancel reservations with no penalty within 6
hours of departure.

Exercise Tasks Now, let’s use this scenario to create a class diagram.
Consequently, your objective is to analyse the scenario above and build class
model by doing the following tasks:

1. Identify nouns in the scenario.
2. Identify the verbs in the scenario.
3. For each noun, decide which should be classes and which should be

attributes of classes.
4. For each verb, identify method names and which class should comprise

each operation.

As in Exercises 9.2 and 9.3, be careful about which class you put the
methods into. Make sure you create classes that have responsibility for
operations on the data they encapsulate.

Exercise 9.5 (Class Diagram, Flight Broker System Exercise)

9.5 A travel agent wishes to expand its business by investing in an online
flight reservation system. The agency works as a broker for booking and
selling flight tickets using a number of airline companies around the world.

(continued)

144 9 Design

Exercise 9.5 (continued)

In order to locate the requested flight, the agency communicates with air
companies to retrieve their flight schedules and seat availability.

The agency has two types of clients, individual and corporate clients.
Individual clients often request to search for an appropriate flight and compare
prices. When searching for a flight, the user may want to sort the results by
price, airlines or number of connections.

After choosing the desired flight from the results, they could make initial
booking or progress to purchase and payments. Alternatively, they could
cancel the search. The system should maintain a database of client accounts
through which clients could retrieve all their current bookings and/or past
journeys. They may also use the system to cancel or amend a journey; this
is dependent on the type of ticket they have purchased. The system should
support the following ticket types:

• Full fare ticket, a 1-year open fully refundable and changeable ticket
• Open ticket, a 3-month open ticket which may be changed or refunded

subject to 20
• Saver ticket, valid for one trip and may not be changed

Corporate clients enjoy the services of individual clients plus additional
ones. They benefit from a 30-day credit facility; the credit amount varies
for different clients. A corporate client may purchase tickets using credit or
direct payment. If using credit payments, corporate clients may only purchase
new tickets if they have not exceeded their credit limit and they do not have
any outstanding payments exceeding the 1-month period. They may also use
the system to request credit increase. Such request is rejected if the client
has outstanding payments exceeding the 1-month period; otherwise, it is
forwarded to the agency’s staff for processing.

The system may also be used by the agency’s staff (agents) to query
the system for outstanding bookings pending confirmation or payment. The
agents use the information for following up the bookings with clients. The
agents may also use the system to retrieve outstanding corporate accounts for
following up the settlement of such accounts.

Exercise Tasks Now, let’s use this scenario to create a class diagram by
performing the following tasks:

1. Identify nouns in the scenario.
2. Identify the verbs in the scenario.
3. For each noun, decide which should be classes and which should be

attributes of classes.
4. For each verb, identify method names and which class should comprise

each operation.

9.9 Exercises 145

Student Teaching Assistant

Name String
DateofBirth int
MonthofBirth String
YearofBirth int
StudentId int

Name String
DateofBirth int
MonthofBirth String
YearofBirth int
ContractNumber int

Lecturer

Name String
DateofBirth int
MonthofBirth String
YearofBirth int
StaffId String

getName() : String
setName(String)
getDateofBirth() : int
setDateofBirth(int)
getMonthofBirth() : String
setMonthofBirth(String)
getYearofBirth() : int
setYearofBirth(int)
getStudentId() : int
setStudentId(int)

getName() : String
setName(String)
getDateofBirth() : int
setDateofBirth(int)
getMonthofBirth() : String
setMonthofBirth(String)
getYearofBirth() : int
setYearofBirth(int)
getStaffId() : String
setStaffId(String)
getContractNumber() : int
setContractNumber(int)

getName() : String
setName(String)
getDateofBirth() : int
setDateofBirth(int)
getMonthofBirth() : String
setMonthofBirth(String)
getYearofBirth() : int
setYearofBirth(int)
getStaffId() : String
setStaffId(String)

Fig. 9.14 Factory Pattern Implementation Exercise, Data Transfer Objects

Exercise 9.6 (Factory Pattern Implementation)

9.6 Data transfer objects are simple objects that encapsulate a collection
of data items and provide accessor and mutator methods. Let’s create three
fictional data transfer object classes, as shown in Fig. 9.14.

A calling class should be able to request any one of the three data transfer
objects from the factory that you implement. You will notice that many of
the attributes of the data transfer objects are the same but that each also has a
unique attribute.

Exercise Tasks Practice using and interpreting design patterns by imple-
menting a factory pattern to implement the set of data transfer objects shown
in Fig. 9.14.

Exercise 9.7 (Learning Journal)

9.7 What happened during the exercises from Chap. 9? What went well?
What could have gone better? Reflect on the exercises you have completed,
and make some notes in your learning journal.

146 9 Design

9.10 Hints, Tips and Advice on Exercises

9.1 Learning Journal Exercise

In Chap. 9, we have discussed feature-driven development, system modelling,
class diagrams, object sequence diagrams, design patterns and model-driven
engineering. Think about what you have learned about each topic. Take a few
minutes to write some notes.

9.2 Class Diagram Exercise 1 Example Solution

See example solutions in Figs. 9.15 and 9.16.

9.3 Class Diagram Exercise 2 Example Solution

See solution in Fig. 9.17

Person

getFirstName() : String
setFirstName(String) : Boolean
getLastName() : String
set:LastName(String) : boolean

firstName : String
lastName : String

Lecturer AdministratorStudent

Fig. 9.15 Class Diagram Exercise 1 Person Class

9.10 Hints, Tips and Advice on Exercises 147

Programme

Module

uploadMarks (real[]) : boolean

lecturerName : String
year : Integer
marks : real[]

Option Module

transferOption(String) : boolean

Fig. 9.16 Class Diagram Exercise 1 Programme Class

Holding

Book Recording Magazine Journal

title : String
keywords : String[]
type : String

purchase(String)
register(String)
archive(String)
search(String)
borrow(String)
Return(String)

Fig. 9.17 Class Diagram Exercise 2 Library Holding Class

148 9 Design

9.6 Factory Pattern Exercise

After you implement your factory pattern, have a look at the source code
available in [2].

9.11 Chapter Summary

In Chap. 8, the idea of creating or employing an overall architectural style for the
system was discussed.

Once an architecture is in place, we can focus on developing designs for specific
software features. We can use static and dynamic system models, created using the
UML, to explore and discuss our design ideas. We can then use models to record
and disseminate our design decisions.

We also use reusable design patterns to solve recurring problems that appear
during object-oriented design and implementation. Well-known patterns, such as
Singleton, Model, view, controller and Object factory, need to become
part of your regular software development toolkit. I encourage you to think about
using them as part of your software designs.

In Chap. 10, we explore approaches to incremental agile implementation.We will
look more carefully at the artefacts we create during the development of our project
working code.

References

1. Apache Software Foundation: Welcome to apache netbeans (2020). https://netbeans.apache.org/
2. Bass, J.M.: CarFactory. GitHub (Jan 2022). https://github.com/julianbass/CarFactory
3. Coad, P., LeFebvre, E., De Luca, J.: Java Modeling in Color with UML: Enterprise Components

and Process. Prentice Hall, Upper Saddle River, NJ (1999)
4. Eclipse Foundation: Eclipse ide 2021–12 | the eclipse foundation (2021). https://www.eclipse.

org/eclipseide/
5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, Harlow, England (2005)
6. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and

Design and Iterative Development, 3rd edn. Prentice Hall PTR, Upper Saddle River, NJ (2004)
7. Lethbridge, T., Laganiere, R.: Object-Oriented Software Engineering: Practical Software Devel-

opment using UML and Java, 2nd edn. McGraw-Hill Higher Education, London (Jul 2005)

 1826 2888 a 1826 2888
a

https://netbeans.apache.org/

 1165 2971 a 1165 2971
a

https://github.com/julianbass/CarFactory

 2037 3220 a 2037 3220 a

https://www.eclipse.org/eclipseide/
https://www.eclipse.org/eclipseide/

Chapter 10
Development

Abstract During software development iterations, we create computer programs.
Programs, or more precisely software source code files, are examples of develop-
ment artefacts. We also create other artefacts when we make commercial-strength
software. We need to learn how to create and manage backlogs. We introduce the
concepts of good-quality source code and how to create software that is consistent
and readable for other members of our team. Finally, we need to test our code. So
we will explore unit testing the code we write.

10.1 Introduction

Development artefacts are the things produced by self-organising teams during the
software development process. Obviously, producing working code is the whole
point of software development. Hence, software source code and release artefacts
spring to mind. But a large number of other artefacts are also produced [2]. Software
source code is discussed further in Sect. 10.4.2.

Some artefacts are produced to enable communication between different stake-
holders in the development process. Some people call these boundary objects.
Boundary objects enable a dialogue between people with different outlooks, per-
spectives of backgrounds. Boundary objects might include reference architectures
and models such as class diagrams which can stimulate a dialogue with knowledge-
able (or influential) people.

10.2 Planning Artefacts

Planning artefacts are produced before the design phase of an increment begins.
That means during the preceding increment. Hang on! ‘Where do planning artefacts
come from for the first increment?’ I hear you say. Well, some people use a device.
Call it increment 0, or Sprint 0 as I mentioned in Sect. 6.4. Increment 0 is a setup

© Springer Nature Switzerland AG 2022
J. M. Bass, Agile Software Engineering Skills,
https://doi.org/10.1007/978-3-031-05469-3_10

149

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05469-3_10&domain=pdf

 -151 4612 a -151 4612 a

https://doi.org/10.1007/978-3-031-05469-3_10

150 10 Development

phase for the project. An advantage of calling the project setup phase increment 0 is
that it is time-bound.

In the Rational Unified Process, the setup stage is called the inception phase. But
the focus of the inception phase is to create a detailed and fully costed requirements
specification. We don’t do that in agile. But we do need a place to work and
computers to work on, and we need some other artefacts before we can get started.

10.2.1 Kanban Boards

Physical or virtual Kanban boards, in software development, provide a visual
summary of the project status. There are lots of variations in the use of Kanban
boards, but at their simplest, they comprise three columns To Do, In Progress and
Done. Work items start in the To Do column. Then, at each stand-up coordination
meeting, work items are moved from one column to the next. In simple terms, work
items move from left to right through columns, as the project progresses.

Variations to the simple three column model might involve splitting the To Do
column into a product backlog and an iteration backlog. Some teams introduce an
In Test column. The main point, however, is that everyone in the team can see the
overall status of the project and for development teammembers how their own effort
contributes. We discuss Kanban boards further in Sect. 13.3.2.

10.2.2 Product Backlog

In the scrum method, the product owner elicits and prioritises requirements in the
form of a product backlog. The product backlog is a prioritised list of user stories,
highest priority at the top. As the development project unfolds, the product owner
re-prioritises requirements, keeping the most important user stories at the top of the
list.

10.2.3 Test Plan

A test plan is a strategy or policy that defines how everyone in the development
project is going to handle testing to achieve required levels of code quality. You can
present the test plan how you like, such as a report, wiki or presentation. But the test
plan must be available online and followed by everyone.

The test plan describes the testing to be performed at each stage of development.
Usually, planning considers the desired level of test coverage (the number of code
pathways tested). Unit testing is often performed by developers themselves and
must be completed before code is integrated with code produced by others. Some

10.3 Iteration Artefacts 151

people advocate manual testing, which is certainly better than no testing at all. But
automated testing is really the way to go.

Once your tested code has been integrated with the code produced in previous
increments, you need to test if the old code still works properly. This is regression
testing. Regression testing is used to test if the old code still works when new code
is added. Usually you need automated test tools to do regression testing.

Are unit and regression tests the only tests you need? I hope not. What about load
testing? Integration testing? User acceptance testing? Your test plan should describe
your overall test policy. There is more about test automation in Chap. 16.

10.3 Iteration Artefacts

Iteration artefacts are produced, well, during each iteration, as the name suggests.

10.3.1 Iteration Backlog

An iteration backlog comprises a subset of requirements from the product backlog.
At the start of each iteration, the highest-priority user stories are extracted from
the product backlog. We populate the iteration backlog with enough user stories to
fully occupy the team for a single iteration. Too much work is unsustainable and
demoralising. Insufficient work is inefficient. Choosing an appropriate number of
user stories for the iteration backlog requires good work estimates.

10.3.2 User Story Estimates

Iteration planning, which will be discussed further in Sect. 13.2, includes the
estimation of work items. User stories can be estimated. But, more precise estimates
can be derived from breaking user stories down into technical tasks and estimating
each of those. A T-shirt sizing, or planning poker, approach can be used.

10.3.3 Burn Down Chart

A burn down chart illustrates project progress during an iteration. The y-axis
represents story points and the x-axis the number of days in the iteration. The
example, shown in Fig. 10.1, shows a 14-day iteration. Stories are only shown on
the burn down chart when they are actually completed. That means the burn down

152 10 Development

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 10.1 Idealised illustrative burn down chart

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 10.2 Sample burn down chart

process does not really get started during the first few days of the iteration shown in
Fig. 10.1.

The example, shown in Fig. 10.2, also shows a 14-day iteration. But, notice how
in this example the graph curve actually goes up on Day 9. This suggests that
something happened to increase the number of story points during the iteration.
Perhaps a new user story was introduced, which is not normally encouraged. Or
perhaps a spike occurred some problem or challenge emerged and something was
re-estimated. Notice also that the curve does not actually get to zero at the end of
the iteration. This suggests the team were unable to successfully implement and test
some stories.

10.4 Feature Artefacts 153

10.4 Feature Artefacts

Feature artefacts are produced for each feature. Not every feature needs every
artefact. Consequently, you choose the ones you need.

10.4.1 Prototypes

Some people seem to think you don’t need prototypes or mock-ups in incremental
development. The need for a prototype, they say, is made redundant by a minimum
viable product that is delivered early and enables feedback from customers or users.
That view is probably true if, by prototype, you mean some elaborately coded
simulation of your system.

But, I think it is prudent under some circumstances to think of producing
mock-ups, particularly user interface mock-ups, to get approval before coding
really begins. The idea is that you create a low-fidelity, low-cost visualisation of
something. This might be because you are working on a new type of application and
have little experience to draw on. Or, it might be because you are working with a
new customer and you are uncertain of their expectations.

A prototype is a good example of a boundary object. You are creating a low-
fidelity interpretation and saying to stakeholders, ‘what do you think of this?’ or
‘how does this look? Is this want you want?’ This process enables you to gather
feedback on a single aspect of the system you are developing. But, it also has the
benefit that you are, sort of, winning commitment for your work from the customer.
It is hard for them to say later that they don’t like the look of something, when they
have approved a prototype.

10.4.2 Source Code

Working code is what software development is all about. Working code is derived
from source code. All the other stuff is about enabling source code development to
take place.

Many developers feel under pressure from deadlines and hence rushed into
creating messy code. However, messy code actually slows you down, and what you
need is elegant code. Elegant code is easily readable by people and machines. What
makes elegant code? Robert Martin has created a compelling list [6], including:

• Meaningful names.
• Functions (methods) should only do one thing, and do it well.
• Good and elegant code does not need comments.
• Good formatting improves communication.
• Use objects to hide data and expose operations.

154 10 Development

• Use exceptions to handle errors.
• Clarity, simplicity and density of expression in unit tests.
• Small classes.

Use meaningful names in your code. Method names, variable names, parameter
names, filenames—names are everywhere. Elegant code uses names that reveal
intent. Carefully chosen names expose the purpose of the artefact. Avoid redundant
information, and make names that are pronounceable and searchable. Class names
are often nouns or noun phrases, while method names contain verbs or verb phrases.

Functions (methods) are the first unit of organisation in software. Good functions
are small, understandable within a few minutes, focused on only one tasks and
perform that task well. Functions have few arguments or use objects as arguments
that encapsulate complexity.

Comments in source code are a source of clutter. Good-quality code with
meaningful names and small functions does not need comments. Comments are
sometimes used to explain code that is complex or opaque. It is better to improve
the underlying code, rather than write comments.

Formatting is important for code readability. Well-formatted code conveys good
structure. Good formatting suggests logical organisation of source code content and
ensuring openness between different concepts and density of related concepts. Good
formatting is consistent within a team.

We want to use objects to conceal data structures. It is more correct to say
objects encapsulate data structures, of course. In contrast, we want to create objects
that expose functions to operate on data. This is important. Hide data. Expose
operations. This approach makes it easy to add new objects without changing
existing behaviour. The downside is it makes it harder to add new behaviour to
existing classes.

Modern languages support exceptions. Use exceptions for handling errors. Avoid
using return parameters for handling errors.

Don’t release code without unit tests. Good unit tests are clear and simple and
have a density of expression that makes them readable. Create one assertion and one
concept per test.

High cohesion implies small classes. We want classes that focus on particular
things. Good classes are responsible for one thing. Avoid using the words ‘if ’,
‘and’, ‘or’ or ‘but’ to describe classes. You might be concerned that making classes
responsible for only one thing will result in system that is difficult to understand.
But in fact, there will be the same number of moving parts, and a system with a
larger number of small classes will be easier to maintain.

10.4.3 Unit Tests

Unit tests are used to verify specific components of our software system. Usually we
test classes (such as the constructors that instantiate objects) and methods (checking

10.5 Release Artefacts 155

calling and return parameters) as well as attributes of classes (have variables been
initialised and so on). As with regression testing, you could in theory do unit testing
manually. But seriously, it is just so much more efficient to automate this stuff. I’ll
talk more about test automation in Chap. 16.

10.4.4 Issues

We use the word issues as a collective term for defects, feature requests, feature
enhancements and so on. Generally, teams supporting live systems carefully keep
track of issues. The defects and change requests are triaged to decide which give the
most benefit for the lowest cost or least effort. Most software organisations don’t
have the resources to fix issues that are expensive but only bring small value. In
safety critical software, a zero defect policy is desirable, but expensive to achieve.

Some vendors give clients a chance to vote on issues to help decide which are
the most important. Teams might provide customers with a list of known issues for
each release. That makes it look like you have a handle on things, even if you don’t
have the resources to fix everything. Obviously, defects that have a big impact and
are inexpensive to fix need dealing with urgently. Otherwise, you will get a bad
reputation for shipping poor quality software.

When development teams are supporting a live product, choosing between
putting effort into new features, feature enhancements or defects requires careful
balancing. To resolve issues, some teams set aside effort during each increment.
Other teams choose to periodically dedicate an entire iteration to feature enhance-
ments and defects (perhaps every second or third iteration).

Defects are deviations from expected behaviour. Defects in common parlance
are bugs. Strictly speaking, a defect is not a software development artefact. No
one manufactures defects (unless you are working on software implemented fault
injection, but that is a bit of a niche application area). The artefact is the defect
record we create, keep and manage. We use tracking tools (such as Bugzilla [3] or
Jira [1]) to implement an issue database.

Feature enhancements are not defects; they are requested improvements to our
software. Feature enhancements have to be prioritised, usually by a product owner
or someone else with a good understanding of user needs. We decompose feature
enhancements into technical tasks and estimate them, at the start of an increment.
These enhancements can then be included in the development iteration just like new
features.

10.5 Release Artefacts

Once source code is written and thoroughly tested, it can be released. In scrum,
product owners decide when code is suitable for release to customers. Then, source

156 10 Development

code has to be packaged, ready for release. There are benefits to automating the
packaging and release process, as discussed in Chap. 21.

In web applications, a .war file must be created comprising all the Java Server
Pages, Java Servlets, XML, Java classes and so on that comprise a release. The .war
file becomes executable when placed in a folder accessible by a web server.

Some places use a containerisation approach to releases. Containers, such as
Docker [4], offer a standardised deployment platform which can then be deployed
or replicated onto different server instances. Docker uses operating-system-level
virtualisation to isolate and bundle software applications, libraries and configuration
files. Multiple containers can run on an operating system instance and hence
are lighter weight than virtual machines. On larger-scale systems, orchestration
software, such as Kubernetes [5], are used to manage containerised deployments.
We discuss cloud deployment further in Chap. 19.

10.5.1 Release Code Binaries

The code binaries are what gets deployed into a production environment to provide
a service for users. Novices and learners often experiment by running binaries on
a local machine. Mobile or embedded application binaries must be executed in a
simulator or downloaded onto the device. Similarly, web application binaries must
be uploaded to a web server.

10.5.2 Regression Tests

When new features are integrated into the main software trunk, we need to check if
the existing features have not been adversely affected. During regression testing, we
re-run tests to re-evaluate previously tested software features.

Regression testing is where automation pays off. Re-running automated test
suites takes little effort, just machine time. It gives you (and others) more confidence
in your software when you re-run a full test suite and everything passes okay. There
is more about test automation in Chap. 16.

10.6 Exercises

Now it is time to tackle some exercises on software design from Chap. 10. You
can have a go at these exercises to sharpen your development skills. When you are
finished, review the hints, tips and solutions in Sect. 10.7.

10.6 Exercises 157

Exercise 10.1 (Learning Journal)

10.1 In this exercise, write in your learning journal about what you have
learned from Chap. 10.

Exercise 10.2 (Kanban Board Exercise)

10.2 This exercise is simple. Create and maintain a Kanban board for your
next iteration. That’s it. As a team, decide on the columns for your Kanban
board. A good choice might be ‘To Do’, ‘Doing’ and ‘Done’.

Exercise Tasks Once the Kanban board is set up, the process is as
follows:

• At each coordination meeting, listen carefully to the status reports from
team members.

• For any work items that meet the agreed definition of done, move the sticky
notes from the ‘Doing’ or ‘In Progress’ column to the ‘Done’ column.

• For any work items that a team member picks up from the ‘To Do’ column,
move the associated sticky note to the ‘Doing’ column.

At the end of the iteration, you should see all the work items in the ‘Done’
column. You can celebrate your success!

Exercise 10.3 (Test Plan Exercise)

10.3 In this exercise, you will conduct some research, prepare a test plan and
write a report published on your team Slack channel. Conduct some research
to find out about your options when considering a test strategy.

Exercise Tasks The test plan preparation process is as follows:

• Conduct online research.
• Make a proposal to your team members about test strategies (keep it

simple, at first).
• Gain consensus, as much as you can, on tests everyone in the team should

conduct.
• Write a document, shared with the team, describing the agreed strategy.

At the end of the iteration, all work items should have been evaluated in
accordance with your plan.

158 10 Development

Exercise 10.4 (User Story Estimation Exercise)

10.4 In this exercise, you will estimate some user stories.
Exercise Tasks The user story estimation process is as follows, and work

as a team:

• Take the higher-priority user story from the product backlog.
• Break the user into technical tasks.
• Gain consensus, as much as you can, on the T-shirt size for each task

(small, medium, large, extra large).

Repeat the estimation process until you have enough work item to fill a
complete iteration.

Exercise 10.5 (Burn Down Chart Exercise)

10.5 This exercise is simple. Plot a burn down chart for your next iteration.
Remember work items only go on the burn down chart when they are done.

Make sure that your burn down chart is truthful representation of your
iteration. The point is to learn from whatever the iteration might throw at you.
There might be spikes that cause you to re-estimate work items. If so, the
burn down chart curve might actually go up, not down. So be it. Hopefully,
the team will be able to recover from this slight setback.

Exercise Tasks The process should be something like this:

• Make a set of burn down chart axes reflecting the duration of your iteration.
• On the first day of the iteration, make a point of the axes reflecting the total

expected number of story points for the iteration.
• Each time a work item is completed, tested and successfully integrated into

some test trunk, deduct the corresponding number of story points from the
previous point plotted on the burn down chart.

• Keep plotting completed work items each day until the iteration is com-
plete.

• Look at the completed burn down chart in your iteration retrospective.
Reflect on what you see. What can you learn from this?

Keep preparing burn down charts for each iteration. Reflect on the burn
down charts from the three previous iterations. If you keep seeing evidence
of inefficiencies in your development process evidences in your burn down
charts, then perhaps you should discuss this in a retrospective.

10.7 Hints, Tips and Advice on Exercises 159

Exercise 10.6 (Learning Journal)

10.6 Thinking about the exercises from Chap. 10 you have completed. Make
some notes in your learning journal about what you have learned.

10.7 Hints, Tips and Advice on Exercises

10.1 Learning Journal

Chapter 10 has covered planning artefacts, iteration artefacts, feature artefacts
and release artefacts. Write some notes about what you have learned on each
of these topics.

10.2 Kanban Board Exercise

Let’s assume, to start with, you are using a physical board. Attach sticky notes
to the board. Each sticky note should present one work task in the current
iteration. At the start of the iteration, all the sticky notes will be in the ‘To Do’
column. After work items are assigned to team members, and work begins on
that task, the sticky notes should move into the ‘Doing’ column. Finally, once
a work item is completed (designs produced, code written and the feature has
been tested), it should be moved to the ‘Done’ column.

Remember in agile, work items are either ‘Done’ or not done. There is no
concept of a work item that is 20% or 80% done. The team must decide on a
definition of ‘Done’.

See the sample Kanban board in Fig. 10.3. Notice that in this example,
there is a ‘To Do’ column and a ‘Done’ column. But notice that ‘Doing’
column has been split into two: ‘Draft’ and ‘Edit’. This sample Kanban is
for visualising an academic writing process. A software development project
might choose to split the ‘Doing’ column into ‘Develop’ and ‘Test’. Notice
also that the Kanban board in Fig. 10.3 has so-called swim lanes, which
separate out different activities. In this case, the Kanban board shows ‘journal’
writing separately from writing ‘teaching’ materials.

160 10 Development

Fig. 10.3 Sample physical Kanban board

10.3 Test Plan Exercise

Testing and test automation is discussed in more detail in Chap. 16. Further,
for your research, you can try some simple and accessible sources like [8] or
something more authoritative, like [7].

In a HackCamp or Hackathon setting, the bare minimum you should
aim for is unit testing and acceptance testing. If you are using incremental
development (which of course you should), then regression testing is also a
good idea.

A more mature team will also focus on integration and performance
testing. The plan itself should be incremental. Make sure your team follows a
basic test plan, before attempting to adopt a more sophisticated test plan.

10.7 Hints, Tips and Advice on Exercises 161

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 10.4 Sample burn down chart for a 14-day sprint

10.4 Burn Down Chart Exercise

See the simple sample burn down chart in Fig. 10.4.
Think about your definition of done when maintaining your burn down

chart. Some teams only record work items when they are done, done. For
others, work items are recorded only if they are done, done, done! So,
what is the difference between done, done, done and done, done, done?
Well, it depends on the policies your team apply. For some teams, done
means built, unit-, integration- and regression-tested. For other teams,
done, donemight mean build and unit tested. While for others, phrases like
done, done, done reflect some process like that.

The important points are:

• The policy is clear to everyone.
• The policy is consistently applied.
• Only remove story points associated with work items that are done from

the burn down.

Remember: you can still use a burn down chart with T-shirt sizing by
consistently assigning a number story points to a given short size.

162 10 Development

10.8 Chapter Summary

The primary goal of software development is to produce working code. Further,
other artefacts are created during the development process. I’ve organised the
artefacts created during:

• Planning
• Iteration
• Feature
• Release phases

The executable binaries produced from software source code are intended to control
the computer, of course. But, source code also needs to be readable and modifiable
by other members of your team. The code is a shared commodity, and the quality
of code craftsmanship is judged by the readability and modifiability of your source
code.

In addition to source code, you and your team need to produce tests. Tests allow
you to monitor the quality of the code you are producing. The number of defects is
a proxy measure for code quality.

In Chap. 11, we’ll explore some techniques to help create secure software
systems. Security is needed to keep client data safe and avoid your system being
exploited by bad actors.

References

1. Atlassian: Jira | Issue & Project Tracking Software (2019). https://www.atlassian.com/software/
jira

2. Bass, J.M.: Artefacts and agile method tailoring in large-scale offshore software development
programmes. Inf. Softw. Technol. 75, 1–16 (Jul 2016). https://doi.org/10.1016/j.infsof.2016.03.
001

3. Bugzilla.org: About :: Bugzilla :: bugzilla.org (2019). https://www.bugzilla.org/about/
4. Docker Inc.: Enterprise Container Platform (2019). https://www.docker.com/
5. Kubernetes: Production-grade container orchestration (2021). https://kubernetes.io/
6. Martin, R.: Clean Code: A Handbook of Agile Software Craftsmanship, 1st edn. Prentice Hall,

Upper Saddle River, NJ (Aug 2008)
7. Sommerville, I.: Software Engineering, 10th edn. Pearson Education, Harlow (2015)
8. wikiHow: How to Write a Test Plan (2019). https://www.wikihow.com/Write-a-Test-Plan

 1587 2602 a 1587 2602
a

https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira

 1481 2851 a 1481 2851
a

https://doi.org/10.1016/j.infsof.2016.03.001
https://doi.org/10.1016/j.infsof.2016.03.001

 1451 3017 a 1451 3017
a

https://www.bugzilla.org/about/

 1384 3100 a 1384 3100
a

https://www.docker.com/

 1677 3183 a 1677 3183
a

https://kubernetes.io/

 1174 3515 a 1174 3515 a

https://www.wikihow.com/Write-a-Test-Plan

Chapter 11
Security

Abstract This chapter will introduce some basic techniques around cyber-security.
A life cycle approach will be adopted, starting with security analysis, requirements
and design and then moving on to security implementation and evaluation. Finally,
we’ll explore an agile secure-by-design process. The chapter will include checklists
around security good practice, and some testing tools will be introduced.

11.1 Introduction

Software engineers increasingly recognise the critical importance of cyber-security.
Customers, government and regulators are less tolerant of attacks leading to
data loss and breaches of privacy. Simultaneously, attackers have become more
persistent and sophisticated in their approaches. Further, state actors are suspected of
sponsoring critical infrastructure attacks. In this chapter, we will advocate actionable
agile approaches to cyber-security.

An incremental approach to software development has been advocated in
Chap. 10. We advocate tailoring the incremental process to include careful con-
sideration of security issues. Consequently, cycles of security analysis, design,
implementation, testing and operations are integrated into a secure product devel-
opment life cycle [1]. We establish an iterative continuous improvement process
comprising prevention and detection of security problems [9]:

• Prevention

– Use technologies/frameworks/components that take care of security,
– Shared responsibility for security by the whole team including product owner,
– Minimise errors by ensuring maintainable code,

• Detection

– Automated security checking,
– Manual, risk-based, checks focusing on changes made during a specific

increment.

© Springer Nature Switzerland AG 2022
J. M. Bass, Agile Software Engineering Skills,
https://doi.org/10.1007/978-3-031-05469-3_11

163

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05469-3_11&domain=pdf

 -151 4612 a -151 4612 a

https://doi.org/10.1007/978-3-031-05469-3_11

164 11 Security

Since software is being incrementally deployed, security and quality assurance
must be tackled iteratively. Product security is maximised through cycles of plan-
ning, implementation and evaluation. The agile OWASP SAMM model identifies
six key themes, as follows [9]:

• Governance,

– Strategy and Metrics,
– Education and Guidance,

• Design,

– Threat Assessment,
– Security Requirements,

• Verification,

– Requirements-Driven Testing,
– Security Testing.

Strategy and metrics define the overall direction and measures used to assess
compliance with security needs. Education and guidance aim to enhance knowledge
and skills for personnel involved in software development projects. Threat assess-
ment is used to identify and characterise potential attacks. Security requirements
promote the inclusion of functionality or countermeasures to address security
concerns. Requirements-driven testing uses abuse stories which describe, from the
perspective of an attacker, how a system is misused. Security testing uses tools to
discover vulnerabilities in the runtime environment. We can address these themes,
by taking a life cycle perspective.

11.2 Security Analysis

Security analysis comprises definition of objectives and threat model creation.

11.2.1 Security Objectives

The expected behaviour of the system under development and its operating context
are called the security environment. This environment determines the likely threats
our application will face. Internet connections offer access to many, potentially
malicious, actors. Consequently, our web applications and software services must
be designed to defend themselves appropriately.

11.3 Security Requirements 165

11.2.2 Threat Model

After considering our product’s security environment, a model of potential threats
must be developed. The acronym Stride can help us to consider a good range of
potential threats:

• Spoofing,
• Tampering,
• Repudiation,
• Information disclosure,
• Denial of service,
• Elevation of privilege.

For each threat, an attack tree can be developed. The tree root represents the attack
goal. The tree leafs represent ways that goal can be achieved.

11.3 Security Requirements

There are two main types of security requirements: those designed to help create
countermeasures and abuse, or attacker, stories. We can also use attack personas to
help understand potential attackers.

11.3.1 Security Mitigation Requirements

The threat model is used to develop a set of requirements which can be prioritised
and managed. The requirements are used to identify design tasks intended to
mitigate security threats, for example, the authentication user story shown in
Fig. 11.1.

Fig. 11.1 Authentication user story

166 11 Security

This user story can then be used to create a set of test criteria [2], such as:

• User logs on successfully,
• User fails log on because of invalid credentials,
• User forgets credentials,
• User is not registered.

11.3.2 Abuse Stories

Abuse (or attacker) stories are used like conventional user stories during the
development process. Abuse stories are developed and prioritised prior to each
iteration. Then the abuse story is used to define work tasks and acceptance criteria,
which in turn help to influence the evaluation process for potentially shippable code
at the end of the iteration.

11.3.3 Security Personas and Anti-personas

Personas are synthetic biographies of fictitious users of a future product used during
requirements gathering, as mentioned in Sect. 7.7. A set of security personas (or
anti-personas) can be developed to help team members get inside the mindset of
potential attackers.

Consider the fictitious personas ofMary, Paul and Joan.

• Mary is a semi-professional fraudster,

– She targets large (>$10k) attacks,
– She is not a coder,

• Paul is member of a hacker club,

– He has little financial acumen,
– He wants to deface sites or leave some other calling card,

• Joan is on a low-income,

– She has little technical competence,
– She wants to maximise social security claims.

These personas can help team members understand specific types of attack and
justify appropriate countermeasures.

