

Managing Datasets

and

Models

MDS.FM_2.8.23.indd 1MDS.FM_2.8.23.indd 1 08/02/23 1:40 PM08/02/23 1:40 PM

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY
By purchasing or using this book and its companion files (the “Work”), you agree
that this license grants permission to use the contents contained herein, but does
not give you the right of ownership to any of the textual content in the book or own-
ership to any of the information, files, or products contained in it. This license does
not permit uploading of the Work onto the Internet or on a network (of any kind)
without the written consent of the Publisher. Duplication or dissemination of any
text, code, simulations, images, etc. contained herein is limited to and subject to
licensing terms for the respective products, and permission must be obtained from
the Publisher or the owner of the content, etc., in order to reproduce or network
any portion of the textual material (in any media) that is contained in the Work.

Mercury Learning and Information (“MLI” or “the Publisher”) and anyone
involved in the creation, writing, production, accompanying algorithms, code, or
computer programs (“the software”), and any accompanying Web site or software
of the Work, cannot and do not warrant the performance or results that might be
obtained by using the contents of the Work. The author, developers, and the Pub-
lisher have used their best efforts to insure the accuracy and functionality of the
textual material and/or programs contained in this package; we, however, make no
warranty of any kind, express or implied, regarding the performance of these con-
tents or programs. The Work is sold “as is” without warranty (except for defective
materials used in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone
involved in the composition, production, and manufacturing of this work will not be
liable for damages of any kind arising out of the use of (or the inability to use) the
algorithms, source code, computer programs, or textual material contained in this
publication. This includes, but is not limited to, loss of revenue or profit, or other
incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replace-
ment of the book and only at the discretion of the Publisher. The use of “implied
warranty” and certain “exclusions” vary from state to state, and might not apply to
the purchaser of this product.

Companion files also available for downloading from the publisher by writing to
info@merclearning.com.

MDS.FM_2.8.23.indd 2MDS.FM_2.8.23.indd 2 08/02/23 1:40 PM08/02/23 1:40 PM

mailto:info@merclearning.com

MERCURY LEARNING AND INFORMATION
Dulles, Virginia

Boston, Massachusetts
New Delhi

Oswald Campesato

Managing Datasets

and

Models

MDS.FM_2.8.23.indd 3MDS.FM_2.8.23.indd 3 08/02/23 1:40 PM08/02/23 1:40 PM

Copyright ©2023 by Mercury Learning and Information LLC. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any way, stored in
a retrieval system of any type, or transmitted by any means, media, electronic display or mechanical display,
including, but not limited to, photocopy, recording, Internet postings, or scanning, without prior permission in
writing from the publisher.

Publisher: David Pallai
Mercury Learning and Information
22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
1-800-232-0223

O. Campesato. Managing Datasets and Models.
ISBN: 9781683929529

The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a
means to distinguish their products. All brand names and product names mentioned in this book are
trademarks or service marks of their respective companies. Any omission or misuse (of any kind) of service
marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2022952302

232425321  Printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc. For additional
information, please contact the Customer Service Dept. at 800-232-0223(toll free).

All of our titles are also available in digital format at numerous digital vendors. Companion files are available for
download by writing to the publisher at info@merclearning.com. The sole obligation of Mercury Learning
and Information to the purchaser is to replace the book, based on defective materials or faulty workmanship,
but not based on the operation or functionality of the product.

MDS.FM_2.8.23.indd 4MDS.FM_2.8.23.indd 4 08/02/23 1:40 PM08/02/23 1:40 PM

www.merclearning.com
mailto:info@merclearning.com
mailto:info@merclearning.com

I’d like to dedicate this book to my parents

– may this bring joy and happiness into their lives.

MDS.FM_2.8.23.indd 5MDS.FM_2.8.23.indd 5 08/02/23 1:40 PM08/02/23 1:40 PM

MDS.FM_2.8.23.indd 6MDS.FM_2.8.23.indd 6 08/02/23 1:40 PM08/02/23 1:40 PM

Contents

Preface� xiii

Chapter 1:	 Working with Data� 1
Import Statements for this Chapter� 2
Exploratory Data Analysis (EDA)� 3
Dealing with Data: What Can Go Wrong?� 6
Analyzing Missing Data� 8
Explanation of Data Types� 10
Data Preprocessing� 15
Working with Data Types� 16
What is Drift?� 17
What is Data Leakage?� 18
Model Selection and Preparing Datasets � 19
Types of Dependencies Among Features� 23
Data Cleaning and Imputation� 27
Summary� 43

Chapter 2:	 Outlier and Anomaly Detection� 45
Import Statements for this Chapter� 45
Working with Outliers� 46
Finding Outliers with NumPy� 49
Finding Outliers with Pandas� 54

MDS.FM_2.8.23.indd 7MDS.FM_2.8.23.indd 7 08/02/23 1:40 PM08/02/23 1:40 PM

viii • Contents

Finding Outliers with Scikit-Learn (Optional)� 61
Fraud Detection� 63
Techniques for Anomaly Detection� 65
Working with Imbalanced Datasets� 70
Summary� 76
Reference � 76

Chapter 3:	 Cleaning Datasets� 77
Prerequisites for this Chapter� 77
Analyzing Missing Data� 78
Pandas, CSV Files, and Missing Data� 80
Missing Data and Imputation� 91
Skewed Datasets� 108
CSV Files with Multi-Row Records� 111
Column Subset and Row Subrange of Titanic CSV File� 116
Data Normalization� 117
Handling Categorical Data� 120
Working with Currency� 125
Working with Dates� 135
Working with Quoted Fields� 145
What is SMOTE?� 149
Data Wrangling� 150
Summary� 152

Chapter 4:	 Working with Models� 153
Import Statements for this Chapter� 153
Techniques for Scaling Data � 154
Examples of Splitting and Scaling Data� 155
The Confusion Matrix� 163
The ROC Curve and AUC Curve� 176
Exploring the Titanic Dataset� 181
Steps for Training Classifiers� 189
Diagram for Partitioned Datasets� 190

MDS.FM_2.8.23.indd 8MDS.FM_2.8.23.indd 8 08/02/23 1:40 PM08/02/23 1:40 PM

Contents • ix

A KNN-Based Model with the wine.csv Dataset� 192
Other Models with the wine.csv Dataset� 195
A KNN-Based Model with the bmi.csv Dataset� 197
A KNN-Based Model with the Diabetes.csv Dataset � 198
SMOTE and the Titanic Dataset� 200
EDA and Data Visualization� 205
What about Regression and Clustering?� 209
Feature Importance� 209
What is Feature Engineering?� 212
What is Feature Selection?� 213
What is Feature Extraction?� 218
Data Cleaning and Machine Learning� 219
Summary� 222

Chapter 5:	 Matplotlib and Seaborn� 223
Import Statements for this Chapter� 224
What is Data Visualization?� 225
What is Matplotlib? � 226
Matplotlib Styles� 227
Display Attribute Values� 228
Color Values in Matplotlib� 230
Cubed Numbers in Matplotlib� 231
Horizontal Lines in Matplotlib� 233
Slanted Lines in Matplotlib� 234
Parallel Slanted Lines in Matplotlib� 235
Lines and Labeled Vertices in Matplotlib� 237
A Dotted Grid in Matplotlib� 238
Lines in a Grid in Matplotlib � 240
Two Lines and a Legend in Matplotlib� 242
Loading Images in Matplotlib� 243
A Checkerboard in Matplotlib� 244
Randomized Data Points in Matplotlib� 246

MDS.FM_2.8.23.indd 9MDS.FM_2.8.23.indd 9 08/02/23 1:40 PM08/02/23 1:40 PM

x • Contents

A Set of Line Segments in Matplotlib� 247
Plotting Multiple Lines in Matplotlib� 248
Trigonometric Functions in Matplotlib� 249
A Histogram in Matplotlib� 250
Histogram with Data from a Sqlite3 Table� 252
Plot a Best-Fitting Line with ggplot� 254
Plot Bar Charts� 255
Plot a Pie Chart� 258
Heat Maps� 259
Save Plot as a PNG File� 260
Working with SweetViz� 262
Working with Skimpy� 263
3D Charts in Matplotlib� 264
Plotting Financial Data with Mplfinance� 265
Charts and Graphs with Data from Sqlite3� 268
Working with Seaborn� 270
Seaborn Dataset Names� 272
Seaborn Built-In Datasets� 273
The Iris Dataset in Seaborn� 274
The Titanic Dataset in Seaborn� 275
Extracting Data from Titanic Dataset in Seaborn (1)� 276
Extracting Data from Titanic Dataset in Seaborn (2)� 280
Visualizing a Pandas Data Frame in Seaborn� 283
Seaborn Heat Maps� 286
Seaborn Pair Plots� 288
What is Bokeh?� 292
Introduction to Scikit-Learn� 296
The Digits Dataset in Scikit-Learn� 297
The Iris Dataset in Scikit-Learn (1)� 301
The Iris Dataset in Scikit-Learn (2)� 307
Advanced Topics in Seaborn� 311
Summary� 314

MDS.FM_2.8.23.indd 10MDS.FM_2.8.23.indd 10 08/02/23 1:40 PM08/02/23 1:40 PM

Contents • xi

Appendix:	 Working with awk� 315
The awk Command� 316
Aligning Text with the printf() Statement� 318
Conditional Logic and Control Statements� 320
Deleting Alternate Lines in Datasets� 323
Merging Lines in Datasets� 324
Matching with Metacharacters and Character Sets� 329
Printing Lines Using Conditional Logic� 330
Splitting File Names with awk� 331
Working with Postfix Arithmetic Operators� 332
Numeric Functions in awk� 334
One-Line awk Commands� 337
Useful Short awk Scripts� 338
Printing the Words in a Text String in awk� 340
Count Occurrences of a String in Specific Rows� 341
Printing a String in a Fixed Number of Columns� 342
Printing a Dataset in a Fixed Number of Columns� 343
Aligning Columns in Datasets� 344
Aligning Columns and Multiple Rows in Datasets� 346
Removing a Column from a Text File� 348
Subsets of Column-Aligned Rows in Datasets� 349
Counting Word Frequency in Datasets� 351
Displaying Only “Pure” Words in a Dataset� 353
Working with Multi-Line Records in awk� 356
A Simple Use Case� 358
Another Use Case� 360
Summary� 362

Index� 363

MDS.FM_2.8.23.indd 11MDS.FM_2.8.23.indd 11 08/02/23 1:40 PM08/02/23 1:40 PM

MDS.FM_2.8.23.indd 12MDS.FM_2.8.23.indd 12 08/02/23 1:40 PM08/02/23 1:40 PM

Preface

WHAT IS THE PRIMARY VALUE PROPOSITION FOR THIS
BOOK?

This book contains a fast-paced introduction to data-related tasks in prepara-
tion for training models on datasets. Keep in mind that this book presents
the necessary sequence of steps in order to train models on classification
tasks. You will see a detailed (i.e., step-by-step) Python-based code sample
that uses the kNN algorithm to train a model on a dataset.

Next, you will see other classification algorithms (on the same dataset),
such as decision trees, random forests, SVMs (support vector machines), and
Naive Bayes simply by modifying three lines of code.

As a quick overview, Chapter 1 starts with an introduction to datasets and
issues that can arise, followed by Chapter 2 on outliers and anomaly detec-
tion. Chapter 3 explores ways for handling missing data and invalid data,
and Chapter 4 shows you how to train models with classification algorithms.
In particular, the section called “Steps for Training Classifiers” explains the
required sequence of steps, along with a code sample that implements those
steps. Chapter 5 introduces visualization toolkits, such as Sweetviz, Skimpy,
Matplotlib, and Seaborn, along with some simple Python-based code sam-
ples that render charts and graphs. The Appendix introduces the awk utility.

Again, keep in mind that the details regarding the design or implemen-
tation of classification algorithms are outside the scope of this book, but you
can find online tutorials that explain how they work.

MDS.FM_2.8.23.indd 13MDS.FM_2.8.23.indd 13 08/02/23 1:40 PM08/02/23 1:40 PM

xiv • Preface

WHAT DO I NEED TO KNOW FOR THIS BOOK?

The minimum programming requirement is a basic knowledge of Python
3.x because all the code samples are in Python. In some cases, you need a
rudimentary understanding of the awk utility, which you can learn through
free online tutorials.

In addition, you need ta basic understanding of Pandas data frames and
the Pandas methods for extracting information from data frames.

ARE ALL CODE SAMPLES COMPLETE?

Although the code samples are complete, keep in mind that sometimes it
might be necessary to use pip to install Python modules that are referenced
in the Python code samples, but are not installed yet on your laptop.

Moreover, several code samples are written in awk, which is a command
line utility (part of UNIX and Linux), and one code sample in the appendix
is a Java program. Keep in mind that Java is not covered in this book: treat
the Java code samples as optional or read some online tutorials regarding
Java. Note that the awk utility is introduced in the Appendix.

WHAT WILL I LEARN FROM THIS BOOK?

The introductory section of this preface contains a brief outline of the topics
in each of the chapters of this book. As the title suggests, you will acquire a
solid understanding of the statistical concepts that you will encounter as a
data scientist.

Moreover, you will be exposed to concepts and statistical tests that could
prove useful later in your career, even if they are not needed at this stage in
your career as a data scientist.

THE TARGET AUDIENCE

This book is intended for people who have limited experience in managing
datasets in machine learning. This book is also intended to reach an inter-
national audience of readers with highly diverse backgrounds. While many

MDS.FM_2.8.23.indd 14MDS.FM_2.8.23.indd 14 08/02/23 1:40 PM08/02/23 1:40 PM

Preface • xv

readers know how to read English, their native spoken language is not Eng-
lish (which could be their second, third, or even fourth language). Conse-
quently, this book uses standard English rather than colloquial expressions
in order to maximize clarity.

GETTING THE MOST FROM THIS BOOK

Some programmers learn well from prose, others learn well from sample
code (and lots of it), which means that there's no single style that can be used
for everyone.

Moreover, some programmers want to run the code first, see what it
does, and then return to the code to delve into the details (and others use
the opposite approach).

Consequently, there are various types of code samples in this book:
some are short, some are long, and other code samples "build" from earlier
code samples.

DOES THIS BOOK CONTAIN PRODUCTION-LEVEL CODE
SAMPLES?

The primary purpose of the code samples in this book is to show you how to
solve tasks that arise when you train models with classification algorithms.
Hence, clarity has higher priority than writing more compact or highly opti-
mized code; for example, inspect the loops in the Python code sample to see
if they can be made more efficient. Suggestion: treat such code samples as
opportunities for you to optimize the code samples in this book.

If you decide to use any of the code in this book in a production envi-
ronment, you ought to subject that code to the same rigorous analysis as the
other parts of your code base.

WHAT ARE THE NON-TECHNICAL PREREQUISITES FOR THIS
BOOK?

Although the answer to this question is more difficult to quantify, it’s very
important to have strong desire to learn about statistical concepts, along with

MDS.FM_2.8.23.indd 15MDS.FM_2.8.23.indd 15 08/02/23 1:40 PM08/02/23 1:40 PM

xvi • Preface

the motivation and discipline to read and understand the code samples (and
ideally enhance the contents of the code samples).

HOW DO I SET UP A COMMAND SHELL?

If you are a Mac user, there are three ways to do so. The first method is to
use Finder to navigate to Applications > Utilities and then double
click on the Utilities application. Next, if you already have a command
shell available, you can launch a new command shell by typing the following
command:

open /Applications/Utilities/Terminal.app

A second method for Mac users is to open a new command shell on a
MacBook from a command shell that is already visible simply by clicking
command+n in that command shell, and your Mac will launch another com-
mand shell.

If you are a PC user, you can install Cygwin (open source https://cygwin.
com/) that simulates bash commands or use another toolkit such as MKS (a
commercial product). Please read the online documentation that describes
the download and installation process. Note that custom aliases are not auto-
matically set if they are defined in a file other than the main start-up file
(such as .bash_login).

COMPANION FILES

All of the code samples and figures in this book may be obtained by writing
to the publisher at info@merclearning.com.

WHAT ARE THE “NEXT STEPS” AFTER FINISHING THIS
BOOK?

The answer to this question varies widely, mainly because the answer depends
heavily on your objectives. If you are interested primarily in learning more
about machine learning, then this book is a “steppingstone” to other books

MDS.FM_2.8.23.indd 16MDS.FM_2.8.23.indd 16 08/02/23 1:40 PM08/02/23 1:40 PM

https://cygwin.com/
https://cygwin.com/
mailto:info@merclearning.com

Preface • xvii

that contain more complex datasets as well as code samples for linear regres-
sion and clustering tasks.

If you want to explore other areas of machine learning, there are some
subfields of machine learning, such as deep learning and reinforcement
learning (and deep reinforcement learning) which might appeal to you.
Fortunately, there are many resources available, and you can perform an
Internet search for those resources. One other point: the aspects of machine
learning for you to learn depend on who you are: the needs of a data scien-
tist, machine learning engineer, development manager, software developer,
or student are all different.

� O. Campesato
� February 2023

MDS.FM_2.8.23.indd 17MDS.FM_2.8.23.indd 17 08/02/23 1:40 PM08/02/23 1:40 PM

MDS.FM_2.8.23.indd 18MDS.FM_2.8.23.indd 18 08/02/23 1:40 PM08/02/23 1:40 PM

C H A P T E R 1
Working with Data

This chapter focuses on data types that you will encounter in datasets, includ-
ing currency and dates, as well as scaling data values and various aspects of
feature engineering. This chapter starts with simple material and rapidly pro-
gresses to machine learning concepts, which include a code sample that uses
the DecisionTreeClassifier class from scikit-learn to determine feature
importance in a dataset. This book is intended for data scientists, which means
you are familiar with decision trees, and any new topics that you encounter in
this chapter are within your grasp.

The first section of this chapter briefly discusses some aspects of EDA
(Exploratory Data Analysis), such as data quality and the data-centric AI ver-
sus model-centric AI, as well as some of the steps involved in data clean-
ing and data wrangling. You will also see an EDA code sample involving the
Titanic dataset.

The second section of this chapter describes common types of data, such
as binary, nominal, ordinal, and categorical data. In addition, you will learn
about continuous versus discrete data, quantitative and quantitative data, and
types of statistical data.

The third section introduces the notion of data drift and data leakage,
followed by model selection. This section also describes how to process cate-
gorical data, and how to map categorical data to numeric data.

The fourth section discusses concepts such as homoskedasticity, collin-
earity, variance inflation factor, and correlation. This section contains Python-
based code samples that involve currency and date values. You will also learn
about various aspects of splitting datasets and scaling data values.

MDS.CH1_2.8.23.indd 1MDS.CH1_2.8.23.indd 1 08/02/23 1:39 PM08/02/23 1:39 PM

2 • Managing Datasets and Models

The fifth section introduces feature engineering, feature selection, and
feature extraction, and also discusses how they differ from each other. You
will also learn about feature scaling in some machine learning algorithms,
labeled versus unlabeled data, and training large datasets.

NOTE: This chapter contains shell scripts that use basic features of awk
and Pandas, which you can learn about from online tutorials.

IMPORT STATEMENTS FOR THIS CHAPTER

This chapter contains a mixture of Python-based code samples, an awk-based
shell script, and a Java code sample to show you how to solve tasks using dif-
ferent technologies. All the code samples are straightforward, and if you can
follow the Pandas and awk-based code samples in this chapter, then you will
most likely be able to understand the awk-based code samples in subsequent
chapters.

This chapter requires basic knowledge of Python and Pandas, such as cre-
ating Pandas data frames, as well as reading and writing comma separated
values (CSV) files. Knowledge of the awk programming language is required
for shell scripts that invoke the awk command, if you decide you want to read
those code samples.

In addition, the following list contains all the import statements that you
will encounter in the Python code samples for this chapter:

from scipy import stats

from sklearn.covariance import EllipticEnvelope

from sklearn.datasets import make_classification

from sklearn.ensemble import RandomForestClassifier

from sklearn.feature_selection import RFE

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.tree import DecisionTreeClassifier

import matplotlib.pyplot as plt

import numpy as np

MDS.CH1_2.8.23.indd 2MDS.CH1_2.8.23.indd 2 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Data • 3

import pandas as pd

import seaborn as sns

import sys

EXPLORATORY DATA ANALYSIS (EDA)

According to Wikipedia, EDA involves analyzing datasets to summarize their
main characteristics, often with visual methods. EDA also involves searching
through data to detect patterns (if there are any) and anomalies, and in some
cases, test hypotheses regarding the distribution of the data.

EDA represents the initial phase of data analysis, whereby data is explored
to determine its primary characteristics. Moreover, this phase involves detect-
ing patterns (if any) and outstanding issues pertaining to the data. The pur-
pose of EDA is to obtain an understanding of the semantics of the data with-
out performing a deep assessment of the nature of the data. The analysis is
often performed through data visualization to produce a summary of their
most important characteristics. The four types of EDA are listed here:

	• univariate non-graphical
	• multivariate non-graphical
	• univariate graphical
	• multivariate graphical

In brief, the two primary methods for data analysis are qualitative data analy-
sis techniques and quantitative data analysis techniques.

As an example of exploratory data analysis, consider the plethora of cell
phones that customers can purchase for various needs (work, home, and
minors). Visualize the data in an associated dataset to determine the top ten
(or top three) most popular cell phones, which can potentially be performed
by state (or province) and country.

An example of quantitative data analysis involves measuring (quantifying)
data, which can be gathered from physical devices, surveys, or activities such
as downloading applications from a webpage.

Common visualization techniques used in EDA include histograms, line
graphs, bar charts, box plots, and multi-variate charts.

MDS.CH1_2.8.23.indd 3MDS.CH1_2.8.23.indd 3 08/02/23 1:39 PM08/02/23 1:39 PM

4 • Managing Datasets and Models

What is Data Quality?

According to Wikipedia, data quality refers to “the state of qualitative or quan-
titative pieces of information.” Furthermore, high data quality refers to data
whose quality meets the various needs of an organization. In particular, data
cleaning tasks are the type of tasks that assist in achieving high data quality.

When companies label their data, they obviously strive for a high quality
of labeled data, and yet the quality can be adversely affected in various ways,
some of which are listed here:

	• inaccurate methodology for labeling data
	• insufficient data accuracy
	• insufficient attention to data management

The cumulative effect of the preceding (and other) types of errors can be
significant, to the extent that models underperform in a production environ-
ment. In addition to the technical aspects, underperforming models can have
an adverse effect on business revenue.

Related to data quality is data quality assurance, which typically involves
data cleaning tasks that are discussed later in this chapter, after which data is
analyzed to detect potential inconsistencies in the data, and then determine
how to resolve those inconsistencies. Another aspect to consider: the aggre-
gation of additional data sources, especially involving heterogenous sources
of data, can introduce challenges with respect to ensuring data quality. Other
concepts related to data quality include data stewardship and data gover-
nance, both of which are discussed in multiple online articles.

Data-Centric AI or Model-Centric AI?

A model-centric approach focuses primarily on enhancing the performance of
a given model, and data is considered secondary in importance. In fact, during
the past ten years or so, the emphasis of AI has been a model-centric approach.
Note that during this time span, some very powerful models and architec-
tures have been developed, such as the Convolutional Neural Network (CNN)
model for image classification in 2012 and the enormous impact (especially
in Natural Language Processing, NLP) of models based on the transformer
architecture that was developed in 2017.

MDS.CH1_2.8.23.indd 4MDS.CH1_2.8.23.indd 4 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Data • 5

By contrast, a data-centric approach concentrates on improving data, and
it relies on several factors, such as the quality of labels for the data as well as
obtaining accurate data for training a model.

Given the importance of high quality data with respect to training a model,
it stands to reason that using a data-centric approach instead of a model-cen-
tric approach can result in higher quality models in AI. While data quality and
model effectiveness are both important, the data-centric approach is becom-
ing increasingly more strategic in the machine learning world. For more infor-
mation, visit the following site:

https://research.aimultiple.com/data-centric-ai/

The Data Cleaning and Data Wrangling Steps

The next step often involves data cleaning to find and correct errors in the
dataset, such as missing data, duplicate data, or invalid data. This task also
involves data consistency, which pertains to updating different representa-
tions of the same value in a consistent manner. As a simple example, suppose
that a webpage contains a form with an input field whose valid input is either
Y or N, but users are able to enter Yes, Ys, or ys as text input. Obviously, these
values correspond to the value Y, and they must all be converted to the value
Y to achieve data consistency.

Finally, data wrangling can be performed after the data cleaning task is
completed. Although interpretations of data wrangling do vary, in this book
the term refers to transforming datasets into different formats as well as com-
bining two or more datasets. Hence, data wrangling does not examine the
individual data values to determine whether they are valid: this step is per-
formed during data cleaning.

Sometimes it is worthwhile to perform another data cleaning step after
the data wrangling step. For example, suppose that two CSV files contain
employee-related data, and you merge these CSV files into a third CSV file.
The newly created CSV file might contain duplicate values: it is certainly pos-
sible to have two people with the same name (such as John Smith).

ELT and ETL

ELT is an acronym for extract, load, and transform, which is a pipeline-based
approach for managing data. Another pipeline-based approach is called ETL

MDS.CH1_2.8.23.indd 5MDS.CH1_2.8.23.indd 5 08/02/23 1:39 PM08/02/23 1:39 PM

https://research.aimultiple.com/data-centric-ai/

6 • Managing Datasets and Models

(extract, transform, and load), which is more popular than ELT. However, ELT
has the following advantages over ETL:

	• ELT requires less computational time.
	• ELT is well-suit for processing large datasets.
	• ELT is more cost-effective.

ELT is a process that extracts, loads, and transforms data from one or more
sources to a data warehouse or other unified data repository. ELT is a data
integration process that is similar to its counterpart ETL.

DEALING WITH DATA: WHAT CAN GO WRONG?

In a perfect world, all datasets are in pristine condition, with no extreme val-
ues, no missing values, and no erroneous values. Every feature value is cap-
tured correctly, with no chance for any confusion. Moreover, no conversion
is required between date formats, currency values, or languages because of
the “One Universal Standard” that defines the correct formats and acceptable
values for every possible set of data values.

Of course, all the scenarios in the previous paragraph can and do occur,
which is the reason for the techniques that are discussed in this chapter. Even
after you manage to create a wonderfully clean and robust dataset, other
issues can arise, such as data drift, which is described in a later section.

In fact, the task of cleaning data is not necessarily complete even after
a machine learning model is deployed to a production environment. For
instance, an online system that gathers terabytes or petabytes of data on a
daily basis can contain skewed values that adversely affect the performance of
the model. Such adverse affects can be revealed through the changes in the
metrics that are associated with the production model.

Datasets

In general, a dataset is a data source (such as a text file) that often contains
rows and columns of data. Each row is typically called a data point, and each
column is called a feature. A dataset can be a CSV (comma separated values),
TSV (tab separated values), Excel spreadsheet, a table in an RDBMS, a docu-
ment in a NoSQL database, the output from a Web Service, and so forth.

MDS.CH1_2.8.23.indd 6MDS.CH1_2.8.23.indd 6 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Data • 7

Note that a static dataset consists of fixed data. For example, a CSV file
that contains the states of the USA is a static dataset. A slightly different exam-
ple involves a product table that contains information about the products that
customers can buy from a company. Such a table is static if no new products
are added to the table. Discontinued products are probably maintained as
historical data that can appear in product-related reports.

By contrast, a dynamic dataset consist of data that changes over a period
of time. Simple examples include housing prices, stock prices, and time-based
data from Internet of Things (IoT) devices.

A dataset can vary from very small (perhaps a few features and 100 rows)
to very large (more than 1,000 features and more than one million rows). If
you are unfamiliar with the problem domain for a particular dataset, then
you might struggle to determine its most important features. In this situation,
you ought to consult a domain expert who understands the importance of the
features, their inter-dependencies (if any), and whether the data values for
the features are valid. In addition, there are algorithms (called dimensionality
reduction algorithms) that can help you determine the most important fea-
tures, such as PCA (Principal Component Analysis).

Before delving into topics such as data preprocessing and data types, let’s
take a brief detour to introduce the concept of feature importance, which is
discussed in greater detail in Chapter 4.

Someone needs to analyze the dataset to determine which features are
the most important and which features can be safely ignored to train a model
with the given dataset. A dataset can contain various data types, such as

	• audio data
	• image data
	• numeric data
	• text-based data
	• video data
	• combinations of the above

In this book, we will only consider datasets that contain columns with numeric
or text-based data types, which can be further classified as follows:

	• nominal (string-based or numeric)
	• ordinal (ordered values)
	• categorical (enumeration)

MDS.CH1_2.8.23.indd 7MDS.CH1_2.8.23.indd 7 08/02/23 1:39 PM08/02/23 1:39 PM

8 • Managing Datasets and Models

	• interval (positive/negative values)
	• ratio (non-negative values)

A subsequent section briefly describes the data types that are in the preceding
bullet list. For more information, please visit the following site:

https://careerfoundry.com/en/blog/data-analytics/what-is-ordinal-data/

ANALYZING MISSING DATA

This section contains subsections that describes types of missing data, com-
mon causes of missing data, and various ways to input values for missing data.
Outlier detection, fraud detection, and anomaly detection pertain to existing
data that is problematic, with varying degrees of severity.

By contrast, missing data presents a different issue by its very absence,
which raises the following question: what can you do about the missing val-
ues? Is it better to discard data points (e.g., rows in a CSV file) with miss-
ing values, or is it better to estimate reasonable values as a replacement for
the missing values? Missing data can adversely affect a thorough analysis of a
dataset, whereas erroneous data can increase bias and uncertainty.

At this point, you have undoubtedly realized that a single solution does
not exist for every dataset: you need to perform an analysis on a case-by-
case basis, after you have learned some of the techniques that might help you
effectively address missing data values.

Classifying Missing Data: MCAR, MAR, and MNAR

Donald Rubin proposed a classification system for missing data based on
whether such missing data is due to random factors. According to his classifi-
cation system, missing data can belong to one the following categories:

1.	 MCAR (Missing Completely At Random)

2.	 MAR (Missing At Random)

3.	 MNAR (Missing Not At Random)

Type #1 suggests that missing data is due to factors that are unrelated to the
data. Type #2 applies to when there is equal probability of missing data that

MDS.CH1_2.8.23.indd 8MDS.CH1_2.8.23.indd 8 08/02/23 1:39 PM08/02/23 1:39 PM

https://careerfoundry.com/en/blog/data-analytics/what-is-ordinal-data/

Working with Data • 9

occurs within groups of the defined data. Type #3 refers to data (outside of
Type #1 or Type #2) that is missing due to unknown reasons.

Causes of Missing Data

There are various reasons for missing values in a dataset, some of which are
listed here:

	• values are unavailable
	• values were improperly collected
	• inaccurate data entry

Although you might be tempted to always replace a missing values with a con-
crete value, there are situations in which you cannot determine a value. As a
simple example, a survey that contains questions for people under 30 will have
a missing value for respondents who are over 30, and in this case, specifying
a value for the missing value would be incorrect. With these details in mind,
there are various ways to fill missing values, some of which are listed here:

	• remove row with a high percentage of missing values (50% or larger)
	• one-hot encoding for categorical data
	• handling data inconsistency
	• use the Imputer class from the scikit-learn library
	• fill missing values with the value in an adjacent row
	• replace missing data with the mean/median/mode value
	• infer ("impute") missing data values via SMOTE
	• delete rows with missing data

Once again, the technique that you select for filling missing values is influ-
enced by various factors, such as

	• how you want to process the data
	• the type of data involved
	• the cause of missing values (see above)

Although the most common technique involves the mean value for numeric
features, someone needs to determine which technique is appropriate for a
given feature.

However, if you are not confident that you can impute a reasonable value,
consider deleting the row with a missing value, and then train a model with
the imputed value and also with the deleted row.

MDS.CH1_2.8.23.indd 9MDS.CH1_2.8.23.indd 9 08/02/23 1:39 PM08/02/23 1:39 PM

10 • Managing Datasets and Models

One problem that can arise after removing rows with missing values is
that the resulting dataset is too small. In this case, consider using SMOTE
(Synthetic Minority Oversampling Technique), which generates synthetic
data.

EXPLANATION OF DATA TYPES

This section contains subsections that provide brief descriptions about the
following data types:

	• binary data
	• nominal data
	• ordinal data
	• categorical data
	• interval data
	• ratio data

Later, you will learn about the difference between continuous data versus
discrete data, as well as the difference between qualitative data versus quan-
titative data. In addition, the Pandas documentation describes data types and
how to use them in Python.

Binary Data

Binary data involves data that can only take two distinct values. As such,
binary data is the simplest type of data. A common example involves flipping
a coin: the only outcomes are in the set {H,T}. Other terms for binary data
include dichotomous, logical data, Boolean data, and indicator data. Binary
data is also a type of categorical data that is discussed later.

Nominal Data

The word “nominal” has multiple meanings, and in our case, it refers to some-
thing that constitutes a name (the prefix “nom” means “name”). Thus, nomi-
nal data is often (see next paragraph) name-based data that involves different
name labels. Examples of nominal data include hair color, music preferences,
and movie types. As you can see, there is no hierarchy or ordering involved,

MDS.CH1_2.8.23.indd 10MDS.CH1_2.8.23.indd 10 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Data • 11

so all values have the same importance. However, the number of items in
nominal values might be different, such as the number of people who belong
to different political parties.

Nominal data can involve numeric values to represent different values of
a feature. For example, the numbers in the set {0,1} can represent {Male,
Female}, and the numbers in the set {0,1,2,3,4,5,6} can represent the
days in a week. However, there is no hierarchical interpretation associated
with these numeric values: the day of the week represented by “0” is not con-
sidered more important or more valuable than any of the other numeric labels
for the other days of the week. Instead, think of each element in terms of its
predecessor and successor: note that the first element has no predecessor
and the last element has no successor. If you are familiar with programming
languages, the counterpart to integer-based nominal values would be an enu-
meration, an example of which is here:

enum DAY {SUN,MON,TUE,WED,THU,FRI,SAT};

Ordinal Data

Ordinal data implies an ordering of the elements in a finite set (think “order-
ing” from the prefix “ord”). For example, there are different values for titles
regarding software developers. As a simplified example, the set consisting of
{D1, D2, SD1, SD2} can be used to specify junior developers (D1) up
through senior developers (SD2), which have criteria associated with each
level. Hence, integer-based and string-based elements of ordinal data are
ordered.

Integer-based ordinal data does not have an implied relative value. For
example, consider the following set of ordinal data S = {1,2,3,4,5,6} that
represent grade levels in an organization. A level 2 employee is not “twice”
as experienced as a level 1 employee, nor would a level 6 employee be three
times as experienced as a level 2 (unless you define these values in such a
manner).

Please read the scikit-learn documentation regarding the class
OrdinalEncoder (scikit-learn.preprocessing.OrdinalEncorder)
for handling ordinal data.

MDS.CH1_2.8.23.indd 11MDS.CH1_2.8.23.indd 11 08/02/23 1:39 PM08/02/23 1:39 PM

12 • Managing Datasets and Models

Categorical Data

Categorical data refers to nominal data as well as ordinal data: please read
the preceding sections regarding the nuances involved in nominal data and
ordinal data. Categorical data can only assume a finite set of distinct values,
such as enumerations . In addition, Pandas can explicitly specify a column as
type categorical when you read the contents of a CSV file via the read_csv()
method.

Interval Data

Interval data pertains to data that is ordered and lies in an interval or range,
such as the integers and floating point numbers in the interval [-1,1].
Examples of interval data include temperature and income-versus-debt. As
you can see, interval data values can be negative as well as positive.

Ratio Data

Ratio data involves measured intervals, such as barometric pressure, height,
and altitude. Notice the difference between interval data and ratio data:
unlike interval data, ratio data cannot be negative. It makes no sense to refer
to negative barometric pressure, a person’s height, or altitude above the sur-
face of the earth.

Continuous Data versus Discrete Data

Continuous data can take on any value in an interval, such as [-1,1], [0,1],
or [5,10]. Hence, continuous data involves floating point numbers, which
includes interval data. Keep in mind that an interval contains an uncountably
infinite number of values.

One other point to note pertains to possible values and their floating
point representation. For instance, a random number in the interval [0,1]
involves an uncountably infinite number of values, whereas its representation
as a floating point number is limited to a large yet finite number of values.
Let’s suppose that the integer 10*1000 equals the number of numbers in the
interval [0,1] that can be represented as a floating point number. Then the
smallest positive number in the interval [0,1] that can be represented as
a floating point number is 1/N. However, there is an uncountably infinite

MDS.CH1_2.8.23.indd 12MDS.CH1_2.8.23.indd 12 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Data • 13

number of values in the interval [0,1/N), which we could approximate as the
value 0 (or possibly 1/N).

Discrete data can take on a finite set of values, and the earlier comments
regarding successors and predecessors apply to discrete data. As a simple
example, the outcome of tossing a coin or throwing a die (or multiple dice)
involve discrete data, which are also examples of nominal data. In addition,
the associated probabilities for the outcomes form a discrete probability dis-
tribution (discussed later).

Qualitative and Quantitative Data

Quantitative data can be either discrete or continuous. For example, a per-
son’s age that is measured in years is discrete, whereas the height of a person
is continuous. One point to keep in mind: the word “continuous” in statistics
does not always have the same meaning when it is used in a mathematical
context. For instance, the price of a house is treated as a continuous feature
but it is not continuous in the mathematical sense because the smallest unit of
measure is a penny, and there are many (in fact, an uncountably infinite num-
ber of) values between two consecutive penny values. Here are two examples
of discrete data values, followed by three examples of continuous data values:

	• revenue (money)
	• number of items sold

	• water temperature
	• wind speed
	• vehicle velocity

Each of the preceding data values are numeric types involving something that
has business impact or a physical characteristic.

Qualitative data can sometimes be represented as string-based values,
such as different types of color or movie genres. Hence, nominal data and
ordinal data are considered qualitative data.

