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The appealing feature of quantum key distribution (QKD), from a cryptographic viewpoint, 
is the ability to prove the information-theoretic security (ITS) of the established keys. As a 
key establishment primitive, QKD however does not provide a standalone security service 
in its own: the secret keys established by QKD are in general then used by a subsequent 
cryptographic applications for which the requirements, the context of use and the security 
properties can vary. It is therefore important, in the perspective of integrating QKD in 
security infrastructures, to analyze how QKD can be combined with other cryptographic 
primitives. The purpose of this survey article, which is mostly centered on European 
research results, is to contribute to such an analysis. We first review and compare the 
properties of the existing key establishment techniques, QKD being one of them. We 
then study more specifically two generic scenarios related to the practical use of QKD 
in cryptographic infrastructures: 1) using QKD as a key renewal technique for a symmetric 
cipher over a point-to-point link; 2) using QKD in a network containing many users with 
the objective of offering any-to-any key establishment service. We discuss the constraints 
as well as the potential interest of using QKD in these contexts. We finally give an overview 
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of challenges relative to the development of QKD technology that also constitute potential 
avenues for cryptographic research.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years quantum cryptography has been the subject of strong activity and rapid progress [2–4], and it is now 
extending its activity to pre-competitive research [5] and to commercial products [6]. Nevertheless, the fact that quantum 
key distribution (QKD) can play a useful role in practical cryptography is sometimes considered with skepticism [7–10] and 
cannot therefore been taken for granted. Analyzing the practical cryptographic implications of QKD is indeed a complex task 
that requires a combination of knowledge that usually belongs to separate academic communities, ranging from classical 
cryptography to the foundations of quantum mechanics and network security. Little work has so far been published on this 
issue, although [11] may be considered as a pioneering contribution on that matter. This review article tries to identify in 
which contexts QKD can be useful, in addition to the scientifically well-established classical cryptographic primitives.

The logical construction in the next three sections of this paper is to analyze the use of QKD, as a cryptographic primitive, 
for different purposes, reflecting the first three layers of the OSI network model.

1. Secret key agreement (performed in the case of QKD at the physical layer).
2. Secure payload transmission built on top of a key agreement scheme (secure link layer cryptographic primitive).
3. Secret key agreement over a global network composed of multiple users (network layer cryptographic primitive).

The paper is thus organized as follows: In Section 2, we provide a survey of secret key agreement techniques and discuss 
some of their strengths, weaknesses, and relative advantages. In Section 3, we discuss the security and the performance of 
different secure payload transmission primitives that can be built on top of QKD, and that can be used to secure point-
to-point communication links. In Section 4, we consider the use of QKD in a network context. We discuss previous works 
on QKD networks and also describe the cryptographic operation of such networks and in particular their initialization, 
that requires the distribution of pre-shared secrets. Finally, in Section 5 we widen the scope of this survey paper by dis-
cussing some future research directions that could benefit from active collaboration between the quantum and the classical 
cryptography communities: the study of side-channels and of material security, the study of post-quantum-computing cryp-
tography, the use of QKD networks as a strong building block for new network security protocols and the development of 
unified cryptographic standards and evaluation methods for quantum and classical cryptography.

2. Secret key agreement

Cryptography has for a long time conformed to the idea that the techniques used to protect sensitive data had themselves 
to be kept secret. Such principle, known as “cryptography by obscurity” has however become inadequate in our modern era. 
The cryptography that has developed as a science in the 1970s and 1980s [12] has allowed us to move away from this 
historical picture and most of the modern cryptographic systems are now based on publicly announced algorithms while 
their security lies in the use of secret keys.

Distributing keys among a set of legitimate users while guaranteeing the secrecy of these keys with respect to any 
potential opponent is thus a central issue in cryptography, known as the secret key agreement problem.

There are currently five families of cryptographic methods that can be used to solve the secret key agreement problem 
between distant users:

1. Classical ITS schemes
2. Classical computationally secure public-key cryptography
3. Classical computationally secure symmetric-key cryptographic schemes
4. Quantum key distribution
5. Trusted couriers

We will present how each of these cryptographic families can provide solutions to the key agreement problem and discuss, 
in each case, the type of security that can be provided. We will also consider a sixth type of secret key agreement schemes: 
hybrid schemes built by combining some of the methods listed above.

2.1. Classical information-theoretically secure key agreement schemes

A cryptosystem is information-theoretically secure (ITS) if its security derives purely from information theory. That is, it 
makes no unproven assumptions on the hardness of some mathematical problems, and is hence secure even when the ad-
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versary has unbounded computing power. The expression “unconditional security” is a synonym of “information-theoretical 
security” and is more widely used in the cryptographic literature.

Studying the question of classical ITS secret key agreement (CITSKA) requires us to go back to the foundations of 
information-theoretic security, which builds on Shannon’s notion of perfect secrecy [13]. In seminal papers, Wyner [14]
and later Csiszàr and Körner [15] proved that there exist channel codes guaranteeing both robustness to transmission errors 
and an arbitrarily small degree of information leakage towards non-authorized parties eavesdropping on the communica-
tions performed on the channel. CITSKA is possible in the wire-tap configuration, as long as the legitimate users have access 
to a common source of randomness through classical channels that are less noisy than the channel the eavesdropper has 
access to [15]. The results obtained by Csiszàr and Körner generalize the framework in which CITSKA is possible: they show 
that whenever two parties have in their possession correlated strings of classical data that exhibit more correlation between 
them than with any string that could be in the possession of an eavesdropper, then ITS secret key agreement is possible. As 
we shall see in Section 2.4, the use of a quantum channel and of an appropriate protocol is a practical solution in order to 
obtain such correlated strings of classical data.

There are however also secret key agreement schemes that can exploit the ideas developed in [15] and that can be 
implemented within the framework of classical information theory. Such CITSKA schemes however need to rely on some 
specific extra assumptions, limiting the power of the eavesdropper in order to be ITS. Christian Cachin and Ueli Maurer 
[16] demonstrated that CITSKA is possible in the bounded-storage model, in which the adversaries can only store a limited 
amount of data. Introducing the idea of advantage distillation, Maurer later generalized the previous models and showed 
that CITSKA is possible over a wide class of classical channels [17].

2.2. Classical public-key cryptography and secret key agreement

Public-key cryptography foundations rest on the difficulty of solving some mathematical problems for which no efficient 
algorithms are known. The computing resources needed to solve these problems become totally unachievable when long 
enough keys are used. Public-key cryptographic systems thus rely on what is called “provable computational security”. 
Public-key cryptography is however not unconditionally secure: there is no proof that the problems on which it is based 
are intractable or even that their complexity is not polynomial.

Public-key algorithms for encryption require two keys: a public and a private key, which form a key pair. Algorithms 
are designed in such a way that anyone can encrypt a message using the public key, while only the legitimate recipient, 
in possession of the private key, can decrypt the message. Because of the asymmetry between the two users of a public-
key cryptosystem (one holding the private key, and keeping it secret, while the other user only needs to know a public, 
non-secret key, and worry about its authenticity), public-key cryptography is often referred to as asymmetric cryptography.

Secret key agreement based on public-key cryptography As shown by Whitfield Diffie and Martin Hellman in 1976 [18], public-
key cryptography can be used to establish a shared secret key over an unprotected classical communication channel, without 
using a prior shared secret. It thus provides a practical way to implement secret key agreement, in particular over open net-
works. Note however that Diffie–Hellman does not guarantee the authenticity of key agreement and thus that an additional 
authentication scheme needs to be provided. Over open networks such as the Internet, public-key infrastructures, i.e. trusted 
third parties, are often used for this purpose.

Security of public-key cryptography Public-key classical encryption schemes currently in use are based on well-studied math-
ematical problems that are believed to be computationally difficult to solve, such as the computation of discrete logarithms 
over finite fields or elliptic curves or the factorization of integers in the case of the RSA scheme.

In the case of RSA, it is necessary to use private and public keys of at least 1024 bits, in order to offer a reasonable 
security margin against the computational efforts of an eavesdropper and asymmetric keys of 2048 bits are preferable 
[19,20]. However, since the computational hardness of the underlying problems in public-key cryptography have not been 
formally established, public-key cryptography is not immune to scenarios where an eavesdropper would possess some 
unexpectedly strong computational power or would know better cryptanalysis techniques than the best published ones. 
Moreover, most of the currently used public-key cryptographic schemes (for example RSA) could be cracked in polynomial 
time with a quantum computer: this results from Shor’s algorithm for discrete log and factoring, that has a complexity 
of O (n3) [21]. It however seems possible to build alternative public-key cryptographic schemes on problems that could 
resist polynomial cryptanalysis on a quantum computer, such as lattice shortest vector problem [22,23]. Such schemes are 
nevertheless much less practical than RSA-like schemes. This topic is at the moment actively studied, in the framework 
of what is called post-quantum computing cryptography [24], and we will discuss some implications of what researchers 
already know in Section 5.4.

Speed of public-key cryptography Making the computations relative to the asymmetric cryptographic protocols requiring long 
keys, such as RSA, is a rather computational intensive and time-consuming task. The performance of RSA-based key agree-
ment implementations depends heavily on hardware: for RSA 2048 implemented on an Intel Pentium IV with a 2.93 GHz 
processor, the computations needed for one key exchange (essentially one RSA encryption and one decryption) take roughly 
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10 ms [25]. The same key exchange would be approximately ten times faster (thus in the ms range) on dedicated copro-
cessors and is ten times slower (in the time range of a few tens of a second) on smart card coprocessors [26]. There are 
other public-key encryption protocols, for example based on elliptic curves, for which keys are significantly shorter (typically 
between 160 and 256 bits), but only slightly better speed performance can be obtained. As a consequence public-key cryp-
tography is too slow to be used in order to encrypt communications over data networks. Public-key cryptography is most 
commonly used solely for initial secret session key agreement (in network protocols like SSL for example), while faster 
classical symmetric-key cryptography is then generally used for symmetric encryption and/or authentication of data.

2.3. Classical computationally secure symmetric-key cryptography and secret key agreement

Symmetric-key cryptography refers to cryptography methods in which both the sender and receiver share the same 
secret key. Symmetric-key encryption was the only kind of encryption publicly known until the discovery of public-key 
cryptography in 1976 [18].

Symmetric-key ciphers are used to guarantee the secrecy of the encrypted messages. Modern study of symmetric-key 
ciphers relates mainly to the study of block ciphers and stream ciphers and to their applications. AES is a block cipher 
that had been designed by a team of Belgium cryptographers (Joan Daemen and Vincent Rijmen) and has been adopted 
as an encryption standard by the US government (in replacement of DES). Block ciphers can be used to compute Message 
Authentication Codes (MACs) and can thus also be used to guarantee integrity and authenticity of messages. Stream ci-
phers, in contrast to block ciphers, create an arbitrarily long stream of key material, which is combined with the plaintext 
bit-by-bit or character-by-character, somewhat like the one-time-pad. We will however restrict our discussion to block ci-
phers in the remaining part of this subsection, Ref. [27] provides a very complete survey of classical computationally secure 
symmetric-key schemes.

Secret key agreement based on classical computationally secure symmetric-key cryptography Secret key agreement can be real-
ized by using solely symmetric-key cryptographic primitives. For example, the combination of a symmetric-key encryption 
scheme with a symmetric-key authentication scheme allows one to build a secret key agreement primitive. Provided that 
an initial small secret key is previously shared, symmetrically, by Alice and Bob, they can use a symmetric cipher to en-
crypt messages. These messages (that can consist of random bit strings or not) will constitute the next keys that can be 
shared securely between Alice and Bob. The initially shared symmetric key material can be used to symmetrically compute 
(on Alice’s side) and check (on Bob’s side) a message authentication tag, and thus guarantee the authenticity of the newly 
distributed secret keys. As we shall see, O(log n) bits of secret keys are sufficient to authenticate n bits of messages in this 
context. It is thus only necessary to pre-share a small initial quantity of secret keys, used for authentication to perform 
secret key agreement with symmetric primitives, therefore, only small initial secret keys are needed. One has to call such 
secret key agreement schemes secret key expansion schemes more than secret key establishment schemes.

Security of classical computationally secure symmetric-key-based secret key agreement The security of secret key agreement 
based on classical symmetric-key cryptography depends on the security of the cryptographic primitives that are used, and on 
the composability of those cryptographic primitives. Shannon has proven that there is no unconditionally secure encryption 
scheme which requires less encryption key bits than the one-time-pad [13]. This has a fundamental implication: the entropy 
of the encryption key needs to be at least as large as the entropy of the message to be encrypted if one wants to build an 
unconditionally secure scheme. Hence, if we consider the possibility of building an unconditionally secure symmetric key 
expansion scheme, i.e. a method to symmetrically generate secret keys out of a short initial symmetric shared secret key, the 
former results from Shannon imply that such a scheme is impossible to achieve in the framework of classical cryptography. 
However, as we shall see in Section 2.4, such a cryptographic primitive is possible in a quantum cryptographic context.

It is however possible to use classical symmetric-key encryption and authentication schemes, that are not unconditionally 
secure, to build a secret key agreement scheme. AES can for example be used for symmetric-key encryption and can be 
also used to compute message authentication codes (using, for instance, CBC-MAC). The security model that applies to 
such symmetric-key classical encryption schemes (symmetric-key block ciphers and stream ciphers) is not unconditional 
security (the entropy of the key is smaller than the entropy of the message) and not even “provably computationally 
security”. The security model that applies to classical symmetric-key cryptography can be called “practical computational 
security”: a cryptographic scheme is considered “practically computationally secure” if the best-known attacks require too 
much resource (such as computation power, time, memory) by an acceptable margin [27,20].

