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Chapter 1

Introduction

There have been prominent calls for improving cybersecurity through mak-
ing professionals more academically rigorous as early as 2001 (National
Science Foundation, 2001). These calls shifted to pleas for more “science”
in security around 2008 in the upper levels of the US Department of De-
fense (DoD), as documented by MITRE Corporation (2010). Within just a
few years, the Air Force, Army, National Security Agency (NSA), and US
federal civilian government had joined this chorus, with some minor vari-
ation. The governments of the United Kingdom and Canada were using
similar language by 2012. The first textbook aimed at giving security pro-
fessionals a crash course in essential scientific methods was Dykstra (2015).
By 2017, academic security researchers (Herley and van Oorschot, 2017)
and top professional information security events (Evron, 2017) were dis-
cussing what it would take to make security more scientific.

We have written this book to provide an accessible, actionable path for
anyone who wants to do cybersecurity work well. We say “well” and not
“scientifically” because the only point of doing the work scientifically is that
it is done well and that others can trust that it was done well. There are
other ways to conduct good cybersecurity work; it’s not our way or nothing.
But the scientific methods, properly applied, have proven over the past few
centuries to be the best way humans have for understanding and solving
problems. Engineers’ pride may be hurt by this. However, they should
not fuss over whether science or engineering comes first; you cannot do sci-
ence without tools and engineering, and you cannot do modern engineering
without knowledge and methods from science (Dear, 2006; Vincenti, 1990).

We have been involved in bringing scientific and mathematical principles
into our cybersecurity work for some time. We have been collaborating on
using these mental tools to solve cybersecurity problems since 2010. The
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first few years were focused on the problems, but a pattern emerged. We
brought our backgrounds (philosophy of science and mathematics) to the
cybersecurity work and our practice matured alongside our awareness of
the broader science of security. We have unique perspectives to share. Of
course, we think they are better perspectives. There are important gaps in
teaching cybersecurity professionals how to reason about an incident or any
problem they face (Spring and Illari, 2018b) and the science of security folks
are not filling them (Spring et al., 2017). Leigh wrote a book on applied
mathematics for cybersecurity (Metcalf and Casey, 2016), and Jonathan
has written almost as much on applying scientific reasoning and logic in
cybersecurity. Along the way, we have applied and tested our thinking with
results that have changed the way people use and think about blocklists, for
example. But we have not laid out a how-to, with examples, explaining the
mental tools and practical steps someone can take to practice cybersecurity
well scientifically. Or had not. Until this book.

Most of the publications in the field are merely emphasizing the fact
that scientific principles are necessary, but there are very few guides that
aim to uncover these principles. The aim of this book is to begin developing
the scientific method for cybersecurity, taking into account the vagaries of
the data and the difficulty of the task. We will do this by using extensive
examples and also take the time to point out the pitfalls and fallacious
thinking that can arise.

We want the reader to learn the basics of how to perform a good study in
the field of cybersecurity. We do this by discussing the various studies that
are possible for a investigator and how to frame a question appropriately
to gain a useful and applicable result.

Cybersecurity is an ever-changing field, which means the results of today
may not be the correct results tomorrow. It is also a very broad field,
encompassing computers, society, law, economics, and more. It is also a
human-created field, unlike biology, for example. The artifacts and events
that occur in cybersecurity were created by humans and are not naturally
occurring.

But the fact that they’re created does not mean they are any easier
to understand or more accessible than those in the life sciences. There is
no one person or group of people who are wholly responsible for how the
Internet or computers work. Some have passed away, but more importantly,
there are just too many people who have contributed. And new people are
adding new technology and behaviors every day. Cybersecurity is like the
life sciences in that there is no creator that we can ask how the systems
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work. Practitioners have to study the situation and learn what they can
through what tools and information is available. And at least in the life
sciences, the viruses cannot read doctors’ publications and directly learn
what capabilities they need to subvert human defenses.

Cybersecurity is also an inherently practical field. Practitioners who
use research want the results to be applicable to their very real and cur-
rent problems. Usable results, that is. The results of a scientific study in
cybersecurity should be usable beyond the study itself.

The chapters of this book are intertwined. We have arranged them in the
order that we believe introduces the topic best, so the suggested reading
order is Chapters 2 through 8. The last three chapters are examples of
applying the principles discussed earlier in the book.

Chapter 2 is a catalog of data found in cybersecurity. We have often
noticed that researchers are focused on a single area and aren’t necessarily
aware of other data sources that can help them. For example, knowing
how the data were transported can be as important as the network flow.
Route injection can mean that the data originated from a location other
than what the Internet Protocol (IP) address suggests. The chapter is not
a catalog of all the data available, but attempts to discuss the major data
sets, how they work, and what useful information they may contain.

Chapter 3 is about setting goals. The goal in cybersecurity is usually
knowing something about the data well enough to support or inform some
action. When you know such a thing well enough, you know a truth. When
someone goes in search of truths, they should be searching for adequate
or satisfactory explanations that constrain and integrate with the other
satisfactory explanations that people know about the topic. The chapter
describes what this looks like, from both computing and practices in other
scientific fields, to establish the goal for practicing a science of security.

Chapter 4 describes the desirable properties of studies and observations
that are more likely to lead to this goal. Since cybersecurity crosses so many
interrelated disciplines, it cannot simply take the desirably properties from
just one other field. Parts of cybersecurity are like physics, parts are like
psychology, and parts are like ecology. Chapter 4 works to respect and
encourage this diversity of methodology while still usefully guiding how
you can design studies in any part of cybersecurity.

The basics of exploratory data analysis are covered in Chapter 5. Statis-
tics is a deep and extensive field; the chapter focuses on introducing the
reader to the ability to take a data set and quickly analyze or visualize
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it. We discuss what the statistics mean, what the visualizations can do for
you, and how to create a good visualization depending on the data.

A common problem in cybersecurity is the amount of data that is avail-
able to analyze. It isn’t always possible to analyze an entire data set, so
sampling is often used. Chapter 6 discusses the basics of sampling and uses
examples to illustrate the various kinds. Good and bad examples are given.

Chapter 7 ties the prior six chapters together into advice on types of
structured observations to design in cybersecurity. Later chapters will
demonstrate examples of designing studies of different types. There are
always trade-offs among Chapter 4’s study properties; no study can have
all the desirable properties. Thus, the second part of Chapter 7 introduces
designing research agendas composed of multiple studies whose strengths
compensate for each other’s weaknesses.

We discuss the goals and pitfalls of research in Chapter 8. The pitfalls
can negate or reduce the impact of your research while the goals are what
you wish to achieve in the research. This chapter covers these by looking
at the data, the process, and the results. We also discuss common logical
fallacies and how they can affect the research.

Chapters 9 through 12 use data drawn from open sources to put the
principles discussed in the book into action. We look at Domain Name
System (DNS) traffic, network traffic, malware, and humans.

The end goal of this work is to encourage research in the field as well
as to discuss how to do it in a scientific manner. We want the reader to
walk away with a greater understanding and practical help to ensure their
research contributes to the field.



Chapter 2

Data in Cybersecurity

An arborist studies trees, so their catalog of available data to study includes
a list of trees, the ecosystem a tree is found in, the soil, and other tree-
related information. Similarly, cybersecurity research studies events and
trends in the Internet, so the data catalog that a cybersecurity researcher
would use includes security and Internet-related data. It also includes ad-
ditional data sets that have been created by external sources. The problem
with data created by external sources is that there is no way of knowing
how good these data are nor what the provenance of them are. In general
it’s known that an event happened and data was collected.

This chapter covers common data in cybersecurity. Using the arborist
analogy, it’s the equivalent of a catalog of trees and their ecosystem that
the arborist could use to start a research project. The catalog attempts to
list common sources used in cybersecurity research, but it isn’t exhaustive.
It might seem disconnected as well, and that is mostly due to the nature of
the work. DNS data are different and usually distinct from malware data,
which is different (and distinct) from data used in Internet routing. Unlike
trees, which have the basic connection of “tree,” cybersecurity data runs
the gamut from human-created to machine-created.

Again, this isn’t comprehensive. It should be used to learn how to
think about data and the pitfalls in using some of these data sets. Some
people tend to focus on a single data set without being aware of the other
possibilities available. Part of the goal of this chapter is to expand your
knowledge of the available data sets.

It’s possible to create a data set for research, but it’s necessary to exam-
ine the potential problems in that set. No data set is perfect by any means;
it’s the imperfections that make the research interesting and sometimes
difficult.
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2.1 Domain Names

DNS is one of the core protocols that makes the Internet run. At its heart,
it is the association of IP addresses with domain names. It allows users to
type www.google.com rather than memorizing a series of numbers. DNS is
the engine behind content distribution networks and allows the owner of a
domain to change TP addresses without notifying users.

The protocol was designed to be a hierarchical directory (Liu, 2002).
Instead of a single phone book with every domain to IP address listed,
it’s a telephone book that lists other telephone books that lists other ones.
The resolution follow its way through the telephone books until the one
that contains the information is found. This means that no one server,
known as a name server, knows everything, they just know where to ask.

The process of finding the IP address of a domain is called domain
resolution, and it works in reverse order by starting with ., moving to com.
then to google.com. and finally, to www.google.com. In each step, the
name servers associated with that step are asked for the answer, and they
either give the answer or point the computer to the next server to ask.

DNS is used for more than just the domain name to IP mapping, it
has almost forty different types of records. It can be used to determine
what domain to send email to (MX records), storing information about the
domains themselves (TXT records, SOA records), for security (both for DNS
and mail), and more. DNS has been used to send signals as well, which
means that the application looks up a domain and, based on the response,
has some action.

DNS-based block lists (DNSBLs) (Levine, 2010) create domain names
out of either IPs or domains by prepending them to the DNS blocklist do-
main. If the DNSBL is example. com and we’re interested in badguy.info,
then the look up would be badguy.info.example.com. The IP ad-
dress is reversed, so that means 192.0.2.99 would have the look up
99.2.0.192.example.com. The response from the query is a signal as to
whether the IP address or domain has been tagged as bad by the blocklist
owner. The responses should be within the 127.0.0.0/8 loopback network,
and each application should have its own numbering specification for the
results of the query.

In the original specification of the DNS protocol, there was no secu-
rity built in. Instead, it is a network of trust. The computer trusts that
the name server it queries will return the correct response. To resolve
www.google.com, there were a minimum of three queries before a response
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was returned that contained an IP address. Every step could give the wrong
result, and the computer would never know.

Attempts have been made to add security through extensions, known
as DNS security extensions (DNSSEC) (Kolkman and Gieben, 2006). As
mentioned above, when www.google.com was resolved, it took a minimum
of three name servers before any IPs that were associated with it were
determined. At any point in the process, those answers could have been
subverted and incorrect ones could have been given. To prevent this attack,
DNSSEC was proposed. It uses cryptographic signatures to add a verifica-
tion step to DNS resolutions. It is up to the owner of the domain whether
or not to use it, so it isn’t used everywhere.

2.2 Routing Data

Routing is the method that sends data through the Internet from the source
to the destination. In the days when the Internet began, it wasn’t large,
so this process was relatively simple. Every router could know the location
of every other router. As the Internet grew, the original protocols could
no longer support it, leading to the development of two kinds of routing
protocols, interior routing protocols and exterior routing protocols. Interior
routing protocols are the protocols used inside of an organization; exterior
routing protocols are the protocols used between organizations.

Border Gateway Protocol (BGP) (Caesar and Rexford, 2005) is an ex-
terior routing protocol which is designed to route collections of networks
between organizations. These collections are called Autonomous Systems
(AS) and are denoted by an autonomous system number (ASN). A com-
pany is assigned an ASN by their regional Internet registry (RIR).

ASN is associated with a collection of networks; there doesn’t have to
be a physical location tied to the ASN. The networks associated with an
ASN can span multiple countries as well, depending on the networks.

Each ASN has peers with which it shares information. They want their
peers to route traffic to its networks, so they do this by telling the peers
that they have the networks, known within the protocol as announcing the
networks. Technically speaking, for each network the ASN has, it announces
to its peers ASN NETWORK. In BGP speak this says that “I, ASN, have these
networks.” For example, a potential announcement could be:

64496 10.0.0.1/24

This tells the peers of 64496 that it has this network. Each of our ASN

64496’s peers will tell its peers their ASN prepended to this announcement.
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It looks like:
PEER 64496 10.0.0.1/24

This tells their peers that to access an IP address in 10.0.0.1/24, then
they first must go to PEER which passes them to 64496, which owns that
network. This does not mean that there is a device with that IP address,
just that that combination of ASNs in that order will allow traffic to flow
to that ASN that owns the IP address. This combination of ASNs in the
given order with a network at the end is called a route.

Peering with multiple ASNs allows redundant routes to be present in
the virtual ASN network. If the only route available is:
ASN_A ASN_B ASN_C ASN.D NETWORK

Then that is the only route that traffic can traverse. If there are multiple
routes, then there must be a method by which the route is chosen. The
Request for Comments (RFC) (Rekhter et al., 1994) specifies the criteria
for choosing a route and it includes:

e the shortest ASN path.

e the most specific network announcement. This means the network
with the fewest number of IPs in it will win.

e the highest local preference. This is a value set by the router to
determine which peer is preferred.

The other important part about multiple routes is the amount of control
that the originator of the traffic has, which is to say very little. The source
of the traffic chooses the peer to which it wants to send the traffic to. At
that point, the source loses all control of the traffic. The peer chooses its
next destination based on its own criteria, not on the origin’s criteria. So
while the router can say which path it wanted its traffic to take, it doesn’t
know what the actual path is. This can also be affected by filtering. An
organization’s peering agreement with another organization may include
not announcing certain routes to its other peers, so the data may traverse
a completely unknown route.

BGP also has no security built into the protocol (Murphy, 2006). This
means that anyone can announce any network, and there’s no inherent ver-
ification that this ASN is allowed to announce it. An Internet Routing
Registry (IRR) is a mechanism (Bates et al., 1995) where the owners of
networks can register who announces those networks, but there is no re-
quirement that autonomous aystem (AS) operators respect these. Another
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method used to secure BGP is Resource Public Key Infrastructure (RPKI)
(Cohen et al., 2015). These certificates are used to authenticate announce-
ments, but there is no requirement that the certificate is used.

2.3 Full Packet Capture

Full packet capture (Koch, 2018) is just what it sounds like. Every packet
that traverses a network is captured, meaning copied, and saved for future
study. A sensor is placed on the network that collects and stores this data.

Every action a user makes on the Internet is apparent, with some
caveats. First, it completely depends on where the sensor is placed. If
somehow the user is outside of the coverage of the sensor, that user’s ac-
tions won’t be recorded. The user can also encrypt their connection. If, for
example, they visited a secure website, the website they visited would be
recorded, when the visit was, how long the visit lasted, and the encrypted
data.

On the other hand, if the website was unencrypted, everything would
be recorded, from what they typed in to what they received. This means
that if the website was used to deliver malware, then the malware can
be extracted from the traffic. Every domain and IP address they access
is recorded, every Uniform Resource Locator (URL) they click on, every
email they receive, and every system they connect to.

The downside to full packet capture is that storing the data can take up
a lot of disk space, depending on the size of the organization. Think about
how much web surfing a typical user does in a day. Now imagine storing
every bit of traffic sent to the Internet and received. Now, multiply that by
the number of users in an organization. Add in traffic to the organization’s
webserver and mail server. In short, this means a lot of data to store.

In 2016, an estimate (Koch, 2018) was made of how much space would
be required for 72 hours of full packet capture on a 1 gigabit (Gb) link.
The computation determined it would take at least 24.3 terabytes(TB) of
space. Not only is storing that amount of data difficult, but searching it
becomes an untenable task.

2.4 Network Flow

If full packet capture is “catch everything as it goes by,” then network
flow is “take the trace of what went by.” Think of full packet capture as
capturing all the animals that visit a watering hole whereas network flow
is examining the footprints left behind. Similar to full packet capture, a
sensor is placed on the network and the data is collected.
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Network flow captures (Gates et al., 2004):
e Source IP address
e Source Port
e Destination IP address
o Destination Port
e Protocol
e Start time
e End time
e Number of Packets
e Number of Bytes
e Transmission Control Protocol (TCP) Flags

It’s a trace of what the user did without storing what the user did. It
clearly uses less space than a full packet capture, and so storing more data
than full packet capture is possible, making historical analysis possible.
However, context is lost. The fact that an IP visited a web server and
downloaded 10M of data is recorded, but there’s no clear context of what
happened during the session.

2.5 GeolP

GeolP is the geographic location of an TP address (Holdener, 2011). There
are many companies that sell this data, each claiming to be more accurate
than the others. This is one of the problems with the data. Researchers
must rely upon the company supplying data to tell them the right thing,
but there is no way of double checking it short of going to the longitude and
latitude given and trying to determine the current IP address. Companies
will declare that their data is accurate, but they don’t explain how they
determine the location of an IP address, nor how they verify that they’re
right.

It’s been known (Hill, 2016) to be very wrong, to the point of 600 million
IP addresses pointing to a Kansas farm house due to a lack of precision.

Relying upon GeolP to locate the origin of traffic has its own issues.
Suppose the IP address a researcher is examining is malicious. It could
because it is part of a botnet, so the true origin of the traffic is unknown.
The owner of the system may not know that their system sent malicious
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traffic. Using GeolP to locate this system gets the researcher no closer to
the actual location from which the traffic originated.

In summary, GeolP data can be used to geographically locate systems,
but take the result with a grain of salt, and be careful how it is used.

2.6 Blocklists

Blocklists are collections of any or all the following: IP addresses, domains,
URLs, MDb5s, and more. We discussed them briefly in Section 2.1, dis-
cussing those that were delivered via DNS.

The elements on a blocklist are generally called indicators, in that they
indicate malicious behavior. The creators of these lists are looking for
malicious behavior and provide them to the public either as open source
or for purchase. Organizations then use blocklists to filter traffic, both
inbound and outbound. They don’t want spam (that’s one blocklist to
buy) nor do they they want their users to visit sites associated with malware
(that’s another one). Analysts use blocklists when investigating an incident
as well.

In general, the creation of these lists is a black box. Someone decided
that an indicator was associated with malicious behavior and added it to
their list. If a list is bought from a company that tracks spam, then clearly
anything on that list was associated with spam. Unfortunately, there’s no
direct knowledge on how the spam was created and by what process email
was tagged as spam. The only knowledge we have about the list is that the
company collected spam email in some way and pulled this information out
of it.

Studies of the blocklist ecosystem have shown that there is very little
overlap between the lists (Metcalf and Spring, 2013b). Even between lists
that collect similar data, like spam lists, there is very little overlap. This
could be related to the different methods each list owner uses to create their
blocklist, but since the methods aren’t disclosed, it’s impossible to verify.
The blocklist studies also looked at data related to the domains and IP
addresses, like name servers or Autonomous Systems, to determine if there
was agreement —very little was found.

Suppose a researcher’s task is to find malicious domains, and after much
research they’ve created a method to do this. They know that the domains
found in their method are malicious because they found a blocklist that
had every single one of the domains on it. Since there’s very little overlap
between lists, what the researcher has done is figured out how to recreate
the list.
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There can also be an issue with blocklist quality. Private IP addresses,
that is, the addresses listed in RFC 1918, shouldn’t be routed on the In-
ternet. This means they also shouldn’t show up on a well-tended blocklist;
however, they often do. This can mean that the blocklist owner isn’t per-
forming due diligence before adding elements to their list. Well-known
domains can also end up on blocklists, usually due to the ad network that
they are using. If the ad network is known for serving up malware, then
the well-known domain can be tagged as malicious. Any domain can be
used maliciously.

Blocklists can be great sources for malicious behavior, but researchers
must be careful when they use them. There’s not an indication of why
things are necessarily tagged as bad, just that they are on the list. Since
the companies producing the blocklists don’t share their methods, all re-
searchers can say is “I found a domain that’s on a blocklist, so it could be
bad” not “it is definitely bad.”

2.7 Log Files

Log files are records that applications and operating systems keep of their
operation. For example, when an application starts, it can log the time at
which it started and the steps it took. An operating system could log every
time a user logs in or logs out. It is common for applications and operating
systems to log errors, such as when a user attempts to log in, but fails to
give the correct password.

Log files are local information. They are concerned only about the
system from which they originated but nothing about any other system.
If two webservers have similar configurations, it’s expected that they have
similar logs. On the other hand, if it is one webserver and one nameserver,
then the logs would be different.

Logs are often subject to availability. Sometimes, the owner of a system
configures logs to store everything, sometimes, they don’t.

2.7.1 Application Log Files

Suppose a Linux@®) server is running an ssh daemon that is open to the
world. One day the system administrator checks the log files and see a list
of failed attempts to log in remotely via ssh. The attempts cycle through a
list of user names, most of which are not on the system, and each of them
fails. This is a direct attack on a system and the sysadmin is happy to
see that they all failed. If they had noticed that one succeeded, then the
system would have been compromised.
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Application developers (DeLaRosa, 2018) are the ones that determine
what an application will record in log files, so if the ssh daemon developers
had not decided failed logins were important information, then the intrusion
detect wouldn’t have been found in the ssh log files. This means that
researchers are dependent on what the application developers find worth
logging and in general, researchers don’t have any say in what gets logged.

Researchers are also dependent on the log retention schedule, which is a
predetermined length of time that log files are kept. If log files are only kept
for a week, then anything past those seven days is lost. If they are kept for
much longer, then it becomes a disk space issue. This is usually determined
by the administrator of the system, not necessarily with security in mind.
Another issue is that the administrator may determine that some events
should be logged and saved whereas other events are not. A mis-configured
logging system can lose important security events, preventing later analysis.

Another factor in log files is that the log message format can change,
depending on the operating system. The ssh failure on one system can have
a completely different format than the message on another. In other words,
there’s no consistency of the data.

2.7.2 Firewall Log Files

Firewall log files (Winding et al., 2006) are a specialized form of the log
files discussed in the previous section. They generally have the same issues
discussed in the previous section, but also have additional features and
issues as well. Firewalls can be in multiple locations. A single host can be
running a firewall or a network device may act as a firewall.

When a firewall sees a connection, it has two choices. It can ALLOW the
connection through or it can DENY it. Depending on the configuration of
the system, either or both messages can be logged. If a firewall ALLOWs
a connection, then the connection is allowed to the destination. In the
section on network flow, we discussed how the same data is collected. In
other words, this is somewhat redundant information. Network flow knows
about the connection, the firewall knows about the connection, and it has
been recorded in both locations. If network flow is collected, it does seem
extraneous to also be collecting the ALLOWed connections from the firewall.

On the other hand, the DENY connections are where it gets interesting.
Remember that to collect network flow, a sensor is needed. If the sensor
placement looks like Fig. 2.1, then network flow will record that a connec-
tion occurred, even though the firewall denied the connection. By reversing
the placement of the sensor and the firewall, network flow will no longer
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record the connection that didn’t occur. This means that when analyzing
either firewall log files or network flow, sensor placement is key and knowing
where the sensors are is important because it can affect results.

2.7.3 Proxy Log Files

A proxy is an interface between the users of an organization and the outside
Internet. A common proxy is the web proxy, which allows the organization
to enact content filtering. Proxies can also cache results and share them
between multiple users, which can save bandwidth.

The log files of a proxy server (Fei et al., 2006) are records of what web
servers the users of an organization are contacting. Like all log files, they’re
dependent on the configuration of the appliance as well as the retention
policy. If a new form of malware is discovered that’s originating from
http://www.example.com/ and the proxy logs only go back 24 hours, then
the research is limited. Similarly, if there is a mis-configuration and not
every user is required to use the proxy, then if those users visited the site,
no one would know.

2.7.4 Certificate Transparency Logs

Not every log is on a per-system basis. The Certificate Transparency Log
is a public log of Transport Layer Security (TLS) certificates as they are
issued. (Dowling et al., 2016). No one can modify the logs after they’ve
been written; they can only have log messages appended to them. This is
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ensured using a cryptographic mechanism. Anyone can download and use
these logs as well.

The logs contain the domain, the issuing authority, the certificate, the
issuing date, and more. Any domain can get a TLS certificate, even names
generated by a domain generation algorithm (DGA) (Metcalf, 2018b). The
difficult question is why.

These logs are freely available and a valuable research tool.

2.8 Windows Registry

The Windows registry is a collection of low-level settings for Windows (Car-
vey, 2005). It is a hierarchical text file that controls various aspects of the
system, such as device drivers. Malicious software often modifies the reg-
istry so a savvy investigator will analyze it for clues. There’s also no such
thing as a standard Windows registry; it’s generally a per-system configu-
ration.

These registries are very useful in research, but researchers need to be
aware of the details of the system from which they collect them as the
details can affect the entries in the registry. One registry may have an
entry that another one doesn’t because of system configuration. At this
time, there is no way to centrally collect windows registries from group of
systems; they must be collected one at a time.

2.9 Domain Registry

Suppose a researcher found a domain associated with malicious behavior,
and they want to find the owner. Maybe they want to know what other
domains they owns to see if they’re malicious, or they want to create a
report on the malicious domain, or they want to send this information to
law enforcement. There are any number of reasons to look for the owner of
a domain.

Luckily, this information is available. It’s possible to search the reg-
istry operator for the top-level domain (TLD) of the domain, or use the
command whois to query the owner. This should return the name of the
organization or person that registered the domain, their address, and con-
tact information as well as the name servers that serve that domain. That’s
the good news. The bad news is that many domains are protected by pri-
vate domain registration. This means that rather than getting the name of
the organization or person that registered the domain, a corporation that
specializes in private registrations is returned as the response. This allows
domain owners to maintain their privacy, but at the same time, it hides
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the owners of malicious domains. The name servers are not obfuscated,
though. They must be known for resolutions for that domain to work.

It is also possible to look for the owner of an IP address by using the
whois command as well as by searching online. There is no privacy pro-
tection for owners of networks and the result also indicates the allocation
that the IP address belongs to. For example, 8.8.8.8 is Google’s open DNS
server. If the command run is

whois 8.8.8.8

then the result shows that network is 8.8.8.0/24 and it is owned by
Google. The result will also include that it is a subnet of a larger block
owned by Level 3 Communications.

Unfortunately, it is not possible to search by owner. It’s not possible
to ask, “Okay, Mr. BadGuy owns that domain, now what are the other
domains he owns?” There are companies that sell that information though,
so it is possible to buy the data.

2.10 TLD Zone Files

A zone file is a configuration file for a name server. If an administrator
is running a name server for an organization, it will contain the domain
names used by the organization and the mapping to the correct IP address.
Remember, most name servers don’t know this information, but rather
where to find it out. The TLD zone files are a good example of this. They
contain a list of domains that are registered within the TLD, and the name
servers associated with them. So, a typical line within the file could look
like:

MYDOMAIN IN NS NS1.EXAMPLE.COM.

If this is the COM TLD, then there is a problem. To go to
NS1.EXAMPLE.COM, then a computer would have to look up the name server
for EXAMPLE.COM. If it happens to also be NS1.EXAMPLE.COM, then that in-
formation implies that to look up example.com a look up has to be done
for example.com. To solve this problem, the A records for all name servers
whose TLD matches the TLD in question is saved within the file. In other
words, in the bottom part of the file is a line that looks like:

NS1.EXAMPLE.COM. IN A 127.0.0.1

Doing this tells the TLD name server that when looking for the IP
address for NS1.EXAMPLE.COM, the result is directly in the file and no
further resolutions are necessary.

Gaining access to these files generally means entering an agreement with
the TLD registrar. There is nothing in the original agreement that says that
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the registrar must make them available; however, the new TLDs do have
this requirement. In general, it is possible to gain access to most generic top-
level domains (gTLDs), but not to country code top-level domains (ccTLDs)
(ICANN, 2013). ccTLDs operators have no requirement at all to share such
information, and some countries consider that private information.

Not every domain in the file is active. Some organizations register place-
holders, either for future plans or to prevent other organizations from using
the same domains. Adversaries can register a large swath of domains and
then only use a few at a time. However, when the file is downloaded, it
contains a definitive list of domains registered at that time. The nature of
domain registrations means that even a minute later, that file could change.
If the file is downloaded at noon on Monday, it won’t know what domains
were registered at 12:30.

2.11 Passive Operating System Fingerprinting

Passive Operating System Fingerprinting, also known as Passive O/S Fin-
gerprinting, is the process of determining the operating system at a given
IP address without obviously probing the system (Faircloth, 2016). Active
probing can alert an adversary to the presence of their adversary, which is
a bad idea. Instead, the hope is to use clues left on the network by the host
to determine what operating system it is running.

There are as many methods for accomplishing this as researchers on
the topic. For example, analyzing network traffic that originates from the
IP address is a method commonly used. Examining the DNS queries that
originate from the IP address is another method of analyzing the operating
system. None of these methods are 100% effective, rather they give a
probability of a particular operating system at that IP address. This means
it’s not possible to definitively say what operating system is at a given IP
address. It’s only possible to say with the degree of certainty that the
chosen method gives.

Work has been done to defeat passive fingerprinting. This means that
combined with the uncertainty of the methods used in Passive O/S Fin-
gerprinting, it’s not possible to definitely say what operating system the
host at an IP address is using without active probing. It’s an educated
guess backed up by math and knowledge about how the different operating
systems function.
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2.12 Vulnerability Reports

A vulnerability report is just what it sounds like, a report that a vulnerabil-
ity exists. The Common Vulnerabilities and Exposures (CVE) is a method
created to share publicly known vulnerabilities using a standard dictionary
and numbering format. The numbers look like CVE-YYYY-NNNN where
YYYY refers to the year the vulnerability was discovered and the NNNN
is the vulnerability number.

The Mitre Corporation (MITRE) (MITRE Corporation, 2012) oversees
the CVE process. They hand out the CVEs upon request, but rather than
overseeing the process for all vulnerabilities, they have granted certain or-
ganizations called a CVE numbering authority (CNA) the ability to assign
CVEs. Some of these organizations only handle CVEs for software within
their purview. For example, Microsoft only assigns CVEs to Microsoft
products. Others are granted the privilege to hand the CVEs out for any
vulnerability they choose to coordinate, such as the CERT®) Coordination
Center (CERT/CC). Once a computer network attack (CNA) has handed
out a CVE, that vulnerability is considered to exist. There is no overriding
vetting process for vulnerabilities other than what the CNAs have put in
place.

The centralized location and standardized method of CVEs is useful;
however, it is dependent on the vulnerabilities reported. A malware author
isn’t going to ask for a CVE for the 0-day vulnerability they have discov-
ered that could allow them to steal information. Similarly, an organization
might decide to hide the vulnerability they discovered in their hardware
that would leave a customer open to attack. There is no requirement for
vulnerability reporting, so the list of vulnerabilities available in the CVE
database is not comprehensive. It’s only what people happen to report.

2.13 Fuzzing Reports

Vulnerability reports are a passive tool. When a vulnerability report is
made it doesn’t necessarily include how the vulnerability was found, just
that it was and someone deemed it important enough to share. Fuzzing
(Godefroid et al., 2005) is the art of looking at software and attempting to
find vulnerabilities. It is a black box testing technique, meaning context is
lacking. In other words, the tester only has the program, not the source
code of the program.

A former co-worker once told us that they let their four-year-old beat
on the keyboard as a last test before releasing software. They would start
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the program, set the kid in front of the keyboard and tell them to go to
town. The logic was that if the four-year-old mashing random keys couldn’t
break the software, then it was stable. Fuzzing is the art of automating the
four-year-old’s actions. In technical terms, it is the continuous automated
process of sending mutated input to software and recording the result. If a
combination of random input causes the software to fail, then that string
is recorded.

Fuzzing testing is not comprehensive. This means that every combina-
tion of characters isn’t tested to determine the result because otherwise it
would never finish. The results of fuzzing are also not applicable across
versions of software. It could break in version 1, be fixed in version 2, but
crash again in version 3. The automated testing is clearly much faster than
allowing the four-year-old to test, but it is still very slow.

2.14 Incident Reports

In a well-run security operations center (SOC) each security incident has
a report written about it (Cichonski et al., 2012). These reports should
contain information relevant to the event, such as IP addresses, domains,
URLs, hashes relevant to the event, the time at which the event was dis-
covered, the time at which the event ended, the effect of the event to the
organization, and anything else the investigator finds interesting. They are
a record of an event, so rather than inferring that something occurred, there
is direct evidence.

As they are generally written by humans, they are a messy source of
information. Extracting the relevant information is the first step to using
the data effectively.

Depending on the methods used to create the report, information can
be missing. While it is a record of an event, it is not necessarily a complete
record. Similarly, it’s not possible to assume that every security event at
an organization was discovered and a report was written. Incident reports
are a collection of “we found this,” but not necessarily a complete record
of what was found nor a record of everything that occurred. Human error
is a concern in analyzing incident reports.

2.15 Network Inventory

Network inventory is just what it sounds like. The inventory of all the
devices on the network. If a network is the focus of a study, then a list of
everything on the network and its relative location would be useful. For
example, the knowledge of where all network sensors are located for network
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flow and full packet capture, assuming those exist. A list of all servers and
routers is also important. This should be easy; a well-run organization
should have this information available.

But don’t be surprised if this isn’t available or is incomplete. Some
organizations have sensors recording data, and they’re not even sure where
the sensors are. It’s not possible to assume that any inventory is complete
without further investigation, and sometimes, that investigation is not pos-
sible. There are many reasons this inventory is not complete, almost all of
which involve human error.

2.16 Signatures

A signature is an indicator of a pattern of behavior. It’s called a signature
because it should be created so that it matches only one specific behavior,
like how a written signature should be unique to the person with the pen.

Signatures are used in cybersecurity to find patterns of behavior,
whether it is in networks or software. This could be a hash of a file or
a known string in a binary that indicates maliciousness. It could be more
complex than a single string, such as the indication used for network be-
havior.

No matter what they are used for, they have a common issue. The
signatures will only find patterns that are known; they will not find new
patterns. They also need to be kept up to date. Having a collection of
signatures that were good last year does not mean that the set is useful
this year.

Signatures are also highly dependent upon the pattern chosen. If the
pattern is too broad, then it will match everything and can’t be considered
useful. If it is too narrow, then it won’t match anything. Also, signature
sets are not a complete set of “every possible malicious pattern,” but rather
a set of known malicious patterns. It’s not possible to know how good the
set is or how complete it is; it is just known that someone found this
pattern, decided it represented malicious behavior, and added it to the set
of signatures. This means that someone must find a pattern before it can
be added to the signature set. This does sound obvious, but it also just
reiterates the point that the set is a collection of things people found and
until someone finds it, it won’t be there.

Suppose someone defined a signature for an intrusion detection sys-
tem (IDS) (Roesch, 1999) as a simple access to a web server. Then every
access to a company web server will generate an alert. This is not a useful
signature. An old denial of service attack was to send initial Transmission
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Control Protocol/Internet Protocol (TCP/IP) packets with the SYN bit set.
By looking for just this set of circumstances, it’s possible to find this attack.

Another use of a signature set is in the open source tool YARA (French,
2012). YARA'’s tagline is, “The pattern matching Swiss knife for malware
researchers (and everyone else)” (yara). It uses signatures to match soft-
ware to find malicious software, like the function of anti-virus software. It
is useful in that it is a binary signature, meaning it will match against com-
piled software. This means it’s possible to find malicious software without
having the source, just by knowing a binary string that is found within the
software.

To summarize, signatures are only as good as the creator and aren’t a
static resource. Using a file hash as a signature for malware will only find
that malware that is an exact match. If the malware changes, the signature
will no longer work.

2.17 Humans

“Humans” is a much broader category than the preceding sections. In this
book, we focus on technical data sources. But everything a computer does
at some point traces back to something a human designed or instructed it
to do. The human might not have known full consequences of their design
choice or instruction, but everything starts with human intentions. Espe-
cially when understanding why a computer has done something, security
analysts find it useful to understand human behavior or goals.

The kinds of data on or about humans are diverse. You might collect
interviews with users about why they prefer not to use encryption, or eco-
nomic data about how attackers cash out stolen credit cards. A researcher
could collect data on how long it takes software developers to use secure
coding techniques, or test SOC analyst performance between two versions
of a security product interface. Chapter 12 provides examples of how to
work with these kinds of data.

2.18 Lessons Learned

Data in cybersecurity has a wide range of possibilities, from data used in
and by the network to human-created data such as signatures and incident
reports. All of them can be used to research cybersecurity and all have
their drawbacks.

It’s important to not only understand the process that created the data,
but to also understand the potential problems with it. Those problems can
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cause issues with the research, the method, and the result. Without careful
analysis, your research could be for naught.

Cybersecurity makes great use of convenience samples. Almost every
data set discussed in this chapter is a convenience sample. We just hap-
pened to collect DNS. We just happened to see those incidents and make
a record. We just happened to create a signature to add to our IDS to find
a network traffic pattern. These are not populations of all the incidents,
DNS, or signatures available, they are just the set we happened to run
across.

Remember this in your research.

This chapter hasn’t been a complete catalog of all possible data that
could be used in cybersecurity research. Your research may lead you to
using data that isn’t listed; you should always analyze the data carefully
and ensure that it is complete, comprehensive, and relevant.



Chapter 3

In Search of Truth

“Ground truth” refers colloquially to the actual state of affairs. We think
the term is a military or emergency response loan word, where “on the
ground” means where the soldiers or responders actually are and what they
are actually experiencing. “The ground” contrasts sharply with the plan or
the situation room view, which often goes awry. An accurate picture of the
ground truth is what any security analyst wants. An analyst’s goal should
be to accurately understand the situation of interest. Applying scientific
methods should get the analyst to ground truth faster, more consistently,
or both.

There are several problems with loaning the term “ground truth” into
cybersecurity and into scientific practice. Questions about the nature of
truth are a classic philosophical quagmire. However, this chapter will pick
out just those questions about truth and cybersecurity that end up hav-
ing a material and important change on what a practitioner should do or
expect. It is convenient to split this discussion into those parts related to
cybersecurity that it inherits from logic and computing (Section 3.1) and
those parts from scientific practice that should be adopted by cybersecurity
(Section 3.2).

The consistent result from both parts of the discussion is that there is
no single, unique truth about a cybersecurity event or set of events. Many
people find this conclusion uncomfortable. But science and logic can pro-
vide plenty of advice on what an adequate or satisfactory description and
explanation of a set of events should contain and provide advice on how to
find or produce such explanations. No single, unique truth does not mean
anything goes; on the contrary, each satisfactory explanation should con-
strain and integrate with every other satisfactory explanation. The term
for this is integrative pluralism (Mitchell, 2003): “pluralism” because there
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are multiple true viewpoints, and “integrative” because those viewpoints
should successfully interact. A practitioner that understands and accepts
integrative pluralism will be more flexible and better able to work with the
messy reality that is cybersecurity.

3.1 Truth in Cybersecurity

The problem about determining cybersecurity ground truth from looking
at computers is that, on their own, computers do not have too much to tell
us about cybersecurity. This claim seems strange on its surface. “Cyber” is
only about computers, or at least so the popular understanding goes. But
“cyber” is much more than about computers, and so is cybersecurity. Cy-
berspace, if we take the term seriously, is about the shared social construct
we humans have built with technological assistance (Pym, 2018).

Whether or not an event is a security event is determined by the orga-
nization’s security policy.! No person can do cybersecurity work without
some security policy in mind. A security policy is about what actions are
acceptable or not. In one environment, a given configuration of bits on a
computer may be a security event, while in another environment, the exact
same bits are not a security violation.

It may seem obvious that context matters, but the consequences to
the importance of context are both far-reaching and under-appreciated in
cybersecurity operations in 2020. “A given configuration of bits” sounds
clinical, so let’s be more specific. A domain name, say evil.example.com,
is a given configuration of bits. An IDS signature that identifies a valid
File Transfer Protocol (FTP) connection outbound to that domain name
identifies a different configuration of bits. Should you use that signature
to block traffic? Well, that depends on your security policy. There is not
one unique, ground truth answer to the question. That fact makes it rather
difficult to evaluate whether an analyst should buy and deploy a set of IDS
signatures from this or that vendor; at least, not without declaring that the
organization’s security policy is merely defined by the vendor’s list. Such
a declaration may be an efficient risk management decision, or it may be
very stupid. It all depends on the context.

Formally, security is a semantic property and “a given configuration
of bits” is a syntactic property. To evaluate a semantic property, such as
security or truth, we need context (formally, we need a model in which

LIf pressed, we are using these terms with their meanings from IETF RFC 4949. But
almost every other security glossary or standard presents a similar story.
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we can interpret the syntax). In formal logic, “True” has a very specific
meaning (Boolos et al., 2002). Since computers are logic machines, the
specific meaning in logic is relevant to cybersecurity. And due to some
strange turns in the history of the sciences, formal logic has also influenced
how sciences use the term “True.” So it is worth a short digression into how
formal logic uses the term before discussing ground truth in the sciences.

In a formal logic system, sentences are written in a syntax. A sentence is
comparable to a “configuration of bits” mentioned earlier. A sentence can
be valid or invalid, which is an evaluation of whether it follows a specified
set of rules for which symbols can follow other symbols. This set of rules is
the logic’s syntaz. A sentence cannot, quite importantly, be true or false.
Almost all logicians follow Tarski and Vaught (1956), who defined truth in
terms of model theory. To determine whether a sentence is true or not,
one must first specify a model by which the sentence will be interpreted.
Formally, a model is a mathematical structure with specific properties.
The main point, though, is that the same sentence can be interpreted by
different models to reach different truth values. There is no single, unique
truth value for a sentence; it depends on the model to bring the appropriate
context.

So what does it mean to be logical? The word is often used in a way
that implies there is one unique ground truth. However, when someone
colloquially talks about whether a person is being “logical,” the speaker
has specified neither a language nor a model. In common usage, they
are probably thinking of Aristotle’s predicate logic as the language and
the model as the rational numbers. There are other languages and other
models that might be reasonable to choose, and they will not all give the
same truth values. And Aristotle predates Tarski by a couple of millennia,
and Tarski and other logicians have updated what it means to be logical
in that time. Those logicians famously include Alan Turing, who dreamt
up the idea of the modern computer as a thought experiment to solve a
problem in mathematical logic (Turing, 1936).

Computers are logic machines, and there is no unique ground truth in
logic. So there is no unique ground truth on computers. There are security
policies, which are agreements between humans. Given a security policy
and a fully specified computer system, there should be a unique answer to
whether the system contains a security violation or not. More specifically,
the security policy would need to be complete and well-defined; in practice
many policies are neither. And an analyst usually does not know the full
specification of every state that a computer system has been in during its
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Models in Logic

One example where logic models are relevant to cybersecurity is im-
proving the memory management of programs. The operating sys-
tem (OS) stack is a set of sentences: move this pointer here, add 1
to the value there, etc. Compilers can catch errors in syntax. They
can check whether a line of C code (that is, a sentence) is valid. But
we cannot know whether running the program on the stack will have
memory leaks or a null-pointer dereference by analyzing the stack.
These questions depend on the values the stack variables take during
program execution. Memory management checks must be done in
the context of what values the variables can or did take. The logic
model in which we interpret the stack variables is the heap. A heap
gives values to all the variables in the stack, so it functions like a
logic model.

There are other ways to construct a logic model (Apt, 1981; Kripke,
1965; Girard, 1987). In fact, there are different ways to construct
a logical model of heaps in computer OS’s (Calcagno et al., 2011;
Bornat, 2000). But we cannot determine semantic properties, such as
truth or whether there is a security violation, without a model. The
word “model” is used in science and engineering differently than in
logic. But the differences are smaller than they appear. A good logic
model for this program verification task should represent how the
computer OS actually works, just as a good scientific model should
represent something about how the system of interest actually works
(Pym et al., 2018).

whole history, either. This situation is messy, but that is OK. The sciences
have good tools for dealing with messy truths, as long as we do not expect
the sciences to magically resolve a messy situation into one unique ground
truth.

3.2 Truth in the Sciences

When Americans are taught science in elementary school (or Brits are
taught science in primary school), the curriculum is almost always around
the single scientific method, and how that method leads to Truth. This
relationship between science and absolute Truth is an inheritance from a
philosophical movement known as logical empiricism. This idea of “capital
T truth” is not the same as the contextual, semantic definition of truth
(lowercase T truth) that Tarski defined for logicians. Programmers are fa-
miliar with this lowercase version of truth from if/then statements. As
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with cybersecurity, in science a contextual, model-dependent understanding
of truth will be more helpful.

Because so many people have had basic science in early education, and
that early education is generally still based on logical empiricist ideas, it’s
worth thinking about what assumptions the logical empiricist movement
both requires and provides. Section 3.2.1 provides this historical back-
ground and examines two dangerous assumptions within logical empiricism.
Section 3.2.2 introduces the viewpoint we will take in this book, which is
the prevailing viewpoint in the life and social sciences today.

3.2.1 Philosophy of Science Primer

Philosophy of science? is a field that has developed as a discourse on top
of science: a reflection upon the operation of the sciences (Uebel, 2016).
For three centuries, the scholars we now recognize as scientists were called
“natural philosophers,” and there was no separate group of philosophers
of science. In inter-war Vienna, a group of thinkers who identified as “the
Vienna Circle” came to challenge both the prevailing metaphysics and polit-
ical Romanticism (i.e., the Church and European facism). This movement
emphasized themes of observation of the world, trust in science, high value
on math and logic, and modernism. A key movement of the Circle has
come to be called logical empiricism, for its reliance on logical rules based
on empirical observations.?

We briefly introduce two of the main tenets of logical empiricism: (i)
empiricism and verification, and (ii) unity or reduction of scientific fields
(Creath, 2014). These tenets coalesced in the 1930s, were refined through
the 50s, and by 1970 had suffered ample critiques to be changed beyond
recognition. This historical trajectory makes it intellectually dangerous
to rely upon logical empiricist arguments or concepts uncritically. Yet,
those who rely on our early education’s presentation of science often do
unknowingly and uncritically rely on these concepts.

Empiricism and verification. Statements testable by observation were
considered to be the only “cognitively meaningful” statements (Uebel,
2016). Although logic and mathematics are the most reliable forms of
reasoning, logical empiricists did not take them to rely on observation, but
instead accepted them as true by definition, following Russell and early

2This section is a modified version of a similar section from Spring et al. (2017).
3Logical empiricism is closely related to logical positivism and neopositivism; we will
not distinguish these at our level of analysis (Uebel, 2016; Creath, 2014).
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Wittgenstein. Therefore, according to the logical empiricist view, the key
scientific challenges are how to verify a statement is in fact about the world,
and how to meaningfully integrate observations into logic and mathemat-
ics. Historically, this is all well before Tarski, so a logical empiricist tends
to think of logic as True, rather than the model-theoretic and contextual
version of truth that is used today. A logical empiricist would view inte-
gration between observation and logic as necessary for science to be useful.
Integrating observations into deductive logical statements is also a response
to David Hume (see the box on Hume’s complaint), two centuries earlier,
and his famous problem of induction. Hume, in broad strokes, argues that
no matter how many times we observe the sun to rise, we cannot prove (in
the sense of deductive proof) that the sun will rise tomorrow based on the
observations.

