

Useful Python

Copyright © 2023 SitePoint Pty. Ltd.

Ebook ISBN: 978-1-925836-57-8

Author: Stuart Langridge
Technical Editor: Cláudio Ribeiro
Product Manager: Simon Mackie
English Editor: Ralph Mason
Cover Designer: Mark O'Neill

Notice of Rights

All rights reserved. No part of this book may be reproduced, stored in a
retrieval system or transmitted in any form or by any means, without the prior
written permission of the publisher, except in the case of brief quotations
embodied in critical articles or reviews.

Notice of Liability

The author and publisher have made every effort to ensure the accuracy of
the information herein. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors and
SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any
damages to be caused either directly or indirectly by the instructions
contained in this book, or by the software or hardware products described
herein.

Trademark Notice

Rather than indicating every occurrence of a trademarked name as such, this
book uses the names only in an editorial fashion and to the benefit of the
trademark owner with no intention of infringement of the trademark.

Published by SitePoint Pty. Ltd.

10-12 Gwynne St, Cremorne, VIC, 3121
Australia
Web: www.sitepoint.com
Email: books@sitepoint.com

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand
content for web professionals. Visit http://www.sitepoint.com/ to access our
blogs, books, newsletters, articles, and community forums. You’ll find a
stack of information on JavaScript, PHP, design, and more.

About the Author

Stuart is a consultant CTO, software architect, and developer to startups and
small firms on strategy, custom development, and how to best work with the
dev team. Code and writings are to be found at kryogenix.org and social

http://www.sitepoint.com/
https://www.kryogenix.org/

networks; Stuart himself is mostly to be found playing D&D or looking for
the best vodka Collins in town.

PREFACE

Who Should Read This Book?

In this series of tutorials, we’re not looking at data science. That is, this isn’t
about doing heavy statistical or numerical calculations on data we’ve
received. Python is one of the industry-standard tools for doing calculations
like these—using libraries such as NumPy and pandas—and there are plenty
of resources available for learning data science.

In this series, we’ll looking at how to convert data from one form to another
so that we can then go on to manipulate it.

We’re also going to assume a little knowledge of Python and programming
already—such as what a variable is, what a dictionary is, and how to import a
module.

Conventions Used

Code Samples

Code in this book is displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>

<p>It was a lovely day for a walk in the park.

The birds were singing and the kids were all back at school.</p>

You’ll notice that we’ve used certain layout styles throughout this book to

signify different types of information. Look out for the following items.

Tips, Notes, and Warnings

Hey, You!

Tips provide helpful little pointers.

Ahem, Excuse Me ...

Notes are useful asides that are related—but not critical—to the topic at hand.
Think of them as extra tidbits of information.

Make Sure You Always ...

... pay attention to these important points.

Watch Out!

Warnings highlight any gotchas that are likely to trip you up along the way.

Supplementary Materials

https://www.sitepoint.com/community/ are SitePoint’s forums, for help
on any tricky problems.
books@sitepoint.com is our email address, should you need to contact
us to report a problem, or for any other reason.

https://www.sitepoint.com/community/

For Bruce.

CHAPTER 1: PYTHON AS GLUE

Python is a versatile and powerful language that can be used for a wide
variety of tasks. One of the most common use cases for Python is as a “glue”
language: it helps us combine skills and programs we already know how to
use by allowing us to easily convert data from one format to another. This
means that we can take data in one format that we don’t have tools to
manipulate and change it into data for tools that we’re comfortable with.
Whether we need to process a CSV, web page, or JSON file, Python can help
us get the data into a format we can use.

For example, we might use Python to pull data from a web page and put it
into Excel, where we already know how to manipulate it. We might also read
a CSV file downloaded from a website, calculate the totals from it, and then
output the data in JSON format.

Who This Series is For

In this series of tutorials, we’re not looking at data science. That is, this isn’t
about doing heavy statistical or numerical calculations on data we’ve
received. Python is one of the industry-standard tools for doing calculations
like these—using libraries such as NumPy and pandas—and there are plenty
of resources available for learning data science (such as Become a Python
Data Scientist).

In this series, we’ll looking at how to convert data from one form to another
so that we can then go on to manipulate it.

https://numpy.org/
https://pandas.pydata.org/
https://www.sitepoint.com/premium/paths/become-a-python-data-scientist/

We’re also going to assume a little knowledge of Python and programming
already—such as what a variable is, what a dictionary is, and how to import a
module. To start learning Python (or any other programming language) from
scratch, check out SitePoint’s programming tutorials. The Python wiki also
has a list of Python programming tutorials for programmers.

Getting Started

We’ll start this tutorial by looking at how to read data and then how to write
it to a different format.

Reading Data

Let’s try an example. Let’s imagine we’re an author on a tour of local
libraries, talking to people about our books. We’ve been given plymouth-

libraries.json—a JSON file of all the public libraries in the town of

Plymouth in the UK—and we want to explore this dataset a little and convert
it into something we can read in Excel or Google Sheets, because we know
about Excel.

First, let’s read the contents of the JSON file into a Python data structure:

import json

with open("plymouth-libraries.json") as fp:

 library_data = json.load(fp)

Now let’s explore this data a little in Python code to see what it contains:

print(library_data.keys())

https://www.sitepoint.com/programming/
https://wiki.python.org/moin/BeginnersGuide/Programmers
https://www.data.gov.uk/dataset/323f337f-8d97-4e39-acf4-dbdb7a7a3fab/libraries

This will print dict_keys(['type', 'name', 'crs', 'features']), which

are the top-level keys from this file.

Similarly:

print(library_data["features"][0]["properties"]["LibraryName"])

This will print Central Library, which is the LibraryName value in

properties for the first entry in the features list in the JSON file.

This is the most basic, and most common, use of Python’s built-in json
module: to load some existing JSON data into a Python data structure
(usually a Python dictionary, or nested set of Python dictionaries).

Bear in mind that, to keep these examples simple, this code contains no error
checking. (Check out A Guide to Python Exception Handling for more on
that.) But handling errors is important. For example, what would happen if
the plymouth-libraries.json file didn’t exist? What we do in that situation

depends on how we should react for errors. If we’re running this script by
hand, Python will display the exception that occurs—in this case, a
FileNotFoundError exception. Simply seeing that exception may be enough;

we may not want to “handle” this in code at all:

$ python load-json.py

Traceback (most recent call last):

 File "/home/aquarius/Scratch/fail.py", line 13, in <module>

 open("plymouth-libraries.json")

FileNotFoundError: [Errno 2] No such file or directory: 'plymouth-libraries.json'

https://docs.python.org/3/library/json.html
https://www.sitepoint.com/python-exception-handling/

If we’d like to do something more than have our program terminate with an
error, we can use Python’s try and except keywords (as the exception
handling article above describes) to do something else of our choosing. In
this case, we display a more friendly error message and then exit (because the
rest of the program won’t run without the list of libraries!):

try:

 with open("plymouth-libraries.json") as fp:

 library_data = json.load(fp)

except FileNotFoundError:

 print("I couldn't find the plymouth-libraries.json file!")

 sys.exit(1)

Writing

Now we want to write that data from its Python dictionary into a different
format on disk, so we can open it in Excel. For now, let’s use CSV format,
which is a very simple file format that Excel understands. (If you’re thinking,
“Hey, why don’t we make it a full Excel file!” … then read on. CSV is
simpler, so we’ll do that first.) This process of taking Python data structures
and writing them out as some file format is called serialization. So we’re
going to serialize the data we read as JSON into CSV format.

The image below demonstrates the stages involved in serialization.

https://docs.python.org/3/tutorial/errors.html

A CSV file is a text file of tabular data. Each row of the table is one line in
the CSV file, with the entries in the row separated by commas. The first line
of the file is a list of column headings.

Consider a set of data like this:

Animal Leg count Furry?
Cat 4 Yes
Cow 4 No
Snake 0 No
Tarantula 8 Yes

This data could look like this as a CSV file:

Animal,Leg count,"Furry?"

Cat,4,Yes

Cow,4,No

Snake,0,No

Tarantula,8,Yes

To write out a CSV file, we need a list of column header names. Fortunately,
these will be the keys of the properties of the first entry in "features", since

all libraries have the same keys:

header_names = library_data["features"][0]["properties"].keys()

Given those names, we use the built-in csv module to write the header, and

then write one row per library—to a file we open called plymouth-

libraries.csv—like this:

with open("plymouth-libraries.csv", "w", newline="") as csvfile:

 writer = csv.DictWriter(csvfile, fieldnames=header_names)

 writer.writeheader()

 for library in library_data["features"]:

 writer.writerow(library["properties"])

This is the core principle behind using Python as a file format converter to
glue together two things:

1. Read data in whatever format it’s currently in, which gives us that data
as Python dictionaries.

2. Then serialize those Python dictionaries into the file format we actually
want.

That’s all there is to it. Now we have a CSV file that we can open and look
through as we choose.

The script and input files referenced above can be downloaded from GitHub.

Reading Data with Code

A second example will further demonstrate this principle of format
conversion. Let’s resume our fictional library tour. The following week,
we’re planning to continue our tour by visiting libraries in north Somerset,
and the list of those libraries is in a format called XML. Opening the XML
file and looking at its contents suggests that an individual library is listed in
this file as something like this:

<Row>

 <PublisherLabel>North Somerset Council</PublisherLabel>

 <PublisherURI>http://opendatacommunities.org/id/unitary-authority/north-somerset</PublisherURI>

 <LibraryName>Clevedon Library</LibraryName>

 <Address>37 Old Church Road</Address>

 <Locality>Clevedon</Locality>

 <Postcode>BS21 6NN</Postcode>

 <TelephoneNo>(01934) 426020</TelephoneNo>

 <Website>http://www.n-somerset.gov.uk/Leisure/libraries/your_local_library/Pages/Your-local-library.aspx</Website>

</Row>

So we’re going to read that file with Python’s built-in XML module. Again,
the goal here is to make a convenient Python dictionary and then serialize it.
But this time, we’re also going to alter the data a little along the way: we only
care about libraries where the postcode (the British version of a zip code) is
BS40 or less. (So we want to keep BS21 6NN as a postcode, but ignore a
postcode such as BS49 1AH.) This lets us use our knowledge of Python

https://github.com/spbooks/pythonuseful1
https://www.data.gov.uk/dataset/9342032d-ab88-462f-b31c-4fb07fd4da6f/libraries
https://docs.python.org/3/library/xml.etree.elementtree.html

strings and numbers to discard some of the data.

First, let’s read in the XML file. The ElementTree module is traditionally
imported with the name ET, for brevity, and can read a file with .parse().

We’ll also need the json module later to write out a JSON version of this

data:

import xml.etree.ElementTree as ET

import json

tree = ET.parse('somerset-libraries.xml')

ElementTree reads in an XML file and forms a tree structure out of it. At the
top of the tree is the root, which is the first element in the XML. An ET

element has properties relating to its content. An XML element like
<MyElement>content here</MyElement> would have a tag property of

"MyElement", the tag name, and a text property of "content here",

containing the text in the element. The element also presents as a list that can
be iterated over with a Python for loop, which will yield all the element’s

direct child elements.