There are no publicly known quantum attacks on classical symmetric-key cryptographic schemes and the cryptanalysis 
of symmetric-key classical cryptography on a quantum computer reduces to exhaustive search. Here a quantum computer 
would thus still give an advantage: performing exhaustive key search given a known plaintext–ciphertext pair corresponds 
to the problem of finding an element in an unsorted database of N elements. The complexity of this problem is of O (N) on 
a classical computer but only of O (

√
N) on a quantum computer [28]. The complexity reduction offered by Grover algorithm 

is only polynomial (as opposed to the super-polynomial complexity reduction offered by Shor algorithm), and this implies 
that doubling the key size would be enough to maintain (against quantum computers) the level of algorithmic complexity 
one currently has today against classical computers for symmetric-key primitives.
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Fig. 1. Structure of a QKD link as it is referred throughout this article.

Performances Symmetric-key classical cryptography is by several orders of magnitude less computational intensive and thus 
leads to faster implementations compared to asymmetric cryptography [29]. There are now 128-bit AES encryptors able to 
encrypt data at rates in the Gbit/s range [30]. This is the reason why it is widely preferred to use symmetric-key schemes 
for encryption and/or authentication over currently deployed communication networks. AES is currently the chosen standard 
for symmetric-key classical block ciphers.

Under the assumption that there exists no better way to break a symmetric-key cryptographic scheme is exhaustive 
search within the key space (assumption that will be discussed in more details in Section 3.3) then, a symmetric key of 
103 bits is roughly comparable, in terms of computational requirements, to an RSA key modulus of 2048 bits. Note that 
doubling the length of a symmetric key implies squaring the computational efforts needed for exhaustive search; on the 
other hand, the computational efforts do not scale as fast with key length in the case of asymmetric cryptography [20].

2.4. Quantum key agreement – quantum key distribution (QKD)

Unconditionally secure key agreement relying on quantum physics Quantum key distribution, invented in 1984 by Charles Ben-
nett and Gilles Brassard [31] based on some earlier ideas of Stephen Wiesner [32] is a quantum cryptographic alternative 
solution to the secret key agreement problem, between two users that trust each other, in the presence of an adversary. 
In contrast to public-key cryptography, it has been proven to be unconditionally secure, i.e. secure irrespectively of the 
computing power that may be used by an attacker [33–35].

An important consequence of the unconditional security of QKD is that it would remain secure even in the advent of a 
quantum computer. On the other hand, legitimate users can perform unconditionally secure QKD even without possessing 
themselves a quantum computer. QKD can thus be deployed today in order to secure communication networks.

Rigorously speaking, quantum key distribution should be called quantum key agreement, or quantum key establishment, 
since the secret key shared at the end of the protocol is not decided upon solely by one of the player and then distributed 
to the other. However, as the expression “quantum key distribution” and the acronym QKD are now firmly established, we 
have chosen to stick to them throughout this article.

The existing work on (classical) secret key agreement by public discussion, studied in the framework of information-
theoretic cryptography [17], has played an important role in QKD security proofs and it is interesting to see that QKD has 
conversely also triggered some important development in classical information-theoretic cryptography [36]. However, clas-
sical models are in general not sufficient to capture all the information that can be learnt by a quantum eavesdropper, and 
QKD security proofs must rely on elements of quantum information theory.

It is indeed possible to relate QKD security to the fact that it is impossible to gain information about non-orthogonal 
quantum states without perturbing these states [37–39]. This property is used to upper bound the amount of information 
that can have been gained by an eavesdropper, commonly called Eve, tampering on the quantum channel connecting the 
two legitimate users, commonly called Alice and Bob. If the information bound on the eavesdropper is low enough, a key 
can be distilled between Alice and Bob, and this with perfect secrecy: the information Eve may have about the key is, with 
an exponentially high probability, below a vanishingly small upper bound.

In addition to the first general proofs mentioned above, the theory of QKD security has continued to evolve, with recent 
proof techniques that now refer to a security criterion that is composably secure [40] and based on information measures 
(smooth min- and max-entropies, which are generalization of the Shannon entropy) that give an operational framework 
to analyze the security of quantum (as well as classical) information-theoretic cryptography. This framework also makes 
possible the security analysis with a finite number of signals [41], as it was also the case in the earlier works of Mayers 
[33] and Biham et al. [34].

Basic principles of QKD Without going into the details of the different implementations or protocols (one can refer to 
Refs. [2–4] for an extensive overview on that matter) we can describe the structure and the principle of operation of 
the basic practical QKD system: a QKD link.

As depicted on Fig. 1, a QKD link is a point-to-point connection between two users, Alice and Bob, who want to share 
secret keys. The QKD link is constituted by the combination of a quantum channel and a classical channel. Alice generates a 
random stream of classical bits and encodes them into a sequence of non-orthogonal quantum states of light, sent over the 
quantum channel. Upon reception of those quantum states, Bob performs appropriate measurements leading him to share 
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some classical data correlated with Alice’s bit stream. The classical channel is then used to test these correlations. If the 
correlations are high enough, this statistically implies that no significant eavesdropping has taken place on the quantum 
channel and thus that with very high probability, a perfectly secure symmetric key can be distilled from the correlated data 
shared by Alice and Bob. In the opposite case, the key generation process has to be aborted and started again. This means 
in particular that any strong enough perturbation on the quantum channel, inducing noise above the security threshold 
(this threshold is for example of 11% for the BB84 protocol with one-way classical communications [31,4]), will in practice 
disrupt the key generation. An active attacker accessing the quantum channel can thus in practice mount denial-of-service 
(DoS) attacks and we will discuss in Section 4.2.3 how such attacks can be mitigated in a network context.

Authentication of the classical channel and everlasting security QKD is a symmetric secret key agreement technique that re-
quires, as initial resources, a public quantum channel and an authenticated public classical channel. If one wants to stay in 
the strongest security model i.e. the ITS paradigm, for the authentication of the communications on the classical channel, 
message authentication codes based on universal hashing can be used. Such authentication codes were first introduced by 
Wegman and Carter [42,43] and further developed, especially by Stinson [44]. In order to use ITS authentication in QKD, 
Alice and Bob need to share, in advance, a short secret key (whose length can scale almost logarithmically with the length 
of the secret key generated by a QKD session, for a given security parameter [44]). QKD, operated in this regime, is an ITS 
symmetric secret key expansion scheme [45] that has no classical counterpart since secrecy entropy cannot be increased by 
classical means. Moreover, after initialization of the system (initial distribution of small secret authentication keys), authen-
tication is not a burden for the global performance of QKD systems.

As discussed in [11,46] and also in Sections 3 and 4, there are different ways to obtain an authenticated public chan-
nel, and non-ITS authentication primitives such as public-key authentication can be combined with QKD. In this case, the 
resulting QKD protocol is not strictly speaking unconditionally secure, but still verifies a very powerful security property 
called everlasting security: although the QKD-based key establishment now relies on some computational assumptions, this 
potential weakness (against an adversary computationally very powerful) can only be exploited during the QKD protocol ex-
ecution. If the authentication mechanism is broken at any later point in time, it will not alter the security of the generated 
key. One can thus use QKD to build long-term unconditional secrets out of short-term secrets, hence the term everlasting 
security.

Security assumptions in QKD Even though “unconditional security”, synonym of information-theoretically, is a proper term 
to characterize the security of QKD, one must be careful with the precise meaning of this expression. As noted in [2], there 
are indeed several important underlying assumptions that must be fulfilled for QKD security proofs to be valid and the term 
“unconditional” can in a sense be misleading. Let us list three important assumptions:

• [Quantum Mechanics] The security of QKD is intrinsically based on the assumption that Quantum Mechanics is correct. 
One important property is for example that non-orthogonal quantum states, onto which information is encoded in QKD, 
cannot be distinguished perfectly. This leads to a fundamental trade-off between the information that an eavesdropper 
can learn and the disturbance that it creates, which is exploited in security proofs.

• [Secure labs] There is no leakage of information from the honest parties labs of Alice and Bob. As a matter of fact, 
all the information about the secret key is processed in the labs of Alice and Bob and no key secrecy is achievable 
if this information leaks. This assumption may not be easy to enforce in practice. There are however technical and 
organizational measures (commonly used in security) that can help to back up this assumption: Alice and Bob QKD 
hardware can be put in tamper-resistant cases and/or stored in secure locations, with access control measures making 
it inaccessible to Eve.

• [Trustworthy implementation] The implementation of Alice and Bob QKD devices is conform to what they expect it to 
be and to the modeling made in the security proof. This “double trust assumption” is directly challenged by the demon-
stration of successful attacks [47,48] on QKD implementations, as it will be discussed in Section 5.1. As a consequence, 
backing up this trust assumption on QKD implementation will imply to develop and implement counter-measures to 
known attacks and certification procedures for QKD devices in the same spirit as what exists today for (classical) cryp-
tographic hardware. Another way to deal with this security assumption on QKD implementation might indeed be to go 
around it. This is the idea behind the so-called “device-independent QKD protocols” for which unconditional security 
can be proven independently of the hardware implementation of Alice and Bob QKD devices.
The three generic security assumptions mentioned above are sufficient to set up the framework in which QKD security 
can be formally proven. As we shall see in Section 5.1, the last two assumptions can be challenged in the context of 
side-channel attacks, while on the other hand, the “Trustworthy implementation” assumption can be relaxed in the 
context of device-independent QKD. This last assumption, related to the trust in QKD hardware is fairly broad and must 
be made in principle for all the pieces of equipment inside a QKD device: laser source, phase/amplitude modulator, 
detectors, electronics, etc. There are nonetheless pieces of equipment that have a special status from a cryptographic 
point of view, namely random number generators (RNGs). RNGs are needed in most QKD implementations (this is not 
the case for QKD systems based on sources of entangled photon pairs) as local sources of presumably perfect entropy, 
i.e. totally unpredictable for an external observer. Most RNGs used today in computers and industrial products are 
pseudo-RNGs (PRNGs) that generate sequences of numbers that approximate the properties of random numbers but 



JID:TCS AID:9868 /FLA Doctopic: Theory of natural computing [m3G; v 1.137; Prn:30/09/2014; 13:37] P.7 (1-20)

R. Alléaume et al. / Theoretical Computer Science ••• (••••) •••–••• 7
can be determined based on the knowledge of a small number of parameters. The use of PRNGs as entropy source is 
thus not possible in QKD, for it would contradict its information-theoretic security claims. On the other hand, there 
exist RNGs called true random number generators (TRNGs) where the entropy generated is based on physical processes. 
Randomness generation can for example rely on thermal noise in electric circuits (resistor, ring oscillator) is very hard 
to predict unless strong bias can be imposed on the noise process. One might also design “quantum random number 
generators” (QRNGs) that are special TRNGs where the randomness is due to the unpredictable nature of the outcome 
of quantum measurements. Several quantum processes can be exploited to build a QRNG (nuclear decay, shot noise, 
reflexions of single photons on a semi-transparent mirror, etc.) and several QRNGs are now commercialized [49,50].
In order to perform QKD in an information-theoretic setting, TRNGs or QRNGs should be used and incorporated in QKD 
implementations.

2.5. Trusted couriers key distribution (TCKD)

The trusted courier method is known since the ancient times: a trusted courier travels between the different legitimate 
users to distribute secret keys, hopefully without being intercepted or corrupted on his way by any potential opponent. Only 
practical security can be invoked in this case, which has to be backed by the enforcement of an appropriate set of security 
measures. Although trusted couriers become costly and unpractical when implemented on large systems, this technique has 
remained in use in some highly-sensitive environments such as government intelligence, or defense.

The trusted couriers key distribution (TCKD) is probably one of the methods used in the framework of network security 
for which the analogy with QKD is the closest:

• Like QKD, TCKD is a method relying on the physical security of the communication line between Alice and Bob, it is 
thus also sensitive to distance and other characteristics (danger, perturbations ...) of the communication line between 
Alice and Bob.

• Like QKD, TCKD can be used as a secret key agreement protocol.
• Like QKD, TCKD needs some initial trust in the relative identities of Alice and Bob. Moreover, like for QKD, this necessary 

initial trusted authentication can be handled via different techniques, such as the pre-distribution of a secret key (such 
as a password), or the use of an unforgeable (or at least reputed to be such) public identity certificate issued by a 
trusted third party (such as the seal that was used by emperors and kings or the signed certificates we now use for 
public keys).

• Like QKD, TCKD is a technique that currently finds its application when classical secret key agreement schemes are 
believed not to offer enough security guarantees.

Despite the similarities listed above, there are important differences between QKD and TCKD:

• The first difference is really intrinsic to QKD and TCKD “physical realities”. In the case of QKD, the “couriers” are 
quantum states of lights (flying qubits) traveling at the speed of light and on which eavesdropping can be detected 
with arbitrary high statistical certainty. On the other hand, TCKD cannot offer any of those guarantees and, whether 
one uses human beings or pigeons, trust or corruption of a classical courier cannot be proven nor tested.

• Reliability, automation and cost effectiveness will, very likely, be one of the major advances offered by the development 
of QKD networks, that can moreover efficiently handle key management issues. On the other hand, reliability and cost 
of TCKD infrastructures are critical problems and there is no real hope that such systems can ever be automated, leading 
to serious key management issues and very high operational costs.

• Unlike point-to-point QKD links, classical trusted couriers are not intrinsically limited in distance. They are also not 
very limited in rate since they can take advantage of the possibilities offered by today’s portable and versatile classical 
memories, such as DVDs or USB keys, that can store Gigabytes of data. We will however see in Section 4 that QKD 
networks could be used to go beyond QKD links distance limitations and that such networks could also be used to 
distribute secret keys “on demand” to the end users, which is fundamentally different from relying on keys stored 
on the very same DVD, that could be duplicated at any later point in time if some adversary manages to break the 
protections around the storage device.