In modern terms, induction might be better called “generalization.”
Justified generalization is still what any cybersecurity analyst wants to be
able to do. If you want to know whether some DNS requests are rep-
resentative of some specific malware command and control (C2) channel,
the question is about whether it is justified to generalize from the partic-
ulars (the request) to a piece of general knowledge (description of the C2
channel). The premise of this book is that knowing how other sciences
have handled this problem of justified generalization should help cyberse-
curity practitioners. The conclusion of this subsection will be that logical
empiricism does not handle it well, which is dangerous because popular
understanding often equates science to logical empiricist tendencies.

Empiricism is closely related to verification of empirical facts. Consis-
tent with logical empiricism, Rudolf Carnap proposed a method for verifi-
cation by working on atomic elements of logical sentences, and expanding
observational sentences based on rules from atomic observations (Creath,
2014). The goal of empiricism is to be grounded in observations. The goal
of verification is to integrate those observations into a framework of general
knowledge, in the form of statements in first-order logic, that can justify
predictions. Carnap thus links induction and deduction, bypassing Hume’s
complaint.

Yet it became clear that verification might not always be achievable. It
is against this backdrop that Popper proposed the more limited objective
of falsification (Popper, 1959), which claims we cannot verify logical state-
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Will the sun rise tomorrow? Hume’s complaint

In 1777, Scottish philosopher David Hume influentially wrote about
human understanding. Although he did not have all the answers,
Hume has been influential for the questions he raises. For example:
What is the difference between perception and knowledge? When do
we “know” something rather than think or believe it?

Security practitioners are still asking these questions, though with
a bit better nuance. We want to assess whether what we “know”
is ground truth, and with what degree of certainty we can use that
knowledge to intervene on our systems to prevent or respond to in-
cidents.

Sunrise is the famous surprising example of not-knowledge:

“That the sun will not rise to-morrow is no less intelli-
gible a proposition, and implies no more contradiction
than the affirmation, that it will rise. We should in vain,
therefore, attempt to demonstrate its falsehood. Were
it demonstratively false, it would imply a contradiction,
and could never be distinctly conceived by the mind.”
(Hume, 1902, §4, §§21; emphasis original)

Hume claims knowledge is Logical and Logic is “conceived” by any
mind; observation is not Logical because it involves facts that are
neither true nor false ahead of time. These are problematic claims.
There is not just one logic (see Section 3.1). In particular, temporal
logic evaluates claims about tomorrow (Manna and Pnueli, 1992).

Furthermore, Hume’s goal is that perceptions should be True or
False, rather than adequately fit a model for a purpose. However,
the sun will not rise to-morrow is inadequate given our model of the
solar system and orbital mechanics; it does not serve the purpose
of planning when to wake up. Within this view, the sun will rise
tomorrow readily counts as (scientific) knowledge.

Yet Carnap and the logical empiricists met Hume’s challenge in
Hume’s view. Many elementary school science classes inherited this
limited perspective. Thus Hume’s complaint—we cannot readily link
perception to absolute “True” law-like generalizations—influences
our conception of science. But, as we describe in this chapter, this
view is more rigid than is necessary, and that excess rigidity harms
our ability to learn.
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ments at all. Instead, Popper asserts that the best we can do is hope to
falsify them.*

In 1962, Kuhn demonstrated that even the more limited goal of falsifi-
cation is untenable (Kuhn, 2012). Kuhn refutes the premise that scientists
operate on logical statements. Rather, he argues that key examples, liter-
ally “paradigms,” are scientists’ operative cognitive model. Later work in
the philosophy of science has refined the shape of these cognitive models—
one prominent method is as mechanistic explanations (Glennan and Illari,
2017)—and improved understanding of how data are processed to provide
evidence for phenomena (Bogen and Woodward, 1988).

Even ignoring Kuhn’s socio-scientific critique, falsification is about map-
ping observations into logic. Popper is silent on designing reliable ob-
servations and choosing what logic or conceptual framework in which we
should reason. These two problems provide more actionable advice than
whether something is falsifiable. More useful than falsification are modern
discussions of investigative heuristics for scientists (Bechtel and Richard-
son, 1993), models of when a conclusion from observations is warranted
(Norton, 2010), and accounts of causation that make use of intervention
and statistics rather than logical implication (Woodward, 2003).

Reduction of science to first principles. Another dangerous tenet of
logical empiricism regards the unity of science or the reduction of science
to single first principles. There are two senses of unity here that are not
often properly distinguished: methodological unity and unity of content
by reduction to a single set of models. A unity of methods would mean
that, although individual sciences have distinctive approaches, there is some
unifying rational observation and evaluation of evidence among all sciences.
This view was de-emphasized within logical empiricism. With confusing
terminology, modern arguments often return to this idea under mosaic unity
or pluralism: the sciences are about widely different subjects, but there are
important shared social and methodological outlooks that unify science as
an enterprise.

The traditional idea of reductionism is that the set of laws of one science
can be logically reduced to that of another (Nagel, 1979). This notion
requires the conception of laws as logical rules of deduction. As famously

4Popper published the idea in German in 1935. The English translation appeared in
1959. Carnap’s 1956 work is in part a reaction to Popper. Verificationists against whom
Popper reacted include Wittgenstein as early as 1929 (Creath, 2014).
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critiqued by Cartwright, the laws of physics are not true explanations of
the world, but rather of the models we build of the world (Cartwright,
1983). If laws are about models, and models can be diagrams or small-scale
physical replicas, it is unclear how reduction could be defined. Bickle (2008)
defines reductionism (in neuroscience) as when a lower-level mechanism
contains all the explanatory power necessary to intervene on a higher-level
mechanism. Merits of Bickle’s view aside, he has disposed of all logical-
empiricist ideas of laws, deduction, and verification; he uses the modern
concepts of mechanistic explanation and intervention.

Reductionism is dangerous because it tends to blind us from using the
appropriate tool for the job. If everything reduces to physics, then we just
need a physics-hammer, and everything looks like a nail. But we shall
need a more diversified toolbox in a field such as cybersecurity. Social
sciences play a role equally important as technical sciences (Anderson and
Moore, 2006). The modern terms in philosophy of science are integrative
pluralism (Mitchell, 2003) or mosaic unity (Craver, 2007). The core of these
terms is that fields cooperate on adding constraints to coherent explanations
according to their particular tools and expertise to painstakingly build out
more general knowledge of groups of mechanisms (Spring and Illari, 2018a).
Such interfield explanations are what is valuable, not reductions (Darden
and Maull, 1977).

Take understanding how a botnet extracts money from its victims as
an example of interfield explanations with mutual constraints in cybersecu-
rity. Psychological methods contribute part of the story about how people
are deceived by phishing emails. Network science methods contribute to
understanding the fast-flux network used to deliver the phishing payload.
Software engineering methods contribute to understanding how the vulner-
ability in the software can be exploited. International finance contributes
to understanding which transactions the botnet owners will avoid or seek.
Criminological methods contribute constraints on the motivations and or-
ganization of the thieves. International law contributes to understanding
what methods are available to apprehend and punish the criminals. None
of these contributions can be reduced to any of the others, and each of
them improves the clarity and detail of the whole model of botnet money
laundering.

3.2.2 Science as a Process

Science is not a destination. Scientists do not inevitably arrive at Truth.
Science is a process. It is a process that, more often than not, gets us better
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and more useful results than anything else we know of. But it is a process
that will have to adapt to cybersecurity. What this process should be, in
different contexts, is the primary topic of the rest of the book.

A common pitfall is to treat the terms “scientific” and “correct” as syn-
onyms. Science is a process; a process that yields answers. Answers may
be correct or not, based on facts of the world. However, one calls a pro-
cess “correct” if it follows an agreed-upon, human-defined form. To avoid
confusion by overloading the word “correct,” we will instead ask whether
a process is satisfactory in efficiently producing adequate answers. We
should not assume answers are reducible to one “correct” answer; many
answers may adequately satisfy a purpose (Simon, 1996). Conflating “sci-
entific” with “correct,” and “correct answer” with “adequate,” is a result
of logical-empiricist assumptions.

If we take this approach, then we do not have to make cybersecurity
look like physics in order to talk about doing cybersecurity scientifically. A
science of cybersecurity should borrow from other scientific disciplines. But
its main focus is to gather evidence about which processes of inquiry and
reasoning lead to satisfactory results. Cybersecurity is a diverse discipline,
and we expect there to be a diverse pluralism of processes whose results
will integrate with and constrain each other.

The idea of all science as a contextual process smooths the adoption
of science in cybersecurity. Cybersecurity has to deal with active adver-
saries. Adversary intent is an important part of the relevant context. We
should find it easier to integrate science into cybersecurity if cybersecurity
borrows from scientific processes and goals that already are sensitive to
context. Such scientific practices are more often found in the life sciences,
economics, psychology, and history than they are in physics (of course,
there are exceptions to this generalization). In an unfortunate twist of
fate, many, if not most, folks in security that are scientifically trained were
trained in physics. So the views we present in this book may not be the most
commonly espoused science of security views, but for the reasons explained
above, we believe they are the most useful ones.

This book follows Spring and Illari (2018a) for the definition of the goal
of a scientific process. The goal is knowledge that is somehow general. This
takes the form of “clusters of multifield mechanism schemas related along
four dimensions” of activities and entities, phenomena, organization, and
etiology.

But the practical question practitioners may be more interested in is
“when do I stop trying to learn more.” There is no easy answer to this
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question, and it is essentially a question of the economics of information.
The question could also be stated as “how much is reducing my uncertainty
worth.” This question can be modeled formally (Letier et al., 2014; Akerlof,
1970), but the following chapters will help the reader get a heuristic feel
for answering this question in different contexts.

We have so far avoided answering the thorny philosophical question of
how one verifies that they have ground truth knowledge of a situation of in-
terest. Very loosely, if you can use your understanding based on your model
to intervene on or change the system of interest, and in all relevant cases
your model accurately predicts the effect of your intervention, then your
model is good enough. In cybersecurity, interventions often take the form
of access control lists (ACLs), filters, blocking, authentication methods, or
other security controls. Interventions may also be remediation actions after
an incident to free the system from adversary control. The predicted effect
is usually something like the system continues to provide expected services
at the expected level, which it presumably would not do if an adversary
successfully attacked it.

Science will not provide a cure-all, a panacea, or a silver bullet. Be-
cause context matters, a security practitioner can never be sure they have
considered all the relevant contexts, or that the way their policy defines
an adequate system state is actually what the users of the system will find
adequate. There will always be doubts. But an appropriate scientific ap-
proach will help you understand and communicate to others when those
doubts are justified.

3.3 Recap

From both a computer science perspective and a scientific perspective, there
is no single, unique truth about a cybersecurity event or set of events.
Instead, the question is whether your model of the situation is satisfactory
for your goals. A satisfactory model should respect both the logical and
scientific constraints on cybersecurity.

From a logic perspective, an important mistake is when an analyst
makes claims without the proper context. Specifically, trying to make se-
mantic (that is, security) claims with only syntactic (that is, a configuration
of bits) information. To evaluate security claims, the analyst needs an ap-
propriate or representative security policy. In logic terms, an appropriate
model is necessary to provide an interpretation. There are multiple possible
logics, and each has multiple possible models; which one is most suitable
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depends on the analysis goals. There is not a preferred logic which provides
the one unique truth of falsity of a statement.

From a science perspective, an important mistake is when an analyst
assumes there is just one scientific method that will arrive at just one correct
model of a situation. This mistaken view was promoted for years by the
historical school known as logical empiricism; many readers likely received
some version of this problematic view during early school years. This fact
makes it doubly important for any analyst to examine their assumptions
about what makes a process an adequate method to arrive at reliable and
satisfactory knowledge of a situation. A thorough understanding should
integrate results from multiple disciplines and multiple viewpoints.



Chapter 4

Desirable Study Properties

Designing a structured observation is a complex task. This chapter will
describe some general properties of structured observations: consistency,
generalizability, transparency, and containment. Similar to the consistency,
availability, and partition tolerance (CAP) theorem for databases, no one
study can provide all of these properties; there must be trade-offs. To
fully understand a situation, even in the limited sense of “intervene on or
change the system of interest, and in all the cases you care about your
model accurately predicts the effect of your intervention” defined in Chap-
ter 3, requires designing multiple structured observations with compensat-
ing strengths and weaknesses. While this chapter introduces the properties
of a study, Chapter 7 introduces the different types of study that can be
designed to accomplish compensating strengths and weaknesses.

Note that while structured observation is a nice formal term, it is a bit
of a mouthful and we will often use the term study. These two should
be treated as synonyms here. If we mean a case study, we will always say
“case study” in full. Case studies are a type of study (that is, structured
observation).

This chapter is loosely inspired by the “prudent practices” described by
Rossow et al. (2012) and desirable characteristics for experimentation in
computing (Hatleback and Spring, 2014). The names of the four desirable
properties are intentionally broader than those in this prior work. Cyber-
security requires a wide variety of study designs, so we have made an effort
to avoid language that implies a certain kind of study. The properties rep-
resent ideals and norms about how study design should be done. There are
lots of ways in which modern studies may not meet these criteria in every
way described here, but these criteria are what should happen. Ideally, any
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trade-offs for other properties, such as lower cost or expediency, should be
clearly and transparently explained.

We will call the person who sets up and conducts the study the “de-
signer.” Even with observational studies, the observation is structured and
designed. A term like “experimenter” would not capture the role played by
the designer in natural experiments or simulations. A term like “researcher”
might miss the practical application, but is also a bit passive. The designer
of a study must take an active and conscientious role in making sure the
study properties meet the designer’s needs, whatever they happen to be.

The chapter is organized in four sections, one for each desirable prop-
erty. The biggest topics are consistency, generalizability, and the tension
between the two. Section 4.3 discusses transparency and enumerates the
different parts a study should have. Section 4.4 covers the fourth property:
containment, or the management of potential harms.

4.1 Consistency

Consistency goes by different names in different types of structured obser-
vations. In an experimental setting, it might be called “internal validity”
(Hatleback and Spring, 2014). Psychological studies may discuss the re-
lated term “construct validity” (Cronbach and Meehl, 1955). The common
theme in consistency, or these other terms as appropriate, is that the study
18 measuring and responding exactly and exclusively to what the designer
believes it to be measuring and responding to.

To improve consistency, the designer aims to insulate the study from
unintended and unknown influences. Consistency can be assessed across
time (via repetition) and across space (via reproduction). Some common
aspects of a study where consistency can be corrupted are in the study’s
tools or designer’s model of the examined phenomenon. Insulation tends to
be antagonistic to generalizability, but the trade-off is somewhat flexible.
The rest of this section will discuss each of these aspects in some more
detail.

4.1.1 Insulation

Insulating a study from external influence means the only factors influenc-
ing the results of the study are part of the study. The amount of insulation
that the designer needs changes with the type of study. But in all cases,
adequate insulation is much easier if the designer knows how the system
of interest works. This dependency is problematic because usually the de-
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signer wants to study the system precisely because they do not sufficiently
understand how it works.

Perhaps the trickiest aspect of evaluating consistency is that the study
needs to be insulated from all relevant external influence. What is or is not
relevant may not be obvious. For studies focused on observation, adequate
insulation is achieved when all the relevant observations are recorded with
adequate precision and frequency. For studies focused on intervention, ad-
equate insulation is achieved when the intervention is the only factor that
influences the outcome. In both of these cases, perfection is never possible.
Good practice is to assume there are unknown factors and to analyze the
results to estimate the net total influence of any factor that the study did
not record. This practice is not foolproof—two unknown factors could be
canceling each other out—but it provides important context and a measure
of how well insulated a study was.

To design a well-insulated study, it helps to know what other people
have found in related scenarios. This strategy helps the designer make new
mistakes, rather than just repeat the old known mistakes. Academic studies
collecting these insights are called literature reviews or “systematization of
knowledge” papers; always consult them on the topic of interest if a relevant
one exists. But cybersecurity science is practiced in industry as well, and
a study designer should also search the public proceedings of industry con-
sortium events, such as those organized by the Forum of Incident Response
and Security Teams (FIRST), the Anti-Phishing Working Group (APWG),
the Linux Foundation, and the Internet Corporation for Assigned Names
and Numbers (ICANN). If your industry sector has an Information Sharing
and Analysis Center (ISAC), your organization is part of an Information
Sharing and Analysis Organization (ISAO), or you are in the constituency
of a national computer security incident response team (CSIRT), use those
resources to learn details specific to your work context.

A designer should approach study design expecting there to be mistakes
in insulating the results from expected influence. These can be valuable
scientific results! Taking consistent notes, tracking code changes, etc., is
the key to pinpointing the exception when it arises. The difference between
a useful result and a failed study is whether the designer can pinpoint, or
at least suggest, why the study results were impacted by a mistake in some
specific aspect of the study. Getting in the habit of taking good notes and
documentation from the very beginning is hard. But your future self will
appreciate it.
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4.1.2 Consistency Across Time

Part of consistency is that if the same people use the same equipment to
run the same study again at a later time, then the results are all mutually
consistent. That is, the result can be replicated. “Mutually consistent”
does not mean exactly identical. Rather, it means that they are not at
odds with or contradict each other.

One common theme in scientific literature is repeatability. Consistency
across time (replication) is only one kind of repeatability: when the same
designers use their same equipment, it is replication of the study results.
Reproduction is covered under consistency across space, and corrobora-
tion is covered in Section 4.2. Repeatability, replication, reproduction, and
corroboration are sometimes (unhelpfully) used interchangeably, so when
colleagues or authors use the terms, ask whether they are distinguishing
between consistency across time, consistency across space, or comparing
related studies.

Replication of a result provides evidence of consistency across time.
Replication aims to ensure that the design of the study and the tools and
instruments used have a stable interaction with the world. This kind of
consistency mostly protects the study designer against mistakes, flukes,
or some bad assumptions about how the instruments work (Cartwright,
1991). These are basic checks, and while we need a lot more to build solid
knowledge of a system or situation, without these basic checks there is
nothing upon which to build.

Replication can be challenging in cybersecurity because the network,
popular applications, social expectations, and global regulations are con-
stantly changing. These reasons provide plausible explanations for why a
network study from 10 years ago will not replicate exactly. But recall that
consistency across time means “mutually consistent” results, not identical
results. If two studies 10 years apart are not well-insulated from other
changing factors in the environment, then we should expect these external
factors to influence the results. The two replication attempts may run the
same code from the same computer with the same IP address within the
same ASN. But to know what results are expected in the later attempt, the
designer needs to know how trends in at least six different fields will change
the results. If the designer is naive and does not expect these changes,
the replication attempt will produce surprising results. But a better way
to think about these two studies is whether they corroborate each other
(see Section 4.2). If the environment of the study has changed so much
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in between attempts, the designer is not actually replicating the old study.
They are testing whether their results generalize to the new environment
the Internet has evolved into in the intervening time.

An important question for any study is to know the environment’s rate
of change. Specifically, how much time passes before the designer should be
thinking about their work as corroboration rather than replication? There
is no simple answer to this question; see the box on stepping in the same
river twice. For particle physics, we expect the answer is measured in
billions of years. For clandestine Internet marketplaces exchanging stolen
goods, the duration may have been two years in 2001 and six months in
2019. For cybersecurity, even the duration that some system is stable may
itself not be stable. If you want to use your results to inform future planning
or security policy, then it helps to have a system to regularly attempt to
replicate them and test to see if they remain stable. In cybersecurity, it is
dangerous to assume any results are stable.

4.1.3 Consistency Across Space

Consistency across space is maintained if different people in other settings
use the same tools and follow the same study procedure and the results are
all mutually consistent. That is to say, the results can be reproduced. As
with replication, “mutually consistent” does not mean exactly identical.

Reproduction is about trying the study in another setting that should
be equivalent to the first setting, based on our models and knowledge of
the system of interest. For example, consider a study to test whether a
particular IDS signature detects Zeus C2 traffic. The analyst replicated
the test on their network over the last week, and for that time period,
the results are stable and promising. To reproduce the study, they could
share the signature with other similar organizations. If the analyst works
at a healthcare provider with multiple hospitals, likely equivalent settings
include other healthcare providers in the same region. Equivalence would
also expect a similar network architecture for the placement of the IDS and
an IDS that uses the same signature format language. The peer hospitals
can then reproduce the study on whether the IDS signature adequately
detects the C2 traffic.

Reproduction is barely broader than replication. Even so, it provides
two important services that are importantly different from replication. Re-
production provides additional witnesses to the result; this increases the
credibility the result is a stable interaction between the instruments and
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You can’t step in the same river twice

Space and time are related, and so consistency across space is re-
lated to consistency across time. Any attempt to conduct a study
in different places will necessarily also conduct it at different times
and vice versa. If we wanted to be excessively pedantic, the Earth is
moving rather quickly around the sun, so to conduct a study in the
same place would require a rocket ship. But here, again, the word is
relevantly the same, not identical.

There is a famous phrase attributed to the Greek philosopher Her-
aclitus (Turkish philosopher, really; he lived in Ephesus). There is
some disagreement about his actual words, but the gist may have
been one could not step twice into the same river (Graham, 2019).
The river is defined by change and flux: it is not a lake or a dry
riverbed, but flowing water. To be in the same place—the river—at
a second time necessitates in some sense that one is not in the same
place: the river has changed. Our bodies have a similar nature.

So when this chapter differentiates “consistency across space” from
that across time, focus on the relevant similarities. Across time fo-
cuses on the same designer trying the same study again. Cross back
over the same river again. Across space emphasizes different design-
ers trying the same study in a different “place,” where place should
more accurately be understood as a different segment of a popula-
tion that is expected to be the same for the purposes of the study.
Cross the river in the same way just a bit upstream or downstream
of where the last test was.

Computers and computer networks are also constantly changing at
many different levels. Sometimes it is useful to focus on the stability,
such as farmers who want to know when the Nile River floods every
year. Sometimes it is useful to focus on the changeability, such as a
ferry pilot who wants to know the currents and eddies today. When
evaluating whether a study in cybersecurity has the right amount of
consistency, keep the goals of the study in mind.

the world and also not outright fraudulent. Before buying a product, look
for evidence that their marketing claims can be reproduced on your systems.

Secondly, reproduction helps confirm what entities the designer consid-
ers to come from the same population. In the IDS example above, there are
multiple populations in the study: Zeus malware (as opposed to other mal-
ware families), network traffic at the organization-Internet boundary (as
opposed to local area network (LAN) traffic or files on a local file system),
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and healthcare providers (as opposed to other industry sectors). C2 is a
network phenomenon, so if the test population were a file system, we would
not expect the study to replicate. But some populations are not so easily
defined and distinguished. For example, when a malware sample is part of
the Zeus family. It is probably too rigid to say Zeus is exclusively the open-
source implementation available on GitHub. But how many changes make
a sample a different family is a difficult question. For the purposes of the
IDS signature example, any change to the C2 protocol would be relevant
to the results, whereas wholesale changes to other code sections might not
be.

As with replication, a reproduction attempt may be a signal that some-
things we expected to be relevantly the same actually have relevant dif-
ferences. While learning relevant differences would mean the reproduction
“failed” in a strict sense, such a finding is a successful improvement of
knowledge. The only truly failed reproduction is when the designers can-
not distinguish whether the discrepancy is in the study design or in the
system of interest. Again, detailed notes and documentation along the way
are vital. But if the problem can be localized to the study design, it can
be improved. If the problem can be localized to the system of interest and
what had been expected to be a single relevant population, then those pop-
ulations can be studied as separate. However, a sloppy study design would
be a failure because then we cannot distinguish these scenarios. Tools,
statistics, and models will help avoid sloppy study design, as well.

4.1.4 Consistency of Tools

How can anyone tell whether the results of a study are an accident of the
tools being used to make the observation or a genuine reflection of the sys-
tem of interest enabled by those tools? This problem goes back at least
as far as telescopes (~1625 CE) and microscopes (~1660 CE). But math-
ematics and logics are also tools, albeit intellectual rather than physical
ones (De Millo et al., 1979). So this problem really dates to thousands
of years ago, at least to when Euclid and Pythagoras used the idea of a
circle or a triangle to study and plan how to make bridges and catapults.
But the first person credited with observing micro-organisms (Antonie van
Leeuwenhoek in 1676) certainly highlighted the problem. Everyone rightly
behaves as though micro-organisms are real, but no one has seen a microbe
without the assistance of a tool.

Science and engineering are not actually so separate. If we think of sci-
ence and engineering as integral, inseparable parts of each other then the
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question about trusting tools becomes less mystical and more pragmatic
(Dear, 2006). The view in a good microscope yields observations that al-
low people to change the world or create new technology. If the changes
or technology function as anticipated, that increases confidence that the
observations are true. The microscope itself is a tool, produced by optics
and lens crafting, and we have increased confidence the tool will work as ex-
pected because we believe the observations and models of optics to be true.
Technology promotes science and science promotes technology. Neither the
instrumental /pragmatic view nor the philosophical/alethic (the nature of
the truth of the statement) view are primary. The instrumental (technology
promotes science) and philosophical (science promotes technology) views of
science are mutually reinforcing.

Like microscopes, to trust a tool in cybersecurity you should build up
interconnected, multidisciplinary sets of evidence based on both pragmatic
results and the established models of other areas. The problem is perhaps
exacerbated in cybersecurity because everything in the system is a human
artifact: the computers themselves, the cultures of security compliance, the
criminology of money laundering, the system of network identifiers. To the
extent possible, differentiate the objects of study from the tools used to
study them.

The tools for studying a system of interest tend to improve iteratively
with knowledge of the system. A useful example is the interaction between
engineering airplanes and formal fluid dynamics (Vincenti, 1990). The ear-
liest airplanes were not just engineering achievements; they performed in
ways that were not explainable by contemporary knowledge. Early air-
planes were both tools for moving humans around and tools for probing
models of fluid dynamics. The two disciplines improved each other for
decades, such as understanding how and why round-head rivets cause tur-
bulence. So we do not expect cybersecurity tools and our understanding
of system behavior to reach a steady place any time soon. However, if you
have created a new tool, test that it works as expected in some relatively
well-known situations before trying it to demonstrate something new.

4.1.5 Consistency of the Designer’s Model

In order to design and analyze a study adequately, the designer should have
three things: (1) a conceptual model they want to improve, (2) methods to
avoid systematic biases in the execution of the study, and (3) appropriate
formal modeling tools for the analysis. Each of these three topics could be
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its own book, and these three ideas recur throughout this book. We will
briefly address each of them directly in turn here.

In a study, the designer often wants to refine or confirm some aspect
of their model of the system of interest. Part of study design is evaluating
whether the system model to be tested is internally consistent in the first
place. An example of inconsistency would be to expect a malware sample
to require a C2 channel to install some specific code, but expecting that
code to be necessary for establishing a C2 channel. This would lead to
an unresolved dependency in the malware function. It would be a waste of
time to design a study to see if this fictitious model described some malware
family because the model itself is inconsistent.

The most suitable methods for building and checking conceptual models
of systems for cybersecurity are often those from the life sciences. Although
the devil is in the details, the heuristics from the life sciences can be sum-
marized as decomposition and localization (Bechtel and Richardson, 1993).
Decompose the system of interest into expected or known entities. Local-
ize the expected or known operations or properties of the system to those
entities. Then, attempt to isolate the entities and observe to what extent
they exhibit those operations or properties. Organizing the entities and un-
derstanding similarities are useful further steps (Glennan and Illari, 2017),
but decomposition and localization are the start.

Humans have a tendency to unduly anchor on the first piece of informa-
tion or idea they have about a situation. This tendency can cause problems
in various kinds of analysis. In a scientific endeavor, it may mean the de-
signer anchors on their initial hypothesis and will not let it go even though
the study results indicate the hypothesis is not supported. It might mean
anchoring on early promising pilot results even though a later, more com-
prehensive study indicates there is no reliable result. In cybersecurity, as
in other adversarial analysis, it might mean the analyst believes what their
adversary wants them to believe rather than what a full reading of the facts
would indicate (Heuer, 1999).

Pursuing science must be, at its core, a humble endeavor. Although
history contains many examples of pompous scientists, this is not the path
to good science. Humility means, among other things, always being open
to being mistaken. Accepting mistakes gracefully, and surrounding yourself
with others who do, helps to avoid getting stuck on the initial hypothesis
or initial result. To produce a consistent study and consistent results, a
designer must make use of the best available data, not the first available
data.
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The most important page on the Internet

The page title, List of cognitive biases, is unassuming. The distinctive
Wikipedia template is not flashy. It is an exacting and exhaustive
list of the ways in which your brain will fool you. If your response to
the preceding sentence is, “I am my brain, it could not fool me,” or
“I am a very learned and rational individual who does not fall for any
tricks,” then you have not spent enough time reading the resources
cataloged there. Have a look now: en.wikipedia.org/wiki/List_
of_cognitive_biases.

What is your model of how your own thinking works? Do you think of
your brain as a computer, rigorously and carefully moving from one
logical statement to its implication? For better or worse, brains do
not work that way. Probably for better; many of the biases likely are
heuristics developed over the course of evolution because they kept
humans alive. If a 100% accurate answer takes 5 seconds to compute,
but there is only 1 second before the predator attacks or the prey

escapes, it is explainable that a 90% solution calculable in half a
second has become the dominant way brains work. Psychologists
have documented hundreds of these heuristics/biases for as many
diverse situations.

If a person is going to do anything—solve a cybersecurity problem,
navigate a job interview, or overcome a traumatic life event—it helps
to know how a brain works. We cannot generally change how it works
wholesale. But we can be aware of when the brain’s heuristics are
working with us toward our goal, and when the brain’s biases will
work against our goals. In the latter case, formalizing methods and
procedures that will lead to the goal are valuable. Statistical analysis
properly established is one example. But there is no replacement for
self-awareness. Cognitive biases are often unavoidable, but the only
way to question and check our thought process is to be aware of how
it can go awry and seek to mend it.

We discuss common logical fallacies in cybersecurity in Section 8.6.

There are many important aspects of formal modeling of a study and
its results; the relevant aspect for consistency is that the formalism itself is
repeatable by others. This property is distinct from replication or reproduc-
tion of the study itself, and is often discussed as statistical reproducibility
(Stodden, 2015). Statistics play an important role in generalizability and
corroboration, which is the focus of the next section. Here, the point is
just that the statistics or formal modeling themselves need to be consistent
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and repeatable; what these statistics indicate about the repeatability of the
study as a whole is another matter. Even this seemingly small matter can
be exceedingly tricky.

For the model to be consistent, if someone else performs the statisti-
cal or formal analysis of the study, they should get mutually consistent
results. There are many analysis choices, such that even different groups
of professional statisticians who analyze exactly the same data can reach
incompatible conclusions (Silberzahn et al., 2018). Therefore, the designer
must not only make these choices carefully, but document them so that
others can understand the modeling choices. This discussion and care are
particularly important when developing a machine learning (ML) model
(Spring et al., 2019).

4.1.6 Relationship to Generalizability

Generally, more focus on consistency of a study means less focus on its
generalizability. The reason is that more consistency usually means more
control and more insulation from external factors. Generalizability involves
connecting the study results to external factors. However, this trade off is
not one-to-one; while insulation and connection are opposed, aspects of con-
sistency such as that of tools or models are not directly related to whether
the study’s results are more generally applicable. Aspects of consistency
related to repeatability do not directly support generalizability, but they
do enable further studies to probe the extent to the which the results apply.
Certain types of study are optimized for high insulation. Highly insu-
lated studies are often valuable, but they are most valuable when paired
with different studies that are optimized for connection. Certain traditional
types of study design occupy different places on this continuum between in-
sulation and connection. Section 7.2 will discuss types of studies. But there
are three more desirable properties of scientific studies to introduce first.

4.2 Generalizability

Generalizability is a cluster of related and overlapping concepts, and it may
have different names in different types of structured observations. Ezxternal
validity is specifically about whether the results of the study apply outside
the study, whereas ecological validity is about whether the topic of the
study is something that actually occurs in the world. Transferability is
a related term sometimes used about case studies. The common theme of
generalizability is the study provides results that are applicable to the world
outside the study in a clear and reliable way.
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To improve generalizability, the designer connects the study with the
part of the world that is of interest as much as plausible. Such connection
tends to reduce insulation from unintended and unknown influences, and
so is antagonistic to consistency. Generalizability can be assessed by com-
parison between results of different studies; one indicator of generalizability
is how specifically and carefully the designer has stated the target popula-
tion to which the results are intended to generalize. Some places a study
might have problems arise with generalizability are mismatches between
the study’s population and the target population or errors reasoning with
the results of the study. The rest of this section will elaborate on these
topics.

4.2.1 Connection to External Factors

The general goal of connection is to make sure that the results of the study
are not merely an artifact of the study design. This goal applies to all
types of studies; some examples of how results can be an artifact of study
design are as follows. In a case study or interview, often the mere pres-
ence of an observer changes the behavior of the people being studied. For
surveys, there are a variety of well-known ways that the structure, order,
and phrasing of questions influence the outcomes (Diamond, 2011, §IV).
A simulation may not apply to any real scenario. a randomized controlled
trial (RCT) intentionally creates an artificial setting, disconnecting aspects
of the system from external factors; in such cases, it usually requires a
separate study to evaluate whether the insulated laboratory results are in
evidence outside the laboratory (that is, the ecological validity of the RCT).

Connection to external factors is also about actively connecting the
results to the world, not just about avoiding a situation where the result
is an artifact of the study. This connection takes a variety of forms in
cybersecurity. For example, in studying the usability of security measures,
it is important that the study subjects have both a primary task and a
realistic experience of risk (Krol et al., 2016). Otherwise, the study will
be too disconnected from the real situations in which users make decisions;
such disconnection means the results cannot generalize to any situation
outside the study. A similar disconnect happens if network traffic data or
host activity in studies or personnel training exercises are not simulated
to very carefully mimic actual traffic. Anonymization of network traces
disconnects the traffic from the real world for privacy reasons. How to
anonymize in a way that preserves the important functional and reputation
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information an analyst can often derive from the real identifiers remains an
open research question.

The rest of this generalizability section continues the theme of actively
connecting a study to other contexts, contributing to and supporting more
general knowledge. Corroboration is related to the concepts of replication
and reproduction that were covered in Section 4.1, but an attempt at cor-
roboration is an initial probe of whether the results generalize to similar
contexts. Defining the extent of expected generalization is a way of de-
scribing what populations the designer expects their results to connect to
and those to which they do not expect to connect. There are formal and
conceptual tools that help structure and test generalization and avoid hu-
man cognitive biases; we discuss statistics and mechanism schema as two
important examples.

4.2.2 Comparing Studies

One kind of evidence that the results of a study generalize is whether other
independent but related studies corroborate it. Studies can be designed
intentionally to corroborate a prior study; in this case, corroboration is
a kind of repeatability test (Feitelson, 2015). Corroborating studies do
not use the same equipment, the same people, or exactly the same study
design; rather, they examine either the same system of interest in a slightly
different way or a slightly different system of interest in the same way. If
the results are mutually consistent (that is, they do not contradict each
other), then the two studies corroborate each other. Corroboration does
not automatically mean both studies are true, but it is a positive piece of
evidence.

Systematic errors in study design can sometimes manipulate the ap-
pearance of corroboration even though none of the interrelated studies are
actually generalizable. For example, animal models, such as mice, have sys-
tematic limitations in emulating human cancers, and so research on human
cancer in animals is often unsuccessful and the research’s successes system-
atically (though accidentally) leave areas unstudied (Mak et al., 2014). In
cybersecurity, erroneous corroboration results may result from un-careful
use and comparison to blocklists (Metcalf and Spring, 2015). If the block-
list architect changes what activity they are looking for or where they are
looking from, the identifiers to block change almost entirely. This result in-
dicates that judging whether one account of malicious activity corroborates
another by merely looking for shared identifiers on a blocklist is implausible
without a lot of other information about why those blocklists should be the
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same. Usually blocklists are not the same; that is, they are not expected
to overlap.

Systematic corroboration should be encouraged. In situations where
extensive RCT's are viable, a meta-analysis of comparable RCTs provides
statistical tools for assessing the extent to which a hundred or so studies
inter-corroborate each other. Cybersecurity is not currently suited to such
analysis; cybersecurity may never be suited to meta-analysis of RCTs given
the rapidly changing technical state of the Internet, diversity in cultural uses
of different parts of the Internet, and diversity of security policies for evalu-
ating the risk of events. At least, setting an adequately shared scope would
be a serious challenge. For this reason, we encourage the use of more concep-
tual generalization tools. Re-situation of results through metaphors (Mor-
gan, 2014) and generalization via clustering mechanism schema (Spring and
Tllari, 2018a) are two options (see Section 4.2.4).

4.2.3 Extent of Generalization

Generalization is about arguing that the results observed on the study pop-
ulation apply to populations outside the study. Let’s call the population
outside the study the population of interest, which we wish to learn about
by conducting the study. There are three useful steps in arguing the pop-
ulation of interest is included within the extent of generalization of the
study results. Firstly, precisely and accurately define the population of in-
terest. Secondly, carefully and transparently select the population in the
study when designing a study. Thirdly, argue why the selected population
is representative of the population of interest in all the ways relevant to the
study’s results.

A population is any collection of units that are part of some collection
and can be enumerated. This formal definition expands the elements of
a population beyond people to include computers, network packets, pay-
ment attempts, etc.; any group of equivalent units will do. Precisely and
accurately defining a population of interest can be tricky. Precise means
exclusively the units of interest are included by the description. Accurate
means all the units of interest are included by the description.

Consider an example population of interest, “all servers owned by the
organization,” and the example description “all open ports lower than 1023
found by an nmap scan of the corporate network on Friday.” The de-
scription may not be precise if workstations or devices owned by visitors
mistakenly have those ports open. The description may not be accurate
if there are cloud-based or other off-premises servers owned by the organi-
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zation. Network scanning accuracy in particular can also be impaired by
filtering policies, timing, odd protocol interactions, and scanning method-
ology (Bano et al., 2018). Determining the adequacy of a description of the
population of interest may deserve its own small pilot study before moving
on to designing the selection of the study population.

The way that the study designer selects the study population sets a
kind of upper limit on the extent of generalization, though other aspects
of study design (discussed in this section) could further restrict general-
izability. The extent of generalization possible is primarily dependent on
the selection method, sometimes called a sampling plan. We prefer “se-
lection” methods here to help keep population selection methods distinct
from sampling methods used in statistical analysis discussed later. That
selection is actually executed properly in accordance with the method and
such practical things are also necessary, but we focus on the basic selection
method types. There are situations where each method can be appropri-
ate, but random selection methods (stratified or simple random) have more
generalizability from the study population to the population of interest.
Chapter 6 has more detail on executing sample selection methods.

Volunteer selection means publicizing the existence of the study and so-
liciting volunteers to participate. The resulting population will not
inherently generalize at all. At best it is a sample of those that
received the notification of the study, and there is rarely a way
to link that population to the population of interest. Participants
also get to choose to participate, which introduces variable effects
of inducements or payments (people with less wealth may be more
likely to respond) as well as non-participation choices based on
any number of personal situation, comfort, ability, or emotional
variables. Volunteer sampling is appropriate in a situation where
the volunteers themselves are a meaningful population of interest
and/or the main goal of the study is to demonstrate that an effect
exists at all, not the extent to which that effect generalizes.

Convenient selection is characterized by the study designer including
whatever participants are convenient. In a retrospective or histor-
ical study, this choice may be based on the limits of data collected
in the past. Similar to volunteer selection, convenient selection is
best when the study population itself is of interest or the goal is
to demonstrate the possibility of a result. If enough information is
collected about the study population it may be possible to make
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very limited or tentative generalizations at least as hypotheses to
test in future studies.

Snowball selection starts with an initial population item, studies it, and
uses that member of the population to find new members to study.
Snowball selection (or sampling) is often used to access hard to
reach populations of interest (Faugier and Sargeant, 1997). Such
populations are resistant to accurate random sampling methods
for various reasons. Snowball sampling is the term in sociologi-
cal research, but the concept is similar to “indicator expansion”
or “pivoting” used by threat analysts to start with one suspicious
indicator and use network or host logs to connect to further suspi-
cious indicators (Spring, 2013). As with volunteer and convenient
selection, it is not usually possible to generalize from a sample col-
lected by snowball selection. For something like threat hunting,
generalization is not the goal. The population of indicators found
via indicator expansion is the population of interest.

Simple Random selection takes the whole population of interest and sys-
tematically selects a subset of the population in which each mem-
ber of the population has the same likelihood of selection into the
study population. If all these conditions are met, then the results
on the study population can be generalized within well-defined sta-
tistical bounds to the population of interest. However, two points
require a lot of care to execute properly: (1) enumerate the pop-
ulation completely and (2) ensure each member of the population
has equivalent likelihood of selection.

Stratified selection involves separating the population of interest into dis-
tinct, non-overlapping subgroups (called strata) and then conduct-
ing a simple random selection within each stratum. The criteria on
which the strata are separated are some features that are expected
to influence the outcome of the study. The purpose of stratification
is to have balanced or proportional representation of these features
in the study population when a simple random sample would not
deliver it.

Census is a selection method where the study is performed on all members
of the population of interest. Actually reaching an entire popula-
tion is a large challenge; for human populations it tends to require
resources on par with a national government. Organizations such as
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shodan. io and The Measurement Factory attempt to conduct cen-
suses of different Internet-accessible devices. The extent to which
they have actually captured the whole population of interest is an
open research question. Despite the challenges, the clear benefit of
a census is that, by definition, the results apply to the population
of interest.

The final step is to argue the extent to which the study population rele-
vantly represents the population of interest. This step is important because
the population from which the selection was taken is almost never exactly
the population of interest. For example, there are systematic differences
between how a phone survey, Internet survey, and survey of viewers of a
particular media outlet represent the population of citizens of a country.
For example, phone surveys are sampled from everyone who has a landline
and answers calls from unknown numbers, which is different from people
with cell phones and different from all citizens (Kennedy et al., 2016).

Handle with care any study that claims to generalize to all people,
networks, computers, etc. Section 4.2.5 will help identify where such broad
claims often go awry.

4.2.4 Generalization Tools

Formal and conceptual tools help structure generalization. Formally, the
usual tool is statistical reasoning and inference. Fitting to mathematical
models more broadly is an important strategy, but statistical tools are par-
ticularly important because they are the main method for measuring how
well the data or study results match the mathematical models. The concep-
tual tool we describe as an example is mechanistic reasoning about which
decompositions and organizations of the system of interest are supported
by the study results.

Statistics, at heart, is a way to express and quantify uncertainty
(Kadane, 2011). Statistical tools help a study designer manage and pro-
cess the uncertainties in any given study. To do so, the designer must be
able to carefully express specifically what they are uncertain about. To
express uncertainty well requires a kind of honesty with oneself, but it is
only through such honesty that uncertainty can be expressed, measured,
and understood.

This book cannot give even a basic introduction to statistics; see for ex-
ample (in order from most philosophical to most applied) Kadane (2011),
Gelman et al. (2020), Metcalf and Casey (2016), or Davidson-Pilon (2020).
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Instead, our goal is to situate statistical tools within their role in study
design and hopefully impart why it is important to use them well and
appropriately in Chapter 5. In brief, every aspect of consistency and gen-
eralization we discuss, and containment in Section 4.4, has some aspect of
uncertainty. Insulation, replication, reproduction, corroboration, connec-
tion: the extent to which any given study meets these criteria is uncertain.
Statistical methods are valuable tools for managing that uncertainty. This
chapter focuses on study design principles because a designer needs to know
what principles are important before they can determine whether statistical
analysis about those principles is necessary.

To some extent, a study designer need not know how to craft the statis-
tical tools, just how to understand them. Especially if the designer is lucky
enough to work with a professional statistician. If you do take this route,
and effectively outsource this aspect of your study design to a colleague,
then make sure you consult them during your study design and not simply
after you have done your data collection. Statistics is not magic; it will not
fix a “garbage in, garbage out” sort of problem.

Mechanistic generalization is a way of creating connections between sys-
tems of interest based on their entities, activities, organization, the system
schema, and/or the history of the system (Spring and Illari, 2018a). It is
a predominant mode of reasoning in the life and social sciences (Glennan
and Illari, 2017). As such, like statistical tools, we can only introduce the
basic purpose here. See Parkkinen et al. (2018) for an accessible introduc-
tion. We believe that mechanistic reasoning is appropriate for security be-
cause, like the life sciences, cybersecurity studies complex, interconnected,
idiosyncratic systems, it studies nested layers of organization, and it studies
regulatory feedback loops.

In loose terms, data or files are an entity and executing code is an
activity (Hatleback and Spring, 2018). These terms are loose because any
conventional executing code was a file at some point. So, as with logics and
truth, context matters in analyzing generalizability as well.

Mechanistic reasoning is a helpful generalization tool because it allows
the analyst to flexibly incorporate context. It also mimics the program-
ming principle of encapsulation. Any system of interest can be modeled
as simply an entity with its input/output activities or more complexly as
an organization of entities and activities that produce those behaviors in
specific ways. The schema is the more general shape of entities, activities,
and organization, abstracted away from their particulars. Generalization
can be sought as other situations where the same schema applies, though it
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is filled in with different details or other situations where nearly the same
schema applies. If cybersecurity were just about bits on disk, this may not
add much, but since mechanistic reasoning has a history in the social sci-
ences, it allows us to integrate the human, economic, and technical aspects
of the system of interest in one conceptual toolbox.

The goal of a scientific enterprise usually includes knowing how a system
of interest works. What does it mean to know it, though? One adequate
way to know a system is to have a complete, fully specified mechanism for
it. So in an important way, each aspect of this chapter is to help a study
designer have better mechanistic knowledge of the system of interest than
before the study.

4.2.5 Common Generalization Errors

Before moving on to transparency, we touch on three common mistakes
in study design and analysis related to generalization. These are far from
the only mistakes one could make, but they are three of the more costly
ones: (1) systematic bias in the available population data, (2) mistaken
assumptions about the population of interest, and (3) abuse of statistical
tools.