We obtain a reference to the root element of the tree:

root = tree.getroot()

In this XML file in particular, this element is actually <Root>, but the name is

a coincidence; it could be called anything. We can then iterate over all child
elements of the root. These child elements are the <Row> elements in the

XML, each of which defines one library. Our plan here is to turn the above

XML for a <Row> into a Python dictionary, with one entry per child of the

<Row>. That is, the above XML should become this Python dictionary:

{

 "PublisherLabel": "North Somerset Council",

 "PublisherURI": "http://opendatacommunities.org/id/unitary-authority/north-somerset",

 "LibraryName": "Clevedon Library",

 "Address": "37 Old Church Road",

 "Locality": "Clevedon",

 "Postcode": "BS21 6NN",

 "TelephoneNo": "(01934) 426020",

 "Website": "http://www.n-somerset.gov.uk/Leisure/libraries/your_local_library/Pages/Your-local-library.aspx"

}

To do this, we’ll iterate over each of the <Row> elements in the root, and then,

for each <Row>, iterate over each of its child elements and add them to a

dictionary for that row. This will give us one dictionary per library, which
we’ll store in a list called libraries:

libraries = []

for row in root:

 this_library = {}

 for element in row:

 name = element.tag

 value = element.text

 this_library[name] = value

 libraries.append(this_library)

At this point, we’ve successfully parsed the input XML data into a list of
Python dictionaries, meaning that we can discard the XML and work simply
with the Python data structures. The first goal is to remove all the libraries
with postcode BS40 or greater, which can be done by removing items from

the list that don’t match:

for library in libraries:

 # get the third and fourth characters of the postcode, as a number

 # note that real postcode parsing is more complex than this!

 postcode = library["Postcode"]

 postcode_number = int(postcode[2:4])

 if postcode_number >= 40:

 libraries.remove(library)

The final step is to serialize the Python data into the destination format we
want, which in this case is JSON. This is done with the json module’s dump

function:

with open("somerset-libraries.json", mode="w") as fp:

 json.dump(libraries, fp, indent=2) # the indent makes the JSON be formatted

The outputted JSON data will look something like this:

[

 {

 "PublisherLabel": "North Somerset Council",

 "PublisherURI": "http://opendatacommunities.org/id/unitary-authority/north-somerset",

 "LibraryName": "Clevedon Library",

 "Address": "37 Old Church Road",

 "Locality": "Clevedon",

 "Postcode": "BS21 6NN",

 "TelephoneNo": "(01934) 426020",

 "Website": "http://www.n-somerset.gov.uk/Leisure/libraries/your_local_library/Pages/Your-local-library.aspx"

 },

... more libraries here ...

]

The script and input files can be downloaded from GitHub.

General Principles

The goal here is to take three steps:

1. Load the data we want into a set of Python data structures.
2. Manipulate the data however we want—which is convenient, because

it’s now a set of Python data structures.
3. Serialize the data into whatever output format we want.

Sometimes, the steps might require a little programming, as above. JSON
data, as we saw in the first example, has a built-in Python library to load it (or
“de-serialize” it) directly into a Python dictionary, ready for us to manipulate.
XML data doesn’t have such a library, so a little delving into the Python docs
is required if we’re to understand exactly how to read it. Many more esoteric
formats also have Python libraries available to read or to write them, which
can be installed from PyPI, Python’s suite of third-party libraries.

Parsing Complicated Formats

https://github.com/spbooks/pythonuseful1

A useful guide to parsing some more complicated formats using the Python
pandas module is available in Using Python to Parse Spreadsheet Data.

Understanding All the Formats

One example of such a format is KML, which was originally developed for
Google Earth to allow a number of points on the globe to be specified and
then loaded onto a map. It might be useful to plot our list of Plymouth
libraries on a map so we can see where they all are in relation to one another
and plan the best route for our tour. Let’s write a script that reads in that data
and outputs it as KML so we can do that!

A little searching reveals that Python doesn’t have a built-in module for
reading KML, but there are quite a few available for download. The simplest
seems to be simplekml (truth in advertising!), and this is available from PyPI.
Installing modules from PyPI involves a little setup, which is documented in
Virtual Environments in Python Made Easy and also in the Python Packaging
Guide, but once that’s done (and it only needs to be done once and will work
for ever more), we should be able to pip install simplekml to get the

simplekml module.

Embracing All the Formats

At this point, the script we need to write follows our standard three steps:
load the data from the format it’s in (in this case, we’ll use the CSV file we
created earlier), manipulate it if we wish (we don’t need to this time), and
then serialize it to a file in the new format (which the simplekml
documentation shows us how to do for KML).

https://www.sitepoint.com/using-python-parse-spreadsheet-data/
https://en.wikipedia.org/wiki/Keyhole_Markup_Language
https://simplekml.readthedocs.io/en/latest/index.html
https://pypi.org/project/simplekml/
https://www.sitepoint.com/virtual-environments-python-made-easy/
https://packaging.python.org/en/latest/tutorials/installing-packages/
https://simplekml.readthedocs.io/en/latest/gettingstarted.html#quick-example

First, let’s read in our input data. The Python csv module knows how to read

the CSV file of libraries that we created previously:

import simplekml

import csv

libraries = []

with open('plymouth-libraries.csv') as csvfile:

 reader = csv.DictReader(csvfile)

 for row in reader:

 libraries.append(row)

Now we have a Python list of dictionaries. One of those dictionaries looks
like this:

{

 "fid": "1",

 "LibraryName": "Central Library",

 "AddressLine1": "167 - 171 Armada Way",

 "AddressLine2": "",

 "AddressLine3": "Plymouth",

 "Postcode": "PL1 1HZ",

 "Latitude": "50.373002",

 "Longitude": "-4.1429763",

 "Website": "https://www.plymouth.gov.uk/libraries/findlibraryandopeninghours/centrallibrary",

}

To create a KML file, we can follow the simplekml module’s documentation.

Make a Kml() object, then call its newpoint() function with name, latitude,

and longitude values for each library:

kml = simplekml.Kml()

for library in libraries:

 # the coordinates need to be numeric, so convert

 # them to floating-point numbers

 lat = float(library["Latitude"])

 lon = float(library["Longitude"])

 # and add a new "point" to the KML file for this library

 kml.newpoint(name=library["LibraryName"], coords=[(lon, lat)])

Finally, save the file as KML:

kml.save("plymouth-libraries.kml")

Now we can import that KML file to Google Earth and … this is what we
see.

The script and input files can be downloaded from GitHub.

Reading HTML

While we’re in Plymouth, we notice that the skyline is dominated by Beckley
Point, the tallest building in the southwest of England, and that gets us
wondering about tall buildings generally. Wikipedia, as usual, provides a
page about the tallest buildings in the world, and we decide we’d like to
explore that list a little more in Excel. Of course, we already know that we
can copy a table from a web page and paste it into Excel and it does a
reasonable job, but that’s not very exciting. We’re all Python all the time
now! What if we wanted to look at, say, all the tall buildings without an E in
their name? Or to get that list every day by running one command? So let’s

https://github.com/spbooks/pythonuseful1
https://en.wikipedia.org/wiki/List_of_tallest_buildings#Tallest_buildings_in_the_world

break out the text editor again, with the intention of getting the data from that
Wikipedia page and then putting it into Excel with a script.

Extracting data from an HTML page is the task of screen scraping, and
much has been written about it. One useful guide is Web Scraping for
Beginners. There are dedicated screen scraping tools to do the work, but
Python can do it too, and then we have all the power of code at our disposal.

First, let’s look at how to fetch and read an HTML page with Python to
extract data from it.

Requesting data from the Web can be done with the built-in urllib.request

module, but the requests module is easier to use, so it’s worth installing that.

We’ll also need Beautiful Soup (BS) for parsing HTML. (Again, this can be
done with built-in modules, but BS is more pleasant.) So pip install

requests beautifulsoup4 should get those modules ready for use. After

that, the content of a web page can be fetched with requests.get() and the

response’s content property:

import requests

from bs4 import BeautifulSoup

Use the Python requests module to fetch the web page

response = requests.get("https://en.wikipedia.org/wiki/List_of_tallest_buildings")

and extract its HTML

html = response.content

At this point, html is a long string variable of HTML. Beautiful Soup knows

https://www.sitepoint.com/web-scraping-for-beginners/
https://www.crummy.com/software/BeautifulSoup/

how to parse that into a useful data structure that we can explore:

soup = BeautifulSoup(html, "html.parser")

Extracting data from HTML is one of the tasks that requires some
programming—as well as some knowledge of the structure of the HTML in
question—to make best use of the data. Beautiful Soup is the most-used
Python module for this, and it has a deep well of functionality to help with
advanced screen scraping.

For most examples, though, it will suffice to load the HTML into a “soup” of
parsed data, and then use the .select() function to extract HTML elements

by CSS selector, iterate through them, and read the .text within them. This

is somewhat similar to using JavaScript methods to identify HTML elements
in the DOM in a web page, which may be familiar to web programmers. The
BS4 documentation explains some of Beautiful Soup’s more advanced
features in detail, but much of the work can be done with select(), which

takes a CSS selector as a parameter and returns a list of elements matching
that selector, similarly to JavaScript’s querySelectorAll().

The HTML table that we want—of the tallest buildings in the world by height
to pinnacle—is the fifth <table> element on the page. If the Wikipedia

HTML had an ID attribute on that table, we could use that to find it directly,
but it doesn’t. So we’ll use the knowledge that it’s the fifth table to find it
with the .select() function:

tallest_table = soup.select("table")[4]

https://www.crummy.com/software/BeautifulSoup/bs4/doc/

As can be seen from the table, we can get the title of each column by reading
the first row. The table actually has two header rows, because there are
separate columns for both height in meters and height in feet, and so we
handle this a little differently by adding two columns to the list of column
titles:

Get the title for each column, by reading the text of

each <th> in the first row of this table.

Note that the "Height" column is two columns, m and ft,

so we handle this differently.

column_titles = []

first_row = tallest_table.select("tr")[0]

for th in first_row.select("th"):

 column_title = th.text.strip() # .strip() removes carriage returns

 if column_title == "Height":

 # add two columns

 column_titles.append(column_title + " (m)")

 column_titles.append(column_title + " (ft)")

 else:

 # add this column title to the list

 column_titles.append(column_title)

Once the column titles have been extracted—so that they can be used to make
a dictionary for each building—it’s time to actually extract the building data.
Each row in the table contains the values for a building. This means that, for
each row, we need to combine the column titles and the column data to make
a dictionary. Fortunately, Python provides the zip() function, which makes

this easy.

zip() takes two lists—[a, b, c, d] and [w, x, y, z]—and returns one

list: [(a,w), (b,x), (c,y), (d,z)]. We can then iterate through this

combined list.

This means that, for each table row (or <tr>), we can retrieve the cells (<td>)

in that row with tr.select("td"), and then zip the column titles together

with them. Each cell returned from the <td> is a soup object, so we must then

use the .text property of each <td> to retrieve the text in it:

tallest_buildings = []

for tr in tallest_table.select("tr")[1:]:

 building = {}

 tds = tr.select("td")

 # combine the header list and the data list from this row with zip()

 named_data = zip(column_titles, tds)

 for title, td in named_data:

 building[title] = td.text.strip()

 # and store this building in the list

 tallest_buildings.append(building)

More Data Fiddling

Now that we have the data in a convenient Python data structure and no
longer have to worry about HTML (or however else we obtained it), the next
step is to manipulate the data. Here, it will be useful to convert the numeric
heights of the buildings to be actual numbers. Since HTML data is all textual,
this means that all the “height” values in our data are strings of digits rather
than actual numbers. We can see this with a quick test, using Python’s built-
in pprint module to “pretty-print” the first building in the list:

import pprint

pprint.pprint(tallest_buildings[0])

{'Building': 'Burj Khalifa†',

 'Built': '2010',

 'City': 'Dubai',

 'Country': 'United Arab Emirates',

 'Floors': '163',

 'Height (ft)': '2,722\xa0ft',

 'Height (m)': '829.8 m',

 'Rank': '1'}

Let’s convert the “Height (ft)”, “Height (m)” and “Floors” values from
strings to numbers. These data may contain characters that aren’t numbers, so
a simple call to float() may not work and we’ll need to be a little more

clever.