It is possible to use integer-based values for nominal values, such as days
of the week and months of the year. In fact, if a dataset contains a string-based
feature that is selected as input for a machine learning algorithm, those values
are typically converted into integer based values, which can be performed via
the map() function in Pandas. Here are additional examples of qualitative
data:

MDS.CH1_2.8.23.indd 13MDS.CH1_2.8.23.indd 13 08/02/23 1:39 PM08/02/23 1:39 PM

14 • Managing Datasets and Models

	• audio (length)
	• pictures or paintings (dimensions)
	• text (word count/file size)
	• video (length)

Since the items in the preceding list have a parenthetical term that can be
used to “measure” the various items, why are they not considered quantifiable
and therefore measurable, just like the earlier bullet list? The key difference
is that the items in the qualitative items are a form of multimedia, so they do
not have a direct and immediate physical characteristic.

However, there are use cases in which media-related data can be treated
as quantifiable. For example, suppose a company classifies ambient sounds.
One practical scenario involves determining if a given sound is a gunshot ver-
sus the sound of a backfiring car. As such, the decibel level is an important
quantifiable characteristic of both sounds.

In the case of paintings, it is certainly true that they can be “measured” by
their selling price, which can sometimes be astronomical.

As another example, consider writers who are paid to write text-based doc-
uments. If their payment is based on the number of words in their documents,
then the length of a document is a quantifiable characteristic. However, peo-
ple who read articles typically do not make a distinction between an article
that contains 400 words, 450 words, or 500 words.

Finally, the cost of generating a text document that contains the dialogue
in a movie can be affected by the length of the movie, in which case videos
have a quantifiable characteristic.

Types of Statistical Data

The preceding sections described several data types, whereas this section
classifies data types from a statistical standpoint. There are four primary types
of statistical data:

	• nominal
	• ordinal
	• interval
	• ratio

MDS.CH1_2.8.23.indd 14MDS.CH1_2.8.23.indd 14 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Data • 15

One way to remember these four types of statistical data is via the acro-
nym NOIR (coincidentally the French word for “black”). Please refer to the
earlier sections for details regarding any of these data types.

DATA PREPROCESSING

Data preprocessing is the initial stage for validating the contents of a dataset,
and it involves a multi-step process (not all the steps are always required):

	• removing dependent columns
	• handling missing data values
	• cleaning text-based data
	• removing HTML tags
	• removing emoticons/emoticons
	• filtering data
	• grouping data
	• handling currency and date formats

The following subsections contain more information about some of the topics
in the preceding bullet list.

Column Dependencies

Another task for data preprocessing pertains to removing dependent columns
from a dataset. A dependent column is a column that can be derived from one
or more columns in a dataset. As a very simple example, if a dataset contains
the attributes length and width that represent the dimensions of rectan-
gular rooms in a house, then the area of a room equals the product of the
width and the length of the room. Hence, the area is a feature that depends
on the length and the width, so it is redundant. Alternatively, you might
decide to retain the area and the width and use their values whenever you
need to compute the length attribute.

Other important topics pertaining to features in a dataset include col-
linearity, multicollinearity, VIF (variance inflation factor), homoskedasticity
(constant variance of error terms), and heteroskedasticity (non-constant vari-
ance of error terms), all of which are discussed later in this book.

MDS.CH1_2.8.23.indd 15MDS.CH1_2.8.23.indd 15 08/02/23 1:39 PM08/02/23 1:39 PM

16 • Managing Datasets and Models

Cleaning Datasets

Cleaning datasets involves removing unwanted data, handling missing data,
and rectifying erroneous data. In the case of text-based data, you might need
to remove HTML tags and punctuation. In the case of data that is supposed
to be numeric, it is possible that alphabetic characters are mixed together with
numeric data. However, a dataset with numeric features might have incor-
rect values or missing values (discussed later). In addition, calculating the
minimum, maximum, mean, median, and standard deviation of the values of
a feature obviously pertain only to numeric values.

After the preprocessing step is completed, data wrangling is performed,
which refers to transforming data into a new format, as well as combining
features (as new columns and appending rows) from multiple datasets. For
example, you might need to convert between different units of measurement
(such as date formats and currency types) so that the data values can be rep-
resented in a consistent manner in a dataset.

Currency and date values are part of i18n (internationalization), whereas
L10n (localization) targets a specific nationality, language, or region. Hard-
coded values (such as text strings) can be stored as resource strings in a file
that is often called a resource bundle, where each string is referenced via a
code. Each language has its own resource bundle.

Now that you have a basic understanding of the nature of various tasks
associated with data preprocessing, let’s delve into more details about those
tasks, as discussed in the next section.

WORKING WITH DATA TYPES

If you have experience with programming languages, then you know that
explicit data types exist (e.g., C, C++, Java, and TypeScript). Some program-
ming languages, such as JavaScript and awk, do not require initializing vari-
ables with an explicit type: the type of a variable is inferred dynamically via
an implicit type system (i.e., one that is not directly exposed to a developer).

In machine learning, datasets can contain features that have different
types of data, such as a combination of one or more of the following types of
features:

	• numeric data (integer/floating point and discrete/continuous)

MDS.CH1_2.8.23.indd 16MDS.CH1_2.8.23.indd 16 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Data • 17

	• character/categorical data (different languages)
	• date-related data (different formats)
	• currency data (different formats)
	• binary data (yes/no, 0/1, and so forth)
	• nominal data (multiple unrelated values)
	• ordinal data (multiple and related values)

Consider a dataset that contains real estate data, which can have 30 or more
columns, often with the following features:

	• the number of bedrooms in a house: numeric value and a discrete value
	• the number of square feet: a numeric value and (probably) a continuous

value
	• the name of the city: character data
	• the construction date: a date value
	• the selling price: a currency value and probably a continuous value
	• the “for sale” status: binary data (either “yes” or “no”)

An example of nominal data is the seasons in a year: although many countries
have four distinct seasons, some countries have two distinct seasons. However,
keep in mind that seasons can be associated with different temperature ranges
(summer versus winter). An example of ordinal data is an employee pay grade:
1=entry level, 2=one year of experience, and so forth. Another example of
nominal data is a set of colors, such as {Red, Green, Blue}.

A familiar example of binary data is the pair {Male, Female}, and some
datasets contain a feature with these two values. If such a feature is required
for training a model, first convert {Male, Female} to a numeric counterpart
(such as {0,1}).

A Pandas-based example is here:

df['gender'] = df['gender'].map({'Male': 0, 'Female': 1})

Similarly, if you need to include a feature whose values are the previous
set of colors, you can replace {Red, Green, Blue} with the values {0,1,2}.

WHAT IS DRIFT?

In machine learning terms, drift refers to any type of change in distribution
over a period of time. Model drift refers to a change (drift) in the accuracy of

MDS.CH1_2.8.23.indd 17MDS.CH1_2.8.23.indd 17 08/02/23 1:39 PM08/02/23 1:39 PM

18 • Managing Datasets and Models

a model’s prediction, whereas data drift refers to a change in the type of data
that is collected. Note that data drift is also called input drift, feature drift, or
covariate drift.

There are several factors that influence the value of data, such as accu-
racy, relevance, and age. For example, physical stores that sell mobile phones
are much more likely to sell recent phone models than older models. In some
cases, data drift occurs over a period of time, and in other cases, it is because
some data is no longer relevant due to feature-related changes in an applica-
tion. There might be multiple factors that can influence data drift in a specific
dataset.

Two techniques for handling data drift are the domain classifier and
black-box shift detector, both of which are discussed online:

https://blog.dataiku.com/towards-reliable-mlops-with-drift-detectors

In addition to the preceding types of drift, other types of changes can
occur in a dataset, some of which are listed here:

https://arxiv.org/abs/1912.08142

	• concept shift
	• covariate shift
	• domain shift
	• prior probability shift
	• spurious correlation shift
	• subpopulation shift
	• time shift

Perform an online search to find more information about the topics in the
preceding list of bullet items. Finally, the following list contains links to open
source Python-based tools that provide drift detection:

	• alibi-detect (https://github.com/SeldonIO/alibi-detect)
	• evidently (https://github.com/evidentlyai/evidently)
	• Torchdrift (http://torchdrift.org/)

WHAT IS DATA LEAKAGE?

Data leakage occurs when data that is external to the training dataset is
included during the training of a model (i.e., inward leaks instead of outward

MDS.CH1_2.8.23.indd 18MDS.CH1_2.8.23.indd 18 08/02/23 1:39 PM08/02/23 1:39 PM

https://blog.dataiku.com/towards-reliable-mlops-with-drift-detectors
https://arxiv.org/abs/1912.08142
https://github.com/SeldonIO/alibi-detect
https://github.com/evidentlyai/evidently
http://torchdrift.org/

Working with Data • 19

leaks of data). This external data can influence the capability of the model in
unexpected ways, which in turn can adversely affect previous metrics that are
associated with the model.

Data leakage tends to be an issue with complex datasets, and some of
those types are listed here:

	• Time series datasets
	• Graph problems
	• Data stored in multiple files

Two good techniques to minimize data leakage when developing predictive
models are as follows:

	• Perform data preparation within your cross validation folds.
	• Hold back a validation dataset for final sanity check of your developed

models.

Generally, it is good practice to use both of these techniques:

https://insidebigdata.com/2014/11/26/ask-data-scientist-data-leakage/

Data Leakage and Differential Privacy

Machine learning models can involve large amounts of data, some of which
can be sensitive and confidential. For example, salaries, social security num-
bers, and medical conditions of people are three obvious examples of con-
fidential information that must not be revealed by a trained model. See the
following sources for more information:

	• https://pair.withgoogle.com/explorables/data-leak/?linkId=8028464
	• https://www.w3schools.in/cyber-security/data-leak-prevention/
	• https://machinelearningmastery.com/data-leakage-machine-learning/

Differential privacy prevents training data from leaking confidential infor-
mation by restricting the information that is available in each data point.
Moreover, a model’s privacy can be improved through techniques such as
aggregation.

MODEL SELECTION AND PREPARING DATASETS

If you have the good fortune to inherit a dataset that is in pristine condition,
then data cleaning tasks are vastly simplified: in fact, it might not be necessary

MDS.CH1_2.8.23.indd 19MDS.CH1_2.8.23.indd 19 08/02/23 1:39 PM08/02/23 1:39 PM

https://insidebigdata.com/2014/11/26/ask-data-scientist-data-leakage/
https://pair.withgoogle.com/explorables/data-leak/?linkId=8028464
https://www.w3schools.in/cyber-security/data-leak-prevention/
https://machinelearningmastery.com/data-leakage-machine-learning/

20 • Managing Datasets and Models

to perform any data cleaning for the dataset. However, if you need to create
a dataset that combines data from multiple datasets that contain different for-
mats for dates and currency, then you need to perform a conversion to a com-
mon format. Now let’s list some of the criteria for model section, as discussed
in the next section.

Model Selection

Model selection refers to the steps involved in selecting a machine learning
algorithm. Although there is no “silver bullet” with respect to model selection,
here are some simple guidelines:

	• Choose a model based on its expected performance.
	• Prefer simpler models rather than complex models.
	• Use a pre-trained model.

Expected performance refers to the highest accuracy or lowest prediction
error, and simpler models generally make fewer assumptions. If you are for-
tunate, you might find a pre-trained model that enables you to perform some
additional training with your custom dataset. Despite these recommenda-
tions, always be prepared to try different algorithms and to change the values
of some of the hyper parameters of those algorithms.

If you need to train a model that includes features that have categorical
data, then you need to convert that categorical data to numeric data. For
instance, the Titanic dataset contains a feature called “gender,” which is either
male or female. As you will see later in this chapter, Pandas makes it extremely
simple to “map” male to 0 and female to 1.

Discrete Data versus Continuous Data

As a simple rule of thumb: discrete data involves a set of values that can be
counted whereas continuous data must be measured. Discrete data can rea-
sonably fit in a drop-down list of values, but there is no exact value for mak-
ing such a determination. One person might think that a list of 500 values is
discrete, whereas another person might think it is continuous.

For example, the list of provinces of Canada and the list of states of the
USA are discrete data values, but is the same true for the number of countries
in the world (roughly 200) or for the number of languages in the world (more
than 7,000)?

MDS.CH1_2.8.23.indd 20MDS.CH1_2.8.23.indd 20 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Data • 21

Values for temperature, humidity, and barometric pressure are consid-
ered continuous data types. Currency is also treated as continuous, even
though there is a measurable difference between two consecutive values. The
smallest unit of currency for US currency is one penny, which is 1/100 of a
dollar (accounting-based measurements use the “mil,” which is 1/1,000 of a
dollar).

Continuous data types can have subtle differences. For example, some-
one who is 200 centimeters tall is twice as tall as someone who is 100 centi-
meters tall, and this is true for a person who is 100 kilograms versus one who
is 50 kilograms. However, temperature is different: 80 degrees Fahrenheit is
not twice as hot as 40 degrees Fahrenheit.

Furthermore, keep in mind that the word “continuous” has a different
meaning in mathematics is not necessarily the same as continuous in machine
learning. In the former, a continuous variable (let’s say in the 2D Euclidean
plane) can have an uncountably infinite number of values. However, a feature
in a dataset that can have more values that can be reasonably displayed in a
drop-down list is treated as though it is a continuous variable.

For instance, values for stock prices are discrete: they must differ by at
least a penny (or some other minimal unit of currency), which is to say, it is
meaningless to say that the stock price changes by one-millionth of a penny.
However, since there is a plethora of possible stock values, it is treated as a
continuous variable. The same comments apply to car mileage, ambient tem-
perature, and barometric pressure.

“Binning” Data Values

The concept of binning refers to subdividing a set of values into multiple
intervals, and then treating all the numbers in the same interval as though
they had the same value. In addition, there are at least three techniques for
binning data:

	• bins of equal widths
	• bins of equal frequency
	• bins based on k-means

See the following webpage for more information:

https://towardsdatascience.com/from-numerical-to-categorical-3252cf805ea2

MDS.CH1_2.8.23.indd 21MDS.CH1_2.8.23.indd 21 08/02/23 1:39 PM08/02/23 1:39 PM

https://towardsdatascience.com/from-numerical-to-categorical-3252cf805ea2

22 • Managing Datasets and Models

As a simple example of bins of equal widths, suppose that a feature in a
dataset contains the age of people in a dataset. The range of values is approx-
imately between 0 and 120, and we could “bin” them into 12 equal intervals,
where each consists of 10 values: 0 through 9, 10 through 19, 20 through 29,
and so forth.

As another example, using quartiles is even more coarse-grained than the
earlier age-related binning example. The issue with binning pertains to the unin-
tended consequences of classifying people in different bins, even though they
are in close to each other. For instance, some people struggle financially because
they earn a meager wage, and they are also disqualified from financial assistance
because their salary is higher than the cut-off point for receiving any assistance.

Scikit-learn provides the KBinsKDiscretizer class that uses a cluster-
ing algorithm for binning data:

https://scikit-learn.org/stable/modules/generated/scikit-learn.preprocessing.
KBinsDiscretizer.html

In case you are interested, a highly technical paper (PDF) with informa-
tion about clustering and binning is available online:

https://www.stat.cmu.edu/tr/tr870/tr870.pdf

Programmatic Binning Techniques

Earlier in this chapter, you saw a Pandas-based example of generating a his-
togram using data from a Titanic dataset. The number of bins was chosen
on an ad hoc basis, with no relation to the data itself. However, there are sev-
eral techniques that enable you to programmatically determine the optimal
number of bins, some of which are shown here:

	• Doane’s formula
	• Freedman–Diaconis’ Choice
	• Rice’s Rule
	• Scott’s Normal Reference Rule
	• Square-Root Choice
	• Sturge’s rule

Doane’s formula for calculating the number of bins depends on the number
of observations n and the kurtosis (discussed in Chapter 4) of the data, and it
is reproduced here:

1 + log(n) + log(1 + kurtosis(data) * sqrt(n / 6.0))

MDS.CH1_2.8.23.indd 22MDS.CH1_2.8.23.indd 22 08/02/23 1:39 PM08/02/23 1:39 PM

https://scikit-learn.org/stable/modules/generated/scikit-learn.preprocessing.KBinsDiscretizer.html
https://scikit-learn.org/stable/modules/generated/scikit-learn.preprocessing.KBinsDiscretizer.html
https://www.stat.cmu.edu/tr/tr870/tr870.pdf

Working with Data • 23

Freedman–Diaconis’ Choice specifies the number of bins for a sample x, and
it is based on the IQR (InterQuartile Range) and the number of observations
n, as shown in the following formula:

k = 2 * IRQ(x)/[cube root of n]

Sturge’s rule to determine the number of bins k for Gaussian-based data is
based on the number of observations n, and it is expressed as follows:

k = 1 + 3.322 * log n

In addition, after specifying the number of bins k, set the minimum bin width
mbw as follows:

mbw = (Max Observed Value – Min Observed Value) / k

Experiment with the preceding formulas to determine which one provides the
best visual display for your data. For more information about calculating the
optimal number of bins, perform an online search for blog posts and articles.

Potential Issues When Binning Data Values

Partitioning the values of people’s ages as described in the preceding sec-
tion can be problematic. In particular, suppose that person A, person B, and
person C are 29, 30, and 39, respectively. Then person A and person B are
probably much more similar to each other than person B and person C, but
because of the way in which the ages are partitioned, B is classified as closer
to C than to A. In fact, binning can increase Type I errors (false positive) and
Type II errors (false negative), as discussed in this blog post (along with some
alternatives to binning):

https://medium.com/@peterflom/why-binning-continuous-data-is-almost-
always-a-mistake-ad0b3a1d141f

TYPES OF DEPENDENCIES AMONG FEATURES

The ideal case for a dataset involves clean data and fully independent fea-
tures, which is often not the case in real world datasets. As such, it is impor-
tant to determine whether there are dependencies among features. This

MDS.CH1_2.8.23.indd 23MDS.CH1_2.8.23.indd 23 08/02/23 1:39 PM08/02/23 1:39 PM

https://medium.com/@peterflom/why-binning-continuous-data-is-almost-always-a-mistake-ad0b3a1d141f
https://medium.com/@peterflom/why-binning-continuous-data-is-almost-always-a-mistake-ad0b3a1d141f

24 • Managing Datasets and Models

section contains information about the following terms that pertain to feature
dependence:

	• homoskedasticity
	• heteroskedasticity
	• collinearity
	• multicollinearity
	• VIF (variance inflation factor)
	• correlation

As a quick summary: collinearity adversely affects the significance of inde-
pendent variables, which in turn reduces the effectiveness of a regression
model.

Furthermore, statistical tests such as the student’s t-test and ANOVA
assume homoskedasticity for the data. In other words, such algorithms assume
that samples from a population (or even different populations) have the same
variance.

Homoskedasticity and Heteroskedasticity

Homoskedasticity refers to the variance of the residuals (actual value minus
expected value) in regression models. Recall that one of the assumptions of
linear regression is that the residuals have constant homoskedasticity.

Heteroskedasticity is the extent to which features are independent of
each other. However, heteroskedasticity is more than just “the opposite” of
homoskedasticity, and there are various statistical tests that determine het-
eroskedasticity, many of which are listed online at

https://en.wikipedia.org/wiki/Heteroskedasticity

Heteroskedasticity can adversely affect statistical tests that assume that
errors in a model have the same variance (such as linear regression). The main
side effect of heteroskedasticity is its effect on the precision of the estimated
values for coefficients.

Homoskedasticity and Linear Regression

Homoskedasticity is one of the assumptions regarding linear regression, as
shown in the following list:

	• Linearity: The relationship between X and the mean of Y is linear.

MDS.CH1_2.8.23.indd 24MDS.CH1_2.8.23.indd 24 08/02/23 1:39 PM08/02/23 1:39 PM

https://en.wikipedia.org/wiki/Heteroskedasticity

Working with Data • 25

	• Homoskedasticity: The variance of the residual is the same for any value
of X.

	• Independence: Observations are independent of each other.
	• Normality: For any fixed value of X, Y is normally distributed.

Collinearity

Collinearity refers to a significant level of correlation between two or more
predictor variables. Some simple examples are as follows:

	• the number of bedrooms and bathrooms in houses
	• the height and weight of a person
	• education level and income level

Collinearity in machine learning differs from the concept of collinearity in
mathematics. For example, three points in the 2D Euclidean plane are called
collinear if all three points lie on the same line segment.

Variance Inflation Factor (VIF)

The variance inflation factor (VIF) provides a mechanism for determining
the extent to which there is collinearity between two variables. Minimal col-
linearity is present for VIF values of 1 or 2; values between 5 and 15 indicate
moderate collinearity; and values greater than 20 indicate the presence of
extreme collinearity.

Multicollinearity

Multicollinearity occurs when the inclusion of two predictor variables in a
model lowers its statistical significance. VIF values can help you detect the
presence of multicollinearity: values greater than 10 indicate a high degree of
multicollinearity.

One caveat regarding multicollinearity: two variables can have low cor-
relation and yet contribute to multicollinearity that can only be detected only
through the model itself. Also keep in mind that numerous statistical tests,
such as the Student’s t-test and ANOVA, assume homoskedasticity for the
data. In other words, such algorithms assume that samples from a population
(or even different populations) have the same variance.

MDS.CH1_2.8.23.indd 25MDS.CH1_2.8.23.indd 25 08/02/23 1:39 PM08/02/23 1:39 PM

26 • Managing Datasets and Models

Correlation

Correlation refers to the extent to which a pair of variables are related, which
is a number between –1 and 1 inclusive. The most significant correlation val-
ues are –1, 0, and 1.

A correlation of 1 means that both variables increase and decrease in the
same direction. A correlation of –1 means that both variables increase and
decrease in the opposite direction. A correlation of 0 means that the variables
are independent of each other.

Pandas provides the corr() method, which generates a matrix contain-
ing the correlation between any pair of features in a data frame. Note that the
diagonal values of this matrix are related to the variance of the features in the
data frame.

A correlation matrix can be derived from a covariance matrix: each entry
in the former matrix is a covariance value divided by the product of the stan-
dard deviation of the two features in the row and column of a particular entry.

This concludes the portion of the chapter pertaining to dependencies
among features in a dataset. The next section discusses different types of cur-
rencies that can appear in a dataset, along with a Python code sample for
currency conversion.

What is a Good Correlation Value?

Although there is no exact value that determines whether a correlation is
weak, moderate, or strong, there are some guidelines, as shown here:

	• between 0.0 and 0.2: weak
	• between 0.2 and 0.5: moderate
	• between 0.5 and 0.7: moderately strong
	• between 0.7 and 1.0: strong

The preceding ranges are for positive correlations, and the corresponding val-
ues for negative correlations are shown here:

	• between –0.2 and 0: weak
	• between –0.5 and –0.2: moderate
	• between –0.7 and –0.5: moderately strong
	• between –0.7 and –1.0: strong

MDS.CH1_2.8.23.indd 26MDS.CH1_2.8.23.indd 26 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Data • 27

However, treat the values in the preceding lists as guidelines: some people
classify values between 0.0 and 0.4 as weak correlations, and values between
0.8 and 1.0 as strong correlations. In addition, a correlation of 0.0 means that
there is no correlation at all (extra weak?).

Discrimination Threshold

Logistic regression (discussed in Chapter 6) is based on the sigmoid function
(which in turn involves Euler’s constant) whereby any real number is mapped
to a number in the interval (0,1). Consequently, logistic regression is well-
suited for classifying binary class membership: i.e., data points that belong to
one of two classes. For datasets that contain two class values, let’s call them
0 and 1, logistic regression provides a probability that a data point belongs to
class 0 or class 1, where the range of probability values includes all the num-
bers in the interval [0,1].

The discrimination threshold is the value whereby larger probabilities are
associated with class 1 and smaller probabilities are associated with class 0.
Some datasets have a discrimination threshold of 0.5, but in general, this
value can be much closer to 0 or 1. Relevant examples include health-related
datasets (healthy versus cancer), sports events (win versus lose), and even the
DMV (department of motor vehicles), where the latter require 85% accuracy
to pass the written test in some US states.

DATA CLEANING AND IMPUTATION

In general, data cleaning involves one or more of the following tasks, which
are specific to each dataset:

	• Count missing data values.
	• Remove/drop redundant columns.
	• Assign values to missing data.
	• Remove duplicate values.
	• Check for incorrect values.
	• Ensure uniformity of data.

The following subsections briefly discuss some of the items in the preceding
bullet list, along with some Python-based code samples.

MDS.CH1_2.8.23.indd 27MDS.CH1_2.8.23.indd 27 08/02/23 1:39 PM08/02/23 1:39 PM

28 • Managing Datasets and Models

Counting Missing Data Values

Listing 1.1 displays the content of missing_values2.py that illustrates how
to count the missing data values in a Pandas data frame.

Listing 1.1: missing_values2.py

import pandas as pd

import numpy as np

"""

Count NaN values in one column:

df['column name'].isna().sum()

Count NaN values in an entire data frame:

df.isna().sum().sum()

Count NaN values in one row:

df.loc[[index value]].isna().sum().sum()

"""

data = �{'column1': [100,250,300,450,500,np.nan,650,700,np.
nan],
'column2': ['X','Y',np.nan,np.nan,'Z','A','B',np.
nan,np.nan],
'column3':['XX',np.nan,'YY','ZZ',np.nan,np.
nan,'AA',np.nan,np.nan]
}

df = pd.DataFrame(data,columns=['column1','column2',
'column3'])

print("dataframe:")

print(df)

print("Missing values in 'column1':")

print(df['column1'].isna().sum())

print("Total number of missing values:")

print(df.isna().sum().sum())

MDS.CH1_2.8.23.indd 28MDS.CH1_2.8.23.indd 28 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Data • 29

print("Number of missing values for row index 7 (= row
#8):")

print(df.loc[[7]].isna().sum().sum())

Listing 1.1 starts with two import statements and a comment block that
explains the purpose of several Pandas methods pertaining sums of values
and the isna() method for finding NaN values in a dataset.

The next portion of Listing 1.1 initializes a dictionary with three arrays of
values that are used to initialize the Pandas data frame df. Next, the missing
values in column1 are displayed, followed by the number of missing values
in every column of df. The final code block displays the number of missing
values for the row whose index is 7. Launch the code in Listing 1.1 and you
will see the following output:

dataframe:

 column1 column2 column3

0 100.0 X XX

1 250.0 Y NaN

2 300.0 NaN YY

3 450.0 NaN ZZ

4 500.0 Z NaN

5 NaN A NaN

6 650.0 B AA

7 700.0 NaN NaN

8 NaN NaN NaN

Missing values in 'column1':

2

Total number of missing values:

11

Number of missing values for row index 7 (= row #8):

2

Navigate to this link where you find additional Python code samples for data
cleaning:

https://lvngd.com/blog/data-cleaning-with-python-pandas/

MDS.CH1_2.8.23.indd 29MDS.CH1_2.8.23.indd 29 08/02/23 1:39 PM08/02/23 1:39 PM

https://lvngd.com/blog/data-cleaning-with-python-pandas/

30 • Managing Datasets and Models

Drop Redundant Columns

Listing 1.2 displays the content of drop_columns.py that illustrates how to
remove redundant columns from a Pandas data frame.

Listing 1.2: drop_columns.py

import pandas as pd

specify a valid CSV file here:

df1 = pd.read_csv("my_csv_file.csv") # <= specify your own
CSV file

remove redundant columns:

df2 = df1.drop(['url'],axis=1)

remove columns with over 50% missing values

df3 = df2.dropna(thresh=half_count,axis=1)

Listing 1.2 initializes the Pandas data frame df1 with the contents of the
CSV file my_csv_file.csv and then initializes the Pandas data frame df2
with the contents of df1, and then drops the column url, or some other
column that exists in your CSV file. Finally, the Pandas data frame df3 is ini-
tialized with the contents of Pandas data frame df2, after which columns are
dropped if they have more than 50% missing values.

Remove Duplicate Data Values

Data deduplication refers to the task of removing row-level duplicate data
values. Refer to Chapter 3, which contains a Python code sample that shows
you how to find and remove duplicate data values from a dataset. You can also
read about data deduplication online at

https://www.data4v.com/python-dedupe-library-machine-learning-to-de-
duplicate-data/

Uniformity of Data Values

An example of uniformity of data involves verifying that the data in a given
feature contains the same units measure. For example, the following set of

MDS.CH1_2.8.23.indd 30MDS.CH1_2.8.23.indd 30 08/02/23 1:39 PM08/02/23 1:39 PM

https://www.data4v.com/python-dedupe-library-machine-learning-to-de-duplicate-data/
https://www.data4v.com/python-dedupe-library-machine-learning-to-de-duplicate-data/

Working with Data • 31

values have numeric values that are in a narrow range, but the units of meas-
ure are incorrect (note the absence of a space between the numbers and the
units of measure):

50mph

50kph

100mph

20kph

Listing 1.3 displays the content of same_units.sh that illustrates how to
ensure that items in a set of strings have the same unit of measure.

Listing 1.3: same_units.sh

strings="120kph 100mph 50kph"

new_unit="fps"

for x in `echo $strings`

do

  number=`echo $x | tr -d [a-z][A-Z]`

  unit=`echo $x | tr -d [0-9]`

  echo "initial: $x"

  new_num="${number}${new_unit}"

  echo "new_num: $new_num"

  echo

done

Listing 1.3 starts by initializing the variables strings and new_unit, fol-
lowed by a for loop that iterates through each string in the strings variable.
During each iteration, the variables number and unit are initialized with the
characters and digits, respectively, in the current string represented by the
loop variable x. Next, the variable new_num is initialized as the concatenation
of the contents of number and new_unit. Launch the code in Listing 1.3 and
you will see the following output:

initial: 120kph

new_num: 120fps

MDS.CH1_2.8.23.indd 31MDS.CH1_2.8.23.indd 31 08/02/23 1:39 PM08/02/23 1:39 PM

32 • Managing Datasets and Models

initial: 100mph

new_num: 100fps

initial: 50kph

new_num: 50fps

Too Many Missing Data Values

Datasets with mostly N/A values, which is to say, 80% or more are N/A or NaN
values, is always daunting, but not necessarily hopeless. As a simple first step,
you can drop rows that contain N/A values, which might result in a loss of
99% of the data. A variation of the preceding all-or-nothing step for handling
datasets with a majority of N/A values is as follows:

	• Use a kNN imputer to fill missing values in high value columns.
	• Drop low priority columns that have > 50% missing values.
	• Use a KNN imputer (again) to fill the remaining missing values.
	• Try using 3 or 5 as the # of nearest neighbors.

The preceding sequence attempts to prune insignificant data to concentrate
on reconstructing the higher priority columns through data imputation. Of
course, there is no guaranteed methodology for salvaging such a dataset, so
you need some ingenuity as you experiment with datasets containing highly
limited data values. If the dataset is highly imbalanced, consider oversampling
before you drop columns and/or rows, which is discussed o chapter 2.

Categorical Data

Categorical values are usually discrete and can easily be encoded by specify-
ing a number for each category. If a category has n distinct values, then visu-
alize the nxn identity matrix: each row represents one of the distinct values.

This technique is called one-hot encoding, and you can use the
OneHotEncoder class in scikit-learn by specifying the dataset X and also
the column index to perform one-hot encoding:

from scikit-learn.preprocessing import OneHotEncoder

ohc = OneHotEncoder(categorical_features = [0])

X = onehotencoder.fit_transform(X).toarray()

MDS.CH1_2.8.23.indd 32MDS.CH1_2.8.23.indd 32 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Data • 33

Since each one-hot encoded row contains one 1 and (n–1) zero values, one-hot
encoding is an inefficient technique. Another technique involves the Pandas
map() function that replaces string values with a single column that contains
numeric values. For example, the following code block replaces Male and
Female with 0 and 1, respectively:

values = {'Male' : 0, 'Female' : 1}

df['gender'] = df['gender'].map(values)

A variation of the preceding is the following code block:

data['gender'].replace(0, 'Female',inplace=True)

data['gender'].replace(1, 'Male',inplace=True)

Another variation of the preceding code is this code block:

data['gender'].replace([0,1],['Male','Female'],inplace=
True)

The Pandas map() function converts invalid entries to NaN.

Data Inconsistency

Data inconsistency occurs when distinct value are supposed to be the same
value, such as “smith” and “SMITH” instead of “Smith.” Another example
would be “YES,” “Yes,” “YS,” and “ys” instead of “yes.” In all cases except for
“ys,” you can convert all the other strings to lower case, which replaces all the
strings with “smith” or “yes,” respectively.

Mean Value Imputation

Listing 1.4 displays the content of mean_imputation.py that shows you
how to replace missing values with the mean value of each feature.

Listing 1.4: mean_imputation.py

import numpy as np

import pandas as pd

import random

MDS.CH1_2.8.23.indd 33MDS.CH1_2.8.23.indd 33 08/02/23 1:39 PM08/02/23 1:39 PM

34 • Managing Datasets and Models

filename="titanic.csv"

df = pd.read_csv(filename)

display null values:

print("=> Initial df.isnull().sum():")

print(df.isnull().sum())

print()

replace missing ages with mean value:

df['age'] = df['age'].fillna(df['age'].mean())

"""

Or use median(), min(), or max():

df['age'] = df['age'].fillna(df['age'].median())

df['age'] = df['age'].fillna(df['age'].min())

df['age'] = df['age'].fillna(df['age'].max())

"""

FILL MISSING DECK VALUES WITH THE mode():

mode = df['deck'].mode()[0]

#df['deck'] = df['deck'].fillna(mode)

print("=> new age and deck values:")

print([df[['deck','age']]])

Listing 1.4 starts with several import statements and then initializes the vari-
able filename with the name of the Titanic dataset. The next portion of code
initializes the variable df with the contents of the CSV file and then displays
the number of rows, for each feature, that contain null values.

The next portion of Listing 1.4 replaces missing values in the age feature
with the mean value of the non-null values. Notice the comment block that
shows you how to specify the median, minimum, or maximum value in the
age feature. Next, the variable mode is initialized with the mode of the deck
feature. The final code snippet displays the updated values for the deck and
the age features. Launch the code in Listing 1.4 and you will see the following
output:

MDS.CH1_2.8.23.indd 34MDS.CH1_2.8.23.indd 34 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Data • 35

=> Initial df.isnull().sum():

survived 0

pclass 0

sex 0

age 177

sibsp 0

parch 0

fare 0

embarked 2

class 0

who 0

adult_male 0

deck 688

embark_town 2

alive 0

alone 0

dtype: int64

=> new age and deck values:

[deck age

0 C 22.000000

1 C 38.000000

2 C 26.000000

3 C 35.000000

4 C 35.000000

..

886 C 27.000000

887 B 19.000000

888 C 29.699118

889 C 26.000000

890 C 32.000000

[891 rows x 2 columns]]

MDS.CH1_2.8.23.indd 35MDS.CH1_2.8.23.indd 35 08/02/23 1:39 PM08/02/23 1:39 PM

36 • Managing Datasets and Models

Random Value Imputation

Random value imputation involves generating random values and using those
values to replace missing values in a dataset. Listing 1.5 displays the content of
random_imputation.py that shows you how to replace missing values with
random values that are selected from within a given feature.

Listing 1.5: random_imputation.py

import numpy as np

import pandas as pd

import random

filename="titanic.csv"

df = pd.read_csv(filename)

display null values:

print("=> Initial df.isnull().sum():")

print(df.isnull().sum())

print()

replace missing ages with mean value:

df['age'] = df['age'].fillna(df['age'].mean())

#Randomize missing column data

def randomize_deck(df2):

 df = df2.copy()

 data = df["deck"]

 mask = data.isnull()

 �samples = random.choices(data[~mask].values, k = mask.
sum())

 data[mask] = samples

 return df

FILL MISSING DECK VALUES WITH RANDOM non-null values:

df = randomize_deck(df)

MDS.CH1_2.8.23.indd 36MDS.CH1_2.8.23.indd 36 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Data • 37

print("=> new age and deck values:")

print([df[['deck','age']]])

Listing 1.5 starts with several import statements and then initializes the vari-
able filename with the name of the Titanic dataset. The next portion of code
initializes the variable df with the contents of the CSV file and then displays
the number of rows, for each feature, that contain null values.

The next portion of Listing 1.5 replaces missing values in the age feature
with the mean value of the age feature. Next, the Python function random-
ize_deck() randomizes missing values in the deck feature. The final portion
of Listing 1.5 invokes the randomize_deck() function and then displays
the new values for the deck feature and the age feature. Launch the code in
Listing 1.5 and you will see the following output:

=> Initial df.isnull().sum():

survived 0

pclass 0

sex 0

age 177

sibsp 0

parch 0

fare 0

embarked 2

class 0

who 0

adult_male 0

deck 688

embark_town 2

alive 0

alone 0

dtype: int64

=> new age and deck values:

[deck age

0 D 22.000000

MDS.CH1_2.8.23.indd 37MDS.CH1_2.8.23.indd 37 08/02/23 1:39 PM08/02/23 1:39 PM

38 • Managing Datasets and Models

1 C 38.000000

2 C 26.000000

3 C 35.000000

4 B 35.000000

..

886 E 27.000000

887 B 19.000000

888 D 29.699118

889 C 26.000000

890 E 32.000000

[891 rows x 2 columns]]

Multiple Imputation

Rather than replacing each missing value in a dataset with one randomly
imputed value, it may make sense to replace each with several imputed values
that reflect our uncertainty about our imputation model. For example, if we
impute using a regression model, we may want our imputations to reflect not
only sampling variability (as random imputation should), but also our uncer-
tainty about the regression coefficients in the model. If these coefficients
themselves are modeled, we can draw a new set of missing-value imputations,
for each draw from the distribution of the coefficients.

Multiple imputation does this by creating several (say, five) imputed val-
ues for each missing value, each of which is predicted from a slightly different
model and each of which also reflects sampling variability. How do we ana-
lyze these data? The simple idea is to use each set of imputed values to form
(along with the observed data) a completed dataset. Within each completed
dataset, a standard analysis can be run. Then inferences can be combined
across datasets.

Matching and Hot-Deck Imputation

Hot-deck imputation is performed by randomly selecting another row that
has similar values on other variables and use its value in the row that contains
missing values.

MDS.CH1_2.8.23.indd 38MDS.CH1_2.8.23.indd 38 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Data • 39

You can also impute values by using an existing value that appears in a
similar data point, which can also be used recommendation systems that uti-
lizes user-user collaboration to impute ratings for movies.