The population available to study may not adequately represent the
population of interest. A stratified selection method can help resolve such
problems, but the study designer needs to know the relevant factors on
which to stratify the selection ahead of time. As ML becomes more popular,
this problem is ever more present. The main examples are from non-security
ML examples so far, but they are instructive of what uncritical generaliza-
tion from the study population can lead to. For example, an image process-
ing study to “identify all images with wedding dresses” will have linguistic
and cultural difficulties. Usually, the English word “wedding dress” would
be associated with a white garment because Queen Victoria popularized
that fashion in the mid-1800s. But many wedding dresses are red (Zou and
Schiebinger, 2018), and these are systematically under-represented in com-
mon image training sets. Therefore, a study on white, Victorian wedding
dresses will not actually generalize to all wedding dresses. Two solutions
should both be applied: stratified selection for data-intensive studies and
more precise and restrictive descriptions of the population of interest.

A related problem is mistaken assumptions about the population of
interest. Psychology is battling an entrenched version of this mistake at
present that directly affects how cybersecurity practitioners should under-
stand and interact with system users. Psychological studies tend to be con-
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ducted on people from Western, educated, industrialized, rich, and demo-
cratic (WEIRD) populations (Henrich et al., 2010). WEIRD populations
are systematically unlike other populations, and psychology has for a long
time mistaken findings culturally specific to WEIRD as universal human
traits (Nielsen et al., 2017).

Cybersecurity studies and advice have inherited this generalization error
from psychology (Krol et al., 2016). Any claim that all users behave a
certain way are suspect. But even a more restricted claim, such as 62%
of users do something silly, should be interrogated. Ask questions such
as which kinds of users, how were they selected for the study, with what
demographics, etc. Ergonomics has known for a long time that, although
one can calculate the “average” features of an “average person,” or even
specifically an average US Air Force pilot, no individual actually matches
that “average” person (Hertzberg et al., 1954). Systems should be designed
to fit a variety of body types and mental types. We expect that although
there may be an “average” Windows installation, there is actually a wide
variety of fielded systems. Cybersecurity will need to accept and handle
this diversity of both humans and machines rather than trying to collapse
it to a universal average and then generalize.

The most widespread abuse of statistical tools involves significance test-
ing and p-values; the problem is so widespread that the American Statisti-
cal Association has requested scientists stop using these concepts in studies
(Wasserstein et al., 2019). “Statistically significant” has a precise meaning
within statistics that is almost never used correctly in studies. Any time
statistical methods are used as an up-and-down test of whether study re-
sults are true or should be accepted is an abuse of statistics. These abuses
of statistics lead to a mistaken belief that the results of a study generalize
to a larger population than is actually the case. A more in depth discussion
about how to avoid these problems can be found in Chapter 8.

This section has presented a complex, nuanced description of generaliz-
ability and some of the study design features that can provide it. There is
no easy statistical method to either reduce that analysis to a single number
or test whether it has been achieved.

4.3 Transparency

There are many aspects in which a study should be transparent: the design
methodology, the study design itself, the data collection, the results of the
study, how the results were analyzed, and the interests the authors or their
funders may have in the results of the analysis. Transparency is a multi-
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faceted concept within each of these aspects. The facets are captured well
by borrowing from the oath for sworn legal testimony: we want the true
description, the whole description, and nothing but the true description.
Transparency is generally from the researcher to their audience, but it also
might mean members of the research team are transparent with each other,
or a researcher taking good notes and being transparent with their future
self. This subsection focuses on each of these facets of transparency in turn,
exploring particular ways that a good researcher might nonetheless come
to undermine them.

4.3.1 Design Methodology

An accurate or true design method description should include how the
study designer identified the problem, a clear statement of the research
question(s), what problems are related but how they are different, how
related problems have been addressed in the past, and why the study design
is reasonable based on this past work. This should go without saying, but
the study designer should not fabricate the description of the method. A
true description includes documenting any mistakes or oddities that arose
during the execution of the method.

Capturing the whole method is less intuitive. Any exploratory study
or pilot study conducted to inform the final study design should be in-
cluded. Such intermediate results not only shaped the design process, but
also could highlight ways biases were introduced or eliminated from the
study population.

Avoiding extraneous details helps the clarity of the description. When
reporting or discussing a study, it is good practice to have the method as
a description separate from the results; the results should also be separate
from a discussion of the meaning or usefulness of the results. The different
parts of the methodology (study design, data collection, etc.) should have
their own sub-parts of the methodology description. This regimentation
serves two purposes. First, and most importantly, it serves as a checklist
for the study designer to make sure they have considered and clearly con-
ceptualized each necessary part of the study. The second purpose is to
explain to others transparently. It is vital that research be reported to oth-
ers, but a vital purpose of this explaining is simply that the study designer
will have to order their thoughts in order to explain to others, which is
tremendously helpful ensuring a good study design in the first place.
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4.3.2 Study Design

Transparency in study design means explaining the mechanics of the study.
The necessary mechanics to describe are dependent on the study type. For
details about what should be described for each study type, see Section 7.2.
The basic idea is to describe how the study properties of consistency, gen-
eralizability, transparency, and containment are expressed in the study.

4.3.3 Data Description and Collection

The most transparent description of the data used in the study is to pro-
vide all the data open-source. To discuss the data, the designer should
provide some summary description of what data are available, how they
were collected, how the study population was selected from the available
population, the relationship to the population of interest, and any errors
or anomalies in data collection.

There are various reasons why it may not be possible to share the whole
data set. When interviewing users, it is may be acceptable to share sanitized
transcripts of the interviews, but researchers should not share the personal
information of the study participants. Technical artifacts may also consist
of sensitive data that has some legitimate reason not to be shared. If this
is the case, the designer will need to explain what that legitimate reason
is, why the study is valuable anyway, and how the provided description is
transparent enough that a reader or listener can both understand all the
important aspects of the data and be assured that the study designer has
in fact competently completed the study. These considerations apply to
case studies, natural experiments, and intervention-based trials equally.

In addition to the data and the whole description of the data, it is
important to describe what is excluded from the study. If outlier data
points have been excluded, this needs to be clearly stated along with the
method for how outliers were identified, preferably in enough detail that
someone else could do the outlier detection and reach equivalent results.
In interviews or surveys, excluded data are not “outliers,” but partially
or erroneously completed forms. But as with outliers, these should be
described with reasons and enough detail that someone else could repeat
the decisions.

4.3.4 Study Results

A transparent accounting of the results should provide the end-product of
executing the study method. The exact form this takes will vary based on
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the study type. Many researchers are tempted to only include the “inter-
esting” results when reporting. This bias in reporting results introduces
myriad subtle problems. Limiting results to the “interesting” ones takes
those results out of context. Manipulating the context makes results look
more interesting than they really are; it also makes them misleading and
deceptive.

Cherries are tasty, but cherry-picked results are awful

Suppose you've created a method to detect malware. After much
work, you determine your method is 99.9% effective. That is, out
of 1,000 pieces of malware, it identifies 999 correctly. This is a very
good method.

However, when you test it against samples that aren’t malware, it
identifies it as malware 10% of the time. You have a 10% false positive
rate for your method. If you omit reporting this result, then you are
manipulating your results and only reporting the interesting fact that
your method is correct in identifying known malware 99.9% of the
time.

The problem with selective reporting of results like this is that both
values, along with the base-rate at which malicious files occur in

the real environment, are necessary to know the alarm error rate
(Axelsson, 2000). Alarm error is a question about alerts that an
analyst gets in their queue or dashboard: if the malware detector
produces an alert, what are the chances it is actually malware and
not a false positive?

Say the system scans 1 million files. If it is quite a high risk system, it
might see 1% (10,000) that are actually malware. From the remaining
990,000, at a 10% false positive rate the system will produce 99,000
alerts and correctly ignore 891,000. The system will also correctly
alert on 9,990 of the malicious files. So there will be 108,990 alerts,
91% (99,000) of which are a waste of time and resources. The system
is basically useless, despite its seemingly impressive 99.9% detection
rate. If you plan to buy or use a system, ask about the alarm error
first.

A results section is not the place to comment on how the results related
to the research question. The results should be presented as neutrally as
possible, and the analysis of the results is where to discuss the status of the
research question(s) in relation to the results. This regimentation serves
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the same two purposes as the rest of the transparent description. It is
clearer for a reader or listener. But more importantly, it helps keep the
psychology of the study designer separated from the results themselves.
This separation helps make space for careful analysis and gives the study
designer a chance to reflect on potential anchoring bias or other disruptions
to clear reasoning (see Section 4.1).

4.3.5 Analysis of Results

Transparency in the analysis, first and foremost, should give a clear answer
about the status of the research question(s). Clear does not necessarily
mean decisive. A clear answer will indicate which aspects of uncertainty
about the research questions have been constrained, why that conclusion is
justified, and which aspects of uncertainty remain for future work.

To provide the whole analysis, a study designer should be honest about
what did not work and when the results cannot be used as hoped (to bear
on the research question). Such shortcomings may actually lead to insights
about the system of interest or study design in the situation that were not
previously understood. It is also possible the study design was not up to
community norms, in which case the study designer will need to be honest,
take it as a learning opportunity, and improve for the next study.

Most research raises more questions than it answers. This phrasing of
an analysis of results sounds dismissive, and we prefer a different phrasing.
Reducing uncertainty about a broad research question usually means local-
izing remaining uncertainty into other, better defined questions. Although
in some strict sense there are more questions than the start, the quality of
the questions and what we know about the system of interest have both
improved. If uncertainty about the research question(s) has been reduced
or constrained, then the study was a success.

Finally, part of transparency should include explaining why anyone
should care about the results. Explaining the study itself is the primary
point of transparency. But how the results should change current behavior
or beliefs is also important.

4.3.6 Conflicts of Interest

Studies are rarely conducted without funding. And studies are done by real
humans, with real interests. These can never be eliminated, so the study
designer should be transparent about them. In general, it’s good practice to
be skeptical if a study’s results align too neatly with the interests of those
funding it. The study itself may be adequately designed and executed
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while lacking context because organizations tend not to choose to fund
studies that may yield results contrary to their interests. Such patterns are
discernible in larger bodies of funded work as long as funding and conflicts
of interest are declared.

4.4 Containment

Containment is about containing harms: both limiting harm the study, es-
pecially experimental interventions, does to participants and limiting harm
to the wider world that the study may cause. The best source for guid-
ance on containment in cybersecurity is the Menlo Report (Dittrich and
Kenneally, 2012). It’s based on the landmark report that established ex-
periment design review for the life sciences. The four principles the Menlo
Report identifies and adapts to cybersecurity are respect for persons, benef-
icence, just and fair distribution of effort and harm, and respect for law and
public interest. A prerequisite for all of these is identifying stakeholders.
We add a sixth topic, which is a cautionary tale about the risks that secrecy
or secretive studies pose to adequate containment.

If a study will be done by university faculty or staff, many countries
require prior approval by a research ethics board (REB) or Institutional
Review Board (IRB). This approval is that containment is adequate. How-
ever, many cybersecurity researchers do not work in environments where
formal review is required. And even in academic institutions where it is
required, the REB or IRB likely predominantly deals with studies in the
life sciences and may not have deep expertise in cybersecurity. Ultimately,
the study designer is responsible for proper containment of harms. Lack of
formal or effective review does not absolve a designer of this responsibility.

4.4.1 Identifying Stakeholder Perspectives

Stakeholders are anyone potentially affected by the study. Stakeholders
include some obvious and some less obvious groups. Those directly affected
by the study may include the researchers, human study participants, and
users of computer systems being studied. Especially if a study will test or
probe an operational system, the owner, operator, and users of that system
should be consulted (perhaps in the form of the system’s acceptable use
policy).

Stakeholders do not just include those who might be affected by the ex-
ecution of the study, but also by the publication and dissemination of the
study results. Users of a service may be affected by a change precipitated
by a study involving the service, for example. Malicious actors, govern-
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ment organizations, and society at large are also each potentially affected
by studies, especially those studying misuse, abuse, or criminal behavior
involving the Internet. But mathematical research in cryptography has
potentially a broad set of stakeholders as well.

Within this broad set of stakeholders, a designer should take special
care to identify vulnerable stakeholder groups. Containment of harm is
not simply additive, by which we mean it is not enough to ensure the
average harm is low enough. If harm falls unfairly or unjustly on some
stakeholder group, the designer needs to adequately consult and protect
that stakeholder.

4.4.2 Respect for Persons

The minimum expected respect for persons involves two tenets: treat hu-
mans as individual autonomous agents and adequately protect those per-
sons with diminished autonomy. The key research practice that embodies
respect for autonomy is informed consent. The Menlo Report defines in-
formed consent as a “process during which the researcher accurately de-
scribes the project and its risks to subjects and they accept the risks and
agree to participate or decline” (Dittrich and Kenneally, 2012, p. 7). In hu-
man subjects research, seeking informed consent can get tricky, but when
the affected users are occasional users of a remote computer network, seek-
ing informed consent may be difficult. If research results are expected to
affect a wider aspect of society, the study designer should also consult with
some representatives of that group; depending on the harms to an organi-
zation or group, some authorized representative (such as general council or
the CEO) may also need to consent. Nonetheless, difficulty of obtaining
consent is never a valid excuse for violating that consent.

In cybersecurity studies involving human participants, one challenge
involves providing a realistic risk to make the evaluation of the participant’s
security behavior realistic enough to be worth studying (Krol et al., 2016).
Realistic risk may mean not fully informing the participant about the goal
of the study in advance. There is a body of ethical norms around when it
is acceptable to deceive study participants, but they always involve prior
approval and carefully debriefing the participants afterwards. The process
involves not only telling the participants the true nature of the study, but
also monitoring that the stress or deception involved has not in fact unduly
harmed participants. If it has, the study will have to be stopped, redesigned,
and restarted.
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Users of any system under study should also give consent. In general,
this means a study should not interfere with any system operations. As
a specific example, malware research should not wantonly allow malicious
code to replicate and infect the Internet (Rossow et al., 2012). If a re-
searcher discovers a vulnerability in a system, it should be disclosed to
whoever is best able to fix the system. If those parties are unresponsive,
third party vulnerability coordinators such as CERT/CC should be con-
tacted for assistance. For guidance on coordinated vulnerability disclosure,
see Householder et al. (2019).

A study may also collect information that discloses private or sensitive
information about persons. It is generally not possible to obtain consent
from every person who might be identified by a data set or collection of
data. The appropriate containment strategy in such situations is to restrict
access to the data or only share anonymized data. Since this protection is
at odds with transparency (Section 4.3.3 in particular), and anonymization
is at odds with generalizability (Section 4.2.1 in particular), there is no easy
answer to this balance.

Some aspects of containment should seek the informed consent of the
group within society. For example, when ML algorithms are deployed to
make decisions related to a population, that population should be consulted.
If the impact of the work is localized to members of an organization, such
as a labor union or users who enter into terms of service, then it’s possible
to seek informed consent through those mechanisms. As Section 4.4.4 will
discuss, this is not always possible. If a study or tool will impact a sec-
tion of society from which informed consent cannot be effectively obtained,
then the study designer has a duty to actively demonstrate that harm is
prevented.

4.4.3 Beneficence

Beneficence, in broad strokes, means the study does more good than harm.
However, this simple statement hides extensive complexity; discussion of
beneficence consumes more space in the Menlo Report than any of the other
principles under discussion. The main questions are: (1) What stakeholders
are expected to realize what benefits? (2) What stakeholders are expected
to realize what harms? (3) How are benefits maximized? (4) How are
harms minimized? (5) What are the plans to mitigate a harm when it does
occur?

Benefits and harms should be identified systematically. Section 4.4.1
discussed stakeholder identification. Good stakeholder identification is a
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prerequisite for systematic identification of benefits and harms. “System-
atic” here means that the study designer should be able to write out or
express their search procedure for identifying benefits and harms. As with
other methods within a study, this transparency provides others an ability
to comment, but more importantly, the act of forcing oneself to explain a
method helps the designer improve the method.

Identifying harms include jurisdiction-sensitive decisions. In general,
violating a law or legal requirement is a harm. Since jurisdictions can and do
have conflicting laws, a designer will need to specify in which jurisdiction’s
laws and norms they have considered harms and benefits. Insofar as the
Internet is global, some respect is due for a variety of jurisdictions and
norms.

Maximizing benefits and minimizing harms is partly a question of study
design. The benefits are improved knowledge or reduced uncertainty about
the system of interest. That is, the benefits are explaining consistency,
generalizability, and transparency. Protecting some stakeholders from harm
involves some trade-offs with these. But such trade-offs have been the
subject of this whole chapter. There is no faux numerical score we can
provide to score a study’s benefits and harms based on the principles in
this chapter. But the chapter provides the language for which aspects are
important, so a study designer can be clear about what aspects are in
tension. Harms, to each of the various stakeholders, need to be weighed
and balanced as well.

The best laid plans often go astray. But having a contingency plan to
address and mitigate a harmful situation that may occur during the study
can significantly reduce the harm. Each of the potential harms identified in
the systematic analysis should have an accompanying mitigation plan for
if and when it occurs. Such planning is basic risk-reduction best practice.

These five questions and their answers should be integrated into the
study design. Exactly what that looks like depends on the study type (see
Section 7.2).

4.4.4 Justice: Fairness and Equity

Justice has two aspects in the Menlo report: fair selection of topics of
interest and study populations and equity in the distribution of benefits and
harms. Neither fairness nor equity mean equality. As with other aspects of
study design, context is important for justice.

Fair selection of topics of interest is easy to see as a funding issue. In that
regard, it is directly related to conflicts of interest (see Section 4.3.6). Any
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individual study probably cannot be assessed in relation to a fair topic se-
lection. But especially to the extent that the demographics of scientists and
researchers do not match the demographics of society as a whole, some care
is needed to ensure the interests and questions of those under-represented
groups are tackled with equitable fervor by the research establishment.

Fair selection of the study population, on the other hand, is directly
a matter for the individual study. Section 4.2.3 introduced six popula-
tion selection methods. For selection to be fair, no stakeholder group or
protected category of persons can be excluded from selection. Protected
categories include anything based on, but not limited to, the following: re-
ligion, political affiliation, sexual orientation, gender, health, age, technical
competency, national origin, race, and socioeconomic status (Dittrich and
Kenneally, 2012). Zou and Schiebinger (2018) presents evidence of such
unfair study population selection in the context of harm done by various
deployed ML algorithms. The excessive targeting of WEIRD populations
essentially for the mere convenience of the study designers, as discussed in
Section 4.2.5, also violates fairness.

In cybersecurity, an equitable balance of benefits and harms has at least
two important aspects. Firstly, the study and its results should benefit
stakeholders allied with the study designer more than the study benefits
their adversaries. In the intelligence analysis world, this trade-off is well-
developed under the term equities analysis; though “equities” means some-
thing entirely separate from “equitable” despite sounding similar (Spring
and Stoner, 2015). A strategic containment of harms would mean only
disclosing or using study results where the adversary’s expected response
can be managed at least as well as the status quo. Worries about adver-
sary responses should not lead to so much secrecy that they either create
other inequitable distribution of harms or so much secrecy that containment
becomes secondary to secrecy (see Section 4.4.6).

The other consideration is whether the distribution of benefits and
harms in the study population or society are equitable. There is a huge
danger in embedding the cultural norms or biases of the researcher or sys-
tem architect into the software product (Noble, 2018). Such embedding
both hides and increases inequitable distribution of harms. The inequitable
distribution of harms has been well documented in ML in general (O’Neil,
2016), but the problem is not strictly limited to stochastic algorithms like
ML. Security research often makes or supports sensitive decisions: who
is permitted, what is private, etc. Any algorithm supporting cybersecu-
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rity should, from the outset, be built to ensure an equitable distribution of
benefits and harms.

4.4.5 Respect for Law and Public Interest

Research is not an excuse for illegal activity. While most cybersecurity
researchers are not also lawyers, ignorance of a law is not an excuse for
breaking it. The public interest is a broader concept than simply illegal
behavior and ties to beneficence (see Section 4.4.3). Two heuristics cover
what a study designer should assess in respect for law and public interest:
compliance and accountability.

Compliance means abiding by relevant laws in the jurisdiction(s) where
the study will take place. Cybersecurity research can easily come into con-
tact with regulations around fraud, privacy of persons, intellectual property,
child sexual abuse material, and civil rights and liberties. For example, any
research study into suspending abusive accounts on some service should
conduct some basic due diligence about how such a study will interact with
each of these aspects.

Accountability is ensuring that the study designer and other research
staff are incentivized to behave responsibly. Transparency (see Section 4.3)
enables accountability. The overall goal of an accountable system is to build
trust between the research community and society. It is on the basis of
accountability to conduct studies thoroughly while containing harms that
science can enjoy the prestigious status is has in modern society (Dear,
2006).

4.4.6 Risks to Containment From Secrecy

Secrecy changes the way science is conducted. The best examples of this
principle that are documented come from declassified documents on bio-
logical weapons testing from the 1950s (Balmer, 2013). British researchers
accidentally exposed the crew of a fishing vessel to anthrax spores. At the
time, it was an open research question as to whether the exposure concen-
tration would cause humans to catch the deadly disease. But the research
was secret, so the fisherman were not told. Instead, they became unwitting
research subjects. Since none of them contracted the disease, they never
knew they had been in a study.

While this ethics choice seems rather stark and appalling today, we
are all subject to experiments without our knowledge or consent on the
Internet. Some are trivial, such as our packets are routed differently because
an Internet service provider (ISP) is testing different routing configurations.
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You can’t say that! Suspending accounts

Anyone who has been on the Internet for 30 seconds knows that unso-
licited bulk messages are a part of any space. Unsolicited advertising
has been a tense subject on the Internet since the 1970s (Brunton,
2013). Let’s take as an example a study to identify accounts that
conduct deceptive information operations on a social media platform.
Or, less politely, trolls.

This study would likely touch regulations around each of fraud, pri-
vacy of persons, intellectual property, child sexual abuse material,
and civil rights and liberties. What counts as fraud in the jurisdic-
tion matters, but also what rights a fraudulent account has may also
matter. In most jurisdictions, criminal behavior is not subject to
the same privacy protections. Which naturally brings us to ask what
protections personal privacy has in the first place. Privacy influences
study design through which aspects of the data can legitimately be
processed and stored. Intellectual property cuts two ways: can the
study designer own the detection algorithm and can a troll claim

copyright of their material to prevent copying and analysis. Usu-
ally, yes to the first and no to the second. If the study will crawl
social media, the designer’s obligations and liabilities if they crawl
child sexual abuse material are an unpleasant topic, but an important
one. In some jurisdictions, even unknowingly copying such material
is a crime.

But the biggest concern around deciding what is and is not an abusive
account is civil liberties, such as freedom of speech. Unless the topic
of the study is very narrowly defined “information operations,” such
as foreign interference in elections in the US or UK (Caulfield et al.,
2019), deciding who gets to speak and who does not is an enormous
legal topic. Thorny legal issues around this topic contribute to the
continued prevalence of unsolicited bulk email (Brunton, 2013). And
subtle algorithmic choices can dramatically harm stakeholders (No-
ble, 2018). Although for most cybersecurity research the designer can
get by without consulting a lawyer in the design, if there is real po-
tential a study will be used to censor civil liberties, seeking a lawyer’s
advice on the study design is probably warranted.

And though some packets may drop, that is part of most service agreements
with an ISP anyway, so even though the study is secret, there are few ill
effects. Others are concerning. Until 2014, Facebook routinely conducted
experiments on as many as 500,000 users at a time to see if they could
manipulate their emotions by changing which posts the users were shown
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(Goel, 2014). It remains unclear whether social media companies have
stopped such emotional manipulation, but they tend to argue to the US
Congress that it is permitted by virtue of curating the platform.

There are less insidious but still important aspects of cybersecurity sci-
ence that are effected by secrecy in unknown ways. Consider filtering un-
solicited bulk email (that is, spam). Imagine a mailbox owner researches
some useful spam detection. There is a legitimate imperative to secrecy
here, so the whole method will not be published publicly. The designer
should still maintain good transparency so that trusted peers can review
consistency, generalizability, and containment. But this spam detection
method becomes a system of interest that the spammer will now research,
also secretly. Any countermeasures they produce become a new system of
interest for the mailbox owner to study (Brunton, 2013). And so on.

This cycle of legitimately secret research is having unstudied effects on
scientific norms within cybersecurity communities. Our hypothesis is the
primary one is a breakdown of accountability (see Section 4.4.4) as any
excuse to remove transparency can be misused as a shield to prevent nor-
mal peer review. It also drives researchers into two camps: (1) academic
researchers who study more abstract problems and therefore can be totally
transparent and (2) applied researchers who have some legitimate need to
do part of their work in secret. Although the desirable study properties
are the same in both situations, difficulties in communicating across these
boundaries has resulted in diverging conceptions of science in different cy-
bersecurity communities (Spring et al., 2017).

Secrecy may legitimately change the way we talk about scientific stud-
ies. But it should not change the desirable properties of a study. How
a community of practice can accommodate these ideas remains an open
problem. One goal of this book is to provide a language and a scaffold with
which such communities could be built.

4.5 Summary

This chapter has ranged widely to cover the four desirable study properties
of consistency, generalizability, transparency, and containment.

Consistency ensures that the study measures and responds to exactly
and exclusively what the designer believes it to be measuring and
responding to.

Generalizability ensures that the study provides results that are appli-
cable to the world outside the study in a clear and reliable way.
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Transparency ensures that the important aspects of the study are de-
scribed accurately, completely, and without distracting or distort-
ing detail; these aspects are the design methodology, the study de-
sign itself, data collection, the results of the study, how the results
were analyzed, and the study’s funding.

Containment describes both limiting harm that the study does to partic-
ipants and limiting harm to the wider world, analyzed through the
concepts of respect for persons, beneficence, just and fair distribu-
tion of effort and harm, and respect for law and public interest.
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Chapter 5

Exploratory Data Analysis

Suppose an arborist’s particular study is on tree growth patterns. The
arborist doesn’t just guess how much each tree has grown, rather, they
use a tool to measure the height of the tree exactly. Guessing height isn’t
repeatable by someone else, so the tool is a requirement. The time at which
the measurement is made is important too. The arborist picks a time and
repeats the measurement at that time. That way, someone else can repeat
exactly what they did because the observations the arborist made were
structured.

This process applies to cybersecurity as well. Researchers don’t just
guess how much traffic is seen in a day, they measure it. It’s also measured
at the same time every day. The observations should be structured and
repeatable.

It’s not enough to collect structured observations; they must be used.
An arborist wants to determine if the tree growth follows a certain pattern;
researchers would like to know if the network traffic has a pattern, too, or
if malware is changing, or if the domain name length of malicious domains
is growing. Researchers want to answer questions about the data and the
future of the data.

The methodology of statistics drives answers to these questions. Statis-
tics allows researchers to make inferences about the data collected. It is a
useful tool in research and understanding what can be learned from statis-
tics is more important than learning the formulas that drive it. Chapter 4
provides an introduction to what can be learned through statistics through
talking about generalizability of research.

This chapter is not filled with formulas, but discusses how to explore
the data visually. Formulas can be looked up in books if you understand
what they mean. It’s not possible to discuss statistics without formulas,
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so there will be some, but we spend more time explaining statistics, as a
concept, than formulas.

5.1 Definitions

In order to learn a new field, it’s necessary to learn the terms used in that
field. Terms can have different meanings depending on the field, such as a
virus in cybersecurity means something different from a virus in medicine.
Context matters; in this case, the context is statistics. This chapter will
begin with some basic definitions.

Statistics begins with a population to study. For example, a population
can be the set of all domain names, a set of network traffic, all malware
collected in a day, or the users of a network. A population can be huge,
like the set of all domain names, or small, like the malware collected in a
day.

The things in a population are units. If the population is all malware,
then the unit is a single piece of malware. A unit has properties. These
properties are features the units have. For example, a property of a domain
name is the IP address or addresses it points to. Many units have more
than one property.

A sample of the population is usually taken and that is studied rather
than the entirety of the population. A sample is a subset of the population,
discussed in Chapter 6. In that chapter, we discuss the variety of ways to
take a sample, for now, we’ll assume a subset of a population rather than
the full population. We do this because sometimes, it’s infeasible to study
the entire population.

The measurement of a property of a unit is a variable or a statistical
variable. For example, if the unit is a domain, then one property to consider
is the domain length. Then, the variable is the length of the domain.

Counting the number of times a domain length appears in results is the
frequency of the variable. The frequency of each variable can be counted
and a table can be created of the results. This table is also known as the
distribution. A distribution is a concept we’ll use over and over. It’s the
summary of the data in a form that can be used to analyze the data.

For example, suppose the measurement is the number of IP addresses
a domain in our set points to. Starting with a set of 1894 domain names,
for each one, the number of IPs is counted. This can be summarized by
looking at the number of times each length appears in Table 5.1. The table
summarizes the number of IP addresses with a frequency greater than 5 to
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Table 5.1 Example of a Distribution

Number of IP addresses ‘ Frequency

1 1034
2 801
3 45
4 10
More than 5 4

shorten it. It would have been just as easy to list a row for each of the
frequencies 6, 34, 45, 52 though.

Returning to variables, there are two kinds, categorical and quantita-
tive. Categorical variables have fixed categories for the data —quantitative
variables are numerical. For example, the destination port for TCP traffic
is categorical whereas the amount of traffic recorded during a fixed time
window is quantitative.

If the categorical variables cannot be ordered, they are referred to as
ordinal; otherwise, they’re nominal. It’s possible to order the destination
ports for TCP traffic, but it isn’t necessarily possible to order malware in
a meaningful way.

Quantitative data that can take any value is continuous. If there is only
a distinct set of values that the data can take, it is discrete. For example,
the amount of traffic that can be measured in a day can take any value,
depending on the sensitivity of our measurement. The length of a domain
name is measured in the number of characters in the domain, and can’t be
longer than 255, so it is discrete.

The length of a domain name is a static value, measuring it repeatedly
won’t change the result. No matter how many times the domain google.com
is measured, the answer won’t change. However, the amount of traffic that
that domain receives changes from day to day, so it is necessary to measure
it repeatedly. This is known as a repeated measure.

Measurements can have errors. For a simple example, suppose a tool is
used to measure a metal bar. Every time the bar is measured, the value
changes. It shouldn’t, the bar doesn’t change between measurements, but
the value from the tool changes each time. These variations are called the
measurement errors.

5.2 Summary Statistics

Analysis almost always begins with a distribution once there is a population,
a sample, and chosen units. Then, a measurement is taken of some property
of those units and used to create a distribution, like in Table 5.1. The next
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step is to study that distribution. In order to understand and describe the
distribution, it has to be studied.

To begin with, we’ll consider some summary statistics. That means
we’ll take the distribution and try to summarize it in a few numbers that
give us information about it. Let’s start by looking at a distribution that
has been studied a great deal and use information about it as a starting
place.

The normal distribution, also known as the bell curve distribution, is a
very common distribution. It is very common in describing grades. Teach-
ers want a lot of Cs, fewer Bs and Ds, and even fewer As and Fs. Fig. 5.1
illustrates the curve.

Fig. 5.1 The Normal Distribution

The middle of the curve is where most of the values lie, and as the curve
spreads out, the distribution of values is smaller. There are three statistics
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Table 5.2 Distribution of Protocols

Port Number ‘ Frequency
80 1500
443 898
25 134

that can summarize the center of the distribution, the mean, median, and
the mode.

The mean of the data, or average, is the absolute midpoint of the data.
Think of it as balancing a seesaw; there is an equal amount of data on
either side of the mean. It is a bit fickle though. If a few of the variables
are very large, and the rest of them are very small, then the mean can be
skewed towards the large numbers. If this happens, it isn’t representative
of the distribution. It’s the center of the data when it is summed up, but
not the middle of the data.

The average of the distribution in Table 5.1 is calculated:

1%1034 +2%801 +3+45+4%x104+6+ 34445+ 52
1894
which says that the average number of IP addresses each domain points to
is 1.56.

The average is over the frequency of the measurement across the sample.
Averaging domain name length is an understandable concept, but averaging
network traffic protocol isn’t. For example, let’s look at the Distribution
Table 5.2.

We could average the frequency each port is used:

1500 + 898 + 134
3
however, there is no such thing as an average port in Table 5.2. Even

= 1.56

= 844

though the ports are labeled with numbers, they are categorical values.
Calculating the average port would be like trying to compute:

HTTP + HTTPS + SMTP
3
There’s no way to compute this equation. It’s not possible to average
categorical variables. The reason is that addition is not defined on the
categories, and this is true even if the labels for the categories are numbers.
Trying to calculate averages of categorical variables is an unfortunately
common mistake. For example, Common Vulnerability Scoring System
(CVSS) version 2 and 3 make this mistake (Spring et al., 2020).




74 Science and CyberSecurity

An alternative to the mean is the median. To find this, first sort all the
data, then count from either the top or the bottom until the middle of the
data is found. The median isn’t affected by the large values like the mean
is, but if there are a lot of repeated values it can move it towards them. It’s
a counting exercise to find the midpoint of the data. Looking at Table 5.1,
the median is 1. It is skewed towards the 1 because of the overwhelming
number of them. Returning to the data in Table 5.2, it’s not possible to
determine a median of it either. Ordering protocols doesn’t make sense,
even if they are labeled with numbers.

The mode is the most commonly repeated value for a variable. It can
show where the median is skewed. In Table 5.1, the mode is 1.

In the normal distribution, the median, mean, and mode are the same
value. If the mean and median aren’t close, then that illustrates that the
frequency of the data doesn’t follow the normal distribution. Unfortunately,
it illustrates nothing else.

The variance of data is the spread around the mean. It’s computed by
summing up the square difference between the mean and each data point,
then dividing that value by the number of data points in the distribution.
It’s a summary statistic of how far things are from the mean, on average.
The formula considers all of the possible distances between each value and
the mean, sums that up, then creates the average.

If the variance is very large, then most things are far apart from the
mean, since it is an average of the squared distance. If it’s low, then things
are clustered together. From Table 5.1, the variance is 3.24. That implies
that the data are spread out from the mean. The visualization already
demonstrated that, but now it’s been shown statistically.

The standard deviation is the square root of the variance. It is a measure
of how varied things are in the data set; in Table 5.1 it is 1.8. One thing
about the normal distribution is that 95% of the data is within two standard
deviations of the mean.

The summary statistics we’ve discussed in this section revolve around
the normal distribution, where everything is concentrated in the middle.
They are useful for summarizing the data, but shouldn’t be the only anal-
ysis.

5.3 Basic Data Visualizations

It’s possible to analyze a distribution by creating a spreadsheet of the data
and examining that. If there are only a few variables to look at, then it
is easy to find a pattern in the spreadsheet. Table 5.1 is an example of a
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small distribution that’s easy to analyze in a simple table. Once the results
spread off a single page, looking at a spreadsheet is less useful. A better way
to work is to create a visualization, and let the eyes become the decision
maker rather than staring at a column of numbers. It’s much easier to see
a pattern in a picture than in a list of numbers.

There are different visualizations for different kinds of data. The next
sections will examine some of the common visualizations and what can be
learned from them.

5.3.1 Bar Plot

Visualizing categorical data is often done by using a bar plot. On the x-axis
of the plot, mark a container for each category. Now, mark a height for
the frequency of that category and draw a box. In Fig. 5.2, the categories
of protocol from Table 5.2 are summarized. Protocol is a nominal variable
because there is no definitive order for the various protocols. Alphabetical
order of the protocols means just as much as the order of the age of the
protocols, meaning the researcher can use any order that they see fit.

Fig. 5.2 illustrates that there is a lot more TCP data than Internet
Control Message Protocol (ICMP) data, while User Datagram Protocol
(UDP) occurs in the middle. Is this standard for the traffic on a network,
or is this something different? That can only be answered by further study
and repeated measures.

If the data are ordinal, then it makes sense to order the categories on
the plot. For example, putting ports in order from 0 to 65536 does make
reasonable sense even if it can make for a huge plot if the goal is plotting
all ports.

The plot in Fig. 5.2 is vertical, but it could have made a horizontal plot
instead. It depends on which method is preferred and makes more sense.
A visualization is created to aid in the analysis process, so it depends on
the user of the visualization.

5.3.2 Histogram

For discrete quantitative data, a histogram is used, which looks like a bar
plot, but is created slightly differently. Creating a histogram starts with
separating the items into bins, or ranges, usually of equal size. For example,
three bins could be 0 to 3, just over 3 to 6, and just over 6 to 9. When
counting whole numbers of items, each bin might be just one value, such
as 17, 18, 19, and so on. Now, count the number of elements in each bin.
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Fig. 5.2 Bar Plot

Create a rectangle on the graph whose base is the size of the bin, and the
height is the number of elements.

Fig. 5.3 illustrates a histogram for domain length. The figure used a
width of one for each bin, but that isn’t a requirement.

The distribution in Fig. 5.3 is unimodal. That means there is exactly
one mode. It’s apparent in the bin that starts at 21 and extends to 22
which means there are more domains of length 21 than of any other length.
The visualization makes the mode apparent.

Another method occasionally used for this data is the pie chart. This
is a bad idea. It’s not possible to see the pattern as effectively as with
the histogram, and the pie chart can obscure two frequencies with similar
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Fig. 5.3 Histogram for Domain Lengths

sizes. It is quite apparent which is taller in a histogram while it may not
be readily apparent in a pie chart.

The shape of the histogram can immediately illustrate information
about the data, whereas the pie chart just illustrates a sum of parts of
the data and doesn’t show the shape of the data. Fig. 5.4 illustrates a
classical symmetric distribution, where the mean equals the median, just
like the normal distribution.

The symmetric distribution has most of its values in the middle of the
distribution with smaller amounts on the ends. If the distribution is sym-
metric, then it’s possible to use a little math to show how likely it is the
values will stay in the middle and avoid the outsides.
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A uniform distribution is when the frequencies all have the same value as
shown in Fig. 5.5. A uniform distribution is also a symmetric distribution;
it’s one where the frequencies are equal.

If the distribution is uniform, then every possible result is equally likely.
For example, if a particular virus has a uniform distribution when consid-
ering the systems it could infect, then it is equally likely any system could
get the virus.

If a distribution has two modes, it is bimodal, as illustrated in Fig. 5.6.
Bimodal distributions can mean that the distribution has two groups in
the data where each group is centered around the mode. If that is the
case, the data should be examined closely to figure out why. For example,
suppose the experiment involves looking at connections to ports. After the
connections are counted and the graph is created, it’s determined that the
distribution is bimodal where the two modes are at port 80 and port 443.
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Fig. 5.5 A Uniform Distribution

In other words, there is an equivalent amount of web traffic to both http
traffic and https traffic.

By plotting the frequencies, it’s clear if the distribution is symmetric,
uniform, or bimodal. Eyes are the analytic engine in this case, by examining
the plot they can determine the shape of the distribution. This isn’t a
mathematical determination, though, and should never be labeled as such.

5.3.3 Density Plot

In discrete data, there are only so many values that can have frequencies.
If they are divided into bins, it is easy to create bins of equal size. In con-
tinuous data, there’s a range of values, any of which can have a frequency.
If the wrong place is picked to create an interval for the bins, then it is
possible to miss a dip or a peak because it straddles two bins.
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Fig. 5.6 Bimodal distribution

Instead of drawing bins, a smooth line is drawn. These are density plots,
as illustrated in Fig. 5.7. Using a density plot means the visualization isn’t
vulnerable to the bin size, unlike in histograms. It also illuminates the shape
of the data. Fig. 5.7 looks sort of like the normal distribution. However,
it’s skewed a little on the right. Without more statistical analysis, that’s
all that can be said.

5.3.4 Boxz Plot

An alternative to the histogram and the density plot is the box plot. While
a histogram and density plots give a general impression of the shape of the
distribution, the box plot summarizes the data. It looks at features of the
data, including the median, as well as the spread of the data. This can give
an idea of how symmetric the data is or isn’t.
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Fig. 5.7 A Density Plot

Go half way through the first half of the data, then that is the first
quartile. Halfway through the second half of the data is the third quartile.
Between the first and third quartile of the data is the spread. The box plot
is created by making a line at the first quartile, a line at the third quartile,
and connecting the lines. At the median, draw a line across the middle of
the plot. To finish the plot, draw a line at the minimum value and one at
the maximum value. Then connect those lines to the box with another line.
The final plot should look like Fig. 5.8.

Fig. 5.8 was drawn using data from a normal distribution, so it is sym-
metric. The height above the median and below the median is the same,
and the height of the maximum and minimum values is also the same.
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The box plot in Fig. 5.9 is asymmetric. The median is closer to the first
quartile than the third quartile, and the maximum is further away from the
spread than the minimum.

The box plot is also useful for comparing distributions visually.

In Fig. 5.10, there are two different distributions. The distribution on
the left appears more symmetric than the one on the right, while the one
on the right has a larger spread. This is an example of using a visualization
as an analytic for the eyes, letting judgement compare distributions rather
than using a mathematical method.

A statistical method is still best for reinforcing the point though.
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5.4 Random Variables

A probability distribution is a function that gives the probability of getting
any particular value between 0 and 1. It describes how likely it is to get
a given value. For example, the normal distribution in Fig. 5.1 is a prob-
ability distribution, and it’s more likely to get values in the center of the
distribution, that is around 0.5, than values that are closer to 0 or 1.
Using the probability distribution, a random variable can be created. It
is a variable whose value is determined by the probability distribution. This
is different from the variable defined before, where it’s given by the result
of an experiment on data. With a random variable, something is known
about the probabilities that isn’t necessarily known about the experimental
results. Educated guesses can be made about future values of results using
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the probability distribution that can’t be made with the experimental result
because a lot is known about standard probability distributions.

The goal, then, is to be able to show with a good degree of certainty
that the distribution from the experimental results is “close” to a known
probability distribution. Those values can be used to make inferences about
the experimental results, including predicting future behavior, analyzing
current behavior and finding weird behavior that doesn’t quite fit.

A mathematical model is a description of a real world event using mathe-
matical terms. The mathematical model can be asked questions like, “what
should we expect given this event?” even though it’s not possible to query
an experimental distribution the same questions because it doesn’t have
any way to determine the answer. By finding a known probability distri-
bution that the data is reasonably close to, then the data can be modeled
with this distribution.
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We already used the mean to summarize the distribution of sampled
data. We can also use this to study our random variables. In this case, it’s
known as the ezpected value. This is often written as F(X), and it is the
value that we expect to occur. The function that defines the probability
distribution is the probability mass function, and it’s written as:

fle) = P(X =)

That means in calculating f(z), the result is the calculation of the calcu-
lating the probability that x occurs for the distribution.

5.5 Discrete Distributions

Discrete probability distributions are just like the discrete distributions we
discussed before. They’re a function with only a limited number of results
and they can be enumerated.

An experiment with only two possible outcomes is a Bernoulli trial.
The most common Bernoulli trial is flipping a coin, but they are often seen
in cybersecurity as well. For example:

e Is a computer on?
o Is the system under a distributed denial of service (DDoS) attack?

e Is it running a web server?

These questions have only two answers, so they qualify as Bernoulli
trials. If the question is “How much traffic occurs during a DDoS?”, then
the answer can be any number of packets, depending on the severity of the
attack. This isn’t a Bernoulli trial. However, the idea of the Bernoulli trial
can be used to build other probability distributions.

5.5.1 The Bernoulli Distribution

The Bernoulli distribution models the Bernoulli Trial. If the probability of
one event occurring is p, then the probability of the event not occurring is
1 — p. For example, the probability of a heads in a coin flip is 0.5 and the
probability of not-heads, or tails, is 0.5.

The expected value of the Bernoulli distribution is p and the variance
is p(1 — p). Another way of looking at it is if it is expected that the result
will happen p% of the time and to not happen (1 — p)% of the time.

For example, if it is known that 2% of the computers fail when turned on,
then that can model that with the Bernoulli distribution. The probability
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of it failing is 2%, the probability of not failing is 98%. The Bernoulli
distribution is concerned with the single event, not any subsequent events.

5.5.2 The Geometric Distribution

While the Bernoulli distribution only considers a single experiment, the Ge-
ometric distribution wants to answer the question: What is the probability
that success will be on the j*" trial (Solomon, 1987)? In other words, if
a coin is flipped ten times, what’s the probability of getting heads on but
not until the 4" flip?

The probability mass function of the geometric distribution is:

P(X=j)= (1-p'p

This can be read that as “the probability of something occurring on the jt"
trial, but no earlier, is given by.”

This probability distribution is discrete because all the possible answers
can be listed. If, as in the previous example, the question is “what is the
probability of a system failing to turn on after we’ve turned 10 different
systems on successfully,” then the answer is P (10) = 0.017, or a 1.7%
chance.

The expected value of the Geometric distribution is F (X) = %, and
1-p
=k,

the variance is given by var (z) = =

5.5.3 The Binomsial Distribution

While the Geometric distribution asks “when is the first success” the Bino-
mial distribution asks “what is the probability of j successes in n trials?”
For example, if a coin is flipped n times, what is the probability that j of
them are heads? Or if 50 computers are turned on, what is the probability
that one fails?

The probability mass function of the Binomial distribution is:

n

P =)= (y)ra-n"

The symbol (2) is read “from n elements, choose k” and is equivalent to
ﬁlk), In this case, the value of n is fixed, which means before the
distribution is computed, it is known how many trials will be attempted.
The number of successes is what can vary over the n trials.

Using the earlier example, if 50 computers are turned on, then the
probability that one fails is P (X =1) = 0.37, or a 37% chance that one
computer will fail to turn on.
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The expected value for the distribution is E (X) = np, and the variance
is var = np (1 —p). If a coin is flipped 10 times, then it’s expected that
10*0.5, or 5 of them, to be heads. This doesn’t mean that every time a
coin is flipped 10 times that five heads will results, it means that if we take
lots of sets of 10 flips, on average that will happen.

Returning to the computer example, then turning on 100 computers has
an expectation that two will fail to turn on. Sometimes all will turn on,
sometimes more will fail. Two is an average.

5.6 Continuous Distributions

We saw continuous data in our examples earlier in this chapter. We can
also create continuous probability distributions which we can use to model
our experimental data. These distributions also can take any value which
means we can’t list out the possible values for the distribution. There are
many continuous distributions available. In this chapter we’ll only talk
about two that are commonly seen in cybersecurity research, the normal
and Pareto distributions.

5.6.1 The Normal Distribution

The normal distribution is one of the most common distributions and one
of the first recorded uses was by the mathematician Gauss in the study of
astronomy, which is why it is sometimes called the Gaussian distribution.