2.6. Cascaded schemes and dual key agreement

Cascaded ciphers The idea of cascaded cipher is to compose several encryption primitives by applying them sequentially on 
the same cleartext. Note that the encryption primitives can be of different types as in AES-Twofish or the same one as in 
3DES. The interest of cascading ciphers is to increase cryptanalysis’ difficulty. As pointed out by Maurer and Massey, [51], 
the first encryption layer, i.e. the one directly applied to the message, is in all cases the most important one.

Dual secret key agreement This idea of cascaded cipher can straightforwardly be applied to secret key agreement: two keys 
of the same length are established through two secret key agreement schemes (relying on either the same primitive or 
on different ones) and the final key is obtained by XORing these two keys. We will talk, in this context, of dual secret key 
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agreement. Note that more than two secret key agreement schemes, of various types, can in principle be combined this 
way. We will restrict in the following to a discussion of dual secret key agreement involving QKD as one of the secret key 
agreement technique.

The approach of dual secret key agreement could for example be beneficial when combining keys established through 
one classical key agreement scheme (RSA for example) and keys established through QKD: breaking the entire secret key 
agreement scheme implies breaking the classical key agreement scheme and breaking QKD. If one has doubts about the 
security of QKD, the dual secret key agreement procedure guarantees that the security will at least not be worse than 
that of the classical secret key agreement technique with which it is combined. The same is true if one has doubts about 
the security of secret key agreement scheme based on classical cryptography. However, while there already exist security 
standards in classical cryptography (for example FIPS 140 [52] or Common Criteria [53]), there are not yet such standards 
for QKD. The approach of dual secret key agreement could thus allow to certify a system according to already established 
criteria, without requiring to specify the quantum part of the key establishment. On the other hand, as we shall see in 
Section 5.3, the certification of quantum cryptosystems is a topic on which work is already being initiated and we can hope 
to have FIPS-140 or Common Criteria certified QKD systems within a few years.

3. Securing a point-to-point classical communication link by combining QKD with symmetric encryption

QKD is a secret key agreement primitive that can be performed at the physical layer level. In previous section, we have 
compared QKD to other existing solutions for secret key agreement. We will now analyze how the secret keys established 
by QKD can be used to perform a link layer cryptographic task: securing the data sent on a classical communication link, 
by relying on keys generated by QKD (plus some initially shared small secret authentication keys) and on symmetric-key 
cryptographic primitives.

More formally, we consider here the problem of securely transmitting classical messages (payload) from Alice to Bob via 
the following generic protocol:

1. Establishment of a symmetric secret key K S = Kencrypt · Kauth between Alice and Bob (X · Y stands for the concatenation 
of string X with string Y ).

2. Secure and authentic transmission of the message M over the classical channel, with symmetric-key cryptographic 
primitives: M is encrypted with encryption key Kencrypt and authenticated with the authentication key Kauth .

After a brief subsection about the performances of QKD devices we will analyze several variations of the generic scenario 
described above, in which QKD is used as the secret key agreement primitive over a point-to-point link, while different types 
of encryption and authentication schemes are used.

3.1. Performance of QKD link devices: recent progresses

QKD research and development is carried out on an international level [54–59] and QKD systems are being developed 
with increasing performances and reliability. One can currently expect to exchange up to 1 Mbits of secret key per second, 
over a point-to-point QKD link of 20 km [60]. The maximum span of QKD links is now roughly around 100 km or even 
140 km [60,61] (depending on the type of single photon detector that is used) at 1550 nm on a telecom dark fiber. A com-
parable maximum span has also been reached in the context of ground-to-ground free space QKD [62]. This experiment 
was successfully realized with a quantum channel whose losses were one order of magnitude larger than what we expect 
them to be in the framework of space-to-ground communications. It thus paves the way towards QKD between a satellite 
and a ground station [55]. Both secret bit rate and maximum reachable distance are expected to continue their progression 
during the next years due to combined theoretical and experimental advances. Note that in any case QKD performances are 
intrinsically upper bounded by the performance of classical optical communications. It is however also important to notice 
that QKD systems can now basically be built with optimized, off-the-shelves telecom components (laser, phase modulators, 
beamsplitters, polarization controllers, and etc.) at the notable exception of photodetectors. Photodetection is currently the 
bottleneck for the performance of QKD systems, but it is important to keep in mind that, even on that side, although there 
are many technical problems to overcome, there are very few fundamental limitations for rate and distance, as detection 
methods are making significant progresses [63,64,56,60,61,58]. Another approach, known as “continuous variables QKD” 
(CVQKD) uses only standard PIN photodiodes, but requires more sophisticated data post-processing in order to extract the 
secret keys [65]. Significant progresses, on the theoretical [66] as well on the implementation side [67] have been achieved 
for CVQKD and further advances on the protocol side may allow CVQKD systems, that were known to be able to deliver 
high bit-rate but only for small or medium losses on the quantum channel, to become suitable for long-distance, high-bit 
rate QKD [68].

As optical modulation and detection techniques become faster and faster (currently reaching GHz clock rates for discrete 
variable systems [64]), data post-processing, and in particular error correction, may become the bottleneck in terms of 
reachable key rate. As a consequence, serious efforts are invested to design fast and efficient implementations of error 
correcting codes adapted to the specificities of QKD. An initial protocol was introduced by Brassard and Salvail [69] in 
1993: Cascade, and remains widely used. Practical error correction technique like Cascade (whose decoding complexity is in 
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n log(n)) or LDPC decoding (also in n log(n)) are both capacity achieving and efficiently decodable. LDPC are however more 
and more used in practical QKD, both for continuous [70] and discrete variable QKD [71], because of performance concerns 
(Cascade is interactive and can require a lot of network bandwidth) and also because the requirement of one-way classical 
communication (and therefore unidirectional reconciliation) is often a necessary hypothesis in existing security proofs.

3.2. QKD composed with one-time-pad: long-term security of link encryption

One-time-pad encryption is the only encryption scheme for which information-theoretic security can be proven. It is 
thus natural to combine it with QKD. Beyond the fact that it is ITS, QKD has the important property of being universally 
composable (UC) [72]. Universal composability of QKD can be proven [40] and implies that QKD can be composed with 
other ITS and UC protocols, resulting in a composed protocol that is also ITS and UC. As a consequence, when keys estab-
lished by QKD are used to perform one-time-pad encryption the resulting protocol is an unconditionally secure message 
transmission protocol [73]. Building an unconditionally secure classical communication link is probably one of the most 
important application of QKD.

Taking advantage of the perfect secrecy offered by one-time-pad and from the fact that the keys established by QKD 
are unconditionally secure, message encryption can be performed with a level of security that cannot be reached when the 
key agreement mechanism is not QKD: the messages are perfectly secret with respect to adversaries and there is provably 
absolutely no chance that future events could alter the secrecy of these messages.

As pointed out in [46], long-term security is needed in many specific application scenarios, such as the protection of 
medical records, industrial secrets and military or governmental classified information. However, offering long-term secu-
rity for highly sensitive data is not something that can be guaranteed by today’s computationally secure schemes. Indeed, 
as written in [20], “beyond approximately 10 years into the future, the general feeling among ECRYPT partners is that 
recommendations made today should be assigned a rather small confidence level, perhaps in particular for asymmetric 
primitives”. As a matter of fact, it is important to note that when one deals with the transmission of encrypted informa-
tion, an adversary can always store the ciphertext and wait for the decryption until better cryptanalysis methods become 
available (for example more efficient algorithms for factoring or the discovery of an efficient way to attack AES) or better 
cryptanalysis hardware (indeed large quantum computers would be very efficient for breaking most of the asymmetric en-
cryption primitives in use today). The recommendation of ECRYPT is indeed to consider using one-time-pad encryption for 
high-security levels, “provided the key management can be solved” [20]. In this perspective, the combination of QKD with 
one-time-pad, which provides a practical solution for unconditionally-secure data transmission over a point-to-point link 
(solution that can indeed be extended in the context of networks, see Section 4) seems to be a natural response to meet 
some of the most stringent requirements within high-security communication infrastructures: long-term security.

3.3. QKD composed with a classical computationally secure symmetric encryption scheme: key security and key ageing

Here we will consider one very frequent use case: QKD combined with link encryption performed with a symmetric 
encryption scheme (such as AES). This combination is the one that is currently pushed forward by existing commercial 
QKD vendors [6]. It provides a practical solution adopted within the BBN Darpa Quantum Network project [74]. Such a 
composition provides a practical solution to realize a point-to-point VPN encryptor, that can be deployed in layer 2 (link) 
in the OSI network layer model [6] or directly in the layer 3 (network), for example by interfacing QKD-based key exchange 
with IPSEC [75,76].

The final security of the exchanged data over such link cannot be stronger than the security of the encryption scheme. 
In the case of a symmetric-key block cipher, the security of the encrypted data depends on at least four factors:

1. the security of the encryption key (can an opponent get even some partial information about the key?);
2. the number of blocks that have been encrypted with the same key (key renewal rate);
3. the length of the encryption key (56 bits for DES, 128, 192 or 256 bits for AES);
4. the security of the symmetric-key encryption algorithm, for which only “practical computational security” can be 

claimed.

The last two factors are only dependent on the encryption technique and not at all on the key agreement scheme. 
The security implications (and the security level) associated with the choice of a given symmetric cipher, with a given key 
modulus length is discussed in detail in [27,19,20]. In the ECRYPT Yearly Report on Algorithms and Keysizes published in July
2008 [20], a symmetric key modulus of 128 bits is recommended for long-term security (while 256 bits is recommended 
for a good protection of symmetric ciphers against a quantum computer).

The first two factors, on the other hand, are influenced by the choice of the secret key agreement scheme: the security 
of the key is intrinsically linked to the security of the secret key agreement scheme while the key renewal rate also strongly 
depends, on a practical level (hardware performance, security policy, implementation details, etc.), on the key establishment 
scheme. We will discuss in the following whether QKD-based schemes, used in replacement of traditional key agreement 
schemes, present an interest with respect to these two factors.
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3.3.1. Security of the key
As explained in Section 2, there exist many different solutions to perform secret key agreement, but QKD is the only 

existing and practically implementable scheme that can offer information-theoretic security. One advantage of using QKD 
as the key renewal mechanism for link encryption is the long-term security guarantee for the keys. This is to be compared 
with the usual mode of operation for VPN encryptors, where the establishment of an encryption key relies on asymmetric 
cryptography and thus imply a vulnerability to potentially existing (now or in the future) computational attacks on the 
public-key scheme.

Another important operational interest of QKD, when used sequentially to produce successive encryption keys, is the 
property called forward-secrecy of the established keys: the successive keys established over a QKD link are independent 
from one another. Therefore the potential compromise of a single key cannot lead to the compromise of other keys. We 
can notice that the forward-secrecy of QKD is a natural consequence (and weaker property) than the everlasting secrecy 
mentioned in Section 2.4. As a matter of fact, in the sequential production of QKD keys, the secret material needed at each 
QKD round to authenticate the classical channel stems from a previous QKD round. Forward-secrecy in key establishment is 
an important property and can also be obtained with public-key cryptography under computational assumptions [77] while 
it cannot be obtained at all with computational symmetric cryptography since the successive keys are not independent from 
one another.

3.3.2. Key renewal rate
The rate at which encryption keys are renewed can influence the security of the encrypted data. This is what we call the 

key ageing factor, that can be reformulated as a question: how often secret session keys should be changed and what is the 
impact on the global security of the classical message passing scheme? To give elements of answer to this question, we will 
consider the practical example of a link encryptor that corresponds to what current QKD vendors are selling: combining 
QKD-based secret key agreement with AES.

• A practical example: key renewal for AES encryption

Let’s take the case of 128-bit AES for which Xilinx produces dedicated cipher modules that can support a data rate 
of 2.2 Gbit/s and for which “dedicated research hardware” has demonstrated a rate of 21.54 Gbit/s [30]. In this case, the 
number of blocks (of 128 bits) encrypted per second (with a 128-bit key) is 108.23 � 227 blocks/s. An exhaustive key search 
attack would in this case take 2101 seconds, i.e. roughly 81022 years, way beyond the age of the universe (�13 × 109 years), 
which means that exhaustive search attacks are not a threat to AES.

We must however not forget that the previous calculation is done under the assumption that exhaustive search is the 
best attack on AES. It seems thus important to question this assumption and study what can be said about the influence 
of the encryption key renewal rate on the security of AES. This complex question is intrinsically linked to the security 
assumptions one can make on AES itself.

• Security of AES

The cryptanalysis of encryption schemes like AES is a difficult topic that is still subject to very active research and it 
seems realistic to think that the ultimate difficulty of such cryptanalysis is currently not known.

For block ciphers, the resistance to cryptanalysis depends in particular on the number of rounds applied when encrypt-
ing one block (see [27] for details). Even though AES is considered secure and is currently a standard (in the USA for 
example, AES-128 is considered sufficient up to the SECRET security level, while AES-192 or AES-256 can be used for TOP 
SECRET communications [78]) it had been shown that weaker versions of AES, with reduced numbers of rounds, could 
be attacked successfully by strategies that require less computational efforts than exhaustive search [27]. Some cryptogra-
phers also claimed that powerful algebraic attacks could break AES based only on a very small number of known cleartext/
ciphertext [79]. However, algebraic attacks have never been successfully demonstrated on AES and are not regarded as a 
real threat by the majority of the cryptography community [20].

Very recently in 2011, the first cryptographic break on the full version of AES has been published [80]. This attack allows 
key recovery from AES-128 in 2126.1. Hence this result does not make mathematical attacks on AES really more practical 
than exhaustive search. It is however an incentive to renew AES encryption key relatively often, as we shall discuss in the 
next paragraph.