The most basic way to convert string data like this to a floating point number
or integer is to walk through each character in the string and only keep it if
it’s a digit or a decimal point, and then to call float() on the kept characters

only. This removes any commas, carriage returns, spaces, or other extraneous
data in a string like "2,345.6 m", and would look like this, for converting the

“Height (m)” data for each building:

height_m_digits = ""

for character in building["Height (m)"]:

 if character.isdigit() or character == ".":

 height_m_digits += character

building["Height (m)"] = float(height_m_digits)

A second but slightly more advanced way is to use a list comprehension to
extract these digits, which will convert "2,345.6 m" into ["2", "3", "4",

"5", ".", "6"]—which can then be combined back into a string with

.join() and then to a number with float():

height_ft_digits = [

 character for character in building["Height (ft)"]

 if character.isdigit() or character == "."]

height_ft_digits = "".join(height_ft_digits)

building["Height (ft)"] = float(height_ft_digits)

And a third way that’s shorter still is to use regular expressions, which are
more powerful but also a more complex subject:

floors_digits = re.findall(r"[\d.]", building["Floors"])

building["Floors"] = int("".join(floors_digits)) # note floor count is an int, not a float

Learning Regular Expressions

If you’d like to learn more about using regular expressions, check out the
article Understanding Python Regex Functions, with Examples.

Once the data is converted to numbers for each building, if we pretty-print
the first building, the data is more properly numeric:

import pprint

pprint.pprint(tallest_buildings[0])

{'Building': 'Burj Khalifa†',

 'Built': '2010',

 'City': 'Dubai',

 'Country': 'United Arab Emirates',

 'Floors': 163,

 'Height (ft)': 2722.0,

 'Height (m)': 829.8,

 'Rank': 1}

Writing for Excel for Real

The final step is to convert this data to our preferred destination format.

https://www.sitepoint.com/python-regex/

It’s sometimes useful to be able to create nicer Excel output than CSV can
provide. In particular, a CSV file looks very plain when loaded into a
spreadsheet, and has no formatting at all. If we’re producing a sheet for our
own data exploration, then it may not matter how pretty it is. But a little
effort put into making data look more readable can help a lot, especially if it’s
destined for someone else. For this, we’ll use Python’s XlsxWriter, which
can be installed with pip install Xlsxwriter. We can then pay some

attention to the examples given in XlsxWriter’s tutorial.

First, create a new Excel spreadsheet file, and add a worksheet to it:

import xlsxwriter

workbook = xlsxwriter.Workbook('tallest_buildings.xlsx')

worksheet = workbook.add_worksheet()

To add formatting to Excel cells using XlsxWriter, it’s easiest to define a
particular format style, which can then be applied later. Let’s do that for some
of the cell data up front:

Add a bold red format to use to highlight cells

bold = workbook.add_format({

 'bold': True, 'font_color': 'red'

})

Add a number format for cells with heights.

heights = workbook.add_format({'num_format': '#,##0.00'})

https://xlsxwriter.readthedocs.io/
https://xlsxwriter.readthedocs.io/tutorial02.html

The first row of the spreadsheet will be the column titles. We can fetch these
by using the dictionary keys from the first building in the list:

column_titles = tallest_buildings[0].keys()

row_number = 0 # we write the column titles in row 0

We now need to walk through this list of titles and write each into its
corresponding column in row 0. To do this, we use worksheet.write with a

row number (always 0), column number (starting at 0 and increasing by one

for each column title), cell content (the column title string itself), and a cell
format (bold, as defined above). Python provides the useful enumerate()

function to iterate the list while getting the index position for each item.
enumerate([a, b, c, ...]) will return a list ([(0, a), (1, b), (2, c),

...]) which can be iterated over to write out our column titles at the top of

each column:

for column_number, title in enumerate(column_titles):

 worksheet.write(row_number, column_number, title, bold)

Then, to write out all the data, we do exactly the same thing: iterate through
the column titles list once for each building, and write out the value of that
field in the building’s dictionary into the appropriate row and column
number:

Start from the first cell below the headers.

row_number = 1

Iterate over the buildings and write them out row by row,

for building in tallest_buildings:

 for column_number, title in enumerate(column_titles):

 worksheet.write(row_number, column_number, building[title], heights)

 row_number += 1

Finally, a call to worksheet.autofit() adjusts all the cell widths in the

spreadsheet so they fit the data contained with them, similar to double-
clicking on a column border in Excel itself. Then, closing the worksheet
ensures it’s saved:

worksheet.autofit()

workbook.close()

The script and input files can be downloaded from GitHub.

And then we have some more nicely formatted Excel data to look at, as
pictured below.

Summary

https://github.com/spbooks/pythonuseful1

And that’s all we need! Whether we’re using code libraries to find real
libraries, or trying to extract sense from a mess of reports or published data,
Python’s there for us.

For each file or set of data we want to work with, we can take these three
steps:

1. Load the data we want into a set of Python data structures, using
Python’s built-in modules or others that we find from PyPI which can
read that format.

2. Manipulate the data however we want—which is convenient, because
it’s now a set of Python data structures.

3. Serialize the data into whatever output format we want, again using
built-in or third-party modules.

CHAPTER 2: PYTHON FOR STITCHING
TOGETHER OTHER THINGS

Python is good at translating data from one format to another and altering it
along the way, as we saw in the first tutorial. But a good proportion of what
we may want to do involves controlling and working with other programs
and other data sources that aren’t files.

Sometimes we need to do more than process the data in an Excel file we’ve
been sent. For example, we may want to fetch some pages from the Web, or
work with an online API, or control our computer itself (such as renaming a
batch of files, or changing how our operating system works).

Python is good at this stuff as well, so let’s dive into how we can use Python
as a Swiss Army knife for anything we might want to do with our computer
or the Internet.

All the example code from this tutorial is available on GitHub.

Fetching Data from an HTTP API

In the first tutorial, we extracted data from Wikipedia’s HTML, but this isn’t
the best way to retrieve data in our scripts. Most of the time, we’ll be
accessing an HTTP API. That is, we’ll be making an HTTP call to a web
page designed to be read by machines rather than by people. API data is
normally in a machine-readable format—usually either JSON or XML. (If we
come across data in another format, we can use the techniques described in
the previous tutorial to convert it to JSON, of course!) Let’s look at how to
use an HTTP API from Python.

https://github.com/spbooks/pythonuseful1

The general principles of using an HTTP API are simple:

1. Make an HTTP call to the URLs for the API, possibly including some
authentication information (such as an API key) to show that we’re
authorized.

2. Get back the data.
3. Do something useful with it.

Python provides enough functionality in its standard library to do all this
without any additional modules, but it will make our life a lot easier if we
pick up a couple of third-party modules to smooth over the process. The first
is the requests module. This is an HTTP library for Python that makes
fetching HTTP data more pleasant than Python’s built-in urllib.request,

and it can be installed with python -m pip install requests.

To show how easy it is to use, we’ll use Pixabay’s API (documented here).
Pixabay is a stock photo site where the images are all available for reuse,
which makes it a very handy destination. What we’ll focus on here is fruit.
We’ll use the fruit pictures we gather later on, when manipulating files, but
for now we just want to find pictures of fruit, because it’s tasty and good for
us.

To start, we’ll take a quick look at what pictures are available from Pixabay.
We’ll grab a hundred images, quickly look through them, and choose the
ones we want. For this, we’ll need a Pixabay API key, so we need to create
an account and then grab the key shown in the API documentation under
“Search Images”.

https://requests.readthedocs.io/en/latest/
https://pixabay.com/
https://pixabay.com/api/docs/
https://pixabay.com/api/docs/

The requests Module

The basic version of making an HTTP request to an API with the requests

module involves constructing an HTTP URL, requesting it, and then reading
the response. Here, that response is in JSON format. The requests module

makes each of these steps easy. The API parameters are a Python dictionary,
a get() function makes the call, and if the API returns JSON, requests

makes that available as .json on the response. So a simple call will look like

this:

import requests

PIXABAY_API_KEY = "11111111-7777777777777777777777777"

base_url = "https://pixabay.com/api/"

base_params = {

 "key": PIXABAY_API_KEY,

 "q": "fruit",

 "image_type": "photo",

 "category": "food",

 "safesearch": "true"

}

response = requests.get(base_url, params=base_params)

results = response.json()

This will return a Python object, as the API documentation suggests, and we
can look at its parts:

>>> print(len(results["hits"]))

20

>>> print(results["hits"][0])

{'id': 2277, 'pageURL': 'https://pixabay.com/photos/berries-fruits-food-blackberries-2277/', 'type': 'photo', 'tags': 'berries, fruits, food', 'previewURL': 'https://cdn.pixabay.com/photo/2010/12/13/10/05/berries-2277_150.jpg', 'previewWidth': 150, 'previewHeight': 99, 'webformatURL': 'https://pixabay.com/get/gc9525ea83e582978168fc0a7d4f83cebb500c652bd3bbe1607f98ffa6b2a15c70b6b116b234182ba7d81d95a39897605_640.jpg', 'webformatWidth': 640, 'webformatHeight': 426, 'largeImageURL': 'https://pixabay.com/get/g26eb27097e94a701c0569f1f77ef3975cf49af8f47e862d3e048ff2ba0e5e1c2e30fadd7a01cf2de605ab8e82f5e68ad_1280.jpg', 'imageWidth': 4752, 'imageHeight': 3168, 'imageSize': 2113812, 'views': 866775, 'downloads': 445664, 'collections': 1688, 'likes': 1795, 'comments': 366, 'user_id': 14, 'user': 'PublicDomainPictures', 'userImageURL': 'https://cdn.pixabay.com/user/2012/03/08/00-13-48-597_250x250.jpg'}

The API returns 20 hits per page, and we’d like a hundred results. To do this,
we add a page parameter to our list of params. However, we don’t want to

alter our base_params every time, so the way to approach this is to create a

loop and then make a copy of the base_params for each request. The built-in

copy module does exactly this, so we can call the API five times in a loop:

for page in range(1, 6):

 this_params = copy.copy(base_params)

 this_params["page"] = page

 response = requests.get(base_url, params=params)

This will make five separate requests to the API, one with page=1, the next

with page=2, and so on, getting different sets of image results with each call.

This is a convenient way to walk through a large set of API results. Most
APIs implement pagination, where a single call to the API only returns a
limited set of results. We then ask for more pages of results—much like
looking through query results from a search engine.

Since we want a hundred results, we could simply decide that this is five calls
of 20 results each, but it would be more robust to keep requesting pages until
we have the hundred results we need and then stop. This protects the calls in
case Pixabay changes the default number of results to 15 or similar. It also
lets us handle the situation where there aren’t a hundred images for our

search terms. So we have a while loop and increment the page number every

time, and then, if we’ve reached 100 images, or if there are no images to
retrieve, we break out of the loop:

images = []

page = 1

while len(images) < 100:

 this_params = copy.copy(base_params)

 this_params["page"] = page

 response = requests.get(base_url, params=this_params)

 if not response.json()["hits"]: break

 for result in response.json()["hits"]:

 images.append({

 "pageURL": result["pageURL"],

 "thumbnail": result["previewURL"],

 "tags": result["tags"],

 })

 page += 1

This way, when we finish, we’ll have 100 images, or we’ll have all the
images if there are fewer than 100, stored in the images array. We can then

go on to do something useful with them. But before we do that, let’s talk
about caching.

Caching HTTP Requests

It’s a good idea to avoid making the same request to an HTTP API more than
once. Many APIs have usage limits in order to avoid them being overtaxed

by requesters, and a request takes time and effort on their part and on ours.
We should try to not make wasteful requests that we’ve done before.
Fortunately, there’s a useful way to do this when using Python’s requests

module: install requests-cache with python -m pip install requests-

cache. This will seamlessly record any HTTP calls we make and save the

results. Then, later, if we make the same call again, we’ll get back the locally
saved result without going to the API for it at all. This saves both time and
bandwidth. To use requests_cache, import it and create a CachedSession,

and then instead of requests.get use session.get to fetch URLs, and we’ll

get the benefit of caching with no extra effort:

import requests_cache

session = requests_cache.CachedSession('fruit_cache')

...

response = session.get(base_url, params=this_params)

Making Some Output

To see the results of our query, we need to display the images somewhere. A
convenient way to do this is to create a simple HTML page that shows each
of the images. Pixabay provides a small thumbnail of each image, which it
calls previewURL in the API response, so we could put together an HTML

page that shows all of these thumbnails and links them to the main Pixabay
page—from which we could choose to download the images we want and
credit the photographer. So each image in the page might look like this:

https://pypi.org/project/requests-cache/

We can construct that from our images list using a list comprehension, and

then join together all the results into one big string with "\n".join():

html_image_list = [

 f"""

 """

 for image in images

]

html_image_list = "\n".join(html_image_list)

F-strings

In the code above, we used an f-string, or “formatted string literal”. These
were introduced in Python 3.6 as a convenient alternative to Python’s old
string format() method or % interpolation syntaxes, used for embedding the

value of a variable in a string. An f-string—prefixed with f before the quote

marks—can have a variable’s value inserted into it (and optionally formatted
in many ways) by using {curly braces}. So, a simple example might be:

>>> name = "Stuart"

https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/tutorial/inputoutput.html#tut-f-strings

>>> print(f"Hello, {name}!")

