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Preface

A mind that is stretched by a new experience can never go back to its old
dimensions.

—Oliver Wendell Holmes Jr.

Developing software is quite a complex endeavor. As Java developers, we
usually try to tame this complexity with object-oriented programming
(OOP) as a metaphor to represent the things we are developing, such as data
structures, and use a primarily imperative-focused coding style to handle
our program’s state. Although OOP is a well-known and battle-tested
approach to developing sensible software, not every problem is a good
match for it. We might introduce a certain amount of unnecessary
complexity by forcing OOP principles on every problem instead of using
more appropriate tools and paradigms also available to us. The functional
programming (FP) paradigm offers an alternative approach to solving
problems.

Functional programming isn’t a new idea. In fact, it’s even older than
object-oriented programming! It first appeared in the early years of
computing, in the 1950s, in the Lisp1 programming language and has been
used quite commonly in academia and niche fields. In recent years,
however, there has been an increasing interest in functional paradigms.

Many new functional languages emerged, and non-functional languages are
including functional features to various degrees. The ideas and concepts
behind FP are now adopted in almost every mainstream multi-paradigm and
general-purpose language, allowing us to use some form of functional
programming regardless of the context and chosen language. Nothing stops
us from taking the best parts of FP and augmenting our existing way of
programming and software development tools — and that’s what this book
is about!



In this book, you’ll learn the fundamentals of functional programming and
how to apply this knowledge to your daily work using Java.

New Hardware Needs a New Way of Thinking
Hardware is evolving in a new direction. For quite some time, single-core
performance improvements haven’t been as significant as with each
previous processor generation. Moore’s law2 seems to slow down, but such
a slowdown doesn’t mean that hardware isn’t improving anymore. But
instead of primarily focussing on single-core performance and even higher
GHz numbers, the manufacturers favor more and more cores.3 So, for
modern workloads to reap all the benefits of new hardware that favors more
cores rather than faster ones, we need to adopt techniques that can use more
cores to its advantage without compromising productivity or introducing
additional complexity.

Scaling your software horizontally through parallelism isn’t an easy task in
OOP. Not every problem is a good fit for parallelism. More painters might
paint a room faster, but you can’t speed up pregnancy by involving more
people. If the problem consists of serial or interdependent tasks,
concurrency is preferable to parallelism. But parallelism really shines if a
problem breaks down into smaller, non-related sub-problems. That’s where
functional programming comes in. The stateless and immutable nature of
idiomatic FP provides all the tools necessary to build small, reliable,
reusable, and higher-quality tasks that elegantly fit into parallel and
concurrent environments.

Adopting a functional mindset adds another set of tools to your toolbelt that
will allow you to tackle your daily development problems in a new way and
scale your code easier and safer than before.

Next, let’s look at why Java can be a good choice for functional
programming.



Java can be Functional, too
There are many programming languages out there that are great for
functional programming. Haskell is a favorite if you prefer a pure
functional language with almost no support for an imperative coding style.
Elixir is another exciting option that leverages the Erlang VM4. However,
you don’t have to leave the vast JVM ecosystem behind to find FP-capable
languages. Scala shines in combining OOP and FP paradigms into a
concise, high-level language. Another popular choice, Clojure, was
designed from the ground up as a functional language with a dynamic type
system at heart.

In a perfect world, you’d have the luxury of choosing the perfect functional
language for your next project. In reality, you might not have a choice at all
about what language to use, and you’ll have to play the cards you’re dealt.

As a Java developer, you’d use Java, which was historically seen as not
ideal for functional programming. Before we continue, though, I need to
stress that you can implement most functional principles in Java, regardless
of deeply integrated language level support5. Still, the resulting code won’t
be as concise and easy to reason with as it would in other languages that
allow a functional approach in the first place. This caveat scares many
developers away from even trying to apply functional principles to Java,
despite the fact that it might have provided a more productive approach or
better overall solution.

In the past, many people thought of Java as a slow-moving behemoth, a
“too big to become extinct” enterprise language, like a more modern
version of COBOL or Fortran. And in my opinion, that’s partially true, at
least in the past. The pace didn’t pick up until Java 9 and the shortened
release timeframes6. It took Java five years to go from version 6 to 7 (2006-
2011). And even though there were significant new features, like try-
with-resources, none of them were “ground-breaking.” The few and
slow changes in the past led to projects and developers not adopting the
“latest and greatest” Java Development Kit (JDK) and missing out on many
language improvements. Three years later, in 2014, the next version, Java 8,

https://www.haskell.org/
https://elixir-lang.org/
https://www.erlang.org/
https://www.scala-lang.org/
https://clojure.org/
https://fortran-lang.org/
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.xhtml


was released. This time, it introduced one of the most significant changes to
Java’s future: lambda expressions.

A better foundation for functional programming had finally arrived in
arguably the most prominent object-oriented programming language of the
world, changing the language and its idioms significantly:

Runnable runnable = () -> System.out.println("hello, functional 
world!");

The addition of lambda expressions was monumental in making it possible
to finally use functional programming in Java as an integrated language and
runtime feature. Not only that, but a whole new world of ideas and concepts
was made available to Java developers. Many of the JDK’s new features,
like Streams, the Optional type, or CompletableFuture, are only
possible in such a concise and straightforward way thanks to language-level
lambda expressions and Java’s other functional additions.

These new idioms and new ways of doing things with FP in Java may seem
strange and might not come naturally, especially if you’re primarily
accustomed to OOP. Throughout this book, I’ll show you how to develop a
mindset that’ll help you apply FP principles to your code and how to make
it better without needing to go “fully functional.”

Why I Wrote This Book
After using another multi-purpose language with excellent functional
programming support — Swift — and seeing the benefits first-hand, I
gradually introduced more and more functional principles in my Java-based
projects, too. Thanks to lambda expressions and all the other features
introduced in Java 8 and later, all the tools necessary were readily available.
But after using these tools more frequently and discussing them with my
colleagues, I realized something: How to use lambdas, Streams, and all the
other functional goodies provided by Java is easy to grasp. But without a
deeper understanding of why and when you should use them — and when

https://www.swift.org/


not to — you won’t unlock their full potential, and it will just be “new wine
in old wineskins.”

So I decided to write this book to highlight the different concepts that make
a language functional, and how you can incorporate them into your Java
code, either with the tools provided by the JDK or by creating them
yourself. A functional approach to your Java code will most likely
challenge the status quo and go against best practices you were using
before. But by embracing a more functional way of doing things, like
immutability and pure functions, you will be able to write more concise,
more reasonable, and future-proof code that is less prone to bugs.

Who Should Read This Book
This book is for you if you are curious about functional programming and
want to know what all the fuss is about and apply it to your Java code. You
might already be using some functional Java types but desire a more
profound knowledge of why and how to apply them more effectively.

There is no need to be an expert on OOP, but the book is not a beginner’s
guide to Java or OOP. You should already be familiar with the Java standard
library. No prior knowledge of functional programming is required. Every
concept is introduced with an explanation and examples.

The book covers Java 17 as the latest Long-Term-Support (LTS) version
available at publication. Knowing that many developers need to support
projects with earlier versions, the general baseline will be the previous LTS,
Java 11. But even if you’re stuck on Java 8, many of the discussed topics
are relevant, too. Although, some chapters will rely on newer features, like
Records, which were introduced in Java 14.

This book might not be for you if you are looking for a compartmentalized,
recipe-style book presenting “ready-to-implement” solutions. Its main
intention is to introduce functional concepts and idioms and teach you how
to incorporate them into your Java code.



What You Will Learn
By the end of this book, you will have a fundamental knowledge of
functional programming and its underlying concepts and how to apply this
knowledge to your daily work. Every Java functional type will be at your
disposal, and you will be able to build anything missing from the JDK by
yourself, if necessary.

You will learn about the concepts and importance of:

Composition: Build modular and easy composable blocks.

Expressiveness: Write more concise code that clearly expresses its
intent.

Safer code: Safer data structures without side effects that don’t need to
deal with race conditions or locks, which are hard to use without
introducing bugs.

Modularity: Break down larger projects into more easily manageable
modules.

Maintainability: Smaller functional blocks with less interconnection
make changes and refactoring safer without breaking other parts of
your code.

Data manipulation: Build efficient data manipulation pipelines with
less complexity.

Performance: Immutability and predictability allow scaling
horizontally with parallelism without much thought about it.

Even without going fully functional, your code will benefit from the
concepts and idioms presented in this book. And not only your Java code.
You will tackle development challenges with a functional mindset,
improving your programming regardless of the used language or paradigm.

What About Android?



It’s hard to talk about Java without bringing up Android as well. Even
though you can write Android applications in Java, the underlying API and
runtime aren’t the same. So, what does this mean for adopting a functional
approach to Java for Android apps? To better understand that, we first need
to look at what makes Java for Android different from “normal” Java.

Android doesn’t run Java bytecode directly on a minimalistic JVM
optimized for smaller devices, like Java Platform Micro Edition. Instead,
the bytecode gets recompiled. The Dex-compiler creates Dalvik bytecode,
which is then run on a specialized runtime: the Android Runtime (ART), and
previously on the Dalvik virtual machine7.

Recompiling Java bytecode to Dalvik bytecode allows the devices to run
highly optimized code, getting the most out of their hardware constraints.
For you as a developer, however, that means that even though your code
looks and feels like Java on the surface — most of the public API is
identical -- , there isn’t a feature parity between the JDK and Android SDK
you can rely on. For example, the cornerstones of this book — lambda
expressions and Streams — were among the missing features in Android for
a long time.

The Android Gradle plugin started supporting some of the missing
functional features (lambda expressions, method references, default and
static interface methods) with version 3.0.0 by using so-called desugaring:
the compiler uses bytecode transformations to replicate a feature behind the
scenes without supporting the new syntax or providing an implementation
in the runtime itself. The next major version, 4.0.0, added even more
functional features: Streams, Optionals, and the java.util.function
package. That allows you to benefit from the functional paradigms and tools
discussed in this book, even as an Android developer.

https://www.oracle.com/java/technologies/javameoverview.xhtml


WARNING
Even though most of the JDK’s functional features are available on Android too, they
are not verbatim copies8 and might have different performance characteristics and edge-
cases. The available features are listed in the official documentation on the Java 8+
support.

A Functional Approach to Android
In 2019, Kotlin replaced Java as the preferred language for Android
developers. It’s a multi-platform language that mainly targets the JVM but
also compiles to JavaScript and multiple native platforms, too9. It aims to
be a “modern and more concise” Java, fixing many of Java’s debatable
shortcomings and cruft accumulated over the years due to backward
compatibility, without forgoing all the frameworks and libraries available to
Java. And it’s 100% interoperable: you can easily mix Java and Kotlin in
the same project.

One obvious advantage of Kotlin over Java is that many functional concepts
and idioms are integral to the language itself. Still, as a different language,
Kotlin has its own idioms and best practices that differ from Java’s. The
generated bytecode might differ, too, like how to generate lambdas10. The
most significant advantage of Kotlin is its attempt to create a more concise
and predictable language compared to Java. And just like you can be more
functional in Java without going fully functional, you can use Kotlin-only
features without going full Kotlin in your Android projects, too. By mixing
Java and Kotlin, you can pick the best features from both languages.

Keep in mind that this book’s primary focus is the Java language and the
JDK. Still, most of the ideas behind what you will learn are transferrable to
Android, even if you use Kotlin. But there won’t be any special
considerations for Android or Kotlin throughout the book.

Navigating This Book
This book consists of two different parts:

https://developer.android.com/studio/write/java8-support
https://kotlinlang.org/


Part I, Functional Basics, introduces the history and core concepts of
functional programming, how Java implements these concepts, and
what types are already available to us as developers.

Part II, A Functional Approach, is a topic-based deep-dive through the
more generalized programming concepts and how to augment them
with functional principles and the newly available tools. Certain
features, like Records and Streams, are highlighted with extended
examples and use cases.

Reading the chapters in their respective order will let you get the most out
of them because they usually build on each other. But feel free to skim for
the bits that might interest you and jump around. Any necessary
connections are cross-referenced to fill in any blanks if needed.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs, to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by
values determined by context.



TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.

Using Code Examples
The source code for the book is available on GitHub:
https://github.com/benweidig/a-functional-approach-to-java. Besides
compilable Java code, there are also JShell scripts available to run the code
more easily. See the README.md for instructions on how to use them.

If you have a technical question or a problem using the code examples,
please send email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require
permission. Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation
does require permission.

https://github.com/benweidig/a-functional-approach-to-java
https://github.com/benweidig/a-functional-approach-to-java/README.md
mailto:bookquestions@oreilly.com


We appreciate, but generally do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For example: “A
Functional Approach to Java by Ben Weidig (O’Reilly). Copyright 2023
Ben Weidig, 978-1-098-10992-9.”

If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

NOTE
For more than 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform.
O’Reilly’s online learning platform gives you on-demand access to live
training courses, in-depth learning paths, interactive coding environments,
and a vast collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit https://oreilly.com.

Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)
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707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at
https://oreil.ly/functional-approach-to-java-1e.

Email bookquestions@oreilly.com to comment or ask technical questions
about this book.

For news and information about our books and courses, visit
https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://www.youtube.com/oreillymedia
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Part I. Functional Basics

Functional programming isn’t more complicated than object-oriented
programming and its primarily imperative coding style. It’s just a different
way of approaching the same problems. Every problem that you can solve
imperatively can also be solved functionally.

Mathematics builds the foundation for functional programming, making it
harder to approach than an object-oriented mindset. But just like learning a
new foreign language, the similarities and shared roots become more visible
over time until it just clicks.

You can implement almost any of the upcoming concepts without Java
lambda expression. Compared to other languages, though, the result won’t
be as elegant and concise. The functional tools available in Java allow your
implementations of these concepts and functional idioms to be less verbose
and more concise and efficient.



Chapter 1. An Introduction to
Functional Programming

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 1st chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at rfernando@oreilly.com.

To better understand how to incorporate a more functional programming
style in Java, you first need to understand what it means for a language to
be functional and what its foundational concepts are.

This chapter will explore the roots of functional programming needed to
incorporate a more functional programming style into your workflow.

What Makes A Language Functional?
Programming Paradigms — like object-oriented, functional, or procedural 
— are synthetic overall concepts that classify languages and provide ways
to structure your programs in a specific style and use different approaches
to solving problems. Like most paradigms, functional programming doesn’t
have a single agreed-upon definition, and many turf wars are fought about
what defines a language as actually functional. Instead of giving my own



definition, I will go over different aspects of what makes a language
functional.

A language is considered functional when there’s a way to express
computations by creating and combining abstract functions. This concept is
rooted in the formal mathematical system Lambda Calculus, invented by
the logician Alonzo Church in the 1930s.1 It’s a system to express
computations with abstract functions and how to apply variables to them.
The name “lambda calculus” came from the Greek letter “lambda” chosen
for its symbol: λ.



LAMBDA CALCULUS
Three pillars build the foundation for the general concept of lambda
calculus:

Abstraction

An anonymous function — a lambda — that accepts a single input.

Application

An abstraction is applied to a value to create a result. From a
developer’s perspective, it’s a function or method call.

ß-Reduction

The substitution of the abstraction’s variable with the applied
argument.

A mathematical function declaration looks like this: f = λx.E

Such a declaration consists of multiple parts:

x

The variable, the argument representing a value.

E

The expression, or term, containing the logic.

λx.E

The abstraction, an anonymous function accepting a single input x.

f

The resulting function that can apply an argument to its abstraction.

These parts are very similar to how Java lambdas — the core of its new
functional programming style — are implemented. For example, a



function that calculates a quadratic value — f = λx.E — is almost
identical to the Java version if you include the types:

Function<Integer, Integer> quadratic =
  value -> value * value;

The code should be self-explanatory in context, but the lambda syntax
will be explained in detail in Chapter 2.

As an object-oriented developer, you are used to imperative programming:
by defining a series of statements, you are telling the computer what to do
to accomplish a particular task with a sequence of statements.

For a programming language to be considered functional, a declarative
style to express the logic of computations without describing their actual
control flow needs to be achievable. In such a declarative programming
style, you describe the outcome and how your program should work with
expressions, not what it should do with statements.

In Java, an expression is a sequence of operators, operands, and method
invocations that define a computation and evaluate to a single value:

x * x
2 * Math.PI * radius
value == null ? true : false

Statements, on the other hand, are actions taken by your code, to form a
complete unit of execution, including method invocations without a return
value. Any time you assign or change the value of a variable, call a void
method, or use control-flow constructs like if/else, you’re using
statements. Usually, they’re intermixed with expressions:

int totalTreasure = 0; 

int newTreasuresFound = findTreasure(6); 

totalTreasure = totalTreasure + newTreasuresFound; 

if (treasureCounter > 10) { 



  System.out.println("You have a lot of treasure!"); 
} else {
  System.out.println("You should look for more treasure!"); 
}

Assigns an initial value to a variable, introducing state into the program.The function call findTreasure(6) is a functional expression, but
the assignment of newTreasuresFound is a statement.The reassignment of totalTreasure is a statement using the result
of the expression on the right-hand side.The control-flow statement if/else conveys what action should be
taken based on the result of the expression (treasureCounter >
10).Printing to System.out is a statement because there’s no result
returned from the call.

The primary distinction between expressions and statements is whether or
not a value is returned. In a general-purpose, multi-paradigm language like
Java, the lines between them are often up for debate and can quickly blur.

Functional Programming Concepts
Since functional programming is based primarily on abstract functions, its
many concepts that form the paradigm can focus on “what to solve” in a
declarative style, in contrast to the imperative “how to solve” approach.

We will go through the most common and significant aspects that functional
programming uses at its foundation. These aren’t exclusive to the functional
paradigm, though. Many of the ideas behind them apply to other
programming paradigms as well.

Pure Functions and Referential Transparency
Functional programming categorizes functions into two categories: pure
and impure.

Pure functions have two elemental guarantees:

The same input will always create the same output



The return value of a pure function must solely depend on its input
arguments.

They are self-contained without any kind of side effect

The code cannot affect the global state, like changing argument values
or using any I/O.

These two guarantees allow pure functions to be safe to use in any
environment, even in a parallel fashion. The following code shows a
method being a pure function that accepts an argument without affecting
anything outside of its context:

public String toLowercase(String str) {
  return str;
}

Functions violating either of the two guarantees are considered impure. The
following code is an example of an impure function, as it uses the current
time for its logic:

public String buildGreeting(String name) {
  var now = LocalTime.now();
  if (now.getHour() < 12) {
    return "Good morning " + name;
  } else {
    return "Hello " + name;
  }
}

The signifier “pure” and “impure” are rather unfortunate names because of
the connotation they might invoke. Impure functions aren’t inferior to pure
functions in general. They are just used in different ways depending on the
coding style and paradigm you want to adhere to.

Another aspect of side-effect-free expressions or pure functions is their
deterministic nature, which makes them referentially transparent. That



means you can replace them with their respective evaluated result for any
further invocations without changing the behavior of your program.

Abstract Function:

Replacing Evaluated Expressions:

All these variants are equal and won’t change your program. Purity and
referential transparency go hand-in-hand and give you a powerful tool
because it’s easier to understand and reason with your code.

Immutability
Object-oriented code is usually based around a mutable program state.
Objects can and will usually change after their creation, using setters. But
mutating data structures can create unexpected side effects. Mutability isn’t
restricted to data structures and OOP, though. A local variable in a method
might be mutable, too, and can lead to problems in its context as much as a
changing field of an object.

With immutability, data structures can no longer change after their
initialization. By never changing, they are always consistent, side-effect
free, predictable, and easier to reason with. Like pure functions, their usage
is safe in concurrent and parallel environments without the usual issues of
unsynchronized access or out-of-scope state changes.

If data structures never change after initialization, a program would not be
very useful. That’s why you need to create a new and updated version
containing the mutated state instead of changing the data structure directly.

f(x) = x*x

result = f(5) + f(5)

= 25 + f(5)

= f(5) + f(5)

= 25 + 25



Creating new data structures for every change can be a chore and quite
inefficient due to copying the data every time. Many programming
languages employ “structure sharing” to provide efficient copy mechanisms
to minimize the inefficiencies of requiring new data structures for every
change. This way, different instances of data structures share immutable
data between them. Chapter 4 will explain in more detail why the
advantages of having side-effect-free data structures outweigh the extra
work that might be necessary.

Recursion
Recursion is a problem-solving technique that solves a problem by partially
solving problems of the same form, and combining the partial results to
finally solve the original problem. In layperson’s terms, recursive functions
call themselves, but with a slight change in their input arguments, until they
reach an end condition and return an actual value. Chapter 12 will go into
the finer details of recursion.

A simple example is calculating a factorial, the product of all positive
integers less than or equal to the input parameter. Instead of calculating the
value with an intermediate state, the function calls itself with a decremented
input variable, as illustrated in Figure 1-1.

Figure 1-1. Calculating a factorial with recursion



Pure functional programming often prefers using recursion instead of loops
or iterators. Some of them, like Haskell, go a step further and don’t have
loops like for or while at all.

The repeated function calls can be inefficient and even dangerous due to the
risk of the stack overflowing. That’s why many functional languages utilize
optimizations like “unrolling” recursion into loops or tail-call optimization
to reduce the required stack frames. Java doesn’t support any of these
optimization techniques, which I’ll talk more about in Chapter 12.

First-Class and Higher-Order Functions
Many of the previously discussed concepts don’t have to be available as
deeply integrated language features to support a more functional
programming style in your code. The concepts of first-class and higher-
order functions, however, are absolute must-haves.

For functions to be so-called “first-class citizens,” they must observe all the
properties inherent to other entities of the language. They need to be
assignable to variables and be used as arguments and return values in other
functions and expressions.

Higher-order functions use this first-class citizenship to accept functions as
arguments or to return a function as their result, or both. This is an essential
property for the next concept, functional composition.

Functional Composition
Pure functions can be combined to create more complex expressions. In
mathematical terms, this means that the two functions f(x) and g(x) can be
combined to a function h(x) = g(f(x)), as seen in Figure 1-2.

https://www.haskell.org/


Figure 1-2. Composing functions

This way, functions can be small and on point as possible, and therefore,
easier to reuse. To create a more complex and complete task, such functions
can be quickly composed as needed.

Currying
Function currying means converting a function from taking multiple
arguments into a sequence of functions that each take only a single
argument.

NOTE
The currying technique borrows its name from the mathematician and logician Haskell
Brook Curry (1900-1982). He’s not only the namesake of the functional technique
called currying, he also has three different programming languages named after him:
Haskell, Brook, and Curry.

Imagine a function that accepts three arguments. It can be curried as
follows:

Initial function:

Curried functions:

x = f(a, b, c)

https://www.haskell.org/
http://graphics.stanford.edu/projects/brookgpu/
http://curry-lang.org/


Sequence of curried functions:

Some functional programming languages reflect the general concept of
currying in their type definitions like Haskell as follows.

add :: Integer -> Integer -> Integer 
add x y =  x + y 

The function add is declared to accept an Integer and returns
another function accepting another Integer, which itself returns an
Integer.The actual definition reflects the declaration: two input parameters and
the result of the body as return value.

At first glance, the concept can feel weird and foreign to an OO or
imperative developer, like many principles based on mathematics. Still, it
perfectly conveys how a function with more than one argument is
representable as a function of functions, and that’s an essential realization to
support the next concept.

Partial Function Application
Partial function application is the process of creating a new function by
providing not all arguments to an existing one. It’s often conflated with
currying, but a call to a partially applied function returns a result and not
another function of a currying chain.

The currying example from the previous section can be partially applied to
create a more specific function:

add :: Integer -> Integer -> Integer 
add x y =  x + y 

h = g(a)

i = h(b)

x = i(c)

x = g(a)(b)(c)



 
add3 = add 3  
 
add3 5 

The add function is declared as before, accepting two arguments.Calling the function add with only a value for the first argument x
return as partially applied function of type Integer → Integer,
which is bound to the name add3.The call add3 5 is equivalent to add 3 5.

With partial application, you can create new, less verbose functions on the
fly or specialized functions from a more generic pool to match your code’s
current context and requirements.

Lazy Evaluation
Lazy evaluation is an evaluation strategy that delays the evaluation of an
expression until its result is literally needed by separating the concerns of
how you create an expression from whether or when you actually use it. It’s
also another concept not rooted in or restricted to functional programming
but a must-have for using other functional concepts and techniques.

Many non-functional languages, including Java, are primarily strict — or
eagerly — evaluated, meaning an expression evaluates immediately. Those
languages still have a few lazy constructs, like control-flow statements such
as if-else-statements or loops, or logical short-circuit operators.
Immediately evaluating both branches of an if-else construct or all
possible loop iterations wouldn’t make much sense, would it? So instead,
only the branches and iterations absolutely required are evaluated during
runtime.

Laziness enables certain constructs that aren’t possible otherwise, like
infinite data structures or more efficient implementations of some
algorithms. It also works very well with referential transparency. If there is
no difference between an expression and its result, you can delay the
evaluation without consequences to the result. Delayed evaluation might



still impact the program’s performance because you might not know the
precise time of evaluation.

In Chapter 11 I will discuss how to achieve a lazy approach in Java with the
tools at your disposal, and how to create your own.

Advantages of Functional Programming
After going through the most common and essential concepts of functional
programming, you can see how they are reflected in the advantages that a
more functional approach provides:

Simplicity

Without mutable state and side effects, your functions tend to be
smaller, doing “just what they are supposed to do.”

Consistency

Immutable data structures are reliable and consistent. No more worries
about unexpected or unintended program state.

(Mathematical) Correctness

Simpler code with consistent data structures will automatically lead to
“more correct” code with a smaller bug surface. The “purer” your code,
the easier it will be to reason with, leading to simpler debugging and
testing.

Safer Concurrency

Concurrency is one of the most challenging tasks to do right in
“classical” Java. Functional concepts allow you to eliminate many
headaches and gain safer parallel processing (almost) for free.

Modularity

Small and independent functions lead to simpler reusability and
modularity. Combined with functional composition and partial



application, you have powerful tools to build more complex tasks out of
these smaller parts easily.

Testability

Many of the functional concepts, like pure functions, referential
transparency, immutability, and the separation of concerns make testing
and verification easier.

Disadvantages of Functional Programming
While functional programming has many advantages, it’s also essential to
know its possible pitfalls.

Learning curve

The advanced mathematical terminology and concepts that functional
programming is based on can be quite intimidating. To augment your
Java code, though, you definitely don’t need to know that “a monad is
just a monoid in the category of endofunctors.2" Nevertheless, you’re
confronted with new and often unfamiliar terms and concepts.

Higher Level of Abstraction

Where OOP uses objects to model its abstraction, FP uses a higher level
of abstraction to represent its data structures, making them quite elegant
but often harder to recognize.

Dealing with State

Handling state isn’t an easy task, regardless of the chosen paradigm.
Even though FP’s immutable approach eliminates a lot of possible bug
surfaces, it also makes it harder to mutate data structures if they actually
need to change, especially if you’re accustomed to having setters in
your OO code.

Performance Implications



Functional programming is easier and safer to use in concurrent
environments. This doesn’t mean, however, that it’s inherently faster
compared to other paradigms, especially in a single-threaded context.
Despite their many benefits, many functional techniques, like
immutability or recursion, can suffer from the required overhead. That’s
why many Functional programming languages utilize a plethora of
optimizations to mitigate, like specialized data structures that minimize
copying, or compiler optimizations for techniques like recursion3.

Optimal Problem Context

Not all problem contexts are a good fit for a functional approach.
Domains like high-performance computing (HPC), I/O heavy problems,
or low-level systems and embedded controllers, where you need fine-
grained control over things like data locality and explicit memory
management, don’t mix well with functional programming.

As programmers, we must find the balance between the advantages and
disadvantages of any paradigm and programming approach. That’s why this
book shows you how to pick the best parts of Java’s functional evolution
and utilize them to augment your object-oriented Java code.

Takeaways
Functional programming is built on the mathematical principle of
lambda calculus.

A declarative coding style based on expressions instead of statements
is essential for functional programming.

Many programming concepts feel inherently functional, but they are
not an absolute requirement to make a language or your code
“functional.” Even non-functional code benefits from their underlying
ideas and overall mindset.



Purity, consistency, and simplicity are essential properties to apply to
your code to gain the most out of a functional approach.

Trade-offs might be necessary between the functional concepts and
their real-world application. Their advantages usually outweigh them,
though, or can at least be mitigated in some form.

1  Church, Alonzo. 1936. “An unsolvable problem of elementary number theory.” American
journal of mathematics, Vol. 58, 345-363.

2  James Iry used this phrase in his humorous blog post “A Brief, Incomplete, and Mostly
Wrong History of Programming Languages” to illustrate Haskell’s complexity. It’s also a good
example of how you don’t need to know all the underlying mathematical details of a
programming technique to reap its benefits. But, if you really want to know what it means, see
Saunders Mac Lane’s book, Categories for the Working Mathematician (Springer, 1998),
where the phrase used initially.

3  The Java Magazine article “Curly Braces #6: Recursion and tail-call optimization” provides a
great overview about the importance of tail-call optimization in recursive code.

https://doi.org/10.2307/2268571
http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.xhtml
https://blogs.oracle.com/javamagazine/post/curly-braces-java-recursion-tail-call-optimization


Chapter 2. Functional Java

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 2nd chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at rfernando@oreilly.com.

Unsurprisingly, lambda expressions are the key to having a functional
approach in Java.

In this chapter, you will learn how to use lambdas in Java, why they are so
important, how to use them efficiently, and how they work internally.

What Are Java Lambdas?
A lambda expression is a single line or block of Java code that zero or more
parameters and might return a value. From a simplified point of view, a
lambda is like an anonymous method that doesn’t belong to any object:

() -> System.out.println("Hello, lambda!")

Let’s look at the details of the syntax and how lambdas are implemented in
Java.



Lambda Syntax
The Java syntax for lambdas is quite similar to the mathematical notation
you saw in Chapter 1 for lambda calculus:

(<parameters>) -> { <body> };

The syntax consists of three distinct parts:

Parameters

A comma-separated list of parameters, just like a method argument list.
Unlike method arguments, though, you can omit the argument types if
the compiler can infer them. Mixing implicitly and explicitly typed
parameters is not allowed. You don’t need parentheses for a single
parameter, but they are required if none or more than one parameter is
present.

Arrow

The -> (arrow) separates the parameters from the lambda body. It’s the
equivalent to λ in lambda calculus.

Body

Either a single expression or a code block. Single-line expressions don’t
require curly braces, and their evaluated result returns implicitly without
a return statement. A typical Java code block is used if the body is
represented by more than a single expression. It must be wrapped in
curly braces and explicitly use a return statement if a value is
supposed to be returned.

That is all the syntax definition there is for lambdas in Java. With its
multiple ways of declaring a lambda, you can write the same lambda with
different levels of verbosity, as seen in Example 2-1.

Example 2-1. Different ways of writing the same lambda



(String input) -> { 
  return input != null;
}

input -> { 
  return input != null;
}

(String input) -> input != null; 

input -> input != null; 
The most verbose variant: an explicitly typed parameter in parenthesis
and a body block.The first mixed variant: type inference for parameters allows removing
the explicit type, and a single parameter doesn’t need parenthesis. That
shortens the lambda declaration slightly without removing information
due to the surrounding context.The second mixed variant: an explicitly typed parameter in parenthesis
but a single expression body instead of a block, no curly braces or
return statement are needed.The most concise variant: As the body is reducible to a single
expression.

Which variant to choose depends highly on the context and personal
preference. Usually, the compiler can infer the types, but that doesn’t mean
a human reader is as good at understanding the shortest code possible as a
compiler does.

Even though you should always strive for clean and more concise code, that
doesn’t mean it has to be as minimal as possible. A certain amount of
verbosity might help any reader — you included — to understand the
reasoning behind the code better and make the mental model of your code
more graspable.

Functional Interfaces
So far, we’ve only looked at the general concept of lambdas in isolation.
However, they still have to exist inside Java and its concepts and language
rules as well.



Java is known for its backward compatibility. That’s why even though the
lambda syntax is a breaking change to the Java syntax itself, they’re still
based on ordinary interfaces to be backward compatible and feel quite
familiar to any Java developer.

To achieve their first-class citizenship, lambdas in Java require a
representation comparable to the existing types, like objects and primitives,
as discussed in “First-Class and Higher-Order Functions”. Therefore,
lambdas are represented by a specialized subtype of interfaces, so-called
functional interfaces.



INTERFACES IN JAVA
Interface declarations consist of a name with optional generic bounds,
inherited interfaces, and its body. Such a body is allowed to contain the
following content:

Method signatures

Body-less — abstract — method signatures that must be
implemented by any class conforming to the interface. Only these
method signatures count towards the single abstract method
constraint of functional interfaces.

Default methods

Methods signatures can have a “default” implementation, signified
by the default keyword and a body block. Any class
implementing the interface can override it but isn’t required to do
so.

Static methods

Like the class-based counterparts, they’re associated with the type
itself and must provide an implementation. But unlike default
methods, they aren’t inherited and can’t be overridden.

Constant values

Values that are automatic public, static, and final.

There isn’t any explicit syntax or language keyword for functional
interfaces. They look and feel like any other interface, can extend or be
extended by other interfaces, and classes can implement them. If they are
just like “normal” interfaces, what makes them a “functional” interface
then? It’s their enforced requirement that they may only define a single
abstract method (SAM).



As the name signifies, the SAM count only applies to abstract methods.
There’s no limit to any additional, non-abstract methods. Neither
default nor static methods are abstract, hence not relevant for the
SAM count. That’s why they are often used to complement the capabilities
of the lambda type.

TIP
Most functional interfaces of the JDK give you additional default and static
methods related to the type. Checking out the interface declarations of any functional
interface might reveal many hidden gems of functionality.

Consider Example 2-2, which shows a simplified version1 of the functional
interface java.util.function.Predicate<T>. A Predicate is
a functional interface for testing conditions, which will be explained in
more detail in “The Big Four Functional Interface Categories”. Besides
having a single abstract method, boolean test(T t), it provides five
additional methods (three default, two static).

Example 2-2. Simplified java.util.functional.Predicate<T>
package java.util.function;

@FunctionalInterface 
public interface Predicate<T> {

  boolean test(T t); 

  default Predicate<T> and(Predicate<? super T> other) { 
    // ...
  }

  default Predicate<T> negate() { 
    // ...
  }

  default Predicate<T> or(Predicate<? super T> other) { 
    // ...
  }



  static <T> Predicate<T> isEqual(Object targetRef) { 
    // ...
  }

  static <T> Predicate<T> not(Predicate<? super T> target) { 
    // ...
  }
}

The type has a @FunctionalInterface annotation, which isn’t
explicitly required.The single abstract method of the type Predicate<T>.Several default methods provide support for functional composition.Convenience static methods are used to simplify creation or to wrap
existing lambdas.

Any interface with a single abstract method is automatically a functional
interface. Therefore, any of their implementations is representable by a
lambda, too.

Java 8 added the marker annotation @FunctionalInterface to
enforce the SAM requirement at the compiler level. It isn’t mandatory, but
it tells the compiler and possibly other annotation-based tooling that an
interface should be a functional interface and, therefore, that the single
abstract method requirement must be enforced. If you add another
abstract method, the Java compiler will refuse to compile your code.
That’s why adding the annotation to any functional interface makes a lot of
sense, even if you don’t explicitly need it. It clarifies the reasoning behind
your code and the intention of such an interface and fortifies your code
against unintentional changes that might break it in the future.

The optional nature of the @FunctionalInterface annotation also
enables the backward compatibility of existing interfaces. As long as an
interface fulfills the SAM requirements, it’s representable as a lambda. I’ll
talk about the functional interfaces of the JDK later in this chapter.

Lambdas and Outside Variables
“Pure Functions and Referential Transparency” introduced the concept of
pure — self-contained and side-effect-free — functions that won’t affect any



outside state and only rely on their arguments. Even though lambdas follow
the same gist, they also allow a certain degree of impurity to be more
flexible. They can “capture” constants and variables from their creation
scope in which the lambda is defined, which makes such variables available
to them even if the original scope no longer exists, as shown in Example 2-
3.

Example 2-3. Lambda variable capture
void capture() {

  var theAnswer = 42; 

  Runnable printAnswer =
    () -> System.out.println("the answer is " + theAnswer); 

  run(printAnswer); 
}

void run(Runnable r) {
  r.run();
}

capture();
// OUTPUT:
// the answer is 42

The variable theAnswer is declared in the scope of capture().The lambda printAnswer captures the variable in its body.The lambda can be run in another method and scope but still has access
to theAnswer.

The big difference between capture and non-capture lambdas is the
optimization strategies of the JVM. The JVM optimizes lambdas with
different strategies based on their actual usage pattern. If no variables get
captured, a lambda might end up being a simple static method behind
the scenes, beating out the performance of alternative approaches like
anonymous classes. The implications of capturing variables on performance
are not as clear-cut, though.

There are multiple ways the JVM might translate your code if it captures
variables, leading to additional object allocation, affecting performance, and
garbage collector times. That doesn’t mean that capturing variables is



inherently a bad design choice. The main goal of a more functional
approach should be improved productivity, more straightforward reasoning,
and more concise code. Still, you should avoid unnecessary capturing,
especially if you require the least amount of allocations or the best
performance possible.

Another reason to avoid capturing variables is their necessity of being
effectively final.

Effectively final
The JVM has to make special considerations to use captured variables
safely and achieve the best performance possible. That’s why there’s an
essential requirement: only effectively final variables are allowed to be
captured.

In simple terms, any captured variable must be an immutable reference that
isn’t allowed to change after its initialization. They must be final, either
by explicitly using the final keyword or by never changing after their
initialization, making them effectively final.

Be aware that this requirement is actually for the reference to a variable and
not the underlying data structure itself. A reference to a List<String>
might be final, and therefore usable in a lambda, but you can still add
new items, as seen in Example 2-4. Only reassigning the variable is
prohibited.

Example 2-4. Change data behind a final variable
final List<String> wordList = new ArrayList<>(); 

// COMPILES FINE
Runnable addItemInLambda = () ->
  wordList.add("adding is fine"); 

// WON'T COMPILE
wordList = List.of("assigning", "another", "List", "is", "not"); 

The variable list is explicitly final, making the reference
immutable.



Capturing and using the variable in a lambda works without problems.
However, the final keyword does not affect the +List
itself, allowing you to add additional items.Reassigning the variable is prohibited due to the final keyword and
won’t compile.

The simplest way to test whether a variable is effectively final or not is
by making it explicitly final. If your code still compiles with the
additional final keyword, it will compile without it. So why not make
every variable final? Because the compiler ensures that “out-of-body”
references are effectively final, the keyword won’t help with actual
immutability anyways. Making every variable final would only create
more visual noise in your code without much benefit. Adding a modifier
like final should always be a conscious decision with intent.

WARNING
If you run any of the shown effectively final-related examples in jshell, they might
not behave as expected. That’s because jshell has special semantics regarding top-
level expressions and declarations, which affects final or effectively final values at
top-level2. Even though you can reassign any reference, making it non-effectively
final, you can still use them in lambdas, as long as you’re not in the top-level scope.

Re-finalizing a Reference
Sometimes a reference might not be effectively final, but you still need
them to be available in a lambda. If refactoring your code isn’t an option,
there’s a simple trick to re-finalize them. Remember, the requirement is just
for the reference and not the underlying data structure itself.

You can create a new effectively final reference to the non-effectively
final variable by simply referencing the original one and not changing it
further, as shown in Example 2-5.

Example 2-5. Re-finalize a variable



var nonEffectivelyFinal = 1_000L; 
nonEffectivelyFinal = 9_000L; 

var finalAgain = nonEffectivelyFinal; 

Predicate<Long> isOver9000 = input -> input > finalAgain;
At this point, nonEffectivelyFinal is still effectively final.Changing the variable after its initialization makes it unusable in
lambda.By creating a new variable and not changing it after its initialization,
you “re-finalized” the reference to the underlying data structure.

Keep in mind that re-finalizing a reference is just a “band-aid”, and needing
a band-aid means you scraped your knees first. So the best approach is
trying not to need it at all. Refactoring or redesigning your code should
always be the preferred option instead of bending the code to your will with
tricks like re-finalizing a reference.

Such safeguards for using variables in lambdas like the effectively final
requirement might feel like an additional burden at first. However, instead
of capturing “out-of-body” variables, your lambdas should strive to be self-
sufficient and require all necessary data as arguments. That automatically
leads to more reasonable code, increased reusability, and allows for easier
refactoring and testing.

What about Anonymous Classes?
After learning about lambdas and functional interfaces, you’re most likely
reminded of their similarities to anonymous inner classes: the combined
declaration and instantiation of types. An interface or extended class can be
implemented “on-the-fly” without needing a separate Java class, so what
differs between a lambda expression and an anonymous class if they both
have to implement a concrete interface?

On the surface, a functional interface implemented by an anonymous class
looks quite similar to its lambda representation, except for the additional
boilerplate, as seen in Example 2-6.

Example 2-6. Anonymous class vs. lambda expression



// FUNCTIONAL INTERFACE (implicit) 
 
interface HelloWorld {
  String sayHello(String name);
} 
 
 
// AS ANONYMOUS CLASS 
 
var helloWorld = new HelloWorld() { 
 
  @Override
  public String sayHello(String name) {
    return "hello, " + name + "!";
  }
}; 
 
// AS LAMBDA 
 
HelloWorld helloWorldLambda = name -> "hello, " + name + "!";

Does that mean that lambda expressions are just syntactic sugar for
implementing a functional interface as an anonymous class then?

SYNTACTIC SUGAR
Syntactic sugar describes features that are additions to a language or to
make your life as a developer “sweeter,” so certain constructs can be
expressed more concisely or clearly, or in an alternative manner.

Peter J. Landin coined the term in 19643, describing how the keyword
where replaced λ in an ALGOL-like language.

Java’s import statement, for example, allows you to use types without
their fully qualified names. Another example is type inference with var
for references or the diamond operator <> for generic types. Both
features simplify your code for “human consumption.” The compiler
will “desugar” the code and deal directly with its “bitterness.”

Lambda expressions might look like syntactic sugar, but they’re so much
more in reality. The real difference — besides verbosity — lies in the



generated bytecode, as seen in Example 2-7, and how the runtime handles
it.

Example 2-7. Bytecode differences between anonymous classes and
lambdas
// ANONYMOUS CLASS 
 
0: new #7 // class HelloWorldAnonymous$1  
3: dup 
4: invokespecial #9 // Method HelloWorldAnonymous$1."<init>":()V  
7: astore_1 
8: return 
 
 
// LAMBDA 
 
0: invokedynamic #7, 0 // InvokeDynamic #0:sayHello:()LHelloWorld; 
 

5: astore_1 
6: return

A new object of the anonymous inner class
HelloWorldAnonymous$1 is created in the surrounding class
HelloWorldAnonymous.The constructor of the anonymous class is called. Object creation is a
two-step process in the JVM.The invokedynamic opcode hides the whole logic behind creating
the lambda.

Both variants have the astore_1 call in common, which stores a
reference into a local variable, and the return call, so both won’t be part
of analyzing the bytecode.

The anonymous class version creates a new object of the anonymous type
Anonymous$1, resulting in three opcodes:

new

Create a new uninitialized instance of a type.

dup

Put the value on top of the stack by duplicating it.



invokespecial

Call the constructor method of the newly created object to finalize its
initialization.

The lambda version, on the other hand, doesn’t need to create an instance
that needs to be put on the stack. Instead, it delegates the whole task of
creating the lambda to the JVM with a single opcode: invokedynamic.

THE INVOKEDYNAMIC INSTRUCTION

Java 7 introduced the new JVM opcode invokedynamic4 to allow
more flexible method invocation methods to support dynamic
languages like Groovy or JRuby. The opcode is a more versatile
invocation variant because its actual target, like a method call or lambda
body, is unknown on class-loading. Instead of linking such a target at
compile-time, the JVM links a dynamic call site with the actual target
method instead.

The runtime then uses a “bootstrap method”5 on the first
invokedynamic call to determine what method should actually be
called.

You can think of it like a recipe for lambda creation which utilizes
reflection directly in the JVM. This way, the JVM can optimize the
creation task by using different strategies, like dynamic proxies,
anonymous inner classes, or
java.lang.invoke.MethodHandle.

Another big difference between lambdas and anonymous inner classes is
their respective scope. An inner class creates its own scope, hiding its local
variables from the enclosing one. That’s why the keyword this references
the instance of the inner class itself, not the surrounding scope. Lambdas,
on the other hand, live fully in their surrounding scope. Variables can’t be

https://groovy-lang.org/
https://www.jruby.org/


re-declared with the same name, and this refers to the instance the lambda
was created in, if not static.

As you can see, lambda expressions are not syntactic sugar at all.

Lambdas In Action
As you saw in the previous section, lambdas are an extraordinary addition
to Java to improve its functional programming abilities that’s much more
than just syntactic sugar for previously available approaches. Their first-
class citizenship allows them to be statically typed, concise, and anonymous
functions that are just like any other variable. Although the arrow syntax
might be new, the overall use pattern should feel familiar to any
programmer. In this section, we’ll jump right into actually using lambdas
and seeing them in action.

Creating Lambdas
To create a lambda expression, it needs to represent a singular functional
interface. The actual type might not be evident because a receiving method
argument dictates the required type, or the compiler will infer it if possible.

Let’s take a look at Predicate<T> again to better illustrate that point.

Creating a new instance requires the type to be defined on the left-hand
side:

Predicate<String> isNull = value -> value == null;

Even if you use explicit types for the arguments, the functional interface
type is still required:

// WON'T COMPILE
var isNull = (String value) -> value == null;

The method signature of Predicate<String> SAM might be inferable:



boolean test(String input)

Still, the Java compiler requires a concrete type for the reference, not just a
method signature. This requirement stems from Java’s propensity for
backward compatibility, as I previously mentioned. By using the pre-
existing statically-typed system, lambdas fit perfectly into Java, granting
lambdas the same compile-time safety as any other type or approach before
them.

However, obeying the type system makes Java lambdas less dynamic than
their counterparts in other languages. Just because two lambdas share the
same SAM signature doesn’t mean they are interchangeable.

Take the following functional interface for example:

interface LikePredicate<T> {
  boolean test(T value);
}

Even though it’s SAM is identical to Predicate<T>, the types can’t be
used interchangeably, as shown in the following code:

LikePredicate<String> isNull = value -> value == null; 

Predicate<String> wontCompile = isNull; 
// Error:
// incompatible types: LikePredicate<java.lang.String> cannot be 
converted
// to java.util.function.Predicate<java.lang.String>

The lambda is created as before.Trying to assign it to a functional interface with an identical SAM won’t
compile.

Due to this incompatibility, you should try to rely on the available interfaces
in the java.util.function package that will be discussed in
Chapter 3 to maximize interoperability. You’re still going to encounter pre-
Java 8 interfaces like java.util.concurrent.Callable<V> that
are identical to a Java 8+ one, in this case,



java.util.function.Supplier<T>, though. If that happens,
there’s a neat shortcut for switching a lambda to another identical type.
You’ll learn about this in “Bridging Functional Interfaces”.

Ad-hoc created lambdas as method arguments and return types don’t suffer
from any type incompatibility, as demonstrated by the following:

List<String> filter1(List<String> values,
                     Predicate<String> predicate) {
  // ...
} 
 
List<String> filter2(List<String> values,
                     LikePredicate<String> predicate) {
  // ...
} 
 
var values = Arrays.asList("a", null, "c"); 
 
var result1 = filter1(values,
                      value -> value != null); 
 
var result2 = filter2(values,
                      value -> value != null);

The compiler infers the type of ad-hoc lambdas directly from the method
signature, so you can concentrate on what you want to achieve with the
lambda. The same is true for return types:

Predicate<Integer> isGreaterThan(int value) {
  return compareValue -> compareValue > value;
}

Now that you know how to create lambdas, you then need to call them.

Calling Lambdas
As discussed, lambdas are effectively concrete implementations of their
respective functional interfaces. Other, more functionally inclined
languages are usually treating lambdas more dynamically. That’s why
Java’s usage patterns can differ from such languages.



In JavaScript, for example, you can call a lambda and pass an argument
directly, as shown in the following code:

let helloWorldJs = name => `hello, ${name}!` 
 
let resultJs = helloWorldJs('Ben')

In Java, however, lambdas behave like any other instances of an interface,
so you need to explicitly call its SAM, as demonstrated as follows:

Function<String, String> helloWorld = name -> "hello, " + name + 
"!";

var result = helloWorld.apply("Ben"); 

Calling the single abstract method might not be as concise as in other
languages, but the benefit is Java’s continued backward compatibility.

Method References
Besides lambdas, Java 8 introduced another new feature with a language
syntax change as a new way to create lambda expressions: method
references. It’s shorthand syntactic sugar, using the new :: (double-colon)
operator to reference an existing method in place of creating a lambda
expression from an existing method, and therefore streamlining your
functional code.

Example 2-8 shows how a Stream pipeline’s readability is improved by
converting the lambdas to method references. Don’t worry about the
details! You will learn about Streams in Chapter 6, just think of it as a fluent
call with lambda accepting methods.

Example 2-8. Method references and Streams
List<Customer> customers = ...; 
 
// LAMBDAS 
 
customers.stream()
         .filter(customer -> customer.isActive())



         .map(customer -> customer.getName())
         .map(name -> name.toUpperCase())
         .peek(name -> System.out.println(name))
         .toArray(count -> new String[count]); 
 
// METHOD-REFERENCES 
 
customers.stream()
         .filter(Customer::isActive)
         .map(Customer::getName)
         .map(String::toUpperCase)
         .peek(System.out::println)
         .toArray(String[]::new);

Replacing lambdas with method references removes a lot of noise without
compromising the readability or understandability of your code too much.
There is no need for the input arguments to have actual names or types, or
to call the reference method explicitly. Also, modern IDEs usually provide
you with automatic refactoring to convert lambdas to method references, if
applicable.

There are four types of method references you can use, depending on the
lambda expression you want to replace and what kind of method you need
to reference:

Static method references

Bound non-static method references

Unbound non-static method references

Constructor references

Let’s take a look at the different kinds and how and when to use them.

Static Method References
A static method reference refers to a static method of a specific type,
like the toHexString method available on Integer:

// EXCERPT FROM java.lang.Integer
public class Integer extends Number { 



 
  public static String toHexString(int i) {
    // ..
  }
} 
 
// LAMBDA
Function<Integer, String> asLambda = i -> Integer.toHexString(i); 
 
// STATIC METHOD REFERENCE
Function<Integer, String> asRef = Integer::toHexString;

The general syntax for static method references is
ClassName::staticMethodName.

Bound non-static Method References
If you want to refer to a non-static method of an already existing object,
you need a bound non-static method reference. The lambda arguments are
passed as the method arguments to the reference method of that specific
object:

var now = LocalDate.now(); 
 
// LAMBDA BASED ON EXISTING OBJECT
Predicate<LocalDate> isAfterNowAsLambda = date -> $.isAfter(now); 
 
// BOUND NON-STATIC METHOD REFERENCE
Predicate<LocalDate> isAfterNowAsRef = now::isAfter;

You don’t even need an intermediate variable; you can combine the return
value of another method call or field access directly with :: operator:

// BIND RETURN VALUE
Predicate<LocalDate> isAfterNowAsRef = LocalDate.now()::isAfter; 
 
// BIND STATIC FIELD
Function<Object, String> castToStr = String.class::cast;

You can also reference methods from the current instance with this:: or
the super implementation with super::, as shown as follows:



public class SuperClass { 
 
  public String doWork(String input) {
    return "super: " + input;
  }
} 
 
public class SubClass extends SuperClass { 
 
  @Override
  public String doWork(String input){
    return "this: " + input;
  } 
 
  public void superAndThis(String input) { 
 
    Function<String, String> thisWorker = this::doWork;
    var thisResult = thisWorker.apply(input);
    System.out.println(thisResult); 
 
    Function<String, String> superWorker = 
SubClass.super::doWork;
    var superResult = superWorker.apply(input);
    System.out.println(superResult);
  }
} 
 
new SubClass().superAndThis("hello, World!");
// OUTPUT:
// this: hello, World!
// super: hello, World!

Bound method references are a great way to use already existing methods
on variables, the current instance, or super. It also allows you to refactor
non-trivial or more complex lambdas to methods and use method references
instead. Especially fluent pipelines, like Streams in Chapter 6 or Optionals
in Chapter 9, profit immensely from the improved readability of short
method references.

The general syntax for bound non-static method references is
objectName::instanceMethodName.

Unbound non-static Method References



Unbound non-static method references are, as their name suggests, not
bound to a specific object. Instead, they refer to an instance method of a
type:

// EXCERPT FROM java.lang.String
public class String implements ... { 
 
  public String toLowerCase() {
    // ...
  }
} 
 
// LAMBDA
Function<String, String> toLowerCaseLambda = str -> 
str.toLowerCase(); 
 
// UNBOUND NON-STATIC METHOD REFERENCE
Function<String, String> toLowerCaseRef = String::toLowerCase;

The general syntax for unbound non-static method references is
ClassName::instanceMethodName.

This type of method reference can be confused with a static method
reference. For Unbound non-static method references, however, the
ClassName signifies the instance type in which the referenced instance
method is defined. It’s also the first argument of the lambda expression.
This way, the reference method is called on the incoming instance and not
on an explicitly referenced instance of that type.

Constructor References
The last type of method reference refers to a type’s constructor. A
constructor method reference looks like the following:

// LAMBDA
Function<String, Locale> newLocaleLambda = language -> new 
Locale(language); 
 
// CONSTRUCTOR REFERENCE
Function<String, Locale> newLocaleLambda = Locale::new;



At first glance, constructor method references look like static or unbound
non-static method references. The referenced method isn’t an actual method
but a reference to a constructor via the new keyword.

The general syntax for constructor method references is
ClassName::new.

Functional Programming Concepts in Java
Chapter 1 tackled the core concepts that make a programming language
functional from a mostly theoretical viewpoint. So let’s take another look at
them from a Java developer’s point of view.

Pure Functions and Referential Transparency
The concept of pure functions is based on two guarantees that aren’t
necessarily bound to functional programming:

Function logic is self-contained without any kind of side effect.

The same input will always create the same output. Therefore, repeated
calls can be replaced by the initial result, making the call referentially
transparent.

These two principles make sense even in your imperative code. Making
your code self-contained makes it predictable and more straightforward.
From a Java perspective, how can you achieve these beneficial properties?

First, check for uncertainty. Is there non-predictive logic that doesn’t
depend on the input arguments? Prime examples are random number
generators or the current date. Using such data in a function removes a
function’s predictability, making it impure.

Next, look for side effects and mutable state.

Does your function affect any state outside of the function itself, like
an instance or global variable?



Does it change the inner data of its arguments, like adding new
elements to a collection or changing an object property?

Does it do any other impure work, like I/O?

However, side effects aren’t restricted to mutable state. A simple
System.out.println(… ) call is a side-effect, even if it might look
harmless. Any kind of I/O, like accessing the file system, making network
requests, or printing to System.out is a side-effect. The reasoning is
simple: repeated calls with the same arguments can’t be replaced with the
result of the first evaluation. A good indicator for an impure method is a
void return type. If a method doesn’t return anything, all it does are side
effects, or it does nothing at all.

Pure functions are inherently referentially transparent. Hence, you can
replace any subsequent calls with the same arguments with the previously
calculated result. This interchangeability allows for an optimization
technique called memoization. Originating from the Latin word
“memorandum" — to be remembered -- , this technique describes
“remembering” previously evaluated expressions. It trades memory space
for saving computational time.

SPACE-TIME TRADE-OFF
Algorithms depend on two significant factors: space (e.g., memory) and
time (e.g., computational or response time). Both might be available in
vast quantities these days, but they are still finite.

The space-time trade-off states that you can decrease one of the factors
by increasing the other. If you want to save time, you need more
memory for storing results. Or you can save permanently needed
memory by constantly recalculating them.

You’re most likely already using the general idea behind referential
transparency in your code in the form of caching. From dedicated cache



libraries, like Ehcache6 to simple HashMap-based lookup tables, it’s all
about “remembering” a value against a set of input arguments.

The Java compiler doesn’t support automatic memoization of lambda
expressions or methods calls. Some frameworks provide annotations, like
@Cacheable in Spring7 or @Cached in Apache Tapestry8, and generate
the required code automatically behind the scenes.

Creating your own lambda expression caching isn’t too hard either, thanks
to some of the newer additions to Java 8+. So let’s do that right now.

Building your own memoization by creating an “on-demand” lookup table
requires the answer to two questions:

How do you identify the function and its input arguments uniquely?

How can you store the evaluated result?

If your function or method call has only a single argument with a constant
hashCode or other deterministic value, you can create a simple Map-
based lookup table. For multi-argument calls, you must first define how to
create a lookup key.

Java 8 introduced multiple functional additions to the Map<K, V> type.
One of these additions, the computeIfAbsent method, is a great aid to
easily implement memoization, as shown in Example 2-9.

Example 2-9. Memoization with Map#computeIfAbsent
Map<String, Object> cache = new HashMap<>(); 

<T> T memoize(String identifier, Supplier<T> fn) { 
  return (T) cache.computeIfAbschent(identifier,
                                   key -> fn.get());
}

Integer expensiveCall(String arg0, int arg1) { 
    // ...
}

Integer memoizedCall(String arg0, int arg1) { 
  var compoundKey = String.format("expensiveCall:%s-%d", arg0, 
arg1);



  return memoize(compoundKey,
                 () -> expensiveCall(arg0, arg1));
}

var calculated = memoizedCall("hello, world!", 42); 

var cached = memoizedCall("hello, world!", 42); 
The results are cached in a simple HashMap<String, Object> so
it can cache any kind of call based on an identifier. Depending on your
requirements, there might be special considerations, like caching results
per request in a web application or requiring a “time-to-live” concept.
This example is supposed to show the simplest form of a lookup table.The memoize method accepts an identifier and a Supplier<T> in
case the cache doesn’t have a result yet.The expensiveCall is the method that gets memoized.For convenience, a specialized memoized call method exists, so you
don’t have to build an identifier manually each time you call memoize.
It has the same arguments as the calculation method and delegates the
actual memoization process.The convenience method allows you to replace the method name of the
call to use the memoized version instead of the original one.The second call returns the cached result immediately without any
additional evaluation.

This implementation is quite simplistic and is not a one-size-fits-all
solution. Still, it confers the general concept of storing a call result via an
intermediate method doing the actual memoization.

The functional additions to Map<K, V> don’t stop there. It provides the
tools to create associations “on the fly,” and more tools giving you more
fine-grained control if a value is already present or not. You will learn more
about it in Chapter 11.

Immutability
The classical approach to Java with OOP is based on mutable program
state, most prominently represented by JavaBeans and POJOs. There’s no
clear definition of how program state should be handled in OOP, and
immutability is no pre-requisite or unique feature of FP. Still, mutable state



is a thorn in the side of many functional programming concepts because
they expect immutable data structures to ensure data integrity and safe
overall use.

NOTE
POJOs are “plain old Java Objects” that aren’t bound by special restrictions, other than
those imposed by the Java language. JavaBeans are a special type of POJOs. You will
learn more about them in “Mutability and Data Structures in OOP”.

Java’s support for immutability is quite limited compared to other
languages. That’s why it has to enforce constructs like effectively final as
discussed in “Lambdas and Outside Variables”. To support “full”
immutability, you need to design your data structures from the ground up as
immutable, which can be cumbersome and error-prone. Third-party libraries
are an often chosen approach to minimize the required boilerplate code and
rely on battle-tested implementations. Finally, with Java 14+, immutable
data classes — Records — were introduced to bridge the gap, which I will
discuss in Chapter 5.

Immutability is a complex subject that you’ll learn more about and its
importance and how to utilize it properly — either with built-in tools or
with a do-it-yourself approach — in Chapter 4.

First-Class and Higher-Order
With Java lambas being concrete implementations of functional interfaces,
they gain first-class citizenship and are usable as variables, arguments, and
return values, as seen in Example 2-10.

Example 2-10. First-class Java Lambdas
// VARIABLE ASSIGNMENT

UnaryOperator<Integer> quadraticFn = x -> x * x; 

quadraticFn.apply(5); 
// => 25



// METHOD ARGUMENT

public Integer apply(Integer input,
                     UnaryOperator<Integer> operation) {
  return operation.apply(input); 
}

// RETURN VALUE

public UnaryOperator<Integer> multiplyWith(Integer multiplier) {
  return x -> multiplier * x; 
}

UnaryOperator<Integer> multiplyWithFive = multiplyWith(5);

multiplyWithFive.apply(6);
// => 30

Assigning a Java lambda to the variable quadraticFn.It can be used like any other “normal” Java variable, calling the apply
method of its interface.Lambdas are usable like any other type for arguments.Returning a lambda is like returning any other Java variable.

Accepting lambdas as arguments and returning lambdas is essential for the
next concept, functional composition.

Functional Composition
The idea of creating complex systems by composing smaller components is
a cornerstone of programming, regardless of the chosen paradigm to follow.
In OOP, objects can be composed of smaller ones, building a more complex
API. In FP, two functions are combined to build a new function, which then
can be combined further.

Functional composition is arguably one of the essential aspects of a
functional programming mindset. It allows you to build complex systems
by composing smaller, reusable functions into a larger chain, fulfilling a
more complex task, as illustrated in Figure 2-1.



Figure 2-1. Composing complex tasks from multiple functions

Java’s functional composition capabilities depend highly on the involved
concrete types. In “Functional Composition”, I will discuss how to combine
the different functional interfaces provided by the JDK.

Lazy Evaluation
Even though Java, at least in principle, is a non-lazy — strict or eager — 
language, it supports multiple lazy constructs:

Logical short-circuit operators

if-else and the :? (ternary) operator

for and while loops

Logical short-circuit operators are a simple example of laziness:

var result1 = simple() && complex(); 
 
var result2 = simple() || complex();



The evaluation complex() depends on the outcome of simple() and
the logical operator used in the overall expression. That’s why the JVM can
discard expressions that don’t need evaluation, as will be explained in more
detail in Chapter 11.

Takeaways
Functional interfaces are concrete types and representations of Java
lambdas.

Java’s lambda syntax is close to the underlying mathematical notation
of lambda calculus.

Lambdas can be expressed with multiple levels of verbosity,
depending on the surrounding context and your requirements. Shorter
isn’t always as expressive as it should be, especially if others are
reading your code.

Lamba expressions are not syntactic sugar thanks to the JVM using the
opcode invokedynamic. This allows for multiple optimization
techniques to get better performance as alternatives like anonymous
classes.

Outside variables need to be effectively final to be used in lambdas,
but this makes only the references immutable, not the underlying data
structure.

Method references are a concise alternative for matching method
signatures and lambda definitions. They even provide a simple way to
use “identical but incompatible” functional interface types.

1  The simplified version of java.util.function.Predicate is based on the source
code for the latest Git tag of the LTS version at the time of writing: 17+35. You can check out
the official source code repository to see the original file.

https://github.com/openjdk/jdk/blob/dfacda488bfbe2e11e8d607a6d08527710286982/src/java.base/share/classes/java/util/function/Predicate.java


2  The official documentation sheds some light on the special semantics and requirements for
top-level expressions and declarations.

3  Landin, Peter J. (1964). “The mechanical evaluation of expressions.” The Computer Journal.
Computer Journal. 6 (4).

4  The Java Magazine has an article by Java Champion Ben Evans that explains method
invocation with invokedynamic in more detail.

5  The class java.lang.invoke.LambdaMetaFactory is responsible for creating
“bootstrap methods.”

6  Ehcache is a widely-used Java cache library.

7  The official documentation of like @Cacheable explains the inner workings including key
mechanics.

8  The Tapestry annotation doesn’t support key-based caching, but can be bound to a field
instead.

https://docs.oracle.com/en/java/javase/17/docs/api/jdk.jshell/jdk/jshell/JShell.xhtml#eval(java.lang.String)
https://doi.org/10.1093/comjnl/6.4.308
https://blogs.oracle.com/javamagazine/post/understanding-java-method-invocation-with-invokedynamic
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/invoke/LambdaMetafactory.xhtml
https://www.ehcache.org/
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/cache/annotation/Cacheable.xhtml
https://tapestry.apache.org/5.8.2/apidocs/org/apache/tapestry5/annotations/Cached.xhtml


Chapter 3. Functional Interfaces
of the JDK

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 3rd chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at rfernando@oreilly.com.

Many functional programming languages only use a singular and dynamic
concept of “functions” to describe their lambdas, regardless of their
arguments, return type, or actual use case. Java, on the other hand, is a
strictly typed language requiring tangible types for everything, including
lambdas. That’s why the JDK provides you with over 40 readily available
functional interfaces in its java.util.functional package to
kickstart your functional toolset.

This chapter will show you the most important functional interfaces,
explain why there are so many variations, and show how you can extend
your own code to be more functional.

The Big Four Functional Interface Categories



The 40+ functional interfaces in java.util.functional fall into four
main categories with each category representing an essential functional use
case:

Functions accept arguments and return a result.

Consumers only accept arguments but do not return a result.

Suppliers do not accept arguments and only return a result.

Predicates accept arguments to test against an expression and return a
boolean primitive as their result.

These four categories cover many use cases and their names relate to
functional interface types and their variants.

Let’s take a look at the four main categories of functional interfaces.

Functions
Functions with their corresponding
java.util.functional.Function<T, R> interface, are one of
the most central functional interfaces. They represent a “classical” function
with a single input and output, as seen in Figure 3-1:

Figure 3-1. Function<T, R>

The single abstract method of Function<T, R> is called apply and
accepts an argument of a type T and produces a result of type R:

@FunctionalInterface
public interface Function<T, R> { 
 
  R apply(T t);
}



The following code shows how to null-check and convert a String to
its length as an Integer:

Function<String, Integer> stringLength = str -> str != null ? 
str.length() : 0; 
 
Integer result = stringLength.apply("Hello, Function!");

The input type T and output type R can be identical. However, in “Function
Arity” I discuss specialized functional interface variants with identical
types.

Consumers
As the name suggests, a Consumer only consumes an input parameter but
doesn’t return anything, as shown in Figure 3-2. The central Consumer
functional interface is java.util.functional.Consumer<T>.

Figure 3-2. Consumer<T>

The single abstract method of Consumer<T> is called accept and
requires an argument of a type T:

@FunctionalInterface
public interface Consumer<T> { 
 
  void accept(T t);
}

The following code consumes a String to print it:

Consumer<String> println = str -> System.out.println(str); 
 
println.accept("Hello, Consumer!");



Even though the sole consumption of a value in an expression might not fit
into “pure” functional concepts, it’s an essential component for employing a
more functional coding style in Java, bridging many gaps between non-
functional code and higher-order functions.

The Consumer<T> interface is similar to the Java 5+ Callable<V>
found in the java.util.concurrent package, except the latter,
throws a checked exception. The concept of checked and unchecked
exceptions and their implications for functional code in Java will be
explored in detail in Chapter 10.