• Key renewal rate and use of QKD

If AES is considered perfectly secure, then the limit of 2keylength blocks after which the keys have to be renewed in order 
to avoid collision-related problems is in practice not a problem, and one cannot justify the need to renew the AES keys 
several times per second as QKD can allow.

However, as we have seen in the previous paragraphs, there exist arguments, based on some known existing algorithmic 
weaknesses of reduced versions of AES, that indicate that it could be beneficial for the global security of AES encryption 
to refresh the secret keys after a number of blocks that is significantly smaller than 2keylength . Moreover, as discussed in 
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Section 5.1, in the context of embedded systems where trust in the environment around the encryptor cannot be guaranteed, 
frequent key renewal can be beneficial (in addition to extra algorithmic and hardware security layers) because there exist 
efficient attacks that can break AES after a limited number of rounds.

Finally, the most important justification to renew keys relatively often stems from the fact that, beyond the algorithmic 
security of the encryption algorithm, key management and key storage can be the main vulnerability in the security chain. 
In this perspective, renewing the keys often is a way to reduce the negative impact of a key leakage.

4. Key agreement over a network of QKD links: QKD networks

There are several fundamental limits regarding what can be achieved with standalone QKD links. QKD links can by def-
inition only operate over point-to-point connections between two users, which greatly restricts the domain of applicability 
of quantum key distribution. Furthermore, QKD links are limited in rate and distance, and cannot be deployed over any ar-
bitrary network topology. To overcome these limitations, it is important to study what can be achieved by networking QKD 
links in order to extend the extremely high security standard offered by QKD to the context of long distance communica-
tions between multiple users. The development of QKD network architectures appears from this perspective as a necessary 
step towards the effective integration of QKD into secure data networks.

We will begin this section by an overview on the different generic QKD network architectures that have already been 
proposed. We will then present some elements of comparison between QKD networks and classical network, for the purpose 
of network-wide key agreement.

4.1. QKD network architectures

What we call a “quantum network” is an infrastructure composed of quantum links connecting multiple distant nodes. 
A quantum network can be used for key agreement, relying for that on QKD. We call such infrastructures “QKD networks”.

The essential functionality of the QKD network is to distribute unconditionally secure symmetric secret keys to any pair 
of legitimate users accessing the network. These first elements of definition are however fairly generic and can be refined. 
Indeed, even though we are at the infancy of the development of QKD networks, different models of QKD networks have 
already been proposed.

It is convenient to characterize the different QKD network models by the functionality that is implemented within the 
nodes and thus by the different underlying quantum network models. We can, from this perspective, differentiate three 
main categories of network concepts, based on different “families” of node functionalities: 1) optical switching; 2) quantum 
relaying; and 3) classical trusted relaying.

Optically switched quantum networks These are networks in which some optical function, like beam splitting, switching, 
multiplexing, demultiplexing, etc., can be applied at the network nodes on the quantum signals sent over the quantum 
channel. The purpose of such optical networking capabilities in the context of QKD networks is that they allow to go 
beyond two-users QKD. One-to-many connectivity between QKD devices was demonstrated over a passively switched optical 
network, using the random splitting of single photons upon beam splitters [81]. Active optical switching can also be used 
to allow the selective connection of any two QKD nodes with a direct quantum channel. The BBN Darpa quantum network 
[74,75] contains an active 2-by-2 optical switch in one node, that can be used to actively switch between two network 
topologies. Optical functions can thus be used to realize multi-user QKD and the corresponding nodes do not need to 
be trusted, since quantum signals are transmitted over a quantum channel with no interruption from one end-user QKD 
device to the other one. This QKD network model can however not be used to extend the distance over which keys can be 
distributed. Indeed, the extra amount of optical losses introduced in the nodes will in reality shorten the maximum span of 
quantum channels.

“Full” quantum networks To extend the distance on which quantum key distribution can be performed, it is necessary to 
fight against propagation losses that affect the “quality” of the quantum signals as they travel along the quantum channel. 
Quantum repeaters [82] can overcome the loss problem and can be used to form an effective perfect quantum channel [83]. 
A quantum network where nodes are constituted by quantum repeaters can thus be called a “full” quantum network. It 
is not necessary to trust the network nodes to have unconditional security when performing QKD over such full quantum 
networks.

Quantum repeaters however rely on elaborated quantum operations and on quantum memories that cannot be realized
with current technologies. As discussed in [84], quantum nodes called quantum relays could also be used to extend the reach 
of QKD. Quantum relays are simpler to implement than quantum repeaters since they don’t require quantum memories. 
Building quantum relays remains however technologically difficult and would not allow to extend QKD reach to arbitrary 
long distances.

Trusted repeater QKD networks This technique where trusted classical memories are placed within the nodes can be im-
plemented with today’s technology. Trusted repeater QKD networks operation follows a simple principle: local keys are 
generated over QKD links and then stored in nodes that are placed on both ends of each link. Global key agreement is 
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Fig. 2. “Hop-by-hop” unconditionally secure message passing on a path made of trusted relay nodes connected by QKD links. Message decryption/re-
encryption is done at each intermediate node, by using one-time-pad between the local key, distributed by QKD, Klocal , and the secret message M resulting 
in the ciphered message M

⊕
Klocal . Different key associations are symbolized by different colors.

performed over a QKD path, i.e. a one-dimensional chain of trusted repeaters connected by QKD links, establishing a con-
nection between two end nodes, as shown on Fig. 2. Secret keys are forwarded, in a hop-by-hop fashion, along QKD paths. To 
ensure secrecy, one-time-pad encryption and unconditionally secure authentication, both realized with local QKD key, are 
performed. End-to-end information-theoretic security is thus obtained between the end nodes provided the intermediate 
nodes can be trusted.

Classical trusted repeaters can be used to build a long-distance QKD network and real-scale deployments of such QKD 
networks have already been demonstrated, firstly with the DARPA Quantum network, deployed in Boston in 2004 [74,75]
and more recently by the SECOQC consortium that developed a highly integrated network architecture, with dedicated pro-
tocols, allowing global key management [85,86] and leading to a demonstration in 2008 in Vienna [59]. A trusted repeater 
network is essentially a classical network where the exchanged data consists in keys encrypted with QKD-based keys. Since 
it relies on QKD for local secret key agreement and on unconditionally secure encryption, it can offer an unprecedented 
overall security for key agreement and can accommodate long-distances. This last claim is of course only true if one can 
guarantee that nodes can be trusted. Such assumptions is demanding but can be verified some existing high security net-
works infrastructures. It can moreover be partially relaxed by making use of path diversity within networks, allowing to 
maintain security even when a limited number of nodes are corrupted [87,88].

4.2. Key agreement in a network: elements of comparison between classical key agreement schemes and QKD networks

4.2.1. Key establishment rate
As discussed in Section 3.3.2, some security requirements related to current block ciphers such as AES could motivate 

the need to refresh secret keys of such ciphers over times shorter than a minute. Although this is possible in practice with 
current technology, relying on Diffie–Hellman and PKIs, such key renewal rate policies are very seldom (if ever) enforced and 
the key renewal period of most currently deployed VPNs is more in the range of hours. As a matter of fact, since public-key 
cryptography is rather slow and computational intensive and is using long key modulus (see details in Section 2.2), it could 
become an extremely high burden for end-users in terms of time and CPU consumption if key renewal was to be done over 
times shorter than one minute. On the other hand, despite the fact that QKD is very often portrayed as slow [7], QKD rates, 
as we have mentioned earlier, are currently reaching several hundreds kbit/s for metropolitan distances. This implies that 
QKD networks could typically allow to refresh thousands of 128-bits AES keys per second, over VPN links in a metropolitan 
network.

4.2.2. Network initialization and key pre-distribution
Secure networks always rely on some initial trust in order to be able to provide some security guarantee. As discussed 

in Section 2.4, a pair of initial small secrets or an authenticated classical channel is necessary to initialize a QKD link. We 
now consider the question of network initialization and key pre-distribution for symmetric-key-based and asymmetric-key-
based secure networks and compare it with the requirements of QKD networks. As noted in [46], we can argue that the 
combination of asymmetric-key (for key pre-distribution) and QKD presents some specific interests.

Key pre-distribution over networks relying on symmetric-key cryptography One of the central issues in network key distribution 
is the initialization and the management of a potentially very large pool of secret keys: in a symmetric-key framework, 
where each member of an n-user network wants to be able to communicate securely with each of the other n − 1 users, the 
key distribution scheme is required to provide any of the n(n − 1)/2 pairs of users with a secret key before communication 
can start. Managing the security of those keys efficiently is thus a difficult task as n grows. This is the reason why large-scale 
symmetric-key cryptography is seldom used in today’s networks (however some network security schemes, like the Kerberos 
network authentication scheme [89] rely on classical symmetric-key cryptography and on a single trusted center).

Key pre-distribution over QKD networks As pointed out in [7], QKD networks need pre-distributed secret keys to perform the 
first rounds of authentication. The QKD-generated keys can then be stored and used for later authentication. Initialization 
of a QKD network of n nodes thus a priori requires the pre-distribution of n(n − 1)/2 pairs of secret keys (one per pair 
of user) with trusted couriers. One can however take advantage of network connectivity to show that it is sufficient to 
distribute keys over a subset of those n(n − 1)/2 pairs: what is needed is to distribute a pair of keys over QKD links so that 
the resulting graph of “initialized” QKD links is a covering graph of the QKD network. In this case, the complexity of key 
pre-distribution only scales linearly with the network size.
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PKI initialization PKI is the most commonly employed system for key agreement over open networks. PKI trust relations 
are materialized by certificates, i.e. signatures of public-keys and these trust relations can be organized hierarchically, which 
offers the advantage that trust relations do not have to extend over all nodes in the network but only to a trusted third 
party called the certification authority. Public-key cryptography allows to perform secure key agreement between two users 
without any pre-shared common secret: the only condition is that they accept to trust the same certification authority. PKIs 
however also need to be initialized, which might require the use of trusted couriers. In this sense, the initialization of a 
QKD network and the initialization of a PKI are two problems that share some similarities.

Interest of PKIs for QKD network initialization As pointed out in [7], QKD networks present a security advantage over PKIs 
when we consider the initialization phase: in order to threaten the security of a QKD network, message authentication 
needs to be broken before or during the execution of the quantum key establishment protocol. This property is connected to 
the everlasting security of QKD explained in Section 2.4.

One can take advantage of this property in the case of QKD network initialization and consider a hybrid scenario for 
key pre-distribution in which the classical communications needed for the key distillation phase are authenticated, at least 
during the first QKD sessions, by a computationally secure message authentication scheme based on public-key cryptogra-
phy (for which the PKI has been freshly initialized). If no active attack on authentication has been performed before the 
first potentially vulnerable (assuming some potential weaknesses of asymmetric cryptography) QKD sessions, then the keys 
shared by Alice and Bob are identical and unconditionally secure. The previous condition will always be verified if the 
computational power of the adversary is bounded at the time of the QKD network initialization which constitutes a moderate 
assumption. There is a clear practical interest for such a scheme: it relaxes the requirement of distributing pre-established 
small keys in a QKD network for each network initialization (which requires secret couriers and can be a difficult key 
management problem in the case of large networks).

4.2.3. Vulnerability against denial-of-service attacks
As discussed in Section 2.4, an individual QKD link is vulnerable to denial-of-service (DoS) attacks that can be brutally 

realized by physically cutting the quantum channel, or, more subtly, by acting on the quantum channel in order to increase 
the noise above the security threshold, so that no key can be generated despite the availability of the QKD link.

As we are interested here in comparing classical or quantum networks, it is important to note that the vulnerability 
to DoS attacks targeting individual communication lines, exists in both cases. There is an important difference: physical 
signals in classical networks can be broadcast, while QKD optical signals sent on the quantum channel can’t, as this would 
violate the no-cloning theorem. Broadcasting the same quantum signals over multiple channels can thus not be used in 
QKD networks to resist against DoS attacks on some channels.

On the other hand, XORing keys obtained via key agreements realized over disjoint paths (connecting the same end-
points) is a solution that can be used both in a classical and in a quantum context and that can be employed to perform 
reliable classical communication against an opponent performing DoS attacks on a limited number of paths. In this case, the 
resilience against DoS attacks, characterized by the maximum number of coordinated attacks that can be tolerated (while 
still being able to perform key agreement), depends on the topology of the network.

There is another important aspect to consider: since the classical communications in a QKD protocol require the use of 
keys for authentication, DoS attacks can be designed to exhaust the key reservoirs on Alice and Bob and thus make the QKD 
link unusable to generate more key, unless it is reinitialized with small authentication keys. In a network context, there 
are however several solutions to key exhaustion: path diversity can be used, as explained above, and if there exists one 
functional path in the QKD network connecting the two endpoints of the link, this path can then be used to rekey the link. 
Moreover, besides the obvious but costly solution of using trusted courier to rekeying exhausted key store, one could also 
use the hybrid solution mentioned above, i.e. using a PKI for the first authentication round.

4.3. Open networks versus trusted QKD networks

As pointed out in [12], “quantum cryptology is not a solution for open networks”, i.e. a QKD network does not allow 
users that do not share any pre-established secrets or trust relations to exchange a key and then communicate securely. 
In a sense QKD networks are also tied by their “physical nature”: they are limited in distance since quantum signals are 
exchanged over lossy optical channels. These physical limitations however bring a considerable security advantage: QKD 
networks can provide unconditional security to all the users that have access rights to the network and are thus inside the 
“circle of trust” of these closed networks. As we shall discuss in Section 5.4, the practicality of asymmetric cryptography 
and its suitability for open networks may have as a counterpart the existence of stronger vulnerabilities to cryptanalysis.