Hello, Stuart!

At that point, if we write out a very plain HTML page containing that list, it’s
easy to open that in a web browser for a quick overview of all the search
results we got from the API, and click any one of them to jump to the full
Pixabay page for downloads:

html = f"""<!doctype html>

<html><head><meta charset="utf-8">

<title>Pixabay search for {base_params['q']}</title>

<style>

ul {{

 list-style: none;

 line-height: 0;

 column-count: 5;

 column-gap: 5px;

}}

li {{

 margin-bottom: 5px;

}}

</style>

</head>

<body>

{html_image_list}

</body></html>

"""

output_file = f"searchresults-{base_params['q']}.html"

with open(output_file, mode="w", encoding="utf-8") as fp:

 fp.write(html)

print(f"Search results summary written as {output_file}")

Controlling Windows

In this section, we’ll look at ways to control the Windows OS with Python.

The Windows Registry

Windows is entirely controllable from code, using the Win32 API, and

Microsoft provides extensive documentation at Microsoft Docs for
everything that Windows can programmatically do. All of this is accessible
from Python as well, although it can seem a little impenetrable if we’re not
already accustomed to the Win32 API’s particular way of working.
Fortunately, there are various wrappers for these low-level APIs to make
code easier to write for Python programmers.

A simple example is to interact with the Windows Registry. Python actually
includes the winreg module for doing this out of the box, so no extra
installation is required. For an example, let’s check where the Program Files

folder actually lives:

>>> import winreg

>>> hive = winreg.ConnectRegistry(None, winreg.HKEY_LOCAL_MACHINE)

>>> key = winreg.OpenKey(hive, r"SOFTWARE\Microsoft\Windows\CurrentVersion")

>>> value, type = winreg.QueryValueEx(key, "ProgramFilesDir")

>>> value

'C:\\Program Files'

Raw Strings

In the code above, we’re using “raw strings” to specify the key name:

r"SOFTWARE\Microsoft\Windows\CurrentVersion"

Strings passed to the Win32 API often include the backslash character (\),

because Windows uses it in file paths and registry paths to divide one
directory from the next.

https://learn.microsoft.com/en-us/windows/win32/api/
https://docs.python.org/3/library/winreg.html

However, Python uses a backslash as an escape character to allow adding
special, untypeable characters to a string. For example, the Python string
"first line\nsecond line" is a string with a newline character in it, so that

the text is spread over two lines. This would conflict with the Windows path
character: a file path such as "C:\newdir\myfile.txt" would have the \n

interpreted as a newline.

Raw strings avert this: prefixing a Python string with r removes the special

meaning of a backslash, so that r"C:\newdir\myfile.txt" is interpreted as

intended. We can see that backslashes are treated specially by the value we
get back for the folder location: it’s printed as 'C:\\Program Files'—with

the backslash doubled to remove its special meaning—but this is how Python
prints it rather than the actual value. Python could have printed that as
r'C:\Program Files' instead.

The Windows API

Reading the registry (and even more so, writing to it) is the source of a
thousand hacks on web pages (many of which are old, shouldn’t be linked to,
and use the ancient REGEDT32.EXE), but it’s better to actually use the API for

this. (Raymond Chen has written many long sad stories about why we should
use the API and not the registry.) How would we use the Win32 API from
Python to work this out?

The Win32 Python API is available in the PyWin32 module, which can be
obtained with python -m pip install pywin32. The documentation for the

https://devblogs.microsoft.com/oldnewthing/20031103-00/?p=41973
https://pypi.org/project/pywin32/
https://mhammond.github.io/pywin32/

module is rather sparse, but the core idea is that most of the Windows Shell
API (that’s concerned with how the Windows OS is set up) is available in the
win32com.shell package. To find out the location of the Program Files

folder, MSDN shows that we need the SHGetKnownFolderPath function, to
which is passed a KNOWNFOLDERID constant and a flag set to 0. Shell

constants are available to Python in win32com.shell.shellcon (for “shell

constants”), which means that finding the Program Files folder requires just

one (admittedly complex) line:

>>> from win32com.shell import shell, shellcon

>>> shell.SHGetKnownFolderPath(shellcon.FOLDERID_ProgramFiles, 0)

"C:\\Program Files"

Digging around in the depths of the Win32 API gives us access to anything
we may want to access in Windows (including windows!), but as we’ve seen,
it can be quite complicated to find out how to do what we need to, and then to
translate that need into Python. Fortunately, there are wrapper libraries for
many of the functions commonly used. One good example is PyGetWindow,
which allows us to enumerate and control on-screen windows. (It claims to be
cross-platform, but it actually only works on Windows. But that’s all we need
here.)

We can install PyGetWindow with python -m pip install pygetwindow,

and then list all the windows on screen and manipulate them:

>>> import pygetwindow as gw

>>> allMSEdgeWindows = gw.getWindowsWithTitle("edge")

>>> allMSEdgeWindows

https://learn.microsoft.com/en-gb/windows/win32/api/shlobj_core/nf-shlobj_core-shgetknownfolderpath
https://learn.microsoft.com/en-us/windows/win32/shell/knownfolderid
https://github.com/asweigart/PyGetWindow

[Win32Window(hWnd=197414), Win32Window(hWnd=524986)]

>>> allMSEdgeWindows[0].title

'pywin32 · PyPI - Microsoft Edge'

>>> allMSEdgeWindows[1].title

'Welcome to Python.org - Microsoft Edge'

Those windows can be controlled. A window object can be minimized and
restored, or resized and moved around the screen, and focused and brought to
the front:

>>> pythonEdgeWindow = allMSEdgeWindows[1]

>>> pythonEdgeWindow.minimize()

>>> pythonEdgeWindow.restore()

>>> pythonEdgeWindow.size

Size(width=1050, height=708)

>>> pythonEdgeWindow.topleft

Point(x=218, y=5)

>>> pythonEdgeWindow.resizeTo(800, 600)

It’s always worth looking on PyPI for wrapper modules that provide a more
convenient API for whatever we’re trying to do with windows or with
Windows. But if need be, we have access to the whole Win32 API from
Python, and that will let us do anything we can think of.

Controlling macOS

Working on a Mac, we can control almost everything about the system using
pyobjc, the Python-to-Objective-C bridge. Apple makes most of its OS
controllable via the AppKit module, and pyobjc gives Python access to all of

https://pyobjc.readthedocs.io/en/latest/

this. This will be most useful if we already know the AppKit way to do the
thing we want, but with a little exploration it’s possible to make our way
through the operating system APIs.

Let’s try an example. First, we’ll need pyobjc, which can be installed with

pip install pyobjc. This will install a whole list of operating system API

bridges, allowing access to all sorts of aspects of macOS. For now, we’ll
consider AppKit, which is the tool used to build and control running apps on
a Mac desktop.

We can list all the applications currently running using AppKit:

Python 3.9.6 (default, Oct 18 2022, 12:41:40)

[Clang 14.0.0 (clang-1400.0.29.202)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> from AppKit import NSWorkspace

>>> NSWorkspace.sharedWorkspace().runningApplications()

(

 "<NSRunningApplication: 0x60000145c000 (com.apple.loginwindow - 148) LSASN:{hi=0x0;lo=0x6006}>",

 "<NSRunningApplication: 0x60000145c080 (com.apple.backgroundtaskmanagement.agent - 475) LSASN:{hi=0x0;lo=0xb00b}>",

 "<NSRunningApplication: 0x60000145c100 (com.apple.WindowManager - 474) LSASN:{hi=0x0;lo=0xc00c}>",

 "<NSRunningApplication: 0x60000145c180 (com.apple.CoreLocationAgent - 500) LSASN:{hi=0x0;lo=0xe00e}>",

 "<NSRunningApplication: 0x60000145c980 (com.apple.Terminal - 1302) LSASN:{hi=0x0;lo=0x24024}>",

 "<NSRunningApplication: 0x60000145ca00 (com.apple.Safari - 1303) LSASN:{hi=0x0;lo=0x25025}>",

 "<NSRunningApplication: 0x60000145cb80 (com.apple.Spotlight - 1310) LSASN:{hi=0x0;lo=0x28028}>",

 "<NSRunningApplication: 0x60000145cc00 (com.apple.finder - 1306) LSASN:{hi=0x0;lo=0x29029}>",

)

>>>

https://developer.apple.com/documentation/appkit/

This will give a long list of NSRunningApplication objects. Each one

corresponds to a specific application currently running on the desktop. Many
are “invisible” applications (things that are running but aren’t necessarily
showing a window), but others are things that we might think of as actual
applications that we can see—such as Safari, Terminal, and so on.
NSRunningApplication is documented at developer.apple.com, where its

properties can be seen. For example, each application has a localizedName

and a bundleIdentifier:

>>> for nsapp in NSWorkspace.sharedWorkspace().runningApplications():

... print(f"{nsapp.localizedName()} -> {nsapp.bundleIdentifier()}")

...

loginwindow -> com.apple.loginwindow

BackgroundTaskManagementAgent -> com.apple.backgroundtaskmanagement.agent

WindowManager -> com.apple.WindowManager

CoreLocationAgent -> com.apple.CoreLocationAgent

Terminal -> com.apple.Terminal

Safari -> com.apple.Safari

Spotlight -> com.apple.Spotlight

Finder -> com.apple.finder

We can also see that a NSRunningApplication object has an activate

function, which we can call to activate that app as though we had clicked its
icon in the Dock. So, to find Safari and then activate it, we would use that
activate function. The call to activate requires a value for options, as the

documentation describes, and that also needs to be imported from AppKit:

https://developer.apple.com/documentation/appkit/nsrunningapplication
https://developer.apple.com/documentation/appkit/nsrunningapplication/1528725-activate

>>> from AppKit import NSWorkspace, NSApplicationActivateIgnoringOtherApps

>>> safari_list = [x for x in NSWorkspace.sharedWorkspace().runningApplications()

 if x.bundleIdentifier() == 'com.apple.Safari']

>>> safari = safari_list[0]

>>> safari.activateWithOptions_(NSApplicationActivateIgnoringOtherApps)

Now Safari is activated.

Finding Python Versions of macOS APIs

Finding the name of something in Python that corresponds to the Objective-C
name can be a little tricky. As shown in the code above, the Objective-C
activate function is called activateWithOptions_ in Python. There’s a set

of rules for this name translation, which the pyobjc documentation explains,
but it can sometimes be quicker to use Python’s own dir() function to show

all the properties of an object and then pick out the one that looks most
plausible:

>>> print(len(dir(safari)))

452

Ouch! Our safari instance of an NSRunningApplication has 452 properties!

Well, the one we want is probably called something like “activate”, so:

>>> print([x for x in dir(safari) if "activate" in x.lower()])

['activateWithOptions_', 'activateWithOptions_']

Aha! So activateWithOptions_ is the name of the function we need to call.

Similarly, the name of the option we want to pass to that function is in

https://pyobjc.readthedocs.io/en/latest/core/intro.html#underscores-and-lots-of-them

AppKit itself:

>>> [x for x in dir(AppKit) if "ignoringotherapps" in x.lower()]

['NSApplicationActivateIgnoringOtherApps']

This process can feel a little exploratory at times, but it’s possible to do
anything that Objective-C can do from Python as well.