Suppliers
Suppliers are the antithesis of Consumers. Based around the central
functional interface java.util.functional.Supplier<T>, the
different Supplier variants don’t accept any input parameters but return a
single value of type T, as shown in Figure 3-3.

Figure 3-3. Supplier<T>

The single abstract method of Supplier<T> is called get:

@FunctionalInterface
public interface Supplier<T> { 
 
  T get();
}

The following supplier provides a new random value on calling get():

Supplier<Double> random = () -> Math.random(); 
 
Double result = random.get();



Suppliers are often used for deferred execution, like wrapping an expensive
task into them and only calling get when needed, as I will discuss in
Chapter 11.

Predicates
Predicates are functions that accept a single argument to be tested against its
logic and return either true or false. The syntax for the main functional
interface java.util.functional.Predicate<T> is illustrated in
Figure 3-4.

Figure 3-4. Predicate<T>

The single abstract method is called test and accepts an argument of a
type T and returns a boolean primitive:

@FunctionalInterface
public interface Predicate<T> { 
 
  boolean test(T t);
}

It’s the go-to functional interface for decision-making, like filter
methods of the functional pattern map/filter/reduce you will learn more
about later on in Chapter 6.

The following code tests an Integer to be over 9000:

Predciate<Integer> over9000 = i -> i > 9_000; 
 
Integer result = over9000.test(1_234);

Why So Many Functional Interface Variants?



Although the big four categories and their main functional interface
representations already cover many use cases, there are also variations and
more specialized variants you can use. All these different types are
necessary to fit lambdas into Java without a trade-off in backward
compatibility. Due to this, though, using lambdas in Java is a little bit more
complicated than in other languages. Still, integrating such a feature
without breaking the vast ecosystem is worth it in my opinion.

There are ways to bridge between different functional interfaces, and each
variant has its own optimal problem context to be used in. Handling so
many different types might seem intimidating at first, but it will become
almost second nature to know which type to use for what scenario after
using a more functional approach for a while.

Function Arity
The concept of arity describes the number of operands that a function
accepts. For example, an arity of one means that a lambda accepts a single
argument, as follows:

Function<String, String> greeterFn = name -> "Hello " + name;

As the number of arguments in Java methods, like a SAM, is fixed1, there
must be an explicit functional interface representing every required arity. To
support arities higher than one, the JDK includes specialized variants of the
main functional interface categories that accept arguments, as listed in
Table 3-1.



Table 3-1. Arity-based Functional
Interfaces

Arity of one Arity of two

Function<T, R> BiFunction<T, U, R>

Consumer<T> BiConsumer<T, U>

Predicate<T> BiPredicate<T, U>

Only functions interfaces with an arity of up to two are supported out-of-
the-box. Looking at the functional APIs and use cases in Java, arities of one
or two cover the most common tasks. That’s most likely why the Java
language designers decided to stop there and didn’t add any higher arities
out-of-the-box.

Adding higher arities is simple though, like in the following code:

@FunctionalInterface
public interface TriFunction<T, U, V, R> { 
 
  R accept(T t, U u, V, v);
}

However, I wouldn’t recommend it unless it’s an absolute necessity. As you
will see throughout this chapter and the book, the included functional
interface give you a lot of additional functionality through static and
default methods. That’s why relying on them ensures the best
compatibility and well-understood usage patterns.

Functional Operators
The concept of operators simplifies the two most commonly used arities by
giving you functional interfaces with identical generic types. For example,



if you require a function to accept two String arguments to create another
String value, the type definition of BiFunctuon<String,
String, String> would be quite repetitive. Instead, you can use a
BinaryOperator<String> which is defined as follows:

@FunctionalInteface
interface BinaryOperator<T> extends BiFunction<T, T, T> {
  // ...
}

Implementing a comment super interface allows you to write more concise
code with more meaningful types.

The available operator functional interfaces are listed in Table 3-2.

Table 3-2. Operator Functional Interfaces

Arity Operator Super Interface

1 UnaryOperator<T> Function<T, T>

2 BinaryOperator<T> BiFunction<T, T, T>

Be aware that operator types and their super interface aren’t
interchangeable, though. That’s especially important when designing APIs.

Imagine a method signature requires a UnaryOperator<String> as an
argument, it won’t be compatible with Function<String, String>.
However, the other way around works, as shown in Example 3-1.

Example 3-1. Java arity compatibility
UnaryOperator<String> unaryOp = String::toUpperCase; 
 
Function<String, String> func = String::toUpperCase; 
 
 
void acceptsUnary(UnaryOperator<String> unaryOp) { ... }; 
 



void acceptsFunction(Function<String, String> func) { ... }; 
 
acceptsUnary(unaryOp); // OK
acceptsUnary(func); // COMPILE-ERROR 
 
acceptsFunction(func); // OK
acceptsFunction(unaryOp); // OK

That example highlights that you should choose the most common
denominator for method arguments, in this case, Function<String,
String>, as they give you the most compatibility. Even though it
increases the verbosity of your method signatures, it’s an acceptable trade-
off, in my opinion, because it maximizes usability and doesn’t restrict an
argument to a specialized functional interface. When creating a lambda, on
the other hand, the specialized type allows for more concise code without
losing any expressiveness in your code.

Primitive Types
Most of the functional interfaces you’ve encountered so far had a generic
type definition, but that’s not always the case. Primitive types can’t be used
as generic types (yet). That’s why there are specialized functional interfaces
for primitives.



PROJECT VALHALLA AND SPECIALIZED GENERICS
The OpenJDK Project Valhalla is an experimental JDK project to
develop multiple changes to the Java language itself. One change
they’re working on that is quite relevant to simplify lambdas is
“specialized generics.”

As it stands, generic type arguments are constrained to types that extend
java.lang.Object, meaning that they are not compatible with
primitives. Your only option is to use auto-boxed types like
java.lang.Integer, etc., which has performance implications and
other pitfalls compared to using primitives directly.

It started in 2014, and in March 2020, the team behind it previewed five
distinct prototypes to tackle the associated aspects of the problems. At
the time of writing, there isn’t an official release date yet.

You could use any generic functional interface for the object wrapper type
and let autoboxing take care of the rest. However, auto-boxing isn’t free, so
it can have a performance impact.

NOTE
Autoboxing and unboxing is the automatic conversion between primitive value types
and their object-based counterparts so they can be used indiscriminately. For example,
autoboxing an int to an Integer. The other way around is called unboxing.

That’s why many of the functional interfaces provided by the JDK deal with
primitive types to avoid autoboxing. Such primitive functional interfaces,
like the arity specializations, aren’t available for all primitives, though.
They are mostly concentrated around the numeric primitives int, long,
and double.

Table 3-3 lists the available functional interfaces for int, but there are
equivalent interfaces for long and double as well.

https://openjdk.java.net/projects/valhalla/


Table 3-3. Functional Interfaces for the integer primitive

Category Functional Interface Boxed Alternative

Functions IntFunction<R> Function<Integer, R>

IntUnaryOperator UnaryOperator<Integer>

IntBinaryOperator BinaryOperator<Integer>

ToIntFunction<T> Function<T, Integer>

ToIntBiFunction<T, U> BiFunction<T, U, Integer>

IntToDoubleFunction Function<Integer, Double>

IntToLongFunction Function<Integer, Long>

Consumers IntConsumer Consumer<Integer>

ObjIntConsumer<T> BiConsumer<T, Integer>

Suppliers IntSupplier Supplier<Integer>

Predicates IntPredicate Predicate<Integer>

The boolean primitive has only a single specialized variant available:
BooleanSupplier.

Functional interfaces for primitives aren’t the only special consideration in
the new functional parts of Java to accommodate primitives. As you will



learn later in this book, Streams and Optionals provide specialized types,
too, to reduce the unnecessary overhead incurred by autoboxing.

Bridging Functional Interfaces
Functional interfaces are, well, interfaces, and lambda expressions are
concrete implementations of these interfaces. Type inference makes it easy
to forget that you can’t use them interchangeably or simply cast between
unrelated interfaces. Even if their method signatures are identical, an
exception is thrown, as seen previously in “Creating Lambdas”:

interface LikePredicate<T> {
  boolean test(T value); 
}

LikePredicate<String> isNull = str -> str == null;

Predicate<String> wontCompile = isNull;
// Error:
// incompatible types: LikePredicate<java.lang.String> cannot be
// converted to java.util.function.Predicate<java.lang.String>

Predicate<String> wontCompileEither = (Predicate<String>) isNull;
// Exception java.lang.ClassCastException: class LikePredicate
// cannot be cast to class java.util.function.Predicate

From a lambda-based point of view, both SAMs are identical. They both
accept a String argument and return an boolean result. For Java’s type-
system, though, they have no connection whatsoever, making a cast
between them impossible. Still, the gap between “lambda-compatible but
type-incompatible” functional interfaces can be bridged by a feature I
discussed in the previous chapter: method references.

By using a method reference instead of trying to cast between the “identical
but incompatible” functional interfaces, you can refer to the SAM instead to
make your code compile:

Predicate<String> thisIsFine = isNull::test;



Using a method reference creates a new dynamic call site to be invoked by
the bytecode opcode invokedynamic instead of trying to implicitly or
explicitly cast the functional interface itself.

Like re-finalizing variables that you’ve learned about in “Re-finalizing a
Reference”, bridging functional interfaces with method references is
another “band-aid” to deal with code that can’t be refactored or redesigned
another way. Still, it’s an easy-to-use and sometimes necessary tool to have
in your functional kit, especially if you’re transitioning from a legacy code
base to a more functional approach, or work with third-party code that
provides its own functional interfaces.

Functional Composition
Functional composition is an essential part of the functional approach to
combine small functional units into a bigger, more complex task, and Java
got you covered. However, it’s done in a typical Java fashion to ensure
backward compatibility. Instead of introducing a new keyword, or changing
any language semantics, Java uses “glue” methods that are directly
implemented on the functional interfaces themselves as default methods.
With their help, you can compose the big four categories of functional
interfaces easily. Such glue methods build the bridge between two
functional interfaces by returning a new one with the combined
functionality.

In the case of Function<T, R>, two default methods are available:

<V> Function<V, R> compose(Function<? super V,
? extends T> before)

<V> Function<T, V> andThen(Function<? super R,
? extends V> after)

The difference between these two methods is the direction of the
composition, as indicated by the argument names and the returned
Function and its generic types. The first one, compose, creates a



composed function that applies the before argument to its input and the
result to this. The second one, andThen, is the antagonist to compose,
as it evaluates this and then applies after to the previous result.

Which direction of functional composition to choose, compose or
andThen, depends on the context and personal preference. The call
fn1.compose(fn2) leads to an equivalent call like
fn1(fn2(input)). To achieve the same flow with the andThen
method, the compositional order must be reversed to a
fn2.andThen(fn1(input)) call, as illustrated in Figure 3-5.

Figure 3-5. Function<T, R> composition order

Personally, I prefer andThen(… ) because the resulting prose-like fluent
method call-chain mirrors the logical flow of functions that’s easier to grasp
for other readers that aren’t versed with functional programming naming
conventions.

Think of manipulating a String by removing occurrences of any
lowercase “a” and uppercasing the result. The overall tasks consist of two
Function<String, String> doing a singular thing. Composing
them can be done either way without a difference in the final result, if you
use the appropriate glue method, as seen in Example 3-2.

Example 3-2. Functional composition direction
Function<String, String> removeLowerCaseA = str -> str.replace("a", 
"");
Function<String, String> upperCase = String::toUpperCase; 
 
 
var input = "abcd"; 



 
removeLowerCaseA.andThen(upperCase)
                .apply(input);
// => "BCD" 
 
upperCase.compose(removeLowerCaseA)
         .apply(input);
// => "BCD"

Be aware that not every functional interface provides such “glue methods”
to easily support composition, even if it would be sensible to do so. The
following list gives you a summary of how the different main interfaces of
the big four categories support composition out of the box:

Function<T, R>

Function<T, R>, and its specialized arities, like
UnaryOperator<T>, support composition in both directions. The
Bi…  variants only support andThen.

Predicate<T>

Predicates support various methods to compose a new Predicate with
common operations associated with them: and, or, negate.

Consumer<T>

Only andThen is supported, which will compose two Consumers to
accept a value in sequence.

Specialized primitive functional interfaces

The support for functional composition among the specialized
functional interfaces for primitives is not on par with their generic
brethren. Even among themselves, the support differs between the
primitive types.

But don’t fret! Writing your own functional compositional helper is easy, as
I will discuss in the next section.



Extending Functional Support
Most functional interfaces usually give you more than just their single
abstract method defining the lambda signature. Usually, they provide
additional default methods to support concepts like functional
composition, or static helpers to simplify common use cases of that
type.

As you can’t change the types of the JDK yourself, you can still make your
own types more functional instead. There are three approaches you can
choose that are also used by the JDK itself:

Add default methods to an interface to make existing types more
functional.

Implement a functional interface explicitly.

Create static helpers to provide common functional operations.

Adding Default Methods
Adding new functionality to an interface always requires you to implement
new methods on all implementations. When dealing with a small project, it
might be fine to just update any implementation, but in bigger and shared
projects it’s often not as easy. In library code it’s even worse, you might
break the code of anyone using your library. That’s where default
methods come in to save the day.

Instead of solely changing the contract of a type’s interface and letting
anyone implementing it deal with the fallout — adding the new method on
any type that implements the interface -- , you can use default methods
to supply a “common-sense” implementation. Such an implementation
provides a general variant of the intended logic to all other types down the
line, so you don’t have to throw an
UnsupportedOperationException. This way, your code is
backward-compatible because only the interface itself has changed, but any
type that implements the interface has still a chance to create its own, more



fitting implementation if necessary. That’s exactly how the JDK added
Stream-support to any type implementing the interface
java.util.Collection<E>.

The following code shows the actual default methods that give any
Collection-based type Stream capabilities out of the box at no
additional (implementation) cost:

public interface Collection<E> extends Iterable<E> { 
 
  default Stream<E> stream() {
    return StreamSupport.stream(spliterator(), false);
  } 
 
  default Stream<E> parallelStream() {
    return StreamSupport.stream(spliterator(), true);
  } 
 
  // ...
}

The two default methods create new Stream<E> instances by calling
the static helper StreamSupport.stream(… ) and the default
method spliterator(). The spliterator() is initially defined in
java.util.Iterable<E> but is overridden as necessary, as shown in
Example 3-3.

Example 3-3. Default Method Hierarchy
public interface Iterable<T> { 

  default Spliterator<T> spliterator() {
    return Spliterators.spliteratorUnknownSize(iterator(), 0); 
  }

  // ...
}

public interface Collection<E> extends Iterable<E> {

  @Override
  default Spliterator<E> spliterator() {
    return Spliterators.spliterator(this, 0); 



  }

  // ...
}

public class ArrayList<E> extends AbstractList<E>
  implements List<E>, ... {

  @Override
  public Spliterator<E> spliterator() {
      return new ArrayListSpliterator(0, -1, 0); 
  }

  // ...
}

The original definition of spliterator() with a common-sense
implementation based on all the available information for the type.The Collection interface can use more information to create a more
specific Spliterator<E> that is available to all of its
implementations.The concrete implementation ArrayList<E>, which implements
Collection<E> via List<E>, provides an even further specialized
Spliterator<E>.

A hierarchy of default methods gives you the power to add new
functionality to an interface without breaking any implementations and still
providing a common-sense variant of the new method. Even if a type never
implements a more specific variant for itself, it can fall back to the logic
provided by the default method.

Implementing Functional Interfaces Explicitly
Functional interfaces can be implemented implicitly via lambda or method
references, but they are also useful when implemented explicitly by one of
your types so they are usable in higher-order functions. Some of your types
might already implement one of the retroactively functional interfaces like
java.util.Comparator<T> or java.lang.Runnable.

Implementing a functional interface directly creates a bridge between
previously “non-functional” types and their easy usage in functional code.



A good example is the object-oriented command design pattern2.

NOTE
The command pattern encapsulates an action, or “command”, and all data required to
execute it in an object. This approach decouples the creation of commands from
consuming them.

Usually, a command already has a dedicated interface. Imagine a text editor
with its common commands like opening a file or saving it. A shared
command interface between these commands could be as simple as follows:

public interface TextEditorCommand { 
 
  String execute();
}

The concrete command classes would accept the required arguments, but
the executed command would simply return the updated editor content. If
you look closely, you see that the interface matches a
Supplier<String>.

As I discussed in “Bridging Functional Interfaces”, the mere logical
equivalency between functional interfaces isn’t enough to create
compatibility. However, by extending TextEditorCommand with
Supplier<String>, you bridge the gap with a default method, as
follows:

public interface TextEditorCommand
  extends Supplier<T> { 
 
  String execute(); 
 
  default String get() {
    return execute();
  }
}



Interfaces allow multiple inheritance, so adding a functional interface
shouldn’t be an issue. The functional interface’s SAM is a simple
default method calling the actual method doing the work. This way, not
a single command needs to be changed but all of them gain compatibility
with any higher-order function accepting a Supplier<String> without
requiring a method reference as a bridge.

WARNING
Look out for method signature collisions if existing interfaces implement a functional
interface, so you don’t accidentally override an existing one.

Implementing one or more functional interfaces is a great way to give your
types a functional starting point, including all the additional default
methods available on the functional interfaces.

Creating Static Helpers
Functional interfaces usually extend their versatility by having default
methods and static helpers for common tasks. If you don’t have control
over the type, though, like a functional interface provided by the JDK itself,
you can create a helper type accumulating static methods.

In “Functional Composition”, I discussed functional composition with the
help of the available default methods on the big four interfaces. Even
though the most common use cases are covered, certain different functional
interfaces aren’t covered. You can create them yourself, however.

Let’s take a look at how Function<T, R> implements3 its compose
method in Example 3-4, so we can develop a compositor helper type to
accept other types, too.

Example 3-4. Simplified Function<T, R> interface
@FunctionalInterface
public interface Function<T, R> {



    default <V> Function<V, R> compose(Function<V, T> before) { 
        Objects.requireNonNull(before); 

        return (V v) -> { 
          T result = before.apply(v); 
          return apply(result); 
        };
    }

    // ...
}

The composed function isn’t bound to the original type T and introduces
V in its method signature.A null-check helper to throw a NullPointerException on
composition and not only on the first use of the returned lambda.The returned lambda accepts a value of the newly introduced type V.The before function is evaluated first.The result is then applied to the original Function<T, R>.

To create your own compositional methods, you have to first think about
what exactly you want to achieve. The involved functional interfaces and
their compositional order dictate the overall type chain that the method
signature has to reflect:

Function<T, R>#compose(Function<V, T>)

V → T → R

Function<T, R>#andThen(Function<R, V)

T → R → V.

Let’s develop a compositor for Function<T, R> and
Supplier/Consumer.

Only two combinations are possible because Supplier won’t accept
arguments, so it can’t evaluate the result of the Function<T, R>. The
opposite reason is true for Supplier. Because we can’t extend the
Function<T, R> interface directly, an indirect compositor in form of a
static helper is needed. That leads to the following method signatures in
which the compositional order is reflected by the argument order:



Supplier<R> compose(Supplier<T> before,
Function<T, R> fn)

Consumer<T> compose(Function<T, R> fn,
Consumer<R> after)

Example 3-5 shows a simple compositor implementation that won’t differ
much from the JDK’s implementation of equivalent methods.

Example 3-5. Functional Compositor
public final class Compositor { 
 
  public static <T, R> Supplier<R> compose(Supplier<T> before,
                                           Function<T, R> fn) {
    Objects.requireNonNull(before);
    Objects.requireNonNull(fn); 
 
    return () -> {
      T result = before.get();
      return fn.apply(result);
    };
  } 
 
  public static <T, R> Consumer<T> compose(Function<T, R> fn,
                                           Consumer<R> after) {
    Objects.requireNonNull(fn);
    Objects.requireNonNull(after); 
 
    return (T t) -> {
      R result = fn.apply(t);
      after.accept(result);
    };
  } 
 
  private Compositor() {
    // disallows direct instantiation
  }
}

Composing the previous String operation from Example 3-2 with an
additional Consumer<String> for printing the result is now easy, as
shown in Example 3-6:

Example 3-6. Using the Functional Compositor



// SINGULAR STRING FUNCTIONS 
 
Function<String, String> removeLowerCaseA = str -> str.replace("a", 
"");
Function<String, String> upperCase = String::toUpperCase; 
 
 
// COMPOSED STRING FUNCTIONS 
 
Function<String, String> stringOperations =
  removeLowerCaseA.andThen(upperCase); 
 
 
// COMPOSED STRING FUNCTIONS AND CONSUMER 
 
Consumer<String> task = Compositor.compose(stringOperations,
                                           System.out::println); 
 
 
// RUNNING TASK 
 
task.accept("abcd");
// => BCD

A simple compositor passing values between functional interfaces is an
obvious use case for functional composition. Still, it’s useful for other use
cases, too, like introducing a certain degree of logic and decision-making.
For example, you could safeguard a Consumer with a Predicate as
shown in Example 3-7

Example 3-7. Improved Functional Compositor
public final class Compositor { 
 
  public static Consumer<T> acceptIf(Predicate<T> predicate,
                                     Consumer<T> consumer) {
    Objects.requireNonNull(predicate);
    Objects.requireNonNull(consumer); 
 
    return (T t) -> {
      if (!predicate.test(t)) {
        return;
      }
      consumer.accept(t);
    }
  } 



 
  // ...
}

You can fill the gaps left by the JDK by adding new static helpers to
your types as needed. From personal experience, I would suggest only
adding helpers as required instead of trying to fill the gaps proactively. Only
implement what you currently need because it can be quite hard to foresee
what you need in the future. Any additional line of code that’s not used right
now will need maintenance over time and might need changes or
refactoring anyway if you want to use it and the actual requirements
become clear.

Takeaways
The JDK provides 40+ functional interfaces because Java’s type
system requires tangible interfaces for different use cases. The
available functional interfaces fall into four categories: Functions,
Consumers, Suppliers, and Predicates.

More specialized functional interface variants exist for arities up to
two. Method signatures, however, should use their equivalent super
interface instead to maximize compatibility.

Primitives are supported by either using autoboxing, or a respective
functional interface variant for int, long, double, and boolean.

Functional interfaces behave like any other interface and require a
common ancestor to be used interchangeably. However, bridging the
gap between “identical but incompatible” functional interfaces is
possible by using a method reference of a SAM.

Adding functional support to your own types is easy. Use default
methods on your interfaces to cover functional use cases without
requiring you to change any implementations.



Common or missing functional tasks can be accumulated in a helper
type with static methods.

1  Varargs method arguments, like String… , appear to have a dynamic arity, as the method
accepts a non-fixed amount of arguments. However, behind the scenes, the arguments are
converted to an array, making the actual arity one.

2  The command pattern is one of many object-oriented design patterns described by the gang of
four. Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns: Elements of
reusable object-oriented software. Boston, MA: Addison Wesley.

3  The shown Function<T, R> interface is a simplified variant of the source code present in
the JDK to increase readability.

https://github.com/openjdk/jdk/blob/jdk-17+35/src/java.base/share/classes/java/util/function/Function.java


Part II. A Functional Approach

Even though Java is a multi-paradigm language, it clearly incentivizes an
object-oriented and imperative coding style. However, many functional
idioms, concepts, and techniques are still available to you, even without
deeply integrated language support.

The JDK has a multitude of tools available to solve common problems with
a functional approach and benefit from FPs advantages even without going
fully functional.



Chapter 4. Immutability

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 4th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at rfernando@oreilly.com.

Dealing with data structures — constructs dedicated to storing and
organizing data values — is a core task of almost any program. In OOP, this
usually means dealing with a mutable program state, often encapsulated in
objects. For a functional approach, however, immutability is the preferred
way of handling data and a prerequisite for many of its concepts.

In functional programming languages like Haskell or even multi-paradigm
but more functionally inclined ones like Scala, immutability is treated as a
prevalent feature. In those languages, immutability is a necessity and often
strictly enforced, not just an afterthought to their design. Like most other
principles introduced in this book, immutability isn’t restricted to functional
programming and provides many benefits, regardless of your chosen
paradigm.

In this chapter, you will learn about immutable types already available in
the JDK and how to make your data structures immutable to avoid side
effects, either with the tools provided by the JDK or with the help of third-
party libraries.



NOTE
The term “data structure” used in this chapter represents any construct that stores and
organizes data, like collections, or custom objects.

Mutability and Data Structures in OOP
As an object-oriented inclined language, typical Java code encapsulates an
object’s state in a mutable form. Its state is usually mutable by using
“setter” methods. This approach makes the program state ephemeral,
meaning any change to an existing data structure updates its current state
in-place, which also affects anyone else who references it, and the previous
state is lost.

Let’s take a look at the most common forms used to handle mutable state in
OOP Java code: JavaBeans and Plain Old Java Objects (POJO). A lot of
confusion exists about those two data structures and their distinct
properties. In a sense, they are both ordinary Java objects supposed to
create reusability between components by encapsulating all relevant states.
They have similar goals, although their design philosophy and rules differ.

POJOs don’t have any restrictions regarding their design. They are
supposed to “just” encapsulate the business logic state, and you can even
design them to be immutable. How you implement them is up to you and
what matches your environment best. They usually provide “getters” and
“setters” for their fields to be more flexible in an object-oriented context
with a mutable state.

JavaBeans, on the other hand, are a special kind of POJO that allows easier
introspection and reusability, which requires them to oblige certain rules.
These rules are necessary because JavaBeans were initially designed to be a
standardized shareable machine-readable state between components, like a
UI widget in your IDE1. The differences between POJOs and JavaBeans are
listed in Table 4-1.



Table 4-1. POJOs versus JavaBeans

POJO JavaBean

General
Restrictions

Only those imposed by the
Java language itself

Imposed by JavaBean
API specification

Serialization Optional Must implement java.i
o.Serializable

Field
Visibility

No restrictions private only

Field Access No restrictions Only accessible via
getters and setters

Constructors No restrictions No-arg constructor must
exist.

Many of the available data structures in the JDK, like the collections
framework2 are mostly built around the concept of mutable state and in-
place changes. Take List<E> for an example. Its mutating methods, like
add(E value) or remove(E value), only return a boolean to
indicate that a change occurred, and change the collection in place, so the
previous state is lost. You might not need to think much about it in a local
context, but as soon as a data structure leaves your direct sphere of
influence, it’s no longer guaranteed to remain in its current state as long as
you hold a reference to it.

Mutable state breeds complexity and uncertainty. You must include all
possible state changes in your mental model at any time to understand and
reason with your code. This isn’t restricted to a single component, though.
Sharing mutable state increases the complexity to cover the lifetime of any



components having access to such shared state. Especially concurrent
programming suffers under the complexities of shared state, where many
problems originate in mutability and require intricate and often misused
solutions like access synchronization and atomic references.

Ensuring the correctness of your code and shared state becomes a
Sisyphean task of endless unit tests and state validation. And the required
additional work multiplies as soon as mutable state interacts with more
mutable components, resulting in even more verification of their behavior.

That’s where immutability provides another approach to handling data
structures and restoring reasonability.

Immutability (not only) in FP
The core idea of immutability is simple: data structures can no longer
change after their creation. Many functional programming languages
support it by design at their core. The concept isn’t bound to functional
programming per se, and it has many advantages in any paradigm.

NOTE
Immutability provides elegant solutions to many problems, even outside of
programming languages. For example, the distributed version control system Git
essentially uses a tree of pointers to immutable blobs and diffs to provide a robust
representation of historical changes.

Immutable data structures are persistent views of their data without a direct
option to change it. To “mutate” such a data structure, you must create a
new copy with the intended changes. Not being able to mutate data “in
place” can feel weird in Java at first. Compared to the usually mutable
nature of object-oriented code, why should you take the extra steps
necessary to simply change a value? Such creation of new instances by
copying data incurs a particular overhead that accumulates quickly for
naive implementations of immutability.



Despite the overhead and initial weirdness of not being able to change data
in place, the benefits of immutability can make it worthwhile even without
a more functional approach to Java:

Predictability

Data structures won’t change without you noticing because they simply
can’t. As long as you reference a data structure, you know it is the same
as at the time of its creation. Even if you share that reference or use it in
a concurrent fashion, no one can change your copy of it.

Validity

After initialization, a data structure is complete. It only needs to be
verified once and stays valid (or invalid) indefinitely. If you need to
build a data structure in multiple steps, the builder-pattern, shown later
in “Step-by-Step Creation”, decouples the building and initialization of
a data structure.

No hidden side effects

Dealing with side effects is a really tough problem in programming — 
besides naming and cache invalidation3. A byproduct of immutable data
structures is the elimination of side effects; they’re always as-is. Even if
moved around a lot through different parts of your code or using it in a
third-party library out of your control, they won’t change their values or
surprise you with an unintended side effect.

Thread-safety

Without side effects, immutable data structures can move freely
between thread boundaries. No thread can change them, so reasoning
about your program becomes more straightforward due to no more
unexpected changes or race conditions.

Cacheability and optimization



Because they are as-is right after creation, you can cache immutable
data structures with ease of mind. Optimization techniques, like
memoization, are only possible with immutable data structures, as
discussed in Chapter 2.

Change tracking

If every change results in a whole new data structure, you can track
their history by storing the previous references. You no longer need to
intricately track single property changes to support an undo feature.
Restoring a previous state is as simple as using a prior reference to the
data structure.

Remember, all these benefits are independent of the chosen programming
paradigm. Even if you decide that a functional approach might not be the
right solution for your codebase, your data handling can still benefit
immensely from immutability.

The State of Java Immutability
Java’s initial design didn’t include immutability as a deeply integrated
language feature or a variety of immutable data structures. Certain aspects
of the language and its types were always immutable, but it was nowhere
close to the level of support in other more functional languages. This all
changed when Java 14 was released and introduced Records, a built-in
language-level immutable data structure: Records.

Even if you might not know it yet, you’re already using immutable types in
all your Java programs. The reasons behind their immutability might differ,
like runtime optimizations or ensuring their correct usage, but regardless of
their intentions, they’ll make your code safer and less error-prone.

Let’s take a look at all the different immutable parts available in the JDK
today.



java.lang.String
One of the first types every Java developer learns about is the String
type. Strings are everywhere! That’s why it needs to be a highly optimized
and safe type. One of these optimizations is that it’s immutable.

String is not a primitive value-based type, like int or char. Still, it
supports the + (plus) operator to concatenate a String with another value:

String first = "hello, ";
String second = "world!";
String result = first + second;
// => "hello, world!"

Like any other expression, concatenating strings creates a result, and in this
case, a new object. That’s why Java developers are taught early not to
overuse manual String concatenation. Each time you concatenate strings
by using the + (plus) operator, a new String instance is created on the
heap, occupying memory, as depicted in Figure 4-1. These newly created
instances can add up quickly, especially if concatenation is done in a loop
statement like for or while.

Figure 4-1. String memory allocation

Even though the JVM will garbage-collect no longer needed instances, the
memory overhead of endless String creation can be a real burden on the
runtime. That’s why the JVM uses multiple optimization techniques
“behind the scenes” to reduce String creation, like replacing
concatenations with a java.lang.StringBuilder, or even using the
opcode invokedynamic to support multiple optimization strategies4.



Because String is such a fundamental type, it is sensible to make it
immutable for multiple reasons. Having such a base type being thread-safe
by design solves issues associated with concurrency, like synchronization,
before they even exist. Concurrency is hard enough without worrying about
a String to change without notice. Immutability removes the risk of race
conditions, side effects, or a simple unintended change.

String literals also get special treatment from the JVM. Thanks to string
pooling, identical literals are only stored once and reused to save precious
heap space. If a String could change, it would change for everyone using
a reference to it in the pool. It’s possible to allocate a new String by
explicitly calling one of its constructors instead of creating a literal to
circumvent pooling. The other way around is possible, too. By calling
intern() on any instance, which returns a String with the same
content from the string pool.

STRING EQUALITY
The specialized handling of String instances and literals is why you should never use
the equality operator == (double-equal) to compare Strings. That’s why you should
always use either the equals or equalsIgnoreCase method to test for equality.

However, the String type isn’t “completely” immutable, at least from a
technical point of view. It calculates its hashCode lazily due to
performance considerations because it needs to read the whole String to
calculate it. Still, it’s a pure function: the same String will always result
in the same hashCode.

Using lazy evaluation to hide expensive just-in-time calculations to achieve
logical immutability requires extra care during the design and
implementation of a type to ensure it remains thread-safe and predictable.

All these properties make String something between a primitive and an
object type, at least from a usability standpoint. Performance optimization
possibilities and safety might have been the main reasons for its



immutability, but the implicit advantages of immutability are still a
welcome addition to such a fundamental type.

Immutable Collections
Another fundamental and ubiquitous group of types that benefit
significantly from immutability is collections, like Set, List, Map, etc.

Although Java’s collection framework wasn’t designed with immutability as
a core principle, it still has a way of providing a certain degree of
immutability with three options:

Unmodifiable collections

Immutable collection factory methods (Java 9+)

Immutable copies (Java 10+)

All options aren’t public types you can instantiate directly using the new
keyword. Instead, the relevant types have static convenience methods to
create the necessary instances. Also, they’re only shallowly immutable,
meaning that you can not add or remove any elements, but the elements
themselves aren’t guaranteed to be immutable. Anyone holding a reference
to an element can change it without the knowledge of the collection it
currently resides in.

SHALLOW IMMUTABILITY
Shallowly immutable data structures only provide immutability at their topmost level.
This means that the reference to the data structure itself can’t be changed. The
referenced data structure, however, in the case of a Collection, its elements — can still
be mutated.

To have a fully immutable collection, you need to use only fully immutable
elements, too. Nevertheless, the three options still provide you with a
helpful tool against unintended modification.



Unmodifiable Collections
The first option, unmodifiable collections, is created from an existing
collection by calling one of the following generic static methods of
java.util.Collections:

Collection<T>
unmodifiableCollection(Collection<? extends T>
c))

Set<T> unmodifiableSet(Set<? extends T> s)

List<T> unmodifiableList(List<? extends T>
list)

Map<K,V> unmodifiableMap(Map<? extends K, ?
extends V> m)

SortedSet<T> unmodifiableSortedSet(SortedSet<T>
s)

SortedMap<K, V>
unmodifiableSortedMap(SortedMap<K, ? extends V>
m)

NavigableSet<T>
unmodifiableNavigableSet(NavigableSet<T> s)

NavigableMap<K, V>
unmodifiableNavigableMap(NavigableMap<K, V> m)

As you can see, each method returns the same type as was provided for the
method’s single argument. The difference between the original and the
returned instance is that any attempt to modify the returned instance will
throw an UnsupportedOperationException, as demonstrated in
the following code:

List<String> modifiable = new ArrayList<>();
modifiable.add("blue");



modifiable.add("red"); 
 
List<String> unmodifiable = 
Collections.unmodifiableList(modifiable);
unmodifiable.clear();
// throws UnsupportedOperationException

The obvious downside of an “unmodifiable view” is that it’s only an
abstraction over an existing collection. The following code shows how the
underlying collection is still modifiable and affects the unmodifiable view:

List<String> original = new ArrayList<>();
original.add("blue");
original.add("red"); 
 
List<String> unmodifiable = 
Collections.unmodifiableList(original); 
 
original.add("green"); 
 
System.out.println(unmodifiable.size());
// OUTPUT:
// 3

The reason for still being modifiable via the original reference is how the
data structure is stored in memory, as illustrated in Figure 4-2. The
unmodified version is only a view of the original list, so any changes
directly to the original circumvent the intended unmodifiable nature of the
view.



Figure 4-2. Memory layout of unmodifiable Collections

The common use for unmodifiable views is to freeze collections for
unwanted modification before using them as a return value.

Immutable Collection Factory Methods
The second option — immutable collection factory methods — has been
available since Java 9 and isn’t based on preexisting collections. Instead,
the elements must be provided directly to the static convenience
methods available on the following collection types:

List.of(E e1, … )

Set.of(E e1, … )

Map.of(K k1, V v1, … )

Each of method exists with zero or more elements and uses an optimized
internal collection type based on the number of elements used.

Immutable Copies
The third option, immutable copies, is available in Java 10+ and provides a
deeper level of immutability by calling the static copyOf method on
the following three types:

Set<E> copyOf(Collection<? extends E> coll)



List<E> copyOf(Collection<? extends E> coll)

Map<K, V> copyOf(Map<? extends K, ? extends V>
map)

Instead of being a mere view, copyOf creates a new list holding its own
references to the elements:

// SETUP ORIGINAL LIST
List<String> original = new ArrayList<>();
original.add("blue");
original.add("red"); 
 
// CREATE COPY
List<String> copiedList = List.copyOf(original); 
 
// ADD NEW ITEM TO ORIGINAL LIST
original.add("green"); 
 
// CHECK CONTENT
System.out.println(original);
// [blue, red, green]
System.out.println(copiedList);
// [blue, red]

The copied collection prevents any addition or removal of elements through
the original list, but the actual elements are still shared, as illustrated in
Figure 4-3, and open to changes.

Figure 4-3. Memory layout of copied Collections



Which option of immutable collections to choose depends on your context
and intentions. If a collection can’t be created in a single call, like in a for-
loop, an unmodifiable view or immutable copy is a sensible approach. Use
a mutable collection locally and “freeze” it by returning an unmodifiable
view or copy it when the data leaves your current scope. Immutable
collection factory methods don’t support an intermediary collection that
might get modified but require you to know all the elements beforehand.

Primitives & Primitive Wrappers
So far, you’ve learned mostly about immutable object types, but not
everything in Java is an object. Java’s primitive types — byte, char,
short, int, long, float, double, boolean — are handled
differently from object types. They are simple values that are initialized by
either a literal or an expression. Representing only a single value, they are
practically immutable.

Besides the primitive types themselves, Java provides corresponding object
wrapper types. They encapsulate their respective primitives in a concrete
object type to make them usable in scenarios where primitives aren’t
allowed (yet), like generics. Otherwise, autoboxing — the automatic
conversion between the object wrapper types and their corresponding
primitive type — could lead to inconsistent behavior.

Immutable Math
Most simple calculations in Java rely on primitives types like int or long
for whole numbers, and float or double for floating-point calculations.
The package java.math, however, has two immutable alternatives for
safer and more precise integer and decimal calculations, which are both
immutable: java.math.BigInteger and
java.math.BigDecimal.



NOTE
In this context, “integer” means a number without a fractional component and not Java’s
int or Integer type. The word integer comes from Latin and is used in mathematics
as a colloquial term to represent whole numbers in the range from −∞ to +∞,
including zero.

Just like with String, why should you burden your code with the
overhead of immutability? Because they allow side-effect-free calculations
in a greater range with higher precision.

The pitfall of using immutable math objects, though, is the possibility of
simply forgetting to use the actual result of a calculation. Even though
method names like add or subtract suggest modification, at least in an
OO context, the java.math types return a new object with the result, as
follows:

var theAnswer = new BigDecimal(42); 
 
var result = theAnswer.add(BigDecimal.ONE); 
 
// RESULT OF THE CALCULATION
System.out.println(result);
// OUTPUT:
// 43 
 
//
System.out.println(theAnswer);
// OUTPUT:
// 42

The immutable math types are still objects with the usual overhead and use
more memory to achieve their precisions. Nevertheless, if calculation speed
is not your limiting factor, you should always prefer the BigDecimal type
for floating-point arithmetic due to its arbitrary precision5.

The BigInteger type is the integer equivalent to BigDecimal, also
with built-in immutability. Another advantage is the extended range of at



least6 from -22,147,483,647 up to 22,147,483,647 (both exclusive), compared to
the range of int from -231 to 231.

Java Time API (JSR-310)
Java 8 introduced the Java Time API (JSR-310), which was designed with
immutability as a core tenet. Before its release, you only had three7 types in
the package java.util at your disposal for all your date- and time-
related needs: Date, Calendar, and TimeZone. Performing
calculations were a chore and error-prone. That’s why Joda Time library
became the de-facto standard for date and time classes before Java 8 and
subsequently became the conceptual foundation for JSR-310.

NOTE
Like with immutable math, any calculation with methods such as plus or minus
won’t affect the object they’re called on. Instead, you have to use the return value.

Rather than the previous three types in java.util, there now are
multiple date- and time-related types with different precisions, with and
without timezones, available in the java.time package. They are all
immutable, giving them all the related advantages like no side effects and
safe use in concurrent environments.

Enums
Java enums are special types consisting of constants. And constants are,
well, constant, and therefore immutable. Besides the constant values, an
enum can contain additional fields which aren’t implicitly constant.

Usually, final primitives or Strings are used for these fields, but no one
stops you from using a mutable object type or a setter for a primitive. It will
most likely lead to problems, and I strongly advise against it. Also, it’s
considered a code smell8.

https://jcp.org/en/jsr/detail?id=310
https://www.joda.org/joda-time/


The final keyword
Since Java’s inception, the final keyword provides a certain form of
immutability depending on its context, but it’s not a magic keyword to
make any data structure immutable. So what exactly does it mean for a
reference, method, or class to be final?

The final keyword is similar to the const keyword of the programming
language C. It has several implications if applied to classes, methods, fields,
or references:

final classes cannot be subclassed.

final methods cannot be overridden.

final fields must be assigned exactly once — either by the
constructors or on declaration — and can never be reassigned.

final variable references behave like a field by being assignable
exactly once — at declaration. It only affects the reference itself, not
the referenced variable content.

The final keyword grants a particular form of immutability for fields and
variables. However, their immutability might not be what you expect
because the reference itself becomes immutable but not the underlying data
structure. That means you can’t reassign the reference but still change the
data structure, as shown in Example 4-1.

Example 4-1. Collections and final References
final List<String> fruits = new ArrayList<>(); 

System.out.println(fruits.isEmpty());
// => true

fruits.add("Apple"); 

System.out.println(fruits.isEmpty());
// => false

fruits = List.of("Mango", "Melon"); 
// => WON'T COMPILE



The final keyword only affects the reference fruits, not the
actually referenced ArrayList.The ArrayList itself doesn’t have any concept of immutability, so
you can freely add new items to it, even if its reference is final.Re-assigning a final reference is prohibited.

As I discussed in “Effectively final”, having effectively final references
are a necessity for lambda expressions. Making every reference in your
code final is an option, however, I wouldn’t recommend it. The compiler
detects automatically if a reference behaves like a final reference even
without adding an explicit keyword. Most problems created by the lack of
immutability come from the underlying data structure itself and not
reassigned references anyway. To make sure a data structure won’t change
unexpectedly as long as it’s in active use, you must choose an immutable
data structure from the get-go. The newest addition to Java to achieve this
goal is Records.

Records
In 2020, Java 14 introduced a new type of class with its own keyword to
complement or even replace POJOs and JavaBeans in certain instances:
Records.

Records are “plain data” aggregates with less ceremony than POJOs or Java
beans. Their feature set is reduced to an absolute minimum to serve that
purpose, making them as concise as they are:

public record Address(String name,
                      String street,
                      String state,
                      String zipCode,
                      Country country) {
  // NO BODY
}

Records are shallowly immutable data carriers primarily consisting of their
state’s declaration. Without any additional code, the Address record



provides automatically generated getters for the named components,
equality comparison, toString() and hashCode(), and more.

Chapter 5 will deep-dive into Records on how to create and use them in
different scenarios.

How to Achieve Immutability
Now that you know about the immutable parts the JVM provides, it’s time
to look at how to combine them to achieve immutability for your program
state.

The easiest way to make a type immutable is by not giving it a chance to
change in the first place. Without any setters, a data structure with final
fields won’t change after creation because it can’t. For real-world code,
though, the solution might not be as simple as that.

Immutability requires a new way of thinking about data creation because
many shared data structures are seldom created in one fell swoop. Instead of
mutating a single data structure over time, you should work with immutable
constructs along the way, if possible, and compose a “final” and immutable
data structure in the end. Figure 4-4 depicts the general idea of different
data components contributing to a “final” immutable Record. Even if the
individual components aren’t immutable, you should always strive to wrap
them in an immutable shell, Record or otherwise.



Figure 4-4. Records as Data Holders

Keeping track of the required components and their validation might be
challenging in more complicated data structures. In Chapter 5, I’ll discuss
tools and techniques that improve data structure creation and reduce the
required cognitive complexity.

Common Practices
Like the functional approach in general, immutability doesn’t have to be an
all-or-nothing approach. Due to their advantages, having only immutable
data structures sounds intriguing, and your key goal should be to use
immutable data structures and references as your default approach.
Converting existing mutable data structures to immutable ones, though, is
often a pretty complex task requiring a lot of refactoring or conceptual
redesign. Instead, you could introduce immutability gradually by following
common practices and treating your data as if it were already immutable.

Immutability by default

Any new data structure, like data-transfer objects, value objects, or any
kind of state, should be designed as immutable. If the JDK or another
framework or library you’re using provides an immutable alternative,



you should consider it over a mutable type. Dealing with immutability
right from the start with a new type will influence and shape any code
that will use it.

Always expect Immutability

Assume all data structures are immutable unless you created them or it’s
stated explicitly otherwise, especially when dealing with Collections. If
you need to change them, it’s safer to create a new one based on them.

Modifying existing types

Even if a pre-existing type isn’t immutable, new additions should be, if
possible. There might be reasons for making it mutable, but unnecessary
mutability increases the bug surface, and all the advantages of
immutability vanish instantly.

Break immutability if necessary

If it doesn’t fit, don’t force it, especially in legacy codebases. The main
goal of immutability is providing safer, more reasonable data structures,
which requires their environment to support them accordingly.

Treat foreign data structures as immutable

Always treat any data structure not under your scope’s control as
immutable. For example, receiving a collection as a method argument
should be considered immutable. Instead of manipulating it directly,
create a mutable wrapper view for any changes, and return an
unmodifiable collection type. This approach keeps the method pure and
prevents any unintended changes the callee hasn’t expected.

Following these common practices will make it easier to create immutable
data structures from the start or gradually transition to a more immutable
program state along the way.



Takeaways
Immutability is a simple concept but requires a new mindset and
approach to handling data and change.

Lots of JDK types are already designed with immutability in mind

Records provide a new and concise way to reduce boilerplate for
creating immutable data structures but deliberately lack certain
flexibility to be as transparent and straightforward as possible.

You can achieve immutability with the built-in tools of the JDK, and
third-party libraries can provide simple solutions to the missing pieces.

Introducing immutability into your code doesn’t have to be an all-or-
nothing approach. You can gradually apply common immutability
practices to your existing code to reduce state-related bugs and ease
refactoring efforts.

1  JavaBeans are specified in the official JavaBeans API specification 1.01, which is over a
hundred pages long. For the scope of this book, however, you don’t need to know all of it, but
the mentioned differences to other data structures.

2  Since Java 1.2, the Java collections framework provides a multitude of common reusable data
structures, like List<E>, Set<E>, etc. The Oracle Java documentation has an overview of
the available types included in the framework.

3  Phil Karton, an accomplished software engineer who for many years as a principal developer
at Xerox PARC, Digital, Silicon Graphics, and Netscape, coined the quote, “There are only two
hard things in Computer Science: cache invalidation and naming things.” It became a
mainstream joke in the software community over the years and is often amended by adding
“one-off errors” without changing the count of two.

4  The JDK Enhancement Proposal (JEP) 280, “Indify String Concatenation”, describes the
reasoning behind using invokedynamic in more detail.

5  Arbitrary-precision arithmetic — also known as bignum arithmetic, multiple-precision
arithmetic, or sometimes infinite-precision arithmetic — performs calculations on numbers
whose digits of precision are only limited by the available memory, not a fixed number.

https://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/
https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.xhtml
http://openjdk.java.net/jeps/280


6  The actual range of BigInteger depends on the actual implementation of the used JDK, as
stated in an implementation note in the offical documentation.

7  Technically there’s a forth type, java.sql.Date, which is a thin wrapper to improve
JDBC support.

8  A code smell is a known code characteristic that might indicate a deeper problem. It’s not a
bug or error per se, but it might cause trouble in the long run. These smells are subjective and
vary by programming language, developer, and paradigms. SonarSource, the well-known
company that develops open-source software for continuous code quality and security, lists
mutable enums as rule RSPEC-3066

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/math/BigInteger.xhtml
https://www.sonarsource.com/
https://rules.sonarsource.com/java/RSPEC-3066


Chapter 5. Working With
Records

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 5th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at rfernando@oreilly.com.

Java 14 introduced a new type of data structure as a preview1 feature, which
was finalized two releases later: Records. They are not just another typical
Java type or technique you can use. Instead, Records are a completely new
language feature providing you with a simple but feature-rich data
aggregator with minimal boilerplate.

Data Aggregation Types
From a general point-of-view, data aggregation is the process of gathering
data from multiple sources and assembling it in a format that better serves
the intended purpose and more preferable usage. Maybe the most well-
known kind of data aggregation type is tuples.

Tuples



Mathematically speaking, a tuple is a “finite ordered sequence of elements.”
In terms of programming languages, a tuple is a data structure aggregating
multiple values or objects.

There are two kinds of tuples. Structural tuples rely only on the order of the
contained elements and are therefore only accessible by their indices, as
seen in the following Python code:

apple = ("apple", "green")
banana = ("banana", "yellow")
cherry = ("cherry", "red") 
 
fruits = [apple, banana, cherry] 
 
for fruit in fruits: 
  print "The", fruit[0], "is", fruit[1]

Nominal tuples don’t use an index to access their data, but they use
component names instead, as seen in the following Swift code:

typealias Fruit = (name: String, color: String) 
 
let fruits: [Fruit] = [ 
  (name: "apple", color: "green"), 
  (name: "banana", color: "yellow"), 
  (name: "cherry", color: "red")] 
 
for fruit in fruits { 
  println("The \(fruit.name) is \(fruit.color)")
}

In order to demonstrate what Records have to offer, you’ll first have a look
at how to go from a classical POJO to an immutable one, and then I’ll show
you how to replicate the same functionality with a Record instead.

A Simple POJO
First, let’s take a look at the “pre-Record” state of data aggregation in Java
to better grasp what Records have to offer. As an example, we create a
simple “user” type as a “classic” POJO, evolve it to an “immutable” POJO,



and finally, a Record. It will be a simple type, with a username, an activity
state, a last-login timestamp, and the “usual” boilerplate that comes along in
typical Java code, as seen in Example 5-1.

Example 5-1. Simple User POJO
public final class User {

  private String        username;
  private boolean       active;
  private LocalDateTime lastLogin;

  public User() { } 

  public User(String username,
              boolean active,
              LocalDateTime lastLogin) { 
    this.username = username;
    this.active = active;
    this.lastLogin = lastLogin;
  }

  public String getUsername() { 
    return this.username;
  }

  public void setUsername(String username) { 
    this.username = username;
  }

  public boolean isActive() { 
    return this.active;
  }

  public void setActive(boolean active) { 
    this.active = active;
  }

  public LocalDateTime getLastLogin() { 
    return this.lastLogin;
  }

  public void setLastLogin(LocalDateTime lastLogin) { 
    this.lastLogin = lastLogin;
  }

  @Override



  public int hashCode() { 
    return Objects.hash(this.username,
                        this.active,
                        this.lastLogin);
  }

  @Override
  public boolean equals(Object obj) { 
    if (this == obj) {
      return true;
    }

    if (obj == null || getClass() != obj.getClass()) {
      return false;
    }

    User other = (User) obj;
    return Objects.equals(this.username, other.username)
           && this.active == other.active
           && Objects.equals(this.lastLogin, other.lastLogin);
  }

  @Override
  public String toString() { 
    return new StringBuilder().append("User [username=")
                              .append(this.username)
                              .append(", active=")
                              .append(this.active)
                              .append(", lastLogin=")
                              .append(this.lastLogin)
                              .append("]")
                              .toString();
  }
}

Constructors aren’t strictly necessary but are added for convenience. If
any constructor with arguments exists, an explicit “empty” constructor
should be added, too.POJOs usually have getters instead of public fields.The first variant of the User type is still mutable due to its setter
methods.Both hashCode and equals require dedicated implementations that
depend on the actual structure of the type. Any changes to the type
require both methods to adapt.The toString method is another convenience addition that isn’t
explicitly needed. Just like the previous methods, it has to be updated
every time the type changes.



Including the empty lines and curly braces, that’s ~75 lines for just holding
three data fields. No wonder one of the most common complaints about
Java is its verbosity, and “too much ceremony” to do standard things!

Now, let’s convert it into an immutable POJO.

From POJO to Immutability
Making the User POJO immutable reduces the required boilerplate slightly
because you no longer need any setter methods, as shown in Example 5-2.

Example 5-2. Simple immutable User type
public final class User {

  private final String username; 
  private final boolean active;
  private final LocalDateTime lastLogin;

  public User(String username,
              boolean active,
              LocalDateTime lastLogin) { 
    this.username = username;
    this.active = active;
    this.lastLogin = lastLogin;
  }

  public String getUsername() { 
    return this.username;
  }

  public boolean isActive() { 
    return this.active;
  }

  public LocalDateTime getLastLogin() { 
    return this.lastLogin;
  }

  @Override
  public int hashCode() { 
    // UNCHANGED
  }

  @Override
  public boolean equals(Object obj) { 



    // UNCHANGED
  }

  @Override
  public String toString() { 
    // UNCHANGED
  }
}

Without “setters”, the fields can be declared final.Only a full “pass-through” constructor is possible because the fields
must be set on object creation.The “getters” remain unchanged from the mutable variant.The supporting methods are also unchanged compared to the previous
implementation.

By making the type immutable yourself, only the code of the setters and the
empty constructor could be removed; everything else is still there. That’s
still quite a lot of code for holding three fields with not much additional
functionality. Of course, we could remove more of the “ceremony” and use
a simple class with three public final fields and a constructor.
Depending on your requirements, that might be “just enough.” The
additional functionality, however, like equality comparison, and a correct
hashCode so it can be used in a Set or HashMap, or a sensible
toString output, are all desirable features.

From POJO to Record
Finally, let’s take a look at a more general, less ceremonial, but still feature-
rich solution using a Record instead:

public record User(String username,
                   boolean active,
                   LocalDateTime lastLogin) {
  // NO BODY
}

That’s it.

The User Record has the same features as the immutable POJO. How it
does so much with so little code will be explained in detail in the upcoming



sections.

Records to the Rescue
Records are a way to define plain data aggregator types that access their
data components by name in the vein of nominal tuples. Like nominal
tuples, Records aggregate an ordered sequence of values and provide access
via names instead of indices. Their data is shallowly immutable and
transparently accessible. The typical boilerplate of other data classes is
significantly reduced by generating accessors and data-driven methods like
equals and hashCode. Even though the final version of JEP 395
explicitly states that “war on boilerplate” is a non-goal, it’s still a happy
coincidence many developers will appreciate.

Being “plain” data aggregator types, there are some missing features
compared to other options. This chapter will cover each missing feature and
how to mitigate them, transforming Records into a more flexible solution
for your data aggregation needs.

As seen in the previous section, Records use a new keyword — record — 
to delimit them from other classes and enums. The data components are
declared like a constructor or method arguments directly after the Record’s
name:

public record User(String username,
                   boolean active,
                   LocalDateTime lastLogin) {
  // NO BODY
}

The general syntax for Records breaks down into two parts: a header
defining the same properties as other types, plus its components and an
optional body to support additional constructors and methods.

// HEADER 
[visibility] record [Name][<optional generic types>]([data 
components]) { 

https://openjdk.java.net/jeps/395


  // BODY 
}

The header is similar to a class or interface header and consists of
multiple parts:

Visibility

Like a class, enum, or interface definition, a Record supports
Java’s visibility keywords (public, private, protected).

The record keyword

The keyword record distinguishes the header from the other type
declarations class, enum, and interface.

Name

Naming rules are identical to any other identifier, as defined in the Java
Language Specification2.

Generic types

Generic types are supported as with other type declarations in Java.

Data components

The name is followed by a pair of parentheses containing the
components of the Record. Each one translates into a private
final field and a public accessor method behind the scenes. The
components list also represents the constructor of the Record.

Body

A typical Java body, like any other class or interface.

An effectively single line of code will be translated by the compiler to a
class similar to Example 5-2 from the previous section. It extends



java.lang.Record explicitly rather than java.lang.Object
implicitly, just like enums do with java.lang.Enum.

Behind The Scenes
The generated class behind any Record gives you quite a lot of functionality
without writing any additional code. It’s time to take a deeper look at what’s
actually happening behind-the-scenes.

The JDK includes the command javap, which disassembles .class files
and allows you to see the Java corresponding Java code for the bytecode.
This way, it’s easy to compare the actual difference between the POJO and
Record version of the User type from “Data Aggregation Types”. The
combined and cleaned-up output for both variants is shown in Example 5-3.

Example 5-3. Disassembled User.class POJO versus Record
// IMMUTABLE POJO 
 
public final class User {
  public User(java.lang.String, boolean, java.time.LocalDateTime);
  public java.lang.String getUsername();
  public boolean isActive();
  public java.time.LocalDateTime getLastLogin(); 
 
  public int hashCode();
  public boolean equals(java.lang.Object);
  public java.lang.String toString();
} 
 
 
// RECORD 
 
public final class User extends java.lang.Record {
  public User(java.lang.String, boolean, java.time.LocalDateTime);
  public java.lang.String username();
  public boolean active();
  public java.time.LocalDateTime lastLogin(); 
 
  public final int hashCode();
  public final boolean equals(java.lang.Object);
  public final java.lang.String toString();
}



As you can see, the resulting classes are identical functionality-wise, only
the naming of the accessor methods differ. But where did all those methods
come from? Well, that’s the “magic” of Records, giving you a full-fledged
data aggregation type without writing more code as absolutely needed.

Record Features
Records are transparent data aggregators with specific guaranteed
properties and well-defined behavior by automagically3 providing
functionality without needing to repeatedly write the following trivial
boilerplate implementations:

Component accessors

Three types of constructors

Object identity and description methods

That’s a lot of functionality without requiring any additional code besides
the Record declaration. Any missing pieces can be done by augmenting or
overriding these features as necessary.

Let’s check out Record’s automatic features and how other typical Java
features, like generics, annotations, and reflection, fit in.

Component Accessors
All Record components are stored in private fields. Inside a Record, its
fields are directly accessible. “From the outside,” you need to access them
through the generated public accessor methods. The accessor method
names correspond to their component name without the typical “getter”
prefix get, as shown in the following code example:

public record User(String username,
                   boolean active,
                   LocalDateTime lastLogin) {
  // NO BODY
} 
 



var user = new User("ben", true, LocalDateTime.now()); 
 
var username = user.username();

The accessor methods return the corresponding field’s value as-is. Though
you can override them, as shown in the following code, I wouldn’t
recommend it.

public record User(String username,
                   boolean active,
                   LocalDateTime lastLogin) { 
 
  @Override
  public String username() {
    if (this.username == null) {
      return "n/a";
    } 
 
    return this.username;
  }
} 
 
var user = new User(null, true, LocalDateTime.now()); 
 
var username = user.username();
// => n/a

Records are supposed to be immutable data holders, so making decisions
while accessing its data could be considered a code smell. The creation of a
Record defines its data, and that’s where any validation or other logic
should affect the data, as you will learn in the next section.

Canonical, Compact, and Custom Constructors
A constructor identical to the Record’s components definition is
automatically available, called the canonical constructor. The Record’s
components are assigned to the corresponding fields “as-is.” Like
component accessors, the canonical constructor is overridable to validate
input, like null-checks, or even manipulate data if necessary:



public record User(String username,
                   boolean active,
                   LocalDateTime lastLogin) { 
 
  public User(String username,
              boolean active,
              LocalDateTime lastLogin) { 
 
    Objects.requireNonNull(username);
    Objects.requireNonNull(lastLogin); 
 
    this.username = username;
    this.active = active;
    this.lastLogin = lastLogin;
  }
}

That’s a lot of additional lines for two actual null-checks, including
redeclaration of the constructor signature and assigning the components to
the invisible fields.

Thankfully, a specialized compact form, shown in the following code
example, is available, and it doesn’t force you to repeat any boilerplate if
you don’t need it.

public record User(String username,
                   boolean active,
                   LocalDateTime lastLogin) {

  public User { 

    Objects.requireNonNull(username);
    Objects.requireNonNull(lastLogin);

    username = username.toLowerCase(); 

    
  }
}

The constructor omits all arguments, including the parentheses.Field assignments aren’t allowed in the compact canonical constructor,
but you can customize or normalize data before it’s assigned.The components will be assigned to their respective fields
automatically.



At first, the syntax might look unusual because it omits all arguments,
including the parentheses. This way, though, it’s clearly distinguishable
from an argument-less constructor.

The compact constructor is the perfect place to put any validation, as I will
show you in “Record Validation and Data Scrubbing”.

Like with classes, you can declare additional constructors, but any custom
constructor must start with an explicit invocation of the canonical
constructor as its first statement. That’s quite a restrictive requirement
compared to classes, which it is. Still, this requirement serves an essential
feature I’m going to discuss in “Component Default Values and
Convenience Constructors”.

Object Identity and Description
Records provide a “standard” implementation for the object identity
methods int hashCode() and boolean equals(Object) based
on data equality. Without an explicit implementation of the two object
identity methods, you don’t have to worry about updating your code if the
Record’s component change. Two instances of a Record type are considered
equal if the data of their components are equal.

The object description method String toString() is auto-generated
from the components, too, giving you a sensible default output, for
example:

User[username=ben, active=true, lastLogin=2023-01-
11T13:32:16.727249646]

The object identity and description methods are overridable, too, like
component accessors and constructors.

Generics
Records also support generics, which follow the “usual” rules:

public record Container<T>(T content,
                           String identifier) {



  // NO BODY
} 
 
Container<String> stringContainer = new Container<>("hello, 
String!",
                                                    "a String 
container"); 
 
String content = stringContainer.content();

Personally, I would advise against overusing generic Records. Using more
specific Records that more closely match the domain model they represent
gives you more expressiveness and reduces accidental misuse.

Annotations
Annotations behave a little differently than you might expect if used on a
Record’s components:

public record User(@NonNull String username,
                   boolean active,
                   LocalDateTime lastLogin) {
  // NO BODY
}

At first glance, username looks like a parameter, so a sensible conclusion
would be that only annotations with ElementType.PARAMETER should
be possible4. But with Records and their automagically generated fields and
component accessors, some special considerations must be made. To
support annotating these features, any annotations with the targets FIELD,
PARAMETER, or METHOD, are propagated to the corresponding locations if
applied to a component.

In addition to the existing targets, the new target
ElementType.RECORD_COMPONENT was introduced for more fine-
grained annotation control in Records.

Reflection



To complement Java’s reflection capabilities, Java 16 added the
getRecordComponents method to java.lang.Class.. In the case
of a Record-based type, the call gives you an array of
java.lang.reflect.RecordComponent objects, or null for any
other type of Class. The components are returned in the same order that
they are declared in the record header, allowing you to look up the
canonical constructor via getDeclaredConstructor() on a Record’s
class.

You will find some reflection-based examples in the book’s code repository.

Missing Features
Records are precisely what they are supposed to be: plain, transparent,
shallowly immutable data-aggregators. They provide a plethora of features
without writing any line of code except their definition. Compared to other
available data aggregators, they lack some features you might be used to,
such as:

Additional State

Inheritance

(Simple) default values

Step-by-step creation

This section shows you what features are “missing in action” and how to
mitigate them if possible.

Additional State
Allowing any additional opaque state is an obvious omission from records.
They are supposed to be data-aggregators representing a transparent state.
That’s why any additional field added to its body results in a compiler error.

https://github.com/benweidig/a-functional-approach-to-java


TIP
If you require more fields than what’s possible with a Record’s components alone,
Records might not be the data structure your looking for.

For some scenarios at least, you could add derived state that’s based on the
existing components, by adding methods to the Records:

public record User(String username,
                   boolean active,
                   LocalDateTime lastLogin) { 
 
  public boolean hasLoggedInAtLeastOnce() {
    return this.lastLogin != null;
  }
}

Methods can be added because they don’t introduce additional state like a
field. They have access to private fields, guaranteeing verbatim data
access even if the component accessor is overridden. Which to choose — 
field or accessor — depends on how you design your Record and your
personal preference.

Inheritance
Records are final types that already extend java.lang.Record
behind-the-scenes, as previously seen in Example 5-3. Because Java doesn’t
allow inheriting more than one type, Records can’t use inheritance. That
doesn’t mean they can’t implement any interfaces, though. With interfaces,
you can define Record templates and share common functionality with
default methods.

Example 5-4 shows how to create Records for multiple shapes with the
common concept of an origin and a surface area.

Example 5-4. Using interfaces with Records as templates
public interface Origin {

  int x(); 



  int y(); 

  default String origin() { 
    return String.format("(%d/%d)", x(), y());
  }
}

public interface Area {

  float area(); 
}

// DIFFERENT RECORDS IMPLEMENTING INTERFACES

public record Point(int x, int y) implements Origin {
  // NO BODY
}

public record Rectangle(int x, int y, int width, int height)
  implements Origin, Area {

  public float area() { 
    return (float) (width() * height());
  }
}

public record Circle(int x, int y, int radius)
  implements Origin, Area {

  public float area() { 
    return (float) Math.PI * radius() * radius();
  }
}

The interface defines the components of an implementing record as
simple methods with the correct namesShared functionality is added with default methods.Method signatures in interfaces must not interfere with any
implementing record type.

Sharing behavior with interfaces and default methods is a
straightforward approach, as long as all implementees share the interface
contract. Interfaces can provide a few left-out pieces of the missing
inheritance, and it might be tempting to create intricate hierarchies and
interdependencies between records. But structuring your record types this



way will create cohesion between them that’s not in the original spirit of
Records to be simple data aggregators defined by their state. The example is
over-engineered to illustrate the possibilities of multiple interfaces better. In
the real world, you would most likely make Origin a Record, too, and use
composition and additional constructors to achieve the same functionality.

Component Default Values and Convenience Constructors
Unlike many other languages, Java doesn’t support default values for any
constructor or method arguments. Records only provide their canonical
constructor with all components automatically, which can become
unwieldy, especially in the case of composed data structures:

public record Origin(int x, int y) {
  // NO BODY
} 
 
 
public record Rectangle(Origin origin, int width, int height) {
  // NO BODY
} 
 
var rectangle = new Rectangle(new Origin(23, 42), 300, 400);

Additional constructors give you an easy way to have sensible default
values:

public record Origin(int x, int y) {

  public Origin() {
    this(0, 0);
  }
}

public record Rectangle(Origin origin, int width, int height) {

  public Rectangle(int x, int y, int width, int height) { 
    this(new Origin(x, y), width, height);

  }

  public Rectangle(int width, int height) { 



    this(new Origin(), width, height);
  }

  // ...
}

var rectangle = new Rectangle(23, 42, 300, 400);
// => Rectangle[origin=Origin[x=23, y=42], width=300, height=400]

The first additional constructor mimics the components of Origin to
provide a more convenient way to create a Rectangle.The second one is a convenience constructor by removing the necessity
of providing an Origin.