The difference between quantum networks and classical networks thus appears to be almost ontological: they do not 
offer the same services and exhibit a relation with space and distance that is extremely different. While classical open 
networks, and especially the Internet have been described as “small worlds”, where physical signals can be regenerated, 
data can be copied and distances are almost abolished, quantum networks are in essence closed networks where distance 
comes back into the game, as it is the case with telephone networks [90].
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5. Challenges and future directions

As shown by the discussions we have conducted in Sections 3 and 4, QKD is essentially adapted to be used in combina-
tion with classical cryptographic techniques. To move forward towards larger adoption, several factors will play an important 
role, in particular QKD system performances (in terms of key rate or reachable distance), their security, as well their in-
tegrability into modern optical networks. Since this paper focuses on the cryptographic status of QKD, we will essentially 
concentrate on challenges related to the practical security of QKD, and will evoke some research topics where the interplay 
between classical and quantum cryptography is likely to open interesting new perspectives.

5.1. Practical security of QKD implementations and implementation loopholes

5.1.1. Physical side-channels
Instead of trying to break the theoretical foundations of a given cryptographic system, another “attack philosophy” is 

to attack its implementation via loopholes, in order to gain some secret information via unconventional channels such as 
electromagnetic radiation, heat dissipation, acoustic noise, observation of computation time or power consumption.

As first demonstrated in the pioneering work of P. Kocher at the end of the 1990s, one can exploit so-called “physical 
side-channels” through which information about secret keys leaks while cryptographic computations are being conducted 
to mount extremely powerful attacks. The first efficient attacks to be demonstrated were based on monitoring the execu-
tion time and then the power consumption of classical cryptographic devices (whose implementations ultimately rely on 
semiconductor logic gates and transistors) [91,92]. The variety of side-channel attacks and of counter-measures has gradu-
ally expanded since then and one can for example consult the ECRYPT Side Channel Cryptanalysis Lounge for a thorough 
overview [93].

The threats imposed by side-channel attacks can be in practice extremely serious. Their study and the development of 
countermeasures has thus become an increasingly important topic, in particular in the context of embedded cryptographic 
systems evolving in potentially hostile environments, such as smart cards. If we consider for example the vulnerabilities of 
AES to side-channel attacks, state-of-the-art DPA attacks (Differential Power Analysis attacks, i.e. passive attacks performed 
by monitoring the power consumption of the device) can successfully break unprotected AES implementations on a smart 
card after the acquisition of 100 power traces, while roughly 50 000 power traces are needed to break software protected 
implementations of AES. Even protected implementations of AES can thus be broken in a few minutes with DPA [94]. 
Moreover, if one allows active attacks, such as attacks based on fault injection in the circuit, then a full break of AES128 
has been obtained in a few seconds, with only 2 pairs of correct and faulty ciphertext [95]. Note also that implementation 
of asymmetric cryptographic schemes, such as RSA, are also vulnerable to side-channels attacks [96]. To increase security, 
dedicated counter-measure need to be deployed, as well as extra layers of hardware protections (in order to physically 
restrict the possibility to launch such attacks).

As we shall explain in more details in the next paragraph, QKD is not immune to side-channels attacks and it has 
already been demonstrated that some specific implementation imperfections in QKD systems can also be exploited to mount 
side-channel attacks.

5.1.2. Quantum hacking
As explained in Section 2.4, some trust assumptions are always needed to prove the security of a QKD protocol. In partic-

ular, Alice and Bob’s hardware is assumed to be in secure labs (the [Secure labs] assumptions) and its operation is supposed 
to conform to what Alice and Bob expect ([Trustworthy Implementation]). When one deals with real QKD implementations, 
both of these assumptions, and thus the entire security proof can however be challenged if some imperfections can be ex-
ploited to mount side-channel attacks. This line of research, called quantum hacking has become an important research field 
during the past years, where different types of attacks on QKD implementations have been proposed and experimentally 
demonstrated. After tackling the general question of the categorization of (passive or active) attacks on QKD systems, we 
will briefly review the main side-channel attacks studied so far and comment on the general situation of QKD with respect 
to practical security.

Passive and active side-channel attacks in QKD By analogy with the attacks on classical cryptographic systems, it is interesting 
to distinguish between passive and active side-channel attacks in QKD. This categorization is not straightforward since, un-
like in the classical case, “passive listening” on a quantum signal creates disturbances. This leads to the question of whether 
the concept of passive side-channel attack is meaningful in QKD. However, since disturbances due to eavesdropping on a 
quantum signal are taken into account by security proofs, the corresponding attacks should not be considered side-channel 
attacks. We can, on the other hand, define side-channel attacks as attacks exploiting discrepancies between the security 
proof framework and the actual characteristics of the implementation.

• Passive side-channel attacks correspond to attacks where the attacker does not actively modify the characteristics of 
the implementation, and tries to exploit existing imperfections to break the security. This can for example be possible if 
some information leaks from Alice’s lab, as in the very first QKD experiment performed in 1989 [97], where the Pockels 
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cells used to modulate the polarization on Alice’s side made noises indicating the state sent by Alice. This lead Charles 
Bennett to notice that the QKD system was only secure against an eavesdropper who happened to be deaf.

• Active side-channel attacks correspond to attacks where the opponent actively modify some characteristics of the im-
plementation in order create an exploitable deviation between the way the system under attack operates and the 
assumptions in the security proof. Most of the attacks evoked in the remaining part of this paragraph such as blinding 
attack and Trojan horse attacks are active side-channel attacks.

Review of the main side-channel attacks

• “Conventional” side-channels. Most side-channels studied so far in the QKD research literature are “quantum-specific 
loopholes”. This focus is natural since the main difference between QKD links and classical cryptosystems stems from 
the fact that the quantum channel is fully under the active control of Eve, leading to specific security issues. However, 
“conventional” side-channels, i.e. security loopholes related to non-quantum aspects of the QKD protocol are also a 
serious threat. The accumulated knowledge from classical cryptography, regarding the secure design of cryptographic 
hardware will thus be extremely precious in this domain. One important class of conventional side-channels are the 
covert channels leaking information about the internal state of Alice or Bob’s QKD hardware, for example via acoustic 
or electromagnetic radiations. The TEMPEST [98] measurement standards, dedicated to ensure protection requirement of 
cryptographic hardware against compromising emissions, are therefore meaningful in order to enforce the cryptographic 
boundary around Alice and Bob’s QKD devices ([Secure lab] assumption).

• Trojan horse attacks. Trojan horse attacks on QKD implementations [99] consist in sending Alice or Bob, via the quantum 
channel, intense pulses of light that will reflect back on the optical elements. By monitoring the reflected light, infor-
mation about the internal state of QKD devices can be learned by an eavesdropper. In particular, information about the 
status of the Alice’s modulators (phase of polarization) can be learned and thus information about the key. Counter-
measure against Trojan horse attacks can consist in putting spectral filters on Alice and Bob’s side, as well as an optical 
isolator on Alice’s side, and also to actively monitor the incoming light in Alice and Bob’s devices.

• Attacks on single photon detectors. Single photon detectors, usually avalanche photodiodes (APDs) operated in trigger 
mode are one of the key elements in discrete-variable QKD implementations. Many of the published attacks have been 
realized by exploiting existing or induced imperfections of APDs. In the detector blinding attack [100,47], an intense pulse 
of light is used to change the detector response characteristics, allowing then to use faked-states sent by Eve to mimic a 
correct behavior [101,102] (with respect to the observation of correct detection statistics as well as correct correlations 
between Alice and Bob’s measurements) while breaking the security of the QKD protocol since the detector response is 
manipulated by Eve. Many implementations rely on several APDs (for example one per detection basis in BB84) and a 
lack of symmetry between the detectors can be exploited to launch attacks. A temporal efficiency mismatch between 
two APDs can for example be used by the eavesdropper to launch the so-called time-shift attack: by adding a random 
temporal delay to the pulse, the eavesdropper can obtain information about which detector has clicked and thus about 
the key [103,104]. A countermeasure against the time-shift attack is to bring back the symmetry by performing a 4-state 
modulation (instead of 2-state) on Bob side [105].

• Side-channel on random number generators. If Eve is able to learn some information about the randomness generated by 
Alice and Bob to run the QKD protocol, this could lead to a complete security breach. As already discussed in Section 2.4, 
true number generators (TRNGs), whose entropy is intrinsically based on quantum processes should be used in QKD 
implementations, however a classical cryptographic processing of the output of the generator is useful to guarantee the 
robustness of the TRNG against some external physical biases. In addition, TEMPEST protection should also be applied 
to the QRNGs.

• Attacks on calibration procedures. In a practical QKD system, some important parameters which play a role in the security 
of the system (for example the intensity of the laser source, the length of the quantum channel or the timing of the 
gate for single-photon detectors), are not directly measured during the “quantum phase” of the QKD protocol, but 
are calibrated. It means they are measured offline: possibly once for all in the factory; or regularly if this parameter 
can fluctuate (this for example is the case for the gate delay in the Clavis2 implementation of BB84 by IdQuantique). 
The calibration protocols used to measure such parameters are thus important for security and it has recently been 
demonstrated that attacking the calibration of a QKD system can lead to security breaches [48]. Calibration protocols 
in QKD must thus be considered in an adversarial setting. It is also true in the case of continuous-variable QKD, for 
parameters such as shot-noise measurements, that may be altered if the eavesdropper is left free to actively manipulate 
the local oscillator [106].

• Attacks on multi-photon pulses – Extended security models. In the BB84 protocol and other discrete-variable protocols, many 
among the early security proofs [33–35] assumed that Alice sends single-photon pulses. However, single photon sources 
are experimentally challenging to make and thus impractical to use in real QKD systems. Instead, weak coherent laser 
pulses (WCP) with Poissonian photon statistics are used. This has security implications since pulses of light containing 
more than one photon can be exploited by the eavesdropper to learn potentially all the information about the encoded 
bit, using the so-called photon-number-splitting (PNS) attack [107]. Considering this attack, it remains possible to prove 
the security of BB84 performed with WCP, but one must decrease the mean number of photons in the pulse (and 
hence the rate) as the distance increases [107]. In 2003, a more radical response to the PNS attack has been proposed, 
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that consists in modifying the QKD protocol with the adjunction of decoy-states to actively test the influence of the 
eavesdropper on the photon statistics. This protocols allows to obtain a linear decrease of key rate with distance, which 
is optimal [108,109].
More generally, it has been shown that small deviations between the model and the implementation, such as imperfect 
preparation of the states by Alice or imperfect detection by Bob, can essentially be captured in the security model, at 
the expense of some extra privacy amplification [110]. Note that is not the case for attacks like blinding or Trojan horse, 
where the deviation from the security model is not small.

5.2. Device-independent security: fundamental quantum mechanics as a tool against side-channels

Device-independent security [111] is a promising development of quantum cryptography, with no classical counterpart. 
It allows to perform cryptographic tasks, with unconditional security, without assuming that the underlying hardware im-
plementation is trusted. Device-independent security is based on the non-locality of entangled quantum states. Moreover 
the non-local correlations involved in Bell Inequalities (BI) violation, reachable with an entangled quantum state [2], can 
be related to the absence of side-channels: one can test and verify that the Hilbert space in which the quantum state of 
the system is controlled and observed is not leaking information towards another Hilbert space and thus to a potential 
eavesdropper [112]. As shown in Ref. [111] it is possible to build so-called device-independent QKD protocols that are in-
trinsically resistant to side-channel attacks. However, for device-independent security proofs to be valid, BI violations must 
be tested in the so-called loophole-free regime, which remains currently an experimental challenge. As a consequence, prac-
tical long-distance device-independent QKD seems out of reach for the moment (but is significantly easier than large scale 
quantum computing).

It is in essence impossible to prove such side-channel-resistance properties with classical cryptographic systems, because 
any classical message can be duplicated and cloned without any perturbation. It is fascinating to notice that some very 
deep aspects of quantum information tools, like the loophole-free Bell Inequalities testing [113], that happen to be at the 
heart of quantum theory foundations, are seemingly bound to play an important role in the future development of secure 
cryptographic hardware.

5.3. Cryptographic certification of quantum cryptosystems

One aspect that may strongly hinder the adoption of QKD in network security has been spotted a long time ago by 
Michael Nielsen [114]: quantum cryptosystems are currently lacking one important element: historical security. The confi-
dence in a cryptosystem indeed not only stems from the fundamental principles of its security, but also from the fact that 
it has been intensively tested, attacked and verified by a large number of experts and users. It is clear that current QKD 
implementation cannot claim a large historical security, since few commercial systems are available and only few teams 
around the world have tried to attack the potential weaknesses of QKD systems. However, as explained in Section 5.1 the 
work on quantum hacking as well as the development of counter-measure is gaining a lot of momentum, thus improving 
the situation.

In parallel to this necessary scientific research on practical security, the emergence of security standards and certification 
procedures for QKD device will be a necessary step to build a security referential against which systems can be tested. This 
work, which had started within the SECOQC project [115], is now lead within a dedicated working group ETSI, the European 
Telecommunications Standards Institute. The QKD ISG, industry standardization group, launched in October 2008, brings 
together important actors from science and industry in order to converge towards industry standards for QKD, including 
standards concerning the cryptographic certification of QKD hardware implementations.

5.4. Post-quantum computing cryptography

As noted in [12], “If powerful quantum computers could be built, most asymmetric cryptographic protocols in use today 
would no longer be secure, which would present a serious challenge for open networks”. As also noted in [12] and explained 
in Section 4.3, QKD cannot constitute a solution for open networks either, however the potential impact of quantum com-
putation on cryptography is motivating collaboration between the quantum information and the cryptography community, 
with an impact on the development of both fields.