File Processing

It’s common to want to manipulate a collection of files—such as find their
names and rename them, move them around into different directories, or copy
and delete them. Let’s see how Python’s built-in os, glob, and shutil

modules give us the tools we need to do that.

Imagine we have a set of photographs we’d like to classify and name
according to what’s in them. There are online APIs that can actually give you
a description of the contents of an image, but they all require signups and
mostly require payment, so for now we’ll take a simpler example. JPEG
images can have embedded metadata describing when a picture was taken,
which camera it was taken on, and a whole host of other data, including an
image title. So let’s imagine that we have a set of images with title data, and
that we’d like to rename the images after that title data—so that a picture
named IMG_1234.JPG but titled “Grandma” becomes Grandma.jpg.

For this, we’ll need to read the metadata from Python, and the best way to do
any image manipulation is with Pillow, the Python Imaging Library. The
metadata we want here is called IPTC, defined in extreme detail by the
International Press Telecommunications Council in the IPTC Photo Metadata
Standard. In particular, we want the image’s title tag, with code 2:120. We

can define a convenient variable for that:

IPTC_Title = (2, 120)

Next, let’s loop over each of our images. Python’s glob module is useful for

this. A glob (a term from Unix prehistory, short for “global”) is a pattern
using a wildcard character and file specification to gather a list of all files
matching that pattern. (For example, *.txt will match a list of files such as

myfile.txt, 1.txt, everything.txt, and so on.) In Python,

glob.glob("*.txt") does the same thing. It returns a list of matching

https://pillow.readthedocs.io/en/stable/
https://iptc.org/std/photometadata/specification/IPTC-PhotoMetadata

filenames, which we can then iterate over. We can also open each one with
the Python Imaging Library:

import glob, os

from PIL import Image

for image_filename in glob.glob("*.jpg"):

 im = Image.open(image_filename)

Here, we have a reference to each image. Pillow can do all sorts of image
manipulations, such as resizing, changing the content, saving in different
formats, and so on. But for now, all we want to do is read the metadata. For
that, we use Pillow’s IptcImagePlugin, and we can have it print out the

relevant image title:

from PIL import Image, IptcImagePlugin

for image_filename in glob.glob("*.jpg"):

 im = Image.open(image_filename)

 iptc = IptcImagePlugin.getiptcinfo(im)

 im.close()

 title = iptc[IPTC_Title].decode("utf-8")

Now that we know the title for a given image, we can use it to construct a
new filename, and then use os.rename to rename the file to this new name.

The os.rename function does more than simply renaming; it can also move a

file to a different directory or different disk. But in this case, we’re only
renaming the file in place:

destination_filename = f"{title}.jpg"

print(f"Renaming {image_filename} -> {destination_filename}")

if os.path.exists(destination_filename):

 print(f"{destination_filename} already exists; skipping")

else:

 os.rename(image_filename, destination_filename)

We’re being a little careful here. If the destination_filename already exists,

then os.rename can—depending on our OS—either overwrite it without

warning or throw an exception. So we check beforehand whether that file
exists, and if it does, we assume that we’ve already handled this image and
therefore skip it.

Now, a list of the directory shows the files all renamed according to their
titles. We could look in the file manager for this, but we’re in Python, so let’s
use Python for it:

>>> import os

>>> os.listdir()

['avocado.jpg', 'kiwifruit.jpg', 'lemon.jpg', 'apple.jpg',

'strawberry.jpg', 'rename-images.py', 'orange.jpg']

Sending Email via Gmail

When writing scripts for our own use, it’s useful to be able to send emails
from them. For example, if we build a script that’s run as a scheduled task on
a regular basis, having it email a summary report to us after it’s run can be a
good way to check that the script did what it was supposed to, and also to see
what it found. Something that regularly downloads data from an HTTP API

and then processes it can email us a description of what it found, so that we
can go and read its results.

Setting Up Scheduled Tasks

For details on setting up scheduled tasks, see the Windows, macOS, or Linux
cron documentation.

There are many programmatic email services, such as SendGrid, Mandrill,
and Mailgun. These are useful if we’re generating a lot of email. They have
official APIs and paid plans, and if we’re setting up a large-scale operation,
it’s certainly worth looking into signing up to one of these services and using
their Python libraries to send email. But for something small or personal, this
can seem like a lot of effort, and there’s an alternative if we have a Gmail
account (as many people do).

There’s an official Google Gmail Python API and module, but it’s quite
annoying to set up and use. Python comes with the smtplib and email
modules as part of the built-in library, and these are perfectly capable of
sending email via Gmail after a little setup. We can even use them to send
email from ourself to ourself. We can’t send too many emails this way,
though. If we want to send tens or hundreds of emails to many different
recipients, it’s best to investigate the programmatic email services mentioned
above. But as an email notification after a scheduled task, using Gmail from
Python can be the ideal personal solution.

To use our Gmail account to send email this way, we first have to set up an
app password for our Python script to use. Go to the App passwords of your

https://learn.microsoft.com/en-us/windows/win32/taskschd/task-scheduler-start-page
https://support.apple.com/en-gb/guide/automator/welcome/mac
https://www.sitepoint.com/cron-jobs/
https://console.cloud.google.com/apis/library/gmail.googleapis.com?project=geocaching-366015&pli=1
https://docs.python.org/3/library/smtplib.html
https://docs.python.org/3/library/email.html
https://myaccount.google.com/apppasswords

Google account, and under Select app, choose Mail, and under Select device
choose Other (custom name) and fill in a name (such as “My Python
Script”). We’ll be shown a screen that lists our new app password. Make a
note of this password somewhere.

To send an email, we’ll use the smtplib module. First, we need to define the

content of our email. This part is our job. It’s a Python string, so we can
substitute values in, use a templating language, or build it up from a list;
whatever’s convenient. Here, we’ll use a simple example:

email_text = f"""

Hi! This is the report from our script.

We have added 1 + 2 and gotten the answer {1+2}.

Bye!

"""

We’ll also define two variables to hold our Gmail account details: the account
name (which is the part of our Gmail address before @gmail.com) and the app

password we just created:

GMAIL_USERNAME = "mygmailaccount12345"

GMAIL_APP_PASSWORD = "yxyloqscucpxdsxq"

Next, we’ll create the message as an object using the email module. An email

can have many different properties, but the important ones here (in addition
to the text of the body) are To, From, and Subject. From will be set to our

Gmail address, which we’ve already defined, and To should be a string

containing the email address the email is being sent to. This can be our own
address, and if the email is going to more than one person, we need to
separate the addresses by commas. We’ll define these in a list, because we’ll
need the list later:

recipients = ["sil@kryogenix.org"]

msg = MIMEText(email_text)

msg["Subject"] = "Email report: a simple sum"

msg["To"] = ", ".join(recipients)

msg["From"] = f"{GMAIL_USERNAME}@gmail.com"

Finally, we’ll use smtplib to connect to Gmail’s mail server, log in with our

provided details, and send the email. SMTP is the underlying protocol that’s
used to send email. When we send an email from our normal email app,
SMTP is how the app actually does that. Here, we’re doing it directly from
our own code:

smtp_server = smtplib.SMTP_SSL('smtp.gmail.com', 465)

smtp_server.login(GMAIL_USERNAME, GMAIL_APP_PASSWORD)

smtp_server.sendmail(msg["From"], recipients, msg.as_string())

smtp_server.quit()

Our email should now be sent. Be aware, of course, that this is an
introduction, so we’ve done no error handling or input validation. As
mentioned, if we’re sending lots of email, we should consider using a
dedicated service, and we should think about the need to handle errors,
failures to send, and the like. But sending one alert email to ourself, for
example, can be done usefully with simple code like this.

Summary

Python gives us the ability to combine and control other things. Whether
that’s retrieving data from other people’s APIs ready for processing, altering
our own desktop and the settings and windows on it, or creating and sending

https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol

emails, any time we plan to automate a task there’s likely to be a Python
library to help us. We’ve seen that Python is able to glue together data in
different formats. Now we can also see that it’s able to glue together different
programs and systems as well.

CHAPTER 3: WORDS AND NUMBERS

Python is a powerful tool that can be used to solve a wide variety of
problems, both big and small. In this tutorial, we’ll explore how to use
Python to answer questions, solve puzzles, and simulate various scenarios.
Some are too large to solve without help, but small enough that they can be
reasonably solved on a computer. For others, we’ll use code to do some of
the heavy lifting, to verify the answers we might have obtained some other
way, or just to have a little fun. When we’re playing word puzzles or
checking out fun recreational math tricks, a little code can go a long way.

Word Ladder

There’s a common word game where we’re given two words (such as
“SALT” and “MEAL”) and we have to build a “ladder” from one word to the
other, by changing one letter at a time so that each change still gives a
legitimate word. In the example above, we might start with SALT and then
change the first letter to M, giving MALT, then the second to give MELT,
then to MEAT and finally to the destination of MEAL, in four steps.

This is quite a good way to sharpen our language skills—including our
Python language skills, because we’re going to cheat!

If we’re going to do anything with words, we need a list of valid words. A
good one for English is words_alpha.txt from the english-words repository.

Word Lists

There are similar lists available for other languages as well. Users on macOS

https://raw.githubusercontent.com/dwyl/english-words/master/words_alpha.txt
https://github.com/dwyl/english-words/

or Linux are likely to already have one built in to the OS, in
/usr/share/dict/words, which may save a download! This is a text file of

words, one per line. It starts with “a”, then “aa”, and carries on until
“zygotes” or “zwitterionic” or “Zyzzogeton”.

There are other, more comprehensive lists of words around. Scrabble
famously has a list of officially sanctioned words (which we can even buy in
hardcopy!), but one of the lists above will do for now.

The first building block towards solving this problem will be to find all the
legitimate words we can make by changing one letter of another word. There
are various ways to do this (and it’s worth considering how to do this most
efficiently later), but for now we’ll keep things simple. Given a word, and a
list of all words, find all the new words we can make by changing one letter.

First, we need the word list. We’ll load this into a Python set. A set is like a
list, but it doesn’t have an order, and it can’t contain duplicates. This saves us
from having to worry about the same word appearing in the set twice. Sets
also have some convenient methods taken from mathematics. The
intersection of two sets is all the entries that are in both sets, and the
difference is all the entries that are in one or the other but not both:

>>> mylist = ["able", "echo", "site", "site", "salt", "type", "zoos"]

>>> myset = set(mylist)

>>> myset

{'able', 'zoos', 'salt', 'echo', 'type', 'site'}

>>> myset2 = set(["code", "echo", "site", "walk", "webs"])

>>> myset2

https://docs.python.org/3/tutorial/datastructures.html#sets

{'echo', 'webs', 'code', 'site', 'walk'}

>>> myset.intersection(myset2)

{'site', 'echo'}

>>> myset.difference(myset2)

{'type', 'able', 'salt', 'zoos'}

Note that the word “site” appears in mylist twice but only once in myset.

For the purposes of the word ladder game, we only care about four-letter
words, and we want to eliminate words with capital letters such as “Abby”,
“AWOL”, or “YMCA”. So, load the words file from above (whether
downloaded or provided by the OS) and extract each line as a word, as long
as the word is four characters long and it’s all lowercase:

with open("/usr/share/dict/words") as fp:

 words = set([x.strip() for x in fp.readlines()

 if len(x.strip()) == 4 and x == x.lower()])

Now we need a function that can find all the possible ways to change one
letter in a given word to get another word. One simple way to do this is to
make a complete copy of the word list, and then successively discard items
from it that do or don’t match.

Imagine that we want to find all words that can be produced from CODE by
changing the third letter (which should give us COME, COKE, COPE, and so
on). First, make a copy of the word list. Then cut the word list down to all
those words that match the first letter of our start word, CODE—that is, all
words that begin with C. The word list will now look like {cabs, cads,

cage, cagy, ...}.