For example, suppose that data collected for a dataset involves estimating
a risk factor for each data point, where the risk is derived information from
an associated document. However, the information might be insufficient to
calculate an accurate risk value. One potential solution involves finding the
nearest neighbors to the new data point and then calculating the average of
the risk values in the nearest neighbors.

Is a Zero Value Valid or Invalid?

In general, replace a missing numeric value with zero is a risky choice: this
value is obviously incorrect if the values of a feature are positive numbers
between 1,000 and 5,000 (or some other range of positive numbers). For a
feature that has numeric values, replacing a missing value with the mean of
existing values can be better than the value zero (unless the average equals
zero); also consider using the median value. For categorical data, consider
using the mode to replace a missing value.

There are situations where you can use the mean of existing values to
impute missing values, but not the value zero, and vice versa. As a first exam-
ple, suppose that an attribute contains the height in centimeters of a set of
persons. In this case, the mean could be a reasonable imputation, whereas 0
suffers from the following:

1.	 It is an invalid value (nobody has height 0).

2.	 It will skew statistical quantities such as the mean and variance.

You might be tempted to use the mean instead of 0 when the minimum allow-
able value is a positive number, but use caution when working with highly
imbalanced datasets. As a second example, consider a small community of 50
residents with

1.	 45 people have an average annual income of USD 50,000

2.	 4 other residents have an annual income of 10,000,000

3.	 1 resident has an unknown annual income

MDS.CH1_2.8.23.indd 39MDS.CH1_2.8.23.indd 39 08/02/23 1:39 PM08/02/23 1:39 PM

40 • Managing Datasets and Models

Although the preceding example might seem contrived, it is likely that the
median income is preferable to the mean income, and certainly better than
imputing a value of 0.

As a third example, suppose that a company generates weekly sales reports
for multiple office branches, and a new office has been opened, but has yet
to make any sales. In this case, the use of the mean to impute missing values
for this branch would produce fictitious results. Hence, it makes sense to use
the value 0 for all sales-related quantities in the new branch office, which will
accurately reflect the sales-related status of the new branch.

Data Normalization

Normalization is the process of scaling numeric columns in a dataset so that
they have a common scale. In addition, the scaling is performed as follows:

1.	 scaling values to the range [0,1]

2.	 without losing information

3.	 without distorting any differences that exist in the ranges of values.

You can perform data normalization via the function MinMaxScaler() in the
scikit-learn library.

Assigning Classes to Data

Listing 1.6 displays the content of product_prices.csv and Listing 1.7
displays the content of assign_classes.py that illustrates how to assign a
class value to each row in a dataset.

Listing 1.6: product_prices.csv

item,price

product1,100

product2,200

product3,250

product4,300

product5,400

MDS.CH1_2.8.23.indd 40MDS.CH1_2.8.23.indd 40 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Data • 41

Listing 1.7: assign_classes.py

import pandas as pd

df = pd.read_csv("product_prices.csv")

print("contents of df:")

print(df)

print()

define class ranges:

def class_value2(y):

 if y<=100:

 return '(1) 0 - 100'

 elif y<=200:

 return '(2) 100 - 200'

 elif y<=250:

 return '(3) 200 - 250'

 else:

 return '(4) 250+'

def class_value(y):

 if y<=100:

 return '1'

 elif y<=200:

 return '2'

 elif y<=250:

 return '3'

 else:

 return '4'

df['class1'] = df['price'].apply(class_value)

df['class2'] = df['price'].apply(class_value2)

print("contents of df:")

print(df)

MDS.CH1_2.8.23.indd 41MDS.CH1_2.8.23.indd 41 08/02/23 1:39 PM08/02/23 1:39 PM

42 • Managing Datasets and Models

Listing 1.7 initializes the Pandas data frame df with the contents of the CSV
file product_prices.csv (displayed in Listing 1.6) and displays its con-
tents. The next portion of Listing 1.7 is the Python function class_value2,
which returns a string whose contents are a range of values that are based on
the parameter y. For example, if y is at most 100, the function returns the
string (1) 0 - 100, and similar strings for larger values of y.

The next portion of Listing 1.7 is the Python function class_value,
which returns a string 1, 2, 3, or 4, depending on the parameter y. The last
portion of Listing 1.7 initializes the column class1 and class2 in df by
invoking the apply() method with the Python functions class_value and
class_value2, respectively. Launch the code in Listing 1.7 and you will see
the following output:

contents of df:

 item price

0 product1 100

1 product2 200

2 product3 250

3 product4 300

4 product5 400

contents of df:

 item price class1 class2

0 product1 100 1 (1) 0 - 100

1 product2 200 2 (2) 100 - 200

2 product3 250 3 (3) 200 - 250

3 product4 300 4 (4) 250+

4 product5 400 4 (4) 250+

Other Data Cleaning Tasks

As a quick review, here are additional tasks that belong to data cleaning that
might be relevant to a given dataset:

	• Detect outliers/anomalies.
	• Resolve missing data.
	• Resolve incorrect data.

MDS.CH1_2.8.23.indd 42MDS.CH1_2.8.23.indd 42 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Data • 43

	• Resolve duplicate data.
	• Remove hidden control characters (ex: \t, ^L, and ^M).
	• Remove HTML tags (ex: <div> and <a>).
	• Handle diacritical marks.
	• Check for gaps in sequences of data.
	• Check for unusual distributions.
	• Examine the actual data instead of relying on documentation.

The appendix contains Python-based code samples that use regular expres-
sions for cleaning data.

DeepChecks and Data Validation

DeepChecks is a Python module that enables you to specify a set of rules to
validate data in a dataset, and its home page is

https://deepchecks.com/

A DeepChecks suite contains one or more checks, where a check displays
pass/fail output, depending on the outcome of the check. Moreover, condi-
tions can be added, modified, or removed from a check, and similarly for each
check in a suite. If you have written Java unit tests, then DeepChecks might
remind you of Junit, which was written by Kent Beck. the creator of the
“Extreme Programming” methodology.

SUMMARY

This chapter started with an explanation of datasets, a description of data
wrangling, and details regarding various types of data. Then you learned about
techniques for scaling numeric data, such as normalization and standardiza-
tion. You saw how to convert categorical data to numeric values, and how to
handle dates and currency.

In addition, you learned about the notion of data drift and data leakage,
followed by model selection. You also learned about how to map categorical
data to numeric data.

Furthermore, you learned about concepts such as homoskedasticity, col-
linearity, variance inflation factor, and correlation. Finally, you saw Python-
based code samples that involve currency and date values, and along with an
example of assigning class values to data.

MDS.CH1_2.8.23.indd 43MDS.CH1_2.8.23.indd 43 08/02/23 1:39 PM08/02/23 1:39 PM

https://deepchecks.com/

MDS.CH1_2.8.23.indd 44MDS.CH1_2.8.23.indd 44 08/02/23 1:39 PM08/02/23 1:39 PM

C H A P T E R 2
Outlier and Anomaly Detection

This chapter shows you how to process outliers, anomalies, and missing data,
as well as data cleaning and data wrangling techniques. In addition, this chap-
ter includes short Python code samples that use NumPy as well as Pandas to
find outliers, how to calculate z-scores, and how to count the number of miss-
ing values in a dataset.

The first part of this chapter discusses the relationship among fraud,
anomalies, and outliers, along with Python code samples that illustrate how
to find outliers. The second section discusses fraud detection (there are many
types), along with anomaly detection. You will also learn about algorithms
such as SMOTE for handling imbalanced classes in a dataset. The third sec-
tion contains details regarding the bias-variance tradeoff and various types of
statistical bias.

IMPORT STATEMENTS FOR THIS CHAPTER

This chapter contains a mixture of Python-based code samples, an awk-based
shell script, and a Java code sample to show you how to solve tasks using dif-
ferent technologies. All the code samples are straightforward, and if you can
follow the Pandas and awk-based code samples in Chapter 1, then you will
most likely be able to understand the code samples in this chapter.

This chapter requires basic knowledge of Python and Pandas, such as cre-
ating Pandas data frames, as well as reading and writing CSV files. Knowledge
of the awk programming language is required for three shell scripts that
invoke the awk command if you decide to read those code samples.

MDS.CH2_2.8.23.indd 45MDS.CH2_2.8.23.indd 45 08/02/23 1:39 PM08/02/23 1:39 PM

46 • Managing Datasets and Models

In addition, the following list contains all the import statements that you
will encounter in the Python code samples for this chapter:

from forex_python.bitcoin import BtcConverter

from forex_python.converter import CurrencyRates

from imblearn.over_sampling import SMOTE

from scipy import stats

from sklearn.covariance import EllipticEnvelope

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import classification_report

from sklearn.metrics import confusion_matrix

from sklearn.model_selection import train_test_split

import numpy as np

import pandas as pd

import sys

WORKING WITH OUTLIERS

In brief, an outlier is an abnormal data value that is outside the range of “nor-
mal” values in a dataset. For example, a person’s height in centimeters is typi-
cally between 30 centimeters and 250 centimeters, which means that a height
of 5 centimeters or a height of 500 centimeters is an outlier because those
values are not possible for humans.

Outliers in a dataset are significantly larger or smaller than the inliers in a
dataset. Outliers exist for various reasons, such as data variability, experimen-
tal errors, or erroneous measurements. In addition, outliers can create issues
during statistical analysis, such as adversely affecting the value of the mean
and the standard deviation. Three types of outliers are explained at

https://pub.towardsai.net/the-7-stages-of-preparing-data-for-machine-
learning-dfe454da960b

MDS.CH2_2.8.23.indd 46MDS.CH2_2.8.23.indd 46 08/02/23 1:39 PM08/02/23 1:39 PM

https://pub.towardsai.net/the-7-stages-of-preparing-data-for-machine-learning-dfe454da960b
https://pub.towardsai.net/the-7-stages-of-preparing-data-for-machine-learning-dfe454da960b

Outlier and Anomaly Detection • 47

Outlier Detection/Removal

There are techniques available that help you detect outliers in a dataset, as
shown in the following bullet list, along with a one-line description and links
for additional information:

	• IQR
	• z-score
	• trimming
	• winsorizing
	• minimum covariance determinant
	• local outlier factor
	• Huber and Ridge
	• isolation forest (tree-based algorithm)
	• one-class SVM

The IQR (interquantile range) algorithm detects data points that are outside
of 1.5 times of an interquartile range that either lie above the 3rd quartile or
lie below the 1st quartile. Such points can be considered outliers.

The z-score for data points involves subtracting the mean and then divid-
ing by the standard deviation:

Z-score = (X-mean)/std

In general, z-scores that are greater than 3 are considered outliers, but you
can adjust this value (e.g., 2.5 or 2) that is more suitable for your dataset.

Perhaps trimming is the simplest technique (apart from dropping outli-
ers), which involves removing rows whose feature value is in the upper 5%
range or the lower 5% range. Winsorizing the data is an improvement over
trimming: set the values in the top 5% range equal to the maximum value in
the 95th percentile, and set the values in the bottom 5% range equal to the
minimum in the 5th percentile.

The Minimum Covariance Determinant is a covariance-based technique,
and a Python-based code sample that uses this technique is downloadable:

https://scikit-learn.org/stable/modules/outlier_detection.html

MDS.CH2_2.8.23.indd 47MDS.CH2_2.8.23.indd 47 08/02/23 1:39 PM08/02/23 1:39 PM

https://scikit-learn.org/stable/modules/outlier_detection.html

48 • Managing Datasets and Models

Two other techniques involve the Huber and the Ridge classes, both
of which are included as part of Scikit-learn. The Huber error is less sen-
sitive to outliers because it is calculated via linear loss, similar to the MAE
(Mean Absolute Error). A code sample that compares Huber and Ridge is
downloadable from

https://scikit-learn.org/stable/auto_examples/linear_model/plot_huber_vs_
ridge.html

You can also explore the Theil-Sen estimator and RANSAC, which are
“robust” against outliers:

https://scikit-learn.org/stable/auto_examples/linear_model/plot_theilsen.html

https://en.wikipedia.org/wiki/Random_sample_consensus

Four algorithms for outlier detection are discussed online at

https://www.kdnuggets.com/2018/12/four-techniques-outlier-detection.html

One other scenario involves “local” outliers. For example, suppose that
you use k-means (or some other clustering algorithm) and determine that a
value is an outlier with respect to one of the clusters. While this value is not
necessarily an “absolute” outlier, detecting such a value might be important
for your use case.

Incorrectly Scaled Values versus Outliers

You already know that an outlier is a value that is significantly different from
the other values for a given feature. Now suppose that a numeric feature has a
set of values in the range [90,100], but the correct range of values for this fea-
ture is [9,10]. Notice that the incorrect values do not contain any outliers, and
also that those values can easily be scaled the range [0,1] using a technique
described in chapter 1.

However, suppose that you are not a domain expert for the data in this
dataset, so you do not realize that the initial values are out of range for that
feature. As a result, you proceed to scale these data values so that they are
in the range [0,1]. Although it is possible to train a model with this scaled
dataset, the newly scaled values (as well as the initial values) are incorrect.
Unfortunately, errors can arise when you perform other operations with this
data, such as calculating the correlation between this feature and some other
feature in the dataset. Hence, it is important to have domain knowledge to
detect and rectify this type of error.

MDS.CH2_2.8.23.indd 48MDS.CH2_2.8.23.indd 48 08/02/23 1:39 PM08/02/23 1:39 PM

https://scikit-learn.org/stable/auto_examples/linear_model/plot_huber_vs_ridge.html
https://scikit-learn.org/stable/auto_examples/linear_model/plot_huber_vs_ridge.html
https://scikit-learn.org/stable/auto_examples/linear_model/plot_theilsen.html
https://en.wikipedia.org/wiki/Random_sample_consensus
https://www.kdnuggets.com/2018/12/four-techniques-outlier-detection.html

Outlier and Anomaly Detection • 49

Other Outlier Techniques

If you want to explore additional techniques for detecting outliers, the follow-
ing techniques are also available:

	• Modified Z-score
	• MAD (Median Absolute Deviation)
	• Tukey’s boxplot
	• Carling Median Rule

In brief, the modified z-score provides a more fine-trained set of values that
sometimes detect outliers that are not detected via a standard z-score. The
MAD technique uses a median-based technique (instead of mean and vari-
ance values) that is less sensitive to outliers, which is better suited for non-
normal distributions. Tukey’s boxplot uses quartile values, whereas the Carling
Median Rule uses median values. Perform an online search for more details,
formulas, and code samples regarding the outlier techniques in the preceding
bullet list.

Outliers and XGBoost

XGBoost is a tree-based ensemble classification algorithm, along with the ran-
dom forest multi-tree classification algorithm, both of which are well-known
in machine learning. XGBoost automatically handles outliers in a dataset,
whereas the random forest algorithm does not automatically handle outliers.

Of course, there are several other differences between the XGBoost algo-
rithm and the random forest algorithm (such as early stopping and the learn-
ing rate) that might influence which algorithm you select to train a model
using your dataset. If this scenario is relevant to your use case, navigate to the
following URLs for more information regarding XGBoost and random forest:

https://scikit-learn.org/stable/modules/generated/scikit-learn.ensemble.
RandomForestClassifier.html

https://www.datacamp.com/community/tutorials/xgboost-in-python

FINDING OUTLIERS WITH NUMPY

We have not discussed the NumPy library in depth. We will only use the NumPy
array(), mean(), and std() methods in this section, all of which have
intuitive functionality.

MDS.CH2_2.8.23.indd 49MDS.CH2_2.8.23.indd 49 08/02/23 1:39 PM08/02/23 1:39 PM

https://scikit-learn.org/stable/modules/generated/scikit-learn.ensemble.RandomForestClassifier.html
https://www.datacamp.com/community/tutorials/xgboost-in-python
https://scikit-learn.org/stable/modules/generated/scikit-learn.ensemble.RandomForestClassifier.html

50 • Managing Datasets and Models

Listing 2.1 displays the content of numpy_outliers1.py that illustrates
how to use NumPy methods to find outliers in an array of numbers.

Listing 2.1: numpy_outliers1.py

import numpy as np

arr1 = np.array([2,5,7,9,9,40])

print("values:",arr1)

data_mean = np.mean(arr1)

data_std = np.std(arr1)

print("data_mean:",data_mean)

print("data_std:" ,data_std)

print()

multiplier = 1.5

cut_off = data_std * multiplier

lower = data_mean - cut_off

upper = data_mean + cut_off

print("lower cutoff:",lower)

print("upper cutoff:",upper)

print()

outliers = [x for x in arr1 if x < lower or x > upper]

print('Identified outliers: %d' % len(outliers))

print("outliers:",outliers)

Listing 2.1 starts by defining a NumPy array of numbers and then calculates
the mean and standard deviation of those numbers. The next block of code
initializes two numbers that represent the upper and lower values that are
based on the value of the cut_off variable. Any numbers in the array arr1
that lie to the left of the lower value or to the right of the upper value are
treated as outliers.

MDS.CH2_2.8.23.indd 50MDS.CH2_2.8.23.indd 50 08/02/23 1:39 PM08/02/23 1:39 PM

Outlier and Anomaly Detection • 51

The final section of code in Listing 2.1 initializes the variable outliers
with the numbers that are determined to be outliers, and those values are
printed. Launch the code in Listing 2.1 and you will see the following
output:

values: [2 5 7 9 9 40]

data_mean: 12.0

data_std: 12.754084313139327

lower cutoff: -7.131126469708988

upper cutoff: 31.13112646970899

Identified outliers: 1

outliers: [40]

The preceding code sample specifies a hard-coded value to calculate the
upper and lower range values.

Listing 2.2 is an improvement in that you can specify a set of values from
which to calculate the upper and lower range values, and the new block of
code is shown in bold.

Listing 2.2: numpy_outliers2.py

import numpy as np

arr1 = np.array([2,5,7,9,9,40])

print("values:",arr1)

data_mean = np.mean(arr1)

data_std = np.std(arr1)

print("data_mean:",data_mean)

print("data_std:" ,data_std)

print()

MDS.CH2_2.8.23.indd 51MDS.CH2_2.8.23.indd 51 08/02/23 1:39 PM08/02/23 1:39 PM

52 • Managing Datasets and Models

multipliers = np.array([0.5,1.0,1.5,2.0,2.5,3.0])

for multiplier in multipliers:

 cut_off = data_std * multiplier

 lower, upper = data_mean - cut_off, data_mean + cut_off

 print("=> multiplier: ",multiplier)

 print("lower cutoff:",lower)

 print("upper cutoff:",upper)

 �outliers = [x for x in df['data'] if x < lower or x >
upper]

 print('Identified outliers: %d' % len(outliers))

 print("outliers:",outliers)

 print()

Listing 2.2 contains a block of new code that initializes the variable mul-
tipliers as an array of numeric values that are used for finding outliers.
Although you will probably use a value of 2.0 or larger on a real dataset, this
range of numbers can give you a better sense of detecting outliers. Launch the
code in Listing 2.2 and you will see the following output:

values: [2 5 7 9 9 40]

data_mean: 12.0

data_std: 12.754084313139327

lower cutoff: -7.131126469708988

upper cutoff: 31.13112646970899

Identified outliers: 1

outliers: [40]

=> multiplier: 0.5

lower cutoff: 5.622957843430337

upper cutoff: 18.377042156569665

Identified outliers: 3

outliers: [2, 5, 40]

MDS.CH2_2.8.23.indd 52MDS.CH2_2.8.23.indd 52 08/02/23 1:39 PM08/02/23 1:39 PM

Outlier and Anomaly Detection • 53

=> multiplier: 1.0

lower cutoff: -0.7540843131393267

upper cutoff: 24.754084313139327

Identified outliers: 1

outliers: [40]

=> multiplier: 1.5

lower cutoff: -7.131126469708988

upper cutoff: 31.13112646970899

Identified outliers: 1

outliers: [40]

=> multiplier: 2.0

lower cutoff: -13.508168626278653

upper cutoff: 37.50816862627865

Identified outliers: 1

outliers: [40]

=> multiplier: 2.5

lower cutoff: -19.88521078284832

upper cutoff: 43.88521078284832

Identified outliers: 0

outliers: []

=> multiplier: 3.0

lower cutoff: -26.262252939417976

upper cutoff: 50.26225293941798

Identified outliers: 0

outliers: []

MDS.CH2_2.8.23.indd 53MDS.CH2_2.8.23.indd 53 08/02/23 1:39 PM08/02/23 1:39 PM

54 • Managing Datasets and Models

FINDING OUTLIERS WITH PANDAS

The Pandas code sample in this section involves a very simple Pandas data
frame, the mean() method, and the std() method.

Listing 2.3 displays the content of pandas_outliers1.py that illus-
trates how to use Pandas to find outliers in an array of numbers.

Listing 2.3: pandas_outliers1.py

import pandas as pd

df = pd.DataFrame([2,5,7,9,9,40])

df.columns = ["data"]

print("=> complete data set:")

print(df)

print()

data_mean = df['data'].mean()

data_std = df['data'].std()

print("=> data_mean:",data_mean)

print("=> data_std: ",data_std)

print()

multiplier = 1.5

cut_off = data_std * multiplier

lower, upper = data_mean - cut_off, data_mean + cut_off

print("=> lower cutoff:",lower)

print("=> upper cutoff:",upper)

print()

outliers: method #1

outliers = [x for x in df['data'] if x < lower or x >
upper]

MDS.CH2_2.8.23.indd 54MDS.CH2_2.8.23.indd 54 08/02/23 1:39 PM08/02/23 1:39 PM

Outlier and Anomaly Detection • 55

print('=> Identified outliers: %d' % len(outliers))

print("=> outliers (#1):",outliers)

print()

outliers: method #2

outliers = [x for x in df['data'] if x < lower or x >
upper]

outliers = df[(df.data < lower) | (df.data > upper)]

print('=> Identified outliers: %d' % len(outliers))

print("=> outliers (#2):",outliers)

print()

keep the inliers and drop the outliers:

df = df[(df.data > lower) & (df.data < upper)]

print("=> inliers without outliers:")

print(df)

print()

Listing 2.3 starts by defining a Pandas data frame and then calculates the
mean and standard deviation of those numbers. The next block of code initial-
izes two numbers that represent the upper and lower values that are based
on the value of the cut_off variable. Any numbers in the data frame that lie
to the left of the lower value or to the right of the upper value are treated as
outliers.

The final section of code in Listing 2.3 initializes the variable outliers
with the numbers that are determined to be outliers by means of a Python
comprehension, and those values are printed, whereas the second technique
accomplishes the same result without a Python comprehension. Launch the
code in Listing 2.3 and you will see the following output:

=> complete data set:

 data

0 2

1 5

MDS.CH2_2.8.23.indd 55MDS.CH2_2.8.23.indd 55 08/02/23 1:39 PM08/02/23 1:39 PM

56 • Managing Datasets and Models

2 7

3 9

4 9

5 40

=> data_mean: 12.0

=> data_std: 13.971399357258385

=> lower cutoff: -8.957099035887577

=> upper cutoff: 32.95709903588758

=> Identified outliers: 1

=> outliers (#1): [40]

=> Identified outliers: 1

=> outliers (#2): data

5 40

=> inliers without outliers:

 data

0 2

1 5

2 7

3 9

4 9

The preceding code sample specifies a hard-coded value to calculate the
upper and lower range values.

Listing 2.4 is an improvement over Listing 2.3 in that you can specify a set
of values from which to calculate the upper and lower range values, and the
new block of code is shown in bold.

MDS.CH2_2.8.23.indd 56MDS.CH2_2.8.23.indd 56 08/02/23 1:39 PM08/02/23 1:39 PM

Outlier and Anomaly Detection • 57

Listing 2.4: pandas_outliers2.py

import pandas as pd

#df = pd.DataFrame([2,5,7,9,9,40])

#df = pd.DataFrame([2,5,7,8,42,44])

df = pd.DataFrame([2,5,7,8,42,492])

df.columns = ["data"]

print("=> data values:")

print(df['data'])

data_mean = df['data'].mean()

data_std = df['data'].std()

print("=> data_mean:",data_mean)

print("=> data_std:" ,data_std)

print()

multipliers = [0.5,1.0,1.5,2.0,2.5,3.0]

for multiplier in multipliers:

 cut_off = data_std * multiplier

 lower, upper = data_mean - cut_off, data_mean + cut_off

 print("=> multiplier: ",multiplier)

 print("lower cutoff:",lower)

 print("upper cutoff:",upper)

 �outliers = [x for x in df['data'] if x < lower or x >
upper]

 print('Identified outliers: %d' % len(outliers))

 print("outliers:",outliers)

 print()

MDS.CH2_2.8.23.indd 57MDS.CH2_2.8.23.indd 57 08/02/23 1:39 PM08/02/23 1:39 PM

58 • Managing Datasets and Models

Listing 2.4 contains a block of new code that initializes the variable mul-
tipliers as an array of numeric values that are used for finding outliers.
Although you will probably use a value of 2.0 or larger on a real dataset, this
range of numbers can give you a better sense of detecting outliers. Launch the
code in Listing 2.4 and you will see the following output:

=> data values:

0 2

1 5

2 7

3 8

4 42

5 492

Name: data, dtype: int64

=> data_mean: 92.66666666666667

=> data_std: 196.187325448579

=> multiplier: 0.5

lower cutoff: -5.42699605762283

upper cutoff: 190.76032939095617

Identified outliers: 1

outliers: [492]

=> multiplier: 1.0

lower cutoff: -103.52065878191233

upper cutoff: 288.85399211524566

Identified outliers: 1

outliers: [492]

=> multiplier: 1.5

lower cutoff: -201.6143215062018

upper cutoff: 386.9476548395352

Identified outliers: 1

outliers: [492]

MDS.CH2_2.8.23.indd 58MDS.CH2_2.8.23.indd 58 08/02/23 1:39 PM08/02/23 1:39 PM

Outlier and Anomaly Detection • 59

=> multiplier: 2.0

lower cutoff: -299.7079842304913

upper cutoff: 485.0413175638247

Identified outliers: 1

outliers: [492]

=> multiplier: 2.5

lower cutoff: -397.80164695478084

upper cutoff: 583.1349802881142

Identified outliers: 0

outliers: []

=> multiplier: 3.0

lower cutoff: -495.8953096790703

upper cutoff: 681.2286430124036

Identified outliers: 0

outliers: []

Calculating Z-scores to Find Outliers

The z-score of a set of numbers is calculated by standardizing those num-
bers, which involves 1) subtracting their mean from each number, and 2)
dividing by their standard deviation. Although you can perform these steps
manually, the Python SciPy library simplifies the steps involved. If need be,
you can install this package with the following command:

pip3 install scipy

Listing 2.5 displays the content of outliers_zscores.py that illustrates
how to find outliers in an array of numbers. As you will see, this code sample
relies on convenience methods from NumPy, Pandas, and SciPy.

Listing 2.5: outliers_zscores.py

import numpy as np

import pandas as pd

from scipy import stats

MDS.CH2_2.8.23.indd 59MDS.CH2_2.8.23.indd 59 08/02/23 1:39 PM08/02/23 1:39 PM

60 • Managing Datasets and Models

arr1 = np.array([2,5,7,9,9,40])

print("values:",arr1)

df = pd.DataFrame(arr1)

zscores = np.abs(stats.zscore(df))

print("z scores:")

print(zscores)

print()

upper = 2.0

lower = 0.5

print("=> upper outliers:")

print(zscores[np.where(zscores > upper)])

print()

print("=> lower outliers:")

print(zscores[np.where(zscores < lower)])

print()

Listing 2.5 starts with several import statements, followed by initializing the
variable arr1 as a NumPy array of numbers, and then displaying the values in
arr1. The next code snippet initializes the variable df as a data frame that
contains the values in the variable arr1.

Next, the variable zscores is initialized with the z-scores of the elements
of the df data frame, as shown here:

zscores = np.abs(stats.zscore(df))

The next section of code initializes the variables upper and lower, and the
z-scores whose values are less than the value of lower or greater than the
value upper are treated as outliers, and those values are displayed. Launch
the code in Listing 2.5 and you will see the following output:

MDS.CH2_2.8.23.indd 60MDS.CH2_2.8.23.indd 60 08/02/23 1:39 PM08/02/23 1:39 PM

Outlier and Anomaly Detection • 61

values: [2 5 7 9 9 40]

z scores:

[[0.78406256]

 [0.54884379]

 [0.39203128]

 [0.23521877]

 [0.23521877]

 [2.19537517]]

=> upper outliers:

[2.19537517]

=> lower outliers:

[0.39203128 0.23521877 0.23521877]

FINDING OUTLIERS WITH SCIKIT-LEARN (OPTIONAL)

This section is optional because the code involves the EllipticEnvelope
class in scikit-learn.covariance, which we do not cover in this book.
However, it is still worthwhile to peruse the code and compare this code with
earlier code samples for finding outliers.

Listing 2.6 displays the content of elliptic_envelope_outliers.py
that illustrates how to use Pandas to find outliers in an array of numbers.

Listing 2.6: elliptic_envelope_outliers.py

pip3 install scikit-learn

from scikit-learn.covariance import EllipticEnvelope

import numpy as np

Create a sample normal distribution:

Xdata = np.random.normal(loc=5, scale=2, size=10).
reshape(-1, 1)

MDS.CH2_2.8.23.indd 61MDS.CH2_2.8.23.indd 61 08/02/23 1:39 PM08/02/23 1:39 PM

62 • Managing Datasets and Models

print("Xdata values:")

print(Xdata)

print()

instantiate and fit the estimator:

envelope = EllipticEnvelope(random_state=0)

envelope.fit(Xdata)

create a test set:

test = np.array([0, 2, 4, 6, 8, 10, 15, 20, 25, 30]).
reshape(-1, 1)

print("test values:")

print(test)

print()

predict() returns 1 for inliers and -1 for outliers:

print("envelope.predict(test):")

print(envelope.predict(test))

Listing 2.6 starts with several import statements and then initializes the vari-
able Xdata as a column vector of random numbers from a Gaussian distribu-
tion. The next code snippet initializes the variable envelope as an instance of
the EllipticEnvelope from scikit-learn (which will determine if there
are any outliers in Xdata), and then trained on the data values in Xdata.

The next portion of Listing 2.6 initializes the variable test as a column
vector, much like the initialization of Xdata. The final portion of Listing 2.6
makes a prediction on the values in the variable test and also displays the
results: the value -1 indicates an outlet. Launch the code in Listing 2.6 and
you will see the following output:

Xdata values:

[[5.21730452]

 [5.49182377]

MDS.CH2_2.8.23.indd 62MDS.CH2_2.8.23.indd 62 08/02/23 1:39 PM08/02/23 1:39 PM

Outlier and Anomaly Detection • 63

 [2.87553776]

 [4.20297013]

 [8.29562026]

 [5.78097977]

 [4.86631006]

 [5.47184212]

 [4.77954946]

 [8.66184028]]

test values:

[[0]

 [2]

 [4]

 [6]

 [8]

 [10]

 [15]

 [20]

 [25]

 [30]]

envelope.predict(test):

[-1 1 1 1 1 -1 -1 -1 -1 -1]

FRAUD DETECTION

According to one estimate (Crowe Global, “Fraud Costs”) , worldwide fraud
amounts to more than five trillion dollars.

Earlier sections in this chapter discussed how outliers differ from inliers
in terms of their value, frequency, or location, or some combination. Inliers
are common occurrences, which is to say, there is nothing unusual about the

MDS.CH2_2.8.23.indd 63MDS.CH2_2.8.23.indd 63 08/02/23 1:39 PM08/02/23 1:39 PM

64 • Managing Datasets and Models

values for inliers. An outlier draws attention to the possibility of fraud but
does not necessarily indicate that fraud has occurred.

An anomaly is also an outlier that is a more serious type of outlier: there is
a greater chance that this type of outlier is also fraud. By way of analogy, con-
sider a traffic light consisting of green (go), yellow (caution), and red (stop).
An outlier can be in any of the following ranges:

	• between green and red
	• between green and yellow
	• between yellow and red

As such, there are different levels of caution involved with anomalies and outli-
ers. Specifically, an anomaly belongs to the third category, whereas a “benign”
outlier (which is not an anomaly) is in the second category. Moreover, the
collection of all types of outliers is in the first category. With the preceding
points in mind, here is a short list of various types of fraud:

	• credit card fraud
	• payroll fraud
	• insurance fraud

Although there is no single method for always determining fraud, there are
some techniques for detecting potentially fraudulent transactions. For exam-
ple, if you encounter a suspicious event for a customer, calculate the following
values for that customer:

	• total purchase amount for this day
	• number of transactions for this day
	• time of day for each transaction
	• number of locations
	• addresses of those locations

Now compare the values in the preceding list with the customer daily transac-
tion patterns to see if there is a likely case of fraud. In case you are interested,
the following webpage contains a list of 41 types of fraud, along with tech-
niques for fraud prevention:

https://www.i-sight.com/resources/41-types-of-fraud-and-how-to-detect-and-
prevent-them/

MDS.CH2_2.8.23.indd 64MDS.CH2_2.8.23.indd 64 08/02/23 1:39 PM08/02/23 1:39 PM

https://www.i-sight.com/resources/41-types-of-fraud-and-how-to-detect-and-prevent-them/
https://www.i-sight.com/resources/41-types-of-fraud-and-how-to-detect-and-prevent-them/

Outlier and Anomaly Detection • 65

TECHNIQUES FOR ANOMALY DETECTION

First, let’s keep in mind that an anomaly is also an outlier: the difference is
that the consequences of an anomaly can be much worse than an outlier. For
example, consider credit card purchases whereby a person who living in San
Francisco suddenly makes credit card purchases in New York City. A one-
time purchase could be an anomaly (i.e., a stolen credit card), or it could be a
purchase made during a short stop-over en route to a vacation in another city
or country (i.e., a Type I error). A business trip or a vacation in New York City
would probably involve a larger set of credit card purchases, and therefore
comprise normal purchases instead of credit card theft.

Consider a variation of the preceding scenario: a customer on a business
trip in New York City has his credit card stolen and then multiple credit card
purchases are made in San Francisco. The latter might escape detection
because the customer lives in San Francisco (i.e., a Type II error). However, if
multiple credit card purchases are made simultaneously in San Francisco and
New York City during the same period of time, there is a greater risk of anom-
alous behavior because a spouse making credit card purchases with a card that
is linked to the same bank account would have a different credit card number.

Incidentally, credit card companies do provide a telephone menu option
to “notify us of any upcoming business or travel plans,” which can help reduce
the possibility of Type I or Type II errors associated with credit card purchases.

In addition to credit card fraud, there are many other types of fraud, such
as insurance fraud and or payroll fraud.

 Before we explore this topic, it is worth noting that various types of
machine learning algorithms are available for detecting anomalies. One type
involves classification algorithms, such as kNN, decision trees, and SVMs.
Another type involves unsupervised algorithms, such as autoencoders (a deep
learning architecture), GMM (Gaussian Mixture Models), kMeans (a well-
known clustering algorithm), and PCA.

However, since this book is not primarily about machine learning or
deep learning algorithms, this chapter discusses other techniques for anom-
aly detection. Note that kNN is discussed later in this chapter in the section
regarding imputation of missing data values, and decision trees are relevant to
entropy and the Gini impurity.

MDS.CH2_2.8.23.indd 65MDS.CH2_2.8.23.indd 65 08/02/23 1:39 PM08/02/23 1:39 PM

66 • Managing Datasets and Models

One other technique for anomaly detection uses a Bayesian network,
which is a probabilistic graphical model (PGM). Bayesian networks and
PGMs are outside the scope of this book, but the following webpage contains
information about anomaly detection using a Bayesian network:

https://www.bayesserver.com/docs/techniques/anomaly detection

Selecting an Anomaly Detection Technique

Unfortunately, there is no simple way to decide how to deal with anomalies
and outliers in a dataset. Although you can drop rows that contain outliers,
doing so might deprive the dataset (and therefore the trained model) of valu-
able information. You can try modifying the data values, but again, this might
lead to erroneous inferences in the trained model.

Another possibility is to train a model with the dataset that contains anom-
alies and outliers, and then train a model with a dataset from which the anom-
alies and outliers have been removed. Compare the two results and see if you
can infer anything meaningful regarding the anomalies and outliers. In addi-
tion, various techniques are available for anomaly detection, some of which
are listed here:

	• LOF
	• HBOS
	• PyOD
	• Numeric Outlier (IQR)
	• Z-Score
	• DBSCAN
	• Isolation Forest

The Local Outlier Factor (LOF) technique is an unsupervised technique that
calculates a local anomaly score via the kNN (k Nearest Neighbor) algorithm.
Documentation and short code samples that use LOF are available online:

https://scikit-learn.org/stable/modules/generated/scikit-learn.neighbors.
LocalOutlierFactor.html

https://towardsdatascience.com/outlier-detection-theory-visualizations-and-
code-a4fd39de540c

MDS.CH2_2.8.23.indd 66MDS.CH2_2.8.23.indd 66 08/02/23 1:39 PM08/02/23 1:39 PM

https://www.bayesserver.com/docs/techniques/anomaly detection
https://scikit-learn.org/stable/modules/generated/scikit-learn.neighbors.LocalOutlierFactor.html
https://scikit-learn.org/stable/modules/generated/scikit-learn.neighbors.LocalOutlierFactor.html
https://towardsdatascience.com/outlier-detection-theory-visualizations-and-code-a4fd39de540c
https://towardsdatascience.com/outlier-detection-theory-visualizations-and-code-a4fd39de540c

Outlier and Anomaly Detection • 67

LOF: Local Outlier Factor

Local Outlier Factor (LOF) is included in this portion of the chapter because
LOF is a density-based algorithm for anomaly detection. LOF is used in an
unsupervised setting to find out local anomalies in the data. Typically, global
anomalies can be easily found by other techniques. However, local anomalies
are not detected via other algorithms because they appear in groups. This is
precisely why the density-based technique is preferred over distance-based
technique.