11.3 Security Requirements 167

11.3.4 Risk and Risk Management

Risk management is about identifying, ranking and mitigating risks. The objective
here is to prioritise the important risks and requirements in terms of severity and
likelihood, hence:

Risk = Criticality * Likelihood

We can adopt a qualitative approach to working out the likelihood, such as having
a scale of five criteria:

• Frequent Occurs often or in quick succession (once per month),
• Likely Occurs on multiple occasions,
• Occasional Occurs from time to time (twice a year),
• Remote Can occur but not likely,
• Rare Is not frequently experienced (once in 3 years),

We can then create a matrix showing the relationship between criticality and
likelihood, as shown in Fig. 11.2.

A risk register is a document listing risks and their potential severity and
estimated likelihood. The risk register is mainly used to describe mitigations for
each identified risk. The risk register is created and then regularly reviewed.

For example, large and long-running projects require multiple cooperating self-
organising development teams, as described in Chap. 18. In these multi-team
projects, a risk register review during each sprint is desirable, to assess any potential
adverse impact of inter-team dependencies during each iteration.

Rare
(1)

Remote
(2)

Probably
Occasional

(3)

Probable
(4)

Frequent
(5)

Maximum
(5)

Medium
(3)

Medium
(3)

High
(4)

Maximal
(5)

Maximal
(5)

High
(4)

Low
(2)

Low
(2)

Medium
(3)

High
(4)

Maximal
(5)

Medium
(3)

Minimal
(1)

Low
(2)

Low
(2)

Medium
(3)

High
(4)

Low
(2)

Minimal
(1)

Minimal
(1)

Minimal
(1)

Low
(2)

Medium
(3)

Minimal
(1)

Minimal
(1)

Minimal
(1)

Minimal
(1)

Minimal
(1)

Low
(2)

Fig. 11.2 Risk exposure matrix (Adapted from [5])

168 11 Security

11.4 Security Design

Secure system design is based on several underlying assumptions. We assume all
user input is compromised and that malicious attackers have access to all user
output. It is also wise to assume that attackers know everything a about our system
and how it works.

We tend to avoid complex centralised and monolithic designs in modern software
development. This is good because systems are composed of several simpler, single-
purpose, subsystems. However, from a security standpoint, this can make our
systems seem fragmented, with each fragment contributing its own attack surface.

In larger software systems, the number of subsystems and components itself
becomes large. Consequently, each subsystem or module needs to be defended by
technical security controls that help deter, resist, detect or protect against attacks.
These security controls will need to be threaded through your architecture and code
design.

To enhance security, it is safest to assume other components are compromised
and not rely on perimeter defences, specifically, view public-facing services with
suspicion. For example, in a layered architecture, we must assume the layer above
is compromised. This attitude encourages us to question the identity of the calling
party. We also carefully check the input we receive and what we return back up. We
also keep an audit trail of what information we got, when we got it and what we did
with it.

In agile software development, we want to keep our designs and code as simple
as possible. In fact, we even periodically refactor our code to help drive simplicity.
But, the technical security controls we introduce inevitably increase complexity. The
point is that unnecessary complexity is the enemy of good, secure, design.

11.4.1 Security Patterns

Security patterns, like design patterns in general, seek to capture good practice in
architecture design. Patterns provide a route for non-expert users to benefit from
specialist expertise. There are several readily available security pattern catalogues,
such as [3, 10] or [15]. To illustrate the concept, I’ll briefly describe just three pat-
terns, the demilitarised zone, authorisation enforcer and controlled object factory.

The demilitarised zone (DMZ) is a security pattern that advocates a gateway
network layer between a private intranet and the public internet. Hosts in the DMZ
are permitted only limited access to hosts on the internal network. Firewalls are
used to prevent unauthorised access from the internet to the DMZ and also from
the DMZ to the intranet. Consequently, the DMZ provides an additional layer of
internal network protection from external attack.

11.5 Security Implementation 169

Authorisation implements a permission system to ensure that users are entitled
to perform the operations they request. While there is a runtime overhead of
performing authorisation checks, this approach limits the ability of attackers to
execute functionality. A secure service façade delegates requests to an authorisation
enforcer, which then retrieves the appropriate information and performs authorisa-
tion at a method level. The authorisation enforcer likely uses an authentication
enforcer to authenticate users before an authorisation decision is made.

A controlled object monitor restricts access to an object by intercepting requests
from processes. The controlled object monitor checks whether the requester is
authorised to use the object. A controlled object factory, drawing upon the concepts
of a conventional object factory pattern (mentioned in Sect. 9.6.3), instantiates
instances of controlled objects. Controlled objects may encapsulate sensitive data
(such as credit card details, for instance).

11.5 Security Implementation

Security implementation is where countermeasures and security features are created.

11.5.1 Abuse Story Implementation

The first stage of developing abuse stories is to identify a catalogue of potential
attacks which can then serve several purposes in each iteration, that is, to:

• Enable prioritisation of stories, based on business risk and budget,
• Derive security requirements and add them to the iteration’s user story backlog

and create acceptance criteria,
• Allow the project team to define countermeasures,
• Estimate the countermeasure implementation overheads.

There are two main approaches to developing abuse stories. An informal first
approach might be to review each user story, creating one or two negative cases
against each scenario. A simple approach is to insert ‘no’ or ‘not’ into each user
story.

The second, more formal approach is to convene a workshop to review business
features in the increment and create a prioritised list of attacks. The workshop
includes a business analyst (domain specialist), risk analyst, penetration tester, tech-
nical lead and quality assurance analyst (or functional tester). The responsibilities
of the workshop participants are shown in Fig. 11.3. This group creates potential
business and technical abuse cases and takes place after sprint kick-off, so that the
user stories for the iteration are known.

These abuse stories then become security requirements following the usual
process of estimation and countermeasure implementation. Abuse stories appear

170 11 Security

Business
Feature

Description
(Business Analyst)

Enumeration
of Potential

Attacks
(Penetration Tester

or
Security Champion)

Risk Rating of
Potential
Attacks

(Risk Analyst)

Prioritisation
based on Risk

(Consensus)

Fig. 11.3 OWASP abuse case workshop (Adapted from [6])

on Kanban boards and are the subject of discussion in stand-up meetings and
retrospectives.

11.5.2 OWASP Top Ten

For web applications, the Open Web Application Security Project (OWASP) Top
Ten lists and describes the most common and serious software security risks [8].
For each risk listed, OWASP identifies:

• Threat agents, types of entity that carry out attacks,
• Attack scenarios, pathway used to perform attack,
• Impacts, potential consequences of attack,
• Prevention, advice on thwarting mode of attack,
• Resources, references to useful information about attack resilience.

The OWASP list and resources are very comprehensive, and web application
developers need to familiarise themselves with this material [8].

11.5.3 Authentication

Thinking about the authentication use case in Fig. 11.1, there is an OWASP cheat
sheet that discusses the design and implementation of this user story [7].

For example, in one poor-quality pseudo-code implementation, it seems like a
good idea to check if the user exists in the database before checking their password,
as shown in Fig. 11.4.

But, using this approach, the execution time varies slightly between valid and
invalid usernames. A malicious attacker can use this information to determine if a
username exists in the data store. A better approach is to simultaneously check both
username and password, as shown in Fig. 11.5.

The correct response, when authentication fails, is ‘Login failed; Invalid user ID
or password’. The intention here is to give no clue as to the failure cause. Following
a similar pattern, for password recovery, the correct response is ‘If that email address
is in our database, we will send you an email to reset your password’. Again, the

11.6 Security Evaluation 171

Fig. 11.4 Poorly implemented authentication user story

Fig. 11.5 Improved authentication user story implementation

purpose is to avoid giving away information about the existence or, otherwise, of
valid user email addresses. Further, it is argued that multi-factor authentication
reduces the chances of account compromise by 99.9% [14].

11.6 Security Evaluation

There are two main approaches to evaluating security, using reviews or testing.

11.6.1 Manual Security Inspections and Reviews

Security inspections are best conducted during each iteration. The reviews can check
people, processes and policies, as well as technology decisions and architectural
designs (and not just source code implementations). This means reviews are
flexible, don’t require any support technology and can be applied early in the
increment development process. However, reviews are time-consuming and require

172 11 Security

considerable skill to be effective. Inspections and reviews are most effective, if
performed constructively and collaboratively.

11.6.2 Automated Security Testing

Source code quality and security testing tools can help give assurance about our
application. SonarQube can be used to analyse code in several languages and can
identify numerous code quality and potential security weaknesses [13]. SonarQube
can access software directly from your online source code repository. A small and
simple configuration file must be added to your repository so that SonarQube can
understand your environment.

Another useful tool is BDD-Security [4], a security testing framework that uses
behaviour-driven development concepts. BDD-Security integrates with Selenium
(WebDriver) [11] to perform runtime tests on web applications and APIs.

11.7 Agile Security Processes

From a security perspective, it is helpful to revisit an agile process comprising roles,
artefacts and ceremonies.

11.7.1 Roles

In many organisations, security teams tend to work rather independently from
the software development teams. This is not an ideal situation. It is better for a
security specialist to work within a development team, while also working with
other security specialists on a shared agenda. The security specialist takes the role of
a security champion in daily stand-up and retrospective meetings, providing advice
and support. The security champion also helps exchange good practice between
other teams.

11.7.2 Artefacts

Abuse stories, as I’ve mentioned, describe how to compromise a system from an
attacker’s perspective: ‘As an attacker, I want to. . . ’. Abuse stories help developers
understand security risks, can help to define specific security tests and are particu-
larly useful at early stages of development. Abuse stories do not usually get placed
on the product backlog, since they do not result in specific development work items.

11.8 Exercises 173

11.7.3 Ceremonies

Ceremonies specifically designed to create security artefacts in agile are compar-
atively under-developed. This can be mitigated by including security issues in
conventional iteration planning and sprint review ceremonies. Including security
user stories among tasks in the Kanban board can help maintain awareness and
commitment.

11.8 Exercises

Here are some exercise you can try to learn more about the topics covered in
Chap. 11. Have a go at each exercise and then look at the hints and tips in Sect. 11.9.

Exercise 11.1 (Learning Journal)

11.1 Use your learning journal to make some notes about the material in
Chap. 11. This could be just a few bullet points or a longer essay.

Exercise 11.2 (Source Code Review Exercise)

11.2 Choose or create a project with a public GitHub repository. Execute a
security review against your source code. For example, configure your public
repository for use by SonarCloud [12]. Commit some code and watch the
security review tool execute.

Exercise 11.3 (OWASP Top Ten Review Exercise)

11.3 Choose or create a simple database-driven web application. For your
web application, carefully review the Open Web Application Security Project
(OWASP) Top Ten list [8]. Make sure you have a mitigation strategy in place
for each item in the Top Ten list.

Exercise 11.4 (Learning Journal)

11.4 Reflect on the exercises from Chap. 11. Write in your learning journal
about what happened during each exercise.

174 11 Security

Exercise 11.5 (Learning Journal)

11.5 Reflect on the chapters in Part II. Reflect on what you have learned
about:

• Requirements,
• Architecture,
• Design,
• Development,
• Security.

Make some notes in your learning journal about each of these topics.

11.9 Hints, Tips and Advice on Exercises

11.1 Learning Journal

Chapter 11 has covered security aspects of analysis, requirements, design,
implementation, evaluation and agile processes. Review the chapter and write
about what you have learned on each topic.

11.2 Source Code Review Exercise

When you execute the security review tool against your source code, if all
goes well, you will be provided with a report. The report, depending upon the
complexity of your source code, should give you advice on potential problems
and fixes.

11.3 OWASP Top Ten Review Exercise

There is detailed advice available from Open Web Application Security
Project (OWASP) on mitigation of all the problems identified in the Top Ten
list [8]. Make sure you spend some time reviewing that material.

References 175

11.10 Chapter Summary

Security has become an increasingly important concern for product developers. In
this chapter, we have explored security analysis and how to create a threat model.
Then, following a life cycle model, we discussed security requirements, design
and implementation. Finally, techniques for evaluating security were suggested.
Security breaches undermine reputations and can be career-ending in extreme cases.
There are useful and actionable resources freely available, such as from the OWASP
foundation, which developers need to become familiar with.

We are now ready to apply the skills described in Part II to our Tabby Cat case
study. We can then move onto Part III, on Process. In this next part, you will have
a chance to learn more about agile ceremonies, lean development methods, version
control and automated testing.

References

1. Apvrille, A., Pourzandi, M.: Secure software development by example. IEEE Secur. Priv. 3(4),
10–17 (Jul 2005). https://doi.org/10.1109/MSP.2005.103

2. Bell, L., Brunton–spall, M., Smith, R., Bird, J.: Agile Application Security: Enabling Security
in a Continuous Delivery Pipeline. O’Reilly (Sep 2017)

3. Fernandez-Buglioni, E.: Security Patterns in Practice: Designing Secure Architectures Using
Software Patterns, 1st edn. Wiley (Jun 2013)

4. IriusRisk: BDD-Security. IriusRisk (Mar 2021). https://github.com/iriusrisk/bdd-security
5. Nancy R. Mead, C.C.W.: Cyber Security Engineering: A Practical Approach for Systems and

Software Assurance, 1st edn. Addison-Wesley Professional (Oct 2016)
6. OWASP Foundation: Abuse case cheat sheet (2021). https://cheatsheetseries.owasp.org/

cheatsheets/Abuse_Case_Cheat_Sheet.html
7. OWASP Foundation: Authentication cheat sheet (2021). https://cheatsheetseries.owasp.org/

cheatsheets/Authentication_Cheat_Sheet.html
8. OWASP Foundation: Owasp top ten web application security risks (2021). https://owasp.org/

www-project-top-ten/
9. OWASP Project: Samm agile guidance (2021). https://owaspsamm.org/guidance/agile/#

General
10. Schumacher, M., Fernandez-Buglioni, E., Hybertson, D., Buschmann, F., Sommerlad, P.:

Security Patterns: Integrating Security and Systems Engineering, 1st edn. Wiley (Jul 2013)
11. Software Freedom Conservancy: Seleniumhq browser automation (2021). https://www.

selenium.dev/
12. SonarCloud: Automatic code review, testing, inspection & auditing (2021). https://sonarcloud.

io/
13. SonarSource: Sonarqube (2021). https://www.sonarqube.org/
14. Weinert, A.: Your Pa$$word doesn’t matter (Jul 2019). https://techcommunity.microsoft.com/

t5/azure-active-directory-identity/your-pa-word-doesn-t-matter/ba-p/731984
15. Yskout, K., Heyman, T., Scandariato, R., Joosen, W.: A System of Security Patterns. No. CW-

469 in Department of Computer Science, Katholieke Universiteit Leuven (December 2006).
https://www.researchgate.net/publication/242679421_A_system_of_security_patterns

 475 1885 a
475 1885 a

https://doi.org/10.1109/MSP.2005.103

 1327 2300
a 1327 2300 a

https://github.com/iriusrisk/bdd-security

 1636 2549
a 1636 2549 a

https://cheatsheetseries.owasp.org/cheatsheets/Abuse_Case_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Abuse_Case_Cheat_Sheet.html

 1636 2715 a 1636 2715 a

https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html

 2109 2881 a 2109 2881
a

https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/

 1474 3048 a 1474 3048
a

https://owaspsamm.org/guidance/agile/#General
https://owaspsamm.org/guidance/agile/#General

 2251 3380 a 2251 3380
a

https://www.selenium.dev/
https://www.selenium.dev/

 2089 3546 a 2089 3546 a

https://sonarcloud.io/
https://sonarcloud.io/

 899 3712
a 899 3712 a

https://www.sonarqube.org/

 1535 3795
a 1535 3795 a

https://techcommunity.microsoft.com/t5/azure-active-directory-identity/your-pa-word-doesn-t-matter/ba-p/731984
https://techcommunity.microsoft.com/t5/azure-active-directory-identity/your-pa-word-doesn-t-matter/ba-p/731984

 -42 4127
a -42 4127 a

https://www.researchgate.net/publication/242679421_A_system_of_security_patterns

Chapter 12
Tabby Cat Project: Getting Building

Abstract In this chapter, we start building the Tabby Cat project. We will use this
project to apply the ideas from the chapters in Part II of the book. We describe
requirements in the form of user stories, as we did in Chap. 7. We select an
architectural style from those described in Chap. 8. Finally, we employ object-
oriented design patterns, like those in Chap. 9. As we said in Chap. 6, Tabby Cat
is software for displaying source code repository developer activity. We want to
obtain activity data from a public repository, extract important information using
searching and filtering and display the results.

12.1 Introduction

In this chapter, we want to explore the technical aspects of the Tabby Cat software.
We start by creating Requirements using techniques from Chap. 7. Next we move on
to selecting an architectural style Architecture from Chap. 8. We then employ design
patterns and practices from Chap.9. Finally, our implementation uses software
source code Development techniques from Chap. 10 and Security from Chap. 11.
The Tabby Cat project, as I’ve mentioned elsewhere, has been provided by Red
Ocelot Ltd., our software start-up company [9].

12.2 Requirements

First, we can establish some high-level epic user stories for the Tabby Cat project.

• As a developer, I want to download public (GitHub) repository activity informa-
tion, in order to learn about development events

• As a developer, I want to display information about commits, issues and metrics
in order to understand the repository activity history

© Springer Nature Switzerland AG 2022
J. M. Bass, Agile Software Engineering Skills,
https://doi.org/10.1007/978-3-031-05469-3_12

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05469-3_12&domain=pdf

 -151 4612
a -151 4612 a

https://doi.org/10.1007/978-3-031-05469-3_12

178 12 Tabby Cat Project: Getting Building

Notice we have chosen to obtain information from GitHub repositories. Other
repository platforms are available. You might choose to fork and extend the Tabby
Cat software [2] to work with other platforms such as Apache Subversion or GitLab.
Make sure you have read Chap. 7. Complete Exercises 7.2 to 7.14. It is a good time
to review your learning journal.

12.2.1 Functional Requirements

Now, we can decompose our epics into more specific user stories for the Tabby Cat
software.

• As a developer, I want to select a public repository, in order to learn about the
activity history,

• As a developer, I want to download the activity history, in order to learn about
the activity history,

• As a developer, I want to sort the activity history, in order to identify specific
activities in the repository

• As a developer, I want to search the activity history, in order to identify specific
activities in the repository

• As a developer, I want to display repository metrics, in order to identify specific
properties of the repository

The Tabby Cat software should implement these user stories while supporting
possible future functional extensions later.

Review Your Learning Journal
I have recommended that you create and update a learning journal when you
do the exercises in each chapter; see Exercise 7.1. Now is a good time to
reflect on your journal notes for the chapters from Part II.

• Re-read your learning journal from the chapters and exercises in Part II of
the book,

• Think about what went well when you did the exercises,
• Think about what didn’t go so well,
• Make some notes, in your learning journal, about the strengths and

weaknesses of your work in these areas,
• Create some actions or set some targets for your future learning.

12.3 Architecture 179

12.2.2 Non-functional Requirements

For the Tabby Cat project, at this stage, we do not need to concern ourselves too
much with non-functional requirements. Our purpose is to build confidence and gain
experience of building a functional solution. This is not a safety-critical application.
Data privacy is not a big issue, since we have chosen to use public source code
repositories. Consequently, anything in the repository is already public domain.
The application doesn’t need to support many users (to quantify what we mean
by ‘many’, let’s say a few tens of users, not hundreds).

However, we might want to add new functionality to the Tabby Cat project later.
Consequently, future enhancement is a priority for this project. We plan to employ
good practices to ensure extensibility. We will also use organisational structures and
design patterns that enable future enhancement.

Finally, if you fork or clone this software, check limitations on the application
programming interface (API) used to collect repository data. Quite often, open-
access (free) APIs impose limits on the number of requests you can make. They
don’t want people running large numbers of requests against their servers. Check the
terms of use, and avoid accidentally running too many requests during development
and testing.

12.3 Architecture

We can summarise our functional requirements as:

• Select a remote repository,
• Download activity data from the chosen repository,
• Display the commit history,
• Add search terms or filters to see a targeted subset of the activity history.

We want to achieve a separation of concerns between our business functions and
our UI. Both can be developed independently, perhaps by different team members
or teams. From a front-end perspective, we need to consider how we’re going to
display dynamic data. For this illustrative case study, the user interface need not be
very sophisticated. For the back-end, we need to consider obtaining the repository
activity data.While initially, we will only be doing relatively simple data processing,
we anticipate that future functionality might become more complex.

The user stories in Sect. 12.2 suggest a flow of processing. There are four steps
illustrated in Fig. 12.1: from (1), selecting the repository to investigate; then (2),
making a request on the GitHub API of the selected repository; next (3), reading
in the activity history from that repository; and finally, (4), producing the activity
history display. Remember to read Chap. 8 and complete Exercises 8.2 and 8.3.

180 12 Tabby Cat Project: Getting Building

Client

Selected
Source Code
Repository

1

2

1. Select source code repository
2. Request activity data from repository
3. Get activity data from repository
4. Display activity data back to user

4

Tabby Cat Software
Web App + REST API

3

Fig. 12.1 Tabby Cat project outline architecture

12.3.1 Architectural Style

We have selected the clean architectural style popularised by Bob Martin [5].
This style comprises four main elements, entities, use cases, interface adapters and
frameworks and drivers, as described in Sect. 8.3.5.

Entities provide the system with enterprise business logic. The entities comprise
relatively slow-changing functionality. These are plane objects that represent the
business domain of your system.

Use cases are where you provide the business rules of your application. The use
cases are pure business logic and don’t know how results will be presented.

Interface adapters retrieve and store data. A novel feature of this architectural
style is an attempt to provide consistent management of network interfaces and
databases. The interface adapters translate between use cases and specific drivers
and frameworks for presenting data.

Frameworks and drivers comprise the database drivers and graphical user
interface libraries we select for our application.

An important idea in this architectural style is that entities and use cases are
independent of frameworks user interfaces and databases. In simple terms, entities
and use cases comprise business logic. And, interface adapters and frameworks and
drivers comprise implementation detail. Consequently, a simplified architecture of
our system is shown in Fig. 12.2.

12.3 Architecture 181

Frameworks Adapters Use Cases Entities

HTTPRequestHandler Gateway

HTTP Server Controller

UseCases Entities

Fig. 12.2 Tabby Cat clean architecture outline design

The next question we need to ask ourselves is: how will the overall architectural
style we’ve adopted influence our technology choices. We know we’re making a
software-as-a-service style web application; some approaches might include:

• Monolithic web application that serves html,
• Monolithic web services that expose a REST API with a stand-alone client (i.e.

client-server)
• Micro-services, where many small web services are aggregated to create a single

coherent API which is consumed by a stand-alone client(s).

The monolithic web application is superficially simple, but quickly becomes
difficult to maintain. There are risks of code for the user interfaced being mixed
with code for application functionality and the lack of clarity that can result.

In contrast, the second option of monolithic web services exposing an interface
to a stand-alone client is a little more complicated to implement, but neatly separates
the user interface and application logic. In principle, we can separately deploy the
server-side presentation layer from the REST services, if we want to.

Decomposing the services into micro-services would allow each micro-service
to be deployed independently. Independent deployment of services is useful if you
are supporting very large user populations or where services vary considerably in
their processing complexity (and hence hardware requirements). But micro-services
add complexity to achieve these benefits.

Although our requirements are quite simple, we have chosen the client-server
architectural style to illustrate this commonly used approach. The RESTful services
will be designed around the specific types of repository information we want to
collect. Consequently, looking at the user stories, in Sect. 12.2, we can see we want
to collect information about commits, issues and metrics.

182 12 Tabby Cat Project: Getting Building

This approach means we can provision resources in a more targeted manner—
we can vertically scale the server to account for complex and high-volume traffic
independently of the server-side presentation layer. We could also make our web
API public to allow for third-party development, potentially creating new revenue
streams, or perhaps develop additional types of client i.e. a mobile app. We can
select the Java language ecosystem to fulfil our current needs and tackle any future
processing requirements.

12.3.2 Client-Server

We propose a stand-alone web API that serves RESTful requests over HTTP. There
is no user interface component to our RESTful API; it simply accepts HTTP
requests in the form of a HTTP verb and URI which then responds with a HTTP
status code and accompanying payload (in the form of JSON).

We need some way of serving out client code (HTML/JS/CSS) to the user’s
web browser, though. To this end, we employ a popular (open-source) web server,
nginx [6]. Our nginx web server has two purposes. Firstly, it is processing incoming
requests to our domain and sends the relevant static files back. Secondly, it acts as
a reverse proxy, forwarding requests to the back-end RESTful API server. Using
a reverse proxy allows the client code to remain unaware of the back-end server
location, it can simply send requests to itself, and the nginx web server will proxy
them to wherever they need to go.

12.4 Design

Now, make sure you have read Chap. 9 and completed Exercises 9.2 to 9.6.

12.4.1 Back-End Design

Looking more carefully at Fig. 12.1, we can decompose this into the following
challenges our system needs to resolve:

• Step 1

– Accepting and processing incoming HTTP requests,
– Converting incoming HTTP requests into an internal format for use,
– Mapping the external URI to internal business logic,
– Processing the request,

12.4 Design 183

• Step 2

– Querying an external HTTP API,

• Step 3

– Mapping the response from the external HTTP API into an internal format,

• Step 4

– Returning a response to the requester.

We then identify the components we will need in our system. We are following
the clean architecture style we mentioned in Sect. 12.3.1. The main components we
identify are:

• A HTTP server component, which accepts HTTP requests and sends HTTP
responses,

• A controller component, which converts HTTP requests into an internal format
and maps to internal business logic,

• Use case components which represent our core business logic,
• Some entities which provide a more meaningful internal representation,
• An internal HTTP request handler, for querying the GitHub API,
• A gateway component, for converting between external data (database, GitHub

API) and internal data (entities).

From our requirements, we identify four entities that we will need to model:
Commit, Issue, Metrics and Source Repository. The Commit entity might aggregate
other entities like author, etc. The Issue entity, at the name suggests, is for issues
recorded in the repository we are investigating. The Metrics entity is for repository
metrics. Finally, there will be a Source Repository entity for managing a handle on
the external repository.

In the first instance, we envisage that these entities will be simple objects that
just contain data. Our use cases, for this initial iteration, are also simple retrieval
operations i.e. GetSomething. So we identify the following:

• GetCommits, get a list of commits for a given repository,
• GetIssues, get a list of issues for a given repository,
• GetSourceRepository, get a source repository from the system database,
• GetSourceRepositoryMetrics, get the metrics for a given repository.

Hence, we can flesh out our simple design into something a bit more complete,
as shown in Fig. 12.3.

After creating our initial design, now is a good time to consider if there are
any problems that can be solved using common object-oriented design patterns [4].
Looking at the diagram in Fig. 12.3, we need to make external HTTP requests from
within our software. We could embed HTTP requests into our source code. But,
these calls could end up going in several gateways. Also making HTTP requests is
quite a common thing to have to do. Hence, there are a couple of third-party libraries

184 12 Tabby Cat Project: Getting Building

Frameworks Adapters Use Cases Entities

HTTPRequestHandler

InMemoryDataStore

CommitsDSGateway

IssuesDSGateway

HTTP Server Controller

MetricsDSGateway

SourceRepoDSGateway

GetCommits

GetIssues

GetMetrics

GetSourceRepos

Commit

Issue

Metric

SourceRepo

Fig. 12.3 Tabby Cat clean architecture design

that can help us with this, such as [1] and [3]. We have selected the OKHttp library
[3]. To avoid coupling our code to this external code (that we don’t control) and to
simplify the overall interaction, we employ the façade pattern. We’ll discuss this in
more detail when we consider the implementation, Fig. 12.6.

12.4.2 Front-End Design

A popular way to structure GUIs is to use theMVC architectural style, as mentioned
in Sect. 9.6.2 and shown in Fig. 12.4a. Our initial design follows this pattern; hence,
we have some models, some views and some controllers. We also need to make
external API calls to our back-end service, it would be tiresome to have to do this
every time, so we will need a wrapper to encapsulate the http request logic. This way,
if our API changes for some reason, there’s only one place we need to change it.

Our front-end models can loosely map to the back-end models. However, we
might make some minor changes. For instance, we want our view to update from
a list of commits; therefore, we might create a Commits (plural) model, instead of
just a Commit (singular) model. Similarly, we want to list all repositories (Repos),
but we also want to select a specific repository (Repo). Consequently, we identify
four models, Commits, Repo, Repos and Issues, as shown in Fig. 12.4. Based
on how we may want to display the data to the user, the repository metrics have been
incorporated into the Repo model.

12.4 Design 185

CommitList Commits

View

Controller

Models

API Wrapper

RepoList Repos

AddRepo

RepoDetails Repo

IssuesList Issues

Views Models

Controller
RepoController

A)

B)

Fig. 12.4 Tabby Cat model-view-controller design. (a) Simple MVC. (b) Tabby Cat MVC design

Now we have our models, we need to think about what views we want to display,
and from our requirements, we will need:

• A view to list available repositories,
• A view for adding a new repository,
• A view for showing the repository details (with a child view which lists commits

and issues).

We therefore identify five views, as shown in Fig. 12.4:

• RepoList, lists available repositories,
• AddRepo, a form for adding repositories to the system,
• RepoDetails, the entry point into a repository, listing the name, owner and

metrics as well as providing functionality to select developer activity,
• CommitList, a list of commits for a given repository,
• IssueList, a list of issues for a given repository.

Given the relative simplicity of this application, we don’t imagine we’ll need
more than a single controller to handle our model/view interaction.

Looking at our MVC design, shown in Fig 12.4, we would like to maintain a
unidirectional data flow. First, the user interacts with view. Then, the controller
updates the relevant model. Finally, the model updates the view. However, we’d
like to keep this as loosely coupled as possible. Therefore, we use the observer
pattern [4] where our models are the Subject and our views are the Observer. Our

186 12 Tabby Cat Project: Getting Building

controller will bind each view to the relevant model that it needs to observe. That
way, whenever our model updates, it will iterate through all its observers updating
them with its new state.

12.5 Development

Make sure you have read Chap. 10 and completed Exercises 10.2 to 10.5. We
can now see a representation of our overall architectural implementation shown in
Fig. 12.5.

12.5.1 Back-End Technologies

In the Tabby Cat project, we have decided to build a web-based service, serving
a RESTful API over HTTP. We are familiar with both Java and JavaScript. Let’s
consider some further Java and Node.js design issues:

• Node.js is single threaded, but, due to the runtime environment and ‘event loop’
model it uses, can offer significant performance per resource cost for high I/O-
based applications (think of a web server dealing with lots of small requests)
[7].

• Java on the other hand is multi-threaded, spawning a new thread (with accom-
panying memory) for each new request that comes in. This means individual

Frameworks Adapters Use Cases Entities

<<interface>>
HTTPRequestHandler

OkHttp3RequestHandler

<<interface>>
CommitDSGateway

Http3CommitGateway

GetCommitBySHAInteractor

Entity

Commit

VCSExplorerApplication

SpringBoot

VCSExplorerController

uses
uses

uses

uses

uses

uses

Fig. 12.5 Tabby Cat clean architecture implementation

12.5 Development 187

requests can be complex, but the total number of I/O requests is limited (based
on available resources in the runtime environment).

• Node.js has no types out of the box but can be added via Typescript; however,
this introduces another layer of complexity.

• Java is strictly typed without any additional overhead.

This list is my no means exhaustive. These are simply examples of the issues
you might consider. I encourage you to look at empirical research resources that
experimentally compare different languages. Be wary of online discussions that are
based on opinion, instead of fact.

We have only considered Java and Node.js in this discussion; it could be worth
looking at languages such as C# or Python and see how they compare. As with most
things, it’s about trade-offs—Java might be ‘good enough’ and we already know the
language, but it might be that Python is just perfect for the job and might therefore
be worth the initial investment in learning. On the other hand, maybe a HackCamp
or Hackathon setting is not ideal for learning a new language. Using our experience
and an evaluation of the available technologies and our skill sets, we have decided
to choose a Java-based server-side application for implementing a REST API over
http.

One other issue we should consider is how we integrate Tabby Cat source code
with third-party libraries. We want to use an external library to simplify accessing
the GitHub API and making activity history requests. As mentioned earlier, we
have chosen to use the OKHttp3 library for this [3]. We could just embed calls
to this library within our own code, but this can add complexity when it comes to
future source code maintenance. Consequently, it is good practice to use a façade
pattern [4] to hide the complexity of the OKHttp3 library, as shown in Fig. 12.6.
We have provided a generic request handler HttpRequestHandler and a specific

HttpCommitGateway HttpRequestHandler

OkHttpRequestHandler

<<uses>>

OkHttpClient Request Response Builder

<<uses>>

Fig. 12.6 Tabby Cat façade pattern

188 12 Tabby Cat Project: Getting Building

instantiation of that handler, the OkHttpRequestHandler, that wraps calls to the
external library.

12.5.2 Front-End Technologies

We need to complete a design exercise for front-end technologies, as well. In our
case, we are familiar with vanilla JavaScript, HTML, jQuery and React.

• vanilla JavaScript and HTML are simple, no compilation or complex build tool
needed out of the gate, play well with conventional UX/UI design tools that pro-
duce HTML/CSS and can be hard to maintain beyond a certain size/complexity

• jQuery + HTML, similar to vanilla JavaScript, have lots of rich libraries and tools
that simplify using vanilla JavaScript but still suffer the same issues in terms of
complexity and size

• React excels at making modular, reusable components which can be plugged
together to build sophisticated applications and strong support community and
rich sets of UI libraries and excels at creating single-page applications (SPAs)

As with the back-end technologies, it might be worthwhile to investigate other
technologies, for instance, Vue or AngularJS. Our user interface for the purpose
of this case study does not have to be very sophisticated. Hence, a simple vanilla
JavaScript and HTML front-end is fine.

One risk with implementing the model-view-controller is the complexity associ-
ated with the controller. The model encapsulates functionality for managing and
manipulating data. Simple. The view is responsible for the user interface and
user experience. That’s clear. But the controller. . .What goes in there? A simple
suggestion is that the controller contains everything not in the view or the model.
This is, of course, simplistic and crude. But, it illustrates that complexity in the
controller can get out of hand. A clever solution, employed in Tabby Cat, is to
implement an observer pattern. The observer pattern provides a neat way to connect
the model and view [4].