Beyond the classical ITS key establishment schemes discussed in Section 2.1, the fast-growing knowledge accumulated 
on quantum computation must be taken into account when designing new public-key schemes and study their resilience 
to quantum computing attacks. An important topic is thus to find computational problems that would be difficult on a 
quantum computer, and on which public-key schemes could be based. The lattice shortest-vector problem [22] on which 
the NTRU public-key scheme is built or the McEliece public-key encryption system, based on coding theory [116], both fall 
in this category of (likely) quantum-resistant public-key cryptosystems.

Such QC-resistant public-key schemes probably constitute the most plausible solutions to replace the current asymmetric 
schemes, if large quantum computers were made, or if problems such as factoring or discrete logarithm extraction were to 
be broken. However, public-key schemes like McEliece is significantly less efficient, in terms of key sizes, than current 
public-key schemes while the security of NTRU is still not considered well established. It is also important to notice that 
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even though there exists no known quantum algorithm able to attack efficiently NTRU or McEliece public-key schemes, 
none of them are proven to be difficult problems (of super-polynomial complexity) on a quantum computer (indeed there is 
no proof that they are difficult on a classical computer). On one hand, the lattice shortest-vector problem, which is NP-hard 
on a classical computer, seems to be of a comparable complexity on quantum computer [23,117] which is an indication 
that quantum computers could not solve this problem efficiently. On the other hand, the fact that NTRU is based on the 
shortest-vector problem (SVP) does not imply that the only way to break NTRU is to solve SVP.

Indeed, as noted in [118], the question of whether the complexity classes related to mathematical problems are ulti-
mately different on a quantum computer than what they are classically remains essentially an open question. There are 
even some indications leading to partially negatively answer to this question: as demonstrated in [119], oracle methods can 
be used to give evidence that the complexity class NP is not included in BQP (which contains the problems that can be 
considered as efficiently solvable on a quantum computer), somehow setting a limit to the power of a quantum computer.

Understanding algorithmic security in a world where large-scale quantum computers may exist one day implies to take a 
fresh look on cryptographic designs and is connected to fundamental questions in computational complexity. Post-quantum 
cryptography is thus an extremely important and stimulating research field, not only for the cryptography of tomorrow, but 
also for the cryptography of today.

5.5. Classical cryptographic primitives built on top of QKD networks

QKD networks operated with trusted repeaters can be deployed today and can therefore be considered as a new security 
infrastructure. We believe that it could be fruitful to also consider such networks from a purely theoretical point of view, 
as “new cryptographic primitives”, allowing the establishment of unconditionally secure keys, among a network of trusted 
centers connected by QKD links.

It seems interesting to examine what new classical cryptographic protocols could be built on top of such networks, 
beyond global pair-wise key establishment. As already proposed in [120] in the framework of the bounded quantum-storage 
model [121], QKD networks could be combined with Oblivious Transfer in order to allow unconditionally secure multi-party 
computations. One can also study the efficiency of secret sharing schemes over such new cryptographic infrastructure.

Important work has already been done on that topic (totally independently from QKD networks considerations) 
[122–125]. This work strikingly fits with the unconditional security offered by QKD networks, and powerful information-
theoretic tools have been developed to guarantee the security of such networks even when some fraction of the network 
nodes are corrupted. We believe that this opens promising research perspectives in the domain of unconditionally secure 
networks.

6. Conclusion

QKD is currently the only known cryptographic technique that has lead to secret key agreement protocols for which the 
unconditional security can be formally established. Since the first QKD protocol, BB84, proposed 25 years ago [31], prolific 
theoretical and experimental research work has been conducted, as illustrated by our survey mostly centered on European 
realizations. Quantum cryptography has rapidly become an established academic topic within quantum information science, 
while QKD technologies have continuously moved forward in terms of performance and reliability.

The acknowledgment of these advances by security experts and by leading classical cryptographers is likely to play a key 
role in the development dynamics of a QKD industry and cannot be taken for granted. The main objective of this article 
was thus to give an overview of the development of QKD, as a cryptographic technology, with an emphasis on practical 
scenarios such as its use for key renewal in order to realize link encryption and its deployment at a network scale. The 
general message is that the most interesting uses arise when the long-term confidentiality of QKD-established keys can be 
exploited to provide some security advantage that could not be attained otherwise. This is in particular the case when QKD 
is combined with one-time-pad encryption, while it could also be the case when QKD is combined with AES. Concerning its 
deployment in a network context, the rationale for the use of QKD is to focus on medium-sized operated (closed) networks 
and also to carefully manage the established keys as well as the authentication procedure. One interesting feature is that, 
when combined with public-key infrastructures, used for initial authentication, the use of QKD networks then provides 
long-term security of the established keys.

Concerning future developments of QKD, we believe that it can benefit from cross-disciplinary approaches on funda-
mental topics such as the construction of ITS network protocols or the study of side-channels in cryptographic hardware. 
Synergies with network security research and with industry are likely to play an increasing role as certification procedures 
for QKD devices are adopted and products tested on real-world networks. We believe that the search of long-term security 
should be the driving concern when integrating QKD into security infrastructures.

Acknowledgements

We would like to thank collegially all the partners of the SECOQC project for stimulating discussions and contribu-
tions to this article. R.A. thanks Gilles Van Assche for his help on improving Section 3.3. R.A. also acknowledges enlightning 
discussions with Sylvain Guilley, Philippe Hoogsvorst and Jean-Luc Danger about side-channel attacks on cryptographic hard-



JID:TCS AID:9868 /FLA Doctopic: Theory of natural computing [m3G; v 1.137; Prn:30/09/2014; 13:37] P.18 (1-20)

18 R. Alléaume et al. / Theoretical Computer Science ••• (••••) •••–•••
ware. Finally, R.A. warmly thanks Thomas Lawson, Damian Markham and Delphine Agut for their help on the manuscript. 
R.A. acknowledges support from Agence Nationale de la Recherche under projects PROSPIQ (ANR-06-NANO-041-05), SEQURE

(ANR-07-SESU-011-01) and COQC (ANR-08-EMER-003). R.A. also acknowledges support from the FP7 Marie Curie project 
Q-CERT 251467.

References

[1] R. Alléaume (editing author), J. Bouda, C. Branciard, T. Debuisschert, M. Dianati, N. Gisin, M. Godfrey, P. Grangier, T. Länger, A. Leverrier, N. Lütkenhaus, 
P. Painchault, M. Peev, A. Poppe, T. Pornin, J. Rarity, R. Renner, G. Ribordy, M. Riguidel, L. Salvail, A. Shields, H. Weinfurter, A. Zeilinger, C. Monyk, 
SECOQC white paper on quantum and cryptography, eprint arXiv:quant-ph/0701168, January 2007.

[2] N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Quantum cryptography, Rev. Modern Phys. 74 (1) (2002) 145–195; eprint arXiv:quant-ph/0101098.
[3] M. Dusek, N. Lütkenhaus, M. Hendrych, Quantum cryptography, in: E. Wolf (Ed.), Progress in Optics, vol. 49, Elsevier, 2006; eprint arXiv:quant-

ph/0601207, 2006.
[4] V. Scarani, H. Bechmann-Pasquinucci, N.J. Cerf, M. Dusek, N. Lütkenhaus, M. Peev, The security of practical quantum key distribution, eprint 

arXiv:0802.4155 [quant-ph].
[5] www.secoqc.net.
[6] www.idquantique.com, www.magiqtech.com, www.smartquantum.com.
[7] K.G. Paterson, F. Piper, R. Schack, Why quantum cryptography?, Cryptology ePrint archive: report 2004/156, http://eprint.iacr.org/2004/156.
[8] B. Schneier, Crypto-Gram: quantum cryptography, http://www.schneier.com/crypto-gram-0312.html#6, December 2003.
[9] B. Schneier, Schneier on security: Switzerland protects its vote with quantum cryptography, http://www.schneier.com/blog/archives/2007/10/

switzerland_pro.html, October 2007.
[10] B. Schneier, Quantum cryptography: as awesome as it is pointless, Wired, http://www.wired.com/politics/security/commentary/securitymatters/2008/

10/securitymatters_1016, October 2008.
[11] G. Van Assche, Quantum Cryptography and Secret-Key Distillation, Cambridge University Press, 2006.
[12] C. Cachin, D. Catalano, I. Damgård, Dittmann, C. Kraetzer, A. Lang, T. Lange, M. Näslund, P. Nguyen, E. Oswald, C. Paar, G. Persiano, B. Preneel, 

M. Robshaw, A.-R. Sadeghi, Challenges for cryptology research in Europe for 2007–2013 and beyond, ECRYPT deliverable, http://www.ecrypt.eu.org/
documents/D.SPA.22-1.0.pdf, May 2006.

[13] C. Shannon, Communication theory of secrecy systems, Bell Syst. Tech. J. 28 (4) (1949) 656–715.
[14] A.D. Wyner, The wire-tap channel, Bell Syst. Tech. J. 54 (8) (1975) 1355–1387;

L.H. Ozarow, A.D. Wyner, Wire-tap channel II, Bell Syst. Tech. J. 63 (1984) 2135–2157.
[15] I. Csiszàr, J. Körner, Broadcast channels with confidential messages, IEEE Trans. Inform. Theory IT-24 (1978) 339–348.
[16] C. Cachin, U.M. Maurer, Unconditional security against memory-bounded adversaries, in: Advances in Cryptology – CRYPTO ’97, 1997, pp. 292–306.
[17] U.M. Maurer, Secret key agreement by public discussion from common information, IEEE Trans. Inform. Theory 39 (1993) 733–742.
[18] W. Diffie, M.E. Hellman, New directions in cryptography, IEEE Trans. Inform. Theory 22 (1976) 644–654.
[19] S. Babbage, D. Catalano, C. Cid, L. Granboulan, T. Lange, A. Lenstra, P. Nguyen, C. Paar, J. Pelzl, T. Pornin, B. Preneel, M. Robshaw, A. Rupp, N. Smart, 

M. Ward, ECRYPT yearly report on algorithms and keysizes (2005), available at http://www.ecrypt.eu.org/documents/D.SPA.16-1.0.pdf, 2006.
[20] S. Babbage, D. Catalano, C. Cid, O. Dunkelman, C. Gehrmann, L. Granboulan, T. Lange, A. Lenstra, P. Nguyen, C. Paar, J. Pelzl, T. Pornin, B. Preneel, 

C. Rechberger, V. Rijmen, M. Robshaw, A. Rupp, N. Smart, M. Ward, ECRYPT yearly report on algorithms and keysizes (2007–2008), www.ecrypt.eu.org/
ecrypt1/documents/D.SPA.28-1.1.pdf, July 2008.

[21] P.W. Shor, Algorithms for quantum computation, discrete log and factoring, in: FOCS’35, 1994, p. 124.
[22] O. Regev, New lattice based cryptographic constructions, in: STOC’03, 2003, pp. 407–416.
[23] O. Regev, Quantum computation and lattice problems, SIAM J. Comput. 33 (3) (2004) 738–760.
[24] D.J. Bernstein, J. Buchmann, E. Dahmen (Eds.), Post Quantum Cryptography, Springer, 2009.
[25] Crypto++, 5.5 benchmarks, http://www.cryptopp.com/benchmarks-p4.html, May 2007.
[26] RSA Laboratories, RSAES-OAEP encryption scheme. Algorithm specification and supporting documentation, ftp://ftp.rsasecurity.com/pub/rsalabs/rsa_

algorithm/rsa-oaep_spec.pdf, 2000. This document is referred to, on the RSA website (http :/ /www.rsasecurity.com /rsalabs/) by the following sentence: 
“revised version of the algorithm specification submitted to the NESSIE project, containing the latest updates on the security of OAEP”.

[27] B. Preneel, A. Biryukov, E. Oswald, B.V. Rompay, L. Granboulan, E. Dottax, S. Murphy, A. Dent, J. White, M. Dichtl, S. Pyka, M. Schafheutle, P. Serf, 
E. Biham, E. Barkan, O. Dunkelman, M. Ciet, F. Sica, L. Knudsen, H. Raddum, M. Parker, NESSIE security report, Deliverable 20 from the NESSIE IST FP5 
project, available at https://www.cosic.esat.kuleuven.be/nessie/deliverables/D20-v2.pdf, 2003.

[28] L.K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79 (1997) 325–328.
[29] B. Preneel, B. Van Rompay, S.B. Örs, A. Biryukov, L. Granboulan, E. Dottax, M. Dichtl, M. Schafheutle, P. Serf, S. Pyka, E. Biham, E. Barkan, O. Dunkelman, 

J. Stolin, M. Ciet, J.-J. Quisquater, F. Sica, H. Raddum, M. Parker, Performance of optimized implementations of the NESSIE primitives, Deliverable 21 
from the NESSIE IST FP5 project, available at https://www.cosic.esat.kuleuven.be/nessie/deliverables/D21-v2.pdf, 2003.

[30] A. Hodjat, I. Verbauwhede, A 21.54 Gbits/s fully pipelined AES processor on FPGA, in: Proceedings of the 12th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM’04), 2004.

[31] C.H. Bennett, G. Brassard, Quantum cryptography: public key distribution and coin tossing, in: Proc. of International Conference on Computers, Sys-
tems, and Signal Processing, Bangalore, India, 1984, pp. 175–179.

[32] S. Wiesner, Conjugate coding, Sigact News 15 (1) (1983) 78–88. The original paper, written around 1970, had been refused for publication and 
remained unpublished until 1983.