HBOS

HBOS is an acronym for Anomaly Detection with Histogram-based Outlier
Score. HBOS starts with the construction of a histogram for a variable. The
height of the bin that contains the data point can be used into the outlier
score. Since we prefer a small outlier score for inliers data and a large score
for outliers, we can invert the height of a bin to be used as the outlier score of
the data point of a variable.

The maximum height of each histogram is normalized to 1.0. This ensures
all the univariate scores can be summed up with equal weight. The following
formula gives the specific description: Assuming there are d variables (dimen-
sions) and p data points. The HBOS is the sum of the logarithmic outlier score
of all features.

PyOD

PyOD is an acronym for Python Outlier Detection (PyOD), which is an open
source Python-based library for anomaly detection. PyOD collects a wide
range of techniques ranging from supervised learning to unsupervised learn-
ing techniques. Some techniques work better than others for a given dataset.
PyOD includes at least 20 anomaly detection techniques such as PCA, kNN,
AutoEncoder, SOS, and XGB.

h t t p s : / / m e d i u m . c o m / d a t a m a n - i n - a i / a n o m a l y
detection-with-histogram-based-outlier-detection-hbo-bc10ef52f23f

For the series on PyOD, please read the following articles:

	• Anomaly Detection with Histogram-based Outlier Score: The Histo-
gram-based Outlier Score

MDS.CH2_2.8.23.indd 67MDS.CH2_2.8.23.indd 67 08/02/23 1:39 PM08/02/23 1:39 PM

68 • Managing Datasets and Models

	• Anomaly Detection with PyOD: the k Nearest Neighbors (KNN)
	• Anomaly Detection with Autoencoders Made Easy: Autoencoders
	• Use the Isolated Forest with PyOD: Isolated Forest
	• https://lilianweng.github.io/lil-log/2021/12/05/semi-supervised-learning.

html

Numeric Outlier (IQR)

This is the simplest nonparametric outlier detection method in a one-dimen-
sional feature space. Here, outliers are calculated by means of the IQR
(InterQuartile Range). The first and the third quartile (Q1, Q3) are calcu-
lated. An outlier is then a data point xi that lies outside the interquartile
range. Using the interquartile multiplier value k=1.5, the range limits are the
typical upper and lower whiskers of a box plot.

Z-Score

The z-score is a parametric outlier detection method in a one- or low-dimen-
sional feature space. This technique assumes a Gaussian distribution of the
data. The outliers are the data points that are in the tails of the distribution
and therefore far from the mean. How far depends on a set threshold zthr
for the normalized data points zi that are based on the xi values, and calcu-
lated with the formula:

zi = (xi-mu)/sigma (where mu = mean)

An outlier is then a normalized data point which has an absolute value greater
than zthr.

DBSCAN

In high level terms, this technique is based on the DBSCAN cluster-
ing method. DBSCAN is a nonparametric, density-based outlier detection
method in a one- or multi-dimensional feature space. In the DBSCAN clus-
tering technique, all data points are defined either as Core Points, Border
Points, or Noise Points.

Core Points are data points that have at least MinPts neighboring data
points within a distance ε. Border Points are neighbors of a Core Point within
the distance ε, but with less than MinPts neighbors within the distance ε.

MDS.CH2_2.8.23.indd 68MDS.CH2_2.8.23.indd 68 08/02/23 1:39 PM08/02/23 1:39 PM

https://lilianweng.github.io/lil-log/2021/12/05/semi-supervised-learning.html
https://lilianweng.github.io/lil-log/2021/12/05/semi-supervised-learning.html

Outlier and Anomaly Detection • 69

All other data points are Noise Points that are identified as outliers. Outlier
detection thus depends on the required number of neighbors MinPts, the
distance ε, and the selected distance measure, like Euclidean or Manhattan.

Isolation Forest

This is a nonparametric method for large datasets in a one- or multi-
dimensional feature space. An important concept in this method is the isola-
tion number. The isolation number is the number of splits needed to isolate a
data point. This number of splits is ascertained by following these steps:

	• A point “a” to isolate is selected randomly.
	• A random data point “b” is selected that is between the minimum and max-

imum value and different from “a.”
	• If the value of “b” is lower than the value of “a,” the value of “b” becomes

the new lower limit.
	• If the value of “b” is greater than the value of “a,” the value of “b” becomes

the new upper limit.
	• This procedure is repeated as long as there are data points other than “a”

between the upper and the lower limit.

It requires fewer splits to isolate an outlier than it does to isolate a non-outlier;
i.e., an outlier has a lower isolation number in comparison to a non-outlier
point. A data point is therefore defined as an outlier if its isolation number is
lower than the threshold.

The threshold is defined based on the estimated percentage of outliers in
the data, which is the starting point of this outlier detection algorithm:

https://towardsdatascience.com/are-these-data-normal-anomalies-outliers-in-
machine-learning-a259bbe58690

An explanation with images of the isolation forest technique is available at

https://quantdare.com/isolation-forest-algorithm

The following Python code block contains an example of using the
IsolationForest class that is available in scikit-learn.

from scikit-learn.ensemble import IsolationForest

import pandas as pd

MDS.CH2_2.8.23.indd 69MDS.CH2_2.8.23.indd 69 08/02/23 1:39 PM08/02/23 1:39 PM

https://towardsdatascience.com/are-these-data-normal-anomalies-outliers-in-machine-learning-a259bbe58690
https://quantdare.com/isolation-forest-algorithm
https://towardsdatascience.com/are-these-data-normal-anomalies-outliers-in-machine-learning-a259bbe58690

70 • Managing Datasets and Models

clf = IsolationForest(max_samples=100, random_state=42)

table = pd.concat([input_table['Mean(ArrDelay)']], axis=1)

clf.fit(table)

output_table = pd.DataFrame(clf.predict(table))

Deep Learning and Anomaly Detection

Although deep learning is outside the scope of this book, it is still worthwhile
to know something about this topic. Deep learning architectures can be used
for anomaly detection, such as RNNs, LSTMs, GANs, and transformers.

This webpage discusses LSTMs for time series anomaly detection:

https://www.renom.jp/notebooks/tutorial/time_series/lstm-anomalydetection/
notebook.html

This link discusses RNNs for time series anomaly detection:

https://ieeexplore.ieee.org/document/7486356

If you prefer to delegate the task of anomaly detection, there are various
services available, some of which are as follows:

	• Anodot
	• Outlier.ai
	• Vectra Cognito
	• QuickSight (Amazon)
	• Sherlock (Yahoo)

Perform an online search for articles that discuss deep learning and anomaly
detection, as well as the products that are in the preceding bullet list.

WORKING WITH IMBALANCED DATASETS

Imbalanced datasets contain at least once class that has significantly more
values than another class in the dataset. For example, if class A has 99% of the
data and class B has 1%, which classification algorithm would you use?

Unfortunately, classification algorithms do not work as well with highly
imbalanced datasets. However, there are various techniques that you can use
to reduce the imbalance in a dataset. Regardless of the technique that you

MDS.CH2_2.8.23.indd 70MDS.CH2_2.8.23.indd 70 08/02/23 1:39 PM08/02/23 1:39 PM

https://www.renom.jp/notebooks/tutorial/time_series/lstm-anomalydetection/notebook.html
https://www.renom.jp/notebooks/tutorial/time_series/lstm-anomalydetection/notebook.html
https://ieeexplore.ieee.org/document/7486356

Outlier and Anomaly Detection • 71

decide to use, keep in mind the following detail: resampling techniques are
only applied to the training data (not the validation data or the test data).

In addition, if you perform k-fold cross validation on a training set, then
oversampling is performed in each fold during the training step. To avoid data
leakage, make sure that you do not perform oversampling prior to k-fold cross
validation.

Data Sampling Techniques

Data sampling techniques reduce the imbalance in imbalanced datasets, and
some well-known techniques are as follows:

	• random resampling: rebalances the class distribution
	• random undersampling: deletes examples from the majority class
	• random oversampling: duplicates data in the minority class
	• SMOTE (Synthetic Minority Oversampling Technique)

Random resampling rebalances the class distribution by resampling the data
space to reduce the discrepancy between the number of rows in the majority
class and the minority class.

The random undersampling technique removes samples that belong to
the majority class from the dataset, and involves the following:

	• randomly removes samples from majority class
	• can be performed with or without replacement
	• alleviates imbalance in the dataset
	• may increase the variance of the classifier
	• may discard useful or important samples

However, random undersampling does not work well with extremely unbal-
anced datasets, such as a 99% and 1% split into two classes. Moreover, under-
sampling can result in losing information that is useful for a model.

Random oversampling generates new samples from a minority class: this
technique duplicates examples from the minority class.

Another option to consider is the Python package imbalanced-learn in the
scikit-learn-contrib project. This project provides various resampling tech-
niques for datasets that exhibit class imbalance. More details are available
online:

https://github.com/scikit-learn-contrib/imbalanced-learn

MDS.CH2_2.8.23.indd 71MDS.CH2_2.8.23.indd 71 08/02/23 1:39 PM08/02/23 1:39 PM

https://github.com/scikit-learn-contrib/imbalanced-learn

72 • Managing Datasets and Models

Another well-known technique is SMOTE, which involves data augmenta-
tion (i.e., synthesizing new data samples). SMOTE was initially developed by
means of the kNN algorithm (other options are available), and it can be an
effective technique for handling imbalanced classes.

Removing Noisy Data

There are several techniques that attempt to remove “noisy data,” which is
often near the boundary, so that there is less ambiguity in the classification of
the remaining data. Some of these techniques are listed here:

	• Near Miss
	• Condensed Nearest Neighbor (CNN)
	• Tomek links
	• ENN (Edited Nearest Neighbor)
	• OSS (One-Sided Selection)
	• Neighborhood Cleaning Rule (NCR)

Keep in mind that CNN in the bullet list is different from Convolutional
Neural Network. In addition, one potential drawback to CNN is due to its
random choice of sample points. Tomek links is an undersampling technique
that modifies CNN in two ways. One improvement involves finding pairs of
data points (x,y) that are cross-class nearest neighbors, which is to say, x and
y belong to different classes and x and y also have the smallest Euclidean dis-
tance. After finding all such pairs, the values that belong to the majority class
are removed.

However, the efficacy of Tomek links does vary, and it is often used in
conjunction with other undersampling techniques (including CNN). The fol-
lowing code snippet for Tomek links shows you how to import the appropriate
class from imblearn:

from imblearn.under_sampling import TomekLinks

// details omitted

undersampled = TomekLinks()

ENN (Edited Nearest Neighbor) removes data points in the majority class
that are misclassified as belonging to the minority class. ENN uses a “pairing”

MDS.CH2_2.8.23.indd 72MDS.CH2_2.8.23.indd 72 08/02/23 1:39 PM08/02/23 1:39 PM

Outlier and Anomaly Detection • 73

technique to find a matching nearest neighbor in the majority class that is
paired with a “noisy” or ambiguous point that is located along the class bound-
ary, and then removes the point in the majority.

The following code snippet for ENN links shows you how to import the
appropriate class from imblearn:

from imblearn.under_sampling import
EditedNearestNeighbours

// details omitted

undersampled = EditedNearestNeighbours(n_neighbors=5)

The default value for n_neighbors is 3, whereas the value 5 is specified in
the preceding code snippet.

Cost-Sensitive Learning

Before you read this section, keep in mind that it involves the confusion
matrix. If you are unfamiliar with this matrix, please read the relevant mate-
rial in Chapter 4 before proceeding with the material in this section.

Cost-sensitive learning refers to assigning different costs for the misclas-
sification of data points, which is often relevant to imbalanced datasets. For
example, the consequences of a Type II error (false negative) are consider-
ably worse than a Type I error (false positive) for datasets pertaining to fraud
detection, medical diagnosis (such as cancer), and so forth.

Specifically, the cost in cost-sensitive learning refers to the penalty that is
assigned to an incorrect prediction. As such, the goal is to minimize the over-
all cost of a given model during the training step.

Chapter 4 discusses the confusion matrix for a binary classification, which
has four possibilities:

	• true positive
	• false positive
	• true negative
	• false negative

MDS.CH2_2.8.23.indd 73MDS.CH2_2.8.23.indd 73 08/02/23 1:39 PM08/02/23 1:39 PM

74 • Managing Datasets and Models

An example of a confusion matrix is shown here, followed by the interpreta-
tion of the values in the confusion matrix:

[[60 4]

 [16 20]]

The four values in the preceding 2x2 matrix represent the following quantities:

True positive: 60

False positive: 4

True negative: 20

False negative: 16

Thus, the main diagonal consists of correct predictions whereas the “off” diag-
onal consists of incorrect predictions. Cost-sensitive learning involves defin-
ing a cost matrix from the values in the confusion matrix. An example of a cost
matrix is shown here:

[[0 5]

 [50 0]]

The value 50 is much larger than the value 5 because 50 is the cost associated
with a false negative, whereas 5 is associated with a false positive, and zero
cost is associated with correct predictions.

In this example, the associated cost function that we wish to minimize is
shown here:

Cost = 50*FN + 5*FP

Detecting Imbalanced Data

This step involves counting the number of rows that are associated with each
class. First, read the dataset into a Pandas data frame (let’s call it df) and then
invoke the following code snippet:

df['your-target-column'].value_counts()

MDS.CH2_2.8.23.indd 74MDS.CH2_2.8.23.indd 74 08/02/23 1:39 PM08/02/23 1:39 PM

Outlier and Anomaly Detection • 75

An example of the output from the preceding code snippet is here:

[OUT]

1 21000

0 6000

As you can see in the output above, class 1 is more than 3 times larger than
class 0, so this column in the dataset is imbalanced.

The Python-based open source library scikit-learn a vast set of algorithms
for machine learning, some of which support a class_weight parameter, as
listed here:

	• logistic regression
	• perceptron
	• random forest
	• SVM

Simply set the value of class_weight parameter equal to balanced before
training the chosen model. Incidentally, it might also be worthwhile to train
the chosen model with the default value for the class_weight parameter.

Rebalancing Datasets

Let’s return to the example of a dataset for which class A has 99% of the data
and class B has 1%. Which classification algorithm would you use? The fol-
lowing list contains several well-known techniques for handling imbalanced
datasets (not in any particular order):

	• random resampling (rebalances the class distribution)
	• random oversampling (duplicates data in the minority class)
	• random undersampling (deletes examples from the majority class)
	• algorithm selection
	• cross validation for imbalanced data
	• generating synthetic data (ex: SMOTE)
	• performance metric selection

Any of the preceding techniques can be utilized for imbalanced datasets, and
keep in mind that your results may vary, so it’s worth trying more than one
technique.

MDS.CH2_2.8.23.indd 75MDS.CH2_2.8.23.indd 75 08/02/23 1:39 PM08/02/23 1:39 PM

76 • Managing Datasets and Models

Specify Stratify in Data Splits

This step is straightforward because Scikit-Learn supports a stratify
parameter that ensures the data is split so that the training data and test data
contain the same proportion of class values. For example, if a dataset contains
60% and 40%, respectively, of class A and class B in a column, then the train
data and test data will contain the same proportions for class A and B.

The following code block demonstrates how to split a dataset where X and
y have already been initialized so that the data is stratified:

from scikit-learn.model_selection import train_test_split

X_train,X_test,y_train,y_test =
 train_test_split(X,

 y,

 test_size=0.25,

 random_state=42,

 stratify=y)

SUMMARY

This chapter started with a discussion regarding the relationship among fraud,
anomalies, and outliers, along with Python code samples that illustrate how
to find outliers. The second section discusses fraud detection (there are many
types), along with anomaly detection. Next, you learned about algorithms,
such as SMOTE, for handling imbalanced classes in a dataset. Finally, you
learned about the bias-variance tradeoff and various types of statistical bias.

REFERENCE

Fraud costs the global economy over US$5 trillion (no date) Crowe Global.
Available at: http://www.crowe.com/global/news/fraud-costs-the-global-economy-
over-us$5-trillion (Accessed: December 13, 2022).

MDS.CH2_2.8.23.indd 76MDS.CH2_2.8.23.indd 76 08/02/23 1:39 PM08/02/23 1:39 PM

http://www.crowe.com/global/news/fraud-costs-the-global-economy-over-us$5-trillion
http://www.crowe.com/global/news/fraud-costs-the-global-economy-over-us$5-trillion

C H A P T E R 3
Cleaning Datasets

This chapter shows you how to clean datasets, which includes finding missing
data, incorrect data, and duplicate data. In some cases, you might also decide
to consolidate data values (e.g., treat the prefix “Mr.,” “MR,” and “mr” as the
same label).

The first part of this chapter contains several Pandas code samples that
use Pandas to read CSV files and then calculate statistical values such as the
mean, median, mode, and standard deviation.

The second part of this chapter uses Pandas to handle missing values in
CSV files, starting with CSV files that contain a single column, followed by
two-column CSV files. These code samples will prepare you to work with
multi-column CSV files, such as the custom bmi.csv file and the Titanic
titanic.csv file.

After you have completed this chapter, you will be ready to learn how to
split CSV files into subregions that are then processed via classification algo-
rithms, such as kNN, decision trees, and random forests.

PREREQUISITES FOR THIS CHAPTER

This chapter contains a mixture of Python-based code samples and an awk-
based shell script. All the code samples are straightforward, and if you can fol-
low the Pandas and awk-based code samples in Chapter 1, then you will most
likely be able to understand the code samples in this chapter.

This chapter requires basic knowledge of Python and Pandas, such as cre-
ating Pandas data frames, as well as reading and writing CSV files. Knowledge

MDS.CH3_2.8.23.indd 77MDS.CH3_2.8.23.indd 77 08/02/23 1:39 PM08/02/23 1:39 PM

78 • Managing Datasets and Models

of the awk programming language is required for three shell scripts that
invoke the awk command, if you decide to read those code samples.

In addition, the following list contains all the import statements that you
will encounter in the Python code samples for this chapter:

	• from forex_python.bitcoin import BtcConverter

	• from forex_python.converter import CurrencyRates

	• from fuzzywuzzy import fuzz

	• from fuzzywuzzy import process

	• from imblearn.over_sampling import SMOTE

	• from scipy import stats

	• from sklearn.covariance import EllipticEnvelope

	• from sklearn.linear_model import LogisticRegression

	• from sklearn.metrics import classification_report

	• from sklearn.metrics import confusion_matrix

	• from sklearn.model_selection import train_test_split

	• import numpy as np

	• import pandas as pd

ANALYZING MISSING DATA

This section contains subsections that describe types of missing data, common
causes of missing data, and various ways to inpute values for missing data.
Outlier detection, fraud detection, and anomaly detection pertain to analyz-
ing existing data.

By contrast, missing data presents a different issue, which in turn raises
the following question: what can you do about the missing values? Is it better
to discard data points (e.g., rows in a CSV file) with missing values, or is it
better to estimate reasonable values as a replacement for the missing values?
Missing data can adversely affect a thorough analysis of a dataset, whereas
erroneous data can increase bias and uncertainty.

At this point, you have undoubtedly realized that a single solution does
not exist for every dataset: you need to perform an analysis on a case-by-case
basis after you have learned some of the techniques that might help you effec-
tively address missing data values.

MDS.CH3_2.8.23.indd 78MDS.CH3_2.8.23.indd 78 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 79

Causes of Missing Data

There are various reasons for missing values in a dataset, some of which are
listed here:

	• values are unavailable
	• values were improperly collected
	• inaccurate data entry

Although you might be tempted to always replace a missing value with a
concrete value, there are situations in which you cannot determine a value.
As a simple example, a survey that contains questions for people under 30
will have a missing value for respondents who are over 30, and in this case
specifying a value for the missing value would be incorrect. With these
details in mind, there are various ways to fill missing values, some of which
are listed here:

	• Remove rows with a high percentage of missing values (50% or larger).
	• Use one-hot encoding for categorical data.
	• Use the Imputer class from scikit-learn library.
	• Fill missing values with the values in an adjacent row.
	• Replace missing data with the mean/median/mode value.
	• Infer (“impute”) the value for missing data.

Once again, the technique that you select for filling missing values is influ-
enced by various factors, such as

	• how you want to process the data
	• the type of data involved
	• the cause of missing values (see above)

Although the most common technique involves the mean value for numeric
features, someone needs to determine which technique is appropriate for a
given feature.

However, if you are not confident that you can impute a reasonable value,
consider deleting the row with a missing value, and then train a model with
the imputed value and also with the deleted row.

One problem that can arise after removing rows with missing values is
that the resulting dataset is too small. In this case, consider using SMOTE
(Synthetic Minority Oversampling Technique), which is discussed later in this
chapter, to generate synthetic data.

MDS.CH3_2.8.23.indd 79MDS.CH3_2.8.23.indd 79 08/02/23 1:39 PM08/02/23 1:39 PM

80 • Managing Datasets and Models

PANDAS, CSV FILES, AND MISSING DATA

This section contains several subsections with Python-based code samples
that create Pandas data frames and then replace missing values in the data
frames. First, we’ll look at small CSV files with one column and then we’ll look
at small CSV files with two columns. Later, we’ll look at skewed CSV files as
well as multi-row CSV files.

Single Column CSV Files

Listing 3.1 displays the content of the CSV file one_char_column1.csv, and
Listing 3.2 displays the content of one_char_column1.py that fills in miss-
ing values in the CSV file.

Listing 3.1: one_char_column1.csv

gender

Male

Male

NaN

Female

Male

Listing 3.2: one_char_column1.py

import pandas as pd

df1 = pd.read_csv('one_char_column1.csv')

print("=> initial dataframe contents:")

print(df1)

print()

df = df1.fillna("FEMALE")

print("dataframe after fillna():")

print(df)

print()

MDS.CH3_2.8.23.indd 80MDS.CH3_2.8.23.indd 80 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 81

Listing 3.2 starts with two import statements and then initializes the Pandas
data frame df1 with the contents of one_char_column1.csv, after which
its contents are displayed. The next code block invokes the fillna() method
to replace missing values with the string FEMALE. Launch the code in Listing
3.2, and you will see the following output:

=> initial dataframe contents:

 gender

0 Male

1 Male

2 NaN

3 Female

4 Male

dataframe after fillna():

 gender

0 Male

1 Male

2 FEMALE

3 Female

4 Male

Listing 3.3 displays the content of the CSV file one_char_column2.csv, and
Listing 3.4 displays the content of one_char_column2.py that fills in miss-
ing values in the CSV file.

Listing 3.3: one_char_column2.csv

gender

Male

Male

Null

Female

Male

MDS.CH3_2.8.23.indd 81MDS.CH3_2.8.23.indd 81 08/02/23 1:39 PM08/02/23 1:39 PM

82 • Managing Datasets and Models

Listing 3.4: one_char_column2.py

import pandas as pd

df1 = pd.read_csv('one_char_column1.csv')

print("=> initial dataframe contents:")

print(df1)

print()

df = df1.fillna("FEMALE")

print("dataframe after fillna():")

print(df)

print()

Listing 3.4 starts with two import statements and then initializes the Pandas
data frame df1 with the contents of one_char_column1.csv, after which
its contents are displayed. The next code block invokes the fillna() method
to replace missing values with the string FEMALE. Launch the code in Listing
3.4 and you will see the following output:

=> initial dataframe contents:

 gender

0 Male

1 Male

2 Null

3 Female

4 Male

df after fillna():

 gender

0 Male

1 Male

2 Null

3 Female

4 Male

MDS.CH3_2.8.23.indd 82MDS.CH3_2.8.23.indd 82 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 83

gender mode: Male

=> first mapped dataframe:

 gender

0 Male

1 Male

2 Female

3 NaN

4 Male

=> second mapped dataframe:

 gender

0 Male

1 Male

2 Female

3 Female

4 Male

Listing 3.5 displays the content of the CSV file one_numeric_column.csv,
and Listing 3.6 displays the content of one_numeric_column.py that fills in
missing values in the CSV file.

Listing 3.5: one_numeric_column.csv

age

19

np.nan

16

NaN

17

Listing 3.6: one_numeric_column.py

import pandas as pd

import numpy as np

MDS.CH3_2.8.23.indd 83MDS.CH3_2.8.23.indd 83 08/02/23 1:39 PM08/02/23 1:39 PM

84 • Managing Datasets and Models

df1 = pd.read_csv('one_numeric_column.csv')

df2 = df1.copy()

print("=> initial dataframe contents:")

print(df1)

print()

maxval = 12345

df1['age'] = df1['age'].map({'np.nan' : maxval})

print("=> dataframe after map():")

print(df1)

print()

refresh contents of df1:

df1 = df2

df1['age'] = df1['age'].fillna(maxval)

print("=> refreshed dataframe after fillna():")

print(df1)

print()

df1 = df1.fillna(777)

print("dataframe after second fillna():")

print(df1)

print()

#print(df1.describe())

error due to np.nan value:

#df1['age'].astype(int)

cols = df1.select_dtypes(np.number).columns

df1[cols] = df1[cols].fillna(9876)

print("df1 after third fillna():")

print(df1)

print()

MDS.CH3_2.8.23.indd 84MDS.CH3_2.8.23.indd 84 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 85

=> this code block works:

#df1 = df1.replace('np.nan', 9876)

df1 = df1.replace({'np.nan': 9876})

print("df1 after replace():")

print(df1)

print()

Listing 3.6 starts with two import statements and then initializes the Pandas
data frame df1 with the contents of one_numeric_column.csv, after which
its contents are displayed. The next code block invokes the fillna() method
to replace missing values with the value 9876. Launch the code in Listing 3.6,
and you will see the following output:

=> initial dataframe contents:

 age

0 19

1 np.nan

2 16

3 NaN

4 17

=> dataframe after map():

 age

0 NaN

1 12345.0

2 NaN

3 NaN

4 NaN

=> refreshed dataframe after fillna():

 age

0 19

1 np.nan

2 16

3 12345

4 17

MDS.CH3_2.8.23.indd 85MDS.CH3_2.8.23.indd 85 08/02/23 1:39 PM08/02/23 1:39 PM

86 • Managing Datasets and Models

dataframe after second fillna():

 age

0 19

1 np.nan

2 16

3 12345

4 17

df1 after third fillna():

 age

0 19

1 np.nan

2 16

3 12345

4 17

df1 after replace():

 age

0 19

1 9876

2 16

3 12345

4 17

Two-Column CSV Files

Listing 3.7 displays the content of the CSV file two_columns.csv, and
Listing 3.8 displays the content of two_columns.py that fills in missing val-
ues in the CSV file.

Listing 3.7: two_columns.csv

gender,age

Male,19

Male,np.nan

MDS.CH3_2.8.23.indd 86MDS.CH3_2.8.23.indd 86 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 87

NaN,16

Female,NaN

Male,17

Listing 3.8: two_columns.py

import pandas as pd

df1 = pd.read_csv('two_columns.csv')

print("=> initial dataframe contents:")

print(df1)

print()

df1 = df1.fillna("MISSING")

print("dataframe after fillna():")

print(df1)

print()

df1 = df1.replace({'np.nan': 99})

print("dataframe after replace():")

print(df1)

print()

Listing 3.8 starts with two import statements and then initializes the Pandas
data frame df1 with the contents of two_columns.csv, after which its con-
tents are displayed. The next code block invokes the fillna() method to
replace NA values with the string MISSING, followed by a code block that
replaces NaN values with 99. Launch the code in Listing 3.8, and you will see
the following output:

=> initial dataframe contents:

 gender age

0 Male 19

1 Male np.nan

2 NaN 16

3 Female NaN

4 Male 17

MDS.CH3_2.8.23.indd 87MDS.CH3_2.8.23.indd 87 08/02/23 1:39 PM08/02/23 1:39 PM

88 • Managing Datasets and Models

dataframe after fillna():

 gender age

0 Male 19

1 Male np.nan

2 MISSING 16

3 Female MISSING

4 Male 17

dataframe after replace():

 gender age

0 Male 19

1 Male 99

2 MISSING 16

3 Female MISSING

4 Male 17

Listing 3.9 displays the content of the CSV file two_columns2.csv, and
Listing 3.10 displays the content of two_columns2.py that fills in missing
values in the CSV file.

Listing 3.9: two_columns2.csv

gender,age

Male,19

Male,NaN

NaN,16

Female,18

Male,17

Listing 3.10: two_columns2.py

import pandas as pd

df1 = pd.read_csv('two_columns2.csv')

df2 = df1.copy()

MDS.CH3_2.8.23.indd 88MDS.CH3_2.8.23.indd 88 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 89

print("=> initial dataframe contents:")

print(df1)

print()

calculates the mean value on the

'age' column and skips NaN values:

full_avg = df1.mean()

print("full_avg:")

print(full_avg)

print()

avg = df1['age'].mean()

print("average age:",avg)

print()

#WRONG: *all* values are updated:

#df1['age'] = df1['age'].mean()

#print(df1)

#print()

refresh contents of df1:

df1 = df2

fillna() replaces NaN with avg:

df1['age'] = df1['age'].fillna(avg)

print("updated age NaN with avg:")

print(df1)

print()

#this does not replace NaN with avg:

#df1 = df1.replace({'NaN': avg})

mode = df1['gender'].mode()[0]

print("mode:",mode)

MDS.CH3_2.8.23.indd 89MDS.CH3_2.8.23.indd 89 08/02/23 1:39 PM08/02/23 1:39 PM

90 • Managing Datasets and Models

df1['gender'] = df1['gender'].fillna(mode)

print("updated gender NaN with mode:")

print(df1)

print()

Listing 3.10 starts with two import statements and then initializes the Pandas
data frame df1 with the contents of two_columns2.csv, after which its con-
tents are displayed. The next code block initializes the variable avg with the
mean value of the age column. This value is used to update all missing values
in the age attribute in the data frame df1, as shown here:

df1['age'] = df1['age'].fillna(avg)

The next portion of Listing 3.10 resets the contents of df1 to its initial con-
tents, followed by a code snippet that updates only the missing values in the
avg column with the average, as shown here:

df1['age'] = df1['age'].fillna(avg)

The next section of code initializes the variable mode with the mode of the
gender column, replaces the missing values in the gender column with the
value of the variable mode, and then prints the updated contents of the data
frame df1. Launch the code in Listing 3.10, and you will see the following
output:

=> initial dataframe contents:

 gender age

0 Male 19.0

1 Male NaN

2 NaN 16.0

3 Female 18.0

4 Male 17.0

full_avg:

age 17.5

dtype: float64

average age: 17.5

MDS.CH3_2.8.23.indd 90MDS.CH3_2.8.23.indd 90 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 91

updated all with same avg:

 gender age

0 Male 17.5

1 Male 17.5

2 NaN 17.5

3 Female 17.5

4 Male 17.5

updated age NaN with avg:

 gender age

0 Male 19.0

1 Male 17.5

2 NaN 16.0

3 Female 18.0

4 Male 17.0

mode: Male

updated gender NaN with mode:

 gender age

0 Male 19.0

1 Male 17.5

2 Male 16.0

3 Female 18.0

4 Male 17.0

MISSING DATA AND IMPUTATION

In general, data cleaning involves or more of the following tasks, which are
specific to each dataset:

	• Count missing data values.
	• Remove/drop redundant columns.
	• Assign values to missing data.
	• Remove duplicate values.

MDS.CH3_2.8.23.indd 91MDS.CH3_2.8.23.indd 91 08/02/23 1:39 PM08/02/23 1:39 PM

92 • Managing Datasets and Models

	• Check for incorrect values.
	• Ensure uniformity of data.
	• Use the Imputer class to fill with mean, median, and most_frequent.
	• Assign previous/next value to missing values.

	• random value imputation
	• multiple imputation
	• matching and hot-deck imputation

The following subsections briefly discuss some of the topics in the preceding
list, along with some Python-based code samples.

Counting Missing Data Values

Listing 3.11 displays the content of missing_values2.py that illustrates
how to find the number of missing data values in a Pandas data frame.

Listing 3.11: missing_values2.py

import pandas as pd

import numpy as np

"""

Count NaN values in one column:

df['column name'].isna().sum()

Count NaN values in an entire data frame:

df.isna().sum().sum()

Count NaN values in one row:

df.loc[[index value]].isna().sum().sum()

"""

data = {'column1': �[100,250,300,450,500,np.nan,650,700,np.
nan],

 'column2': �['X','Y',np.nan,np.nan,'Z','A','B',np.
nan,np.nan],

 �'column3': �['XX',np.nan,'YY','ZZ',np.nan,np.
nan,'AA',np.nan,np.nan]

 }

MDS.CH3_2.8.23.indd 92MDS.CH3_2.8.23.indd 92 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 93

df = pd.DataFrame(data,columns=['column1','column2','col
umn3'])

print("dataframe:")

print(df)

print("Missing values in 'column1':")

print(df['column1'].isna().sum())

print("Total number of missing values:")

print(df.isna().sum().sum())

print("Number of missing values for row index 7 (= row
#8):")

print(df.loc[[7]].isna().sum().sum())

Listing 3.11 starts with two import statements and a comment block that
explains the purpose of several Pandas methods pertaining sums of values
and the isna() method for finding NaN values in a dataset.

The next portion of Listing 3.11 initializes a dictionary with three arrays of
values that are used to initialize the Pandas data frame df. Next, the missing
values in column1 are displayed, followed by the number of missing values
in every column of df. The final code block displays the number of missing
values for the row whose index is 7. Launch the code in Listing 3.11, and you
will see the following output:

dataframe:

 column1 column2 column3

0 100.0 X XX

1 250.0 Y NaN

2 300.0 NaN YY

3 450.0 NaN ZZ

4 500.0 Z NaN

5 NaN A NaN

6 650.0 B AA

7 700.0 NaN NaN

8 NaN NaN NaN

MDS.CH3_2.8.23.indd 93MDS.CH3_2.8.23.indd 93 08/02/23 1:39 PM08/02/23 1:39 PM

94 • Managing Datasets and Models

Missing values in 'column1':

2

Total number of missing values:

11

Number of missing values for row index 7 (= row #8):

2

Navigate to the following webpage, where you will find additional Python
code samples for data cleaning:

https://lvngd.com/blog/data-cleaning-with-python-pandas/

Drop Redundant Columns

Listing 3.12 displays the content of drop_columns.py that illustrates how to
remove redundant columns from a Pandas data frame.

Listing 3.12: drop_columns.py

import pandas as pd

specify a valid CSV file here:

df1 = pd.read_csv("my_csv_file.csv") # <= specify your own
CSV file

remove redundant columns:

df2 = df1.drop(['url'],axis=1)

remove columns with over 50% missing values

df3 = df2.dropna(thresh=half_count,axis=1)

Listing 3.12 initializes the Pandas data frame df1 with the contents of the
CSV file my_csv_file.csv and then initializes the Pandas data frame df2
with the contents of df1. It then drops the column url, or some other col-
umn that exists in your CSV file. Finally, the Pandas data frame df3 is initial-
ized with the contents of Pandas data frame df2, after which columns are
dropped if they have more than 50% missing values.

MDS.CH3_2.8.23.indd 94MDS.CH3_2.8.23.indd 94 08/02/23 1:39 PM08/02/23 1:39 PM

https://lvngd.com/blog/data-cleaning-with-python-pandas/

Cleaning Datasets • 95

Remove Duplicate Rows

Data deduplication refers to the task of removing row-level duplicate data
values. Listing 3.13 displays the content of duplicates.csv, and Listing
3.14 displays the content of duplicates.sh that removes the duplicate rows
and creates the CSV file no_duplicates.csv, which contains unique rows.

Listing 3.13: duplicates.csv

Male,19,190,0

Male,19,190,0

Male,15,180,0

Male,15,180,0

Female,16,150,0

Female,16,150,0

Female,17,170,0

Female,17,170,0

Male,19,160,0

Male,19,160,0

Listing 3.14: remove-duplicates.sh

filename1="duplicates.csv"

filename2="no_duplicates.csv"

cat $filename1 | sort |uniq > $filename2

Listing 3.14 is straightforward: after initializing the variables filename1 and
filename2 with the names of the input and output files, respectively, the only
remaining code snippet contains Unix pipe (“|”) with a sequence of com-
mands. The left-most command displays the contents of the input file, which
is redirected to the sort command that sorts the input rows. The result of
the sort command is redirected to the uniq command, which removes dupli-
cates rows, and this result set is redirected to the file specified in the variable
filename2.

The sort command renders adjacent duplicate rows, and then the
uniq command removes adjacent duplicate rows. Launch the code in Listing
3.14, and you will see the output that is displayed in Listing 3.15.

MDS.CH3_2.8.23.indd 95MDS.CH3_2.8.23.indd 95 08/02/23 1:39 PM08/02/23 1:39 PM

96 • Managing Datasets and Models

Listing 3.15: no_duplicates.csv

Male,19,190,0

Female,16,150,0

Female,17,170,0

Male,15,180,0

Male,19,160,0

Male,19,190,0

Male,19,190,0

Display Duplicate Rows

The preceding example shows you how to find the unique rows, and the code
sample in Listing 3.16 in this section shows you how to find the duplicate
rows.

Listing 3.16: find-duplicates.sh

filename1="duplicates.csv"

sorted="sorted.csv"

unique="unique.csv"

multiple="multiple.csv"

sorted rows:

cat $filename1 | sort > $sorted

unique rows:

cat $sorted | uniq > $unique

duplicates rows:

diff -u $sorted $unique |sed -e '1,3d' -e 's/^ //' -e 's/-
//' > $multiple

Listing 3.16 starts by initializing the variables filename1, sorted, unique,
and multiple to names of CSV files, where only filename1 is a non-empty
file.

The next portion of Listing 3.16 consists of three lines of code that create
three text files:

MDS.CH3_2.8.23.indd 96MDS.CH3_2.8.23.indd 96 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 97

sorted.csv

unique.csv

multiple.csv

The file sorted.csv contains the sorted set of rows from duplicates.
csv, and the file unique.csv contains the unique rows in sorted.csv.
Therefore, the duplicate rows are the rows that appear in sorted.csv that
do not appear in unique.csv. Launch the code in Listing 3.16, and then
inspect the contents of multiple.csv.

The third line with the diff command generates the list of lines in
$sorted that are not in $uniq, which are of course the duplicate lines. In
addition, the output of the diff command is redirected to the sed command,
which does three things:

	• Removes the first three text lines.
	• Removes an initial space character.
	• Removes an initial “-” character.