The observer pattern implements, a sort of, publish and subscribe model. The
idea, shown in Fig. 12.7a, is to provide a consistent way to update the state of
multiple observers. The Tabby Cat implementation is shown in Fig. 12.7b.

At runtime, you can see from Fig. 12.8 that the user selects activity information
from within a view. The view calls the controller to select a model which returns
activity information directly to the view.

12.5.3 Code Organisation

An important issue facing developers is how to organise the source code files
for the project. This is particularly true when a team of developers is involved.

12.5 Development 189

Subject <<interface>>
Observer

Observer A

<<interface>>
View

CommitsModel CommitsList

Observer B

+update(Object state)

Subject
+observers: Array<View>

+subscribe(View view)
+notify(Object state)

B)

A)

Fig. 12.7 Tabby Cat observer pattern. (a) Observer pattern. (b) Observer pattern, Tabby Cat
implementation

User :CommitList(View) :RepoController :Commits (Model)

load developer
activity (commits) selectCommits

…FromRepoCallback()

getCommitsForRepo()

notify()render()

Fig. 12.8 Tabby Cat observer object sequence diagram

190 12 Tabby Cat Project: Getting Building

A) B)

GitHubExplorerController

<<interface>>
GitHubExplorerService

<<interface>>
GitHubExplorerPersistence

<<uses>>

<<uses>>

GitHubExplorerController

<<uses>>

<<interface>>
GitHubExplorerComponent

GitHubExplorerComponentImpl

<<interface>>
GitHubExplorerPersistence

HttpGitHubExplorerPersistence

<<uses>>

GitHubExplorerServiceImpl

HttpGitHubExplorerPersistence

Fig. 12.9 Tabby Cat source code organisation (Adapted from [5]). (a) Layered code organisation.
(b) Component code organisation

A conventional approach for business information systems is to adopt a layered
architecture and follow that with a corresponding package structure as shown in
Fig. 12.9a. One problem with this approach is that the layered package structure
is so generic that it could be used for any business information system in any
domain. In other words, the layered package structure conveys little about the actual
functionality of the system.

An alternative approach organises code into components [5]. In this component
package structure, source code folders and packages are organised around the
component functionality in the system, as shown in Fig. 12.9b.

The idea is that only the bold boxes in Fig. 12.9 are publicly available, while
access to the greyed-out boxes is restricted. Using the layered package structure
shown in Fig. 12.9a, there is technically nothing to stop an undisciplined developer
writing controller code that directly calls the persistence layer. This is a bad idea
from a maintenance and evolution perspective. However, using the component pack-
age structure shown in Fig. 12.9b prevents this problem and makes the application
source code easier to understand when intuitive names are used for components.

References 191

12.6 Security

Our focus here has been to build a functional system. We’ve already observed, in
Sect. 12.2, that non-functional requirements are not at the forefront of our minds,
right now. Consequently, security issues are not exceptionally stringent beyond the
concerns of any internet connected application or software service.

Take this opportunity to read Chap. 11 and complete Exercises 11.2 and 11.3.
Now is a good time to review the Open Web Application Security Project (OWASP)
Top Ten list that describes the most common and serious web application software
security risks [8].

12.7 Illustrative Implementation

An example implementation of the Tabby Cat project is available on GitHub [2].
The Tabby Cat project source code shows howwe chose to implement an illustrative
example based on ideas in the book. We’ve tried to keep things simple while also
adopting good development practices. In particular, we have tried to make the
software simple to enhance and extend.

References

1. Apache Software Foundation: Apache httpcomponents – httpclient overview (Feb 2022), https://
hc.apache.org/httpcomponents-client-5.1.x/

2. Bass, J., Monaghan, B.: Tabby Cat GitHub Explorer. Red Ocelot Ltd (Jan 2022). https://github.
com/julianbass/github-explorer

3. Block, Inc: Overview - okhttp (2022). https://square.github.io/okhttp/
4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns : Elements of Reusable Object-

Oriented Software. Addison-Wesley, Harlow, England (2005)
5. Martin, R.C.: Clean Architecture: A Craftsman’s Guide to Software Structure and Design, 1st

edn. Addison-Wesley (Sep 2017)
6. Nginx, Inc.: nginx (January 2022). https://nginx.org/en/
7. OpenJS Foundation: Node.js (Jan 2022), https://nodejs.org/en/
8. OWASP Foundation: Owasp top ten web application security risks (2021). https://owasp.org/

www-project-top-ten/
9. Red Ocelot Ltd: Enhancing digital agility (2022). https://www.redocelot.com

2416 2501 a 2416 2501 a

https://hc.apache.org/httpcomponents-client-5.1.x/
https://hc.apache.org/httpcomponents-client-5.1.x/

 2221 2667 a 2221 2667 a

https://github.com/julianbass/github-explorer
https://github.com/julianbass/github-explorer

 1009 2833 a 1009 2833 a

https://square.github.io/okhttp/

 918 3248 a 918 3248 a

https://nginx.org/en/

 1088 3331
a 1088 3331 a

https://nodejs.org/en/

 2109 3414 a 2109 3414 a

https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/

 1334 3580
a 1334 3580 a

https://www.redocelot.com

Part III
Process, Tools and Automation

Part III of the book focuses on process. We want to learn how to create a systematic
and repeatable software development process, for creating worthwhile products.
Each of the chapters in Part III has exercises.

First, in Chap. 13, the coordination activities and meetings in a typical business
information system development process are described. You can learn about
coordination meetings and some engineering practices like pair programming and
test-driven development.

In contrast, Chap. 14 investigates the benefits of lean software development. I’ll
explore key ideas around value,waste and speed in a software development process.

Version control helps you create a revision history of your software and provides
a means for sharing code with others in your team. Version control is discussed in
Chap. 15.

Testing helps identify defects in your code and is considered in Chap. 16. From
a process perspective, we are most interested in test automation.

In Chap. 17, the ideas from all the chapters in Part III are applied to the Tabby Cat
case study. I explore the process and automation skills needed to read information
from a selected GitHub repository using an API and display the activity data.

194 III Process, Tools and Automation

Other Book Parts

As I’ve said, the overall design of this book is around Part I on people, Part II on
product and Part III on process. These parts of the book are stand-alone, more or
less. So, if your main interest is in the people aspects of software development, for
instance, then you might want to skip back to Part I. However, if your main interest
is in technicalities of developing a product, you could skip back to II. To further
support you in learning the skills you need, there are some more advanced topics, in
Part IV.

Chapter 13
Agile Ceremonies

Abstract This chapter explains how iterations work in software development.
There are planning ceremonies at the start of each iteration and a review at
the end. One aspect of the iteration review is to get customer feedback on the
software that has been produced. Another aspect of the review is to enhance
learning and improvement within the software team. We will talk about other
potentially useful techniques like pair programming, test-driven development and
swarm programming.

13.1 Introduction

Ceremonies are the group collaboration activities performed as part of an agile
development process; see Fig. 13.1. Ceremonies are usually meetings, of one sort
or another, conducted during each iteration.

13.2 Iteration Planning

Planning is essentially about deciding what to work on (and consequently what not
to work on) in the coming (hopefully short) time window. We want to plan for
a short iteration, as a way of mitigating the risk of change (in the environment,
in customer needs or wishes, in the teams and so on). Planning involves mapping
customer priorities to estimates of our production capacity.

Iteration planning is conducted at the start of each iteration, as shown in Fig. 13.1,
and comprises four tasks:

• prioritisation of requirements,
• breaking up of requirements into technical tasks,
• estimation of technical tasks and consequently requirements,
• work item assignment within the team.

© Springer Nature Switzerland AG 2022
J. M. Bass, Agile Software Engineering Skills,
https://doi.org/10.1007/978-3-031-05469-3_13

195

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05469-3_13&domain=pdf

 -151 4612 a -151 4612
a

https://doi.org/10.1007/978-3-031-05469-3_13

196 13 Agile Ceremonies

Product
Requirements

Backlog

Iteration
Requirements

Backlog

Shippable
Software

2-4 Weeks

Daily Status
Updates

Iteration
Planning

Repeated
Iterations

Highest Priority
Requirement

Fig. 13.1 Agile process

On large-scale projects, more extensive planning is required. Release plans are
used to coordinate cooperating teams and periodic risk assessments performed to
prepare mitigations; see Chap. 18. But for now, let’s focus on merely planning for
the iteration ahead.

13.2.1 Prioritisation

The product owner, not the development team, prioritises requirements for imple-
mentation. There is one exception, which is where team members notice some
technical dependency between tasks. That is, some high-priority requirement,
selected by the product owner, depends on some lower-priority requirement being
implemented first. In this situation, the team can advise the product owner that the
higher-priority requirement can be implemented but will not work. The product
owner can then decide if they want to increase the priority of the lower-priority
requirement.

13.2.2 Features and Technical Tasks

Our first task during iteration planning, with a prioritised requirements backlog, is
to get consensus on what a user story comprises. So, we break each feature up into
a set of technical tasks. Does this user story require any front-end interface screens?
Does this feature need to use data storage? What business logic operations are part
of this feature? We need to divide the user story into all its constituent technical
tasks. By creating a list of smaller work items, we can more confidently estimate the
effort required to implement each and hence the overall feature.

We can summarise the process as follows:

• Select highest-priority user story from the backlog,
• Discuss the purpose and scope of the user story,

13.2 Iteration Planning 197

• The product owner answers questions about the user story,
• The discussion is complete, once all questions have been answered,
• The user story is broken up into constituent technical tasks, depending upon the

application domain; think about user interface tasks, application logic and data
storage tasks as separate items.

• Repeat the process for the next high-priority user story in the product backlog.

We do not need to perform this process on every user story in the backlog, for
every iteration. We only need to split stories which are going to be implemented
during the coming iteration. After we have split a user story into technical tasks, we
can estimate the effort required for implementation.

13.2.3 Estimation

We need to know how many features we can fit into an iteration. That is a difficult
question to answer. Not least because team members may have different perceptions
of what is required to implement a feature. The two techniques worth mentioning
are story points and T-shirt sizing. Both approaches tend to use the planning poker
technique.

13.2.3.1 Story Point Estimation

Story points are a relative measure of the size or complexity of user stories. The
integers used to approximate size are taken from a Fibonacci number sequence: 1,
2, 3, 5, 8 and 13. Using this number sequence, the estimates for larger sizes are
less precise; consequently, there is no need to differentiate between sizes 9 and 10.
Instead, it is sufficient to distinguish between 8 and 13.

Larger, story point sizes, depending upon the business domain of the application
under development, could indicate that the user story is in fact an epic that needs
to be further decomposed into user stories. If large user stories cannot logically be
decomposed, then story point sizes like 20, 40 or 100might be considered. However,
we do need each user story to fit into an iteration; consequently, epics do have an
upper size limit (or iteration durations lengthened).

Planning poker is commonly used to allocate story points to technical tasks. To
perform planning poker, the team members collectively:

• Take each technical task; in turn, the first round of voting starts,
• Discuss each technical task, if necessary,
• Write down (secretly) their estimates for the work item,
• When everyone has finished writing, team members reveal their votes for the

tasks,
• Look at the story points assigned and see if there is close consensus (in novice

teams or a new application domain, close consensus is unlikely),

198 13 Agile Ceremonies

• If there is consensus, on the story point allocation, move on to the next technical
task,

• If there is no consensus, constructively discuss the highest and lowest story point
estimates and try to understand why someone thought it was a larger or smaller
task,

• Following this discussion, move into a second round of voting
• Continue rounds of voting and discussion until consensus emerges around the

story point value for a task,
• Then, move on to the next technical task or user story.

The planning poker approach to estimation is consensus-based and draws upon
all the team expertise available. This approach fosters discussion, which is a
valuable source of learning for novice or less experienced members. Teams tend
to improve estimation accuracy over time.

13.2.3.2 T-Shirt Sizing

A simple and easy way to estimate tasks is to agree a small set of categories and fit
the features into the agreed groups. So, we can think of tasks or features as being
small, medium, large and extra large. We think of this estimation process as fitting
tasks in a (small) group of size categories. How many size categories are reasonable
for your context? Three, four or five? How accurate (or precise) do you expect your
estimation to be? More than five size categories require considerable effort for a
novice team.

If a task is bigger than the usual range of categories, we take further action,
as we did with story point estimation. For example, if a task is extra, extra large
(which is an epic user story), it requires further analysis to break it down into a
more manageable size.

We can use a similar planning poker process as we used with story point
estimation. Everyone secretly writes their size estimate for a technical task on a
sticky note. The sticky notes are all revealed simultaneously (so no one can change
their score, when they see other people’s estimates). Team members can then see
the variation in size estimates within the group. Teams usually discuss the thinking
behind the largest and smallest estimates. After the discussion, team members are
invited to offer a revised size estimate. Everyone writes a second estimate on a
sticky note, which is then shared again. After a few rounds of discussion and voting,
consensus is achieved on the size of that specific technical task.

13.3 Coordination Meetings 199

T-Shirt Sizing, Burndown Charts and Velocity
Some people describe agile methods, like Scrum, as empirical methods.
The idea is we can keep track of the number of story points completed
in an iteration. This figure, the number of story points completed in an
iteration, is called the team velocity. We can also plot burndown charts, during
the iteration, showing story points as they are completed, as discussed in
Sect. 10.3.3.

A perceived disadvantage of T-shirt sizing is the lack of integer values
for each size. A simple way to combine velocity, burndown chart and T-shirt
sizing is to consistently assign an integer value for each size. For example,
large might equate to 13 points. Medium equals 8 points and so on. Now we
can use T-shirt sizing as an empirical method.

13.2.4 Task Assignment

After requirements have been estimated, we now have an idea how many tasks can
fit into an iteration. We can now decide who, in the team, is going to tackle each
task. A defining characteristic of a self-organising team is that people volunteer for
tasks. Sometimes, people pick up a task because it is similar to others they have
successfully completed in the past. On the other hand, sometimes people pick up
tasks to learn something new. The aspiration for the team, achieved in experienced
groups, is that anyone be capable of doing any tasks.

You might imagine relying on volunteers to pick up tasks means that there are
tasks no one wants that don’t get taken up. But practitioners say this is unusual.
More commonly, self-organising teams develop a sense of shared commitment to
group outcomes. So, unpopular tasks do tend to get shared around the group over
successive iterations.

13.3 Coordination Meetings

The daily stand-up, a coordination meeting involving everyone in the team, is an
important activity in agile methods. It is where everyone finds out what is going on
in the team.

Everyone in the team answers the following three questions:

1. What have I been doing, since the last stand-up?
2. What will I be doing, between now and the next stand-up?
3. Are there any impediments preventing me from making progress?

200 13 Agile Ceremonies

Some groups like to add a fourth question: Am I going to create any blockers
that might impede others? This fourth question is typically useful in larger projects
where there are dependencies between the codes produced by different team
members.

Example: Why Might Anyone Create an Impediment?
The fourth question am I going to create any blockers that might impede
others? is sometimes useful where one or more team members are creating
a class or API which is relied upon by other members of the team. When
changes are made to that API, this could potentially cause code already
written by others to fail. In such cases, it is polite to warn people that the
interface or API they use is changing.

13.3.1 Virtual Stand-Up Meetings

Where groups are working remotely or geographically distributed, a stand-up
meeting can be conducted online. Obviously, given the choice, we’d all rather be
in the same room at the same time. However, there are often lots of reasons why
someone isn’t able to physically be with the rest of the team. The ubiquity of video
or audio conferencing facilities makes virtual team meetings more attractive than
not having a meeting at all.

Partly online coordination meetings are common, that is, where one or two
members of the team participate online, while the rest of the group gather around
a Kanban board. If you are technical team member, you just need to answer your
three questions when your turn comes, so that can work. In offshore development
contexts, the team might be offshore, and the product owner is in a remote location
(from the team’s perspective) that is considered onshore. But if you are the product
owner, you are a kind of observer anyway, so that does not matter so much.

However, being the only online participant in a meeting where everyone else is
co-located is not fabulous. The solitary remote worker tends to feel left out of the
discussion and often can’t interject to make a comment. It is difficult to achieve a
sense of team cohesion in this arrangement, trust is weak, and the risk of conflicts
emerging is high.

13.4 Customer Demonstrations 201

13.3.2 Kanban Boards

Coordination meetings are usually held in front of a visual (often physical) display
of project status. The idea is to make visual the team’s efforts towards project goals.
Kanban boards were mentioned in Sect. 10.2.1.

The Kanban board originates in the world of advanced manufacturing and just-
in-time production emanating from the Japanese car industry. In its simplest form,
it consists of three columns: To Do, Doing and Done. The requirements, features or,
more likely, technical tasks identified in iteration planning are added to the board
using sticky notes. Each sticky note represents a technical task. All the tasks start off
in the To Do column. As the project progresses, the sticky notes all work their way
over to the Done column. The sticky notes are usually moved during coordination
meetings, as the status of an item changes. This gives a visually appealing sense of
project progress. Each team member can see their effort as part of the wider range
of team activities.

Online tools, such as Trello [1], can be used to support virtual teams using
Kanban boards. This retains the visual illustration of project progress while enabling
remote working. Tasks or user stories modelled using online Kanban boards can be
embellished with acceptance test criteria and links to definitions of done.

13.4 Customer Demonstrations

A customer demonstration is where you demonstrate working code to your customer
or client at the end of an iteration. Preparation for the customer demonstration
requires the following steps:

• Scrum master arranges a convenient date and time with the product owner or
client,

• Scrum master arranges a venue, which might be online of course,
• Scrum master makes sure that all the team members are available and aware of

the time and venue,
• Scrum master makes sure you have the right technology to demonstrate the

software (install and check the demonstration environment),
• Identify a team member to make notes during the customer demonstration,
• As a team, rehearse the demonstration, and make sure the demonstration runs

smoothly and that any hand-off from one presenter to another is seemless,
• As a team, make sure you wear appropriate (usually smart casual or business)

dress.

During the customer demonstration, the meeting agenda is as follows:

1. Introduce the purpose of the meeting,
2. Review the requirements you were supposed to implement,
3. Demonstrate each new feature of the software,

202 13 Agile Ceremonies

4. Review any requirements that you were unable to implement for any reason,
5. Collect and carefully record any feedback from the product owner or client.

An important benefit of the incremental development approach is the idea
of getting feedback at intermediate stage of the project development process.
Customers, clients or users (whichever most appropriately describes your situation)
need to be able to see progress towards project completion and influence the
direction of travel. If you are serious about software development, you genuinely
want reassurance that the code you are writing is fit for purpose and meets the needs
that have been identified.

It is the customer demonstration that offers both sides the opportunity for this
feedback. You get reassurance from the customers that you are on the right track.
And customers see evidence of progress towards the completed system. You do this
by demonstrating each of the features, in turn, that have been implemented during
the last iteration.

Demonstrate how each feature works and the defensive programming measures
you have implemented. So, for example, where your software requires user input,
you will show how the programme responds if the wrong type of information is
provided. You may also demonstrate how the working software has benefited from
testing and other quality assurance measures.

13.4.1 Retrospectives

Another important benefit of the incremental development approach is the idea of
learning from each iteration. Committed software developers genuinely want to
improve their team effectiveness. The retrospective is an opportunity to do that.
Retrospectives are better than infrequent and ineffective end-of-project reviews.

In research interviews I’ve conducted with practitioners, one or two have said
‘ohh, we don’t bother with retros any more, we didn’t find them useful. We kept
going over the same ground’. That is a sign of a team with deep-rooted unresolved
problems; a sign of a dysfunctional development process.

A healthy team uses retrospectives to experiment and learn. Try new ideas. Keep
the ones that work. Discard ideas that don’t work. And repeat. A simple way you
can conduct a retrospective is for everyone in the team to think of:

• Three things that worked well, in the previous iteration,
• Three things that, as a team, you could be doing better,
• Three improvement actions for the next sprint.

The things that worked well are the good practices you want to keep doing. Then,
the things you could be doing better are the areas for potential improvement. As
a team, you look for consensus areas. Often you find several team members will
point out similar areas where things could improve. Once you have identified three
potential areas of improvement, from among the suggestions from team members,

13.5 Pair Programming 203

you can develop a set of actions. Actions are practical steps you can take to address
improvement areas.

Example Action from a Retrospective
A common problem, for novice teams, is that stand-up meetings drift off-

topic and consequently take too long. This can happen gradually, but becomes
a problem for busy teams. For example, when someone raises an impediment
in a stand-up meeting, a discussion starts on the causes or solution to that
impediment.

If long stand-up meetings are identified as an area for improvement by
several people in the retrospective meeting, then the team might agree to be
more disciplined about sticking to answering the three questions. The scrum
master, who usually facilitates the stand-up meetings, should gently remind
people to stay on-topic. Further, the scrummaster convenes separatemeetings,
for those interested, to discuss the issues raised in the stand-up. At the next
retrospective, we expect to see fewer concerns about long stand-up meetings.

If the same issue were to remain a problem raised at the next retrospective,
then some firmer stand-up facilitator is needed. Perhaps someone else should
run the meeting with a stricter mandate to keep the meeting on-topic. The idea
of the retrospective is that the team take collective responsibility for quality
improvement over time.

13.5 Pair Programming

Pair programming is where two developers work together in a pilot-co-pilot
configuration [4]. This is not a case of one person programming while the other
rests or watches. Rather, it is that both developers are occupied on different activities
during the development process.

In pair programming, one developer is more focused on low-level syntax and
language mechanics. Usually, this developer has the keyboard and is actually typing
source code.

While one developer is typing and thinking about syntax, the other is considering
higher-level structure and readability. This second developer is focused on source
code quality and acceptance testing.

Another common use of pair programming is for developing new talent. There
is some evidence that novice team members operate at the level of the more
experienced team member when working in pairs [2] and that pairs significantly
outperform individuals [5]. Pair programming can be used to support new devel-
opers acquiring software skills for the first time. Or, pair programming support the
induction of experienced software developers joining a team and learning to find

204 13 Agile Ceremonies

their way around an existing code base. In either situation, the learner controls
the keyboard. You don’t learn much by merely watching an experienced hand.
Obviously, the mentor adopts a warm, constructive and supportive demeanour.

13.6 Test-Driven Development

Test-driven development takes a counter-intuitive approach to software development
in which automated tests are written before the code itself [3]. Developers extract the
test criteria recorded against each requirement. These test criteria are then written
into unit tests. The tests fail at first, when executed, because no code has been
written. Then code is written to meet the requirements. One by one, the automated
tests will pass. At the end of the process, code will have been written to pass all the
tests.

So the general test-driven development cycle goes as follows [3]:

1. Write a test,
2. Make it run
3. Make it right.

Make it run means quickly filling in functionality to get tests to pass. Make it
right means refactor the code into an elegant form, by removing duplication and
simplifying, while still passing all the tests, of course.

The approach has been shown experimentally (albeit with student, rather than
practitioner, subjects) to be less effective, in terms of defect reduction, than code
inspections [6]. But, it is suggested test-driven development improves developer
morale, since the conclusion of the development process is signified by passed tests.

13.7 Specialist Agile Ceremonies

There are some specialist ceremonies that development teams use, usually when
things are not going well. Sometimes our initial estimates of a user story turn out
to be wrong. Perhaps, as a development team, we misunderstood the requirement.
Or, maybe implementation of the story turns out to be much more complicated than
expected. Often, pair programming is enough to get us out of such a fix. However
occasionally, a more dramatic solution is called for.

13.7.1 Spikes

A spike is where the estimate, for a requirement or technical task under develop-
ment, proves to be inaccurate. This usually means some new, previously hidden,

13.7 Specialist Agile Ceremonies 205

complexity associated with a requirement has emerged. We can mark the task on
our Kanban board, re-estimate the effort required and re-prioritise. The advantage
of treating the story as a spike is that we can remain committed to other stories in
the sprint and do not get distracted with the troublesome one.

We might choose to park the story for a future sprint. But, this is undesirable,
because we have failed to meet our commitment to the product owner or client. In
consultation with our product owner, we might decide that the spike is too important
to just park for a future sprint.

Having identified a story as a spike, we might also consider adding resources to
that story. In this situation, quite a lot of teams use pair programming to resolve
the issue. While, in the Extreme Programming method, it is recommended that
developers use pair programming all the time [4], some practitioners prefer to use
pair programming only under specific circumstances. A common, special case, use
of pair programming is to address spikes.

Alternatively, we might reduce the priority of some other activity, so that we
can resolve the spike. There are some other approaches to resolving spikes, such as
swarm programming or even pulling in additional specialist support from outside
the team.

13.7.2 Swarm Programming

In swarm programming,more than two developers work together. This can be useful
if team members want to work together to tackle some new task or technology
that no one has used before or where progress for the whole team is blocked by
one particular problem that needs to be solved. The idea is that the swarm makes
development quicker, and comes up with higher-quality solutions, than an individual
or pair.

Usually swarm programming is used to tackle specific issues. For example, some
teams use swarm programming to address a high-priority spike. Alternatively, a
swarm might be used to achieve consensus on an architectural style.

13.7.3 Mob Programming

Mob programming takes the ideas of pair and swarm programming to the extreme.
In mob programming, the whole team works together all the time. The team is
co-located, working together at one computer performing all requirements, design
and development activities. So, in mob programming, the team has workshops
for defining stories, working with customers and designing, testing and deploying
software.

206 13 Agile Ceremonies

13.8 Exercises

Now create a learning journal for Part III Process. You can use the learning journal
to make notes on the things you learn from this part of the book. The journal should
include a section for each book chapter. You can also use the learning journal for
planning your future skills development.

Don’t look at the hints, tips and solutions chapter, at this stage. First, complete
an exercise (but still, do not look at the hints or tips). Next, reflect on the exercise.
Then look at the hints, tips and advice in Sect. 13.9.

Exercise 13.1 (Learning Journal)

13.1 Write in your personal learning journal about what you have learned
from Chap. 13. Briefly review the chapter now.

Exercise 13.2 (Sprint Planning Exercise)

13.2 As a group, practise conducting a sprint planning exercise. You will
need to create technical tasks for each high-priority requirement. Estimate
each requirement. Decide how many (and which) requirements you can
accommodate in the next iteration. Make sure someone in the team has chosen
tasks to work on. There is more detailed advice on how to conduct sprint
planning in Sect. 13.9.

Exercise 13.3 (Stand-Up Meeting Exercise)

13.3 As a group, practise conducting a stand-up meeting. Make sure the
meeting stays focused on project status. During the meeting, did you learn
who is working on what? Make sure the meeting lasts no more than 15
minutes.

13.8 Exercises 207

Exercise 13.4 (Customer Demonstration Exercise)

13.4 As a group, rehearse conducting a customer demonstration. Perhaps a
colleague or friend can stand in for your client. You want to have done a
previous, private, rehearsal of the demonstration, so you can advertise the
new features of your software in a positive light. In your practice customer
demonstration, record any constructive feedback you are given. Review all
the feedback later, and action any comments you have been given.

Exercise 13.5 (Retrospective Exercise)

13.5 As a group, rehearse conducting a retrospective, at the end of an
iteration. Each team member should:

• Write down three areas of good practice that the team should continue in
future iterations,

• Write three potential areas for improvement.

Everyone shares their notes with the team, on a whiteboard, or virtual
whiteboard perhaps. The scrum master then groups together the areas of good
practice and improvement. Then, the scrum master groups together similar
topics within the areas of good practice or improvement. Look for areas of
consensus.

Now, having identified a shared set of (no more than three) areas for
improvement, create a set of actions. These actions should be practical steps
that the team can take to improve their work in the improvement areas.

Exercise 13.6 (Learning Journal)

13.6 Use your learning journal to reflect on the exercises you have completed.
Think about what you have learned and make some notes.

208 13 Agile Ceremonies

13.9 Hints, Tips and Advice on Exercises

13.1 Learning Journal

In Chap. 13, we have discussed aspects of iteration planning, coordination
meetings, customer demonstrations, pair programming, test-driven develop-
ment and specialist ceremonies. Review the material in the chapter and write
some notes about what you have learned.

13.2 Sprint Planning Exercise

The sprint planning process comprises four main activities:

• Expand requirements into technical tasks,
• Estimate requirements to see how many can be accommodated in the new

iteration,
• Select requirements for inclusion in the new iteration,
• Ensure that all the requirements have been accepted by someone on the

team.

Look at the high-priority requirements on your backlog. The prioritisation
will have been done by the product owner. For each requirement, create the
full set of technical tasks needed for implementation.

Now that you have a list of technical tasks for each requirement, you can
more accurately estimate the effort needed to implement the requirement.
Think about which method you want to use for estimation. Practise and
rehearse using your chosen method on a toy example before you use it on a
project. The purpose of estimating is to create an equitable allocation of work
to team members and to ensure your team will not be over- (or under)-utilised
during the next iteration.

Once estimation is complete, you can choose a specific set of requirements
for the next iteration. This might be straightforward. Or, there may be some
tasks forced upon by dependencies. So, you need to implement something
that is only needed right now in order to finish something else. Or, you may
need to pull up some smaller tasks because you do not have team capacity
to undertake another large task. So, as you can see, there are some trade-offs
here.

Finally, team members have to choose work tasks. Remember scrum
master don’t assign work. But they do need to ensure all tasks are assigned to
someone. So some encouragement or cajoling might be needed to get all the
tasks taken up by someone.

13.9 Hints, Tips and Advice on Exercises 209

13.3 Stand-Up Meeting Exercise

Remember the stand-up meeting ground rules. Everyone should answer the
following three (or four) questions: (1) what have I been doing since the
last stand-up? (2) What will I be doing between now and the next stand-up?
(3) Are there any impediments preventing me from making progress? And,
maybe, (4) am I going to create any blockers that might impede others?

Listen carefully to the discussion. If anyone diverts onto other topics, make
sure you make a note of the issue and set up a separate meeting for that
discussion. Steer people (firmly, but politely) in the stand-up back onto the
three questions.

13.4 Customer Demonstration Exercise

Make sure you have arranged a venue. Make sure that all the team members
and product owner are available and aware of the time and venue. Introduce
the purpose of the meeting and review the requirements you were supposed
to implement. Demonstrate the features of the software. Review any require-
ments that you were unable to implement for any reason.

13.5 Retrospective Exercise

There are several ways of conducting retrospectives, but you might consider
using the following steps:

• Everyone in the team writes three sticky notes: ‘things we should continue
to do’

• Collect all the sticky notes together on a blank whiteboard
• Everyone writes three sticky notes: ‘potential areas for learning or

improvement’
• Collect all the sticky notes together on a blank white board
• Spend a few minutes, as a group, reviewing all the sticky notes
• Try to collect the ‘potential areas for learning or improvement’ into groups

or categories. Look for themes.
• Choose the top three ‘potential areas for learning or improvement’. The

top three are likely to be areas of consensus or at least mentioned on more
than one sticky note.

• Create one action point for each of the top three ‘potential areas for
learning or improvement’. You should encourage implementation of the
action point during the coming iteration.

210 13 Agile Ceremonies

13.10 Chapter Summary

In agile methods, the specific meetings teams use to develop software are often
called ceremonies. I have described ceremonies used to start and finish iterations.
This includes estimation and work allocation during iteration planning and kick-off.
Demonstrations of working code provide opportunities for feedback and retrospec-
tives and an important forum for team learning. I’ve also discussed ceremonies used
during the iterations themselves, such as coordination meetings, pair programming
and test-driven development. Kanban boards, whether physical or online, provide
visibility to team members of project progress. Next, in Chap. 14, we’ll explore the
principles and ideas behind lean software development.

References

1. Atlassian: Trello (2019), https://trello.com
2. Balijepally, V., Mahapatra, R., Nerur, S., Price, K.H.: Are two heads better than one for software

development? The productivity paradox of pair programming. MIS Quarterly 33(1), 91–118
(2009)

3. Beck, K.: Test Driven Development, 1st edn. Addison Wesley, Boston (Nov 2002)
4. Beck, K., Andres, C.: Extreme Programming Explained, 2nd edn. Addison Wesley, Boston,

USA (Nov 2004)
5. Lui, K.M., Chan, K.C.C., Nosek, J.: The effect of pairs in program design tasks. IEEE

Trans. Softw. Eng. 34(2), 197–211 (2008). https://doi.ieeecomputersociety.org/10.1109/TSE.
2007.70755

6. Wilkerson, J.W., Nunamaker, J.F., Mercer, R.: Comparing the defect reduction benefits of code
inspection and test-driven development. IEEE Trans. Softw. Eng. 38(3), 547–560 (2012). https://
doi.ieeecomputersociety.org/10.1109/TSE.2011.46

 633 1602 a 633 1602 a

https://trello.com

 1211 2266 a 1211 2266 a

https://doi.ieeecomputersociety.org/10.1109/TSE.2007.70755
https://doi.ieeecomputersociety.org/10.1109/TSE.2007.70755

 2416 2515
a 2416 2515 a

https://doi.ieeecomputersociety.org/10.1109/TSE.2011.46
https://doi.ieeecomputersociety.org/10.1109/TSE.2011.46

Chapter 14
Lean

Abstract This chapter will introduce the concept of lean software development.
The lean approach treats each user story or work item as an artefact flowing through
a development process. Lean focuses on concepts such as value, waste, speed,
people, knowledge and quality.We take a holistic view of the development life cycle,
concentrating on maximising the efficient flow of work items. We also touch on the
influential lean start-up model, an approach to starting a technology company using
revenue (rather than investment) to support growth. There are many useful ideas in
lean which we can apply alongside agile methods. Some teams view adopting lean
as a natural progression once they have become proficient at agile.

14.1 Introduction

Lean concepts emerged in the just-in-time (or smart) manufacturing movement
from Japan in the 1980s. In smart manufacturing, the ideas are about responsive
production, low inventories and high quality. These ideas have proved very useful,
when applied to software development.

Let’s consider seven principles:

• Eliminate waste,
• Build quality in,
• Create knowledge,
• Defer commitment,
• Deliver fast,
• Optimise the whole,
• Respect people.