[33] D. Mayers, Unconditional security in quantum cryptography, J. ACM 48 (2001) 351; eprint arXiv:quant-ph/9802025.
[34] E. Biham, M. Boyer, P.O. Boykin, T. Mor, V. Roychowdhury, A proof of the security of quantum key distribution, in: Proceedings of the Thirty Second 

Annual ACM Symposium on Theory of Computation, 2000, pp. 715–724; arXiv:quant-ph/9912053.
[35] P.W. Shor, J. Preskill, Simple proof of security of the BB84 quantum key distribution protocol, Phys. Rev. Lett. 85 (2000) 441–444; eprint arXiv:quant-

ph/0003004.
[36] C.H. Bennett, G. Brassard, C. Crépeau, U.M. Maurer, Generalized privacy amplification, IEEE Trans. Inform. Theory 41 (1995) 1915–1923.
[37] A. Peres, How to differentiate between non-orthogonal states, Phys. Lett. A 128 (1988) 19.
[38] A.K. Ekert, B. Huttner, G.M. Palma, A. Peres, Eavesdropping on quantum-cryptographical systems, Phys. Rev. A 50 (1994) 1047–1056.
[39] C.H. Bennett, G. Brassard, N.D. Mermin, Quantum cryptography without Bell’s theorem, Phys. Rev. Lett. 68 (5) (February 1992) 557–559.
[40] R. Renner, Security of quantum key distribution, PhD thesis, Swiss Federal Institute of Technology (ETH) Zurich, 2005. Appeared in the Int. J. Quantum 

Inform. 6 (1) (February 2008), 127 pp.; eprint arXiv:quant-ph/0512258.
[41] V. Scarani, R. Renner, Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way post-

processing, Phys. Rev. Lett. 100 (2008) 200501.

http://refhub.elsevier.com/S0304-3975(14)00696-3/bib63727970746F7770s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib63727970746F7770s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib63727970746F7770s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib476973696E5265764D6F6450687973s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4C75746B5143s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4C75746B5143s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib53636172616E69524D50s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib53636172616E69524D50s1
http://www.secoqc.net
http://www.idquantique.com
http://www.magiqtech.com
http://www.smartquantum.com
http://eprint.iacr.org/2004/156
http://www.schneier.com/crypto-gram-0312.html#6
http://www.schneier.com/blog/archives/2007/10/switzerland_pro.html
http://www.schneier.com/blog/archives/2007/10/switzerland_pro.html
http://www.wired.com/politics/security/commentary/securitymatters/2008/10/securitymatters_1016
http://www.wired.com/politics/security/commentary/securitymatters/2008/10/securitymatters_1016
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib5641426F6F6Bs1
http://www.ecrypt.eu.org/documents/D.SPA.22-1.0.pdf
http://www.ecrypt.eu.org/documents/D.SPA.22-1.0.pdf
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib5368616E6E6F6Es1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib57796E6572s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib57796E6572s2
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib434Bs1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib43616368696E3937s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4D61757265723933s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib44483736s1
http://www.ecrypt.eu.org/documents/D.SPA.16-1.0.pdf
http://www.ecrypt.eu.org/ecrypt1/documents/D.SPA.28-1.1.pdf
http://www.ecrypt.eu.org/ecrypt1/documents/D.SPA.28-1.1.pdf
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib53686F72s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib5265676576s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib526567657632s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib5051433039s1
http://www.cryptopp.com/benchmarks-p4.html
ftp://ftp.rsasecurity.com/pub/rsalabs/rsa_algorithm/rsa-oaep_spec.pdf
ftp://ftp.rsasecurity.com/pub/rsalabs/rsa_algorithm/rsa-oaep_spec.pdf
http://www.rsasecurity.com/rsalabs/
https://www.cosic.esat.kuleuven.be/nessie/deliverables/D20-v2.pdf
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib47726F766572s1
https://www.cosic.esat.kuleuven.be/nessie/deliverables/D21-v2.pdf
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib56657262617577656E6465s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib56657262617577656E6465s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib42423834s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib42423834s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib576965736E6572s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib576965736E6572s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4D617965727350726F6F66s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4242424D52s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4242424D52s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib53686F72507265736B696C6C50726F6F66s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib53686F72507265736B696C6C50726F6F66s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4242434D3935s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib5065726573s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib45485050s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib42424D3932s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib52656E6E6572506844s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib52656E6E6572506844s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib53636172616E6952656E6E65723038s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib53636172616E6952656E6E65723038s1


JID:TCS AID:9868 /FLA Doctopic: Theory of natural computing [m3G; v 1.137; Prn:30/09/2014; 13:37] P.19 (1-20)

R. Alléaume et al. / Theoretical Computer Science ••• (••••) •••–••• 19
[42] J.L. Carter, M.N. Wegman, Universal classes of hash functions, J. Comput. System Sci. 18 (1979) 143–154.
[43] M.N. Wegman, J.L. Carter, New hash functions and their use in authentication and set equality, J. Comput. System Sci. 22 (1981) 265–279.
[44] D.R. Stinson, Universal hashing and authentication codes, in: Joan Feigenbaum (Ed.), Advances in Cryptology – Crypto ’91, in: Lecture Notes in Com-

puter Science, vol. 576, Springer-Verlag, 1991, pp. 74–85.
[45] J. Müller-Quade, R. Renner, Composability in quantum cryptography, New J. Phys. 11 (2009) 085006.
[46] D. Stebila, M. Mosca, N. Lütkenhaus, The case for quantum key distribution, eprint arXiv:0902.2839 [quant-ph], 2009.
[47] I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, V. Makarov, Full-field implementation of a perfect eavesdropper on a quantum cryptography 

system, Nat. Commun. 2 (2011) 349.
[48] N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, Ch. Marquardt, V. Makarov, G. Leuchs, Device calibration impacts security of quantum key 

distribution, Phys. Rev. Lett. 107 (2011) 110501.
[49] T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, Anton Zeilinger, A fast and compact quantum random number generator, Rev. Sci. Instrum. 71 

(2000) 1675.
[50] A. Stefanov, N. Gisin, O. Guinnard, L. Guinnard, H. Zbinden, Optical quantum random number generator, J. Modern Opt. 47 (4) (2000) 595–598.
[51] U. Maurer, J.L. Massey, Cascade ciphers: the importance of being first, J. Cryptology 6 (1) (1993) 55–61.
[52] http://csrc.nist.gov/groups/STM/cmvp/standards.html#02 for the FIPS 140 official documents.
[53] http://www.commoncriteriaportal.org/.
[54] Y. Zhen-Qiang, H. Zheng-Fu, C. Wei, X. Fang-Xing, W. Qing-Lin, G. Guang-Can, Experimental decoy state quantum key distribution over 120 km fibre, 

Chinese Phys. Lett. 25 (2008) 3547–3550.
[55] J.M. Perdigues Armengol, B. Furch, C. Jacinto de Matos, O. Minstera, L. Cacciapuoti, M. Pfennigbauer, M. Aspelmeyer, T. Jennewein, Rupert Ursin, 

T. Schmitt-Manderbach, G. Baister, J. Rarity, W. Leeb, C. Barbieri, H. Weinfurter, A. Zeilinger, Quantum communications at ESA: towards a space 
experiment on the ISS, Acta Astronautica 63 (1–4) (2008) 165–178.

[56] L. Ma, T. Chang, A. Mink, O. Slattery, B. Hershman, X. Tang, Experimental demonstration of an active quantum key distribution network with over 
Gbps clock synchronization, IEEE Commun. Lett. 11 (12) (December 2007) 1019.

[57] T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, Ch. Kurtsiefer, J.G. Rarity, A. Zeilinger, H. We-
infurter, Experimental demonstration of free-space decoy-state quantum key distribution over 144 km, Phys. Rev. Lett. 98 (2007) 010504; eprint 
arXiv:quant-ph/0607182.

[58] A. Tanaka, M. Fujiwara, S.W. Nam, Y. Nambu, S. Takahashi, W. Maeda, K. Yoshino, S. Miki, B. Baek, Z. Wang, A. Tajima, M. Sasaki, A. Tomita, Ultra fast 
quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization, Opt. Express 16 (2008) 
11354–11360; eprint arXiv:0805.2193 [quant-ph].

[59] M. Peev, et al., The SECOQC quantum key distribution network in Vienna, New J. Phys. 11 (2009) 075001.
[60] A.R. Dixon, Z.L. Yuan, J.F. Dynes, A.W. Sharpe, A.J. Shields, Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate, Opt. Express 16 

(2008) 18790–18979; eprint arXiv:0810.1069, October 2008.
[61] D. Stucki, C. Barreiro, S. Fasel, J.-D. Gautier, O. Gay, N. Gisin, R. Thew, Y. Thoma, P. Trinkler, F. Vannel, H. Zbinden, High speed coherent one-way 

quantum key distribution prototype, eprint arXiv:0809.5264 [quant-ph], September 2008.
[62] R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, 

M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, A. Zeilinger, Free-space distribution of entanglement and single photons over 
144 km, arXiv:quant-ph/0607182, 2006.

[63] P.A. Hiskett, D. Rosenberg, C.G. Peterson, R.J. Hughes, S. Nam, A.E. Lita, A.J. Miller, J.E. Nordholt, Long-distance quantum key distribution in optical 
fibre, New J. Phys. (2006); eprint arXiv:quant-ph/0607177.

[64] K. Gordon, V. Fernandez, G. Buller, I. Rech, S. Cova, P. Townsend, Quantum key distribution system clocked at 2 GHz, Opt. Express 13 (2005) 
3015–3020; eprint arXiv:quant-ph/0605076.

[65] F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N.J. Cerf, P. Grangier, Quantum key distribution using Gaussian-modulated coherent states, Nature 
421 (2003) 238.

[66] R. Renner, J.I. Cirac, A de Finetti representation theorem for infinite dimensional quantum systems and applications to quantum cryptography, eprint 
arXiv:0809.2243 [quant-ph], September 2008.

[67] S. Fossier, E. Diamanti, T. Debuisschert, A. Villing, R. Tualle-Brouri, P. Grangier, Field test of a continuous-variable quantum key distribution prototype, 
eprint arXiv:0812.3292, December 2008.

[68] A. Leverrier, P. Grangier, Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation, eprint 
arXiv:0812.4246, December 2008.

[69] G. Brassard, L. Salvail, Secret key reconciliation by public discussion, in: Advances in Cryptology: Eurocrypt 93 Proc., 1993, pp. 410–423.
[70] P. Jouguet, S. Kunz-Jacques, A. Leverrier, Long distance continuous-variable quantum key distribution with a Gaussian modulation, Phys. Rev. A 84 

(2011) 062317.
[71] J. Martinez-Mateo, D. Elkouss, V. Martin, Key reconciliation for high performance quantum key distribution, Sci. Rep. 3 (2013) 1–6, 1576.
[72] R. Canetti, Universally composable security: a new paradigm for cryptographic protocols, in: FOCS 2001, 2001, pp. 136–145.
[73] D. Raub, R. Steinwandt, J. Müller-Quade, On the security and composability of the one time pad, in: SOFSEM 2005: Theory and Practice of Computer 

Science, in: Lecture Notes in Computer Science, vol. 3381, Springer, 2005, pp. 288–297.
[74] C. Elliott, Building the quantum network, New J. Phys. 4 (2002) 46.
[75] C. Elliott, et al., Current status of the DARPA quantum network, eprint arXiv:quant-ph/0503058, 2005.
[76] M.A. Sfaxi, S. Ghernaouti Hélie, G. Ribordy, O. Gay, Using quantum key distribution within IPSEC to secure MAN communications, in: IFIP-MAN 2005 

Conference Proceeding, 2005.
[77] W. Diffie, P.C. van Oorschot, M.J. Wiener, Authentication and authenticated key exchanges, Des. Codes Cryptogr. 2 (1992) 107–125.
[78] L. Hathaway, National policy on the use of the Advanced Encryption Standard (AES) to protect national security systems and national security infor-

mation, http://www.cnss.gov/Assets/pdf/cnssp_15_fs.pdf, 2003.
[79] Nicolas T. Courtois maintains a webpage on the status of algebraic attacks, http://aes.cryptosystem.net.
[80] A. Bogdanov, D. Khovratovich, C. Rechberger, Biclique cryptanalysis of the full AES, in: Dong Hoon Lee, Xiaoyun Wang (Eds.), ASIACRYPT’11, in: Lecture 

Notes in Computer Science, vol. 7073, Springer-Verlag, 2011, pp. 344–371.
[81] P.D. Townsend, S.J.D. Phoenix, K.J. Blow, S.M. Barnett, Quantum cryptography for multi-user passive optical networks, Electron. Lett. 30 (1994) 

1875–1877.
[82] J. Cirac, P. Zoller, H. Briegel, Quantum repeaters based on entanglement purification, eprint arXiv:quant-ph/9808065, 1998.
[83] E. Biham, B. Huttner, T. Mor, Quantum cryptographic network based on quantum memories, Phys. Rev. A 54 (4) (1999) 2561–2658.
[84] D. Collins, N. Gisin, H. de Riedmatten, Quantum relays for long distance quantum cryptography, eprint arXiv:quant-ph/0311101, 2003.
[85] M. Dianati, R. Alléaume, M. Gagnaire, X. Shen, Architecture and protocols of the future European quantum key distribution network, J. Secur. Commun. 