Now, let’s move on to the second letter, cutting the word list down again to
all those where the second letter (O) matches. The word list now looks like
{coal, coat, coax, cobs, coda, code, cods, cogs, ...}.

The third letter is the one we want to change! So now we cut the word list
down again, but this time we only keep words that differ from our start word.
That is, we keep only words from the list without a D in the third position.
Now the list looks like {coal, coat, coax, cobs, cogs, coif, coil,

coin, ...}.

Finally, let’s deal with the fourth letter. Here again, we keep words that
match by having the E from code in the fourth position. This gives our final
word list: {coke, come, cone, cope, core, cote, cove}. This list leaves

us with all the words that can be formed by changing the third letter of
CODE. In Python, it looks like this:

def change(word, charidx, words):

 matches = copy.copy(words)

 for i in range(len(word)):

 if i == charidx:

 matches = [x for x in matches if x[i] != word[i]]

 else:

 matches = [x for x in matches if x[i] == word[i]]

 return set(matches)

We can call this code to confirm what we’ve just established:

>>> print(wordladder.change('code', 2, wordladder.words))

{'cote', 'coke', 'cove', 'core', 'cope', 'cone', 'come'}

Note that we pass 2 as charidx, because it’s zero-based (so 0 for first

character, 1 for second, etc.). Note also that the set returned by the function
isn’t displayed in alphabetical order, because sets have no ordering.

With this, we can create a list of all possible words that can be found by
changing one letter—by calling the change function four times, once for each

letter. Let’s try that for SALT:

>>> word = "salt"

>>> changes = (list(change(word, 0, words)) + list(change(word, 1, words)) +

 list(change(word, 2, words)) + list(change(word, 3, words)))

>>> changes

['halt', 'malt', 'silt', 'sale']

And with that, the steps to making a ladder are clear: find all the words that
the start word can become, and find all the words that the end word can
become, and look for crossovers. If there’s a word in both these new sets,
then that’s our ladder. If there isn’t, then do the step again: take each of the
words we’ve made and evolve each of them into all its possible next words,
and look again for crossovers.

An example may help. To make a ladder from SALT to MATH, we take each
of the words and evolve them one step:

SALT with one change gives MALT, HALT, SILT, SALE.

MATH with one change gives LATH, HATH, BATH, OATH, PATH,
MYTH, MOTH, MASH, MATS, MATE, MATT.

There’s no word in common in those two lists, so we do it again. For each of
those words, make another list:

HALT gives SALT, MALT, HILT, HART, HAFT, HALL, HALO,
HALE, HALF. We’ve already seen SALT and MALT in the lists, so
discard those.
MALT gives HALT, SALT, MELT, MOLT, MAST, MART, MATT,
MALE, MALL. Again discard HALT and SALT … but now we have
MATT, which is in the list from MATH, so we’ve found a word ladder!
SALT to MALT to MATT to MATH, and that’s our answer.

To implement this, it will be useful to keep a few things: a queue (an ordered
collection) of words we need to evolve, a set of words we’ve already seen,
and a record of the chain taken to reach each word. The algorithm then looks
something like this, in pseudocode:

Add the start word to the "from" queue

Add the end word to the "end" queue

Start the loop

For each word in the "from" queue:

 Get all possible words this word can evolve into

 For each of these evolutions:

 Add the evolution to the end of the "from" queue

 Set the chain for the evolution to be the chain of the from word plus this word

 Add the evolution to the "from" set of seen words

Do the same for each word in the "to" queue

Is there an intersection between the "from" set of seen words and the "to" set?

If there is, then we have a word ladder!

 Get the intersecting word and look up its chain in both chain dictionaries

 Add the two chains together

 Print this combined chain as our word ladder

If there is no intersection:

 Go back to the loop and do it all again

Taking one step in this process—evolving the next word in the queue and
then adding it to the appropriate lists—looks like this:

def step(queue, chain, used, words):

 nxt = queue.pop(0)

 changes = (list(change(nxt, 0, words)) + list(change(nxt, 1, words)) +

 list(change(nxt, 2, words)) + list(change(nxt, 3, words)))

 changes = [c for c in changes if c not in used]

 for c in changes:

 chain[c] = chain[nxt] + [nxt]

 used.add(c)

 queue.append(c)

To check for intersections between the “from” set of seen words and the “to”
set, we need a function that uses set intersections, and then combines the
chains if an intersection is found:

def win(wto, wfrom, chainfrom, chainto):

 matches = wto.intersection(wfrom)

 if matches:

 m = list(matches)[0]

 return chainfrom[m] + [m] + list(reversed(chainto[m]))

Finally, the controlling loop sets up the lists, and repeatedly calls step and

win until a ladder is found:

def ladder(start_word, end_word):

 wfrom = set()

 wto = set()

 qfrom = [start_word]

 qto = [end_word]

 chainfrom = {start_word: []}

 chainto = {end_word: []}

 while True:

 try:

 step(qfrom, chainfrom, wfrom, words)

 res = win(wto, wfrom, chainfrom, chainto)

 if res: return res

 step(qto, chainto, wto, words)

 res = win(wto, wfrom, chainfrom, chainto)

 if res: return res

 except IndexError:

 return ["No ladder found"]

Now, calling the ladder function returns a word ladder as expected!

>>> ladder("salt", "meat")

['salt', 'malt', 'melt', 'meat']

Formation

The techniques for solving word puzzles outlined above—by juggling letters
and checking a word list—are applicable quite generally.

Let’s take another example. At Christmas time each year, the UK
communications and spy agency GCHQ releases a set of puzzles to the
public. In 2022, one of these puzzles (in the “Coding” category) was called
Formation.

So, what we’d really like here is a way to take a three letter word (such as
FOR, the first word of the three), and get back a list of all legitimate words
that result from replacing one letter (O, in blue) with each of the letters of
another word (PART, the blue word).

https://www.gchq.gov.uk/news/xmaschallenge2022

We’ll need to do this for each of the three words, and for different letters
depending on the color, so factoring this out into a function will be useful.

First, load the word list again in the same way as above. This time, we need a
set of valid three-letter words:

with open("/usr/share/dict/words") as fp:

 words3 = set([x.strip() for x in fp.readlines()

 if len(x.strip()) == 3 and x == x.lower()])

Now we need the function to do replacements. Python has a convenient
method for taking a substring of an existing string, called string slicing. For
this, use square brackets and a zero-based “from” and “to” index. "abcdefgh"

https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str

[2:5] takes a substring starting at position 2 and ending at position 5, which

is "cde". We can leave out the “from” index, which makes the substring

begin at the start of the string (so "abcdefgh"[:5] is "abcde") and/or the “to”

index (so the substring ends at the end, and thus "abcdefgh"[4:] is "efgh").

This means that if, for example, we want to replace the fifth letter of a string
with an “X”, we can do so like this, where we get all the characters up to (but
not including) the fifth letter (so the “to” index is 4), then the X for
replacement, then all the characters after the fifth letter:

>>> mystr = "abcdefgh"

>>> mystr[:4] + "X" + mystr[5:]

'abcdXfgh'

With that, the replacement function might look like this:

def get_replacements(word, to_replace, replace_with):

 replacements = [word[:to_replace] + x + word[to_replace+1:]

 for x in replace_with]

 replacements = [w for w in replacements if w in words3 and w != word]

 return replacements

We can now call this with a word, a character index to replace, and specify
which letters to replace it with:

>>> get_replacements('for', 1, set('part'))

['far']

The function tries all the possible replacements of the O (the character at
position 1—that is, the second character) with each of the letters of PART,

giving FPR, FAR, FRR, and FTR. Only FAR is a word in the words3 list, so

that’s all that’s returned.

Given this function, solving the puzzle is now easy:

>>> get_replacements('mat', 0, set('part'))

['pat', 'tat', 'rat']

>>> get_replacements("ion", to_replace=0, replace_with=set("part"))

['ton']

After the blue replacements, there are now three possibilities for the second
word, and only one for each of the first and third. Similar calls to the function
take care of the green and the gold replacements (skipping word 1 for green
replacements because there aren’t any green letters in it!):

first the green

>>> get_replacements("pat", to_replace=1, replace_with=set("eyes"))

['pet']

>>> get_replacements("tat", to_replace=1, replace_with=set("eyes"))

[]

>>> get_replacements("rat", to_replace=1, replace_with=set("eyes"))

[]

>>> get_replacements("ton", to_replace=1, replace_with=set("eyes"))

['toe', 'toy']

then the gold

>>> get_replacements("far", to_replace=0, replace_with=set("uncurl"))

['car']

>>> get_replacements("pet", to_replace=2, replace_with=set("uncurl"))

['per', 'pen']

>>> get_replacements("toe", to_replace=1, replace_with=set("uncurl"))

[]

>>> get_replacements("toy", to_replace=1, replace_with=set("uncurl"))

['try']

So the three words are CAR, PER or PEN, and TRY. Putting those three
together yields only one valid word—CARPENTRY—which is the answer.

Rolling Dice

Tabletop roleplaying games have long used dice of many different shapes and
sizes as random number generators, and it can be useful to treat this as
something usefully handleable with a Python script. Many (many, many)
dice-roller apps exist, but it’s also easy enough to write our own dice-rolling
code as well. Doing so provides a nice example of using randomness, number
manipulation, and string parsing in Python.

In dice notation, rolling three six-sided dice is known as “3d6”, and rolling
two ten-sided dice is as “2d10”. This will come in handy below.

Rolling dice is an application of randomness. Python’s random module

provides a handful of useful functions, two of which are randint (which

gives a random number between two bounds), and choice (which chooses a

https://en.wikipedia.org/wiki/Dice_notation

random entry from a provided list). So to roll a d6 (a six-sided dice), we can
use random.randint(1, 6). This chooses one random number between and

including the endpoints, so it will return a 1, a 2, a 3, a 4, a 5, or a 6. We can
wrap this up in a convenient function that uses a list comprehension:

def roll_dice(count, die):

 return [random.randint(1, die) for i in range(count)]

Calling this will return a list of rolled numbers, so a roll of 3d6 will look like
this:

>>> roll_dice(3, 6)

[4, 2, 1]

What range() Does

Note that we don’t say 3 * [random.randint(1, die)]. This would roll a

random number only once and then return three copies of it, so the return
value would be [1, 1, 1] or [5, 5, 5]. Instead, we roll separate dice the

number of times specified by count. It can seem wasteful to generate a list of

numbers [1, 2, 3], which is what range() does, but Python is very efficient

at this, so it’s the standard way to do something a number of times.

The act of interpreting a string such as “3d6” or “2d10” is called parsing. For
simple parsing, it’s often common to use regular expressions—as we did in
an earlier tutorial for extracting data from web pages. In this case, the regular
expression is relatively simple: a “dice description” is the number of dice to
roll, the letter “d”, and the number of sides on the dice. The regular

https://www.sitepoint.com/python-regex/

expression for this looks like [0-9]+d[0-9]+. It will be convenient to mark

each of the sets of numbers as a group by putting them in brackets so they
can be extracted later—which looks like ([0-9]+)d([0-9]+). Finally, it will

also be convenient to give each group a name, so that we can extract the
numbers later by name. Python offers an extension to regular expression
syntax that does this: our regex will then look like (?P<count>[0-9]+)d(?

P<die>[0-9]+). Regular expressions can look rather like gibberish filled with

strange characters, but if we build them up slowly they can be understood.