The distribution is symmetric, with a peak where the mean of the dis-
tribution is located. The shape of the curve is defined by the variance of
the distribution. This means that if the the mass and variance are known,
then the shape of the distribution is also known. It’s common to use the
Greek letter 4 (“mu”) to denote the mean and the letter o (“sigma”) for the
variance. The normal distribution is often referenced as N(u, o) because
the two values determine the shape of the distribution. It is an important
distribution because it is often used as a basis for models.

5.6.2 The Pareto Distribution

An economist in the early twentieth century named Vilfredo Pareto noticed
that the number of people whose income exceeded a certain level could be
modeled by the equation a% where C' and « are values determined by the
data. This distribution is also known as the power law distribution or the
long tail distribution. Fig. 5.11 illustrates it.

The power law distribution is common in cybersecurity data. For exam-

ple, the number of peers that each AS has in BGP has been modeled by a
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Fig. 5.11 The Power Law Distribution

power law distribution. Similarly, the amount of traffic to a web server has
also been modeled by a power law distribution. This means that in general,
most connections have a small amount of traffic whereas a few connections
are extremely large.

The expected value of the power law distribution depends on the value of
a. If a <1, then the expected value is infinity. This is a shorthand method
of saying it grows so large with the computation, it trends to infinity. If
a > 1, then B(X) = 2%

The standard deviation is dependent on the value of a as well. For
a < 2, then the standard deviation is infinity. This is the same as the
expected value for o < 1, it keeps growing no matter what and it’s common

X (3

to say the limit of that value is infinity. For a > 2, then o = (%)% -%.
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5.7 Data Outliers

Suppose a researcher performs an experiment, collects the data, and de-
termines that it precisely fits the normal distribution. The researcher can
take the average of the data, the standard deviation, and generate a func-
tion that lets them predict future behavior. Everything is perfect; there’s
nothing more to do.

Unfortunately, real life is rarely like that. An outlier in a data set is
a variable that is far removed from distribution used as a model. It’s the
anomaly in the data set, perhaps the weird thing that happened that makes
it interesting. For example, in network traffic, an anomaly could be that TP
address that is beaconing to the malware domain, looking for instructions.
In general, anomalies are not security violations. But it is often useful to
improve your understanding of “normal” behavior by understanding what
causes anomalies and whether they are security violations. To find an
anomaly in the millions of flows in a busy network we need a way to quantify
outliers.

Outliers can also mean that there’s a problem with the data set. Sup-
pose a researcher is collecting passive DNS data through a sensor on their
network. Every day, they collect 4 gigabytes of data, except for that odd
Tuesday when only 1 gigabyte of data is collected. That’s an anomaly in the
data collection and should be studied. That could also be an experimental
error, because the sensor failed that day. Either way, the outlier should be
identified and studied. Experimental errors are sometimes removed from
the data set as they would affect the outcome of the study, but because
they are incorrect data points, they should be removed.

5.7.1 Finding Outliers

In the normal distribution, 95% of the values are within two standard de-
viations of the mean. If the data are far away from the mean, then they
aren’t like the majority of the data. But that doesn’t automatically make
them unexpected. We expect 5% of the values to be at least that far away,
since that is what defines a normal distribution.

It’s common to use three standard deviations as a guess for what data
points are outliers. The method starts at the mean and any point that’s
greater than the mean plus three standard deviations or less than the mean
minus three standard deviations is considered an outlier. The shaded area
in Fig. 5.12 illustrates potential outliers found in a normal distribution.
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If any of the data falls within that shaded area, then they are con-
sidered anomalies. Anomalies are not necessarily outliers, but they are
often “weird” and worth investigating. For example, suppose a researcher
is studying the length of domain names that are used by malware. The
anomalous domains would be the very short or the very long ones.

Another method for finding anomalies uses the quartiles. Where stan-
dard deviations are based around the mean, quartiles are understood in
relation to the median. The median is the middle data point, but half of
all the data points fall in the spread between Q1 and Q3. The spread is
the difference between the third quartile and the first quartile, or Q3 — Q1.
The outliers are often considered to be be anything more than 1.5 times as
far away from this central grouping as the ends of the spread are from each



Exploratory Data Analysis 91

B o
o
-
[
[
[
e [
N [
[
Il
o | [
N [
[
[
[
[
[
-
@]
0|
i
@]

Domain Length
Fig. 5.13 Box Plot Outliers

other. That is, anything less than Q1 — 1.5 * (Q3 — Q1) or greater than
Q3+ 1.5%x(Q3—Q1).

A box plot can illustrate anomalies. In Fig. 5.13, the spread is shaded
gray, and the line at 16.5 is Q1 — 1.5 x (@3 — Q1) and the line at 28 is
Q3+ 1.5 % (Q3 — Q1). The circles at the top and the bottom of the plot
denote the outliers in this plot of domain length. Those are the domains
that are either much shorter than the rest or much longer.

5.8 Log Transformations

Suppose a researcher has decided to study and plot network traffic. Some
of their traffic, for example, the traffic to a name server, is very small. On
the other hand, a mail session can generate a lot of traffic, especially if
users are sending large attachments. Fig. 5.14 is an example.
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Fig. 5.14 Distribution of Mail Traffic

Most of the data are very small, but they are obfuscated on the plot
because the large spikes dominate it. It’s not possible to determine anything
other than “there are four very large spikes” in the data.

The natural log of a number z is the number y where e¥ = z. For
example, In1 = 0. while In 2000 = 7.6. If the data is plotted between 1 and
2,000, then Fig. 5.14 is created. If data are plotted between 0 and 7.6, it’s
easier to view on a graph. To do this, the natural log is applied to every
variable in the data set. This is a log transformation. Fig. 5.15 is the log
transformation of Fig. 5.14.

The spikes no longer dominate the entire plot. It’s possible to get a
better idea of what is happening with the smaller numbers.

The log transformation can also de-emphasize outliers. We discussed
earlier how the outliers lie outside the normal distribution and how the log
can take a very wide spread and narrow it down. If the the natural log
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Fig. 5.15 Log Transformation of Mail Traffic Distribution

function is applied, then the outliers aren’t going to stand out as much.
If the end goal is to remove outliers from a distribution then a log trans-
formation might be useful. It certainly won’t help to highlight anomalies
though.

5.9 Data Classification

It would be nice if a method could be created that automatically sorts data
into two categories, good and bad. Then finding bad traffic would be very
easy. This method is known as a classifier. It’s the creation of a model
that will apply labels to data. Unfortunately, cybersecurity data isn’t that
easy to sort.

Suppose a researcher is creating a model that looks for exfiltration of
data, that is, when data is sent outside of the organization that shouldn’t
be. A user could have a valid reason for sending a large file for a customer,
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but that could look like exfiltration of data when analyzing traffic. If the
analysis classifies this behavior as “bad,” then that is a false positive. A
false positive means it appears that bad behavior has been found, but it
hasn’t.

DNS has been used for command and control by botnets. This means
that what looks like a standard DNS query is malicious traffic. If this traffic
is classified as good, since it has all the hallmarks of being standard traffic,
then we've found a false negative. A false negative means it appears good
behavior has been found, but it’s actually bad.

Suppose a researcher creates a method to find maliciousness. In an
operational sense, a false positive means the researcher is telling the security
analysts that something is wrong when it isn’t. A false negative means the
opposite —the researcher missing the malicious result. Either way, that is
incorrect information to give a security analyst.

5.10 Bivariate Analysis

The discussion in this chapter so far has been one measurement per vari-
able, also known as wunivariate analysis. We found a domain, we took a
measurement, we analyzed the results. On the other hand, what if we
want to be more complex and take more than one measurement? That’s
called multivariate analysis. In this section, we’ll discuss one version of
multivariate analysis called bivariate analysis. That’s where we take two
measurements of a unit and analyze the results.

Suppose there is a theory that the longer a domain name is, the fewer
times it is resolved. The first thing needed is the domain, in order to
measure its length, the second is the resolutions of the domain. The number
of resolutions is dependent upon the initial measurement of the length. The
domain length is the exploratory variable or independent variable, and the
variable that is dependent on that measurement is the response variable or
dependent variable.

5.10.1 Visualizing Bipartite Data

The visualizations created for bipartite data depend on the types of vari-
ables that are explored.

It is possible to have categorical data for both the exploratory vari-
able and the response variable, categorical data for one of the variables, or
quantitative variables for both. If the variables are both categorical, the
best solution is a contingency table. This isn’t a plot like the bar plot or
box plot; rather, it is a table that shows the relationships between the two
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Table 5.3 A Contingency Table

Javascript ‘ PDF ‘ PE ‘ Totals

Adware 100 54 16 170
Spyware 9 23 66 98
Rootkit 26 33 44 103

Totals 135 110 126 371

variables. The exploratory variable is on the horizontal while the response
variable is on the vertical. Table 5.3 illustrates this.

The exploratory variable is the type of file, either javascript, Portable
Document Format (PDF), or Portable Executable (PE), while the response
variable is the kind of malware. It’s possible to analyze to analyze the
correlation between the two variables by examining the table.

If exploratory variable is a categorical variable, such as the top level
domain, and the response variable to be quantitative, such as length of a
domain, then they can be combined into a side-by-side box plot. Fig. 5.16
illustrates this.

The four most common gTLDs were used and a sample was taken of
each set of domains. Next the length of each domain was measured and
plotted in the box plot for each top level domain. Examining the plot, it’s
clear that .com has the longest average domain and has the biggest spread,
including outliers. The gTLD for .mobi has the smallest spread.

If both variables are quantitative, then they can be combined into a
scatterplot. In a scatterplot, the x-axis is the exploratory (or independent)
variable and the y-axis is the response (or dependent) variable.

Fig. 5.17 illustrates the scatterplot that examines the bivariate analysis
of domain length and number of resolutions. The theory earlier was that
the shorter the domain, the more resolutions were associated with it. The
visualization can be used to make a guess at the answer, but without further
statistical analysis, that’s only a guess.

5.10.2 Data Correlation and Regression

Suppose a researcher wants to know if there is a relationship between the
size of malware and the number of files it drops. They also want to prove the
relationship using statistics. The correlation is a measure of the relationship
between two quantitative variables. The variables can be strongly related,
that is, have a high correlation, or weakly related, which is a low correlation.

The formula for computing the correlation is known as the correlation
coefficient, Pearson’s correlation coefficient, or the linear correlation coef-
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Fig. 5.16 Side by Side Box Plots

ficient. All three names refer to the same formula. The formula computes
a number between —1 and 1. If the number is greater than 0, that means
there’s a positive correlation. A positive correlation means that both values
increase. A negative correlation, or a result less than 0, means that as one
variable increases, the other decreases.

For a positive correlation, the larger the value of the correlation, the
stronger it is. There are various rules of thumb, all dependent upon the
area in question. For example, in some areas, a value between 0.75 and 1
is considered a strong correlation.

Univariate data is studied by measuring how close the data was to the
middle by using the mean, median, and mode. In bivariate data, regression
analysis is used. Like the univariate measures, this is a measurement of
the tendency of the bivariate data to move towards the middle. There are
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Fig. 5.17 A Scatter Plot

multiple methods for computing regression; almost all of them are very
complicated. Ironically, one of the methods for bivariate data is called
simple regression analysis, but it isn’t a very simple process at all.

The point of the correlation and regression analysis is to consider the
relationships between the variables. If one variable can influence another,
that is an interesting result. Suppose a certain strain of malware is highly
correlated to a set of domains that are owned by one individual. That’s
not saying that individual is the creator of the malware but it does indicate
that the relationship should be investigated closer.

5.10.3 Time Series

A special form of bivariate analysis is time series analysis. In this case,
the exploratory variable is time, and the response variable is the event. For
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Table 5.4 Summary of Visualizations

Visualization Variable Types Example
Bar Plot Categorical Fig. 5.2
Histogram Discrete Quantitative Fig. 5.3
Density Plot Continuous, Time Series Fig. 5.7
Box Plot Alternative to Histogram and Density Fig. 5.8

Side by Side Box Plot Bipartite Categorical and Quantitative Fig. 5.16
Scatterplot Bipartite Quantitative and Quantitative | Fig. 5.17

example, if the queries per minute for a domain are measured, then that
creates a time series. Another example is measuring the amount of network
traffic collected every five minutes.

Analyzing time series data allows predictions to be made about the
future. For example, if the amount of malware daily collected daily is mea-
sured and accurate records are kept of that amount, then the amount of
malware collected in the future can be predicted. That allows the adminis-
trator to make plans for storing the malware and the researchers to make
plans for analyzing it.

For another example, consider that a blocklist that is updated hourly
was collected for months. That blocklist contains IP addresses that are
originating scans, so if the number of unique IP addresses in each blocklist is
counted, that gives a baseline for the number of IP addresses that scanned.
Fig. 5.18 illustrates this time series.

From the plot, it’s clear that during January and February, the number
of scanning hosts grew. However, it peaked in March and seems to be
declining in the months following.

Plotting the time series, where the horizontal axis is time and the ver-
tical axis is the response variable, is a useful way to start analysis.

5.11 Lessons Learned

This introduction to data analysis focused on the visualization of the data.
A good first step is to create a visualization of your measurement and let
the visualization guide your next steps. Table 5.4 lists the visualizations
discussed in this chapter along with the type of variable it is used for.

We also discussed random distributions and modeling. We can use
known properties of random distributions to model our data if we can
show that our data are close to the random distribution. There are many
statistics books that cover such in depth analysis of the data; this section
provided a taste of how to use your eyes as your first analytic engine.
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Chapter 6

Sampling in Cybersecurity

In cybersecurity, research often starts with a collection of data to analyze.
Terabytes of data are collected in network traffic, in DNS as well as mali-
cious software (malware). Log files can be huge. Incident reports can be
large as well. Vulnerability reports, BGP, all of this data can be enormous.
Analyzing this data all at once can take many hours, or even be impossible,
so the goal is to make use of statistics in order to reduce the workload and
at the same time, achieve results that are useful.

As we discussed in Chapter 5, statistics lets us take a smaller subset of
our entire set of data and make inferences about the larger set. This chapter
is about the various methods that can create the samples. It’s important
to understand how to create a good sample and what the problems can be
in sampling.

Different sampling methods have different goals in mind. It’s important
to determine the goal of the research at hand when deciding what sampling
method to use. For example, we discussed generalizability in Chapter 4.
Sample methods effect generalizability of results.

6.1 Populations

In Chapter 5 we defined populations. In research we can take the population
and perform a study on it to find patterns of behavior or anomalies.

Sometimes, we start by considering a study and then trying to determine
the best population on which to perform the study. Both ways work in
trying to find the adversaries.

If we start with a study design, then the first question is, “What is
the population for the study?”. If we are studying domain names, our
population could be the set of all possible domains. This would include
everything that is registered and everything that is not registered. We could

101
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enumerate every possible domain by systematically creating every possible
combination of characters that could be a domain. This is a very large
set and has been estimated to contain approximately a googol of domains
(Spring, 2014). That is, a one followed by a hundred zeros. This means
there are more possible domains than IPv4 addresses and IPv6 addresses
combined.

Another possible population is the set of all registered domains. Un-
fortunately, enumerating this set is nearly impossible. Not every registrar
allows access by researchers to the data. The registrars for the new TLDs
must allow researchers access to the data (ICANN, 2013) but there is no
requirement that the registrars of ccTLDs do the same. So while the popu-
lation can be defined, it cannot be listed. Studying this population becomes
difficult because we do not know exactly what is in the population and what
is not.

Another example is malware. We have no idea how much different
malware is out in the wild. We just know that at least 350,000 new pieces
of malware are detected every day. (Geng et al., 2019). That doesn’t say
anything about how much new malware isn’t detected, just that we find
that many in a day. Over a year, that’s 127,750,000 pieces of malware, and
that’s only the ones we know about. Trying to enumerate all of the possible
malware is an impossible proposition.

Vulnerability reports are often used in cybersecurity analysis, but it’s
dependent on who made the report. Not every vulnerability will be re-
ported; companies keep some hidden for business reasons, and adversaries
won’t announce the new method they’ve found for accessing systems. There
is no database of all vulnerabilities; we just “happen” to know some be-
cause someone reported them. If the population is, “all vulnerabilities in all
software,” we don’t have any way of enumerating it. We can make guesses
on the number of vulnerabilities because people have made estimates on
the number of bugs per line of code, but that assumes we know how many
lines of code are in each piece of software. Also, guessing the number of
vulnerabilities doesn’t let us list them, it just allows us to get an estimate
of how many vulnerabilities are out there. It also assumes that every bug
is a vulnerability.

The previous discussion has highlighted that we must define the pop-
ulation appropriately, and it is possible that the entire population is not
accessible. Also, it is possible that the population is incredibly large. If we
can’t access the entire population, or it is too large to deal with, we need
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another method for dealing with the data in order to perform a study on
it to learn something relevant.
That’s where taking samples comes in.

6.2 The Sample

It is not always feasible to study the entire population, as much as we would
like to. For example, if our population is all of the domain names that could
possibly be registered, then as we said earlier, that is almost a googol of
domains. From a quick estimate, a file containing these domains would take
up about 1 x 1089 terabytes of space. This is an impossible amount of data
to study.

If we change our domain population to be the set of registered domains,
the number of domains drops dramatically. However, as discussed in the
previous section, we cannot list every registered domain.

For another example, suppose we’re capturing the network traffic for a
large organization. This can generate up to a terabyte of data a day, at
a minimum. If we are using full packet capture, this can grow geometri-
cally larger depending on the number of users and their web surfing habits.
Analyzing this data set as a whole soon becomes intractable.

In short, studying an entire population can be difficult, if not impossible.
So instead of doing that, we will study a subset, known as a sample. If we
choose our sample in a reasonable way, then we can make inferences about
the population at large based on the sample. This means that we can take
the results from a study and apply them to the population at large. The
important part is that we must choose the sample in a reasonable way. If
we don’t, then anything we derive from the sample can not necessarily be
applied to the population itself.

The sample chosen should be representative of the population. This
means that it looks like a the population at large but on a smaller scale. It
doesn’t focus on one part of the population at all but is spread across the
entire population.

To illustrate further, suppose we take every IP address and count how
many domains point to it. We can average that number and get a result
that we will call 2. Now, suppose we choose a sample of IP addresses. We
need to choose this sample so that if we count the number of domains that
point to each IP address in this sample, then that average is close to 2.

If our population is IP addresses, then choosing a sample from a single /8
is not reasonable. Suppose our study is the routing associated with IP
addresses. If we choose all of the IP addresses from 234.0.0.0/8, then the
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study would fail. This network is reserved for multi-cast, and should not
show up in any routing table. If we are studying “networks that shouldn’t
show up in the routing table,” then this is still a bad selection. It focuses on
one collection of IP addresses, and ignores the other networks that should
not be routed.

All of these examples demonstrate that we can’t focus on just one sub-
section of the population if we want the sample to be representative. We
have to consider the entire population. Otherwise, we're not going to be
able to apply the results from the study to the entire population.

No matter how the sample is taken, keep that in mind. Be careful
about when and what the results apply. Be aware of errors and remember
statistics shows us what could reasonably apply, but it isn’t a panacea.

6.3 Probabilistic Sampling

In the previous section, we talked about how a sample should be repre-
sentative of the population, and should not focus on one subset. A good
method to accomplish this is by using randomness. Pick a subset of the
population at random and that will be the sample.

An easy way to think of this is, suppose a list of 100 domain names is
written on slips of paper, then dropped into a hat. A sample of size ten
means to pull ten pieces of paper out of the hat and that is the sample.
This is also known as sampling without replacement.

An alternative is called sampling with replacement. Each time a piece
of paper is pulled out of the hat, the domain name on it is recorded, and
the paper put back. Sampling with replacement means that it’s possible to
get the same item twice and record it both times.

If sampling is done with replacement, then the probability of choosing
each element is 1 in 100. This is because each time a piece of paper is
pulled out, there are 100 pieces of paper in the bag. Sampling without
replacement means the first time a piece of paper is chosen, the probability
of choosing each element is also 1 in 100. The probability of choosing the
second piece of paper changes to 1 in 99 because there are now 99 pieces
of paper in the bag. The third piece of paper now has a probability of 1 in
98. The tenth time a piece of paper is pulled out, the probability of getting
any piece of paper in the bag has dropped to 1 in 90.

Sampling with replacement means that the probability of choosing each
element changes each time a piece of paper is chosen. This means that the
samples are dependent, since the elements chosen on each successive choice
are affected by the previous choices. The samples with probability and
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without replacement are independent because when an element chosen, the
successive choices aren’t affected by that choice.

Statistically speaking, these methods are known as probabilistic sam-
pling. Assumptions are made when either of these methods are used. For
one thing, we assume that it is equally probable to choose any unique item
in the population. That means if the population is a collection of IP ad-
dresses, it is as likely to get 8.8.8.8 as it is to get 127.0.0.1. If the population
is a collection of malware, each piece is equally likely to be chosen. This is
also what enables the sample to get a good view of the population at large.

It is considered the best method of sampling to gain a representative
sample, but it can be costly and as we will discuss in the following examples,
difficult to do.

Example 1.

Suppose the population is the set of all strings that could be domain names,
and the goal is to make a probabilistic sample of it. The first attempt is a
random string generator that creates strings that look like stringl.string2,
for example, fdjdfddf.dfjd or eabadrea.cod. This is not quite what is needed
since there is a set of top level domains used on the Internet. The second
string (string2) cannot be a random string, as shown in the example; it
must be one of the top level domains. To be fair, it actually must be one
of the top effective TLDs. There are some TLDs, such as .uk, which have
subdomains that they treat as top level domains, such as .co.uk. So if
the generated domains are stringl.randomTLD, then the effective TLDs
(Mozilla, 2007) will be omitted.

The probabilistic sample of all strings that could be domain names
would then be generated by first choosing a random string that has between
three and sixty-three characters. Then a random effective TLD from the list
of effective TLDs would be chosen. Some TLDs, however, allow strings that
are shorter than three characters. For example, overstock.com uses o.co as
a domain, so it is known the .co TLD allows domains with one character.
In order to create the sample correctly, research into what domains are
allowed by each TLD would be required.

Example 2.

Suppose the chosen population is the set of all valid IPv4 addresses. This
is the set of all dotted quads w.x.y.z where each w, x, y, and z is an integer
between 0 and 255. There are many ways to do this, but this example
will discuss two methods. The first is to generate four random integers,
each between 0 and 255, and create an IP address from them. This is the
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equivalent of putting all of the IPv4 addresses in a bag and choosing them
with replacement, unless the method ensures the sample only contains a
set of unique addresses.

For the second method, an IP address is a way to represent a number
between 0 and 2%2. It is much easier to write 127.0.0.1 rather than to write
2130706433, but there is a method to convert the IP address to an integer
and vice versa. Making use of this, the method could generate random
integers between 0 and 2% and then convert them to IP addresses.

If it is decided that the sample should only contain IPv4 addresses that
are publicly routed, then the sample would have to restrict the random
number ranges to those. This means, for example, that the set of IPv4
addresses should not contain any address in 127.0.0.0/8.

Example 3.

Network flow is a record of the traffic that passed through a network. It
is not necessarily the packet capture, but rather it is the trace of the start
time, end time, number of bytes, protocol, and ports involved in the traffic,
as well as potentially more information. The study is designed to analyze
network traffic and the population for the traffic is network flow.

If every flow has a unique identifier associated with it, then the random
sample can be a set of random identifiers. It’s possible to then find the the
flow associated with this data and analyze it. If this does not exist, another
method is needed.

For the second method, time will be used. The start and stop times for
the data set are known, so it is possible to choose random times in that
period. The problem is, what if there is no flow that starts on the random
time chosen.

Another method to fix this issue is to create a set of start times of all
flow and choosing randomly from that set. However, it is possible that
multiple flows start at the same time. This means that the assumption
made using probabilistic sampling doesn’t work. The assumption was that
each element in the set is equally likely but if there are two flows that start
at the same time, that isn’t true.

It’s also important to remember that if the population is the network
flow from one network, then any statistical analysis done yields results that
are local to that one network.

Example 4.
Incident reports often have a number associated with them, known as either
the ticket number or the incident number. If the goal is to take a random
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sample of incident reports, then the starting point is a set of the incident
numbers. The sample is then chosen from these numbers.

Similar to the network flow example, if the population is the set of
incidents at a given organization, then the statistical analysis is relevant
only to that organization.

6.4 Stratified Sampling

In Section 6.3 we discussed taking a random sample of our entire population.
This doesn’t work for every situation. Suppose our population is a family of
malware with different versions. Unfortunately, the collection process has
been somewhat skewed. Suppose the population has ten times more samples
of version A than version B and five times more of version C than B. If strict
random sampling is done, then version B is going to be underrepresented
in the final sample. This can skew the results.

Instead of doing a probabilistic sample over the entire population, the
population is separated into three groups, and samples are taken from each
group. This way, the sample isn’t overwhelmed by version A.

This method is called stratified sampling. It is very useful when the
population isn’t uniform, such as in the discussion of malware above. The
sample should be representative, but if it’s overwhelmed by one group in
sample, that wouldn’t be representative.

Example 5.

Suppose a network consists of a /26, a /24, and a /27, and these networks
are not contiguous. The goal is to sample from IP addresses from the
network in order to do a study on the network traffic originating from the
IP addresses. The /26 contains 64 IP addresses, the /24 has 256, and
the /27 has 32. In a probabilistic sample, the /27 will not be as well
represented as the /24. To get around this, a stratified sample is used.
Random IP addresses from each network are chosen. That way, the /24
doesn’t overwhelm the /27 in the sample.

6.5 Purposive Sampling

When the sample is taken randomly, a nice view of the population is created.
Nothing in particular is focused on in the random sample. Sometimes,
however, a specific feature is chosen to study. The random selection can
be done and the hope is enough samples with the chosen feature are found,
or the alternative is to pick samples with that feature. If the samples are
chosen deliberately, then that is called purposive sampling.
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It is possible to combine random sampling with purposive sampling. A
new population would be created by choosing only those elements of the
population with the desired attribute. Then a random sample is taken of
that. In this case, the random sample is a representative sample of the new
population, not the original population.

Example 6.

Suppose the population for a study is the network traffic for a large organi-
zation over 24 hours. There’s a lot of traffic to be examined, but the study
is mostly interested in ICMP traffic. We could sample all of the traffic, but
ICMP traffic could get lost in the massive amounts of other traffic. The
research would be started by purposively sampling to only pull out ICMP
traffic followed by a random sample of the ICMP traffic.

Example 7.

The population is the set of all incident reports but the study is only in-
terested in those incidents where an advanced persistent threat (APT) was
discovered. Rather than trying to take a random sample of those reports
and hoping that we find some with APT mentioned, those reports will be
pulled separately. This means that anything discovered in the study only
applies to those reports about an APT represented in the data set.

6.6 Convenience Sample

One day, a researcher decides to look at the number of IP addresses a
sample of domains point to. Instead of collecting domains in a rational
manner, the researcher pull the logs of a random user and determines what
domains they use and examines those. They just happened to find those
domains in a location and used them. They aren’t representative and they
weren’t collected nicely, the researcher just happened to find them.

Creating a sample by what someone happens to find is called a conve-
nience sample. The data were used because it was convenient, not because
it represented a good cross-section of the population. This means that a
convenience sample is not necessarily representative of the population at
large.

Convenience samples are common in cybersecurity. Malware is collected
using various methods. For example, using a honeypot or letting people
submit samples. Those samples are ones that just happen to show up.
It would be nice if all the malware authors in the world submitted their
samples to a central repository, but that isn’t going to happen. Researchers
have to work with what they have, which is a collection of samples they
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happened upon. That is a convenience sample of malware. This means
that there is no way of making statements of the population of malware as
a whole. All the researcher can do is make statements about the sample they
have collected, which may or may not be representative of the population
of malware. There is also no way of determining if it is representative.

Example 8.

The convenience sample can be combined with the purposive sample. The
convenience sample is a collection of malware that we collected through
various means. One kind of malware is known as a file dropper. This
malware exists to download and drop files; usually malicious ones. It can
be said say that a lot of malware drop files, but file droppers definitely drop
files.

The purposive sample then becomes the subset of the convenience sam-
ple. The sample is found from all samples of the convenience sample that
are file droppers, and the study uses those. What is derived from this pur-
posive sample cannot be used to infer information about the population
of file droppers at large or even the original convenience sample. It can
only be used to talk about the subset of the convenience sample that is file
droppers.

Example 9.

Passive DNS (Weimer, 2005) is a very useful tool in cybersecurity. It is a
trace of the queries made in DNS but doesn’t include who made them. A
malicious domain can be found in it because someone queried that domain
and received a response, but for privacy reasons the origin of the query isn’t
saved.

The problem is that it isn’t known how the passive DNS was necessarily
collected or where it was created. It is entirely possible that the collector is
with one particular company’s name server, so all that is seen the queries
that that name server receives. This isn’t a representative sample of the
internet as a whole, rather, it is a representative sample of what that name
server sees. Without the context of how the data was collected, the sample
only reflects the population from the passive DNS data set and not the
Internet as a whole.

Another thing to consider is that some countries can consider an IP
address to be personally identifying information (Spring and Huth, 2012).
This can affect results so be aware of the possibility.
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Example 10.

Using a passive Domain Name System (pDNS) data source, a researcher has
decided that they want to study name servers. To do this, the researcher
needs to find a list of all domains that are being used as name servers. This
means they look for all responses that contain NS records.

After much consideration, the researcher has decided that they want
a sample of 10,000 of these domains that act as name servers. They are
not considering the number of domains that each name server record is
associated with, just the fact that the domain acted as a name server.
Once this sample is taken, they discover that 47% of it is related to one
domain, call it example.com. This means that 47% of the domains that act
as name servers are of the form string.example.com, where string appears
to be a random string of letters and numbers.

Clearly, this is a problem with the sample. It is representative of
the pDNS data source, but it is skewed. Any results we find using this
sample will be heavily represented by the domains that have the pattern
string.example.com, which can make the results useless. It’s possible to
make a new sample of 10,0000 domains that act as name servers, but leave
out any domain that looks like sample.example.com. By doing this, the
influence of this domain on the results has been mitigated.

As an example of how this can skew results, suppose the researcher is
counting the number of domains each name server supports. The domains
string.example.com only support one domain. This means that 47% of
those results is a 1. If we want the median of the results, then that’s going
to be close to 1. It also will skew the mean as well.

Example 11.

In BGP routing, periodic updates are sent to peers. These updates include
route additions and route withdrawals. The routing table is never static;
there are always changes being made to it. One interesting thing about
BGP is there’s no security built in to it. There is no way of being sure,
based on the basic protocol, that the addition received is a valid route to
the destination.

In fact, route injections and route leaks often occur. These are the
routes that are received that aren’t valid routes to the destination. Route
leaks are when the invalid route is an accident and route injections are when
the invalid route is malicious. Suppose a researcher would like to determine
what percentage of routes that are received are either route injections or
route leaks. As this can be quite a bit of data, they will start with a sample.
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Since these updates arrive over time, the best thing to do is to choose
a time period, such as an hour, and take a sample of the updates in that
time period. BGP has a delay timer built into it, which means two updates
from the same source for the same route at the same time shouldn’t occur.

This becomes a convenience sample when the source of the data is con-
sidered. The choices for the data are routing repositories available on the
web or an organization’s data. Either way, the sample is seeing the routes
it just “happen” to see. No one sees all the possible routes on the Internet,
due to route filtering and local communities.

6.7 Sample Size

We’ve covered various sampling methods in this chapter. It’s useful to know
how to take a sample; it’s even better to know how many units one should
choose for the sample. The size of the sample can affect how well statistics
model the population at large.

The results of surveys are usually “x% agreed with this, with a sampling
error of +y%”. This means that if the population is considered as a whole,
the actual number of people that agreed with the survey is between (z—y)%
and (z + y)%. Someone took a sample of the defined population and did
the survey, and they project that the amount of the population that agrees
with it is between those two numbers. This means they inferred from their
sample the actions of the population and determined how close that result
should be.

That sampling error is very important to figuring out the sample size.
It’s important to create a sample that’s large enough that there isn’t a huge
sampling error, but small enough that the entire population isn’t used.

Consider an example related to cybersecurity. Pretend that it’s possible
to take take a random sample of all domain names and measure the length
of the second level domain. That is, the length of google in the google.com
domain or the length of example in example.net. This yields a number
associated with each domain, and it’s possible to plot that result. One
might assume (unwisely) that this result fits a normal distribution or bell
curve, meaning the length of most domain names is close to the average
length.

This fact about the normal distribution is what is used in order to find
the sample size. The goal is for the sample to fit this, meaning that it is
desired that the average of the sample taken of the population of domain
names to be close to the average of everything, so it should be with the
other values in that 95% range. That 95% is what is called the confidence
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level. The goal is to choose the sample size so that the average is within the
95% confidence level. If the goal is to be more precise, then the sample can
be chosen so that it is within the 99% confidence level. For less precision,
choose the 90% confidence level.

This means that the acceptable error between the sample’s result and
the population’s result is 100% minus the confidence level. Let e be the
shorthand way of saying error. Also let P denote the size of the population.
There are several complex ways to estimate sample size, but for this book,
a simpler method is used. (Israel, 1992). Let s denote the sample size, then
the equation is:

B P
14 Pxe?

Returning to Example 10, suppose there is a population of 4.6 million
domains that have been identified to act as name servers. The goal is to
create a sample with a 95% confidence level, so the formula is:

4600000 4600000
- _ — 400 6.2
¥ T 144600000 % 0.052 11501 (6.2)

Which is a rather small number, but according to the math, that’s all that
is needed to assure that there’s a 95% chance the average associated value of

s (6.1)

the sample will be close to the average of the entire population. Remember
that this is a probability estimate. Assuming that the distribution of results
is normal, there is a 95% chance the average value over the set will match
the value over the entire population.

Now, this doesn’t mean it’s necessary to restrict the data set to a small
number. It is just a guide for finding the minimum number that will en-
sure the average of the sample is reasonably close to the average of the
population.

The formula in Equation 6.1 is really an estimate for the sample size; the
real equations use the slope of the normal distribution. A simple estimate
of that value will work for this book. It has been determined that this
estimate is really close to the value computed using fancier math though.
The actual computation makes use of calculus which is beyond the scope
of this book.

6.8 Lessons Learned

The statistical methods discussed in Chapter 5 are only part of the tools
needed for analysis. The ability to take a sample of a huge population is
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another. This chapter discussed those methods and some of the pitfalls
associated with them.

If you take nothing else from this chapter, the fact that cybersecurity
is mostly based on convenience samples is an important concept. We can’t
enumerate the populations for most of our data. Either those data doesn’t
exist or they aren’t‘ available for us. Malware, domain names, and BGP
routing are just three examples of the populations that we can’t enumerate.

That shouldn’t stop us from analyzing the data we can retrieve, but
we should be aware of the limitations that exist. The gold standard is a
random sample of the entire population, but that isn’t always available.
Describing the sampling method used in your analysis is important.
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Chapter 7

Designing Structured Observations

This chapter is about how to go about learning about the cybersecurity
world through structured observations. There are many kinds of structured
observations, the most famous of which are probably experiments. The pop-
ular notion of a lab experiment is more precisely called an RCT. However,
the cybersecurity practitioner should not be limited to experiments. Broad
guidance for designing structured observations in cybersecurity is difficult
because of the wide variety of topics and specialties that are relevant to
cybersecurity. This chapter relies on the fundamentals covered in the pre-
ceding chapters. The following chapters will provide detailed examples of
putting this chapter into practice.

Especially for studies with statistical tests, the jargon to describe the
results of a study is a “positive” or “negative” result. “Positive” and “neg-
ative” results are equally valuable. Both mean that the researcher con-
ducted the study well and reached an informative result that others can
understand and use. Researchers, unfortunately including journal publish-
ers, have a human tendency to think “positive” results are better (Open
Science Collaboration, 2015). This effect seems to be related to the human
tendency to think novel or exciting things are more true. The resulting
publication bias is quite dangerous and interferes with researchers forming
reliable collective knowledge. The outcome to avoid is a non-result, in which
the study was designed badly, executed poorly, or the study population was
too small or too skewed. No one can use a non-result, except perhaps as
a cautionary tale about studies could be done differently. But if you have
either a “positive” or “negative” result, your study has succeeded.

Section 7.1 will discuss some heuristics for selecting which study type
is appropriate for which situations. Section 7.2 will cover the major types
of structured observation, their strengths and weaknesses, and some guid-

115



116 Science and CyberSecurity

ance on how to learn to design adequate instances of each type. Strengths
and weaknesses are largely in relation to the desirable study properties in-
troduced in Chapter 4, but also depend on limitations and resources of
available data on populations of interest (see Chapter 6). The types of
structured observation we will cover are case studies, natural experiments
and measurement studies, interventions, RCTs, and simulation or mathe-
matical exploration. A designer usually needs to conduct some exploratory
analysis (Chapter 5) before they have enough information to select a study

type.
7.1 Choosing a Study Type

In most cases, to get a thorough model of a system of interest requires an
interlocking set of studies drawn from all these study types. Each of the five
types has different situations to which it is better at adapting. So choosing
a study type has at least as much to do with what has already been done
as it does with what the study designer wants to know.

No system of interest is completely new. So the first step in learning
about it is really to do some reading about similar systems and what other
people have found. Conducting a systematic review is its own kind of study,
in a way. A systematic review need not cover academic literature; there
are various practitioner communities that publish talks and proceedings as
well. Like other studies, a systematic review should have a literature search
method laid out ahead of time. The method includes search terms, search
locations, and how the results will be evaluated for relevance. It is preferable
that someone else has already done the literature review; you should search
common computing sources of literature reviews before repeating the work,
such as the IEEE S&P Systematization of Knowledge (SoK) papers and the
ACM Computing Surveys journal. Talking to people who have experience
with the system of interest is also a good start. After gathering information
about the system of interest and what has been done, a study designer is
much better positioned to know what aspects of the system could be better
understood.

As a first heuristic, observational studies, such as case studies and mea-
surement studies, are a prerequisite for designing adequate studies that
involve an intervention. Without some basic knowledge of the important
entities and activities in a system, a study designer will be hard-pressed
to form a hypothesis about what to intervene on. This advice mirrors cy-
bersecurity practice. An adequate inventory and asset management system
are prerequisites for an incident management program. Asset management
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is similar to a series of measurement studies, whereas incident management
is similar to a series of intervention studies.

Cybersecurity is the study and assurance of a sociotechnical system.
Many studies are realized and designed differently if they will focus on the
sociological or the technological aspects of cybersecurity. A measurement
study of how users cope with complex password studies and a measurement
study of the features of servers with open Secure Shell (SSH) ports may look
quite different. They certainly use different research tools to achieve their
aims. But they can both inform different aspects of our understanding of
the authentication ecosystem.

This kind of discussion is uncommon in many fields because many aca-
demic fields are at least partially defined by their characteristic methods of
study (Craver, 2007; Mitchell, 2003) and jargon built up around and about
those methods (Galison, 2010). However, cybersecurity got rather large,
rather fast. Both the norms and useful approaches within subfields are un-
der development. This ongoing development means the designer must be
more conscious of meeting the goals of consistency, generalizability, trans-
parency, and containment (Chapter 4) than in more established fields.

As a second heuristic, study design should focus on much smaller ques-
tions than people often expect. It is important to break the problem into
as many smaller problems as plausible. That is, decompose the problem
(Bechtel and Richardson, 1993). “How did the attacker get in?” is not
an actionable research question. “Were there any unauthorized access at-
tempts to the file server between January 1 and January 147" is approach-
able, but will need to be accompanied by other interleaving questions about
other methods and times. The research program is then a description of
these various interleaving questions and how they are related.

Another complementary way of choosing a study type is to try to find
a similar study that would be applicable if it were repeated in a slightly
different place, time, or with a small variation. This approach would provide
two benefits: (1) a draft study design and (2) some related results with
which to compare.

Study design, and choosing a study design, is a skill. As such, it can
be developed with considered, effortful practice. Practice helps develop a
sense of what an achievable study is, but it also develops skills in executing
study types. A study designer is constrained by the kinds of studies with
which they have experience. So practice a variety of study types to gain
practice both in study type selection as well as to broaden your experience.
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7.2 Types of Studies

This section introduces five broad categories of study. Often, a scientific
field will grow up around a narrow interest, a combination of a phenomenon
to study and a way to study it. For example, many fields in the life sciences
study memory in mammals, but cellular physiology studies neurons with
a few characteristic study types, whereas behavioral psychology studies
whole animals with a different set of characteristic study types (Craver,
2007). Cybersecurity has not yet developed a clearly delineated set of sub-
fields, so this chapter introduces different study types for a wide set of
situations. This chapter is focused on providing enough information about
the study types so that a designer can select which type is most suitable
for their topic of interest, but not enough detail to provide a how-to guide
on designing it. These five types are:

Case studies are scientific reports that detail a specific occurrence of in-
terest as observed by the author. A case is a complex functional
unit.

Natural experiments and measurement studies take as central the
observation of the state of the world; natural experiments focus
on special events of interest outside the study designer’s control,
whereas measurement studies isolate a few measures of interest in
relevant populations.

Interventions are a pre-planned change to a live system and accompanied
by observation before, during, and after the change.

RCTs test the effectiveness of an intervention by creating two groups that
are statistically equivalent except for the intervention. The results
measure the difference when only one group receives the interven-
tion.

Simulation and mathematical exploration starts with a description
of the system of interest and a model of how the system changes
over time; the study is to evolve the start state, based on the model,
and observe the outcome states.

7.2.1 Case Studies

A case study is a scientific report that details a specific occurrence of interest
as observed by the author. Case studies can be active, including interviews
or other questioning. They can be solely passive observation. Case studies
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can follow just one case in isolation or they might follow a series of related
cases in similar ways for comparison. A longitudinal study is a specific kind
of case study that follows one or more cases for an extended period of time
(often years), repeating the same observations at multiple points in time.
Case studies usually do not involve a planned intervention by the observer
(see Section 7.2.3 for intervention studies). Case studies may track changes
such as the result of interventions outside the observer’s control, but we
cover these studies under the name natural experiments (see Section 7.2.2).

Case studies are traditionally associated with the social sciences, but
they are common in cybersecurity as well. Stake (1995) is the canonical
reference for how to design and conduct a good case study. Most things
that are called case studies in the cybersecurity literature are conducted by
researchers with a social science background, but these do not make up the
majority of case studies in cybersecurity. Most case studies in cybersecurity
are vulnerability reports or papers documenting how to attack some specific
system in a specific situation—a case.

A case study should have a rigorous research method. It is no different
than any other study type in that regard. The research question should
be clearly articulated at the beginning. It is a kind of structured obser-
vation, not haphazard observation of convenient surroundings. The most
important aspect of a case study is the data gathering plan. Analysis and
interpretation of results should be systematized with a plan ahead of time,
separated from data collection, and any judgement of the data should wait
until all the data are collected. To the extent possible, the analysis of the
case should search for plausible explanations of the case and connect it to
other established cases as well as relevant pieces of more general knowledge.

A case is a complex functional unit. To do a case study means to analyze
it as a whole complex unit rather than to try to break it down. The crux of
a case study method is to observe the case while (1) avoiding an unknown
change in the case by the act of observing and (2) preserving an accurate
description that is orderly and accessible.

Some changes due to observation are known and so can be accounted
for. If the case is a potentially vulnerable piece of software, running it in
a debugger provides more opportunities for observation but also may alter
its behavior. The insights gained from observing the software need to be
analyzed and usually codified as a crashing test case before the study is
usefully complete.

A theme with all types of studies is taking good notes. But detailed
observational notes—whether intentionally selected logging of a program
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Attacks and vulnerabilities as case studies

Heartbleed is a vulnerability in OpenSSL that was found in 2014
(Durumeric et al., 2014). An adequate description of the vulnera-
bility is also a case study. In cybersecurity, that means there are
enough details to verify the vulnerability is real and understand how
the vulnerability works. This understanding allows defenders to test
if they are vulnerable and deploy mitigations; it allows the software
vendor to fix it and issue a patch. Heartbleed is an important case
because OpenSSL is such a common library, and it is used for a se-
curity function. We do not need to generalize beyond this case for
a vulnerability report—the case itself is important enough that it
requires a thorough understanding.

Heartbleed took advantage of the OpenSSL Heartbeat extension and
was able to download the OpenSSL certificate information as well
as other information stored in the web server’s memory. In the
OpenSSL Heartbeat extension, the client would send the server regu-
lar packets to keep the connection alive. Otherwise, the client would
have to renegotiate the connection periodically, which had its own
dangers. The keepalive packet had three sections: a payload con-

sisting of random strings, the size of the payload, and a request to
the server to send an acknowledgement packet in return to keep this
connection alive. The server then saves the packet’s payload at a
random place in its memory stack. The server’s response was to take
the payload size from the client stack, then look at the memory lo-
cation where it stored the client’s random string and return a string
starting at that memory location of payload size.

The attacker would lie to the server about the size of the payload.
Instead of, for example, 8 bytes (which was the true size of the pay-
load), the attacker would claim it was 65,227 bytes and would receive
back data of that size. The attacker would receive everything in the
memory of the web server starting at the point where the packet
was stored; if the attacker is mildly lucky, this data could include
the private TLS key of the server. If they’re unlucky, they can send
another heartbeat and try a few times until they are lucky.

To provide a good vulnerability report, like a good case study, the an-
alyst needs to present all these details, how they result in a situation
of interest (leaking cryptographic keys, in this case), and connect the
case to the Internet ecosystem and why it matters.

of interest, or handwritten notes of human behavior—are also part of the
results of a case study. Data collection should be repeatable, so that if
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another researcher were to conduct the study, they would collect similar
information. To meet this requirement, data collection should be inten-
tional. While “collect everything” isn’t the worst plan, storage and search
can become impractical, and even the act of defining what falls under “ev-
erything” requires some intention.

The main strength of a case study is that it’s connected to the real world
and system of interest both immediately and thoroughly (see Section 4.2.1).
If the study population is only a small fraction of the population of interest,
the extent to which the results generalize beyond the case study is typically
low. This situation is common in case studies of humans. However, if the
population of interest is TLS libraries, then a study on just OpenSSL (pop-
ulation of one) may tell us rather a lot about the population of interest
since OpenSSL is the mostly commonly used TLS library. When the popu-
lation of interest is small, then as long as the study population is carefully
selected, the extent of generalization from the study may be adequate.

Case studies tend to be weaker on insulation (see Section 4.1.1). The
case is a complex whole embedded in its context in the world, which is
the antithesis of an insulated study environment. Consistency across time
and space are often not expected with a case study. This lack is not a
failing of case studies but rather a result of the complex nature of cases.
A good case study should seek to identify the ways in which the context
of the case, including its temporal and spatial situation, contribute to the
history and salient observations about the case. It is not that a case study
on a similar subject replicated at a later time or reproduced at a different
location would be wrong if it acquired different results. Those would just
be studies of different cases—related cases, to be sure, but also importantly
different ones. These sorts of minor variations on a case study can help to
identify differences which might be good targets for more controlled studies.