Netw. 1 (2008) 57.
[86] M. Dianati, R. Alléaume, A transport layer protocol for the SECOQC QKD quantum key distribution networks, in: The Third IEEE LCN Workshop on 

Network Security (WNS 2007), Oct. 2007.

http://refhub.elsevier.com/S0304-3975(14)00696-3/bib57433739s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib57433831s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib5374696E736F6E41757468s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib5374696E736F6E41757468s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4D51523039s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib53746562696C613039s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4E61747572654D616B61726F763131s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4E61747572654D616B61726F763131s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4C657563687343616C6962726174696F6Es1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4C657563687343616C6962726174696F6Es1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4A656E6E657765696E51524E47s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4A656E6E657765696E51524E47s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib476973696E51524E47s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4D6173736579s1
http://csrc.nist.gov/groups/STM/cmvp/standards.html#02
http://www.commoncriteriaportal.org/
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4368696E61514B44s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4368696E61514B44s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib537061636551s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib537061636551s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib537061636551s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4E4953544769676162697432303037s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4E4953544769676162697432303037s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib43616E617279514B44s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib43616E617279514B44s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib43616E617279514B44s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib536173616B6932303038s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib536173616B6932303038s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib536173616B6932303038s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib706565763A696E707265703039s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib6469786F6E3A6F653038s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib6469786F6E3A6F653038s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib737475636B693A71703038s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib737475636B693A71703038s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4653313434s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4653313434s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4653313434s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4C6F6E6744514B44s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4C6F6E6744514B44s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib436F76613247487As1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib436F76613247487As1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib514356s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib514356s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib52656E6E6572436972616332303038s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib52656E6E6572436972616332303038s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib666F73736965723A71703038s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib666F73736965723A71703038s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib6C65766572726965723A71703038s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib6C65766572726965723A71703038s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib43617363616465s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4A4B4C3131s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4A4B4C3131s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4D4D454D3133s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib43616E657474695543s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib436F6D706F4F5450s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib436F6D706F4F5450s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib42424Es1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib42424E32s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib44616C69s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib44616C69s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4448466F7277617264536563757265s1
http://www.cnss.gov/Assets/pdf/cnssp_15_fs.pdf
http://aes.cryptosystem.net
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib426F6764616E6F76414553s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib426F6764616E6F76414553s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4261726E657474s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4261726E657474s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4369726163s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib426968616Ds1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib436F6C6C696E73s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib6469616E6174693A73636E3038s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib6469616E6174693A73636E3038s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib6469616E6174693A6C636E3037s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib6469616E6174693A6C636E3037s1


JID:TCS AID:9868 /FLA Doctopic: Theory of natural computing [m3G; v 1.137; Prn:30/09/2014; 13:37] P.20 (1-20)

20 R. Alléaume et al. / Theoretical Computer Science ••• (••••) •••–•••
[87] L. Salvail, M. Peev, E. Diamanti, R. Alléaume, N. Lütkenhaus, T. Länger, Security of trusted repeater quantum key distribution networks, J. Comput. 
Secur. 18 (1) (2010) 61–87; eprint arXiv:0904.4072 [quant-ph].

[88] T.R. Beals, B.C. Sanders, Distributed relay protocol for probabilistic information-theoretic security in a randomly-compromised network, in: Reihaneh 
Safavi-Naini (Ed.), The Proceedings of the Third International Conference on Information Theoretic Security (ICITS) 2008, in: Lecture Notes in Computer 
Science, vol. 5155, Springer, 2008; eprint arXiv:0803.2919 [quant-ph].

[89] B. Clifford Neuman, T. Ts’o, Kerberos: an authentication service for computer networks, IEEE Commun. 32 (9) (September 1994) 33–38.
[90] R. Alléaume, F. Roueff, E. Diamanti, N. Lütkenhaus, Topological optimization of QKD networks, New J. Phys. 11 (2009) 075002; eprint arXiv:0903.0839 

[quant-ph].
[91] P. Kocher, Timing attacks on implementations of Diffie–Hellman, RSA, DSS, and other systems, in: CRYPTO 1996, 1996, pp. 104–113.
[92] P. Kocher, J. Jaffe, B. Jun, Differential power analysis, in: Lecture Notes in Computer Science, vol. 1666, Springer-Verlag, Berlin, Heidelberg, 1999, 

pp. 388–397.
[93] ECRYPT, The Side Channel Cryptanalysis Lounge, available at http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html.
[94] S. Tillich, C. Herb, Attacking state-of-the-art software countermeasures, a case study for AES, in: CHES 2008, 2008.
[95] C.H. Kim, J.-J. Quisquater, New differential fault analysis on AES key schedule: two faults are enough, in: CARDIS 2008, 2008.
[96] A. Pellegrini, V. Bertacco, T. Austin, Fault-based attack of RSA authentication, in: The 2010 Design, Automation and Test in Europe Conference (DATE-

2010), March 2010.
[97] C.H. Bennett, F. Bessette, G. Brassard, L. Salvail, J. Smolin, Experimental quantum cryptography, J. Cryptology 5 (1) (1992) 3–28;

C.H. Bennett, G. Brassard, The dawn of a new era for quantum cryptography: the experimental prototype is working, Sigact News 20 (4) (1989) 78–82.
[98] M.G. Kuhn, R.J. Anderson, Soft tempest: hidden data transmission using electromagnetic emanations, in: Information Hiding, in: Lecture Notes in 

Computer Science, vol. 1525, Springer, 1998, pp. 124–142.
[99] A. Vakhitov, V. Makarov, D.R. Hjelme, Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography, J. Modern Opt. 

48 (2001) 2023.
[100] V. Makarov, Controlling passively quenched single photon detectors by bright light, New J. Phys. 11 (2009) 065003.
[101] V. Makarov, D.R. Hjelme, Faked states attack on quantum cryptosystems, J. Modern Opt. 52 (2005) 691–705.
[102] V. Makarov, J. Skaar, Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols, Quantum Inf. Comput. 

8 (2008) 0622.
[103] V. Makarov, A. Anisimov, Johannes Skaar, Effects of detector efficiency mismatch on security of quantum cryptosystems, Phys. Rev. A 74 (2006) 

022313.
[104] Y. Zhao, C.-H.F. Fung, B. Qi, C. Chen, H.-K. Lo, Experimental demonstration of time-shift attack against practical quantum key distribution systems, 

Phys. Rev. A 78 (2008) 042333; eprint arXiv:0704.3253 [quant-ph].
[105] C.-H.F. Fung, K. Tamaki, B. Qi, H.-K. Lo, X. Ma, Security proof of quantum key distribution with detection efficiency mismatch, Quantum Inf. Comput. 

9 (2009) 13.
[106] A. Ferenczi, P. Grangier, F. Grosshans, Calibration attack and defense in continuous variable quantum key distribution, in: CLEO-IQEC, 2007.
[107] G. Brassard, N. Lütkenhaus, T. Mor, B.C. Sanders, Limitations on practical quantum cryptography, Phys. Rev. Lett. 85 (6) (2000) 1330–1333.
[108] W.-Y. Hwang, Quantum key distribution with high loss: toward global secure communication, Phys. Rev. Lett. 91 (2003) 057901-1–057901-4.
[109] Y. Zhao, B. Qi, X. Ma, H.-K. Lo, Experimental quantum key distribution with decoy states, Phys. Rev. Lett. 96 (2006) 070502; eprint arXiv:quant-

ph/0503192.
[110] D. Gottesman, H.-K. Lo, N. Lütkenhaus, J. Preskill, Security of quantum key distribution with imperfect devices, Quantum Inf. Comput. 4 (5) (2004) 

325–360; eprint arXiv:quant-ph/0212066.
[111] A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, V. Scarani, Device-independent security of quantum cryptography against collective attacks, Phys. 

Rev. Lett. 98 (2007) 2305001; eprint arXiv:quant-ph/0702152.
[112] A. Acín, N. Gisin, L. Masanes, From Bell’s theorem to secure quantum key distribution, Phys. Rev. Lett. 97 (2006) 120405; eprint arXiv:quant-ph/

0510094.
[113] P. Grangier, Count them all, Nature 409 (2001) 774–775.
[114] M. Nielsen, What’s wrong with those cryptosystems, http://www.qinfo.org/people/nielsen/blog/archive/000124.html.
[115] T. Länger, S. Rass, M.A. Sfaxi, SECOQC QBB link security environment: assumption, threats and policies, SECOQC deliverable D-CCC-03, 2006.
[116] R.J. McEliece, A public key cryptosystem based on algebraic coding theory, DSN Progress Rep. 42–44 (1978) 114–116.
[117] T. Laarhoven, M. Mosca, J. van de Pol, Solving the shortest vector problem in lattices faster using quantum search, in: Post-Quantum Cryptography, 

Springer, Berlin, Heidelberg, 2013, pp. 83–101.
[118] D. Simon, On the power of quantum computation, SIAM J. Comput. 26 (1997) 1474–1483.
[119] C.H. Bennett, E. Bernstein, G. Brassard, U. Vazirani, Strengths and weaknesses of quantum computing, SIAM J. Comput. 26 (1997) 1510–1523.
[120] L. Salvail, C. Schaffner, Requirements for security architectures (Rough network architecture for quantum communication applied to basic scenarios),

SECOQC deliverable D-SEC-17, Oct. 2004.
[121] I.B. Damgard, S. Fehr, L. Salvail, C. Schaffner, Cryptography in the bounded quantum-storage model, in: Proceedings of the 46th Annual IEEE Sympo-

sium on Foundations of Computer Science, 2005, pp. 449–458.
[122] P. D’Arco, D. Stinson, On unconditionally secure robust distributed key distribution centers, in: Advances in Cryptology, Proceedings of ASIACRYPT 

2002, in: Lecture Notes in Computer Science, vol. 2501, Springer-Verlag, 2002, pp. 346–363.
[123] S. Cimato, A. Cresti, P. D’Arco, A unified model for unconditionally secure key distribution, J. Comput. Secur. 14 (1) (2006) 45–64.
[124] I. Desmedt, Y. Wang, Perfectly secure message transmission revisited, in: L. Knudsen (Ed.), Advanced in Cryptology, Proceedings of Eurocrypt 2002, 

in: Lecture Notes in Computer Science, vol. 2332, Springer-Verlag, 2002, pp. 502–517.
[125] D. Dolev, C. Dwork, O. Waarts, M. Yung, Perfectly secure message transmission, J. ACM 40 (1) (1993) 17–47.

http://refhub.elsevier.com/S0304-3975(14)00696-3/bib73616C7661696C3A6A63733039s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib73616C7661696C3A6A63733039s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib53616E6465727352656C61793038s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib53616E6465727352656C61793038s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib53616E6465727352656C61793038s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4B65726265726F73s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib616C6C6561756D653A71703039s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib616C6C6561756D653A71703039s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4B6F6368657254696D65s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4B6F63686572445041s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4B6F63686572445041s1
http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib414553434845533038s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4446413038s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib52534150656C6C656772696E69s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib52534150656C6C656772696E69s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib42424253533932s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib42424253533932s2
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib54656D70657374s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib54656D70657374s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib56616B6869746F7632303031s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib56616B6869746F7632303031s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4D616B61726F764E4A503039s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib46616B6564537461746573s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib6D616B6861726F763A7169633038s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib6D616B6861726F763A7169633038s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4D616B61726F765052413036s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4D616B61726F765052413036s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4C6F5052413038s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4C6F5052413038s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib46756E673039s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib46756E673039s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib47726F737368616E73434C454Fs1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib424C4D533030s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4877616E67s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib484B4C6Fs1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib484B4C6Fs1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib474C4C4Bs1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib474C4C4Bs1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4163696E446576696365496E64s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4163696E446576696365496E64s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib476973696E32303036s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib476973696E32303036s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4772616E6769657232303031s1
http://www.qinfo.org/people/nielsen/blog/archive/000124.html
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4D63456C69656365s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4D6F7363613133s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib4D6F7363613133s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib53696D6F6Es1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib42424256s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib53616C7661696C426F756E646564s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib53616C7661696C426F756E646564s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib446172636F526F62757374s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib446172636F526F62757374s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib446172636F32303036s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib44573032s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib44573032s1
http://refhub.elsevier.com/S0304-3975(14)00696-3/bib444457593933s1

	Using quantum key distribution for cryptographic purposes: A survey
	1 Introduction
	2 Secret key agreement
	2.1 Classical information-theoretically secure key agreement schemes
	2.2 Classical public-key cryptography and secret key agreement
	2.3 Classical computationally secure symmetric-key cryptography and secret key agreement
	2.4 Quantum key agreement - quantum key distribution (QKD)
	2.5 Trusted couriers key distribution (TCKD)
	2.6 Cascaded schemes and dual key agreement

	3 Securing a point-to-point classical communication link by combining QKD with symmetric encryption
	3.1 Performance of QKD link devices: recent progresses
	3.2 QKD composed with one-time-pad: long-term security of link encryption
	3.3 QKD composed with a classical computationally secure symmetric encryption scheme: key security and key ageing
	3.3.1 Security of the key
	3.3.2 Key renewal rate


	4 Key agreement over a network of QKD links: QKD networks
	4.1 QKD network architectures
	4.2 Key agreement in a network: elements of comparison between classical key agreement schemes and QKD networks
	4.2.1 Key establishment rate
	4.2.2 Network initialization and key pre-distribution
	Key pre-distribution over networks relying on symmetric-key cryptography
	Key pre-distribution over QKD networks
	PKI initialization
	Interest of PKIs for QKD network initialization

	4.2.3 Vulnerability against denial-of-service attacks

	4.3 Open networks versus trusted QKD networks

	5 Challenges and future directions
	5.1 Practical security of QKD implementations and implementation loopholes
	5.1.1 Physical side-channels
	5.1.2 Quantum hacking
	Passive and active side-channel attacks in QKD
	Review of the main side-channel attacks


	5.2 Device-independent security: fundamental quantum mechanics as a tool against side-channels
	5.3 Cryptographic certiﬁcation of quantum cryptosystems
	5.4 Post-quantum computing cryptography
	5.5 Classical cryptographic primitives built on top of QKD networks

	6 Conclusion
	Acknowledgements
	References