Eliminate waste, waste is anything that does not add value. We need a deep
understanding of value, so we can remove anything superfluous. Waste is anything
that does not add customer value or any form of delay. We’ll come back to topic of
waste in Sec. 14.3

© Springer Nature Switzerland AG 2022
J. M. Bass, Agile Software Engineering Skills,
https://doi.org/10.1007/978-3-031-05469-3_14

211

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05469-3_14&domain=pdf

 -151 4612
a -151 4612 a

https://doi.org/10.1007/978-3-031-05469-3_14

212 14 Lean

Build quality in, to achieve quality in software development, we take steps to
avoid creating defects, rather than focus on issue tracking. It is still necessary to fix
defects, but avoidance is better than cure.

Create knowledge, software development is a knowledge-creation activity.
Requirements and designs can only really be validated when they are implemented
as working code. We need to deeply learn about customer needs in order to fulfil
them.

Defer commitment, it is tempting to make irreversible decisions early. But it is
better to carefully consider options, experiment with alternatives and only make
irreversible decisions when necessary.

Deliver fast, consider competing on time. Organisations that compete on time are
often very efficient, because delays are often expensive.

Optimise the whole, we want to think of developing, testing and deploying
features to clients as a holistic, end-to-end process. Any bottlenecks or impediments
negatively affect the flow of requirements and features into products clients want to
use.

Respect people, our goal is to help our team members build their expertise. We
then want to support people using their skills and knowledge to make decisions.

These lean principles underpin our thinking when we adopt a continuous
improvement approach.

14.1.1 Respecting People

I devoted the whole of Part I to the topic of people, their roles, membership of
self-organising teams and managing other stakeholders in the process. In short,
software development is a team sport. We need technical expertise, and we need
an environment in which we can work together.

Management’s objective is to coach and mentor staff members so that they
acquire the skills and behaviours we need. Managers help people to develop. The
model of management is a servant-leader approach.Managers provide the resources
team members need to complete work items and offer support with learning new
skills. Managers remove impediments that create inefficiencies in the development
process.

Many lean organisations provide time for professional development. Perhaps half
or 1 day per week is set aside for personal projects that can help team members
acquire new skills and knowledge that can, in turn, help the organisation grow and
improve. These projects can be used to learn entirely new techniques or to study
exciting new technologies.

Just like in agile methods, the lean approach is dependent on the self-organising
team. The self-organising team takes responsibility for delivering good-quality
software. Team members assign themselves work items and commit to continuous
improvement of quality. Over time, the team develops a collective responsibility for
delivering good-quality code, on time.

14.1 Introduction 213

Sometimes a team member may be keen to take on a stretch task, a work item
that creates an opportunity to learn new skills. At other times, team members may
be happy to exercise the skills they currently have. The point is that selecting work
items empowers team members to have more control over their activities during the
work day.

14.1.2 Create Knowledge

Lean proponents advocate a scientific approach to knowledge gathering. In lean,
systematic data collection is used to inform empirical decision-making. Like many
agile and lean approaches, knowledge gathering is cyclic.

A systematic knowledge gathering process involves [4]: problem definition,
situation analysis, hypothesis creation, experimentation, result verification and
standardisation.

Problem definition. When undertaking a cycle of knowledge gathering, it is
important to make sure you focus on the real problem and not a symptom. Keep
asking yourselves, as a team, what is the underlying cause of the issue you are trying
to deal with. In other words, make sure you focus on a real and significant problem.
Carefully define the problem, in terms of scope, parameters and time scales.

Situation analysis. Collect data, ideally based on measurements of your process,
to provide evidence about the problem. We analyse aspects of our development
process to understand the causes of the problem we have identified.

Hypothesis creation. A hypothesis is an untested explanation based on evidence.
We want to create a testable hypothesis for the problem we have identified and using
the evidence we have collected. The hypothesis aims to explain the problem. At this
stage, we do not know, for sure, if the explanation is correct.

Experimentation. Experiments can now be conducted to test the hypothesis. We
make changes to our working practices intended to address our chosen problem.
We don’t just changes things at random. The changes we make must be carefully
calibrated so we can assess the consequences. Can evidence be gathered to confirm
our hypothesis is correct? Or, is further work needed to create a new and better
hypothesis?

Result verification. We perform analysis of our experiments. We want to confirm
that our changes are creating the intended outcomes. We also need to check if
there are any harmful unintended side effects. We can now be confident that
our hypothesis has correctly explained our problem and that our changes and
experiments have made an improvement to our process.

Standardisation. The follow-up to this knowledge gathering cycle is to make
sure the new approach becomes routine and that the best practice is disseminated to
others.

214 14 Lean

14.1.3 Build Quality In

A common goal, for advocates of lean, is to strive for perfection. We can think
of quality assurance in two senses: prevention and detection of errors. Pair pro-
gramming (see Sect. 13.5) and code reviews can help with prevention. Test-driven
development (see Sect. 13.6) and test automation can help with detection. We’ll talk
more about automated testing in Chap. 16.

Our goal must be to use sensible coding standards and best practices [3], as
discussed in Sect. 10.4.2, and to be alert for code smells [2] that might indicate
future maintainability problems. We use appropriate folder and package structures
to logically organise our source code. Source code is split into subsystems (perhaps
layers or other moving parts) depending upon the architecture style we have
selected; see Chap. 8. Further, in larger systems, some sensible organisation of
functionality into groups might also be required.

Using good naming conventions helps with readability. We carefully choose
meaningful names that convey the purpose of the source code element. Use naming
styles that are consistent with language conventions and used uniformly. Removing
dead code helps achieve simplicity. We avoid unused imports, variables, methods
and classes. Any redundant code must be refactored.

We try to automate as much as possible. We like automated testing: unit, regres-
sion and acceptance testing. We also like version control as explained in Chap. 15.
Frequent merging of branches helps to minimise and resolve inconsistencies. We
will discuss continuous integration and DevOps in Chap. 21. Perhaps DevOps is
too much for a student or novice project, but it’s a good idea for mature commercial
teams to consider. Automation helps us to apply policies consistently and repeatably.
Manual processes are error prone and tend to get forgotten when teams are under
pressure from tight deadlines.

Software tools to review code quality, such as SonarCloud [6], help us to identify
potential problems early. We can run a quality test each time code is pushed to our
main trunk in version control. A dashboard in SonarCloud then helps us identify
issues and even gives advice on mitigation.

14.2 Value

Value is mainly considered in terms of monetary quantities. We want to focus
our resources (often developer time) on the highest value activities. The highest
value activities will change over time depending upon on state of the project and
development life cycle and evolving client needs. Simply put, we want to maximise
value.

The lean focus on value is about identifying where value is created in our
development process. Some of our activities will create more value than others.
We need to estimate the value generated by our activities in order to understand the

14.2 Value 215

value in our processes. We would certainly like to eliminate any of our activities that
do not produce value at all.

14.2.1 Non-monetary Value

I like to think of value more broadly than money and identify other sources of value.
For example, disaster recovery software is used to manage the logistics delivering
emergency aid and relief. We might consider disaster recovery software value in
terms of the number of lives saved. Environment mitigation software might be
valued in terms of the number of habitats saved or restored. What better examples of
value can there be? Consequently, it is legitimate to think beyond monetary value,
if you are developing software in a commercial context or for a third-sector or non-
governmental organisation.

14.2.2 Value Stream Mapping

Value stream mapping is a technique for identifying blockages and inefficiencies
in your software development process. We need to list the stakeholders in our
processes, the activities they perform and the dependencies between each activity.
We can then estimate the value of each activity, to search sources of inefficiency.
There is some advice and guidance on performing value stream mapping in
Exercise 14.2.

14.2.3 Definition of Done

We need a set of (value) criteria for work items to move from one part of our value
stream to the next. This might take the form of a checklist or some other set of
criteria. For example, code ready for merging into the main trunk must have passed
all unit tests and locally integrate with the code in the trunk without creating errors.
Code ready for review must have passed unit tests and integration as well as static
quality assurance tests and regression tests. Finally, in this example scenario, code
might be ready for deployment only if:

• Unit tests have all been passed,
• Code reviews have been completed and any actions addressed,
• Security tests the full suite of security tests performed,
• Code quality tests have passed.

216 14 Lean

Some people use informal names to distinguish these stages of completion. Code
ready for deployment is done, done, done. Code ready for review is done, done.
Code ready for merging into a branch is simply done.

14.3 Waste

Imagine starting a stopwatch the moment an idea for a new software feature is
identified. Then imagine stopping the stopwatch, the moment you get paid for that
feature. Our goal is to minimise that time interval. What can you do to remove
any activity that does not add value in that time interval? In manufacturing, seven
sources of waste have been identified. These seven wastes have been translated into
the software development context [4]; see Table 14.1.

Let’s briefly consider each of these forms of waste.

14.3.1 Partially Done Work

Our overall objective is to get worthwhile features, deployed and used by paying
clients as efficiently as possible. Any incomplete work in the system or under
development is a source of waste from that perspective. We can explore some
examples of partially done work.

Documentation that is missing code. Design documents and requirements spec-
ifications that have yet to be implemented represent a source of waste. These
documents need to be prepared when they are needed not any earlier.

Code not checked into trunk. Code sitting in personal repositories that has yet to
be checked in to the main repository is not adding value to the development process.
We check in code frequently.

Untested code. Code can be tested at development time. Acceptance testing and
code reviews should be conducted promptly. Untested code is not adding value to
our product.

Table 14.1 Seven wastes in
manufacturing and software
development (Adapted from
[4])

Manufacturing Software development

In-process inventory Partially done work

Over-production Superfluous features

Extra processing Rework

Transportation Hand-offs

Motion Task switching

Waiting Delays

Defects Defects

14.3 Waste 217

Undocumented code. Where external stakeholders require documentation, this
needs to be produced promptly, ideally more or less concurrently with code
development.

Undeployed code. Code that is checked in to the trunk and that has been
reviewed, tested and approved can be deployed to clients promptly. Approved code
needs to be deployed, to bring value to clients.

14.3.2 Superfluous Features

Historically, in software development, adding unnecessary features has been a
major source of inefficiency. As a community, software developers have been too
enthusiastic to anticipate customer needs by adding features that are obviously
going to be useful, when, in fact, those features are not needed, after all. We
have sometimes been wrong in our attempts to guess requirements resulting in
unnecessary complexity and bloated products. A better posture is to not add features,
if there is any doubt about their utility.We must only develop features when the need
is current and obvious.

14.3.3 Rework

Rework is where we have to recreate something because we didn’t do it correctly
the first time. Rework (bad) is not the same as refactoring or feature enhancement
(often good). Rework means doing something again, which is obviously a form of
waste.

14.3.4 Hand-Offs

Hand-offs, where an incomplete work item is passed onto someone else, result in
lost tacit knowledge about the task. This lost tacit knowledge must either be re-
learned by the work item recipient or, perhaps worse still, they proceed without
the benefit of the tacit knowledge potentially resulting in defects. It is healthy to
minimise hand-offs, which is an important justification for self-organising teams
comprising people with the full range of required skills.

218 14 Lean

14.3.5 Task Switching

Knowledge work, such as software development, requires deep concentration.
Switching from one task to another is distracting and causes waste. Having multiple
activities on-the-go simultaneously means that you spend more time resetting your
mind than actually productively working.Multi-tasking three different 1-week tasks
will take longer than working on the three 1-week tasks sequentially.

14.3.6 Delays

Delays and waiting time are obviously undesirable in an agile development process.
Some of the most significant waiting times occur before we even start development,
such as:

1. Waiting for project approval,
2. Waiting for people to be assigned to the project,
3. Waiting for assigned people to become available.

A common problem faced by developers is waiting for sufficient information to
be able to develop code. This can be because insufficient effort went into user story
elaboration or because clients assume it is enough to describe desirable features
only in broad terms. Scrum masters are supposed to remove impediments, such as
waiting for information, but disengaged clients can undermine agile processes.

14.3.7 Defects

We try to minimise defects in our code. The longer a defect exists in our code,
the more expensive it is to fix. Further, if a defect reaches customers, it damages our
reputation for quality as well.We use frequent automated unit and acceptance testing
as well as code reviews to try to catch defects early, ideally during the development
cycle.

14.4 Speed

In lean, speed in delivering value to clients is a consequence of assiduously remov-
ing waste. Speed is the absence of waste [4]. By combining efficient development
processes, with automated testing (see Chap. 16) and deployment (see Chap. 21), we
can ensure each iteration rapidly creates production code.

14.4 Speed 219

Short delivery cycles increase learning. You are forced to find ways to simplify
installation and product upgrades, because you plan to do those activities frequently.
Your quality assurance processes are designed to be performed within iterations, not
after iterations have finished.

Analysis of queueing theory suggests that to reduce average cycle times, we
should ‘even out the arrival of work’, ‘minimise number of things in process’,
‘minimise size of things in process’, ‘establish a regular cadence’, ‘limit work to
capacity’ and ‘use pull scheduling’.

Even out the arrival of work. It is difficult to control project approval processes
or sales of bespoke software. However, it is undesirable if requests are queued
for months at a time. We strive to maintain a steady flow of work. Allowing big
product backlogs to build up is not ideal.

Minimise number of things in process. I’ve already suggested that task switching
is inefficient. Work-in-progress (WIP) limits are used to make process bottle-
necks more visible. This enables more precise matching of resources to demand.

Minimise size of things in process. It is a difficult discipline, but reducing the size
of work items is a good tactic for reducing average cycle times. Try to split work
items up so that as many as possible are small.

Establish a regular cadence. Iterations provide a valuable insight into the produc-
tivity of teams. You learn how much can be accomplished and build confidence
in estimation. This means it is easier to make promises to clients and then honour
them.

Limit work to capacity. Working over capacity means people work long hours and
consequently get tired and careless. Short-term over-capacity working can be
useful, even desirable. But as a long-term strategy, it is not wise.

Use pull scheduling. Work items can be pulled from a backlog into development
and production, as a consequence of some external demand. This is usually
established through prioritisation of the product backlog. We pull high-priority
items first. The point is to pull according to customer need.

In summary, problems in our development process slow down our cycle times.
Tackling these inefficiencies one by one, using a continuous improvement process,
helps us to streamline our software production processes.

14.4.1 Work-in-Progress Limits

As mentioned, WIP limits provide a mechanism for controlling the number of work
items being processed. Establishing WIP limits is a policy decision that can help us
manage the flow of items through our work processes.

The WIP limit is derived from the capacity of the team to perform a particular
task. When looked at from this perspective, what is the point of giving a team more
work than they have the capacity to perform? The WIP limit provides a mechanism
for making the team’s capacity more visible.

220 14 Lean

As part of creating a WIP limit, it might be desirable to create a buffer (the buffer
might be shown on a Kanban board, for example) for items blocked by the WIP
limit. The buffer can be useful for accommodating small fluctuations in arrival rate
of work items. The buffer also has an important role in making visual an unhealthy
build-up of work items in a buffer. Having identified a work item build-up in our
buffer, we can add resources to clear the backlog or analyse our processes to better
understand our work item flow. For example, we might use a developer swarm, as a
temporary fix, to empty the buffer; see Sect. 13.7.2.

14.4.2 Work Item Variability

A major challenge for teams seeking to reduce cycle times is variability in the
size and complexity of work items. Building new features is fun and attractive;
enhancing the source code in existing features is less so. New features tend to be
large work items. Feature enhancements vary in size.

Refactoring to simplify our code base is important. Refactoring, as we’ve said, is
making changes without affecting programme outputs. Refactoring is to help with
maintainability and readability of source code, but is difficult to estimate. Often
refactoring is overlooked by product owners when they prioritise work.

The effort, required for defect fixing, is difficult to estimate; by the time you’ve
figured out the problem (the time-consuming and difficult part), implementing the
solution is often relatively straightforward. Consequently, some teams don’t perform
estimation on maintenance tasks; they view it as waste [1].

Teams estimate the effort needed to create new features, but don’t waste
their time estimating defect fixes and minor feature enhancements. Each iteration
comprises a blend of new features and maintenance tasks. Team members and
product owners collaborate to achieve the right blend over time.

In larger-scale projects (see Chap 18), some teams are solely dedicated to
maintenance tasks: bug fixing and minor feature enhancements. But it seems rather
uninspiring to be limited to maintenance tasks, if another team gets to build all the
new features.

An approach I like, which is dependent upon the number and size of work items
arriving, is for teams to perform a maintenance iteration from time to time. Perhaps
every third iteration is focused on defect fixing and minor feature enhancements.
The other iterations are (largely) focused on new feature development. This way,
everyone gets to share the full range of work items.

14.5 Lean Start-Up 221

14.5 Lean Start-Up

Lean thinking has also been influential among technology entrepreneurs, notably
through the work of Eric Ries [5]. This approach advocates a fierce focus on
experimenting and monitoring customer reaction. The idea is to get early feedback
from developing products and business models with minimum investment, by using
prototypes or mock-ups to assess market reaction. The goal is to generate revenues
and continue experimenting to maximise income. Consequently, this model focuses
on attracting paying customers, rather than obtaining investment in an untested idea.
Three important concepts of lean start-up ethos are bootstrapping, minimum viable
product and pivot.

14.5.1 Bootstrapping

The lean start-up model focuses on generating revenue, early in the business
development process. The approach advocates testing ideas, through revenue gener-
ation, before making substantial investments. Some people call this bootstrapping,
because it is an attempt to pull the business up by its own bootstraps. The bootstrap
approach is a reaction to the focus on raising investment that was popular during the
.com (pronounced ‘Dot Com’) bubble earlier in the century.

14.5.2 Minimum Viable Product

The idea of a minimum viable product is to make tangible the essence of a solution,
with the least possible investment of time and resources. Then, the minimum viable
product can be used to test concept viability with potential customers. The minimum
viable product’s purpose is to support short cycles of evaluation with each new
feature.

The definition of essence, in the minimum viable product, is the central chal-
lenge. What set of features are needed to make the solution work? And, by
implication, what features are not necessary? We need to identify only the essential
features, because we don’t want to invest time and resources on superfluous features.

The minimum viable product typically includes end-to-end information flows
and hence requires simple interfaces to cooperating subsystems. Sometimes it is
helpful to think of the minimum viable product as a skeleton of the system or core
solution.

222 14 Lean

14.5.3 Pivot

If our minimum viable product is not energising potential customers, we may decide
our solution idea is not as promising as we hoped. This may cause us to pivot, or
change direction, towards a variation of our solution idea. In a sense, the minimum
viable product failure has worked perfectly. We have not invested heavily, or ‘bet
the house’, on an idea that is not going to work.

The pivot may be a rather dramatic change of direction. The solution may
serve a different market or perform a different function, than our original idea.
A new minimum viable product needs to be constructed and further experiments
performed. Many technology start-ups have gone through the experience of a pivot
towards a different idea to their original concept.

14.6 Exercises

Now for some exercise, you can try to learn more about the topics covered in
Chap. 14. Complete an exercise and then you can look at the hints and tips in
Sect. 14.7.

Exercise 14.1 (Learning Journal)

14.1 For this first exercise, make a few notes in your learning journal on lean
process from Chap. 14.

Exercise 14.2 (Value StreamMapping Exercise)

14.2 As a group, practise conducting a value stream mapping exercise. You
will need to have an existing development process that you can analyse.

• Identify stakeholders, or actors, involved in the development process,
• List the activities performed by each actor or stakeholder,
• Determine the dependencies between activities performed.

Now you need to move into a research phase. You need to gather data on
each activity. You are seeking to estimate, on average, how long each activity
takes to perform. By measuring effort expended on each activity, you can start
to identify inefficiencies in your development process. There is more advice
on how to conduct value stream mapping in Sect. 14.7.

14.6 Exercises 223

Exercise 14.3 (Seven Wastes Exercise)

14.3 Think about the seven sources of waste: partially done work, superflu-
ous features, rework, hand-offs, task switching, delays and defects. Which is
creating the worst problems in your team? What single thing can you do to
substantially reduce that source of waste?

Exercise 14.4 (Handling Requests Exercise)

14.4 How many items are in your overall product backlog? At what rate do
items arrive and get completed? How long will it take to complete the current
backlog? Do you have items in the backlog that will never get completed?

Exercise 14.5 (Knowledge Gathering Exercise)

14.5 What is the biggest problem that your team faces? Use the knowledge
gathering cycle: problem definition, situation analysis, hypothesis creation,
experimentation, result verification and standardisation. Experiment with
solutions.

Exercise 14.6 (Cycle Time Exercise)

14.6 Think about the ways to reduce cycle time: even out work arrival rates,
minimise the number of in-progress items, minimise the size of work items,
establish a regular cadence, introduce work-in-progress limits (according to
capacity), and use pull scheduling. Conduct experiments to reduce cycle time,
by tackling the most promising approach.

Exercise 14.7 (Story Test-Driven Development Exercise)

14.7 Facilitate a discussion in your team. What is the difference between
story test-driven development and unit test-driven development? Discuss the
advantages and disadvantages of each. Should you be using story test-driven
development? Why?

224 14 Lean

Exercise 14.8 (Learning Journal)

14.8 Reflect on the exercises you have completed fromChap. 14. Think about
what you have learned and make some notes in your learning journal.

14.7 Hints, Tips and Advice on Exercises

14.1 Learning Journal

In Chap. 14, we have described lean value, waste, speed and start-up. Review
these topics and write some notes about what you have learned.

14.2 Value Stream Mapping Exercise

Create cost estimates for the different activities in your development process.
You might put together a rough and ready swimlane diagram of your

development process, like the one in Fig. 14.1. You can then estimate costs
of the ceremonies and artefacts in your process. Some items will be estimated
per product or iteration and some per feature. This approach might reveal
potential areas of process refinement.

Product
Owner

Scrum
Master

Self-Organising
Team

Sprint
Planning

Customer
Demonstra�on

Sprint
Backlog

Product
Backlog

Sprint
Retro

Front-end
Source Code

Acceptance
Tests

Daily
Stand-

ups

Back-end
Source Code

Unit Tests

User
Stories

Product

Fig. 14.1 Simple process swimlane

14.8 Chapter Summary 225

14.3 Seven Wastes Exercise

I suggest you use a swimlane diagram, such as the one in Fig. 14.1, as a
starting point. Create an inventory of the sources of waste in your process.
Choose the most egregious source of waste and experiment with steps towards
elimination.

14.4 Handling Requests Exercise

What does your inventory of current requests look like? If you are over-
whelmed, maybe it is time to build a business case for funding an additional
team.

Do you suffer from a constant stream of emergency work items? What is
the cause of these requests? What proportion are caused by defects in your
team’s code? What proportion are feature enhancements? Do they emanate
from specific clients or user communities?

14.6 Cycle Time Exercise

How long does it really take you to deliver a feature? From ‘concept to cash’
as the Poppendiecks put it [4]. The true duration will likely shock you, if you
have not thought about it before. You should be conducting experiments to
reduce this duration.

14.8 Chapter Summary

In this chapter, we have explored a set of eight lean principles: eliminate waste,
build quality in, create knowledge, defer commitment, deliver fast, respect people,
optimise the whole and eliminate waste. We have investigated in more detail the lean
concepts of value, waste, speed, people, knowledge and quality. Value and value
stream mapping invite us to understand inefficiencies in our processes. Waste is
anything that does not add value to our product, including delays and superfluous
activities. When you tirelessly work to eliminate waste, you will likely achieve
much faster delivery of value. When we say speed, we really mean the need to
minimise development cycle times. This is a perspective on maximising work flow
though our process. Lean proponents advocate a systematic and scientific approach
to knowledge gathering. Experiments are conducted to test hypotheses aimed at

226 14 Lean

improving the efficiency of development processes. When using a lean approach,
we focus on quality. We aim to prevent, as well as detect errors in our products.

The lean start-up ethos is used to create new technology businesses, particularly
in the software sector. The lean start-up approach focuses on (1) bootstrapping, to
attract revenue rather than investment; (2) minimum viable product, as a vehicle
for cheaply testing new ideas; and (3) pivot, a recognition that changes in direction
might be needed along the way. Next, in Chap. 15, the focus is on using version
control to establish a revision history for your software source code.

References

1. Anderson, D.J.: Kanban. Blue Hole Press (2010)
2. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving the Design of

Existing Code, 1st edn. Addison Wesley, Reading, MA (Jun 1999)
3. Martin, R.: Clean Code: A Handbook of Agile Software Craftsmanship, 1st edn. Prentice Hall,

Upper Saddle River, NJ (Aug 2008)
4. Poppendieck, M., Poppendieck, T.: Implementing Lean Software Development: From Concept

to Cash. Addison Wesley (Sep 2006)
5. Reis, E.: The Lean Startup: How Constant Innovation Creates Radically Successful Businesses.

Portfolio Penguin (2011)
6. SonarCloud: Automatic code review, testing, inspection & auditing (2021). https://sonarcloud.

io/

 2089 2006 a 2089 2006
a

https://sonarcloud.io/
https://sonarcloud.io/

Chapter 15
Version Control

Abstract Version control software tools provide content management services for
source code. They offer a searchable change history and allow us to archive and
restore code fragments, as we add new features to our software. Version control
gives us a historic database of our system as we develop. We can use version control
locally, when we are working alone. Moreover, version control really comes into its
own when we work with others in a group. For team working, we can use shared
source code repositories. In this chapter, we will explore simple version control use
cases, such as staging and committing files. Then we will explore shared repository
techniques like cloning, checkout, merging and so on. These techniques will enable
you to share the new features you create with others. In turn, you will be able to
learn how to incorporate their features into your code.

15.1 Introduction

Version control is about solving three main problems: creating change records,
storing the changes we make to our evolving software as well as sharing and
integrating code with others. I suggest you start by learning how to manage changes
in your own code first. You can then learn how to share your own software and
download code written by others.

15.2 Content Management

A version control system is used to record a copy of files as you make changes over
time. We most often think of version control being used to record the evolution of
computer software source code. But version control can actually be used for any
computer files. Indeed, I used a version control system to keep a record of changes
and create a backup file archive during the development of this book.

As the software you create becomes more complex, using a version control
system is a very wise thing to do. Version control can help you to protect yourself

© Springer Nature Switzerland AG 2022
J. M. Bass, Agile Software Engineering Skills,
https://doi.org/10.1007/978-3-031-05469-3_15

227

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05469-3_15&domain=pdf

 -151 4612 a -151 4612
a

https://doi.org/10.1007/978-3-031-05469-3_15

228 15 Version Control

Fig. 15.1 Local version
control

Version Database

File Version 3

Version 2

Version 1

Local Computer

against lost files or revert to an earlier version when new ideas or features that
you add to software don’t work out. Version control allows you to revert files to
a previous state. You can also use version control to easily revert an entire project
to a previous state. You can use version control on your local computer, as shown
in Fig. 15.1. You can store a snapshot of your system, as it evolves, keeping track of
changes as you go.

You have to initialise the version control database, and you have to remember to
store and document the snapshots as you go. But in return for this discipline, you
get much more control and access to a range of features you don’t get if you simply
archive files to a backup storage device or a cloud server.

15.2.1 Create a Local Git Repository

Let’s try this out for ourselves. I’ve chosen to use a version control system called git
[1]. Others are available. First make sure git is installed on your computer. Open a
command window and type this:

Check Git Installed Version

C:\folder>git --version

If git is installed, you will see a version number. If not, you will need to download
and install git in a manner appropriate for your operating system [5]. I have chosen
to use a command window for these exercises. I prefer to see exactly what is
happening,which can sometimes be obscured by graphical environments. Assuming

15.2 Content Management 229

git is installed and running, create a folder and initialise a git repository on that
folder, like this:

Initialise Git in Folder

C:\folder>mkdir git-test
C:\folder>cd git-test
C:\folder\git-test>git init

Depending on your host operating system, if you do a standard directory listing,
like this. . .

MS Windows Command Window Directory Listing

C:\folder\git-test>dir

. . . nothing seems to have changed. That is because git has created a hidden folder in
the current directory. You can see this, in MS Windows 10, for example, by typing
this:

MS Windows Command Window Full Directory Listing

C:\folder\git-test>dir /a

You will see a hidden folder, as shown in Fig. 15.2. Git uses that hidden folder
to keep copies of your files as you make changes. We don’t need to worry ourselves
about the internals of how git does this.

Fig. 15.2 File listing
showing git hidden folder

230 15 Version Control

15.3 Source Code History

Now, let’s work through an exercise of creating a change history for some of our
own code.We can create some example files to be archived using our version control
system. Use a text editor to create three files:

• MyFirstFile.txt,
• MySecondFile.txt,
• AFileIDoNotCareAbout.txt

You can put a sentence text into each file, as follows:

• MyFirstFile.txt, ‘here is some text’,
• MySecondFile.txt, ‘this is some other text’,
• AFileIDoNotCareAbout.txt, ‘some unimportant text’.

Before we do anything else, what does the git version control system think is
happening?We can run the git status command, like this:

Folder Git Status

C:\folder\git-test>git status

The output of the git status command is shown in Fig. 15.3. Notice that the
files we created are listed in red. Git even tells us what we need to do, if we want to
include the files in our version control repository.

Fig. 15.3 Using the git status command

15.3 Source Code History 231

Fig. 15.4 Using the ‘git status’ command to show two staged files

15.3.1 Stage Files for Inclusion in the Version Control
Repository

We need to run the git add command for each file.

Staging Files

C:\folder\git-test>git add MyFirstFile.txt
C:\folder\git-test>git add MySecondFile.txt
C:\folder\git-test>git status

The output of the git status command is a bit different this time, as shown in
Fig. 15.4. We can now see the two files we added are shown in green. Technically,
these files are staged, which means they are ready to be put in the version control
repository. The staged files are not in the version control repository, yet. They are
only ready to be put into the repository.

Staging allows us to prepare some files to go into version control and ignore some
others. This way we can separately track changes we make for different purposes.
We are not forced to put everything in version control at the same time.

15.3.2 Commit Files into the Version Control Repository

To put the staged files into the version control repository, we must perform a
git commit operation. The git commit is followed, in this example, by the -m

232 15 Version Control

Fig. 15.5 Initial ‘git commit’ command output

Fig. 15.6 Status output after initial ‘git commit’ command

option to accept a message parameter. The -m option is followed by the text string
"files created with initial text" of the message.

Git Commit Example; part 1

C:\...>git commit -m "files created with initial text"

The output can be seen in Fig. 15.5. Notice that the two files have been created
(in the version control repository) and that the message from the git commit
command is reproduced.

We can run the git status command again and see what git ‘thinks’ is
happening. The git status is shown in Fig. 15.6.

Notice that git is not tracking the file AFileIDoNotCareAbout.txtbecause we
didn’t use the git add command on that file. That file is being ignored by git. Files
that are not staged are not added to the version control repository.

Now you can use the text editor to add some new text to the first file and do a
new git commit. Let’s also delete the unimportant file, like this:

15.3 Source Code History 233

Fig. 15.7 Status output after
the second commit

Git Commit Example; part 2

C:\folder\git-test>git add MyFirstFile.txt
C:\folder\git-test>git commit -m "first file changed"
C:\folder\git-test>del AFileIDoNotCareAbout.txt
C:\folder\git-test>git status

After running the final git status command, you will see something like the
output in Fig. 15.7.

15.3.3 Making and Removing a Change

Let’s illustrate how version control can help you recover from mistakes [6]. We’ll
deliberately add some erroneous text to our second text file, using a text editor, to
illustrate the idea. In our moment of madness, we figure the text in the second file is
fine, so let’s commit that, like this:

Git Commit Example; part 3

C:\folder\git-test>git add MySecondFile.txt
C:\folder\git-test>git commit -m "error in second file"
C:\folder\git-test>git status

Oh no! Now, let’s imagine we realise we have committed a file with errors. No
matter. We can just, in this example scenario, revert to out earlier commit.

Now, we can use the git log command to view the commit history of our work
so far. Have a look at Fig. 15.8. You can see the three commit messages and that each
commit has a unique reference number. A simple, and perhaps rather crude, way to
remove the text we just added to the second text file is to use the git revert
command. The git revert offers several options, but in this example, we will
simply throw away the last commit, like this:

234 15 Version Control

Fig. 15.8 Git log output after the third commit

Remove Last Git Commit

C:\folder\git-test>git revert HEAD
C:\folder\git-test>git log

Now when we look at the output from the git log command, we can see that
a new commit has been added that reverses our previous commit, as shown in
Fig. 15.9, and removes the erroneous text we had added to our second file.

15.4 Source Code Remote Archiving

Having learned some skills about using git to create a change history for some of
our own code, we can now learn the skills we need to share code with others.

15.4.1 Version Control Remote Server Archiving

While using a local version control system to manage your content makes sense,
adding a remote server offers a higher level of reliability. In the previous section, we
created a local git repository, so we don’t need to do that again. What we need to do
though is:

15.4 Source Code Remote Archiving 235

Fig. 15.9 Git log output (partial) after reverting the third commit

• create an account on github [2],
• create a repository on GitHub, using your GitHub account.

I called my remote GitHub repository git-test to match the local folder name
I chose. Then, you can link your local repository to your remote repository, as
follows:

Setup Remote GitHub Repository

C:\...>git remote add origin...
...https://github.com/<your username>/git-test.git

C:\...>git push -u origin master
C:\...>git status

If everything worked, the final git status command should show you that the
local repository is up to date and that is linked to origin, which is the name we
gave to the remote repository on GitHub. The GitHub approach to authentication has
changed over time. At the time of writing, access tokens are needed. You create an
access token, copy it and then use it, in place of a password, through your command
line. Don’t worry; there are instructions about how to set this up, online [4].

236 15 Version Control

Now each time you make changes, you have to remember to stage any files you
have changed, commit the changes and push the changes to your remote server, like
this:

Commit and Push (Archive) Code to Remote Repository

C:\folder\git-test>git add -A
C:\folder\git-test>git commit -m "describe changes"
C:\folder\git-test>git push

15.5 Source Code Sharing

As we have seen, modern version control systems, like git, support integration with
remote servers. By using a combination of local and remote version control systems,
known as distributed version control, you can share source code within a team in an
orderly manner. In this way, a team member can work on a specific feature locally,
which can then be shared with other members of the team using the remote server,
as shown in Fig. 15.10.