7.2.2 Natural Experiments and Measurement Studies

The core of both natural experiments and measurement studies is to observe
the state of the world. Observational studies involve observing the world
without changing it as part of the study. A special kind of observational
study is a “natural experiment,” in which the researcher observes the world
during some interesting change that occurs outside the researcher’s control.
When natural experiments are important is if the change during which we
can observe is somehow larger than any researcher could make or control.
These can be due to either physical or social processes. For example, how
electrical equipment behaves during a solar flare is one kind of natural
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experiment; humans cannot create magnetic fields as strong as those created
occasionally by the sun. But the coronavirus pandemic created various
natural experiments because of changes in the human social world; for
example, oceanographers could listen to quiet oceans without noisy cruise
ship engines in Alaska (Mars, 2020). The word “natural” only means the
researcher did not design the intervention. The change can be in nature
(solar flare) or not (human vacation habits), and the observation of interest
can be in nature (ocean and whale noise) or not (electrical equipment).

A measurement study and a case study are both observational stud-
ies. We differentiate them based on the system of interest and the study
population. A case study focuses on the complex, situated nature of a
case. A measurement study is focused on abstracting away some of the
complexity of the case and measuring certain representative features. A
measurement study also tends to focus on a larger study population, se-
lected more intentionally to be representative of the population of interest
(see Section 4.2.3).

The strengths and weaknesses of a natural experiment both revolve
around its key feature: the most important aspect of the study is outside
the control of the study designer. One important strength is related to
containment. The kinds of interventions that might be found via natural
experiments cannot be plausibly designed because, even if possible, the
intervention would cause inordinate harm if planned as part of a more
controlled study. Like case studies, natural experiments have a high degree
of connection to the world and systems of interest because the experiment
is simply part of the world itself. While the topic of interest in a natural
experiment may be studied in other ways, the kinds of observations and
study populations that are possible with natural experiments just are not
possible any other way.

Due to that uniqueness, study designers are willing to tolerate imper-
fections and weaknesses in aspects that, in other situations, would not be
acceptable. There is essentially no consistency across time or space with
a natural experiment. However, unlike with case studies, this failure of
replication and reproduction is not intentionally due to the complexity of
the case. It’s because the intervention is out of the study designer’s con-
trol. This fact makes natural experiments fragile and difficult. There is no
chance to try a pilot study to see what data should be collected, and there
is no restarting and trying again if the researchers were to make a mistake.
Sometimes, there is hardly time to prepare for an event that induces a
natural experiment. These factors, combined with the expected lack of in-
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General Data Protection Regulation (GDPR) as a natural
experiment on WHOIS

The GDPR is a law in the European Union (EU) to regulate data
protection and privacy. Enacted in 2015 and effected in 2018, the
law applies to every member of the EU, without regard for the na-
tional laws already in place (Albrecht, 2016). It contains rules and
regulations for processing personal data. For example, IP addresses
and cookies are now considered personally identifying data (Tankard,
2016).

The effective date of big public policy changes is one classic source
of natural experiments. Just before and just after the policy change,
the EU and the world are approximately the same, except for the
policy change. One aspect that is affected by the GDPR is access to
the whois data. whois links a DNS name with the registrant to whom
it is delegated and the registry that is responsible for maintaining the
delegation.

As of 2020, we are still in the midst of a natural experiment about
what happens if access to whois data suddenly disappears. This data
had been a useful tool to cybersecurity researchers (Piscitello, 2018),
and the GDPR changed its availability. ICANN has been slow to
clarify the policy stance on registrant data, and that uncertainty has
lead several whois providers to turn off or restrict the service.

Anti-abuse staff and law enforcement would not globally elect to have
a favored data source taken away overnight. That’s what makes this
sort of intervention only possible via a natural experiment (apologies
for stretching the term natural to include political actions). While
such a study cannot be repeated (we cannot implement the GDPR
again for the first time), it is a unique source of insight about how
useful whois data for anti-abuse work. Seeking this sort of insight
amidst a momentous event is the crux of a good natural experiment.

sulation that comes with situating a study in the world, make interpreting
natural experiments rather fraught. Natural experiments provide impor-
tant evidence about what sorts of sequences of events are possible. But it
is not possible to declare, on the basis of a natural experiment alone, why
it happened that way.

Measurement studies have a profile of strengths and weaknesses that
can particularly complement case studies (see Section 7.2.1) and simula-
tions (see Section 7.2.5). One reason for this is that a measurement study
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has the best chance of reaching a census of the population of interest (as
defined in Section 4.2.3. The important result is to learn how the measured
properties are distributed within the population of interest. Chapter 6
introduces some statistical techniques that are useful for this kind of as-
sessment. Case studies need to be paired with these kinds of data because,
while they provide a thorough description of the situated case, we need pop-
ulation data to learn to what extent those characteristics might be shared
by others. Simulations need to be paired with these kinds of data because
the data ground either the starting or ending point of the simulation in the
real world. Such grounding is vital assurance the simulation is exploring
plausible scenarios and explanations rather than wild fancies.

Insulation can be challenging in many ways for measurement studies.
The act of measuring can influence the observed system. FEven leaving
Schrodinger and his cat aside, humans know when they are being watched,
and they behave differently. Network or host measurements consume sys-
tem resources that will change behavior on a resource-exhausted system. So
whether it is psychology or packet throughput, measurement studies should
measure the same property in multiple ways and cross-check the measures
for consistency.

Measurements and information are also powerful. Both measuring and
not measuring something can cause harms; a measurement is not value-
free, and assessing containment is important for a measurement study just
as anything else. For an example of how measurement choices can cause
harms, see Noble (2018).

There are some things that cannot be measured almost by definition:
for example, the security incidents undetected by defensive layers. This
lack makes it tempting to measure the mirror of the unavailable values, in
this case, security incidents detected. But take great care in measuring an
item whose interpretation is heavily influenced by an unmeasurable item.
Without knowing something about the base rate of occurrence, it is easy to
mistake an increase in detected security incidents as a problem, for example.
But without knowing how many total (detected and undetected) incidents
there are, it is impossible to know whether detecting 99 incidents is 99%
effective or 2% effective. While a strength of measurement studies is that
they provide concrete values for the measured items, a weakness is that,
by themselves, they provide no context for how the measured items are
related to other aspects of the system of interest. Other study types need
to provide that context.
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Measurement and observation of cyber crime

Cyber crime costs billions of dollars each year. Measuring the amount
that it costs is a tricky process. Anderson et al. (2012) describe that
there are over a hundred different sources for cyber crime statis-
tics, but they are fragmented and have issues with collection con-
sistency, over-reporting, under-reporting, sampling bias, and more.
However, the authors attempt to control for these issues and measure
the amount of cyber crime in 2012.

We also know that different cyber crimes have different scales of
operation. We can’t lump all cyber crime into one category; instead,
we must create different categories to measure more effectively.

It is also one thing to measure the amount of losses from crime, but
another to measure the true cost. If a bank loses $10 million dollars

to fraud, there are also the costs of investigating the fraud and fraud
prevention. These are direct outlays of money, but then there is also
indirect loss: the lack of trust consumers have in their bank, the lost
business opportunities due to the fraud, and more.

The researchers also returned to repeat the study in 2019 (Anderson
et al., 2019). Mobile crime was not a large factor in 2012, yet it has
grown in 2019. Both papers use estimates as their basis but also
discuss the underpinnings of why the estimates are useful.

There is really only one global cyber crime ecosystem, so this kind
of measurement study is both widely applicable and very specific.
These accurate measurements and observations about the state of
the world are tremendously valuable. They inform public policy and
organizational risk policy by setting expectations and contextualizing
the resources involved for all parties effected by cyber crime.

7.2.3 Interventions

A study in which an intervention on the system of interest is planned and
executed by the researcher is common. Young children naturally explore
the world with a naive version of intervention studies. The archetypical
vision of an experiment is an intervention, but usually, when lay people say
“experiment” they actually mean an RCT. This section will cover studies
where the intervention is planned by the study designer (distinguishing
them from natural experiments) but lack the very specific controls expected
of an RCT. RCTs are discussed in the following section.



126 Science and CyberSecurity

There are various possible kinds of intervention studies. Cybersecurity
inherits much of its received terminology from computer science, for better
or worse (Spring et al., 2017). In this case, it is probably for the worse, as
there are a variety of conflicting views about the term “experiment” (Tedre
and Moisseinen, 2014). The five interrelated views on experimentation in
computing identified within the literature review are feasibility, trial, field,
comparison, and controlled experiments (Tedre and Moisseinen, 2014, §3).
A feasibility experiment is better judged for strengths and weaknesses by
the terms of a case study since it is a proof of concept based on the specific
case. Controlled experiment is a synonym for RCT, discussed later. This
section will introduce the middle three as varying degrees of intervention.

A trial experiment “evaluates various aspects of the system using some
predefined set of variables” (Tedre and Moisseinen, 2014, §3). The inter-
vention in a trial experiment is quite light. Essentially, the intervention is
introducing a new software system to an environment of interest and ob-
serving the interaction and how the system fares. A trial is appropriate if
the software system performs a novel function or an established and useful
function in a novel way. Such an intervention should probably be accompa-
nied by a measurement study of how existing related systems perform on
the same measures taken on the novel system.

Some kinds of trial experiment are better assessed by the criteria of a
simulation. Program verification and fuzz testing might be seen as trials
of the new system to measure certain features. But the main concerns
with program verification and fuzzing are whether the results apply to the
actual world, which is the main challenge in simulations. Therefore, we
handle them in Section 7.2.5. Trial experiments that deploy a system into
a novel environment have a very different set of concerns.

In some ways, trial experiments are the worst combination of study de-
sign properties. They provide all of the detail of a case study that makes
insulation hard but without any of the connection that assures the obser-
vations apply to a genuine situation in the world. One valuable way to
think about planning good trials is to think of the test environment(s) as
the study population and the spectrum of current and potential future en-
vironments as the population of interest. The core question can then be
phrased as how to select a meaningful study population to argue for an
adequate extent of generalization from the trial.

Field experiments are the quintessential intervention in cybersecurity
practice. The basic idea is to change a live system and observe it before,
during, and after the change. The research question should be specified
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ahead of time; in practice, it is often a goal state such as discarding enough
abusive packets to quell the DDoS.

Incident response as a study based on interventions

The entirety of computer security incident response (CSIR) could be
viewed as a series of loosely controlled field experiments. Consider
the classic case of Stoll (1989) hunting what would turn out to be
Russian intelligence operatives on the Lawrence Berkeley National
Laboratory (LBNL) computer system in the 1980s.

Don’t know where a suspicious user account came from? Delete it
and see if anyone or anything complains. Can’t see what is happening
when the suspicious user logs in overnight? Invent a wire-to-paper
IDS logging system and see if their activity can be tracked with it.
Not sure if the attacker is gaining access through a vulnerable emacs
version? Upgrade the version and assess attack success. Not sure
who the hacker is? Invent fictitious LBNL department documents
and see if they will stay in the honeypot long enough to track them.

Stoll trained as an astrophysicist, and so his abilities to design suit-
able interventions and take thorough notes are no accident. They’re
an example of how scientific training can be adapted to a cyberse-
curity context. Stoll (1989) remains one of the de facto standard
accounts of how an analyst should think in CSIR to this day (Spring
and Illari, 2018b).

As with trial experiments, the main weaknesses of a field experiment
are insulation and consistency. Field experiments often do not enable you
to understand why an intervention works as expected or not. On the other
hand, field experiments are more like case studies in that they capture a
sequence of events embedded in the world and so connection is high. The
results may have a low extent of generalizability, but if the population of
interest is the same as the study population, that might be fine.

On the other hand, no attention to generalizability and lessons learned
from field experiments leads to a vicious cycle of repeating nearly identi-
cal interventions without much improvement in efficiency. There are var-
ious names for this repetitious cycle of analyst effort: firefighting, playing
whack-a-mole, etc. The purpose of viewing incident response and other
cybersecurity practices as field experiments is to structure that knowledge
as both interconnected to other field experiments as well as to identify the
most critical gaps in general knowledge that would enable more efficient
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synthesis of the results and thus better planning, defense, and prevention.
Incident management has advocated feeding lessons from response back into
preparation and protection for decades (Alberts et al., 2004), but advice on
how exactly to do that has been absent (Spring and Illari, 2018b). Inter-
locking study types with complementary study properties provides a way
forward if we view incident response operations as a kind of intervention
study.

Comparison experiments are common in the academic literature; they
refer to a comparison between two or more possible solutions to a problem.
Although the concept of comparison is good, to meet the stated goals of
a comparison paper, a study designer should conduct an RCT. Computer
science is plagued by “horserace papers” that are merely biased compar-
isons of the author’s favored solution against a study population selected to
make the author’s choice look good (Tedre and Moisseinen, 2014). Given
the failure to hold comparison experiments to standard precautions and
design norms, our professional opinion is to not conduct them and to avoid
basing decisions on them. The exception would be any comparison exper-
iment that is strict enough to be considered an RCT, but then it is no
longer a comparison experiment. A comparison study should also not be
confused with a set of case studies of possible solutions; however, a set
of case studies should also avoid basing a comparison on a biased set of
parameters, measurements, and tests. Standard benchmark sets might be
adequate defenses against the abuse of comparison studies in some parts
of computer science. Due to the highly contextual nature of cybersecu-
rity solutions, as evidenced by the difficulty of comparing blocklist contents
(Metcalf and Spring, 2015), it is unclear that security-related performance
could reasonably have benchmarks in the same way.

7.24 RCTs

The term randomized controlled trial (RCT) has a specific meaning within
the medical sciences to be a particular kind of clinical trial involving peo-
ple; RCTs are also used in the social sciences to study humans. Specifically,
an RCT tests the effectiveness of an intervention by creating two groups
that are statistically equivalent except for the intervention and measuring
the difference when only one group receives the intervention. The phrase
“statistically equivalent” requires a lot of unpacking. Although the term
RCT is specific to sociomedical studies, the concept of a study with sta-
tistically equivalent groups and different interventions goes by other names
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in fields adjacent to cybersecurity, such as “controlled experiment” (Tedre
and Moisseinen, 2014) or “A/B testing” (Beyer et al., 2018).

Discussion of how to design RCTs is the topic of several books (Kabisch
et al., 2011). When to use an RCT is also the topic of several books. When
public policy makers should expect an RCT and how to integrate results
into policy is even the topic of books (Parkkinen et al., 2018). This section
will orient this vast space, but we will not be able to do more than a brief
introduction here.

Cybersecurity authors have generally endorsed the view that there is a
hierarchy of evidence quality and that RCTs are unequivocally at the top
of it; the only thing supposedly better than an RCT is a meta-analysis
of multiple RCTs. Edgar and Manz (2017, ch. 1) explicitly do so, while
Dykstra (2015, ch. 1) implicitly adopts this stance. However, there are well-
documented problems with this simplistic evidence hierarchy (Parkkinen
et al., 2018). Perhaps the most important is that a researcher cannot decide
which RCTs are important or helpful to conduct without understanding
something about the real-world problem. That is, the topic of interest
needs to already have a basic breakdown into entities and activities, how
they are related or organized, the topic’s history or how it comes about,
and some important similarities and differences to other interesting topics
(Spring and Illari, 2018a). This information is best gained through the other
types of structured observation described in this chapter. RCTs certainly
have an important role to play, but that role is not necessarily more or less
important than other kinds of studies.

Cybersecurity practitioners often express a kind of dismay that they
could never do proper science, and therefore become demoralized (Spring
et al., 2017). What these practitioners are often actually expressing is the
very sensible observation that an RCT is not an appropriate study type
given their topic of interest and the maturity of the community’s under-
standing of that topic. However, they have mistakenly conflated “doing
science” with the much more limited “conducting an RCT.” This outlook
is dangerous because it makes those practitioners closed off to advice on
study design for other study types.

Compared to the biochemistry of pharmaceuticals, there are relatively
few scenarios in cybersecurity where RCT's are an appropriate study type.
But that’s alright; astrophysics conducts exclusively observational studies
and it is not somehow less worthy of scientific accolades than biochemistry
because of it. Similarly, a cybersecurity researcher does not need to conduct
an RCT to be a “real” scientist; they only need to select an appropriate
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RCTs during release engineering

Outside the medical and social sciences, study designers may not
use the term RCT; however, they still frequently conduct studies
with controlled intervention on statistically equivalent groups. For
example, these principles are used in “canarying” releases as a part
of release engineering. Beyer et al. (2018, ch. 16) refer to this practice
as a kind of A /B testing; that is, a study with two groups (A and B)
that are statistically equivalent except for the test of interest.

Canarying in software releases is the act of choosing a random subset
of systems to which to deploy a new software release (Beyer et al.,
2018, ch. 16). If the software is released all at once, then the failure
of a release can take the entire installation offline. By using a ran-
domly chosen subset, the potential errors can be discovered without
requiring downtime for all of the systems.

The canaries are then measured for various properties, such as re-
sponse time or error rate. These measurements are then compared
against the control, that is, the systems that were not upgraded.

There are issues to be aware of; for example, an overloaded system
in the control group could mimic a canary due to the load. Us-
ing canarying for software releases is a useful method to constantly
deploy upgrades without affecting the entire population of systems.
The use of different terminology—A /B testing versus RCT—hides a
lot of deep similarities in how the two practices contribute to study
design goals and desirable study design properties.

study design for their research question and conduct that study with the
desirable properties described in Chapter 4. We are emphasizing this point
so strongly because, in our experience, the biggest threat to conducting
an RCT in cybersecurity is doing one because that’s what the researcher
assumes “doing science” means rather than actually understanding which
study type should be used. Such an inappropriate RCT will fail no matter
how well-designed it is. Before embarking on an RCT in cybersecurity,
ensure the problem of interest is both relevant and well-studied by other
research methods so that the place where the RCT will be informative is
clear.

If an RCT is appropriate for the topic of interest, whether it is canary-
ing during release engineering or analysis of human biometric performance
for authentication, then the main work for the study designer is to truly
understand how to create and maintain statistically equivalent groups. The
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How an RCT can fail

Beckman et al. (2017) sets out a research question to understand
where in the brain humans process representations of cryptography.
This topic has the potential to be fascinating, but it has not been
thoroughly studied. The authors might have been better off conduct-
ing some exploratory studies (Chapter 5) or case studies. But they
endeavored to design an RCT on the basis of prior brain imaging
studies. Unfortunately, the efforts highlight several ways an RCT
can go wrong:

WEIRD population taken as representative of all learners.

Insufficient statistical power (Ellis, 2010).

Not understanding the properties of the tool (when func-

tional magnetic resonance imaging is misused, it leads “to
a biased and inappropriately constrained characterisation of
functional anatomy” (Friston et al., 2006)).

Inadequate blinding for an RCT: Chalmers et al. (1981)
recommends quadruple blinding.

The result is not a negative result, but a non-result. A negative
result means the study was conducted properly but the statistical
analysis indicates the posterior belief should be that the intervention
had no effect. A non-result means the study was conducted in such
a way that we have no idea whether the intervention had an effect
or not. A negative result contributes to knowledge about the system
of interest. A non-result is a waste of time unless it is used as a case
study on how to design better RCTs.

key step in any RCT is to divide the study population into two statistically
equivalent groups, except for the intervention of interest, and maintain
their statistical equivalence during the period of intervention and obser-
vation. This section introduces just two practices that assist that goal:
appropriate blinding and pre-registering trial methodologies.

Appropriate blinding has at least four components (Chalmers et al.,
1981):

e The population selection process draws from a uniform distribu-
tion; the study designer cannot view nor influence the process.
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e The study designer and research staff do not know which group is
receiving the intervention.

e The study groups do not know which study group is receiving the
information.

e The study designer and research staff do not know the partial
progress or ongoing results of any study population group.

Each of these is important because there is ample evidence that without
each blinding technique humans will consistently manipulate the results,
whether consciously or subconsciously. To increase transparency and ac-
countability, the study designer should pre-register an RCT method that
ensures these kinds of blinding.

Pre-registering the trial has at least two positive effects, centered around
ensuring the research staff maintain the statistical equivalence of the study
groups: execution of the RCT and unbiased publication of results (Sterne
et al., 2011). Expecting the study designer to register the trial method
incentivizes the designer to think through the method and that the exe-
cution abides by the plan. If the study designer cannot specify an RCT
plan in enough detail ahead of time to register a methodology, then they
should revisit whether an RCT is the most appropriate study type for the
situation.

If the results of a study are buried or otherwise not published, it distorts
the community’s knowledge creation (Sterne et al., 2011). There are various
points at which publication of results can be influenced, such as by the
researcher, by funding bodies, by program committees, and by publishers.
For why this distortion is problematic, consider the release engineering
example. Release engineering does not call its practice an RCT, but, for all
intents and purposes, it is. Consider the results were filtered so that 100%
of the successful release instances and between 20% to 50% of the failed
release instances are returned to the engineers. Clearly this will prevent
the engineer from building the best system, as failing cases definitely exist,
but they are under-reported and therefore unfixed. It also makes the overall
success of the release look (with these example numbers) between two to
five times better than it really is. An analogous problem occurs if RCT
results are not published because they are “uninteresting,
“unsurprising,” or just not what the study designer hoped for.

The way to fix this publication problem is to register the trial method
before it is conducted and commit to publishing the results, whatever they

? “well-known,”



Destigning Structured Observations 133

are. A designer does not need a journal or publisher to mediate this; a
method signed with Pretty Good Privacy (PGP) including a timestamp,
especially with the hash registered on some third-party store or even a block
chain would accomplish the same non-repudiation of the study method. For
release engineering, writing the code that conducts the canary tests is a way
to register the method via the git commit, as long as the version of the code
is strictly tied to the study.

7.2.5 Simulation or Mathematical Exploration

In a simulation, the study designer starts with a description of the system
of interest and a model of how the system changes over time. The model
is used to calculate (that is, simulate) future states of the system. If the
system is a computer system, it is essentially a mathematical system itself,
and so simulation and mathematical exploration collapse into nearly the
same thing in computer science. In cybersecurity, where humans, security
policies, economics, and cyber-physical systems are involved, there is an
extra bit of care in ensuring the model represents the system of interest in
the relevant ways. The goal of a simulation is often to test the plausibility of
the model based on plausibility of the resulting outcomes. Many simulations
may be conducted (in parallel) in order to compare the outcomes and select
a preferred model.

Mathematical exploration and simulation play similar roles in building
knowledge of the world. Whether the calculation is via pencil and paper or
via a computer is the main difference between the two terms, and that is a
distinction without a genuine difference, as far as learning about the world
is concerned.

Simulation is more efficient than conducting all the studies. A simula-
tion also has relatively low risk of harm, and so can be used as a strategy
to improve containment. Simulation can be used to explore boundary con-
ditions within which a more connected study might be needed. Simulation
can be used to make predictions which can then be tested against future
observations.

Simulation has a special place in cybersecurity because it has a special
place in computing. The core problem for simulations in most fields is
that they have to represent their system of interest on the computer. If
there is a mistake or even just imprecision in that translation, then the
simulation is likely useless if not misleading. But simulating behavior of
other computers does not have this fundamental problem. Any computer
can perfectly simulate any other computer; this was one of the first axioms
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of computer science (Turing, 1936). Of course, it will be impractical for a
slow computer to simulate a fast computer, but this is a minor inconvenience
rather than a core problem.

The strengths of simulation revolve around control. High insulation,
high transparency, and high containment all stem from the fact that the
simulation is entirely contained within the study designer’s virtual environ-
ment.

The weaknesses of simulation revolve around its lack of connection.
Strictly speaking, the subject of a simulation is the model itself, not the
system of interest. So a simulation has no direct connection to the system
that it simulates. Any connection is mediated by the model of the system.
However, a primary thing a simulation tests is the consistency of that very
model (see Section 4.1.5). This situation makes it unwise to trust the model
being tested to carry the weight of a connection between a simulation and
the system of interest.

The extent of generalizability of a simulation is a similarly tricky ques-
tion. A simulation can be quite good at producing generalizable insights
about models. But whether a truth about a class of models provides any
insight into the situated system of interest which may be modeled by one
element of that class is another, much foggier, question.

One way to reduce the bite of these weaknesses is formal modeling, such
as logical modeling. Formal models, if constructed carefully, can provide
structured guarantees about the relationship between the simulation and
the studied model as well as the studied model and a real computer system
(Pym et al., 2018). For example, the specification and implementation of
an important hashing function in OpenSSL has been verified using three
such intermediate steps (Beringer et al., 2015).

7.3 Recap

This chapter introduced six types of useful studies for cybersecurity science.
In general, start out by observing via careful case studies and measurement
studies. If those have already been completed adequately, consider simu-
lations and interventions to help choose between competing models of the
system of interest. After several iterations of observation and intervention,
developing the model of the system of interest further may then require a
carefully controlled RCT.

The strengths and weaknesses of the study types are loosely summarized
in Table 7.1. RCTs have transparency in both the strengths and weaknesses
because while a well-done RCT can provide a great deal of insight into
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Simulating program inputs as a security test: Fuzzing

Fuzzing “is the execution of the program under test using input(s)
sampled from an input space that protrudes [that is, extends] the
expected input space of the program under test,” usually to test
the program for security policy violations (Manes et al., 2019, p. 2).
Each fuzz test is a trial or simulation of how the program under test
behaves given a particular input. Fuzzing has proven quite successful
in identifying flaws in programs and any production system should
have fuzz testing as part of its development lifecycle.

In important ways, each round of fuzzing is automating the study
design process. The model the simulation is probing is the mapping
between input files and security policy. The desired behavior is that
no input causes an exploitable crash. A fuzzer repeats many fuzz
tests to explore that mapping and searches for exploitable crashes.
The model of the program under test is updated based on the prior
fuzz test’s results. Those results are used to inform the selection
of the next test input. A fuzzer contains a systematic method for
checking whether the results support or trouble the model (that is,
security policy) of the system of interest. And the next fuzz test
considers the past two results, and the process continues. Fuzzing
results will not be exhaustive, but the more evidence gathered with-
out a crashing test case, the stronger the assertion that the program
under test does not have exploitable input processing errors.

the whole process, any small lapse in transparency or study planning can
introduce biases that undermine the results.
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Table 7.1 Loose Summary of Strengths and Weaknesses of Six Broad Types of
Study.
Type Strengths ‘Weaknesses
Case study Connection, documenting Insulation, consistency

complexity

across space and time

Natural experi-

Containment: opens up

Consistency, fragility of

ment possibilities otherwise execution, extent of
unavailable generalization

Measurement Potential for conducting Insulation, transparency

study census, extent of of data collection is costly
generalization, replicability

Intervention Connection, application of Insulation, extent of

study designer’s tools generalization

RCT Insulation, extent of Connection, transparency
generalization, transparency

Simulation Insulation, transparency, Connection

containment




Chapter 8

Data Analysis for Cybersecurity:
Goals and Pitfalls

When we begin research, we generally have a goal in mind. It may be to
prove a new threat exists, to analyze a current one, to examine patterns
of behavior, or another goal. Adversaries have asymmetric advantages in
cybersecurity; the job of defenders is to mitigate that advantage.

To achieve the best results, researchers need to avoid pitfalls that can
compromise their goal. A pitfall can compromise the validity of results and
negate the work. Careful work is needed to create the best research. People
want to learn from research and to use it for themselves but if the work
falls into one of the common pitfalls, it isn’t usable.

It’s a careful path to take. The end goal is to do the best research, but
the dangers of negating work are real. This chapter covers the goals and
pitfalls from a cybersecurity point of view.

This is not an in-depth look on this topic; instead it is an introduction
to the obvious pitfalls and goals in cybersecurity research. We want the
results to be meaningful and useful and these are the first steps to look for
or avoid.

8.1 Goals

Research is a process. At the end of the process, the goal is to move the
field forward in some way. In cybersecurity research, this can be considered
as two main goals.

One goal is to observe events and provide good explanations of security
events. Participating in the events can introduce bias and change the re-
sults, so it is best to be an outside observer. This is often called structured
observation. The collection should be done in a structured manner, which
means there is a plan to collect data, and it is followed exactly. It also
means if the plan is handed to someone else, they can follow it and also
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collect the same kind of data. For example, a program that collects passive
DNS data is an unbiased observer. A program that queries the local name
server for domains collected by asking random friends isn’t.

In cybersecurity, this can include case studies as well as studies. In a
study, the entire population or ecosystem is considered. Samples are taken
and analyzed. Results are generated. For a case study, a single item or event
can be analyzed. Case studies can illuminate the origins of an event, the
changes over time, or even suggest solutions. They can suggest research
directions or highlight previously unknown events and are important to
comprehensive research.

A second goal is to create clear and comprehensible explanations for
security events. Collecting data through structured observation allows re-
searchers to achieve this goal. For example, explaining a malware’s com-
mand and control system via DNS can be clear and comprehensible, and
it can be useful for stopping the malware. Leaving out the channel for
command and control when describing the malware or explaining that the
malware is Internet-controlled isn’t clear and comprehensible or useful.

Results should be replicable and reproducible. Those are actually two
different things even though they sound like synonyms (Broman et al.,
2017). A study is reproducible if someone else can take the data and meth-
ods and create the same result. A study is replicable if someone can take
the methods used in the study and repeat it. They won’t start with the
data used in the original study, but if the researcher defines their methods
appropriately, the other researcher can take the methods, the process for
collecting data, and replicate the results.

All research should be both. The results should be consistent if someone
else tries to do the same study.

Researchers want their research to be used. If the results are so unique
and not replicable by anyone else, then they’re not useful to anyone else.
Cybersecurity is, at its heart, a practical field. Results that are usable and
applicable to more than a single person are important.

Another goal is to encourage corroboration. Corroborating evidence
only strengthens research conclusions. If someone else can use their own
methods to recreate results, that only adds to their usefulness.

8.2 Pitfalls in Statistical Analysis

In Chapter 5, we discussed methods that could be used to analyze data. In
this section, we cover problems that can arise from those methods.
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Table 8.1 Mean of the Three

Distributions
Distribution ‘ Mean
normal 100.2
poisson 100
skewed normal 100.2

Statistics is an integral tool to research. It allows us to make inferences
about a population based on a sample. Not every population can be studied
in its entirety; the ability to take a random sample of that population and
restrict the study to that sample is important and integral to research, not
just in cybersecurity.

It is just that, though, a tool, and it can be misused. Just because
something is proven statistically doesn’t mean it is a truth, and unfortu-
nately, people and researchers (Amrhein et al., 2019) often conflate the two.
Statistics just means the probability of something occurring is known, not
that it must occur.

This section will discuss various pitfalls in statistical analysis and how
to avoid them. It doesn’t cover every possible pitfall, but does highlight
the more common issues.

8.2.1 Summary Statistics

Mean, median, mode, and standard deviation are all summary statistics.
That means that they take the measurements of a data set and distill it
down to a single number. It’s possible to say things like, “The average
length of a domain in this set is 7.6,” or “The median length of a domain in
this data set is 6.” A single summary statistic can be misleading, especially
when comparing different sets.

Fig. 8.1 displays three distributions that are distinctly different, but all
have the same mean. Table 8.1 has the means in question.

If consideration is only the mean, then the three very different distribu-
tions are conflated. Two of them appear visually similar, but the third, the
Poisson distribution, is different; it is flatter. The visualization illustrates
the difference, but the single statistic claims similarity.

The summary statistic can also mask variation. During the study of a
botnet and its traffic, the amount of traffic every five minutes was measured
every five minutes. Fig. 8.2 illustrates this, where the straight line is the
average of the sample, 2111.94. If the analysis relied only on the average,
then the spikes that occur in the data would be missed.



140 Science and CyberSecurity

R
— —— poisson
—— normal
—— skewed normal
o
S
—
S
= s
(an)
S |
—
o ]
>
o _|
[ee)

\ \ \ \ \ \
0 20 40 60 80 100

Fig. 8.1 Three Distributions with the Same Mean

Those two examples highlight the dangers of relying on a single statis-
tic. Variation is missed, and data sets can be conflated as being similar
when they clearly aren’t. Describing a data set requires more than a single
summary statistic.

Suppose there are two sets of domain names collected using different
collection methods. Each set has 100 domains. The length of the domain
names has been used as an indicator for maliciousness (Bilge et al., 2011)
so that is the measurement in question. The average length from Data Set
1 is 9.52, and the average length from Data Set 2 is 9.49. Using just that
single statistic about the two sets, it would appear the sets are similar.

However, the median for Data Set 1 is 9 while the median for Data Set
2 is 10. The sets are looking a bit different now. The standard deviation
for each set is 1.05 for the first and 1.22 for the second.

Finally, the two distributions are plotted in Fig. 8.3.
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Fig. 8.2 Number of Packets Every 5 Minutes from a Malware Sample

Relying only on the mean misses the actual variances of the data. The
average of both sets is close to 9.5 but if the median and the standard
deviation are also considered, then the sets are different. Relying on one
summary statistic to describe a set is a bad idea.

8.2.2 Bad Visualizations Hinder Analysis, Not Help

A visualization allows the human brain to find patterns and draw conclu-
sions. Falling back onto the old adage that a picture is worth a thousand
words, it can tell a story about the data. A good visualization can illumi-
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nate the data; a bad visualization can disguise patterns or lead to spurious
conclusions.

In the discussion on summary statistics in the previous section, if it had
started with Fig. 8.3, it would have been immediately apparent that the
distributions are different, thus short-circuiting the discussion. Summary
statistics wouldn’t have been needed to compare the distributions.

Let’s start with creating some bad visualizations and discussing their
issues.

A networked computer has 65,535 ports. When a connection is made
between two computers, one of those ports is used on both the source
computer and the destination computer. It’s not necessarily the same port
on both computers. Some ports have been designated to belong to certain
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services. For example, port 80 is customarily for http and port 443 is for
https. Mail uses port 25 whereas DNS uses port 53.

The destination port of a connection can potentially give an indication
of which service that connection is using. Taking the network traffic from a
botnet (Garcia et al., 2014) and visualizing just the source and destination
ports, we get Fig. 8.4.
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Fig. 8.4 Source Ports vs. Destination Ports

While there is a pattern in the lower left corner, the visualization is
lacking context. The lack of IP addresses means there is no context from
where these connections originated. It’s just a pretty picture of how ports
talk to each other.

Instead, make the z-axis the source IP addresses and the y-axis the
destination ports, as in Fig. 8.5.
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This still lacks necessary context. This shows a list of ports to which
each IP address connected, but it lacks the time factor as well as how often
the IP addresses connected to the port. An IP address that just happens
to connect to port 80 on another IP address once isn’t interesting, but one
that does it every 10 minutes for 24 hours is.

The two figures are interesting, but they don’t aid in analysis.

For a different example, consider the traffic from two botnets, Virut and
Donbot. The goal is to determine how similar the two sets are. Start by



Data Analysis for Cybersecurity: Goals and Pitfalls 145

looking at the top 10 ports to which each one connects during a test run
of the botnet client. Fig. 8.6 shows the plots of the frequencies of the top
ten ports. They look very similar, and in fact, if the correlation of the two
is computed, it’s 0.99. That means they’re linearly related (Gorunescu,
2011). Section 5.10.2 in Chapter 5 has more information on correlation.
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Fig. 8.6 Comparing Botnets by Traffic Pattern

There’s something very important left out of those plots, though. The
x-axis is the position of the count in the list of the top 10 ports. It isn’t
the port itself at all. Botnets can exhibit similar behavior if the frequency
at which they connect to their command and control servers is considered.
To examine this, Fig. 8.7 has the actual ports as the x-axis.
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Fig. 8.7 Comparing Botnets by Port

The ports are different. In particular, the most common port for the
Danbot botnet is 25 whereas the most common for the Fast flux is 443.
Using only the first visualization omits the ports. It’s possible that the
botnets have similar behavior but without the knowledge of the different
ports, it is possible to say they are the same.

A visualization lets the eyes assist in analysis, but a bad visualization
can confuse the issue or obscure results. Be careful when creating the
visualization to be sure it tells a reasonable story. The visualization of ports
versus ports isn’t interesting because computers talk to each other using
ports —it’s anticipated to see connections. But if it is known which port is
most common, or which IP address talks to the most varied destinations,
that can be an interesting figure.
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8.2.3 Correlation Doesn’t Mean Causation

It’s tempting, when similar outcomes occur, to assume that the same event
caused both. It’s a logical fallacy; the belief is that because two events
occurred together, then the cause was the same for both. Returning to
Fig. 8.6, it appeared that the two botnets were correlated. However, there
were different underlying causes for them. The Donbot (Etengoff, 2009)
botnet was known for sending URL-shortened spam whereas the Virut (Pol-
ska, 2013) botnet was an all-purpose cybercrime botnet. They had different
underlying code and functions.

For another example, consider two lists of domains. One is from the
Malware Domain List https://malwaredomainlist.com and the other is
from Cisco’s Top Million Domains (Hubbard, 2016). Fig. 8.8 compares the
distribution of the letters and numbers in the second level domains of the
two sets.

The correlation between the two distributions is 0.98. This means that
the two distributions are close to having a perfect linear relationship.

This doesn’t mean the two domain lists are related. Turning to the
TLDs in both sets, the Cisco data set has 1,950 TLDs and the Malware
Domain List has 78. In a more important distinction, the malware domain
list is community-reported malicious domains whereas the Cisco list is high
use domains that are assumed to be non-malicious.

While it appears that the two lists are similar using one simple measure,
in truth, they are very different once we look at them in their entirety.

This is an example of how a correlation can be spurious. It appears
to mean something, yet it is actually uninteresting or misleading. Finding
a correlation doesn’t mean the research is finished, it means the source of
the correlation should be investigated. Keep an open mind that it could be
meaningless.

8.2.4 Assumptions — What Are They?

An assumption is something that is accepted as true, or at the very least,
plausible. It is assumed that the Internet is a global network. This is a
plausible assumption, and can be proven it’s a valid assumption by studying
the allocations of IP addresses, using GeolP data, or any number of other
methods. The point is it is possible to show that the assumption, “the
Internet is a global network,” is a valid assumption.

There are assumptions often made in data, in data collection, in meth-
ods, and in analyzing the results. Assumptions must have a strong base,
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meaning we can show that the assumptions are valid. It’s not good research
to just pull assumptions from thin air and expect them to be true.

Suppose a research goal is to measure the efficacy of attacks made on
an organization. This is started by cataloging all of the attacks made. The
assumption in that case is that it is possible to catalog all the attacks. Not
every attack leaves a noticeable trace. A DDoS is an obvious attack, a
spearphishing attack may not be. Basing research on the assumption that
all attacks are countable is a bad assumption.

However, if the analysis is on DDoS attacks, then it is possible to start
by making the assumption that a service that is interrupted should be
investigated. Not every interruption is the result of a DDoS, but it is a
good starting point.
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It’s very easy to make bad assumptions in cybersecurity. Context is
lacking for most events, mainly because they occur outside the sphere to
which a researcher would have access. Every organization and study de-
signer has their particular view of the Internet. Assuming that what a
single researcher sees is applicable to the entire Internet is a mistake study
designers often make. Remember, a convenience sample is not a repre-
sentative sample. It’s not possible to make inferences from a convenience
sample and imply that they apply to the entire population because that
isn’t necessarily true.

It’s also important to catalog the assumptions made. Suppose a re-
searcher has a collection of domains they think are from a DGA. The
assumption is that they’re from a Conficker campaign. Research has shown
that the distribution of letters in Conficker domains looks like Fig. 8.9.
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Let’s list the assumptions made so far:

(1) The domains collected were malicious. There must be a reason the
domains were collected and the assumption was made they were
malicious.

(2) The domains collected were all created by the same DGA. Deter-
mining if a set of domains was all generated by the same DGA is
a very difficult problem. If the set of domains is contained in a
known set, that would nullify this entire discussion. It wouldn’t be
necessary to analyze if the domains are part of a botnet because it
would already be known.

(3) All Conficker domains look like Fig. 8.9. Conficker has variants. In
fact it has even changed the DGA algorithm (Porras et al., 2009b).
Fig. 8.9 doesn’t state which version of the algorithm to which it
appears.

Acknowledging the assumptions is important. They can influence the
results and the analysis.

8.2.5 FEstimating Probabilities

Research is often started with a discussion of the probability of an event
occurring. With the broad, distributed nature of the Internet, it can be
difficult to estimate. A meteorologist can estimate the probability of rainfall
occurring based on historical data and current events for a single location,
but estimating the chance that the piece of software that was downloaded
is malware is more difficult. If everything a person downloads is malware,
then their personal bias will make them believe there is a high probability
of a random piece of software being malware.

Don’t let personal biases skew probabilities. Let the data be the guide.
In cybersecurity, most of the IP addresses seen are malicious, so it’s possible
to assume that holds true for a great percentage of IPs available. There are
232 TPv4 addresses available, so let’s start by looking at a set of malicious
IPs.

Suppose a researcher found a data set online that claimed to be IP ad-
dresses with malicious reputations. Taking a year of this data and counting
the number of unique IP addresses in the set yields 655,322 IP addresses.
While that sounds like a lot, it is only 0.0152% of the entire set of IP ad-
dresses. Not every IP address should be routed, so restricting the count to
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those that should be routed, it’s 0.0177%. This means if an IP address is
chosen at random, there is a negligible chance that it is in this set.

There are two things to take away from this. One, the probability of
choosing a malicious IP address at random is negligible, assuming mali-
ciousness is defined as, “Part of this malicious reputation IP set.” Two,
this set was generated based on the view the creators had into the Internet
and potentially by people reporting the IP addresses. It’s a convenience
sample and it’s not possible to say it represents all of the malicious IP
addresses on the Internet.

Estimating probabilities is difficult, especially since cybersecurity re-
search often deals with convenience samples.

Various reports (Security, 2019; Householder et al., 2020) find that 5%
of all CVEs have exploits. That can be used to estimate the probability of
a CVE having an exploit as 0.05. This is an estimate based on data and it
is a good estimate.

However, it is necessary to be careful using this estimate. This isn’t an
estimate over all vulnerabilities; it’s an estimate on a curated subset. Not
every vulnerability is assigned a CVE. In fact, estimating the number of
vulnerabilities available in the world is a very difficult, if not impossible,
problem. Even if that number was known, this probability still couldn’t be
used. It only applies to those vulnerabilities with CVEs.

Estimating probabilities is difficult and always requires context to be
safe. Remember, a lot of cybersecurity research uses convenience samples,
so any probability estimating on that sample may or may not apply to the
population as a whole.

8.3 The Data

Cybersecurity analysis depends on data. Data collected through direct
observation or studies is called empirical data. We can categorize that into
two types, based on the method used to collect the data. Qualitative data
are observed data, things that can’t be measured. Quantitative data are
collected through measurement.

How data are collected and how they are used is an essential part of
research in cybersecurity. This section discusses the pitfalls to avoid in
working with data in this field.

8.3.1 Anecdotes Aren’t Data

A single IP address doesn’t explain IP addresses in general. It’s just that,
a single IP address. It’s possible to build a case study around why that TP
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address is in the set, and it can suggest future areas of research, but it isn’t
a data set that can be statistically analyzed.

Little determined in a case study built on the single IP address can
be used to make inferences about the set in general. It isn’t a sample of
sufficient size; it’s just a data point in the set.

For another example, suppose a researcher collects all of the spam sent
to them and uses it to study spam. They can’t say much about spam in
general; they only have the single point of data, or anecdote, about how
spam affected them.

This case study does constrain the story about spam generally because
it documents a single case that happened. But if the researcher wants to
know what other cases are likely or even possible, it does not help at all.

In order to use a sample to make inferences about a larger set, the
sample has to be the right size and selected in specific ways. If it’s too
small, then it’s impossible to make those inferences. Taking a single IP
address or a single domain and expecting its behavior to explain anything
about the larger population is impossible.

8.3.2 Obtaining and Collecting

Suppose a study is focused on security incidents. The researcher has a
hypothesis about the pattern of them in general, so they want to collect all
the incidents seen at several companies in the same industry. Then, they
can determine if the theory is correct.

This is clearly a worthy goal, but it might not be achievable. The
companies will have to be convinced to share proprietary data, and not
only that, to also allow a researcher to publish based on it. Proprietary
data are often the organization’s intellectual property and sharing isn’t an
option.

In short, data aren’t always obtainable. Take, for example, routing data.
BGP is an external routing protocol. It controls the routing between orga-
nizational units. There are open data sources available for BGP. However,
this is outside the organizational unit. An outside observer won’t know the
routing protocol used in the organizational unit at all and they won’t have
a view into that unless that organization shares information.

Suppose a researcher wants to measure all of the attacks made against
their organization. This is impossible to determine. If the organization’s
monitoring is good, then they will find a subset of these attacks, but the
researcher won’t know which attacks they missed.
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If data can’t always be obtained, then it’s reasonable to assume that
what can be found can be collected. Unfortunately, that’s not always the
case. Sometimes, it’s an overwhelming amount of data.

Packet capture data is a complete record of a network connection. For
example, if a connection is made to a website, the packet capture would
have that request as well as everything the website returned. As discussed
in Chapter 2, that data can be 7.2Tb in an hour, assuming a saturated
connection. Not only is this untenable for storing, but searching it also
becomes unwieldy.

It’s not always possible to obtain the needed data and when it is possible,
it isn’t always tenable to collect it.

For a further issue with obtaining data, consider at network traffic. It
is very useful to study for patterns and anomalies. However, it isn’t always
easy to collect from outside sources. A researcher can study their own
environment, but that’s a convenience sample and not something they can
generalize.

Luckily, some organizations make their data available. Unluckily, this
data isn’t always usable. In order to remove personally identifying infor-
mation, anonymization is often used. Anonymizing the data isn’t always a
perfect technique. It has been reversed at times. It is possible to anonymize
data to the point that it isn’t usable any longer.

Collecting, storing, and using data isn’t always possible in cybersecurity
research. Be aware of the possible problems when a study is started, and
be aware that not everything is either available or collectable. If it isn’t,
don’t force your research —the results won’t be useful.

8.3.3 Data is Always Consistent

Data in cybersecurity are influenced by humans. What is reported, what is
saved from the reporting, and how that data is presented are all questions
that a human will ask and answer when deciding to create a data set. The
data needed may be collected by different sources. However, the collectors
aren’t necessarily consistent.

Companies buy blocklists to shore up their security infrastructure. A
blocklist can contain domain names, IP addresses, or other strings. This
example is going to use domain names used in spam.