To use a regular expression with named groups, call re.match. This will

return either None (if the regex doesn’t match the passed string), or a match

object with a groupdict method:

>>> import re

>>> match = re.match(r"(?P<count>[0-9]+)d(?P<die>[0-9]+)", "2d6")

>>> match

<re.Match object; span=(0, 3), match='2d6'>

>>> match.groupdict()

{'count': '2', 'die': '6'}

>>> re.match(r"(?P<count>[0-9]+)d(?P<die>[0-9]+)", "this is not a dice description")

>>>

Note that the last call returns None because “this is not a dice description”

doesn’t match the regular expression at all. Using re.match always insists

that the whole string matches the regex. If we want to find a regex match
somewhere within the string but without having to match the whole string,
we should use re.search:

>>> re.search(r"(?P<count>[0-9]+)d(?P<die>[0-9]+)", "please roll 2d6 for me")

<re.Match object; span=(12, 15), match='2d6'>

Wrapping that up in a function also gives us a dice roller that makes use of
our earlier roll_dice function:

def roll_string(dice_description):

 match = re.match(r"(?P<count>[0-9]+)d(?P<die>[0-9]+)", dice_description)

 if not match:

 raise Exception(f"Invalid dice description {dice_description}")

 return roll_dice(int(match.groupdict()["count"]),

 int(match.groupdict()["die"]))

>>> roll_string("3d6")

[6, 4, 2]

>>> roll_string("3d6")

[5, 3, 6]

Probability

Puzzles and games—especially those with dice or other mathematics
involved—can often come down to an assessment of probability. There are
various mathematical techniques involved in understanding how probabilities
combine. They help with problems like how to choose four unique items
from a set of ten; how to work out the chances of rolling snake-eyes twice in
a row; or how to deal with a hand of all red cards. But probability can be
difficult to do, and computers are fast. So, in keeping with our theme here …
let’s cheat! We can simply play the game a million times and see who mostly
wins!

In fairness, this isn’t just a technique for cheating. It’s often useful to check
an answer that’s been arrived at by more rigorous mathematical means. If
we’ve carefully calculated that the chance of dealing someone a poker hand
containing two pairs is 4.7539%, it’s a handy check to simulate that in a
Python program by dealing ten million poker hands and confirming that
around 500,000 of them are two pair. But if we don’t need an exact answer,
solving a puzzle by writing a Python script to do it many times over can be
just as useful as working out the math, and sometimes quite a bit easier.

Casinos sometimes have a side game called “Under and Over 7”. The rules
are simple.

We bet on “under 7”, which pays off at even odds (if we wager one chip, we
get back our one chip and one more); “over 7” (also at even odds), or “7”
(which pays off at “4 for 1”: we get back three chips plus the one we bet, for
four in total). Then we roll two dice. If the total of the two dice matches our
bet—if we roll a 3 and a 2, for example, and we bet on “under 7”—then our
bet pays out. If not, we lose our stake.

That’s Under and Over 7. These seem like pretty good odds, right? Four for
one for rolling a seven, the most common dice roll on two dice? And even
money on anything else? It almost seems like it’s hard to lose money at this
game.

Working out the exact probabilities here is relatively simple for math
whizzes, but getting to grips with that sort of thing can be awkward. Let’s
simulate it with a bit of Python instead, which will give us the answer we
need (should we play this game?) without needing to do a probability class
first.

One game of Under and Over 7 looks something like this in Python:

def game():

 bet = random.choice(["under 7", "7", "over 7"])

 roll = sum(roll_string("2d6"))

 if roll < 7 and bet == "under 7":

 return 1

 elif roll > 7 and bet == "over 7":

 return 1

 elif roll == 7 and bet == "7":

 return 3

 else:

 return -1

We imagine that our computer player plays randomly, so it places a single bet
of a single chip on the layout, choosing randomly which bet to place. This is
what random.choice does: it chooses one item from a list, at random. Then

we roll the dice with the roll_string dice roller, and get the result by

summing the response (which looks like [3, 5]). If we make an “under 7” or

“over 7” bet and also roll that, then we return 1 for our winnings (that is: we
get back the chip we wagered, plus one more, for a total of 1 more than we
started the game with). Successfully making a bet of “7” gives us winnings of
3. Missing the bet equates to a win of -1, because we lose the chip we bet.

We can test a single game out a few times to see what happens:

>>> game()

-1

>>> game()

-1

>>> game()

1

>>> game()

-1

>>> game()

3

>>> game()

-1

OK, that’s not looking too promising. But we can obviously test many more
games with another loop:

def session(trials=10000):

 winnings = 0

 for i in range(trials):

 winnings += game()

 print(f"Total winnings after {trials} games: {winnings}")

>>> session()

Total winnings after 10000 games: -2244

>>> session()

Total winnings after 10000 games: -2210

>>> session(1000000)

Total winnings after 1000000 games: -223854

With that, we can see the truth: if we play ten thousand games of Under and
Over 7, we’ll be somewhere over two thousand chips worse off than when we
started. The house does, in fact, always win.

Summary

It’s fun to occasionally cheat at games, but Python can perform as the most
multi- of multi-tools to explore wherever our mind takes us. Word puzzles
and math explorations can be entertaining, and being able to throw a little
code together to test out an exploration—whether that’s following up on a
Numberphile video, finding the longest palindrome, or solving coding
challenges such as Advent of Code every December—can unlock a whole
new range of questions that we can now answer.

Check out Peter Norvig’s pytudes for some more detailed and in-depth
approaches to using Python to solve problems of this kind. And if we now
solve Wordle every day without fail … well, that’ll just be our little secret.

https://www.numberphile.com/
https://adventofcode.com/
https://github.com/norvig/pytudes
https://www.nytimes.com/games/wordle/index.html

CHAPTER 4: RUNNING SOMEONE ELSE’S
PYTHON CODE

In the previous chapters of this book, we used existing Python modules to
bring in new functionality to our scripts. Python (unlike many other
languages) actually comes with modules for all sorts of useful functions. The
developers of Python refer to this as a “batteries included” philosophy, where
the language comes ready-supplied with many modules. The collection that
comes with Python is called the standard library (a term often abbreviated
to “stdlib”), and it’s all documented as part of the Standard Library
Reference.

In this stdlib, there are modules for doing things like this:

accessing the filesystem and network and other system-level features
working with compressed files
doing simple cryptography
manipulating dates and times
using various internet-oriented systems such as HTTP and email
providing implementations of many useful programming features such
as queues, threads, asynchronous functions, command-line parsing, and
functional programming

It’s always best to look at the stdlib first when trying to solve a problem.
We’ll find help there good proportion of the time.

The Python Package Index

But help isn’t always in the standard library. The stdlib is designed for

https://docs.python.org/3/library/

containing modules that are useful to many Python programmers and for
solving very general use cases. For anything specific, we’ll want modules
designed to deal with our specific problem. This is where PyPI comes in.
PyPI, the Python Package Index, is the official repository for third-party
Python packages. It’s a vast collection of open-source software libraries,
frameworks and applications that can be easily installed and used in Python
projects. PyPI serves as a central hub for the distribution and discovery of
Python packages. Developers can upload their packages to PyPI, which then
makes them available to other developers who can easily download and
install them. This makes PyPI the backbone of the Python ecosystem.

Packages from PyPI are installed with pip. We saw this in use when we
installed the requests module to fetch web pages in the “Python for

Stitching Together Other Things” tutorial, and this is a good example of a
more specific Python module. The stdlib contains the urllib.request

module for working with HTTP, so requests isn’t strictly necessary, but it’s

an improvement over what the stdlib contains and is more pleasant to use.

We can install the requests module from PyPI with python -m pip install

requests. (See below for the meaning of the -m flag.) Once that’s done, the

requests module is available to our code, and can be imported just like any

module in the stdlib:

>>> import requests

>>> print(requests.get("https://sitepoint.com"))

<Response [200]>

This applies to any module we might need. If we’re looking for something

https://pypi.org/

that has already solved a part of the problem we’re working on, try searching
for it. There’s a search available on the PyPI website, but that’s mostly useful
for finding the exact details of a module that we already know exists; the
search isn’t very helpful for discovering what exists. (For example, if we’re
looking for something to write Excel spreadsheets, as we did in the first
tutorial in this series, the thing to use is XlsxWriter. But a search on PyPI for
“excel” doesn’t bring it up until a later page.) It’s better to use our favorite
search engine; a search for “create excel file python” will likely bring up
XlsxWriter as the top hit. Regardless of how we find out about a module,
almost every published Python library is available in PyPI and therefore
available to install via pip.

Virtualenv

It’s useful to install Python modules required for a particular project in a way
that makes them available to only that project. This is the purpose of a
virtualenv (shorthand for “virtual environment”, sometimes shortened still
further to “venv”). Programmers of other languages may be familiar with the
concept. For example, Node.js has its node_modules folder, and PHP has

composer and its vendor folder.

Python requires a little setup for this; the virtual environment has to be
created and then activated. Once a venv has been activated, any modules
installed with pip will be installed into this venv rather than made available to
the whole system. All this is accomplished via some complicated juggling
with Python’s system and site paths, and the Python docs explain the process
in detail if we want to dig into the details, but fortunately we don’t need to
know how it works to use it.

https://pypi.org/
https://docs.python.org/3/library/venv.html

To create a venv for a project, use Python’s venv module. We’ll need to

specify a directory path for the virtual environment to live in; this will create
the folder of our choice. It’s conventional to create this in a folder named
venv in the top-level directory of our project, but that’s not actually required.

In a command prompt window, cd to the directory of our project and run

python -m venv ./venv. This will create (but not activate) a new virtual

environment in the venv folder in our current directory. This only needs to be

done once. After this, whenever we want to work on the project, we can
activate this virtual environment by running the activate command. Let’s look
at how.

Activation Commands

How to activate our virtual environment depends on which operating system
and which command prompt we’re using. In our command prompt window,
cd to the directory of our project and do one of the following:

Windows command prompt: .\venv\Scripts\activate.bat

Windows PowerShell prompt: .\venv\Scripts\Activate.ps1

macOS/Linux bash/zsh shell: source ./venv/bin/activate

(There are other options for less common shells; see the venv documentation
for those.)

Also note that we’ll need to run this every time we want to work on this
project.

https://docs.python.org/3/library/venv.html#how-venvs-work

Seting Up a venv with an IDE

Setting up venvs, as described above, is a command-line process. However, if
we’re using an IDE, that IDE may provide a convenient way to set up a venv
for our project without us having to run the command-line parts directly. For
example, if we’re using PyCharm, it’s worth reading the PyCharm virtual
environment documentation.

As always, check the documentation. Any editor dedicated to Python will
likely have a way to create virtual environments, because they’re so
important to managing a project.

python -m

Using python -m is a way to run an installed module as a script. We can run

any Python file as a script directly—by providing the path to it, of course.
This is how we run any Python script we’ve written, with python

myscript.py. Using -m first imports the named module and then runs it. This

means that the thing being run can be anywhere on the Python import path,
including in a venv. So python -m myscript will first do the equivalent of

Python’s import myscript and then run it, meaning that we don’t have to

provide a path to it.

There are many other options (sometimes called “flags” or “switches”) that
can be passed to Python when running it in addition to -m, and as usual the

Python documentation explains them all in detail, but the main other useful
one is -c. This allows us to pass a quoted string of actual Python code on the

https://www.jetbrains.com/help/pycharm/creating-virtual-environment.html
https://docs.python.org/3/using/cmdline.html

command line rather than load it from a file. python -c "print('Hello,

world')" will run that Python code directly—no file necessary. This can be

useful for short Python tricks.

What to Do after Activation

Once we’ve activated the venv, any pip install commands will install our
newly downloaded packages into this venv, and Python’s import command

will import things from the venv rather than from our system’s list of Python
packages. This means that, if we have a Python module installed at system
level (outside a venv), we need to install it again once the venv is activated,
because it’s not available to this project specifically; the venv is a new, clean
environment without extra modules installed. This is a useful feature. It
means that different projects can use different modules—and different
versions of the same module—without them colliding, and it helps us keep a
handle on which modules are used by a particular project.

After creating and activating a venv for our project, use pip as normal to
install new modules: python -m pip install requests. Now the requests

module is available to our project and can be imported as normal.

Some command prompt windows will indicate that we’ve activated a
virtualenv by adding it to the prompt, like this: (venv) $.

To deactivate a venv (that is, to exit it, so Python is no longer using it in our
shell), type deactivate into our command prompt.