Version Database

Version 3

Version 2

Version 1

Local
File 2

Computer B

Version Database

Version 3

Version 2

Version 1

Server Computer

Version Database

Version 3

Version 2

Version 1

Local
File 1

Computer A

Fig. 15.10 Distributed version control

15.5 Source Code Sharing 237

Create new branch

Commit changes in trunk

Create feature code and
commit in new branch

Merge feature from
branch into trunk

Development work
continues with changes

committed to trunk

Fig. 15.11 Creating a feature branch

15.5.1 Trunk and Branches

We now have to get to grips with another new idea: branching. Branches are separate
lines of development within your project. You can think of branches as development
topics, features or versions. Branches can live for a long time, or can be rather
temporary, depending on your project needs.

For example, say you release version 1.1 of your project to some customers. But
now you want to work on version 1.2. So you can create branches for versions 1.1
and 1.2; you can then decide to leave version 1.1 alone, in case you need to go back
and investigate any bug fixes there later. You can safely work on version 1.2 without
affecting version 1.1. Branches to support releases (such as versions 1.1 and 1.2 for
example) tend to live on for a long time.

Alternatively, maybe you want to add a new feature to your software, but you are
not sure exactly how it is going to work. Then you need to create a new branch for
the new feature, which you can work on separately, without disrupting the rest of
the code base, as shown in Fig. 15.11. Branches for new features tend to get merged
back into the main code base (often known as the trunk).

Version control systems, such as git, provide a lot of features for creating,
merging and managing branches. But don’t get too carried away. We don’t want
dozens of branches in our projects. We’ll soon lose track of what on earth is going
on. Here is an example of creating a branch, pushing to the remote repository and
switching between branches locally:

238 15 Version Control

Fig. 15.12 Directory listing of feature1 branch in git

Git Branch Example, Part 1

C:\folder\git-test>git branch feature1
C:\...>git checkout feature1
* use editor to put text in third file */
C:\...>git add -A
C:\...>git commit -m "added third file"
C:\...>git push --set-upstream origin feature1
C:\...>git show-branch
C:\...>dir
C:\...>git checkout master
C:\...>dir

The first directory listing is shown in Fig. 15.12. You can see the third file that
you added; mine has the unimaginative title of MyThirdFile.txt. Now, for this
example, when you switch back the master branch, what happens to that third file?
Remember that the idea of branches is to allow separate lines of development to be
performed without interfering with each other.

The second directory listing is shown in Fig. 15.13. As you might have guessed,
that third file has disappeared. The third file exists in the feature1 branch and not
in the master branch.

15.5 Source Code Sharing 239

Fig. 15.13 Directory listing of master branch in git

As I mentioned, sometimes we want long-lived branches; branches that live
forever. But sometimes the whole point of the branch is to create a new feature
to be implemented into the main trunk of code. In this case, we need tools that allow
us to join branches together:

Git Branch Example, Part 2

C:\...>git checkout master
C:\...>git merge feature1
C:\...>git commit -m "added feature1 to master"
C:\...>git push
C:\...>git show-branch
C:\...>git branch -d feature1
C:\...>git push
C:\...>git show-branch

In this simple example, the git merge feature1 command works without
any problem. We can then remove the branch that is no longer needed with the
git branch -d feature1 command.

The git merge, in this simple example, went well because we were simply
adding a new file into the code trunk on the master branch. Things get a bit more
complicated when the code or text we are merging goes into one file. Thankfully,
git has been well-designed with many tools to support merging. For example, you
can explore the changes made to files by using the git diff command.

So far, the merging we have been doing is local. It is quite useful to be able
to create local branches, merge and delete them. But, what about picking up code
written by someone else? What we really want to have is an orderly way to allow

240 15 Version Control

different team members to create features and then, once the features are working
and tested, integrate them into a shared trunk. A simple way to achieve this is to use
feature branches and the remote GitHub server.

One person can create a new branch; let’s call it feature1. That person
downloads the main trunk from the GitHub repository and works on feature1
locally. In the meantime, another person can create a new branch; let’s call it
feature2. That person also downloads the main trunk from the GitHub repository
and works on feature2 locally to them.

After completing their work, the first person merges their feature1 code with
the main trunk. That main trunk now includes feature1. Sometime later, the
second person merges their feature2 branch with the new main trunk on the
GitHub repository. The main trunk now includes both feature1 and feature2.
However, while they are working on the branches locally, feature1 and feature2
are kept separate from each other.

While the feature branch technique is conceptually simple and elegant, it can
encourage people to work independently for long periods of time. Imagine you work
on feature1 or feature2 for a few hours or even a day or two, not much harm
is done when you merge that feature with the main trunk. But, what happens if you
work on a feature for several weeks or months? Maybe there will have been major
changes to the main trunk that make merging a complicated nightmare. To avoid
this, some people suggest working locally on new features, but keep them in the
same main truck branch and keep merging frequently. As you add new files, they
get added to the main trunk every day.

Caution!

It is potentially damaging to merge any feature to the trunk on the remote
GitHub repository. We always download the trunk to a local repository. We
can resolve any merge conflicts, before then pushing the merged code back to
the remote repository. It is dangerous to resolve merge conflicts on the remote
server. You can overwrite or lose source code that is already there.

In summary, to add new code to our repository, we:

1. use a git pull command to get the main trunk from the remote onto the
local repository,

2. git merge the main trunk source code with our local new feature and
resolve any merge conflicts,

3. git push the merged source code back on the remote GitHub repository.

If you fail to follow this three-step (pull, merge, push) process, you are
asking for trouble. This is important!

15.6 Exercises 241

As I’ve mentioned, branches are very useful where we want to keep a frozen
copy of a source code release. Let’s say we complete version 2.1 of our software
system and we want to start work on version 2.2. We can create a new branch,
dedicated to the version 2.1 release. We can then version control that branch,
with defect fixes and feature enhancements, without worrying about new features
being added on the main branch. When version 2.2 is released, we can create a
new branch for that release as well. We can repeat this cycle for each new release,
knowing that we have a separate version control history for each release.

15.6 Exercises

For learning purposes, it is good to do these exercise activities with unimportant
files, because you can learn about the git commands and the use of local and
remote repositories without worrying about losing or overwriting source code.
Actually, merge conflicts are often easily resolved, but still best avoided if possible.
Occasionally, merge conflicts within the same file can be tricky to resolve. There is
some advice on the exercises in Sect. 15.7.

Exercise 15.1 (Learning Journal)

15.1 Write an essay or a few bullet points in your learning journal. Review
this chapter. Then, write about the main things you have learned about version
control.

Exercise 15.2 (Create a Local Git Repository Exercise)

15.2 Make sure you have git installed on your local computer. Your task is
to:

• create a local folder,
• put a couple of text files in the folder,
• create a local git repository,
• stage the two files,
• commit the two files,
• make a change to one of the files,
• stage and commit the changed file,
• for the purposes of this exercise, discard the latest changes and go back to

the first commit.

Use the git --help command to remind you what you need to do.

242 15 Version Control

Exercise 15.3 (Create a Remote Git Repository Exercise)

15.3 Make sure you have git installed on your local computer. Make sure you
have a local folder which has a git repository. Your task is to:

• create a GitHub account,
• create a remote repository using your GitHub account,
• back up your local git repository to the remote GitHub repository you just

created

Use the online GitHub documentation to remind you what you need to do.

Exercise 15.4 (Create and Merge Git Branches Exercise)

15.4 Make sure you have git installed on your local computer. Make sure you
have a local folder which has a git repository. Your task is to:

• create a new branch,
• switch over to the new branch,
• add a new file to the new branch,
• switch back to the original branch,
• now, merge the new branch with your original branch,
• remove the new branch from your git repository.

Use the git --help command to remind you what you need to do.

Exercise 15.5 (Sharing Code Within a Branch Exercise)

15.5 Work with a friend. You need a public GitHub repository linked to a
local repository. The task for Person A is to:

• add a new file to the local master branch,
• push the master branch to the shared GitHub repository.
• Now, pause until the other person gets to this point, also

The task for Person B is to:

• create a new local folder and repository,
• clone the shared repository into your local folder,
• add a file to the master branch,
• push the master branch to a shared GitHub repository.
• Now, pause until Person A can pull this new file

(continued)

15.6 Exercises 243

Exercise 15.5 (continued)

Use the online GitHub documentation to remind you what you need to do.
Now, the task for Person A is to:

• pull the content of the shared GitHub repository into the local repository,
• you should see the file added by Person B appear in your local repository.

The idea is that Person A and Person B do not need to carefully synchronise
their activities if everyone uses the git pull command to obtain any new
code added to the shared GitHub repository. You must do a git pull and
then resolve any differences, before you do a git push command.

Exercise 15.6 (Sharing Code with Separate Branches Exercise)

15.6 Work with a friend. The task for Person A is to:

• create a new branch, and call it feature1,
• switch over to the new branch,
• add a new file to the new branch,
• push the new branch to a shared GitHub repository.
• Now, pause until the other person gets to this point, also

The task for Person B is to:

• create a new branch, and call it feature2,
• switch over to the new branch,
• add a new file to the new branch,
• push the new branch to a shared GitHub repository.
• Now, pause to watch what Person A does.

The idea is that Person A wants to merge the feature1 branch into the
master branch and put that onto the shared GitHub repository.

Now, the task for Person A is to:

• switch over to the master branch,
• pull the shared GitHub repository (there should not have been any changes

on the master branch, so everything should be up to date),
• merge the feature1 branch into the master branch,
• push the master branch to a shared GitHub repository.
• Now, pause and watch what Person B does.

Now, the task for Person B is to:

• switch over to the master branch,

(continued)

244 15 Version Control

Exercise 15.6 (continued)

• pull the shared GitHub repository (this time, Person B should get the new
merged master branch with the file added by Person A).

• Now, merge the feature2 branch into the master branch,
• push the master branch to a shared GitHub repository.
• Now, pause and watch what Person A does.

Finally, the task for Person A is to:

• make sure you are in the master branch,
• pull the shared GitHub repository (this time Person A should get the new

file from the feature2 branch added by Person B).

Hopefully by following a process like this, you can learn how to work
independently and then share your work, when the time comes. By using
separate files in the different branches, we avoid the issue of resolving changes
made within a shared file.

Exercise 15.7 (Sharing Code Within a Shared File Exercise)

15.7 Work with a friend. Repeat the procedure for Exercise 5; only this time,
work on a shared file. Take turns to add text to a common file, which is
then pushed to a shared GitHub repository. Then see what happens when you
try to do pull the file including edits from the other person and do a merge.
Hopefully, you should be able to work out how each person can add text to
the same file and end up with both your text and the text from the other person
in your local repository.

Exercise 15.8 (Learning Journal)

15.8 Reflect on the exercises you have completed from this chapter. What
went well? What could have gone better? Make some notes in your learning
journal.

15.7 Hints, Tips and Advice on Exercises 245

15.7 Hints, Tips and Advice on Exercises

15.1 Learning Journal

Review the text of this chapter. This chapter has described content manage-
ment, source code history, remote archiving and sharing. Write some notes
about what you have learned, for each of these topics.

15.2 Local Git Repository Exercise

To make a local git repository, we must create a folder. Navigate to that folder
on the command line. And then, use the git init command. Assuming you
have already created a file, or two, then you can stage the files using the
git add command. The flag -A simply stages all changed files in the working
tree.

Local Git Initialise, Stage and Commit Example

C:\folder\git-test>git init
C:\...>git add -A
C:\...>git commit -m "Describe operations performed"

Next use a text editor to change one of the files.

Local Second Commit Example

C:\folder\git-test>git add -A
C:\...>git commit -m "Describe operations performed"

(continued)

246 15 Version Control

Now you realise, for the purposes of this exercise, that the last commit was
an error. You want to undo the change you made to that file and have just
committed. No problem.

Revert to Previous Commit Example

C:\folder\git-test>git revert HEAD

The git revert command can be used to undo the last commit. Use
the git revert --help command to see the other capabilities of the
git revert command.

15.3 Remote GitHub Repository Exercise

Follow the online help tutorial to create a new empty remote GitHub
repository [3]. Make sure the name of the remote repository on GitHub
corresponds to your local repository. In this example, I called the repositories
git-test. Do not perform any commit on your remote repository.

Now we have to back up the local repository contents, which presumably
contain something you want to back up. To start off, you need to use the
git remote add command.

Add Remote Example

C:\folder\git-test>git remote add origin
https://github.com/<your username>/git-test.git

You can then use git push to back up your local files to the
remote server. The -u option saves you from having to type the
<REMOTENAME> <BRANCHNAME> every time you do a git push.

(continued)

15.7 Hints, Tips and Advice on Exercises 247

Push to Remote Example

C:\folder\git-test>git push -u origin master
C:\folder\git-test>git status

With luck, you should now have your local code backed up on the remote
server. You can use your browser and GitHub credentials to search your online
repository and see what is there.

15.4 Branching Exercise

Creating a new branch is straightforward. Just use the git branch command.
Remember you can use git branch --help for more information.

Create Branch Example

C:\folder\git-test>git branch feature1
C:\folder\git-test>git checkout feature1

Our new branch, in this example called feature1, has been created and we
are now ‘in’ the new branch. We can create and modify files without affecting
the contents of any other branches. You should now add some new content
within the feature1 branch. This new content can now be committed and
push to your remote repository on GitHub.

(continued)

248 15 Version Control

Push Branch to Remote Example

C:\folder\git-test>git add -A
C:\...>git commit -m "Third file"
C:\...>git push --set-upstream origin feature1

You should now have a backup of the new branch of your local repository
on your remote GitHub repository.

15.8 Chapter Summary

Version control systems give us a very sophisticated content management system
for managing our source code. As we create and modify files, we can keep track of
the changes we make and even archive them to remote backup servers. A version
control system allows us to create branches so we can undertake separate lines of
development without interfering with each other. I suggest learning version control
skills in three stages; learn how to:

1. Stage and commit local files,
2. Archive your personal code to a remote server,
3. Merge your code with source code from others.

I suggest you learn the skills you need to create a change history and archive of
your own files, before you learn how to merge code with other people’s.

Branches are useful for creating a space for separate lines of source code
development that can be worked on independently from each other. But branches
should be used with caution because they can inadvertently cause problems when it
comes to merging new code into the main truck. Now, we are ready learn the skills
needed to test our software, in Chap. 16.

References

1. git: Git (2019). https://git-scm.com/
2. GitHub Inc.: Build software better, together (2019). https://github.com

 366 4162 a 366 4162 a

https://git-scm.com/

 1397 4245 a 1397 4245
a

https://github.com

References 249

3. GitHub Inc.: Create a repo – GitHub Help (2019). https://help.github.com/en/github/getting-
started-with-github/create-a-repo

4. GitHub, Inc.: Creating a personal access token (2021). https://docs.github.com/en/
authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token

5. GitHub, Inc.: Git guides – install git (2021). https://github.com/git-guides/install-git
6. Loeliger, J., McCullough, M.: Version Control with Git: Powerful Tools and Techniques for

Collaborative Software Development, 2nd edn. O’Reilly Media Inc, Sebastopol (2012)

 1431 -23 a 1431 -23 a

https://help.github.com/en/github/getting-started-with-github/create-a-repo
https://help.github.com/en/github/getting-started-with-github/create-a-repo

 1847
143 a 1847 143 a

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token

 1183 309 a 1183 309 a

https://github.com/git-guides/install-git

Chapter 16
Testing and Test Automation

Abstract Testing is used to identify defects and provide reassurance about the
quality of our software. We always test our code before we share it with others. In
this chapter, we will learn the skills needed to create unit, regression, user experience
and acceptance tests. We will also learn the skills needed to create simple test
automations. We always try to automate the things we do, so that they are reliably
repeatable. This saves time in the long run and reduces the chances that we will
forget or cut corners later, when we are under pressure from short deadlines. We
will also explore some techniques for performance and security testing.

16.1 Introduction

Testing in software development provides two main services: identifying defects
and providing evidence that our software works as intended. We always aim to
test method signatures, return parameters, data transformations and storage services
before we share our source code with others. This is polite, to avoid sharing defects
with our colleagues, but also demonstrates our collective commitment to quality.

The concept of test coverage helps us understand the need to test the differ-
ent logical pathways through executing code. An individual if statement may
be used to determine the runtime circumstances in which a particular method,
doSomethingMethod(), is called. To achieve high coverage, our job is to ensure
we test the pathways that includes the doSomethingMethod()method call as well
as any pathways that do not.

An error is a mistake, perhaps made during requirements gathering or source
code development. A fault is the defect in the code that arises from the error. A
failure occurs if the fault in the code is executed and causes the wrong results to be
produced. From this logic, we can realise that not all faults lead to failures. A fault
in our code can lay dormant until a specific scenario in which that faulty code is
executed and produces incorrect results.

If you think, for a moment, about testing every pathway through the software,
every decision, every loop, every user input sequence and every possible variable

© Springer Nature Switzerland AG 2022
J. M. Bass, Agile Software Engineering Skills,
https://doi.org/10.1007/978-3-031-05469-3_16

251

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05469-3_16&domain=pdf

 -151 4612
a -151 4612 a

https://doi.org/10.1007/978-3-031-05469-3_16

252 16 Testing and Test Automation

value, you quickly realise that testing all combinations of inputs and preconditions
is not possible in even quite simple systems.

However, we can and must use testing to check for defects and improve the
quality of our software. We just need to be selective about what we test, making
sure we test all the important pathways through our code. We touched upon testing
artefacts used during the development process, in Chap. 10.

16.2 Test Planning

Test planning is about establishing the process and resources needed to test an
application to an appropriate level of test coverage. The test plan defines what is
to be tested and how test results will be recorded, as mentioned in Sect. 10.2. The
testing schedule, and how testing is integrated into an incremental delivery model,
will also need to be defined.

16.3 Testing Levels

Testing levels determine the focus of our testing: whether on the contents of
small software components or classes on the one hand or on the integration of
components into larger systems on the other hand. Common testing levels include
unit, integration, systems and acceptance testing.

16.3.1 Unit Testing

Unit testing is a feature development artefact, as mentioned in Sect. 10.4. In unit test-
ing, we isolate and test individual elements of our code, such as method signatures,
return parameters and data transformations. Unit tests are often created and executed
as we develop. Unit tests are usually written by source code developers, sometimes
with the support of test specialists that are members of our self-organising teams
during the development iteration.

16.3.2 Integration Testing

Integration testing is used to verify each new interface we add to our system.
Interfaces to new subsystems are built incrementally and must be tested to expose
any defects. Interface testing is done after unit testing and prior to offering up the
code to other software components that depend on the new services provided.

16.4 Testing Techniques 253

Prior to integration testing, we can use stubs and drivers to simulate interfaces.
A stub provides a dummy implementation of an interface. The stub complies with
the interface requirements without executing any code to fulfil the call. A simple
dummy response is provided instead. Conversely, a driver make dummy calls to an
interface. We can implement all the source code to fulfil the interface and use the
driver to simulate calls to our interface code.

During integration testing, we remove the stubs and drivers and perform tests
to ensure everything works as expected. We normally perform one integration at a
time, to ensure each interface is working before we move onto the next.

16.3.3 System Testing

We use system testing to evaluate the holistic functioning of our system. During
system testing, we determine if components and subsystems cooperate in the
way we expect and transform data appropriately across interfaces. System testing
routinely involves software built by different individuals or teams. System testing
may also involve evaluating newly developed software interacting with third-party
software.

We can perform non-functional as well as functional system testing. Perfor-
mance, load testing and security testing are best performed on the entire system prior
to release. If a third-party test team is employed, they are more likely to perform
system testing than unit or integration testing.

16.3.4 Acceptance Testing

Acceptance testing is used to ensure that each feature or increment meets its
needs. Conventionally, in sequential or plan-based software development models,
acceptance testing was performed towards the end of the development life cycle.
But in incremental development, acceptance test criteria are developed earlier in
the process and then applied as features or increments are completed. Acceptance
testing is performed before customer demonstrations, so that the test results can
inform judgements about software quality.

16.4 Testing Techniques

To achieve the objectives of evaluating our systems at the different stage of devel-
opment, we can employ five main testing techniques: regression, user experience,
performance (load), security and A/B testing.

254 16 Testing and Test Automation

16.4.1 Regression Testing

Regression testing plays an important role in incremental software development, as
mentioned in Sect. 10.5. When new features are added, it is important to test that
existing features are still working properly and that nothing in our earlier source
code has been broken.

It is usually during regression testing that automated test tools really bring value
to the development process. This is because previously developed suites of tests can
be re-run to give assurance that features developed earlier are still working correctly
after new feature source code has been integrated into our main trunk.

16.4.2 User Experience Testing

User experience testing, in contrast, is focused on evaluating our user interface
design and end-to-end screen flow. In simple terms, we recruit a group of partici-
pants to use our software in specific pre-planned ways and observe.We can consider
seven aspects of user experience testing:

• Create interaction scenarios to be tested,
• Identify and select target user demographic,
• Recruit participants for the study,
• Use questionnaires or interview techniques to collect participant expectations

before using the system,
• Brief participants on the task to be performed during the interaction scenario
• Observe participants performing the scenario (this might include measuring task

completion time),
• Use questionnaires or interview techniques to collect participant feedback after

using the system.

The interaction scenarios are likely to be derived from use cases or user stories
defined at the requirements analysis stage of application development. Typically
several user stories will be joined into an end-to-end user scenario for user
experience testing.

Members of the target user demographic should be recruited for the user
experience study. Typically, we select a representative sample of a broad target user
demographic for our user experience evaluation panel. Or, we select very specifi-
cally a more narrowly defined demographic segment that corresponds to a specific
persona; see Sect. 7.7. We sometimes ask participants about their perceptions or
expectations before they see the software system being evaluated.

To conduct the testing, study participants must be briefed on the software system
and the activities they are supposed to perform. This briefing might be in the form
of a simple set of instructions, or a more elaborate training activity, depending on
the application.

16.4 Testing Techniques 255

The users are then observed performing the requested task using the software
system under investigation. Observation might be informal, with researchers mak-
ing notes and timing activities. For more detailed studies with more resources
available, careful observation and video recording might be used. For a more
rigorous, research-oriented, approach, specialist eye-tracking apparatus can be used
to precisely characterise participant behaviour while using the software.

Once users have completed the scenarios, it is typical to ask them questions
about their impression of the experience. This qualitative data can help decide if the
software is going to be enthusiastically adopted by potential customers. Once the
software goes live, we employ A/B testing to evaluate the new features we release,
as discussed in Sect. 16.4.5.

16.4.3 Performance Testing

Performance testing is used to check that system response times are acceptable when
subjected to an expected number of user requests. Tools like Apache JMeter [1] can
be used to load-test applications, while Selenium [6] has features for testing web
applications by simulating button presses and web-form filling. Performance testing
gives reassurance that an application performs with adequate response times, when
under anticipated load.

However, stress testing is often performed to explore the load under which the
response time falls below acceptable levels. In stress testing, load (in terms of
number of users or data throughput) is steadily increased to understand the limits
of acceptable performance. We want to know how much additional capacity our
system can withstand before response times become unacceptable.

16.4.4 Security Testing

We talked about security in more detail in Chap. 11. It is good practice to include
security testing in a test pipeline. General code quality testing tools, such as
SonarCloud, perform some security tests that can identify deficiencies in our code
[7]. In addition, we can use more specialist security testing tools such as Gauntlt [8]
and OWASP ZAP [4].

These tools are designed to be used as part of an automated test and build
pipeline. This is known as DevOps in which source code development, the Dev,
and deployment or operations, the Ops, are integrated using automation. Indeed,
extending the phrase DevOps to DevSecOps derives from the need to include
security testing in the continuous integration or continuous deployment pipeline.
We’ll come back to these ideas in Chap. 21.

256 16 Testing and Test Automation

16.4.5 A/B Testing

In A/B testing, we deploy two alternative versions of our functionality to live users
andmeasure their responses. This approach is usually used in web-based or browser-
based applications. Our objective is to measure user behaviour in real time on our
live web-hosted products. At runtime, users are assigned to one version or the other
of our experimental features. For example, a new landing page might be deployed,
and we can use A/B testing to see which version attracts the higher number of site
registrations.

We use metrics like number of click-throughs, lower abandonment rates, higher
conversion rates and revenue per customer to evaluate different versions. Essentially,
each roll-out of a new feature is treated as an experiment to measure impact on
desirable customer behaviour.

An A/B testing framework is usually used to manage our experiments. The
framework allows us to define metrics, deploy software features and measure usage.
Such frameworks offer a dashboard for managing experiments and analysing test
results.

16.5 Test Automation

Bearing in mind that we can’t test everything, we nevertheless ensure that the main
features and data pathways have been tested before we ship product. To achieve this
goal, automation of our testing processes becomes essential.

16.5.1 Unit Test Automation

Automating unit testing is attractive because we want to re-run tests at later stages
in the development process.

The term XUnit is used to describe a standard set of unit testing frameworks
that have emerged for providing a consistent approach to automated unit testing
regardless of the programming language used. So, for example, we can find SUnit
(for Smalltalk), JUnit (for Java) and RUnit (for R) and so on.

The XUnit approaches comprise several common elements:

• Test runner, an executable programme for running tests,
• Test case, used to define specific test conditions,
• Test fixtures, a set of preconditions needed to run a test
• Assertions, a function that verifies the behaviour or state of the unit under test,
• Test execution, the execution of an individual test,
• Test result formatter, produces test results in a common output format,
• Test suites, a mechanism for running collection of tests in any order.

16.5 Test Automation 257

Car

String make
String model

getMake()
setMake(String)

getModel()
setModel(String)

FastCar

int speed

getSpeed()
setSpeed(int)

CoolCar

String colour

getColour()
setColour(String)

FamilyCar

int seats

getSeats()
setSeats(int)

CarTest

main()

Fig. 16.1 Small application for illustrating JUnit in Eclipse [2]

To illustrate a basic use of JUnit, look at the small application shown in Fig. 16.1
and which is available to download from GitHub [2].

Having created the application classes and methods, we can create a test. Simply
right-click on the project in the Eclipse package explorer, hover your cursor over
the new menu item, and select a new JUnit Test Case. I usually collect my tests
into a JUnit package, although on larger projects it might make more sense to have
a dedicated Test Package for each package in the source code.

The test simply instantiates the class and then tests the values of variables using
getter methods, as shown here:

Fast Car Test Method

package junit;

import static org.junit.Assert.*;

import org.junit.Test;

import car.FastCar;

public class FastCarTest {

@Test
public void test() {

FastCar fastCar = new FastCar("BMW", "320M", 180);

258 16 Testing and Test Automation

assertTrue(fastCar.getMake().equals("BMW"));
assertTrue(fastCar.getModel().equals("320M"));
assertTrue(fastCar.getSpeed() == 180);

}
}

The test can be executed once the test case has been completed. To execute, right-
click on the project in the Eclipse package explorer, and select the Run As\dots
menu. You can then select a JUnit Test.

The JUnit result formatter provided by Eclipse shows the number of tests
executed and their results. A green bar denotes all the tests in this run have passed,
while a red bar indicates failed tests.

For this simple example, I have used the assertTruemethod to check the values
of attributes. However, in the JUnit environment, assertions come in a variety of
flavours:

• assertEquals(boolean expected,boolean actual): to check if two
primitives/objects are equal.

• assertTrue(boolean condition): to check if a condition is true.
• assertFalse(boolean condition): to check if a condition is false.
• assertNull(Object obj): to check if an object is null.
• assertNotNull(Object obj): to check if an object is not null.

Consequently, these test methods can be used to test different variable values as
required by the application. Finally, a test suite can be created, which executes all
the unit tests, as follows:

A Test Suite in JUnit

package junit;

import org.junit.runner.RunWith;
import org.junit.runners.Suite;
import org.junit.runners.Suite.SuiteClasses;

@RunWith(Suite.class)
@SuiteClasses({ CarTest.class, FamilyCarTest.class, FastCarTest.class })
public class AllTests {

}

16.5 Test Automation 259

Create
Acceptance
Test Criteria

Create
Acceptance

Test
Execute Test

PassFail

Refactor or
Refine Code

Create Code

Execute Test
Pass

Fig. 16.2 Acceptance test-driven development

The test suite automates executing multiple tests, simplifying the processes of
running every test against a specific method or class.

16.5.2 Acceptance Test-Driven Development

In test-driven development, rather counter-intuitively, the tests are written before
the application code. As already mentioned in Sect. 13.6, the general test-driven
development cycle goes as follows [3]:

1. Write a test,
2. Make it run,
3. Make it right.

This process can be enhanced by first establishing a set of acceptance test criteria,
as shown in Fig. 16.2. The acceptance test criteria are derived from user stories
defining new requirements. Using the test criteria, an automated acceptance test can
be implemented. Initially this test will fail, so the code to fulfil the test is constructed
until the test passes. The final stage, shown in Fig. 16.2, is to refactor the code and
do a last check that the test still passes.

16.5.3 Behaviour-Driven Development

Emerging from the test-driven development community, behaviour-driven devel-
opment employs specialist software tools, notably a domain-specific language to
integrate user story-like descriptions of functionality with test criteria. The test code
itself is automatically generated from the natural language descriptions. Using these
non-technical, natural language, descriptions encourages collaboration between
stakeholders in defining features and their acceptance criteria. In an agile context,
this approach fosters collaboration.

260 16 Testing and Test Automation

Behaviour-driven Development User Story Structure

Title
A user story title.

Narrative
A brief feature description using the following structure:

As a: the actor who will benefit from the feature;
I want: the feature;
so that: the benefit or value of the feature.

Acceptance criteria
A set of scenarios describing the behaviours of the user
story with the following structure:

Given: the preconditions of the scenario, in one
or more clauses;

When: the event that triggers the scenario;
Then: the expected outcome, in one or more clauses.

The acceptance criteria are parsed by software tools to create tests. For example,
in the Cucumber tool set, the Gherkin natural language parser is used to extract test
cases from such user story descriptions [5].

16.6 Exercises

These exercises can help you develop your testing skills. Have a go at an exercise
and then check for hints, tips and advice in Sect. 16.7.

Exercise 16.1 (Learning Journal)

16.1 Based on this chapter, write about testing in your learning journal. You
could write an essay or just a few bullet points.

16.6 Exercises 261

Exercise 16.2 (Unit Testing Exercise)

16.2 Add a JUnit test to one of your existing projects. Once the test is
working, add a second test. Now create a JUnit test suite to execute both tests
in an automated sequence.

Exercise 16.3 (Integration Testing Exercise)

16.3 Add a JUnit integration test to one of your existing projects. Once the
first integration test is working, add a second test. Now create a JUnit test
suite to execute both integration tests in an automated sequence.

Exercise 16.4 (Learning Journal)

16.4 Writing in your learning journal can help you reflect on the exercises
you have completed. Make some notes about each exercise.

Exercise 16.5 (Learning Journal)

16.5 Learning Journal
Reflect on the chapters in Part III. Reflect on what you have learned about:

• Ceremonies,
• Lean,
• Version control,
• Testing.

Make some notes in your learning journal about each of these topics.

262 16 Testing and Test Automation

16.7 Hints, Tips and Advice on Exercises

16.1 Learning Journal

Review the text of this chapter. This chapter has described content manage-
ment, source code history, remote archiving and sharing. Write some notes
about what you have learned, for each of these topics.

16.2 Unit Testing Exercise

A basic use of JUnit is illustrated in the toy application shown in Fig. 16.1
and available to download from GitHub [2].

16.3 Integration Testing Exercise

Integration testing is used to evaluate the interconnection of moving parts
in the software. Such interconnections are often implemented using various
kinds of interfaces.

A common approach to interface testing is to use stubs and drivers. When
you create an interface, a stub can be used to fulfil the interface by providing
dummy and usually static data. Hence, a simplified version of the interface
is implemented which returns hard-coded test data. Consequently, we can
implement calls to the stubbed-out interface and observe that the test data
is returned as expected.

Conversely, a driver is used to call an interface that has been fully or
partially implemented. We can create driver that passes the interface some
test data and observe the response.

There are various other approaches used in integration testing, but I suggest
you start by experimenting with some stubs and drivers.

16.8 Chapter Summary

Testing plays an important role in any high-quality software development process.
On the one hand, testing is used to detect defects and identify problems. On the other
hand, testing is designed to provide reassurance that software works as intended.

This chapter has introduced four levels of testing: unit, integration, system
and acceptance testing. Unit testing gives us feedback on the function of low-
level software elements during the development process. Integration testing is used
to ensure that interfaces work as expected. In system testing, we evaluate the

References 263

interaction of the components in our system. In contrast, acceptance testing is to
ensure that completed software meets its intended requirements.

We have discussed five testing techniques conducted during the development
process: regression, user experience, performance, security and A/B testing. Each
serves a different purpose and performs a useful service in achieving high quality in
our software. Regression testing is important in incremental development to ensure
that existing features continue to work correctly after new features are added. User
experience testing gives us feedback on usability, while performance testing is
to ensure that software is sufficiently responsive under intended load conditions.
Security testing seeks to expose vulnerabilities in our code. Finally, A/B testing is
used on live software systems to evaluate user reaction to new features in a runtime
experiment. We can now establish process, tools and automation approaches for the
Tabby Cat project in Chap. 17.

References

1. Apache Software Foundation: Apache jmeter (2021). https://jmeter.apache.org/
2. Bass, J.M.: Cartester (2022). https://github.com/julianbass/CarTester
3. Beck, K.: Test Driven Development, 1st edn. Addison Wesley, Boston (2002)
4. OWASP Foundation: The zap homepage (2021). https://www.zaproxy.org
5. SmartBear Software: Bdd testing & collaboration tools for teams (2021). https://cucumber.io/
6. Software Freedom Conservancy: Seleniumhq browser automation (2021). https://www.

selenium.dev/
7. SonarCloud: Automatic code review, testing, inspection & auditing (2021). https://sonarcloud.

io/
8. Wickett, J., Tadayon, M.: https://github.com/gauntlt/gauntlt (2021)

 1440 1759 a 1440 1759
a

https://jmeter.apache.org/

 750 1842 a 750 1842 a

https://github.com/julianbass/CarTester

 1308 2008
a 1308 2008 a

https://www.zaproxy.org

 1998 2091 a 1998 2091 a

https://cucumber.io/

 2251 2174 a 2251 2174
a

https://www.selenium.dev/
https://www.selenium.dev/

 2089 2340 a 2089 2340 a

https://sonarcloud.io/
https://sonarcloud.io/

 652
2506 a 652 2506 a

https://github.com/gauntlt/gauntlt

Chapter 17
Tabby Cat Project: Process, Tools and
Automation

Abstract In this chapter, we consider the process issues and software tools required
to create the Tabby Cat case study project. This project will create an opportunity
to apply the ideas from the chapters in Part III of the book. As stated in Chaps. 6
and 12, Tabby Cat is software for displaying source code repository activity. We
want to obtain data from a public repository and display activities using various
searches and filters.