A company that is blocklisting spam domains usually has an infrastruc-
ture to collect these names. For example, an email honeypot (Morey, 2019)
is a technique used to harvest spam. The spam is then parsed and new
domains are added to the list.
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If another company with a different infrastructure also collects spam to
create their own list, then they aren’t necessarily going to get the same
domains. In fact, it has been demonstrated that these lists are generally
disjoint (Metcalf and Spring, 2013b). There’s limited consistency between
the lists. Each one is specific to the company’s infrastructure and collection
methods.

Data bought from various companies can have the same problem. A
feature that is important to one company may be omitted from another
company’s data. If a researcher is creating a data source from multiple
companies, it is necessary to keep this in mind.

IP addresses are assigned by IANA to regional routing registries which
are then responsible for assigning them in their region. The whois proto-
col exists to allow people to query the databases for ownership of the IP
addresses, which sounds very useful for research.

On the other hand, the output from a query to each of the registries
isn’t consistent. This is an example for a query to whois.arin.net:

NetRange: 64.94.0.0 - 64.95.255.255
CIDR: 64.94.0.0/15

NetName: PNAP-05-2000

NetHandle: NET-64-94-0-0-1

Parent: NET64 (NET-64-0-0-0-0)
NetType: Direct Allocation

OriginAS:

Organization: Internap Corporation (IC-1425)
RegDate: 2000-06-05

Updated: 2019-03-06

Ref: https://rdap.arin.net/registry/ip/64.94.0.0

And this is an example of a query to RIPE:

inetnum: 217.244.0.0 - 217.244.0.7
netname: BAUER-UMWELT-WERK-HIRSCHFELD-NET
descr: BAUER Umwelt GmbH

country: DE

admin-c: RS23769-RIPE

tech-c: RS23769-RIPE

status: ASSIGNED PA

mnt-by: DTAG-NIC

created: 2015-08-11T06:38:50Z



Data Analysis for Cybersecurity: Goals and Pitfalls 155

last-modified: 2019-06-05T11:44:35Z
source: RIPE # Filtered

There is similar information in each. Each one contains the network and
the owner, but it is presented slightly differently. While there is similarity,
there isn’t consistency of reporting. In general, with these data, we can
create consistent data, but it is important to keep track of how.

This example also illustrates another point. The ARIN data and the
RIPE data are inconsistent on precision. RIPE considers the exact date
and time of the creation to be important whereas ARIN only reports the
date. RIPE reports a range of IP addresses whereas ARIN reports the cidr.
If data are collected from multiple sources, then the precision can vary from
source to source.

8.3.4 Measure the Right Thing

Suppose a researcher has a hypothesis that domain names with the letter z
in them are more likely to be malicious than those without. If the researcher
measures the letter q instead of the letter z, then they are measuring the
wrong thing for their hypothesis. This is a simple and egregious example,
but the principle remains. Be sure to measure the right variable for the
research.

An attacker can (mis)use a gadget in an application they are attacking to
gain access. A gadget is a short sequence of machine codes that ends in one
of three things: a return, an indirect jump, or an indirect call instruction
(Brown and Pande, 2019).

It is tempting to count the number of gadgets in software and use that
as a measure. This implies that each gadget is equally exploitable. It’s
like counting the number of leaks in a dam. Just counting them without
considering how big they are equates the small leak that lets through a tiny
trickle of water with the giant hole in the middle that threatens to collapse
the dam.

Frequency has been used in this book as good measure, but it depends
on what it is counting. If it’s equally likely for any of the events to happen,
then it can be useful. For gadgets, some are dangerous, and some aren’t.
Counting them equally equates the non-dangerous with the dangerous and
confuses the issue. Fig. 8.5 illustrated a similar problem: the count was IP
address’s connections to ports without taking into account the context of
the data, such as length and frequency of connection.
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Always consider context and goal before deciding to measure, and ensure
the measurement is useful and reasonable.

8.4 The Analysis

Data often have idiosyncrasies; little oddities that are particular to the
sample but not in the population at large. Sometimes, a researcher focuses
on those oddities. The problem with that is it isn’t present in the population
nor is it present in other people’s data. The analysis should be applicable
beyond the particular data set.

Oddities can be interesting, and it is tempting to focus on them. How-
ever, research should be applicable to data sets beyond the current sample.

Specifying analysis to the weirdness in a data set is called overfitting
(Babyak, 2004). Things found in an overfitted sample don’t usually appear
in the population. Good research should be applicable to other samples or
other people’s data that’s similar to the current data set. The goal should
be to find a model that talks about more than just the data set in question.

In this section, we’ll talk about how to avoid overfitting.

8.4.1 Researcher Degrees of Freedom

If research can’t be verified, then it can be considered false. The methods
that cause overfitting have been discussed as those that cause that very
problem (Dwork et al., 2015).

We're going to discuss what to avoid to make research replicable and to
avoid overfitting. These are often called researcher degrees of freedom or
p-hacking. We'll start with an example of how an analysis could be done.

Suppose a researcher has 1,000 malicious domains. Every month, for
three months on the first day of the month, they determine how many
IP addresses to which each domain points. This is a data set created by
structured observation and measurement.

In Fig. 8.10, the three means are graphed as a bar plot. Month 1 and
Month 2 have similar means, but there’s a jump between Month 2 and
Month 3.

Month 1 seems to be a repeat of Month 2, at least looking at the average,
so the researcher decides to just drop that one. They’re looking for changes,
and based on the average, there weren’t any.

Consider Fig. 8.11. The first 398 domains don’t have any IP addresses,
so the researcher decides to drop those too. They're interested in domains
with IP addresses, not domains without them.
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Fig. 8.12 shows the distributions of Month 2 and 3 after removing the
domains with 0 IP addresses from Month 2. To do this correctly, they had
to take the domains with 0 IP addresses in Month 2, and then remove them
in Month 3. They could have removed the domains with 0 IP addresses in
both months, but those aren’t the same IP addresses in each month.

If the researcher did, the distributions would look like Fig. 8.13, which
is different from Fig. 8.12.

Now, the researcher can compare the distribution of IP addresses of the
malicious domains over time and can say something about those sets and
how they changed. This data set is fabricated, so the results are actually
meaningless in cybersecurity terms, but it does illustrate the choices made
during the analysis. These are incorrect choices because the researcher
modified the data and the results aren’t relevant to the original set.

Those choices are the researcher degrees of freedom. They altered the
data set as they did the analysis. Researcher degrees of freedom include:
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e Screening the data for unusual anomalous data

e Re-scaling variables

e Graphs and tables to identify patterns

e Fitting models to the data

e Measuring a variable using different methods

e Manipulating data

e Including additional data after the analysis has begun
e Discarding data

e Arbitrary decisions on outliers and anomalies

e Changing the method of analysis
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Fig. 8.12 Revised Distributions for Month 2 and 3

This isn’t an exhaustive list and it is rather specific. Let’s step back
and examine what the researcher did to generalize it into categories that
should be avoided.

In the first step, the researcher decided to drop one third of the data.
That decision was made based on something they saw in the data.

Observed results shouldn’t be used to alter the analysis. It is important
to start with a plan and stick to it. When the researcher decided to drop
some of the results from the data sets, the focus of the research changed.

The final analysis wasn’t based on the original data but on choices made
as the data were analyzed. It’s entirely possible that due to these choices,
the results won’t generalize and won’t be repeatable.

From this discussion, several steps can be given (Cruz, 2017) to avoid
overfitting:
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e Before analyzing data, make study design decisions. Don’t change
the plan based on the data.

e Use subject matter knowledge to inform data aggregation. Aggre-
gating domain names alphabetically doesn’t make much sense, but
aggregating them by TLD could.

e Limit exclusion of data. For example, data can be unusable if
it can’t be parsed, but it should be made clear why it is being
dropped.

e Validate results. Take another sample from the population and see
if the result can be replicated.

Validation of results is very important. It allows a researcher to step
back and make sure that the result they found in the original analysis holds
true for the data in the data set. It allows them to double-check that they
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didn’t do any steps that forced overfitting in the first analysis. Always
validate if possible.

Avoid researcher degrees of freedom in research to avoid overfitting.
Research should be replicable and reproducible by others, and fitting results
to the oddities in the data won’t allow that to happen.

8.4.2 Marrying an Idea

Often when research is started, the researcher has an idea of what they’d
like to find. For example, suppose they would like to prove that all domains
with a q in them are more likely to be malicious than those without q’s.
They believe it’s true, so they’re going to go design a study to prove it.

They start with a sample of malicious domains, a sample of domains
deemed not malicious, and start counting the presence of ¢’s. Unfortu-
nately, at the end of the study, they haven’t proved their hypothesis. The
presence of ¢’s is about equal in either the malicious domain set or in the
non-malicious domain set.

However, this researcher is sure it’s true. Maybe the set is wrong, and
they need to remove certain domains because of reasons they define that
are completely arbitrary. They repeat the study and this time, they get
the results they wanted.

Unfortunately, they’re still wrong. They were so sure that their idea
was true they were willing to modify the data in order to show that it was
true.

The point is to accept the results of the research. Don’t be so sure that
the hypothesis is correct that it seems reasonable to change the data or even
cherry-pick the correct samples to the hypothesis. Doing this may seem to
produce good results but they’re wrong. Someone can’t come along and
validate the research because of the steps taken.

If the researcher had taken the malicious domain data set and picked
out all the domains with ¢’s in them just to prove themselves right, they
would definitely be wrong.

Random sampling is the goal, not picking the data that will prove the
point. Hypotheses are often wrong. That’s the point of research: to deter-
mine if they are valid or not.

This behavior is also called data dredging, the act of repeatedly searching
through a data set to validate a predetermined result. The example in
Section 8.2.3 was created using this method. We took multiple sets of
domains and considered the correlation between the distribution of letters
in each until one matched what we were looking for. Domains from multiple
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lists, both good and bad, were examined to create distributions of letters
until one gave us the results we wanted.

It was done to create an example, but if we had done that as part of
research, we would be wrong.

Data dredging is wrong in research. Repeatedly going back to a data set
to find something isn’t the right thing to do and has often been discussed
as the reason some research isn’t repeatable. Don’t cherry-pick samples or
comb over the data to find any possible result. If the result you want isn’t
there, don’t force it.

8.5 The Results

Assumptions are made in results, not only when the research is finished
but also when it is started. As we discussed in Section 8.4.2, it’s possible
to determine the result before starting the research. This can affect the
analysis as well as the results.

In this section we’ll discuss common assumptions made in research re-
sults. It’s important to avoid these assumptions in order to keep research
as repeatable and replicable as possible.

8.5.1 FEwvery Problem Has a Solution

Every researcher would like to solve every problem in cybersecurity. It’s a
worthy goal, to make a system completely secure. Unfortunately, not every
problem has a solution. Some problems only have approximate solutions,
and some have no solution at all.

For an arbitrary computer program, there’s no general method of de-
termining the behavior of it (Kfoury, 1982). That’s known as the halting
problem. It also implies that given any arbitrary program, it’s impossible
to develop a general method to determine if it’s malware. Malware is de-
fined by its behavior, so if it’s not possible to determine all behavior of the
software, it’s impossible to use that to decide if it is malware.

Research can create approximations and heuristics, but there’s no way
to create a direct solution to this problem.

The same is true for a program that would determine all vulnerabilities
present in a piece of software. Vulnerabilities are related to the behavior
as well, so to enumerate all the vulnerabilities, it would be necessary to
determine all possible behaviors of the software.

Another example of an unsolvable problem in cybersecurity is enumer-
ating all attacks that have occurred. If there is no evidence that a cyber-
security event occurred, that doesn’t mean it didn’t occur. The lack of
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evidence is not evidence that the attack didn’t happen. It’s possible to
approximate a list of attacks, but there’s no way to create a definitive list.

These problems are examples of unsolvable problems in cybersecurity.
They’re used to illustrate the fact that not every problem has a solution.
Approximations of solutions are possible, but there’s no direct method to
solve them.

Not every problem has a solution or an effective approximation of a
solution.

8.5.2 Negative Results Are Still Results

It is a common thought process that if the study didn’t prove the hypothesis
correct, then time has been wasted. The only good and useful results are
positive results.

This is not true. A negative result, to be clear, is when a study is
performed correctly, yet the hypothesis isn’t proven. A negative result is
useful information that reliably communicates that something didn’t work.
It is often confused with a non result, which is where the study was not
performed correctly and so is not useful at all (except perhaps as a lesson
about how to better design studies).

For example, suppose it is known that all malware of a particular family,
call it the UFI family, has a particular sequence in the binary that’s precisely
64 characters long. It is in this family only and no other. It’s possible to
use this sequence as a signature and be sure that are only that malware is
found.

After some time, a researcher decides to go back and analyze a collection
of malware that will include samples from the UFI family. Their hypothesis
is that this sequence is still true, and they will continue to find that malware
family due to that string.

Unfortunately, they prove themselves wrong. When they analyzed the
new data set, they couldn’t find a single piece of malware with that se-
quence. The family has changed slightly, so the entire sequence is no longer
present in all the UFI family malware.

It’s a negative result, but it’s an important one. It demonstrates the
need to change how to look for that family as the malware has changed
over time. Cybersecurity is rarely, if ever, static.

Negative results fill in gaps in research. Publishing negative results
doesn’t just fill in that gap, but it also helps other designers by showing
them areas that have been studied (Fanelli, 2012).
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Science isn’t just the positive results; it’s everything. Explaining that a
given behavior is no longer malicious is important in cybersecurity because
it allows practitioners to focus resources on more important problems. Neg-
ative results are critical — but the important difference between a negative
result and a non result is the study design and execution. Reliably knowing
that something is not true is much more useful than not knowing whether
something is true or false.

8.6 Common Logical Fallacies in Cybersecurity

A logical fallacy is a flaw in reasoning. Either the structure of the argument
is flawed, or the content of the argument is flawed (Van Vleet, 2012). Either
way, there is a flaw in the logic of the argument.

For example, Section 8.4.2 is a logical fallacy. Confirming results that
were decided beforehand is known as confirmation bias (Pohl and Pohl,
2004). This is rejecting any possibility that the hypothesis could be false,
based on feeling or remembering of past events.

In this section, we’ll discuss some common logical fallacies that occur
in cybersecurity research. We don’t discuss how to avoid them, but to
determine when you're falling prey to them. Each study is unique and has
its own issues that could cause you to fall prey to the fallacies.

8.6.1 Base Rate Fallacy

The Base Rate Fallacy is a common fallacy in cybersecurity research. An
easy way to explain this is to start with an example (Axelsson, 2000).
Suppose after some work, a researcher has a method that will test for
malicious domains. Out of every 100 they identify, 99 are actually malicious,
so they’re correct 99% of the time.

But malicious domains in a set are rare. To keep the math nice, pretend
that in a random set of 10,000 domains, only one of them is malicious. Using
the aforementioned math, there’s an obvious question, “Given a domain
that our method called malicious, what’s the probability that it actually is
malicious?” From the method created by the researcher, they expect it to
be 99 out of 100 because that’s how effective their method is.

However, the calculation shows the answer is 1%. If this method pro-
duces an alert about a malicious domain, then there’s only a 1% chance that
it’s actually malicious. In other words, the method is going to be unreliable
99% of the time. An analyst will not be happy using this method.
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That’s a contradiction of the statement that 99% of the time, the
method will be right. The problem is the number of malicious domains
in the set is so small compared to the set at large. The base-rate of occur-
rence, that 0.01% of the huge set, is what drives this result.

This is a common problem in cybersecurity called the Base Rate Fal-
lacy. For a similar example, suppose there is an organization that creates
100TD of network traffic a day. Only a very tiny amount of that is actually
malicious. If only one gigabyte of that is malicious, and a researcher devises
a method that is 99.9% effective, they're still going to be wrong more than
they’re right.

Researchers want their research to be used and be meaningful. A
method that is wrong more than it is right because of the base-rate of
the occurrence in the data set isn’t usable. The Base Rate Fallacy occurs
often in cybersecurity because there are enormous data sets with a low rate
of maliciousness.

8.6.2 Absence of Evidence is Not FEvidence of Absence

If there is no evidence of attacks made against a network, that doesn’t
mean that there were no attacks. It’s wrong to assume that if there is no
evidence, none exists. Even if an organization has the best IDS available,
there’s still a chance that one will slip by without notice.

Not finding something is not evidence that it doesn’t exist. That lack
of evidence doesn’t imply that the result the research is looking for doesn’t
exist. It just implies that using current methods, it can’t be found.

The statement, “This system has no malware,” is another example of
this fallacy. It’s only reasonable to say, “This system has no malware that
we have found.” The definitive statement can’t be made because there’s no
way of knowing if it is true or not.

In a similar way of thinking, the argument from ignorance fallacy is
the assertion that something is true because it hasn’t been proven false
(Schreuder, 2014). This means asserting something is true due to a lack of
contrary evidence is committing this fallacy.

For example, the assertion that, “My network has the same proper-
ties as the Internet at large” without any evidence proving that is wrong.
It’s tempting because it allows a researcher to continue research assuming
they’re modeling the Internet, but they’re not. They’re examining their
network, which is their local convenience sample. Assuming a convenience
sample is representative of the entire population without other evidence
commits this fallacy.
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It’s tempting to think this because it allows the analysis to continue.
However, it’s incorrect analysis.

8.6.3 Sampling Bias

The gold standard in research is the random sample. It allows researchers
to infer results about the population at large. The amount of data in
cybersecurity can be overwhelming, which means sampling is necessary. In
Chapter 6, we talked about the various methods to sample that aren’t the
gold standard but often occur in cybersecurity research. If the sample is
taken repeatedly using the same method and the mean is computed each
time, then the means are averaged, that is called the expected mean.

The difference between the expected mean and the actual mean of the
population is the sampling bias. If the expected mean is the same as the
actual mean, there is no bias in the sample. The random sample is the gold
standard because there is limited bias in the sample.

The two components of sampling bias are selection bias and estimation
bias.

In selection bias, not every member of the population has the same
chance of being selected. For example, suppose a researcher is collecting
domain names from multiple sources, putting it in a big data set, and then
selecting from it. If they aren’t careful to only keep unique domains, then
some domains have more of a chance of being selected than others. Refer to
Section 6.4 in Chapter 6 for another example of an attempt to avoid bias.

Suppose a researcher wants to know the value of their favorite statistic,
let’s call it T' (“gamma”). It’s hard to compute that, so the researcher is
going to use a different method to estimate I', which will give them I'. The
value of ' is an estimator for I'. The difference between the estimation and
the real value is the bias.

For a statistical example, the median is an estimator for the mean in
that it is looking for the center of the data. Researchers often compute
median because outliers can affect the actual mean, but bias is introduced
when this is done.

Suppose a researcher is examining [P addresses they find in a botnet
network traffic. Fig. 8.14 illustrates the distribution of the counts on a
per IP address basis. They decide to use median as an estimate for mean
because the data is skewed.

The actual mean of this distribution is 3.16 whereas the median is 1.
That means the estimation bias for this sample is 2.16. Sampling bias is
about the sampling method; estimation bias affects the results.
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Fig. 8.14 Distribution of IP Address Counts

8.6.4 Fallacies of Anomalies

Cybersecurity research is often the search for anomalies. The anomalous
behavior of malware, the anomalous network traffic, and anomalous do-
mains are just a few of the possibilities. Researchers look for the anomalies
and assume that’s where the maliciousness lies.

It’s tempting to see anomalous behavior and immediately it’s malicious
if there isn’t a good reason surrounding it. Doing this is called an argument
of anomaly (Dunning, 2010).

Without verification, it isn’t known if the anomalous behavior is mali-
cious. Not every anomaly is. New traffic on a network might be a new app
that someone tried out. A new domain could be a new company. Anoma-
lous software could be anything from a new app to an app with a bug. Not
all of it is malicious and verification is necessary.
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On the converse, not all malicious behavior is anomalous. Botnets have
used DNS for command and control (Dietrich et al., 2011). Assuming the
network doesn’t have a dedicated DNS server, seeing traffic to a DNS server
isn’t necessarily anomalous.

8.7 Lessons Learned

One underlying goal of research is for it to be usable by others. You want
your research to contribute to the field, to bring new methods or results to
the attention of others so they can use it and build it.

To achieve this goal, we must be careful of the pitfalls in research. Be
careful of your data, your analysis, and your results to ensure that whatever
you do or find, your research is repeatable and reproducible. That means
avoiding the pitfalls discussed in this chapter as well as other events that
can preclude this.



Chapter 9

DNS Study

DNS is a powerful tool, both for adversaries and the defenders. Associating
domain names with IP addresses at its core, it’s a phone directory for the
Internet. Before it existed, a computer had to have a file that contained
all the hostnames and IP addresses it wanted to contact, which is a very
static situation. DNS allowed for a more dynamic solution making it very
easy to change the IP addresses of domains quickly.

Domains are a mixed bag of malicious versus non-malicious. Some do-
mains are malicious, some are used for malicious purposes but aren’t defini-
tively malicious, and some aren’t malicious at all. There isn’t necessarily a
simple measure of maliciousness but a spectrum.

We want to examine the domains used by adversaries and hopefully
determine common properties of them, so we can predict the maliciousness
of domains. Since both adversaries and defenders of domains use domains,
then the ability to discriminate between the two is important.

To start, domains need name servers to function, registrars to register
them, and TP addresses to work. This is true of all domains. The domains
themselves have properties, such as distribution of the letters, length, TLD
and more. We can leverage this information to examine a domain name
and look for adversarial behavior.

A standard goal of research is to start with a population and take a
sample of it. We can’t create a list of all domains. Not every registrar
will share the list of domains they have registered. Not only that, but
creating a population of malicious domains is impossible as well. First, as
noted earlier, maliciousness is a spectrum, so it is required to define what
is malicious. Second, we don’t know what all the malicious domains are.
We can create a sublist, but we have no idea what is missing from that list.
We can’t even guess how much of the list we actually have.

169



170 Science and CyberSecurity

In this chapter, we discuss a measurement study on domain names.
Given a set of malicious domains and a set of non-malicious domains, we’d
like to be able to delineate between the two. We’ll take one property of
domains and discuss the differences between malicious domains and non-
malicoius domains.

This chapter begins with a discussion of DNS and possible maliciousness.
If you already have a background in the field, you’d be best served by
skipping to Section 9.2.

9.1 Discussion

If a new domain is suddenly being resolved, we want to determine if it is a
malicious domain or just a new destination. This requires us to be able to
determine properties of a domain that can indicate maliciousness in order
to determine what to do with the domain. It could be a new company
related to the web page the system is visiting, it could be a new domain
set up by an old company, or it could be a domain owned by a botnet.
Just the fact that the domain was new and resolved is interesting, but not
necessarily concerning.

This leads us to a different discussion. That is, the behavior of a domain
required to denote it as malicious. It could be hosting malware, a command
and control server for a botnet, delivering spam, related to spyware or other
malicious behavior. It’s also possible that the domain isn’t malicious at all
but due to the way it is being used, it appears malicious.

For example, suppose example-bad-domain. com is labeled as being ma-
licious. After careful analysis, it is determined that it hosts a botnet com-
mand and control server which is eventually taken down. If the domain
is resold by a registrar to a new owner, it would possibly be no longer
malicious. This adds a temporal element to the situation. Maliciousness is
context-dependent. Just because someone used a domain maliciously today
doesn’t mean it’s going to happen tomorrow.

Botnets have used twitter.com for command and control (Kartaltepe
et al., 2010). Twitter has also been used by terrorist groups for communi-
cation (Klausen, 2015). Those two actions don’t mean that twitter.com
is necessarily a malicious domain. It just means that malicious actors have
used it.

The domain machine.cu.ma is on a list of domains used by Zeus
(abuse.ch, 2018). This domain was taken over and blackholed due to its
malicious behavior, so it’s reasonable to tag it as malicious.
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Is a domain as malicious if it has been used maliciously, or is a domain
tagged as malicious if it is registered specifically for malicious purposes?
That is an underlying question that must be answered when trying to de-
termine the status of a domain.

Unwanted email is called spam. (The name comes from a Monty Python
skit.) Spammers (i.e., the people who send spam) send it to steal informa-
tion, steal money, or install malicious software. Spammers uses domains
to send the email as well as domains for the URLs within the email. In
the beginning of the Internet, email could be sent from any email ad-
dress without verification. For example, it was easy to send email from
santaclaus@northpole.com. The advent of spammers meant verification
was put in place. This verification included checking that the domain has
an IP address. If email is sent from thisdomaindoesntexist.com and the
mail server looked that up and found that it didn’t exist, then the mail
server wouldn’t accept the email. Spammers know this and now register
domains to get around this. In order for the URLs contained in spam to
function, those domains must be registered as well.

Botnets and their command and control servers also use domains.
Rather than hard-coding the IP address into the malware, the botnet has
a domain it uses. This way, the botnet owner can move the domain to
different IP addresses and keep one step ahead of the defenders.

Adversaries like domains because they make hiding themselves much
easier than not using domains. If they don’t use domains, then they have to
hard-code into their mailware the IP address they’re using going into their
malware or where they’re coming from into their spam and they wouldn’t
have any flexibility or ability to hide. They're cheap, disposable, and an
integral part of their infrastructure.

9.1.1 Common Bad Behaviors That Might Not Be Bad

A record poisoning starts when a query for an A record returns an IP
address that is incorrect. The name server will cache the bad response
until it times out. Until that bad response times out of the name server’s
cache, the name server has been poisoned. This is called cache poisoning.

To see how this can enable malicious behavior, consider the process a
mail server uses to send e-mail. The first step is to query the MX record
of the destination domain to determine where to send it. It then follows
by looking for the A record of the domain in the MX response. If the A
record is wrong, then the email is sent to an intermediary location where
the owner of that server can read it. This would occur without the sender
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of the email knowing that their email has been potentially read by someone
other than the intended recipient.

Clearly, this is unwanted behavior and can be malicious. However, a
misconfigured name server can also have the same effect. Some name server
software (Liu, 2002) allows for a default value to be sent to all queries.
Generally, administrators set this up for particular domains, but a miscon-
figured name server could send a response to all queries. If a query asks it
for something to which it doesn’t immediately know the answer, it would
send the default.

The presence of A record poisoning should be investigated, but without
other information the assumption that it is malicious behavior is incorrect.
Some malware will point infected systems to its name server rather than us-
ing the default so that it can control resolutions. For example, the browser
hijacker fwdservice.com (Metcalf, 2018a) does this. If this is the case,
then the response could be malicious.

If a collection of domains cycles through multiple IP addresses that are
announced by multiple ASes, it is a fast flur network (Caglayan et al.,
2009). The detection method for a fast flux network is to look at the
number of IP addresses used by the domains. If this is more than 5, then
we consider the number of ASes that announce the IP addresses. If this
is more than five, then it is a fast flux network (Stoner, 2010). Malicious
actors often use fast flux networks to attempt to hide their behavior. The
domain superdrugtesting.com (Cooney, 2012) was on a fast flux network
and used in a botnet. It is, or was at the time of its detection, a malicious
domain.

A Content Distribution Network will look like a fast flux network. It
has domains with IP addresses that seemingly change rapidly in multiple
ASes, so it fits the definition of a fast flux network. However, these aren’t
malicious. They’re merely used to transport information in the most effi-
cient method possible. While it is possible to use the method to find fast
flux networks, Content Distribution Networks will skew the results.

Without additional context, like the owner of the ASes and the IP ad-
dresses, the results are meaningless. Tagging everyone who has a fast flux
network as malicious will find incorrect results.

For a specific example of fast flux, consider the name server. If the
nameserver is part of a fast flux network, then it changes IP addresses
rapidly. The domains attached to these name servers have been shown to
be involved with pharma campaigns. The behavior of these name servers
is of concern, but again, it isn’t unique. The name servers of Content
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Distribution Networks behave in a similar fashion. They have multiple
IP addresses and seem to change over time, but their domains are not
necessarily malicious.

A Dbotnet’s command and control server signals to its clients and re-
sponds to signals from the clients. A botnet has used DNS as its commu-
nication channel (Dietrich et al., 2011) since it is a form of traffic that is
commonly allowed through firewalls. The response given to the DNS query
would be the signal to the bot for the required behavior, such spam or
DDoS. Another use of this signal is software activation. A software com-
pany would have a name server that responds to particular queries with
activation codes. A new installation of the software would query the name
server with the software-defined domain and use the signal from the soft-
ware company’s name server to perform an action, just as a command and
control server would do.

Domain parking actually has two meanings. One meaning is where reg-
istrars attempt to monetize domains by setting them up with a webpage
(Vissers et al., 2015), inviting visitors to contact them to buy the domain.
That definition of parking can be annoying, but it isn’t necessarily mali-
cious.

The other meaning of domain parking is when a domain is pointed, or
parked, to an IP address (Metcalf et al., 2017). This isn’t the IP address
that the domain owner wants to use. It’s a temporary location that lets
the domain resolve but isn’t the active destination. When the owner of the
domain is ready to activate the domain, they change the IP to which it
points.

At its core, this form of parking is moving from one IP address to
another, after which the domain is either moved back or discarded. The
case of domains using private IP addresses has been studied, and it was
shown that a very small amount of those domains are malicious.

Domains can appear to be parking, when the cause is actually incor-
rectly configured name servers. An organization using an internal name
server might point domains to IP addresses that are private and shouldn’t
be routed. The external name server should be giving a different result.
These domains, in a short term, would look like they are parking when
they aren’t.

While parking for the non-routable case has been shown to have limited
value as a malicious indicator, it is still a feature of domains that should
be investigated.
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To summarize these examples, what appears at first to be malicious
behavior could be behavior that is not malicious. More information is
always required to determine if that is the case. In the case of A record
poisoning, it could be malicious behavior, or it could be a misconfiguration.
Just having the syntactic result doesn’t have the semantics, that is, explain
why it happened. Sometimes it’s not possible to determine why the action
occurred, and there is no way to say that the domains under study are
malicious. It’s only possible to say that they seem malicious. That happens
often in cybersecurity research because context is lacking.

9.1.2 Features of Domains

To study domains effectively, a measurement is needed. The variables cho-
sen could be categorical or ordinal due to the nature of domains. In this,
section we’ll talk about various features we can measure and what kind of
variables they are. These are features that can be determined about all
domains, not necessarily only malicious domains.

Of course, since domains are essentially strings, we can measure the
length, the presence of non-ASCII characters, or the distribution of letters
and numbers in the string. The properties in the following list are specific
to domains.

e Number of IP addresses

If an adversary is using a domain for malicious activities, they want
to make sure that it is available for use which means it should have
at least one IP address. The more IP addresses it has, the more
likely it is that it can be reached.

The number of IP addresses a domain uses is a factor in analyzing
a domain for malicious intent. The malicious domains are most
likely hijacking the IP addresses from legitimate owners, so the IP
addresses would be announced by multiple ASes. As discussed in
the section on fast flux analysis, this is also a feature of domains
that use a Content Distribution System.

If a list of the owners of the ASes is available, then it is possible to
control for this issue. The number of IP addresses and the number
of ASes that are owned by multiple organizations is a feature of
domains that can point to malicious behavior. The ownership must
be examined carefully; the records are not always updated when
organizations are acquired.
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It is also possible to consider the number of countries in which the
IP addresses are located. This is similar to the check for multiple
owners of the ASes. Instead, it is a validation of the location of the
IP addresses. Unfortunately, this is dependent on the origin of the
geographical Internet Protocol (GeolP) data that is used, which
may or may not be correct.

The counts of each are ordinal data. They can be averaged across
domains.

Domain Generation Algorithms

DGAs are algorithms used by malware to create domain names.
This way, malware doesn’t have to contain the actual domain name.
Instead, the malware contains an algorithm used to create the do-
main name. It’s another way for malware authors to hide them-
selves. If they only use a few domains, then it is easy to shut
them down by taking over the domains. However, using DGAs
gives them one place further to hide. Instead of figuring out which
domain the malware is using, the defenders are inundated with
possibilities.

For example, the malware called Conficker is one the first malware
known to use a DGA for its domains. Conficker would generate
250 possible names and attempt to resolve them all. If it could
resolve a name, then that was the domain it communicated with.
In analyzing the malware, researchers were able to reverse-engineer
the DGA and were then able to sinkhole the domains used by the
malware (Porras et al., 2009a)

Botnets commonly use DGAs, and luckily, some (Gavrilut et al.,
2016) of the algorithms have been reverse engineered. This work
allows us to create a list of domains used by that botnet and either
detect their usage or block them. Unfortunately, this means a
defender can only block the ones they know about. Determining if
a random domain is generated by a DGA is a very difficult problem.

It’s important to note that not every domain that is a DGA do-
main is malicious. Companies have been known to have their own
generation algorithms for domains and for host names.
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If a researcher has a method they believe will detect the use of a
DGA, then the question of whether or not it is becomes a categor-
ical question.

Number of name servers

Domains need two things to work. Something to point to, whether
an IP address or another domain, and something to do the pointing,
or the name server. The name server is the point of contact for the
domain, the entity that associates the domain with its IP address.

A domain that changes name servers often can be moving from
hosting provider to hosting provider quickly, which can be a bad
sign. The name servers changing IP address often is also a bad sign,
assuming that the domain isn’t hosted by a Content Distribution
Network.

The number of name servers is an ordinal.
TLD/effective TLD of the domain

A domain is read as labels from right to left. For example, with
www.google.com, the first label is the com, then the google, and
finally www. The com is the TLD and the google is the second-level
domain (SLD).

There are ccTLDs and gTLDs. Generic TLDs are regulated by
ICANN, and ccTLDs are regulated by the country registrar.

Some countries have restricted their ccTLDs. This means they have
predefined a set of labels for their ccTLD and only sell domains of
the form label.country_label. TLD. An example of this is the ccTLD
.uk for the United Kingdom. All domains in the .uk ccTLD must
look like label.country_label.uk, where the country labels include
ac (academic), co (company), and gov (government). The SLDs
co.uk and ac.uk effectively act as independent TLDs. Mozilla
started an initiative to keep a list of such effective TLDs (Mozilla,
2007).

Using this list, it is possible to determine if a set of domains
don’t follow the rules. For example, example.uk is a domain that
shouldn’t exist, due to the rules of the registrar of the .uk domains.
It shouldn’t resolve at all because the name server for the ccTLD
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.uk should fail to resolve the domain. If an adversary is using the
domain, then perhaps they have their own name server. If they are
controlling that, then they can resolve anything they want. These
domains should be considered suspicious.

There are some ccTLDs that have been known to harbor malicious
domains. It’s not their aim to be malicious, but the amount of
money that a small country can make selling a ccTLD may be a
significant portion of their country’s gross domestic product (GDP)
(Metcalf and Spring, 2013a). So the registry’s incentive is to max-
imize registrations, not remove them for abusive or malicious be-
havior. While not all domains in these ccTLDs are malicious, it’s
still a significant amount.

The TLD is a categorical variable. The TLDs of domains can be
counted but no other operations apply.

e Domain lifespan

A domain used for legitimate purposes will have a long lifespan.
Google wants people to access google.com, Microsoft wants peo-
ple to access microsoft.com, and business owners want people to
access their websites.

However, malicious domains don’t generally have long lifespans.
A spammer will register a domain, use it for a few hours, then
dump it. They know that the defenders will be blocking the
domains as soon as they can find them, so they drop the do-
main before that happens. If the first resolution of a domain is
determined and the last time it was resolved is also found, the
short time period is an indicator of a potentially malicious do-
main. On the other hand, some companies use temporary do-
mains, such as temporary-string.example.com. The domain
example.com has a long lifespan, but the fully qualified domain
temporary-string.example.com does not.

Lifespan is an ordinal variable.

This isn’t everything that can be measured on a domain, just a short
list of examples. The time to live (T'TL) of the domain, the length of the
domain, the number of subdomains, the distribution of letters, and more
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can be measured. The point of this list is that there is both categorical and
ordinal values that can be measured.

9.2 Study Design

The traits of domains can change over time. A simple example is to consider
TLDs. In 2011, ICANN announced that they would accept applications for
new gTLDs (ICANN, 2011). Domains before 2011 were restricted to only
a few gTLDs, whereas domains today can vary quite a bit. If someone
analyzed malicious domains in 2010 and made inferences about the TLDs
of the domains, this wouldn’t hold today. For example, the TLD .baseball
is a new TLD that wouldn’t have existed in 2010.

In 2011, a paper (Lasota and Kozakiewicz, 2011) defined a list of lexical
features about domain names that they considered malicious traits. They
compared their blocklist domains to a list of top websites in 2011, so we're
going to pick one of malicious lexical traits they defined in 2011 and see if
it still holds true in the current data.

The features they considered include:

e Domain name length
e Number of dots in the fully qualified domain name (FQDN)

e Occurrence of a keyword

Probability of occurrence of specific characters

e Number of different characters

This paper has research that can be examined as it only uses the domain
names as its basis, not external data that may not be available. The study
for this chapter will focus on domain length.

For this study, the data used should be defined and described. Without
that, the study makes no sense. The worst case is to say the domains are
malicious without context as to why. The reason that the domains are
tagged as malicious should be recorded or an important step is lacking for
anyone who wants to repeat the work.

9.2.1 First Data Set

A data set can be created by collecting spam for a period of time. The
spam would then be examined for all email addresses, sending domains, and
URLs, thus creating a list of potentially malicious domains. This has been
done before using honey pots, and the usual opinion is that this collection
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must span millions of messages to be useful. In 2011, there were at least
half a billion(m3aawg, 2011) mailboxes worldwide. From this report, each
mailbox received on average 5,200 pieces of spam email in a quarter. A
single spam collection isn’t enough to create a representative sample of
spam.

However, one email address that collected spam was tagged by
Vade (VadeSecure, 2019), and a second email address was set up to only re-
ceive spam and no legitimate email. This is the basis for the spam collection
used in this chapter.

The collection period spanned ten months, and then the domain names
were parsed out of every spam message, examining both the message header
and the body. Collating this into one set, 15,414 domain names were col-
lected.

There’s a problem with this method. Some of the domains are used to
send spam, and some of them are used in URLs to deliver malware, steal
information, or other malicious activities. By aggregating the two lists,
the issue has been confused. A list that contains both spam domains and
domains used by the Zeus botnet isn’t very clear, and in fact, can confuse
the issue.

The domains that were found in the URLSs in the spam may or may not
be malicious. For example, marketing email is often tagged as spam. The
aim of those URLs is to get users to come to the website to learn about
the latest offer from the company, not to download malicious software to
their computers. Without accessing every URL in that list, there’s no way
to know for sure. It’s also impossible to know if they are malicious now
compared to when the spam was sent.

Returning to the spam samples, it was re-analyzed and determined that
there are 8,896 domains that sent the spam and 7,780 domains contained
within URLs found in the body of the messages. From those numbers, we
know there’s some intersection between the two sets. It turns out that 1,262
domains appear in both lists.

This is truly a convenience sample. The emails just happened to be sent
to the two email addresses, and in one case, they happened to be tagged as
spam. Suppose it is determined that 95% of the domains in the sender of
the spam are in the .example TLD. That doesn’t mean 95% of all spam is
sent from domains in that TLD. That just means that in this sample, 95%
of the domains came from that TLD.

Starting with a little exploratory data analysis on this set is a good idea
and the focus of the analysis is the distribution of domain length.
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Fig. 9.1 Length Distribution for Domains that Sent Spam

Figure 9.1 has the distribution of lengths from domains that sent spam
whereas 9.2 has the distribution of lengths from domains found in the mes-
sage of the spam.

9.2.2 Second Data Set

A community project to collect malware domains is the Malware Domain
List https://malwaredomainlist.com. It is available for anyone to down-
load, so a collection was started to download the data for several months.
Choosing a day at random, 1,154 domains were on the downloaded list.
Since the list only contained domain names, there’s no context as to why
these domains were on the list. It’s just known that someone reported the
domain to the owners of the website as having malicious intent.

This is another convenience sample. Someone happened to share with
the website that they found this domain malicious. It’s possible that an
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Fig. 9.2 Length Distribution for Domains Found in Spam

adversary could feed incorrect data to the website, which means that we
have no way of knowing how good or bad this site is. Another file available
at the website lists why the domain was reported. For example, the domain
adversarylikesphishing.example.com could be on the list and have been
reported for phishing, or the domain adversarydelivery.example.com
could be on the list as a website that delivers malicious content.

The assumption is that the people reporting these domains have done
verification on the domains to verify that they are malicious, but without
context, there’s no way to be sure. There’s also nothing that demonstrates
the domains are still malicious at the time the list was downloaded. It’s
just know that at some point, someone declared that the domains were
malicious.

Continuing the exploratory data analysis from the first data set, Fig. 9.3
has the distribution of the lengths of domains found in the set. Most of
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Fig. 9.3 Length Distribution for the Malware Domain List

the domains were between 6 and 10 characters long, like the domains from
spam, but the shape of the distribution is different.

9.2.3 Third Data Set

In the discussion of DGAs, it was mentioned that several of the algorithms
have been reverse engineered. Using these algorithms, it’s possible to gen-
erate all domains for the malware, depending on how the algorithm was
seeded. If the algorithm relies upon the day, then for each day, it is pos-
sible to generate a population of domains for the day. This is the entire
population of DGA domains for that malware for that day. An example of
this is the Cryptolocker Flashback malware.

Some of the D(GAs are not seeded by day, so it’s possible to generate all
of the domains for that malware or a population of DGA domains for that
malware. An example of this is the Banjori malware.
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Bambenek Consulting (2017) has created the domains from the algo-
rithms, so that researchers can download them there rather than using
the algorithm. The site says that they do their best to avoid errant data,
but there are no guarantees. In other words, it’s possible that non-DGA
domains have been added to the lists, but they aren’t sure.
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Fig. 9.4 Length Distribution for Cryptolocker Domains

Looking at the data on a randomly chosen date, there are 439,228 do-
mains listed for the Banjori malware and 1,000 listed for Cryptolocker—
Flashback. Fig. 9.4 has a plot of the domain lengths for Cryptolocker. All
of the domains for Cryptolocker are between 11 and 15 characters long.
Looking deeper into the data in Fig. 9.5, the number of domains of each
length seems almost equal.

This is a completely different distribution than shown in the previous
data sets. The focus is on one length of domain.
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Fig. 9.5 Length Distribution for Cryptolocker Domains Revisited

Turning to the Banjori domain list, Fig. 9.6 has the distribution of
domain lengths. This distribution is completely different in shape from the
others examined so far. There are no short domains and a large number
of domains are longer than 21 characters, which is unlike the other four
distributions examined so far.

9.2.4 Fourth Data Set

The paper this case study is following compared malicious and non-
malicious domains. To replicate their research, a list of non-malicious do-
mains is needed.

As said before, some popular domains like twitter can be used for mali-
cious activities. However, the assumption that will be used in this example
is that most popular domains do their best to keep malicious activity to
a minimum. It’s not possible to assume that they’re perfectly good, but
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Fig. 9.6 Length Distribution for Banjori Domains

finding perfectly good domains is tough. Just because malicious behavior
of a domain isn’t known doesn’t mean that the domain has none.

An example of a top list is a top one million list created by Quantcast.
This is a list of sites based on the number of visitors from a given country
during a month. According to the website, they measure this by a Quant-
cast specific tag on each website. This implies that only those domains with
websites and tags were measured, omitting all domains that don’t fit that
requirement. It is possible that there are websites without the tags since
there is no context to describe which sites got tags. If this site is used as
a list of good domains, it’s assuming any site with a tag is, by default, not
malicious.

Cisco announced their own list (Hubbard, 2016). The domains in this
list are from DNS queries, and it also uses a popularity algorithm to de-
termine domain popularity. This algorithm isn’t published, so domains are
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added to the list but researchers don’t know how or why. However, it is
free to the public and can be used in research.

A third list is the Majestic Million (Majestic, 2016). Domains are added
to that list based on the number of referring subnets. It claims to use
backlinks to determine the presence of the domain on the list. However, it
doesn’t tell us how it populates its database that it uses to create the list.

Each list method of creation is different and each claims to contain good
domains.

This highlights a problem with both the data for malicious domains and
good domains. In general, there’s no knowledge about how the lists were
created. The criteria for adding a domain to the list might be published,
such as the Majestic Million, but that would be the only thing known.
There is a lack of criteria that these domains are popular and therefore,
they should be good. Remember, twitter.com has been used as command
and control for botnets before. It’s reasonable to assume that Twitter could
end up on blocklists for its behavior. However, it is also prevalent on top
domain lists due to its popularity.

An interesting analogy to this situation is three biologists studying a
lake. Each biologist gives us their definition of a fish and a collection
of examples. Whether or not each sample is actually a fish is unknown.
What is known is that they defined a fish to fit their criteria. This is the
same situation with these three sets. Each has their own definition of good
domains.

Let’s turn to exploratory data analysis on the three sets of potentially
good domains. First, the Quantcast set isn’t a million domains. Instead, it
contains 532,053 domains. In this case, the name of the set is misleading.
Data should always be verified.

Now, let’s look at the distribution in each case. Fig. 9.7 covers the
distribution in Cisco, Fig. 9.8 is the Majestic Million, and Fig. 9.9 is the
Quantcast data set.

The Cisco and Majestic Million distributions appear similar whereas
Quantcast distribution appears completely different visually. Statistical
methods are needed to say for sure that that is true.

9.2.5 Hypothesis

The variable in the study is domain length but now a hypothesis is needed.
Let’s start with something a bit too broad:
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Fig. 9.7 Length Distribution for Cisco Top Million

Malicious domain names change over time. As discussed, that’s
clearly true. First, the TLDs could change due to the creation of new
TLDs. Narrowing this down is required.

The length of malicious domain names changes over time. This
is a good hypothesis, but the current data available doesn’t allow this hy-
pothesis to be tested. The 2011 paper states that, on average, malicious
domains are shorter than non-malicious domains, but it doesn’t give any
precise data for 2011. That leads to better, testable hypothesis.

On average, a malicious domain is longer than a non-malicious
domain. This would be opposed to the conclusion of the 2011 paper. Or
rather, the hypothesis is that this property of domains changed since 2011.
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Fig. 9.8 Length Distribution for the Majestic Million

9.2.6 Brainstorm Methods

Now that there is a hypothesis, the next step is to test it. The first step is
to toss out ideas for methods, then the next step will be to refine them.

e Malicious domains and non-malicious domains are needed for the
study population.

e The paper used a single source of malicious names, so the popula-
tion should follow the same trend.

e Is a sample size required?

o The effective TLD of the domains is needed.
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Fig. 9.9 Length Distribution for Quantcast

The paper says that their first step is to parse the domains to
pull out the real domains and real TLDs. From the paper, the
real domain is the highest-level second-level domain that can be
registered. In other words, for example.com, the real domain is
example and the TLD is com. It also says that it uses the Mozilla
list to find effective TLDs, so this case study should follow that.