After the sed command has completed, the output is redirected to the file
$multiple that contains the duplicate rows.

Almost Duplicate Rows

Listing 3.17 displays the contents of the CSV file people.csv, and Listing
3.18 shows you how to find a pair of rows (if they exist) in which the same
person has different values for height or age (or both).

Listing 3.17: people.csv

dawn,slade,42,158

sara,smith,30,160

john,smith,30,170

dave,jones,35,180

john,jones,45,190

sara,smith,30,170

john,smith,32,175

dawn,slade,42,155

MDS.CH3_2.8.23.indd 97MDS.CH3_2.8.23.indd 97 08/02/23 1:39 PM08/02/23 1:39 PM

.

98 • Managing Datasets and Models

Listing 3.18: almost_equal_rows.sh

filename1="duplicates.csv"

header row: fname, lname, age, height (cm)

filename="people.csv"

cat $filename | sort | awk -F"," '

BEGIN { arr1[0] = ""; rows = 0; }

{

 arr1[rows] = $0

 rows += 1

}

END {

 for(i=0; i<rows-1; i++) {

 split(arr1[i],row1,",")

 split(arr1[i+1],row2,",")

 if((row1[1] == row2[1]) && (row1[2] == row2[2])) {

 if(row1[3] != row2[3]) {

 print "=> Age mismatch in rows",i,"and",(i+1)

 print row1[1],row1[2],":",row1[3],"and",row2[3]

 }

 if(row1[4] != row2[4]) {

 print "=> Height mismatch in rows",i,"and",(i+1)

 �print row1[1],row1[2],":",row1[4],"and",row2[4],"
centimeters"

 }

 }

 }

}

'

Listing 3.18 starts by initializing the variable filename with the name of the
CSV files in Listing 3.17, followed by the cat command that pipes the contents

MDS.CH3_2.8.23.indd 98MDS.CH3_2.8.23.indd 98 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 99

of the CSV file to the awk command that consists of a BEGIN block, an execu-
tion block, and an END block. The BEGIN block initializes the first entry in the
array arr1 to an empty string and also initializes the variable rows to 0.

The main execution block initializes each row of arr1 to each line in the
CSV file, and also increments the variable rows. The END block contains a loop
that iterates through the rows of the array arr1 During each iteration, the
split() function splits the current row using a comma (“,”) as a delimiter.
The second invocation of the split(() function performs the same opera-
tion on the next entry in the array arr1 (which is why the loop has an upper
limit of rows-1 instead of rows).

The next portion of Listing 3.18 (still inside the loop) contains conditional
logic that checks for duplicate values in the ith row and the (i+1)st row.
Two more conditional statements determine whether or not a duplicate value
appears in the age attribute or the height feature, and an appropriate mes-
sage is displayed. Launch the code in Listing 3.18, and you will see the fol-
lowing output:

=> Height mismatch in rows 1 and 2

dawn slade : 155 and 158 centimeters

=> Age mismatch in rows 4 and 5

john smith : 30 and 32

=> Height mismatch in rows 4 and 5

john smith : 170 and 175 centimeters

=> Height mismatch in rows 6 and 7

sara smith : 160 and 170 centimeters

Uniformity of Data Values

An example of the uniformity of data involves verifying that the data in a given
feature contains the same units measure. For example, the following set of
values have numeric values that are in a narrow range but the units of measure
are incorrect:

50mph

50kph

100mph

20kph

MDS.CH3_2.8.23.indd 99MDS.CH3_2.8.23.indd 99 08/02/23 1:39 PM08/02/23 1:39 PM

100 • Managing Datasets and Models

Listing 3.19 displays the content of same_units.sh that illustrates how to
ensure that a set of strings have the same unit of measure.

Listing 3.19: same_units.sh

strings="120kph 100mph 50kph"

new_unit="fps"

for x in `echo $strings`

do

 number=`echo $x | tr -d [a-z][A-Z]`

 unit=`echo $x | tr -d [0-9]`

 echo "initial: $x"

 new_num="${number}${new_unit}"

 echo "new_num: $new_num"

 echo

done

Listing 3.19 starts by initializing the variables strings and new_unit, fol-
lowed by a for loop that iterates through each string in the strings variable.
During each iteration, the variables number and unit are initialized with the
characters and digits, respectively, in the current string represented by the
loop variable x.

Next, the variable new_num is initialized as the concatenation of the con-
tents of number and new_unit. Launch the code in Listing 3.19, and you will
see the following output:

initial: 120kph

new_num: 120fps

initial: 100mph

new_num: 100fps

initial: 50kph

new_num: 50fps

MDS.CH3_2.8.23.indd 100MDS.CH3_2.8.23.indd 100 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 101

Too Many Missing Data Values

Datasets with mostly N/A values, which is to say, 80% or more are N/A or NaN
values, are always daunting, but not necessarily hopeless. As a simple first
step, you can drop rows that contain N/A values, which might result in a loss of
99% of the data. A variation of the preceding all-or-nothing step for handling
datasets with a majority of N/A values is as follows:

	• Use a kNN imputer to fill missing values in high value columns.
	• Drop low priority columns that have > 50% missing values.
	• Use a kNN imputer (again) to fill the remaining missing values.
	• Try using 3 or 5 as the # of nearest neighbors.

The preceding sequence attempts to prune insignificant data to concentrate
on reconstructing the higher priority columns through data imputation. Of
course, there is no guaranteed methodology for salvaging such a dataset, so
you need some ingenuity as you experiment with datasets containing highly
limited data values. If the dataset is highly imbalanced, consider oversampling
before you drop columns and/or rows.

Categorical Data

Categorical values are discrete and can easily be encoded by specifying a
number for each category. If a category has n distinct values, then visualize
the nxn identity matrix: each row represents one of the distinct values.

This technique is called one-hot encoding, and you can use the
OneHotEncoder class in scikit-learn by specifying the dataset X and also
the column index to perform one-hot encoding:

from scikit-learn.preprocessing import OneHotEncoder

ohc = OneHotEncoder(categorical_features = [0])

X = onehotencoder.fit_transform(X).toarray()

Since each one-hot encoded row contains one 1 and (n-1) zero values, this
technique is inefficient when n is large. Another technique involves the
Pandas map() function, which replaces string values with a single column
that contains numeric values. For example, the following code block replaces
Male and Female with 0 and 1, respectively:

values = {'Male' : 0, 'Female' : 1}

df['gender'] = df['gender'].map(values)

MDS.CH3_2.8.23.indd 101MDS.CH3_2.8.23.indd 101 08/02/23 1:39 PM08/02/23 1:39 PM

102 • Managing Datasets and Models

A variation of the preceding is the following code block:

data['gender'].replace(0, 'Female',inplace=True)

data['gender'].replace(1, 'Male',inplace=True)

Another variation of the preceding code is this code block:

data['gender'].replace([0,1],['Male','Female'],inplace=T
rue)

Keep in mind that the Pandas map() function converts invalid entries to NaN.

Data Inconsistency

Data inconsistency occurs when distinct value are supposed to be the same
value, such as “smith” and “SMITH” instead of “Smith.” Another example
would be “YES,” “Yes,” “YS,” and “ys” instead of “yes.” In all cases except for
“ys,” you can convert all the other strings to lower case, which replaces all the
strings with “smith” or “yes,” respectively.

Alternatively, the Python-based Fuzzy Wuzzy library can be helpful if
there are too many distinct values to specify manually. This module identifies
strings that are likely to be the same by comparing two strings and generating
a numeric value, such that values closer to each other are more likely to rep-
resent the same string.

Mean Value Imputation

Listing 3.20 displays the content of mean_imputation.py that shows you
how to replace missing values with the mean value of each feature.

Listing 3.20: mean_imputation.py

import numpy as np

import pandas as pd

import random

filename="titanic.csv"

df = pd.read_csv(filename)

MDS.CH3_2.8.23.indd 102MDS.CH3_2.8.23.indd 102 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 103

display null values:

print("=> Initial df.isnull().sum():")

print(df.isnull().sum())

print()

replace missing ages with mean value:

df['age'] = df['age'].fillna(df['age'].mean())

"""

Or use median(), min(), or max():

df['age'] = df['age'].fillna(df['age'].median())

df['age'] = df['age'].fillna(df['age'].min())

df['age'] = df['age'].fillna(df['age'].max())

"""

FILL MISSING DECK VALUES WITH THE mode():

mode = df['deck'].mode()[0]

#df['deck'] = df['deck'].fillna(mode)

print("=> new age and deck values:")

print([df[['deck','age']]])

Listing 3.20 starts with several import statements, followed by initializing the
variable df with the contents of the specified CSV file. The next code snippet
calculates the number of rows with missing values on a column-by-column
basis. The next code snippet replaces the missing values with the mean value
of the available values, also on a column-by-column basis. In addition, a com-
mented code shows you how invoke the median(), min(), and max() values,
respectively, that you can specify instead of the mean(), if you wish to do so.

The next code snippet initializes the variable mode with the mode value
of the deck feature, followed by a print() statement that displays the values
for the deck and age features. Launch the code in Listing 3.20, and you will
see the following output:

=> Initial df.isnull().sum():

survived 0

MDS.CH3_2.8.23.indd 103MDS.CH3_2.8.23.indd 103 08/02/23 1:39 PM08/02/23 1:39 PM

104 • Managing Datasets and Models

pclass 0

sex 0

age 177

sibsp 0

parch 0

fare 0

embarked 2

class 0

who 0

adult_male 0

deck 688

embark_town 2

alive 0

alone 0

dtype: int64

=> new age and deck values:

[deck age

0 C 22.000000

1 C 38.000000

2 C 26.000000

3 C 35.000000

4 C 35.000000

..

886 C 27.000000

887 B 19.000000

888 C 29.699118

889 C 26.000000

890 C 32.000000

[891 rows x 2 columns]]

MDS.CH3_2.8.23.indd 104MDS.CH3_2.8.23.indd 104 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 105

Random Value Imputation

Random value imputation involves generating random values, which you can
use to fill missing values in a dataset. Listing 3.21 displays the content of ran-
dom_imputation.py that shows you how to replace missing values with ran-
dom values that are selected from within a given feature.

Listing 3.21: random_imputation.py

import numpy as np

import pandas as pd

import random

filename="titanic.csv"

df = pd.read_csv(filename)

display null values:

print("=> Initial df.isnull().sum():")

print(df.isnull().sum())

print()

replace missing ages with mean value:

df['age'] = df['age'].fillna(df['age'].mean())

#Randomize missing column data

def randomize_deck(df2):

 df = df2.copy()

 data = df["deck"]

 mask = data.isnull()

 �samples = random.choices(data[~mask].values , k = mask.
sum())

 data[mask] = samples

 return df

FILL MISSING DECK VALUES WITH RANDOM non-null values:

df = randomize_deck(df)

MDS.CH3_2.8.23.indd 105MDS.CH3_2.8.23.indd 105 08/02/23 1:39 PM08/02/23 1:39 PM

106 • Managing Datasets and Models

print("=> new age and deck values:")

print([df[['deck','age']]])

Listing 3.21 is similar to Listing 3.18: it starts with several import statements,
followed by initializing the variable df with the contents of the specified CSV
file. The next code snippet calculates the number of rows with missing values
on a column-by-column basis.

The next code snippet replaces the missing values in the age feature with
the mean value of the available values. The next code block is the Python
function randomize_deck(), which randomizes the values in the deck fea-
ture and then returns the modified frame df.

After the Python function is a code snippet that invokes the random-
ize_deck() function, after which a print() statement displays the values
for the deck and age features. Launch the code in Listing 3.21, and you will
see the following output:

=> Initial df.isnull().sum():

survived 0

pclass 0

sex 0

age 177

sibsp 0

parch 0

fare 0

embarked 2

class 0

who 0

adult_male 0

deck 688

embark_town 2

alive 0

alone 0

dtype: int64

=> new age and deck values:

MDS.CH3_2.8.23.indd 106MDS.CH3_2.8.23.indd 106 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 107

[deck age

0 D 22.000000

1 C 38.000000

2 C 26.000000

3 C 35.000000

4 B 35.000000

..

886 E 27.000000

887 B 19.000000

888 D 29.699118

889 C 26.000000

890 E 32.000000

[891 rows x 2 columns]]

Matching and Hot-Deck Imputation

Hot-deck imputation is performed by randomly selecting another row that
has similar values on other variables and use its value in the row that contains
missing values.

You can also impute values by using an existing value that appears in a
similar data point, which is also used recommendation systems that utilizes
user-user collaboration to impute ratings for movies.

For example, suppose that data collected for a dataset involves estimating
a risk factor for each data point, where the risk is derived information from
an associated document. However, the information might be insufficient to
calculate an accurate risk value. One potential solution involves finding the
nearest neighbors to the new data point and then calculating the average of
the risk values in the nearest neighbors.

Is a Zero Value Valid or Invalid?

In general, replace a missing numeric value with zero is a risky choice: this
value is obviously incorrect if the values of a feature are positive numbers
between 1,000 and 5,000 (or some other range of positive numbers). For a
feature that has numeric values, replacing a missing value with the mean of
existing values can be better than the value zero (unless the average equals

MDS.CH3_2.8.23.indd 107MDS.CH3_2.8.23.indd 107 08/02/23 1:39 PM08/02/23 1:39 PM

108 • Managing Datasets and Models

zero); also consider using the median value. For categorical data, consider
using the mode to replace a missing value.

There are situations where you can use the mean of existing values to
impute missing values, but not the value zero, and vice versa. As a first exam-
ple, suppose that an attribute contains the height in centimeters of a set of
persons. In this case, the mean could be a reasonable imputation, whereas 0
suffers from the following:

1.	 It is an invalid value (nobody has height 0).

2.	 It will skew statistical quantities, such as the mean and variance.

You might be tempted to use the mean instead of 0 when the minimum allow-
able value is a positive number, but use caution when working with highly
imbalanced datasets. As a second example, consider a small community of 50
residents with

1.	 45 people have an average annual income of USD 50,000

2.	 4 other residents have an annual income of 10,000,000

3.	 1 resident has an unknown annual income

Although the preceding example might seem contrived, it is likely that the
median income is preferable to the mean income, and certainly better than
imputing a value of 0.

As a third example, suppose that a company generates weekly sales reports
for multiple office branches, and a new office has been opened, but has yet to
make any sales. In this case, the use of the mean to impute missing values for
this branch would produce fictitious results. Hence, it makes sense to use the
value 0 for missing sales-related quantities, which will accurately reflect the
sales-related status of the new branch.

SKEWED DATASETS

This section contains a skewed CSV file, a shell script to generate a single out-
put line, and another shell script that splits the preceding “one liner” into rows
that contains four columns.

MDS.CH3_2.8.23.indd 108MDS.CH3_2.8.23.indd 108 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 109

Listing 3.22 displays the content of the CSV file skewed_four_columns.
csv, Listing 3.23 displays the content of gen_one_line.sh, and Listing 3.21
displays the content of skewed_four_columns.sh that generates output
consisting of rows with an equal number of columns.

Listing 3.22: skewed_four_columns.csv

survived,pclass,sex,age

0,3,male,22.0,

1,1,female,38.0,1,3,

female,26.0,1,1,female,35.0,

0,3,male,35.0,0,3,

male,23.0,0,1,male,54.0,0,3,male,2.0,1,3,female,27.0

1,2,

female,14.0,

1,3,female,4.0,

1,1,female,

58.0,

0,3,male,20.0,

0,3,

male,39.0,

0,3,female,14.0,

1,2,female,55.0,0,3,male,2.0,1,2,male,23.0,

0,3,female,31.0,

Listing 3.23: gen_one_line.sh

filename="skewed_four_columns.csv"

cat $filename |sed "1d" | awk -F"," '{ printf("%s",$0) }'

Listing 3.23 uses the sed command to delete the first line of its input, which
is the contents of the CSV file. The output of the sed command is sent to the
awk command, which prints each input line without a linefeed, thereby gen-
erating a one-line string of the contents of the CSV file. Launch the code in
Listing 3.23, and you will see the following output:

MDS.CH3_2.8.23.indd 109MDS.CH3_2.8.23.indd 109 08/02/23 1:39 PM08/02/23 1:39 PM

110 • Managing Datasets and Models

0,3,male,22.0,1,1,female,38.0,1,3,female,26.0,1,1,female,3
5.0,0,3,male,35.0,0,3,male,23.0,0,1,male,54.0,0,3,male,2.0
,1,3,female,27.01,2,female,14.0,1,3,female,4.0,1,1,female,
58.0,0,3,male,20.0,0,3,male,39.0,0,3,female,14.0,1,2,femal
e,55.0,0,3,male,2.0,1,2,male,23.0,0,3,female,31.0,

Notice that the shell script gen_one_line.sh matches the initial portion of
Listing 3.21 that is shown in bold, and that this shell script is not actually used
in the solution for this task. The purpose of showing you the output from gen_
one_line.sh is to ensure that you understand its output (which becomes the
input for the second awk command in Listing 3.24), which contains the code
that splits the input text into lines of text that contain four fields.

Listing 3.24: skewed_four_columns2.sh

filename="skewed_four_columns.csv"

cat $filename |sed "1d" | awk -F"," '{ printf("%s",$0) }' |
awk -F"," '

BEGIN { colCount = 4 }

{

 for(i=1; i<=NF; i++) {

 printf("%s,", $i)

 #if(i < colCount) { printf(",")}

 if(i % colCount == 0) { printf("\n") }

 }

}

' | sed -e 's/,$//' -e 's/,$//'

Listing 3.24 starts by initializing the variable filename with the name of a CSV
file, followed by the cat command that pipes the contents of filename to the
sed command that removes the first line from the file. The result is piped to
the awk command that prints each input line without the linefeed character,
which results in an output string of a single line of text.

The first awk command pipes its output to the second awk command that
prints each field from the input string. Whenever four fields are printed, a
newline is also printed so that the output will consists of rows that contain four

MDS.CH3_2.8.23.indd 110MDS.CH3_2.8.23.indd 110 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 111

fields. The output from the second awk command contains a trailing comma
in each line, along with two consecutive commas in the final output. These
extra commas are removed with the following code snippet:

sed -e 's/,$//' -e 's/,$//'

Launch the code in Listing 3.24, and you will see the following output:

0,3,male,22.0

1,1,female,38.0

1,3,female,26.0

1,1,female,35.0

0,3,male,35.0

0,3,male,23.0

0,1,male,54.0

0,3,male,2.0

1,3,female,27.01

2,female,14.0,1

3,female,4.0,1

1,female,58.0,0

3,male,20.0,0

3,male,39.0,0

3,female,14.0,1

2,female,55.0,0

3,male,2.0,1

2,male,23.0,0

3,female,31.0

CSV FILES WITH MULTI-ROW RECORDS

This section contains a CSV file with multi-row records such that each field
is on a separate line (e.g., survived:0) instead of comma-separated field
values for each record.

MDS.CH3_2.8.23.indd 111MDS.CH3_2.8.23.indd 111 08/02/23 1:39 PM08/02/23 1:39 PM

112 • Managing Datasets and Models

The solution is surprisingly simple when we use awk: set RS equal to the
string pattern that separates records. In our case, we need to set RS equal to
\n\n, after which $0 will contain the contents of each multi-line record. In
addition, specify FS='\n' so that get each line is treated as a field (i.e., $1,
$2, and so forth).

Listing 3.25 displays the contents of the CSV file multi_line_rows.
csv, and Listing 3.26 displays the contents of multi_line_rows.sh.

Listing 3.25: multi_line_rows.csv

survived:0

pclass:3

sex:male

age:22.0

survived:1

pclass:1

sex:female

age:38.0

survived:0

pclass:3

sex:male

age:35.0

survived:1

pclass:3

sex:female

age:27.0

Listing 3.26: multi_line_rows.sh

filename="multi_line_rows.csv"

cat $filename | awk '

BEGIN { RS="\n\n"; FS="\n" }

{

 # name/value pairs have this format:

MDS.CH3_2.8.23.indd 112MDS.CH3_2.8.23.indd 112 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 113

 # survived:0 pclass:3 sex:male age:22.0

 split($1,arr,":"); printf("%s,",arr[2]);

 split($2,arr,":"); printf("%s,",arr[2]);

 split($3,arr,":"); printf("%s,",arr[2]);

 split($4,arr,":"); printf("%s\n",arr[2]);

}'

The key idea in Listing 3.26 is shown in bold, which specifies the value of RS
(record separator) as two consecutive line feed characters and then specifies
FS (field separator) as a linefeed character. The main block of code splits the
fields $1, $2, $3, and $4 based on a colon (“:”) separator, and then prints the
second field, which is the actual data value.

Note that arr[1] contains the name of the fields, such as survived,
pclass, sex, or age, whereas arr[2] contains the value of the fields.
Launch the code in Listing 3.26, and you will see the following output:

0,3,male,22.0

1,1,female,38.0

0,3,male,35.0

1,3,female,27.0

There is one more detail: Listing 3.26 does not display the header line with
the names of the fields. Listing 3.27 shows you how to modify Listing 3.26 to
generate the header line.

Listing 3.27: multi_line_rows2.sh

filename="multi_line_rows.csv"

cat $filename | awk '

BEGIN { RS="\n\n"; FS="\n"; count=0}

{

 # executed once just to display the header line:

 if(count == 0) {

 count += 1

 split($1,arr,":"); header = arr[1]

 split($2,arr,":"); header = header "," arr[1]

 split($3,arr,":"); header = header "," arr[1]

MDS.CH3_2.8.23.indd 113MDS.CH3_2.8.23.indd 113 08/02/23 1:39 PM08/02/23 1:39 PM

114 • Managing Datasets and Models

 split($4,arr,":"); header = header "," arr[1]

 print header

 }

 # name/value pairs have this format:

 # survived:0 pclass:3 sex:male age:22.0

 split($1,arr,":"); printf("%s,",arr[2]);

 split($2,arr,":"); printf("%s,",arr[2]);

 split($3,arr,":"); printf("%s,",arr[2]);

 split($4,arr,":"); printf("%s\n",arr[2]);

}'

Listing 3.27 initializes the variable count with the value 0, follows by a con-
ditional block of code that constructs the contents of the variable header
(which will contain the names of the fields) by sequentially concatenating the
field names.

The contents of header are printed, and since the value of count has
been incremented, this block of code is executed only once, which prevents
the header line from being repeatedly displayed. Launch the code in Listing
3.27, and you will see the following output:

survived,pclass,sex,age

0,3,male,22.0

1,1,female,38.0

0,3,male,35.0

1,3,female,27.0

Other variations of the preceding code are also possible, such as changing the
display order of the fields. Listing 3.28 displays the fields in reverse order:
age, sex, pclass, and survived.

Listing 3.28: multi_line_rows3.sh

filename="multi_line_rows.csv"

cat $filename | awk '

BEGIN { RS="\n\n"; FS="\n"; count=0}

MDS.CH3_2.8.23.indd 114MDS.CH3_2.8.23.indd 114 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 115

{

 # fields displayed in reverse order:

 if(count == 0) {

 count += 1

 split($4,arr,":"); header = arr[1]

 split($3,arr,":"); header = header "," arr[1]

 split($2,arr,":"); header = header "," arr[1]

 split($1,arr,":"); header = header "," arr[1]

 print header

 }

 # name/value pairs have this format:

 # survived:0 pclass:3 sex:male age:22.0

 split($1,arr,":"); survived = arr[2];

 split($2,arr,":"); pclass = arr[2];

 split($3,arr,":"); sex = arr[2];

 split($4,arr,":"); age = arr[2];

 # fields displayed in reverse order:

 printf("%s,%s,%s,%s\n",age, sex, pclass, survived)

}'

Listing 3.28 contains a conditional block of code that constructs the con-
tents of the variable header by sequentially concatenating the field names
in reverse order. The contents of header are printed, and since the value of
count has been incremented, this block of code is executed only once, which
prevents the header line from being repeatedly displayed.

The second block of code constructs an output string by initializing the
variables survived, pclass, sex, and age and then printing them in reverse
order. Launch the code in Listing 3.28, and you will see the following output:

age,sex,pclass,survived

22.0,male,3,0

38.0,female,1,1

35.0,male,3,0

27.0,female,3,1

MDS.CH3_2.8.23.indd 115MDS.CH3_2.8.23.indd 115 08/02/23 1:39 PM08/02/23 1:39 PM

116 • Managing Datasets and Models

COLUMN SUBSET AND ROW SUBRANGE OF TITANIC CSV
FILE

At this point in the chapter, you have enough knowledge to create your own
variations with respect to the order in which the fields are displayed. Note
that the CSV file contains only a subset of the fields in the Titanic CSV file. As
a final example for this section, Listing 3.29 displays a subset of the columns
and a subrange of the rows in the Titanic dataset consisting of the passengers
who survived.

Listing 3.29: titanic-subrange.sh

filename="titanic.csv"

cat $filename | awk -F"," '

BEGIN { start_row = 10; end_row=25; survived_count = 0

 print "=> The row range is
from",start_row,"to",end_row,"\n"

}

{

 if(count == 0) {

 count += 1

 header = $3 "," $4 "," $7

 print header

 }

 if(count >= start_row && count <= end_row) {

 if($1 ~ /1/) {

 survived_count += 1

 print $3 "," $4 "," $7

 }

 }

 count += 1

}

END { print "\n=> Number of survivors:",survived_count}

'

MDS.CH3_2.8.23.indd 116MDS.CH3_2.8.23.indd 116 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 117

Listing 3.29 starts with the cat command that pipes the contents of a CSV file
to the awk command, which consists of three parts. The first part initializes
the variables start_row, end_row, and survived_count appropriately.

The second part executes a conditional code block only once, which incre-
ments the count variable and also sets and prints the contents of the vari-
able header. The second conditional code block processes the range of rows
between start_row and end_row, which in this example involves rows 10
through 25, respectively. For each of these rows, the survived_count is
incremented and then fields 3, 4, and 7 are printed. The final code snippet in
this part also increments the variable count, which keeps track of the number
of rows that are processed.

The third part prints the number of survivors, which is tracked by the
variable survived_count. Launch the code in Listing 3.29 and you will see
the following output:

=> The row range is from 10 to 25

sex,age,fare

female,27.0,11.1333

female,14.0,30.0708

female,4.0,16.7

female,58.0,26.55

female,55.0,16.0

male,,13.0

female,,7.225

male,34.0,13.0

female,15.0,8.0292

male,28.0,35.5

=> Number of survivors: 10

DATA NORMALIZATION

Normalization is the process of scaling numeric columns in a dataset so that
they have a common scale. In addition, the scaling is performed as follows:

MDS.CH3_2.8.23.indd 117MDS.CH3_2.8.23.indd 117 08/02/23 1:39 PM08/02/23 1:39 PM

118 • Managing Datasets and Models

1.	 scaling values to the range [0,1]

2.	 without losing information

3.	 without distorting any differences that exist in the ranges of values

You can perform data normalization via the function MinMaxScaler() in the
scikit-learn library.

Assigning Classes to Data

Listing 3.30 displays the contents of product_prices.csv, and Listing 3.31
displays the content of assign_classes.py that illustrates how to assign a
class value to each row in a dataset.

Listing 3.30: product_prices.csv

item,price

product1,100

product2,200

product3,250

product4,300

product5,400

Listing 3.31: assign_classes.py

import pandas as pd

df = pd.read_csv("product_prices.csv")

print("contents of df:")

print(df)

print()

define class ranges:

def class_value2(y):

 if y<=100:

 return '(1) 0 - 100'

 elif y<=200:

 return '(2) 100 - 200'

MDS.CH3_2.8.23.indd 118MDS.CH3_2.8.23.indd 118 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 119

 elif y<=250:

 return '(3) 200 - 250'

 else:

 return '(4) 250+'

def class_value(y):

 if y<=100:

 return '1'

 elif y<=200:

 return '2'

 elif y<=250:

 return '3'

 else:

 return '4'

df['class1'] = df['price'].apply(class_value)

df['class2'] = df['price'].apply(class_value2)

print("contents of df:")

print(df)

Listing 3.31 initializes the Pandas data frame df with the contents of the CSV
file product_prices.csv (shown in Listing 3.30) and displays its contents.
The next portion of Listing 3.31 is the Python function class_value2,
which returns a string whose contents are a range of values that are based on
the parameter y. For example, if y at most 100, the function returns the string
(1) 0 - 100, and similar strings for larger values of y.

The next portion of Listing 3.31 is the Python function class_value
that returns a string 1, 2, 3, or 4, depending on the parameter y. The last
portion of Listing 3.31 initializes the column class1 and class2 in df,
respectively, by invoking the apply() method with the Python functions
class_value and class_value2. Launch the code in Listing 3.31, and you
will see the following output:

MDS.CH3_2.8.23.indd 119MDS.CH3_2.8.23.indd 119 08/02/23 1:39 PM08/02/23 1:39 PM

120 • Managing Datasets and Models

contents of df:

 item price

0 sentence lists start with cap 100

1 product2 200

2 product3 250

3 product4 300

4 product5 400

contents of df:

 item price class1 class2

0 product1 100 1 (1) 0 - 100

1 product2 200 2 (2) 100 - 200

2 product3 250 3 (3) 200 - 250

3 product4 300 4 (4) 250+

4 product5 400 4 (4) 250+

Other Data Cleaning Tasks

As a quick review, here is a list of additional tasks that belong to data cleaning
that might be relevant to a given dataset:

	• Detect outliers/anomalies.
	• Resolve missing data.
	• Resolve incorrect data.
	• Resolve duplicate data.
	• Remove hidden control characters (ex: \t, ^L, and ^M).
	• Remove HTML tags (ex: <div>, <a>, and so forth).
	• Handle diacritical marks.
	• Check for gaps in sequences of data.
	• Check for unusual distributions.
	• Examine the actual data instead of relying on documentation.

HANDLING CATEGORICAL DATA

A feature containing categorical data can suffer from various issues, such as
missing data, invalid data, or inconsistently formatted data. The following

MDS.CH3_2.8.23.indd 120MDS.CH3_2.8.23.indd 120 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 121

section discusses examples of inconsistent categorical data followed by a sec-
tion that discusses how to map categorical data to numeric values.

Processing Inconsistent Categorical Data

This section contains examples of processing inconsistent data values. For
features that have very low cardinality, consider dropping those features, and
similarly for numeric columns, those with zero or very low variance.

Next, check the contents of categorical columns for inconsistent spellings
or errors. For example, suppose that a feature contains the values M and F
(for male and female), along with a mixture of gender-related strings, some of
which are in the following list:

male

Male

female

Female

m

f

M

F

The preceding categorical values for gender can be replaced with two categori-
cal values (unless you have a valid reason to retain some of the other values).
Moreover, if you are training a model whose analysis involves a single gender,
then you need to determine which rows (if any) of a dataset must be excluded.
Also check categorical data columns for redundant or missing whitespaces.

Check for data values that have multiple data types, such as a numerical
column with numbers as numerals and some numbers as strings or objects.
Ensure there are consistent data formats (numbers as integers or floating
numbers) and that dates have the same format (for example, do not mix a mm/
dd/yyyy date format with another date format, such as dd/mm/yyyy).

Mapping Categorical Data to Numeric Values

Character data is often called categorical data, examples of which include
people’s names, home or work addresses, and email addresses. Many types of
categorical data involve short lists of values. For example, the days of the week
and the months in a year involve seven and twelve distinct values, respectively.

MDS.CH3_2.8.23.indd 121MDS.CH3_2.8.23.indd 121 08/02/23 1:39 PM08/02/23 1:39 PM

122 • Managing Datasets and Models

Notice that the days of the week have a relationship: each day has a previous
day and a next day, and similarly for the months of a year.

However, the colors of an automobile are independent of each other: the
color red is not “better” or “worse” than the color blue. However, cars of a
certain color can have a statistically higher number of accidents, which is of
interest to insurance companies, but we will not address this case here.

There are several well-known techniques for mapping categorical values to
a set of numeric values. A simple example where you need to perform this con-
version involves the gender feature in the Titanic dataset. This feature is one of
the relevant features for training a machine learning model. The gender feature
has {M,F} as its set of values. As you will see later in this chapter, Pandas makes
it easy to convert the pair of values {M,F} to the pair of values {0,1}.

Another mapping technique involves mapping a set of categorical values to
a set of consecutive integer values. For example, the set {Red, Green, Blue}
can be mapped to the set of integers {0,1,2}. The set {Male, Female} can
be mapped to the set of integers {0,1}. The days of the week can be mapped to
{0,1,2,3,4,5,6}. Note that the first day of the week depends on the coun-
try: in some cases, it is Sunday and in other cases, it is Monday.

Another technique is called one-hot encoding, which converts each value
to a vector (check Wikipedia if you need a refresher regarding vectors). Thus,
{Male, Female} can be represented by the vectors [1,0] and [0,1],
and the colors {Red, Green, Blue} can be represented by the vectors
[1,0,0], [0,1,0], and [0,0,1].

If you vertically line up the two vectors for gender, they form a 2x2 iden-
tity matrix, and doing the same for the colors {R,G,B} will form a 3x3 identity
matrix, as shown here:

[1,0,0]

[0,1,0]

[0,0,1]

This technique generalizes in a straightforward manner: if you have n distinct
categorical values, you can map each of those values to one of the vectors in
an nxn identity matrix.

As another example, the titles in a set {"Intern","Junior","Mid-
Range","Senior", "Project Leader","Dev Manager"} have a hier-
archical relationship in terms of their salaries (which can also overlap, but
we’ll gloss over that detail for now).

MDS.CH3_2.8.23.indd 122MDS.CH3_2.8.23.indd 122 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 123

Another set of categorical data involves the season of the year: {"Spring",
"Summer", "Autumn", "Winter"}, and while these values are generally
independent of each other, there are cases in which the season is significant.
For example, the values for the monthly rainfall, average temperature, crime
rate, and foreclosure rate can depend on the season, month, week, or even
the day of the year.

If a feature has a large number of categorical values, then a one-hot
encoding will produce many additional columns for each datapoint. Since
the majority of the values in the new columns equal 0, this can increase the
sparsity of the dataset, which in turn can result in more overfitting and hence
adversely affect the accuracy of machine learning algorithms that you adopt
during the training process.

Another solution is to use a sequence-based solution in which N catego-
ries are mapped to the integers 1, 2, . . ., N. Another solution involves examin-
ing the row frequency of each categorical value. For example, suppose that N
equals 20, and there are 3 categorical values for 95% of the values for a given
feature. You can try the following:

1.	 Assign the values 1, 2, and 3 to those three categorical values.

2.	 Assign numeric values that reflect the relative frequency of those categor-
ical values.

3.	 Assign the category “OTHER” to the remaining categorical values.

4.	 Delete the rows whose categorical values belong to the 5%.

Mapping Categorical Data to One-Hot Encoded Values

Listing 3.32 displays the content of one_hot_encode.py that illustrates how
to determine perform one-hot encoding on a CSV file.

Listing 3.32: one_hot_encode.py

import pandas as pd

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

MDS.CH3_2.8.23.indd 123MDS.CH3_2.8.23.indd 123 08/02/23 1:39 PM08/02/23 1:39 PM

124 • Managing Datasets and Models

filename="titanic.csv"

df = pd.read_csv(filename)

sns.countplot(x='class',data=df)

#plt.show()

print("=> class values:")

print(df['class'])

print()

create ohe values:

ohe = pd.get_dummies(df['class'])

print("=> ohe:")

print(ohe)

Listing 3.32 starts with several import statements followed by a codes snip-
pet that initializes the Pandas data frame df with the contents of the CSV file
titanic.csv. The next snippet generates a chart that displays the relative
frequency of each label (there are three such labels) in the class feature.

The next portion of Listing 3.32 displays the set of values in the class
feature for the entire CSV file. The last portion of Listing 3.32 invokes the
get_dummies() method, which generates three new columns that represent
a one-hot encoding for the categorical values First, Second, and Third.
Launch the code in Listing 3.32, and you will see the following output:

=> class values:

0 Third

1 First

2 Third

3 First

4 Third

 ...

886 Second

887 First

888 Third

889 First

MDS.CH3_2.8.23.indd 124MDS.CH3_2.8.23.indd 124 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 125

890 Third

Name: class, Length: 891, dtype: object

=> ohe:

 First Second Third

0 0 0 1

1 1 0 0

2 0 0 1

3 1 0 0

4 0 0 1

..

886 0 1 0

887 1 0 0

888 0 0 1

889 1 0 0

890 0 0 1

[891 rows x 3 columns]

WORKING WITH CURRENCY

As you know, the format for currency depends on the country, which includes
different interpretations for a “,” and “.” in currency (and decimal values in
general). For example, 1,124.78 equals “one thousand one hundred twenty-
four point seven eight” in the US, whereas 1.124,78 has the same meaning
in Europe (i.e., the “.” symbol and the “,” symbol are interchanged).

If you need to combine data from datasets that contain different currency
formats, then you probably need to convert all the disparate currency formats
to a single common currency format. There is another detail to consider: cur-
rency exchange rates can fluctuate on a daily basis, which in turn can affect
the calculation of taxes, late fees, and so forth. Although you might be fortu-
nate enough where you will not have to deal with these issues, it is still worth
being aware of them.

MDS.CH3_2.8.23.indd 125MDS.CH3_2.8.23.indd 125 08/02/23 1:39 PM08/02/23 1:39 PM

126 • Managing Datasets and Models

Let’s start with a simple task of removing currency symbols from a set of
currency values in a CSV file, which is the topic of the next section.

Detect Currency Symbols

Listing 3.33 displays the contents of usa_currency.csv, and Listing 3.34
displays the content of detect_symbols.sh that illustrates how to detect
currency-specific symbols in currency values.