17.1 Introduction

This case study allows us to summarise and apply the most important ideas we have
covered in Part III. Here, you can learn more about agile process and software tool
issues. The three main sets of skills I want to focus on are ceremonies fromChap. 13,
version control from Chap. 15 and test automation from Chap. 16.

The Tabby Cat project has been kindly provided by Red Ocelot Ltd., our software
start-up company [2]. The Tabby Cat project source code is available on GitHub [1].

Review Your Learning Journal

I have recommended that you create and update a learning journal when you
do the exercises in each chapter; see Exercise 13.1. Now is a good time to
reflect on your journal notes for each exercise in the Part III chapters.

• Re-read your learning journal from the chapter exercises in Part III of the
book,

• Think about what went well when you did the exercises,
• Think about what didn’t go so well,

(continued)

© Springer Nature Switzerland AG 2022
J. M. Bass, Agile Software Engineering Skills,
https://doi.org/10.1007/978-3-031-05469-3_17

265

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05469-3_17&domain=pdf

 -151 4612
a -151 4612 a

https://doi.org/10.1007/978-3-031-05469-3_17

266 17 Tabby Cat Project: Process, Tools and Automation

• Make some notes, in your learning journal, about the strengths and
weaknesses of your work in these areas,

• Create some actions or set some targets for your future learning.

17.2 Agile Ceremonies and Lean Thinking

First, make sure you read Chap. 13 and work through Exercises 13.2 to 13.5. These
ceremonies are how we collaborate in agile projects. We try to empower team
members to fulfil our goal using their own creativity and skill. We think this is better
than relying on a project manager who has all the creativity and tells everyone what
to do.

Before we start development work, we need a prioritised list of requirements.
Each sprint starts with a sprint planning activity, described in Sect. 13.2. Essentially,
sprint planning is where we decide on the requirements to be tackled during
this sprint and which team member is going to work on each. We divide each
requirement (use case or user story) into technical tasks, and, in a self-organising
team, members step forward to pick up each task.

Daily stand-up meetings, as described in Sect. 13.3, allow everyone in the team
to keep track of progress. Remember that the daily stand-up consists of everyone
taking turns to answer three questions: ‘what have you done since the last meeting?’,
‘what are you working on now?’ and ‘are there any impediments stopping you
from making progress?’. Separate meetings are called to deal with any challenged
surfaced during the daily stand-ups.

At the end of the sprint, we have a customer demonstration. As mentioned in
Sect. 13.4, this is where we demonstrate working code created during the sprint.
The purpose of the customer demonstration is to collect feedback on our work. We
prefer to find out sooner, rather than later, if we are going off on the wrong track.

We conduct a sprint retrospective, after the customer demonstration, as discussed
in Sect. 13.4.1. During the retrospective, we can reflect on our successes during the
sprint and look for opportunities to improve. Usually, we aim to have two or three
action areas for improvement in each sprint.

Now read Chap. 14 and consider how you can apply lean thinking to your project.
Exercises 14.2 to 14.7 should provide some ideas you can apply to your work.
Perhaps most important is to focus on the flow of features through your development
process. This mindset might help you identify waste to eliminate which increases
the value of your work.

References 267

17.3 Version Control

Now, you should have read Chap. 15 and worked through Exercises 15.2 to 15.7.
Version control is going to play a critical role in the Tabby Cat project. We want to
use version control to be able to manage source code changes during the project,
but also to provide a straightforward mechanism for sharing source code within the
team using a shared remote repository.

There is an overhead in learning the skills required to keep your working source
code in version control. First working source code must be synchronised with your
local repository and then keeping your local repository synchronisedwith an archive
in a remote repository. But, if you can get into the habit of using these software tools
regularly, it will save you a lot of time in the long run.

Aim to synchronise your code locally very few minutes (by performing local
commits). It is much better to commit in small increments, rather than commit the
result of hours (or, worse, days) worth of effort. Frequent commits make it easier to
do a roll-back, if it ever needed, and easier to track any defects introduced into the
source code.

17.4 Testing and Test Automation

First, make sure you read Chap. 16 and work through Exercises 16.2 and 16.3. It is
obviously good practice to unit test, as you create your source code. Depending on
the language you adopt, XUnit style tests (JUnit for Java and so on) seem the way
to go.

You will also need to perform regression testing on existing source code, when
new features are added in each increment. This is where automated testing really
comes into its own, because the automated tests are already there for the existing
features and can be re-run to check nothing has broken when new features are added.

It is likely also to be a good idea to create some integration tests. Integration
tests are used to check the interfaces between the moving parts of your system. Re-
running integration tests at the end of each increment provides increased confidence
that interfaces have not been accidentally broken. It is very easy to perform an
enhancement on an existing interface and forget to update all the existing clients
of that interface.

In Part IV, I will explore some more advanced skills that will be useful for you
to acquire as your expertise in agile software development grows.

References

1. Bass, J., Monaghan, B.: Tabby Cat GitHub Explorer. Red Ocelot Ltd, London (2022). https://
github.com/julianbass/github-explorer

2. Red Ocelot Ltd: Enhancing digital agility (2022). https://www.redocelot.com

 2416 4251
a 2416 4251 a

https://github.com/julianbass/github-explorer
https://github.com/julianbass/github-explorer

 1334 4417
a 1334 4417 a

https://www.redocelot.com

Part IV
Advanced Skills

Part IV of the book deals with four more advanced topics: large-scale agile, cloud
deployment, technical debt, evolution and legacy, and DevOps. The skills in these
chapters become more relevant; once your agile team is functioning, you have
shipped your first releases and you have a nice agile process cadence.

Chapter 18 explores large-scale agile development projects. A key feature of
large-scale agile is the need to coordinate multiple self-organising teams. The trade-
off here is that team sacrifice some autonomy in order to work towards a common
software solution. The specialist roles, activities and ceremonies needed for big
projects are discussed in Chap. 18.

Cloud-hosted application deployment, described in Chap. 19, is very attractive if
you don’t already have access to your own servers. Cloud-hosting can scale to the
needs of a varying size customer base and can minimise capital investment costs
for start-ups and new entrants. We explore some key issues, such as scaling, multi-
tenancy and containerisation, for software-as-a-service deployment.

Finally, Chap. 20 explores legacy systems, technical debt and software evolution.
Technical debt builds up as a natural consequence of incremental development.
Periodic refactoring is desirable to reduce technical debt. Legacy systems often
exhibit extremes forms of technical debt.

Continuous integration and continuous deployment, often called DevOps, are
useful when using incremental development. DevOps ensures the seamless delivery
of new features into your production deployed product. Automation helps to ensure
consistency and quality in your deployment pipeline. Tools to help with continuous
integration and continuous deployment are described in Chap. 21.

Other Book Parts

As I have emphasised elsewhere, the main focus of Part I is on People, in Part II is on
Product and in Part III is on Process. These book parts are pretty much stand-alone
and hence can be tackled in any order.

Chapter 18
Large-Scale Agile

Abstract Large-scale agile development is requiredwhere time scales are short and
the scope of work is, well, large. Large-scale development focuses on cooperating
teams. We have a dilemma; on the one hand, we want to empower teams to be
self-organising and innovative. However, on the other hand, teams must cooperate
to work together on the same product. This chapter introduces the more advanced
topics around cooperating teams. We will discuss conventional approaches, such as
the scrum-of-scrums approach, where dependencies between cooperating teams are
resolved by scrum masters meeting and thrashing out release roadmaps and resolv-
ing impediments. We will also introduce the Spotify culture of squads, chapters,
tribes and guilds. Spotify engineering culture is based on self-organising teams,
known as squads. A tribe is a collection of collaborating squads organised around
specific products. Within the same tribe, Chapters focus on skills development
within a tribe. While guilds are communities of practice for sharing knowledge
across different tribes about areas of specialism. We will explore these techniques
for managing scale, distance and governance.

18.1 Introduction

When the number of requirements to be fulfilled is large, and time scales are short,
then we need to use large-scale agile techniques. Rather than have one large team,
we prefer to have a number of smaller cooperating teams. There are specific issues
around coordinating cooperating teams. We will consider specialist artefacts and
activities within roles on agile projects.

On large-scale projects, there is also a tension between consistency of approach
between teams and the ability of teams to be creative and innovative. Different
organisations will choose their own point on this spectrum. Some will focus on
nurturing highly creative and innovative autonomous teams, while others will look

© Springer Nature Switzerland AG 2022
J. M. Bass, Agile Software Engineering Skills,
https://doi.org/10.1007/978-3-031-05469-3_18

271

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05469-3_18&domain=pdf

 -151 4612
a -151 4612 a

https://doi.org/10.1007/978-3-031-05469-3_18

272 18 Large-Scale Agile

to compare teams and aim for consistency. Such organisations might ask questions
like:

• How can we learn from the most productive team(s) and spread best practice to
others?

• Why do some teams maintain consistent velocities, while others seem to fail
sprints from time to time?

• How do we achieve consistent software quality standards?

There are risks with both extremes. Highly autonomous teams might be inno-
vative but end up having to waste time doing rework to fit in with other teams,
because of uncoordinated decision-making or wrong assumptions. On the other
hand, enforcing too much consistency can stifle team innovation and undermine
motivation. Clearly, a balance needs to be struck. The secondary roles, in Sect.18.4
and 18.5, help cooperating teams to achieve this balance between team autonomy
and team consistency.

18.2 Distance

When thinking of geographically distributed software development, so-called global
software development, we can identify three aspects of distance that impact the
software development process: geographical, temporal and cultural.

18.2.1 Geographical Distance

Geographical distance is, well obviously, the physical distance between team
members. Engaging other team members in the same city is considered easier than
if team members are in different continents. While offshore development refers to
engaging developers from remote distances, near-shore development refers to team
members fromwithin the same continent. Large geographical distance means longer
flights to facilitate face-to-face meetings and more time on video conferencing
platforms.

18.2.2 Temporal Distance

Temporal distance refers to the issue of time zone differences between team
members. Significant time zone differences impact the ability to hold online
meetings during the working day. Someone is going to have to meet other team
members outside normal working hours, either during the late night or early
morning. Consequently, some organisations group people into teams with others

18.3 Large-Scale Artefacts 273

that live directly north or south, rather than east or west. From this perspective,
forming groups with team members from Brazil and North America, on the one
hand, or from Africa and Europe, on the other hand, is more attractive, to minimise
time zone differences. There are lots of out-of-hour work meetings for teams in
South Asia working with clients in the USA.

18.2.3 Cultural Distance

Cultural distance, perhaps the more controversial concept here, refers to differences
between community, family and social attitudes and values in different societies.
Some observers identify differences in how hierarchical or deferential some organ-
isations are, compared to others. Also, team members may be from different
cultures where attitudes to issues such as gender equality, religion or sexuality
vary considerably. Cultural awareness becomes a more sensitive issue in teams
comprising members from distant cultures. Some large organisations offer team
members training in this area.

18.3 Large-Scale Artefacts

To support the development process, in large-scale projects, several new artefacts
are often developed, including risk register and architectural standards.

18.3.1 Risk Register

A risk register is a list of potential risks, an assessment of their likelihood and
possible mitigations. Some regulatory authorities demand preparation of a risk
register for projects. See the discussion on risk management in Sect.11.3.4. Risk
registers may be qualitative, using assessments of risk severity such as high or low.
Or, they maybe quantitative, using impact evaluations, such as risk of $1m loss and
a probability of 50%.

A risk register, then, typically contains:

• Categories, grouping similar risk types,
• Description, a brief description of the risk,
• Impact, integer value representing potential consequences of the risk,
• Probability, the likelihood that the risk will materialise,
• Risk score, a ranking of risk, usually based on multiplying impact and probability
• Mitigation, steps to ameliorate the risk.

274 18 Large-Scale Agile

Amelioration steps for each risk might include approaches to identify, analyse, plan
response, monitor and control.

On many large-scale projects, the risk register will be reviewed by senior
executives during each iteration. The potential impact of one or other teams failing
to deliver planned work will be assessed.

18.3.2 Architecture Standards

Architecture standards are used to encourage adoption of a shared architectural style
and technology stack across multiple cooperating self-organising teams. Typically,
the standards permit use of specific versions of language libraries, development
tools, software frameworks and so on. The purpose of standards is to ensure
consistency and avoid architectural conflicts between different teams working on
the same product.

18.4 Large-Scale Scrum Master Activities

To support large-scale working, several new scrum master coordination activities
have been identified.

18.4.1 Scrum-of-Scrums Facilitator

The scrum-of-scrums facilitator organises coordination meetings between scrum
masters from different cooperating teams. The scrum of scrums is a simple way for a
few cooperating teams to coordinate their work together, as shown in Fig. 18.1. The
scrum masters and product owners from each team work together to divide tasks
between the teams and plan to overcome dependencies between the teams.

18.4.2 Agile Coach

Many organisations will have team members dedicated to spreading best practice
from team to team. These individuals aim to have an extensive repertoire of tech-
niques that can help teams work effectively. There are several ways of conducting
sprint planning or sprint retrospectives (these ceremonies are described in more
detail in Chap. 13), for example. An agile coach can help teams try different
approaches and see what works best for them. You might be thinking that the agile
coach sounds just like a scrum master. Well, it’s true. Scrum masters are supposed

18.5 Large-Scale Product Owner Activities 275

Team A Team B Team C Team D

Scrum of Scrums
Comprises Scrum Masters and Product Owners from each team

Scrum Master Scrum Master Scrum Master Scrum Master

Product Owner Product Owner Product Owner Product Owner

Fig. 18.1 Scrum of scrums

to help teams try new ideas and improve their effective use of agile methods. The
agile coach, however, supports several (sometimes many) teams, whereas the scrum
master usually only supports one team.

18.5 Large-Scale Product Owner Activities

Product owners create and prioritise user stories and decide when code is ready
to be deployed and shipped. In large-scale software development programmes,
the activities of identifying business needs and creating requirements are time-
consuming and difficult. Product owners have been found to create several specific
new activities, to cope with agile scaling [2].

18.5.1 Product Sponsor

Someone needs to develop the vision as well as create and negotiate a business case
to senior executives in a large organisation. This usually requires involvement at
the most senior board level. Senior executives, such as the chief executive, chief
information or chief technology officer, may ‘own’ the project, but they are unlikely
to have time to attend to all the project details. Hence, a product sponsor, who
‘owns’ the project, creates a product owner teamwhich then deals with all the details
associated with running the project [1].

276 18 Large-Scale Agile

18.5.2 Risk Assessor

In really big projects, with many teams working together for a long period of
time, risk becomes an important factor to monitor. What happens if one team fails
to deliver? Will the work of all the other teams be disrupted? Large companies
are forever reorganising themselves. What happens if a team you depend on gets
redeployed to another (more urgent or important) project? The risk assessor keeps a
list of risks, their likelihood and impact severity. This list is reviewed, every sprint or
two, and kept up to date along with proposed mitigating actions. See the discussion
in Sect. 11.3.4 and 18.3.1.

18.5.3 Governor

Someone needs to make sure all the project teams comply with corporate quality
standards and technical policies. Self-organising teams have to relinquish some
autonomy when they cooperate with other teams to create a product. Usually some
central architecture board or design authority determines policies and approaches,
which teams then comply with.

18.5.4 Technical Architect

In large projects, cooperating project teams have to adhere to a shared architectural
vision. The technical architect is tasked with creating, disseminating and encour-
aging adherence to this shared architectural vision. The architecture might involve
a simple front-end back-end split with a web service API providing the interface
between two teams, rather like the Tabby Cat project in Chap. 12. Once a simple
architectural style is agreed, a dedicated technical architect role is hardly needed.
However, in larger and more sophisticated applications with more moving parts (a
euphemism for interacting subsystems of one kind or another), then an architect has
an important role to play in defining approaches for achieving project goals.

The technical architect activity is provided by a specialist to enable design coor-
dination between cooperating self-organising teams. Technical architects achieve
coordination by designing, implementing and disseminating a reference architec-
ture, a blueprint, for the overall organisation of the system (or some specific aspect
of the system). The reference architecture is used to coordinate technical and high-
level design policies between the scrum teams.

18.6 Spotify Culture 277

18.5.5 Technical Product Owner

There are, of course, variations between organisations and business sectors. Some-
times, in large projects, product owners are called product managers (particularly
in consumer-facing businesses). There also seems to be a trend towards technical
product owners supporting one team, within a specific business domain. The
technical product owners will be used to focusing on a set of technologies or a
technology stack, within their business domain. They support a more senior product
owner who is more broadly product focused, supporting several teams, but who is
technology agnostic.

18.5.6 Product Owner: Market Trends

The product owner prioritises the development of new features and services. This
can be informed bymaintaining good customer relationships in business-to-business
domains or through market trend analysis. Horizon scanning market trends and
competitor performance helps identify new business opportunities that can be
fulfilled by new features and software services.

18.6 Spotify Culture

The music streaming service Spotify developed their own software innovation
culture comprising teams organised into squads, tribes, chapters and guilds [3].
Spotify was launched in 2008 and had continuous growth for 10 years, at times being
one of the most downloaded mobile device apps. The Spotify engineering model
uses a matrix management structure, as shown in Fig. 18.2, comprising squads,
chapters and tribes. In addition, guilds are communities of practice that disseminate
innovations across the organisation.

18.6.1 Squads

The squad is the basic unit of software development in Spotify. A squad is similar to
a scrum team, consisting of five to seven people. But Spotify squads have more
autonomy over choosing a software development method, such as Scrum, XP,
Kanban, lean, Scrumban and so on.

Squads have a long-term focus on an aspect of the product, such as a mobile
device front-end, payment solutions or back-end services. This long-term commit-
ment to a mission helps the squad gain deep expertise on their product area. In

278 18 Large-Scale Agile

Tribe

Squad
What

How

How

How

How

Product
Owner

Chapter
Lead

Chapter

Fig. 18.2 Overview of Spotify engineering model, within a tribe

Spotify, they think of squads as mini-start-ups with a particular focus. Five key
features of squads are:

• Product owner, each squad has a product owner,
• Agile coach, each squad has an agile coach to help resolve impediments and

support continuous improvement,
• Self-organising team, influencing planning and work assignment,
• Squads own their own process and continuous improvement,
• Squads have a clear mission, with backlog stories focused on that mission.

The product owner assigned to each squad prioritises work considering business
value and technical issues. Squads are strongly influenced by the principles of the
lean start-up [4]. The minimum viable product concept means releasing early and
often. While extensive use of metrics and A/B testing provides validated learning to
find out what works and what doesn’t, the approach of squads is summarised by the
informal slogan ‘Think it, build it, ship it, tweak it’.

Squad members can spend 10% of their time on hack days, where people can
try out new ideas and experiment with new technologies. Some squads choose to
do one hack day every other week; other squads save up the hack days into a hack
week. Hack days are a fun way to try out new tools and techniques.

18.6 Spotify Culture 279

18.6.2 Chapters

Chapters comprise people within a tribe, with a similar competency or skill set and
focus on personal growth and development. The chapter lead is line manager for
chapter members, responsible for training, performance reviews, salary setting and
so on. Chapters meet regularly to disseminate best practice within a skill area, such
as testing, web development or back-end services.

18.6.3 Tribes

Tribes are formed where multiple co-located squads work together on the same
product. Tribes are typically limited to around 100 people. Tribes are designed to be
smaller than around 100 people, to discourage formation of excessive bureaucracy,
layers of management or organisational politics.

In Spotify, they think of tribes as an incubator for their squads. The squads within
a tribe are assigned adjacent office space, often sharing a physical lounge space
to encourage collaboration. Tribes have a leader who is responsible for creating a
desirable habitat for the squads.

18.6.4 Guilds

Guilds, on the other hand, are communities of practice that operate across the
whole organisation [8]. As mentioned, guilds are communities of practice for
disseminating innovations. Guilds are self-managing and formed around particular
set of interests. Guilds have a coordinator and organise activities for members.
Anyone can join any guild, as shown in Fig. 18.3, the span squads, tribes and
chapters. Successful communities of practice have a good topic, a passionate leader,
a proper agenda, decision-making authority, openness, tool support, a suitable
rhythm and cross-site participation.

18.6.5 Architectural Alignment

Autonomy of squads is good. Autonomy means squads have a greater sense of
collective ownership of problems and solutions; they release faster and are more
highly motivated. Squads have autonomy over what to build, how to build it and
how to work together while building it.

However, squads also need to be aligned around a shared mission, product
strategy and short-term goals. The mission is to serve a client need or solve a

280 18 Large-Scale Agile

Tribe

Squad

Chapter

Tribe

Guild

Fig. 18.3 A Spotify engineering model guild spanning two tribes

customer problem. Alignment is the extent to which organisation strategy and goals
are proudly understood and undertaken by having focused squad interactions [5].

Software structure or software architecture can play an important role in fostering
or impeding collaboration between teams [6]. In a simple model, each squad
focuses on one layer of an architecture. Interfaces, which are published and version
controlled, define the boundaries between architectural layers, but also between
teams. As projects grow larger, this simple approach breaks down, because there
is too much work for one squad to handle an entire layer of the architecture.

Abdallah Salameh worked with a Scandinavian FinTech company to tailor their
Spotify model to foster architectural alignment [5]. Dr Salameh helped to form an
Architectural Ownership Team comprising chapter leads and led by an enterprise
architect. This change represents a decentralisation of architectural decision-making
from enterprise architects to chapter leads while also freeing up time for enterprise
architects to focus on over-arching enterprise aspects of architectural thinking.
We found that this approach strengthened the autonomy of squads by aligning
architectural decision-making and helped to share architectural knowledge among
squads [5].

18.7 Other Frameworks

The scrum-of-scrums concept involves an additional coordination meeting exclu-
sively for scrum masters, as shown in Fig. 18.1. However, the scrum-of-scrums
approach has limitations. Consequently, other frameworks have been developed to

18.7 Other Frameworks 281

support large-scale agile. There are two frameworks which we need to mention:
large-scale scrum and the scaled agile framework.

18.7.1 Large-Scale Scrum

Large-scale scrum (LeSS) offers two different frameworks, one for up to eight
scrum teams and another for huge development programmes [9]. LeSS is a
formalisation and perhaps scaled-up version of scrum of scrums. They refer to
one team scrum and use a single product owner and single product backlog with
multiple teams. The teams contribute to a single potentially shippable product, with
a common definition of done across the teams, at the end of a single sprint.

Scrum meetings or daily stand-ups are conducted separately within each team.
Sprint reviews, in contrast, are conducted using a bazaar or science fair concept
in a large room with multiple areas. In each area, team members show and discuss
working code they have developed.

Emphasis in LeSS is placed on teams working together, at the sprint planning
phase, to determine which teams will pick up which features. During the single
sprint, team members are encouraged to talk, use open spaces, travel to other teams,
communicate using code and develop communities to share ideas and interact across
teams.

18.7.2 SAFe

Scaled agile framework (SAFe) is a framework for scaling agile across the enterprise
[7]. SAFe operates at a team, programme, large solution and portfolio level and
inherits principles from Scrum, XP and lean approaches as well as DevOps [7].
SAFe also adds layers for handling large-scale projects as well as techniques for
managing a collection of products.

SAFe has a large set of training programmes, for roles in different levels of the
organisation. Practitioners can become certified, to provide recognition for their
skills and knowledge. Accredited consultants are available to help organisations
adopt the approach.

In some ways, SAFe reminds me of the limitations faced by the Rational Unified
Process (RUP). RUP, like SAFe, has many good ideas. But, the framework has
become elaborate and burdensome to implement. SAFe attempts to cover every
eventuality by providing advice and practices at every level of the organisation.

And anyway, the whole attempt to implement or impose an elaborate framework
seems to undermine the whole philosophy of agile. Agile is supposed to be about
empowering teams to find their own solutions. Implementing an elaborate set of
rules or practices seems to go against that ethos, in my opinion.

282 18 Large-Scale Agile

18.8 Chapter Summary

In agile, small teams are desirable to encourage communication and collaboration.
If, however, project scope is large and time scales are short, then multiple teams
will be required. In this situation, self-organising agile teams must cooperate with
each other to build a product. The scrum-of-scrums approach imposes onto scrum
masters a significant burden for resolving impediments and dependencies.

In contrast, a matrix management approach has been employed at the Spotify
music streaming service. At Spotify, everyone is simultaneously a member of a
squad, chapter and tribe, as well as potentially several guilds. The squad is a self-
organising team. The chapter is organised around a specialist skill set and focuses
on professional development. The tribe is a group of squads working on the same
product, while a guild is an informal community of practice with a specific focus.

Finally, large-scale agile frameworks like LeSS or SAFe give practitioners
detailed advice and offer training and certification. These frameworks encapsulate
many good ideas. But, somehow these frameworks run counter to the agile ethos in
which teams develop their own process innovations.

References

1. Bass, J.M., Haxby, A.: Tailoring product ownership in large-scale agile projects: managing scale,
distance, and governance. IEEE Softw. 36(2), 58–63 (2019). https://doi.org/10.1109/MS.2018.
2885524

2. Bass, J.M., Beecham, S., Razzak, M.A., Canna, C.N., Noll, J.: An empirical study of the
product owner role in scrum. In: Proceedings of the 40th International Conference on Software
Engineering: Companion Proceedings, pp. 123–124. ICSE ’18, ACM, New York (2018). https://
doi.org/10.1145/3183440.3195066

3. Kniberg, H., Ivarsson, A.: Scaling Agile @ Spotify with Tribes, Squads, Chapters & Guilds.
Crisp AB (2012). https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf

4. Reis, E.: The Lean Startup: How Constant Innovation Creates Radically Successful Businesses.
Portfolio Penguin, London (2011)

5. Salameh, A., Bass, J.: Influential factors of aligning spotify squads in mission-critical and
offshore projects – a longitudinal embedded case study. In: Kuhrmann, M., Schneider, K., Pfahl,
D., Amasaki, S., Ciolkowski, M., Hebig, R., Tell, P., Klünder, J., Küpper, S. (eds.) Product-
Focused Software Process Improvement. Lecture Notes in Computer Science, vol. 11271,
pp. 199–215. Springer International Publishing, New York City (2018). https://doi.org/10.1007/
978-3-030-03673-7_15

6. Salameh, A., Bass, J.M.: An architecture governance approach for agile development by
tailoring the spotify model. AI Soc (2021). https://doi.org/10.1007/s00146-021-01240-x

7. Scaled Agile Inc: Safe 5.0 framework (2021). https://www.scaledagileframework.com/
8. Smite, D., Moe, N.B., Levinta, G., Floryan, M.: Spotify guilds: how to succeed with knowledge

sharing in large-scale agile organizations. IEEE Softw. 36(2), 51–57 (2019). https://doi.org/10.
1109/MS.2018.2886178

9. The LeSS Company: Overview (2021). https://less.works/

 1669 2285 a 1669 2285
a

https://doi.org/10.1109/MS.2018.2885524
https://doi.org/10.1109/MS.2018.2885524

 2416 2617 a 2416 2617 a

https://doi.org/10.1145/3183440.3195066
https://doi.org/10.1145/3183440.3195066

 432 2866 a 432 2866 a

https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf

 1947 3448 a 1947 3448 a

https://doi.org/10.1007/978-3-030-03673-7_15
https://doi.org/10.1007/978-3-030-03673-7_15

 1148 3697 a 1148 3697
a

https://doi.org/10.1007/s00146-021-01240-x

 1227 3780 a 1227 3780
a

https://www.scaledagileframework.com/

 2108 3946 a 2108 3946 a

https://doi.org/10.1109/MS.2018.2886178
https://doi.org/10.1109/MS.2018.2886178

 1048 4112 a 1048 4112 a

https://less.works/

Chapter 19
Cloud Deployment

Abstract Many software applications and services are now deployed on remote
servers and accessed using internet technologies. We want to learn more about
such routes to application deployment. We discuss some architectural issues that
developers of cloud-hosted applications must face, including scalability, multi-
tenancy, automated customer on-boarding and automated source code deployment.

19.1 Introduction

Cloud services are provided by remote servers accessed using internet technology.
This is a rental model of hardware, storage and platforms. The cost of entry, the
start-up cost, is significantly lower than in-house server provision. There is no need
to create an air-conditioned server room with emergency backup power supply.
There is no need to purchase racks of computers and create dedicated high-speed
internet connections. Instead, an online dashboard is used to select and instantiate
the compute or storage resources that you need.

Usually, cloud services are provided on a shared-resource pay-as-you-go basis.
Multiple virtual machines, belonging to different clients, are executed on a single
hardware processor. This pay-as-you-gomodel can be particularly attractive, if your
compute or storage demands fluctuate significantly, the idea being you only pay for
the services you use, when you use them.

However, over time, the cost of renting cloud-hosted servers will likely exceed
the cost of in-house provision. For example, at the time of writing in August 2021,
a small virtual machine from DigitalOcean costs US $5 for 1 month [1]. You can
purchase a hobbyist single-board computer, such as a Raspberry Pi Model 4b, for
around US $35 [12]. I’ve used both to experiment with installing and executing a
small Jenkins server, for instance. For the first couple of months, renting a virtual
machine from DigitalOcean would be cheaper. But if you plan to experiment over
a longer period, say 6 months, then buying hardware might be a better option.
Needless to say, if you need to build a commercial server room,with air conditioning
and backup power, the DigitalOcean option is cheaper for much longer.

© Springer Nature Switzerland AG 2022
J. M. Bass, Agile Software Engineering Skills,
https://doi.org/10.1007/978-3-031-05469-3_19

283

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05469-3_19&domain=pdf

 -151 4612
a -151 4612 a

https://doi.org/10.1007/978-3-031-05469-3_19

284 19 Cloud Deployment

But bear in mind, there could be other benefits to using DigitalOcean virtual
machines, of course. The cloud-hosted virtual machines have the potential to be
used in a production environment, which is not wise with a hobbyist setup. Also,
many cloud vendors provide software tools to support production deployment. In
addition, the skills acquired when you instantiate a service with cloud providers can
be in demand from potential employers.

We are interested in cloud services from two standpoints. On the one hand,
we are likely to be consumers of cloud-hosted services. On the other hand, we
might be interested to deploy the software we create to cloud platforms. From both
perspectives, it is useful to find out a bit more about these technologies.

19.2 Cloud Service Models

There are four main cloud service models: infrastructure-as-a-service, platform-as-
a-service, software-as-a-service and serverless computing. We can think of these as
providing increasing levels of support for application deployment. At one extreme,
an infrastructure-as-a-service provider might offer bare processor and memory
hardware, accessible through a network connection or perhaps with a standard
operating system installed. At the other extreme, serverless computing solutions aim
to remove all concerns about deployment from the application development team.

19.2.1 Infrastructure-as-a-Service

Many cloud providers offer raw virtual machines on a pay-as-you-go basis. Virtual
machines can be started (and stopped) at short notice, often more or less instan-
taneously. Providers often offer virtual machines with a range of specifications in
terms of processor power, memory and network traffic. This might range from
simple single-core processors with modest memory allocations to much more
powerful multi-core processors with significant allocations of working storage.

Persistent storage is usually available separately from the virtual machines used
for computation. Connecting persistent storage to the processor is usually a (fairly)
straightforward configuration step. Providers offer data archiving capabilities, for
an extra cost.

19.2.2 Platform-as-a-Service

Platforms support software development by providing a database, business intelli-
gence services, development tools or middleware services. This reduces develop-
ment time and extends your capabilities. In the long run, the costs of such platforms

19.3 Cloud-Hosted Application Patterns 285

might be higher. But initially, you can avoid the cost of integrating your own
software systems to establish the platform capability. Instead, you can use the cloud
platform whenever you need it.

For example, it is sometimes attractive to be able to deploy, configure and
security harden a powerful production database server within an hour. This is a
much quicker response than is possible if it is necessary to purchase, install and
configure server hardware as well as operating system and database software.

19.2.3 Software-as-a-Service

Cloud-hosted software services, such as Dropbox [3], Google Drive [6], Office 365
[11] and Google Docs [7], have become very popular. Such services include social
media, business services and entertainment platforms. Service consumers need not
be concerned with application installation, deployment or maintenance since this is
all performed (and charged for) by the service provider.

19.2.4 Serverless Computing

Serverless computing is a misnomer really, because the code still runs on a server, of
course. However, the server (deployment, management and maintenance) is pretty
much invisible to the developer. Essentially, all operational aspects of the service
are outsourced to the serverless compute provider. The aim with this approach is to
allow developers to focus on creating their application and not have to worry about
deployment issues at all.

19.3 Cloud-Hosted Application Patterns

There are several issues we must consider if we design applications for cloud-hosted
deployment. We learned about the concept of architectural styles in Chap. 8 and
object-oriented design patterns in Chap. 9. We can now consider applying these
pattern concepts to cloud-hosted software services [4].

19.3.1 Scalability

Cloud-hosted applications and services ideally adjust their resources depending
upon current usage. As the number of users increases, then resources allocated
to service provision are increased correspondingly. Conversely, as the number

286 19 Cloud Deployment

of users declines, resources can be released, reducing hosting rental costs. This
is known as scalability or sometimes elasticity. Some cloud providers offer a
range of services to support scalability. This might include measures to provide
metrics for things like processor utilisation or number of incoming user requests.
These metrics can be used to create thresholds that, in turn, trigger creation of
new virtual machine instances. Increasing or decreasing the number of virtual
machines supporting deployed services makes assumptions, for example, about state
management. Certainly, scalability is much simpler for stateless services.