Due to Java’s naming semantics, not all combinations for default values
might be possible, like Rectangle(int x, float width, float
height) has an identical signature to Rectangle(int y, float
width, float height). In this case, using static factory methods
allows you to create any combination you require:

public record Rectangle(Origin origin, int width, int height) { 
 
  public static Rectangle atX(int x, int width, int height) {
    return new Rectangle(x, 0, width, height);
  } 
 
  public static Rectangle atY(int y, int width, int height) {
    return new Rectangle(0, y, width, height);
  } 
 
  // ...
} 
 
var xOnlyRectangle = Rectangle.atX(23, 300, 400);
// => Rectangle[origin=Origin[x=23, y=0], width=300, height=400]

Using static Factory methods is a more expressive alternative to custom
constructors and the only resort with overlapping signatures.

In the case of argument-less constructors, a constant makes more sense:

public record Origin(int x, int y) { 
 



    public static Origin ZERO = new Origin(0, 0);
}

First, your code is more expressive with meaningful names for constants.
Second, only a single instance is created, which is constant anywhere
because the underlying data structure is immutable.

Step-by-Step Creation
One of the advantages of immutable data structures is the lack of “half-
initialized” objects. Still, not every data structure is initializable all at once.
Instead of using a mutable data structure in such a case, you can use the
builder pattern to get a mutable intermediate variable that’s used to create
an eventually immutable final result. Even though the builder pattern was
incepted as a solution to recurring object creation problems in object-
oriented programming, it’s also highly beneficial for creating immutable
data structures in a more functional Java environment.



THE BUILDER DESIGN PATTERN
The builder design pattern was introduced in the book Design Patterns:
Elements of Reusable Object-Oriented Software5 by the “Gang of
Four,” referring to Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides.

This creational design pattern aims to provide a flexible solution for
constructing complex data structures by separating the build process
from the final representation of the data structure.

The main advantage of this pattern is the ability to create complex data
structures step-by-step, allowing you to defer steps until the required
data is available. It also fits into the single responsibility principle6 of
object-oriented design, defined as every class, module, or function in a
program should have one responsibility/purpose in a program. In this
case, the builder class is solely responsible for constructing a complex
data structure, while the structure itself is only responsible for
representing its data.

By separating the construction of the data structure from its representation,
the data structure itself can be as simple as possible, making the pattern an
excellent match for Records. Any required logic, or validation, is
encapsulated into a (multistep-)builder.

The previously used User Record can be complemented by a simple
builder, as shown in Example 5-5.

Example 5-5. User Builder
public final class UserBuilder {

  private final String username;

  private boolean       active;
  private LocalDateTime lastLogin;

  public UserBuilder(String username) {
    this.username = username;
    this.active = true; 



  }

  public UserBuilder active(boolean isActive) { 
    if (this.active == false) { 
      throw new IllegalArgumentException("...");
    }

    this.active = isActive;
    return this; 
  }

  public UserBuilder lastLogin(LocalDateTime lastLogin) { 
    this.lastLogin = lastLogin;
    return this;
  }

  public User build() { 
    return new User(this.username, this.active, this.lastLogin);
  }
}

var builder = new UserBuilder("ben").active(false) 
                                    
.lastLogin(LocalDateTime.now());

// ...

var user = builder.build(); 
Explicit default values are possible, reducing the required code for
creation.Field that can be changed during building need setter-like methods.Validation logic is bound to the specific setter-like method and not
accumulated in any constructor.Returning this creates a fluent API for the builder.
Optional fields can use their explicit types, and only change into an
Optional during build().If you’re done building, calling build() will create the actual
immutable User record. Usually, the builder should validate its state if
necessary.The build process is fluent, and you can pass the builder around like any
other variable.Finally, create the immutable object by calling build().

It’s sensible to increase the adhesion between the type and its builder by
placing the builder class directly in the corresponding type as a static



nested class, as seen in Example 5-6.

Example 5-6. Nested Builder
public record User(long id,
                   String username,
                   boolean active,
                   Optional<LocalDateTime> lastLogin) { 
 
  public static final class Builder {
    // ...
  }
} 
 
var builder = new User.Builder("ben");

It might seem non-sensical to use a Record to achieve simplicity and
immutability but still introduce the complexity of a builder. Why not use a
full-fledged bean instead? Because even with the complexity of the builder,
the concerns of creating and using the data are separate. The Record is still
usable without the builder, but the builder provides an additional and
flexible way to create a Record instance.

Use-Cases and Common Practices
Records save you a lot of boilerplate code, and with a few additions, you
can supercharge them into an even more flexible and versatile tool.

Record Validation and Data Scrubbing
As shown in “Canonical, Compact, and Custom Constructors”, Records
support a compact constructor that behaves differently from a normal
constructor. You have access to all components of the canonical constructor,
but it doesn’t have any arguments. It gives you a location to put any
additional code required for the initialization process without needing to
assign the components yourself. That makes it the perfect place to put any
validation and data-scrubbing logic:

public record NeedsValidation(int x, int y) { 
 



  public NeedsValidation {
    if (x < y) {
      throw new IllegalArgumentException("x must be equal or 
greater than y");
    }
  }
}

Throwing exceptions is one way to go. Another option is to scrub the data
and adjust component values with sensible alternatives to form a valid
Record:

public record Time(int minutes, int seconds) { 
 
  public Time {
    if (seconds >= 60) {
      int additionalMinutes = seconds / 60;
      minutes += additionalMinutes;
      seconds -= additionalMinutes * 60;
    }
  }
} 
 
var time = new Time(12, 67);
// => Time[minutes=13, seconds=7]

Moving a certain degree of logic, like the normalization of out-of-range
values, directly into a Record gives you more consistent data
representations, regardless of the initial data. Another approach is requiring
such data scrubbing beforehand and restricting a Record to do only hard
validation by throwing a proper exception.



RECORD VALIDATION WITH THE BEAN VALIDATION
API

Another validation option for Records is the Bean Validation API (JSR-
380). Records aren’t JavaBeans technically, but they can still profit
from the existing validation concept. The Bean Validation API gives
you the tools to express and validate constraints with a multitude of
annotations like @NonNull, @Positive, etc. Implementing JSR-380
compatible constraints requires adding additional dependencies to your
project. Even then, the validation isn’t run automatically. ByteCode
manipulation is often used to mitigate this issue. The details of how to
use the Bean Validation API are out of the scope of this book, but the
official Java Magazine has an excellent article that provides an
overview of how to implement rudimentary Record validation with
JSR-380.

Increasing Immutability
In “Immutable Collections” you learned about the problem with shallow
immutability in collections. A shallowly immutable data structure has an
immutable reference, but the data it refers to is still mutable. The same
underlying problems of unexpected changes must also be considered with
non-inherently immutable Record components. An easy way to minimize
any changes in Record components is by trying to increase the level of
immutability by copying or rewrapping them.

You can use the canonical constructor to create immutable copies of a
component:

public record IncreaseImmutability(List<String> values) { 
 
  public IncreaseImmutability {
    values = Collections.unmodifiableList(values);
  }
}

https://beanvalidation.org/2.0-jsr380/spec/
https://blogs.oracle.com/javamagazine/post/diving-into-java-records-serialization-marshaling-and-bean-state-validation


The call to Collections.unmodifiableList creates a memory-
wise lean but unmodifiable view of the original List. This prevents
changes to the Record’s component but can’t control changes to the
underlying List via the original reference. A greater level of immutability
can be achieved by using the Java 10+ method
List.copy(Collection<? extends E> coll) to create a deep
copy independent from the original reference.

Creating Modified Copies
Even though the declaration of Records is as minimal as it gets, creating a
slightly modified copy is a DIY job without any help from the JDK.

There are multiple approaches to creating modified copies if you don’t want
to do it completely manually:

Wither methods

Builder pattern

Tool-assisted

Reflection

Wither Methods
Wither methods follow the name scheme with[componentName]
([Type] value). They’re similar to setters, but return a new instance
instead of modifying the current one:

public record Point(int x, int y) { 
 
  public Point withX(int newX) {
    return new Point(newX, y());
  } 
 
  public Point withY(int newY) {
    return new Point(x(), newY);
  }
} 
 



var point = new Point(23, 42);
// => Point[x=23, y=42] 
 
var newPoint = point.withX(5);
// => Point[x=5, y=42]

A nested Record is a handy way to separate the modification logic from the
actual Record:

public record Point(int x, int y) { 
 
  public With with() {
    return new With(this);
  } 
 
  public record With(Point source) { 
 
    public Point x(int x) {
      return new Point(x, source.y());
    } 
 
    public Point y(int y) {
      return new Point(source.x(), y);
    }
  }
} 
 
var sourcePoint = new Point(23, 42); 
 
var modifiedPoint = sourcePoint.with().x(5);

The original Record only has one additional method, and all mutator/copy
methods are encapsulated in the With type.

The most obvious downside of wither-methods, like default values in
“Component Default Values and Convenience Constructors”, is the
requirement to write a method for each component. Restricting your code to
the most common scenarios is sensible, and only add new methods as
required.

Builder Pattern



The builder pattern, as introduced in “Step-by-Step Creation”, also allows
for easier change management if you add a copy-constructor. Such a
constructor allows you to initialize the builder with an existing record,
make the appropriate changes, and create a new record, shown as follows:

public record Point(int x, int y) { 
 
  public static final class Builder { 
 
    private int x;
    private int y; 
 
    public Builder(Point point) {
      this.x = point.x();
      this.y = point.y();
    } 
 
    public Builder x(int x) {
      this.x = x;
      return this;
    } 
 
    public Builder y(int y) {
      this.y = y;
      return this;
    } 
 
    public Point build() {
      return new Point(this.x, this.y);
    }
  }
} 
 
var original = new Point(23, 42); 
 
var updated = new Point.Builder(original)
                       .x(5)
                       .build();

This approach shares the same problem as “wither” methods: strong
cohesion between the components and code needed to create Record copies,
making refactoring harder. To mitigate, you can use a tool-assisted
approach.



Tool-Assisted Builder
Instead of updating your Record builder classes each time a Record
changes, you could use an annotation processor to do the work for you. A
tool like RecordBuilder generates a flexible builder for any Record and all
you have to do is add a single annotation:

@RecordBuilder
public record Point(int x, int y) {
  // NO BODY
} 
 
 
// GENERAL BUILDER
var original = PointBuilder.builder()
                           .x(5)
                           .y(23)
                           .build(); 
 
 
// COPY BUILDER
var modified = PointBuilder.builder(original)
                           .x(12)
                           .build();

Any change to the Record’s components will automatically be available in
the generated builder. A “wither"-based approach is also possible but
requires your Record to implement an additionally generated interface:

@RecordBuilder
public record Point(int x, int y) implements PointBuilder.With {
  // NO BODY
} 
 
var original = new Point(5, 23); 
 
// SINGLE CHANGE
var modified1 = original.withX(12); 
 
 
// MULTI-CHANGE VIA BUILDER
var modified2 = original.with()
                        .x(12)
                        .y(21)

https://github.com/randgalt/record-builder


                        .build() 
 
// MULTI-CHANGE VIA CONSUMER (doesn't require calling build())
var modified3 = original.with(builder -> builder.x(12)
                                                .y(21));

Even though using an external tool to complement your Records, or any
code, can save you a lot of typing, it also comes with some downsides.
Depending on a tool for an essential part of your project that won’t work
without it, creates a hard-to-break cohesion between them. Any bugs,
security problems, or breaking changes may affect your code in unforeseen
ways, often without the possibility of fixing it yourself. Annotation
processors integrate themselves into your build tools, making them now
interrelated, too. So make sure you evaluate such dependencies thoroughly7
before adding them to your projects.

Records as Local Nominal Tuples
One type of construct prevalent in many functional programming languages
is missing in Java: dynamic tuples. Programming languages usually use
those as dynamic data aggregators without requiring an explicitly defined
type. Java Records are simple data aggregators and can be considered
nominal tuples in a sense. The most significant difference to most tuple
implementations is that their contained data is held together by an umbrella
type due to the Java type system. Records aren’t as flexible or
interchangeable as other languages’ tuple implementations. Still, you can
use them as localized on-the-fly data aggregators, thanks to an addition to
Records in Java 15: local Records.

Contextually localized Records simplify and formalize data processing and
bundle up functionality. Imagine you have a list of music album titles of the
90s, grouped by year as a Map<Integer, List<String>>, shown as
follows:

Map<Integer, List<String>> albumns =
  Map.of(1990, List.of("Bossanova", " Listen Without Prejudice"),
         1991, List.of("Nevermind", "Ten", "Blue lines"),



         1992, List.of("The Chronic", "Rage Against the 
Machine"),
         1993, List.of("Enter the Wu-Tang (36 Chambers)"),
         ...
         1999, List.of("The Slim Shady LP", "Californication", 
"Play"));

Working with such a nested and unspecific data structure is quite a hassle.
Iterating Maps requires using the entrySet() method, which returns
Map.Entry<Integer, List<String>> instances in this case.
Working with the entries might give you access to all the data, but not in an
expressive way.

The following code uses a Stream pipeline to create a filter method for the
music album titles. Even without reading Chapter 6, which will explain
Streams in detail, most of the code should be straightforward, but I’ll guide
you through it.

public List<String> filterAlbums(Map<Integer, List<String>> 
albums,
                                 int minimumYear) {

  return albums.entrySet()
               .stream()
               .filter(entry -> entry.getKey() >= minimumYear) 
               .sorted(Comparator.comparing(Map.Entry::getKey)) 
               .map(Map.Entry::getValue) 
               .flatMap(List::stream) 
               .toList(); 
}

Filter the entries for albums that are at least the minimum year.Sort the title lists by their respective years.Transform the entry to its actual value.The flatMap call helps to “flatten” the List<String> elements
containing a year’S titles to singular elements in the pipeline.Collect the elements to a List<String>

Each Stream operation has to deal with getKey() or getValue()
instead of expressive names representing the actual data in its context.
That’s why introducing a local Record as an intermediate type allows you to
regain expressiveness in complex data processing tasks, like Stream



pipelines, but any data processing can benefit from more expressiveness.
You can even move parts of the logic into the Record to use method
references or single calls for each operation.

Think about the form of the data you have, and how it should be
represented, and design your Record accordingly. Next, you should refactor
complex data processing tasks into Record methods. Possible candidates
are:

Creating the Record from a Map.Entry instance.

Filtering by year

Sorting by year.

The following Record code shows implementations of these tasks:

public record AlbumsPerYear(int year, List<String> titles) { 

  public AlbumsPerYear(Map.Entry<Integer, List<String>> entry) { 

    this(entry.getKey(), entry.getValue());
  }

  public static Predicate<AlbumsPerYear> minimumYear(int year) { 

    return albumsPerYear -> albumsPerYear.year() >= year;
  }

  public static Comparator<AlbumsPerYear> sortByYear() { 
    return Comparator.comparing(AlbumsPerYear::year);
  }
}

The Record components reflect how you want to access the data with
more expressive names.An additional constructor allows using a method reference to create new
instances.If a task depends on an out-of-scope variable, it should be defined as
static helpers.Sorting should be done either by creating a static helper method
returning a Comparator, or your Record could implement the



Comparable interface instead if only a single sort needs to be
supported.

The Record AlbumsPerYear is specifically designed for the Stream
pipeline of the filterAlbums method and should only be available in its
scope. The local context confines the record, denying it access to
surrounding variables. All nested records are implicitly static to prevent
state leaking into it through the surrounding class. Example 5-7 shows how
the Record lives in the method and how the Record improves the overall
code.

Example 5-7. Stream pipeline with localized Record
public List<String> filterAlbums(Map<Integer, List<String>> albums,
                                 int minimumYear) {
 
  record AlbumsPerYear(int year, List<String> titles) { 
    // ...
  }

  return albums.entrySet()
               .stream()
               .map(AlbumsPerYear::new) 
               .filter(AlbumsPerYear.minimumYear(minimumYear)) 
               .sorted(AlbumsPerYear.sortByYear()) 
               .map(AlbumsPerYear::titles) 
               .flatMap(List::stream) 
               .toList();
}

The localized Record is directly declared in the method, restricting its
scope. I didn’t repeat the actual implementation for readability reasons.The first operation of the Stream pipeline is to transform the
Map.Entry instance into the local Record type.Each subsequent operation uses an expressive method of the localized
Record, either directly or as a method reference, instead of an explicit
lambda expression.Some operations are harder to refactor, like flatMap, because the
overall processing logic of the Stream dictates their use.

As you can see, using a local Record is an excellent way to improve the
ergonomics and expressiveness of a declarative Stream pipeline without



exposing the type outside of its apparent scope.

Better Optional Data Handling
Dealing with optional data and possible null values is the bane of every
Java developer. One option is using the Bean Validation API, as shown in
“Record Validation and Data Scrubbing”, and annotating each component
with @NonNull and @Nullable, although this approach requires a
dependency. If you want to stay within the JDK, Java 8 eased the pain of
null-handling by introducing the Optional<T> type, which you will
learn more about in Chapter 9. For now, all you need to know is that it’s a
container type for possible null-values, so even if the value is null, you
can still interact with the container without causing a
NullPointerException.

The Optional type clearly signifies that a component is optional, but it
requires a little more code than just changing the type to be an effective
tool. Let’s add an optional group to our User type example from earlier in
this chapter:

public record User(String username,
                   boolean active,
                   Optional<String> group,
                   LocalDateTime lastLogin) {
  // NO BODY
}

Even though an Optional<String> is used to store the user’s group,
you still have to deal with the possibility of receiving null for the
container itself. A better option would be accepting null for the value
itself but still having an Optional<String> component. With Records
reflecting their definition with their accessors 1:1, two additional steps are
necessary to make Records safe and more convenient to use with optional
components.

Ensure non-null Container



The first step to making Records safer and more convenient to use with
optional components is to ensure that the Optional<String> won’t be
null and, therefore, ruin the idea behind having it. The easiest way is to
validate it with a compact constructor:

public record User(String username,
                   boolean active,
                   Optional<String> group,
                   LocalDateTime lastLogin) { 
 
  public User {
    Objects.requireNonNull(group, "Optional<String> group must 
not be null");
  }
}

The most apparent problem is averted by moving a possible
NullPointerException from using the component accessor to the
moment of creating the Record itself, making it safer to use.

Add Convenience Constructors
The second thing to make Records safer and more convenient to use is
providing additional constructors with non-optional arguments and creating
the container type yourself:

public record User(String username,
                   boolean active,
                   Optional<String> group,
                   LocalDateTime lastLogin) { 
 
  public User(String username,
              boolean active,
              String group,
              LocalDateTime lastLogin) {
    this(username,
         active,
         Optional.ofNullable(group),
         lastLogin);
  } 
 



  // ...
}

Code completion will show both constructors, indicating the optionality of
the group component.

The combination of validation at Record creations and a convenience
constructor gives flexibility to the creator of a Record and safer use to
anyone consuming it.

Serializing Evolving Records
Records, like classes, are automatically serializable if they implement the
empty marker interface java.io.Serializable. The serialization
process of Records follows a more flexible and safer serialization strategy
compared to classes, though, without requiring any additional code.

NOTE
The full serialization process consists of serialization (converting an object to a byte
stream) and deserialization (reading an object from a byte stream). If not explicitly
mentioned, serialization describes the whole process, not only the first aspect.

Serialization of ordinary, non-Record objects relies heavily on costly8
reflection to access their private state. This process is customizable by
implementing the private methods readObject and writeObject
in a type. These two methods aren’t provided by any interface but are still
part of the Java Object Serialization Specification. They’re hard to get right
and have led to many exploits in the past9.

Records are only defined by their immutable state, represented by their
components. Without any code being able to affect the state after creation,
the serialization process is quite simple:

Serialization is based solely on the Record’s components.

Deserialization only requires the canonical constructor, not reflection.

https://docs.oracle.com/en/java/javase/17/docs/specs/serialization/serial-arch.xhtml


Once the JVM derives the serialized form of a Record, a matching
instantiator can be cached. Customizing that process isn’t possible, which
actually leads to a safer serialization process by giving the JVM back
control of the Record’s serialized representation. This allows any Record
type to evolve further by adding new components and still successfully
deserializing from previously serialized data. Any unknown component
encountered during deserialization without a value present will
automatically use its default value (e.g., null for object-based types,
false for boolean, etc.).

WARNING
Be aware that the code examples for serialization won’t work as expected when using
JShell. The internal class names won’t be identical after replacing the Record definition,
so the types won’t match.

Let’s say you have a two-dimensional record Point(float x,
float y) that you want to serialize. The following code doesn’t hold any
surprises:

public record Point(int x, int y) implements Serializable {
  // NO BODY
} 
 
var point = new Point(23, 42);
// => Point[x=23, y=42] 
 
try (var out = new ObjectOutputStream(new 
FileOutputStream("point.data"))) {
  out.writeObject(point);
}

As requirements change, you need to include the third dimension to the
Record, z, as shown in the following code.

public record Point(int x, int y, int z) implements Serializable 
{



  // NO BODY
}

What will happen if you try to deserialize the point.data file into the
changed Record? Let’s find out!

var in = new ObjectInputStream(new 
FileInputStream("point.data")); 
 
var point = in.readObject();
// => Point[x=23, y=42, z=0]

It just works.

The new component, that’s missing from the serialized representation in
points.data and therefore can’t provide a value for the Record’s
canonical constructor, is initialized with the corresponding default value for
its type, in this case, 0 (zero) for an int.

As mentioned in “Records”, Records are effectively nominal tuples, making
them solely based on their components’ names and types, not their exact
order. That’s why even changing the components’ order won’t break its
deserialization capabilities.

public record Point(int z, int y, int x) implements Serializable 
{
  // NO BODY
} 
 
var in = new ObjectInputStream(new 
FileInputStream("point.data")); 
 
var point = in.readObject();
// => Point[z=0, y=42, x=23]

Removing components is also possible, as any missing component is
ignored during deserialization.

One general caveat exists, though.



From the viewpoint of a single Record, they’re solely defined by their
components. For the Java serialization process, though, the type of what’s
serialized is relevant, too. That’s why even if two Records have identical
components, they’re not interchangeable. You will encounter a
ClassCastException if you try to deserialize into another type with
identical components:

public record Point(int x, int y) implements Serializable {
  // NO BODY
} 
 
try (var out = new ObjectOutputStream(new 
FileOutputStream("point.data"))) {
  out.writeObject(new Point(23, 42));
} 
 
public record IdenticalPoint(int x, int y) implements 
Serializable {
  // NO BODY
} 
 
var in = new ObjectInputStream(new 
FileInputStream("point.data"));
IdenticalPoint point = in.readObject();
// Error:
// incompatible types: java.lang.Object cannot be converted to 
IdenticalPoint

The incompatibility of serializing different types with identical components
is a side-effect of the “simpler but safer” serialization process used by
Records. Without the possibility of manually affecting the serialization
process like in traditional Java objects, you might need to migrate already
serialized data. The most straightforward approach would be deserializing
the old data into the old type, converting it to the new type, and serializing
it as the new type.

Record Pattern Matching (Java 19+)
Even though this book is targeted at Java 11 while trying to be helpful with
a few newer additions, I want to tell you about an upcoming feature still in



development at the time of writing: Record-based pattern matching (JEP
405).

NOTE
JDK preview features are new features of the Java language, JVM, or the Java API that
are fully specified, implemented, and yet impermanent. The general idea is to gather
feedback on real-world use so that the feature might become permanent in a future
release.

Java 16 introduced pattern matching for the instanceof operator10,
removing the necessity of a cast after using the operator:

// PREVIOUSLY 
 
if (obj instanceof String) {
  String str = (String) obj;
  // ...
} 
 
// JAVA 16+ 
 
if (obj instanceof String str) {
    // ...
}

Java 17 and 18 expanded on the idea by enabling pattern matching for the
switch expressions11 as a preview feature:

// WITHOUT SWITCH PATTERN MACTHING 
 
String formatted = "unknown";
if (obj instanceof Integer i) {
  formatted = String.format("int %d", i);
} else if (obj instanceof Long l) {
  formatted = String.format("long %d", l);
} else if (obj instanceof String str) {
  formatted = String.format("String %s", str);
} 
 
// WITH SWITCH PATTERN MATCHING 

https://openjdk.java.net/jeps/405


 
String formatted = switch (obj) {
  case Integer i -> String.format("int %d", i);
  case Long l    -> String.format("long %d", l);
  case String s  -> String.format("String %s", s);
  default        -> "unknown";
};

Java 19+ includes both these features for Records, too, including
destructuring12, which means a Record’s components are directly available
as variables in the scope:

record Point(int x, int y) {
  // NO BODY
}; 
 
var point = new Point(23, 42); 
 
if (point instanceof Point(int x, int y)) {
  System.out.println(x + y);
  // => 65
} 
 
int result = switch (anyObject) {
  case Point(var x, var y) -> x + y;
  case Point3D(var x, var y, var z) -> x + y + z;
  default -> 0.0;
};

As you can see, Records are still evolving with exciting new features like
pattern matching improving their feature set, making it a more versatile and
flexible data aggregator type that simplifies your code.

Final Thoughts on Records
Java’s new data aggregator type, Records, provides a great deal of
simplicity with as little code as possible. It’s achieved by adhering to
specific rules and restrictions, which might seem arbitrary and confining
initially, but it gives you safer and more consistent use. Records aren’t
supposed to be a “one-size-fits-all” solution for data storage and state to



completely replace all POJOs or other pre-existing data-aggregator types.
They’re merely providing a new option fitting for a more functional and
immutable approach.

The available feature set was chosen deliberately to create a new type of
state representation, and only state. The simplicity of defining a new Record
discourages the reuse of an abstraction type just because it might be more
convenient than creating a new and more fitting one.

Records might not be as flexible as POJOs or custom types. But flexibility
usually means more complexity, which often increases bug surface. The
best way to deal with complexity is to reduce its surface as much as
possible, and Records give you a lot of safe functionality “for free” and
won’t break as easily if their components evolve.

Takeaways
Records are transparent data aggregator types solely defined by their
components.

Most features you’re used to from classes, like implementing
interfaces, generics, or annotations, are usable with Records, too.

The typical boilerplate for a canonical constructor, component
accessors, object identity, and object description is available in any
Record type without additional code. If necessary, you can override
each one of them.

Records have certain restrictions to ensure their safe and simplistic
use. Many of the missing features — at least compared to more flexible
solutions like POJOs or JavaBeans — can be retrofitted with either
JDK-only code or tools like annotation processing.

Adhering to common practices like validation and a systematic
approach to modified copies creates a consistent user experience.



Records provide a safer and more flexible serialization solution than
their class-based brethren.

1  A JDK preview feature is a feature whose design, specification, and implementation are
complete, but is not permanent. It’s supposed to gather feedback from the community to evolve
further. Such a feature may exist in a different form or not at all in future releases.

2  See the Java Language Specification chapter 3.8 for the definition of valid Java identifier.

3  The word “automagically” describes an automatic process that’s hidden from the user and
therefore magic-like. Records provide their automatic features without additional tools like
annotation processors or extra compiler plugins.

4  To learn more about annotations in general and how to use them, you should check out my
article Java Annotations Explained.

5  Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns: Elements of
reusable object-oriented software. Addison Wesley.

6  The single responsibility principle is the first of the SOLID principles for object-oriented
programming. Its five principles intend to make OO designs more flexible, maintainable, and
straightforward.

7  I’ve written an article about how to evaluate dependenices on my personal blog.

8  The word “cost” regarding reflection is associated with the incurred performance overhead
and exposure to security problems. Reflection uses dynamically resolved type information,
which prevents the JVM to utilize all its possible optimizations. Consequently, reflection has
slower performance than their non-reflective counterparts.

9  The method readObject can execute arbitrary code instead of simply reading the object.
Some related CVEs: CVE-2019-6503, CVE-2019-12630, CVE-2018-1851.

10  The extension of the instanceof operator to support pattern matching is summarized in
JEP 394.

11  Pattern Matching for switch is summarized in JEP 406 and JEP 430.

12  Pattern Matching for Records is summarized in JEP 405

https://docs.oracle.com/javase/specs/jls/se16/html/jls-3.xhtml#jls-3.8
https://belief-driven-design.com/4f54e6e6c3f/
https://belief-driven-design.com/e3e769e891b/
https://nvd.nist.gov/vuln/detail/CVE-2019-6503
https://nvd.nist.gov/vuln/detail/CVE-2019-12630
https://nvd.nist.gov/vuln/detail/CVE-2018-1851
https://openjdk.java.net/jeps/394
https://openjdk.java.net/jeps/406
https://openjdk.java.net/jeps/420
https://openjdk.java.net/jeps/405


Chapter 6. Data Processing
with Streams

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 6th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at rfernando@oreilly.com.

Almost any program has to deal with processing data, most likely in the
form of collections. An imperative approach uses loops to iterate over
elements, working with each element in sequence. Functional languages,
though, prefer a declarative approach and sometimes don’t even have a
classical loop statement, to begin with.

The Streams API, introduced in Java 8, provides a fully declarative and
lazily evaluated approach to processing data that benefits from Java’s
functional additions by utilizing higher-order functions for most of its
operations.

This chapter will teach you the differences between imperative and
declarative data processing. You will then have a visual introduction to
Streams that highlights their underlying concepts and shows you how to get
the most out of their flexibility to achieve a more functional approach to
data processing.



Data Processing with Iteration
Processing data is an everyday task you’ve probably encountered a million
times before and will continue to do so in the future.

From a broad point of view, any type of data processing works like a
pipeline, with a data structure like a collection providing elements, one or
more operations like filtering or transforming elements, and finally,
delivering some form of a result. The result might be another data structure
or even using it to run another task.

Let’s start with a simple data processing example.

External Iteration
Say that we need to find the three science-fiction books before 1970 sorted
by title from a collection of Book instances. Example 6-1 shows how to do
this using a typical imperative approach with a for-loop.

Example 6-1. Finding books with a for-loop
record Book(String title, int year, Genre genre) {
  // NO BODY
}

// DATA PREPARATION

List<Book> books = ...; 

Collections.sort(books, Comparator.comparing(Book::title)); 

// FOR-LOOP

List<String> result = new ArrayList<>();

for (var book : books) {

    if (book.year() >= 1970) { 
        continue;
    }

    if (book.genre() != Genre.SCIENCE_FICTION) { 
        continue;
    }



    var title = book.title(); 
    result.add(title);

    if (result.size() == 3) { 
        break;
    }
}

An unsorted Collection of books. It must be mutable, so it can be sorted
in-place in the next step.The collection has to be sorted first, or the elements in result won’t
be the first three titles in alphabetical order of the original collection.Ignore any unwanted books, like the ones not published before 1970 or
non-science-fiction.The book title is all we are interested in.Restrict the found titles to a maximum of three.

Although the code works for what it needs to do, it has several
shortcomings compared to other approaches. The most obvious downside is
the amount of boilerplate code required for an iteration-based loop.

Loop statements, either a for- or while-loop, contain their data
processing logic in their body, to create a new scope for each iteration.
Depending on your requirements, the loop’s body contains multiple
statements, including decision-making about the iteration process itself in
the form of continue and break. Overall, the data processing code is
obscured by all this boilerplate and doesn’t present itself fluently or is easily
followable, especially for a more complex loop than the previous example.

The origin of these problems is blending “what you are doing” (working
with data) and “how it’s done” (iterating over elements). This kind of
iteration is called external iteration. Behind the scenes, the for-loop, in
this case, the for-each variant, uses a java.util.Iterator<E> to
traverse the collection. The traversal process calls hasNext and next to
control the iteration, as illustrated in Figure 6-1.



Figure 6-1. External iteration

In the case of a “traditional” for-loop, you have to manage going over the
elements until an end condition is reached yourself, which in a way is
similar to an Iterator<E> and the hasNext and next method.

If you count the number of code lines that have to do with “what you’re
doing” and “how it’s done,” you’d notice that it spends more time on
traversal management than data processing, as listed in, as detailed in
Table 6-1.



Table 6-1. Lines of code per data processing per task

Task
Lines of
code

Data preparation
Sorting the initial data and preparing a result Collection

2

Traversal process
Looping and controlling the loop with continue and bre
ak

4

Data processing
Choosing, transforming, and gathering the correct
elements and data

4

However, requiring a lot of boilerplate code to traverse isn’t the only
drawback associated with external iteration. Another downside is the
inherent serial traversal process. You need to rework the whole loop if you
require parallel data processing and deal with all the associated gotchas,
like the dreaded ConcurrentModificationException.

Internal Iteration
The opposite approach to external iteration is, predictably, internal
iteration. With internal iteration, you give up explicit control of the traversal
process and let the data source itself handle “how it’s done,” as illustrated in
Figure 6-2.



Figure 6-2. Internal iteration

Instead of using an iterator to control the traversal, the data processing logic
is prepared beforehand to build a pipeline that does the iteration by itself.
The iteration process becomes more opaque, but the logic influences which
elements traverse the pipeline. This way, you can focus your energy and
code on “what you want to do” rather than on the tedious and often
repetitive details of “how it’s done.”

Streams are such data pipelines with internal iteration.

Streams as Functional Data Pipelines
Streams, as a data processing approach, get the job done like any other one
but have specific advantages due to having an internal iterator. These
advantages are especially beneficial from a functional point of view. The
advantages are as follows:

Declarative approach



Build concise and comprehensible multi-step data processing pipelines
with a single fluent call chain.

Composability

Stream operations provide a scaffold made of higher-order functions to
be filled with data processing logic. They can be mixed as needed. If
you design their logic in a functional way, you automatically gain all
their advantages, like composability.

Laziness

Instead of iteration over all elements, they get pulled one by one
through the pipeline after the last operation is attached to it, reducing
the required amount of operations to a minimum.

Performance optimization

Streams optimize the traversal process automatically depending on their
data source and different kinds of operations used, including short-
circuiting operations if possible.

Parallel data processing

Built-in support for parallel processing is used by simply changing a
single call in the call chain.

In concept, Streams could be considered just another alternative to
traditional loop constructs for data processing. In reality, though, Streams
are special in how they go about providing those data processing
capabilities.

The first thing to consider is the overall Stream workflow. Streams can be
summed up as lazy sequential data pipelines. Such pipelines are a higher-
level abstraction for traversing sequential data. They are sequences of
higher-order functions to process their elements in a fluent, expressive, and
functional way. The general workflow is representable by three steps, as
seen in Figure 6-3.



Figure 6-3. The Basic Concept of Java Streams

(1) Creating a Stream

The first step is creating a Stream out of an existing data source.
Streams aren’t limited to collection-like types, though. Any data source
that can provide sequential elements is a possible data source for a
Stream.

(2) Doing the Work

So-called intermediate operations — higher-order functions available as
methods on the java.util.stream.Stream<T> — work on the
elements passing through the pipeline, doing different tasks, like
filtering, mapping, sorting, etc. Each one returns a new Stream, which
can be connected with as many intermediate operations as needed.

(3) Getting a Result

To finish the data processing pipeline, a final — terminal — operation is
needed to get back a result instead of a Stream. Such a terminal
operation completes the Stream pipeline blueprint and starts the actual
data processing.



To see this in action, let’s revisit the earlier task of finding three science-
fiction book titles from 1999. This time, instead of using a for-loop as we
did in Example 6-1, we will use a Stream pipeline in Example 6-2. Don’t
worry too much about the Stream code yet; I’ll explain the various methods
shortly. Read through it, and you should be able to get the gist of it for now.

Example 6-2. Finding books with a Stream
List<Book> books = ...; 

List<String> result =
  books.stream()
       .filter(book -> book.year() < 1970) 
       .filter(book -> book.genre() == Genre.SCIENCE_FICTION) 
       .map(Book::title) 
       .sorted() 
       .limit(3) 
       .collect(Collectors.toList()); 

An unsorted collection of books.Ignore any books not published in 1999.Ignore any non-science-fiction books.Transform the element from the whole Book element to its title
value.Sort the titles.Restrict the found titles to a maximum of three.Aggregate the titles into a List<String>.

From a high-level point of view, both implementations shown in
Example 6-1 and Example 6-2 represent pipelines that elements can
traverse, with multiple exit points for unneeded data. But, notice how the
functionality of the for-loop with its multiple statements is now condensed
into a singular fluent Stream call?

This leads us to how Streams optimize the flow of their elements. You don’t
have to explicitly manage the traversal with continue or break because
the elements will traverse the pipeline depending on the result of the
operations. Figure 6-4 illustrates how the different Stream operations affect
the element flow of Example 6-2.



Figure 6-4. Element Flow of Book Stream

The elements flow one by one through the Stream and are funneled to the
least amount needed to process the data.

Instead of needing to prepare the data beforehand and wrapping the
processing logic in a loop statement’s body, Streams are built with a fluent
class of the different processing steps. Like other functional approaches,
Stream code reflects “what” is happening in a more expressive and
declarative fashion, without the typical verbiage of “how” it’s actually
done.

Stream Features



Streams are a functional API with specific behaviors and expectations built
in. In a way, this confines their possibilities, at least, compared to the blank
canvas of traditional loops. By being non-blank canvases, though, they
provide you with lots of pre-defined building blocks and guaranteed
properties that you would have to do yourself with alternative approaches.

Lazy Evaluation
The most significant advantage of Streams over loops is their laziness. Each
time you call an intermediate operation on a Stream, it’s not applied
immediately. Instead, the call simply “extends” the pipeline further and
returns a new lazily evaluated Stream. The pipeline accumulates all
operations, and no work starts before you call its terminal operation, which
will trigger the actual element traversal, as seen in Figure 6-5.

Figure 6-5. Lazy evaluation of Streams

Instead of providing all elements to a code block, like a loop, the terminal
operation is asking for more data as needed, and the Stream tries to comply.
Streams, as a data source, don’t have to “over-provide” or buffer any
elements if no one is requesting more elements. If you look back at



Figure 6-4, that means not every element will traverse through every
operation.

The flow of Stream elements follows a “depth-first” approach, reducing the
required CPU cycles, memory footprint, and stack depth. This way, even
infinite data sources are possible because the pipeline is responsible for
requesting the required elements and terminating the Stream.

You can read more about the importance of laziness in functional
programming in Chapter 11.

(Mostly) Stateless and Non-Interfering
As you’ve learned in Chapter 4, an immutable state is an essential
functional programming concept, and Streams do their best to adhere.
Almost all intermediate operations are stateless and detached from the rest
of the pipeline, only having access to the current element they’re
processing. Certain intermediate operations, however, require some form of
state to fulfill their purpose, like limit or skip.

Another advantage of using Streams is their separation of the data source
and the elements themselves. That way, operations won’t affect the
underlying data source in any way, nor does the Stream store any elements
itself.

WARNING
Even though you can create Java stateful lambdas with side effects, you should strive to
design the behavioral arguments of your data manipulation pipelines stateless and as
pure functions. Any dependence on an out-of-scope state can severely impact safety and
performance and make the whole pipeline nondeterministic and incorrect due to
unintended side effects. One exception is certain terminal operations for doing “side-
effect only” code, which can help immensely fit functional Stream pipelines in existing
imperative designs.

Streams are non-interfering and pass-through pipelines that will let their
elements traverse as freely as possible without interference, if not
absolutely necessary.



Optimizations included
The internal iteration and fundamental design of higher-order functions
allow Streams to optimize themselves quite efficiently. They utilize
multiple techniques to improve their performance:

Fusion1 of (stateless) operations

Removal of redundant operations

Short-circuiting pipeline paths

Iteration-related code optimizations aren’t restricted to Streams, though.
Traditional loops get optimized by the JVM, too, if possible2.

Also, loops like for and while are language features, and can therefore
be optimized to another degree. Streams are ordinary types with all the
costs affiliated with them. They still need to be created by wrapping a data
source, and the pipeline is a call chain requiring a new stack frame for each
call. In most real-world scenarios, their general advantages outweigh the
possible performance impact of such an overhead compared to a built-in
statement like for or while.

Less boilerplate
As seen in Example 6-2, Streams condense data processing into a singular
fluent method call chain. The call is designed to consist of small and on-
point operations like filter, map, or findFirst, providing an
expressive and straightforward scaffold around the data processing logic.
Call chains should be easy to grasp, both visually and conceptually.
Therefore, a Stream pipeline consumes as little visual real estate and
cognitive bandwidth as necessary.

Non-Reusable
Stream pipelines are single-use only. They’re bound to their data source and
traverse them exactly once after the terminal operation is called.



If you try to use a Stream again, an IllegalStateException gets
thrown. You can’t check if a Stream is already consumed, though.

As Streams don’t change or affect their underlying data source, you can
always create another Stream from the same data source.

Primitive Streams
As with the functional interfaces introduced in Chapter 2, the Stream API
contains specialized variants for dealing with primitives to minimize
autoboxing overhead.

Both Stream and the specialized variants IntStream, LongStream,
and DoubleStream, share a common base interface, BaseStream, as
illustrated in Figure 6-6. Many of the available primitive Stream operations
mirror their non-primitive counterpart, but not all of them.

Figure 6-6. Stream type hierarchy

That’s why I discuss in Chapter 7 when to use a primitive Stream and how
to switch between non-primitive and primitive Streams with a single
operation.

Easy Parallelization
Data processing with traditional loop constructs is inherently serial.
Concurrency is hard to do right and easy to do wrong, especially if you
have to do it yourself. Streams are designed to support parallel execution
from the ground up, utilizing the Fork/Join framework introduced with Java
7.

https://openjdk.java.net/projects/jdk7/features/#f515


Parallelizing a Stream is done by simply calling the parallel method at
any point of the pipeline. Although not every Stream pipeline is a good
match for parallel processing. The Stream source must have enough
elements, and the operations have to be costly enough to justify the
overhead of multiple threads. Switching threads — so-called context
switches — is an expensive task.

In Chapter 8, you’ll learn more about parallel Stream processing and
concurrency in general.

(Lack of) Exception Handling
Streams do a great job of reducing the verbosity of your code by
introducing a functional approach to data processing. However, this doesn’t
make them immune to dealing with exceptions in their operations.

Lambda expressions, and therefore the logic of Stream operations, don’t
have any special considerations or syntactic sugar to handle exceptions
more concisely than you’re used to with try-catch. You can read more
about the general problem of exceptions in functional Java code and how to
handle them in different ways in Chapter 10.

Spliterator, the Backbone of Streams
Just like “traditional” for-each-loop is built around the Iterator<T>
type for traversing a sequence of elements, Streams have their own iteration
interface: java.util.Spliterator<T>.

The Iterator<T> interface is solely based on the concept of “next” with
only a few methods, which makes it a universal iterator for Java’s
Collection API. The concept behind Spliterator<T>, however, is that
it has the ability to split off a subsequence of its elements into another
Spliterator<T> based on certain characteristics. This particular
advantage over the Iterator<T> type makes it the core of the Stream
API and allows Streams to process such subsequences in parallel, and still
be able to iterate over Java Collection API types.

https://en.wikipedia.org/wiki/Context_switch#Cost


Example 6-3 shows a simplified variant of java.util.Spliterator.

Example 6-3. The java.util.Spliterator interface
public interface Spliterator<T> { 
 
    // CHARACTERISTICS
    int characteristics();
    default boolean hasCharacteristics(int characteristics) {
        // ...
    } 
 
    // ITERATION 
 
    boolean tryAdvance(Consumer<? super T> action);
    default void forEachRemaining(Consumer<? super T> action) {
        // ...
    } 
 
    // SPLITTING
    Spliterator<T> trySplit(); 
 
    // SIZE
    long estimateSize();
    default long getExactSizeIfKnown() {
        // ...
    } 
 
    // COMPARATOR
    default Comparator<? super T> getComparator() {
        // ...
    }
}

For the iteration process, the boolean tryAdvance(Consumer
action) and Spliterator<T> trySplit() methods are the most
important ones. Still, a Spliterator’s characteristics decree the capabilities of
all its operations.

Regarding Streams, the Spliterator’s characteristics are responsible for how
a Stream iterates internally and what optimizations it supports. There are
eight combinable characteristics, defined as static int constants on the
Spliterator<T> type, as listed in Table 6-2. Even though it looks like



the characteristics match expected Stream behavior, not all of them are
actually used in the current Stream implementations.



Table 6-2. Spliterator characteristics

Characteristic Description

CONCURRENT The underlying data source can safely be concurrently
modified during traversal.
Only affects the data source itself and has no
implications for Stream-behavior.

DISTINCT The data source only contains unique elements, like a
Set<T>.
Any pair of elements in a Stream is guaranteed to be
x.equals(y) == false.

IMMUTABLE The data source itself is immutable. No element can
be added, replaced, or removed during traversal.
Only affects the data source itself and has no
implications for Stream-behavior.

NONNULL The underlying data source guarantees not to contain
any null values.
Only affects the data source itself and has no
implications for Stream-behavior.

ORDERED There is a defined order for the elements of the data
source.
During traversal, the encountered elements will be in
that particular order.

SORTED If the Spliterator<T> is SORTED, its getComparator()
method returns the associated Comparator<T>, or null,
if the source is naturally sorted.
SORTED Spliterators must also be ORDERED.



Characteristic Description

SIZED The data source knows its exact size.
estimateSize() returns the actual size, not an
estimate.

SUBSIZED Signifies that all split up chunk after calling trySplit
() are also SIZED.
Only affects the data source itself and has no
implications for Stream-behavior.

Stream characteristics don’t have to be fixed and can depend on the
underlying data source. HashSet is an example of a Spliterator with
dynamic characteristics. It uses the nested HashMap.KeySpliterator
class which depends on the actual data, as seen in Example 6-4.

Example 6-4. Spliterator characteristics of HashSet<T>
public int characteristics() {
    return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
                Spliterator.DISTINCT;
}

The way HashSet creates its KeySpliterator shows that a Spliterator
can use its surrounding context to make an informed decision about its
capabilities.

You don’t need to think much about a Stream’s characteristics most of the
time. Usually, the underlying capabilities of a data source won’t change
magically just because it’s traversed with a Stream. A Set<T> will still
provide distinct elements in an unordered fashion, regardless of being used
with a for-loop or a Stream. So choose the most fitting data source for the
task, no matter the form of traversal used.

When using Streams, you usually don’t need to create a Spliterator yourself,
as the convenience methods I’m going to discuss in the next chapter will do
it behind the scenes for you. Still, if you need to create a Spliterator for a



custom data structure, you don’t necessarily have to implement the interface
yourself, either. You can use one of the many convenience methods of
java.util.Spliterators, instead. The easiest variant is the
following method:

<T> Spliterator<T> spliterator(Iterator<? extends T> iterator,
                               long size,
                               int characteristics)

The resulting Spliterator might not be the most optimized Spliterator with
only limited parallel support, but it’s the simplest way to use existing
Iterator-compatible data structures in Streams that don’t support them
out of the box.

Check out the official documentation for more information about the 20+
convenience methods provided by the java.util.Spliterators
type.

Building Stream Pipelines
The Stream API is extensive, and a detailed explanation of each operation
and possible use case could easily fill a book itself. Let’s take a higher-level
view of building Stream pipelines with the available higher-order functions
instead. This overview will still help you to replace many data processing
tasks with Stream pipelines in your code, especially those following the
map/filter/reduce philosophy.

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Spliterators.xhtml


MAP/FILTER/REDUCE
Most data processing follows the same scheme and can be distilled to
only three elemental kinds of operations:

Map

Transforming data.

Filter

Choosing data.

Reduce

Deriving a result.

In many functional languages, these three steps have more explicit
meanings, though. They are readily available functions on collection
types and are the building blocks for any data processing.

The map/filter/reduce pattern treats a sequence of elements as a unit. It
allows the removal of any control statements using internal iteration by
combining self-contained, pure functions into a bigger chain of
operations.

As you might have guessed from the description, Java Streams fit
nicely into this pattern. Every single Stream operation falls into one of
the three kinds. Intermediate operations represent map and filter steps,
and terminal operations the reduce step.

The Stream API actually has operations named map, filter, and
reduce. Still, it provides a lot more operations than these three. The logic
of most of these additional operations can be replicated by
map/filter/reduce, and internally, that’s often the case. The extra
operations give you a convenient way to avoid implementing common use
cases yourself, with many different specialized operations readily available
to you.



Creating a Stream
Every Stream pipeline starts with creating a new Stream instance from an
existing data source. The most commonly used data source are collection
types. That’s why the three methods Stream<E> stream(),
Stream<E> parallelStream(), and Spliterator<E>
spliterator() were retrofitted to java.util.Collection with
the introduction of Streams in Java 8, as seen in Example 6-5.

Example 6-5. Simplified Stream creation for Collection types
public interface Collection<E> extends Iterable<E> { 
 
  default Stream<E> stream() {
    return StreamSupport.stream(spliterator(), false);
  } 
 
  default Stream<E> parallelStream() {
    return StreamSupport.stream(spliterator(), true);
  } 
 
  @Override
  default Spliterator<E> spliterator() {
    return Spliterators.spliterator(this, 0);
  } 
 
  // ...
}

The stream method is the simplest way to create a new Stream instance
from any Collection-based data structure, like List or Set. It utilizes
an IMMUTABLE and CONCURRENT Spliterator as its default
implementation. However, many Collection types provide their own
implementations with optimized characteristics and behavior.

Even though the stream method on Collection might be the most
convenient method to create a Stream, the JDK provides many other ways
to create Streams as static convenience methods, like Stream.of(T… 
values). In Chapter 7, you’ll learn more ways to create Streams for
different use cases, like infinite Streams or working with I/O.



Doing the Work
Now that you have a Stream, the next step is working with its elements.

Working with Stream elements is done by intermediate operations, which
fall into three categories: transforming (map) elements, selecting (filter)
elements, or modifying general Stream behavior.

TIP
All Stream operations are aptly named and have ample documentation and examples.
Many methods use the “not-yet a standard” addition to JavaDoc3 @implSpec to refer
to implementation-specific behavior. So make sure to check out either the online
documentation or the JavaDoc itself in case of your IDE isn’t rendering all of the
documentation correctly.

In this section, I will be using a simple Shape Record, shown in
Example 6-6, to demonstrate the different operations.

Example 6-6. A simple Shape type
public record Shape(int corners) implements Comparable<Shape> { 
 
  // HELPER METHODS 
 
  public boolean hasCorners() {
    return corners() > 0;
  } 
 
  public List<Shape> twice() {
    return List.of(this, this);
  } 
 
  @Override
  public int compareTo(Shape o) {
    return Integer.compare(corners(), o.corners());
  } 
 
  // FACTORY METHODS 
 
  public static Shape circle() {
    return new Shape(0);
  } 

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/stream/Stream.xhtml


 
  public static Shape triangle() {
    return new Shape(3);
  } 
 
  public static Shape square() {
    return new Shape(4);
  }
}

There won’t be a dedicated code example for every operation, as there are
just too many. However, each operation and its element flow is illustrated.

Selecting Elements
The first common task of data processing is selecting the correct elements,
either by filtering with a Predicate or by choosing based on the number
of elements.

Stream<T> filter(Predicate<? super T> predicate)

The most straightforward way of filtering elements. If the Predicate
evaluates to true, the element is considered for further processing. The
static method Predicate<T>.not(Predicate<T>) allows
for an easy negation of a Predicate without losing the advantage of
method references. Common tasks, like null checks, are available via
the java.util.Objects class and are usable as method references.
See Figure 6-7.



Figure 6-7. Stream<T> filter(Predicate<? super T> predicate)

Stream<T> dropWhile(Predicate<? super T>
predicate)

Discards — or drops — any element passing through the operation as
long as the Predicate evaluates to true. This operation is designed
for ORDERED Streams. The dropped elements won’t be deterministic if
the Stream isn’t ORDERED. For sequential Streams, dropping elements
is a cheap operation. A parallel Stream, though, has to coordinate
between the underlying threads, making the operation quite costly. The
operation was introduced with Java 9. See Figure 6-8.



Figure 6-8. Stream<T> dropWhile(Predicate<? super T> predicate)

Stream<T> takeWhile(Predicate<? super T>
predicate)

The antagonist to dropWhile, choosing elements until the
Predicate evaluates to false. The operation was introduced with
Java 9. See Figure 6-9.

Figure 6-9. Stream<T> takeWhile(Predicate<? super T> predicate)

Stream<T> limit(long maxSize)



Limits the maximum amount of elements passing through this operation
to maxSize. See Figure 6-10.

Figure 6-10. Stream<T> limit(long maxSize)

Stream<T> skip(long n)

The antagonist to limit, skipping n elements before passing all
remaining elements to the subsequent Stream operations. See Figure 6-
11.

Figure 6-11. Stream<T> skip(long n)



Stream<T> distinct()

Compares elements with Object#equals(Object) to return only
distinct elements. This operation needs to buffer all elements passing
through to compare them. There’s no integrated way to provide a
custom Comparator<T> to determine distinctness. See Figure 6-12.

Figure 6-12. Stream<T> distinct()

Stream<T> sorted()

Sorts the elements in their natural order if they conform to
java.util.Comparable. Otherwise, a
java.lang.ClassCastException is thrown on Stream
consumption. Figure 6-13 assumes the natural sorting for shapes is by
their number of corners. This operation needs to buffer all elements
passing through to sort them. See Figure 6-13.



Figure 6-13. Stream<T> sorted()

Stream<T> sorted(Comparator<? super T> comparator)

A more flexible version of sorted where you can provide a custom
comparator.

Mapping Elements
Another significant category of operation is mapping — or transforming — 
elements. Not many Streams and their elements start out in the desired
form. Sometimes you need a different representation or are only interested
in a subset of an element’s properties.

Initially, only two mapping operations were available to Streams:

Stream<R> map(Function<? super T, ? extends R>
mapper)

The mapper function is applied to the elements, and the new element
is returned down the Stream. See Figure 6-14.



Figure 6-14. Stream<R> map(Function<? super T, ? extends R> mapper)

Stream<R> flatMap(Function<? super T, ? extends
Stream<? extends R>> mapper)

The mapper function is still applied to the elements. However, instead
of returning a new element, a Stream<R> needs to be returned. If map
were used, the result would be a nested Stream<Stream<R>>,
which is most likely not what you want. The flatMap operation
“flattens” a container-like element, like a collection or Optional, into a
new Stream of multiple elements which are used in subsequent
operations. See Figure 6-15.



Figure 6-15. Stream<R> flatMap(Function<? super T, ? extends Stream<?
extends R>> mapper)

Java 16 introduced an additional mapping method (and its three primitive
counterparts) that has a similar role as flatMap:

Stream<R> mapMulti(BiConsumer<? super T, ? super
Consumer<R>> mapper)

The mapMulti operation doesn’t require the mapper to return a
Stream instance. Instead, a Consumer<R> conveys the elements
further down the Stream.

In its current form, the Shape type doesn’t lead to cleaner code when the
mapMulti operation is used, as seen in Example 6-7.

Example 6-7. Shape flatMap versus mapMulti
// FLATMAP 
 
Stream<Shape> flatMap =



  Stream.of(Shape.square(), Shape.triangle(), Shape.circle())
        .map(Shape::twice)
        .flatMap(List::stream); 
 
// MAPMULTI 
 
Stream<Shape> mapMulti =
  Stream.of(Shape.square(), Shape.triangle(), Shape.circle())
        .mapMulti((shape, downstream) -> shape.twice()
                                              
.forEach(downstream::accept));

The winner in terms of conciseness and readability is clearly flatMap.
Still, the main advantage of multiMap is that it condenses two operations,
map and flatMap, into a single one.

The default implementation of mapMulti actually uses flatMap to
create a new Stream for you, so your mapped elements don’t need to know
how to create a Stream themselves. By calling the downstream Consumer
yourself, you decide which mapped elements belong to the new Stream, and
the pipeline is responsible for creating it.

The mapMulti operations aren’t supposed to replace flatMap
operations. They are merely a complementary addition to Stream’s
repertoire of operations. There are use-cases where mapMulti is
preferable to flatMap, though:

Only a small number of elements, or even zero, are mapped down the
Stream pipeline. Using mapMulti avoids the overhead of creating a
new Stream for every group of mapped elements, as done by
flatMap.

When an iterative approach to providing the mapped results is more
straightforward than creating a new Stream instance. This gives you
more freedom for the mapping process before feeding an element to
the Consumer.

Peeking into a Stream



One intermediate operation doesn’t fit into the map/filter/reduce
philosophy: peek.

The conciseness of Streams can pack a lot of functionality into a singular
fluent call. Even though that’s one of their main selling points, debugging
them is way more challenging than traditional imperative loop constructs.
To ease this pain point, the Stream API includes a particular operation,
peek(Consumer<? super T> action), to, well, “peek” into the
Stream without interfering with the elements, as seen in Example 6-8

Example 6-8. Peeking into a Stream
List<Shape> result =
  Stream.of(Shape.square(), Shape.triangle(), Shape.circle())
        .map(Shape::twice)
        .flatMap(List::stream)
        .peek(shape -> System.out.println("current: " + shape))
        .filter(shape -> shape.corners() < 4)
        .collect(Collectors.toList()); 
 
// OUTPUT
// current: Shape[corners=4]
// current: Shape[corners=4]
// current: Shape[corners=3]
// current: Shape[corners=3]
// current: Shape[corners=0]
// current: Shape[corners=0]

The peek operation is mainly intended to support debugging. It might get
skipped for optimizing the Stream if the operation isn’t necessarily required
for the final result, like counting elements, and the pipeline can get short-
circuited.

The short-circuiting of operations will be explained more in “The Cost of
Operations”.

Terminating the Stream
A terminal operation is the final step of a Stream pipeline that initiates the
actual processing of the elements to produce a result or side effect. Unlike



intermediate operations and their delayed nature, terminal operations
evaluate eagerly.

The available terminal operations fall into four different groups:

Reductions

Aggregations

Finding and matching

Consuming

Reducing Elements
Reduction operations, also known as fold operations, reduce the Stream’s
elements to a single result by repeatedly applying an accumulator operator.
Such an operator uses the previous result to combine it with the current
element to generate a new result, as shown in Figure 6-16. The accumulator
is supposed to always return a new value without requiring an intermediate
data structure.

Figure 6-16. Reducing shapes by combining them next to each other

Like many functional tools, reductions often feel alien at first due to their
nomenclature, especially if you come from an imperative background. The



simplest way to better understand the general concept behind such tools is
by looking at the involved parts and how they would work in a more
familiar form.

In the case of reduction, there are three parts involved:

The elements

Data processing is, well, about processing data elements. The familiar
equivalent to a Stream would be any collection type.

The initial value

The accumulation of data has to start somewhere. Sometimes this initial
value is explicit, but certain reduction variants omit it by replacing it
with the first element or allowing for an optional result if no element is
present.

The accumulator function

The reduction logic solely works with the current element and the
previous result or initial value. Depending only on its input to create a
new value makes this a pure function.

Take finding the biggest value of a Collection<Integer> for an
example. You have to go through each element and compare it with the next
one, returning the greater number at each step, as shown in Example 6-9.
All three parts of a reduction are represented.

Example 6-9. Finding the biggest number in a Collection<Integer>
Integer max(Collection<Integer> numbers) {
  int result = Integer.MIN_VALUE; 

  for (var value : numbers) { 
    result = Math.max(result, value); 
  }

  return result; 
}



The initial value depends on the required task. In this case, comparing
against the smallest possible int value is the logical choice to find the
greatest number.The reduction logic has to be applied to each element.The actual reduction logic, representing the accumulator function.The reduced value.

To better reflect a reduction operation in general, the previous example
allows you to derive a generic reduction operation as shown in Example 6-
10.

Example 6-10. Reduce-like for-loop
<T> T reduce(Collection<T> elements,
             T initialValue,
             BinaryOperator<T> accumulator) { 
 
  T result = initialValue; 
 
  for (T element : elements) {
    result = accumulator.apply(result, element);
  } 
 
  return result;
}

The generic variant again highlights that a functional approach separates
how a task is done from what the task is actually doing. This way, the
previous example of finding the maximum value can be simplified to a
single method call by using the generic variant:

Integer max(Collection<Integer> numbers) {
  return reduce(elements,
                Integer.MIN_VALUE,
                Math::max);
}

The max method is also an example of why the Stream API provides more
than just a reduce method: specialization to cover common use cases.

Even though all the specialized Stream operations can be implemented with
one of the three available reduce methods — some of them actually are -- ,



the specialized variants create a more expressive fluent Stream call for
typical reduction operations.

The Stream API has three different explicit reduce operations:

T reduce(T identity, BinaryOperator<T>
accumulator)

The identity is the seed — initial — value for the chain of
accumulator operations. Although it’s equivalent to Example 6-10,
it’s not constrained by the sequential nature of a for-loop.

Optional<T> reduce(BinaryOperator<T> accumulator)

Instead of requiring a seed value, this operation picks the first
encountered element as its initial value. That’s why it returns an
Optional<T>, which you will learn more about in Chapter 9. An
empty Optional<T> is returned if the Stream doesn’t contain any
elements.

U reduce(U identity, BiFunction<U, ? super T, U>
accumulator, 
BinaryOperator<U> combiner)

This variant combines a map and reduce operation, which is required
if the Stream contains elements of type T, but the desired reduced result
is of type U. Alternatively, you can use an explicit map and reduce
operation separately. Such a Stream pipeline might be more
straightforward than using the combined reduce operations, as seen in
Example 6-11 for summing up all characters in a Stream<String>.

Example 6-11. Three-arguments reduce operation versus map + two-
arguments reduce
var reduceOnly = Stream.of("apple", "orange", "banana")
                       .reduce(0,
                               (acc, str) -> acc + str.length(),
                               Integer::sum); 
 



 
var mapReduce = Stream.of("apple", "orange", "banana")
                      .mapToInt(String::length)
                      .reduce(0, (acc, length) -> acc + length);

Which to choose — a single reduce or separate map and reduce — 
depends on your preferences and if the lambda expressions can be
generalized or refactored, so you could use method references instead.

As mentioned before, some typical reduction tasks are available as
specialized operations, including any variants for primitive Streams, as
listed in Table 6-3. The listed methods belong to IntStream but are also
available for LongStream and DoubleStream with their related types.



Table 6-3. Typical reduction operations

Method Description

Stream<T>

Optional<T> m

in(Comparator

<? super T> c

omparator)

Optional<T> m

ax(Comparator

<? super T> c

omparator)

Returns the minimum/maximum element of the Stream
according to the provided comparator. An empty Option
al<T> is returned if no elements reach the operation.

long count() Returns the element count present at the end of the
Stream pipeline. Be aware that certain Stream
implementations may choose not to execute all
intermediate operations if the count is determinable
from the Stream itself, e.g., its characteristics contain SI
ZED, and no filtering is going on in the pipeline.

Primitive Streams

int sum() Sums up the elements of the Stream.

OptionalDoubl

e average()

Calculates the arithmetic mean of the Stream elements.
If the Stream contains no elements at the point of the
terminal operation, an empty OptionalDouble is
returned.



Method Description

IntSummarySta

tistics summa

ryStatistics

()

Returns a summary of the Stream elements, containing
the count, sum, min, and max of the Stream elements.

Even after migrating your code towards a more functional approach,
reduction operations might not be your go-to operations for terminating a
Stream. That’s because there’s another type of reduction operation available
that feels more common to the ways you’re used to: aggregation
operations.

Aggregating Elements with Collectors
A ubiquitous step for every data processing task, be it Streams or an
imperative approach with loops, is aggregating the resulting elements into a
new data structure. Most commonly, you want the resulting elements in a
new List, a unique Set, or some form of Map.

Reducing the elements to a new value, in this case, a collection-like type,
fits the bill of a reduction operation from the previous section, as shown in
Example 6-12.

Example 6-12. Aggregate elements with a reduce operation
var fruits = Stream.of("apple", "orange", "banana", "peach")
                   ...
                   .reduce(new ArrayList<>(), 
                           (acc, fruit) -> {
                             var list = new ArrayList<>(acc); 
                             list.add(fruit);
                             return list;
                   },
                   (lhs, rhs) -> { 
                     var list = new ArrayList<>(lhs);
                     list.addAll(rhs);
                     return list;
                   });



The three-argument reduce operation is used because the resulting
type isn’t the same type as the Stream elements.Reduce operations are supposed to return new values, so instead of
using a shared ArrayList to aggregate the elements, a new
ArrayList is created for each accumulation step.The combiner merges multiple ArrayList instances by creating a
new one in the case of parallel processing.

That’s quite a lot of verbose code to reduce Stream down to a simple List,
with new instances of ArrayList created for each element, plus
additional ArrayList instances if run in parallel!

Of course, you could cheat and reuse the ArrayList acc variable in the
aggregator function instead of creating and returning a new one. However,
that would go against the general concept of reduce of being an
immutable reduction operation. That’s why there’s a better solution
available: aggregation operations.

NOTE
Even though I call them “aggregation operations” throughout the chapter, technically,
they’re known as “mutable reduction operations” to differentiate them from reduction
operations known as “immutable reduction operations.”

The Stream<T> type’s terminal operation collect accepts a Collector
to aggregate elements. Instead of reducing elements by combining Stream
elements to a single result by repeatedly applying an accumulator operator,
these operations use a mutable results container as an intermediate data
structure, as seen in Figure 6-17.



Figure 6-17. Collecting Stream elements

The Stream’s elements are aggregated — or collected — with the help of the
java.util.stream.Collector<T, A, R> type. The interface’s
generic types represent the different parts involved in the collection process:

T: The type of Stream elements.

A: The mutable result container type.

R: The final result type of the collection process which may differ from
the intermediate container type.

A Collector consists of multiple steps that match perfectly to its
interface definition, as seen in Figure 6-18.

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/stream/Collector.xhtml


Figure 6-18. Inner workings of a Collector<T, A, R>

Step 1: Supplier<A> supplier()

The Supplier returns a new instance of the mutable result container
used throughout the collection process.

Step 2: BiConsumer<A, T> accumulator()

The core of the Collector, as this BiConsumer is responsible for
accumulating the Stream elements of type T into the container of type A
by accepting the result container and the current element as its
arguments.

Step 3: BinaryOperator<A> combiner()

In the case of parallel Stream processing, where multiple accumulators
may do their work, the returned combiner BinaryOperator merges
partial results container into a single one.



Step 4: Function<A, R> finisher()

The finisher transforms the intermediate result container to the actual
return object of type R. The necessity of this step depends on the
implementation of the Collector.

Step 5: The final result

The collected instance, e.g., a List, a Map, or even a single value.

The JDK comes with the java.util.Collectors utility class,
providing a variety of Collectors for many use cases. Listing and explaining
them all in detail could fill another whole chapter. That’s why I only
introduce their particular use-case groups here. Chapter 7 will have more
examples and details about them and how you can create your own
Collectors. Also, you should check out the official documentation for more
details, including intended use-cases and examples.

Collect into a java.util.Collection type

The most used variants, collecting Stream elements into new
Collection types include:

toCollection(Supplier<C> collectionFactory)

toList()

toSet()

toUnmodifiableList() (Java 10+)

toUnmodifiableSet() (Java 10+)

The original toList() / toSet() have no guarantees on the returned
collection’s underlying type, mutability, serializability, or thread safety.
That’s why the Unmodifiable variants were introduced in Java 10 to
close that gap.