Listing 3.33: usa_currency.csv

1,234

 1,234

$1,234

$ 1,234

USD1,234

USD 1,234

EUR5,678

EUR 5,678

Listing 3.34: detect_symbols.sh

import

filename="usa_currency.csv"

cat $filename | awk '

BEGIN {valid=0; dollar=0; usd=0; eur=0; conv=0;}

{

 if($0 ~ /\$/) {

 printf("%10s contains a $ symbol\n",$0)

 dollar += 1

 }

 else if($0 ~ /USD/) {

 printf("%10s contains USD\n",$0)

 usd += 1

 }

MDS.CH3_2.8.23.indd 126MDS.CH3_2.8.23.indd 126 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 127

 else if($0 ~ /EUR/) {

 printf("%10s contains EUR: conversion required\n",$0)

 eur += 1

 conv += 1

 }

 else {

 printf("%10s contains no symbols\n", $0)

 valid += 1

 }

}

END {

 print ""

 printf("*** SUMMARY ***\n")

 printf("%4d strings contain a $ symbol\n",dollar)

 printf("%4d strings contain USD symbol\n",usd)

 �printf("%4d strings contain EUR symbol (conversion
required)\n",eur)

 printf("%4d strings without any symbols\n",valid)

}

'

Listing 3.34 starts with a cat command that redirects the contents of a CSV
file to an awk command that contains a BEGIN block and an END block. The
BEGIN block contains a sequence of if/else statements that check whether or
not $0 matches $, USD, or EUR, respectively, in order to determine the type of
currency in the current input line, after which the appropriate scalar variables
are incremented.

The END block consists of a set of print statements that display the num-
ber of occurrences of each type of currency that appears in the input CSV file.
Launch the code in Listing 3.34, and you will see the following output:

 1,234 contains no symbols

 1,234 contains no symbols

 $1,234 contains a $ symbol

MDS.CH3_2.8.23.indd 127MDS.CH3_2.8.23.indd 127 08/02/23 1:39 PM08/02/23 1:39 PM

128 • Managing Datasets and Models

 $ 1,234 contains a $ symbol

 USD1,234 contains USD

 USD 1,234 contains USD

 EUR5,678 contains EUR: conversion required

 EUR 5,678 contains EUR: conversion required

*** SUMMARY ***

 2 strings contain a $ symbol

 2 strings contain USD symbol

 2 strings contain EUR symbol (conversion required)

 2 strings without any symbols

Detect Currency Symbols

Listing 3.35 displays the content of remove_symbols.sh that illustrates how
to remove currency-specific symbols in currency values.

Listing 3.35: remove_symbols.sh

import

filename="usa_currency.csv"

cat $filename | awk '

BEGIN {valid=0; dollar=0; usd=0; eur=0; conv=0;}

{

 if($0 ~ /\$/) {

 printf("%10s contains a $ symbol: ",$0)

 dollar += 1

 gsub(/\$/, "", $0)

 printf("cleaned value = %6s\n", $0)

 }

 else if($0 ~ /USD/) {

 printf("%10s contains USD symbol: ",$0)

 usd += 1

 gsub(/USD/, "", $0)

MDS.CH3_2.8.23.indd 128MDS.CH3_2.8.23.indd 128 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 129

 printf("cleaned value = %6s\n", $0)

 }

 else if($0 ~ /EUR/) {

 printf("%10s contains EUR symbol: ",$0)

 eur += 1

 conv += 1

 gsub(/EUR/, "", $0)

 printf("cleaned value = %6s\n", $0)

 }

 else {

 printf("%10s contains no symbols\n", $0)

 valid += 1

 }

}

END {

 print ""

 printf("*** SUMMARY ***\n")

 printf("%4d strings contain a $ symbol\n",dollar)

 printf("%4d strings contain USD symbol\n",usd)

 �printf("%4d strings contain EUR symbol (conversion
required)\n",eur)

 printf("%4d strings without any symbols\n",valid)

}

'

Listing 3.35 contains all the code in Listing 3.34, along with the invocation of
the gsub() function in each conditional code block in the BEGIN block. The
purpose of the gsub() command is to remove the currency symbols. Launch
the code in Listing 3.35, and you will see the following output:

 1,234 contains no symbols

 1,234 contains no symbols

 $1,234 contains a $ symbol: cleaned value = 1,234

 $ 1,234 contains a $ symbol: cleaned value = 1,234

MDS.CH3_2.8.23.indd 129MDS.CH3_2.8.23.indd 129 08/02/23 1:39 PM08/02/23 1:39 PM

130 • Managing Datasets and Models

 USD1,234 contains USD symbol: cleaned value = 1,234

 USD 1,234 contains USD symbol: cleaned value = 1,234

 EUR5,678 contains EUR symbol: cleaned value = 5,678

 EUR 5,678 contains EUR symbol: cleaned value = 5,678

*** SUMMARY ***

 2 strings contain a $ symbol

 2 strings contain USD symbol

 2 strings contain EUR symbol (conversion required)

 2 strings without any symbols

Converting Currency Values

The next code sample shows you how to calculate the value between a pair of
currencies and the value of Bitcoin in USD. As an initial step, launch the fol-
lowing command from the command line:

pip3 install forex-python

Listing 3.36 displays the content of convert_currency.py that illustrates
how to determine some currency values.

Listing 3.36: convert_currency.py

import pandas as pd

from forex_python.converter import CurrencyRates

curr = CurrencyRates()

usd = curr.get_rates('USD')

print("USD currency:",usd)

print()

#convert USD to EURO:

usd2eur = curr.get_rate('USD', 'EUR')

print("usd2eur:", usd2eur)

#rounded = print(round(usd2eur, 3))

MDS.CH3_2.8.23.indd 130MDS.CH3_2.8.23.indd 130 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 131

#print("rounded:", rounded)

from forex_python.bitcoin import BtcConverter

Bitcoin in USD:

btc = BtcConverter()

bcoin = btc.get_latest_price('USD')

print("bcoin: ", bcoin)

Listing 3.36 starts with an import statement and then initializes the variable
curr as an instance of the CurrencyRates class, and then initializes the vari-
able usd with a set of currency USD currency rates.

The next code snippet initializes the currency exchange rate from USD
to the EUR currency. The final code block initializes the variable btc as an
instance of the BtcConverter class and then displays the latest Bitcoin price
in USD currency. Launch the code in Listing 3.36, and you will see the follow-
ing output:

USD currency: {'EUR': 0.8880994671403198, 'JPY':
114.6714031971581, 'BGN': 1.7369449378330375, 'CZK':
21.611900532859682, 'DKK': 6.608081705150977, 'GBP':
0.7415452930728242, 'HUF': 316.50088809946715, 'PLN':
4.067850799289521, 'RON': 4.392984014209592, 'SEK':
9.275133214920071, 'CHF': 0.9213143872113678, 'ISK':
127.708703374778, 'NOK': 8.84884547069272, 'HRK':
6.685168738898757, 'RUB': 76.66412078152754, 'TRY':
13.378685612788633, 'AUD': 1.4092362344582594, 'BRL':
5.290586145648313, 'CAD': 1.2698934280639433, 'CNY':
6.36101243339254, 'HKD': 7.795648312611013, 'IDR':
14321.74955595027, 'INR': 74.77531083481351, 'KRW':
1202.1403197158081, 'MXN': 20.541385435168742, 'MYR':
4.185523978685613, 'NZD': 1.5126110124333927, 'PHP':
51.079928952042636, 'SGD': 1.349822380106572, 'THB':
33.195381882770874, 'ZAR': 15.242717584369451}

usd2eur: 0.8880994671403198

bcoin: 38515.2783

Listing 3.37 displays the content of convert_currency2.py that illustrates
how to display side-by-side countries and their currency conversion rates.

MDS.CH3_2.8.23.indd 131MDS.CH3_2.8.23.indd 131 08/02/23 1:39 PM08/02/23 1:39 PM

132 • Managing Datasets and Models

Listing 3.37: convert_currency2.py

import pandas as pd

df = pd.DataFrame(data=['1000USD','2000EUR','3000EUR'],co
lumns=['price'])

print("Data set:")

print(df)

print()

cc = pd.DataFrame({'from':['EUR','USD'],'to':['USD','EUR']
,'rate':[1.33,0.75]})

print("Conversion Table:")

print(cc)

print()

Listing 3.37 starts with an import statement to initialize the Pandas data
frame df with three column titles, followed by the variable cc, which contains
the currency conversion rates. The next code snippet displays the contents of
cc in a tabular format. Launch the code in Listing 3.37, and you will see the
following output:

Data set:

 price

0 1000USD

1 2000EUR

2 3000EUR

Conversion Table:

 from to rate

0 EUR USD 1.33

1 USD EUR 0.75

Listing 3.38 displays the content of mixed_currency.csv, and Listing
3.39 displays the content of convert_currency3.sh that illustrates how to
replace a “,” with a “.” to ensure that strings have a valid USD currency format.

MDS.CH3_2.8.23.indd 132MDS.CH3_2.8.23.indd 132 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 133

Listing 3.38: mixed_currency.csv

product1|1129.95

product2|2110,99

product3|2.110,99

product4|2.110.678,99

product5|1,130.95

Listing 3.39: convert_currency3.sh

filename="mixed_currency.csv"

echo "=> initial contents:"

cat $filename

echo

echo "=> UPDATED CONTENTS OF CSV FILE:"

awk -F"|" '

BEGIN { modified=0 }

{

 comma = index($2,",")

 period = index($2,".")

 OLD2=$2

 if(comma > 0 && period == 0) {

 gsub(/,/,".",$2)

 modified += 1

 #print "comma(s) but no period:", $2

 }

 else if(comma > period) {

 # replace right-most "," with "Z"

 gsub(/,/,"Z",$2)

 # replace "." with ","

 gsub(/\./,",",$2)

 # replace "Z" with "."

MDS.CH3_2.8.23.indd 133MDS.CH3_2.8.23.indd 133 08/02/23 1:39 PM08/02/23 1:39 PM

134 • Managing Datasets and Models

 gsub(/Z/,".",$2)

 modified += 1

 #print "comma(s) before period:", $2

 }

 NEW2=$2

 printf("OLD: %18s NEW: %15s\n",OLD2, NEW2)

}

END { print "=> Modified lines:",modified }

' < mixed_currency.csv

Listing 3.39 starts by initializing the variable filename as mixed_
currency.csv and then displays its contents. The next portion of Listing
3.39 is an awk script that initializes the variables comma and period with
the index of a comma (“,”) and period (“.”) for every input line from the file
mixed_currency.csv. Unlike other programming languages, there is no
explicit loop keyword in the code: instead, it is an implicit aspect of the awk
programming language.

The next block of conditional code checks for the presence of a comma
and the absence of a period: if so, then the gsub() function replaces the
comma (“,”) with a period (“.”) in the second field, which is the numeric
portion of each line in Listing 3.38, and the variable modified is incremented.
For example, the input line product3|2110,99 is processed by the condi-
tional block and replaces the content of $2, which is the second field, with the
value 2110.99.

The next portion of code checks for the presence of a comma and a period
where the location of the comma is on the right side of the period: if so, then
three substitutions are performed. First, the right-most comma is replaced
with the letter Z, after which the period is replaced with a comma, and then
the letter Z is replaced with a period. Launch the code in Listing 3.39 with the
following code snippet:

./convert-currency3.sh

You will see the following output:

=> INITIAL CONTENTS OF CSV FILE:

product1|1129.95

product2|2110,99

MDS.CH3_2.8.23.indd 134MDS.CH3_2.8.23.indd 134 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 135

product3|2.110,99

product4|2.110.678,99

product5|1,130.95

=> UPDATED CONTENTS OF CSV FILE:

OLD: 1129.95 NEW: 1129.95

OLD: 2110,99 NEW: 2110.99

OLD: 2.110,99 NEW: 2,110.99

OLD: 2.110.678,99 NEW: 2,110,678.99

OLD: 1,130.95 NEW: 1,130.95

=> Modified lines: 3

WORKING WITH DATES

The format for calendar dates varies among different countries, and this
belongs to something called the localization of data (not to be confused with
i18n, which is a short-hand term for internationalization). Some examples
of date formats are shown here (and the first four are probably the most
common):

MM/DD/YY

MM/DD/YYYY

DD/MM/YY

DD/MM/YYYY

YY/MM/DD

M/D/YY

D/M/YY

YY/M/D

MMDDYY

DDMMYY

YYMMDD

If you need to combine data from datasets that contain different date formats,
then converting the disparate date formats to a single common date format
will ensure consistency.

MDS.CH3_2.8.23.indd 135MDS.CH3_2.8.23.indd 135 08/02/23 1:39 PM08/02/23 1:39 PM

136 • Managing Datasets and Models

The next section shows you how to check for dates in a DD-MM-YYYY
format that are out of range. However, this code sample does not check for
leap years.

Find Out of Range Dates

Listing 3.40 displays the contents of dates.txt, and Listing 3.41 displays the
content of out_of_range.sh that checks for dates that are out of range (but
not leap years).

Listing 3.40: dates.txt

12-28-2022

02-28-2022

05-13-2021

13-11-2023

13-32-2024

Listing 3.41: out_of_range.sh

cat dates.txt | awk -F"-" '

BEGIN {

 days["01"] = 31; days["02"] = 28; days["03"] = 31;

 days["04"] = 30; days["05"] = 31; days["06"] = 30;

 days["07"] = 31; days["08"] = 31; days["09"] = 30;

 days["10"] = 31; days["11"] = 30; days["12"] = 31;

}

{

 month = $1; day = $2; year = $3;

 if((day <= days[month]) && (month <= 12)) {

 print $0,"is a valid date"

 } else {

 print $0,"is an INVALID date"

 }

}

'

MDS.CH3_2.8.23.indd 136MDS.CH3_2.8.23.indd 136 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 137

Listing 3.41 starts by invoking the cat command with the CSV file in order
to pipe the output to an awk command containing a BEGIN block the initial-
izes the array variable days with the number of days in each month of the
year.

Next, the main execution block initializes the variables month, day, and
year with the contents of $1, $2, and $3, respectively. Then a conditional code
block checks whether or not the day value is at most the value specified in
days[month] and also that the month value is at most 12: if true then the date
is valid, otherwise the date is invalid. Launch the code in Listing 3.35, and you
will see the following output:

12-28-2022 is a valid date

02-28-2022 is a valid date

05-13-2021 is a valid date

13-11-2023 is an INVALID date

13-32-2024 is an INVALID date

Listing 3.42 displays the contents of dates2.txt, and Listing 3.43 displays
the content of out_of_range2.sh that checks for dates that are out of range,
including leap years.

Listing 3.42: dates2.txt

02-28-1900

02-29-1900

02-28-2000

02-29-2000

02-28-2020

02-29-2020

02-28-2022

02-29-2022

05-13-2021

13-11-2023

13-32-2024

MDS.CH3_2.8.23.indd 137MDS.CH3_2.8.23.indd 137 08/02/23 1:39 PM08/02/23 1:39 PM

138 • Managing Datasets and Models

Listing 3.43: out_of_range2.sh

cat dates2.txt | awk -F"-" '

function leap_year(year){

 �# centuries that are not multiples of 400 are not leap
years

 �# return 0 for leap years and return 1 for non-leap
years

 if(year % 4 == 0) {

 if(year % 100 == 0) {

 if(year % 400 == 0) return 0

 else return 1

 } else {

 return 0

 }

 } else {

 return 1

 }

}

BEGIN {

 days["01"] = 31; days["02"] = 28; days["03"] = 31;

 days["04"] = 30; days["05"] = 31; days["06"] = 30;

 days["07"] = 31; days["08"] = 31; days["09"] = 30;

 days["10"] = 31; days["11"] = 30; days["12"] = 31;

}

{

 month = $1; day = $2; year = $3;

 # check for leap year:

 leap = leap_year(year)

 if (leap == 0) days["02"] = 29

 if (leap == 1) days["02"] = 28

MDS.CH3_2.8.23.indd 138MDS.CH3_2.8.23.indd 138 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 139

 if((month <= 12) && (day <= days[month])) {

 print $0,"<= valid date"

 } else {

 print $0,"<= INVALID date"

 }

}

'

Listing 3.43 contains the same code as Listing 3.42, along with new code
blocks, starting with the function leap_year() that checks whether or not a
given positive integer is a leap year. The actual code is an implementation of
the comments at the beginning of the function definition.

Another new code block is defined in the main execution block, which
invokes the leap_year() function to determine whether or not the current
year is a leap year, after which the value of days["02"] is updated appropri-
ately. Launch the code in Listing 3.43, and you will see the following output:

12-28-2022 is a valid date

02-28-2022 is a valid date

05-13-2021 is a valid date

13-11-2023 is an INVALID date

13-32-2024 is an INVALID date

Find Missing Dates

Listing 3.44 displays the content of pandas_missing_dates.py that illus-
trates how to display missing dates from a range of dates.

Listing 3.44: pandas_missing_dates.py

import pandas as pd

A dataframe from a dictionary of lists

data = {'Date': ['2022-01-18',
'2022-01-20','2022-01-21','2022-01-24'],

 'Name': ['Joe', 'John', 'Jane', 'Jim']}

df = pd.DataFrame(data)

MDS.CH3_2.8.23.indd 139MDS.CH3_2.8.23.indd 139 08/02/23 1:39 PM08/02/23 1:39 PM

140 • Managing Datasets and Models

Setting the Date values as index:

df = df.set_index('Date')

to_datetime() converts string format to a DateTime
object:

df.index = pd.to_datetime(df.index)

start_d="2022-01-18"

end_d="2022-01-25"

display dates that are not in the sequence:

print("MISSING DATES BETWEEN",start_d,"and",end_d,":")

dates = pd.date_range(start=start_d, end=end_d).
difference(df.index)

for date in dates:

 print("date:",date)

print()

Listing 3.44 starts with an import statement and then initializes the variable
data as a dictionary of lists, which is used to initialize the Pandas data frame
df. The next code snippet sets the field Date as the index, followed by con-
verting the strings in df to DateTime objects, as shown here:

df.index = pd.to_datetime(df.index)

Then the variables start_d and end_d are initialized as string-based dates
that represent a date range, after which the variable dates is initialized with
a set of missing dates. The final loop displays the missing dates. Launch the
code in Listing 3.35, and you will see the following output:

MISSING DATES BETWEEN 2022-01-18 and 2022-01-25 :

date: 2022-01-19 00:00:00

date: 2022-01-22 00:00:00

date: 2022-01-23 00:00:00

date: 2022-01-25 00:00:00

MDS.CH3_2.8.23.indd 140MDS.CH3_2.8.23.indd 140 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 141

Find Unique Dates

Listing 3.45 displays the contents of multiple_dates.csv, and Listing 3.46
displays the content of pandas_misc1.py that determines the unique years
in Listing 3.45.

Listing 3.45: multiple_dates.csv

"dates","values"

2021-01-31,40

2021-02-28,45

2021-03-31,56

2021-04-30,NaN

2022-05-31,NaN

2022-06-30,140

2022-07-31,95

2022-08-31,40

2023-09-30,55

2023-10-31,NaN

2023-11-15,65

Listing 3.46: pandas_misc1.py

import pandas as pd

df = pd.read_csv('multiple_dates.csv',
parse_dates=['dates'])

print("df:")

print(df)

print()

the_years = df['dates']

year_list = set(the_years)

MDS.CH3_2.8.23.indd 141MDS.CH3_2.8.23.indd 141 08/02/23 1:39 PM08/02/23 1:39 PM

142 • Managing Datasets and Models

arr1 = np.array([])

for long_year in year_list:

 year = str(long_year)

 short_year = year[0:4]

 arr1 = np.append(arr1,short_year)

unique_years = set(arr1)

print("unique_years:")

print(unique_years)

print()

unique_arr = np.array(pd.DataFrame.
from_dict(unique_years))

print("unique_arr:")

print(unique_arr)

print()

Listing 3.46 starts with an import statement and then initializes the Pandas
data frame df with the contents of the CSV file multiple_dates.csv. After
initializing the variable the_years with the dates feature in df, and also
initializing year_list with the distinct values in the variable the_years,
a loop extracts the year value for each date and appends this value to the
NumPy array arr1.

Next, unique_years is populated with the distinct values in the vari-
able arr1 and then displayed. The final code snippet initializes the variable
unique_arr with the unique years from the dictionary unique_years, and
the result is displayed. Launch the code in Listing 3.46, and you will see the
following output:

MISSING DATES BETWEEN 2022-01-18 and 2022-01-25

df:

 dates values

0 2021-01-31 40.0

1 2021-02-28 45.0

2 2021-03-31 56.0

3 2021-04-30 NaN

MDS.CH3_2.8.23.indd 142MDS.CH3_2.8.23.indd 142 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 143

4 2022-05-31 NaN

5 2022-06-30 140.0

6 2022-07-31 95.0

7 2022-08-31 40.0

8 2023-09-30 55.0

9 2023-10-31 NaN

10 2023-11-15 65.0

unique_years:

{'2022', '2023', '2021'}

unique_arr:

[['2022']

 ['2023']

 ['2021']]

Switch Date Formats

Listing 3.47 displays the contents of standard_formats.csv, and Listing
3.48 displays the content of switching_date_formats.sh that illustrates
how to display missing dates from a range of dates.

Listing 3.47: standard_dates.csv

2021-01-31

2021-02-28

2022-04-30

2022-05-31

2023-10-31

2023-11-15

Listing 3.48: switching_date_formats.sh

file="standard_dates.csv"

echo "first output:"

cat $file | awk -F"-" ' { print $3 $2 $1 }'

echo

MDS.CH3_2.8.23.indd 143MDS.CH3_2.8.23.indd 143 08/02/23 1:39 PM08/02/23 1:39 PM

144 • Managing Datasets and Models

echo "second output:"

cat $file | awk -F"-" '{ print $3,$2,$1 }'

echo

echo "third output:"

cat $file | awk -F"-" ' { print $3 "-" $2 "-" $1 }'

Listing 3.48 starts by initializing the variable file with standard_dates.
csv, whose contents are shown in Listing 3.47. The remaining portion of
Listing 3.48 consists of three short code blocks, each of which contains an
awk command that specifies a hyphen (“-”) as the delimiter for the dates. The
values of $1, $2, and $3 are the three hyphen-delimited values in each input
line. For example, $1, $2, and $3 equal 2021, 01, and 31, respectively, for the
first input line 2021-01-31.

The first awk command displays the date fields in the order $3, $2, and
$1. The second first awk command also displays the date fields in the order
$3, $2, and $1, along with a comma delimiter. The third awk command also
displays the date fields in the order $3, $2, and $1, along with a hyphen (“-”)
delimiter. Note that if you want to display the date fields in the order month,
day, and year, use the following statement: print $2,$3,$1. Launch the
code in Listing 3.48, and you will see the following output:

first output:

31012021

28022021

30042022

31052022

31102023

15112023

second output:

31 01 2021

28 02 2021

30 04 2022

31 05 2022

31 10 2023

15 11 2023

MDS.CH3_2.8.23.indd 144MDS.CH3_2.8.23.indd 144 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 145

third output:

31-01-2021

28-02-2021

30-04-2022

31-05-2022

31-10-2023

15-11-2023

WORKING WITH QUOTED FIELDS

The code sample in this section shows you how to parse the fields in a CSV file
that contains a mixture of unquoted fields and quoted fields, in case you want
to perform additional processing on each field.

Listing 3.49 displays the contents quoted_fields1.csv, and Listing
3.50 displays the content of quoted_fields1.sh that illustrates how to
parse a CSV file that contains quoted (and possibly empty) fields.

Listing 3.49: quoted_fields1.csv

1 2 "5 6" 7 "8 9" A "B C"

"" xer xyz "a b" c "d e" f "g h"

W Z "" "a b" "" cccc "d e" deff

Listing 3.50: quoted_fields1.sh

file="standard_dates.csv"

filename="quoted_fields1.csv"

echo "Contents of $filename:"

echo "----------------------"

cat $filename

echo "----------------------"

echo ""

MDS.CH3_2.8.23.indd 145MDS.CH3_2.8.23.indd 145 08/02/23 1:39 PM08/02/23 1:39 PM

146 • Managing Datasets and Models

cat $filename | sed 's/""/NaN/g' | awk '

BEGIN { idx = 1; row = 1 }

{

 print "LINE:",$0

 split($0,arr1,"")

 array_len = length(arr1)

 print "LIST OF FIELDS:"

 while(idx<array_len) {

 if(arr1[idx] != "\"") {

 if(arr1[idx] == " ") idx += 1

 �while((idx<array_len) && (arr1[idx] != "\"") &&
(arr1[idx] != " ")){

 printf("%s",arr1[idx])

 idx += 1

 }

 print ""

 # skip quote and a blank space:

 idx += 1

 }

 if(arr1[idx] == "\"") {

 idx += 1

 �while((idx<array_len) && (arr1[idx] != "\"") &&
(arr1[idx] != " ")){

 printf("%s",arr1[idx])

 idx += 1

 }

 # skip quote and a blank space:

 idx += 1

 }

 }

MDS.CH3_2.8.23.indd 146MDS.CH3_2.8.23.indd 146 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 147

 print "END OF ROW"

 row += 1; idx = 0

}

'

Listing 3.50 starts by displaying the contents of the CSV file in Listing 3.49,
followed by an awk statement that prints the current line and then splits the
same line into an array variable arr1 that contains the characters in the cur-
rent string.

The next portion contains a while loop that has two parts with condi-
tional logic. If the current character is not a quotation (“”) mark, then a while
loop prints the characters in the array arr1 as long as each character is not a
quotation (“”) mark or a space. In addition, this while loop will terminate if
the end of the current line is reached.

The second part checks if the current character is a quotation (“”) mark: if
so, then a while loop prints the characters in the array arr1 as long as each
character is not a quotation (“”) mark or a space. In addition, this while loop
will terminate if the end of the current line is reached.

After the outer while loop terminates, the number of processed records
is incremented and the variable idx is reset to 0. Launch the code in Listing
3.50, and you will see the following output:

Contents of quoted_fields1.csv:

1 2 "5 6" 7 "8 9" A "B C"

"" xer xyz "a b" c "d e" f "g h"

W Z "" "a b" "" cccc "d e" deff

LINE: 1 2 "5 6" 7 "8 9" A "B C"

LIST OF FIELDS:

1

2

56

7

89

MDS.CH3_2.8.23.indd 147MDS.CH3_2.8.23.indd 147 08/02/23 1:39 PM08/02/23 1:39 PM

148 • Managing Datasets and Models

A

BC

END OF ROW

LINE: NaN xer xyz "a b" c "d e" f "g h"

LIST OF FIELDS:

NaN

xer

xyz

ab

c

de

f

gh

END OF ROW

LINE: W Z NaN "a b" NaN cccc "d e" deff

LIST OF FIELDS:

W

Z

NaN

ab

NaN

cccc

de

deff

END OF ROW

Listing 3.51 displays the content quoted_fields1.py that uses Pandas to
read the contents of the CSV file quoted_fields1.csv, which gives you an
idea of the parsing that Pandas performs, which in turn involves much less
code than the awk script.

MDS.CH3_2.8.23.indd 148MDS.CH3_2.8.23.indd 148 08/02/23 1:39 PM08/02/23 1:39 PM

Cleaning Datasets • 149

Listing 3.51: quoted_fields1.py

import pandas as pd

df = pd.read_csv("quoted_fields1.csv")

print("contents of df:")

print(df)

Listing 3.51 contains familiar Pandas code, and its output is shown below:

contents of df:

 1 2 "5 6" 7 "8 9" A "B C"

0 xer xyz "a b" c "d e" f "g h"

1 W Z "" "a b" "" cccc "d e" deff

WHAT IS SMOTE?

SMOTE (Synthetic Minority Oversampling Technique) is a technique for synthe-
sizing new samples for a dataset. This technique is based on linear interpolation:

Step 1: Select samples that are close in the feature space.

Step 2: Draw a line between the samples in the feature space.

Step 3: Draw a new sample at a point along that line.

A more detailed explanation of the SMOTE algorithm is here:

	• Select a random sample “a” from the minority class.
	• Find k nearest neighbors for that example.
	• Select a random neighbor “b” from the nearest neighbors.
	• Create a line L that connects “a” and “b.”
	• Randomly select one or more points “c” on line L.

If need be, you can repeat this process for the other (k-1) nearest neighbors
to distribute the synthetic values more evenly among the nearest neighbors.

One disadvantage of SMOTE is that the creation of new data points does
not take into account the majority class, which could result in some ambiguity
if there is overlap between the minority and majority classes. However, varia-
tions of SMOTE are more selective about generating synthetic samples, and
you can perform an online search about those variations.

MDS.CH3_2.8.23.indd 149MDS.CH3_2.8.23.indd 149 08/02/23 1:39 PM08/02/23 1:39 PM

150 • Managing Datasets and Models

The following article discusses aspects of SMOTE, along with an exten-
sive code sample for fraud detection, as well as the use of a GAN (Generative
Adversarial Network):

https://towardsdatascience.com/synthetic-data-to-help-fraud-machine-
learning-modelling-c28cdf04e12a

The preceding article uses a type of GAN called a CTGAN, and an inde-
pendent Python-based code sample with CTGAN is here:

https://github.com/koav/CTGAN

One more thing: you will probably need to modify the contents of the
notebook gas.ipynb (from the preceding Github repository) to include the
following code block at the top of the notebook:

!pip install table_evaluator --user

!pip install pandas-profiling[notebook]

!pip install ctgan

!pip install sdv

!pip install https://github.com/pandas-profiling/pandas-
profiling/archive/master.zip

DATA WRANGLING

Data wrangling means different things to different people, which might cause
some confusion unless people clarify what they mean when they talk about data
wrangling. Data wrangling involves multiple steps that can include transform-
ing one or more files. Here are some of the interpretations of data wrangling:

	• It is part of a sequence of steps.
	• Data wrangling transforms datasets.
	• It is essentially the same as data cleaning.

This book adopts the approach of the first and second bullet items, but not the
third. Navigate to the following webpage, which lists data wrangling as part of
a six-step process:

https://en.wikipedia.org/wiki/Data_wrangling

In addition to the steps outlined in the preceding link, data wrangling can
also involve the following tasks:

MDS.CH3_2.8.23.indd 150MDS.CH3_2.8.23.indd 150 08/02/23 1:39 PM08/02/23 1:39 PM

https://towardsdatascience.com/synthetic-data-to-help-fraud-machine-learning-modelling-c28cdf04e12a
https://towardsdatascience.com/synthetic-data-to-help-fraud-machine-learning-modelling-c28cdf04e12a
https://github.com/pandas-profiling/pandas-profiling/archive/master.zip
https://github.com/pandas-profiling/pandas-profiling/archive/master.zip
https://en.wikipedia.org/wiki/Data_wrangling
https://github.com/koav/CTGAN

Cleaning Datasets • 151

	• transforming datasets from one format into another format (convert)
	• creating new datasets from subsets of columns in existing datasets (extract)

As you can see, the preceding steps differentiate between converting data to
a different format versus extracting data from multiple datasets to create new
datasets. The conversion process can be considered a data cleaning task if only
the first step is performed; i.e., there is no extraction step.

One additional comment: the interpretation of data wrangling in this
chapter is convenient, but it is not a universally accepted standard definition.
Hence, you are free to adopt your own interpretation of data wrangling (ver-
sus data cleaning), if you find one that better suits your needs.

Data Transformation

In general, data cleaning involves a single data source (not necessarily in a
CSV format), with some type of modification to the content of the data source
(e.g., filling missing values and changing date formats), without creating a
second data source.

For example, suppose that the data source is a MySQL table called
employees that contains employee-related information. After data cleaning
tasks on the employees table are completed, the result will still be named the
employees table. In database terminology, data cleaning is somewhat anal-
ogous to executing a SQL statement that involves a SELECT on a single table.

However, if two CSV files contain different date formats and you need to
create a single CSV file that is based on the date columns, then there will be
some type of conversion process that could be one of the following:

	• Convert the first date format to the second date format.
	• Convert the second date format to the first date format.
	• Convert both date formats to a third date format.

In the case of financial data, you are likely to also encounter different cur-
rencies, which involves a conversion rate between a pair of currencies. Since
currency conversion rates fluctuate, you need to decide the exchange rate to
use for the data, which can be as follows:

	• the exchange rate during the date that the CSV files were generated
	• the current currency exchange rate
	• some other mechanism

MDS.CH3_2.8.23.indd 151MDS.CH3_2.8.23.indd 151 08/02/23 1:39 PM08/02/23 1:39 PM

152 • Managing Datasets and Models

In addition, you might also need to convert the CSV files to XML documents,
where the latter might be required to conform to an XML schema, and perhaps
also conform to XBRL, which is a requirement for business reporting purposes:

https://en.wikipedia.org/wiki/XBRL

Data transformation can involve two or more data sources to create yet
another data source whose attributes are in the required format. Here are
four scenarios of data transformation with just two data sources A and B,
where data from A and from B are combined to create data source C, where
A, B, and C can have different file formats:

	• all attributes in A and all attributes in B
	• all attributes in A and some attributes in B
	• a subset of the attributes in A and all attributes in B
	• a subset of the attributes in A and some attributes in B

In database terminology, data transformation is somewhat analogous to exe-
cuting a SQL statement that involves a SELECT on two or more database tables
with a JOIN clause. Such SQL statements typically involve a subset of columns
from each database table, which would correspond to selecting a subset of the
features in the data sources.

There is also the scenario involving the concatenation of two or more data
sources. If all data sources have the same attributes, then their concatenation
is straightforward, but you might also need to check for duplicate values. For
example, if you want to load multiple CSV files into a database table that does
not allow duplicates, then one solution involves concatenating the CSV files
from the command line and then excluding the duplicate rows.

SUMMARY

This chapter started with several Pandas code samples that use Pandas to
read CSV files and then calculate statistical values such as the mean, median,
mode, and standard deviation of the data values.

Then you learned how to use Pandas to handle missing values in CSV
files, starting with CSV files that contain a single column, followed by two-
column CSV files.

MDS.CH3_2.8.23.indd 152MDS.CH3_2.8.23.indd 152 08/02/23 1:39 PM08/02/23 1:39 PM

https://en.wikipedia.org/wiki/XBRL

C H A P T E R 4
Working with Models

This chapter contains an assortment of topics: data scaling, the confusion
matrix, feature engineering, model training, feature importance, feature
selection, and feature extraction.

The first part of this chapter briefly discusses techniques for scaling data
and the importance of performing this task. You will also learn how to scale
numeric data via normalization, standardization, and via units of measure.

The second part of this chapter introduces the confusion matrix as well as
metrics such as precision, recall, specificity, accuracy, and F1 score. You will
also learn about the ROC curve and AUC curve, which are useful for evalu-
ating a trained model.

The third part of this chapter shows you how to train a model using the
kNN algorithm with various datasets, including a wine dataset, a BMI dataset,
and a diabetes dataset. This section also introduces the SMOTE algorithm for
generating synthetic data.

The fourth section discusses feature engineering, which comprises feature
selection and feature extraction. The final section discusses how to perform
data cleaning, which can involve working with labeled and unlabeled data.

IMPORT STATEMENTS FOR THIS CHAPTER

The following list contains all the import statements that you will encounter
in the Python code samples for this chapter:

	• from lazypredict.Supervised import LazyClassifier
	• from scikit-learn.datasets import make_classification

MDS.CH4_2.8.23.indd 153MDS.CH4_2.8.23.indd 153 08/02/23 1:39 PM08/02/23 1:39 PM

154 • Managing Datasets and Models

	• from scikit-learn.ensemble import RandomForestClassifier
	• from scikit-learn.feature_selection import RFE
	• from scikit-learn.model_selection import train_test_split
	• from scikit-learn.preprocessing import StandardScaler
	• from scikit-learn.tree import DecisionTreeClassifier
	• from sklearn.datasets import load_breast_cancer
	• from sklearn.metrics import classification_report
	• from sklearn.metrics import confusion_matrix
	• from sklearn.model_selection import train_test_split
	• from sklearn.neighbors import KNeighborsClassifier
	• from sklearn.preprocessing import StandardScaler
	• import matplotlib.pyplot as plt
	• import numpy as np
	• import pandas as pd
	• import seaborn as sns

TECHNIQUES FOR SCALING DATA

This section and its subsections contain an overview of various scaling tech-
niques for data in a dataset. In a subsequent section, you will see code samples
that scale data values.

The following list contains many of the data scaling techniques that you
can use to scale data in a dataset:

	• Standard Scaler
	• Normalizer
	• Max-Abs Scaling
	• Min-Max Scaling
	• Power Transformer
	• Quantile Transformation
	• Robust Scaler

The first pair of algorithms (Standard Scaler and Normalization) are fre-
quently used for scaling data, and you will see these techniques in many
(most?) online code samples.

Normalization rescales the values in the set X so that the scaled values
lie in the range of [0,1] by subtracting Xmin from all the values and then

MDS.CH4_2.8.23.indd 154MDS.CH4_2.8.23.indd 154 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Models • 155

dividing all values by (Xmax-Xmin), which are the maximum and minimum
values, respectively, in the set X.

However, standardization rescales the values in the set X by subtract-
ing the mean from all the values and then dividing all values by std (the
standard deviation), so that the new values are distributed with mean 0 and
variance 1.

Although there are multiple algorithms for scaling the values in a dataset,
there is no algorithm that is always the “best” choice for scaling the data in a
dataset. Moreover, some scaling techniques can influence machine learning
classification algorithms, as described in the next section.

Algorithms Influenced by Scaling Data

Algorithms that perform better with scaled data include the SVM (Support
Vector Machines), MLP (Multi-Layer Perceptrons), kNN (k Nearest
Neighbor), and NB (Naive Bayes). The underlying reason for this improve-
ment is because these algorithms involve a distance metric. These algorithms
also perform better when the data has been normalized.

By contrast, Naive Bayes, CART (Classification and Regression Trees),
random forests, and LDA (Latent Dirichlet Allocation) are not affected by
scaled data values because the associated algorithms do not involve a dis-
tance metric: instead, these algorithms use entropy, the Gini impurity, or
variance-based techniques to determine the location of data values in their
associated structures (such as trees).

EXAMPLES OF SPLITTING AND SCALING DATA

Tasks for cleaning data include checking for invalid data, duplicate data, and
missing data. Additional data cleaning tasks can involve currency values and
properly formatted dates.

After completing such tasks, you might also need to resize the range of
values for individual features, which is called “squashing” the data when it is
processed via an activation function in a neural network. Other tasks to con-
sider are described in the following subsections.