Installing Dependencies

Commonly, a complicated project may have a whole pile of modules that it
needs to be installed, called dependencies or requirements. (Again, those
familiar with other programming languages may have used composer.json or

package.json files for this.) Python’s equivalent is requirements.txt. If a

project we’re running (downloaded from GitHub or something similar) has a
requirements.txt file, that file will contain a list of Python modules this

project needs to be installed.

Fortunately, we don’t need to manually install everything listed. Instead, we
can run this:

python -m pip install -r requirements.txt

Once we’ve done so, pip will download and install each of the dependencies
as if we’d commanded it to do so one by one. (For pip, the -r option means

“load the list of things to install from a specified file”, so that they don’t have
to be named in the command prompt. python -m pip install help will

show all the many other pip options for installation.)

This is a good time to have (and to have activated) a venv for the project.
Routinely creating a venv when installing packages is a good habit to get into
when trying existing projects.

As an example (and since we looked at word puzzles in the previous tutorial
in this series), let’s take a simple word puzzle from GitHub and try it out. It’s
described as a “small Wordle clone written in Python”, which seems ideal.

First, let’s get the code with Git, via the command line. (We could also grab

https://github.com/LauKr/wordle

the code with GitHub Desktop or by using the tools in our code editor, such
as Visual Studio Code.)

Learning Git

For any readers who are new to Git, a great way to get started with it is to
check out Jump Start Git.

Here’s the command-line way to get the code for our Wordle clone:

git clone https://github.com/LauKr/wordle.git

Cloning into 'wordle'...

remote: Enumerating objects: 37, done.

remote: Counting objects: 100% (37/37), done.

remote: Compressing objects: 100% (31/31), done.

remote: Total 37 (delta 14), reused 15 (delta 4), pack-reused 0

Receiving objects: 100% (37/37), 43.19 KiB | 2.27 MiB/s, done.

Resolving deltas: 100% (14/14), done.

Next, open a command prompt and change to the directory of the project:

cd wordle/

Then create a new venv for this project:

python -m venv ./venv

Now that this is done, it won’t need to be done again.

Each time we want to try this project in a new command prompt, we’ll need

https://www.sitepoint.com/premium/books/jump-start-git-2nd-edition/

to activate the venv. (This doesn’t need to be done before every command,
but just at the beginning of a session or in a new window. A venv stays
activated in the command prompt window we’re in until that command
prompt window is closed.) Activate it using the appropriate command from
above:

.\venv\Scripts\activate.bat

Since this is the first time we’ve opened the project, its dependencies aren’t
installed. We can see this by attempting to run it:

(venv) $ python wordle.py

Traceback (most recent call last):

 File ".../wordle.py", line 2, in <module>

 from termcolor import colored

ModuleNotFoundError: No module named 'termcolor'

It expects to have the termcolor module available, but we haven’t installed

it. The project's author has provided a requirements.txt, so, as above, use it

to install the dependencies:

(venv) $ python -m pip install -r requirements.txt

Collecting numpy==1.21.2

 Downloading numpy-1.21.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.9 MB)

Collecting termcolor==1.1.0

 Downloading termcolor-1.1.0.tar.gz (3.9 kB)

 Preparing metadata (setup.py) ... done

Using legacy 'setup.py install' for termcolor, since package 'wheel' is not installed.

Installing collected packages: termcolor, numpy

 Running setup.py install for termcolor ... done

Successfully installed numpy-1.21.2 termcolor-1.1.0

Now the game will run successfully!

Writing Our Own Modules

Finally, of course, we can write our own modules. This can be useful for a
number of purposes: code organization, listing our own project’s
dependencies if we plan to release it, and running a module as a program.

Code Organization

The simplest form of organizing a slightly more complex Python script is to
break it up into separate files, each with a singular purpose. The Python
import statement works just as well for modules we’ve written as it does for

dependencies and stdlib modules that were written by someone else.

Consider a simple script for converting a number to Roman numerals. Let’s
imagine that we work at the BBC (British Broadcasting Corporation), who
famously write the current year number in Roman numerals in the copyright
notice at the end of programs. We’re having trouble remembering how to
write a year’s number in Roman numerals, so we’ve written a useful Python
script to work it out for us:

import sys

def int_to_roman(num):

 """ Convert an integer to a Roman numeral. """

 ints = (1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1)

 nums = ('M', 'CM', 'D', 'CD','C', 'XC','L','XL','X','IX','V','IIII','I')

 result = []

 for i in range(len(ints)):

 count = int(num / ints[i])

 result.append(nums[i] * count)

 num -= ints[i] * count

 return ''.join(result)

if __name__ == "__main__":

 try:

 number = int(sys.argv[1])

 except (IndexError, ValueError):

 print(f"Syntax: {sys.argv[0]} <number>")

 sys.exit(1)

 print(f"{number} in Roman numerals is {int_to_roman(number)}")

Run as python make-roman.py 2023 to get 2023 in Roman numerals is

MMXXIII. The script does a little checking of our input, and then uses a simple

algorithm to convert the number.

Next, a colleague asks if there are any numbers in Roman numerals that are
also words in the dictionary. We respond by saying that the very first one, I,
is a word, but they’re curious if there are any more. So we write another little
script which checks all the numbers up to 3999 (because that’s how high
Roman numerals go) against the dictionary of all valid Scrabble words,
twl06:

def int_to_roman(num):

 """ Convert an integer to a Roman numeral. """

 ints = (1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1)

 nums = ('M', 'CM', 'D', 'CD','C', 'XC','L','XL','X','IX','V','IIII','I')

 result = []

 for i in range(len(ints)):

 count = int(num / ints[i])

 result.append(nums[i] * count)

 num -= ints[i] * count

 return ''.join(result)

def main():

 with open("twl06.txt") as fp:

 words = set([x.strip().upper() for x in fp.readlines()])

https://www.wordgamedictionary.com/twl06/

 roman_numerals = set([int_to_roman(x) for x in range(1, 4000)])

 print("Roman numbers which are also words:")

 print(roman_numerals.intersection(words))

if __name__ == "__main__":

 main()

From this, we find the following valid words that are also valid Roman
numbers: MM, XI, LI, MI, and MIX. (Scrabble players have a very expansive
dictionary!)

But both of these scripts use the same int_to_roman function. It’s wasteful to

have the same code in two files, especially since it means that, if we ever
make an improvement to the function, we’ll have to change it in both places.
So instead, we decide to pull that function out into its own file, roman.py, and

then import it from there.

roman.py simply contains the function, like this:

def int_to_roman(num):

 """ Convert an integer to a Roman numeral. """

 ints = (1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1)

 nums = ('M', 'CM', 'D', 'CD','C', 'XC','L','XL','X','IX','V','IIII','I')

 result = []

 for i in range(len(ints)):

 count = int(num / ints[i])

 result.append(nums[i] * count)

 num -= ints[i] * count

 return ''.join(result)

Now the improved, shorter version of make-roman.py can look like this:

import sys

from roman import int_to_roman

if __name__ == "__main__":

 try:

 number = int(sys.argv[1])

 except (IndexError, ValueError):

 print(f"Syntax: {sys.argv[0]} <number>")

 sys.exit(1)

 print(f"{number} in Roman numerals is {int_to_roman(number)}")

This uses import to bring in the specific function by name from roman.py.

The improved shorter version of roman-words.py looks like this:

import roman

def main():

 with open("twl06.txt") as fp:

 words = set([x.strip().upper() for x in fp.readlines()])

 roman_numerals = set([roman.int_to_roman(x) for x in range(1, 4000)])

 print("Roman numbers which are also words:")

 print(roman_numerals.intersection(words))

if __name__ == "__main__":

 main()

This imports the whole roman.py module, and then calls a function within it

as roman.int_to_roman(). (In this particular case, of course, there’s only

one function in roman.py, but a more complicated module would have

many.)

This is how all the modules in the stdlib or in dependencies work, too. When
we say import random and then call random.randint() to simulate a dice

throw, we’re not using a special technique that’s only available to the stdlib.
There’s a random.py file shipped as part of Python, and we’re importing a

function defined in it named randint. And we can open that random.py file

from our Python system installation and read the randint function, which is

written in Python and begins def randint(self, a, b):—just as it would if

we’d written it.

Listing Our Dependencies

If our code requires dependencies, it should come with a requirements.txt

file so that others can use it. Fortunately, this is easy to do: python -m pip

freeze will output the list of dependencies that are installed with pip. We

should definitely be in a venv for this, of course; if we aren’t, it will list all
the Python modules that we’ve installed on the system, which isn’t useful.
All that’s required is that we run the command, and redirect its output to a file

called requirements.txt:

python -m pip freeze > requirements.txt

In practice, requirements.txt files aren’t handwritten; they’re created with

pip freeze. But if we need to make or look at one, they consist of a textual

list of required module names, optionally with version numbers. The pip
documentation explains the format in detail, but as a simple example, the
requirements.txt file for the Wordle project above looks like this:

numpy==1.21.2

termcolor==1.1.0

In the text above, requirements.txt is requiring the numpy and termcolor

modules, each with a specific version number. We could install the modules
(at their latest version) manually with python -m pip install numpy

termcolor, or python -m pip install numpy==1.21.2 termcolor==1.1.0

to install the particular versions specified. A requirements.txt file simply

makes this easier.

Summary

Many scripts in Python don’t need any external modules at all, requiring only
what’s available in Python’s quite comprehensive standard library. But it’s
likely that, as our scripts get more complicated and detailed, we’ll need
resources beyond that. The Python Package Index is an extremely
comprehensive list of Python modules written by others that we can freely
install and use from our own code, via pip, and install into project-specific,

https://pip.pypa.io/en/stable/reference/requirements-file-format/

separated virtual environments.

External programs, rather than libraries, will also need dependencies installed
via pip, and a requirements.txt file is the standard way to indicate that.

And those more complicated scripts will eventually benefit from having code
organized into separate files to aid in reuse, which means we’ll be using
Python’s import system.

What we’ve seen here only scratches the surface of what’s available, and the
Python documentation goes into much more detail about how import and
virtual environments work for those wanting to dig into this further.

But we should only reach for complexity when we need it. Most of our
scripts might not need anything at all. As we’ve seen from the tutorials
making up this series, we can meet a lot of our needs simply by using
Python’s built-in standard library. Downloading and analyzing web pages,
reading and converting data, and manipulating words and numbers, can all be
done with the stdlib and maybe a library or two from PyPI. But it’s good to
know that, if we ever need it, we’ve got all the power in the world waiting for
us. That’s Python, by example.

https://docs.python.org/3/reference/import.html
https://docs.python.org/3/library/venv.html#how-venvs-work

	Useful Python
	Notice of Rights
	Notice of Liability
	Trademark Notice
	About SitePoint
	About the Author
	Preface
	Who Should Read This Book?
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings

	Supplementary Materials

	Chapter 1: Python as Glue
	Who This Series is For
	Getting Started
	Reading Data
	Writing

	Reading Data with Code
	General Principles
	Parsing Complicated Formats

	Understanding All the Formats
	Embracing All the Formats
	Reading HTML
	More Data Fiddling
	Learning Regular Expressions

	Writing for Excel for Real
	Summary

	Chapter 2: Python for Stitching Together Other Things
	Fetching Data from an HTTP API
	The requests Module
	Caching HTTP Requests
	Making Some Output
	F-strings

	Controlling Windows
	The Windows Registry
	Raw Strings

	The Windows API

	Controlling macOS
	Finding Python Versions of macOS APIs

	File Processing
	Sending Email via Gmail
	Setting Up Scheduled Tasks

	Summary

	Chapter 3: Words and Numbers
	Word Ladder
	Word Lists

	Formation
	Rolling Dice
	What range() Does

	Probability
	Summary

	Chapter 4: Running Someone Else’s Python Code
	The Python Package Index
	Virtualenv
	Activation Commands
	Seting Up a venv with an IDE
	python -m

	What to Do after Activation

	Installing Dependencies
	Learning Git

	Writing Our Own Modules
	Code Organization
	Listing Our Dependencies

	Summary