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/stream/Collectors.xhtml


Collect into a java.util.Map (key-value)

Another frequently used Collector task is creating a Map<K, V>
by mapping the key and value from the Stream’s elements. That’s why
each variant must have at least a key- and value mapper function: Key-
and value-mapper functions must be provided.

toMap(… ) (3 variants)

toConcurrentMap(… ) (3 variants)

toUnmodifiableMap(… ) (2 variants, Java 10+)

Like the collection-based Collector methods, the original toMap()
variants do not guarantee the returned Map’s underlying type, mutability,
serializability, or thread safety. That’s why the Unmodifiable variants
were introduced in Java 10 to close that gap. Concurrent variants are also
available for a more efficient collection of parallel Streams.

Collect into a java.util.Map (grouped)

Instead of a simple key-value relationship, the following Collectors
group the values by a key, usually with a Collection-based type as the
value for the returned Map:

groupingBy() (3 variants)

groupingByConcurrent() (3 variants)

Collect into a java.util.Map (partitioned)

Partitioned maps group their elements based on a provided
Predicate.

partitionBy(… ) (2 variants)

Arithmetic and comparison operations



There’s a certain overlap between the reduction operations and
Collectors, like the arithmetic- and comparison-related Collectors.

averagingInt(ToIntFunction<? super T> mapper)

summingInt(ToIntFunction<? super T> mapper)

summarizingInt(ToIntFunction<? super T>
mapper)

counting()

minBy(Comparator<? super T> comparator)

maxBy(Comparator<? super T> comparator)

String operations

There are three variants for joining elements together to a singular
String:

joining() (3 variants)

Advanced use cases

In more advanced use cases, like multi-level reductions or complicated
groupings/partitions, multiple collection steps are required with the help
of “downstream” Collectors.

reducing(… ) (3 variants)

collectingAndThen(Collector<T,A,R>
downstream, Function<R,RR> finisher)

mapping(Function<? super T, ? extends U>
mapper, Collector<? super U, A, R>
downstream) (Java 9+)

filtering(Predicate<? super T> predicate,
Collector<? super T, A, R> downstream) (Java 9+)



teeing(Collector<? super T, ?, R1>
downstream1, Collector<? super T, ?, R2>
downstream2, BiFunction<? super R1, ? super
R2, R> merger) (Java 12+)

Chapter 7 will detail how to use different Collectors and create complex
collection workflows, including downstream collection.

Reducing Versus Collecting Elements
The terminal operations reduce and collect are two sides of the same
coin: both are reduction — or fold — operations. The difference lies in the
general approach to recombining the results: immutable versus mutable
accumulation. This difference leads to quite different performance
characteristics.

The more abstract approach of immutable accumulation with the reduce
operation is the best fit if sub-results are cheap to create, like summing up
numbers as shown in Example 6-13

Example 6-13. Immutable accumulation of numbers with a Stream
var numbers = List.of(1, 2, 3, 4, 5, 6);

int total = numbers.stream()
                   .reduce(0, 
                           Integer::sum); 

The initial value — the seed — is used for every parallel reduction
operation.The method reference translates into a BiFunction<Integer,
Integer, Integer> to accumulate the previous (or initial) value
with the current Stream element.

Every reduction operation builds upon the previous one, as seen in
Figure 6-19.



Figure 6-19. Immutable accumulation of numbers

This approach isn’t feasible for all scenarios, especially if creating an
intermediate result is costly. Take the String type, for example. In
Chapter 4, you’ve learned about its immutable nature and why performing
modifications can be costly. That’s why it’s usually advisable to use an
optimized intermediate container, like StringBuilder or
StringBuffer, to reduce the required processing power.

Concatenating a list of String objects with an immutable reduction
requires creating a new String for every step, leading to a runtime of 
O(n

2) with n being the number of characters. Let’s compare an immutable
and mutable variant of String concatenation in Example 6-14.

Example 6-14. Concatenating String elements with reduce and collect



var strings = List.of("a", "b", "c", "d", "e");

// STREAM REDUCE

var reduced = strings.stream()
                     .reduce("", 
                             String::concat); 

// STREAM COLLECT - CUSTOM

var joiner =strings.stream()
                   .collect(Collector.of(() -> new 
StringJoiner(""), 
                                         StringJoiner::add, 
                                         StringJoiner::merge, 
                                         StringJoiner::toString)); 

// STREAM COLLECT - PRE-DEFINED

var collectWithCollectors = strings.stream()
                                   .collect(Collectors.joining()); 

The initial value is the first String creation.Every reduction step creates another new String, so the required
processing power and memory scale with element count.The first argument specifies a Supplier<A> for the mutable
container.The second argument is the reduction BiConsumer<A, T> accepting
the container and the current element.The third argument defines a BinaryOperator<A> of how to merge
multiple containers in the case of parallel processing.And the last argument, a Function<A, R> tells the Collector
how to build the final result of type R.The java.util.stream.Collectors utility class provides many
ready-to-use Collectors, making Stream pipelines more reasonable than
creating a Collector inline.

The Collector requires more arguments than an immutable reduction to
do its work. Still, these additional arguments allow it to use a mutable
container and, therefore, a different approach to reducing the Stream’s
elements in the first place. For many common tasks, in this case,



concatenating Strings, you can use one of the pre-defined Collectors
available from java.util.stream.Collectors.

Which type of reduction to choose — immutable or mutable — depends
highly on your requirements. My personal rule of thumb is simple and
stems from the names of the actual methods: choose collect if the result
is a collection-based type, like List or Map; choose reduce if the result
is an accumulated single value. But don’t forget performance and memory
considerations.

Chapter 7 goes into more detail about Collectors and how to create your
own.

Aggregate Elements Directly
The Collector type is a powerful and versatile tool for collecting
elements into new data structures. Still, sometimes, a simpler solution
would suffice. The Stream<T> type provides more terminal aggregation
operations for common tasks:

Returning a List<T>

Java 16 added the terminal operation toList() to simplify the most
commonly used aggregation to create a new List<T>. It doesn’t use a
Collector-based workflow to aggregate the elements, leading to fewer
allocations and requiring less memory. That makes it optimal to use
when the stream size is known in advance, and a more concise
alternative to collect(Collectors.toList()). There are no
guarantees on the implementation type of the returned list or its
serializability, just like with using
collect(Collectors.toList()). Unlike it, however, the
return list is an unmodifiable variant.

Returning an array

Returning the Stream’s elements as an array doesn’t require a reduction
or Collector. Instead, you can use two operations:



Object[] toArray()

A[] toArray(IntFunction<A[]> generator)

The second variant of toArray allows you to create an array of a specific
type instead of Object[] by providing an “array generator,” which most
likely is a method reference to the constructor:

String[] fruits = Stream.of("apple", "orange", "banana", "peach")
                        ...
                        .toArray(String[]::new);

Finding and Matching Elements
Besides aggregating Stream elements into a new representation, finding a
particular element is another common task for Streams. There are multiple
terminal operations available to either find an element or determine its
existence:

Optional<T> findFirst()

Returns the first encountered element of the Stream. If the Stream is
unordered, any element might be returned. Empty Streams return an
empty Optional<T>.

Optional<T> findAny()

Returns any element of the Stream in a non-deterministic fashion. If the
Stream itself is empty, an empty Optional<T> is returned.

As you can see, both methods have no arguments, so a prior filter
operation might be necessary to get the desired element.

If you don’t require the element itself, you should use one of the matching
operations, which matches the elements against a Predicate<T> instead:

boolean anyMatch(Predicate<? super T> predicate)

Returns true if any element of the Stream matches the predicate.



boolean allMatch(Predicate<? super T> predicate)

Returns true if all elements of the Stream match the predicate.

boolean noneMatch(Predicate<? super T> predicate)

Returns true if none of the elements match the given predicate.

Consuming Elements
The last group of terminal operations is side-effects-only operations. Instead
of returning a value, the forEach methods only accept a Consumer<T>.

void forEach(Consumer<? super T> action)

Performs the action for each element. The execution order is
explicitly nondeterministic to maximize the performance, especially for
parallel Streams.

void forEachOrdered(Consumer<? super T> action)

The action is performed for every element in the encountered order if
the Stream is ORDERED.

From a functional point of view, these operations seem out of place. As a
developer trying to transition imperative code into a more functional
direction, however, they can be quite useful.

Localized side effects aren’t inherently harmful. Not all code is easily
refactorable to prevent them, if even at all. Just like with all the other
operations, the conciseness of the contained logic determines how
straightforward and readable the Stream pipeline will be. If more than a
method reference or a simple non-block lambda is needed, it’s always a
good idea to extract/refactor the logic into a new method and call it instead
to maintain the conciseness and readability of the Stream pipeline.

The Cost of Operations



The beauty of Streams is their ability to concatenate multiple operations
into a single pipeline, but you have to remember one thing: every operation
might get called until an item gets rejected downstream.

Let’s look at the simple Stream pipeline in Example 6-15.

Example 6-15. Fruit pipeline (naïve)
Stream.of("ananas", "oranges", "apple", "pear", "banana")
      .map(String::toUpperCase) 
      .sorted() 
      .filter(s -> s.startsWith("A")) 
      .forEach(System.out::println); 

Process elements to the desired form.Sort naturally.Reject unwanted elements.Finally, work with the remaining elements.

In this fruit pipeline example, you have three intermediate and one terminal
operation, for processing five elements. How many operation calls do you
guess are done by this simple code? Let’s count them!

The Stream pipeline calls map five times, sorted eight times, filter
five times, and finally forEach two times. That’s 20 operations to output
two values! Even though the pipeline does what it’s supposed to, that’s
ridiculous! Let’s rearrange the operations to reduce the overall calls
significantly, as seen in Example 6-16.

Example 6-16. Fruit pipeline (improved)
Stream.of("ananas", "oranges", "apple", "pear", "banana")
      .filter(s -> s.startsWith("a")) 
      .map(String::toUpperCase) 
      .sorted() 
      .forEach(System.out::println); 

Reject unwanted elements first.Transform elements to the desired form.Sort naturally.Finally, work with the remaining elements.

By filtering first, the calls of the map operation and the work of the stateful
sorted operation are reduced to a minimum: filter is called five times,
map two times, sorted one time, and forEach two times, saving 50%
operations in total without changing the result.



Always remember that Stream elements are not being pushed through the
Stream pipeline and its operations until they reach the terminal operation.
Instead, the terminal operation pulls the elements through the pipeline. The
fewer elements that flow through the pipeline, the better its performance
will be. That’s why some operations are considered short-circuiting in
nature, meaning they can cut the Stream short. Essentially, short-circuiting
operations, as listed in Table 6-4, are operations that might carry out their
intended purpose without requiring the Stream to traverse all of its
elements.

Table 6-4. Short-circuiting Stream operations

Intermediate Operations Terminal Operations

limit

takeWhile

findAny

findFirst

anyMatch

allMatch

noneMatch

This behavior allows them to even process an infinite Stream and may still
produce a finite Stream (intermediate ops) or finish their task in finite time
(terminal ops).

A non-short-circuiting operation with heavily optimized behavior is the
terminal count() operation. If the overall element count of a Stream
terminated by count() is derivable from the Stream itself, any prior
operations that won’t affect the count might get dropped, as the following
code demonstrates:

var result = Stream.of("apple", "orange", "banana", "melon")
                   .peek(str -> System.out.println("peek 1: " + 
str))
                   .map(str -> {
                     System.out.println("map: " + str);
                     return str.toUpperCase();



                   })
                   .peek(str -> System.out.println("peek 2: " + 
str))
                   .count();
// NO OUTPUT

Even though there are three operations with a System.out.println
call in the pipeline, all of them are dropped. The reasoning behind this
behavior is simple: map and peek operations don’t inject or remove any
elements in the Stream pipeline, so they don’t affect the final count in any
way, therefore, they aren’t actually required.

Dropping operations is at the Stream’s discretion if it deems it possible. For
example, the preceding code runs all operations if a filter operation is
added to the pipeline, shown as follows:

var result = Stream.of("apple", "orange", "banana", "melon")
                   .filter(str -> str.contains("e"))
                   .peek(str -> System.out.println("peek 1: " + 
str))
                   .map(str -> {
                     System.out.println("map: " + str);
                     return str.toUpperCase();
                   })
                   .peek(str -> System.out.println("peek 2: " + 
str))
                   .count();
// OUTPUT
// peek 1: apple
// map: apple
// peek 2: APPLE
// peek 1: orange
// map: orange
// peek 2: ORANGE
// peek 1: melon
// map: melon
// peek 2: MELON

That doesn’t mean every kind of Stream pipeline will drop possible
unnecessary operations, either. If you require “side-effects” in your Stream
pipeline, you should use one of the two forEach terminal operation
variants, which are intended as “side-effects-only” operations.



Modifying Stream Behavior
A Stream’s characteristics, as explained in “Spliterator, the Backbone of
Streams”, are initially set on its creation. Not every Stream operation is a
good match for every characteristic, though. Especially in parallel Streams,
the encountered order of elements might significantly impact performance.
For example, selecting elements with the filter operation is an easily
parallelizable task, but takeWhile needs to synchronize between tasks if
run in parallel. That’s why particular Stream characteristics can be switched
by the intermediate operations listed in Table 6-5, which return an
equivalent Stream with changed traits.

Table 6-5. Modifying Stream Behavior

Operation Description

parallel() Enables parallel processing.
May return this if the Stream is already parallel.

sequential() Enables sequential processing.
May return this if the Stream is already sequential.

unordered() Returns a Stream with unordered encounter order.
May return this if the Stream is already unordered.

onClose(Runnabl

e closeHandler)

Adds an additional close handler to be called after the
Stream is finished.

Switching Stream behavior is just a single method call away. However, that
doesn’t mean it’s always a good idea. In fact, switching to parallel
processing is often a bad idea if the pipeline and the underlying Stream
aren’t designed to run in parallel in the first place.



See Chapter 8 to learn how to make an informed decision about using
parallel processing for Stream pipelines.

To Use Streams, or Not?
Streams are an excellent way to make your data processing more expressive
and utilize many of the functional features available in Java. You may feel a
strong urge to (over)use Streams for all kinds of data processing. I know I
certainly overdid it at first. You have to keep in mind, though, that not every
data processing pipeline benefits equally from becoming a Stream.

Your decision to use Streams — or not to use one — should rely always be
an informed decision based on the following intertwined factors:

How complex is the required task?

A simple loop that’s a few lines long won’t benefit much from being a
Stream with one or two small operations. It depends on how easy it is to
fit the whole task and required logic into a mental model.

If I can grasp what’s happening with ease, a simple for-each-loop might
be the better choice. On the other hand, compressing a multi-page long
loop into a more accessible Stream pipeline with well-defined
operations will improve its readability and maintainability.

How functional is the Stream pipeline?

Stream pipelines are mere scaffolds to be filled with your logic. If the
logic isn’t a good fit for a functional approach, like side-effect-laden
code, you won’t get all the benefits and safety guarantees that Streams
have to offer.

Refactoring or redesigning code to be more functional, pure, or
immutable is always a good idea and makes it a better match for the
Stream API. Sill, forcing your code to fit into a Stream pipeline without
the actual need is deciding on a solution without really understanding



the problem first. A certain degree of adapting your code to enable new
features that benefit productivity, reasonability, and maintainability is
good.

However, it should be a conscious decision on what’s best for your code
and project in the long run, not just a “requirement” to use a feature.

How many elements are processed?

The overhead of creating the scaffold that holds the Stream pipeline
together diminishes with the number of processed elements. For small
data sources, the relation between the required instances, method calls,
stack frames, and memory consumption is not as negligible as for
processing more significant quantities of elements.

In a direct comparison of raw performance, a “perfectly optimized”
for-loop wins out over a sequential Stream for a simple reason.
Traditional Java looping constructs are implemented at the language
level, giving the JVM more optimization possibilities, especially for
small loops. On the other hand, Streams are implemented as ordinary
Java types, creating an unavoidable runtime overhead. That doesn’t
mean their execution won’t be optimized, though! As you’ve learned in
this chapter, a Stream pipeline can short-circuit or fuse operations to
maximize pipeline throughput.

None of these factors in isolation should affect your decision to use Stream,
only in tandem. Especially the most common concern of many developers 
— performance — is seldom the most significant criterion for designing
code and choosing the right tools.

Your code could always be more performant. Dismissing a tool out of
performance anxiety before measuring and verifying the actual performance
might deprive you of a better solution for your actual problem.

Sir Tony Hoare4 once said, “We should forget about small efficiencies, say
about 97% of the time: premature optimization is the root of all evil.”



This advice can be applied when deciding whether to use Streams or loops.
Most of the time — around 97% — you do not need to concern yourself
with raw performance, and Streams may be the most simple and
straightforward solution for you with all the benefits the Stream API offers.
Once in a while — the 3% — you will need to focus on raw performance to
achieve your goals, and Streams might not be the best solution for you.
Although in Chapter 8 you will learn how to improve processing
performance by leveraging parallel Streams.

When deciding whether or not to use Streams, you might think about how
willing you are to use something new and unfamiliar. When you first
learned to program, I bet all the loop constructs you’re now quite familiar
with appeared to be complicated. Everything seemed hard at first until, over
time and repeated use, you became familiar and more comfortable with
using those loop contracts. The same is going to be true for using Streams.
Learning the ins and outs of the Steam API will take some time, but it will
become easier and more obvious when and how to use Streams efficiently
to create concise and straightforward data processing pipelines.

Another thing you have to keep in mind is that the primary goal of Streams
isn’t to achieve the best raw performance possible or to replace all other
looping constructs. Streams are supposed to be a more declarative and
expressive way of processing data. They give you the equivalent of the
classical map-filter-reduce pattern backed by Java’s strong type system but
also designed with all the powerful functional techniques introduced in Java
8 in mind. Designing a functional Stream pipeline is the most
straightforward and concise way to apply functional code to a sequence of
objects.

Finally, the general idea of combining pure functions with immutable data
leads to a looser coupling between data structures and their data processing
logic. Each operation only needs to know how to handle a single element in
its current form. This decoupling enables greater reusability and
maintainability of smaller domain-specific operations that can be composed
into bigger, more sophisticated tasks if necessary.



Takeaways
The Stream API provides a fluent and declarative way to create
map/filter/reduce-like data processing pipelines without the need for
external iteration.

Concatenable higher-order functions are the building blocks for a
Stream pipeline.

Streams use internal iteration, which entrusts more control over the
traversal process to the data source itself.

Many common and specialized operations are available besides the
classical map/filter/reduce operations.

Streams are lazy; no work is done until a terminal operation is called.

Sequential processing is the default, but switching to parallel
processing is easy.

Parallel processing might not be the best approach to all data
processing problems and usually needs to be verified to solve the
problem more efficiently.

1  Brian Goetz, the Java Language Architect at Oracle, explains fusing operations on
StackOverflow.

2  Newland, Chris and Ben Evans. 2019. “Loop Unrolling: An elaborate mechanism for
reducing loop iterations improves performance but can be thwarted by inadvertent coding.”
Java magazine.

3  Even though there are several new annotations used in JavaDoc since the release of Java 8,
they aren’t an official standard as of writing this book. The informal proposal is available at the
official OpenJDK bug-tracker as JDK-8068562

4  Sir Charles Antony Richard Hoare is a British computer scientist and recipient of the Turing
Award — regarded as the highest distinction in the field of computer science — who has made
foundational contributions to programming languages, algorithms, operating systems, formal
verification, and concurrent computing.

https://stackoverflow.com/questions/35069055/java-stream-operation-fusion-and-stateful-intermediate-operations/35070889#35070889
https://blogs.oracle.com/javamagazine/loop-unrolling
https://bugs.openjdk.java.net/browse/JDK-8068562


Chapter 7. Working With
Streams

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 7th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at rfernando@oreilly.com.

Streams utilize many of the functional features introduced in Java 8 to
provide a declarative way to process data. The Stream API covers many use
cases, but you need to know the different operations and available helper
classes work to make the most of them.

Chapter 6 concentrated on showing you the foundation of Streams. This
chapter will build on that and teach you different ways to create and work
with Streams for various use cases.

Primitive Streams
In Java, generics only work with object-based types (yet1). That’s why
Stream<T> can’t be used for sequences of primitive values like int.
There are only two options for using primitive types with Streams:



Autoboxing

Specialized Stream variants

Java’s autoboxing support — the automatic conversion between primitive
types and the object-based counterparts like int and Integer — may
seem like a simple workaround because it automagically works, as shown
as follows:

Stream<Long> longStream = Stream.of(5L, 23L, 42L);

Autoboxing introduces multiple problems, though. For one, there’s the
overhead associated with the conversion from primitive values to objects
compared to using primitive types directly. Usually, the overhead is
negligible. Still, in a data processing pipeline, the overhead of such frequent
creation of wrapper types accumulates and can degrade overall
performance.

Another non-issue with primitive wrappers is the possibility of null
elements. The direct conversion from primitive to object type never results
in null, but any operation in the pipeline might return null if it has to
deal with the wrapper type instead of a primitive.

To mitigate, the Stream API, like other functional features of the JDK, has
specialized variants for primitive types int, long, and double without
relying on autoboxing, as listed in Table 7-1.



Table 7-1. Primitive Streams and their equivalents

Primitive Type Primitive Stream Boxed Stream

int IntStream Stream<Integer>

long LongStream Stream<Long>

double DoubleStream Stream<Double>

The available operations on primitive Streams are similar to their generic
counterpart but use primitive functional interfaces. For example, an
IntStream provides a map operation for transforming elements, just like
Stream<T>. Unlike Stream<T> though, the required higher-order
function to do so is the specialized variant IntUnaryOperator, which
accepts and returns an int, as the following simplified interface
declaration shows:

@FunctionalInterface
public interface IntUnaryOperator { 
 
    int applyAsInt(int operand); 
 
    // ...
}

Operations accepting higher-order functions on primitive Streams use
specialized functional interfaces, like IntConsumer or IntPredicate,
to stay within the confines of the primitive Stream. That reduces the number
of available operations compared to Stream<T>. Still, you can easily
switch between a primitive Stream and a Stream<T> by either mapping to
another type or converting the primitive Stream to its boxed variant:

Stream<Integer> boxed()



Stream<U> mapToObj(IntFunction<? extends U>
mapper)

The other way around, from Stream<T> to a primitive Stream, is also
supported, with mapTo…  and flatMapTo…  operations available on
Stream<T>:

IntStream mapToInt(ToIntFunction<? super T>
mapper)

IntStream flatMapToInt(Function<? super T, ?
extends IntStream> mapper)

Besides the usual intermediate operations, primitive Streams have a set of
self-explanatory arithmetic terminal operations for common tasks:

int sum()

OptionalInt min()

OptionalInt max()

OptionalDouble average()

These operations don’t need any arguments because their behavior is non-
negotiable for numbers. The returned types are the primitive equivalents
you expect from similar Stream<T> operations.

As with primitive Streams in general, doing arithmetics with Streams has its
use cases, like highly optimized parallel processing of humongous amounts
of data. For simpler use cases, though, switching to primitive Streams
compared to existing processing structures usually won’t be worth it.

Iterative Streams
Stream pipelines and their internal iteration usually deal with existing
sequences of elements or data structures readily convertible to sequences of
elements. Compared to traditional looping constructs, you have to let go of



controlling the iteration process and let the Stream take over. If you require
more control, though, the Stream API still has you covered with its
static iterate methods available on the Stream<T> type:

<T> Stream<T> iterate(T seed, UnaryOperator<T>
f)

IntStream iterate(int seed, IntUnaryOperator f)

Java 9 added two additional methods, including a Predicate variant to
have an end condition:

<T> Stream<T> iterate(T seed, Predicate<T>
hasNext, UnaryOperator<T> next)

IntStream iterate(int seed, IntPredicate
hasNext, IntUnaryOperator next)

Primitive iterate variants are available for int, long, and double on
their corresponding Stream variants.

The iterative approach to Streams produces an ordered and potentially
infinite sequence of elements by applying an UnaryOperator to a seed
value. In other words, the Stream elements will be [seed, f(seed),
f(f(seed)), … ], and so on.

If the general concept feels familiar, you’re right! It’s a Stream-equivalent
to a for-loop:

// FOR-LOOP
for (int idx = 1; 
     idx < 5; 
     idx++) { 
  System.out.println(idx);
}

// EQUIVALENT STREAM (Java 8)
IntStream.iterate(1, 
                  idx -> idx + 1) 
         .limit(4) 



         .forEachOrdered(System.out::println);

// EQUIVALENT STREAM (Java 9+)
IntStream.iterate(1, 
                  idx -> idx < 5, 
                  idx -> idx + 1) 
         .forEachOrdered(System.out::println);

The seed, or initial iteration value.The termination condition.The incrementation of the iteration value. The for-loop needs an
assignment where the Stream requires a return value instead.

Both loop and Streams variants produce the same elements for the loop
body / subsequent Stream operations. Java 9 introduced an iterate
variant that includes a limiting Predicate, so no additional operations
are needed to restrict the overall elements.

The most significant advantage of an iterative Stream over a for loop is
that you can still use a loop-like iteration but gain the benefits of a lazy
functional Stream pipeline.

The end condition doesn’t have to be defined on Stream creation. Instead, a
later intermediate Stream operation, like limit, or a terminal condition,
like anyMatch, may provide it.

The characteristics of an iterative Stream are ORDERED, IMMUTABLE, and
in the case of primitive Streams, NONNULL. If the iteration is number-based
and the range is known beforehand, you can benefit from more Stream
optimizations, like short-circuiting, by using the static range… 
methods for Stream creation available on IntStream and LongStream
instead:

IntStream range(int startInclusive, int
endExclusive)

IntStream rangeClosed(int startInclusive, int
endInclusive)



LongStream range(long startInclusive, +long
endExclusive)

LongStream rangeClosed(long startInclusive,
long endInclusive)

Even though the same results are achievable with iterate, the main
difference is the underlying Spliterator. The returned Stream’s
characteristics ORDERED, SIZED, SUBSIZED, IMMUTABLE, NONNULL,
DISTINCT, and SORTED.

Choosing between iterative or ranged Stream creation depends on what you
want to achieve. The iterative approach gives you more freedom for the
iteration process, but you lose out on Stream characteristics enabling the
most optimization possibilities, especially in parallel Streams.

Infinite Streams
The lazy nature of Streams allows for infinite sequences of elements as they
are processed on-demand, and not all at once.

All available Stream interfaces in the JDK — Stream<T> and its
primitive brethren IntStream, LongStream, and DoubleStream — 
have static convenience methods to create infinite Streams either based
on an iterative approach or an unordered generative one.

While the iterate methods from the previous section start with a seed
and rely on applying their UnaryOperator on the current iteration value,
the static generate methods only rely on a Supplier to generate
their next Stream element:

<T> Stream<T> generate(Supplier<T> s)

IntStream generate(IntSupplier s)

LongStream generate(LongSupplier s)

DoubleStream generate(DoubleSupplier s)



The lack of a starting seed value affects the Stream’s characteristics, making
it UNORDERED, which can be beneficial for parallel use. An unordered
Stream created by a Supplier is helpful for constant non-interdependent
sequences of elements, like random values. For example, creating an UUID
Stream factory is quite simple:

Stream<UUID> createStream(int count) {
  return Stream.generate(UUID::randomUUID)
               .limit(count);
}

The downside of unordered Streams is that they won’t guarantee that a
limit operation will pick the first n elements in a parallel environment.
That may result in more calls to the element generating Supplier than
are actually necessary for the result of the Stream.

Take the following example:

Stream.generate(new AtomicInteger()::incrementAndGet)
      .parallel()
      .limit(1_000)
      .mapToInt(Integer::valueOf)
      .max()
      .ifPresent(System.out::println);

The expected output of the pipeline is 1000. The output, though, will most
likely be greater than 1000.

This behavior is expected from an unordered Stream in a parallel execution
environment. Under most circumstances, it won’t matter much, but it
highlights the necessity of choosing the right Stream type with favorable
characteristics to gain maximum performance and the fewest invocations
possible.

Random Numbers
The Stream API has special considerations for generating an infinite Stream
of random numbers. Although it’s possible to create such a Stream with



Stream.generate using, for example, Random#next(), there’s an
easier way available.

Three different random-number-generating types are capable of creating
Streams:

java.util.Random

java.util.concurrent.ThreadLocalRandom

java.util.SplittableRandom

All three of them provide multiple methods to create Streams of random
elements:

IntStream ints()
IntStream ints(long streamSize) 
 
IntStream ints(int randomNumberOrigin,
               int randomNumberBound) 
 
IntStream ints(long streamSize,
               int randomNumberOrigin,
               int randomNumberBound) 
 
 
LongStream longs() 
 
LongStream longs(long streamSize) 
 
LongStream longs(long randomNumberOrigin,
                 long randomNumberBound) 
 
LongStream longs(long streamSize,
                 long randomNumberOrigin,
                 long randomNumberBound) 
 
 
DoubleStream doubles() 
 
DoubleStream doubles(long streamSize) 
 
DoubleStream doubles(double randomNumberOrigin,
                     double randomNumberBound) 
 



DoubleStream doubles(long streamSize,
                     double randomNumberOrigin,
                     double randomNumberBound)

Technically, the Streams are only effectively infinite, as it’s stated in their
documentation2. If no streamSize is provided, the resulting Stream
contains Long.MAX_VALUE elements. The upper and lower bounds are
set with the randomNumberOrigin (inclusive) and
randomNumberBound (exclusive).

General usage and performance characteristics will be discussed in
“Example: Random Numbers”.

Memory Isn’t Infinite
The most important thing to remember when using infinite Streams is that
your memory is quite finite. Limiting your infinite Streams isn’t just
important, it’s an absolute necessity! Forgetting to put a restricting
intermediate or terminal operation will inevitably use up all memory
available to the JVM and eventually throw an OutOfMemoryError.

The available operations to restrict any Stream are listed in Table 7-2.



Table 7-2. Stream-restricting operations

Operation
Type Operation Description

Intermediate
Operations

limit(long maxSize) Limits a Stream to maxSize
elements

takeWhile(Predicate<T

> predicate)

Takes elements until predica
te evaluates false (Java 9+)

Terminal
Operations
(guaranteed)

Optional<T> findFirst

()

Returns the first element of
the Stream

Optional<T> findAny() Return a single, non-
deterministic Steam element

Terminal
Operations
(non-
guaranteed)

boolean anyMatch(Pred

icate<T> predicate)

Returns whether any Stream
elements match predicate

boolean allMatch(Pred

icate<T> predicate)

Returns whether all Stream
elements match predicate

boolean noneMatch(Pre

dicate<T> predicate)

Returns whether no Stream
element matches predicate

The most straightforward choice is limit. Choice-based operations using
Predicate<T> like takeWhile must be crafted with diligence, or you
might still end up with a Stream consuming more memory than needed. For
terminal operations, only the find…  operations are guaranteed to terminate
the Stream.



The … Match operations suffer from the same problem as takeWhile. If
the predicate doesn’t match according to their purpose, the Stream pipeline
will process an infinite number of elements and, therefore, all the available
memory.

As discussed in “The Cost of Operations”, the position of the restricting
operation in the Stream also makes a difference in how many elements will
pass through. Even if the final result might be identical, restricting the flow
of Stream elements as early as possible will save you more memory and
CPU cycles.

From Arrays to Streams and Back
Arrays are a particular type of object. They’re a collection-like structure,
holding elements of their base type, and only provide a method to access a
specific element by its index, and the overall length of the array, besides the
usual methods inherited from java.lang.Object. They’re also the
only way to have a collection of primitive types until Project Valhalla
becomes available in the future3.

However, two characteristics make arrays a good match for Stream-based
processing. First, their length is set on their creation and won’t change.
Second, they’re an ordered sequence. That’s why there are multiple
convenience methods available on java.util.Arrays to create an
appropriate Stream for different base types. Creating an array from a Stream
is done with an appropriate terminal operation.

Object-Type Arrays
Creating a typical Stream<T> is supported by two static convenience
methods on java.util.Arrays:

<T> Stream<T> stream(T[] array)

<T> Stream<T> stream(T[] array, int
startInclusive, int endExclusive)



As you can see, creating a Stream<T> from an array is quite self-
explanatory.

The other way around, from Stream<T> to T[] is done by using one of
these two terminal operations:

Object[] toArray()

<A> A[] toArray(IntFunction<A[]> generator)

The first variant can only return an Object[] array regardless of the
actual element type of the Stream due to how arrays are created by the
JVM. If you need an array of the Stream’s elements type, you need to
provide the Stream with a way to create an appropriate array. That’s where
the second variant comes in.

The second variant requires an IntFunction that creates the array of the
provided size. The most straightforward way is to use a method reference:

String[] fruits = new String[] {
    "Banana",
    "Melon",
    "Orange"
}; 
 
String[] result = Arrays.stream(fruits)
                        .filter(fruit -> fruit.contains("a"))
                        .toArray(String[]::new);

WARNING
There is no static type checking for using the created array in toArray. Types are
checked at runtime when an element is stored in the allocated array, throwing an
ArrayStoreException if the types aren’t compatible.

Primitive Arrays
The three primitive Stream specializations, IntStream, LongStream,
and DoubleStream, have all dedicated variants of the static method



Arrays.stream:

IntStream stream(int[] array)

IntStream stream(int[] array, int
startInclusive, int endExclusive)

The LongStream and DoubleStream variants only differ in the
array type and the returned primitive Stream.

Because the element type is fixed in a primitive Stream, they only have a
singular toArray method that doesn’t require an IntFunction:

int[] fibonacci = new int[] {
    0, 1, 1, 2, 3, 5, 8, 13, 21, 34
}; 
 
int[] evenNumbers = Arrays.stream(fibonacci)
                          .filter(value -> value % 2 == 0)
                          .toArray();

Low-Level Stream Creation
So far, all Stream creation methods I’ve discussed were quite high-level,
creating a Stream from another data source, iteration, generation, or
arbitrary objects. They are directly available on their respective types, with
as few arguments needed as possible. The auxiliary type
java.util.stream.StreamSupport has also several low-level
static convenience methods available for creating Streams directly from
a Spliterator. This way, you can create a Stream representation for your own
custom data structures.

The following two methods accept a Spliterator to create a new Stream:

Stream<T> stream(Spliterator<T> spliterator,
boolean parallel)

The easiest way to create a sequential or parallel Stream from any
source that is representable by a Spliterator<T>.



Stream<T> stream(Supplier<? extends
Spliterator<T>> supplier, int characteristics,
boolean parallel)

Instead of using the Spliterator right away, the Supplier gets called once
and only after the terminal operation of the Stream pipeline is invoked.
That relays any possible interference with the source data structure to a
smaller timeframe, making it safer for non-IMMUTABLE or non-
CONCURRENT eager-bound Streams.

It’s strongly recommended that the Spliterators used to create a
Stream<T> are either IMMUTABLE or CONCURRENT to minimize
possible interference or changes to the underlying data source during the
traversal.

Another good option is using a late-binding Spliterator, meaning the
elements aren’t fixed at the creation of the Spliterator. Instead, they’re
bound on first use, when the Stream pipeline starts processing its elements
after calling a terminal operation.

NOTE
Low-level Stream creation methods also exist for the primitive Spliterator variants.

If you don’t have a Spliterator<T> but a Iterator<T>, the JDK
got you covered. The type java.util.Spliterators has multiple
convenience methods for creating Spliterators, with two methods
designated for Iterator<T>:

Spliterator<T> spliterator(Iterator<? extends T> iterator,
                                                 long size,
                                                 int 
characteristics) 
 
Spliterator<T> spliteratorUnknownSize(Iterator<? extends T> 



iterator,
                                      int characteristics)

You can use the created Spliterator<T> instance in the previously
discussed Stream<T> stream(Spliterator<T> spliterator,
boolean parallel) method to finally create a Stream<T>.

Working with File I/O
Streams aren’t only for collection-based traversal. They also provide an
excellent way to traverse the filesystem with the help of the
java.nio.file.Files class.

This section will look at several use cases for file I/O and Streams. Contrary
to other Streams, I/O-related Streams must be explicitly closed by calling
Stream#close() after you are finished using them. Stream<T>
conforms to the java.lang.AutoCloseable interface, so the
examples will use a try-with-resources-block, which will be
explained in “Caveats of File I/O Streams”.

All examples in this section use the files in the book’s code repository as
their source. The following filesystem tree represents the overall structure
of the files used in the examples:

├── README.md 
├── assets 
│   └── a-functional-approach-to-java.png 
├── part-1 
│   ├── 01-an-introduction-to-functional-programming 
│   │   └── README.md 
│   ├── 02-functional-java 
│   │   ├── README.md 
│   │   ├── java 
|   |   └─ ... 
└── part-2 
    ├── 04-immutability 
    │   ├── ... 
    │   └── jshell 
    │       ├── immutable-copy.java 
    │       ├── immutable-math.java 

│ ├

https://github.com/benweidig/a-functional-approach-to-java


    │       ├── unmodifiable-list-exception.java 
    │       └── unmodifiable-list-modify-original.java 
    ├─ ...

Reading Directory Contents
Listing the contents of a directory can be done by calling the method
Files.list to create a lazily populated Stream<Path> of the
provided Path:

static Stream<Path> list(Path dir) throws IOException

Its argument must be a directory, or else it will throw a
NotDirectoryException. Example 7-1 shows how to list a directory.

Example 7-1. Listing a directory
var dir = Paths.get("./part-2/04-immutability/jshell"); 
 
try (var stream = Files.list(dir)) {
  stream.map(Path::getFileName)
        .forEach(System.out::println);
} catch (IOException e) {
  // ...
}

The output lists the files of the directory jshell for Chapter 4:

unmodifiable-list-exception.java 
unmodifiable-list-modify-original.java 
immutable-copy.java 
immutable-math.java

The order of retrieved content isn’t guaranteed, which I will go into more
detail about in “Caveats of File I/O Streams”.

Depth-First Directory Traversal
The two walk methods do, as their name suggests, “walk” the whole file
tree from a specific starting point. The lazily populated Stream<Path>



traverses depth-first, meaning if an element is a directory, it will be entered
and traversed first before the next element in the current directory.

The difference between the two walk variants in
java.nio.file.Files is the maximum directory depth they’re going
to traverse:

static Stream<Path> walk(Path start, 
                         int maxDepth, 
                         FileVisitOption... options) 
                         throws IOException

static Stream<Path> walk(Path start, 
                         FileVisitOption... options) 
                         throws IOException

The starting point of the traversal.The maximum number of directory levels to traverse. 0 (zero) restricts
the Stream to the starting level. The second variant without maxDepth
has no depth limit.Zero or more options on how to traverse the filesystem. So far, only
FOLLOW_LINKS exists. Be aware that by following links, a possible
cyclic traversal might occur. If the JDK detects this, it throws a
FileSystemLoopException.

You can walk the filesystem as shown in Example 7-2.

Example 7-2. Walking the Filesystem
var start = Paths.get("./part-1"); 
 
try (var stream = Files.walk(start)) {
  stream.map(Path::toFile)
        .filter(Predicate.not(File::isFile))
        .sorted()
        .forEach(System.out::println);
} catch (IOException e) {
  // ...
}

The traversal generates the following output:

./part-1 

./part-1/01-an-introduction-to-functional-programming 



./part-1/02-functional-java 

./part-1/02-functional-java/java 

./part-1/02-functional-java/jshell 

./part-1/02-functional-java/other 

./part-1/03-functional-jdk 

./part-1/03-functional-jdk/java 

./part-1/03-functional-jdk/jshell

The Stream will have at least one element, the starting point. If it’s not
accessible, an IOException is thrown. As with list, the Stream
elements encounter order isn’t guaranteed, which I will go into more detail
in “Caveats of File I/O Streams”.

Searching the Filesystem
Although you can search for a particular Path with walk, you could use
the method find instead. It bakes a BiPredicate with access to the
BasicFileAttribute of the current element directly into the Stream
creation, making the Stream more focused on your task’s requirements:

static Stream<Path> find(Path start, 
                         int maxDepth, 
                         BiPredicate<Path, BasicFileAttributes> 
matcher, 
                         FileVisitOption... options) 
                         throws IOException

The starting point of the search.The maximum number of directory levels to traverse. 0 (zero) restricts
it to the starting level. Unlike Files.walk no method variant without
maxDepth exists.Criteria for including a Path in the Stream.Zero or more options on how to traverse the filesystem. So far, only
FOLLOW_LINKS exists. Be aware that by following links, a possible
cyclic traversal might occur. If the JDK detects this, it throws a
FileSystemLoopException.

With it, Example 7-2 can be implemented without needing to map the
Path to a File, as shown in Example 7-3.

Example 7-3. Finding Files



var start = Paths.get("./part-1"); 
 
BiPredicate<Path, BasicFileAttributes> matcher =
  (path, attr) -> attr.isDirectory(); 
 
try (var stream = Files.find(start,
                             Integer.MAX_VALUE,
                             matcher)) { 
 
    stream.sorted()
          .forEach(System.out::println);
} catch (IOException e) {
  // ...
}

The output is equivalent to using walk, and the same assumptions — 
depth-first and non-guaranteed encounter order — apply to find, too. The
real difference is the access to the BasicFileAttributes of the
current element, which may affect performance. If you need to filter or
match by file attributes, using find will save you reading the file attributes
explicitly from the Path element, which could be slightly more
performant. However, if you only require the Path element and no access
to its file attributes, the walk method is just as good an alternative.

Reading Files Line-By-Line
The common task of reading a file and processing it line-by-line is a breeze
with Streams, which provides the lines method. There are two variants,
depending on the file’s Charset:

static Stream<String> lines(Path path, 
                            Charset cs) 
                            throws IOException

static Stream<String> lines(Path path) 
                      throws IOException

Path pointing the file to read.The charset of the file. The second variant defaults to
StandardCharsets.UTF_8.



TIP
Even though you can use any Charset you want, it will make a performance
difference in parallel processing. The lines method is optimized for UTF_8,
US_ASCII, and ISO_8859_1.

Let’s look at a simple example of counting the words in War and Peace by
Tolstoy, as seen in Example 7-4.

Example 7-4. Counting words in “War and Peace”
var location = Paths.get("war-and-peace.txt"); 

// CLEANUP PATTERNS 
var punctuation = Pattern.compile("\\p{Punct}");
var whitespace  = Pattern.compile("\\s+");
var words       = Pattern.compile("\\w+");

try (Stream<String> stream = Files.lines(location)) { 

  Map<String, Integer> wordCount =

           // CLEAN CONTENT 
    stream.map(punctuation::matcher)
          .map(matcher -> matcher.replaceAll(""))
          // SPLIT TO WORDS 
          .map(whitespace::split)
          .flatMap(Arrays::stream)
          // ADDITIONAL CLEANUP 
          .filter(word -> words.matcher(word).matches())
          // NORMALIZE 
          .map(String::toLowerCase)
          // COUNTING 
          .collect(Collectors.toMap(Function.identity(),
                                    word -> 1,
                                    Integer::sum));
} catch (IOException e) {
  // ...
}

The plain text version of War and Peace from Project Gutenberg4 is
used, so no formatting might get in the way of counting words.The regular expressions are pre-compiled to prevent recompilation for
each element. Such optimizations are essential because of the overhead



of creating a Pattern for each element and map operation will
quickly compound and affect the overall performance.The lines call returns a Stream<String> with the file’s lines as
elements. The try-with-resources block is required because the
I/O operation must be closed explicitly, which you’ll learn more about
in “Caveats of File I/O Streams”.The punctuation needs to be removed, or identical words directly next
to any punctuation will be counted as different words.The cleaned line is now split on whitespace characters which creates a
Stream<String[]>. To actually count the words, the flatMap
operation will flatten the Stream to a Stream<String>.The “word” matcher is an additional cleanup and selection step to only
count the actual words.Mapping the element to lowercase ensures differently-cased words are
counted as one.The terminal operation creates a Map<String, Integer> with the
word as its key and the occurrence count as its value.

The Stream pipeline does what it was set out to do, taking over the task of
reading the file and providing you with its content line-by-line so that you
can concentrate your code on the processing steps.

We will revisit this particular example in Chapter 8 to take another look at
how such a common task can be improved immensely by using a parallel
Stream.

Caveats of File I/O Streams
Working with Streams and file I/O is pretty straightforward. However, there
are three unusual aspects I mentioned before. They aren’t a big deal and
don’t diminish the usability or usefulness of using Stream-based file I/O,
although you need to be aware of them:

Closing the Streams is required

Directory contents are weakly consistent

Non-guaranteed element order



These aspects stem from dealing with I/O in general and are found in most
I/O-related code, not only Stream pipelines.

Explicit Closing of the Stream
Dealing with resources in Java, like file I/O, typically requires you to close
them after use. An unclosed resource can leak, meaning the garbage
collector can’t reclaim its memory after the resource is no longer required
or used. The same is true for dealing with I/O with Streams. That’s why you
need to close I/O-based Streams explicitly, at least compared to non-I/O
Streams.

The Stream<T> type extends java.io.AutoClosable through
BaseStream, so the most straightforward way to close it is to use a try-
with-resources block, as seen throughout the “Working with File I/O”
section and in the following code:

try (Stream<String> stream = Files.lines(location)) {
  stream.map(...)
        ...
}

All Stream-related methods on java.nio.file.Files throw an
IOException according to their signatures, so you need to handle that
exception in some form. Combining a try-with-resources-block
with an appropriate catch-block can solve both requirements in one fell
swoop.

Weakly Consistent Directory Content
The list, walk, and find methods on java.nio.file.Files are
weakly consistent and lazily populated. That means the actual directory
content isn’t scanned once on Stream creation to have a fixed snapshot
during traversal. Any updates to the filesystem may or may not be reflected
after the Stream<Path> is created or traversed.

The reasoning behind this constraint is quite most likely due to performance
and optimization considerations. Stream pipelines are supposed to be lazy



sequential pipelines with no distinction of their elements. A fixed snapshot
of the file tree would require gathering all possible elements on Stream
creation, not lazily on the actual Stream processing triggered by a terminal
operation.

Non-guaranteed Element Order
The lazy nature of Streams creates another aspect of file I/O Streams you
might not expect. The encounter order of file I/O Streams isn’t guaranteed
to be in natural order — in this case, alphabetically —  which is why you
might need an additional sorted intermediate operation to ensure
consistent element order. That’s because the Stream is populated by the
filesystem, which isn’t guaranteed to return its files and directories in an
ordered fashion.

Dealing with Date and Time
Dealing with dates is always a challenge with many edge cases. Thankfully,
a new Date & Time API5 was introduced in Java 8. Its immutable nature fits
nicely in any functional code and provides some Stream-related methods,
too.

Querying Temporal Types
The new Date and Time API provides a flexible and functional query
interface for arbitrary properties. Like most Stream operations, you inject
the actually required logic to do your task into the method via its arguments,
making the methods themselves more general scaffolds with greater
versatility:

<R> R query(TemporalQuery<R> query);

The generic signature allows querying for any type, making it quite
flexible:



// TemporalQuery<Boolean> == Predicate<TemporalAccessor> 
 
boolean isItTeaTime = LocalDateTime.now()
                                   .query(temporal -> {
                                     var time = 
LocalTime.from(temporal);
                                     return time.getHour() >= 16;
                                   }); 
 
 
// TemporalQuery<LocalTime> == 
Function<TemporalAccessor,Localtime>
LocalTime time = LocalDateTime.now().query(LocalTime::from);

The utility class java.time.temporal.TemporalQueries
provides pre-defined queries, shown in Table 7-3, to eliminate the need to
create common queries yourself.



Table 7-3. Pre-defined Temporal
Query<T> in java.time.temp
oral.TemporalQueries

static method Return Type

chronology() Chronology

offset() ZoneOffset

localDate() LocalDate

localTime() LocalTime

precision() TemporalUnit

zoneId() ZoneId

zone() ZoneId

Obviously, not all Time API types support each query type. For example,
you can’t get a ZoneId/ZoneOffset from a Local…  type. Each method
is documented6 quite well with their supported types and intended use
cases.

LocalDate-Range Streams
Java 9 introduced Stream capabilities for a single JSR 310 type,
java.time.LocalDate, to create a consecutive range of LocalDate
elements. You don’t have to worry about all the intricacies and edge cases
of different calendar systems and how the date calculations are actually



performed. The date and time API will handle them for you by giving you a
consistent and easy-to-use abstraction.

Two LocalDate instance methods create an ordered and consecutive
Stream:

Stream<LocalDate> datesUntil(LocalDate
endExclusive)

Stream<LocalDate> datesUntil(LocalDate
endExclusive, Period step)

The first variant is equivalent to using Period.ofDays(1). Their
implementation won’t overflow, meaning that any element plus step must
be before endExclusive. The direction of the dates isn’t future-only,
too. If endExclusive is in the past, you must provide a negative step
to create a Stream going toward the past.

Measuring Stream Performance with JMH
Throughout the book, I mention how Java’s functional techniques and tools,
like Streams, incur a certain overhead compared to a traditional approach
and that you have to consider it. This is why measuring the performance of
Stream pipelines with benchmarks can be crucial. Streams aren’t an easy
target for benchmarking because they are complex pipelines of multiple
operations with many optimizations behind the scenes that depend on their
data and operations.

The JVM and its just-in-time compiler can be tricky to benchmark and
determine the actual performance. That’s where the Java Micro-
Benchmarking Harness comes in to help.

The JMH takes care of JVM warm-up, iterations, and code-optimizations
that might dilute the results, making them more reliable and, therefore, a
better baseline for evaluation. It’s the de-facto standard for benchmarking
and got included in the JDK with version 127.

https://openjdk.java.net/projects/code-tools/jmh/


Plugins are available for IDEs and build systems like Gradle, IntelliJ,
Jenkins, or TeamCity.

The JMH GitHub repository sample directory has a myriad of well-
documented benchmarks explaining the intricacies of its usage.

I won’t talk further about how to benchmark Streams or lambdas in general
because it is out of scope for this chapter and it could easily consume the
space of an entire book. In fact, I recommend you check out Optimizing
Java by Benjamin J Evans, James Gough, and Chris Newland8 and Java
Performance by Scott Oaks9 to learn more about benchmarking and how to
measure performance in Java.

More about Collectors
Chapter 6 introduced Collectors and the corresponding terminal operation
collect as a powerful tool to aggregate a Stream pipeline’s elements into
new data structures. The utility type
java.util.stream.Collectors has a plethora of static factory
methods to create Collectors for almost any task, from simple aggregation
into a new Collection type, or even more complex, multi-step
aggregation pipelines. Such more complex Collectors are done with the
concept of downstream Collectors.

The general idea of Collectors is simple: collect elements into a new data
structure. That’s a pretty straightforward operation if you want a Collection-
based type like List<T> or Set<T>. In the case of a Map<K, V>,
however, you usually need complex logic to get a correctly formed data
structure that fulfills your goal.

Collecting a sequence of elements to a key-value-based data structure like
Map<K, V> can be done in various ways, each with its own challenges.
For example, even with a simple key-value mapping where each key has
only one value, there’s already the problem of key collisions to be dealt
with. But if you want to further transform the Map’s value-part, like

https://github.com/melix/jmh-gradle-plugin
https://github.com/artyushov/idea-jmh-plugin
https://github.com/brianfromoregon/jmh-plugin
https://github.com/presidentio/teamcity-plugin-jmh
https://github.com/openjdk/jmh/blob/master/jmh-samples/src/main/java/org/openjdk/jmh/samples/


grouping, reducing, or partitioning, you need a way to manipulate the
collected values. That’s where downstream Collectors come into play.

Downstream Collectors
Some of the pre-defined Collectors available via
java.util.stream.Collectors factory methods accept an
additional Collector to manipulate downstream elements. Basically, this
means that after the primary Collector has done its job, the downstream
Collector makes further changes to the collected values. It’s almost like a
secondary Stream pipeline working on the previously collected elements.

Typical tasks for downstream Collectors include:

Transforming

Reducing

Flattening

Filtering

Composite Collector operations

All examples of this section will use the following User Record and
users data source:

record User(UUID id,
            String group,
            LocalDateTime lastLogin,
            List<String> logEntries) { } 
 
List<User> users = ...;

Transforming Elements
Grouping Stream elements into simple key-value Maps is easy with the
Collectors.groupingBy methods. The value part of a key-value
mapping, though, might not be represented in the form you need and
require additional transformation.



For example, grouping a Stream<User> by its group creates a
Map<String, List<User>>:

Map<String, List<User>> lookup =
  users.stream()
       .collect(Collectors.groupingBy(User::group));

Simple enough.

What if you don’t want the whole User and only its id in its place? You
can’t use an intermediate map operation to transform the elements before
collecting them because you wouldn’t have access to the User anymore to
actually group them. Instead, you can use a downstream Collector to
transform the collected elements. That’s why there are multiple
groupingBy methods available, like the one we’re going to use in this
section:

Collector<T, ?, Map<K, D>> groupingBy(Function<? super T, ? 
extends K> classifier,
                                      Collector<? super T, A, D> 
downstream)

Although the different generic types in this method signature might look
intimidating, don’t fret! Let’s break the signature down into its parts to get a
better understanding of what’s happening.

There are four types involved are listed in Table 7-4.



Table 7-4. Generic types of groupingBy

Generic
Type Used for

T The Stream’s elements type before collecting.

K The Map result’s key type.

D The type of the result Map value part that is created by
the downstream Collector.

A The accumulator type of the downstream Collector.

As you can see, each type of the method-signature represents a part of the
overall process. The classifier creates the keys, mapping the elements
of type T to the key type K. The downstream Collector aggregates the
elements of type T to the new result type D. The overall result will therefore
be a Map<K, D>.

TIP
Java’s type inference will usually do the heavy lifting of matching the correct types for
you, so you don’t have to think much about the actual generic signatures if you only
want to use such complex generic methods and not write them yourselves. If a type
mismatch occurs and the compiler can’t deduct the types automatically, try to refactor
the operation logic into dedicated variables with the help of your IDE to see the inferred
types. It’s easier to tweak smaller blocks of code than an entire Stream pipeline at once.

In essence, each Collector accepting an additional downstream Collector
consists of the original logic — in this case, the key-mapper — and a
downstream Collector, affecting the values mapped to a key. You can think
of the downstream collecting process as working like another Stream that’s



collected. Instead of all elements, though, it only encounters the values
associated with the key by the primary Collector.

Let’s get back to the lookup Map for User groups. The goal is to create a
Map<String, Set<UUID>>, mapping the User groups to a list of
distinct id instances. The best way to create a downstream Collector is to
think about the particular steps required to achieve your goal and which
factory methods of java.util.stream.Collectors could achieve
them.

First, you want the id of a User element, which is a mapping operation.
The method Collector<T, ?, R> mapping(Function<?
super T, ? extends U> mapper, Collector<? super U,
A, R> downstream) creates a Collector that maps the collected
elements before passing them down to another Collector. The reasoning
behind requiring another downstream Collector is simple; the mapping
Collector’s sole purpose is, you might have guessed, mapping the elements.
The actual collection of mapped elements is outside its scope and therefore
delegated to the downstream Collectors.

Second, you want to collect the mapped elements into a Set, which can be
done by Collectors.toSet().

By writing the Collectors separately, their intent and hierarchy become
more visible:

// COLLECT ELEMENTS TO SET
Collector<UUID, ?, Set<UUID>> collectToSet = Collectors.toSet(); 
 
// MAP FROM USER TO UUID
Collector<User, ?, Set<UUID>> mapToId =
  Collectors.mapping(User::id,
                     collectToSet); 
 
// GROUPING BY GROUP
Collector<User, ?, Map<String, Set<UUID>>> groupingBy =
  Collectors.groupingBy(User::group, mapToId);



As I said before, you can usually let the compiler infer the types and use the
Collectors factory methods directly. If you import the class statically,
you can even forgo the repetitive Collectors. prefix. Combining all the
Collectors and using them in the Stream pipeline leads to a straightforward
collection pipeline:

import static java.util.stream.Collectors.*; 
 
Map<String, Set<UUID>> lookup =
  users.stream()
       .collect(groupingBy(User::group,
                           mapping(User::id, toSet())));

The result type is inferable by the compiler, too. Still, I prefer to explicitly
state it to communicate better what kind of type is returned by the Stream
pipeline.

An alternative approach is keeping the primary downstream Collector as a
variable to keep the collect call simpler. The downside of this is the
necessity to help the compiler infer the correct types if it’s not obvious, like
in the case of using a lambda expression instead of a method reference.

var collectIdsToSet = Collectors.mapping(User::id, 
                                         Collectors.toSet());

// LAMBDA ALTERNATIVE

var collectIdsToSetLambda = Collectors.mapping((User user) -> 
user.id(), 
                                               
Collectors.toSet());

Map<String, Set<UUID>> lookup =
  users.stream()
       .collect(Collectors.groupingBy(User::group,
                                      collectIdsToSet)); 

The method reference tells the compiler which type the Stream’s
elements are, so the downstream Collector knows it, too.The lambda variant of mapper needs to know the type to work with.
You can either provide an explicit type to the lambda argument or



replace var with the more complicated generic Collector<T, A ,
R> signature.The collect call is still expressive thanks to the variable name. If
certain aggregation operations are commonly used, you should consider
refactoring them into an auxiliary type with factory methods, similar to
java.util.stream.Collectors.

Reducing Elements
Sometimes, a reduction operation is needed instead of an aggregation. The
general approach to designing a reducing downstream Collector is identical
to the previous section: define your overall goal, dissect it into the
necessary steps, and finally, create the downstream Collector.

For this example, instead of creating a lookup Map for id by group, let’s
count the logEntries per User.

The overall goal is to count the log entries per User element. The required
steps are getting the log count of a User and summing them up to the final
tally.

You could use the Collectors.mapping factory method with another
downstream Collector to achieve the goal:

var summingUp = Collectors.reducing(0, Integer::sum); 
 
var downstream =
  Collectors.mapping((User user) -> user.logEntries().size(),
                     summingUp); 
 
Map<UUID, Integer> logCountPerUserId =
  users.stream()
       .collect(Collectors.groupingBy(User::id, downstream));

Instead of requiring a mapping and reducing downstream Collector in
tandem, you could use one of the other Collector.reduce variants
which includes a mapper:



Collector<T, ?, U> reducing(U identity,
                            Function<? super T, ? extends U> 
mapper,
                            BinaryOperator<U> op)

This reduce variant needs, in addition to a seed value (identity) and
the reduction operation (op), a mapper to transform the User elements
into the desired value:

var downstream =
  Collectors.reducing(0,                                       // 
identity
                      (User user) -> user.logEntries().size(), // 
mapper
                      Integer::sum);                           // 
op 
 
Map<UUID, Integer> logCountPerUserId =
  users.stream()
       .collect(Collectors.groupingBy(User::id, downstream));

Like the reduce intermediate operation, using a reducing Collector for
downstream operations is an incredibly flexible tool, being able to combine
multiple steps into a single operation. Which method to choose, multi-
downstream Collectors or single reduction, depends on personal preferences
and the overall complexity of the collection process. If you only need to
sum up numbers, though, the java.util.stream.Collectors type
also gives you more specialized variants:

var downstream =
  Collectors.summingInt((User user) -> user.logEntries().size()); 
 
Map<UUID, Integer> logCountPerUserId =
  users.stream()
       .collect(Collectors.groupingBy(User::id, downstream));

The summing Collector is available for the usual primitive types (int,
long, float). Besides summing up numbers, you can calculate averages
(prefixed with averaging) or simply count elements with
Collectors.counting().



Flattening Collections
Dealing with Collection-based elements in Streams usually requires a
flatMap intermediate operation to “flatten” the Collection back into
discrete elements to work with further down the pipeline, or you’ll end up
with nested Collections like List<List<String>>. The same is true
for the collecting process of a Stream.

Grouping all logEntries by their group would result in a
Map<String, List<List<String>>>, which most likely won’t be
what you want. Java 9 added a new pre-defined Collector with built-in
flattening capabilities:

static Collector<T, ?, R> flatMapping(Function<T, Stream<U>> 
mapper,
                                      Collector<U, A, R> 
downstream)

Like the other added Collector, Collectors.filtering(… ), which I
discussed in “Filtering Elements”, it doesn’t provide any advantages over
an explicit flatMap intermediate operation if used as the sole Collector.
But, used in a multi-level reduction, like groupingBy or
partitionBy, it gives you access to the original Stream element and
allows for flattening the collected elements:

var downstream =
  Collectors.flatMapping((User user) -> 
user.logEntries().stream(),
                         Collectors.toList()); 
 
Map<String, List<String>> result =
  users.stream()
       .collect(Collectors.groupingBy(User::group, downstream));

Like with the transforming and reducing Collectors, you will quickly get
the hang of when to use a flattening downstream Collector. If the result type
of the Stream pipeline doesn’t match your expectations, you most likely



need a downstream Collector to remedy the situation, either by using
Collectors.mapping or Collectors.flatMapping.

Filtering Elements
Filtering Stream elements is an essential part of almost any Stream pipeline,
done with the help of the intermediate filter operation. Java 9 added a
new pre-defined Collector with built-in filtering capabilities, moving the
step of filtering elements directly before the accumulation process:

static <T, A, R> Collector<T,?,R> filtering(Predicate<T> 
predicate,
                                            Collector<T, A, R> 
downstream)

On its own, it’s no different from an intermediate filter operation. As a
downstream Collector, though, its behavior is quite different to filter,
easily seen when grouping elements:

import static java.util.stream.Collectors.*; 
 
var startOfDay = LocalDate.now().atStartOfDay(); 
 
Predicate<User> loggedInToday =
  Predicate.not(user -> user.lastLogin().isBefore(startOfDay)); 
 
 
// WITH INTERMEDIATE FILTER 
 
Map<String, Set<UUID>> todaysLoginsByGroupWithFilterOp =
  users.stream()
       .filter(loggedInToday)
       .collect(groupingBy(User::group,
                           mapping(User::id, toSet()))); 
 
 
// WITH COLLECT FILTER 
 
Map<String, Set<UUID>> todaysLoginsByGroupWithFilteringCollector 
=
  users.stream()
       .collect(groupingBy(User::group,
                           filtering(loggedInToday,



                                     mapping(User::id, 
toSet()))));

You might expect an equivalent result, but the order of operations leads to
different results:

Intermediate filter first, grouping second

Using an intermediate filter operation removes any undesired
element before any collection occurs. Therefore, no groups of users that
haven’t logged in today are included in the resulting Map, as illustrated
in Figure 7-1.

Figure 7-1. Grouping elements with “filter first, grouping second”

Group first, filter downstream



Without an intermediate filter operation, the groupingBy
Collector will encounter all User elements, regardless of their last
login date. The downstream Collector — Collectors.filtering 
— is responsible for filtering the elements, so the returned Map still
includes all user groups, regardless of the last login. The flow of
elements is illustrated in Figure 7-2.

Figure 7-2. Grouping elements with “group first, filter downstream”

Which approach is preferable depends on your requirements. Filtering first
returns the least amount of key-value pairs possible, but grouping first
grants you access to all Map keys and their (maybe) empty values.

Composite Collectors
The last Collector I want to discuss is Collectors.teeing Added in
Java 12, it differs from the others because it accepts two downstream



Collectors at once and combines both results into one.

NOTE
The name teeing originates from one of the most common pipe fittings — the T-fitting 
— which has the shape of a capital letter T.

The Stream’s elements first pass through both downstream Collectors, so a
BiFunction can merge both results as the second step, as illustrated in
Figure 7-3.

Figure 7-3. Teeing Collector Flow of Elements

Imagine you want to know how many users you have and how many of
them never logged in. Without the teeing operation, you would have to
traverse the elements twice: once for the overall count and another time for



counting the never logged-in Users. Both counting tasks can be represented
by dedicated Collectors, counting and filtering, so you only need to
traverse the elements once and let teeing do the two counting tasks at the
end of the pipeline. The results are then merged with a
BiFunction<Long, Long> into the new data structure UserStats.
Example 7-5 shows how to implement it.

Example 7-5. Finding min and max login dates
record UserStats(long total, long neverLoggedIn) { 
  // NO BODY
}

UserStats result =
  users.stream()
       .collect(Collectors.teeing(Collectors.counting(), 
                Collectors.filtering(user -> user.lastLogin() == 
null, 
                                     Collectors.counting()),
                UserStats::new)); 

A local Record type is used as the result type because Java lacks
dynamic tuples.The first downstream Collector counts all elements.The second downstream Collector filters first and uses an additional
downstream Collector to count the remaining elements.A method reference to the UserStats constructor serves as the merge
function of the two downstream Collector results.

Like many functional additions, the teeing Collector might initially seem
strange if you’re coming from a mainly object-oriented background. On its
own, a for-loop with two out-of-body variables to count could achieve the
same result. The difference lies in how the teeing Collector benefits from
the Stream pipeline and its overall advantages and functional possibilities,
not just the terminal operation itself.

Creating Your Own Collector
The auxiliary type java.util.stream.Collectors gives you over
44 pre-defined factory methods in the current LTS Java version 17 at the
time of writing this book. They cover most general use cases, especially if



used in tandem. There may be times when you need a custom, more
context-specific Collector that’s more domain-specific and easier to use
than a pre-defined one. That way, you can also share such specific
Collectors in a custom auxiliary class, like Collectors.

Recall from Chapter 6 that Collectors aggregate elements with the help of
four methods:

Supplier<A> supplier()

BiConsumer<A, T> accumulator()

BinaryOperator<A> combiner()

Function<A, R> finisher()

One method of the Collector interface I haven’t mentioned before is
Set<Characteristics> characteristics(). Like Streams,
Collectors have a set of characteristics that allow for different optimization
techniques. The three currently available options are listed in Table 7-5.

Table 7-5. Available java.util.Collector.Characteristics

Characteristic Description

CONCURRENT Supports parallel processing

IDENTITY_FINIS

H

The finisher is the identity function, returning the
accumulator itself. In this case, only a cast is required
instead of calling the finisher itself.

UNORDERED Indicates that the order of Stream elements isn’t
necessarily preserved.

To better understand how these parts fit together, we’re going to recreate
one of the existing Collectors,



Collectors.joining(CharSequence delimiter), which joins
CharSequence elements, separated by the delimiter argument.
Example 7-6 shows how to implement the Collector<T, A, R>
interface with a java.util.StringJoiner to achieve the required
functionality.

Example 7-6. Custom Collector for joining String elements
public class Joinector implements Collector<CharSequence, // T
                                            StringJoiner, // A
                                            String> {     // R

  private final CharSequence delimiter;

  public Joinector(CharSequence delimiter) {
    this.delimiter = delimiter;
  }

  @Override
  public Supplier<StringJoiner> supplier() {
    return () -> new StringJoiner(this.delimiter); 
  }

  @Override
  public BiConsumer<StringJoiner, CharSequence> accumulator() {
    return StringJoiner::add; 
  }

  @Override
  public BinaryOperator<StringJoiner> combiner() {
    return StringJoiner::merge; 
  }

  @Override
  public Function<StringJoiner, String> finisher() {
    return StringJoiner::toString; 
  }

  @Override
  public Set<Characteristics> characteristics() {
    return Collections.emptySet(); 
  }
}

The StringJoiner type is the perfect mutable results container due
to its public API and delimiter support.