MDS.CH4_2.8.23.indd 155MDS.CH4_2.8.23.indd 155 08/02/23 1:39 PM08/02/23 1:39 PM

156 • Managing Datasets and Models

Normalize Versus Standardize

Scaling data involves scaling the values of a feature, which can involve stand-
ardizing data as well as data normalization. There are two popular ways to
scale data:

	• normalize: resize value into the range [0,1] by a linear equation
	• standardize: resize value into the range [0,1] by a Gaussian distribution

The terminology is opposite to what you might expect: standardizing data
involves a Gaussian distribution, whereas normalizing involves a linear scal-
ing technique. Hence, standardizing data (not normalizing data) involves a
normal distribution.

In fact, the formula for scaling data via normalization involves this formula:

xi' = (xmax - xi)/[xmax - xmin]

where xmax and xmin are the maximum and minimum values, respectively, of
the numbers in the set {x1,...,xn}.

However, scaling data via standardization involves applying a Gaussian
distribution to scale the data values. So, although your intuition might tell you
that normalizing data involves a Gaussian distribution, the fact is that normal-
ization involves a linear equation instead of the Gaussian distribution (yes, it
is confusing).

The following subsections contain more information about normalization
and standardization, as well as the importance of splitting data before per-
forming any type of normalization.

One other detail: data normalization is different from database normal-
ization. The latter pertains to various techniques for structuring database
tables so that they conform to “normal forms.” Perform an Internet search for
detailed information regarding database normalization.

Why Normalize Data?

The previous section describes how to perform normalization of data values
versus standardization of data values. The rationale for doing so is simple:
data normalization adjusts values of features in a dataset to establish a “level
playing field,” which is to say that the values in all the features are in the same

MDS.CH4_2.8.23.indd 156MDS.CH4_2.8.23.indd 156 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Models • 157

general range. Consequently, machine learning algorithms will not be unduly
influenced by features that have a significantly larger range of numeric values.

As an example of applying normalization to a dataset, suppose you to want
to classify articles of clothing with these features (as well as others):

	• the price is in the range of USD 5 to USD 250
	• the number of distinct colors range from 1 to 5

Notice that if you scale the price range by dividing each price by 50, then the
resulting set of prices are in the same range as the feature pertaining to the
colors. Although the price range is a floating point number and the color can
be assigned an integer value, the most important detail is that the values are
in the same range.

The preceding example might seem contrived because the scaled values
have the same lower and upper bound, neither of which is a requirement.
If the price values are in the range between 5 and 10, then the algorithm
that you choose will perform better than the range between 5 and 250. It is
important to ensure that the range of values in different features differ by less
than an order of magnitude (i.e., a multiple of 10).

Split Before Normalizing Data

Normalization adjusts data to handle outliers. One technique is min-max nor-
malization, which first subtracts the mean from every value in a dataset, and
then divides those values by the maximum value minus the minimum value.
The result is a set of values that are between 0 and 1.

Although you might see code samples that perform normalization after
other transformations have been applied to a column in a dataset, it is import-
ant to perform normalization as the first step. The rationale for doing so is that
the training data and the test data will both be in the range between 0 and 1,
which in turn prevents data leakage (discussed later).

In addition, avoid randomly splitting groups and avoid randomly splitting
data during the training phase.

Scaling Numeric Data via Normalization

A range of values can vary significantly and it is important to note that they
often need to be scaled to a smaller range, such as values in the range [-1,1]

MDS.CH4_2.8.23.indd 157MDS.CH4_2.8.23.indd 157 08/02/23 1:39 PM08/02/23 1:39 PM

158 • Managing Datasets and Models

or [0,1], which you can do via the tanh function or the sigmoid function,
respectively.

For example, measuring a person’s height in terms of meters involves a
range of values between 0.50 meters and 2.5 meters (in the vast majority of
cases), whereas measuring height in terms of centimeters ranges between 50
centimeters and 250 centimeters: these two units differ by a factor of 100. A
person’s weight in kilograms generally varies between 5 kilograms and 200
kilograms, whereas measuring weight in grams differs by a factor of 1,000.
Distances between objects can be measured in meters or in kilometers, which
also differ by a factor of 1,000.

In general, use units of measure so that the data values in multiple fea-
tures belong to a similar range of values. In fact, some machine learning algo-
rithms require scaled data, often in the range of [0,1] or [-1,1]. In addition to
the tanh() and sigmoid() functions, there are other techniques for scaling
data, such as standardizing data (think Gaussian distribution) and normalizing
data (linearly scaled so that the new range of values is in (0,1)).

The following examples involve a floating point variable X with different
ranges of values that will be scaled so that the scaled values are in the interval
[0,1].

Example 1: If X is in [0,2], then X/2 is in the range [0,1].

Example 2: If X is in [3,6], then X-3 is in the range [0,3], and (X-3)/3 is in [0,1].

Example 3: If is X is in [-10,20], then X +10 is in [0,30], and (X +10)/30 is in
[0,1].

In general, suppose that X is a random variable whose values are in the
range [a,b], where a < b. You can scale the data values to the range [0,1]
by performing two steps:

Step 1: X-a is in the range [0,b-a]

Step 2: (X-a)/(b-a) is in the range [0,1]

If X is a random variable that has the values {x1, x2, x3, . . .,
xn}, then the formula for normalization involves mapping each xi value to
(xi – min)/(max – min), where min is the minimum value of X and max
is the maximum value of X.

As a simple example, suppose that the random variable X has the val-
ues {-1, 0, 1}. Then min and max are 1 and -1, respectively, and the

MDS.CH4_2.8.23.indd 158MDS.CH4_2.8.23.indd 158 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Models • 159

normalization of {-1, 0, 1} is the set of values {(-1-(-1))/2,
(0-(-1))/2, (1-(-1))/2}, which equals {0, 1/2, 1}.

Scaling Numeric Data with Units of Measure

The previous section showed you how to scale numeric values so that they
have the same (or similar) range of values. Another option involves inspecting
the units of measure for feature values. One example that you have already
seen involves a height feature and weight feature in a dataset: in this case,
kilograms and centimeters for their units of measure result in numbers that
are in a similar range, whereas kilograms and meters would result in different
scales of values.

Scaling feature values programmatically as a prelude to training a machine
learning model does not alter the feature values in the dataset. However, you
could read the dataset into a Pandas data frame, change the unit of measure
via conversion, and save the modified data frame to a CSV file. The benefit of
performing the preceding steps is that the updated dataset can be processed
as-is in existing reports (or new reports) because the new range of feature
values are compatible.

Scaling Numeric Data to the Range [a,b]

Given a set of numeric values X = {x1, x2, x3, . . ., xn} , with a mini-
mum value of xmin and a maximum value of xmax, and suppose that we want
to scale these values so that they are between a and b (a < b). We can perform
this transformation in two steps:

Step 1: xi => (xmax-xi)/(xmax-xmin) * (b-a) = vi

Step 2: vi => vi+a = wi

The vi in step 1 are in the range [0,b-a] because each vi is the product
of a rational number between 0 and 1 and the number b-a. Step 2 adds the
value a to each vi, so the resulting set of numbers {w1, w2, . . . , wn}
are in the range [a-b]. Here is a simple example:

X = [2, 4, 6, 10]

xmin = 2, xmax=10, a = 16, b=24

MDS.CH4_2.8.23.indd 159MDS.CH4_2.8.23.indd 159 08/02/23 1:39 PM08/02/23 1:39 PM

160 • Managing Datasets and Models

{vi} = {(10-2)/8, (10-4)/8, (10-6)/8, (10-10)/8}} * 8

 = {1, 3/4, 1/2, 0} * 8

 = {8, 6, 4, 0}

{wi} = {24, 22, 20, 16}

Scaling Numeric Data via Standardization

The standardization technique involves finding the mean mu and the standard
deviation sigma, and then mapping each xi value to (xi – mu)/sigma.
Recall the following formulas:

mu = [SUM (x)]/n

variance(x) = [SUM (x – xbar)*(x-xbar)]/n

sigma = sqrt(variance)

As a simple illustration of standardization, suppose that the random variable
X has the values {-1, 0, 1}. Then mu and sigma are calculated as follows:

mu = (SUM xi)/n = (-1 + 0 + 1)/3 = 0

variance = [SUM (xi- mu)^2]/n

 = [(-1-0)^2 + (0-0)^2 + (1-0)^2]/3

 = 2/3

sigma = sqrt(2/3) = 0.816 (approximate value)

Hence, the standardization of {-1, 0, 1} is {-1/0.816, 0/0.816,
1/0.816}, which in turn equals the set of values {-1.2254, 0, 1.2254}.

As another example, suppose that the random variable X has the values
{-6, 0, 6}. Then mu and sigma are calculated as follows:

mu = (SUM xi)/n = (-6 + 0 + 6)/3 = 0

variance = [SUM (xi- mu)^2]/n

 = [(-6-0)^2 + (0-0)^2 + (6-0)^2]/3

 = 72/3

 = 24

MDS.CH4_2.8.23.indd 160MDS.CH4_2.8.23.indd 160 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Models • 161

sigma = sqrt(24) = 4.899 (approximate value)

Hence, the standardization of {-6, 0, 6} is {-6/4.899, 0/4.899,
6/4.899}, which in turn equals the set of values {-1.2247, 0, 1.2247}.

In the preceding two examples, the mean equals 0 in both cases, but the
variance and standard deviation are significantly different. One other point:
the normalization of a set of values always produces a set of numbers between
0 and 1.

However, the standardization of a set of values can generate numbers
that are less than -1 and greater than 1: this will occur when sigma is less than
the minimum value of every term |mu – xi|, where the latter is the absolute
value of the difference between mu and each xi value. In the preceding exam-
ple, the minimum difference equals 1, whereas sigma is 0.816, and therefore
the largest standardized value is greater than 1.

The StandardScaler Class

Listing 4.3 displays the content of standard_scaler.py that illustrates how
to use the StandardScaler class to scale values in a dataset.

Listing 4.3: standard_scaler.py

from scikit-learn.preprocessing import StandardScaler

initialize X_train, X_test, and y_train here:

include your code here

ssx = StandardScaler()

X_train = ssx.fit_transform(X_train)

X_test = ssx.transform(X_test)

ssy = StandardScaler()

y_train = ssy.fit_transform(y_train)

Listing 4.3 contains an import statement and then initializes the variable ssx
as an instance of the StandardScaler class of scikit-learn. Next, the
values in X_train and X_test are scaled via the methods fit_transform()

MDS.CH4_2.8.23.indd 161MDS.CH4_2.8.23.indd 161 08/02/23 1:39 PM08/02/23 1:39 PM

162 • Managing Datasets and Models

and transform(), respectively, of the variable ssx. Similarly, the values in
y_train are scaled via the method fit_transform() of the variable ssy.
Notice that you need to initialize the variables X_train, X_test, and y_
train to execute the code in Listing 4.3.

One detail to keep in mind: some machine learning algorithms do not
require you to scale data, such as the following:

	• AdaBoost
	• decision trees
	• Naive Bayes
	• random forests

However, the following machine learning algorithms require you to explicitly
scale data, such as the following:

	• kNN (k Nearest Neighbors)
	• Linear Regression
	• Logistic Regression
	• Neural Networks

Scaling Numeric Data via Robust Standardization

The robust standardization technique is a variant of standardization that com-
putes the mean mu and the standard deviation sigma based on a subset of
values. Specifically, this technique uses only the values that are between the
25th percentile and 75th percentile and ignores the first and fourth quartiles,
which is where outliers would be located. Let’s define the following variables:

X25 = 25th percentile

X75 = 75th percentile

XM = mean of {Xi} values

XR = robust standardization

Then XR is computed according to the following formula:

XR = (Xi - XM)/(X75 - X25)

The preceding technique is also called IQR, which stands for interquartile
range, and you can see a sample calculation online:

https://en.wikipedia.org/wiki/Interquartile_range

MDS.CH4_2.8.23.indd 162MDS.CH4_2.8.23.indd 162 08/02/23 1:39 PM08/02/23 1:39 PM

https://en.wikipedia.org/wiki/Interquartile_range

Working with Models • 163

Selecting the Type of Scaling

Feature scaling is important in data preprocessing for various algorithms,
some of which are listed here:

	• Lasso and Ridge penalties
	• distance-based models
	• kNNs
	• clustering (kMeans)
	• SVMs
	• ANNs (artificial neural networks)

The preceding algorithms perform better when the predictors have the same
scale or within the same boundaries. As a general rule, select a particular type
of scaling as follows:

	• standardization or robust scaling if outliers exist
	• standardization for Gaussian distributions
	• normalization for non-normal distributions

Deciding How to Scale Data

Scaling the values of features can improve the quality and predictive power of
a model, which would otherwise be biased toward features with larger values.
Feature scaling can be performed via normalization or standardization of fea-
tures. Although we often assume that data is normally distributed, there are
exceptions.

Hence, try to ascertain the distribution of the data in the features of a
dataset before deciding whether to use either standardization or normaliza-
tion. For example, if a given feature appears to be uniformly distributed, use
normalization (MinMaxScaler in scikit-learn).

By contrast, for any feature that is approximately Gaussian, use standard-
ization (StandardScaler). Again, note that whether you employ normaliza-
tion or standardization, these are also approximative methods and are bound
to contribute to the overall error of the model.

THE CONFUSION MATRIX

A confusion matrix provides information that enables you to evaluate classi-
fiers. The confusion matrix is suited for classification tasks: it shows you how

MDS.CH4_2.8.23.indd 163MDS.CH4_2.8.23.indd 163 08/02/23 1:39 PM08/02/23 1:39 PM

164 • Managing Datasets and Models

many observations were classified by the classification model. In the case of
two classes, there are four possibilities:

	• True positive
	• False positive
	• True negative
	• False negative

A confusion matrix is easily generated after training a classification-based
model in machine learning, as you can see in the following code block:

from sklearn.metrics import confusion_matrix

cm = confusion_matrix(y_test, y_pred)

print("confusion matrix:")

print(cm)

In the preceding code block, the variable y_test is a one-column vector of
target values (often in a CSV file), and y_pred is a one-column vector (with
the same number of rows as y_test) that is generated from a trained model.
As an example, consider the following 2x2 confusion matrix and the subse-
quent description of its contents:

[[64 4]

 [3 29]]

The four values in the preceding 2x2 matrix represent the following quantities:

TP = True positive: 64

FP = False positive: 4

TN = True negative: 29

FN = False negative: 3

The preceding four quantities occupy the four cells of the following 2x2 binary
confusion matrix, whose contents will be discussed in greater detail in a sub-
sequent section:

TP | FP

FN | TN

MDS.CH4_2.8.23.indd 164MDS.CH4_2.8.23.indd 164 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Models • 165

Another example of a confusion matrix involves three outcomes, which means
that the confusion matrix is 3x3 instead of 2x2:

[[12 0 2]

 [0 15 1]

 [2 0 4]]

In addition to 2x2 and 3x3 confusion matrices, an nxn confusion matrix is gen-
erated when a feature in a dataset consists of n different values.

As a practical example, suppose that a dataset that contains clinical trial
data for cancer, which involves two classes (healthy and sick). Once again,
there are four possible outcomes: true positive, false positive, true negative,
and false negative (discussed later). A confusion matrix contains numeric (inte-
ger) values for these four quantities. By contrast, linear regression involves
terms such as R and R^2 to help you evaluate the accuracy of a model.

Normalized Confusion Matrix

If cm is a confusion matrix, such as the confusion matrix in the previous sec-
tion, the following code snippet normalizes the values in that matrix:

cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]

An even simpler way to normalize the values in a confusion matrix cm is shown
here, where y_true are the actual labels in a dataset and y_pred are the
predicted values that are compared with the actual labels to generate a confu-
sion matrix:

cm(y_true, y_pred, normalize='all')

A third way to normalize a confusion matrix involves scikitplot, as shown
here:

import matplotlib.pyplot as plt # dependency for
scikit-plot

import scikitplot as skplt

skplt.metrics.plot_confusion_matrix(Y_TRUE,Y_
PRED,normalize=True)

The value for normalize in the preceding code snippet might also depend
on the version of Python that you have installed on your machine.

MDS.CH4_2.8.23.indd 165MDS.CH4_2.8.23.indd 165 08/02/23 1:39 PM08/02/23 1:39 PM

166 • Managing Datasets and Models

Using the confusion matrix from the previous section, the corresponding
normalized confusion matrix is here:

|0.65 0.40|

|0.11 0.20|

A Python Code Sample of a Confusion Matrix

Listing 4.1 displays the content of the Python file confusion_matrix.py
that shows you how to generate a confusion matrix from a set of numeric data
values.

Listing 4.1: confusion_matrix.py

import matplotlib.pyplot as plt

import pandas as pd

import seaborn as sns

from sklearn.metrics import confusion_matrix

data = {'y_true': [1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0],

 'y_pred': [1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0]}

print("=> Data Values:")

print(data)

print()

df = pd.DataFrame(data, columns=['y_true','y_pred'])

print("=> DataFrame df:")

print(df)

print()

cm = pd.crosstab(df['y_true'], df['y_pred'],
rownames=['Actual'], colnames=['Predicted'])

print ("=> Confusion matrix:")

print (cm)

print()

MDS.CH4_2.8.23.indd 166MDS.CH4_2.8.23.indd 166 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Models • 167

cm2 = confusion_matrix(data['y_true'], data['y_pred'],
normalize='all')

print ("=> Normalized Confusion matrix:")

print (cm2)

sns.heatmap(cm2, annot=True)

plt.show()

Listing 4.1 starts with import statements and then initializes the variable
data with a set of 0s and 1s for the y_true and the p_pred elements. These
values were arbitrarily selected, so there is no significance to the chosen val-
ues (feel free to specify different values).

The next code block initializes the data frame df with the values in the
variable data, after which the confusion matrix cm is generated based the
data values in df. The confusion matrix is printed, and then a second normal-
ized confusion matrix cm2 is created and also printed. The last code snippet
generates and then displays a Seaborn heat map based on the contents of the
confusion matrix cm2. Launch the code in Listing 4.1, and you will see the
following output:

=> Data Values:

{'y_true': [0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1],

 'y_pred': [1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0]}

=> DataFrame df:

 y_true y_pred

0 0 1

1 1 1

2 0 0

3 1 1

4 0 0

5 1 1

6 1 1

7 1 0

8 1 1

9 1 0

MDS.CH4_2.8.23.indd 167MDS.CH4_2.8.23.indd 167 08/02/23 1:39 PM08/02/23 1:39 PM

168 • Managing Datasets and Models

10 1 0

11 1 0

=> Confusion matrix:

Predicted 0 1

Actual

0 2 1

1 4 5

=> Normalized Confusion matrix:

[[0.16666667 0.08333333]

 [0.33333333 0.41666667]]

Figure 4.1 displays the heat map generated via the Seaborn package, using
the data from the confusion matrix cm2.

FIGURE 4.1  A best-fitting distribution for a set of random values

MDS.CH4_2.8.23.indd 168MDS.CH4_2.8.23.indd 168 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Models • 169

What are TP, FP, FN, and TN?

A binary confusion matrix (also called an error matrix) is a type of contingency
table with two rows and two columns that contains the number of false posi-
tives, false negatives, true positives, and true negatives. Here is a 2x2 confu-
sion matrix shown again for your convenience:

TP | FP

FN | TN

The four entries in the preceding 2x2 confusion matrix have labels with the
following interpretation:

	• TP: True Positive
	• FP: False Positive
	• TN: True Negative
	• FN: False Negative

Just to be sure it is clear, the four entries in the confusion matrix can be
described as follows:

	• True Positive (TP): Predicted True and actually True
	• True Negative (TN): Predicted False and actually False
	• False Positive (FP): Predicted True and actually False
	• False Negative (FN): Predicted False and actually True

Hence, the values on the main diagonal of the confusion matrix are correct
predictions, whereas the off-diagonal values are incorrect predictions. In gen-
eral, a lower FP (false positive) value is better than a FN (false negative) value.
For example, an FP indicates that a healthy person was incorrectly diagnosed
with a disease, whereas an FN indicates that an unhealthy person was incor-
rectly diagnosed as healthy.

The confusion matrix can be an nxn matrix and not just a 2x2 matrix. For
example, if a class has five possible values, then the confusion matrix is a 5x5
matrix, and the numbers on the main diagonal are the true positive results.

Type I and Type II Errors

A Type I error is a false positive, which means that something is erroneously
classified as positive when it is negative. However, a Type II error is a false

MDS.CH4_2.8.23.indd 169MDS.CH4_2.8.23.indd 169 08/02/23 1:39 PM08/02/23 1:39 PM

170 • Managing Datasets and Models

negative, which means that something is erroneously classified as negative
when it is positive.

For example, a woman who is classified as pregnant even though she is
not pregnant is a Type I error. By contrast, a woman who is classified as not
pregnant even though she is pregnant is a Type II error.

As another example, a person who is classified as having cancer even
though that person is healthy is a Type I error. By contrast, a person who is
classified as healthy even though that person has cancer is a Type II error.

Based on the preceding examples it is clear that Type I and Type II are
not symmetric in terms of the consequences of their misclassification: some-
times it is a case of life-and-death classification. Among the four possible out-
comes, the sequence of outcomes, from best to worst, would be the following:

1.	 True Negative

2.	 False Positive

3.	 True Positive

4.	 False Negative

Although #3 and #4 are both highly undesirable, the third option provides
accurate information that people can take appropriate action, whereas the
fourth option delays the time at which people can take the necessary precau-
tions. Keep in mind another point regarding a false positive diagnosis: people
who are erroneously diagnosed with leukemia or cancer (or some other life
threatening disease) might be needlessly subjected to chemotherapy, which
has an unpleasant set of consequences.

Accuracy and Balanced Accuracy

You will often see models evaluated via their accuracy, which is defined by the
following formula:

accuracy = % of correct predictions

 = (TP + TN) / total cases

balanced accuracy = (recall+specificity)/2 (intermediate)

MDS.CH4_2.8.23.indd 170MDS.CH4_2.8.23.indd 170 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Models • 171

The formula for balanced accuracy involves recall and specificity, both
of which are discussed later. Although accuracy can be a useful indicator,
accuracy has limited (and perhaps misleading) value for imbalanced data-
sets. Accuracy can be an unreliable metric because it yields misleading results
in unbalanced datasets. Classes with substantially different sizes are assigned
equal importance to both false positive and false negative classifications.
For example, declaring cancer as benign is worse than incorrectly informing
patients that they are suffering from cancer. Unfortunately, accuracy will not
differentiate between these two cases.

A Caveat Regarding Accuracy

Accuracy treats Type I and Type II as though they are equally poor; moreover,
data belonging to the majority class tends to be given a true classification,
and significantly imbalanced datasets tend to skew results toward the majority
class.

As a concrete example, consider a dataset with 1,000 rows in which 1% of
the people is sick: hence, 990 people are healthy and 10 people are sick. Now
train a model to make predictions on this dataset. The no-code solution is to
predict that everyone is healthy, which achieves an accuracy of 99%.

The preceding no-code “solution” is obviously unacceptable because it
cannot predict which people are sick. Instead of accuracy, consider using one
or more of the following:

	• Matthews Correlation Coefficient (CCM)
	• Cohen’s kappa coefficient
	• Student’s t-test (for normally distributed data)
	• Mann-Whitney U test (for non-normally distributed data)

In general, it's a good idea to calculate the values for precision, recall, and
F1 scores and compare them with the value of the accuracy, and see how the
models react to imbalanced data.

As a rule of thumb, use the accuracy metric when both classes are equally
important and 80% are in the majority class.

MDS.CH4_2.8.23.indd 171MDS.CH4_2.8.23.indd 171 08/02/23 1:39 PM08/02/23 1:39 PM

172 • Managing Datasets and Models

Recall, Precision, Specificity, NPV, and Prevalence

The descriptions for recall, precision, NPV, and specificity are given here:

	• precision: TP divided by sum of row 1
	• NPV: �TN divided by sum of row 2 (negative predic-

tive value)
	• recall: TP divided by sum of column 1
	• specificity: TN divided by sum of column 2
	• accuracy: main diagonal/[sum of all terms]

Another term for recall is sensitivity. The definition of sensitivity and another
formulation for specificity are shown here:

	• Sensitivity (TPR) = probability of a positive test, conditioned on truly being
positive.

	• Specificity (TNR) = probability of a negative test, conditioned on truly
being negative.

The formulas for recall, precision, specificity, NPV, and specificity are given
here:

precision = TP / (TP + FP)

recall = TP / (TP + TN)

specificity = TN / (TN + FP)

Accuracy = (TP+TN) / [TP+FP+FN+TN]

NPV = TN / (TN + FN)

prevalence = (TP+FN) / [TP+TN+FP+FN]

One way that might help you remember these formulas is to think of their
denominators as the sum of the values in columns or rows, as shown here:

	• Accuracy = (sum of main diagonal)/(sum-of-four-terms)
	• Precision = TP/(sum-of-row-one)
	• Recall = TP/(sum-of-column-one)
	• Specificity = TN/(sum-of-column-two)
	• False positive rate = FP/(sum-of-column-two)

Recall (also called sensitivity) is the proportion of the correctly predicted
positive values in the set of actually positively labeled samples: this equals the
fraction of the positively labeled samples that were correctly predicted by the
model.

MDS.CH4_2.8.23.indd 172MDS.CH4_2.8.23.indd 172 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Models • 173

The following code snippet shows you how to invoke the recall_score()
method, which provides a labels parameter for multi-class classification:

from sklearn.metrics import recall_score

recall_score(y_true, y_pred, labels=[1,2],average='micro')

The following code snippet shows you how to invoke the precision_score()
method, which provides a labels parameter for multi-class classification:

from sklearn.metrics import precision_score

precision_score(y_true, y_pred,
labels=[1,2],average='micro')

Another technique that might help you remember how to calculate precision
and recall is to notice that

1.	 both have the same numerator (=TP)

2.	 the precision denominator is the sum of the first row

3.	 the recall denominator is the sum of the first column

Thus, we can describe accuracy, recall, precision, and specificity as follows:

	• Accuracy is the percentage of correctly classified samples of all the samples.
	• Recall is the percentages of correctly classified positives of all actual

positives.
	• Precision is the percentage of correctly classified positives from all pre-

dicted positives.
	• Specificity is the proportion of negatively labeled samples that were pre-

dicted as negative.
	• Prevalence is a fraction of total population that is labeled positive.

In essence, sensitivity reflects the extent to which a given test identifies true
positive values, whereas specificity reflects the extent to which a given test
identifies true negative values. There is often a trade-off between sensitivity
and specificity: a higher value for sensitivity involves a lower value for specific-
ity (and vice versa). An extensive list of formulas for metrics is here:

https://en.wikipedia.org/wiki/Sensitivity_and_specificity

MDS.CH4_2.8.23.indd 173MDS.CH4_2.8.23.indd 173 08/02/23 1:39 PM08/02/23 1:39 PM

https://en.wikipedia.org/wiki/Sensitivity_and_specificity

174 • Managing Datasets and Models

Precision Versus Recall: How to Decide?

Sometimes precision is more important than recall: of the set of cases that
were predicted as valid, how many times were they true? If you are predict-
ing books that are suitable for under 18 people, you can afford to reject a few
books, but cannot afford to accept bad books. If you are predicting thieves in
a supermarket, we need more precision. As you can probably surmise, cus-
tomer trust will decrease due to false positives.

Precision is the proportion of the samples that are actually positive in the
set of positively predicted samples, which is expressed informally as

precision = (# of correct positive) / (# of predicted positive)

Note: Precision is important when false positives are more important than
false negatives, such as spam detection, and you want to minimize FP.

Recall is the proportion of the samples that are actually positive in the set
of actual positive samples, which is expressed informally as

recall = (# of predicted positive) / (# of actual positive)

Note: Recall (a.k.a. sensitivity) is important when false negatives are more
important than false positives, such as cancer detection, and you want to mini-
mize FN.

[2] TPR, FPR, PV, FDR, and FOR

The quantities TPR, FPR, NPV, FDR, and FOR are additional terms that you
might encounter, and they are defined in this section.

TPR = true positive rate

TPR = proportion of positively labeled samples that are
correctly predicted positive

TPR = TP/[TP+FN] = TP/(sum-of-column-one)

FPR = false positive rate

FPR = proportion of negatively labeled samples that are
incorrectly predicted positive

FPR = FP/[TN+FP] = FP/(sum-of-column-two)

MDS.CH4_2.8.23.indd 174MDS.CH4_2.8.23.indd 174 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Models • 175

NPV = Negative Predictive Value or NPV

NPV = proportion of negatively labeled samples that are
correctly predicted negative

NPV = TN/[TN+FN] = TN/(sum-of-row-two)

FDR = false discovery rate = 1 - PPV = FP/[TP+FP] = FP/
(sum-of-row-one)

FOR = false omission rate

FOR = 1 - NPV = FN/[TN+FN] = FN/(sum-of-row-two)

The following list contains the values of the quantities TPR, FPR, NPV, FDR,
and FOR:

	• TPR = TP/(sum-of-column-one)
	• FPR = FP/(sum-of-column-two)
	• NPV = TN/(sum-of-row-two)
	• FDR = FP/(sum-of-row-one)
	• FOR = FN/(sum-of-row-two)

Earlier in this chapter, you learned about a confusion matrix, and the follow-
ing output shows you the calculated values for precision, recall, F1-score, and
accuracy that can be programmatically generated via the classification_
report class in sklearn.metrics, as shown here:

 precision recall f1-score support

 0 0.96 0.94 0.95 68

 1 0.88 0.91 0.89 32

 accuracy 0.93 100

 macro avg 0.92 0.92 0.92 100

weighted avg 0.93 0.93 0.93 100

MDS.CH4_2.8.23.indd 175MDS.CH4_2.8.23.indd 175 08/02/23 1:39 PM08/02/23 1:39 PM

176 • Managing Datasets and Models

THE ROC CURVE AND AUC CURVE

ROC is an acronym for Receiving Operator Characteristics, and a ROC curve
plots the performance of a model by displaying the FP (false positive) rate on
the horizontal axis and the TP (true positive) rate on the vertical axis. Note
that the TN (the true negative rate) is also called the specificity.

The area under the ROC curve (abbreviated as ROC AUC) assesses over-
all classification performance. If the ROC curve is on top of the dashed line,
the AUC is 0.5 (half of the square area), and it means the model result is no
different from a completely random draw. If the ROC curve is very close to
the northwest corner, the AUC will be close to 1.0.

The ROC curve provides a visual comparison of classification models that
shows the trade-off between the true positive rate and the false positive rate.
Both axes have values between 0 and 1: the vertical axis is the true positive
rate (TPR) whereas the horizontal axis is the false positive rate (FPR). The ROC
curve provides a view of model performance at different threshold values.

The goal is to increase TPR while simultaneously maintaining a low FPR;
however, both values increase together, so it is a question of the tolerance
level for false positives. After selecting one class as positive and another class
as negative in a binary classification task, launch your code and then display
a confusion matrix as well as the values for TP, FP, FN, and TN by including
the following type of code:

generate the confusion matrix

from sklearn.metrics import confusion_matrix

cm = confusion_matrix(y_test, y_pred)

print("confusion matrix:")

print(cm)

from sklearn.metrics import confusion_matrix,
classification_report

print(classification_report(y_test, y_pred))

The preceding code block generates the following type of output (the num-
bers depend on the dataset):

MDS.CH4_2.8.23.indd 176MDS.CH4_2.8.23.indd 176 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Models • 177

[[64 4]

 [3 29]]

 precision recall f1-score support

 0 0.96 0.94 0.95 68

 1 0.88 0.91 0.89 32

 accuracy 0.93 100

 macro avg 0.92 0.92 0.92 100

weighted avg 0.93 0.93 0.93 100

What is the AUC Curve?

AUC is the area under ROC curve between (0,0) and (1,1), which aggregates
the performance of the model at all threshold values. The area under the
ROC curve (ROC AUC) is a measure of the accuracy of the model. Models
closer to the diagonal are less accurate and the models with perfect accuracy
will have an area of 1.0.

The AUC is a value between 1.0 (excellent fit) to 0.5 (random draw). The
predictability of a model can be considered “excellent” if the AUC is more
than 0.9, and “good” if the AUC is above 0.8.

The best possible value of AUC is 1 (a perfect classifier) and the worst
value is 0 (if all the predictions are wrong). The AUC is independent of the
classification threshold value.

Calculating ROC AUC Values

The Python-based lazypredict module is an open source module that cal-
culates statistics quantities after training a dataset on multiple algorithms, and
its home page is here:

https://pypi.org/project/lazypredict/

Listing 4.2 displays the content of the Python file lazypredict1.py that
shows you how to use the lazypredict Python module for calculating val-
ues such as ROC AUC and F1 scores for a given dataset.

MDS.CH4_2.8.23.indd 177MDS.CH4_2.8.23.indd 177 08/02/23 1:39 PM08/02/23 1:39 PM

https://pypi.org/project/lazypredict/

178 • Managing Datasets and Models

Listing 4.2: distfit1.py

pip3 install lazypredict

import pandas as pd

from lazypredict.Supervised import LazyClassifier

from sklearn.datasets import load_breast_cancer

from sklearn.model_selection import train_test_split

pd.set_option('display.max_rows', 500)

pd.set_option('display.max_columns', 500)

pd.set_option('display.width', 1000)

df = pd.read_csv("titanic2.csv")

X = df[["age","class"]]

y = df[["survived"]]

X_train, X_test, y_train, y_test = train_test_split(X,
y,test_size=.5,random_state =123)

classifier = LazyClassifier(verbose=0,ignore_warnings=True,
custom_metric=None)

models, predictions = classifier.fit(X_train, X_test, y_
train, y_test)

print(models)

Listing 4.2 starts with several import statements, followed by setting three
display-related properties in Pandas. The next portion of code initializes the
variable df with the contents of titanic2.csv, and then the variable X is
initialized with the age feature, whereas the variable y is initialized with the
survived feature from the data frame df.

The next portion of Listing 4.2 invokes the train_test_split()
method in scikit-learn to initialize the variables X_train, X_test, y_train,
and y_test. Next, the variable classifier is initialized as an instance of the
LazyClassifier class that is in the lazypredict library. The final code

MDS.CH4_2.8.23.indd 178MDS.CH4_2.8.23.indd 178 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Models • 179

snippet in Listing 4.2 initializes the variables models and predictions with the
result of invoking the fit() method of the variable classifier. Launch the
code in Listing 4.2, and you will see the following output:

Accuracy Balanced
Accuracy

ROC AUC F1
Score

Time
Taken

Model

NuSVC 0.70 0.68 0.68 0.71 0.02

NearestCentroid 0.65 0.66 0.66 0.66 0.02

Perceptron 0.63 0.65 0.65 0.64 0.02

KNeighborsClassifier 0.74 0.63 0.63 0.71 0.02

RandomForestClassifier 0.65 0.61 0.61 0.65 0.16

AdaBoostClassifier 0.70 0.61 0.61 0.68 0.09

GaussianNB 0.67 0.59 0.59 0.66 0.02

LinearDiscriminantAnalysis 0.73 0.59 0.59 0.68 0.03

LinearSVC 0.73 0.59 0.59 0.68 0.02

SGDClassifier 0.74 0.59 0.59 0.68 0.02

LogisticRegression 0.73 0.58 0.58 0.67 0.02

RidgeClassifier 0.73 0.58 0.58 0.67 0.03

RidgeClassifierCV 0.74 0.58 0.58 0.67 0.02

XGBClassifier 0.65 0.58 0.58 0.64 0.04

LabelSpreading 0.69 0.57 0.57 0.66 0.02

BaggingClassifier 0.64 0.57 0.57 0.64 0.04

LabelPropagation 0.69 0.57 0.57 0.66 0.02

QuadraticDiscriminantAnalysis 0.49 0.57 0.57 0.50 0.02

LGBMClassifier 0.73 0.56 0.56 0.65 0.03

DummyClassifier 0.62 0.55 0.55 0.62 0.02

DecisionTreeClassifier 0.59 0.55 0.55 0.60 0.02

PassiveAggressiveClassifier 0.68 0.53 0.53 0.62 0.02

CalibratedClassifierCV 0.70 0.53 0.53 0.61 0.03

ExtraTreesClassifier 0.55 0.53 0.53 0.56 0.12

SVC 0.69 0.51 0.51 0.59 0.02

BernoulliNB 0.69 0.50 0.50 0.57 0.02

ExtraTreeClassifier 0.53 0.49 0.49 0.54 0.02

MDS.CH4_2.8.23.indd 179MDS.CH4_2.8.23.indd 179 08/02/23 1:39 PM08/02/23 1:39 PM

180 • Managing Datasets and Models

What is the TOC Curve?

The following webpage contains a Python code sample using SkLearn and the
Iris dataset, and also code for plotting the ROC:

https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html

The following webpage contains an assortment of Python code samples
for plotting the ROC:

h t t p s : / / s t a c k o v e r f l o w . c o m / q u e s t i o n s / 2 5 0 0 9 2 8 4 /
how-to-plot-roc-curve-in-python

By contrast, a TOC graph plots the (TP+FP)-TP values on the horizontal
axis and the TP values for the vertical axis. The interesting fact about a TOC
graph is that it enables you to determine the confusion matrix for every point
in TOC space.

Scoring Rules

A scoring rule is a method for evaluating the accuracy of predicted probabili-
ties, which you can perform via log loss (cross entropy) or Brier score.

A log loss score equal to 0 indicates a model with “perfect skill.” In addi-
tion, log_loss is available in scikit-learn with the following code snippet:

from sklearn.metrics import log_loss

The brier score loss function is also available in scikit-learn with the follow-
ing code snippet:

from sklearn.metrics import brier_score_loss

Perform an online search for more information regarding the log loss and
Brier score.

ROC AUC and PR AUC

The choice of the ROC AUC versus PR AUC (Precision/Recall AUC) depends
on the characteristics of your dataset. In particular, use ROC AUC when both
classes are equally important.