19.3.2 Multi-Tenancy

Cloud-hosted applications and services need to support multiple users sharing the
same functionality. The data for each user needs to be kept separate, while the
services provided are generally similar to each other. Several architectural styles
are available providing different levels of tenant isolation. An authorisation system
is usually implemented which identifies each user and provides access to their data
(and no one else’s).

19.3.3 Automated Customer On-Boarding

Cloud applications usually try to avoid manual operations when adding new users to
the system. We aim to eliminate manual processes from the on-boarding activities
that inhibit application scalability and increase costs. Hence, our emphasis is on
patterns for automated customer on-boarding.

We try to reduce any sources of friction during the on-boarding process, initially
collecting minimum information and making it easy for potential customers to get
started. However, our automated processes will probably need to capture means of
payment when we add new customers to the system. Our goal is to maximise the
number of conversions from visitors to customers.

19.3.4 Revenue Generation

Cloud-hosted applications and services often implement a pay-as-you-go model.
Providers must decide what user operations to measure and which to charge for.
It is not easy for service providers to decide, in advance of launch, which will be
premium features and will command higher value.

Often, a three-tier pricing model is used. The first bronze tier, often free of charge
to users, provides useful but basic features. This tier is used to attract potential
clients and gather user data. The second silver tier offers more advanced features

19.5 Containerisation 287

at a higher price. Finally, there is often a more expensive enterprise-level gold tier
for corporate clients.

19.3.5 ‘n’-Tier Architectures

For larger business information systems, we often use an ‘n’-tier architectural style
in which the presentation layer is separated from the business logic layer which
in turn is distinct from the persistence layer. The layered architectural style was
introduced in Sect. 8.3.4. The ‘n’-tier architectural style is useful for reducing
coupling between the layers of large-scale systems. For example, in principle, the
storage technology can be replaced in the persistence layer, without affecting the
rest of the system, assuming a good persistence layer interface has been defined.

In the cloud deployment context, we can take the ‘n’-tier architectural style to
another level of sophistication by deploying the different layers to separate virtual
machines. Back-end persistence and business logic layers can be implemented
behind the demilitarised zone, to improve data security. Hence, executing layers
on different servers can offer improved resilience and allow us to more easily adjust
compute resources to achieve performance targets.

19.4 Automated Deployment

I will explore automated continuous delivery in Chap. 21. To fully embrace a
continuous integration/continuous deployment (CI/CD or DevOps) pipeline, build
automation is used to test and deploy code that is integrated into the main source
code trunk. There are various tool platforms, such as Jenkins [9], that can be used to
implement CI/CD pipelines. Such a pipeline is used to trigger automated test, build
and deployment activities.

For small teams or software start-ups, perhaps implementing a full CI/CD
pipeline is too expensive. A simpler approach is to use git hooks to trigger a
deployment, every time you commit to the repository [8]. Git hooks detect a
repository commit and execute a script which might include copying an executable
version of the software to the appropriate folder on a live web server [5].

19.5 Containerisation

Using a containerisation technology, such as Docker, simplifies deployment to
multiple servers [2]. The container encapsulates configuration, software stacks
such as frameworks, libraries and other dependencies, as well as the executable

288 19 Cloud Deployment

application. Containers support distinctive operating system and technology stack
requirements for our different applications and services.

The container construction process itself can be version controlled. We automate
container creation with scripts so the process is consistent and repeatable. Container
libraries are available to get you started, comprising operating systems, databases
and web servers installed and configured depending on your needs.

Containers have become widely used for application deployment, so much
so, that container management itself is being automated. Kubernetes orchestrates
container deployment, scaling, load balancing and roll-backs [10]. These features
become more important if you are running a business-critical application or there
are many users that depend on your service.

19.6 Chapter Summary

Cloud-hosted software services offer a low capital investment route to creating
production applications. While well-suited to start-ups and those with fluctuating
resource needs, outsourcing deployment and operations can be more expensive in
the long run, compared with in-house operations.

However, products and services deployed in this way do not require installation
by users and can support a worldwide audience. From a consumer perspective, we
can focus on using services, while providers take care of resilience, maintenance
and performance issues.

From another perspective, as developers of software services deployed in this
way, we have learned a little about some new architectural concerns, such as multi-
tenancy and scalability, which must addressed in application design.

References

1. DigitalOcean: Digitalocean—the developer cloud (2021). https://www.digitalocean.com/
2. Docker: Get started with docker (2019). https://www.docker.com/get-started
3. Dropbox: Dropbox (2021). https://www.dropbox.com/
4. Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Computing Patterns:

Fundamentals to Design, Build, and Manage Cloud Applications. Springer, Vienna (2014).
https://doi.org/10.1007/978-3-7091-1568-8

5. Florence, R.: Deploying websites with a tiny git hook (2010). http://ryanflorence.com/
deploying-websites-with-a-tiny-git-hook/

6. Google: Cloud storage for work and home—Google drive (2021). https://www.google.com/
drive/

7. Google: Google docs: Free online document editor | google workspace (2021). https://www.
facebook.com/GoogleDocs/

8. Hudson, M.: Learn how to improve your git skills. https://githooks.com/
9. Jenkins project: Jenkins. https://jenkins.io/index.html
10. Kubernetes: Production-grade container orchestration (2021). https://kubernetes.io/

 1597 3157
a 1597 3157 a

https://www.digitalocean.com/

 1103 3240 a 1103 3240 a

https://www.docker.com/get-started

 738 3323 a 738 3323 a

https://www.dropbox.com/

 -42 3572 a -42 3572
a

https://doi.org/10.1007/978-3-7091-1568-8

 1932 3655 a 1932 3655 a

http://ryanflorence.com/deploying-websites-with-a-tiny-git-hook/
http://ryanflorence.com/deploying-websites-with-a-tiny-git-hook/

 1900
3821 a 1900 3821 a

https://www.google.com/drive/
https://www.google.com/drive/

 2251 3987 a 2251 3987 a

https://www.facebook.com/GoogleDocs/
https://www.facebook.com/GoogleDocs/

 1397 4153 a 1397 4153 a

https://githooks.com/

 667 4236
a 667 4236 a

https://jenkins.io/index.html

 1713 4319 a 1713 4319
a

https://kubernetes.io/

References 289

11. Microsoft: Microsoft 365 | secure, integrated office 365 apps + teams (2022). https://www.
microsoft.com/en-gb/microsoft-365

12. Raspberry Pi Foundation: Buy a raspberry pi 4 model b. https://www.raspberrypi.org/products/
raspberry-pi-4-model-b/

 2251 -23 a 2251 -23 a

https://www.microsoft.com/en-gb/microsoft-365
https://www.microsoft.com/en-gb/microsoft-365

 1536 143 a 1536 143
a

https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/

Chapter 20
Technical Debt, Software Evolution
and Legacy

Abstract Most of this book has been concerned with developing new systems or
features. When students learn software development, it is usually on new projects
starting afresh, without any previously existing source code. In contrast, most
commercial software development effort is directed towards sustaining live systems
that have existing user communities. Live systems already have paying customers.
We need those customers to pay us for the development effort. In this chapter, we
concentrate on the needs of live systems and how teams can support their evolution.

20.1 Introduction

Looking after a working software system is known as software maintenance.
Software evolution is the process of making enhancements to a live system while
at the same time supporting existing users. Maintenance and evolution costs are
usually much higher than development costs.

When we build a new system, we should carefully consider these high mainte-
nance and evolution costs, because future software engineers are going to perform
various updates and improvements. If the structure of our software is shoddy or our
code follows a convoluted logic, it will be clear for all to see that we have performed
a poor-quality job. Our goal is to ensure that, when others read our code, it is clear,
simple and straightforward to understand.

Hence, while we write programmes to control computers, we also write pro-
grammes for other software engineers to read and modify. These other software
engineers are our friends and colleagues. We don’t want to add misery to their lives.
We aspire to write software that is as simple and elegant as possible, to perform the
job.

When sustaining live systems, we must also balance the needs of current users
against requirements to attract potential new customers. As we enhance a live
product or service with new features, we usually try to avoid impairing the level
of service we currently offer (unless, of course, there is a conscious decision to do
that).

© Springer Nature Switzerland AG 2022
J. M. Bass, Agile Software Engineering Skills,
https://doi.org/10.1007/978-3-031-05469-3_20

291

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05469-3_20&domain=pdf

 -151 4612
a -151 4612 a

https://doi.org/10.1007/978-3-031-05469-3_20

292 20 Technical Debt, Software Evolution and Legacy

In this chapter, I discuss several concepts and techniques useful for managing
live systems. Legacy systems are an extreme form of live software services that
have usually not benefited from sufficient investment in evolution or maintenance.
I’ll come on to discussing legacy systems shortly.

20.2 Technical Debt

In software projects, the phrase technical debt is a metaphor for monetary debt
[2]. Small amounts of technical debt are not a bad thing and are actually a natural
consequence of a healthy incremental software development process. Pressure to
deliver new features quickly means deficiencies are introduced into our system
design. Choosing a quick and easy solution now creates an implied cost of rework
later, hence the monetary debt metaphor.

Over time, design rationalisation or tidying up becomes desirable to repay this
debt. As development work continues, and more new features are added, the need
for refactoring and even re-engineering becomes a high priority. Periodically, in a
healthy project, the team will create opportunities to focus on significantly reducing
technical debt.

Balancing investment in technical debt with the need for new features and
functionality is important. Typically, projects do not have sufficient resources to
deal with all technical debt as it arises. Indeed, a project with no technical debt is
likely not creating enhancements quickly enough to satisfy customers. On the other
hand, excessive technical debt impedes the prompt addition of new features and
functionality.

20.2.1 Technical Debt and Agile

Iterative development processes lend themselves to transitioning from new feature
development to maintenance and support, as a project evolves, as illustrated in
Fig. 20.1. Early in the project, everyone contributes new features to create a new
product or service. As the project matures, software defects will emerge and need
repairing. When the system is deployed to customers, feature enhancements will
be identified. Some agile teams include software defects in their normal iteration
planning. Defects are added to backlogs and prioritised, and Kanban boards are
used to monitor progress. Depending on the volume of defects, some teams devote
an entire sprint to fixing defects and performing feature enhancements. This is
sometime done as part of a quality improvement effort prior to a major release.
As the system matures, focus shifts from creating new features to more emphasis
on enhancement of existing features. During this phase of a product life, every
second or third sprint might be devoted to enhancements and fixing defects. As time

20.3 Software Evolution 293

Incremental Development
of New Features

Feature Enhancements
and Defect Removal

Time

Development Iterations

Iteration focused
on new feature
development

Iteration focused
on defect removal

Iteration balancing new
feature development and

feature enhancement

Fig. 20.1 Migration from new feature development to maintenance

goes on, teams increase the frequency of iterations focused on defects and feature
enhancements.

20.2.2 Refactoring

Refactoring is the process of making changes to software that do not affect the
external behaviour [1]. Refactoring is intended to simplify design, improving
flexibility and maintainability without changing the behaviour of the software and
repay technical debt previously accrued.

20.3 Software Evolution

Sometimes, modernisation of a software system is required. This goes beyond
refactoring. Modernisation might mean replacing an outdated technology or re-
developing the overall system architecture to support adding new features or
services.

20.3.1 Wrappering

Wrappering is the processes of surrounded an existing system with new layers that
can be more readily enhanced in the future. For example, a new user interface can

294 20 Technical Debt, Software Evolution and Legacy

Legacy
Application

Wrapper

New User
Interface

Legacy Database

Mobile App

Wrapper (Web Services)

Legacy Database

A) Wrapper to New User Interface B) Web Service Wrapper

Legacy Application

Web App

Fig. 20.2 Front-end wrappering approaches

Legacy Persistence Layer

Legacy
Application

Wrapper

New
Application

Legacy Database

New Persistence Layer

New
Application

Wrapper

Legacy
Application

New Database

A) New Application Wrapper to Legacy Database B) Legacy Application Wrapper to New Database

Fig. 20.3 Database wrapper approaches (Adapted from [4])

be added to a legacy application, as shown in Fig. 20.2a, while, using a web service
wrapper, a thin-client (web-based) front-end and a mobile device application can be
added to an existing installed application, as shown in Fig. 20.2b. This allows us to
expose the application functionality and data without re-developing the core legacy
system. This can reduce short-term costs and get the enhanced solution to clients
sooner.

In other circumstances, with a problematic persistence layer, a new back-end
storage infrastructure can be used to improve resilience or performance [4]. There
are basically two approaches to wrappering data storage as shown in Fig. 20.3. We
can either provide a wrapper to a legacy database and build new application on
top of the wrapper, as shown in Fig. 20.3a. Or alternatively, we can build a new

20.4 Legacy Systems 295

database, migrate legacy data and then create a wrapper for the legacy application
to the modern database, as shown in Fig. 20.3b.

Wrappering can be cost-effective, compared to an entire re-development effort.
The existing system is treated as a black-box, with minimum intervention. But new
features are added using a more modern technology stack. A significant challenge
is that legacy systems are often monolithic and hence difficult to decompose into
logical subsystems. For example, the legacy persistence layer, shown in Fig. 20.3a,
may not exist in a monolithic legacy system.

20.3.2 Re-engineering

Eventually, after many releases, a live software system will need a significant
upgrade. The high-level architectural style may need to be reworked. A refresh
of the entire implementation technology stack may be desirable. There may come
a point where to a significant extent the system will have to be re-designed and
re-implemented. This re-engineering effort is intended to deliver new, existing and
enhanced services, but with a much improved internal structure and implementation.

20.4 Legacy Systems

Legacy systems provide important services, but are built using out-of-date tech-
nologies. It is important to emphasise that legacy systems fulfil significant needs.
We rely on the services they provide. The drawback of legacy systems is that they
are implemented using old technologies.

There are some technologies in computing that get old surprisingly quickly. I’ve
spoken to practitioners working on a large-scale thin-client system, a database-
driven web application for a big multinational enterprise. The web application
is implemented using a framework and has just been deployed. The team is
considering the next new application. A new and better web framework is now
available. Consequently, the team choose not to employ the same web development
framework used in their current system for their next application.

A less pejorative way of looking at legacy systems is to think of them as
heritage. In the UK-built environment, we have lots of heritage sites. We have castles
and palaces that are carefully preserved and maintained by large and well-funded
institutions. Tourists from home and abroad (when we are not in the grip of a virulent
pandemic) visit to enjoy the spectacle of such historical relics. Thinking of software
as heritage helps us understand the need to nurture and evolve such systems. Rather
than allowing them to decay into obsolescence. Investment is needed to support our
heritage systems. Failure to invest will result in higher costs later.

We see legacy systems as a suffering from an extreme form of technical debt [3].
For historical reasons, the legacy system has not benefited from the (perhaps

296 20 Technical Debt, Software Evolution and Legacy

significant) investment required to bring it up to date. Successive management
regimes prioritised investment in new short-term needs, rather than invest in
updating existing systems. Organisations seem to lack awareness of the scale
funding needed for ongoing evolution and maintenance existing systems.

20.5 Chapter Summary

Most commercial software development effort goes into sustaining live systems that
have active users, rather than into creating new products. This chapter has focused
on the evolution of live systems.

Technical debt is a useful way of thinking about investment decisions into
software evolution. Technical debt builds up during incremental development when
speed of delivery takes priority over elegant solutions. As new features are added,
internal complexity builds up.

Periodic refactoring is used to reassert simple design. Refactoring is used to
improve maintainability and flexibility without changing behaviour. Refactoring
reorganises internal structure to facilitate future enhancement and is used to repay
technical debt.

As systems age, the need for more far-reaching re-design arises. The implemen-
tation technology stack can become stale and needs to be modernised. Demand
for substantial new functionality may impose the need for significant restructuring.
Wrappering and re-engineering techniques can be used to address these needs.

References

1. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving the Design of
Existing Code, 1st edn. Addison Wesley, Reading (1999)

2. Kruchten, P., Nord, R., Ozkaya, I.: Managing Technical Debt: Reducing Friction in Software
Development, 1st edn. Addison-Wesley, Reading (2019)

3. Monaghan, B.D., Bass, J.M.: Redefining legacy: a technical debt perspective. In: Morisio, M.,
Torchiano, M., Jedlitschka, A. (eds.) Product-Focused Software Process Improvement, pp. 254–
269. Lecture Notes in Computer Science. Springer, Berlin (2020). https://doi.org/10.1007/978-
3-030-64148-1_16

4. Tripathy, P., Naik, K.: Software Evolution and Maintenance: A Practitioner’s Approach, 1st edn.
Wiley, London (2015)

 1814 3355 a 1814 3355
a

https://doi.org/10.1007/978-3-030-64148-1_16
https://doi.org/10.1007/978-3-030-64148-1_16

Chapter 21
DevOps

Abstract We like to automate testing, because it makes it faster and repeatable for
us to maintain high standards of quality. In a similar way, it makes sense to automate
the build process. The idea is that we want to build an executable version of our code,
run all our tests and, assuming all goes well, deposit the resulting release onto a
server for execution.We want to get into the habit of making frequent improvements
to our code, and doing all these steps by hand means we might forget or cut corners.
So automating the build process means we remember to do all the steps needed,
every time we release (which might be every 30min or so, on some projects).

21.1 Introduction

One important idea emerging from the continuous integration, continuous delivery
and DevOps communities is the benefit of automating build and deployment
processes as much as possible [4]. Automation offers repeatable processes that can
be evolved and refined over time. With automated processes, there is less pressure
to take shortcuts, such as skipping certain testing and quality checks, when teams
are under pressure of short deadlines.

However, build, test and deployment pipelines are an expression of an organisa-
tional commitment to high-quality efficient delivery processes. Significant organisa-
tional and cultural changes are needed to make these automated approaches a reality.
DevOps is a compound of development (Dev) and operations (Ops) representing
a set of practices, software tools and organisational culture to integrate product
development and IT teams.

21.2 Build and Deployment Pipelines

First, let’s look at a conventional build and deployment pipeline.

© Springer Nature Switzerland AG 2022
J. M. Bass, Agile Software Engineering Skills,
https://doi.org/10.1007/978-3-031-05469-3_21

297

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05469-3_21&domain=pdf

 -151 4612
a -151 4612 a

https://doi.org/10.1007/978-3-031-05469-3_21

298 21 DevOps

21.2.1 Conventional Deployment Team Structures

In a conventional build and deployment pipeline, implementation, test and deploy-
ment of production software systems are performed sequentially, as shown in
Fig. 21.1. First, software source code implementation is performed by a devel-
opment team. Then, quality assurance evaluation is conducted by a test team.
Finally, the completed application is deployed to servers or client workstations by
an operations team.

One unpleasant side effect of this sequential process is that departmental struc-
tures become organised around specialist skills, as shown in Fig. 21.2a. Specialist
skills can tend to be siloed in these conventional teams. Teams can become insular
and isolated from the majority of developers working in software teams [6, 7].

Such sequential approaches can work well for some organisations, perhaps
where software is interacting with custom-built hardware, in embedded systems, for
example. But following lean principles, from Chap. 14, we want to reduce hand-offs
between specialist teams. For example, the delays in hand-offs from development to

Development Team

Issue Ticket 1 Issue Ticket 2 Issue Ticket 3

Quality Assurance
Test Team Operations Team

Fig. 21.1 Conventional deployment

Development Quality
Assurance Opera�ons Team 1 Team 2 Team 3

IT IT

A) Conven�onal Team Structure B) Self-organising Team Structure

Fig. 21.2 Contrasting approaches to team structure

21.3 Pipeline Automation 299

test and from test to operations can easily get out of control. In some organisations,
these hand-offs can stretch to days or even weeks.

21.2.2 Self-Organising Deployment Team Structures

To overcome these shortcomings, self-organising teams, discussed in Chap. 2, are
used to improve pipeline efficiency [9], as shown in Fig. 21.2b. In this arrangement,
specialists from quality assurance and operations are assigned to development
teams. As members of development teams, these specialists can support quality
enhancement and operational processes without the need for departmental hand-
offs.

21.3 Pipeline Automation

Automation is used to enhance build and deployment quality, repeatability and
continuous improvement. Automated processes can be used consistently even when
teams are under deadline pressure to ensure checks are completed promptly before
code is released to clients.

In order to automate testing and deployment, we first need to automate the build
process. Build automation is achieved using build tools which are controlled by
configuration files. When a build is triggered, source code files are examined and
build processes triggered for any files that have changed or for which compiled
artefacts are missing.

You might imagine that build tools would be programming language indepen-
dent, and yet build tools tend to exist around specific language ecosystems. Ant [1],
Maven [2] and Gradle [3] are popular for Java language ecosystems. MSBuild [8]
is used for the visual studio application lifecycle management and support the .NET
Framework, C# and C++.

Build tool configuration files define dependencies within the source code and
how the software is to be built. File locations and required components, libraries
and subsystems can be specified. Some, such as Ant, Maven and MSBuild, use an
XML-like syntax, whereas Gradle uses a Groovy- and Kotlin-based domain-specific
language.

For further pipeline automation, source code commits in version control are used
to initiate a test, review and deploy cycle, as shown in Fig. 21.3.

300 21 DevOps

Create new branch

Create feature code and
commit in new branch

Merge new feature
from branch into trunk

Changes committed to
main trunk

Review

Deploy

Test

Review
Deploy

Test

Git commit triggers the
test and deploy pipeline

Fig. 21.3 Integrating a continuous deployment pipeline with version control

Review
Deploy

Unit Test

Integration Test

Regression Test

Acceptance Test

Git commit triggers
more sophisticated test

and deploy pipeline

Fig. 21.4 More sophisticated test pipeline triggered from a version control commit

In more mature and stable development environments, the automated testing
tasks triggered by a version control commit may be more sophisticated, as shown in
Fig. 21.4. In this example, sets of unit, integration, regression and acceptance tests
are executed on each commit to the main trunk.

The concept of a pipeline is coded directly into the Jenkins CI/CD software tool
[5]. There are several ways of writing a Jenkins File, the file that configures the build
process; one is shown below:

21.4 Test Integration 301

Illustrative Jenkins Pipeline
pipeline {

stages {
stage(’Build’) {

steps {
// steps for the build stage go here

}
}
stage(’Test’) {

steps {
// steps for the test stage go here

}
}
stage(’Deploy’) {

steps {
// steps for the deploy stage go here

}
}

}
}

The Jenkins File distinguishes between stages and steps. A stage is a group of
tasks that perform a conceptually distinct function. The stages in the Jenkins File
shown are build, test and deploy, whereas a step is a single task telling Jenkins what
to do.

21.4 Test Integration

I talked about testing and test automation in more detail in Chap. 16, of course.
But the issue here is building automated testing into continuous integration and
continuous delivery pipeline.

21.4.1 Testing New Features

The first stage is unit testing of new features under development. Initially, developers
test their own code. Once the new features are merged into the main trunk,
acceptance testing on the new features will need to be performed.

302 21 DevOps

21.4.2 Regression Testing Legacy Features

The other aspect of testing is to ensure the new features have not introduced any
problems with existing features. Hence, the need to test legacy features after new
features have been integrated, this is regression testing, as discussed in Sect. 16.4.1.

21.5 Continuous Integration

Continuous integration is the practice of frequently merging new code into the main
trunk of the project source code repository. Continuous integration encourages a
different view on the branches discussed in Sect. 15.5.1. A conventional view of
new feature development envisages long-lived feature branches. Feature branches
are helpful because they keep the new feature code separate from the main trunk,
while the feature is under development.

However, from a lean perspective, source code sitting in a feature branch is a
form of waste; see Sect. 14.3. The feature branch code does not add value to the
project until it is integrated into the main trunk. Delaying the integration of new
code into the main trunk increases the likelihood of merge conflicts. Taking this
view, feature branches are best avoided. Instead, features are developed on the main
trunk.

21.6 DevOps and DevSecOps

As I said, DevOps is a set of practices, software tools and organisational culture to
integrate product development and IT teams. Once the continuous integration and
continuous delivery pipeline is in place, it becomes easier to enhance the process
for security hardening. The DevSecOps community reminds us that including
automated security into the build and deployment process is important. Security
testing tools can be executed as part of the testing phase, prior to deployment as
shown in Fig. 21.5.

21.7 Continuous Delivery and Deployment

The next step of automation after continuous integration is continuous delivery
or continuous deployment. For continuous delivery, we automate the process of
building a production version of the software system andmoving this to an execution
environment. Consequently, we have our latest product version ready to launch at

21.8 Chapter Summary 303

all times. Following a review process, the latest production version can be released
to customers.

In continuous deployment, we take this one step further. The idea is to automate
the entire process and release the latest executable code into a production environ-
ment after each commit. This high level of automation is intended to accelerate the
delivery of new features to customers and to attract feedback more quickly as a
consequence.

21.8 Chapter Summary

In a conventional build and deployment pipeline, separate specialist teams perform
software implementation, quality assurance and operational support for produc-
tion applications. There is a sequential flow from development to test and on
to operations. The hand-offs between specialist teams can introduce delays and
inefficiencies into the deployment process.

Creating self-organising teams and automating this pipeline removes bottlenecks
from the process, but requires significant organisational commitment. Specialist
tools are used to support integration of new feature code into the main trunk and
then automatically run selected tests and subsequently to move executable code into
a production environment.

Once automated, the process is consistent, is repeatable and provides confidence
in code quality prior to each new feature release. The approach avoids a large, time-
consuming, integration phase towards the end of a project. The approach also avoids
the risk of corner-cuttingwhen teams are under pressure of short deadlines to release
new features.

Review
Deploy

Penetration Test

Vulnerability Test

Acceptance Test

Fig. 21.5 Security testing triggered from a version control commit

304 21 DevOps

References

1. Apache Software Foundation: Apache ant—welcome (2022). https://ant.apache.org/
2. Apache Software Foundation: Maven—welcome to apache maven (2022). https://maven.

apache.org/
3. Gradle Inc.: Gradle build tool (2022). https://gradle.org/
4. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through Build, Test,

and Deployment Automation. Addison Wesley, Reading (2010)
5. Jenkins project: Jenkins. https://jenkins.io/index.html
6. Macarthy, R.W., Bass, J.M.: An empirical taxonomy of devops in practice. In: Euromicro 46th

Conference on Software Engineering and Advanced Applications (SEAA), ppp. 221–228. IEEE,
Piscataway (2020)

7. Macarthy, R.W., Bass, J.M.: The role of skillset in the determination of devops implementation
strategy. In: Joint 15th International Conference on Software and System Processes (ICSSP) and
16th ACM/IEEE International Conference on Global Software Engineering (ICGSE), pp. 50 –
60. IEEE, Piscataway (2021)

8. Microsoft: Msbuild—msbuild (2022). https://docs.microsoft.com/en-us/visualstudio/msbuild/
msbuild

9. Skelton, M., Pais, M., Malan, R.: Team Topologies: Organizing Business and Technology Teams
for Fast Flow. It Revolution Press, illustrated edn. (2019)

 1671 204 a 1671 204 a

https://ant.apache.org/

 2213 287 a 2213 287 a

https://maven.apache.org/
https://maven.apache.org/

 999 453 a 999 453 a

https://gradle.org/

 632 702 a 632
702 a

https://jenkins.io/index.html

 1057 1366 a 1057 1366
a

https://docs.microsoft.com/en-us/visualstudio/msbuild/msbuild
https://docs.microsoft.com/en-us/visualstudio/msbuild/msbuild

Appendix A
Research Methods

The material, described in this book, has benefited from collaborations in commer-
cial software development projects and original research in the software develop-
ment sector. I benefited from an opportunity to work with Add Energy Ltd. (advising
on their AimHi, AssetC and Asset Voice products), Invisible Systems Ltd. and Red
Ocelot Ltd. and learned much from these activities.

Several of the chapters in this book have benefited from empirical research inves-
tigating the activities of practitioners engaged in software development projects.
More specifically, Chap. 3 draws on [2–4, 11], while Chap. 7 benefits from [13]. In
turn, Chap. 10 includes findings from [5]. Chapter 21 draws on evidence from [8, 9].
Chapter 18 benefits from [14, 15], and Chap. 20 includes findings from [10].

A.1 Research Sites

The research in [2–5] was conducted by investigating over 20 companies and UK
government organisations. The companies, several of whom are multinationals, are
based in the USA, Europe and South Asia.

The organisations in the study include well-known multinational internet and
software service companies as well as government agencies and companies in the
banking/finance, customer relationship management and retail sectors.

A.2 Data Collection

Respondents included over 100 practitioners with a wide range of responsibilities.
They comprised product owners, senior executives (with job titles such as chief
information officer, chief technology officer or head of engineering) as well as

© Springer Nature Switzerland AG 2022
J. M. Bass, Agile Software Engineering Skills,
https://doi.org/10.1007/978-3-031-05469-3

305

 -151
4612 a -151 4612 a

https://doi.org/10.1007/978-3-031-05469-3

306 A Research Methods

middle managers, agile coaches and development team members, such as software
developers, testers and scrum masters.

A semi-structured interview guide was used during practitioner interviews. The
interviews included open-ended questions to elicit topics from respondents not
considered by the interviewer. Interviews, which typically lasted around 50min,
were recorded and transcribed.

A.3 Data Analysis

Data analysis was informed by grounded theory [7]. Interviews were analysed
using a Glaserian grounded theory approach [6]. Open coding, memoing, constant
comparison and saturation techniques were used to extract topics, concepts and
themes from the interview transcript data [1].

A.3.1 Open Coding

Coding, in this context, does not mean writing software. But rather, coding is the
research process of identifying the topics described in the source data. For this
research, a sentence-by-sentence approach was adopted. The large volume of data
made it attractive to use a qualitative analysis tool [12] to record and manage the
coding process.

A.3.2 Memo Writing

Memos are short essays recoding the scope and content of topics and categories
identified from the data. Memos include interview quotes and contrast the differing
experiences and perspectives of respondents. Some memos build upon contempo-
raneous field notes taken during observations of practices or interviews. The memo
writing is used to clarify, refine and sharpen categories. The memos are revised and
enhanced as new transcript data is added.

A.3.3 Constant Comparison

Using the constant comparison technique, the researcher iterates back and forth
between data collection and analysis. We use constant comparison to compare
events or respondent perspectives that apply to each category we have identified.

A Research Methods 307

We compared interview transcript codes with each other at two levels:

• within the same organisation or project team
• with outside organisations and teams.

In this way, the codes evolved and were refined over time using constant compari-
son.

A.3.4 Saturation

In the early stages of the research, interviews with each new company or project
team cause reappraisal of the topics and categories which have previously been
identified. New events, incidents, artefacts, development practices and stakeholders
are discovered at each new research site.

As the study progresses and the number of interview respondents increases,
the richness and detail of the grounded theory are enhanced as a consequence.
Gradually, each new research site and practitioner interview results in fewer new
discoveries and has less impact on the categorisation. The evidence from new
interviews is increasingly consistent with the topics and categories previously
identified.

Saturation has occurred when new research sites or interviews don’t cause
significant refinement to the topics and categories already identified.

References

1. Adolph, S., Hall, W., Kruchten, P.: Using grounded theory to study the experience of software
development. Empirical Softw. Eng. 16(4), 487–513 (2011). https://doi.org/10.1007/s10664-
010-9152-6

2. Bass, J.M., Haxby, A.: Tailoring product ownership in large-scale agile projects: managing
scale, distance, and governance. IEEE Softw. 36(2), 58–63 (2019). https://doi.org/10.1109/
MS.2018.2885524

3. Bass, J.: Scrum master activities: process tailoring in large enterprise projects. In: 2014 IEEE
9th International Conference on Global Software Engineering (ICGSE), pp. 6–15 (2014).
https://doi.org/10.1109/ICGSE.2014.24

4. Bass, J.M.: How product owner teams scale agile methods to large distributed enterprises.
Empirical Softw. Eng. 20(6), 1525–1557 (2015). https://doi.org/10.1007/s10664-014-9322-z

5. Bass, J.M.: Artefacts and agile method tailoring in large-scale offshore software development
programmes. Inform. Softw. Technol. 75, 1–16 (2016). https://doi.org/10.1016/j.infsof.2016.
03.001

6. Glaser, B.G.: Doing Grounded Theory: Issues and Discussions. Sociology Press, Mill Valley
(1998)

7. Glaser, B., Strauss, A.L.: Discovery of Grounded Theory: Strategies for Qualitative Research.
Aldine Transaction (1999)

 1716 2840
a 1716 2840 a

https://doi.org/10.1007/s10664-010-9152-6
https://doi.org/10.1007/s10664-010-9152-6

 1947
3089 a 1947 3089 a

https://doi.org/10.1109/MS.2018.2885524
https://doi.org/10.1109/MS.2018.2885524

 -42 3421 a -42 3421 a

https://doi.org/10.1109/ICGSE.2014.24

 1349 3587 a 1349 3587 a

https://doi.org/10.1007/s10664-014-9322-z

 1569 3753 a 1569 3753
a

https://doi.org/10.1016/j.infsof.2016.03.001
https://doi.org/10.1016/j.infsof.2016.03.001

308 A Research Methods

8. Macarthy, R.W., Bass, J.M.: An empirical taxonomy of devops in practice. In: Euromicro 46th
Conference on Software Engineering and Advanced Applications (SEAA), pp. 221–8. IEEE,
Piscataway (2020)

9. Macarthy, R.W., Bass, J.M.: The role of skillset in the determination of devops implementation
strategy. In: Joint 15th International Conference on Software and System Processes (ICSSP)
and 16th ACM/IEEE International Conference on Global Software Engineering (ICGSE), pp.
50 – 60. IEEE, Piscataway (2021)

10. Monaghan, B.D., Bass, J.M.: Redefining legacy: A technical debt perspective. In: Morisio,
M., Torchiano, M., Jedlitschka, A. (eds.) Product-Focused Software Process Improvement, pp.
254–269. Lecture Notes in Computer Science. Springer, Berlin (2020). https://doi.org/10.1007/
978-3-030-64148-1_16

11. Noll, J., Razzak, M.A., Bass, J.M., Beecham, S.: A study of the scrum master’s role. In:
Product-Focused Software Process Improvement, pp. 307–323. Lecture Notes in Computer
Science. Springer, Cham (2017)

12. QSR International: NVivo 11 for Windows Help—Welcome (2019). http://help-nv11.
qsrinternational.com/desktop/welcome/welcome.htm

13. Rahy, S., Bass, J.M.: Managing non-functional requirements in agile software development.
IET Softw. (2021). https://doi.org/10.1049/sfw2.12037

14. Salameh, A., Bass, J.: Influential factors of aligning spotify squads in mission-critical and
offshore projects—a longitudinal embedded case study. In: Kuhrmann, M., Schneider, K.,
Pfahl, D., Amasaki, S., Ciolkowski, M., Hebig, R., Tell, P., Klünder, J., Küpper, S. (eds.)
Product-Focused Software Process Improvement. Lecture Notes in Computer Science, vol.
11271, pp. 199–215. Springer, Berlin (2018). https://doi.org/10.1007/978-3-030-03673-7_15

15. Salameh, A., Bass, J.M.: An architecture governance approach for agile development
by tailoring the spotify model. AI & Society (2021). https://doi.org/10.1007/s00146-021-
01240-x

 1947 724 a 1947 724 a

https://doi.org/10.1007/978-3-030-64148-1_16
https://doi.org/10.1007/978-3-030-64148-1_16

 2139
1139 a 2139 1139 a

http://help-nv11.qsrinternational.com/desktop/welcome/welcome.htm
http://help-nv11.qsrinternational.com/desktop/welcome/welcome.htm

 508
1388 a 508 1388 a

https://doi.org/10.1049/sfw2.12037

 1251 1803 a 1251 1803 a

https://doi.org/10.1007/978-3-030-03673-7_15

 1582 1970 a 1582 1970 a

https://doi.org/10.1007/s00146-021-01240-x
https://doi.org/10.1007/s00146-021-01240-x

Appendix B
Further Reading

Having finished reading this book and working through all the exercises, there are
some further books I think everyone should read. Here are my top 20(ish) agile
software engineering books I think everyone should read.