9.2.7 Actual Method

Let’s boil down those ideas listed in the previous section into the actual
method.

1. Determine populations.

2. Determine sample size, if necessary.
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3. There are multiple lists available. Using all lists separately is nec-
essary to follow the paper, however, the comparison will be done
by comparing each list of malicious domains to each list of non-
malicious domains.

4. Find the effective TLLD and real domain for each FQDN in the two
lists.

5. Compute the length of each domain in the two samples.

6. Compute the average over all of the domains and compare the
results.

9.2.8 Assembly

There are five samples of malicious domains, the Malware Domain List,
the domains found in spam, the domains that sent spam, the CryptoLocker
domains and the Banjori domains.

For the list of non-malicious domains, the paper references using the
domains from Alexa (Amazon, 1997) as their list of non-malicious domains.
However, this list is no longer available to researchers for free. Instead, the
study is going to use three data sets discussed earlier, the Cisco Top 1
Million, the Majestic Million, and the Quantcast Top 1 Million. The paper
referenced using a sample of 40,000 domains from the Alexa list, so this
study will create a sample as well.

The first step is to pick a day and download the lists from all three
websites on that day.

9.3 The Measurement Study

In the previous section, we discussed the parts of the study and talked
about how to assemble it. We can put that together and create our study.
We want to replicate the method the paper used, so our steps will follow
that.

1. Determine sample size.

a. For the malicious domains, the entire set will be used. This
replicates the method used in the paper.

2. Create the two data sets.

3. Now, find the real domain for each domain the domain lists.
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Table 9.1 Average Domain Length of Malicious Domains

Data Set Average Domain Length
Domains Sending Spam 10.228

Domains in Spam 9.00

Malware Domain List 9.95
Cryptolocker 13.434

Banjori 18.16

Table 9.2 Average Domain Length of Non-malicious

Domains
Data Set ‘ Average Domain Length
Cisco Top 1 Million 8.775
Majestic Million 10.63
Quantcast 11.59

4. Finally, compute the average domain length.

Let’s begin by tabulating the results for each set of malicious do-
mains as seen in Table 9.1.

Now, create the same average for the samples of domains from the three
lists of non-malicious domains in Table 9.2.

The hypothesis is that the malicious domains are longer, on average,
than the non-malicious domains. The next step is to create a table to
determine for which data sets this is true.

Table 9.3 summarizes the results for all of the hypotheses. If the data
set for malicious domains was restricted to the two DGA data sets, Cryp-
tolocker and Banjori, then the hypothesis is true for all three of the non-
malicious data sets. However, considering the other three malicious data
sets, the hypothesis is true only for the Cisco Top 1 Million data set and
not for the other two non-malicious data sets.

This demonstrates how the data source is important to the results. The
results of the study completely depend on which data set chosen. It is
possible to skew the results by choosing the data set that gives us the
desired result, but that would be wrong. It would be data dredging, the
act of looking through the data to find the desired result.

There is one thing neglected here: the sampling bias. A single sample
was created from the samples of non-malicious domains. The entire pop-
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Table 9.3 Malicious Domains Hypothesis

Malicious Domains

Data Set Hypothesis
Cisco
Majestic Million
Quantcast
Cisco
Domains in Spam Majestic Million

Quantcast
Cisco
Malware Domains list Majestic Million
Quantcast
Cisco
Cryptolocker Majestic Million
Quantcast
Cisco
Banjori Majestic Million
Quantcast

Domains Sending Spam

D R P R e

Table 9.4 Average Domain Length Sample vs. Population

Data Set Sample Population
Cisco Top 1 Million 8.775 8.771
Majestic Million 10.63 10.64
Quantcast 11.59 11.61

ulation of that data is available so it is possible to determine if there is a
difference in using that instead.

Sampling bias is the difference between the actual value in the popu-
lation and the value from the sample. In this case, only one sample was
created, but the best method is to take multiple samples and average that.
Table 9.4 shows the difference in the two values. There is a difference, but
not enough to change the results.

9.4 Lessons Learned

In our discussion of data sets, we discovered that there is no universal way
of defining a set of non-malicious domains. This is true in most fields of
cybersecurity —there is no universal method of defining non-malicious be-
havior aside from “not malicious.” In other words, non-malicious behavior
is any behavior that isn’t being studied as malicious. Just because it seems
the domain is not malicious does not mean it hasn’t engaged in malicious
behavior in the past or won’t in the future. It also doesn’t mean that it
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doesn’t engage in malicious behavior now, just that as far as we know, it
doesn’t.

This is a common problem in cybersecurity, not just for DNS. Mistakes
happen all the time that appear to be malicious, but aren’t. Categorizing
data as malicious and non-malicious is a difficult problem because mali-
ciousness is usually a spectrum.

We also discovered that the data set influences the results of the study.
The average length of a domain in the three non-malicious data sets ranged
from 8.775 to 11.59. This is quite the range, considering all three are
labeled as non-malicious data sets. The result of our study depended on
the malicious data set we chose and the non-malicious data set.

This is true in cybersecurity, not just in this study. If we’re comparing
malicious data to non-malicious data, the method used to define either will
affect the outcome.
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Chapter 10

Network Traffic Study

Network traffic is a common data set in cybersecurity research. Malware
installed on a system often talks to external sources for commands, to exfil-
trate data, or to spread itself to new victims. Almost all malicious behavior
can be found in network traffic. Finding the malicious behavior allows re-
searchers to learn the methods used by the adversary, to find malicious
traffic on a network, and perform a longitudinal study on network behavior
to see how maliciousness has changed over time.

In this chapter, we’re going to discuss the pros and cons of network
traffic for research. We’ll consider the kinds of behavior that could exist
and how examining network traffic can and cannot help in the study. We’ll
then turn our attention to botnet behavior.

It’s impossible to create a data set that contains the population of net-
work traffic on the Internet. There’s no view into all the traffic everywhere
at any given time, not to mention, there’s just too much data to collect.

Section 10.1 begins the chapter with a discussion of the details of net-
work traffic analysis. If you are conversant with this field, you should skip
to the next section.

10.1 Discussion

Full packet capture is the exact record of everything that happened on a
network. As its name suggests, it is the capture of every network packet
sent on an interface. This includes the source TP address, the destination
IP address, the source port, destination port, TCP flags, protocol type, and
the full packet of information sent on the link.

Finding malicious traffic is easier when there is a record of everything
that happens. The traffic can be examined to find the exfiltration of data,
the beaconing of a command and control botnet server, and the sending of

195
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spam. It does require that the researcher must know what they’re looking
for to to find it, but it is a good data set for finding malicious actions.

We saw in Chapter 2 that full packet capture over 72 hours can take up
over 24.3Tbs of space. Sampling has been used to attack this problem in
the past, (Zhang et al., 2011) but it’s not an easy problem.

Another type of data is network flow. These are the traces left behind
on the network, not the full record of the traffic. It doesn’t include the full
packet but includes information such as source IP address, the destination
IP address, the source port, destination port, TCP flags, protocol type, the
amount of data sent, the start time for the transaction, and the end time
for the transaction.

As this data is much smaller than the full packet capture, it is
easy to store long term, so historical analysis is possible. An estimate
for the System for Internet-level Knowledge (SiLK) Network Flow tool
(CERT/NetSA Security Suite, 2019) is that to store a 1Gb link for one
year is 3,152.82Gb, or 3.15Tb. Clearly, this is several orders of magnitude
less than the full packet capture storage requirements.

In full packet capture, the exfiltration of data is visible whereas network
flow shows only that a large amount of data left the system. Usually, the
context of what the flow contained is needed to definitively determine the
maliciousness of the act.

However, long spans of historical data, which is only really possible with
network flow, allow researchers to study different questions.

The features of the Internet change over time, even in network traffic.
For example, in 1993, the gopher protocol was common for file transfers
(Anklesaria et al., 1993). Today, gopher is nearly non-existent. Another
example is uucp (Ravin et al., 1996). Uucp is another file transfer protocol
that occasionally appears in legacy code but is not nearly as common as it
used to be.

It can be difficult to determine malicious network traffic versus benign
traffic, even with full packet capture. The WannaCry ransomware attack
(Mackenzie, 2019) attempted to resolve a domain. During the time that
the domain failed to resolve, the ransomware was active. As soon as a
researcher registered the domain, WannaCry turned itself off. A system
infected with WannaCry would periodically attempt to resolve this domain,
which full packet capture would capture, but this isn’t necessarily a sign of
maliciousness. People attempt and fail to resolve domains all the time. The
sign of interest was the domain name itself combined with the ransomware
attack.
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In network flow, it would look like a connection was made on port
53 to a name server, which isn’t anomalous at all. Domain resolutions
aren’t necessarily an odd thing, so finding them in network flow wouldn’t
have been a sign of malicious traffic. This is true for both full packet
capture and network flow. Determining that the domain was the key to
the ransomware involved not only finding the domain resolution in network
traffic but also knowing that it originated from a system infected with the
WannaCry ransomware.

Similarly, botnets have been known to use Twitter as a means of com-
mand and control (Pantic and Husain, 2015). DNS has been used as well
(Dietrich et al., 2011). DNS queries and twitter access are common activi-
ties and wouldn’t raise suspicion.

Botnets want to hide their activity, so they also use traffic to and from
standard web ports (Eslahi et al., 2017) to mask themselves. This traffic
doesn’t look bad, unless the context associated with it is also available. Full
packet capture may help with this as it can contain context, but network
flow won’t.

10.2 Data

Repositories of network traffic data can be found online. Most of these
are illustrative of one variety of traffic such as botnets, malware, or other
traffic anomalies. They’re useful for studying what the traffic looks like in
the given situation but only for that situation.

One example of a good data set is the Information security and ob-
ject technology (ISOT) data set (University of Victoria, 2016). It contains
multiple botnets as well as simulated traffic.

This leads us to another problem with network traffic data. Simulated
traffic is traffic that a computer program created to mimic humans. This
includes attempting to simulate the mix of applications used by a site, the
protocols, and the levels of congestion. Strategies (Floyd and Paxson, 2001)
have been suggested over the years for mimicking network traffic, but the
inherent problem is that it is unnatural and does not necessarily include
the random actions of users. This means it isn’t exactly like what users do,
but an idealized simulation of users.

Another problem with network data, especially from outside sources, is
that it is often anonymized. Researchers don’t want to share the structure
of their internal networks, so they use schemes to translate the IP addresses
of the capture data to private, unrouted networks. Anonymization schemes
have been reversed in the past (Zhang et al., 2007), so the structure of the
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anonymized data is probably completely unrelated to the structure of the
network from which it originated. For example, an anonymized set might
put all the webservers on one network whereas they’re on different networks
for redundancy. Another problem with anonymized data is that the ports
can often be anonymized. The destination ports should remain from the
original data set because otherwise, the context of which ports the traffic
is attempting to use is missing. Source ports are a useful data source, as
well, though not as useful as destination ports. If both sets of ports are
anonymized, the data is no longer useful.

In summary, if the goal is anonymization, researchers have to be careful
that the data aren’t anonymized so much that they become unusable. The
patterns found in anonymized data should be present in the original data.
If traces are found of unusual traffic that occur in the anonymized data but
not in the original, then that process created patterns instead of preserving
them.

10.2.1 Anomalous Behavior in Network Traffic

A researcher has decided to study network traffic to find malicious behavior.
They want to find the anomaly that is malicious or the underlying pattern
of malicious behavior.

Consider a simple example. Suppose the administrator of a network has
decided that everyone should use a central server for every DNS resolution.
This means that the only traffic that’s related to DNS should be to this
central server. One system, however, suddenly starts using an outside server
for its DNS queries. Either the owner of this system has decided on their
own to change their server for DNS resolutions, or someone decided it for
them. Malware has been known to change the DNS server used by a system
it has infected (Meng et al., 2013). This is anomalous behavior for the
system and should be investigated, but without examining the traffic and
the system, context is lacking.

Another example of anomalous behavior is a denial of service attack.
Suppose an organization has a web server that suddenly is showing a large
spike in traffic. The first thought is an outside attack; someone is attempt-
ing to knock the web server offline. On the other hand, someone may have
posted the website, as an interesting site, to a popular forum. The users of
that forum all decide within a short time of the posting to access the web
site, which looks like a denial of service attack. Considering the forum users
can be located around the world, this could look like a distributed denial
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of service attack, which it isn’t. Determining the difference isn’t always
detectable just from the network traffic.

Given these two examples, outside validation is required to be sure
that the network traffic is related to malicious behavior. Otherwise, the
researcher would just know they something different than they expected.

Botnets are the workhorses of adversaries in cybersecurity. Botnets send
spam, attack with a DDoS, are used with ransomware, are used for bitcoin
mining and theft, and so much more. Finding botnet behavior in a set of
traffic depends on the botnet, as each has their own way of doing things.
A classic botnet is generally talking to a centralized command and control
server, either a keepalive or receiving commands, for their next act. As the
botnets have evolved over time, the command and control as evolved as
well. Lately, some have started using peer to peer (P2P) protocols as their
base (Khattak et al., 2013).

Finding the beaconing (Hu et al., 2016) and the actual conversation
with the command and control of the botnet is an important part of char-
acterizing the botnet as well as removing it from use. Determining if the
botnet isn’t using a centralized command and control, but rather a dis-
tributed communications system like P2P is another characterization. Un-
fortunately, as of this writing, there is currently no easy method for finding
P2P traffic.

An APT is malware that has lodged itself into a network for a long-
term attempt at stealing as much as it can from the network. These can
ex-filtrate organizational secrets, so profiling their behavior and learning
how to detect an APT on a network is a worthy goal.

These behaviors aren’t the only adversarial behaviors possible, rather,
it’s a small subset. The adversary also changes their methods constantly.
There are as many types of malicious traffic as there are threats from ad-
versaries.

10.2.2 Botnets Aren’t Always Bad

Let’s turn our attention to botnets. Botnets are seemingly always bad. If a
computer is part of a botnet then someone else is using its computing power
and network to accomplish a task. One example of something that looks
like a botnet was SETIQHOME (Korpela et al., 2001), the search for alien
life. SETIQHOME used home computers in a giant network to analyze
radio telescope data looking for extraterrestrial intelligence. GPUGRID is
a distributed computing project for biomedical research (Wiki, 2017). On
the human side, there is Amazon Mechanical Turk. Turk allows tasks to
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be farmed out to a wide range of people. One person is the command in
that scenario, and she sends out tasks to a wide range of IP addresses. In
all three of these examples, the behavior of a botnet is demonstrated, but
the outcome is not malicious.

Remember, a botnet can communicate with a central server, and com-
mands are sent from this central server. In all three examples, systems
communicate with a central server and receive commands from the server.
In the case of GPUGRID and SETI@QHOME, the commands are sent to
the computers to execute tasks. The Amazon Mechanical Turk sends com-
mands to addresses so that humans can execute commands.

Cybersecurity researchers have used botnets to their advantage as well.
The Federal Bureau of Investigation (FBI) took over the GameOver Zeus
botnet, turning off a malicious botnet off. (Franceschi-Bicchierai, 2015)
That botnet was designed to be impossible to take down, so the FBI had
to get creative. They managed to take over the network and not only turn
it off but jail the creators.

The term botnet has connotations of maliciousness, but that clearly
isn’t necessarily true. Most people assume that a botnet is always bad, but
it’s the botnet’s owners that use it maliciously.

10.2.3 Adding Context

This leads us to our next step. Suppose a researcher thinks they’ve found
a botnet and they’ve even managed to locate the IP address used by the
command and control server. They might think that they’re finished with
the analysis, but unfortunately, they aren’t.

There needs to be some verification that a botnet is actually a botnet.
For example, suppose an organization has many geographically diverse loca-
tions and uses a centralized network management system to manage them.
The remote locations might contact the centralized system periodically as
a keepalive or to receive instructions, which appear to be botnet behavior.
Without context, this could appear to be a botnet. There’s no malicious-
ness associated with the behavior though, so just finding it in network flow
isn’t enough.

Instead, if the research looked in full packet capture and found the same
behavior, it is tempting to call it malicious. It appears that a central system
is receiving messages from a distributed set of systems. Depending on the
network management system, these messages could be obfuscated. This
can look like a botnet. If it is known that all the IP addresses are owned
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by one organization, it’s possible to assume it isn’t a botnet, but we can’t
be positive.

Just looking at network flow isn’t enough context. Using full packet
capture can help, but that’s not necessarily the complete solution. Also,
due to the amount of disk space needed to store full packet capture, it isn’t
always available. What is needed is outside validation. This validation can
come in various forms, from analyzing a system directly to correlation with
other researchers. In the WannaCry case, the researcher had an infected
system and observed traffic from it. He then decided to register the domain
the system was attempting to resolve. The authors of WannaCry didn’t
register it, so he wanted to see what would happen. Rather than registering
it, a researcher could also set up a mock DNS server that would return a
valid response for the domain. This is a much more contained analysis
rather than registering the domain.

10.2.4 Botnet History and Behavior

The original botnets were created for chatrooms in the Internet Relay
Chat (IRC) network (Silva et al., 2013). They could understand simple
commands that helped out the chatroom administrators, played simple
games, and other services. The original design wasn’t malicious. However,
other programmers took these simple creations and used them to attack
IRC users or servers. It wasn’t long after that that someone figured out
how to weaponize the IRC bots to create a botnet for malicious purposes.

At the core of the botnet software is its origins, the IRC network com-
mands. Botnets work together to attack in the form of DDoS or spam, so a
central server can use the same commands from the IRC network to direct
the bots.

This illuminates several things about the botnets. One is that in the
original designs, there was a central server that directs the remote servers’
actions. This means there is a single IP address to which all the clients
connect. This is described as a one-to-many relationship. This feature
alone doesn’t necessarily mean a botnet is present. A similar one-to-many
relationship can be found in DNS. When resolving a domain, many IP
addresses connect to the name server for the domain.

The second is that the TRC protocol is often used by botnets. It isn’t
as pervasive as it used to be, but IRC is still used often. The presence of
IRC traffic in a network doesn’t necessarily mean that a botnet is present.
The presence of IRC traffic that doesn’t use traditional ports for IRC is an
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anomaly though. The assigned ports for IRC include 194, 529, and 994;
however, IRC often uses port 6667.

Another feature of botnets is that once an infected server receives a
command from the central botnet system, it acts. A command such as
“DDoS ipaddress” would be sent from the central server, and the client
would immediately attack the IP address. Similarly, the infected system
could be directed to send spam. Botnets have been used for other malicious
behaviors, like infecting additional servers, manipulating online polls or
games, Google AdSense abuse, and more.

By acting immediately when it receives a command, a botnet is syn-
chronized across the clients. This means that they all act at the same time.
It wouldn’t be very effective for a distributed denial of service attack if
first, one client attacked, then the next, and then the next. For an effective
DDoS, all the infected systems must attack at once.

The method the botnet uses to connect to the central server is another
feature. It can’t be by a hard-coded IP address, that would be easy to
block. Instead, originally, the botnets had a domain name coded within the
malware. It would resolve the name to retrieve the IP address and connect
to the central server that way. Botnets have been taken down because the
domain names the botnet used were discovered and then blackholed. The
botnet designers found a way around this by using a DGA (Antonakakis
et al., 2012). The first botnets known to use a DGA were Conficker and
Kraken. For Conficker, the botnet client would periodically generate a list
of 250 domains. It would attempt to resolve all 250, and the one that did
resolve was used as the botnet server. To block the botnet, the network
defender would have to block all 250 domains whereas the attacker only
had to get lucky once.

Botnets have evolved from the one-to-many approach, and some use
P2P (Dittrich and Dietrich, 2008). P2P is a distributed network without a
central server and is very difficult to detect.

In summary, botnets can use a many-to-one connection ratio where the
clients connect to the servers for instructions. They can also use the P2P
protocol where the connections are distributed and there is no centralized
server. The TRC protocol is often used by botnets to send commands, and
these commands are synchronized. A fourth feature are the domains the
botnet uses, whether they are DGGA domains or hard-coded domains.
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10.3 Study Design

Botnets are going to be the focus for this study. There exists data that can
be used for the study and features that can be measured. Akiyama et al.
(2007) list three features of botnets. The centralized server that all botnets
connect to, the immediate response, and the synchronized response are all
listed in the paper as features of botnets in 2007.

We're going to design a measurement study to see if one of the features
of botnets mentioned in that paper is still true today.

10.3.1 The Data

For our study, we’ve got two possible data sets. Each contains botnet and
non-botnet traffic.

The first data set obtained is the (Garcia et al., 2014) CTU-13 data
set. It is botnet traffic that researchers at the Czech Technical University
collected in 2011. Their goal was to capture botnet traffic and at the same
time, regular background traffic. Thirteen different kinds of malware were
executed, and the resulting traffic was captured. The only traffic released
with this data set is the traffic generated by the botnet. This gives us
thirteen different botnets to examine.

The second data set is the (Saad et al., 2011) ISOT data set previously
mentioned. This is a manufactured data set. They combined publicly
available malicious and non-malicious traffic to create it. They included
botnets, such as the Storm and Waledac botnets, collected by the French
chapter of the honeynet project. For non-malicious traffic, they combined
the LBNL data set (Lawrence Berkeley National Laboratory, 2007) and
traffic from the Traffic Lab at Ericsson Research in Hungary.

The first data set is separated by botnet, and the second data set com-
bines botnet and regular traffic into one comprehensive set. Both data
sets are network capture files, saved in the packet capture (PCAP) for-
mat. Network flow can be generated from the traffic using the SiLK toolset
(CERT /NetSA at Carnegie Mellon University, 2002-2016) as well.

The study will start with some basic exploratory data analysis to get a
feel for what the data looks like. Start by choosing one of the CTU data
sets at random and examining the number of IP addresses in it. There are
1,558 unique IP addresses in sample 6. Of those, 10 are sources of traffic,
and this can be easily visualize that as a bar graph by counting the number
of unique destinations each source has.
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From Fig. 10.1, it’s clear that the source IP address 147.32.84.165 has
the most destinations. Turning to the destination IP addresses, there are
1,558 in the data set. The frequencies in this case are that all the IP ad-
dresses only have 1 connection, with the exception of 147.32.84.165, which
has 9. That IP address is also the IP address in the source address set that
has the most outgoing connections.

This seems like an anomalous result. An address with a large amount
of connections isn’t in the set as expected for a centralized command and
control server. It’s possible that this botnet uses P2P and distributed
connections, but there’s no easy way to look for P2P in network traffic.

Turning to another sample, consider sample 10 from the CTU data set.
In this one, there are 65 IP addresses that are unique sources and 65 that
are unique destinations. The plots of these are in Figs. 10.2 and 10.3.

Interestingly, the distribution of the two figures look similar. More work
is required to determine if they are similar. Appearing to be similar and ac-
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Fig. 10.2 Source Traffic in Sample 10 of the CTU Data Set

tually being similar are two different situations. One requires visualization
and the other requires deeper statistics.

This initial exploratory data analysis has us looking for IP addresses
that are either common sources or common destinations. A common source
was found in the first sample, but not in the second sample. This analysis
is restricted to IP addresses, the secondary feature of ports hasn’t been
examined yet.

Now, consider the ISOT data set. There are over 8,000 IP addresses in
the set. Visualizing this isn’t helpful. However, it’s possible to count the
number of IP addresses by number of connections and bin the results as
shown in Fig. 10.4.

The ISOT data is also difficult to interpret. That is possibly because
the data set contains multiple botnets.

It’s apparent that most of the IP addresses have 1-10 connections, but
it’s impossible to determine how many have greater than 1,000 connections,
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Fig. 10.3 Destination Traffic in Sample 10 of the CTU Data Set

other than it is fewer than 1,000 and close to 0. Returning to the data and
ignoring the visualization, there are 7 IP addresses with more than 1,000
connections. This is plotted in Fig. 10.5.

There isn’t a single IP address with the most connections as in the
previous example. However, that can be explained by the nature of the
ISOT data. It is a collection of botnets, and assuming they all used the
same command and control server is wrong.

These two data sets both contain botnets but aren’t necessarily applica-
ble to the same study. For example, if the research is focused on the traits
of botnets, then the CTU set is better. If the research is focused on trying
to find a botnet in regular traffic, then the ISOT data set is more useful.

10.3.2 Hypothesis

We need a hypothesis to study, so let’s start by brainstorming some.
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Botnets haven’t changed over time. That’s a bit broad and known
that it isn’t true. Botnets have evolved to use P2P connections as well as
the standard one-to-many connection. Let’s try again.

Botnets can still use centralized command and control. That is
still a bit broad since it assumes it is possible to test all botnets. A sample
is available to test, but it’s a convenience sample and it’s not possible to
make inferences on all botnets based on it. Let’s try again.

Some botnets still use centralized command and control. That’s
still a little broad. Let’s try something we can test directly and is more
specific.

The IP address and port combination with the most connections
is the command and control server in the data set. The data is
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available to test this hypothesis. The hypothesis is that the botnets still
use centralized command and control and that it’s possible to find them by
looking for the most connections in the data set.

10.3.3 Brainstorm Methods

We have a hypothesis, so let’s brainstorm methods we can test it. The first
step is to consider the tools and data required.

e Network traffic with botnets.
e A method to read the data.
e Is a sample required?

e It is necessary to consider IP address and port. The results of the
exploratory data analysis imply that we need more than just the
IP address.
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e The data set should contain a single botnet because the hypothesis

is about the current state of the art for botnets, not for finding
botnets.

e A tool is needed to find the IP address and port combination with

the most connections.

e Once the IP and port with the most connections is found, it’s still

not known if this is the command and control server. To determine
this, context is required. Context will be found by examining the
network traffic and determining the kinds of connections made.
This method will only work for full packet capture since the context
needed is not present in network flow.

10.3.4 Actual Method

Now, it’s necessary take the ideas from the previous section and turn them
into an actual method.

1

2
3

4

. Determine sample size, if needed. The sample size will be based
on the number of transactions, that is, connections between IP
addresses. Consider the output from tcpdump (Jacobson et al.,
2003):

04:47:32.419074 IP 147.32.84.165.137 >
147.32.84.255.137: NBT UDP PACKET(137): QUERY;
REQUEST; BROADCAST

That’s a transaction, and it’s possible to count the number of trans-
actions in each data set.

. Use tcpdump to read pcap data.

. Create a destination IP address and port combination frequency
table.

. Look for an IP address and port combination that is the most
common destination.

. Look into the pcap data to see if the connections have any further
information that we can use, using the command line tshark from
the wireshark (Combs et al., 2008) package to verify that the
connection is the botnet command and control server. Since IRC
is a common botnet command and control protocol, the goal is to
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Table 10.1 Number of Transactions in Each Set

Data Set Number of Transactions
CTU-1 27,393
CTU-2 37,080
CTU-3 57,591
CTU-4 488
CTU-5 2,935
CTU-6 5,007
CTU-7 113
CTU-8 14,353
CTU-9 200,109
CTU-10 2,615,095
CTU-11 131,760
CTU-12 13,441
CTU-13 155,392

look for that. If it isn’t found, it isn’t an assumption that there isn’t
a botnet in the data because of the source of the data. However, it
is a common method for communication in botnets and something
that can be found.

10.3.5 Assembly

The two data sets have been discussed; the 13 samples of botnets from
CTU, and the ISOT data set. The CTU data appears to be the best set for
this study as it’s designed. It’s separate botnets in each sample, allowing
the hypothesis to be tested. The ISOT sample contains multiple botnets
as well as other traffic and won’t fit within the study design.

10.4 The Measurement Study

Start by determining the size of the population, which means the number
of transactions in each set as seen in Table 10.1. Sampling is used when
the population is too big to study. In this data set, none of the populations
are too large to use so sampling isn’t required.

Now, create a table with the number of destination IP address and port
combinations in each set in Table 10.2.

Next, expand that table and add the IP address and port combination
with the most connections in Table 10.3.

These are the most common connections, but we need more context.
To find this context, the tool wireshark will be used. It allows the close
examination of the full packet capture data to see what is in the traffic.
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Table 10.2 Count of Most Common
IP and Port Combinations

Data Set ‘ IP and Port Count

CTU-1 5,907
CTU-2 4,881
CTU-3 33,959
CTU-4 199
CTU-5 909
CTU-6 1,853
CTU-7 59
CTU-8 3,091
CTU-9 45,453
CTU-10 69,074
CTU-11 65,867
CTU-12 5,507
CTU-13 22,759

Table 10.3 Most Common IP and Port in Botnet

Samples

Data Set ‘ Count ‘ P Port
CTU-1 5,907 147.32.84.165 2077
CTU-2 4,881 174.37.196.55 80
CTU-3 33,959 147.32.84.165 3389
CTU-4 199 147.32.84.165 8080
CTU-5 909 46.4.36.120 443
CTU-6 1,853 91.212.135.158 5678
CTU-7 59 123.126.51.33 80
CTU-8 3,091 222.189.228.111 3389
CTU-9 45,453 147.32.80.9 53
CTU-10 69,074 147.32.96.69 161
CTU-11 65,867 147.32.84.165 8080
CTU-12 5,597 147.32.84.165 32234
CTU-13 22,759 184.173.217.40 443

The goal is to look for traffic with both the source and destination
address of our IP. This is because it’s not enough to see what the destination
IP address was sent, the the response is required as well. Table 10.4 has
that for each data set.

For an example of what an analyst might pull off the wire during analysis
such as this, see the box on wireshark packet capture results.

Samples 3 and 11 show evidence of IRC communication. If it is known
that there is no possibility of IRC used on that network, then it is possible to
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Table 10.4 Data Set and Traffic Description

Data Set ‘ Traffic

CTU-1 DNS Query Response for Domain Lookups
CTU-2 GET requests, no response

CTU-3 TRC communication

CTU-4 TCP connections

CTU-5 TCP connections

CTU-6 TCP connections

CTU-7 HTTP communication

CTU-8 TCP connections

CTU-9 DNS Query Response for Domain Lookups
CTU-10 Obfuscated data in the same network
CTU-11 TRC communication

CTU-12 Obfuscated data

CTU-13 TCP connections

infer those to be the command and control centers for the botnet. Samples
1,2,5,6,9, 10, 12, and 13 lack any context to decide one way or the other.
It’s possible 7 and 8 could be command and control, 7 is using port 80 and
8 is using port 3389. Port 3389 is commonly used for Microsoft Terminal
Server, not web servers. It’s not possible to say that the hypothesis is true
for all of the botnets in the current data set. It’s only possible to say that
it is true for three and potentially for two more.

It’s also important that the hypothesis isn’t revised due to the results.
That’s letting the data guide the results rather than the original results
and can create irreproducible results.

Negative results are still results and should still be reported. In this case,
the method has shown that the hypothesis that the IP and port in the data
set isn’t necessarily the command and control server. If a researcher expects
botnets to behave as they always have, then they would expect that the
busy IP and port combination would be the command and control server.
It is possible that they have evolved to use the P2P method. Cybersecurity
is an ever-changing field. Showing that it has changed in a methodical way
is a good thing.

10.5 Lessons Learned

In this chapter, we saw that the data format can affect the results. If our
data were network flow, then we wouldn’t have been able to complete the
study. The step that would have failed is the validation of the results since
we would lack context.
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Wireshark packet capture results

For example, CTU-3 uses TCP connections. However, the wireshark
PCAP analysis found:

03:00:01:96:02:f0:80:7f:65:82:
01:01:££:30:20:02:02:00:22:02:
02:00:01:02:02:00:00:02:02:00:
02:30:20:02:02:00:01:02:02:00:
01:02:02:00:00:02:02:00:01:02:
20:02:02:ff:££:02:02:fc:17:02:
02:00:00:02:02:00:01:02:02:ff:
17:00:05:00:14:7c:00:01:81:0e:
44:75:63:61:81:00:01:c0:d4:00:
01:ca:03:2a:09:04:00:00:28:0a:
00:00:00:00:00:00:00:00:00:00:
00:00:00:00:00:00:00:00:04:00:
00:00:00:00:00:00:00:00:00:00:
00:00:00:00:00:00:00:00:00:00:
00:00:00:00:00:00:00:00:00:00:
00:00:00:00:00:00:00:00:00:00:
00:00:08:00:07:00:01:00:00:00:
00:00:00:00:00:00:00:00:00:00:
00:00:00:00:00:00:00:00:00:00:
00:00:00:00:00:00:00:00:00:00:
00:00:04:c0:0c:00:09:00:00:00:
03:00:00:00:00:00:00:00:03:c0:
70:64:72:00:00:00:00:00:80:80

CTU-7 was a GET request to that IP address for

t=1&s=2&m=50F8290AC57E77F533C2A3F\\1B4AB39E4

If we are looking for botnet behavior in a historical data set, then net-
work flow is a common data format. This means that we must look outside
of the data set for validation that the data contains a botnet.

Leading us to the next discussion point. Context matters. Without
the context of the IRC commands, we wouldn’t be able to say we found
botnets. This applies to more than just network traffic. Finding a domain
in DNS and calling it malicious requires more than just finding the domain.
It also requires understanding why it is malicious.
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Finally, we saw that a hypothesis can be wrong. This is why we hy-
pothesize. We have a guess about what happened, and we want to prove
ourselves right or wrong. In this case, we were wrong.

People tend to only report correct results, so we don’t know what process
they went through to reach them. This is an example of that process.
Hypotheses can be wrong. The important lesson is to recognize when that
occurs and to reformulate it. It is a very wrong thing to reformulate the
environment to prove the hypothesis right.
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Malware Study

The term malware is not necessarily about the software but the behavior.
This means that to determine if a given piece of software is malware, the
behavior must be studied. For example, if a user downloads a game and
doesn’t like how it works, it isn’t malware. If the software decides to com-
municate with a central server and steal bank information, then it is most
likely malware.

There isn’t a definitive definition of maliciousness. The behavior of some
software has been deemed malicious by some and annoying by others, for
example, adware. Adware is software that serves up advertisements when
the user is online. A famous example of adware is Fireball (Perekalin, 2017).
It hijacked web browsers to change the default search engine and serve ads.
The danger in this type of software is that it may be malware masked as
adware. Fireball included code that allowed the adware to run any code on
the machine it wanted (Greenberg, 2017).

It’s easy to see why this would be considered malware by some. It
caused unwanted behavior in the computer and redirected computer traffic
to a different location. It installed unwanted services and changed settings.

Clearly, there’s a fine line between the two, and some researchers obliter-
ate that line and consider all adware to be malware. Adware is also consid-
ered to be grayware, also known as potentially unwanted programss (PUPs)
(Team, 2015).

Another example is spyware, which is designed to track a user’s on-
line behavior. An example is the Sony Rootkit (Halderman and Felten,
2006). By implementing copy protection, Sony wanted to make sure that
the people listening to their CDs weren’t sharing them. Unfortunately, that
Digital Rights Management (DRM) software reported back to Sony on the
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user’s activities, without the user’s knowledge, thus fitting the definition of
spyware. It also was a RootKit and did damage to the installed system.

It’s easy to see how adware and spyware can be subverted. Since mal-
ware is defined by its behavior and spyware often has malicious behavior,
it is also classified as malware.

Malware is an equal opportunity offender; it’s found as windows ex-
ecutables, Portable Network Graphics (png), javascript, PHP: Hypertext
Preprocessor (PHP), perl scripts, python scripts, and more. It’s also not
restricted to Windows. It has been found in Apple, Linux, and other oper-
ating systems, as well as mobile devices.

One goal of the malware author is to evade the malware defender. Every
time a malware defender determines a new method to detect the malware,
the malware author will work to hide themselves in a different way. This
means that malware is constantly evolving, so the properties of malware
from ten years ago will be completely different from the malware today.

Let’s turn to the population of malware. We want to take a random
sample of this population so that we can study it and make inferences about
the entire population. Unfortunately, we have no idea what the population
is. We only know what malware has been found. We have no idea how
much malware is out there, nor do we have any way of knowing. If it
evades detection completely, it could never be found. It’s possible that the
worst of the worst malware has never been detected, but we don’t know
that. We're also often dependent on other people declaring software to be
malware. Unless we study the behavior ourselves, we don’t know if this
is true or not. We only know what others tell us. It’s easy to imagine
a scenario where a duplicitous researcher informs everyone that a certain
piece of software isn’t malware. It’s also possible that a novice researcher
does the same thing. If we rely upon others to annotate our data, we could
be labeling malware as safe when the opposite is true.

We could also be labeling safe software as malware. When we rely on
others to annotate our data, both situations could occur. The important
takeaway is to always document from where the data came and how it was
labeled.

Section 11.1 begins this chapter with a discussion of malware analysis
in general. Skip to the next section on study design if you are already
conversant with this area of research.
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11.1 Discussion

Malware analysis often starts with a piece of software that someone deemed
suspicious. Perhaps an end user reported it, an antivirus tagged it, or a
researcher discovered it. As we discussed, it’s the behavior of the software
that makes it malware. The end user could report, “this software makes
my computer run slow,” where the problem is not the software but in the
computer configuration. The researcher must verify that the software is
performing unwanted acts.

In the interests of containment, we don’t want to run potentially mali-
cious software on computers that have access to the Internet. The software
might attack other machines, spread itself, or cause other trouble. Instead,
we run the malware in a sandbox. That’s a system that has been set up
without Internet access with the intent to watch the malware and deter-
mine its behavior. These sandboxes are instrumented to record network
traffic, process table changes, registry changes, and more. For example, if
the malware is designed to contact specific domains upon installation, we
could see that in the traffic.

Since we don’t want the malware to run on the Internet, we can set up
our own network to mimic the network. This could include a name server
that responds to any queries with a default IP address and other common
network services.

Malware authors have evolved their software so that it tries to detect
if it is in a sandbox and therefore won’t run (Lindorfer et al., 2011). For
example, the malware might try to resolve www.google.com, and then exit
if this fails. Since it is the behavior that makes it malware, the fact that it
exits upon start up doesn’t necessarily mean that it is malware. It could
just be poorly written software.

In short, we want to know if the software is malware, and we want
to know the probability that categorizing it as malware is correct. It’s
important to know the false positive rate, that is, how often something is
tagged as malware that isn’t, as well as the false negative rate, that is, how
often malware is tagged as not malware.

Antivirus is a black box that uses its own methods to tag malware. This
could be signatures, heuristics, behavior, or other methods that we don’t
know. All we do know is that the antivirus has tagged the software as
malware, and we don’t know the false positive nor false negative rates. If
something is tagged as malware by an antivirus, we don’t know if it really
is malware or the probability that it isn’t.
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11.1.1 Bad Behavior Evolves

One of the first computer viruses was a boot record virus called The Brain
(Cooney, 2012). Spread by floppies, it made them unusable by filling them
up. It was called a “friendly virus” by its creators and was originally
designed to protect their software, not cause trouble for others. The intent
behind the software wasn’t malicious, but the usage was.

A common attack today is Ransomware. It isn’t a new attack; it started
in 1989 with the AIDS Trojan (Simone, 2015). Instead of via the Internet,
the AIDS Trojan was delivered by floppy disk. The ransomware was a fail-
ure since it required the disk, and the Internet wasn’t widespread. Modern
Ransomware got its start in 2005 with the Trojan.Gpcoder (Syamtec, 2015).
It has completely evolved from its origins, so studying the original malware
tells us nothing about the current threat.

Both of these are interesting because the attack they originated has
evolved over time. Today, malware can send spam, DDoS, steal data, and
more. Malware authors aren’t interested in destroying the computer or the
data. They want to steal information or money.

These behaviors are only a few of the possible behaviors, and they’re
also the obvious ones. There may be other behaviors out there, but since
the malware hasn’t been found, they aren’t known, which makes it very
difficult to generalize malware.

11.1.2 Good Bad Behavior

What is malicious or not is only determined by an organization’s security
policy. Since all organizations have different security policies, what is a
violation for some is not a violation for others. An alternative way of
thinking about finding a common malware detector is that it is searching
for a useful and common implicit security policy. That tag line doesn’t seem
to sell products, but beware of anything that says it detects all malware
unless it aligns with your security policy.

To make matters worse, malware can mimic good behavior. Further
complicating things, behavior of benign software can, presumably via a
software design mistake, appear malicious.

Bulk email is often seen as spam, even when the sender has good inten-
tions. If a researcher is only going by the behavior of the software, then a
bulk email sender could be tagged as malware.

The Microsoft forced upgrade to Windows 10 appeared to be malware
behavior by some people (Gralla, 2016).
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Another example is software that mimics botnet behavior.
SETIQHOME (Korpela et al., 2001) the software that looks for intelligent
life, is an example of this. It communicates with a central server similarly
to a botnet. It could also be malware if the behavior was the key and not
intent.

PDFs with javascript are often tagged as malicious because javascript
can be used maliciously. Even though it can be, it isn’t always. Javascript
is often used to assist users in filling out pdf forms, for example, inserting
the current date.

11.1.3 Obfuscating Behavior

Malware authors are always attempting to hide from antivirus detection.
There is no point in writing malicious software if it’s immediately removed
from the target computer, so hiding is their best bet. The longer that it
can hide, the more effective it is.

Antiviruses can use signatures of the binary to block it, such as the
MD5 or SHA256 hash. If the malware authors modify their source code
slightly, then the signature could fail.

Another signature is the YARA (yara) signature. YARA is a regular
expression that matches binary files. The YARA signature can be fragile to
changes in the malware code (French, 2012). It can also find false positives,
that is, software that seems to be malicious but isn’t; it just has the same
binary pattern that a piece of malware does.

Malware wants to avoid detection, so it can use timing techniques. It
will look for certain behaviors by the user before it executes its commands
or limit itself to running at certain times. For example, the malware may
wait for the system to reboot or wait for a particular date to activate.

A goal for some researchers is to find the property of malware that will
distinguish malware from good software without individual deep analysis
of the software. Malware changes over time. The original malware was
spread by floppy disks. Today malware is often spread through networks.
The features chosen for malware from the late 1990s may not be the same
features that would be applicable today.

It is also difficult, slow work to reverse-engineer malware or to deter-
mine its behavior in a sandbox. Researchers would like to speed up the
classification by finding these features. Several factors come into play on
this. First, the fact that malware changes over time. Second, malware is
not a singular corpus. Ransomware has different features from worms, and
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worms have different features from rootkits. It’s not possible to consider
malware as a monolithic category.

11.2 Data

If the goal of the research is to separate malware from other software, then
it requires two data sets, one that is malware and one that isn’t. We’ll call
the set that isn’t malware, goodware.

A study of malware needs a set of software that has been labeled mal-
ware. Github is a good source for this; there are repositories of malware
that people have uploaded. Again, this is relying on someone else’s label.
That work is either repeated or accepted. VirusTotal will allow a user to
upload a potential piece of malware and will attempt to determine if it is
malware or not, but again, that’s a third-party source.

A collection of malware samples was found on github (fabrimagic72,
2018). The owner of the collection says that the malware was found on
several honeypots he manages. He used VirusTotal to determine if it was
malware and also included several samples that could be malware, but
weren’t labeled by VirusTotal. This is a good set: the set details how
it was collected, details how it was labeled, and it is categorized. It also
contains unknown samples.

Another collection of malware samples on github (wolfvan, 2018) was
also collected by honeypots. However, context is lacking for how the owner
designated the files as malware. It’s also unknown what kind of malware is
in the repository. It’s an interesting collection, a combination of windows
executables and HTML documents, but with the exception of two files
labeled as mirai, context is lacking.

A third collection of malware samples was also found on github (ytisf,
2018). The owners of this collection included both malware executables
and malware source code. It is populated by people submitting samples,
and other than that, the origins of the malware is missing. When someone
submits a sample, they also add to the collection’s database what kind of
malware it is. It is interesting that source code for malware is available, but
the origin of this malware is in question. The method used to determine
what kind of malware submitted is also lacking. It’s possible that an adver-
sary submitted an invalid sample to confuse researchers. Further analysis
is required.

A set of goodware is a difficult data set to create. If a set of goodware is
collected, it is necessary to verify that it isn’t malware. Antivirus, signature
databases, and running the software to observe its behavior are all good
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methods to analyze it, but in the end, there’s no method that will guarantee
it isn’t malware. It’s impossible to prove a negative.

Suppose a researcher creates a fresh install of an operating system and
decides that all of its executables will be the set of goodware. This is a
reasonable set; however, it isn’t perfect. The problem with that choice
is that adware has been shipped with laptops before (Pagliery, 2015). In
another case, PCs came with botnet software (World, 2012). It is assumed
that a fresh install has no malware, but it has happened in the past. It’s
also possible to use software that purchased from a vendor; however, this
has also been shipped with malware before. The Sony Rootkit mentioned
previously is an example of this.

Another possibility is that the source code for a selection of programs
is found and this is then compiled. Most programs compile using external
libraries. For example, libtiff was written to handle TIFF image files. As-
suming that the compiled software has no malware because we can look at
the source code is reasonable, but that doesn’t extend to the libraries.

Generating a set of goodware is a much harder problem than it seems.
It is only known what malware has been found, not what malware could
be found. The set could be tainted, but it is impossible to know.

11.2.1  Exploring Malware

Exploratory analysis on malware is useful but to begin, it is necessary
to know what can be examined in malware. Rather than a single piece of
malware, that is an anecdote, the study requires data, which is many copies
of malware. It is necessary to find something that’s present in all software
that can be measured.

In the following, three features that have been used in malware studies
will be considered and their goals examined.

Researchers (Deng et al., 2017) have done run-time analysis with limited
connectivity to the Internet to analyze the environmental sensitivity of
malware. They determined that 78% of their samples were sensitive to the
environment that they were executed in. That doesn’t mean that 78% of
all malware is sensitive to the environment. It just means that 78% of their
malware was. This is because their sample was a convenience sample and it
isn’t possible to project the results on the sample to the population. Their
goal was to determine how much malware would be effectively analyzed in a
sandbox environment versus how much wouldn’t. From their analysis, they
know that 78% of the malware they have wouldn’t be effectively analyzed
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in a sandbox. It’s a way of categorizing malware, but not a method of
detecting it.

The feature in this case is a binary; “Does it work in a sandbox?
Yes/No.” It’s a categorical variable. It’s possible that it appears to work
in a sandbox while the malware is obfuscating its behavior otherwise. It’s
also not possible to say if it doesn’t work in a sandbox, it’s malware.

The function call graph has been used to analyze malware. In this case,
the malware is examined to determine which functions call other functions,
and a graph is created from this information. The goal of researchers (Hu
et al., 2009) was not to determine if software is malware or not, but to
classify the malware. The idea is to reduce the amount of work by classi-
fying malware into groups and then to analyze only representatives of the
group.