The accumulation logic for adding new elements to the container is as
simple as using the proper method reference.The logic for combining multiple containers is also available via
method reference.The last step, transforming the results container to the actual result, is
done with the container’s toString method.The Joinector doesn’t have any of the available Collector
characteristics, so an empty Set is returned.

Simple enough, but it’s still a lot of code for very little functionality
consisting mostly of returning method references. Thankfully, there are
convenience factory methods called of available on Collector to
simplify the code:

Collector<CharSequence, StringJoiner, String> joinector =
  Collector.of(() -> new StringJoiner(delimiter), // supplier
               StringJoiner::add,                 // accumulator
               StringJoiner::merge,               // combiner
               StringJoiner::toString);           // finisher

This shorter version is equivalent to the previous full implementation of the
interfaces.

NOTE
The last argument of the Collector.of(… ) method isn’t always visible, if not set;
it’s a vararg of the Collector’s characteristics.

Creating your own Collectors should be reserved for custom result data
structures or to simplify domain-specific tasks. Even then, you should first
try to achieve the results with the available Collectors and a mix of
downstream Collectors. The Java team has invested a lot of time and
knowledge to give you safe and easy-to-use generic solutions that can be
combined into quite complex and powerful solutions. Then, if you have a
working Collectors, you can still refactor it into an auxiliary class to make it
reusable and easier on the eyes.



Final Thoughts on (Sequential) Streams
The Java Streams API is, in my opinion, an absolute game changer, and
that’s why it’s important to know about the multitude of available
operations and ways to use Streams for different tasks. Streams give you a
fluent, concise, and straightforward approach to data processing, with an
option to go parallel if needed, as you’ll learn more about in Chapter 8.
Still, they aren’t designed to replace preexisting constructs like loops,
merely complementing them.

The most important skill you as a Java developer should acquire regarding
Streams is finding the balance between using just enough Stream pipelines
to improve the readability and reasonability of your code without
sacrificing performance by ignoring traditional looping constructs.

Not every loop needs to be a Stream. However, not every Stream would be
better off being a loop, either. The more you get used to using Streams for
data processing, the easier you will find a healthy balance between the two
approaches to data processing.

Takeaways
The Stream API provides a wide range of possibilities to create
Streams, from iterative approaches that are similar to traditional
looping constructs to specialized variants for certain types like file I/O
or the new Date and Time API.

Like functional interfaces, most Streams and their operations support
primitive types via specialized types to reduce the amount of
autoboxing. These specialized variants can give you a performance-
wise edge if needed but will restrict the available operations. But you
can always switch between primitive and non-primitive Streams in a
pipeline to gain the benefits of both worlds.

Downstream Collectors can affect the collection process in multiple
ways, like transforming or filtering, to manipulate the result into the



representation required for your task.

If a combination of downstream Collectors cannot fulfill your task,
you can fall back on creating your own Collector instead.

1  Project Valhalla, as discussed in “Project Valhalla and Specialized Generics”, will allow
value-based types, like primitives, to be used as generic type boundaries. Unfortunately,
though, at the point of writing this book, no targeted availability date is known.

2  For example, the documentation of Random#ints() states that the method is implemented
to be an equivalent of Random.ints(Long.MAX_VALUE).

3  See the sidebar “Project Valhalla and Specialized Generics” for more information about
Project Valhalla.

4  Project Gutenberg provides multiple versions of War and Peace for free.

5  The Java Date & Time API (JSR310) set out to replace java.util.Date with a
comprehensive set of types allowing for a consistent and complete way to deal with date- and
time-related types in an immutable fashion.

6  The official documentation of java.time.temporal.TemporalQueries lists in
detail which types are supported by each pre-defined TemporalQuery

7  JMH is also supported for Java versions before 12, but you need to include its two
dependencies manually: JMH Core and the JMH Generators/Annotation Processors.

8  Evans, Benjamin J., Gough, James, Newland, Chris. 2018. “Optimizing Java.” O’Reilly
Media. 978-1-492-02579-5

9  Oaks, Scott. 2020. “Java Performance, 2nd Edition.” O’Reilly Media. ISBN 978-1-492-
05611-9.

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Random.xhtml#ints()
https://www.gutenberg.org/ebooks/2600
https://openjdk.java.net/projects/threeten
https://docs.oracle.com/javase/8/docs/api/java/time/temporal/TemporalQueries.xhtml
https://mvnrepository.com/artifact/org.openjdk.jmh/jmh-core
https://mvnrepository.com/artifact/org.openjdk.jmh/jmh-generator-annprocess


Chapter 8. Parallel Data
Processing with Streams

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 8th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at rfernando@oreilly.com.

Our world is overwhelmingly concurrent and parallel; we can almost
always do more than one thing at once. Our programs need to solve more
and more problems, that’s why data processing often benefits from being
parallel, too.

In Chapter 6, you’ve learned about Streams as data processing pipelines
built of functional operations. Now it’s time to go parallel!

In this chapter, you will learn about the importance of concurrency and
parallelism, how and when to use parallel Streams, and when not to.
Everything you learned in the previous two chapters about data processing
with Streams so far also applies to using them for parallel processing.
That’s why this chapter will concentrate on the differences and intricacies
of parallel Streams.



Concurrency Versus Parallelism
The terms parallelism and concurrency often get mixed up because the
concepts are closely related. Rob Pike, one of the co-designers of the
programming language Go, defined the terms nicely:

Concurrency is about dealing with a lot of things at once. Parallelism is
about doing a lot of things at once. The ideas are, obviously, related, but
one is inherently associated with structure, and the other is associated
with execution. Concurrency is structuring things in a way that might
allow parallelism to actually execute them simultaneously. But
parallelism is not the goal of concurrency. The goal of concurrency is
good structure and the possibility to implement execution modes like
parallelism.

—Rob Pike, “Concurrency Is Not Parallelism” at Waza
2012

Concurrency is the general concept of multiple tasks running in overlapping
time periods competing over the available resources. A single CPU core
interleaves them by scheduling and switching between tasks as it sees fit.
Switching between tasks is relatively easy and fast. This way, two tasks can
figuratively run on a single CPU core simultaneously, even though they
literally don’t. Think of it like a juggler using only one hand (single CPU
core) with multiple balls (tasks). They can only hold a single ball at any
time (doing the work), but which ball changes over time (interrupting and
switching to another task). Even with only two balls, they have to juggle the
workload.

Parallelism, on the other hand, isn’t about managing interleaved tasks but
their simultaneous execution. If more than one CPU core is available, the
tasks can run in-parallel on different cores. The juggler now uses both
hands (more than one CPU core) to hold two balls at once (doing the work
simultaneously).

See Figure 8-1 for a more visual representation of how thread scheduling
differs between the two concepts.

https://go.dev/
https://go.dev/blog/waza-talk


Figure 8-1. Concurrent versus parallel thread execution

Concurrency and parallelism in Java share the same goal: taking care of
multiple tasks with threads. Their difference lies in the difficulty to do it
efficiently, with ease, and doing it right, and in a safe manner.

CONCURRENCY AND PARALLELISM IN THE REAL
WORLD

A real-world example of the distinction between concurrency and
parallelism is walkie-talkies. On a single channel, people can talk
concurrently, one at a time. They manage the context switching by
saying “over” so the other person can talk. If you introduce multiple
walkie-talkie channels, people can talk in parallel. Each channel is still
concurrent, requiring a locking mechanism. But on different channels,
people can talk simultaneously without requiring coordination between
channels.



Both multi-tasking concepts aren’t mutually exclusive and are often used
together.

One thing to consider when using multiple threads is that you can no longer
easily follow or debug the actual flow of your application as you could do
in a single-threaded one. To use data structures in concurrent environments,
they have to be “thread-safe,” usually requiring coordination with locks,
semaphores, etc., to work correctly and guarantee safe access to any shared
state. Executing code in parallel usually lacks such coordination because it’s
focused on the execution itself. This makes it safer, more natural, and easier
to reason with.

Streams as Parallel Functional Pipelines
Java provides an easy-to-use data processing pipeline with parallel
processing capabilities: Streams. As I’ve discussed before in Chapter 6, they
process their operations in sequential order by default. However, a single
method call switches the pipeline into “parallel mode,” either the
intermediate Stream operation parallel, or the parallelStream
method available on java.util.Collection-based types. Going back
to a sequentially processed Stream is possible, too, by calling the
intermediate operation sequential().

WARNING
Switching between execution modes with parallel() and sequential() affects
the Stream pipeline as a whole regardless of the position in the pipeline. The last one
called before the terminal operation dictates the mode for the whole pipeline. There’s no
way to run a certain part of the Stream in a different execution mode from the rest.

Parallel Streams use the concept of recursive decomposition, meaning they
divide and conquer the data source by splitting up the elements with the
underlying Spliterator to process chunks of elements in parallel. Each
chunk is processed by a dedicated thread and may even be split up again,



recursively, until the Stream API is satisfied that the chunks and threads are
a good match for the available resources.

You don’t have to create or manage these threads or use an explicit
ExecutorService. Instead, the Stream API uses the common
ForkJoinPool internally to spin-off and manage new threads.

FORKJOINPOOL
A ForkJoinPool executes threads in a work-stealing manner. That
means that worker threads that have finished their own tasks can “steal”
tasks from other threads waiting to be processed, and therefore utilize
idle threads more efficiently.

The common ForkJoinPool is a lazily initialized static thread-
pool managed by the runtime itself. It’s configured with sensible
defaults to utilize the available resources the best way possible, e.g., not
using up all CPU cores at once. If the defaults don’t fit your
requirements, you can configure certain aspects via system properties,
as explained in its documentation.

Two major concurrent features use the common ForkJoinPool:
parallel Streams, and asynchronous Tasks with
CompletableFuture, which you’ll learn more about in Chapter 13.

These chunks of elements and their operations are forked into multiple
threads. Finally, the sub-results of the threads are joined again to derive a
final result, as shown in Figure 8-2.

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/ForkJoinPool.xhtml


Figure 8-2. Parallel Stream Fork/Join

The size of the chunks varies, depending on the Stream’s data source
underlying Spliterator characteristics. “Choosing the Right Data
Source” goes over the different characteristics and data sources and their
affinity for proficiency in splitting elements into chunks.

Parallel Streams in Action



To illustrate how to process a Stream in parallel, we’re going to count the
occurrences of distinct words in Tolstoy’s “War and Peace” again, 1, as was
done in the previous chapter.

First, a rough approach should be outlined as a blueprint for the necessary
steps that need to be translated into Stream operations:

Loading the content of “War and Peace”

Cleaning the content by removing punctuation, etc.

Splitting the content to create words

Counting all distinct words

Instead of using the Files.lines method, a more naïve sequential
approach, as shown in <<Example 8-1 is chosen to better represent the
improvements the right data source and parallel Streams can have.

Example 8-1. Sequentially counting words in “War and Peace”
var location = Paths.get("war-and-peace-text.txt");

// CLEANUP PATTERNS 
var punctuation = Pattern.compile("\\p{Punct}");
var whitespace  = Pattern.compile("\\s+");
var words       = Pattern.compile("\\w+");

try {
  // LOAD CONTENT 
  var content = Files.readString(location);

  Map<String, Integer> wordCount =
    Stream.of(content)
          // CLEAN CONTENT 
          .map(punctuation::matcher)
          .map(matcher -> matcher.replaceAll(""))
          // SPLIT TO WORDS 
          .map(whitespace::split)
          .flatMap(Arrays::stream)
          .filter(word -> words.matcher(word).matches())
          // COUNTING 
          .map(String::toLowerCase)
          .collect(Collectors.toMap(Function.identity(),
                                    word -> 1,



                                    Integer::sum));
} (IOException e) {
  // ...
}

Multiple pre-compiled Pattern instances are used to clean up the
content.The content is read in one swoop.The cleanup patterns remove all punctuation.The lines are split on whitespace and the resulting String[] array is
flat-mapped to a Stream of String elements, which are further filtered
to be actually “words.”Counting words in a case-insensitive fashion is simply done by
converting all words to lowercase and letting a Collector do the actual
work.

Counting is done with the help of Collectors.toMap, which takes the
words as keys by calling Function.identity(), which is a shortcut
to create a Function<T, T> that returns its input argument. If a key
collision occurs, meaning a word is encountered more than once, the
Collector merges the existing value with the new value, 1, by evaluation
Integer::sum with both values.

On my computer with a 6-core / 12-thread CPU, the sequential version runs
in ~140ms.

NOTE
Threads, in the case of a CPU, refer to simultanous multithreading (SMT), not Java
threads. It’s often referred to as hyper-threading, which is the proprietary
implementation of SMT by Intel.

This initial Stream pipeline might solve the problem of counting words in
“War and Peace” but it leaves quite some room for improvement. Making it
parallel wouldn’t change much because the data source only provides a
singular element, so only later operations can be forked off. So how can the
pipeline be redesigned to gain performance from a parallel approach?



If you think back to Figure 8-2, parallel Streams fork pipelines of
operations that are merged back together to create a result. Right now, the
pipeline counts words for a singular String which is the whole book. A
more the pipeline could easily count words in any String element
flowing through the pipeline and let the terminal collect operation
merge the results just as easily.

For a good parallel performance of all operations, the Stream pipeline needs
a data source with multiple elements. Instead of using
Files.readString, the convenience type also has a Stream-creating
method that reads a file line-by-line: static Stream<String>
lines(Path path) throws IOException. Even though
processing more elements will result in more clean-up operation calls in
total, the tasks are distributed to multiple threads run in parallel to use the
available resources most efficiently.

Another important change must be done to the collect operation. To
ensure no ConcurrentModificationException occurs, the thread-
safe variant Collectors.toConcurrentMap is used with the same
arguments as before.

USING COLLECTORS IN PARALLEL
ENVIRONMENTS

As Collectors share a mutable intermediate results container, they’re susceptible to
concurrent modifications from multiple threads during the combiner step. That’s why
you should always check the documentation of the Collector used in a parallel pipeline
for thread-safety, and choose an appropriate alternative if necessary.

All these small adaptions to switch to a parallel approach accumulates in
the code shown in Example 8-2.

Example 8-2. Parallel counting words in “War and Peace”
// ...

// LOAD CONTENT 
try (Stream<String> stream = Files.lines(location)) {



  Map<String, Integer> wordCount =
    stream.parallel()
          // CLEAN LINES 
          .map(punctionaction::matcher)
          .map(matcher -> matcher.replaceAll(""))
          .map(whitespace::split)
          // SPLIT TO WORDS 
          .flatMap(Arrays::stream)
          .filter(word -> words.matcher(word).matches())
          // COUNTING 
          .map(String::toLowerCase)
          .collect(Collectors.toConcurrentMap(Function.identity(),
                                              word -> 1,
                                              Integer::sum));
}

The Files.lines call requires you to close the Stream. Using it in
a try-with-resources-block delegates the work to the runtime,
so you don’t have to close it manually.All previous steps — cleaning and splitting the lines — are unchanged.Counting is done the same way but with a thread-safe Collector variant
instead.

By using an optimized data source and adding a parallel() call into the
pipeline, the required time decreases to ~25ms.

That’s a performance increase of over 5x! So why don’t we always use
parallel Streams?

When to Use and When to Avoid Parallel
Streams
Why use a sequential Stream if a parallel Stream can provide a performance
boost with a single method call and a few considerations to the data source
and terminal operation? The simple answer: any performance gains aren’t
guaranteed and are affected by many factors. Using parallel Streams is
primarily a performance optimization and should always be a conscious and
informed decision, not just because it’s easy thanks to a single method call.



There are no absolute rules about choosing parallel over sequential data
processing. The criteria depend on many different factors, like your
requirements, the task at hand, available resources, etc., and all influence
each other. That’s why there is no easy answer to the question “when to use
parallel Streams?”, neither quantitative nor qualitative. Still, there are
certain informal guidelines that provide a good starting point to decide.

Let’s take a look at them in order of how a Stream pipeline is built, from
creating a Stream to adding intermediate operation and finishing the
pipeline by adding the terminal operation.

Choosing the Right Data Source
Every Stream — sequential and parallel — begins with a data source
handled by a Spliterator.

In a sequential Stream, the Spliterator behaves like a simple
Iterator, supplying the Stream with one element after another. For
parallel Streams, however, the data source gets split up into multiple
chunks. Ideally, these chunks are of roughly equivalent size, so the work is
distributed evenly, but that isn’t always possible, depending on the data
source itself. This splitting process is called decomposing the data source. It
can be cheap or favorable for parallel processing; or complicated and costly.

For example, an array-based data source, like ArrayList, knows its exact
size and easily decomposes because the location of all elements is known,
so equally large chunks are easily obtainable.

A linked list, on the other hand, is a fundamentally sequential data source,
with each of its elements only effectively knowing their direct neighbors.
Finding a specific position means you have to traverse all beforehand.
Although Java’s implementation, LinkedList, cheats by keeping track
of the size, which creates the more favorable Spliterator
characteristics SIZED and SUBSIZED. Nevertheless, it’s not a preferred
data source for parallel Streams.



Table 8-1 lists different common data sources and their proficiency of
decomposability for parallel use.

Table 8-1. Parallel decomposability

Data source Parallel Decomposability

IntStream.range / .rangeClosed +++

Arrays.stream (primitives) +++

ArrayList ++

Arrays.stream (objects) ++

HashSet +

TreeSet +

LinkedList --

Stream.iterate --

The degree of efficient decomposability isn’t the only factor regarding data
sources and their possible performance in parallel Streams. A more
technical aspect that’s easy to overlook is data locality.

Besides more cores, modern computers feature a myriad of caches to
improve performance at a memory level. Where memory is stored depends
on the decisions made by the runtime and the CPU itself. Reading from L1
cache is ~100 times faster than RAM, L2 cache ~25 times. The “closer” the
data is to actual processing, the better performance can be achieved.



Usually, JDK implementations store object fields and arrays in adjacent
memory locations. This design allows for prefetching “near” data and
speeding up any task.

Arrays and lists of reference types, a List<Integer> or an
Integer[], store a collection of pointers to the actual values, compared
to an array of primitives — int[] — which stores its values next to each
other. If there’s a cache miss because the required next value isn’t
prefetched, the CPU has to wait for the actual data to be loaded, and
therefore wasting resources. That doesn’t mean that only primitive arrays
are a good match for parallel processing, though. Data locality is just one of
many criteria that might affect your decision to choose the right data source
for going parallel. Compared to the other criteria, though, it’s quite a
minuscule one and slightly out of your direct control of how the runtime
and JDK store data.

Number of Elements
There’s no definitive number of elements that will give you the best parallel
performance, but one thing is clear: the more elements a parallel Stream has
to process, the better, so it can offset the overhead of coordinating multiple
threads.

To process elements in parallel, they must be partitioned, processed, and
joined again for the final result. These operations are all related, and finding
a sensible balance is a must-have. This balance is represented by the NQ
model.

N represents the number of elements, Q is the cost of a single task. Their
product — N * Q — indicates the likeliness of getting a speedup from
parallel processing. A general overview of weighing the different aspects
can be seen in Figure 8-3.



Figure 8-3. The NQ model

As you can see, a higher number of elements is always a good indicator for
possible speedup by parallel processing compared to a lower number. Long-
running tasks also profit from being run in parallel and might even
outweigh the lack of enough elements. But the best-case scenario is having
both: lots of elements and non-cheap tasks.

Stream Operations
After choosing the right data source, the operations are the next puzzle
piece. The main goal of designing your parallel operations is to achieve the
same final result as with a sequential Stream. That’s why most of the design
choices for intermediate operations are universal.

In the case of parallel Streams, though, issues that aren’t a big deal in
sequential Streams can accumulate quickly. So adhering to more functional
principles and parallel-friendly operations is important.

Pure Lambdas



Lambda expressions used in Stream operations should always be pure,
meaning they shouldn’t rely on non-local mutable state or emit any side
effects. To mitigate the most apparent non-local state issues, any captured
variables must be effectively final, as explained in “Effectively final”,
which only affects the reference itself.

Reading immutable state isn’t an issue either. The real problem arises from
a thread that changes non-local state, so any access requires
synchronization between them, or you end up with non-deterministic
behavior, like race conditions.

THE ORIGIN OF RACE CONDITIONS
Involving more than one thread in a task introduces a new set of
challenges. The most common and urgent is dealing with state access.
A so-called race condition can occur when two or more threads try to
access the same shared state.

Reading from multiple threads isn’t an issue as long as none of the
threads can change the state. Changing the state is a problem, though,
because the access order is non-deterministic if it’s not (manually)
synchronized. The actual access order depends on how the threads are
scheduled and other optimizations are done behind the scenes.

The JVM employs the optimizations technique of reordering memory
access, described in JSR-133, executing it in a different order than
defined in your code. But possible reordering doesn’t stop at the JVM.
The CPU itself can also execute its instructions in any order and store
its memory as it seems best.

The easiest way to prevent any non-deterministic behavior is to make sure
that any non-local state is deeply immutable. This way, the lambda stays
pure and can’t be affected by other threads running the same lambda.

Parallel-friendly Operations

https://download.oracle.com/otndocs/jcp/memory_model-1.0-pfd-spec-oth-JSpec/


Not all Stream operations are a good fit for parallel processing. The
simplest way to judge an operation is its reliance on a specific encounter
order for the Stream’s elements.

For example, the limit, skip, or distinct intermediate operations
rely heavily on encounter order to provide a deterministic — or stable — 
behavior for ordered Streams, meaning they always choose or dismiss the
same items.

This stability, however, comes at a price in parallel Streams:
synchronization across all threads and increased memory needs. For
example, to guarantee that the limit operation produces the same results
in parallel use as in sequential Streams, it must wait for all preceding
operations to finish in encounter order and buffer all elements until it’s
known if they are needed.

Luckily, not all pipelines require a fixed encounter order. Calling
unordered() on a Stream pipeline changes the resulting Streams
characteristics to UNORDERED, and therefore, stable operations become
unstable. In many cases, it just doesn’t matter which distinct elements are
picked, as long as the final result contains no duplicates. For limit, it’s a
little trickier and depends on your requirements.

There are also two stable terminal operations that depend on the encounter
order of the data source, findFirst and forEach. Both of them
provide an unstable variant, too, as listed in Table 8-2. They should be
preferred for parallel Streams if your requirements allow it.

Table 8-2. Stable versus unstable terminal operations

Stable operations Unstable operations

findFirst() findAny()

forEachOrdered(Consumer<? super T>

action)

forEach(Consumer<? super T>

action)



Even with fully parallelized intermediate operations, the final applicative
terminal operation in a Stream pipeline is sequential to achieve a singular
result or emit a side effect. Just like with unstable intermediate operations,
the terminal operations findAny() and forEach(… ) can immensely
profit from being unconstrained from encounter order and having to wait
for other elements from other threads.

Reduce Versus Collect
The terminal operations reduce and collect are two sides of the same
coin: both are reduction — or fold — operations.

In functional programming, fold operations combine elements by applying a
function to the elements and recombine the results recursively to build up a
return value. The difference lies in the general approach on how to
recombine the results: immutable versus mutable accumulation.

As I’ve discussed in “Reducing Versus Collecting Elements”, a mutable
accumulation is more akin to how you would approach the problem in a
for-loop, as seen in Example 8-3.

Example 8-3. Mutable accumulation with a for-loop
var numbers = List.of(1, 2, 3, 4, 5, 6, ...); 
 
int total = 0; 
 
for (int value : numbers) {
  total += value;
}

For a sequentially processed problem, this is a straightforward approach.
Using non-local and mutable state, however, is a contra-indicator for
parallel processing.

Functional programming favors immutable values, so the accumulation only
depends on the previous result and current Stream element to produce a
new and immutable result. This way, the operations can easily be run in
parallel, as seen in Figure 8-4.



Figure 8-4. Immutable accumulation of numbers

The flow still has the same elements as before: an initial value 0 for each
summation of values. Instead of accumulating the results in a single value,
each step returns a new value as the left operand for the next summation.
The simplest Stream form is shown in Example 8-4.

Example 8-4. Immutable accumulation of numbers with a Stream
int total = Stream.of(1, 2, 3, 4, 5, 6, ...)
                  .parallel()
                  .reduce(0, 
                          Integer::sum); 

The initial value — or identity — is used for every parallel reduction
operation.The method reference translates into a BiFunction<Integer,
Integer, Integer> to accumulate the previous (or initial) value
with the current Stream element.



This more abstract form of reduction is easily parallelizable if it’s
associative and without any shared state. A reduction is associative if the
order or grouping of the accumulator arguments is irrelevant to the final
result.

Even though immutable reduction is more amenable to parallel processing,
it’s not the only reduction option in town. Depending on your requirements,
a mutable reduction might be a more fitting solution because creating a new
immutable result for every accumulation step could be costly. With enough
elements, such costs accumulate over time affecting performance and
memory requirements.

A mutable reduction mitigates this overhead by using a mutable results
container. The accumulation function receives this container instead of only
the prior result, and it doesn’t return any value, unlike a reduce operator.
To create the final result, the combiner merges all containers.

The factors that a decision between using reduce or collect in
sequential and parallel Streams boil down to what kind of element you have
and the usability and straightforwardness of the terminal fold operation.
There are times when you might need every bit of performance available to
you to improve your data processing, and a more complicated fold
operation. Many other factors affect performance in general, so having an
easier-to-understand and maintainable terminal operation might outweigh
the downside of sacrificing a little bit more memory and CPU cycles.

Stream Overhead and Available Resources
Compared to traditional looping structures, a Stream always creates an
unavoidable overhead, regardless of being sequential or parallel. Their
advantage lies in providing a declarative way of defining data processing
pipelines and utilizing many functional principles to maximize their ease of
use and performance. In most real-world scenarios, though, the overhead is
negligible compared to their conciseness and clarity.

In the case of parallel Streams, though, you start with a more significant
initial handicap compared to sequential Streams. Besides the overhead of



the Stream scaffold itself, you have to think about data source
decomposition costs, thread management by the ForkJoinPool, and
recombining the final result, to get the full picture of all moving parts. And
all those parts must have the resources — CPU cores and memory available
to actually run them in parallel.

Coined by the computer scientist Gene Amdahl in 1967, Amdahl’s law2
provides a way to calculate the theoretical latency speedup in parallel
executions for constant workloads. The law takes the parallel portion of a
single task and the number of tasks running in parallel into account, as
shown in Figure 8-5.

Figure 8-5. Amdahl’s law

As you can see, the maximum performance gains have a ceiling depending
on the count of parallel tasks that can be run simultaneously. There is no
benefit in easily parallelizable tasks if the runtime can’t actually run them



parallel due to the lack of adequate resources and is forced to interleave the
tasks instead.

Example: War and Peace (revisited)
With all these criteria for parallel Stream performance in mind, let’s analyze
the previous example of counting the distinct words of Tolstoy’s “War and
Peace” again to better understand why this particular Stream pipeline is a
great match for parallel processing.

Data source characteristics

The Stream is created from a UTF-8 plain text file with the help of the
Files.lines method, which has quite good parallel characteristics
according to its documentation3.

Number of elements

The text file contains over 60.000 lines, therefore, 60.000 elements flow
through the pipeline. That’s not much for modern computers, but it’s
also not a negligible number of elements.

Intermediate operations

Each Stream operation works on a single line, completely independent
from another, without any shared or outside state that requires
coordination. The regular expressions are pre-compiled and read-only.

Terminal operation

The Collector can gather the results independently and merges them
with a simple arithmetic operation.

Available resources

My computer has 12 CPU threads available at most and therefore
~5.000 lines per thread if all of them are utilized.



It looks like the example hit the parallelism jackpot, even if not all criteria
were matched perfectly. That’s why the performance gain for even such a
simple task was quite high and near the expected speedup of Amdahl’s law
for highly parallelizable operations. Looking back at Figure 8-5, the 5x
improvement on my setup with 6 cores / 12 threads suggests a
parallelizability of ~90%.

Example: Random Numbers
This simplistic but deliberately chosen example of counting words in “War
and Peace” showed that parallel Streams could provide enormous
performance gains that scale with the available resources. But that’s not
always the case for every workload, especially for a more complex one.

Let’s look at another example, working with random numbers, and how
IntStream — sequential and parallel — compares to a simple for-loop,
as shown in Example 8-5.

Example 8-5. Random number statistics
var elementsCount = 100_000_000; 

IntUnaryOperator multiplyByTwo = in -> in * 2; 

var rnd = new Random(); 

// FOR-LOOP 

var loopStats = new IntSummaryStatistics();

for(int idx = 0; idx < elementsCount; idx++) {
  var value = rnd.nextInt();
  var subResult = multiplyByTwo.applyAsInt(value);
  var finalResult = multiplyByTwo.applyAsInt(subResult);
  loopStats.accept(finalResult);
}

// SEQUENTIAL IntStream 

var seqStats = rnd.ints(elementsCount)
                  .map(multiplyByTwo)



                  .map(multiplyByTwo)
                  .summaryStatistics();

// PARALLEL IntStream 

var parallelStats = rnd.ints(elementsCount)
                       .parallel()
                       .map(multiplyByTwo)
                       .map(multiplyByTwo)
                       .summaryStatistics();

100 million elements should be enough elements to reach the (non-
definite) threshold to gain a performance boost from parallel processing.To do at least some work, the elements will be multiplied by 2 twice
with the help of a shared lambda.The default source for pseudo-random numbers is used:
java.util.Random.The for-loop version tries to mimic a Stream as well as possible,
including using the same logic for collecting the results.The sequential Stream is as straightforward as possible: Stream
creation, two mapping functions, and then the collection of the results in
the form of summary statistics.The parallel variant only adds a parallel() call to the previous
sequential one.

Is the summarizing of random numbers a good match for the criteria of
parallel processing? Let’s analyze!

Data source characteristics

Even though Random is thread-safe, it’s explicitly mentioned in its
documentation4 that repeated use from different threads will impact
performance negatively. Instead, the ThreadLocalRandom type is
recommended.

Number of elements

100 million elements should be enough to get a performance gain from
parallel processing, no worries there.

Intermediate operations



No local or shared state. Another plus point for possible parallel
performance. But the example might be too simplistic to offset the
parallel overhead.

Terminal operation

The IntSummaryStatistics collector only holds four integers and
can combine sub-results with simple arithmetics. It shouldn’t impact
parallel performance negatively.

The scorecard for parallel processing doesn’t look too bad. The most
obvious problem is the data source itself. A more fitting data source might
increase performance compared to the default Random number generator.

Besides Random and ThreadLocalRandom, there’s also
SplittableRandom, which is specially designed for Streams. After
measuring the elapsed time of the for-loop as the baseline compared to the
other options, the necessity of choosing a favorable data source and
measuring the Stream’s performance is quite obvious The factor of
increased time between the different data sources is listed in Table 8-3.

Table 8-3. Elapsed time for different random number generators

Data source for-loop
Sequential
Stream

Parallel
Stream

Random 1.0x 1.05x 27.4x

SplittableRando

m

1.0x 2.1x 4.1x

ThreadLocalRand

om

1.0x 2.3x 0.6x



Even though there should be enough elements in the pipeline, enabling
parallel processing can be counter-productive and decrease the performance
manifold. That’s why making Stream’s parallel must be a conscious and
informed decision.

Better performance is a worthwhile goal, but it depends on the context and
your requirements if a parallel Stream is preferable to sequential data
processing. You should always start with a sequential Stream and only go
parallel if the requirements dictate it and you’ve measured the performance
gain. Sometimes, a “good old” for-loop might do the job just as well, or
even better.

Parallel Streams Checklist
Example 8-5 exposed the problem of unfavorable data sources for parallel
processing. But it’s not the only indicator for non-parallelizable workflows.
Based on the criteria in “When to Use and When to Avoid Parallel
Streams”, a checklist can be established as a quick indicator to favor a
parallel Stream, or not, as seen in Table 8-4.



Table 8-4. Parallel Stream checklist

Criteria Considerations

Data source Cost of Decomposability

Evenness/predictability of split chunks

Data locality of elements

Number of elements Total number of elements

NQ model

Intermediate operations Interdependence between operations

Necessity of shared state

Parallel-friendly operations

Encounter order

Terminal operation Cost of merging the final result

Mutable or immutable reduction

Available resources CPU count

Memory

Common ForkJoinPool or customized

Any of these criteria affect parallel Stream performance and should
influence your decision. No single one of them is an absolute deal-breaker,



though.

Your code could always be more performant. Running Streams in parallel
adds the complexity and overhead of coordinating multiple threads with
possibly little gain or even decreased performance if not used correctly or in
unfavorable environments. However, if used for fitting data sources and
parallelizable tasks, using parallel Streams is an easy-to-use optimization
technique for introducing a more efficient way of data processing into your
pipelines.

Takeaways
Hardware evolves in the direction of more cores, not necessarily faster
ones. Concurrency and parallelism play an important role in utilizing
all available resources.

Sequential processing is defined by its textual order in the code.
Parallel code execution may overlap, making it harder to follow,
analyze, and debug.

Going parallel with Streams is easy, but their inherent complexity is
hidden.

Concurrent and parallel code introduces a whole new set of
requirements and possible problems and caveats. Parallel processing is
an optimization technique and should be treated as such: if you don’t
need it, don’t do it; it’s a hard problem.

Most functionally preferred techniques, like pure functions and
immutability, are beneficial, if not a requirement, for error-free and
performant parallelized code. Adhering to these techniques early on,
even in sequential code, allows an easier transition to parallel
processing, if needed.

Kent Beck’s famous quote applies to parallel Streams, too: “first make
it work, then make it right, and, finally, make it fast." 5 Start with a



sequential Stream to fulfill your data processing needs. Improve it by
optimizing its operations. Only if necessary and proven beneficial,
make it fast by going parallel.

Read the documentation of your data source, operations, etc., to see if
they are a good fit for parallel execution. It often provides the
reasoning behind implementation details, performance indications,
examples, and sometimes even alternative approaches.

1  Project Gutenberg provides multiple versions of Tolstoy’s “War and Peace” for free. The
plain-text version is used so no additional formatting affects the process of counting words.

2  The Wikipedia entry on Amdahl’s law describes the actual formula in detail.

3  The call if delegated to Files.lines(Path path, CharSet cs) which
documentation lists possibly good parallel performance due to its Spliterator splitting in
an optimal ratio under normal circumstances.

4  Ususally, the documentation of a type, like for java.util.Random gives indications
about their use in multi-threaded environments.

5  Kent Beck is an American software engineer and the creator of extreme programming. The
quote is usually attributed to him, even though the gist of it exists for a long time like described
in B. W. Lampson, “Hints for Computer System Design,” in IEEE Software, Vol. 1, No. 1, 11-
28, Jan. 1984.

https://www.gutenberg.org/ebooks/2600
https://en.wikipedia.org/wiki/Amdahl%27s_law
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/nio/file/Files.xhtml#lines(java.nio.file.Path,java.nio.charset.Charset)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Random.xhtml
https://doi.org/10.1109/MS.1984.233391


Chapter 9. Handling null with
Optionals

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 9th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at rfernando@oreilly.com.

As a Java developer, you’ve most likely encountered your fair share of
NullPointerExceptions, and then some. Many people call the null
reference a billion-dollar mistake. Actually, the inventor of null itself
originally coined that phrase:



I call it my billion-dollar mistake.

It was the invention of the null reference in 1965. At that time, I was
designing the first comprehensive type system for references in an object-
oriented language (ALGOL W). My goal was to ensure that all use of
references should be absolutely safe, with checking performed
automatically by the compiler. But I couldn’t resist the temptation to put
in a null reference simply because it was so easy to implement.

This has led to innumerable errors, vulnerabilities, and system crashes,
which have probably caused a billion dollars of pain and damage in the
last forty years.

—Sir Charles Antony Richard Hoare, QCon London 2009

Although there is no absolute consensus on how to deal with this “mistake,”
many programming languages have a proper and idiomatic way of handling
null references, often directly integrated into the language itself.

This chapter will show you how Java handles null references and how to
improve it in your code with the Optional<T> type and its functional
API, and learn how, when, and when not to use Optionals.

The Problem with null References
Java’s handling of the absence of a value depends on the type. All primitive
types have default values, e.g., a zero-equivalent for numeric types and
false for boolean. Non-primitive types, like classes, interfaces, and
arrays, use null as their default value if unassigned, meaning the variable
isn’t referencing any object.

NOTE
The concept of reference types may seem similar to C/C++ pointers, but Java references
are a specialized type inside the JVM called reference. The JVM strictly controls
them to ensure type-safety and safe-guarding memory access.



A null reference isn’t just “nothing”; it’s a special state because null is
a generalized type that can be used for any object reference, regardless of
the actual type. If you attempt to access such a null reference, the JVM
will throw a NullPointerException, and the current thread will crash
if you don’t handle it appropriately. This is usually mitigated by a defensive
programming approach, requiring null checks everywhere at runtime, as
seen in Example 9-1.

Example 9-1. A minefield of possible nulls
record User(long id, String firstname, String lastname) {

  String fullname() {
    return String.format("%s %s", 
                         firstname(),
                         lastname());
  }

  String initials() {
    return String.format("%s%s",
                         firstname().substring(0, 1), 
                         lastname().substring(0, 1)); 
  }
}

var user = new User(42L, "Ben", null);

var fullname = user.fullname();
// => Ben null 

var initials = user.initials();
// => NullPointerException 

String.format accepts null values as long its not the sole value
for arguments1 after the format string. It translates to the string “null,”
regardless of the chosen format specifier, even for numeric ones.Using null as an argument in a method call might not crash the current
thread. however, calling a method on a null reference certainly does.

The previous example highlights two major problems in dealing with
null.



First, null references are valid values for variables, arguments, and return
values. That doesn’t mean that null is the expected, correct, or even
acceptable value for each of them and might not be handled correctly down
the line.

For example, calling getFullname on user in the previous example
worked fine with a null reference for lastname, but the output — “Ben
null" — is most likely not what’s intended. So even if your code and data
structures can handle null values superficially, you still might need to
check for them to ensure a correct outcome.

The second problem of null references is one of their main features: type
ambiguity. They can represent any type without actually being that
particular type. That unique property is necessary, so a single keyword can
represent the generalized concept of “absence of value” throughout your
code without resorting to different types or keywords for different object
types. Even though a null reference is usable just like the type it
represents, it still isn’t the type itself, as seen in Example 9-2.

Example 9-2. null type ambiguity
// "TYPE-LESS" NULL AS AN ARGUMENT

methodAcceptingString(null); 

// ACCESSING A "TYPED" NULL

String name = null;

var lowerCaseName = name.toLowerCase(); 
// => NullPointerException

// TEST TYPE OF NULL

var notString = name instanceof String; 
// => false

var stillNotString = ((String) name) instanceof String; 
// => false



null can represent any object type and, therefore, is a valid value for
any non-primitive argument.A variable referencing null is like any other variable of that type.
Except for any call on it will result in a NullPointerException.Testing a variable with instanceof will always evaluate to false
regardless of the type. Even if it’s explicitly cast into the required type,
the instanceof operator tests the underlying value itself. Therefore,
it tests against the typeless value null.

These are the most apparent sore points with null. Not to worry; there are
ways to ease the pain.

How to handle null in Java (before Optionals)
Dealing with null in Java is an essential and necessary part of every
developer’s work, even if it can be cumbersome. Encountering an
unexpected and unhandled NullPointerException is the root cause
of many problems and must be dealt with accordingly.

Other languages, like Swift, provide dedicated operators and idioms, in the
form of a safe navigation2 or null coalesce operator3 to make dealing with
null easier. Java doesn’t provide such built-in tools to handle null
references, though.

There were three different ways to deal with null references before
Optionals:

Best practices

Tool-assisted null-checks

Specialized types like Optional

As you will see later, handling null references shouldn’t rely solely on
Optionals. They are a great addition to the prior techniques by providing a
standardized and readily available specialized type within the JDK. Still,
they’re not the final thought on how to manage null throughout your

https://www.swift.org/


code, and knowing about all available techniques is a valuable addition to
your skills toolkit.

Best Practices for Handling null
If a language doesn’t provide integrated null handling, you must resort to
best practices and informal rules to null-proof your code. That’s why
many companies, teams, and projects develop their own coding style or
adapt existing ones to their needs to provide guidelines to write consistent
and safer code, not only regarding null. By adhering to these self-imposed
practices and rules, they’re able to write more predictable and less error-
prone code consistently.

You don’t have to develop or adapt a full-blown style guide defining every
aspect of your Java code. Instead, following these four rules are a good
starting point for handling null references:

Don’t Initialize a Variable to null
Variables should always have a non-null value. If the value depends on a
decision-making block like an if-else-statement, you should consider
either refactoring it into a method or, if it’s a simple decision, using the
ternary operator.

// DON'T 
 
String value = null; 
 
if (condition) {
  value = "Condition is true";
} else {
  value = "Fallback if false";
} 
 
// DO 
 
String asTernary = condition ? "Condition is true"
                             : "Fallback if false"; 
 
String asRefactored = refactoredMethod(condition);



The additional benefit is that it makes the variable effectively final if you
don’t reassign it later, so you can use them as out-of-body variables in
lambda expressions.

Don’t Pass, Accept, or Return null
As variables shouldn’t be null, so should any arguments and return values
avoid being null. Non-required arguments being null can be avoided by
overloading a method or constructor:

public record User(long id, String firstname, String lastname) { 
 
  // DO: Additional constructor with default values to avoid null 
values
  public User(long id) {
    this(id, "n/a", "n/a");
  } 
 
  // ...
}

If method signatures clash due to identical argument types, you can always
resort static methods with more explicit names instead.

After providing specific methods and constructors for optional values, you
shouldn’t accept null in the original ones if it’s appropriate. The easiest
way to do this is using the static requireNonNull method available
on java.util.Objects:

public record User(long id, String firstname, String lastname) { 
 
  // DO: Validate arguments against null
  public User {
    Objects.requireNonNull(firstname);
    Objects.requireNonNull(lastname);
  } 
 
  // ...
}



The requireNionNull call does the null-check for you and throws a
NullPointerException if appropriate. Since Java 14, any
NullPointerException includes the name of the variable that was
null, thanks to JEP 358. If you want to include a specific message or
target a previous Java version, you can add a String as the second
argument to the call.

Check Everything Outside Your Control
Even if you adhere to your own rules, you can’t rely on others to do, too.
Using non-familiar code, especially if not stated explicitly in the
documentation, should always be assumed to be possibly null and needs
to be checked.

null Is Acceptable as an Implementation Detail
Avoiding null is essential for the public surface of your code but is still
sensible as an implementation detail. Internally, a method might use null
as much as needed as long as it won’t return it to the callee.

When and When Not to Follow the Rules
These rules aim at reducing the general use of null whenever possible if
code is intersecting, like API surfaces, because less exposure leads to fewer
required null-checks and possible NullPointerExceptions. But
that doesn’t mean you should avoid null altogether. For example, in
isolated contexts, like local variables or non-public API, using null
isn’t as problematic and might even simplify your code as long as used
deliberately and with care.

You can’t expect everyone to follow the same rules as you or be as diligent,
so you need to be defensive with code, especially outside of your control.
This is all the more reason to consistently stick to your best practices and
also encourage others to do the same. They will improve your overall code
quality, regardless of null. But it’s not a silver bullet and requires
discipline among your team to gain the most benefits. Manually handling
null and adding a few null-checks is preferable to getting the

https://openjdk.org/jeps/358


unwelcome surprise in the form of a NullPointerException because
you assumed something could “never” be null. The JIT compiler4 will
even perform "null check elimination” to remove many explicit null
checks from optimized Assembly code thanks to its greater knowledge at
runtime.

Tool-Assisted null-checks
A logical extension of the best practices and informal rules approach is to
use third-party tools to enforce them automatically. For null references in
Java, an established best practice is to use annotations to mark variables,
arguments, and method return types as either @Nullable or @NonNull.

Before such annotations, the only place to document nullability was
JavaDoc. With these annotations, static code analysis tools can find possible
problems with null at compile time. Even better, adding these annotations
to your code gives your method signatures and type definitions a more
evident intent of how to use them and what to expect, as seen in Example 9-
3.

Example 9-3. Null handling with annotation
interface Example {

  @NonNull List<@Nullable String> getListOfNullableStrings(); 

  @Nullable List<@NonNull String> 
getNullableListOfNonNullStrings(); 

  void doWork(@Nullable String identifier); 
}

Returns a non-null List of possible null String objects.Returns a possible null List containing non-null String objects.The method argument identifier is allowed to be null.

The JDK doesn’t include these annotations, though, and the corresponding
JSR 305 state has been “dormant” since 2012. Nevertheless, it’s still the de
facto community standard and is widely adopted by libraries, frameworks,
and IDEs. Several libraries5 provide the missing annotations, and most tools
support multiple variants of them.

https://jcp.org/en/jsr/detail?id=305


WARNING
Even though the behavior of @NonNull and @Nullable seems evident on the
surface, the actual implementation might differ between tools, especially in edge cases6.

The general problem with a tool-assisted approach is the reliance on the
tool itself. If it’s too intrusive, you might end up with code that won’t run
without it, especially if the tool involves code generation “behind the
scenes.” In the case of null-related annotations, however, you don’t have
to worry much. Your code will still run without a tool interpreting the
annotations, and your variables and method signatures will still clearly
communicate their requirements to anyone using them, even if unenforced.

Specialized Types like Optional
A tool-assisted approach gives you compile-time null-checks, whereas
specialized types give you safer null-handling at runtime. Before Java
introduced its own Optional type, this gap in missing functionality was
bridged by different libraries, like the rudimentary Optional type
provided by the Google Guava framework since 2011.

Even though there’s now an integrated solution available in the JDK, Guava
doesn’t plan to deprecate the class in the foreseeable future7. Still, they
gently recommend that you prefer the new, standard Java Optional<T>
whenever possible.

Optionals to the Rescue
Java 8’s new Optional<T> isn’t only a specialized type to deal with
null consistently; it’s also a functional-akin pipeline benefiting from all
the functional additions available in the JDK.

What’s an Optional?

https://github.com/google/guava/wiki/Release10


The simplest way to think of the Optional<T> type is to see it as a box
containing an actual value that might be null. Instead of passing around a
possible null reference, you use the box, as seen in Figure 9-1.

Figure 9-1. Variable versus Optional<T>

The box provides a safe wrapper around its inner value. Optionals do not
only wrap a value, though. Starting from this box, you can build intricate
call chains that depend on a value’s existence or absence. They can manage
the whole lifecycle of a possible value until the box is unwrapped, including
a fallback if no value is present, in such a call chain.



THE PURPOSE AND DESIGN GOAL OF OPTIONAL<T>

Looking more closely at Optional’s origins and original design goal,
they are not the general purpose tool you might think they were.

The original design goal was to create a new type to support the
optional return idiom, meaning that it represents the result of a query or
collection access. That behavior is clearly visible in the Optional-based
terminal Stream operations.

Taking Optionals beyond that initial scope offers many advantages
compared to manual null-handling. However, remember that any
feature, like Optionals, Streams, or a functional approach in general,
should always be a deliberate decision because it benefits your code and
mental model of what it’s supposed to achieve.

The downside of using a wrapper, though, is having to actually look and
reach into the box if you want to use its inner value. Like Streams, the
additional wrapper also creates an unavoidable overhead regarding method
calls and their additional stack frames. On the other hand, the box provides
additional functionality for more concise and straightforward code for
common workflows with possible null values.

As an example, let’s look at the workflow of loading content by an
identifier. The numbers in Figure 9-2 correspond to the upcoming code in
Example 9-5.



Figure 9-2. Workflow of loading content

The workflow is simplified and doesn’t handle all edge cases, but it’s a
straightforward example of converting a multi-step workflow into an
Optional call chain. In Example 9-4, you see the workflow implemented
without the help of Optionals first.

Example 9-4. Loading content without Optionals
public Content loadFromDB(String contentId) {
  // ...
} 
 
public Content get(String contentId) { 
 
  if (contentId == null) {
    return null;



  } 
 
  if (contentId.isBlank()) {
    return null;
  } 
 
  var cacheKey = contentId.toLowerCase(); 
 
  var content = this.cache.get(cacheKey);
  if (content == null) {
    content = loadFromDB(contentId);
  } 
 
  if (content == null) {
    return null;
  } 
 
  if (!content.isPublished()) {
    return null;
  } 
 
  return content;
}

The example is exaggerated to make a point, but still mostly reflects a
typical approach to defensive null-handling.

There are three explicit null-checks, plus two decisions to be made about
a current value and two temporary variables. Even though it’s not much
code, the overall flow isn’t easily graspable with its many if-blocks and
early returns.

Let’s convert the code to a single Optional call chain, as shown in
Example 9-5. Don’t worry! The upcoming sections will explain the
different kinds of operations in detail.

Example 9-5. Loading content with an Optional call chain
public Optional<Content> loadFromDB(String contentId) {
  // ...
}

public Optional<Content> get(String contentId) {

  return Optional.ofNullable(contentId) 
                 .filter(Predicate.not(String::isBlank)) 



                 .map(String::toLowerCase) 
                 .map(this.cache::get); 
                 .or(() -> loadFromDB(contentId)) 
                 .filter(Content::isPublished); 
}

The first possible null-check is done by using the ofNullable
creation method.The next if-block is replaced by a filter operation.Instead of using temporary variables, the map operation transforms the
value to match the next call.The content is also retrievable by a map operation.Load the content from the database if no value is present in the pipeline.
This call will return another Optional so that the call chain can continue.Ensure only published content is available.

The Optional call chain condenses the overall code to one operation per
line, making the overall flow easily graspable. It perfectly highlights the
difference between using an Optional call chain and the “traditional” way of
null checking everything.

Let’s take a look at the different steps of creating and working with
Optional pipelines.

Building Optional Pipelines
As of Java 17, Optional<T> provides three static and 15 instance
methods belonging to one of four groups representing different parts of an
Optional pipeline:

Creating a new Optional<T> instance

Checking for values or reacting to the presence or absence of a value

Filtering and transforming a value

Getting the value or having a backup plan

These operations can build a fluent pipeline, similar to Streams. Contrary to
Streams, though, they are not lazily connected until a terminal-like
operation is added to the pipeline, as I discussed in “Streams as Functional
Data Pipelines”. Every operation resolves as soon as it’s added to the fluent



call. Optionals only appear lazy because they might return an empty
Optional or a fallback value and skip transforming or filtering steps
altogether. Still, that doesn’t make the call chain itself lazy. However, the
executed work is as minimal as possible if a null-value is encountered,
regardless of the operation count.

You can think of an Optional call chain as two train tracks, as illustrated in
Figure 9-3.

Figure 9-3. Optional Train Tracks

In this analogy, we have two train tracks: the Optional call chain track that
leads to returning an Optional<T> with an inner value and the “empty
express track” that leads to an empty Optional<T>. A train always starts
on the Optional<T> call train track. When it encounters a track switch
(an Optional operation), it looks for a null value, in which case, the train
will switch to the empty express track. Once on the express track, there is
no chance of returning to the Optional call chain track, at least not until
Java 9, as you’ll see in “Getting a (fallback) value”.

Technically, it will still call each method on the Optional call chain after
switching to the empty express track, but it’ll just validate parameters and
move on. If the train didn’t encounter a null value by the time it reaches
the end of its route, it returns a non-empty Optional<T>. If it encounters
a null value at any point along the route, it will return an empty
Optional<T>.



To get the train rolling, let’s create some Optionals.

Creating an Optional
There are no public constructors available on the Optional<T> type.
Instead, it gives you three static factory methods to create new
instances. Which one to use depends on your use case and prior knowledge
of the inner value:

Optional.ofNullable(T value) if the value might be null

If you know a value might be null or don’t care if it might be empty,
use the method Optional.ofNullable(… ) to create a new
instance with a possible inner null value. It’s the simplest and most
bullet-proof form of creating an Optional<T>.

String hasValue = "Optionals are awesome!";
Optional<String> maybeValue = Optional.ofNullable(hasValue); 
 
String nullRef = null;
Optional<String> emptyOptional = Optional.ofNullable(nullRef);

Optional.of(T value) if the value must be non-null

Even though Optionals are a great way to deal with null and prevent a
NullPointerException, what if you have to make sure you have
a value? For example, you already handled any edge cases in your code 
— which returned empty Optionals — and now you definitely have a
value. The method Optional.of(… ) ensures that the value is non-
null and throws an NullPointerException otherwise. This way,
the exception signifies a real problem in your code. Maybe you missed
an edge case, or a particular external method call has changed and
returns null now. Using Optional.of(… ) in such a context makes
your code more future-proof and resilient against unwanted changes in
behavior.



var value = "Optionals are awesome!";
Optional<String> mustHaveValue = Optional.of(value); 
 
value = null;
Optional<String> emptyOptional = Optional.of(value);
// => throws NullPointerException

Optional.empty() if there’s no value

If you already know there’s no value at all, you can use the static
method Optional.empty(). The call
Optional.ofNullable(null) is unnecessary because there will
be just an unnecessary null check before calling empty() itself.

Optional<String> noValue = Optional.empty();

WARNING
The JDK documentation explicitly mentions that the value returned by the static
Optional.empty method isn’t guaranteed to be a singleton object. So you shouldn’t
compare empty Optionals with == (double-equals), and use equals(Object obj)
or compare the result of the isEmpty method instead.

Using Optional.ofNullable(T value) might be the most null-
tolerant creation method, but you should strive to use the most fitting one to
represent your use case and context knowledge. Code might get refactored
or rewritten over time, and it’s better to have your code throw a
NullPointerException for a suddenly missing value that’s actually
required as an additional safeguard, even if the API itself is using
Optionals.

Checking for and Reacting to Values
Optionals are meant to wrap a value and represent its existence or absence.
They are implemented as a Java type and are, therefore, a runtime-level
feature and incur an unavoidable overhead associated with object creation.



To compensate for this, checking for values should be as straightforward as
possible.

There are four methods available for checking for and reacting to values or
their absence. They are prefixed with "is" for checks and "if" for reactive
higher-order functions:

boolean isPresent()

boolean isEmpty() (Java 11+)

Solely checking for a value has its purposes, but checking, retrieving, and
using a value requires three separate steps when you use "is" methods.

That’s why the higher-order "if" methods consume a value directly:

void ifPresent(Consumer<? super T> action)

void ifPresentOrElse(Consumer<? super T>
action, Runnable emptyAction)

Both methods only perform the given action if a value is present. The
second method runs the emptyAction if no value is present. null
actions aren’t allowed and throw a NullPointerException. There are
no ifEmpty…  equivalents available.

Let’s look at how to use these methods in Example 9-6.

Example 9-6. Checking for Optional values
Optional<String> maybeValue = ...; 
 
// VERBOSE VERSION 
 
if (maybeValue.isPresent()) {
  var value = maybeValue.orElseThrow();
  System.out.println(value);
} else {
  System.out.println("No value found!");
} 
 
 
// CONCISE VERSION 



 
maybeValue.ifPresentOrElse(System.out::println,
                           () -> System.out.println("No value 
found!"));

Both "ifPresent" methods perform side-effects-only code due to a lack
of a return type. Even though pure functions are generally preferable in a
functional approach, Optionals live somewhere between accepting
functional code and fitting right into imperative code.

Filtering and Mapping
Safely handling possible null values already removes a considerable
burden from any developer, but Optionals allow for more than just checking
for the presence or absence of a value.

Similar to Streams, you build a pipeline with intermediate-like operations.
There are three operations for filtering and mapping Optionals:

Optional<T> filter(Predicate<? super T>
predicate)

<U> Optional<U> map(Function<? super T, ?
extends U> mapper)

<U> Optional<U> flatMap(Function<? super T, ?
extends Optional<? extends U>> mapper)

The filter operation returns this if a value is present and matches the
given predicate. If no value is present or the predicate doesn’t match the
value, an empty Optional is returned.

The map operation transforms a present value with the provided mapper
function, returning a new nullable Optional containing the mapped value. If
no value is present, the operation returns an empty Optional<U> instead.

The flatMap is used if the mapping function returns an Optional<U>
instead of a concrete value of type U. If you would use the map in this case,
the return value would be an Optional<Optional<U>>. That’s why



the flatMap returns the mapped value directly instead of wrapping it into
another Optional.

Example 9-7 shows an Optional call chain and the non-Optional equivalent
for a hypothetical permissions container and its sub-types. The code
callouts are attached to both versions to show the corresponding operations,
but their descriptions are for the Optional version.

Example 9-7. Intermediate operations to find an active admin
public record Permissions(List<String> permissions, Group group) {
  public boolean isEmpty() {
    return permissions.isEmpty();
  }
}

public record Group(Optional<User> admin) {
  // NO BODY
}

public record User(boolean isActive) {
    // NO BODY
}

Permissions permissions = ...;

boolean isActiveAdmin =
  Optional.ofNullable(permissions) 
          .filter(Predicate.not(Permissions::isEmpty)) 
          .map(Permissions::group) 
          .flatMap(Group::admin) 
          .map(User::isActive) 
          .orElse(Boolean.FALSE); 

The initial null-check is covered by creating an
Optional<Permissions>.Filter for non-empty permissions. With the help of the static
Predicate.not method, the lambda permissions →
!permissions.isEmpty() is replaced with a more readable
wrapped method reference.Get the group of the permissions object. It doesn’t matter if the
Permissions::group returns null because the Optional call
chain will figuratively skip to its value-retrieving operation if that’s the
case. In reality, an empty Optional is passing through the fluent calls.



The group might not have an admin. That’s why it returns an
Optional<User>. If you simply use map(Group::admin), you
will have an Optional<Optional<User>> in the next step.
Thanks to flatMap(Group::admin), no unnecessarily nested
Optional is created.With the User object, you can filter out non-active ones.If any method of the call chain returns an empty Optional, e.g., the
group was null, the last operation returns the fallback value
Boolean.FALSE. The next section will explain the different types of
value-retrieval operations.

Every step of the underlying problem that needs to be solved is laid out in
clear, isolated, and directly connected steps. Any validation and decision-
making, like null or empty-checks, is wrapped up in dedicated operations
built on method references. The intent and flow of the problem to be solved
are clearly visible and easy to grasp.

Doing the same thing without Optionals results in a nested mess of code, as
seen in Example 9-8.

Example 9-8. Finding an active admin without Optionals
boolean isActiveAdmin = false; 
 
if (permissions != null && !permissions.isEmpty()) { 
 
  if (permissions.group() != null) {
    var group = permissions.group();
    var maybeAdmin = group.admin(); 
 
    if (maybeAdmin.isPresent()) {
      var admin = maybeAdmin.orElseThrow();
      isActiveAdmin = admin.isActive();
    }
  }
}

The difference between the two versions is quite noticeable.

The non-Optional version can’t delegate any conditions or checks and relies
on explicit if-statements. That creates deeply nested flow structures,
increasing the cyclomatic complexity of your code. It’s harder to understand



the overall intent of the code block, and it is not as concise as with an
Optional call chain.

NOTE
Cyclomatic Complexity8 is a metric used to determine code complexity. It’s based on the
number of branching paths — or decisions — in your code. The general idea is that
straight, non-nested statements and expressions are more accessible to follow and less
error-prone than deeply nested decision branches, like nested if-statements.

Getting a (fallback) value
Optionals might provide a safe wrapper for possible null values, but you
might need an actual value at some point. There are multiple ways to
retrieve an Optional’s inner value, ranging from “brute force” to providing
fallback values.

The first method doesn’t concern itself with any safety checks:

T get()

The Optional is unwrapped forcefully, and if no value is present, a
NoSuchElementException is thrown, so make sure to check that a
value exists beforehand.

The next two methods provide a fallback value if no value is present:

T orElse(T other)

T orElseGet(Supplier<? extends T> supplier)

The Supplier-based variant allows for lazily getting a fallback, which is
immensely useful if creating it is resource intensive.

There are two methods available to throw Exceptions:

<X extends Throwable> T orElseThrow(Supplier<?
extends X> exceptionSupplier)



T orElseThrow() (Java 10+)

Even though one of the main advantages of Optionals is preventing
NullPointerException, sometimes you still need a domain-specific
exception if there’s no value present. With the orElseThrow operation,
you have fine-grained control about handling a missing value and what
exception to throw, too. The second method, orElseThrow, was added as
a semantically correct and preferred alternative to the get operation. Even
though the call isn’t as concise, it better fits into the overall naming scheme
and confers that an Exception might be thrown.

Java 9 added two additional methods for providing another Optional<T>
as a fallback or a Stream<T>. These allow more complex call chains than
before:

The first one, Optional<T> or(Supplier<? extends
Optional<? extends T>> supplier), lazily returns another
Optional if no value is present. This way, you can continue an Optional call
chain, even if no value was present before calling or. To go back to the
“train track” analogy, the or operation is a way to provide a track switch
back from the empty express track by creating a new starting point on the
Optional call chain track.

The other one, Stream<T> stream(), returns a Stream containing the
value as its sole element or an empty Stream if no value is present. Usually
used in the intermediate Stream operation flatMap as a method reference.
The Optional stream operation plays a broader role in the interoperability
with the Stream API I discussed in Chapter 7.

Optionals and Streams
As discussed in previous chapters, Streams are pipelines that filter and
transform elements into the desired outcome. Optionals fit right in as a
functional wrapper for possible null references, but they must play by the



rules of Stream pipelines when used as elements and confer their state to the
pipeline.

Optionals as Stream Elements
With Streams, elements are excluded from further processing by using a
filtering operation to discard them. In essence, Optionals themselves
represent a kind of filtering operation, although not directly compatible with
how Streams expect elements to behave.

If a Stream element is excluded by a filter operation, it won’t traverse
the Stream further. This could be achieved by using
Optional::isPresent as the filter operation’s argument.
However, the resulting Stream in the case of an inner value,
Stream<Optional<User>>, isn’t what you want.

To restore “normal” Stream semantics, you need to map the Stream from
Stream<Optional<User>> to Stream<User>, as seen in
Example 9-9.

Example 9-9. Optionals as Stream elements
List<Permissions> permissions = ...;

List<User> activeUsers =
  permissions.stream()
             .filter(Predicate.not(Permissions::isEmpty))
             .map(Permissions::group)
             .map(Group::admin) 
             .filter(Optional::isPresent) 
             .map(Optional::orElseThrow) 
             .filter(User::isActive)
             .toList();

The Group::admin method reference returns an
Optional<User>. At this point, the Stream becomes a
Stream<Optional<User>>.The Stream pipeline requires multiple operations to check for a value
and safely unwrap it from its Optional.



Filtering and mapping an Optional<T> is such a standard use case for
Optionals in Streams that Java 9 added the stream method to the
Optional<T> type. It returns a Stream<T> containing the inner value
if present as its sole element, or otherwise, an empty Stream<T>. This
makes it the most concise way to combine the power of Optionals and
Streams by using the Stream’s flatMap operation instead of a dedicated
filter and map operation, as seen in Example 9-10.

Example 9-10. Optionals as Stream elements with flatMap
List<Permissions> permissions = ...; 
 
List<User> activeUsers =
  permissions.stream()
             .filter(Predicate.not(Permissions::isEmpty))
             .map(Permissions::group)
             .map(Group::admin)
             .flatMap(Optional::stream)
             .filter(User::isActive)
             .toList();

A singular flatMap call replaces the previous filter and map
operations. Even if you only save a single method call — one flatMap
instead of filter plus map operation -- , the resulting code is easier to
reason with and better illustrates the desired workflow. The flatMap
operation conveys all the necessary information for understanding the
Stream pipeline without adding any complexity by requiring additional
steps. Handling Optionals is a necessity, and it should be done as concisely
as possible so that the overall Stream pipeline is as understandable and
straightforward.

There’s no reason to design your APIs without Optionals just to avoid
flatMap operations in Streams. If Group::getAdmin would return
null, you would still have to add a null-check in another filter
operation anyways. Replacing a flatMap operation with a filter
operation gains you nothing, except the admin call now requires explicit
null-handling afterwards, even if it’s no longer obvious from its signature.



Terminal Stream Operations
Using Optionals in Streams isn’t restricted to intermediate operations. Five
of the Stream API’s terminal operations return an Optional<T> to
provide an improved representation of their return value. All of them try to
either find an element or reduce the Stream. In the case of an empty Stream,
these operations need a sensible representation of an absentee value.
Optionals exemplify this concept, so it was the logical choice to use them
instead of returning null.

Finding an Element
In the Stream API, the prefix "find" represents, as you might have
guessed by its name, “finding” an element based on its existence. There are
two "find" operations available with distinct semantics depending on the
Stream being parallel or serial:

Optional<T> findFirst()

Returns an Optional of the first element of a Stream or an empty
Optional if the Stream is empty. There’s no difference between parallel
and serial Streams. Any element might be returned if the Stream lacks
an encounter order.

Optional<T> findAny()

Returns an Optional of any element of a Stream or an empty Optional if
the Stream is empty. The returned element is non-deterministic to
maximize performance in parallel streams. The first element is returned
in most cases, but there’s no guarantee for this behavior! So use
findFirst instead for a consistent return element.

The "find" operations work solely on the concept of existence, so you
need to filter the Stream elements accordingly beforehand. If you only want
to know if a particular element exists and don’t need the element itself, you
can use one of the corresponding "match" methods:



boolean anyMatch(Predicate<? super T>
predicate)

boolean noneMatch(Predicate<? super T>
predicate)

These terminal operations include the filtering operation and avoid creating
an unnecessary Optional<T> instance.

Reducing to a Single Value
Reducing a Stream by combining or accumulating its elements into a new
data structure is one of a Stream’s primary purposes. And just like the find
operations, reducing operators have to deal with empty Streams.

That’s why there are three terminal reduce operations available for
Streams, with one returning an Optional: Optional<T>
reduce(BinaryOperator<T> accumulator)

It reduces the elements of the Stream using the provided accumulator
operator. The returned value is the result of the reduction, or an empty
Optional if the Stream is empty.

See Example 9-11 for an equivalent pseudo-code example from the official
documentation9.

Example 9-11. Pseudo-code equivalent to the reduce operation
Optional<T> pseudoReduce(BinaryOperator<T> accumulator) {
  boolean foundAny = false;
  T result = null; 
 
  for (T element : elements]) {
    if (!foundAny) {
      foundAny = true;
      result = element;
    } else {
      result = accumulator.apply(result, element);
    }
  } 
 
  return foundAny ? Optional.of(result)



                  : Optional.empty();
}

The two other reduce methods require an initial value to combine the
stream elements with, so a concrete value can be returned instead of an
Optional. See “Reducing Elements” for a more detailed explanation and
examples of how to use them in Streams.

Besides the generic reduce methods, there are also two common use
cases of reduction available as methods:

Optional<T> min (Comparator<? super T>
comparator)

Optional<T> max(Comparator<? super T>
comparator)

These methods return the “minimal” or “maximal” element based on the
provided comparator or an empty Optional if the Stream is empty.

An Optional<T> is the only suitable type to be returned by min/max.
You have to check anyway if there’s a result of the operation. Adding
additional min/max methods with a fallback value as an argument would
clutter up the Stream interface. Thanks to the returned Optional, you can
easily check if a result exists or resort to a fallback value or exception
instead.

Optional Primitives
You might ask yourself why you might even need an Optional of a primitive
because a primitive variable can never be null. If not initialized, any
primitive has a value equivalent to zero for their respective type.