B.1 Core Reading

For core software engineering books, my favourites include:

• Software engineering

– Ian Sommerville’s textbook on software engineering is widely used [23], or
[17] is also good.

• Agile methods

– Kent Beck’s book on extreme programming [1] or one of Ken Schwaber’s
books on scrum [20] is worth reading.

• Software development (meaning code production)

– Bob Martin’s book on coding and standards has become popular with
developers [14], or Steve McConnell’s book on source code is also worth
reading [24],

– On Design Patterns, the most important book is from Gamma et al. [9],
– For refactoring, you should read [8],
– For version control with Git [13].

• User experience

– For user experience, interface design and analysis, I suggest [21] and [11].

© Springer Nature Switzerland AG 2022
J. M. Bass, Agile Software Engineering Skills,
https://doi.org/10.1007/978-3-031-05469-3

309

 -151 4612 a -151 4612 a

https://doi.org/10.1007/978-3-031-05469-3

310 B Further Reading

B.2 More Specialist Topics

If you are interested to explore some of these more specialist topics in further detail,
then I recommend:

• DevOps

– Accelerate is interesting and based on analysis of a large practitioner survey
[7].

• Security

– Bell et al. place security in an agile development context [2]

• Requirements

– A practical approach to requirements is in [3] and also for organising
requirements [15].

• Large-scale agile

– Team Topologies focuses on organising for flow [22].

• Legacy

– Michael Feathers takes a practical approach to dealing with legacy code [6],
or on technical debt, then [12].

B.3 Software Engineering Research

For those interested in pursuing research, for example, by doing a PhD in Software
Engineering, I recommend:

• Research (in general)

– Phillips and Pugh take a practical approach to advice for PhD students [16],
– Mark Reed’s book on Research Impact is good [18],
– For case study research, try [26],
– While for mixed-method research, [5] is good,
– I’ve used a grounded theory approach; have a look at [10] or [4],
– Zinsser’s book on non-fiction writing will be useful for many [27].

• Software engineering research (specifically)

– For case study research, check out Runeson et al. [19],
– For experimental methods, try [25].

B Further Reading 311

References

1. Beck, K., Andres, C.: Extreme Programming Explained, 2nd edn. Addison Wesley, Boston
(2004)

2. Bell, L., Brunton-Spall, M., Smith, R., Bird, J.: Agile Application Security: Enabling Security
in a Continuous Delivery Pipeline. O’Reilly (2017)

3. Cohn, M.: User Stories Applied: For Agile Software Development. Addison Wesley, Reading
(2004)

4. Corbin, J.M., Strauss, A.C.: Basics of Qualitative Research: Techniques and Procedures for
Developing Grounded Theory, 3rd edn. Sage Publications (2008)

5. Creswell, J.W., Creswell, J.D.: Research Design: Qualitative, Quantitative, and Mixed Methods
Approaches, 5th edn. SAGE Publications (2018)

6. Feathers, M.:Working Effectively with Legacy Code, 1st edn. Prentice Hall, Englewood (2004)
7. Forsgren, N., Humble, J.: Accelerate: The Science of Lean Software and Devops: Building and

Scaling High Performing Technology Organizations. Trade Select, illustrated edn. (2018)
8. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving the Design

of Existing Code, 1st edn. Addison Wesley, Reading (1999)
9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, Harlow (2005)
10. Glaser, B., Strauss, A.L.: Discovery of Grounded Theory: Strategies for Qualitative Research.

Aldine Transaction (1999)
11. Gothelf, J., Seden, J.: Lean UX: Designing Great Products with Agile Teams, 2nd revised edn.

O’Reilly (2016)
12. Kruchten, P., Nord, R., Ozkaya, I.: Managing Technical Debt: Reducing Friction in Software

Development, 1st edn. Addison-Wesley, Reading (2019)
13. Loeliger, J., McCullough, M.: Version Control with Git: Powerful tools and techniques for

collaborative software development, 2nd edn. O’Reilly Media (2012)
14. Martin, R.: Clean Code: A Handbook of Agile Software Craftsmanship, 1st edn. Prentice Hall,

Upper Saddle River (2008)
15. Patton, J.: User Story Mapping: Discover the Whole Story, Build the Right Product, 1st edn.

O’Reilly Media, Sebastopol (2014)
16. Phillips, E., Pugh, D.S.: How To Get A Phd: A Handbook for Students and Their Supervisors,

6th edn. Open University Press (2015)
17. Pressman, R.S., Maxim, B.R.: Software Engineering: A Practitioner’s Approach, 8th edn.

McGraw-Hill Education, New York (2015)
18. Reed, M.S.: The Research Impact Handbook. Fast Track Impact (2016)
19. Runeson, P., Höst, M., Rainer, A., Regnell, B.: Case Study Research in Software Engineering:

Guidelines and Examples. Wiley-Blackwell (2012)
20. Schwaber, K.: Agile Project Management with Scrum, 1st edn. Microsoft Press, Redmond

(2004)
21. Sharp, H., Preece, J., Rogers, Y.: Interaction Design: Beyond Human-Computer Interaction,

5th edn. Wiley, London (2019)
22. Skelton, M., Pais, M., Malan, R.: Team Topologies: Organizing Business and Technology

Teams for Fast Flow, illustrated edn. It Revolution Press (2019)
23. Sommerville, I.: Software Engineering, 10th edn. Pearson Education, Harlow (2015)
24. Steve McConnell: Code Complete: A Practical Handbook of Software Construction, 2nd edn.

Microsoft Press, Redmond (2004)
25. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation

in Software Engineering. Springer, Berlin (2012)
26. Yin, R.K.: Case Study Research: Design and Methods, 4th edn. Sage Publications (2009)
27. Zinsser, W.: On Writing Well: The Classic Guide to Writing Nonfiction, 25th anniversary edn.

HarperCollins Publishers, New York (2006)

Index

A
Abstraction, 114
Activism, 73
Activities

large scale, 274, 275
product owner:market trends, 277
technical architect, 276
technical product owner, 277

Agile coach, 274
Agile principles, 15

collective code ownership, 16
sustainable pace, 15

Agile
security, 172
security artefacts, 172
security ceremonies, 173
security roles, 172

Algorithms and inequality, 68
Architecture

abstraction, 114
agile, 112
clean, 118
client-server, 115
design principles, 120
design styles, 115
implementation, 124
layered, 118
pipe and filter, 117
planned refactoring, 113
refactoring, 113
reference, 120
repository, 116
rework, 113
standards, 274

Artefacts
feature, 153
iteration, 151
planning, 149
release, 155

B
Behaviour-driven Development, 259
Blogs, 58
Branching, 237
Branching exercise, 247
Build automation, 299
Build pipelines, 297
Burn down chart, 151
Burn down chart exercise, 158, 161
Business bootstrapping, 221

C
Catastrophe, confessing, 50
Class diagrams, 131

derivation, 131
detailed, 133
domain models, 132
exercises, 142, 143
high-level, 133
nouns, 131
verbs, 132

Clean architecture, 118
Client-server, 115
Cloud patterns, 285

customer on-boarding, 286
deployment, 287

© Springer Nature Switzerland AG 2022
J. M. Bass, Agile Software Engineering Skills,
https://doi.org/10.1007/978-3-031-05469-3

313

 -151 4612 a -151 4612 a

https://doi.org/10.1007/978-3-031-05469-3

314 Index

elasticity, 285
multi-tenancy, 286
‘n’-tier architectures, 287
revenue generation, 286
scalability, 285

Cloud service models, 284
Code binaries, 156
Codes of ethics, 72, 73

problems, 73
Code of ethics review exercise, 77
Collective code ownership, 16
Commit, 231
Communication quality, 54
Communication tools, 55
Communications

audience, 54
blogs, 58
language, 54
narrative, 54
presentation content, 57
presentation delivery, 58
presentation rehearsal, 58
presentations, 57
presentation types, 57
process, 55
report composition, 55
report content, 56
reports, 55
videos, 59
wikis, 58

Communicator, 39
Communities of practice, 22
Content management, 227
Continuous delivery, 302
Continuous integration, 302
Contracts, 51

academic, 53
change requests, 51
negotiating, 53
offshoring, 53
outsourcing, 52
time and materials, 52

Coordination
kanban boards, 201
mob programming, 205
pair programming, 203, 204
spikes, 204
swarm programming, 205
virtual stand-up meetings, 200

Coordination meeting exercise, 42
Coordination meetings, 199
Copyright and patents, 71
Creating shared goals exercise, 26, 30
Criminal and unethical behaviour, 69

Customer demonstration exercise, 43, 46, 207,
209

Customer demonstrations, 201
Cycle time exercise, 223, 225

D
Definition of done, 215
Design patterns, 135

factory pattern, 138
model view controller, 137
singleton, 136

Development artefacts exercices, 156
DevOps, 302
DevSecOps, 302
Diagrams

class, 131
object sequence, 135

Distance, 272
cultural, 273
geographical, 272
temporal, 272

Do not repeat yourself (DRY), 120

E
Editing exercise, 60
Edit your writing, 64
Errors, faults and failures, 69
Estimation, 197

story points, 197
technical tasks, 196
T-shirt sizing, 198

Ethics, challenges, 67
Exercise, retrospective, 207
Exercise, stand-up meeting, 206
Expectation setting, 50

F
Face-to-face interactions, 40
Factory pattern exercise, 145, 148
Feature driven development, 129
Focused free writing, 63
Focus on goals, 40
Forming teams, 16
Free writing, 62
Free writing exercise, 59
Functional requirements, 90
Further reading, 309

G
General responsibility assignment software

patterns (GRASP), 121

Index 315

Git branches (create and merge) exercise, 242
Git repository, local, exercise, 241, 245
Git repository, remote, exercise, 242
Governor, 276
Groom, 38
Grounded theory, 306
Group behaviours exercise, 25, 30
Groups and teams, 13

H
HackCamp, Software, 6
Handling requests exercise, 223, 225

I
Incremental requirements, 91
Infrastructure-as-a-service, 284
Integration Testing Exercise, 261, 262
Intellectual property exercise, 78
Intermediary, 40
Issues, 155
Iteration backlog, 151
Iteration planning, 195

estimation, 197
prioritisation, 196
task assignment, 199

Iteration planning exercise, 42

K
Kanban board exercise, 157, 159
Kanban boards, 150
Keep It Simple, Stupid (KISS), 120
Knowledge, 213
Knowledge gathering exercise, 223

L
Large-scale artefacts, 273
Large-scale scrum (LeSS), 281
Layered architecture, 118
Layered architecture exercise, 125, 126
Lean

definition of done, 215
knowledge, 213
quality, 214
speed, 218
value, 214
value stream mapping, 215
waste, 216

Lean principles, 211
Lean start-up, 221

Learning journal exercise, 23, 26, 30, 42, 44,
47, 59, 61, 77–79, 99, 104, 124, 126,
141, 145, 146, 157, 159, 173, 174,
206–208, 222, 224, 241, 244, 245,
260–262

Learning timeline exercise, 24
Legacy systems, 295

M
Managing

outwards, 51
upwards, 49

Minimum viable product, 221
Model-driven engineering, 141
Modelling, system, 130

N
Non-fiction writing, 63
Non-fiction writing exercise, 60
Non-functional requirements, 90

O
OWASP Top Ten, 170
OWASP top ten review exercise, 173, 174

P
People, 212
Personal learning timeline exercise, 29
Personas, 98
Pipe and filter, 117
Pipes and filters exercise, 124, 126
Pivot, 222
Planned refactoring, 113
Platform-as-a-service, 284
Platforms and fake markets, 68
Presentations, 57

content, 57
delivery, 58
rehearsal, 58
review exercise, 59
types, 57

Prioritisation, 196
Prioritiser, 38
Product backlog, 150
Product owner, 37
Product owner activities

communicator, 39
groom, 38
intermediary, 40
large-scale, 275

316 Index

prioritiser, 38
release master, 38
traveller, 39

Product owner behaviours, 40
face-to-face interactions, 40
focus on goals, 40
product-owner teams, 41

Product owner:market trends, 277
Product-owner teams, 41
Product sponsor, 41, 275
Professional bodies, 72
Professional development, 75
Programming language choice, 126, 127
Prototypes, 153

Q
Quality, 214

R
Red Ocelot Ltd., x, 5, 83, 177, 265
Refactoring, 113, 293
Reference architecture, 120
Release master, 38
Remote GitHub repository exercise, 246
Report composition, 55
Report content, 56
Reports, 55
Repository, 116
Requirements completeness, 93
Requirements consistency, 92
Requirements elicitation rehearsal exercise, 43
Requirements gathering workshop exercise,

44, 47
Requirements precision, 92
Requirements prioritisation exercise, 44
Requirements quality, 92
Research methods, 305
Retrospective exercise, 43, 46, 209
Retrospectives, 202
Rework, 113
Risk assessor, 276
Risk management, 167
Risk register, 273

S
Scaled agile framework (SAFe), 281
Scrum master, 35
Scrum master activities

impediment remover, 37
integration anchor, 37

process anchor, 36
sprint planner, 36
stand-up facilitator, 36

Scrum master, large-scale, 274
Scrum of scrums, 274
Scrum of scrums facilitator, 274
Security exercices, 173
Security

analysis, 164
authentication, 170
design, 168
implementation, 169
inpections, 171
objectives, 164
requirements, 165
reviews, 171
risk management, 167
testing, 172
threat model, 165

Self-organising teams, 11
activities, 18
attributes, 12

Serverless computing, 285
Seven wastes exercise, 223, 225
Sharing code within a branch exercise, 242
Sharing code within a shared file exercise, 244
Sharing code with separate branches exercise,

243
Skills inventory exercise, 23, 27
Skills mapping to SFIA, 78, 80
Software engineering, 4
Software evolution, 293

re-engineering, 295
wrappering, 293

Software-as-a-service, 285
SOLID, 122
Source code, 153
Source code history, 230
Source code remote archiving, 234
Source code review exercise, 173, 174
Speed, 218
Spotify

architecture, 279
chapters, 279
guilds, 279
squads, 277
tribes, 279

Spotify culture, 277
Sprint planning exercise, 45, 206, 208
Stakeholder analysis, 80
Stakeholder analysis exercise, 78
Stand-up meeting exercise, 46, 209
Story-test driven development exercise, 223
Success, sharing, 50

Index 317

Sustainable pace, 15

T
Tabby cat

architecture, 179
design, 182
development, 186
implementation, 191
requirements, 177
security, 191

Tabby Cat Project, x
Tabby cat project, 5, 83, 177, 265
Task assignment, 199
Team activities

champion, 19
co-ordinator, 18
mentor, 18
promoter, 19
terminator, 19
translator, 19

Teams
building performance, 13
forming, 16
self-organising, 11

Technical architect, 41, 276
Technical debt, 292

agile, 292
Technical product owner, 277
Technology stack, selection, 138
Test integration, 301
Test plan exercise, 157, 160
Test

A/B, 256
acceptance, 253
behaviour-driven development, 259
integration, 252
levels, 252
performance, 255
plan, 150
planning, 252
regression, 254
security, 172, 255
system, 253
techniques, 253
unit test automation, 256
unit testing, 252
user experience, 254

Test-driven development, 204, 259
Testing

regression, 156
unit, 154

Training, 77
Traveller, 39

U
Unions, 74
Unit Testing Exercise, 261, 262
Unreasonable demands, 50
Use case descriptions, 95
Use case diagram exercise, 99, 100
Use case diagram, exercise 1, 99
Use case diagram exercise solutions, 104, 105
Use case exercise, 101, 102, 146
Use case exercise solutions, 105, 106, 146
Use cases, 94

diagrams, 94
User stories, 96
User story estimates, 151
User story estimation exercise, 158
User story exercise, 103
User story exercise solutions, 108
User story mapping, 97
User story mapping exercise, 103

V
Value, 214
Value, non-monetary, 215
Value stream mapping, 215
Value stream mapping exercise, 222, 224
Version control

branching, 237
commit, 231
exercises, 241
file staging, 231
local repository, 228
remote repository, 234
source code sharing, 236
undo changes, 233

Video production exercise, 60
Videos, 59
Virtual teams

launch, 21
performance, 22
preparation, 21
principles, 20

W
Waste, 216
Whistle-blowing, 74
Wikis, 58
Work in progress limits, 219
Work item variability, 220

Y
You Aren’t Gonna Need It (YAGNI), 121

	Preface
	Book Structure
	IEEE/ACM Computing Curriculum Competencies
	Exercises
	How to Use This Book
	Learning Journal
	Tabby Cat Project
	Student Group Projects and Hackathons
	Prior Knowledge

	Acknowledgements
	Contents
	1 Introduction and Principles
	1.1 Agile Software Skills
	1.1.1 People
	1.1.2 Product
	1.1.3 Process
	1.1.4 Advanced Skills

	1.2 Engineering Software
	1.3 Tabby Cat Project
	1.4 Supporting Resources
	1.5 Evidence Underpinning the Book
	1.6 Software HackCamp
	1.7 Create Yourself a Livelihood
	References

	Part I People
	Other Book Parts
	2 Self-Organising Teams
	2.1 Introduction
	2.2 Self-Organising Teams
	2.2.1 Attributes of Self-Organising Teams

	2.3 Groups and Teams
	2.3.1 Building Team Performance

	2.4 Agile Principles
	2.4.1 Sustainable Pace
	2.4.2 Collective Code Ownership

	2.5 Forming Teams
	2.5.1 Accelerating Team Formation
	2.5.2 Handling Difference and Conflict
	2.5.3 Accelerating Norming

	2.6 Collaboration Activities Within Self-Organising Teams
	2.6.1 Mentor
	2.6.2 Co-ordinator
	2.6.3 Translator
	2.6.4 Champion
	2.6.5 Promoter
	2.6.6 Terminator

	2.7 Virtual Teams
	2.7.1 Principles for Virtual Team Management
	2.7.2 Preparation for Team Success
	2.7.2.1 Cultural Diversity
	2.7.2.2 Remote Pair Programming

	2.7.3 Launch
	2.7.4 Performance Management

	2.8 Communities of Practice
	2.9 Exercises
	2.10 Hints, Tips and Advice on Exercises
	2.11 Chapter Summary
	References

	3 Agile Roles
	3.1 Introduction
	3.2 Scrum Master
	3.2.1 Process Anchor
	3.2.2 Iteration Planner
	3.2.3 Stand-up Facilitator
	3.2.4 Impediment Remover
	3.2.5 Integration Anchor

	3.3 Product Owner/On-site Customer
	3.3.1 Product Grooming
	3.3.2 Prioritiser
	3.3.3 Release Master
	3.3.4 Communicator
	3.3.5 Traveller
	3.3.6 Intermediary

	3.4 Product Owner Behaviours
	3.4.1 Favour Face-to-Face Interactions
	3.4.2 Understand and Focus on Real Goals
	3.4.3 Make Product Owner Teams Well Defined

	3.5 Other Roles: For Larger Projects
	3.5.1 Product Sponsor
	3.5.2 Technical Architect

	3.6 Exercises
	3.7 Hints, Tips and Advice on Exercises
	3.8 Chapter Summary
	References

	4 Managing Stakeholders
	4.1 Introduction
	4.2 Managing Upwards
	4.2.1 Set Expectations
	4.2.2 Confess to Catastrophe
	4.2.3 Share Success
	4.2.4 Unreasonable Demands

	4.3 Managing Outwards
	4.4 Contracts
	4.4.1 Contracts and Change Requests
	4.4.2 Time and Materials Contracts
	4.4.3 Outsourcing Contracts
	4.4.4 Offshoring Contracts
	4.4.5 Academic Contracts
	4.4.6 Negotiating Contracts

	4.5 Communication Quality
	4.5.1 Audience
	4.5.2 Narrative
	4.5.3 Language
	4.5.4 Process

	4.6 Communication Tools
	4.6.1 Reports
	4.6.1.1 Report Composition
	4.6.1.2 Report Content

	4.6.2 Presentations
	4.6.2.1 Presentation Types
	4.6.2.2 Presentation Content
	4.6.2.3 Presentation Delivery
	4.6.2.4 Presentation Rehearsal

	4.6.3 Blogs and Wikis
	4.6.4 Videos

	4.7 Exercises
	4.8 Hints, Tips and Advice on Exercises
	4.9 Chapter Summary
	References

	5 Ethics
	5.1 Introduction
	5.2 What Went Wrong?
	5.2.1 Algorithms and Inequality
	5.2.2 Platforms and Fake Markets
	5.2.3 Errors, Faults and Failures
	5.2.4 Criminal and Unethical Behaviour

	5.3 Copyright and Patents
	5.4 Professional Bodies
	5.4.1 BCS Codes of Conduct
	5.4.2 ACM Codes of Ethics
	5.4.3 Problems with Codes of Ethics

	5.5 Activism
	5.5.1 Whistle-Blowing
	5.5.2 Unions

	5.6 Professional Development
	5.6.1 Initial Professional Development
	5.6.2 Continuing Professional Development
	5.6.3 Skills Framework for the Information Age
	5.6.4 Other Training and Development

	5.7 Exercises
	5.8 Hints, Tips and Advice on Exercises
	5.9 Chapter Summary
	References

	6 Tabby Cat Project, Getting Started
	6.1 Introduction
	6.2 Online Repository Activities
	6.3 Actually Getting Started
	6.4 Sprint Zero
	6.5 Subsequent Sprints
	6.6 Chapter Summary
	Reference

	Part II Product
	Other Book Parts
	7 Requirements
	7.1 Introduction
	7.2 Types of Requirements
	7.2.1 Functional Requirements
	7.2.2 Non-functional Requirements
	7.2.3 Incremental Requirements

	7.3 Requirements Quality
	7.3.1 Requirements Precision
	7.3.2 Requirements Consistency
	7.3.3 Requirements Completeness

	7.4 Use Cases
	7.4.1 Use Case Diagrams
	7.4.2 Use Case, Descriptions

	7.5 User Stories
	7.6 User Story Mapping
	7.7 Personas
	7.8 Exercises
	7.9 Hints, Tips and Advice on Exercises
	7.10 Chapter Summary
	References

	8 Architecture
	8.1 Introduction
	8.2 Architecture in Agile
	8.2.1 Refactoring
	8.2.2 Rework
	8.2.3 Planned Refactoring
	8.2.4 Architectural Abstraction

	8.3 Design Styles
	8.3.1 Client-Server
	8.3.2 Repository Architecture
	8.3.3 Pipe and Filter
	8.3.4 Layered Architecture
	8.3.5 Clean Architecture

	8.4 Reference Architectures
	8.5 Design Principles
	8.5.1 KISS Principle
	8.5.2 DRY (Do Not Repeat Yourself)
	8.5.3 YAGNI (You Aren't Gonna Need It)
	8.5.4 GRASP
	8.5.5 SOLID

	8.6 Architecture Implementation
	8.7 Exercises
	8.8 Hints, Tips and Advice on Exercises
	8.9 Chapter Summary
	References

	9 Design
	9.1 Introduction
	9.2 Feature-Driven Development
	9.3 System Modelling
	9.4 Class Diagrams
	9.4.1 Deriving Class Diagrams
	9.4.1.1 Noun and Noun Phrases
	9.4.1.2 Verb and Verb Phrases

	9.4.2 Domain Models
	9.4.3 High-Level Design Class Diagrams
	9.4.4 Detailed Design Class Diagrams

	9.5 Object Sequence Diagrams
	9.6 Design Patterns
	9.6.1 Singleton Pattern
	9.6.2 Model View Controller
	9.6.3 Factory Pattern

	9.7 Technology Stack Selection
	9.8 Model-Driven Engineering
	9.9 Exercises
	9.10 Hints, Tips and Advice on Exercises
	9.11 Chapter Summary
	References

	10 Development
	10.1 Introduction
	10.2 Planning Artefacts
	10.2.1 Kanban Boards
	10.2.2 Product Backlog
	10.2.3 Test Plan

	10.3 Iteration Artefacts
	10.3.1 Iteration Backlog
	10.3.2 User Story Estimates
	10.3.3 Burn Down Chart

	10.4 Feature Artefacts
	10.4.1 Prototypes
	10.4.2 Source Code
	10.4.3 Unit Tests
	10.4.4 Issues

	10.5 Release Artefacts
	10.5.1 Release Code Binaries
	10.5.2 Regression Tests

	10.6 Exercises
	10.7 Hints, Tips and Advice on Exercises
	10.8 Chapter Summary
	References

	11 Security
	11.1 Introduction
	11.2 Security Analysis
	11.2.1 Security Objectives
	11.2.2 Threat Model

	11.3 Security Requirements
	11.3.1 Security Mitigation Requirements
	11.3.2 Abuse Stories
	11.3.3 Security Personas and Anti-personas
	11.3.4 Risk and Risk Management

	11.4 Security Design
	11.4.1 Security Patterns

	11.5 Security Implementation
	11.5.1 Abuse Story Implementation
	11.5.2 OWASP Top Ten
	11.5.3 Authentication

	11.6 Security Evaluation
	11.6.1 Manual Security Inspections and Reviews
	11.6.2 Automated Security Testing

	11.7 Agile Security Processes
	11.7.1 Roles
	11.7.2 Artefacts
	11.7.3 Ceremonies

	11.8 Exercises
	11.9 Hints, Tips and Advice on Exercises
	11.10 Chapter Summary
	References

	12 Tabby Cat Project: Getting Building
	12.1 Introduction
	12.2 Requirements
	12.2.1 Functional Requirements
	12.2.2 Non-functional Requirements

	12.3 Architecture
	12.3.1 Architectural Style
	12.3.2 Client-Server

	12.4 Design
	12.4.1 Back-End Design
	12.4.2 Front-End Design

	12.5 Development
	12.5.1 Back-End Technologies
	12.5.2 Front-End Technologies
	12.5.3 Code Organisation

	12.6 Security
	12.7 Illustrative Implementation
	References

	Part III Process, Tools and Automation
	Other Book Parts
	13 Agile Ceremonies
	13.1 Introduction
	13.2 Iteration Planning
	13.2.1 Prioritisation
	13.2.2 Features and Technical Tasks
	13.2.3 Estimation
	13.2.3.1 Story Point Estimation
	13.2.3.2 T-Shirt Sizing

	13.2.4 Task Assignment

	13.3 Coordination Meetings
	13.3.1 Virtual Stand-Up Meetings
	13.3.2 Kanban Boards

	13.4 Customer Demonstrations
	13.4.1 Retrospectives

	13.5 Pair Programming
	13.6 Test-Driven Development
	13.7 Specialist Agile Ceremonies
	13.7.1 Spikes
	13.7.2 Swarm Programming
	13.7.3 Mob Programming

	13.8 Exercises
	13.9 Hints, Tips and Advice on Exercises
	13.10 Chapter Summary
	References

	14 Lean
	14.1 Introduction
	14.1.1 Respecting People
	14.1.2 Create Knowledge
	14.1.3 Build Quality In

	14.2 Value
	14.2.1 Non-monetary Value
	14.2.2 Value Stream Mapping
	14.2.3 Definition of Done

	14.3 Waste
	14.3.1 Partially Done Work
	14.3.2 Superfluous Features
	14.3.3 Rework
	14.3.4 Hand-Offs
	14.3.5 Task Switching
	14.3.6 Delays
	14.3.7 Defects

	14.4 Speed
	14.4.1 Work-in-Progress Limits
	14.4.2 Work Item Variability

	14.5 Lean Start-Up
	14.5.1 Bootstrapping
	14.5.2 Minimum Viable Product
	14.5.3 Pivot

	14.6 Exercises
	14.7 Hints, Tips and Advice on Exercises
	14.8 Chapter Summary
	References

	15 Version Control
	15.1 Introduction
	15.2 Content Management
	15.2.1 Create a Local Git Repository

	15.3 Source Code History
	15.3.1 Stage Files for Inclusion in the Version Control Repository
	15.3.2 Commit Files into the Version Control Repository
	15.3.3 Making and Removing a Change

	15.4 Source Code Remote Archiving
	15.4.1 Version Control Remote Server Archiving

	15.5 Source Code Sharing
	15.5.1 Trunk and Branches

	15.6 Exercises
	15.7 Hints, Tips and Advice on Exercises
	15.8 Chapter Summary
	References

	16 Testing and Test Automation
	16.1 Introduction
	16.2 Test Planning
	16.3 Testing Levels
	16.3.1 Unit Testing
	16.3.2 Integration Testing
	16.3.3 System Testing
	16.3.4 Acceptance Testing

	16.4 Testing Techniques
	16.4.1 Regression Testing
	16.4.2 User Experience Testing
	16.4.3 Performance Testing
	16.4.4 Security Testing
	16.4.5 A/B Testing

	16.5 Test Automation
	16.5.1 Unit Test Automation
	16.5.2 Acceptance Test-Driven Development
	16.5.3 Behaviour-Driven Development

	16.6 Exercises
	16.7 Hints, Tips and Advice on Exercises
	16.8 Chapter Summary
	References

	17 Tabby Cat Project: Process, Tools and Automation
	17.1 Introduction
	17.2 Agile Ceremonies and Lean Thinking
	17.3 Version Control
	17.4 Testing and Test Automation
	References

	Part IV Advanced Skills
	Other Book Parts
	18 Large-Scale Agile
	18.1 Introduction
	18.2 Distance
	18.2.1 Geographical Distance
	18.2.2 Temporal Distance
	18.2.3 Cultural Distance

	18.3 Large-Scale Artefacts
	18.3.1 Risk Register
	18.3.2 Architecture Standards

	18.4 Large-Scale Scrum Master Activities
	18.4.1 Scrum-of-Scrums Facilitator
	18.4.2 Agile Coach

	18.5 Large-Scale Product Owner Activities
	18.5.1 Product Sponsor
	18.5.2 Risk Assessor
	18.5.3 Governor
	18.5.4 Technical Architect
	18.5.5 Technical Product Owner
	18.5.6 Product Owner: Market Trends

	18.6 Spotify Culture
	18.6.1 Squads
	18.6.2 Chapters
	18.6.3 Tribes
	18.6.4 Guilds
	18.6.5 Architectural Alignment

	18.7 Other Frameworks
	18.7.1 Large-Scale Scrum
	18.7.2 SAFe

	18.8 Chapter Summary
	References

	19 Cloud Deployment
	19.1 Introduction
	19.2 Cloud Service Models
	19.2.1 Infrastructure-as-a-Service
	19.2.2 Platform-as-a-Service
	19.2.3 Software-as-a-Service
	19.2.4 Serverless Computing

	19.3 Cloud-Hosted Application Patterns
	19.3.1 Scalability
	19.3.2 Multi-Tenancy
	19.3.3 Automated Customer On-Boarding
	19.3.4 Revenue Generation
	19.3.5 `n'-Tier Architectures

	19.4 Automated Deployment
	19.5 Containerisation
	19.6 Chapter Summary
	References

	20 Technical Debt, Software Evolution and Legacy
	20.1 Introduction
	20.2 Technical Debt
	20.2.1 Technical Debt and Agile
	20.2.2 Refactoring

	20.3 Software Evolution
	20.3.1 Wrappering
	20.3.2 Re-engineering

	20.4 Legacy Systems
	20.5 Chapter Summary
	References

	21 DevOps
	21.1 Introduction
	21.2 Build and Deployment Pipelines
	21.2.1 Conventional Deployment Team Structures
	21.2.2 Self-Organising Deployment Team Structures

	21.3 Pipeline Automation
	21.4 Test Integration
	21.4.1 Testing New Features
	21.4.2 Regression Testing Legacy Features

	21.5 Continuous Integration
	21.6 DevOps and DevSecOps
	21.7 Continuous Delivery and Deployment
	21.8 Chapter Summary
	References

	A Research Methods
	A.1 Research Sites
	A.2 Data Collection
	A.3 Data Analysis
	A.3.1 Open Coding
	A.3.2 Memo Writing
	A.3.3 Constant Comparison
	A.3.4 Saturation

	References

	B Further Reading
	B.1 Core Reading
	B.2 More Specialist Topics
	B.3 Software Engineering Research
	References

	Index