In this case, the measurement problem has been changed from one of
malware directly to one of the graph. While this is interesting, using it is
beyond the scope of this work.

Machine language is the binary code a compiler creates from a pro-
gramming language. Opcodes are the human readable form of machine
language. For example, add is the opcode to add two numbers together.
nop is the operation to do nothing, and sub is the opcode to subtract two
numbers. In this case, the opcode is a categorical variable. It isn’t possible
to compute the average of two opcodes. It’s only possible to measure their
frequency.

Opcodes have been used to study malware. For example, the sequence
of opcodes could detect malware (Santos et al., 2010). Another example
is the distribution of opcodes to determine malware vs. goodware (Bilar,
2007). In this paper, the goal is to determine if the software is malware
or not based on the distribution of the opcodes. Opcodes are categorical
variables.

11.3 Study Design

Of the three malware analysis methods discussed, opcodes were used to
separate goodware from malware. We’re going to use this as the basis of
our study.

We'll start with some exploratory data analysis, and then create a hy-
pothesis and a method to test it. The tool to find opcodes is important,
and we’ll begin with using a common one.
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11.3.1 Exploratory Data Analysis

Let’s start by looking at opcodes in malware, study their frequency, and
create distributions from them.

With the assistance of a second program, the binary of an executable
can be translated into a list of opcodes. The program objdump is such
a program. For example, it can be run on the Windows 7 executable
winhlp32.exe, and returns 1,511 lines of information. The first 10 lines
of this output look like:

winhlp32.exe: file format COFF-i386

Disassembly of section .text:
.text:
1001000: 9a b6 e2 77 la c4 e3 lcalll $-7228, $444064438
1001007: 77 Oc ja 12 <.text+0x15>
1001009: 06 pushl %es
100100a: e3 77 jecxz 119 <.text+0x83>
100100c: 9b wait
100100d: 50 pushl %eax
100100e: e2 77 1loop 119

The words lcalll, ja, pushl, jecxz, wait, pushl, and loop are all opcodes.

objdump (Free Software Foundation, Inc., 1991) has its issues, namely
the assumption that everything in the binary is code when the -D option
is used. It is useful for the initial exploratory analysis, though. Let’s start
by looking at the distribution of opcodes in winhlp32.exe.

The output from objdump gives us 95 opcodes to examine. Fig. 11.1
illustrates the frequency of the opcodes in that result.

From that figure, it’s clear that the majority of opcodes appear five
times or fewer in the results. Let’s consider the top 14 opcodes. They
appear in the results 25 or more times, in Fig. 11.2.

Turning to malware, consider the LoadMoney Trojan (Microsoft, 2017).
There is a sample of it from theZoo collection. objdump returned 60 opcodes
in the file. Repeating the frequency counts of opcodes, Fig. 11.3 shows that
distribution for LoadMoney.

The distribution of counts in the LoadMoney Trojan is clearly different
from the winhlp32.exe file, at least visually. The opcodes with counts be-
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Fig. 11.1 Frequency Distribution of Opcodes in winhlp32.exe

tween 2 and 5 as well as 11 to 100 dominate the set overall, as opposed to
the winhlp32.exe figure, where the counts for 1 and 2-5 dominate.

Now, let’s consider the top 14 opcodes in the LoadMoney Trojan in
Fig. 11.4. The sets of opcodes do intersect, but there are unique opcodes
for each program. Using eyes as the analytical engine, the distributions
appear different. There is a steeper climb in the LoadMoney figure while
the increase in the winhlp32.exe is flatter.

The question is, is this difference just the two completely different pro-
grams or are the distributions completely different over all goodware and
malware. Of course, that question is too broad for this analysis, the study
is restricted to the samples at hand.

11.3.2 Hypothesis

Using what we’ve discussed so far, let’s generate a hypothesis for the study.
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Fig. 11.2 Top 14 Opcodes in winhlp32.exe

Goodware and malware are different. This hypothesis is much too
broad. Also, it’s true by definition.

Goodware and malware act differently. Again, too broad. Also, it
is also true by definition. Malware is defined to be software that acts in
a manner that is harmful. The previous discussion concerned opcodes, so
the hypothesis should be related.

Malware uses different opcodes from goodware. This is still a bit
broad. Different isn’t defined, at all. It’s possible to just compare the sets,
but a good hypothesis should suggest a means of testing it.
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In our samples of malware and goodware, the distribution of op-
codes is different. This is a hypothesis that is focused, suggests an
avenue of testing, and fits with the data available. The work is replicating
the work (Bilar, 2007) done previously, so this paper will be the guide when
creating the current study.

11.3.3 Brainstorm Methods

Once a hypothesis is generated, a method is needed. The first step is to
list everything that could be needed.

e A sample of goodware to examine is required.
e A sample of malware is required.

e As discussed before, objdump will find opcodes, but it tends to look
at data as code. Other tools should be considered.
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e If the study will consider malware of different types, the sample
should include that. Malware of different types has different func-
tions, so it’s logical to assume it would look different in opcodes.

No study ever considers all the potential problems. It is something of a
matter of experience whether the study design considers the most important
issues. Aspects of a study are can be considered to be not important if the
change in the results is small enough it falls within an error that is much less
than the effect size detected in the study. This is particularly difficult with
malware studies, since the malware authors may read the public studies
and think of clever ways to disrupt them. However, for a solid check list to
start from, see Rossow et al. (2012).
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11.3.4 Actual Method

Now, we’ll take the methods we brainstormed in the previous section and
create our method.

(1) Find tools other than objdump to find opcodes in PE executables.
(2) Find a malware sample that includes multiple malware types.

(3) The paper discussed previously binned Windows binaries by size,
then took a stratified sample of that. That should be used for this
study.

(4) For each piece of malware, create a distribution of opcodes found
in it. Do the same for each piece of goodware. In the previous
exploratory data analysis the top 14 opcodes had a good result, so
that will be repeated.

(5) Create the following plots:

(a) A distribution of the top 14 opcodes in all malware
(b) A distribution of the top 14 opcodes in all goodware

(c¢) A distribution of the top 14 opcodes for each type of malware

11.3.5 Assembly

For the goodware sample, use a base install of Windows 7 Service Pack 1.
Using this command:

dir /s *.exe

create a list of PE executables on the system. Then, bin the binaries by
size into four categories: [0—10 KB), [10—100 K), [100—1 M) and [1—10

The paper this study is following referenced an unpublished honors the-
sis as the source for the malware (Ries, 2005). This makes it difficult for
an outside reader to duplicate the work done in the paper.

For this study, the malware from a repository of malware on github
(fabrimagic72, 2018) could be used. This repository is useful because the
owner explicitly says where it came from, how it was determined to be
malware, and how it was classified. In this repository are 58 PE samples in
13 families. The problem with that malware is that 29 of the samples came
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Table 11.1 Number of Opcodes
Executable ‘ objdump ‘ radare?2 ‘ udcli
95 ‘ 13 ‘ 104

winhlp32.exe

LoadMoney 60 26 289

from Ransomware and the other categories had 1-3 samples from which to
choose. This is a very small sample.

Instead, theZoo’s samples will be used for the source of malware. This
has 580 malware samples to choose from. To start, create random sam-
ples from the malware that included Toolkits, Rootkits, Botnets, APT,
Ransomware, Trojans, and Banking Trojans. This can be followed up by
examining the individual malware types.

For tools other than objdump, there are udcli (Thampi, 2009) and
radare2 (Radare Team, 2017). Each of the tools disassembles the binary
to find opcodes, but each does it in a different manner. Both objdump and
udcli are linear disassemblers; they run through the file directly looking
for opcodes. radare2 tries to be more intelligent by attempting to create
a call graph and looks for opcodes in the code that will be executed. We’ll
create distributions using all three tools. The study should also start with
exploratory data analysis with the three tools before the study to see what
the initial differences are.

11.4 The Measurement Study

For a first step, start by running each tool on the two samples winhlp32.exe
and the LoadMoney Trojan and counting the number of opcodes. Table 11.1
has the results.

There’s a big difference in the number of opcodes for all three programs.
For winhlp32.exe, radare2 only found 13 opcodes while udcli found 104
and objdump found 95.

Now, consider the distribution of the top 14 opcodes, or in the case of
winhlp32.exe and radare2, the top 13. objdump was already examined in
a previous section. Fig. 11.5 has the distribution for winhlp32.exe using
radare2 and Fig. 11.6 has udcli.

As illustrated in Figs. 11.7 and 11.8, not only are the opcodes completely
different, but the distributions are different as well.

Not only did udcli find more opcodes, it also found more instances
of the opcodes it did find. The distributions between the goodware and
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Fig. 11.5 Top 13 Opcodes in winhlp32 Using radare2

malware do look different, though for udcli there is a little similarity in
appearance, but considering the opcodes themselves, they are different.

Again, this could be because of the singular nature of the program we
chose. Extend the study by repeating it over all the malware samples and
goodware samples. The study devised calls for this but doesn’t state which
tools to use.

The first results are for goodware. We’ve split these across three figures.
Notice how the opcodes at the bottom of the figure, on the x-axis, change
order between the three figures. This is because the figures are sorted by
the number of opcodes detected. The fact the x-axis labels change order
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Fig. 11.6 Top 14 Opcodes in winhlp32 Using udcli

between each of the charts makes them hard to assess. As an exercise, try
to compare how many push opcodes each disassembly method found.

Figs. 11.9, 11.10, and 11.11 have the distributions for objdump, radare2
and udcli respectively. Visually, all three appear different, which, consid-
ering each uses a different method, that isn’t necessarily concerning.

Now, consider the malware distributions over the three tools.

Figs. 11.12, 11.13, and 11.14 are the three bar graphs. The plots for
radare2 and udcli appear similar for malware, as opposed to goodware,
which is interesting because the two tools are completely different.
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Fig. 11.7 Top 14 Opcodes in LoadMoney Using radare2

Comparing the goodware to the malware, the pictures look similar be-
tween the two objdump pictures. However, when examined closely, the
opcodes are different. They’ve been sorted by size of opcode, not by name.

The problem here is that the comparison is not across equal things. The
lists of opcodes are different in each image, which skews perception of the
results, as shown in the objdump distributions.

Let’s retry this with a slight change. Instead of the top 14 opcodes in
each set of malware and goodware, pick the top 14 opcodes in goodware
and then look at the distribution of those in malware. To make things
easier, plot them on the same bar graph.
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In Fig. 11.16 for radare?2, it looks very different. Figure 11.17 for udcli
also has very different distributions. However, Fig. 11.15 appears different
but not as vibrantly different as the other two.

Notice that plotting two bars side-by-side makes it much easier to com-
pare the number of nop opcodes, for example, between benign and malicious
software within one disassembly method. These side-by-side bar charts still
have the problem that comparing across methods, the sort order of the x-
axis changes. What would Fig. 11.16 look like if the x-axis had the same
sort order as Fig. 11.177 While neither the goodware or malware bars
would be in ascending order, would it be easier or harder to read? Easier
or harder to compare to the other figures?
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Fig. 11.9 Top 14 Opcodes in Goodware from objdump

This visual comparison isn’t a proof of the hypothesis, it’s just a guide
to the next step. Statistical methods should be used to be sure.

The hypothesis is that the two distributions were drawn from the same
distribution.

Understanding this requires further explanation. Suppose the popula-
tion is a large amount of random numbers chosen from the normal distri-
bution. If two samples from this population are chosen at random, they
were drawn from the same population. This can be shown using statistics.
If there is one sample that was pulled from the normal distribution another
that is all 5’s, then they weren’t drawn from the same distribution. It’s
a method of looking at the similarity of the results that goes beyond the
eyes.
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In Fig. 11.18, we have an illustration of two distributions. These two
distributions don’t look all that similar, but it’s still possible they might
originate from the same distribution. In fact, that’s the hypothesis.

One way to verify this is the Kolmogorov—Smirnov test (Massey Jr,
1951). This tests if the two underlying distributions of the frequencies
differ. When used, this returns a value known as the p-value. If it is
greater than 0.05, then it is believed that they originate from the same
distribution. The p-value has been known to have problems, as mentioned
in Chapter 4. p-hacking, discussed in Chapter 8, is a common problem in
research. We'll try to avoid that in this study.



236 Science and CyberSecurity

250000 —
200000 —
150000 —
100000 —
50000 —
;

Fig. 11.11 Top 14 Opcodes in Goodware from udcli

Table 11.2 Kolmogorov—Smirnov
Test Results

Tool p-value
objdump 0.05903
radare2 0.3338

udcli 0.001021

When it is computed for the two distributions in Fig. 11.18, the p-value
is 0.722, which means the hypothesis is correct: they do originate from the
same distribution even though, visually they seem quite different.

We can repeat the hypothesis for the distributions in Figs. 11.15, 11.16,
and 11.17 to consider if the distributions of opcodes were drawn from the
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same parent. Table 11.2 has a compilation of the p-values. Remember,
p values of greater than 0.05 are needed to accept the hypothesis that
they were drawn from the same distribution. This means that they are
statistically similar.

Interestingly, the hypothesis that they were drawn from the same dis-
tribution is true for radare2 and objdump, but not true for udcli. This
contradicts the guess from examining the visualization, which shows that
while visualizations are useful, they aren’t definitive.

Now, let’s move to looking at the types of malware. Using udcli,
Table 11.3 was created.
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Table 11.3 Distribution of Opcodes Using udcli

‘ goodware apt  bank botnet ransom rootkit toolkit Trojan
add 278228 117461 69491 49081 372831 105795 38204 198919
call 86710 34022 19526 3091 40541 10739 5225 54287
cmp 69966 22639 52465 3837 45785 9766 7854 146858
dec 38235 5362 63507 3846 64763 10388 13593 183579
inc 49264 14766 64271 5356 74239 16709 21524 184899
jmp 38734 13175 25508 3252 23565 4393 2349 72853
jz 49069 15175 10213 1395 33788 6083 4613 25228
lea 36426 19715 7220 1227 19714 6896 2321 18901
mov 289039 81934 199465 13635 165136 46124 15879 587695
nop 38356 288 7931 465 144494 1872 1858 24134
pop 67743 20370 86656 7069 45275 15960 10678 248689
push 230602 69618 116752 11400 101685 39903 34618 328050
test 38617 10378 34969 2626 20657 5199 2775 100961
xor 44544 8975 54195 3537 62630 7865 14318 146047

Table 11.4 Kolmogorov—Smirnov Results for Malware vs. Goodware

‘ apt bank botnet ransom rootkit toolkit Trojan
objdump| 0.0 0.0 0.0 0.0 0.0 0.0 0.0
radare2|0.0009 0.0009 0.0009 0.0 0.0146  0.00018 0.0

udcli|0.00016 0.1549 0.0 0.6355 0.00016 0.0 0.1549

The same table can be created for objdump and radare. This is difficult
to visualize because it is just columns of numbers. It’s hard to imagine
patterns in this data, so instead we use a mosaic plot (Hofmann, 2000). A
mosaic plot lets us visualize proportions across contingency tables.

The size of the box is directly related to the amount of data found in the
column. Fig. 11.19 illustrates the relative proportions of the data across
the contingency table.

Let’s start with the claim that the distributions from the malware types
and goodware are statistically different. In Table 11.4 the results of the
Kolmogorov—Smirnov test and the p-values for each type of malware when
compared with goodware using the same tool. When the value 0.0 is given,
it means that the p-value was so low as to be close to 0.

The p-values for objdump and radare2 all imply that the hypothesis
that the two distributions were drawn from the same distribution should
be rejected, meaning they are statistically different. However, the results
for udcli in the banking, Ransomware, and Trojan cases all prove that the
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hypothesis is correct, that they were drawn from the same distribution and
not statistically different. Otherwise, they are not.

Going back to the original hypothesis, that malware and goodware have
different distributions of opcodes, it is clear that the results depend on the
tool in question. In the first situation, where the comparison was all of
malware to goodware, the radare2 and objdump tools implied that our
hypothesis was incorrect whereas the udcli tool said otherwise. Similarly,
when types of malware were considered, the radare2 and objdump tool
proved our hypothesis, but the udcli tool proved it in some cases and
disproved it in others.

Instead of the most common opcodes, it’s possible to examine the rarest
opcodes. In that case, there are opcodes that appear in some pieces of
malware but not in others. There are also opcodes that appear in malware
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but not in goodware and vice versa. Comparing two different sets of objects
is a difficult proposition.

11.5 Lessons Learned

Our study was to examine opcodes in malware and consider the distri-
butions of them versus the distributions in goodware. In doing this, we
discovered that the tool used can directly affect the results. We evaluated
three tools, all open source, radare, udcli and objdump. Of the three,
radare is designed to consider the flow of the executable while udcli and
objdump go linearly through the code looking for opcodes. The difference
in the tools is probably what made the results different, but without further
study we don’t know.
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We also noticed the difficulty in comparing sets of different objects. If we
want to compare the distributions of the opcodes between two programs,
we need to consider the same opcodes and not a different set from each
one.

Finally, we also saw that visualization can lead us down the wrong
path. The bar plots looked different, but using the statistical Kolmogorov-
Smirnov test showed otherwise. We shouldn’t rely on our eyes as the sole
arbiter. Statistical difference requires actual analysis beyond the bar plots
that illustrate the data. Speaking of illustrating data, the mosaic plot is a
visualization that illustrates the proportions of the table.
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Chapter 12

Human Factors

The previous three chapters discussed case studies of DNS, network traffic,
and malware. The three case studies have a similar theme, they are all
artifacts found on computers. While they are all closely related to the
technical operation of computers, those computers only operate because of
and for humans. In order for a domain name to appear in passive DNS data,
a resolution of the domain was done. This is often triggered by a human
going to a website, sending email, or playing a game. If the resolution was
part of an automated process, then some human created and initialized
that automation.

The desirable study properties introduced in Chapter 4 apply just as
well to the example studies for DNS, network traffic, and malware as they
do to understanding human behavior and human choices. This chapter will
introduce some example studies about humans in a cybersecurity context.

Human interaction may cause a cybersecurity incident directly or indi-
rectly. A user must click on a link in a phishing email to activate it. Malware
installation often requires that the user do something on their computer or
access a website. Every security incident is also related to the decisions
and mistakes of risk managers, software developers, system administrators,
and network engineers: that is, the people who chose, created, managed,
and interconnected the system. Attackers are also humans with their own
decisions, mistakes, patterns, and interests; all of which a defender can take
advantage of. While we study the resulting security events by examining
malware, patterns in DNS or network traffic, it was the human factor that
caused the issue.

This chapter introduces ways of studying humans that are commonly
useful in cybersecurity. Entire libraries have been written on how to study
humans, and there are many different expert perspectives which one might

247
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use. Experts in sociology, psychology, economics, criminology, and anthro-
pology have contributed thousands of pages each to cybersecurity. One
chapter in a cybersecurity book cannot provide enough information to al-
low you to create your own studies. This chapter will, however, allow you
to understand the studies that have been done and to contribute to a study
in collaboration with the appropriate experts.

We will discuss the potential questions these kinds of studies can ask
(recall Chapter 3), the gathering and evaluation of study populations (recall
Section 4.2.3), and how to put a study together (recall Chapter 7). Finally,
we discuss study results and what you can expect (and not expect) to learn.

12.1 The Questions

Any research study on humans begins as any other topic, with a question
to answer. In the prior three chapters, some examples were what’s the
pattern of domain resolutions, what’s the pattern of network traffic that
illustrates exfiltration, or what’s the basis of the malware that makes it
distinct from other malware. Some examples research questions about hu-
mans in cybersecurity include: Why are people clicking on phishing links?
How do cybersecurity professionals accomplish their jobs well? What are
the differences in attitudes towards cybersecurity among software develop-
ers? These are broad questions that need to be narrowed down for effective
research on the human elements of cybersecurity.

As with other areas, a key research skill is how to narrow down these
broad questions into a testable and useful research question. The best op-
tion will be an interrelated set of structured research questions, each of
which is narrow enough to be answered but also just general enough to
inform some of the other questions to study. For any given narrow re-
search question, the results may provide unexpected answers that force the
interrelated questions to adapt. This adaptation to achieve the broader
research agenda is why understanding the difference between negative re-
sults and non-results is so important (see Section 8.5.2). Negative results
let you adapt, but non-results don’t let you make any progress whatsoever.
A well-posed research question is testable, which is the first step in getting
to a negative or positive result and avoiding a non-result.

Tackling a research agenda should be handled in much the same way de-
velopers write software. Decompose the problem into distinct parts or dis-
tinct actions and try to localize the big properties or outcomes into specific
parts or actions (Bechtel and Richardson, 1993). Encapsulate how the part
functions or the action is achieved. Basically, try to define the application
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programming interface (API) for each part of the research problem. Then
you can worry about understanding how each component implements its
respective API separately. If, after one iteration of this decomposition and
localization process, some components are still too complex to describe a
narrow and testable research question, repeat the process.

In this metaphor, one main difference between defining research ques-
tions and software development is direction, but the concepts are analogous.
In research, you often start with a topic of interest and break it up, moving
from the top down. In software development, while there is a functional
top-level goal in mind, APIs are often designed from the bottom up, en-
capsulating a process when it has become well-understood enough to be
reliable but complicated enough to be a distraction. Research questions
should instead break a topic into smaller mechanistic parts to understand
it better, as long as how the parts interact can be measured and understood
(Craver, 2007).

Asking a broad question of “Who falls victim to phishing?” is a start,
but it does not prove any testable advice. For that, one might ask about
the demographics, attitudes, professional roles, level and kind of education,
personality traits, available attention or effort, and economic incentives of
those victims. If 10 people clicked on the link, that is a problem statement.
To form a research question, ask what makes those 10 people different from
the others and what you can do about it. For example: what about their
thought processes will help devise ways to prevent the activity in the future?

The researcher will always bring their own perspectives into a study.
One common theme in user-centered security research is studies that im-
plicitly (and often wrongly) blame the user for security failures. There is a
big difference between these two questions:

e “Why is this user at fault for this phishing attack?”

o “What part(s) of the socio-technical system failed that permitted
this phishing attack?”

An example of the first kind of question is asking what personality
traits are correlated with clicking on phishing links, such as in Halevi et al.
(2013). The study used personality traits defined by the five factor model
of personality assessment (McCrae and John, 1992). This is a method from
psychology to create a model of personal traits. This study examines the
risky behavior in cybersecurity in terms of psychology to determine what
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traits are more likely associated with risky behaviors. This kind of thinking
can be dangerous, but there are some useful applications.

In jurisdictions where profiling based on personality traits is legal, know-
ing what personality traits are correlated with, say, insider threat behavior
or accidental data loss may inform an organization’s security configura-
tions. Companies generally have cybersecurity policies in place to protect
the company and its assets. For example, acceptable use is often spelled
out, backup and retention policies are described, guest policies, and more.
Employees are required to conform to these policies, sometimes through
technological means, others through written agreements. Unfortunately,
employees don’t always follow the agreements. Understanding the motiva-
tions behind why can help organizations shape their reactions that best fit
the likely reasons.

An example of a study that approaches the research with a mindset
more like the second question is Beautement et al. (2009). The study
examines what happens when a security policy was put in place without
considering how people do their work. Understanding that case can help
an organization reshape their policy to a more usable state.

Beautement et al. (2009) uses an interview format to consider why users
do or don’t follow a security policy. The result of the study is a broad exam-
ination of why users follow policies and why they don’t, including attitudes
towards encryption and risk. The study gives a more in depth understand-
ing about what users are thinking about instead of a narrowly focused
study. The results are a spectrum of opinions instead of a percentage of
responses.

Another example of a well-posed research agenda is “What is the rela-
tionship between users and their passwords?” Omne smaller question that
fits into this broad question is “Why do people choose poor passwords or
poor strategies for remembering their passwords?” The first study to ap-
proach this question (Adams and Sasse, 1999) used a web survey focused
mainly on password related behaviors. The goal in the study design is to
elicit the “why” directly from the users to focus future research questions
on testing the possible explanations.

Adams and Sasse (1999) identified four major factors effecting password
behavior: multiple passwords, the password content, the perception of com-
patibility with work practices, and the perception of organization security.
Each of these topics has been studied from multiple perspectives in the
years since, leading the US (Grassi et al., 2017, §10) and UK (National
Cyber Security Centre (UK), 2018) national governments to change their
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password guidance in ways that take the burden off the user and on to more
robust and better designed authentication and authorization systems.

Human factors research is not limited to studying lay users, as Sec-
tion 12.2 will discuss. For example, various methods have been used to
study and understand how a CSIRT functions best. Outsiders using sur-
veys and interviews to analyze the inner workings of such group have failed.
However, an anthropological approach, in which researchers have the skills
and methodology to embed within a culture and gain trust, proved more
successful (Sundaramurthy et al., 2014).

There are many other important questions at the intersection of human
behavior and cybersecurity. Your questions might range from “What will be
the organizational cost of this new security control?” to “What do attackers
want?” to “How does the sound of the alert affect SOC employee skills?” (for
this last, see Axon et al. (2019)). All of these questions are related to the
human factors in the socio-technical system that cybersecurity practitioners
alm to secure.

12.2 Who to Study: Important Study Populations

In the Malware Study, Chapter 11, we began with discussing the types
of malware you could study. We’ll do something similar here for human
factors studies.

We classify humans in this case based on their job and task. A person
whose computer use is their job has a different view than someone who is
not being paid to use the computer but rather is accomplishing some task
in their personal life. The same person may often have different views in
these two scenarios, so it is not just about personal knowledge, but context
and purpose. Within the professional category, anyone whose primary task
is security computers is a cybersecurity professional, and their concerns
and viewpoints are markedly different than a software engineer or human
resources specialist whose primary task is not cybersecurity but rather to
deliver a product or service. Some general knowledge is transferable be-
tween these three groups, such as the neurological basis of memory. But
in most ways directly relevant to cybersecurity outcomes, study design and
the relevant results will be quite different among the three groups.

It is sometimes useful to further divide the non-cybersecurity profes-
sional group as IT professionals or non-IT professionals. An IT professional
is often not a cybersecurity expert. Database administrators, network en-
gineers, technical support, and software developers are all examples of IT
professionals. These job roles are not automatically experts in cybersecu-
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rity, but they should have job tasks that intersect with providing cyber-
security and can directly impact cybersecurity in ways that many non-IT
professionals do not. There are plenty of non-IT job roles that also may in-
tersect with cybersecurity, such as legal counsel, HR, and acquisitions. As
an extreme example, a purchasing manager who decrees an organization
will not pay for any software with a known vulnerability would certainly
have a profound effect on cybersecurity posture. The I'T and not-IT division
should not be used as a proxy for the cybersecurity and not-cybersecurity
division of professionals. But not-IT professionals describes a certain seg-
ment of the white collar work force that are important for organizations in
some industry sectors to understand.

Suppose we want to know what non-IT professionals know about cy-
bersecurity. This group is part of a corporate network’s defense in depth
strategy, so knowing its strengths and weaknesses is important for design-
ing other security services. One study (Carlton et al., 2019) approached
this by creating a set of scenario-driven tasks in which they measure non-
IT professionals on a set of skills. Cybersecurity experts crafted the list
of skills to be what they expect to be applicable skills (though, if we were
to critique this study, the fact that the skills improve workforce outcomes
should be validated separately).

The corporate security team should be interested in these study results.
Understanding the skills of the staff you are trying to protect is useful for
understanding cybersecurity risk and designing complementary mitigations.
And while a security team can read Carlton et al. (2019) and take the results
as an assumption, this introduces a fair amount of unexamined sample bias.
It would be much more applicable to take this kind of study style and
conduct it on a sample of your corporate workforce that is representative
of exactly the people you are protecting.

Understanding the workforce to be protected can only be done by study-
ing that workforce. Asking cybersecurity experts what they know about
cybersecurity doesn’t answer this question. Asking lay people who don’t
work at the company doesn’t help either. You want to know what the user
that doesn’t specialize in IT knows and understands. Any such study on
professionals who are not tasked with cybersecurity is markedly different
from studies of cybersecurity professionals. In the latter, you might be look-
ing for how you can improve your own workflow or that of your colleagues.
Consider pen testers, for example.

Penetration testing is a cybersecurity practice to probe the security
posture of an organization. There are myriad tools and mechanisms for
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performing penetration testing, from open source to expensive licensed soft-
ware suites. Understanding the commonly used tools helps us understand
the methods available to pen testers, but what a good pen tester really
wants to know is how to most efficiently think about breaking into a tar-
get. If a team or professional organization can describe this thought pat-
tern, they can create training methods to teach effective pentesting. Since
there is a huge shortage of qualified pen testers, effective training methods
are a top priority.

A reliable study to describe these professional thought processes and
methods—and filter out which aspects are actually what make for a good
pen tester—is not a simple matter. If you use a search engine to search for
tools you only learn what’s available. But the research goal is what tools
the professionals use and how they deploy them effectively. In this case,
asking cybersecurity professionals as a whole isn’t a good population. Not
everyone who is a cybersecurity professional is knowledgeable about pen
testing. To get the best results, we need to ask the right population. In
this case it’s pen testers, not malware researchers or other cybersecurity
professionals.

Armstrong et al. (2018) relied on a self-identified population of pen
testers to answer this question. Self-identification certainly has some weak-
nesses as far as a sampling method; it is essentially a convenient sample
(Section 4.2.3). The study mitigates this problem by selecting participants
who are attending the industry-standard events for pen testers, BlackHat
and Def Con. This context makes the study population likely to be drawn
from pen testers, and not from random liars on the internet. There are still
the usual problems of convenient samples; for example, there is no way to
know if the kind of pen tester who is too paranoid to talk to a researcher, or
who would prefer not to travel to the United States and so is not attending
the conference, will work in a systematically different way from those in the
study. But as far as a strategy for gathering leads on a satisfactory set of
pen testing tools to be verified by future studies, it’s not a problem in this
context.

In both of these examples it’s the people you study who are important.
The study should be directed at the group that best answers your research
question. Asking lay people to describe pen testing isn’t a useful way to
learn how pen testing should be taught. With a different research goal—
say, understanding pop culture influences of hacking—asking lay people to
describe pen testing might be exactly the right approach.
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12.3 Study Design Examples

There are several steps to putting a human factors study together. In
this section we’ll discuss the broad outline of this process. Deciding on
a testable, narrow but interconnected research question is the first step
(Section 12.1). These desirable question properties and how we ensure
them are no different than studies in other topic areas like DNS or malicious
software used as examples in Chapters 9, 10, and 11. Understanding the
population type the study should draw on and examine was the second
step (Section 12.2). For example, if your research question is “How does a
SOC handle alerts” then the appropriate study participants are members
of SOCs selected in a way that makes the representative of the population
of interest (recall Section 4.2).

Once we have those two parts, we need to consider how we’re going to
go from the question and target population to answers. Chapter 7 intro-
duced five types of structured observations. Like with any other part of
cybersecurity, each of those five can be used to study the human aspect
of cybersecurity. Their relative strengths and weaknesses are similar with
some important differences. For example, a simulation-based study must
demonstrate fidelity between the simulated model and real humans with
more and more diverse evidence than you need to show that a simulated
DNS server is comparable to a DNS server “in the wild.”

Your first step is to understand and sample from the population. This
information gathering is an iterative process; prior case studies or mea-
surement studies provide information to design future studies, whether this
means further case studies, interventions, or simulations depends on your
goals. Sections 12.3.1 through 12.3.5 describe an example of each of these
study types in the context of human factors in cybersecurity.

Determining the best method for approaching subjects is a difficult ques-
tion that has no straightforward answer. It’s best to find an expert in the
field.

12.3.1 Case Study

Case study methods originated in the social sciences, and they are well
developed in fields such as sociology and anthropology (Stake, 1995). In this
book, we have used an expansive sense of the term case study that includes
cybersecurity studies like attack papers and understanding the technical
impact of a single vulnerability. But studying the human element of systems
is the origin and core purpose of case study methods. Sundaramurthy et al.
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(2014), discussed in Section 12.1, is an example of anthropological case
study methods used to study a CSIRT.

The example set by Beautement et al. (2009) is not a classic case study;
we discuss it here to press a bit on the boundaries between case studies
and measurement studies. Beautement et al. (2009) uses semi-structured
interviews to investigate users attitudes towards cybersecurity policies. The
researchers conduct a series of interviews, each of which is a case study. A
semi-structured interview has set questions the interviewer will ask, but
they are free to prod the respondent to follow-up or expand their initial
answer. Each of these cases is comparable to each other, since the questions
are the same and the study participants each represent some aspect of the
population of interest (Western, educated, adult technology users). Case
studies are differentiated from measurement studies based on the richness
and diversity of information collected, not how many people are in the
study.

12.3.2 Measurement Study

Measurement studies may be the most common kind of research in cyber-
security presently, which creates a wide diversity of study designs based
on what is being measured how. On the technology side, there is a well-
established academic conference dedicated exclusively to network measure-
ment studies: the Internet Measurement Conference. An example human-
centric measurement study discussed in Chapter 7 was measuring the cost
of cybercrime (Anderson et al., 2012, 2019). A common measurement aim is
to measure what is going on inside people’s heads: their thoughts, attitudes,
skills, knowledge, opinions, or decisions. Unlike technology or financial ex-
changes, these things are not directly observable. Surveys are commonly
applied technique to measure these mental states.

Surveys may be commonly used, but they are rarely conducted prop-
erly. Subtle aspects of survey design can enormously influence the results
(Diamond, 2011), such as the order of the questions, relationship between
questions, and whether another person is in the room when the respon-
dent fills out the survey. Published academic papers are far from immune
to these survey design flaws. In fact, we suspect your marketing depart-
ment is a better resource for survey design assistance than academics. Let’s
look at one academic example to see where things can go wrong in survey
measurements.

Anwar et al. (2017) poses a research question about the relationship
between gender and cybersecurity beliefs and behaviors. This study used



256 Science and CyberSecurity

87 questions that are related to an individual’s computer skills, perceptions
about cybersecurity topics, and self-reported security behavior. Example
questions include:

e What is your comfort level, when using computers?
e How comfortable are you with online shopping?

e | feel that my chance of receiving an email attachment with a virus
is high.

The answers were a 7 point range from “strongly disagree” to “strongly
agree.” This kind of qualitative range for a survey response is know as a
Likert scale. Psychologists have been using Likert scales for a long time
to measure humans’ opinions, and while there are certainly some dangers
with misusing Likert scales these dangers can be managed (Jamieson, 2004;
Norman, 2010).

This survey study strays from the start with its research question (re-
call Section 12.1). While the question of whether gender is linked to self-
reported cybersecurity behavior is certainly testable, it’s not useful. It’s
not useful for two reasons. It frames the question more as “why is this user
at fault” rather than “what part(s) of the socio-technical system failed,”
as discussed in Section 12.1. Secondly, the question does not address how
society treats different genders differently. It is already well-known that
gender interacts with self-efficacy (Pajares, 2002).

Although Anwar et al. (2017) poses an impressive array of 87 questions
to study participants, there is little evidence they did so in a way to avoids
systematic problems. These problems start with participant recruitment.
The authors sent a link to the online survey to employees at various orga-
nizations. This is a common but devastating recruitment error. The study
population is worse than a convenient sample; the study population is some
mix of the people who care very much about the topic and people who were
bored at work that day. It is always bad when study participants self-select
as to whether they will participate, rather than the study designer selecting
participants. A better way to do this would be to solicit 1,000 volunteers
and then the study designer selects 500 to take the survey, balancing the
study participants’ demographic characteristics. The fact that 66% of re-
spondents were female suggest a sizeable impact of self-selection for this
study. But there is no way to know how that impact should be handled
when interpreting the results.
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The design of the actual survey demonstrates further common mistakes.
One issue is simply the length: 87 questions is longer than an unpaid vol-
unteer can be expected to spend on an online survey. The method section
doesn’t state the order in which the questions were asked. The order is
extremely important; for most surveys, the questions should be shown in
a different, random order to each participant. For a Likert-scale set of re-
sponses, the order answers are presented in should stay the same. But for
most surveys, the order of answers for each question should also be ran-
domized rather than fixed across all participants. These techniques even
out effects from the question ordering (Diamond, 2011).

Especially with a long survey, the survey method has to have a way to
check participants are engaging in good faith. Often enough to mess with
research results, people handle surveys by answering “3” (for example)
to everything without reading any of the questions. Anwar et al. (2017)
do not report doing any sort of check for this, which generally involves
asking the same question in different ways and having a couple canary
questions which have a correct answer and check comprehensive rather than
participant opinions. The researcher can then remove all the responses from
any participant who gets a canary question wrong.

Survey respondents, especially employees, often know when answers are
more or less socially responsible. Even when no one else will specifically
see their response, respondents will filter their self reports towards pro-
social behavior. The respondent may not be lying consciously in these
cases; human memory formation is not a photographic recording. People
may remember themselves in a more positive light than was actually the
case. Another confounding element is how respondents understand words
like “virus” or “cybersecurity.” Someone who doesn’t know what a com-
puter virus is may self-report their chances of receiving one via email are
low. Therefore, any self-reporting survey is a combination of three surveys:
what people did, what people think they should have done, and how people
understand the jargon terminology used by the survey. It is nearly impossi-
ble to disentangle these three, which is why surveys that use self-reporting
alone are a bad idea.

The questions themselves were largely drawn from prior research. This
practice is quite helpful, as it increases the researcher’s ability to connect
their results to other published results. This design choice is one thing the
authors did well. Unfortunately, with all the other problems, there is not
much value in their results to make them worth connecting to other results.
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12.3.3 Intervention

There are many kinds of interventions on human behavior in cybersecurity
practice. Cybersecurity practice can be understood as a series of inter-
ventions which attempt to influence the behavior of one group of humans:
attackers. Stoll (1989), discussed in Chapter 7, is a classic example of a se-
ries of interventions and their effect on attacker behavior. Cheswick (1992)
is another classic example in this vein. When the goal of an intervention is
to defend a system, it is often hard to measure the effect that intervention
had on the attacker.

When you’re designing an intervention—that is, responding to an
incident—you should always have a hypothesis about what the attacker will
do in response. Consider Mandiant’s publication of its report on Peoples
Republic of China (PRC) government espionage (Mandiant, 2013). The
publication itself was an intervention in two ways. It provided information
to companies to defend themselves, including specific indicators of compro-
mise (IoCs). The publication also told the attackers that Mandiant knew
these network addresses were in use by the attacker. If Mandiant were in
a position to observe how the attackers’ behavior changed based on this
information reaching the attacker, they can use that observation to bet-
ter understand the attackers’ operations. As a simple example, Mandiant
analysts learned how quickly the attackers heard about the publication of
the report and the tempo of changes to operations the attackers could sup-
port. The information gathering and tempo capabilities of a group provide
insight into how well resourced the group is.

12.3.4 Randomized Control Trials

The study design method of RCTs were primarily developed to study peo-
ple in a medical context. Cybersecurity can use the concept of RCTs to
study technology, such as with release engineering (see Section 7.2.4). But
conducting an RCT on human factors in cybersecurity brings the study
method back to its roots. One field that often conducts RCTs to test
how small interventions change human behavior is around nudges, or “soft
paternalism.”

Acquisti et al. (2017) captures many examples of how user behavior can
be nudged or influenced by choices in system design. One example example
is how a population of users responds to changes to the default settings
of their web browser. Unsurprisingly, most users stick with the default,
whether the default is more or less secure. There are some exceptions;
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people who self-identify as very privacy-conscious will usually take the time
to change privacy settings in a browser, whatever the defaults.

Testing this for your population of users is fairly straightforward, at least
as far as RCTs go. You need two comparable groups of users; the groups
should be about the same size and have about the same proportion of job
roles and demographic characteristics (age, gender, education, etc.). The
IT department might achieve this by randomly assigning every new user
at enrollment time into one of the two groups. One group gets HTTPS
Everywhere, a browser extension that forces TLS connections whenever
possible, installed by default, and the other does not.

The security team can measure a few properties of these two groups
going forwards. The most basic one is to confirm the expected result and
measure whether most users stick with the default they are given. But
you could go further, and gather some information about what effect this
default choice has on user behavior. Some measurements to help answer this
question include whether one group creates more IT tickets than another,
triggers more IDS alerts, or accomplishes more work-related tasks.

12.3.5 Simulation

Section 7.2.5 focused on mathematical models of computer systems, But
several fields study humans and human decision making primarily through
mathematical models and simulations, such as game theory (Alpcan and
Bagar, 2011). These simulations over-simplify some specific aspect of hu-
man decisions to describe the interaction precisely as a set of mathematical
formulae. The benefit of this approach is that the outcomes of the simpli-
fied description can be simulated, testing the model and providing potential
explanations for what elements are dominant in the real scenario.

Veksler et al. (2018) introduce several ways that cognitive modeling and
simulations of human’s thought processes have been used in cybersecurity.
One important aspect is to create realistic training scenarios in which the
virtual users in a training environment should be realistic simulations of
the relevant user population.

Setting up a study to simulate users in a reliable way has two main
phases. There is the technical phase of implementing the virtual environ-
ment and with an agent and corresponding cognitive model on each host.
Then there is an evaluation phase, measuring whether the virtual users in
aggregate produce traffic that is similar enough to a network of real users.
“Similar enough” can be defined in different ways, but a reasonable test in



260 Science and CyberSecurity

a training environment is whether real human penetration testers can hide
among the virtual users from the defenders being trained.

Training scenarios can also simulate attacker behavior using cognitive
models, so the simulated attacker can respond to defender countermeasures.
If the training simulation environment closely matches the production envi-
ronment, simulating an attacker’s behavior can lead directly to pragmatic
changes in production. The main challenge is ensuring the model of the
attacker is like relevant real attackers. Efforts to model attackers based
on past incidents, such as the Diamond Model (Caltagirone et al., 2013) or
Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK), can
be used as input into the simulation to increase confidence in connection
to real attackers.

In some sense, a defender doing incident response is mentally simulat-
ing what the attacker would have done or wanted. So it is a short step
from simulating attacker behavior to simulating incident response options.
While this technology is a ways away from production, there is research in
directions that would allow simulation of what an attacker might have done
in order to aid incident analysis (Spring and Pym, 2018; Al-Shaer et al.,
2020).

12.4 Interpreting Results

For a technology-focused practitioner, reading the results sections of human
factors papers is often difficult. The results are informed and described by
the terms found in social science fields and may use jargon specific to social
sciences rather than have the conclusions translated into actionable advice
in language a cybersecurity practitioner is used to. Better papers, such as
(Adams and Sasse, 1999), will contain recommendations at the end of the
paper that summarize the results in a useful form. There are enough venues
at the intersection of humans and cybersecurity that a technology-focused
person can rely to some extent on important results being translated into
cybersecurity terms. Some example venues are Usable Security (USEC),
the Symposium on Usable Privacy and Security (SOUPS), the Conference
on Human Interaction (CHI), and the cybersecurity technical group at the
Human Factors and Ergonomics Society (HFES).

A reader can take those results and implement the suggested changes
in their organization.

Cybersecurity is inherently a practical field; we want to find use in the
research done for the field. Human factors research can inform us about
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how best to create policies for users, best practices, assist in education,
nudge user behavior, and in the end, make the system more secure.

Beautement et al. (2009) doesn’t end with a plethora of statistics, rather
it gives examples of user thinking based on the structured interviews the
authors conducted. These include examples such as

“I know very few people who run encrypted file systems on a
laptop ... because they don’t trust the file system. They want
their data to be accessible.”

Rather than assuming that users just don’t want to encrypt their file
systems, this illustrates the risk a user thinks they are taking by encrypting
the file system. They want their data available, and in their opinion, en-
crypting a file system would create more risk that it wouldn’t be available
than they are willing to accept.

A good paper in this field will contain recommendations and lessons
learned that can be adapted and utilized. This paper informs the reader
that education is needed so that the user will understand better the risks
and gains in encrypting file systems.

Some basic heuristics you can us to evaluate results in human factors
studies include the following (Krol et al., 2016):

e Did the study participants have a realistic or well-understood pri-
mary task? If not, the results may be an artifact of the study
environment.

o Was the risk the study explores realistic? Did participants experi-
ence a realistic risk to which the study captures a response? If not,
the results may be an artifact of the study environment.

e Were the participants primed towards one response or another by
some aspect of the study procedure or environment? Were mea-
surements (such as surveys) designed according to established best
practices?

e For any study that tests the effect of a change (interventions, RCTs,
some simulations, some case studies, and natural experiments), are
the participants and researchers both blinded so they can’t influ-
ence what they think the results should be?

e Certain jargon terms are always slippery, and need to be defined
or have a definition cited. Did the study define the terms “threat
model,” “security,” “privacy,” and “usability”? If not, the differ-
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ent researchers or different participants likely have different under-
standings of what is being studied, likely muddling the results.

While this list is not a panacea, it will help you avoid the worst and most
dubious results.

12.5 Recap

This chapter introduced you to studies of human factors in cybersecurity.
We provided examples of forming research questions, important study pop-
ulations, five types of study design, and some venues to check for relevant
results.

The research question a study seeks to answer should be testable and
useful. Unexpected results or negative results in response to a research
question are an important part of research, and should be accepted. Non-
results, in which a question was not actually answered because the research
methods were flawed, should be avoided. Avoiding non-results and getting
useful negative results starts with a testable and useful research question
that is clearly interconnected to some things that are well-known and some
other questions. Especially when studying users in cybersecurity, avoid
research questions that implicitly blame the user before the study even
begins.

Who you want to study has a big influence on how you study them. Lay
or non-professional users of systems are a diverse group that often needs
to be studied one sub-group at a time. Professionals whose job role is not
cybersecurity are a common study target because they are one layer in any
organizations defense-in-depth strategy; understanding employee motiva-
tion, skills, and tasks is important for designing integrated cybersecurity
solutions. Cybersecurity professionals themselves are also a common sub-
ject of study, whether it is how to improve training, increase workflow
efficiency, or reduce employee burnout.

Study designs related to human elements of cybersecurity are as diverse
as any other area of cybersecurity. Case study methods from sociology and
anthropology are well suited to collecting a rich and diverse set of data
about a topic. Measurement study methods often include surveys, though
Section 12.3.2 describes how a good survey is often harder to construct that
it might appear. Interventions often target changing adversary behavior.
RCTs can be used to evaluate how users respond to default settings or other
system design choices with a goal to nudge them towards desired (secure)
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behaviors. Simulations of human cognitive models and behavior are used
to enrich training environments or predict possible attacker actions.

Finally, we provided some heuristics you can use to evaluate the results
of these kinds of studies. These are specific ways that connection, gener-
alizability, and transparency often fail during studies of human factors in
cybersecurity.
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