Even though that’s technically correct, Optionals aren’t simply about
preventing values from being null. They also represent an actual state of
“nothingness" — an absence of a value — that primitives lack.



In many cases, the default values of primitive types are adequate, like
representing a networking port: zero is an invalid port number, so you have
to deal with it anyway. if zero is a valid value, though, expressing its actual
absence becomes more difficult.

Using primitives directly with the Optional<T> type is a no-go because
primitives can’t be generic types. However, just like with Streams, there are
two ways to deal with optional primitives values: autoboxing or specialized
types.

“Primitive Types” highlighted the problems of using object-wrapper classes
and the overhead they introduce. On the other hand, autoboxing isn’t free
either.

The usual primitive types are available as dedicated Optional variants:

java.util.OptionalInt

java.util.OptionalLong

java.util.OptionalDouble

Their semantics are almost identical to their generic counterpart, but they
do not inherit from Optional<T> or share a common interface. The
features aren’t identical either, as multiple operations, like filter, map,
or flatMap, are missing.

The primitive Optional types may remove unnecessary autoboxing, which
can improve performance but lack the full functionality that
Optional<T> offers. Also, unlike the primitive Stream variants I
discussed in “Primitive Streams”, there’s no way to easily convert between
a primitive Optional variant and its corresponding Optional<T>
equivalent.

Even though it would be easy to create your own wrapper type to improve
the handling of Optional values, especially for primitives, I wouldn’t
recommend doing it under most circumstances. For internal or private
implementations, you can use any wrapper you want or need. But the



public seams of your code should always strive to stick to the most
anticipated and available types. Usually, that means what’s already included
in the JDK.

Caveats
Optionals can enormously improve null handling for the JDK by
providing a versatile “box” to hold possible null values and a (partially)
functional API to build pipelines dealing with the presence or absence of
that value. Although the upsides are certainly useful, it also comes with
some noteworthy downsides you need to be aware of to use them correctly
and without any unexpected surprises.

Optionals are ordinary types
The most obvious downside of Optional<T> and its primitive variants is
that they’re ordinary types. Without deeper integration into Java’s syntax,
such as the new syntax for lambda expressions, they suffer from the same
null reference problems as any other type in the JDK.

That’s why you must still adhere to best practices and informal rules to not
counter-act the benefits of using Optionals in the first place. If you design
an API and decide to use Optionals as a return type, you must not return
null for it under any circumstances! Returning an Optional is a clear
signal that anyone using the API will receive at least a “box” that might
contain a value instead of a possible null value. If no value is possible,
always use an empty Optional or the primitive equivalent instead.

This essential design requirement has to be enforced by convention, though.
The compiler won’t help you there without additional tools, like
SonarSource10.

Identity-sensitive Methods

https://www.sonarsource.com/


Even though Optionals are ordinary types, the identity-sensitive methods
might work differently from what you expect. This includes the reference
equality operator == (double-equals), using the hashCode method, or
using an instance for thread synchronization.

NOTE
Object identity tells you whether two different objects share the same memory address
and are, therefore, the same object. This is tested by the reference equality operator ==
(double-equals). Equality of two objects, which is tested with their equals method,
means they contain the same state.

Two identical objects are also equal, but the reverse isn’t necessarily true. Just because
two objects contain the same state doesn’t automatically mean they also share the same
memory address.

The difference in behavior lies in Optional’s nature of being value-based
type, meaning its inner value is its primary concern. Methods like equals,
hashCode, and toString are solely based on the inner value and ignore
the actual object identity. That’s why you should treat Optional instances as
interchangeable and unsuited for identity-related operations like
synchronizing concurrent code, as stated in the official documentation11.

Performance-Overhead
Another point to consider when using Optionals is the performance
implications, especially outside their primary design goal as return types.

Optionals are easy to (mis-)use for simple null-checks and provide a
fallback value if no inner value is present:

// DON'T DO THIS 
 
String value = Optional.ofNullable(maybeNull)
                       .orElse(fallbackValue); 
 
 
// DON'T DO THIS 



 
if (Optional.ofNullable(maybeNull).isPresent()) {
  // ...
}

Such simple Optional pipelines require a new Optional instance, and
every method call creates a new stack frame that the JVM can’t optimize
your code as easily as a simple null-check. Creating an Optional doesn’t
make much sense without additional operations besides checking for
existence or providing a fallback.

Using alternatives like the ternary operator or a direct null-check should
be your preferred solution:

// DO THIS INSTEAD 
 
String value = maybeNull != null ? maybeNull
                                 : fallbackValue; 
 
 
// DO THIS INSTEAD 
 
if (maybeNull != null) {
  // ...
}

Using an Optional instead of a ternary operator might look nicer and saves
you from repeating maybeNull. Reducing the number of instance
creations and method invocations is usually preferable.

If you still want a more visually pleasing alternative to the ternary operator,
Java 9 introduced two static helper methods on
java.util.Objects wrapping the task of checking for null and
providing an alternative value:

T requireNonNullElse(T obj, T defaultObj)

T requireNonNullElseGet(T obj, Supplier<?
extends T> supplier)



The fallback value, or in the case of the second method, the result of the
Supplier, must be non-null, too.

Saving a few CPU cycles means nothing compared to a crash due to an
unexpected NullPointerException. Just like with Streams, there’s a
trade-off to be made between performance and safer and more
straightforward code. You need to find the balance between those based on
your requirements.

Special Considerations for Collections
null is the technical representation of the absence of a value. Optionals
give you a tool to represent this absence safely with an actual object that
allows further transformation, filtering, and more. Collection-based types,
though, can already represent an absence of their inner values.

A collection type is already a “box” that handles values, so wrapping it in
an Optional<T> creates yet another layer you must deal with. An empty
collection already indicates the absence of inner values, so using an empty
collection as the alternative to null eliminates a possible
NullPointerException and the need for an additional layer by using
an Optional.

Of course, you still have to deal with the absence of the collection itself,
meaning a null reference. If possible, you shouldn’t use null for
collections at all, neither as arguments nor return values. Designing your
code to always use an empty collection instead of null will have the same
effect as an Optional. If you still need to discern between null and an
empty collection, or the related code isn’t under your control or can’t be
changed, a null-check might still be preferable to introducing another
layer to deal with.

Optionals and Serialization
The Optional<T> type and the primitive variants don’t implement
java.io.Serializable, making them unsuited for private fields in



serializable types. This decision was made deliberately by its design group
because Optionals are supposed to provide the possibility of an optional
return value, not be a general-purpose solution for nullability. Making
Optional<T> serializable would encourage use cases far beyond its
intended design goal.

To still reap the benefits of Optionals in your object and maintain
serializability, you can use them for your public API but use non-
Optional fields as an implementation detail, as shown in Example 9-12

Example 9-12. Using Optionals in Serializable types
public class User implements Serializable { 
 
  private UUID id;
  private String username;
  private LocalDateTime lastLogin; 
 
  // ... usual getter/setter for id and username 
 
  public Optional<LocalDateTime> getLastLogin() {
    return Optional.ofNullable(this.lastLogin);
  } 
 
  public void setLastLogin(LocalDateTime lastLogin) {
    this.lastLogin = lastLogin;
  }
}

By relying only on an Optional in the getter for lastLogin, the type
remains serializable but still provides an Optional API.

Final Thoughts on null References
Although it’s called a billion-dollar mistake, null isn’t inherently evil. Sir
Charles Antony Richard Hoare, the inventor of null, believes that
programming language designers should be responsible for errors in
programs written in their language12.

A language should provide a solid foundation with a good deal of ingenuity
and control. Allowing null references is one of many design choices for



Java, nothing more. Java’s catch or specify requirement, as explained in
Chapter 10, and try-catch-blocks provide you with tools against
apparent errors. But with null being a valid value for any type, every
reference is a possible crash waiting to happen. Even if you think something
can never be null, experience tells us that it may be possible at some point
in time.

The existence of null references doesn’t qualify a language as poorly
designed. null has its place, but it requires you to be more attentive to
your code. This doesn’t mean you should replace every single variable and
argument in your code with Optionals, either.

Optionals were intended to provide a limited mechanism for optional return
values, so don’t over- or misuse them just because it seems convenient. In
code under your control, you can make more assumptions and guarantees
about the possible nullability of references and deal with it accordingly,
even without Optionals. If you follow the other principles highlighted in
this book — like small, self-contained, pure functions without side effects 
— it’s way easier to make sure your code won’t return a null reference
unexpectedly.

Takeaways
There’s no language-level or special syntax available for null-
handling in Java.

null is a special case that can represent both the states of “doesn’t
exist” and “undefined” without you being able to distinguish them.

The Optional<T> type allows for dedicated null-handling these
states with operation chains and fallbacks.

Specialized types for primitives are also available, although they don’t
provide feature parity.



Other approaches for null-handling exist, like annotations or best
practices.

Not everything is a good fit for Optionals. If a data structure already
has a concept of emptiness, like collections, adding another layer is
contra-productive. You shouldn’t wrap it into an Optional unless you
are required to represent an “undefined” state, too.

Optionals and Streams are interoperable without much friction.

Optionals aren’t serializable, so don’t use them as private fields if you
need to serialize your type. Instead, use Optionals as return values for
getters.

Alternative implementations exist, like in the Google Guava
framework, even though Google itself recommends using Java’s
Optional instead.

null isn’t evil per se. Don’t replace every variable with Optionals
without a good reason.

1  Varargs don’t accept null as a sole argument because it’s an inexact argument type, because
it might represent Object or Object[]. To pass a single null to a vararg you need to wrap
it in an array: new Object[]{ null }.

2  Many programming languages have a dedicated operator to safely call fields or methods on
possible null references. The Wikipedia article on the safe-navigation operator has an in-
depth explanation and examples in many languages.

3  The null coalescing operator is like a shortened ternary operator. The expression x !=
null ? x : y is shortened to x ?: y, with ?: (question-mark colon) being the operator.
Not all languages use the same operator, though. The Wikipedia article gives an overview of
different programming languages supporting which operator form.

4  Java’s JIT (just-in-time) compiler performs a myriad of optimizations to improve the executed
code. If necessary, it recompiles code when more information about how it’s executed becomes
available. An overview of possible optimization is available on the Open JDK Wiki.

5  The most common libraries to provide the marker annotation are FindBugz (up to Java 8), and
its spiritual successor SpotBugz. JetBrains, the creator of the IntelliJ IDE and the JVM
language Kotlin, also provide a package containing the annotations.

https://github.com/google/guava
https://en.wikipedia.org/wiki/Safe_navigation_operator
https://en.wikipedia.org/wiki/Null_coalescing_operator
https://wiki.openjdk.org/display/HotSpot/PerformanceTechniques
http://findbugs.sourceforge.net/
https://spotbugs.github.io/
https://github.com/JetBrains/java-annotations


6  The Checker Framework has an example of such “non-standard” behavior between different
tools.

7  The documentation of Guava’s Optional<T> explicitly mentions that the JDK variant
should be preferred.

8  McCabe, TJ. 1976. “A Complexity Measure” IEEE Transactions on Software Engineering,
December 1976, Vol. SE-2 No. 4, 308–320.

9  Documentation for Optional<T> reduce (BinaryOperator<T> accumulator).

10  The SonarSource rule RSPEC-2789 checks for Optionals being null.

11  The official doumentation explicitly mentions unpredictable identity method behavior as an
“API Note.”

12  Sir Charles Antony Richard Hoare expressed this view in his talk “Null References: The
Billion Dollar Mistake” at QCon London in 2009.

https://checkerframework.org/
https://checkerframework.org/manual/#findbugs-nullable
https://guava.dev/releases/snapshot-jre/api/docs/com/google/common/base/Optional.xhtml
https://doi.org/10.1109/TSE.1976.233837
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/stream/Stream.xhtml#reduce(java.util.function.BinaryOperator)
https://www.sonarsource.com/
https://rules.sonarsource.com/java/RSPEC-2789
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Optional.xhtml
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://qconlondon.com/london-2009/qconlondon.com/london-2009/presentation/Null%2bReferences_%2bThe%2bBillion%2bDollar%2bMistake.xhtml


Chapter 10. Functional
Exception Handling

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 10th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at rfernando@oreilly.com.

As much as we would like to write perfect and error-free code, it’s an
almost impossible endeavor. That’s why we need a way to deal with
inevitable problems in our code. Java’s mechanism of choice to deal with
such disruptive and abnormal control flow conditions is Exceptions.

Exception handling can be tricky, even in imperative and OO code.
Combining Exceptions with a functional approach, however, can be a real
challenge because the techniques are fraught with considerations and
requirements. Although there are third-party libraries that can assist with
this, you may not want to rely solely on them in the long term by incurring
technical debt due to a new dependency, instead of adapting to a more
functional approach overall.

This chapter will show you the different kinds of Exceptions and their
impact on functional programming with lambdas. You will learn how to



handle Exceptions in lambdas as well as alternative ways to approach
control flow disruptions in a functional context.

Java Exception Handling in a Nutshell
In general, an Exception is a special event that happens during the
execution of a program that disrupts the normal flow of instructions. This
concept is present in many different programming languages, not only in
Java, and traces back to the origins of Lisp1.

The actual form of how Exceptions are handled depends on the language.

The try-catch
Java’s mechanism of choice is the try-catch-block which is an integral
element of the language.

try {
  return doCalculation(input);
} catch (ArithmeticException e) {
  this.log.error("Calculation failed", e);
  return null;
}

The overall concept of it has slightly evolved since its inception. Instead of
requiring multiple catch blocks, you can catch more than one Exception
with a multi-catch block by using | (pipe) between their types:

try {
  return doCalculation(input);
} catch (ArithmeticException | IllegalArgumentException e) {
  this.log.error("Calculation failed", e);
  return null;
}

If you need to handle resources, using a try-with-resources
construct will automatically close any resource that implements

https://docs.oracle.com/javase/7/docs/technotes/guides/language/catch-multiple.xhtml
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.xhtml


AutoCloseable:

try (var fileReader = new FileReader(file);
     var bufferedReader = new BufferedReader(fileReader)) { 
 
    var firstLine = bufferedReader.readLine();
    System.out.println(firstLine);
} catch (IOException e) {
  System.err.printlin("Couldn't read first line of " + file);
}

Regardless of which variant you use, you will end up with an Exception
that disrupts the flow of execution of your code by jumping from the origin
of the thrown Exception to the nearest catch point up the call stack or
crashing the current thread if none is available.

The Different Types of Exceptions and Errors
There are three types of control flow disruptions in Java, with disparate
requirements regarding their handling in your code: checked and unchecked
Exceptions, and Errors.

Checked Exceptions
Checked Exceptions are anticipated and potentially recoverable events
outside the normal control flow. For example, you should always expect the
possibility of a missing file (FileNotFoundException) or an invalid
URL (MalformedURLException). Because they’re anticipated, they
must adhere to Java’s catch-or-specify requirement.



CATCH-OR-SPECIFY
The catch-or-specify requirement declares that your code must honor
one of the following conditions while dealing with checked Exceptions:

Catch the Exception in its current context

An appropriate handler — a catch-block — is provided to catch
the specific Exception or one of its base types.

Specify thrown Exceptions in the method’s signature

The surrounding method signifies its thrown Exception types by
using the throws keyword, followed by a comma-separated list of
possible checked Exceptions.

This requirement must be obliged, and the compiler forces you to
adhere to at least one of the two conditions. The reliability and
resilience of your code will improve by allowing you to recover
gracefully or hand over the liability down the line instead of completely
ignoring the Exception. Either flag possible exceptional states or handle
them directly.

There’s no need to specify an Exception type if you catch and handle it.
An unnecessary throws declaration forces the caller of such a method
to comply with the catch-or-specify requirement, too.

Unchecked Exceptions
Unchecked Exceptions, on the other hand, are not anticipated, and are often
unrecoverable, such as:

UnsupportedOperationException in the case of an
unsupported operation

ArithmeticException for invalid mathematical calculations

NullPointerException if an empty reference is encountered



They aren’t considered part of the methods’ public contract but rather
represent what happens if any assumed contract preconditions are broken.
Therefore, such Exceptions aren’t subject to the catch-or-specify
requirement, and methods usually don’t signify them with the throws
keyword, even if it’s known that a method will throw them in under certain
conditions.

However, unchecked Exceptions still have to be handled in some form if
you don’t want your program to crash. If not handled locally, an Exception
automatically goes up the call stack of the current thread until it finds an
appropriate handler. Or, if none is available, the thread dies. For single-
threaded applications, the runtime will terminate, and your program will
crash.

Errors
The third kind of control flow disruption — Errors — indicates a severe
problem you shouldn’t catch or can’t handle under normal circumstances.

For example, if the runtime runs out of available memory, the runtime
throws a OutOfMemoryError. Or an endless recursive call will
eventually lead to a StackOverflowError. There’s nothing you can
really do without any memory left, regardless of whether it’s the heap or the
stack. Faulty hardware is another source for Java errors, like
java.io.IOError in case of a disk error. These are all grave and not
anticipated problems with almost no possibility of recovering gracefully.
That’s why errors mustn’t adhere to the catch-or-specify requirement.

Exception Hierarchy in Java
Which category an Exception falls into depends on its base class. All
Exceptions are checked, except types subclassing
java.lang.RuntimeException or java.lang.Error. But they
share a common base type: java.lang.Throwable. Types inheriting
from the latter two are either unchecked or an error. The type hierarchy is
illustrated in Figure 10-1.



Figure 10-1. Exceptions hierarchy in Java

The concept of having different kinds of Exceptions is rather uncommon
among programming languages, and it’s a controversial topic of discussion
due to their different requirements of how to handle them. Kotlin2, for
example, inherits the general mechanisms of handling Exceptions but
doesn’t have any checked Exceptions.

Checked Exceptions in Lambdas
Java’s Exception-handling mechanisms were designed to fulfill specific
requirements at the time of its inception, 18 years before the introduction of
lambdas. That’s why throwing and handling Exceptions don’t fit nicely into
the new functional Java coding style without any special considerations or
completely disregarding the catch-or-specify requirement.

Let’s take a look at loading the content of a file with a static method
available on java.util.Files with the following method signature:

public static String readString(Path path) throws IOException {
  // ...



}

The method signature is quite simple and indicates that a checked
IOException might get thrown, so a try-catch-block is required.
That’s why the method can’t be used as a method reference, or in a simple
lambda:

Stream.of(path1, path2, path3)
      .map(Files::readString)
      .forEach(System.out::println); 
 
// Compiler Error:
// incompatible thrown types java.io.IOException in functional 
expression

The problem stems from the functional interface required to satisfy the map
operation. None of the functional interfaces of the JDK throw checked
Exceptions and are, therefore, not compatible with any method that does.

NOTE
There are interfaces marked with @FunctionalInterface that throw Exceptions, like
java.util.concurrent.Callable<V>. They are functional interfaces by
definition, but it’s for compatibility reasons, not because they represent functional types
to be used indiscriminately.

The most obvious solution is using try-catch-block by converting the
lambda to a block-based one:

Stream.of(path1, path2, path3)
      .map(path -> {
        try {
          return Files.readString(path);
        } catch (IOException e) {
          return null;
        }
      })
      .forEach(System.out::println);



The code required to satisfy the compiler defeats the purpose of Stream
pipelines lambdas in general. The conciseness and straightforward
representation of an operation is diluted by the required boilerplate for
Exception handling.

Using Exceptions in lambdas almost feels like an anti-pattern. A throws
declaration indicates that the caller has to decide how to handle that
Exception, and lambdas don’t have a dedicated way of dealing with
Exceptions except for the pre-existing try-catch, which can’t be used
for method references.

Still, there are certain ways of dealing with Exceptions without losing (most
of) the simplicity and clarity that lambdas, methods references, and
pipelines like Streams or Optionals give you:

Safe method extraction

Un-Checking Exceptions

Sneaky throws

All these options are imperfect workarounds to mitigate Exception handling
in functional code. Still, we will have a look at each of them because they
can be useful in certain scenarios if you do not have a built-in way to deal
with Exceptions properly.

The last two can even be treacherous or at least become a code smell if used
unwisely. Nevertheless, knowing such “last resort” tools can help you
navigate more difficult amalgamations of pre-existing, non-functional code,
and give you a more functional approach.

Safe Method Extraction
Efficiently handling Exceptions in your functional code depends on who
effectively controls or owns the code. If the throwing code is entirely under
your control, you should always adequately handle them. But often, the
offending code is not yours, or you can’t change or refactor it as needed.



That’s when you can still extract it into a “safer” method with appropriate
local Exception handling.

Creating a “safe” method decouples the actual work from handling any
Exception, restoring the principle of the caller being responsible for any
checked Exceptions. Any functional code can use the safe method instead,
as shown in Example 10-1.

Example 10-1. Extract throwing code into a safe method
String safeReadString(Path path) { 
  try { 
    return Files.readString(path);
  } catch (IOException e) {
    return null;
  }
}

Stream.of(path1, path2, path3)
      .map(this::safeReadString) 
      .filter(Objects::nonNull) 
      .forEach(System.out::println);

The “safe” method has the same method signature except for the
throws IOException.The Exception is dealt with locally and returns an appropriate fallback.The wrapper method can be used as a method reference, making the
code concise and readable again.The possibility of a null element must be handled accordingly.

The pipeline is concise and straightforward again. The IOException is
handled in the sense that it doesn’t affect the pipeline, but this approach
isn’t “one-size-fits-all.”

NOTE
Safe method extraction is akin to a more localized version of the facade pattern3.
Instead of wrapping a whole class to provide a safer, context-specific interface, only
specific methods get a new facade to improve their handling for particular use cases.
That reduces the affected code and still gives you the advantages of a facade, like
reduced complexity and improved readability. It’s also a good starting point for future
refactoring efforts.



Extracted safe methods might be an improvement over using try-catch
blocks in a lambda because you keep the expressiveness of inline-lambdas
and method references and have a chance to handle any Exceptions. But the
handling is confined in another abstraction over existing code to regain
control of disruptive control-flow conditions. The actual caller of the
method — the Stream operation — gets no chance to deal with the
Exception, making the handling opaque and inflexible.

Un-Checking Exceptions
The next way to deal with checked Exceptions goes against the fundamental
purpose of using checked Exceptions in the first place. Instead of dealing
with a checked Exception directly, you hide it in an unchecked Exception to
circumvent the catch-or-specify requirement. It’s a nonsensical, but
effective way to make the compiler happy.

This approach uses specialized functional interfaces that use the throws
keywords to wrap the offending lambda or method reference. It catches the
original Exception and rethrows it as an unchecked
RuntimeException, or one of its siblings. These functional interfaces
extend the original one to ensure compatibility. The original single-abstract
method uses a default implementation to connect it to the throwing one,
as shown in Example 10-2.

Example 10-2. Unchecking java.util.Function
@FunctionalInterface
public interface ThrowingFunction<T, U> extends Function<T, U> { 

  U applyThrows(T elem) throws Exception; 

  @Override
  default U apply(T t) { 
    try {
      return applyThrows(t);
    } catch (Exception e) {
      throw new RuntimeException(e);
    }
  }



  public static <T, U> Function<T, U> uncheck(ThrowingFunction<T, 
U> fn) { 
    return fn::apply;
  }
}

The wrapper extends the original type to act as a drop-in replacement.The single-abstract method (SAM) mimics the original but throws an
Exception.The original SAM is implemented as a default method to wrap any
Exception as a RuntimeException.A static helper to uncheck any throwing Function<T, U> to
circumvent the catch-or-specify requirement.

The ThrowingFunction<T, U> type can either be used explicitly by
calling the uncheck method or implicitly as seen in Example 10-3.

Example 10-3. Using ThrowingFunction<T, U>
ThrowingFunction<Path, String> throwingFn = Files::readString; 

Stream.of(path1, path2, path3)
      .map(ThrowingFunction.uncheck(Files::readString)) 
      .filter(Objects::nonNull)
      .forEach(System.out::println);

Any throwing method is assignable as a ThrowingFunction via a
method reference and used in a context requiring a Function.Alternatively, a throwing lambda or method reference can be unchecked
on the fly by using the static helper uncheck.

Congratulations, the compiler is happy again and won’t force you to handle
the Exception anymore. The wrapper type doesn’t fix the original problem
of possible control flow disruption but hides it from plain sight. The Stream
pipeline will still blow up if any Exception occurs without any possibility
for localized Exception handling.

WARNING
Exception-throwing functional interfaces only disguise their exceptional states. They
have their place and can be quite useful, but shouldn’t be considered a go-to solution
instead of a last resort.



Sneaky Throws
The sneaky throws idiom is a hack to throw a checked Exception without
declaring it with the throws keyword in a method’s signature.

Instead of throwing a checked Exception using the throw keyword in a
method’s body, which requires a throws declaration in the method
signature, the actual Exception is thrown by another method, as follows:

String sneakyRead(File input) { 
 
  // ... 
 
  if (fileNotFound) {
    sneakyThrow(new IOException("File '" + file + "' not 
found."));
  } 
 
  // ...
}

The actual throwing of the Exception is delegated to the sneakyThrow
method.

Wait a minute, doesn’t anyone using a method throwing a checked
Exception, like sneakyThrow, have to adhere to the catch-or-specify
requirement?

Well, there’s one exception to the rule (pun intended). You can take
advantage of a change4 in Java’s type inference regarding Generics and
Exceptions in Java 8. In simple terms, if there are no upper or lower bounds
on a generic method signature with throws E, the compiler assumes the
type E to be a RuntimeException. This allows you to create the
following sneakyThrow:

<E extends Throwable> void sneakyThrow(Throwable e) throws E {
  throw (E) e;
}



Regardless of the actual type for the argument e, the compiler assumes
throws E to be a RuntimeException and thereby exempts the
method from the catch-or-specify requirement. The compiler might not
complain, but this approach is highly problematic.

The method signature of sneakyRead no longer signifies its checked
Exception. Checked Exceptions are supposed to be anticipated and
recoverable, and therefore, belong to the method’s public contract. By
removing the throws keyword and circumventing the catch-or-specify
requirement, you reduce the amount of information conferred to the caller
by making the method’s public contract more opaque for convenience
reasons. You still could — and should — list all Exceptions and their
reasoning in the method’s documentation.

The method no longer follows “normal reasoning” by bypassing the
throws keyword and the enforcement of the catch-or-specify requirement.
Anyone reading the code has to know what sneakyThrow does. You
could add an appropriate return statement after the call to at least convey
that it’s an exit point. But the significance that a throws keyword emits is
lost.

WARNING
Sneaky throws circumvent an integral part of the Java language of how to deal with
control flow disruptions. There is a place for it in a few edge cases for internal
implementations. In external code, however, like public methods, throwing
Exceptions sneakily breaks the reasonably expected contract between the method and
the caller any Java developer would anticipate.

Sneakily throwing Exceptions might be an acceptable “last resort” hack for
internal code, but you still have to communicate the implications with the
help of the context, method names, and documentation. In the next section,
I show you an acceptable use case for sneakily throwing an Exception in a
specialized implementation for internal code.



A Functional Approach to Exceptions
So far, I’ve only discussed how to “brute force” Java’s Exception handling
mechanics to play nice with lambdas by ignoring and circumventing the
intended purpose of Exceptions. What’s really needed is finding a
reasonable compromise and balance between a functional approach and the
more traditional constructs.

Your options include designing your code to not throw Exceptions at all or
mimicking the Exception-handling approaches of other more functional
languages.

Not Throwing Exceptions
Checked Exceptions are an integral part of a method’s contract and are
designed as control flow disruptions. That’s what makes it so difficult to
deal with them in the first place! So, instead of finding a better way of
handling checked Exceptions and all of their complications, we can instead
find an alternative way of dealing with control flow disruption in a
functional context.

“Safe Method Extraction” discussed a variant of not throwing Exceptions
by wrapping an Exception-throwing method with a non-throwing “safer”
method. This approach helps if you don’t have control over the code and
can’t design it to not throw any Exceptions in the first place. It replaces
disruptive control flow events in the form of Exceptions with another value
to represent an “exceptional” state: Optional<T>. If you have control
over the API, you could design its contracts not to use Exceptions or make
them at least more manageable. Exceptions are a reaction to some form of
illegal state. The best way to avoid Exception handling is to make the
representation of such an illegal state impossible in the first place.

I discussed in Chapter 9 that Optionals are a “box” to wrap an actual value.
It’s a specialized type representing the presence or absence of values
without risking encountering a null reference and the eventually dreaded
NullPointerException.



Let’s look at the previous example again. This time, however, let’s use an
Optional instead of throwing an Exception, as seen in Example 10-4.

Example 10-4. Using Optional<String> instead of throwing an
IOException
Optional<String> safeReadString(Path path) { 
  try {
    var content = Files.readString(path);
    return Optional.of(content);
  } catch (IOException e) {
    return Optional.empty(); 
  }
}

An Optional<String> is used instead of a plain String.By returning an Optional<String>, either with the file content or
an empty one in the case of an IOException, a valid non-null
object is returned.

Returning an Optional<String> has two advantages over simply
returning String. First, a valid object is returned, so no additional null-
checks are required to use it safely. Second, the Optional type is a starting
point for a fluent functional pipeline to deal with the inner value, or its
absence.

If your API doesn’t expose any illegal states requiring control flow
disruptions, you, or anyone else calling such methods, don’t have to handle
them. Optionals are a simple and readily available choice, although it lacks
some desirable features. The new safeReadString conveys that it
wasn’t able to read the file but doesn’t tell you why it wasn’t able to do so.

Errors as Values
Where Optional<T> only provides the difference between the presence
and absence of a value, a dedicated result object conveys more information
about why an operation might have failed. The concept of dedicated type
representing the overall result of an operation isn’t a new one. They are
wrapper objects indicating whether or not an operation was a success and
include a value or, if unsuccessful, a reason why not. Many languages



support dynamic tuples as return types, so you don’t need an explicit type
representing your operation, like in Go:

func safeReadString(path string) (string, error) {
  // ...
} 
 
content, err := safeReadString("location/content.md")
if err != nil {
  // error handling code
}

Even though Java lacks such dynamic tuples, thanks to Generics, a versatile
and functionally inclined result type can be created that leverages tools and
concepts discussed in this book.

Let’s create a rudimentary Result<V, E extends Throwable>
type together.

Creating the Scaffold
The main goal of the Result type is to hold a possible value or, if not
successful, an Exception representing the reason for failure.

A “traditional” result object could be implemented as a Record as shown in
Example 10-5.

Example 10-5. Traditional Result Object
public record Result<V, E extends Throwable>(V value, 
                                             E throwable,
                                             boolean isSuccess) {

  public static <V, E extends Throwable> Result<V, E> success(V 
value) { 
    return new Result<>(value, null, true);
  }

  public static <V, E extends Throwable> Result<V, E> failure(E 
throwable) { 
    return new Result<>(null, throwable, false);
  }
}



The Record components reflect the different states. The explicit
isSuccess field helps to better determine a successful operation and
to support null as a valid value.Convenience factory methods provide a more expressive API.

Even this simple scaffold provides a certain improvement over using
Optionals already, with the convenience factory methods being an
expressive way to create appropriate results.

The previous examples of safeReadString can be easily converted to
use the Result<V,E> type, as shown in Example 10-6

Example 10-6. Using Result<V, E> as a return type
Result<String, IOException> safeReadString(Path path) {
  try {
    return Result.success(Files.readString(path));
  } catch (IOException e) {
    return Result.failure(e);
  }
} 
 
Stream.of(path1, path2, path3)
      .map(this::safeReadString)
      .filter(Result::isSuccess)
      .forEach(System.out::println);

The new type is just as easy to use in a Stream pipeline as an Optional. But
the real power comes from giving it more functional properties by
introducing higher-order functions that depend on the success state.

Making Result<V, E> Functional
The general features of the Optional<T> type are the inspiration on how
to improve the Result type further, including:

Transforming its value or Exception

Reacting to an Exception

Providing a fallback value



Transforming the value or throwable field requires dedicated map
methods or a combined one to handle both use cases at once, as shown in
Example 10-7.

Example 10-7. Adding Transformers to Result<V, E>
public record Result<V, E extends Throwable> (V value,
                                              E throwable,
                                              boolean isSuccess) {
  // ...

  public <R> Optional<R> mapSuccess(Function<V, R> fn) { 
    return this.isSuccess ? Optional.ofNullable(this.value).map(fn)
                          : Optional.empty();
  }

  public <R> Optional<R> mapFailure(Function<E, R> fn) { 
    return this.isSuccess ? Optional.empty()
                          : 
Optional.ofNullable(this.throwable).map(fn);
  }

  public <R> R map(Function<V, R> successFn, 
                   Function<E, R> failureFn) {
    return this.isSuccess ? successFn.apply(this.value) //
                          : failureFn.apply(this.throwable);
  }
}

The singular mapping methods are quite similar and transform the
respective result, success or failure. That’s why both must return an
Optional instead of a concrete value.A combined map method allows you to handle both cases, success or
failure, in a single call. Because both states are handled, a concrete
value instead of an Optional is returned.

With the help of the mapper methods, you can now handle either one or
both cases directly, as follows:

// HANDLE ONLY SUCCESS CASE 
 
Stream.of(path1, path2, path3)
      .map(this::safeReadString)
      .map(result -> result.mapSuccess(String::toUpperCase))
      .flatMap(Optional::stream)



      .forEach(System.out::println); 
 
 
// HANDLE BOTH CASES 
 
var result = safeReadString(path).map(
  success -> success.toUpperCase(),
  failure -> "IO-Error: " + failure.getMessage()
);

There also needs to be a way to work with a Result without requiring to
transform its value or Exception first.

To react to a certain state, let’s add ifSuccess, ifFailure, and
handle, as follows:

public record Result<V, E extends Throwable> (V value,
                                              E throwable,
                                              boolean isSuccess) 
{
  // ... 
 
  public void ifSuccess(Consumer<? super V> action) {
    if (this.isSuccess) {
      action.accept(this.value);
    }
  } 
 
  public void ifFailure(Consumer<? super E> action) {
    if (!this.isSuccess) {
      action.accept(this.throwable);
    }
  } 
 
  public void handle(Consumer<? super V> successAction,
                     Consumer<? super E> failureAction) {
    if (this.isSuccess) {
      successAction.accept(this.value);
    } else {
      failureAction.accept(this.throwable);
    }
  }
}



The implementation is almost equivalent to the mapper methods, except
they use a Consumer instead of a Function.

NOTE
These two additions are side-effect-only and, therefore, not very “functional” in the
purest sense. Nevertheless, such additions provide an excellent stopgap between
imperative and functional approaches.

Next, let’s add convenience methods for providing fallback values. The
most obvious ones are orElse and orElseGet, as follows:

public record Result<V, E extends Throwable>(V value,
                                             E throwable,
                                             boolean isSuccess) {
  // ... 
 
  public V orElse(V other) {
    return this.isSuccess ? this.value
                          : other;
  } 
 
  public V orElseGet(Supplier<? extends V> otherSupplier) {
    return this.isSuccess ? this.value
                          : otherSupplier.get();
  }
}

No surprises here.

However, adding an orElseThrow as a shortcut to re-throw the inner
Throwable isn’t as straightforward because it still has to adhere to the
catch-or-specify requirement. This is actually the one acceptable use case I
talked about earlier about using a “sneaky throw,” as discussed in “Sneaky
Throws”, to circumvent the requirement:

public record Result<V, E extends Throwable>(V value,
                                             E throwable,
                                             boolean isSuccess) {
  // ... 



 
  private <E extends Throwable> void sneakyThrow(Throwable e) 
throws E {
    throw (E) e;
  } 
 
  public V orElseThrow() {
    if (!this.isSuccess) {
      sneakyThrow(this.throwable);
      return null;
    } 
 
    return this.value;
  }
}

In this particular case, a “sneaky throw” is justified in my opinion due to the
general context and public contract of orElseThrow(). Like with
Optional<T>, the method force-unwraps the “box” holding a possible
result and warns you about a possible exception with its name.

There’s a lot left to be desired, like adding a Stream<V> stream()
method for even better integration into Stream pipelines. Still, the general
approach was a great exercise on how to combine functional concepts to
provide an alternative to handling disruptive control flow events. The
implementation shown in this book is quite simplistic and reduced to a
minimal amount of code.

If you intend to use a type like Result<V, E>, you should check out one
of the functional libraries of the Java ecosystem. Projects like vavr, jOOλ
(pronounced “JOOL”), and Functional Java provide quite comprehensive
and battle-tested implementations ready to use.

The Try/Success/Failure Pattern
Scala is arguably the closest functional relative to Java available on the
JVM, not considering Clojure due to its more foreign syntax and dynamic
type system. It addresses many of Java’s perceived “shortcomings” over
younger languages and is functional at its core, including an excellent way
of dealing with exceptional conditions.

https://www.vavr.io/
https://github.com/jOOQ/jOOL
https://www.functionaljava.org/


The Try/Success/Failure pattern and its related types Try[+T]5,
Success[+T], and Failure[+T], are Scala’s way of dealing with
Exceptions in a more functional fashion.

Where an Optional<T> indicates that a value might be missing,
Try[+T] can tell you why and gives you the possibility to handle any
occurred Exception, similar to the Result type discussed earlier in this
chapter. If the code succeeds, a Success[+T] object is returned, and if it
fails, the error will be contained in a Failure[+T] object. Scala also
supports pattern-matching, a switch-like concept of handling different
outcomes. That allows for quite concise and straightforward Exception
handling without the usual boilerplate a Java developer is used to.

NOTE
Scala-like pattern matching for Java’s switch construct is available as a preview
feature6 since Java 17.

A Try[+T] can either be in a Success[+T] or Failure[+T] state,
with the latter containing a Throwable. Even without full knowledge of
Scala’s syntax, the code in Example 10-8 shouldn’t be too foreign to a Java
developer.

Example 10-8. Scala’s Try/Success/Failure pattern
def readString(path: Path): Try[String] = Try {  
  // code that will throw an Exception 
} 
 
val path = Path.of(...); 
 
readString(path) match {  
  case Success(value) => println(value.toUpperCase)  
  case Failure(e) => println("Couldn't read file: " + e.getMessage) 

}
The return type is Try[String], so the method must either return a
Success[String] containing the content of the Path, or a



Failure[Throwable]. Scala doesn’t need an explicit return and
returns the last value implicitly. Any Exception is caught by the Try {
…  } construct.Scala’s pattern matching simplifies the result handling. The cases are
lambdas, and the whole block is similar to an Optional call chain with a
map and a orElse operation.
Success provides access to the return value.If an Exception occurs, it’s handled by the Failure case.

Try[+A] is an excellent Scala feature, combining concepts similar to
Optionals and Exception handling into a single, easy-to-use type and idiom.
But what does that mean for you as a Java developer?

Java doesn’t provide anything out-of-the-box that comes even close to the
simplicity or language integration of Scala’s try/success/failure pattern.

FUNCTIONAL EXCEPTION HANDLING WITH
COMPLETABLEFUTURE

Java actually has a type capable of handling lambdas in the vein of the
try/success/failure pattern: CompletableFuture<T>. It provides a
fluent functional API including error handling, which I will discuss in
more detail in Chapter 13.

On the surface, it’s quite similar to the custom Try implementation.
However, its optimal problem context isn’t handling throwing lambdas.
Instead, CompletableFuture is designed for asynchronous tasks
and running lambdas in multi-threaded environments.

Even without language support, you can still try to implement an
approximation of the try/success/failure pattern with the new functional
tools since Java 8. So let’s do that now.

Creating a Pipeline
Similar to how Streams provide a launch pad for a functional pipeline, the
Try type we’re going to create will have a creation step, intermediate, but



independent operations, and finally, a terminal operation to kickstart the
pipeline.

To replicate Scala’s functionality, a construct accepting a lambda is needed
as a starting point.

NOTE
As with other functional constructs, many variants would be needed to support the
various available functional interfaces. To simplify the required code, the Try type only
supports Function<T, R> as the initial lambda.

The main requirements of the Try type are:

Accepting a possibly throwing lambda

Providing a success operation

Providing a failure operation

Starting the pipeline with a value

The Try type could be simplified by only supporting
RuntimeException, but then, it wouldn’t be a flexible alternative to
regular try-catch-block. To circumvent the catch-or-specify
requirement, the ThrowingFunction interface discussed in “Un-
Checking Exceptions”.

The minimum scaffold required to accept ThrowingFunction and a
possible Function to handle any a RuntimeException is shown in
Example 10-9.

Example 10-9. Minimal Try<T, R> accepting a lambda and Exception
handler
public class Try<T, R> { 

  private final Function<T, R>                fn; 
  private final Function<RuntimeException, R> failureFn; 



  public static <T, R> Try<T, R> of(ThrowingFunction<T, R> fn) { 
    Objects.requireNonNull(fn);

    return new Try<>(fn,
                     null);
  }

  private Try(Function<T, R> fn, 
              Function<RuntimeException, R> failureFn) {
    this.fn = fn;
    this.failureFn = failureFn;
  }
}

The Generic types T and R correspond to Function<T, R>. A
class is used instead of a record to hide the sole constructor.The construct needs to hold the initial Function<T, R> and a
possible error handling Function<RuntimeException, R>.
Both fields are final, making the Try type immutable.The static factory method of provides a similar interface as other
functional pipelines. It accepts a ThrowingFunction<T, R> to
circumvent the catch-or-specify requirement, but assigns it immediately
to a Function<T, R>.The private constructor enforces the use of the factory method.

Even though the type doesn’t do anything, creating a new pipeline from an
existing lambda or method reference is pretty straightforward, as follows:

var trySuccessFailure = Try.<Path, String> of(Files::readString);

The type hints in front of the of call are required because the compiler
can’t necessarily infer the type from the surrounding context.

Next, the type needs to handle success and failure.

Handling Success and Failure
Two new methods are needed to handle the outcome of the Try pipeline,
success and failure, as seen in Example 10-10.

Example 10-10. Handling success and failure in Try<T, R>
public class Try<T, R> {



  // ...

  public Try<T, R> success(Function<R, R> successFn) {
    Objects.requireNonNull(successFn);

    var composedFn = this.fn.andThen(successFn); 
    return new Try<>(composedFn,
                     this.failureFn);
  }

  public Try<T, R> failure(Function<RuntimeException, R> failureFn) 
{
    Objects.requireNonNull(failureFn);

    return new Try<>(this.fn, 
                     failureFn);
  }
}

The successFn is composed to the original lambda to provide the
base for the new Try instance. The failureFn is used as-is.Handling an error requires only passing through the original fn and the
provided failureFn.

Because the Try type is designed to be immutable, both handling methods
return a new instance of Try. The success method uses functional
composition to create the fully required task, whereas the failure
method creates a new Try instance with the pre-existing lambda and the
provided error handling Function.

By using functional composition for the success operation instead of an
extra control path, like storing successFn in another field, the handler
isn’t even required in case of no modifications to the result of the initial
lambda.

Using the handler methods is as you would expect and feels similar to
working with a Stream’s intermediate operations, as follows:

var trySuccessFailure =
  Try.<Path, String> of(Files::readString)
                    .success(String::toUpperCase)
                    .failure(str -> null);



Unlike a Stream, though, the operations are independent of one another and
not in a sequential pipeline. It’s more akin to how an Optionals pipeline
seems to be sequential but actually has tracks to follow. Which handling
operation, success or failure, is supposed to be evaluated depends on
the state of the Try evaluation.

It’s time to kickstart the pipeline.

Running the Pipeline
The last operation needed to complete the pipeline is the ability to push a
value down the pipeline and let the handlers do their work, in the form of an
apply method, as shown in Example 10-11.

Example 10-11. Applying a value to Try
public class Try<T, R> {

  // ...

  public Optional<R> apply(T value) {
    try {
      var result = this.fn.apply(value);
      return Optional.ofNullable(result); 
    }
    catch (RuntimeException e) {
      if (this.failureFn != null) { 
        var result = this.failureFn.apply(e);
        return Optional.ofNullable(result);
      }
    }

    return Optional.empty(); 
  }
}

The “happy path” is appyling fn to the value. Thanks to designing the
success method as functional composition, no special handling is
needed to run the initial lambda and optional success transformation.
The code has to be run in a try-catch-block to handle the failure
case.Failure handling is optional, so a null-check is necessary.This point is the ultimate fallback if no error handler was added to the
pipeline.



The return type Optional<R> provides another lift-off point for a
functional pipeline.

Now our minimalistic Try pipeline has all the operations needed to call a
throwing method and handle both the success and failure cases:

var path = Path.of("location", "content.md"); 
 
Optional<String> content =
  Try.<Path, String> of(Files::readString)
                    .success(String::toUpperCase)
                    .failure(str -> null)
                    .apply(path);

Even though the Try pipeline gives you higher-order function operations to
deal with a throwing lambda, the pipeline itself isn’t functional on the
outside. Or is it?

The name, apply, I’ve chosen for the terminal operation reveals the
possible functional interface that Try could implement to be more easily
usable in other functional pipelines like Streams or Optionals:
Function<T, Optional<R>>.

By implementing the functional interface the Try type becomes a drop-in
replacement for any Function without requiring actual logic changes, as
shown in Example 10-12:

Example 10-12. Implementing Function<T, Optional<R>>
public class Try<T, R> implements Function<T, Optional<R>> { 
 
  // ... 
 
  @Override
  public Optional<R> apply(T value) {
    // ...
  }
}

Now, any Try pipeline is easily usable in any higher-order function that
accepts a Function, like in a Stream map operation, as follows:



Function<Path, Optional<String>> fileLoader =
  Try.<Path, String> of(Files::readString)
                    .success(String::toUpperCase)
                    .failure(str -> null); 
 
Stream.of(path1, path2, path3)
      .map(fileLoader)
      .flatMap(Optional::stream)
      .toList();

As with the Result before, the Try type is quite minimalistic and should
be regarded as an exercise of how to combine functional concepts to create
new constructs, like a lazy fluent pipeline consisting of higher-order
functions. If you want to use a type like Try, you should consider using an
established functional third-party library like vavr which provides a
versatile Try type and much more.

Final Thoughts on Functional Exception
Handling
Disruptive and abnormal control flow conditions in our code are inevitable,
which is why we need a way to deal with them. Exception handling helps to
improve program safety. For example, the catch-or-specify requirement is
designed to make you think about the anticipated exceptional states and
deal with them accordingly to increase code quality. Although it’s certainly
useful, it’s also tricky to carry out.

Handling Exceptions can be quite a pain point in Java, regardless of using a
functional approach. There is always a trade-off, no matter which
Exception-handling approach you choose, especially if checked Exceptions
are involved:

Extracting unsafe methods to gain localized Exception handling is a
good compromise but not an easy-to-use general solution.

Designing your APIs to not have any exceptional states is not as easy
as it sounds.

https://www.vavr.io/


Unchecking your Exceptions is a “last-resort” tool that hides them
away without a chance to handle them and contradicts their purpose.

So what should you do? Well, it depends.

None of the presented solutions is perfect. You have to find a balance
between “convenience” and “usability.” Exceptions are sometimes an
overused feature, but they are still essential signals to the control flow of
your programs. Hiding them away might not be in your best interest in the
long run, even if the resulting code is more concise and reasonable, as long
as no Exception occurs.

Not every imperative or OOP feature/technique is replaceable with a
functional equivalent in Java. Many of Java’s (functional) shortcomings are
circumventable to gain their general advantages, even if the resulting code
is not as concise as in fully-functional programming languages. Exceptions,
however, are one of those features that aren’t easily replaceable in most
circumstances. They’re often an indicator that you either should try to
refactor your code to make it “more functional” or that a functional
approach might not be the best solution for the problem.

Alternatively, there are several third-party libraries available, like the Vavr
project or jOOλ, that allow you to circumvent or at least mitigate problems
when using (checked) Exceptions in functional Java code. They did all the
work implementing all relevant wrapper interfaces and replicating control
structures and types from other languages, like pattern matching. But in the
end, you end up with highly specialized code that tries to bend Java to its
will, without much regard for traditional or common code constructs. Such
dependence on a third-party library is a long-term commitment and
shouldn’t be added lightly.

Takeaways
There are no specialized constructs for handling Exceptions in
functional code like lambda expressions, only the try-catch-block
as usual, which leads to verbose and unwieldy code.

https://www.vavr.io/
https://github.com/jOOQ/jOOL


You can fulfill or circumvent the catch-or-specify requirement in
multiple ways, but that merely hides the original “problem.”

Custom wrappers can provide a more functional approach.

Third-party libraries can help to reduce the additional boilerplate
required for handling Exceptions more functionally. But the newly
introduced types and constructs are no lightweight addition to your
code and might create a lot of technical debt.

Choosing the right way to deal with Exceptions in functional code
depends highly on the surrounding context.
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Chapter 11. Lazy Evaluation

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 11th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at rfernando@oreilly.com.

Although laziness is often seen as a character flaw in people, it can be
considered a favorable feature in some programming languages. In
computer science terms, laziness is the antagonist to strictness —  or
eagerness — of code evaluation.

This chapter will show you how being lazy can improve performance. You
will learn about the difference between strict and lazy evaluation and its
impact on your code’s design.

Laziness Versus Strictness
The strictness of a language describes the semantics of how your code is
evaluated.

Strict evaluation happens as soon as possible, such as declaring or setting a
variable or passing an expression as an argument. Non-strict evaluation,
however, happens when the result of an expression is actually needed. This



way, expressions can have a value even if one or more subexpressions fail
to evaluate.

For example, Haskell is a functional programming language with non-strict
semantics by default, evaluating expressions from the outermost to the inner
ones. This allows you to create control structures or infinite data sequences
due to the separation of the creation and consumption of expressions.

Let’s take a look at the following strict Java code of a simple method
accepting two arguments but using only one for its logic:

int add(int x, int y) {
  return x + x;
}

The non-strict Haskell-equivalent function declaration looks more like a
variable assignment:

add x y = x + x

This function also uses only its first argument and doesn’t evaluate the
second argument, y, at all. That’s why the following Haskell code still
yields a result:

add 5 (1/0)
=> 10

If you call the Java equivalent of this function with the same arguments, the
value 1 and the expression (1/0), it will throw an exception:

var result = add(5, (1/0));
// => java.lang.ArithmeticException: Division by zero

Even though the second parameter of the add call isn’t used in any
capacity, Java, as a strict language, evaluates the expression immediately.
Method arguments are passed-by-value, which means they’re evaluated



before being passed to the method, which in this case throws an
ArithmeticException.

NOTE
Java’s method arguments are always pass-by-value. In the case of non-primitive types,
arguments are passed as object-handles by the JVM with a special type called
references. These are technically still passed-by-value, making the general
terminology and semantics quite confusing.

Conversely, lazy evaluation is defined as evaluating expressions only when
their result is needed. That means the declaration of an expression doesn’t
trigger its immediate evaluation, which makes Java lambda expressions the
perfect match for lazy evaluation, as seen in Example 11-1.

Example 11-1. Lazy Evaluation with Java and Suppliers
int add (IntSupplier x, IntSupplier y) { 
 
  var actualX = x.getAsInt(); 
 
  return actualX + actualX;
} 
 
var result = add(() -> 5,
                 () -> 1 / 0);
// => 10

The declaration of the IntSupplier instances, or their inline
equivalents, is a strict statement and is evaluated immediately. The actual
lambda body, however, doesn’t evaluate until it’s explicitly called with
getAsInt, preventing the ArithmeticException in this case.

In essence, strictness is about “doing things,” but laziness is about
“considering things to do.”

How Strict Is Java?



Most programming languages are neither fully lazy nor strict. Java is
considered a strict language, but with some noteworthy lazy exceptions on a
language level and in the available types of the JDK.

Let’s go through them.

Short-Circuit Evaluation
Language-integrated laziness is available in Java in the form of the logical
short-circuit evaluation with the logical operators && (double ampersand)
and || (double pipe) for AND and OR. These operators evaluate their
operands left to right and only as required. If the logical expression is
satisfied by the expression left of the operator, the right operand isn’t
evaluated at all, as seen in Table 11-1.

Table 11-1. Evaluation of logical short-circuit operators

Operations
Value of leftExp
r

Is rightExpr
evaluated?

leftExpr && rightExp

r

true yes

false no

leftExpr || rightExp

r

true no

false yes

BITWISE LOGICAL OPERATORS
The similar bitwise operators & (single ampersand) and | (single pipe) evaluate eagerly
and serve a different purpose than their logical brethren. Bitwise operators compare
individual bits of integer types, resulting in an integer result.



Despite functioning similarly to a control structure, these logical operands
can’t exist in a vacuum. They must always be part of another statement, like
a condition for an if-block or a variable assignment, as seen in
Example 11-2. Another advantage of short-circuit evaluation for
assignments is that they create (effectively) final1 references, making
them a perfect fit to use with Java’s functional approach.

Example 11-2. Usage of logical short-circuit operators
// WON'T COMPILE: unused result 
 
left() || right(); 
 
 
// COMPILES: used as if condition 
 
if (left() || right()) {
    // ...
} 
 
// COMPILES: used as variable assignment 
 
var result = left() || right();

Omitting the evaluation of right-side operand evaluation is extremely
helpful if the expression is costly or has any side effects, or doesn’t need to
be evaluated if the left-side was. However, it also might be the source of not
evaluating a required expression if the statement is short-circuited and the
expression necessary is on the right side. If you make them a part of
decision-making, make sure to design them carefully.

Any decision-making code benefits immensely from pure functions. The
intended behavior is straightforward and easily understandable, without any
lurking side effects that might get unnoticed during redesigning or
refactoring your code, introducing subtle bugs that are often hard to pin
down. You should make sure that there are either no side effects at all,
which in my opinion, is too absolute and generally an unrealistic goal, or
name your methods to reflect their repercussions.

Control Structures



Control structures are responsible for changing the path taken through the
instructions of your code. An if-else construct, for example, is a
conditional branch with one (if-only) or more (if-else) blocks of code.
These blocks are only evaluated depending on their corresponding
condition, which is a lazy trait. Strictly evaluating any part of an if-else
construct on declaration would defeat its purpose of using it as a conditional
branch. This “lazy exception to the eager rules” applies to all branching and
loop structures, as listed in Table 11-2.

Table 11-2. Lazy structures in Java

Branching control structures Looping structures

if-else
? : (ternary operator)
switch

catch

for

while

do-while

An absolutely strict language with non-lazy control structures is hard to
imagine, if not impossible.

Lazy Types in the JDK
So far, I’ve talked about how Java’s laziness was built directly into the
language in the form of operators and control structures. The JDK,
however, also provides multiple built-in types and data structures with a
certain degree of laziness at runtime as well.

Lazy Maps
A common task for Maps is checking if a key already has a mapped value,
and providing one if it’s missing. The related code requires multiple checks
and non (effectively) final variables, as follows:



Map<String, User> users = ...; 
 
var email = "john@doe.com"; 
 
var user = users.get(email);
if (user == null) {
  user = loadUser(email);
  users.put(email, user);
}

The code might vary depending on the actual Map implementation, but the
gist should be clear.

In general, this is already a lazy approach, delaying loading a user until
necessary. In the course of retrofitting functional additions to many types in
JDK 8, the Map type received a more concise and functional alternative
with its computeIf…  methods.

There are two methods available based on the existence of a mapped value
for a key:

V computeIfAbsent(K key, Function<? super K, ?
extends V> mappingFunction)

V computeIfPresent(K key, BiFunction<? super K,
? super V, ? extends V> remappingFunction)

The first one is an ideal replacement for the code of the previous example,
as such:

Map<String, User> users = ...; 
 
var email = "john@doe.com"; 
 
var user = users.computeIfAbsent(email,
                                 this::loadUser);

It requires the desired key as its first argument and a mapper
Function<K, V> as its second argument that provides the new mapped



value for the key if absent. The computeIfPresent is the antagonist for
remapping values only if one’s present.

A combination of both methods is also available in the form of the V
compute(K key, BiFunction<? super K, ? super V, ?
extends V> remappingFunction) method. It’s able to update and
even delete mapped values depending on the result of the remapping
function, as illustrated in Figure 11-1.

Figure 11-1. Lazy remapping with Map#compute

The general theme of a functional approach is clearly visible in Maps’ lazy
additions. Instead of requiring you to write the verbose and repetitive code
of how to work with the Map and its mapped values, now you can
concentrate on what is happening and how to deal with keys and values.

Streams
Java Streams are the perfect example of lazy functional pipelines. You can
define an intricate Stream scaffold filled with expensive functional
operations that will only start evaluation after calling a terminal operation.
The number of processed elements solely depends on the design of the
pipeline, allowing you to minimize the required work as much as possible



by separating the definition of an expression and its actual evaluation in a
data processing pipeline.

Chapter 6 explains Streams and their lazy approach to data processing in
detail.

Optionals
Optionals are a non-lazy way of handling null values. Their general
approach is similar to Streams, but they evaluate strictly compared to
Streams. There are lazy operations available, for example, the T
orElseGet(Supplier<? extends T> supplier) method that
utilizes a Supplier to delay the execution to when it’s absolutely
necessary.

Chapter 9 gives a detailed introduction to Optionals and more information
on how to use them.

Lambdas and Higher-Order Functions
Lambdas are a great way to introduce laziness on a code level. Their
declaration is a statement and, therefore, strictly evaluated. Their body — 
the single abstract method -- , however, encapsulates the actual logic and
evaluates at your discretion. That makes them a simple way to store and
transfer expressions for later evaluation.

Let’s look at some eager code for providing an argument to a method and
how it can be made lazy with the help of lambdas.

An Eager Approach
In Example 11-3, a hypothetical User is updated with a list of roles. The
update isn’t always done and depends on the inner logic of the update
method. The arguments are provided eagerly, requiring a pretty expensive
lookup call through the DAO2.

Example 11-3. Updating a User with eager method arguments



User updateUser(User user, List<Role> availableRoles) { 
  // ...
}

// HOW TO USE

var user = loadUserById(23L);
var availableRoles = this.dao.loadAllAvailableRoles(); 
var updatedUser = updateUser(user, availableRoles); 

The updateUser method requires the user and a list of all available
roles. The update itself depends on the inner logic and might not need
the roles after all.The loadAllAvailableRoles(user) is called regardless of the
updateUser method requiring the roles. This results in a costly trip to
the database that might be unnecessary.All arguments are already evaluated at the time of the method call.

Providing updateUser with the roles, even if they aren’t necessary for
every use-case, creates unnecessary database calls and wastes performance.

So how can you make the call non-mandatory if it’s not always required?
By introducing laziness.

A Lazier Approach
In a strict language like Java, all method arguments are provided upfront
and as-is. The method has no choice but to accept them, even if an
argument isn’t actually needed. This is especially a problem when it comes
to executing expensive operations to create such arguments beforehand,
such as database calls, which can be a drain on your available resources and
performance.

The naïve approach to remedy unnecessary database calls is to change
updateUser to accept the DAO directly, so it can only use it if necessary:

User updateUser(User user, DAO roleDAO) {
  // ...
}



The updateUser method now has all the tools necessary to load the
available roles by itself. On a superficial level, the initial problem of non-
lazy data access is solved, but this “solution” creates a new problem:
cohesion.

The updateUser method now uses the DAO directly and is no longer
isolated from how the roles are acquired. This approach will make the
method impure, as accessing the database is considered a side-effect and
makes it harder to verify and test. Thanks to possible API boundaries, it
gets even more complicated if the updateUser method doesn’t know the
DAO type at all. So you need to create another abstraction to retrieve the
roles. Instead of creating an additional abstract layer to bridge the gap
between the DAO and the updateUser method, you can make
updateUser a higher-order function and accept a lambda expression.

A Functional Approach
To create a functional abstraction for the retrieving of the required user
roles in Example 11-3, you must first dissect the problem into a more
abstract representation, finding out what is actually needed as an argument
and not how the argument’s value came to be.

The updateUser method needs access to the available roles, as it is
reflected in the original method signature. And that’s exactly the point in
your code where introducing laziness will give you the most flexible
solution.

The Supplier<T> type is the most low-level possibility to encapsulate
certain logic to retrieve a value at your discretion. Instead of providing
updateUser directly with the DAO, a lambda expression is the lazy
intermediate construct for loading the roles, as seen in Example 11-4.

Example 11-4. Updating a User with a lambda
void updateUser(User user, Supplier<List<Role>> availableRolesFn) { 

  // ...

  var availableRoles = availableRolesFn.get();



  // ...
}

// HOW TO USE

var user = loadUserById(23L);

updateUser(user, this.dao::loadAllAvailableRoles); 
The updateUser method signature has to be changed to accept a
Supplier<List<Role>> instead of the already loaded
List<Role> or the DAO itself.The logic of how to acquire the roles is now encapsulated in a method
reference.

Making updateUser a higher-order function by accepting a Supplier
creates a superficial new layer without requiring an additional custom type
wrapping the role-loading process.

Using the DAO directly as an argument eliminates the downsides:

There’s no longer a connection between the DAO and the
updateUser method, creating the possibility of a pure, side-effect-
free method.

You don’t need an additional type to represent the abstraction. The
already available Supplier<T> functional interface is the simplest
and most compatible form of abstraction possible.

Testability is restored without requiring the possibly complicated
mocking of a DAO.

Costly operations, like database queries, can benefit immensely from a lazy
approach if the call is avoidable. That doesn’t mean, though, that making all
method arguments lazy without a real need is the right approach, either.
There are other solutions, too, like caching the result of costly calls, that
might be simpler to use than designing your method calls to accept lazy
arguments.



Delayed Executions with Thunks
Lambda expressions are a simple and low-level way to encapsulate an
expression for later evaluation. One missing thing, though, is storing the
result after evaluation — memoization — so you don’t re-evaluate an
expression if called twice. There’s an easy way to remedy this omission:
Thunks.

A Thunk is a wrapper around a computation that is delayed until the result
is needed. Unlike a Supplier<T>, which also delays a computation, a
Thunk only evaluates once and directly returns the result on subsequent
calls.

Thunks fall into the general category of lazy loading/initialization, a design
pattern often found in object-oriented code. Both techniques — lazy loading
and lazy initialization — are similar mechanisms for achieving the same
goal: non-strict evaluation and caching the result. Where a Supplier<T>
just defers the evaluation, a Thunk also caches its result.

Let’s create a simple Thunk that follows the virtual proxy design-pattern3 to
be a drop-in replacement for Supplier<T>.

Creating a Simple Thunk
The most straightforward approach is wrapping a Supplier<T> instance
and storing its result after its first evaluation. By also implementing the
Supplier<T> interface, the Thunk becomes a drop-in replacement, as
shown in Example 11-5.

Example 11-5. A simple Thunk<T>
public class Thunk<T> implements Supplier<T> { 

  private final Supplier<T> expression; 

  private T result; 

  private Thunk(Supplier<T> expression) {
    this.expression = expression;
  }



  @Override
  public T get() {
    if (this.result == null) { 
      this.result = this.expression.get();
    }
    return this.result;
  }

  public static <T> Thunk<T> of(Supplier<T> expression) { 
    if (expression instanceof Thunk<T>) { 
      return (Thunk<T>) expression;
    }

    return new Thunk<T>(expression);
  }
}

Thunk<T> implements Supplier<T> to serve as a drop-in
replacement.The actual Supplier<T> needs to be stored to delay evaluation.The result must be stored after evaluation.If not evaluated yet, the expression gets resolved, and its result is stored.A convenience factory method to create a Thunk without needing new
or generic type information, so the only constructor can be private.No need to create a Thunk<T> for a Thunk<T>.

This Thunk implementation is simple yet powerful. It adds memoization by
calling a factory method with any Supplier<T> to create a drop-in
replacement. Updating a User, like in the previous section, requires
wrapping the method reference in the Thunk.of method:

updateUser(user, Thunk.of(this.dao::loadAllAvailableRoles));

The functional additions to Thunk<T> don’t have to stop here. You can
easily add “glue methods,” as I discussed in Chapter 2, to support
functional composition, as shown in Example 11-6

Example 11-6. Functional additions to Thunk<T>
public class Thunk<T> implements Supplier<T> {

  // ...

  public static <T> Thunk<T> of(T value) { 



    return new Thunk<T>(() -> value);
  }

  public <R> Thunk<R> map(Function<T, R> mapper) { 
    return Thunk.of(() -> mapper.apply(get()));
  }

  public <R> Thunk<R> flatMap(Function<T, Thunk<R>> mapper) { 
    return Thunk.of(() -> mapper.apply(get()).get());
  }

  public void accept(Consumer<T> consumer) { 
    consumer.accept(get());
  }
}

Factory method for creating a Thunk<T> of a single value instead of
an Supplier<T>.Creates a new Thunk<R> including the mapper function.Creates a new Thunk<R> from a function that returns a+Thunk<T>+
without needlessly wrapping it in another Thunk.Consumes a Thunks’ result.

With the addition of “glue” methods, the Thunk<T> type becomes a more
versatile utility type for creating lazy pipelines for single expressions.

One general problem remains, though: thread-safety.

A Thread-Safe Thunk
For single-threaded environments, the Thunk<T> implementation I
discussed in the previous section works as intended. However, if it’s
accessed from another thread while the expression evaluates, a race
condition might lead to re-evaluation. The only way to prevent this is to
synchronize it across all accessing threads.

The most straightforward approach would be to add the keyword
synchronized to its get method. However, it has the obvious downside
of always requiring synchronized access and the associated overhead,
even if the evaluation is already finished. Synchronization might not be as
slow as it used to be, but it’s still an overhead for every call to the get
method and definitely will slow down your code unnecessarily.



So how do you change the implementation to eliminate the race condition
without affecting the overall performance more than necessary? You do a
risk analysis of where and when a race condition can occur.

The risk of the evaluation-related race condition exists only until the
expression is evaluated. After that, no double evaluation can happen, as the
result is returned instead. That allows you to only synchronize the
evaluation itself, not each call to the get method.

Example 11-7 shows the introduction of a dedicated and synchronized
evaluate method. The actual implementation of it, and how to access its
result will be explained shortly.

Example 11-7. Thunk<T> with synchronized evaluation
public class Thunk<T> implements Supplier<T> { 
 
  private Thunk(Supplier<T> expression) {
    this.expression = () -> evaluate(expression);
  } 
 
  private synchronized T evaluate(Supplier<T> expression) {
    // ...
  } 
 
  // ...
}

The previous version of the Thunk used an additional field, value, to
determine if the expression was already evaluated. The new, thread-safe
variant, however, replaces the stored value and its checks with a dedicated
abstraction that holds the value, as follows:

private static class Holder<T> implements Supplier<T> { 
 
  private final T value; 
 
  Holder(T value) {
    this.value = value;
  } 
 
  @Override
  public T get() {



    return this.value;
  }
}

The Holder<T> does two things:

Hold the evaluated value

Implement Supplier<T>

Thanks to being a drop-in replacement for the field expression, a
technique known as compare & swap (CAS). It’s used for designing
concurrent algorithms, by comparing the value of a variable with an
expected value, and if they are equal, swapping out the value for the new
value. The operation has to be atomic, meaning it’s all-or-nothing for
accessing the underlying data. That’s why the evaluate method has to be
synchronized. Any thread can either see the data before or after, but
never in-between evaluation and, therefore, eliminating the race condition.

In Example 11-8, you see a CAS implementation of evaluate.

Now, the private field +expression can be replaced by the new type, as
shown in Example 11-7.

Example 11-8. Using Holder<T> instead of Supplier<T>
public class Thunk<T> implements Supplier<T> {

  private static class Holder<T> implements Supplier<T> {
    // ...
  }

  private Supplier<T> holder; 

  private Thunk(Supplier<T> expression) {
    this.holder = () -> evaluate(expression);
  }

  private synchronized T evaluate(Supplier<T> expression) {
    if (Holder.class.isInstance(this.holder) == false) { 
      var evaluated = expression.get();
      this.holder = new Holder<>(evaluated); 
    }



    return this.holder.get();
  }

  @Override
  public T get() {
    return this.holder.get(); 
  }
}

The field gets renamed to better reflect its usage, and also made non-
final, as it has swapped out after the expression is evaluated.The expression only gets evaluated if the holder field currently isn’t a
Holder instance, but the expression created in the constructor.The holder field, at this point holding the original lambda to evaluate
the initial expression, gets swapped out for a Holder instance with the
evaluated result.The un-synchronized get method uses the holder field directly
to access the value, as it always references a Supplier.

The improved Thunk<T> implementation isn’t as simple as before, but it
eliminates the race condition by decoupling the evaluation of the expression
from accessing it.

On first access, the holder field will call evaluate, which is
synchronized, and therefore thread-safe. Any additional calls while the
expression is evaluated will call to evaluate, too. Instead of a re-
evaluation, the type-check of the holder field skips directly to returning
the result of this.holder.get(). Any access after the holder is re-
assigned will skip any synchronized entirely.

That’s it, you now have a thread-safe, lazily evaluated Supplier<T>
drop-in that only evaluates once.

Our Thunk implementation uses synchronized, but there are multiple
approaches to implementing a compare & swap algorithm. The same
general behavior can be accomplished using one of the
java.util.concurrent.atomic.Atomic…  types in the JDK, or
even use a ConcurrentHashMap#computeIfAbsent to prevent the
race condition. The book “Java Concurrency” by Brian Goetz4 provides a



good starting point for better understanding atomic variables, non-blocking
synchronization, and Java’s concurrency model in general.

Final Thoughts on Laziness
At its core, the idea of laziness boils down to deferring required work until
a point in time when it’s indispensable. The separation of creating and
consuming expressions gives you a new axis of modularity in your code.
This approach can improve performance immensely if an operation is
optional and not required for each use case. Lazy evaluation also means,
though, that you have to give up a certain degree of control over the exact
time of evaluation.

The perceived and actual loss of control makes it much harder to reason
about the required performance and memory characteristics of your code.
The total performance requirement is the sum of all evaluated parts. Eager
evaluation allows for quite linear and compositional performance
assessment. Laziness shifts the actual computational cost from where
expressions are defined to when they are used, with the possibility of code
not being run at all. That’s why idiomatic lazy performance is harder to
assess because the perceived performance would most likely improve
immediately compared to eager evaluation, especially if your code has
many costly but maybe optional code paths. The total performance
requirements may vary on the general context and what code is actually
evaluated. You’d have to analyze your lazy code’s “average” usage patterns
and estimate the performance characteristics required under different
scenarios, making straightforward benchmarking quite hard.

Software development is a constant battle of effectively utilizing scarce
resources to reach the desired, or required, performance. Lazy techniques,
like delayed evaluation, or Streams for data processing, are low-hanging
fruits5 to improve your code’s performance that is easy to integrate into an
existing codebase. It definitely will reduce the required work to a minimum,
maybe even zero, freeing up precious performance for other tasks. If some



expression or costly computation can be avoided, making it lazy will most
definitely be a worthwhile endeavor in the long run.

Takeaways
Strict evaluation means expressions and method arguments evaluate
immediately on declaration.

Lazy evaluation separates creating and consuming expressions by
deferring their evaluation until their result is necessary, maybe even
not evaluating them at all.

Strictness is about “doing things”; laziness is about “considering things
to do.”

Java is a “strict” language regarding expressions and method
arguments, although certain lazy operators and control structures exist.

Lambas encapsulate expressions, making them lazy wrappers to be
evaluated at your discretion.

The JDK has several lazy runtime constructs and helper methods. For
example, Streams are lazy functional pipelines, Optional and Map
provide lazy additions to their general interfaces.

The Supplier<T> interface is the simplest way to create a lazy
calculation.

Memoization, in the form of a Thunk, helps to avoid re-evaluation
and can be used as a drop-in replacement for Supplier<T>.

Laziness is a performance optimization powerhouse. The best code is
the one that’s not run at all. The next best alternative is to run it only
lazily “on-demand.”

The assessment of performance requirements for lazy code is difficult
and might conceal performance problems if tested in environments not
matching a “real-world” use case.



1  See “Effectively final” for the definition and requirements of effectively final variables.

2  A DAO (data access object) is a pattern to provide an abstract interface to a persistence layer
like a database. It translates application calls to specific operations on the underlying
persistence layer without exposing details of it.

3  Wikipedia entry on proxies provides an overview of the different kinds of proxies and their
usage.

4  Goetz, Brian. 2006. “Java Concurrency in Practice.” Addison-Wesley. ISBN 978-
0321349606.

5  The concept of a low-hanging fruit describes a goal that is easy to achieve or taken advantage
of, compared to the alternatives, like re-designing or refactoring your whole codebase.

https://en.wikipedia.org/wiki/Proxy_pattern


Chapter 12. Recursion

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 12th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at rfernando@oreilly.com.

Recursion is an approach to solving a problem that can be broken down into
smaller versions of itself. Many developers see recursion as another — 
often complicated — approach to iteration-based problem-solving. Still, it’s
good to know different techniques for particular groups of problems in a
functional way.

This chapter shows the general idea behind recursion, how you implement
recursive methods, and their place in your Java code compared to other
forms of iteration.

What is Recursion?
In “Recursion”, you’ve seen an illustration of calculating factorials — the
product of all positive integers less than or equal to the input parameter.
Many books, guides, and tutorials use factorials to demonstrate recursion
because it’s a perfect problem to solve partially, and it’ll be the first
example of this chapter, too.



Every step of calculating factorials breaks down into the product of the
input parameter and the result of the next factorial operation. When the
calculation reaches fac(1) — defined as “1" — the chain terminates and
provides the value to the previous step. The complete steps can be seen in
Equation 12-1.

Equation 12-1. Formal representation of a factorial calculation

This generalization of the calculation steps visualizes the underlying
concept of recursion: solving a problem by combining smaller instances of
the same problem. This is done using methods that call themselves with
modified arguments until a base condition is reached.

Recursion consists of two distinct operation types:

Base conditions

A base condition is a predefined case — a solution to the problem — 
which will return an actual value and unwind the recursive call chain. It
provides its value to the previous step, which can now calculate a result
and return it to its predecessor, and so forth.

Recursive call

Until the call chain reaches its base condition, every step will create
another one by calling itself with modified input parameters.

Figure 12-1 shows the general flow of a recursive call chain.

fac(n)

→ n*fac(n − 1)

→ n*(n − 1)*fac(n − 2)

→ 4*(n − 1)*(n − 2)*⋯*fac(1)

→ 4*(n − 1)*(n − 2)*⋯*1



Figure 12-1. Solving problems with smaller problems

The problem becomes smaller until a solution is found for the smallest part.
This solution will then become an input for the next bigger problem, and so
on until the sum of all parts builds the solution to the original problem.

Head Versus Tail Recursion
Recursive calls fall into two categories, head and tail recursion, depending
on the location of the recursive call in the method body:

Head recursion

Other statements/expressions are executed/evaluated after the recursive
method call, making it not the last statement.



Tail recursion

The recursive call is the last statement of the method without any
further calculations linking its result to the current call.

Let’s look at calculating a factorial with both types to illustrate their
differences better. Example 12-1 shows how to use head recursion.

Example 12-1. Calculating factorials with head recursion
long factorialHead(long n) { 

  if (n == 1L) { 
    return 1L;
  }

  var nextN = n - 1L;

  return n * factorialHead(nextN); 
}

var result = factorialHead(4L);
// => 24

The method signature only contains the input parameter of the current
recursive step. No intermediate state moves between the recursive calls.The base condition must come before the recursive call.The return value is an expression depending on the result of the
recursive call, making it not the sole last statement in the method.

Now it’s time to look at tail recursion, as shown in Example 12-2.

Example 12-2. Calculating factorials with tail recursion
long factorialTail(long n, long accumulator) { 

  if (n == 1L) { 
    return accumulator;
  }

  var nextN = n - 1L;
  var nextAccumulator = n * accumulator;

  return factorialTail(nextN, nextAccumulator); 
}



var result = factorialTail(4L, 1L); 
// => 24

The method signature contains an accumulator.The base condition hasn’t changed compared to head recursion.Instead of returning an expression dependent on the next recursive call,
both factorialTail parameters are evaluated beforehand. The
method only returns the recursive call itself.The accumulator requires an initial value. It reflects the base condition.

The main difference between head and tail recursion is how the call stack is
constructed.

With head recursion, the recursive call is performed before returning a
value. Therefore, the final result won’t be available until the runtime has
returned from each recursive call.

With tail recursion, the broken-down problem is solved first before the
result is passed on to the next recursive call. Essentially, the return value of
any given recursive step is the same as the result of the next recursive call.
This allows for optimizing the call stack if the runtime supports it, as you
will see in the next section.

Recursion and the Call Stack
If you look at Figure 12-1 again, you can think of every box as a separate
method call and, therefore, a new stack frame on the call stack. That is a
necessity because every box must be isolated from previous calculations so
that their arguments won’t affect each other. The total recursive call count is
only constrained by how long it takes to reach a base condition. The
problem is, though, that the available stack size is finite. Too many calls
will fill up the available stack space and eventually throw a
StackOverflowError.



NOTE
A stack frame contains the state of a single method invocation. Each time your code
calls a method, the JVM creates and pushes a new frame on the thread’s stack. After
returning from a method, its stack frame gets popped and discarded.

The actual maximum stack depth depends on the available stack size1, and what’s stored
in the individual frames.

To prevent the stack from overflowing, many modern compilers use tail-
call optimization/elimination to remove no longer required frames in
recursive call chains. If no additional calculations take place after a
recursive call, the stack frame is no longer needed and can be removed.
That reduces the stack frame space complexity of the recursive call from
O(N) to O(1), resulting in faster and more memory-friendly machine code
without an overflowing stack.

Sadly, the Java compiler and runtime lack that particular ability yet, as of
early 2023.

PROJECT LOOM
Project Loom, an effort to support easy-to-use, high-throughput
lightweight concurrency and new programming models, will add
support for stack frame manipulation. The JVM gains support for
unwinding the stack to some point and invoking a method with given
arguments, a feature called unwind-and-inkove.

That allows for efficient tail-calls, even though automatic tail-call
optimization is not an explicitly stated project goal. Nevertheless, these
pleasant changes to the runtime might lower the barriers to using
recursion more often and more efficiently.

Nevertheless, recursion is still a valuable tool for a subset of particular
problems, even without optimization of the call stack.

https://openjdk.java.net/projects/loom/


A More Complex Example
As good as calculating a factorial is for explaining recursion, it isn’t a
typical “real-world” problem. That’s why it’s time to look at a more realistic
example: traversing a tree-like data structure, as seen in Figure 12-2.

Figure 12-2. Tree-like data structure traversal

The data structure has a single root node, and every node has an optional
left and right child node. Their numbers are for identification, not the order
of any traversal.

The nodes are represented by a generic Record Node<T>, as shown in
Example 12-3.

Example 12-3. Tree node structure
public record Node<T>(T value, Node<T> left, Node<T> right) { 
 
  public static <T> Node<T> of(T value, Node<T> left, Node<T> 
right) {
    return new Node<>(value, left, right);
  } 
 
  public static <T> Node<T> of(T value) {
    return new Node<>(value, null, null);
  } 
 
  public static <T> Node<T> left(T value, Node<T> left) {
    return new Node<>(value, left, null);
  } 



 
  public static <T> Node<T> right(T value, Node<T> right) {
    return new Node<>(value, null, right);
  }
} 
 
var root = Node.of("1",
                   Node.of("2",
                           Node.of("4",
                                   Node.of("7"),
                                   Node.of("8")),
                           Node.of("5")),
                   Node.right("3",
                              Node.left("6",
                                        Node.of("9"))));

The goal is to traverse the tree “in order.” That means every node’s left
child node is traversed first until no other left node is found. Then it will
continue traversing down its right child’s left nodes before going up again.

First, we will implement the tree-traversal with an iterative approach and
then compare it to a recursive one.

Iterative Tree-Traversal
With the help of a while loop, traversing the tree is as you would expect.
It requires temporary variables and coordination boilerplate for traversal, as
seen in Example 12-4.

Example 12-4. Iterative tree traversal
void traverseIterative(Node<String> root) {
  var tmpNodes = new Stack<Node<String>>(); 
  var current = root;

  while(!tmpNodes.isEmpty() || current != null) { 

    if (current != null) { 
      tmpNodes.push(current);
      current = current.left();
      continue;
    }

    current = tmpNodes.pop(); 



    System.out.print(current.value()); 

    current = current.right(); 
  }
}

Auxiliary variables are required to save the current state of the iteration.Iterate until no node is present, or nodeStack isn’t empty.A java.util.Stack saves all nodes until the bottom is reached.At this point, the loop can’t go deeper because it encountered current
== null, so it sets current to the last node saved in tmpNodes.Output the node value.Rinse and repeat with the right child node.

The output is as expected: 748251396.

Although it works as intended, the code isn’t very concise and requires
mutable auxiliary variables to work properly.

Let’s take a look at the recursive approach to see if it’s an improvement
over iteration.

Recursive Tree-Traversal
To create a recursive solution to traverse the tree, you must first clearly
define the different steps needed, including the base condition.

Traversing the tree requires two recursive calls, an action, and a base
condition:

Traverse the left node

Traverse the right node

Print a node’s value

Stop if no further nodes are found

The Java implementation of these different steps in their correct order is
shown in Example 12-5.

Example 12-5. Recursive tree traversal
void traverseRecursion(Node<String> node) {
  if (node == null) { 
    return;



  }

  traverseRecursion(node.left()); 

  System.out.print(node.value()); 

  traverseRecursion(node.right()); 
}

The base condition to stop the traversal if no nodes remain.First, recursively traverse the left child node. This will call traverse
again as long as a left node exists.Second, because no more left child nodes exist, the current value needs
to be printed.Third, traverse the possible right child node with the same logic as
before.

The output is the same as before: 748251396.

The code no longer requires an external iterator or auxiliary variables to
hold the state, and the actual processing logic is reduced to a minimum. The
traversal is no longer in the imperative mindset of what to do. Instead, it
reflects the functional approach of how to achieve a goal in a more
declarative way.

Let’s make the tree traversal even more functional by moving the traversal
process into the type itself and accepting a Consumer<Node<T>> for its
action, as shown in Example 12-6.

Example 12-6. Extend Node<T> with traversal method
record Node<T>(T value, Node<T> left, Node<T> right) {

  // ...

  private static <T> void traverse(Node<T> node, 
                                   Consumer<T> fn) { 
    if (node == null) {
      return;
    }

    traverse(node.left(), fn);

    fn.accept(node.value());

    traverse(node.right(), fn);



  }

  public void traverse(Consumer<T> fn) { 
    Node.traverse(this, fn);
  }
}

root.traverse(System.out::print);
The previous traverse method can easily be refactored into a
private static method on the original type.The new traverse method accepts a Consumer<Node<T>> to
support any kind of action.A public method for traversal simplifies the call be omitting this as
its first argument.

Traversing the type became even easier. The type itself is now responsible
for the best way to traverse itself and provides a flexible solution for anyone
using it.

It’s concise, functional, and easier to understand compared to the iterative
approach. Still, there are advantages to using a loop. The biggest one is the
performance discrepancy, trading the needed stack space for available heap
space. Instead of creating a new stack frame for every recursive traversal
operation, the nodes accumulate on the heap in tmpNodes. That makes the
code more robust for larger graphs that might otherwise lead to a stack
overflow.

As you can see, there’s no easy answer to which approach is best. It always
depends highly on the kind of data structure and how much data you need
to process. Even then, your personal preference and familiarity with a
particular approach might be more important than the “best” solution to a
problem to write straightforward and bug-free processing code.

Recursion-like Streams
Java’s runtime might not support tail-call optimization, however, you can
still implement a recursive-like experience with lambda expressions and
Streams that don’t suffer from overflowing stack issues.



Thanks to the lazy nature of Streams, you can build a pipeline that runs
infinitely until the recursive problem is solved. But instead of calling a
lambda expression recursively, it returns a new expression instead. This
way, the stack depth will remain constant, regardless of the number of
performed recursive steps.

This approach is quite convoluted compared to recursion or even using
loops. It’s not commonly used, but it illustrates how to combine various
new functional components of Java to solve recursive problems. Take a
look at the book’s code repository if you’d like to learn more.

Final Thoughts on Recursion
Recursion is an often overlooked technique because it’s so easy to get it
wrong. For example, a faulty base condition may be impossible to fulfill,
which inevitably leads to a stack overflow. The recursive flow, in general, is
harder to follow and more difficult to understand if you’re not used to it.
Because Java does not have tail-call optimization, you will have to factor in
the unavoidable overhead, which results in slower execution times than
iterative structures, in addition to the possibility of a
StackOverflowError if your call stack is too deep.

You should always consider the additional overhead and stack-overflow
problems when choosing between recursion and its alternatives. If you’re
running in a JVM with ample available memory and a big enough stack
size, even bigger recursive call chains won’t be an issue. But if your
problem size is unknown or not fixed, an alternative approach might be
more sensible to prevent a StackOverflowError in the long run.

Some scenarios are better suited for a recursive approach, even in Java with
its lack of tail-call optimization. Recursion will feel like a more natural way
to solve particular problems with self-referencing data structures like linked
lists or trees. Traversing tree-like structures can also be done iteratively but
will most likely result in more complex code that’s harder to reason with.

https://github.com/benweidig/a-functional-approach-to-java


But remember, choosing the best solution for a problem solely from a
technical viewpoint might undermine the readability and reasonability of
your code, which will affect long-time maintainability.

Table 12-1 gives you an overview of the differences between recursion and
iteration, so you can use them to choose more effectively.



Table 12-1. Recursion versus iteration

Recursion Iteration

Approach Self-calling function Loop construct

State Stored on Stack Stored in control
variables (e.g., a loop
index)

Progression Towards base condition Towards control value
condition

Termination Base condition reached Control variable
condition reached

Verbosity Lower verbosity
Minimal boilerplate and
coordination code required

Higher verbosity
Explicit coordination
of control variables
and state.

If not
terminated

StackOverflowError Endless loop

Overhead Higher overhead of repeated
method calls.

Lower overhead with
constant stack depth.

Performance Lower performance due to
overhead and missing tail-call
optimization.

Better performance
thanks to constant call
stack depth.



Recursion Iteration

Memory
Usage

Each call requires stack space. No additional memory
besides control
variables.

Execution
speed

Slower Faster

Which to choose — recursion or iteration — depends highly on the problem
you want to solve and in which environment your code runs. Recursion is
often the preferred tool for solving more abstract problems, and iteration is
a better match for more low-level code. Iteration might provide better
runtime performance, but recursion can improve your productivity as a
programmer.

Don’t forget that you can always start with a familiar iterative approach and
convert it to use recursion later.

Takeaways
Recursion is the functional alternative to “traditional” iteration.

Recursion is best used for partially solvable problems.

Java lacks tail-call-optimization, which can lead to
StackOverflowExceptions.

Don’t force recursion for functional’s sake. You can always start with
an iterative approach and convert it to a recursive approach later.

1  The default stack size of most JVM implementations is one megabyte. You can set a bigger
stack size with the flag -Xss. See the Oracle Java Tools Documentation for more information.

https://docs.oracle.com/en/java/javase/11/tools/java.xhtml#GUID-3B1CE181-CD30-4178-9602-230B800D4FAE__GUID-72BC3B70-49FF-4588-979F-7F8A32FEE6DA


Chapter 13. Asynchronous
Tasks

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 13th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at rfernando@oreilly.com.

Modern workloads require more thought about how to use available system
resources efficiently. Asynchronous tasks are an excellent tool for
improving the responsiveness of your application by avoiding performance
bottlenecks.

Java 8 introduced the new type CompletableFuture<T>, which
improved upon the previously available Future<T> type to create async
tasks by utilizing a declarative and functional approach.

This chapter explains why and how to utilize asynchronous programming
and how CompletableFuture<T> is a more flexible and functional
approach to asynchronous tasks than what was included in the JDK before.

Synchronous Versus Asynchronous



The concept of synchronous and asynchronous tasks is not restricted to
software development.

For example, an in-person meeting or conference call is a synchronous
activity, at least if you pay attention. You can’t do anything else except
participate and maybe take notes. Every other task is blocked until the
meeting/call is over. If the meeting/call would have been an e-mail instead 
— as most of my meetings could and should be — your current task isn’t
interrupted by requiring immediate attention before you could resume your
previous task. Therefore, an e-mail is non-blocking communication.

The same principles are true for software development. Synchronously
executed tasks run in sequence, blocking further work until they’re finished.
From a single-threaded point of view, a blocking task means waiting for the
result, possibly wasting resources by not doing anything else until the task
is finished.

Asynchronous tasks are about starting a task that is processed “somewhere
else” and you get notified when it’s done. Such tasks are non-blocking by
using concurrency techniques to spin off their work — usually to another
thread — so they don’t have to wait for them to finish. Therefore, the
current thread isn’t blocked and can continue with other tasks, as illustrated
in Figure 13-1.



Figure 13-1. Comparison of synchronous and asynchronous execution

Parallel execution, as I’ve discussed in Chapter 8, strives for maximum
throughput as its primary objective; the completion time of a single task is
generally of lesser concern in the greater scheme of things. An
asynchronous execution model like with CompletableFuture, on the
other hand, is focused on the overall latency and responsiveness of the
system. Spinning off tasks ensures a responsive system even in single-
threaded or resource-constrained environments.

Java Futures
Java 5 introduced the interface java.util.concurrent.Future<T>
as a container type for an eventual result of an asynchronous computation.
To create a Future, a task in the form of a Runnable or a
Callable<T> gets submitted to an ExecutorService which starts
the task in a separate thread but immediately returns a Future instance. This
way, the current thread can continue to do more work without waiting for
the eventual result of the Future computation.



The result is retrievable by calling the get method on a Future<T>
instance, which might block the current thread, though, if the computation
hasn’t finished yet. A simple example of the general flow is visualized in
Example 13-1.

Example 13-1. Future<T> flow of execution
var executor = Executors.newFixedThreadPool(10); 

Callable<Integer> expensiveTask = () -> { 

    System.out.println("(task) start");

    TimeUnit.SECONDS.sleep(2);

    System.out.println("(task) done");

    return 42;
};

System.out.println("(main) before submitting the task");

var future = executor.submit(expensiveTask); 

System.out.println("(main) after submitting the task");

var theAnswer = future.get(); 

System.out.println("(main) after the blocking call future.get()");

// OUTPUT:
// (main) before submitting the task
// (task) start
// (main) after submitting the task
// ~~ 2 sec delay ~~
// (task) done
// (main) after the blocking call future.get()

An explicit ExecutorService is needed to spin-off a
Callable<T> or Runnable.The Callable<T> interface has been available since before the
introduction of lambdas of functional interfaces. Its intended use case is
equivalent to Supplier<T> but it throws an Exception in its
single abstract method.



The computation of expensiveTask starts immediately, reflected in
the output.At this point, the calculation isn’t finished yet, so calling the get
method on future blocks the current thread until it is finished.

Although the Future<T> type achieves the essential requirement of being
a non-blocking container for asynchronous computation, its feature set is
limited to only a few methods: checking if the computation is done,
canceling it, and retrieving its result.

To have a versatile tool for asynchronous programming, there are a lot of
features left to be desired:

Easier way of retrieving a result, like callbacks on completion or
failure.

Chaining and combining multiple tasks in the spirit of functional
composition.

Integrated error handling and recovery possibilities.

Manual creation or completion of tasks without requiring an
ExecutorService.

Java 8 improved upon Futures to remedy the lacking features by
introducing the interface CompletionStage<T>, and its sole
implementation, CompletableFuture<T>, in the same package
java.util.concurrent. They’re versatile tools to build
asynchronous task pipelines with a richer feature set than Futures before
them. Where Future<T> is a container type for an asynchronous
computation of an eventual value, CompletionStage<T> represents a
single stage of an asynchronous pipeline with a massive API of over 70
methods!

Designing Asynchronous Pipelines with
CompletableFuture<T>



The general design philosophy of CompletableFutures is similar to Streams:
both are task-based pipelines offering parameterized methods accepting
common functional interfaces. The new API adds a myriad of coordination
tools that return new instances of CompletionStage<T> or
+CompletableFuture<T>. This amalgamation of a container for
asynchronous computation and coordination tools provides all the
previously missing features in a fluently composable and declarative API.

Due to the massive CompletableFuture<T> API and the complex
mental model of asynchronous programming in general, let’s start with a
simple metaphor: making breakfast.

The imaginary breakfast consists of coffee, toast, and eggs. Preparing the
breakfast in synchronous — or blocking — order doesn’t make much sense.
Waiting for the coffee maker to finish or for the toast to be done before
starting with the eggs is a poor use of available resources that will add
unnecessarily to the total prep time, leaving you hungry by the time you sit
down to eat. Instead, you can start frying the eggs while the coffee maker
and toaster do their thing and only react to them when the toaster pops or
the coffeemaker is done.

The same logic applies to programming. The available resources should be
allocated as needed and not wasted by waiting for expensive and long-
running tasks. The underlying concept of such asynchronous pipelines is
available in many languages under a different, maybe more common name:
Promises.

Promising a Value
Promises are the building blocks for asynchronous pipelines with built-in
coordination tools that allow chaining and combining multiple tasks,
including error handling. Such a building block is either pending (not
settled), resolved (settled and computation completed), or rejected (settled,
but in the error state). Moving between states in the compositional pipeline
is done by switching between two channels: data and error, as shown in
Figure 13-2.



Figure 13-2. Promise data and error channels

The data channel is the “happy path” if everything goes right. However, if a
promise fails, the pipeline switches to the error channel. This way, a failure
doesn’t crash the whole pipeline, like with Streams, and can be handled
gracefully, or even recover and switch the pipeline back to the data channel.

As you will see, the CompletableFuture API is a Promise by another name.

Creating a CompletableFuture<T>
Like its predecessor, Future<T>, the new CompletableFuture<T>
type doesn’t provide any constructors to create an instance. New
Future<T> instances are created by submitting tasks to
java.util.concurrent.ExecutorService which returns an
instance with its task already started.

CompletableFuture<T> follows the same principle. However, it
doesn’t necessarily require an explicit ExecutorService to schedule
tasks, thanks to its static factory methods:

CompletableFuture<Void> runAsync(Runnable
runnable)

CompletableFuture<U> supplyAsync(Supplier<U>
supplier)

Both methods are also available with a second argument, accepting a
java.util.concurrent.Executor, which is the base interface of
the ExecutorService type. If you choose the Executor-less variants,



the common ForkJoinPool is used, just like for parallel Stream pipelines as
explained in “Streams as Parallel Functional Pipelines”.

NOTE
The most apparent difference to submitting tasks to an ExecutorService for
creating a Future<T> is the use of Supplier<T> instead of Callable<T>. The
latter explicitly throws an Exception in its method signature. Therefore,
supplyAsync isn’t a drop-in replacement for submitting a Callable<T> to an
Executor.

Creating a CompletableFuture<T> instance is almost equivalent to
creating a Future<T> one, as shown in Example 13-2. The example
doesn’t use type inference, so the returning types are visible. Usually, you
would prefer the var keyword instead of using the explicit type.

Example 13-2. CompletableFuture creation with convenience methods
// FUTURE<T> 
 
var executorService = ForkJoinPool.commonPool(); 
 
Future<?> futureRunnable =
  executorService.submit(() -> System.out.println("not returning a 
value")); 
 
Future<String> futureCallable =
  executorService.submit(() -> "Hello, Async World!"); 
 
 
// COMPLETABLEFUTURE<T> 
 
CompletableFuture<Void> completableFutureRunnable =
  CompletableFuture.runAsync(() -> System.out.println("not 
returning a value")); 
 
CompletableFuture<String> completableFutureSupplier =
  CompletableFuture.supplyAsync(() -> "Hello, Async World!");

Even though the creation of instances is similar between Future<T> and
CompletableFuture<T>, the latter is more concise by not necessarily



requiring an ExecutorService. The bigger difference, though, is that a
CompletableFuture<T> instance provides a starting point for a
declarative and functional pipeline of CompletionStage<T> instances
instead of a singular isolated async task in the case of a Future<T>.

Compositing and Combining Tasks
After starting with a CompletableFuture<T> instance, it’s time to
combine and compose them further to create a more complex pipeline.

The broad range of operations available to build your asynchronous
pipelines is separable into three groups, depending on their accepted
arguments and intended use cases:

Transforming a result

Like the map operation of Streams and Optionals, the
CompletableFuture API gives you the similar thenApply method,
which uses a Function<T, U> to transform the previous result of
type T and returns another CompletionStage<U>. If the
transformation function returns another CompletionStage, using
the thenCompose method prevents additional nesting, similar to
Stream’s and Optional’s flatMap operation.

Consuming a result

As its name suggests, the thenAccept method requires a
Consumer<T> to work with the previous result of type T and returns a
new CompletionStage<Void>.

Executing after finishing

If you don’t require access to the previous result, the thenRun method
executes a Runnable and returns a new
CompletionStage<Void>.



There are too many methods to discuss each one in detail, especially with
the additional -Async methods. Most of these methods have two
additional -Async variants: one matching the non-Async and another one
with an additional Executor argument.

The non-Async methods execute their task in the same thread as the
previous task, even though that’s not guaranteed, as explained later in
“About Thread Pools and Timeouts”. The -Async variants will use a new
thread, either created by the common ForkJoinPool, or by the provided
Executor.

I will mostly discuss the non-Async variants to keep things simple.

Compositing Tasks
Compositing tasks creates a serial pipeline of connected CompletionStages.

All compositing operations follow a general naming scheme:

<operation>[Async](argument [, Executor])

The <operation> name derives from the type of operation and its
arguments, mainly using the prefix then plus the name of the SAM of the
functional interface they accept:

CompletableFuture<Void> thenAccept(Consumer<?
super T> action)

CompletableFuture<Void> thenRun(Runnable
action)

CompletableFuture<U> thenApply(Function<? super
T,? extends U> fn)

Thanks to the API’s proper naming scheme, using any of the operations
results in a fluent and straightforward call chain. For example, imagine a
bookmark manager that scrapes its websites for storing a permanent copy.
The overall task could be run async so it won’t stop the UI thread. The task



itself consists of three steps: downloading the website, preparing the content
for offline consumption, and finally, storing it, as shown in Example 13-3.

Example 13-3. Async bookmark manager workflow
var task = CompletableFuture.supplyAsync(() -> 
this.downloadService.get(url))
                            .thenApply(this.contentCleaner::clean)
                            .thenRun(this.storage::save);

Compositing operations are 1:1-only, meaning they take the result of the
previous stage and do their intended job. If your task pipeline requires
multiple flows to converge, you need to combine tasks.

Combining Tasks
Compositing interconnected futures to create a more complex task can be
immensely helpful. Sometimes, however, the different tasks don’t need or
can run in serial. In this case, you can combine CompletionStage
instances by using operations that accept another stage in addition to their
usual arguments.

Their naming scheme is similar to the previous 1:1 compositing operations:

<operation><restriction>[Async](other, argument [, Executor])

The additional restriction indicates if the operation works on both
stages, or either, using the aptly named suffixes -Both and -Either.

Table 13-1 lists the available 2:1 operations.



Table 13-1. Combinational Operations

Method Argument Notes

thenCombine BiFunction<T,

U, V>

Applies the BiFunction after both
stages completed normally.

thenAcceptBot

h

BiConsumer<T,

U>

Like thenCombine, but doesn’t produce
any value.

runAfterBoth Runnable Evaluate the Runnable after both given
stages have been completed normally.

applyToEither Function<T, U

>

Applies the Function to the first
completed stage.

acceptEither Consumer<T, U

>

Like applyToEither, but doesn’t
produce any value.

runAfterEithe

r

Runnable Evaluate the Runnable after either of
the given stages has been completed
normally.

Like with other functional Java features, the many different operations are
owed to Java’s static type system and how generic types are resolved.
Unlike other languages, like JavaScript, methods can’t accept multiple
types in a single argument or as a return type.

The composing operations can easily be mixed with the compositing ones,
as illustrated in Figure 13-3.



Figure 13-3. Compositing and combining tasks

The available operations provide a variety of functionality for almost any
use case. Still, there are certain blindspots in Java’s asynchronous API,
especially a particular variant is missing: combining the result of two stages
with a BiFunction returning another stage without creating a nested
CompletionStage.

The thenCombine behavior is similar to other map operations in Java. In
the case of a nested return value, a flatMap-like operation is required,
which is missing for CompletableFuture<T>. Instead, you need an
additional thenCompose operation to flatten the nested values, as shown
in Example 13-4.

Example 13-4. Unwrapping nested stages
CompletableFuture<Integer> future1 = 
CompletableFuture.supplyAsync(() -> 42); 
CompletableFuture<Integer> future2 = 
CompletableFuture.supplyAsync(() -> 23); 

BiFunction<Integer, Integer, CompletableFuture<Integer>> task = 
  (lhs, rhs) -> CompletableFuture.supplyAsync(() -> lhs + rhs);

CompletableFuture<Integer> combined =
  future1.thenCombine(future2, task) 
         .thenCompose(Function.identity()); 

The two stages that should combine their results.The task consuming the combined results of the previous stage.



The return value of task is wrapped into another stage by
thenCombine, resulting in an unwanted
CompletionStage<CompletionStage<Integer>>.The thenCompose call with Function.identity() unwraps the
nested stage and the pipeline is a CompletionStage<Integer>
again.

This approach is helpful if the task returns a CompletableFuture itself
instead of relying on the caller to handle it asynchronously by wrapping it
into a CompletableFuture if needed.

Running More Two CompletableFuture<T> at Once
The previously discussed operations allow you to run up to two
CompletableFutures to create a new one. Handling more than two, however,
isn’t possible with combinational operations like thenCombine without
creating a nested method-call nightmare. That’s why
CompletableFuture<T> type has two static convenience methods
for dealing with more than two instances at once:

CompletableFuture<Void>
allOf(CompletableFuture<?>…  cfs)

CompletableFuture<Object>
anyOf(CompletableFuture<?>…  cfs)

The allOf and anyOf methods coordinate pre-existing instances.
Therefore, both of them don’t provide matching -Async variants because
each given CompletableFuture instance already has its designated
Executor. Another aspect of the coordination-only nature is their
restrictive return types. Because both accept any kind of
CompletableFuture instances, signified by the generic bound <?>, no
definitive T for the overall result is determinable, as the types can be mixed
freely. The return type of the allOf is a
CompletableFuture<Void>, so you don’t have access to any result of
the given instances in later stages. However, it’s possible to create helper



methods that support returning a result as an alternative. I’ll show you how
to do that in “Creating a CompletableFuture Helper”, but for now, let’s go
through the other operations of CompletableFuture first.

Exception Handling
So far, I’ve shown you pipelines that have only trotted along the “happy
path” without any hiccups. However, a promise can be rejected, or as it is
called in Java, complete exceptionally, if an exception occurs in the
pipeline.

Instead of blowing up the whole pipeline in the case of an Exception, as
Streams or Optionals do, the CompletableFuture API sees Exceptions as
first-class citizens and an essential part of its workflow. That’s why
exception handling isn’t imposed on the tasks themselves, and there are
multiple operations available to handle possibly rejected Promises:

CompletionStage<T>
exceptionally(Function<Throwable, T> fn)

CompletionStage<U> handle(BiFunction<T,
Throwable, U> fn)

CompletionStage<T> whenComplete(BiConsumer<T,
Throwable> action)

Using the exceptionally operation adds an Exception hook into the
pipeline, which will complete normally with the previous stage’s result if no
Exception has occurred in any previous stage. In the case of a rejected
stage, its Exception is applied to the hook’s fn for a recovery effort. To
recover, fn needs to return any value of type T, which will switch the
pipeline back to the data channel. If no recovery is possible, throwing a new
Exception, or rethrowing the applied one, will keep the pipeline in the
exceptionally completed state and on the error channel.

The more flexible handle operation combines the logic of
exceptionally and thenApply into a single operation. The



BiFunction arguments depend on the result of the previous stage. If it
was rejected, the second argument of type Throwable is non-null.
Otherwise, the first argument of type T has value. Be aware that it still
might be a null-value.

The last operation, whenComplete, is similar to handle but doesn’t
offer a way to recover a rejected Promise.

Data and Error Channel Revisited
Even though I explained Promises have technically two channels, data and
error, a CompletableFuture pipeline is actually a straight line of operations,
like Streams. Each pipeline stage looks for the next compatible operation,
depending on which state the current stage has completed. In case of
completing normally, the next then/run/apply/etc. executes. These
operations are “pass-through” for exceptionally completed stages, and the
pipeline looks further for the next
exceptionally/handle/whenComplete/etc. operation.

A CompletableFuture pipeline might be a straight line created by a fluent
call, visualizing it as two channels, though, as done previously in Figure 13-
2, gives you a better overview of what’s happening. Each operation exists in
either the data or error channel, except the handle and whenComplete
operations, which exist in between, as they’re executed regardless of the
pipeline’s state.

Rejected Either Tasks
A straight pipeline might get another CompletableFuture injected by using a
combinatorial operation. You might think the suffix -Either might imply
that either pipelines might complete normally to create a new, non-rejected
stage. Well, you’re in for a surprise!

If the previous stage is rejected, the acceptEither operation remains
rejected regardless of whether the other stage is completed normally, as
shown in Example 13-5.

Example 13-5. Either operations and rejected stages



CompletableFuture<String> notFailed =
  CompletableFuture.supplyAsync(() -> "Success!"); 
 
CompletableFuture<String> failed =
  CompletableFuture.supplyAsync(() -> { throw new 
RuntimeException(); }); 
 
 
// NO OUTPUT BECAUSE THE PREVIOUS STAGE FAILED 
 
var rejected = failed.acceptEither(notFailed, System.out::println); 
 
 
// OUTPUT BECAUSE THE PREVIOUS STAGE COMPLETED NORMALLY
var resolved = notFailed.acceptEither(failed, System.out::println);
// => Success!

The gist to remember is that all operations, except the error-handling ones,
require a non-rejected previous stage to work properly, even for -Either
operations. If in doubt, use an error-handling operation to ensure a pipeline
is still on the data channel.

Terminal operations
Up to this point, any operation returns another CompletionStage<T>
to extend the pipeline further. The Consumer-based operations might
fulfill many use cases, but at some point, you need the actual value even if
it might block the current thread.

The CompletionStage<T> type itself doesn’t provide any additional
retrieval methods compared to the Future<t> type. Its implementation
CompletableFuture<T>, though, gives you two options: the getNow
and join methods. This ups the number of terminal operations to four, as
listed in Table 13-2.



Table 13-2. Getting a value from a pipeline

Method
signature Use-case Exceptions

T get() Blocks the current thread
until the pipeline is
completed.

InterruptedException

(checked)
ExecutionException

(checked)
CancellationException

(unchecked)

T get(long ti

meout, TimeUn

it unit)

Blocks the current thread
until the pipeline is
completed but throws an
Exception after the timeout
is reached.

TimeoutException

(checked)
InterruptedException

(checked)
ExecutionException

(checked)
CancellationException

(unchecked)

T getNow(T va

lueIfAbsent)

Returns the pipeline’s result
if completed normally or
throws an CompletionExcept
ion.
If the result is still pending,
the provided fallback value
T is returned immediately
without canceling the
pipeline.

CompletionException

(unchecked)
CancellationException

(unchecked)



Method
signature Use-case Exceptions

join() Blocks the current thread
until the pipeline is done.

If it completes
exceptionally, the
corresponding exception
is wrapped into a Comple
tionException.

The CompletableFuture<T> type also adds another pipeline
coordination method, isCompletedExceptionally, giving you a
total of four methods for affecting or retrieving the pipeline’s state, as listed
in Table 13-3.



Table 13-3. Coordination methods

Method
Signature Returns

boolean cance

l(boolean may

InterruptIfRu

nning)

Completes a not already completed stage exceptionally
with a CancellationException. The argument mayInter
ruptIfRunning is ignored because interrupts aren’t used
for control, unlike in Future<T>.

boolean isCan

celled()

Returns true if the stage was canceled before it has
completed.

boolean isDon

e()

Returns true if the stage has been completed in any
state.

boolean isCom

pletedExcepti

onally()

Returns true if the stage has been completed
exceptionally, or is already in the rejected state.

That’s quite a humongous API, covering a lot of use cases. Still, depending
on your requirements, some edge cases might be missing. But adding your
helper to fill any gaps is easy, so let’s do it.

Creating a CompletableFuture Helper
Although the CompletableFuture API is massive, it’s still missing certain
use cases. For example, as mentioned earlier in “Combining Tasks”, the
return type of the static helper allOf is
CompletableFuture<Void>, so you don’t have access to any result of
the given instances in later stages. It’s a flexible coordination-only method
that accepts any kind of CompletableFuture<?> as its arguments but



with the trade-off of not having access to any of the results. To make up for
this, you can create a helper to complement the existing API as needed.

Let’s create a helper in the vein of allOf, running more than two
CompletableFuture instances at once, but still giving access to their
results:

static CompletableFuture<List<T>> eachOf(CompletableFuture<T> 
cfs...)

The proposed helper eachOf runs all of the given
CompletableFuture instances, like allOf. However, unlike allOf,
the new helper uses the Generic type T instead of ? (question mark). This
restriction to a singular type makes it possible that the eachOf method can
actually return a CompletableFuture<List<T>> instead of a result-
less CompletableFuture<Void>.

The Helper Scaffold
A convenience class is needed to hold any helper methods. Such helper
methods are useful for particular edge cases that aren’t possible to solve
otherwise in a concise way, or even at all, with the provided API. The most
idiomatic and safe way is to use a class with a private constructor as
shown as follows to prevent anyone from accidentally extending or
instantiating the type.

public final class CompletableFutures { 
 
  private CompletableFutures() {
    // SUPPRESS DEFAULT CONSTRUCTOR
  }
}



NOTE
Helper classes with a private default constructor don’t have to be final per se to
prevent extendability. The extending class won’t compile without a visible implicit
super constructor. Nevertheless, making the helper class final signifies the desired
intent without relying on implicit behavior.

Designing eachOf
The goal of eachOf is almost identical to allOf. Both methods
coordinate one or more CompletableFuture instances. However,
eachOf is going further by managing the results, too. This leads to the
following requirements:

Returning a CompletableFuture containing all the given
instances, like allOf.

Giving access to the results of successfully completed instances.

The first requirement is fulfilled by the allOf method. The second one,
however, requires additional logic. It requires you to inspect the given
instances individually and aggregate their results.

The simplest way of running any logic after a previous stage completes in
any way is using the thenApply operation as shown as follows:

public static <T> CompletableFuture<List<T>> 
eachOf(CompletableFuture<T>... cfs) { 
 
  return CompletableFuture.allOf(cfs)
                          .thenApply(???);
}

Using what you’ve learned so far in the book, the aggregation of the results
of successfully completed CompletableFuture instances can be done
by creating a Stream data processing pipeline.

Let’s go through the steps needed to create such a pipeline.



First, the Stream must be created from the given
CompletableFuture<T> instances. It’s an vararg method argument
so it corresponds to an array. The helper Arrays#stream(T[]
arrays) is the obvious choice when dealing with a vararg:

Arrays.stream(cfs)

Next, the successfully completed instances are filtered. There is no explicit
method to ask an instance if it is completed normally, but you can ask the
inverse thanks to Predicate.not:

Arrays.stream(cfs)
      
.filter(Predicate.not(CompletableFuture::isCompletedExceptionally
))

There are two methods for getting a result immediately from a
CompletableFuture: get() and join(). In this case, the latter is
preferable, because it doesn’t throw a checked Exception, simplifying the
Stream pipeline as discussed in Chapter 10:

Arrays.stream(cfs)
      
.filter(Predicate.not(CompletableFuture::isCompletedExceptionally
))
      .map(CompletableFuture::join)

Using the join method blocks the current thread to get the result.
However, the Stream pipeline is run after allOf is completed anyway, so
all results are already available. And by filtering non-successfully
completed elements beforehand, no Exception is thrown that might implode
the pipeline.

Finally, the results are aggregated into a List<T>. This can be either done
with a collect operation, or if you’re using Java 16+, the Stream<T>
type’s toList method:



Arrays.stream(cfs)
      
.filter(Predicate.not(CompletableFuture::isCompletedExceptionally
))
      .map(CompletableFuture::join)
      .toList();

The Stream pipeline can now be used to gather the results in the
thenApply call. The full implementation of CompletableFutures
and its eachOf helper method is shown in Example 13-6.

Example 13-6. Complete implementation of eachOf
public final class CompletableFutures {

  private final static Predicate<CompletableFuture<?>> 
EXCEPTIONALLY = 
    Predicate.not(CompletableFuture::isCompletedExceptionally);

  public static <T> CompletableFuture<List<T>> 
eachOf(CompletableFuture<T>... cfs) {

    Function<Void, List<T>> fn = unused -> 
      Arrays.stream(cfs)
            .filter(Predicate.not(EXCEPTIONALLY))
            .map(CompletableFuture::join)
            .toList();

    return CompletableFuture.allOf(cfs) 
                            .thenApply(fn);
  }

  private CompletableFutures() {
    // SUPPRESS DEFAULT CONSTRUCTOR
  }
}

The Predicate for testing successful completion isn’t bound to a
specific CompletableFuture instance and, therefore, reusable as a
final static field.The result gathering action is represented by Function<Void,
List<T>>, which matches the inner types of the return type of allOf
and the intended return type of eachOf.The overall task is merely calling the pre-existing allOf and
combining it with the result aggregating pipeline.



That’s it! We’ve created an alternative to allOf for certain use cases when
the results should be easily accessible.

The final implementation is an example of the functional approach to
solving problems. Each task in itself is isolated and could be used on its
own. By combining them, though, you create a more complex solution built
of smaller parts.

Improving the CompletableFutures Helper
The eachOf method works as you would expect it as a complementary
method to allOf. If any of the given CompletableFuture instances
fails, the returned CompletableFuture<List<T>> has also
completed exceptionally.

Still, there are “fire & forget” use cases, where you are only interested in
the successfully completed tasks and don’t care about any failures. A failed
CompletableFuture, though, will throw an Exception if you try to
extract its value with get or similar methods. So let’s add a bestEffort
helper method based on eachOf that always completes successfully and
only returns the successful results.

The main goal is almost identical to eachOf, except if the allOf call
returns an exceptionally completed CompletableFuture<Void>, it
must recover. Adding an Exception hook by interjecting an
exceptionally operation is the obvious choice:

public static
<T> CompletableFuture<List<T>> bestEffort(CompletableFuture<T>... 
cfs) { 
 
  Function<Void, List<T>> fn = ...; // no changes to Stream 
pipeline 
 
  return CompletableFuture.allOf(cfs)
                          .exceptionally(ex -> null)
                          .thenApply(fn);
}



The exceptionally lambda ex -> null might look weird at first.
But if you check out the underlying method signature, its intention becomes
clearer.

In this case, the exceptionally operation requires a
Function<Throwable, Void> to recover the
CompletableFuture by returning a value of type Void instead of
throwing an Exception. This is achieved by returning null. After that, the
aggregation Stream pipeline from eachOf is used to gather the results.

TIP
The same behavior could be achieved with the handle operation and handle both
states, success or rejection, in a singular BiFunction. Still, handling the states in
separate steps makes a more readable pipeline.

Now that we have two helper methods with shared logic, it might make
sense to extract common logic into their own methods. This underlies the
functional approach of combining isolated logic to create a more complex
and complete task. A possible refactored implementation of Futures is
shown in Example 13-7.

Example 13-7. Refactored implementation of Futures with eachOf and
bestEffort
public final class CompletableFutures {

  private final static Predicate<CompletableFuture<?>> 
EXCEPTIONALLY = 
    Predicate.not(CompletableFuture::isCompletedExceptionally);

  private static <T> Function<Void, List<T>>
                     gatherResultsFn(CompletableFuture<T>... cfs) { 

    return unused -> Arrays.stream(cfs)
                      .filter(Predicate.not(EXCEPTIONALLY))
                      .map(CompletableFuture::join)
                      .toList();
  }



  public static <T> CompletableFuture<List<T>> 
eachOf(CompletableFuture<T>... cfs) { 
    return CompletableFuture.allOf(cfs)
                            .thenApply(gatherResultsFn(cfs));
  }

  public static <T> CompletableFuture<List<T>> 
bestEffort(CompletableFuture<T>... cfs) { 
    return CompletableFuture.allOf(cfs)
                            .exceptionally(ex -> null)
                            .thenApply(gatherResultsFn(cfs));
  }

  private CompletableFutures() {
    // SUPPRESS DEFAULT CONSTRUCTOR
  }
} The Predicate is unchanged.The result-gathering logic is refactored into a private factory method

to ensure consistent handling across both eachOf and bestEffort.Both public helper methods are reduced to the absolute minimum.

The refactored CompletableFutures helper is simpler and more
robust than before. Any sharable complex logic is reused so it provides
consistent behavior throughout its method and minimizes the required
documentation that should definitely add to communicate the intended
functionality to any caller.

Manual Creation and Completion
The only way to create Future<T> instances besides implementing the
interface yourself is by submitting a task to an ExecutorService. The
static convenience factory methods runAsync or supplyAsync of
CompletableFuture<T> are quite similar. Unlike its predecessor,
they’re not the only way to create instances, though.

Manual Creation



Thanks to being an actual implementation and not an interface, the
CompletableFuture<T> type has a constructor that you can use to
create an unsettled instance as shown as follows:

CompletableFuture<String> unsettled = new CompletableFuture<>();

Without an attached task, however, it will never be completed or fail.
Instead, you need to complete such a task manually.

Manual Completion
There are a couple of ways to settle an existing
CompletableFuture<T> instance and kickstart the attached pipeline:

boolean complete(T value)

boolean completeExceptionally(Throwable ex)

Both methods return true if the call transitions the stage to the expected
state.

Java 9 introduced additional complete methods for normally completed
stages, in the form of -Async variants, and a timeout-based one:

CompletableFuture<T> completeAsync(Supplier<T>
supplier)

CompletableFuture<T> completeAsync(Supplier<T>
supplier, Executor executor)

CompletableFuture<T> completeOnTimeout(T value,
long timeout, TimeUnit unit)

The -Async variants complete the current stage with the result of the
supplier in a new asynchronous task.

The other method, completeOnTimeout, settles the current stage with
the given value if the stage doesn’t complete otherwise before the



timeout is reached.

Instead of creating a new instance and then manually completing it, you can
also create an already completed instance with one of these static
convenience factory methods:

CompletableFuture<U> completedFuture(U value)

CompletableFuture<U> failedFuture(Throwable ex)
(Java 9+)

CompletionStage<U> completedStage(U value) (Java
9+)

CompletionStage<U> failedStage(Throwable ex)
(Java 9+)

Such already completed futures can then be used in any of the
combinatorial operations, or as a starting point for a CompletableFutures
pipeline, as I’m going to discuss in the next section.

Use-Cases for Manually Created and Completed
Instances
In essence, the CompletableFuture API provides an easy way to create an
asynchronous task pipeline with multiple steps. By creating and completing
a stage manually, you gain fine-grained control over how the pipeline is
executed afterward. For example, you can circumvent spinning off a task if
the result is already known. Or you can create a partial pipeline factory for
common tasks.

Let’s look at a few possible use cases.

CompletableFuture as Return Value
CompletableFuture makes an excellent return value for possible
costly or long-running tasks.



Imagine a weather report service that calls a REST API to return a
WeatherInfo object. Even though weather changes over time, it makes
sense to cache the WeatherInfo for a particular place for some time
before updating them with another REST call.

A REST call is naturally costlier and requires more time than a simple
cache lookup, and therefore might block the current thread too long to be
acceptable. Wrapping it in a CompletabaleFuture provides an easy
way to offload the task from the current thread, leading to the following
general WeatherService with a singular public method:

public class WeatherService { 
 
  public CompletableFuture<WeatherInfo> check(ZipCode zipCode) {
    return CompletableFuture.supplyAsync(
      () -> this.restAPI.getWeatherInfoFor(zipCode)
    );
  }
}

Adding a cache requires two methods, one for storing any result, and one
for retrieving existing ones, as follows:

public class WeatherService { 
 
  private Optional<WeatherInfo> cached(ZipCode zipCode) {
    // ...
  } 
 
  private WeatherInfo storeInCache(WeatherInfo info) {
    // ...
  } 
 
  // ...
}

Using Optional<WeatherInfo> provides you with a functional
launchpad to connect each part later. The actual implementation of the
caching mechanism doesn’t matter for the purpose and intent of the
example.



The actual API call should be refactored, too, to create smaller logic units,
leading to a singular public method and three private distinct
operations. The logic to store a result in the cache can be added as a
CompletableFuture operation by using thenApply with the
storeInCache method:

public class WeatherService { 
 
  private Optional<WeatherInfo> cacheLookup(ZipCode zipCode) {
    // ...
  } 
 
  private WeatherInfo storeInCache(WeatherInfo info) {
    // ...
  } 
 
  private CompletableFuture<WeatherInfo> restCall(ZipCode 
zipCode) { 
 
    Supplier<WeatherInfo> restCall = 
this.restAPI.getWeatherInfoFor(zipCode); 
 
    return CompletableFuture.supplyAsync(restCall)
                            .thenApply(this::storeInCache);
  } 
 
  public CompletableFuture<WeatherInfo> check(ZipCode zipCode) {
    // ...
  }
}

Now all parts can be combined to fulfill the task of providing a cached
weather service, as shown in Example 13-8.

Example 13-8. Cached WeatherService with CompletableFutures
public class WeatherService {

  private Optional<WeatherInfo> cacheLookup(ZipCode zipCode) { 
    // ...
  }

  private WeatherInfo storeInCache(WeatherInfo info) { 
    // ...
  }



  private CompletableFuture<WeatherInfo> restCall(ZipCode zipCode) 
{ 

    Supplier<WeatherInfo> restCall = () -> 
this.restAPI.getWeatherInfoFor(zipCode);

    return CompletableFuture.supplyAsync(restCall)
                            .thenApply(this::storeInCache);
  }

  public CompletableFuture<WeatherInfo> check(ZipCode zipCode) { 

    return 
cacheLookup(zipCode).map(CompletableFuture::completedFuture) 
                               .orElseGet(() -> restCall(zipCode)); 

  }
}

The cache lookup returns an Optional<WeatherInfo> to provide
a fluent and functional jump-off point. The storeInCache method
returns the stored WeatherInfo object to be usable as a method
reference.The restCall method combines the REST call itself and stores the
result if successfully completed, in the cache.The check method combines the other methods by looking in the
cache first.If a WeatherInfo is found, it returns an already completed
CompletableFuture<WeatherInfo> immediately.If no WeahterInfo object is found, the Optional’s orElseGet
executes the reastCall method lazily.

The advantage of combining CompletableFutures with Optionals this way is
that it doesn’t matter what happens behind the scenes for the caller, whether
the data is loaded via REST or is coming directly from a cache. Each
private method does a singular task most efficiently, with the sole
public method combining them as an asynchronous task pipeline only
doing its expensive work if absolutely required.

Pending CompletableFuture Pipelines



A pending CompletableFuture instance never completes by itself with any
state. Similar to Streams that won’t start their data processing until a
terminal operation is connected, a CompletableFuture task pipeline won’t
do any work until the first stage completes. Therefore, it provides a perfect
starting point as the first stage of a more intricate task pipeline or even a
scaffold for a pre-defined task to be executed on demand later.

Imagine you want to process image files. There are multiple independent
steps involved that might fail. Instead of processing the files directly, a
factory provides unsettled CompletedFuture instances, as shown in
Example 13-9.

Example 13-9. ImageProcessor with unsettled CompletableFuture
public class ImageProcessor {
 
  public record Task(CompletableFuture<Path> start, 
                     CompletableFuture<InputStream> end) {
    // NO BODY
  }

  public Task createTask(int maxHeight,
                         int maxWidth,
                         boolean keepAspectRatio,
                         boolean trimWhitespace) {

    var start = new CompletableFuture<Path>(); 

    var end = unsettled.thenApply(...) 
                       .exceptionally(...)
                       .thenApply(...)
                       .handle(...);

    return new Task(start, end); 
  }
}

The caller needs access to the unsettled first stage to start the pipeline,
but also requires the stage to access the final result.The Generic type of the returned CompletableFuture instance must
match the type you want the caller to provide when they actually
execute the pipeline. In this case, the Path to an image file is used.The task pipeline starts with an unsettled instance so the required
processing operations can be added lazily.



The Task record is returned to provide easy access to the first and last
stages.

Running the task pipeline is done by calling any of the complete methods
on the first stage start. Afterward, the last stage is used to retrieve a
potential result, as shown below:

// CREATING LAZY TASK
var task = this.imageProcessor.createTask(800, 600, false, true); 
 
 
// RUNNING TASK
var path = Path.of("a-functional-approach-to-java/cover.png");
task.start().complete(path); 
 
 
// ACCESSING THE RESULT
var processed = task.end().get();

Just like a Stream pipeline without a terminal operation creates a lazy
processing pipeline for multiple items, a pending CompletableFuture
pipeline is a lazily usable task pipeline for a singular item.

About Thread Pools and Timeouts
Two last aspects of concurrent programming shouldn’t be ignored: timeouts
and thread pools.

By default, all -Async CompletableFuture operations use the JDK’s
common ForkJoinPool. It’s a highly optimized thread pool based on
runtime settings with sensible defaults1. As its name implies, the “common”
pool is a shared one also used by other parts of the JDK, like parallel
Streams. Unlike parallel Streams, though, the async operations can use a
custom Executor instead. That allows you to use a thread pool fitting
your requirements2 without affecting the common pool.



DAEMON THREADS
An important difference between using Threads via the ForkJoinPool and user-
created ones via an Executor is their ability to outlive the main thread. By default,
user-created Threads are non-daemon, which means they outlive the main thread and
prevent the JVM from exiting, even if the main thread has finished all its work. Using
Threads via the ForkJoinPool, however, might get killed with the main thread. See
this blog post by Java Champion A N M Bazlur Rahman for more details on the topic.

Running your tasks on the most efficient thread is only the first half of the
equation; thinking about timeouts is the other half. A
CompletableFuture that never completes or times out will remain
pending for eternity, blocking its thread. If you try to retrieve its value, for
example, by calling get(), the current thread is blocked, too. Choosing
appropriate timeouts can prevent eternally blocked threads. However, using
timeouts means that you also have to deal with a possible
TimeoutException now.

There are multiple operations available, both intermediate and terminal, as
listed in Table 13-4.

https://bazlur.com/2021/07/be-sure-of-using-fork/join-common-pool-they-are-daemon-threads/


Table 13-4. Timeout-related operations

Method
signature Use-case

CompletableFu

ture<T>

completeOnTim

eout(T value,

long timeout,

TimeUnit uni

t)

Completes the stage normally with the provided value
after the timeout is reached. (Java 9+)

CompletableFu

ture<T>

orTimeout(lon

g timeout, 

TimeUnit uni

t)

Completes the stage exceptionally after the timeout is
reached. (Java 9+)

T get(long ti

meout,

TimeUnit uni

t)

Blocks the current thread until the end of the
computation. If the timeout is reached, a TimeoutExcept
ion is thrown.

The intermediate operations completeOnTimeout and orTimeout
provide an interceptor-like operation to handle timeouts at any position of a
CompletableFuture pipeline.

An alternative to timeouts is canceling a running stage by calling boolean
cancel(boolean mayInterruptIfRunning). It cancels an
unsettled stage and its dependents, so it might require some coordination
and keeping track of what’s happening to cancel the right one.



Final Thoughts on Asynchronous Tasks
Asynchronous programming is an important aspect of concurrent
programming to achieve better performance and responsiveness. However,
it can be difficult to reason about asynchronous code execution, because it’s
no longer obvious when and on which thread a task is executed.

Coordinating different threads is nothing new to Java. It can be a hassle and
is hard to do right and efficiently, especially if you’re not used to multi-
threaded programming. That’s where the CompletableFuture API
really shines. It combines the creation of intricate asynchronous possibly
multi-step tasks and their coordination into an extensive, consistent, and
easy-to-use API. This allows you to incorporate asynchronous
programming into your code way easier than before. Furthermore, you
don’t require the common boilerplate and “handrails” normally associated
with multi-threaded programming.

Still, like with all programming techniques, there’s an optimal problem
context. If used indiscriminately, asynchronous tasks might achieve the
opposite of their intended goal.

Running tasks asynchronously is a good fit for any of these criteria:

Many tasks need to be done simultaneously with at least one being
able to make progress.

Tasks performing heavy I/O, long-running computations, network
calls, or any kind of blocking operation.

Tasks are mostly independent and don’t have to wait for another one to
complete.

Even with such a quite high-level abstraction like CompletableFuture,
multi-threaded code trades simplicity for possible efficiency.

Like other concurrent or parallel high-level APIs, such as the parallel
Stream API I discussed in Chapter 8, there are non-obvious costs involved
in coordinating multiple threads. Such APIs should be chosen deliberately



as an optimization technique, not as a one-size-fits-all solution to hopefully
use the available resources more efficiently.

If you’re interested in the finer details of how to navigate multi-threaded
environments safely, I recommend the book Java Concurrency in Practice
by Brian Goetz3, the Java Language Architect at Oracle. Even with all the
new concurrent features introduced since its release in 2006, this book is
still the de-facto reference manual on the topic.

Takeaways
Java 5 introduced the type Future<T> as a container type for
asynchronous tasks with an eventual result.

The CompletableFuture API improves upon the Future<T> type by
providing many desirable features previously unavailable. It’s a
declarative, reactive, lambda-based coordination API with 70+
methods.

Tasks can be easily chained or merged into a more complex pipeline
that runs each task in a new thread if required.

Exceptions are first-class-citizens and you can recover within the
functional fluent call, unlike the Streams API.

CompletableFuture<T> instances can be created manually with
either a preexisting value without requiring any threads or other
coordination, or as a pending instance to provide an on-demand
starting point for its attached operations.

As the CompletableFuture API is a concurrency tool, the usual
concurrency-related aspects and issues need to be considered, too, like
timeouts and thread pools. Like parallel Streams, running tasks
asynchronously should be considered an optimization technique, not
necessarily the first option to go to.



1  The default settings of the common ForkJoinPool and how to change them is explained in
its documentation

2  The excellent book Java Concurrency in Practice by Josh Bloch et.al. (ISBN
9780321349606) has all the information you might need in Part II: Chapter 8. Applying
Thread Pools to better understand how thread pools work and are utilized best.

3  Goetz, Brian. 2006. “Java Concurrency in Practice.” Addison-Wesley. ISBN 978-
0321349606.

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/ForkJoinPool.xhtml


Chapter 14. Functional Design
Patterns

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 14th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at rfernando@oreilly.com.

Functional programming’s answer to object-oriented design patterns is
usually “just use functions instead.” Technically, that’s correct; it’s turtles
all the way down1 with functional programming. However, coming from an
object-oriented mindset wanting to augment your code with functional
principles, more practical advice is required to utilize known patterns in a
functional fashion.

This chapter will examine some of the commonly used object-oriented
design patterns described by the gang of four2, and how they can benefit
from a functional approach.

What Are Design Patterns?
You don’t have to reinvent the wheel every time you need to solve a
problem. Many of them have already been solved, or at least a general



approach to a fitting solution exists in the form of a design pattern. As a
Java developer, you most likely used or came across one or more object-
oriented design patterns already, even if you didn’t know it at the time.

In essence, object-oriented design patterns are tested, proven, formalized,
and repeatable solutions to common problems.

The gang of four categorized the patterns they describe into three groups:

Behavioral patterns

How to deal with responsibilities of and communication between
objects.

Creational patterns

How to abstract the object creation/instantiation process, to help create,
compose, and represent objects.

Structural patterns

How to compose objects to form larger or enhanced objects.

Design patterns are general scaffolds to make knowledge shareable with
concepts on applying them to specific problems. That’s why not every
language or approach fits every pattern. Especially in functional
programming, many problems don’t require a certain pattern besides “just
functions.”

(Functional) Design Patterns
Let’s take a look at four commonly used object-oriented design patterns and
how to approach them functionally:

Factory pattern (creational)

Decorator pattern (structural)

Strategy pattern (behavioral)



Builder pattern (creational)

Factory Pattern
The factory pattern belongs to the group of creational patterns. Its purpose
is to create an instance of an object without exposing the implementation
details of how to create such objects by using a factory instead.

Object-Oriented Approach
There are multiple ways of implementing the factory pattern. For my
example, all objects have a shared interface, and an enum is responsible for
identifying the desired object type:

public interface Shape {
  int corners();
  Color color();
  ShapeType type();
} 
 
public enum ShapeType {
  CIRCLE,
  TRIANGLE,
  SQUARE,
  PENTAGON;
}

Shapes are represented by Records, which only need a Color, as they can
deduct their other properties directly. A simple Circle Record might look
like this:

public record Circle(Color color) implements Shape { 
 
  public int corners() {
    return 0;
  } 
 
  public ShapeType type() {
    return ShapeType.CIRCLE;
  }
}



A Shape factory needs to accept the type and color to create the
corresponding Shape instance, as follows:

public class ShapeFactory { 
 
  public static Shape newShape(ShapeType type,
                               Color color) {
    Objects.requireNonNull(color); 
 
    return switch (type) {
      case CIRCLE -> new Circle(color);
      case TRIANGLE -> new Triangle(color);
      case SQUARE -> new Square(color);
      case PENTAGON -> new Pentagon(color);
      default -> throw new IllegalArgumentException("Unknown 
type: " + type);
    };
  }
}

Looking at all the code involved so far, there are four distinct parts to the
pattern:

The shared interface Shape

The shape-identifying enum ShapeType

The concrete implementations of shapes (not shown)

The ShapeFactory to create shapes based on their type and
color

These parts depend on each other, which is expected. Still, this
interdependence of the factory and the enum makes the whole approach
fragile to change. If a new ShapeType is introduced, the factory has to
account for it, or an IllegalArgumentException is thrown in the
default case of the switch, even if a concrete implementation type
exists.



NOTE
The default case isn’t necessarily needed, as all cases are declared. It’s used to
illustrate the dependency between ShapeType and ShapeFactory and how to
alleviate it.

To improve the factory, its fragility can be reduced by introducing compile-
time validation with a more functional approach.

A More Functional Approach
This example creates quite simplistic Records that only need a singular
argument: Color. These identical constructors give you the possibility to
move the “factory” directly into the enum, so any new shape automatically
requires a corresponding factory function.

Even though Java’s enum types are based on constant names, you can
attach a corresponding value for each constant. In this case, a factory
function for creating the discrete object in the form of a
Function<Color, Shape> value:

public enum ShapeType {
  CIRCLE,
  TRIANGLE,
  SQUARE,
  PENTAGON; 
 
  public final Function<Color, Shape> factory; 
 
  ShapeType(Function<Color, Shape> factory) {
    this.factory = factory;
  }
}

The code no longer compiles, because the constant declaration now requires
an additional Function<Color, Shape>. Luckily, the Shapes’
constructors are usable as method references to create quite concise code
for the factory methods:



public enum ShapeType {
  CIRCLE(Circle::new),
  TRIANGLE(Triangle::new),
  SQUARE(Square::new),
  PENTAGON(Pentagon::new); 
 
  // ...
}

The enum gained the discrete creation methods as an attached value to each
of its constants. This way, any future additions, like, for example,
HEXAGON, force you to provide an appropriate factory method without the
possibility to miss it, as the compiler will enforce it.

Now all that’s left is the ability to create new instances. You could simply
use the factory field and its SAM accept(Color color) directly,
but I prefer an additional method to allow for sanity checks:

public enum ShapeType { 
 
  // ... 
 
  public Shape newInstance(Color color) {
    Objects.requireNonNull(color);
    return this.factory.apply(color);
  }
}

Creating a new Shape instance is now quite easy:

var redCircle = ShapeType.CIRCLE.newInstance(Color.RED);

The public field factory might seem redundant now that a dedicated
method for instance creation is available. That’s kind of true. Still, it
provides a functional way to interact with the factory further, like functional
composition to log the creation of a shape:

Function<Shape, Shape> cornerPrint =
  shape -> {
    System.out.println("Shape created with " + shape.corners() + 
" corners.");



  }; 
 
ShapeType.CIRCLE.factory.andThen(cornerPrint)
                        .apply(Color.RED);

By fusing the factory with the enum, the decision-making process — what
factory method to call — gets replaced by binding the factory methods
directly with ShapeType counterparts. The Java compiler now forces you
to implement the factory on any addition to the enum.

This approach reduces the required boilerplate with added compile-time
safety for future extensions.

Decorator Pattern
The decorator pattern is a structural pattern that allows modifying object
behavior at runtime. Instead of sub-classing, an object is wrapped inside a
“decorator” that contains the desired behavior.

Object-Oriented Approach
The object-oriented implementation of this pattern requires that the
decorators share an interface with the type they’re supposed to decorate. To
simplify writing a new decorator, an abstract class implementing the
shared interface is used as a starting point for any decorator.

Imagine a coffee maker with a singular method to prepare coffee. The
shared interface and the concrete implementation are as follows:

public interface CoffeeMaker {
  List<String> getIngredients();
  Coffee prepare();
} 
 
 
public class BlackCoffeeMaker implements CoffeeMaker { 
 
  @Override
  public List<String> getIngredients() {
    return List.of("Robusta Beans", "Water");
  } 



 
  @Override
  public Coffee prepare() {
    return new BlackCoffee();
  }
}

The goal is to decorate the coffee maker to add functionality like adding
milk or sugar to your coffee. Therefore, a decorator has to accept the coffee
maker and decorate the prepare method. A simple shared abstract
decorator is shown in ???.

public abstract class Decorator implements CoffeeMaker { 

  private final CoffeeMaker target;

  public Decorator(CoffeeMaker target) { 
    this.target = target;
  }

  @Override
  public List<String> getIngredients() { 
    return this.target.getIngredients();
  }

  @Override
  public Coffee prepare() { 
    return this.target.prepare();
  }
}

The Decorator implements CoffeeMaker so it’s usable as a drop-
in replacement.The constructor accepts the original CoffeeMaker instance that’s
supposed to be decorated.The getIngredients and prepare methods simply call the
decorated CoffeeMaker, so any actual decorator can use a super
call to get the “original” result.

The abstract Decorator type aggregates the minimal required
functionality to decorate a CoffeeMaker in a singular type. With its help,



adding steamed milk to your coffee is straightforward. All you need now is
a milk carton, as seen in Example 14-1.

Example 14-1. Adding milk with a decorator
public class AddMilkDecorator extends Decorator {

  private final MilkCarton milkCarton;

  public AddMilkDecorator(CoffeeMaker target,
                          MilkCarton milkCarton) { 
    super(target);

    this.milkCarton = milkCarton;
  }

  @Override
  public List<String> getIngredients() { 
    var newIngredients = new ArrayList<>(super.getIngredients());
    newIngredients.add("Milk");
    return newIngredients;
  }

  @Override
  public Coffee prepare() { 
    var coffee = super.prepare();
    coffee = this.milkCarton.pourInto(coffee);
    return coffee;
  }
}

The constructor needs to accept all the requirements, so a
MilkCarton is needed in addition to the CoffeeMaker.The decorator hooks into the getIngredients call by first calling
super, making the result mutable, and add the milk to the list of
previously used ingredients.The prepare call also tasks super to do its intended purpose and
“decorates” the resulting coffee with milk.

Creating a “café con leche3" is quite easy now:

CoffeeMaker coffeeMaker = new BlackCoffeeMaker(); 
 
CoffeeMaker decoratedCoffeeMaker =
  new AddMilkDecorator(coffeeMaker,



                       new MilkCarton()); 
 
Coffee cafeConLeche = decoratedCoffeeMaker.prepare();

The decorator pattern is pretty straightforward to implement. Still, that’s
quite a lot of code to pour some milk into your coffee. If you take sugar in
your coffee, too, you need to create another decorator with redundant
boilerplate code and need to wrap the decorated CoffeeMaker again:

CoffeeMaker coffeeMaker = new BlackCoffeeMaker(); 
 
CoffeeMaker firstDecoratedCoffeeMaker =
  new AddMilkDecorator(coffeeMaker,
                       new MilkCarton()); 
 
CoffeeMaker lastDecoratedCoffeeMaker =
  new AddSugarDecorator(firstDecoratedCoffeeMaker); 
 
 
Coffee lastDecoratedCoffeeMaker = coffeeMaker.prepare();

There has to be a simpler way to improve the creation of a decorator and the
process of using multiple decorators.

So let’s take a look at how to use functional composition instead.

A More Functional Approach
The first step to any refactoring effort toward a more functional approach is
dissecting what’s actually happening. The decorator pattern consists of two
parts that are suitable for improvement:

Decorating a CoffeeMaker with one or more decorators

Creating a Decorator itself

The first part of “how to decorate” boils down to taking an existing
CoffeeMaker and “somehow” adding the new behavior and returning a
new CoffeeMaker to be used instead. So, in essence, the process looks
like a Function<CofeeMaker, CoffeeMaker>.



As before, the logic is bundled as a static higher-order method in a
convenience type. This method accepts a CoffeeMaker and a decorator
and combines them with functional composition:

public final class Barista { 
 
  public static CoffeeMaker decorate(CoffeeMaker coffeeMaker,
                                     Function<CoffeeMaker, 
CoffeeMaker> decorator) { 
 
    return decorator.apply(coffeeMaker);
  } 
 
  private Barista() {
    // Suppress default constructor.
    // Ensures non-instantiability and non-extendability.
  }
}

The Barista class has a parameterized decorate method that inverts
the flow by accepting a Function<CofeeMaker, CoffeeMaker> to
actually do the process of decoration. Even though the decoration “feels”
more functional now, accepting only a singular Function makes the
process still tedious for more than one decorator:

CoffeeMaker decoratedCoffeeMaker =
  Barista.decorate(new BlackCoffeeMaker(),
                   coffeeMaker -> new 
AddMilkDecorator(coffeeMaker,
                                                       new 
MilkCarton())); 
 
CoffeeMaker finalCoffeeMaker =
  Barista.decorate(decoratedCoffeeMaker,
                   AddSugarDecorator::new);

Thankfully, there’s a functional API to process multiple elements in
sequence I discussed in Chapter 6: Streams.

The decoration process is effectively a reduction, with the original
CoffeMaker as its initial value, and the Function<CoffeeMaker,



CoffeeMaker> accepting the previous value to create the new
CoffeeMaker. Therefore, the decoration process would look like in
Example 14-2.

Example 14-2. Multiple decorations by reduction
public final class Barista {

 public static
 CoffeeMaker decorate(CoffeeMaker coffeeMaker, 
                      Function<CoffeeMaker, CoffeeMaker>... 
decorators) {

    Function<CoffeeMaker, CoffeeMaker> reducedDecorations = 
      Arrays.stream(decorators)
            .reduce(Function.identity(),
                    Function::andThen);

    return reducedDecorations.apply(coffeeMaker); 
  }
}

The decorate method still accepts the orginal CoffeeMaker to
decorate. However, an arbitrary number of decorations can be provided
thanks to the vararg argument.The decorations are composed with a
Stream<Function<CoffeeMaker, CoffeeMaker> by
creating a Stream from the array and reducing all the elements to a
single Function<CoffeeMaker, CoffeeMaker> by composing
each of them.Finally, the singular reduced decoration is composed with
CoffeeMaker.

Making a café con leche is now simpler thanks to combining multiple
functional and functional-akin techniques:

CoffeeMaker decoratedCoffeeMaker =
  Barista.decorate(new BlackCoffeeMaker(),
                   coffeeMaker -> new 
AddMilkDecorator(coffeeMaker,
                                                       new 
MilkCarton()),
                   AddSugarDecorator::new);



The decoration process is an improvement over nesting the decorators one-
by-one, by simplifying it into a single call. Still, the creation of a decorator
could be improved with functions, too.

Instead of creating the decorator in form of a
Function<CoffeeMaker, CoffeeMaker> yourself by using either
a lambda or method reference, you could use another convenience type to
group them together. This way, you don’t even have to expose the concrete
types of the decorators, because only the CoffeeMaker type and
additional ingredients like MilkCarton are involved.

The implementation of a Decorations convenience type with its
static factory methods is quite straightforward, as shown in the
following code:

public final class Decorations { 
 
  public static Function<CoffeeMaker, CoffeeMaker> 
addMilk(MilkCarton milkCarton) {
    return coffeeMaker -> new AddMilkDecorator(coffeeMaker, 
milkCarton);
  } 
 
  public static Function<CoffeeMaker, CoffeeMaker> addSugar() {
    return AddSugarCoffeeMaker::new;
  } 
 
  // ...
}

All possible ingredients are available through a single type, without any
callee needing to know the actual implementation or other requirements
besides the arguments of each method. This way, you can use a more
concise and fluent call to decorate your coffee:

CoffeeMaker maker = Barista.decorate(new BlackCoffeeMaker(),
                                     
Decorations.addMilk(milkCarton),
                                     Decorations.addSugar());
var coffee = maker.prepare();



The main advantage of a functional approach is the possible elimination of
explicit nesting and exposing the concrete implementation types. Instead of
littering your packages with additional types and repetitive boilerplate, the
already existing functional interfaces of the JDK can lend you a hand with
more concise code to achieve the same result. You still should group the
related code together, so related functionality is in a single file that can be
split up if it would create a better hierarchy, but it doesn’t have to.

Strategy Pattern
The strategy pattern belongs to the group of behavioral patterns. Due to the
open-closed4 principle that dominates most object-oriented designs,
different systems are usually coupled by abstractions, like programming
against interfaces instead of concrete implementations.

This abstract coupling provides a useful fiction of more theoretical
components working together to be realized later on without your code
knowing the actual implementation. Strategies are using this de-coupled
code style to create interchangeable small logic units based on an identical
abstraction. Which one is chosen is decided at runtime.

Object-Oriented Approach
Imagine you work on an e-commerce platform that sells physical goods.
Somehow these goods must be shipped to the customer. There are multiple
ways to ship an item, like different shipping companies or the type of
shipping.

Such various shipping options share a common abstraction that is then used
in another part of your system, like a ShippingService type, to ship
the parcel:

public interface ShippingStrategy {
  void ship(Parcel parcel);
} 
 
 
public interface ShippingService {



  void ship(Parcel parcel,
            ShippingStrategy strategy);
}

Each of the options is then implemented as a ShipppingStrategy. In
this case, let’s just look at standard and expedited shipping:

public class StandardShipping implements ShippingStrategy {
  // ...
} 
 
public class ExpeditedShipping implements ShippingStrategy { 
 
  public ExpeditedShipping(boolean signatureRequired) {
    //...
  } 
 
  // ...
}

Each strategy requires its own type and concrete implementation. This
general approach looks quite similar to the decorators I discussed in the
previous section. That’s why it can be simplified in almost the same
functional way.

A More Functional Approach
The overall concept behind the strategy pattern boils down to behavioral
parameterization. That means that the ShippingService provides a
general scaffold to allow a parcel to be shipped. How it’s actually shipped,
though, needs to be filled with a ShippingStrategy that is passed to it
from the outside.

Strategies are supposed to be small and context-bound decisions and are
often representable by a functional interface. In this case, you have multiple
options for how to create and use strategies:

Lambdas and method references

Partial-applied functions



Concrete implementations

Simple strategies without any additional requirements are best grouped in a
class and used via method references to signature-compatible methods:

public final class ShippingStrategies { 
 
  public static ShippingStrategy standardShipping() {
    return parcel -> ...;
  }
} 
 
// HOW TO USE
shippingService.ship(parcel,
                     ShippingStrategies::standardShipping);

More complex strategies might require additional arguments. That’s where
a partially-applied function will accumulate the code in a singular type to
give you a simpler creation method:

public final class ShippingStrategies { 
 
  public static ShippingStrategy expedited(boolean 
requiresSignature) { 
 
    return parcel -> {
      if (requiresSignature) {
        // ...
      }
    };
  }
} 
 
 
// HOW TO USE
shippingService.ship(parcel,
                     ShippingStrategies.expedited(true));

These two functional options to create and use strategies are already a more
concise way to handle strategies. They also eliminate the requirement of
additional implementation types to represent a strategy.



However, if both functional options aren’t doable due to a more complex
strategy or other requirements, you can always use a concrete
implementation. If you transition from object-oriented strategies, they will
be concrete implementations, to begin with. That’s why the strategy pattern
is a prime candidate for introducing a functional approach by gradually
converting existing strategies to functional code, or at least using it for new
strategies.

Builder Pattern
The builder pattern is another creational pattern for creating more complex
data structures by separating the construction from the representation itself.
It solves various object creation problems, like multi-step creation,
validation, and improved optional argument handling. Therefore, it’s a good
companion for Records, which can only be created in a single swoop. In
Chapter 5, I’ve already discussed how to create a builder for a Record.
However, this section will look at builders from a functional perspective.

Object-Oriented Approach
Let’s say you have a simple record User with three properties and a
component validation:

public record User(String email, String name, List<String> 
permissions) { 
 
  public User {
    if (email == null || email.isBlank()) {
      throw new IllegalArgumentException("'email' must be set.");
    } 
 
    if (permissions == null) {
      permissions = Collections.emptyList();
    }
  }
}

If you need to create a User in multiple steps, like adding the
permissions later on, you’re out of luck without additional code. So



let’s add an inner builder as shown in ???.

public record User(String email, String name, List<String> 
permissions) {

  // ... shorthand constructor omitted

  public static class Builder { 

    private String email;
    private String name;
    private final List<String> permissions = new ArrayList<>();

    public Builder email(String email) { 
      this.email = email;
      return this;
    }

    public Builder name(String name) { 
      this.name = name;
      return this;
    }

    public Builder addPermission(String permission) { 
      this.permissions.add(permission);
      return this;
    }

    public User build() { 
      return new User(this.email, this.name, this.permissions);
    }
  }

  public static Builder builder() { 
    return new Builder();
  }
}

The builder is implemented as an inner static class mimicking all the
components of its parent Record.Each component has its dedicated set-only method that returns the
Builder instance for fluent call chains.Additional methods for Collection-based fields allow you to add single
elements.The build method simply calls the appropriate User constructor.A static builder method is added so you don’t need to create a
Builder instance yourself.



That’s quite a lot of boilerplate and duplication to allow a more versatile
and simpler creation flow like this:

var builder = User.builder()
                  .email("ben@example.com")
                  .name("Ben Weidig"); 
 
// DO SOMETHING ELSE, PASS BUILDER ALONG 
 
var user = builder.addPermission("create")
                  .addPermission("edit")
                  .build();

Usually, a builder is even more complex by adding better support for
optional and non-optional fields with telescoping constructors or additional
validation code.

TELESCOPING CONSTRUCTORS
Telescoping constructors are a way to supply default values via a
constructor. This design pattern was actually used in “Component
Default Values and Convenience Constructors” to simplify Record
creation.

In the case of the User builder, a constructor like public
Builder(String email) would communicate that email is a
required field. Still, telescoping constructors are often seen as an anti-
pattern unless they delegate the call directly to another constructor, as I
used them in Chapter 5.

To be honest, there aren’t many ways to optimize or change the builder
pattern in its current design. You might use a tool-assisted approach that
generates the builder for you, but that will only reduce the amount of
required code you need to write, not the necessity of the builder itself.

However, that doesn’t mean the builder could not be improved with a few
functional touches.



A More Functional Approach
Most of the time, a builder is strongly coupled with the type it’s building, as
an inner class with fluent methods to provide arguments and a build
method to create the actual object instance. A functional approach can
improve this creation flow in multiple ways.

First, it enables lazy computation of expensive values. Instead of accepting
a value directly, a Supplier<T> gives you a lazy wrapper that’s only
resolved in the build call:

public record User(String email, String name, List<String> 
permissions) { 
 
  // ... 
 
  private Supplier<String> emailSupplier; 
 
  public Builder email(Supplier<String> emailSupplier) {
    this.emailSupplier = emailSupplier;
    return this;
  } 
 
  // ... 
 
  User build() {
    var email = this.emailSupplier.get();
    // ...
  }
}

You can support both lazy and non-lazy variants. For example, you can
change the original method to set emailSupplier instead of requiring
both the email and emailSupplier fields:

public record User(String email, String name, List<String> 
permissions) { 
 
  // ... 
 
  private Supplier<String> emailSupplier; 
 
  public Builder email(String email) {



    this.emailSupplier = () -> email;
    return this;
  } 
 
  // ...
}

Second, the builder could mimic Groovy’s with5 as follows:

var user = User.builder()
               .with(builder -> {
                 builder.email = "ben@example.com";
                 builder.name = "Ben Weidig";
               })
               .withPermissions(permissions -> {
                 permissions.add("create");
                 permissions.add("view");
               })
               .build();

To achieve this, Consumer-based higher-order methods must be added to
the builder, as shown in Example 14-3.

Example 14-3. Add with-methods to User builder
public record User(String email, String name, List<String> 
permissions) {

  // ...

  public static class Builder {

    public String email; 
    public String name;

    private List<String> permissions = new ArrayList<>(); 

    public Builder with(Consumer<Builder> builderFn) { 
      builderFn.accept(this);
      return this;
    }

    public Builder withPermissions(Consumer<List<String>> 
permissionsFn) { 
      permissionsFn.accept(this.permissions);
      return this;



    }

    // ...
  }

  // ...
}

The builder fields need to be public to be mutable in the Consumer.However, not all fields should be public. For example, collection-
based types are better served by their own with methods.Adding another with method for permissions prevents setting it to
null by accident, and reduces the required code in the Consumer to
the actual desired action.

Of course, the builder could’ve used public fields, to begin with. But
then, no fluent call would’ve been possible. Adding Consumer-based
with methods to it, the overall call chain is still fluent, plus you can use
lambdas or even method references in the creation flow.

Even if a design pattern, like the builder pattern, doesn’t have a coequal
functional variant, it could still be made more versatile with a few
functional concepts sprinkled into the mix.

Final Thoughts on Functional Design
Patterns
Calling it “functional design patterns” often feels like an oxymoron because
they are almost the opposite of their object-oriented counter-part. OO
design patterns are by definition formalized and easy-to-repeat solutions for
common (OO) problems. This formalization usually comes with a lot of
strict conceptual metaphors and boilerplate with little room for deviation.

The functional approach to the problems to be solved by OO design
patterns uses the first-class citizenship of functions. It replaces the
previously explicitly formalized templates and required type structures with
functional interfaces. The resulting code is more straightforward and
concise, and can also be structured in new ways, like static methods



returning concrete implements, or partially-applied functions, instead of
intricate custom type-hierarchies.

Still, is it a good thing to remove the boilerplate in the first place? More
straightforward and concise code is always an admirable goal to strive for.
However, the initial boilerplate also has another use than just being a
requirement for an object-oriented approach: creating a more sophisticated
domain to operate in.

Replacing all intermediate types with already available functional interfaces
removes a certain amount of directly visible information to the reader of
your code. So a middle ground must be found between replacing a more
expressive domain-based approach with all of its types and structures, and
simplification with a more functional approach.

Thankfully, as with most of the techniques I discussed in this book, it’s not
“either-or.” Identifying functional possibilities in classical object-oriented
patterns requires you to take a more high-level view of how a problem is
solved. For example, the chain of responsibility design pattern deals with
giving more than one object a chance to process an element in a pre-defined
chain of operations. That sounds quite familiar to how Stream or Optional
pipelines work, or how functional composition creates a chain of
functionality.

Object-oriented design patterns help you to identify the general approach to
a problem. Still, moving to a more functional solution, either partially or
completely, often gives you a simpler and more concise alternative.

Takeaways
Object-oriented design patterns are a proven and formalized way of
knowledge sharing. They usually require multiple types to represent a
domain-specific solution to a common problem.

A functional approach uses first-class citizenship to replace any
additional types with already available functional interfaces.



Functional principles allow the removal of a lot of the boilerplate code
usually required by many object-oriented design patterns.

Pattern implementations become more concise, but the explicit
expressiveness of the used types might suffer. Use domain-specific
functional interfaces to regain expressiveness if necessary.

Even for design patterns without a functional equivalent, adding
certain functional techniques can improve their versatility and
conciseness.

1  The saying turtles all the way down describes the problem of infinite regress: an infinite series
of entities governed by a recursive principle. Each entity depends on or is produced by its
predecessor, which matches a lot of the functional design philosophy.

2  Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns: Elements of
reusable object-oriented software. Boston, MA: Addison Wesley.

3  A “café con leche” is a coffee variant prevalent in Spain and Latin America. The name means
literally “coffee with milk.” I didn’t use a “flat white” for my example because then I would
have needed to steam the milk first.

4  The open-closed principle is part of the SOLID principles. It states that entities, like classes,
methods, functions, etc., should be open for extension, but closed for modification. See the
Wikipedia pages for Open-close principle and SOLID for more details.

5  Groovy has a with method that accepts a closure to simplify repeated use of the same
variable. See the offical Groovy style guide for more information.

https://en.wikipedia.org/wiki/Open%E2%80%93closed_principle
https://en.wikipedia.org/wiki/SOLID
https://groovy-lang.org/style-guide.xhtml#_using_code_with_code_and_code_tap_code_for_repeated_operations_on_the_same_bean


Chapter 15. A Functional
Approach to Java

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 15th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at rfernando@oreilly.com.

Many programming languages support both a functional and imperative
code style. However, the syntax and facilities of a language typically
incentivize specific approaches to common problems. Even with all the
functional additions to the JDK discussed in this book, Java still favors
imperative and object-oriented programming, with most of the core
libraries’ available types and data structures reflecting this preference.

However, as I’ve discussed throughout this book, that doesn’t mean it has to
be an “either-or” kind of situation. You can augment your OO code with
functional principals without going fully functional. Why not have the best
of both worlds? To do so, you need to adopt a functional mindset.

This chapter pulls together what you’ve learned in this book so far and
highlights the most important aspects that will influence your functional
mindset. It also shows a practical application of functional programming



techniques on an architectural level that fits right into an object-oriented
environment.

OOP Versus FP Principles
To better understand where functional principles can improve your code, it
makes sense to revisit the underlying principles of both paradigms — 
object-oriented and functional — to recognize their dissimilarities and
possible interconnection points. This builds the base knowledge to identify
opportunities to incorporate a functional approach into your OO code and
where it doesn’t make sense to force it.

Object-oriented programming’s main concerns are encapsulating data and
behavior, polymorphism, and abstraction. It’s a metaphor-based approach to
solving problems where its objects and connecting code mimic a particular
problem domain. These objects interact by messaging through public
contracts, like interfaces, and each has responsibilities and usually manages
its own state. Using such metaphors bridges the gap between the computer,
which requires a set of instructions, and the developer, which can express
their intent in a straightforward manner. OOP is an excellent approach to
structuring and organizing imperative code after the “real world” and its
constant and endless changes.

Functional programming, however, uses mathematical principles to solve
problems, utilizing a declarative code style. Instead of requiring a metaphor
to model your code like the “real world”, its foundation — lambda calculus 
— only cares about data structures and their transformation using high-level
abstractions. Functions take an input and create an output, that’s about it!
Data and behavior aren’t encapsulated; functions and data structures just
are. FP circumvents many typical OOP and Java problems, like handling
mutable state in a concurrent environment or unexpected side effects, by
trying not to have any side effects, to begin with.

These two short summaries already highlight the dissimilarity of the core
principles of object-oriented and functional programming. OOP tries to
tame complexity by encapsulating the moving parts of your code in a



familiar domain, whereas FP strives to have fewer parts in total by adhering
to mathematical principles. The more abstract way of thinking in FP is why
OOP is often the preferred first approach to teaching and learning Java.

As I discussed in Chapter 14, both paradigms are just divergent approaches
able to solve the same problems coming from different directions. It would
be foolish to declare that one principle is, no pun intended, objectively
better than the other. Metaphors in OO are a powerful tool to make code
feel more natural to non-programmers and programmers alike. Some
complex problems benefit from a good metaphorical representation way
more than a maybe more concise but highly abstracted functional approach.

A Functional Mindset
Any fool can write code that a computer can understand. Good
programmers write code that humans can understand.

—Martin Fowler, Refactoring: Improving the Design of
Existing Code

You can have all the functional tools available at your fingertips, but using
them efficiently requires the right mindset to do so. Having a functional
mindset involves having the reasoning to identify code that could be
improved with a functional approach, be it going fully functional, or just
injecting a few functional techniques and principles at critical, and
appropriate, places. This mindset won’t come overnight; you have to hone it
with practice to gain experience and intimation

Developing this functional mindset starts with wanting to eliminate or
reduce any accidental complexity in your code. The techniques and
principles you use to solve your problems should lead to code that is
reasonable and easier to understand.

To reason with a complex system means grasping and figuring out any code
with only the information that’s right in front of you rather than relying on
hidden-away implementation details or maybe outdated comments, without
any surprises waiting for you. You don’t need to look across multiple files



or types to understand the problem that is solved, or don’t need to ponder
about many of the decisions that went into the code itself.

The correctness of your code is informally proven because any claim about
its functionality is backed up by its reasonability and accompanying
comments. Anyone using such code can make strong assumptions about it
and rely on its public contracts. The opaque nature of OOP and its
encapsulation of behavior and data often makes it harder to reason with
than alternative approaches.

Let’s revisit the different aspects of functional programming that will
influence your decision when to apply a functional approach.

Functions are First-Class Citizens
Functional programming is all about functions and their first-class
citizenship. That means that functions are tantamount to other constructs of
the language because you can:

Assign functions to variables

Pass functions as arguments to another function/method

Return a function from a function/method

Create anonymous functions without a name

These properties are pretty similar to how anonymous classes are usable in
Java, even before the introduction of lambda expressions. Unlike
anonymous classes, though, functional interfaces — Java’s representation of
the concept of functions — are conceptionally more generalized and usually
detached from an explicit class or domain type. Furthermore, the JVM uses
them differently thanks to the invokedynamic opcode, as explained in
“The invokedynamic Instruction”, which allows for a greater variety of
optimizations compared to anonymous classes.

Even though Java doesn’t have “on the fly” types and requires any lambda
expression to be represented by concrete functional interfaces, it still



manages to allow you to use one of the big differentiators between OO and
FP because it provides a higher level of abstraction. Functional abstractions
are on a higher level than their OO counterparts. That means that FP
focuses on values instead of discrete domain-specific types with rigid data
structures.

Think of functions and their higher level of abstraction as small cogs in a
machine. Object-oriented cogs are bigger and specifically designed for a
narrower scope of tasks; they only fit into specific parts of the machine. The
smaller functional cogs, however, are more uniform and generalized, and
therefore, easier to use throughout the machine. They can then be composed
into groups, going from a singular simple task toward a complex and more
complete one. The bigger task is the sum of all its smaller parts, with the
parts themselves being as small and generic as possible, reusable, and easily
testable. This way, you can build a library of reusable functions to be
composed as necessary.

Still, Java’s dependence on functional interfaces to represent functions and
lambdas is both a blessing and a curse.

It’s a curse because you can’t have a detached lambda that’s only based on
its arguments and return type without a corresponding functional interface.
Type inference eases the pain but at some point, the actual type must be
available for the compiler to infer the type down the line.

It’s also a blessing because it’s the perfect way of bridging between Java’s
static type system and the predominantly imperative object-oriented code
style and a new way of thinking without breaking backward compatibility.

Avoiding Side Effects
Asking a question shouldn’t change the answer.

—Bertrand Meyer, French academic

Having a functional mindset also involves avoiding side effects. From a
functional point of view, side effects refer to the modification of any kind of
state which can have many forms. It doesn’t have to be hidden or



unexpected, quite the contrary. Many forms of side effects, like accessing a
database, or doing any kind of I/O, are intended actions and are a crucial
part of almost every system. Nevertheless, fewer side effects usually mean
fewer surprises in your code and a smaller bug surface.

There are several functional ways to reduce the number of side effects, or at
least make them more manageable.

Pure Functions
The most basic approach to avoid side effects is using the functional
programming concept of pure functions because they rely on two elemental
guarantees:

The same input will always create the same output.

Pure functions are self-contained without any side effects.

Seems simple enough.

In reality, however, there are more aspects you have to look out for when
improving the purity of your Java code.

Any pure function can only rely on the declared input arguments to produce
its result. Any hidden state or invisible dependencies are a big no-no.

Think of a function that creates a greeting for a User instance with a
method signature as follows:

public String buildGreeting(User user)

The method signature, its public contract, discloses a singular dependency:
the User argument. If you don’t know the actual implementation, it would
be safe to assume that this is a pure function that produces the same
salutation for repeated calls with the same user.

Let’s take a look at its implementation:

public String buildGreeting(User user) {
  String greeting;



  if (LocalTime.now().getHour() < 12) {
    greeting = "Good morning";
  } else {
    greeting = "Hello"
  } 
 
  return String.format("%s, %s", greeting, user.name());
}

Checking out the implementation, however, a second dependency reveals
itself: the time of day. This invisible dependency that relies on an out-of-
context state makes the whole method impure.

To regain purity, the second internal dependency must be made part of the
public contract instead:

public String buildGreeting(User user, LocalTime time)

Purity is restored and the public contract no longer hides the internal
dependency on the time of day and communicates it clearly, without
requiring any documentation.

The method signature could still be simplified further. Why bind the method
to the User type if only its name is used? Why use LocalTime if only
its hour is used? Creating a more versatile buildGreeting method
would accept only the name and not a whole User instance.

The lowest common denominator of arguments will give the most versatile
and broadly applicate pure function possible. Try to avoid nested calls to
broaden the applicability of a method by going closer to the actual required
value instead of relying on specific domain types.

The best way to think about pure functions is to see them totally isolated in
their own space-time continuum detached from the rest of the system.
That’s why they need to receive all of their requirements explicitly as
values, preferably with as few intermediate objects as possible. However,
such a higher abstraction forfeits some of the method signature’s
expressiveness, so you must find an acceptable balance.



Pure functions are a cornerstone of functional programming. Reducing a
task to “same input + processing → same output” makes method signatures
more meaningful and easier to comprehend.

Pure Object Methods
Pure functions only exist within their own context which is why they can
only rely on their input arguments to create their output. Translating this
principle into an object-oriented environment is a little bit more difficult.

Looking deeper at the two guarantees of pure functions from the point of
view of an object-oriented programmer, they reveal the possibility of
applying them in a broader sense to create a more hybrid approach I call
pure object methods.

If a method on an object type is truly pure in the previously discussed
sense, it could be made static and doesn’t even need to be in the object
type anymore. Still, binding methods to their related type that’s a part of
their input is an advantage and won’t go away anytime soon.

Take the buildGreeting method from the previous section as an
example. Even though it can be made a pure function in the form of a
static method, adding it directly to the User type as an instance method
makes sense. However, this will harm reusability because it doesn’t exist in
complete isolation anymore and is interconnected with its surrounding type
itself. This relationship doesn’t mean it can’t be “as pure as possible,”
though.

As good object types do, the User type encapsulates its state and creates its
own microcosmos mostly disconnected from the outside. A pure object
method might access that microcosmos and treat them as additional input
arguments. The main caveat, though, is the non-reusable nature of methods
bound to specific types.

Other multi-paradigm languages supporting an object-oriented
programming style, like Python, make this approach more visible, as the
following code shows:



class User: 
 
  name = '' 
 
  def __init__(self, name): 
    self.name = name 
 
  def buildGreeting(self, time): 
    # ...

Using self — Python’s equivalent to Java’s this — as an explicit input
parameter on each method highlights the interdependence between the
method on the instance itself. Even if an object’s method affects its state, it
can still be a “pure object method” as it doesn’t have any side effects
besides its internal state. The object itself becomes part of the input, as it
encapsulates the side effect, and its state after the call makes them the
output.

The functional design principles of pure functions are still useful if you
have to deal with object types and can’t refactor them to a new design. The
same rules apply, but the object state counts as an input argument. That’s
why further dependencies like time in buildGreeting shouldn’t be
hidden away from anyone using the method. Calling the same method with
the same input on two identical objects should result in an equal output or
new object state.

Pure object methods might not bring in all the advantages of a fully
functional approach with pure functions and immutable data structures,
especially regarding reusability. Still, the functional mindset injected into
the object-oriented style gives you more approachable, safer, more
predictable, and therefore, more reasonable types.

Isolating with Side Effects
It’s impossible to write applications with absolutely zero side effects. OOP,
or imperative code in general, is usually intertwined with mutable states and
side effects. Still, side effects affecting your state are often invisible at the
surface, easily breaking the reasonability of code and introducing subtle
bugs if used incorrectly. If you can’t completely avoid a side effect with



techniques such as pure functions, they should be isolated, preferably on the
edges of your logical units, instead of littering them throughout the code.
By splitting bigger units of code into smaller tasks, the possible side effects
will be restricted to and affect only some of the tasks and not the overall
unit.

This mindset is also present in the Unix philosophy, originated by Ken
Thompson, the co-creator of the UNIX operating system. Doug McIlroy — 
head of the Bell Labs Computing Sciences Research Center at the time and
inventor of the Unix pipe — summarized1 it as such:

Write programs that do one thing and do it well. Write programs to work
together.

—Doug McIlroy

Transferring this philosophy to a functional approach means that functions
should strive to do one thing only and do it well without affecting their
environment. Design your functions to be as small as possible but as large
as necessary. A complex task is better served by multiple composed
functions that preserve pureness as long as possible than a bigger function
that is impure from the start.

I/O is a classical case of side effects. Loading files, talking a database, etc.,
are impure operations and should therefore be separated from pure
functions. To encapsulate a side effect you must think about the seams
between the actual side effect and the processing of its result. Instead of
loading a file and processing its content as a singular operation, it’s better
two separate them into the side effect of loading a file, and processing the
actual data, as illustrated in Figure 15-1.



Figure 15-1. Splitting operations into discrete functions

The data processing is no longer bound to the file loading, or files in
general, rather than only processing the incoming data. This makes the
operation a pure and reusable function, with the side effect restricted to the
loadFile method, with the returned Optional<String> giving you a
functional bridge to it.

If side effects can’t be avoided, split up the task into smaller and preferably
pure functions to isolate and encapsulate any remaining side effects.

Favor Expression Over Statements
As discussed in Chapter 1, a key differentiator separator between an object-
oriented and a functional approach is the prevalence of either statements
and expressions. To recapitulate, statements perform actions, like assigning
a variable or control statements, and are therefore literal side effects.
Expressions, on the other hand, evaluate their input to just yield output.



If you want to reduce side effects, using expressions leads to safer and more
reasonable code, based on the following rationale:

Pure expressions, like pure functions, don’t have any side effects.

Expressions are (mostly) definable in code; the types of available
statements are predefined by the language.

Evaluating pure expressions multiple times will yield the same output,
ensuring predictability and enabling certain caching techniques, such
as memoization.

Expressions can be small to remain pure and still be composed with
other expressions to solve a bigger task.

The control flow if-else statements are often a good candidate for
replacing it with a more functional approach, especially to assign variables
or create. The previous buildGreeting method becomes more concise
and straightforward by using the ternary operator for the pretty simplistic
decision of which greeting to choose, as seen as follows:

public String buildGreeting(User user, LocalTime time) { 
 
  String greeting = time.getHour() < 12 ? "Good Morning"
                                        : "Hello"; 
 
  return String.format("%s, %s", greeting, user.name());
}

The ternary operator gives you two other advantages.

First, the variable greeting is declared and initialized in a single
expression instead of it being uninitialized outside of the if-else-block.

Second, the variable is effectively final. In this particular case, it doesn’t
matter. Still, there having a variable that can be easily used in a lambda
expression is better than requiring you to refactor your code when you
eventually need a variable to be effectively final.



Breaking down complex statement lists and blocks into smaller expressions
makes code more concise and easier to reason with, plus the added benefit
of effectively final variables, which is as you may remember from earlier
chapters a non-negotiable requirement for using variables in lambda
expressions.

Expressions are often preferable over statements because they are a
combination of values and functions intended to create a new value.
They’re usually more compact and isolated than statements, making them
safer to use. Statements, on the other hand, are more of a standalone unit to
execute a side effect.

Moving Towards Immutability

If it is not necessary to change, it is necessary not to change.
—Lucius Cary, 2nd Viscount Falkland

Another way to avoid unintended change, thus side effects and potential
bugs, is to embrace immutability whenever possible and sensible. Even
without utilizing any other functional principles, your codebase will
become more robust thanks to immutability by eliminating the source of
way too many bugs: unintented change.

To prevent any unforeseen mutations, immutability should be the default
approach to any type and collections used in your programs, especially in
concurrent environments, as discussed more deeply in Chapter 4. You don’t
have to reinvent the wheel for many use cases, as the JDK provides you
with multiple options for immutable data structures:

Immutable Collections

Even though Java doesn’t provide “fully” immutable collection types, it
still has structurally immutable ones where you can’t add or remove
elements. The concept of unmodifiable views of Collections was
expanded in Java 9 by static factory methods like List.of to
easily create structurally immutable Collections, as discussed in
“Moving Towards Immutability”.



Immutable Math

The package java.math and its two immutable arbitrary-precision
types, BigInteger and BigDecimal, are safe and immutable
options for doing high-precision calculations.

Records (JEP 395)

Introduced as a preview feature in Java 14 and refined in 15, Records
provide a completely new data structure as an easy-to-use data
aggregation type. They’re a great alternative for POJOs and sometimes
Java Beans, or you could use them as small, localized immutable data
holders, as discussed in Chapter 5.

Java Date and Time API (JSR-310)

Java 8 also introduced a new way to store and manipulate dates and
times with immutable types from the ground up. The API gives you a
fluent, explicit, and straightforward way of dealing with anything
related to date and time.

As you can see, more and more Java APIs are built on are at least
improving their support for immutability, and so should you. Designing
your data structures and code with immutability in mind from the get-go
saves you a lot of headaches in the long run. No more worrying about
unintended or unexpected changes, and no more worries about thread safety
in concurrent environments.

However, one thing to remember, is that immutability is suited best for,
well, immutable data. Creating a new immutable data structure for any
change becomes cumbersome really quickly regarding the required code
and memory consumption by all those new objects.

Immutability is one of the most important aspects you can introduce into
your codebase, regardless of a functional approach. An “immutable first”
mindset, gives you safer and more reasonable data structures. Still, your
usual modus operandi might not fit into the new challenges that data

https://openjdk.java.net/jeps/395
https://jcp.org/en/jsr/detail?id=310


management with immutability incurs. Remember though, it’s easier to
(partially) break immutability if there’s no other option available than to
retroactively tack-on immutability in a mature code base.

Functional Data Processing with Map-Filter-Reduce
Most data problems boil down to iterating over a sequence of elements,
choosing the correct one, maybe manipulating them, performing an action,
or gathering them into a new data structure. The following example — 
iterating over a list of users, filtering the correct ones, and notifying them 
— is a typical example of these basic steps:

List<User> usersToNotify = new ArrayList<>(); 
 
for (var users : availableUsers) {
  if (user.hasValidSubscription()) {
    continue;
  } 
 
  usersToNotify.add(user);
} 
 
notify(usersToNotify);

Such problems are a perfect match for a functional approach with Streams
and map-filter-reduce, as discussed in “Map/Filter/Reduce”.

Instead of explicitly iterating over the users with a for-loop and collecting
the correct elements in a previously defined List, a Stream pipeline does
the whole task in a fluent, declarative call:

List<User> usersToNotify = availableUsers.stream()
                                         
.filter(User::hasValidSubscription)
                                         .toList(); 
 
notify(usersToNotify);

Stream pipelines express what to do without the boilerplate of how to iterate
over the elements. They are a perfect scaffold for converting statement-



based data filtering and transformation to a functional pipeline. The fluent
call concisely describes the steps necessary to solve the problem, especially
if you use method references or method calls returning the required
functional interface.

Abstractions Guide Implementations
Every project is built upon abstractions designed after the requirements.

Object-oriented design uses low-level abstractions in the form of powerful
metaphors, defining the characteristics and constraints of a system. This
domain-based approach is quite expressive and powerful but also restricts
the versatility of types and how easy it is to introduce change. As
requirements usually change over time, too restrictive abstractions lead to
misalignment between different parts of your systems. Misaligned
abstractions create friction and subtle bugs and might require a lot of work
to realign.

Functional programming tries to avoid misaligned abstractions by using
higher abstractions not bound to a specific domain. Chapter 14 reflects that
by almost unconditionally replacing commonly used object-oriented
abstractions with generalized functional interfaces of the JDK instead. This
decoupling of abstractions from the original problem context creates
simpler and easy-to-reuse components that are combined and mixed as
necessary, enabling easier change of any functional system.

Object-oriented and imperative code is a good match for encapsulating
functionality, object-state, and representing a problem domain. Functional
concepts are an excellent choice for implementation logic and higher-level
abstractions. Not every data structure must be represented in the problem
domain, so using more versatile functional types instead creates reusable
and broader types that are driven by their use cases instead of the domain
concept.

To resolve this problem, you must find a balance between the two levels of
abstraction if you want to use both in the same system. In “Functional
Architecture in an Imperative World”, I discuss how to combine both as an



architectural decision that gives the benefits of high-level functional
abstractions wrapped in a familiar imperative layer.

Building Functional Bridges
A functional approach means your code most likely lives in an imperative
and object-oriented environment that needs to work hand-in-hand with any
functional technique or concept you want to integrate. Later in this chapter,
in “Functional Architecture in an Imperative World”, I will discuss how to
integrate functional code into an imperative environment.

But first, let’s look at how to bridge the gap between your existing code to
the new functional APIs.

Method References-Friendly Signatures
Every method, static or not, and any constructor is a potential method
reference to be used in higher-order functions or represented by a functional
interface. That’s why it can make sense to design your APIs with other
functional APIs in mind.

For example, the commonly used Stream operations map, filter, and
sort accept a Function<T, R>, Predicate<T>, and
Comparator<T>, respectively, that translate well into simple method
signatures.

Look at the required functional interface’s SAM; it’s the blueprint for the
required method signature. As long as the input arguments and the return
type match, you can name your method any way you want.



WARNING
One exception to simply mapping a SAM signature to a method reference is unbound
non-static method reference. As the method is referenced via the type itself and isn’t
bound to a specific instance, the underlying lambda expression accepts the type as its
first argument.

For example, String::toLowerCase accepts a String and returns a String,
and is, therefore, a Function<String, String>, despite toLowerCase not
having any arguments.

When designing any API, it makes sense to think about how it might be
used by functional API and provide method reference-friendly signatures.
Your methods still have expressive names depending on their surrounding
context, but also build a bridge to functional API with simple method
references.

Using Retroactive Functional Interfaces
Functional interfaces usually have marked with the
@FunctionalInterface annotation. Still, as long as they fulfill the
general requirements, as explained in “Functional Interfaces”, an interface
is automatically a functional interface. Therefore, already existing code can
benefit from the conciseness of lambdas and method references, and their
specialized handling by the JVM.

Many longstanding interfaces of the JDK are now marked with
@FunctionaInterface, but your code might not have adapted yet and
benefit from these changes. The following “now functional” interfaces were
widely used even before Java 8:

java.lang.Comparable<T>

java.lang.Runnable

java.util.Comparator<T>

java.util.concurrent.Callable<V>



For example, before lambdas, sorting a Collection was quite a handful
because of all the boilerplate code:

users.sort(new Comparator<User>() { 
 
  @Override
  public int compare(User lhs, User rhs) {
    return lhs.email().compareTo(rhs.email());
  }
});

The lambda variant tames the boilerplate quite a bit:

users.sort((lhs, rhs) -> lhs.email().compareTo(rhs.email()));

But why stop here? If you check out the functional interface
Comparator<T>, you will find static and non-static helper
methods to make the overall call even more concise without losing any
expressiveness:

users.sort(Comparator.comparing(User::email));

Java 8 not only introduced new functional interfaces but improved existing
interfaces so they fit nicely into the new APIs with lots of default and
static methods. Always check out the non-SAM methods available in
functional interfaces to find hidden gems to simplify your code with
functional composition, or common tasks that can be condensed into a
declarative call chain.

Lambda Factories for Common Operations
Designing your APIs to match other functional APIs so you can use method
references isn’t always a possibility. That doesn’t mean that you can
provide lambda factories to simplify the use of higher-order functions,
though.

For example, if a method doesn’t match a particular functional interface,
because it requires additional arguments, you can use partial application to



make it fit the method signature of a higher-order function.

Image a ProductCategory type that has a method for a localized
description as follows:

public class ProductCategory { 
 
  public String localizedDescription(Locale locale) {
    // ...
  }
}

The method is representable by a BiFunction<ProductCategory,
Locale, String>, so you can’t use it for the Stream’s map operation
and have to rely on a lambda expression:

var locale = Locale.GERMAN; 
 
List<ProductCategory> categories = ...; 
 
categories.stream()
          .map(category -> category.localizedDescription(locale))
          ...;

Adding a static helper to ProductCategory that accepts a Locale
and returns a Function<ProductCategory, String> allows you
to use it instead of creating a lambda expression:

public class ProductCategory { 
 
  public static Function<ProductCategory, String>
                localizedDescriptionMapper(Locale locale) {
    return category -> category.localizedDescription(locale);
  } 
 
  // ...
}

This way, the ProductCategory is still responsible for creating a
localized mapper function that it expects. However, the call is simpler, and
reusable, as follows:



categories.stream()
          
.map(ProductCategory.localizedDescriptionMapper(locale))
          ...;

Providing lambda operations for common operations by binding factory
methods to their related type gives you a pre-defined set of intended tasks
and saves the caller the repetitive creation of identical lambda expressions.

Implementing Functional Interfaces Explicitly
The most common functional interfaces, discussed in “The Big Four
Functional Interface Categories”, go a long way before you need to create
your own specialized types, especially if you include multi-arity variants.
Still, creating your own functional interfaces has a big advantage: a more
expressive domain.

Looking at an argument or return type alone, a Function<Path,
Path> could represent anything. A type named VideoConvertJob,
however, tells you exactly what’s going on. To use such a type in a
functional approach, though, it has to be a functional interface. Instead of
creating a new and isolated functional interface, you should extend an
existing one:

interface VideoConverterJob extends Function<Path, Path> {
  // ...
}

By choosing an existing functional interface as the baseline, your
specialized variant is now compatible with Function<Path, Path>
and inherits the two default methods andThen and compose to
support functional composition out-of-the-box. The custom variant narrows
down the domain and is compatible with its ancestor. Extending an existing
interface also inherits the SAM signature.

To improve the domain even further, you could add a default method to
create an expressive API:



interface VideoConverterJob extends Function<Path, Path> { 
 
  Path convert(Path sourceFile); 
 
  default Path apply(Path sourceFile) {
    return convert(sourceFile);
  } 
 
  // ...
}

Adding a default method to implement a SAM is also the approach to
make an existing interface conform to a functional interface without
changing the original public contract, except for the additional functionality
provided by the functional interface.

COMPATIBILITY OF FUNCTIONAL INTERFACES
Designing APIs using types that extend functional interfaces requires
some considerations due to Java’s inheritance rules. Even though both
interfaces are structurally equal concerning Function<Path,
Path> compatibility, the types aren’t interchangeable.

VideoConverterJob is a Function<Path, Path> by
definition and, therefore, usable wherever an argument requires a
Function<Path, Path>. Function<Path, Path>, on the
other hand, can’t be used for an argument of type
VideoConverterJob.

Therefore, a simple rule to follow when using types that extend
functional interfaces in method signatures: always return a type as
specific as possible, in this case, VideoConverterJob, but accept
only a type as distinct as necessary, like Function<Path, Path>

Making your interfaces extend a functional interface, or letting your classes
explicitly implement a functional interface bridges between existing types
and higher-order functions. There are still considerations to be made to
satisfy Java’s type hierarchy rules, but accepting the least common



denominator as input and returning the most specific type possible is a good
rule of thumb.

Functional null Handling with Optionals
Optionals are an elegant way to deal with (possible) null values. That
alone is a big plus in many scenarios. Another one of its advantages is its
capability to provide a functional starting point between a possible null
value and subsequent operations.

Where a null reference was previously a dead end requiring additional
code to not explode with a NullPointException, an Optional gives
you a declarative pipeline replacing the usual boilerplate required to handle
null values:

public Optional<User> tryLoadUser(long id) {
  // ...
} 
 
boolean isAdminUser =
  tryLoadUser(23L).map(User::getPermissions)
                  .filter(Predicate.not(Permissions::isEmpty))
                  .map(Permissions::getGroup)
                  .flatMap(Group::getAdmin)
                  .map(User::isActive)
                  .orElse(Boolean.FALSE);

This pipeline replaces two null-checks (initial and
Group::getAdmin), an if-statement (the filter operation), plus
accessing the required properties and providing a sensible fallback. The
overall task is directly expressed in the fluent declarative call over six lines
instead of a more complex and harder-to-follow block of individual
statements.

It’s hard to argue against the reduction of control statements combined with
being a functional jump-off point and will likely increase your desire to
(over)use Optionals, as it did for me in the beginning. Remember that
Optionals were designed as a specialized return type, not as a ubiquitous



replacement for null-related code. Not every value needs to be wrapped in
an Optional, especially simple null-checks:

// BAD: wrapping a value for a simple lookup 
 
var nicknameOptional = 
Optional.ofNullable(customer.getNickname())
                               .orElse("Anonymous"); 
 
 
// BETTER: simpler null-check 
 
var nicknameTernary = customer.getNickname() != null ? 
customer.getNickname()
                                                     : 
"Anonymous";

Using an Optional might feel cleaner — easier to follow the flow, no control
structure, no two null — but as a normal Java type, creating an Optional
isn’t free. Each operation requires checking for null to do its intended job
and might create a new Optional instance. The ternary operator might not
be as appealing as an Optional, but it sure requires fewer resources.

Since Java 9, the utility class java.util.Objects got two additions to
do simple null-checks with a single method call that doesn’t create
additional instances, which are the preferred alternative to an Optional with
only an orElse or orElseGet operation:

var nickname = Objects.requireNonNullElse(customer.getNickname(), 
"Anonymous"); 
 
var nicknameWithSupplier = 
Objects.requireNonNullElse(customer.getNickname(),
                                                      () -> 
"Anonymous");

Using Optionals should be restricted to their intended use case as improved
return containers for possible null values, and, in my opinion, intricate
Optional pipelines with multiple operations. You shouldn’t use them in your
code to perform simple null-checks, nor should methods accept them



directly as their arguments. Method overloading provides a better
alternative if an argument isn’t always required.

Parallelism and Concurrency Made Easy
Writing concurrent or parallel programs isn’t easy. Creating additional
threads is the simple part. However, coordinating more than one thread can
become quite complicated. The most common root of all problems related
to parallelism and concurrency is sharing data between different threads.

Shared data across multiple threads comes with its own requirements you
don’t have to consider in sequential programs, like synchronization and
locks to ensure data integrity and to prevent data races and deadlocks.

Functional programming creates a lot of opportunities to use concurrency
and parallelism safely thanks to the principles functional principles are built
on, most evidently the following:

Immutability

Without change, there can’t be data races or deadlocks. Data structures
can safely traverse thread boundaries.

Pure functions

Without side effects, pure functions are isolated and can be called from
any thread, as they only rely on their input to generate their output.

Essentially, functional techniques don’t concern themselves with the
distinction of sequential or concurrent execution because FP, at its most
strict interpretation, doesn’t allow for an environment where a distinction is
necessary.

Java’s concurrency features like parallel Streams (Chapter 8) and
CompletableFuture (Chapter 13) still require thread coordination
even with fully functional code and data structures. However, the JDK will
do it for you in a way that fits most scenarios.



Be Mindful of Potential Overhead
Functional techniques provide a great productivity boost and make your
code more expressive and robust. That doesn’t automagically mean that it’s
more performant, though, or even at the same performance level as
imperative and object-oriented code.

Java is such a versatile language that’s trusted by many companies and
individuals because its backward compatibility and general API stability are
among the best. However, this comes at the steep price of fewer changes to
the language itself, at least compared to others. That’s why many features
covered in this book, like Streams, CompleteFutures, or Optionals, aren’t
native language features but are implemented in the JDK with ordinary Java
code, instead. Even Records, a totally new construct with distinct
semantics, boils down to a typical class extending java.lang.Record,
similar to how Enums work, with the compiler generating the required code
behind the scenes. Still, that doesn’t mean these features aren’t optimized in
any way. They still profit from all the optimizations available to all Java
code. In addition, lambdas are a language feature utilizing a specialized
opcode in the JVM, with multiple optimization techniques.

I know that using functional structures like Streams and Optionals for every
single data processing or null-check is quite tempting because I fell for it
after years of Java language stagnation. Even though they are excellent and
highly optimized tools, you have to remember they aren’t free to use and
will incur c certain unavoidable overhead.

Usually, the overhead is negligible compared to the productivity gains and
more concise and straightforward code. Always remember the quote by
Kent Beck: “first make it work, then make it right, and, finally, make it
fast.” Don’t forgo functional features and APIs in fear of the potential
overhead without knowing it affected your code negatively in the first
place. If in doubt, measure first, refactor second.



Functional Architecture in an Imperative
World
Choosing a particular architecture isn’t an easy endeavor and has far-
reaching consequences for any project. It’s a significant decision that can’t
be changed without much effort. If you want to apply a more functional
approach on an architectural level, it has to fit into an existing imperative
and object-oriented code base without disrupting the status quo (too much).

Unsurprisingly, functions are the most basic and essential unit in functional
architectures, representing isolated chunks of business logic. These chunks
are the building blocks of workflows by being composed as needed. Each
workflow represents a bigger logical unit, like a feature, a use case, a
business requirement, etc.

A typical architectural approach to utilizing FP in an OO world is to
separate the business logic from how it communicates with the outside
world with well-defined boundaries. The functional core, imperative shell
(FC/IS) approach to architecture is one that’s flexible in size and can be as
low-impact as you want.

Although it’s feasible to build a system from scratch with an FC/IS design,
it’s also possible to integrate the design into an existing code base. An
FC/IS is an excellent choice for gradual rewrites and refactoring to
introduce functional principles and techniques into your OO project.

If you think about code and its actual purpose detached from any paradigms
or concepts, it falls into two distinct groups: doing the work, and
coordinating it. Instead of organizing the code and its responsibilities into a
single paradigm, FC/IS draws a distinct line of separation between the two
involved paradigms, as shown in Figure 15-2.



Figure 15-2. Basic layout of Functional Core, Imperative Shell

The functional core encapsulates the business logic and decisions in
isolated and purely functional units. It utilizes all that FP has to offer and
does what it does best: working directly with data without worrying about
side effects or state-related problems thanks to pure functions and
immutability. This core is then wrapped by an imperative shell, a thin layer
to protect it from the outside world, encapsulating all the side effects and
any mutable state.

The shell contains the dependencies to other parts of the system and
provides the public contract to interact with the FC/IS from the outside.



Everything non-functional is kept away from the core and restricted to the
shell. To keep the shell as thin as possible, most of the decisions remain in
the core, so the shell only needs to delegate the work through its boundary
and interpret the core’s results. It’s a glue layer handling the “real world”
with all its dependencies and mutable state but as few paths and decisions
as possible.

One of the main advantages of this design is the clear-cut split of
responsibilities by encapsulation that occurs almost naturally as a side effect
of a functional approach. The business logic is encapsulated in the core,
built with pure functions, immutability, etc., making it easy to reason with,
modular, and maintainable. Conversely, anything impure or mutable, or any
contact with other systems, is restricted to the shell which isn’t allowed to
make many decisions by itself.

From Objects to Values
From the outside, only the imperative shell is visible and provides a low
level of abstraction with problem domain-specific types. It looks and feels
like any other layer in a usual object-oriented Java project. The functional
core, however, doesn’t need to know about the shell and its public contracts
at all. Instead, it relies solely on high-level abstractions and the exchange of
values rather than objects and how they interact with each other.

This shift from objects to values is required to keep the core functional and
independent by leveraging all available functional tools. But it also
highlights the split in responsibilities. To keep the core pure, any mutability,
state, or side effects must happen beyond the boundary in the shell, outside
of the actual business logic. In its most refined form, that means that
anything traversing the boundary needs to be a value, even eventual side
effects! That’s why separating side effects from pure functions is so
important to regain more control. Programming languages that are “more
functional” than Java usually have specialized data structures to handle side
effects, like for example Scala’s Maybe or Try types.



Java’s closest type for handling a side effect is the Optional<T> type,
which is capable of representing two states in a single type. In Chapter 10, I
also discussed how to recreate Scala’s Try/Success/Failure pattern in Java to
handle control-flow disruptions due to Exceptions in a more functional
manner. Still, the additional code and boilerplate required to tame side
effects is a clear indicator that they should be handled in the imperative
shell where the appropriate tools and constructs are available, unlike in the
functional core, where it’s at least not desirable to do so.

Separation of Concerns
Functions come to their conclusions solely based on their arguments,
without accessing or changing the world around them. Still, at some point,
change might be necessary, like persisting data, mutating state in the shell.

The core is only responsible for decision-making but not acting on such
decisions. That’s why all changes, even side effects, must be representable
as values, too.

Imagine you want to scrape a website for certain information and store it in
a database. The overall task consists broadly speaking of the following
steps:

1. Load content of a website

2. Extract the necessary information

3. Decide if the information is relevant

4. Persist data in a database

To fit the task into an FC/IS system, you first need to categorize them by
their responsibilities.

Loading the content and persisting the data is clearly I/O, which includes
side effects, and therefore, belongs into the shell. Information extraction
and deciding if it’s relevant is data processing that fits into the core. This
categorization leads to the separation of tasks as illustrated in Figure 15-3.



Figure 15-3. Web-scraping responsibilities in FCIS

As you can see in the figure, the shell interacts with the network and passes
the content immediately to the core. The core receives an immutable
String value and returns an Optional<String> to indicate if the
information is relevant based on its business logic. If a value is received
back in the shell, it persists the value and any other information it still has
access to in its context.

The separation of concerns brings another advantage to the code. From a
modularity standpoint, the core is capable of using any input source, not
just a website. This makes data processing more flexible and reusable. For
example, instead of scraping a single site and passing its content directly to
the core for processing, multiple pages could be scraped beforehand and
persisted in a database for later processing. The core doesn’t care and
doesn’t even need to know where the content comes from; it’s entirely
focused on its isolated task: extracting and evaluating information. So even



if the overall requirements change, the core doesn’t necessarily have to
change, too. And if it does, you can recombine the existing small logical
units as needed.

The Different Sizes of an FC/IS
An FC/IS might seem like a singular organizational layout that your system
is built around. That’s one way to do it, yet there’s a more flexible way to
integrate the FC/IS architecture into a system: multiple FC/IS with different
sizes.

Unlike other architectural designs, it doesn’t have to define or dominate a
project. It doesn’t matter if your whole application is built around a singular
or multiple FC/IS. Even creating an FC/IS for a sole task is possible. As
long as an imperative shell integrates with the rest of the system, you’re
good to go!

The dynamic sizing and integration of FC/IS allow for a gradual transition
toward more functional logic in your codebase without breaking pre-
existing structures. Creating multiple FC/IS, as seen in Figure 15-4, can
coexist and interact with prior systems without anyone even noticing it from
the outside.



Figure 15-4. Multiple FI/CS interacting with an existing system

A sensible approach for sizing an FC/IS is thinking about its context and
capabilities. The boundaries to the outside world — the shell’s surface — 
are the first indicator of the required size. Reducing the coupling between
different systems ensures modularity, extensibility, and maintainability over
time. The context is defined by the encapsulated specialized domain
knowledge represented in the core, and by extension, the public contract of
the shell.

Defining the correct context and appropriate boundaries is crucial and gets
easier with experience. An FC/IS should be as small as possible but as big
as necessary. Functional units or whole functional groups of a core can be
reused in other FC/IS to facilitate multiple small but specialized FC/IS
instead of a singular “all-inclusive” one. With these smaller and isolated
FC/IS it’s easier to start replacing and integrating them into even complex
pre-existing systems step-by-step.



Testing an FC/IS
As with any other refactoring effort, when you adopt an FC/IS design, you
should verify your new structures with appropriate testing, such as unit and
integration tests. If your code has dependencies, or I/O like a database,
testing usually requires mocks or stubs to better isolate the tested
components.

While libraries are available to streamline creating such replacements, the
whole concept comes with some drawbacks:

Knowledge of implementation details

Mocks often require detailed implementation knowledge to work as
intended. Such details might change over time, and every refactor
attempt tends to break the mocks and stubs mimicking them, even
without changing the public contracts or the test logic.

Incidental testing

Tests should be on point, only testing the absolute minimum to ensure
correctness. Dependencies create additional layers to consider, though,
even if the intended story of the test hides underneath. Debugging such
tests can be a nuisance because you no longer only debug the test and
functionality itself but also any other layer present.

Fictional testing

Typically, a dependency is correctly initialized and in a guaranteed
meaningful state. On the other hand, Mocks and stubs are essentially
fictional implementations to reduce the coupling between components
and fulfill the minimal set of requirements for the test.

The FC/IS architecture reduces these usual drawbacks thanks to its clear
separation of responsibilities which is mirrored in its testability.

The functional core — the business logic of the system — consisting of pure
functions which are often naturally isolated, is a perfect match for unit



testing. The same test input needs to fulfill the same assertions. That’s why
the core is usually easy to verify with small and on-point unit tests without
test doubles compared to larger interconnected systems with more complex
setup requirements. This general lack of dependencies eliminates the need
for mocks and stubs.

The imperative shell still has dependencies and side effects and is,
obviously not as easily testable as the core; it still needs integration tests.
However, having most of the logic in the core that’s easily unit-testable,
requires fewer tests to verify the shell. Any new FC/IS can rely on tested
and verified functional code that’s easy to reason with, with only a new
shell needing to be verified.

Final Thoughts on a Functional Approach to
Java
Although I’m obviously a proponent of functional techniques wherever
possible and sensible, my day-to-day Java work is still shaped by primarily
imperative and object-oriented code. You may also be in a similar situation.
In my company, Java 8 and its successors allowed us to introduce functional
techniques step-by-step and at our own pace without the need to rewrite the
whole architecture or codebase.

For example, slowly establishing immutability throughout the code and as
the new baseline for data structures eliminated a whole category of
problems that is usually present in an OO approach. Even hybrid
approaches, like the previously mentioned partially immutable
SessionState type eliminated certain unfavorable scenarios that could
introduce subtle and hard-to-debug problems.

Another significant improvement was designing method signatures with
Optionals in mind. It made the intent of a method more evident,
communicating the possibility of missing values clearly with the caller,
resulting in fewer NullPointerException without requiring an
abundance of null-checks.



Functional idioms, concepts, and techniques aren’t that far out from object-
oriented ones as it’s often proclaimed. Sure, they are different approaches to
solving similar problems. Most benefits of functional programming can be
reaped in object-oriented and imperative environments, too.

Java, as a language, might be lacking support for certain functional
constructs. However, Java, the platform with a vast ecosystem brings in so
many benefits regardless of the chosen paradigm.

Fundamentally, functional programming is a thought process, not a specific
language per se. You don’t have to start a system from scratch to benefit
from it. Starting from scratch often focuses on productivity instead of
required breadth. Due to an ever-changing and evolving codebase, it’s easy
to overlook necessary edge cases and non-common constructs most systems
rely on. Instead of going back to square one, you can reduce the overall
complexity by gradually rewriting, refactoring, and injecting a functional
mindset step-by-step.

Still, not every data structure needs to be redesigned, and not each type to
be made fully functional. The way to build a functional mindset is to
exercise it. Start small, and don’t force it. The more you use functional
constructs, the easier you will identify code that can benefit from the
functional tools that Java provides.

The overarching goal of a functional approach is reducing the required
cognitive capacity to understand and reason with your code. More concise
and safer constructs, like pure functions and immutable data structures,
improve reliability and long-term maintainability. Software development is
about controlling complexity with the right tools, and in my opinion, the
functional toolset that Java 8+ provides is quite powerful to tame your
imperative and object-oriented Java code.

No matter which functional techniques and concepts you integrate into your
projects, the most important lesson that I hope you take away from my
book, in my opinion, is that it doesn’t actually matter if you do OOP or FP.
Brian Goetz, the Java Language Architect at Oracle, said it quite well in one
of his talks:



Don’t be a functional programmer.
Don’t be an object-oriented programmer. Be a better programmer.

—Brian Goetz, FP vs OO: Choose Two

Software development is about choosing the most appropriate tool for a
given problem. Incorporating the functional concepts and techniques
available to us as Java developers in our day-to-day work adds invaluable
new tools to our toolbox, which create more readable, reasonable,
maintainable, and testable code.

Takeaways
OOP and FP are quite dissimilar in their core concepts. However, most
of their concepts aren’t mutually exclusive or completely orthogonal.
Both can solve the same problems but with different approaches.

Reasonable code is the ultimate goal, and a functional mindset helps
achieve it.

A functional mindest starts small with steps, like avoiding side effects
with the help of pure functions or embracing immutability.

Functional principles can also be part of architectural decisions, like
separating concerns by splitting the business logic and the exposed
surface to other systems with designs like a functional core, imperative
shell.

The functional core, imperative shell design is an excellent tool for
gradually introducing functional principles and concepts into existing
code.

1  Salus, Peter H. 1994. “A Quarter-Century of Unix.” Addison-Wesley. ISBN 0-201-54777-5.
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