MDS.CH4_2.8.23.indd 180MDS.CH4_2.8.23.indd 180 08/02/23 1:39 PM08/02/23 1:39 PM

https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
https://stackoverflow.com/questions/25009284/how-to-plot-roc-curve-in-python
https://stackoverflow.com/questions/25009284/how-to-plot-roc-curve-in-python

Working with Models • 181

However, a highly skewed dataset, or a dataset with a small number of
incorrect predictions, can adversely affect both the ROC curve and the ROC
AUC curve. In this case, consider using the PR AUC curve, especially when
the positive class is more important.

In addition, the PR AUC is well-suited for binary predictions involving
imbalanced datasets. The following code snippet shows you how to import
precision_recall_curve from scikit-learn:

from sklearn.metrics import precision_recall_curve

Precision, recall,_ = precision_recall_curve_ytest,
scores)

EXPLORING THE TITANIC DATASET

EDA involves a plethora of tasks, such as detecting patterns in the data,
detecting outliers/anomalies (if any), and also testing various hypotheses. As
a starting point, Listing 4.4 displays the content of desc_titanic.py that
shows you how to describe the contents of a dataset.

Listing 4.4: desc_titanic.py

import pandas as pd

filename="titanic.csv"

train_df = pd.read_csv(filename)

print("Description of",filename)

print(train_df.describe())

Listing 4.4 starts with an import statement and then initializes the Pandas
data frame train_df with the contents of the CSV file titanic.csv. The
final code snippet invokes the describe() method to compute the mean,
maximum, minimum, and quartile values for each feature and then displays
their values. Launch the code in Listing 4.13, and you will see the following
output:

MDS.CH4_2.8.23.indd 181MDS.CH4_2.8.23.indd 181 08/02/23 1:39 PM08/02/23 1:39 PM

182 • Managing Datasets and Models

Description of titanic.csv

survived pclass age sibsp parch fare

count 891.000000 891.000000 714.000000 891.000000 891.000000 891.000000

mean 0.383838 2.308642 29.699118 0.523008 0.381594 32.204208

std 0.486592 0.836071 14.526497 1.102743 0.806057 49.693429

min 0.000000 1.000000 0.420000 0.000000 0.000000 0.000000

25% 0.000000 2.000000 20.125000 0.000000 0.000000 7.910400

50% 0.000000 3.000000 28.000000 0.000000 0.000000 14.454200

75% 1.000000 3.000000 38.000000 1.000000 0.000000 31.000000

max 1.000000 3.000000 80.000000 8.000000 6.000000 512.329200

Listing 4.5 displays the content of info_titanic.py that shows you how
display information about the Titanic dataset.

Listing 4.5: info_titanic.py

import pandas as pd

filename="titanic.csv"

train_df = pd.read_csv(filename)

print("Information about",filename)

print(train_df.info())

Listing 4.5 starts with an import statement and then initializes the Pandas
data frame train_df with the contents of the CSV file titanic.csv. The
final code snippet invokes the info() method to display the type of each
feature and the number of non-null values for each feature and then displays
their values. Launch the code in Listing 4.5, and you will see the following
output:

Information about titanic.csv

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 891 entries, 0 to 890

Data columns (total 15 columns):

MDS.CH4_2.8.23.indd 182MDS.CH4_2.8.23.indd 182 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Models • 183

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 survived 891 non-null int64

 1 pclass 891 non-null int64

 2 sex 891 non-null object

 3 age 714 non-null float64

 4 sibsp 891 non-null int64

 5 parch 891 non-null int64

 6 fare 891 non-null float64

 7 embarked 889 non-null object

 8 class 891 non-null object

 9 who 891 non-null object

 10 adult_male 891 non-null bool

 11 deck 203 non-null object

 12 embark_town 889 non-null object

 13 alive 891 non-null object

 14 alone 891 non-null bool

dtypes: bool(2), float64(2), int64(4), object(7)

memory usage: 92.4+ KB

Listing 4.6 displays the content of null_titanic.py that shows you how
display information about null values in the Titanic dataset.

Listing 4.6: null_titanic.py

import pandas as pd

filename="titanic.csv"

df = pd.read_csv(filename)

is_null = df.isnull()

null_sum = df.isnull().sum()

null_cnt = df.isnull().count()

null_cnt2 = df.count()

MDS.CH4_2.8.23.indd 183MDS.CH4_2.8.23.indd 183 08/02/23 1:39 PM08/02/23 1:39 PM

184 • Managing Datasets and Models

uncomment this block for more details:

#print("=> df info:")

#print(df.info())

#print()

#print("=> df describe:")

#print(df.describe())

#print()

print("=> Is Null:")

print(is_null)

print()

print("=> Null sum:")

print(null_sum)

print()

print("=> Null count:")

print(null_cnt)

print()

print("=> Null count2:")

print(null_cnt2)

print()

Listing 4.6 starts with an import statement and then initializes the Pandas
data frame train_df with the contents of the CSV file titanic.csv. The
next portion of code initializes the variable null_sum that displays True or
False, depending on whether or not each cell value is NaN or has a value. Next,
the code initializes the variables null_sum, null_cnt, and null_cnt2 with
the number of NaN values, the number of values in each column, and the
count of the non-null values, respectively, in the Titanic dataset. Launch the
code in Listing 4.6, and you will see the following output:

=> Is Null:

survived pclass sex age ... deck embark_town alive alone

0 False False False False ... True False False False

1 False False False False ... False False False False

MDS.CH4_2.8.23.indd 184MDS.CH4_2.8.23.indd 184 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Models • 185

2 False False False False ... True False False False

3 False False False False ... False False False False

4 False False False False ... True False False False

..

886 False False False False ... True False False False

887 False False False False ... False False False False

888 False False False True ... True False False False

889 False False False False ... False False False False

890 False False False False ... True False False False

[891 rows x 15 columns]

=> Null sum:

survived 0

pclass 0

sex 0

age 177

sibsp 0

parch 0

fare 0

embarked 2

class 0

who 0

adult_male 0

deck 688

embark_town 2

alive 0

alone 0

dtype: int64

MDS.CH4_2.8.23.indd 185MDS.CH4_2.8.23.indd 185 08/02/23 1:39 PM08/02/23 1:39 PM

186 • Managing Datasets and Models

=> Null count:

survived 891

pclass 891

sex 891

age 891

sibsp 891

parch 891

fare 891

embarked 891

class 891

who 891

adult_male 891

deck 891

embark_town 891

alive 891

alone 891

dtype: int64

=> Null count2:

survived 891

pclass 891

sex 891

age 714

sibsp 891

parch 891

fare 891

embarked 889

class 891

who 891

adult_male 891

deck 203

MDS.CH4_2.8.23.indd 186MDS.CH4_2.8.23.indd 186 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Models • 187

embark_town 889

alive 891

alone 891

dtype: int64

Listing 4.7 displays the content of mean_titanic.py that shows you how to calcu-
late mean values in the Titanic dataset.

Listing 4.7: mean_titanic.py

import pandas as pd

filename="titanic.csv"

train_df = pd.read_csv(filename)

mean_values = train_df.groupby(['sex']).mean()

print("Mean values by Gender:")

print(mean_values)

print()

mean_values2 = train_df.groupby(['sex','fare']).mean()

print("=> Mean values by Gender and Fare:")

print(mean_values2)

Listing 4.7 starts with an import statement and then initializes the Pandas
data frame train_df with the contents of the CSV file titanic.csv. The
next portion of code initializes the variable mean_values with the mean of
the values for each gender (i.e., male and female) and then prints the results.

Similarly, the second portion of code initializes the variable mean_val-
ues2 with the mean of the values for each gender as well as for the fare
feature and then prints the results. Launch the code in Listing 4.7, and you
will see the following output:

MDS.CH4_2.8.23.indd 187MDS.CH4_2.8.23.indd 187 08/02/23 1:39 PM08/02/23 1:39 PM

188 • Managing Datasets and Models

=> Mean values by Gender:

survived pclass age sibsp parch fare adult_
male

alone

sex

female 0.742038 2.159236 27.915709 0.694268 0.649682 44.479818 0.000000 0.401274

male 0.188908 2.389948 30.726645 0.429809 0.235702 25.523893 0.930676 0.712305

=> Mean values by Gender and Fare:

survived pclass age sibsp parch adult_male alone

sex fare

female 6.7500 0.0 3.0 18.0 0.0 0.0 0.0 1.0

7.2250 1.0 3.0 15.0 0.0 0.0 0.0 1.0

7.2292 1.0 3.0 13.0 0.0 0.0 0.0 1.0

7.2500 1.0 3.0 22.0 0.0 0.0 0.0 1.0

7.4958 1.0 3.0 18.0 0.0 0.0 0.0 1.0

...

male 221.7792 0.0 1.0 NaN 0.0 0.0 1.0 1.0

227.5250 0.0 1.0 NaN 0.0 0.0 1.0 1.0

247.5208 0.0 1.0 24.0 0.0 1.0 1.0 0.0

263.0000 0.0 1.0 41.5 2.0 3.0 1.0 0.0

512.3292 1.0 1.0 35.5 0.0 0.5 1.0 0.5

[349 rows x 7 columns]

This concludes the portion of the chapter pertaining to data cleaning and
data wrangling. The next section contains a sequence of tasks that you need
to perform to train a model on a dataset using a classification algorithm.
Subsequent sections contain Python code samples that show you how to use
the kNN algorithm to train a model on various datasets, such as wine.csv
and later with bmi.csv and also with titanic2.csv. Hence, you will gain

MDS.CH4_2.8.23.indd 188MDS.CH4_2.8.23.indd 188 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Models • 189

practice with classification algorithms, and you will see how to modify a few
lines of code so that you can use several other classification algorithms in addi-
tion to the kNN algorithm.

STEPS FOR TRAINING CLASSIFIERS

This section contains the list of steps that you need to perform whenever you
want to train a model on a classification task:

	• Step 1: Import required Python libraries.
	• Step 2: Populate a Pandas data frame df from a CSV file.
	• Step 3: Specify columns for X and y (from df).
	• Step 4: Populate X_train, X_test, y_train, and y_test.
	• Step 5: Perform feature scaling (X_train and y_train).
	• Step 6: Create an instance cls of a specific classifier class.
	• Step 7: Invoke the fit() method of cls.
	• Step 8: Invoke the predict() method of cls.
	• Step 9: Populate a confusion matrix cm.
	• Step 10: Display the contents of the confusion matrix cm.
	• Step 11: Inspect values for the precision, recall, and F1 score.

For your convenience, a subsequent section performs all of the steps in the
preceding bullet list, which you can use as a template for your own code
involving different classification algorithms.

Before we proceed, there are several points to keep in mind. First, you
need to perform data cleaning before any of the steps in the preceding bullet
list.

Second, the y column is the target column, which consists of a single col-
umn of values.

Third, X is a subset of the columns in the data frame df, which can involve
a feature selection algorithm or perhaps PCA (principal component analysis).
However, in this book, the choice of columns for X will be straightforward.

Fourth, non-numeric columns in X must be mapped to integer values.
For example, the sex column consists of male and female values, which can
be mapped to 0 and 1 via the map() method that is available in every Pandas
data frame.

MDS.CH4_2.8.23.indd 189MDS.CH4_2.8.23.indd 189 08/02/23 1:39 PM08/02/23 1:39 PM

190 • Managing Datasets and Models

Fifth, different classification algorithms have different parameters, many
of which have default values. This book does not delve into the details of
classification algorithms to explain how they work or the purpose of their
parameters. However, some parameters have an intuitive purpose, such as
n_neighbours for the kNN algorithm, or n_estimators for the number of
trees in the random forest algorithm, and so forth. However, the criterion
parameter can be initialized with entropy or with gini, neither of which is
discussed in this book. Search for online tutorials that provide details for the
parameters of classification algorithms.

An Important Caveat

All the code samples for training models via classification algorithms select a
subset of columns from a dataset. However, the selected columns do not nec-
essarily generate the maximum accuracy. Although it is often straightforward
to select the appropriate set of columns for datasets containing a handful of
columns, the choice of columns can be non-intuitive and quite complex, espe-
cially for datasets that contain hundreds (or thousands) of columns.

In fact, there are various techniques for programmatically determin-
ing the set of columns for training a model with a dataset. Such techniques
include PCA, RFE (Recursive Feature Extraction), and many others. These
techniques are outside the scope of this book. Instead, the primary purpose of
the code samples in this chapter is to show you the sequence of steps that are
required to train a classification-based model with a given dataset.

DIAGRAM FOR PARTITIONED DATASETS

This section contains a diagram that shows you the four subsets that are
labeled X_train, X_test, y_train, and y_test that are created with
the following code snippet:

X_train,X_test,y_train,y_test =
train_test_split(X,y,test_size=0.25,random_state=0)

The preceding code snippet (or equivalent) appears in Python code samples for
classification tasks. Figure 4.2 shows the relationship among the four subsets
of data that are created via the scikit-learn function train_test_split().

MDS.CH4_2.8.23.indd 190MDS.CH4_2.8.23.indd 190 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Models • 191

FIGURE 4.2  A train test split diagram

The set X in Figure 4.2 is a subset of the data frame df that contains the
contents of a CSV file, an example of which is shown here (and also shown in
the code sample in the next section):

populate the data frame df with four columns from
titanic2.csv:

df = pd.read_csv('titanic2.csv', usecols = ['survived','p
class','sex','age'])

map male/female to the values 0 and 1:

df['sex'] = df['sex'].map({'male':0,'female':1})

from sklearn.model_selection import train_test_split

MDS.CH4_2.8.23.indd 191MDS.CH4_2.8.23.indd 191 08/02/23 1:39 PM08/02/23 1:39 PM

192 • Managing Datasets and Models

the target column y is the contents of 'survived':

y = df['survived']

df = df.drop(['survived'],axis = 1)

the set X now consists of the columns
'pclass','sex','age':

X = df

split into 75:25 ratio:

X_train,X_test,y_train,y_test =
train_test_split(X,y,test_size=0.25,random_state=0)

A KNN-BASED MODEL WITH THE WINE.CSV DATASET

This section shows you how to perform the steps listed in a previous section to
train a model with the kNN classification algorithm.

Listing 4.8 displays the content of knn_wine.py that shows you how to
train a kNN-based model on the wine.csv dataset. Note that the comments
containing a sequence of steps are the same steps that are listed in “Steps for
Training Classifiers” in a previous section.

Listing 4.8: knn_wine.py

Step 1: import required Python libraries

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

Step 2: populate a Pandas data frame df from a CSV file

dataset = pd.read_csv('wine.csv')

Step 3: specify columns for X and y (from df)

X = dataset.iloc[:, [0, 1]].values

y = dataset.iloc[:, 2].values

MDS.CH4_2.8.23.indd 192MDS.CH4_2.8.23.indd 192 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Models • 193

Step 4: populate X_train, X_test, y_train, and y_test

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size = 0.25, random_state = 0)

Step 5: perform feature scaling (X_train and y_train)

from sklearn.preprocessing import StandardScaler

sc = StandardScaler()

X_train = sc.fit_transform(X_train)

X_test = sc.transform(X_test)

Step 6: create an instance classifier of a specific
classifier class

from sklearn.neighbors import KNeighborsClassifier

classifier = KNeighborsClassifier(n_neighbors = 5,
metric='minkowski', p=2)

Step 7: invoke the fit() method of classifier

classifier.fit(X_train, y_train)

Step 8: invoke the predict() method of cls

y_pred = classifier.predict(X_test)

Step 9: populate a confusion matrix cm

from sklearn.metrics import confusion_matrix

cm = confusion_matrix(y_test, y_pred)

Step 10: display the contents of the confusion matrix cm

print("confusion matrix:")

print(cm)

MDS.CH4_2.8.23.indd 193MDS.CH4_2.8.23.indd 193 08/02/23 1:39 PM08/02/23 1:39 PM

194 • Managing Datasets and Models

Step 11: inspect values for precision, recall, and F1
score

from sklearn.metrics import classification_report

print(classification_report(y_test, y_pred))

Listing 4.8 starts with several import statements, and then the variable data-
set is initialized with the contents of the CSV file wine.csv. The third step
initializes the variable X with the first two features of the CSV file, and then
initializes the variable y with the third feature of the CSV file.

The fourth step invokes the train_test_split() method in the same
manner as you saw in a previous code sample in this chapter. The fifth step
uses the StandardScalar class to scale the contents of X_train and X_
test (note that the contents of y_train and y_test are already scaled).

The sixth step instantiates the variable classifier as an instance of the
class KNeighborsClassifier that belongs to scikit-learn. The seventh step
fits the model to the data, and the eighth step generates y_pred, which is a
set of predictions for the data in X_test. The ninth step generates a confu-
sion matrix based on the contents of y_test and y_pred. The tenth step
prints the contents of the confusion matrix, and the eleventh step generates
a report that contains values for precision, recall, and f1 score. Launch the
code in Listing 4.8, and you will see the following output:

confusion matrix:

[[15 0 1]

 [0 17 4]

 [0 1 7]]

 precision recall f1-score support

 1 1.00 0.94 0.97 16

 2 0.94 0.81 0.87 21

 3 0.58 0.88 0.70 8

 accuracy 0.87 45

 macro avg 0.84 0.87 0.85 45

weighted avg 0.90 0.87 0.88 45

MDS.CH4_2.8.23.indd 194MDS.CH4_2.8.23.indd 194 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Models • 195

OTHER MODELS WITH THE WINE.CSV DATASET

This section shows you how replace the kNN-specific code in the previous
section with several other classifiers:

1.	 DecisionTreeClassifier

2.	 RandomForestClassifier

3.	 GaussianNB

4.	 SVC

For your convenience, here is the code block in Step 6 of Listing 4.18; it is the
code that you need to replace with a different code block:

Step 6: create an instance classifier of a specific
classifier class

from sklearn.neighbors import KNeighborsClassifier

classifier = KNeighborsClassifier(n_neighbors = 5,
metric='minkowski', p=2)

In Listing 4.8 you need to specify different hyperparameters as well as the
preceding code block if you specify the same dataset.

You must make additional code modifications if you specify a different
dataset, which involves the following three steps:

	• the name of the CSV file
	• the set of columns in X
	• the set of columns in y

Determining the columns of the dataset that are specified in the set X can be
a complex task.

1) Here is the new code block for a decision tree (DecisionTreeClassifier):

from sklearn.tree import DecisionTreeClassifier

#classifier = DecisionTreeClassifier(criterion='entropy',ra
ndom_state=0)

classifier = DecisionTreeClassifier(criterion='gini',ran
dom_state=0)

classifier.fit(X_train, y_train)

MDS.CH4_2.8.23.indd 195MDS.CH4_2.8.23.indd 195 08/02/23 1:39 PM08/02/23 1:39 PM

196 • Managing Datasets and Models

2) Here is the new code block for a random forest (RandomForestClassifier):

from sklearn.ensemble import RandomForestClassifier

classifier = RandomForestClassifier(n_estimators = 500,
criterion='entropy', random_state = 0)

classifier.fit(X_train, y_train)

3) Here is the new code block for Naive Bayes (GaussianNB):

from sklearn.naive_bayes import GaussianNB

classifier = GaussianNB()

classifier.fit(X_train, y_train)

4) Here is the new code block for SVC (SVC):

from sklearn.svm import SVC

classifier = SVC(kernel = 'linear', random_state = 0)

classifier.fit(X_train, y_train)

Notice that the preceding code blocks specify values for only one or two
parameters: the other parameters for each algorithm have default values.
You can perform a quick online search to find documentation regarding the
parameters (and their default values) for the algorithms in the preceding code
blocks. After reading their descriptions, decide which parameter values (if
any) that you want to modify to experiment with the training process of the
respective models. For example, the following webpage contains documenta-
tion for the parameters that are available for the decision tree algorithm:

https : / / sc ik i t - learn.org/s table /modules /generated/sk learn. tree .
DecisionTreeClassifier.html

Some algorithms provide parameters that are not intuitively obvious with
respect to their purpose. For example, the DecisionTreeClassifier pro-
vide the criterion parameter whose value can be either gini or entropy,
both of which require additional study to understand their purpose and how
they differ from each other. A discussion of these parameter values is outside
the scope of this book.

MDS.CH4_2.8.23.indd 196MDS.CH4_2.8.23.indd 196 08/02/23 1:39 PM08/02/23 1:39 PM

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

Working with Models • 197

A KNN-BASED MODEL WITH THE BMI.CSV DATASET

Listing 4.9 displays a portion of the bmi.csv dataset, and Listing 4.20 dis-
plays the new code block that specifies the bmi.csv dataset and the appropri-
ate columns for X and y.

Listing 4.9: bmi.csv

gender,age,height,safebmi

Male,19,190,0

Male,15,180,0

Female,16,150,0

// lines omitted for brevity

Female,16,130,0

Male,12,130,1

Female,13,150,1

Male,15,190,0

Male,16,170,1

Listing 4.20: knn_bmi.py

Step 1: import required Python libraries

import pandas as pd

df = pd.read_csv('bmi.csv')

map gender values Male/Female to 0/1:

df['gender'] = df['gender'].map({'Male':'0','Female':'1'})

X = df.iloc[:, [0, 1, 2]].values

y = df.iloc[:, 3].values

// lines omitted for brevity

Listing 4.9 contains the initial portion of knn-bmi.py, and the remaining
code is the same as knn_wine.py. Launch the code in Listing 4.9, and you
will see the following output:

MDS.CH4_2.8.23.indd 197MDS.CH4_2.8.23.indd 197 08/02/23 1:39 PM08/02/23 1:39 PM

198 • Managing Datasets and Models

confusion matrix:

[[39 12]

 [18 6]]

classification report:

 precision recall f1-score support

 0 0.68 0.76 0.72 51

 1 0.33 0.25 0.29 24

 accuracy 0.60 75

 macro avg 0.51 0.51 0.50 75

weighted avg 0.57 0.60 0.58 75

A KNN-BASED MODEL WITH THE DIABETES.CSV DATASET

Listing 4.10 displays a portion of the diabetes.csv dataset, and Listing 4.11
displays the new code block for knn_diabetes.py that specifies the diabe-
tes.csv dataset and the appropriate columns for X and y.

Listing 4.10: diabetes.csv

Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BM
I,DiabetesPedigreeFunction,Age,Outcome

6,148,72,35,0,33.6,0.627,50,1

1,85,66,29,0,26.6,0.351,31,0

8,183,64,0,0,23.3,0.672,32,1

1,89,66,23,94,28.1,0.167,21,0

// lines omitted for brevity

2,122,70,27,0,36.8,0.34,27,0

5,121,72,23,112,26.2,0.245,30,0

1,126,60,0,0,30.1,0.349,47,1

1,93,70,31,0,30.4,0.315,23,0

MDS.CH4_2.8.23.indd 198MDS.CH4_2.8.23.indd 198 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Models • 199

Listing 4.11: knn_diabetes.py

Step 1: import required Python libraries

import pandas as pd

df = pd.read_csv('diabetes.csv')

Step 3: specify columns for X and y (from df)

*** first set ***

BloodPressure,BMI,Age:

X = dataset.iloc[:, [2, 5, 7]].values

Outcome:

y = dataset.iloc[:, 8].values

// lines omitted for brevity

Listing 4.11 contains the initial portion of knn_diabetes.py that shows you
the new code block in bold. The remaining code is the same as knn_bmi.py.
Launch the code in Listing 4.11, and you will see the following output:

confusion matrix:

[[39 12]

 [18 6]]

classification report:

 precision recall f1-score support

 0 0.68 0.76 0.72 51

 1 0.33 0.25 0.29 24

 accuracy 0.60 75

 macro avg 0.51 0.51 0.50 75

weighted avg 0.57 0.60 0.58 75

MDS.CH4_2.8.23.indd 199MDS.CH4_2.8.23.indd 199 08/02/23 1:39 PM08/02/23 1:39 PM

200 • Managing Datasets and Models

Replace the code shown in bold in Listing 4.11 with the following code block:

Step 3: specify columns for X and y (from df)

all columns:

X = dataset.iloc[:, [0, 1, 2, 3, 4, 5, 6, 7]].values

Outcome:

y = dataset.iloc[:, 8].values

Launch the code in Listing 4.11, and you will see the following output:

confusion matrix:

[[114 16]

 [22 40]]

 precision recall f1-score support

 0 0.84 0.88 0.86 130

 1 0.71 0.65 0.68 62

 accuracy 0.80 192

 macro avg 0.78 0.76 0.77 192

weighted avg 0.80 0.80 0.80 192

As you can see, the precision and recall have increased (i.e., improved)
in the second set, which contains eight columns in diabetes.csv, whereas
the first set contains three columns in diabetes.csv.

SMOTE AND THE TITANIC DATASET

This section is optional because there are various code-related details that
have not been discussed thus far, which are listed here:

	• Creating a Pandas data frame from a CSV file
	• Replacing categorical data with numeric values
	• Invoking train_test_split()
	• Invoking the fit() and test() methods
	• Precision and recall

MDS.CH4_2.8.23.indd 200MDS.CH4_2.8.23.indd 200 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Models • 201

However, everything in the preceding bullet list is covered in an introductory
machine learning course, which is a recommended (but not mandatory) pre-
requisite for this book.

Listing 4.12 displays the content of smote_titanic.py that illustrates
how to concatenate a set of CSV files into a single CSV file using a Pandas
data frame.

Listing 4.12: smote_titanic.py

import pandas as pd

import numpy as np

pip3 install imblearn <= if not installed

import SMOTE module from imblearn library

from imblearn.over_sampling import SMOTE

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import confusion_matrix,
classification_report

df = pd.read_csv('titanic2.csv', usecols = ['survived','p
class','sex','age'])

df['sex'] = df['sex'].map({'male':0,'female':1})

print(df)

from sklearn.model_selection import train_test_split

y = df['survived']

df = df.drop(['survived'],axis = 1)

X = df

split into 75:25 ratio:

X_train,X_test,y_train,y_test =
train_test_split(X,y,test_size=0.25,random_state=0)

MDS.CH4_2.8.23.indd 201MDS.CH4_2.8.23.indd 201 08/02/23 1:39 PM08/02/23 1:39 PM

202 • Managing Datasets and Models

create logistic regression object, then fit, then
predict:

lr1 = LogisticRegression()

lr1.fit(X_train, y_train.ravel())

predictions = lr1.predict(X_test)

cm = confusion_matrix(y_test, predictions)

print()

print("=> confusion matrix:")

print(cm)

print()

print(classification_report(y_test, predictions))

print("=> Before OverSampling:")

print("label '1': {}".format(sum(y_train == 1)))

print("label '0': {}".format(sum(y_train == 0)))

print()

perform oversampling with SMOTE:

sm = SMOTE(random_state = 2)

X_train_res, y_train_res = sm.fit_sample(X_train, y_train.
ravel())

print("=> After OverSampling:")

print("label '1': {}".format(sum(y_train_res == 1)))

print("label '0': {}".format(sum(y_train_res == 0)))

print()

create logistic regression object, then fit, then
predict:

lr2 = LogisticRegression()

MDS.CH4_2.8.23.indd 202MDS.CH4_2.8.23.indd 202 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Models • 203

lr2.fit(X_train_res, y_train_res.ravel())

predictions = lr2.predict(X_test)

cm = confusion_matrix(y_test, predictions)

print("=> confusion matrix:")

print(cm)

print()

print classification report

print(classification_report(y_test, predictions))

Listing 4.12 starts with several import statements, followed by the initial-
ization of the Pandas data frame df with four columns from the CSV file
titanic2.csv. Next, the data in the sex column is replaced with values 0
and 1 for male and female, respectively.

The next code block initializes y with the survived column, drops this col-
umn from the data frame df, and initializes X with the modified data frame.
At this point, we can invoke the method train_test_split() to initialize
X_train, X_test, y_train, and y_test.

The next portion of Listing 4.12 instantiates lr1 as an instance of the
Python-based LogisticRegression class, fits the training data on this
model, makes a prediction on the test data, and then displays the confu-
sion matrix as well as the classification report. The next snippet displays
the class distribution based on the current contents of the data frame df,
followed by two lines of code that perform the oversampling on the df, as
shown here:

sm = SMOTE(random_state = 2)

X_train_res, y_train_res = sm.fit_sample(X_train, y_train.
ravel())

The class distribution is displayed again, which shows that we now have a
balanced class in the data frame df. The final code block performs a similar
set of operations on the variable lr2 that was performed on the variable lr1.
Launch the code in Listing 4.12, and you will see the following output:

MDS.CH4_2.8.23.indd 203MDS.CH4_2.8.23.indd 203 08/02/23 1:39 PM08/02/23 1:39 PM

204 • Managing Datasets and Models

 survived pclass sex age

0 1 1 1 38.0

1 1 1 1 35.0

2 0 1 0 54.0

3 1 3 1 4.0

4 1 1 1 58.0

..

177 1 1 1 47.0

178 0 1 0 33.0

179 1 1 1 56.0

180 1 1 1 19.0

181 1 1 0 26.0

[182 rows x 4 columns]

=> confusion matrix:

[[8 6]

 [2 30]]

 precision recall f1-score support

 0 0.80 0.57 0.67 14

 1 0.83 0.94 0.88 32

 accuracy 0.83 46

 macro avg 0.82 0.75 0.77 46

weighted avg 0.82 0.83 0.82 46

=> Before OverSampling:

label '1': 91

label '0': 45

MDS.CH4_2.8.23.indd 204MDS.CH4_2.8.23.indd 204 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Models • 205

=> After OverSampling:

label '1': 91

label '0': 91

=> confusion matrix:

[[13 1]

 [6 26]]

 precision recall f1-score support

 0 0.68 0.93 0.79 14

 1 0.96 0.81 0.88 32

 accuracy 0.85 46

 macro avg 0.82 0.87 0.83 46

weighted avg 0.88 0.85 0.85 46

Compare the two confusion matrices and notice that TP has noticeably
increased after the oversampling has been performed, with a flip of the values
for FN and FP. In addition, notice that the class distribution is displayed again,
which shows you that we now have a balanced class. Last, notice that the
recall value has increased in label 0, which was initially an under-represented
label in the dataset.

EDA AND DATA VISUALIZATION

Let’s take a brief look at EDA and histograms, as well as EDA and heat maps,
both of which are discussed in the following subsections.

EDA and Histograms

One technique for analyzing the distribution of the data in a dataset is
to render the data in a histogram. Listing 4.13 displays the content of

MDS.CH4_2.8.23.indd 205MDS.CH4_2.8.23.indd 205 08/02/23 1:39 PM08/02/23 1:39 PM

206 • Managing Datasets and Models

hist_titanic.py that shows you how to render the data in the Titanic
dataset in a histogram.

Listing 4.13: hist_titanic.py

import pandas as pd

import matplotlib.pyplot as plt

filename="titanic2.csv"

train_df = pd.read_csv(filename)

train_df2 = train_df[['survived','age']]

train_df2['age'] = train_df2['age'].astype(int)

train_df2.hist("age",by="survived",edgecolor='blue',linewi
dth=1,grid=True,color="red",figsize=(10, 8),bins=30)

plt.suptitle("")

plt.xlabel("")

plt.show()

Listing 4.13 starts with two import statements and then initializes the
Pandas data frame train_df with the contents of the CSV file titanic.
csv. The next code snippet initializes the Pandas data frame train_df2 with
the values of the features survived and age. Next, the contents of train_
df2['age'] are treated as integer-based values.

The next code snippet invokes the hist() method that is part of the
train_df2 data frame to render a histogram whose axes are the age and
survived features, followed by snippets for the title and label for the hori-
zontal axis (both are empty strings). Launch the code in Listing 4.13, and you
will see the histogram that is shown in Figure 4.3.

MDS.CH4_2.8.23.indd 206MDS.CH4_2.8.23.indd 206 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Models • 207

FIGURE 4.3  A histogram with data from the Titanic dataset

EDA and Heatmaps

One technique for examining the correlation between features in a dataset
involves a heat map. Listing 4.14 displays the content of heatmap_titanic.
py that shows you how to render the data in the Titanic dataset in a
histogram.

Listing 4.14: heatmap_titanic.py

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

filename="titanic2.csv"

df = pd.read_csv(filename)

MDS.CH4_2.8.23.indd 207MDS.CH4_2.8.23.indd 207 08/02/23 1:39 PM08/02/23 1:39 PM

208 • Managing Datasets and Models

matrix = df.corr()

plt.figure(figsize=(8,6))

sns.heatmap(matrix,cmap='Blues',annot=True)

plt.show()

Listing 4.14 starts with four import statements and then initializes the Pandas
data frame df with the contents of the CSV file titanic.csv. The next code
snippet initializes the variable matrix as the correlation matrix for the fea-
tures in df.

After specifying the dimensions of the output figure, the Seaborn heat-
map() is invoked to render a heat map. Launch the code in Listing 4.14, and
you will see the histogram that is shown in Figure 4.4.

FIGURE 4.4  A heat map with data from the Titanic dataset

MDS.CH4_2.8.23.indd 208MDS.CH4_2.8.23.indd 208 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Models • 209

WHAT ABOUT REGRESSION AND CLUSTERING?

Regression (which includes linear regression) is another type of supervised
learning task with datasets that have a target column that can contain a wide
range of numeric values, whereas classification algorithms have a target col-
umn with a much smaller number of numeric values.

Clustering is an unsupervised learning task in which datasets do not have a
target column. A dozen or so algorithms exist for clustering, including kMeans
(probably the most well-known algorithm) and meanShift.

Regression and clustering examples are not included because the focus of
this book is for classification algorithms in machine learning. However, you
can perform an online search, and you will find numerous free tutorials and
blogposts that provide examples of linear regression and clustering.

FEATURE IMPORTANCE

In general, you want to determine which features in a dataset are significant
and their relative importance. For example, the number of bedrooms and
bathrooms in a house are significant features that affect the price of a house,
whereas the ticket number for an airplane ticket is most likely not a significant
feature.

Suppose that a dataset has a “target” column, which is a column whose
values we want to predict during the testing phase (i.e., after the training
phase). A target column exists in datasets for classification problems (which
includes linear regression and classification algorithms), whereas datasets
without a target column are clustering tasks.

The key idea pertaining to feature importance involves assigning a numeric
score between 0 and 100 that is assigned to each feature, which measures the
extent to which that feature can predict the target variable. The conditions for
assigning feature importance are summarized here:

	• Select all the relevant features.
	• Assign a value between 0 and 100 to each feature.
	• Ensure the sum of the feature values is 100.

Note: If we divide the feature values by 100, we have a probability distribution.

MDS.CH4_2.8.23.indd 209MDS.CH4_2.8.23.indd 209 08/02/23 1:39 PM08/02/23 1:39 PM

210 • Managing Datasets and Models

Decision Trees and Feature Importance

One way to determine feature importance involves the random forest algo-
rithm in scikit-learn. For a given feature, scikit-learn calculates its importance
(which is a numeric value) by examining the average reduction in the impurity
in the set of tree nodes that involve that feature. This calculation is performed
for each feature after the training step has completed, after which the values
are scaled (essentially a probability distribution) to simplify the comparison of
the importance of features.

Listing 4.15 displays the content of feature_importance.py that
shows you how to determine the important features in the Titanic dataset,
as well as their relative importance.

Listing 4.15: feature_importance.py

from scikit-learn.model_selection import train_test_split

from scikit-learn.ensemble import RandomForestClassifier

import pandas as pd

import numpy as np

df = pd.read_csv("titanic2.csv")

df = df[["survived","sex","age","class","embarked"]]

y = df.pop("survived")

convert categories to numeric values:

df['sex'] = df['sex'].replace({'male':1, "female":0})

df['class'] = df['class'].replace({'First':1, "Second":2,
"Third":3})

df['embarked'] = df['embarked'].replace({'S':0, "C":1,
"Q":2})

perform train test split:

X_train, X_test, y_train, y_test = train_test_split(df, y,
test_size=0.2, random_state=42)

MDS.CH4_2.8.23.indd 210MDS.CH4_2.8.23.indd 210 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Models • 211

rng = np.random.RandomState(0)

random_forest = RandomForestClassifier(n_estimators=10,
random_state=rng)

random_forest.fit(X_train,y_train)

determine the relative feature importance:

feature_imp = pd.DataFrame({'feature':X_train.
columns,'importance': np.round(random_forest.
feature_importances_,3)})

feature_imp = feature_imp.sort_values('importance',ascendi
ng=False).set_index('feature')

print("feature_imp.head():")

print(feature_imp.head())

Listing 4.15 starts with four import statements and then initializes the Pandas
data frame df with the contents of the CSV file titanic2.csv. Next, the
variable df is reduced to five attributes, after which the variable y is initialized
with the contents of the survived feature, as shown here:

df = df[["survived","sex","age","class","embarked"]]

y = df.pop("survived")

The next block of code involves three invocations of the replace() method
to replace the values of the sex, class, and embarked features with a cor-
responding set of numeric values.

Now we can split the contents of df and y into four sub-regions in prepa-
ration for the training step and the test step, as shown in this code snippet:

X_train, X_test, y_train, y_test = train_test_split(df, y,
test_size=0.2, random_state=42)

The next portion of Listing 4.15 initializes the variable random_forest as
an instance of the RandomForestClassifier class, after which the fit()
method is invoked to train the model.

MDS.CH4_2.8.23.indd 211MDS.CH4_2.8.23.indd 211 08/02/23 1:39 PM08/02/23 1:39 PM

212 • Managing Datasets and Models

The final portion of Listing 4.15 accesses the relative importance of the
features and displays their values as a decimal number (note that their sum
equals 1). Launch the code in Listing 4.15, and you will see the following
output:

feature_imp.head():

 importance

feature

age 0.583

sex 0.346

class 0.038

embarked 0.033

WHAT IS FEATURE ENGINEERING?

Feature engineering is the process of determining a new set of features that
are based on a combination of existing features to create a meaningful dataset
for a given task. Domain expertise is often required for this process, even in
cases of relatively simple datasets. Feature engineering can be tedious and
expensive, and in some cases, you might consider using automated feature
learning. After you have created a dataset, it is a good idea to perform feature
selection or feature extraction (or both) to ensure that you have a high quality
dataset.

After creating a dataset and cleaning its values, examine the features in
the dataset: are there features that are clearly important? If so, then you can
perform features section by selecting those features. Visual inspection does
not guarantee that you can determine the complete set of significant features,
nor can you guarantee the relative importance of those selected features.

Another approach is feature extraction, which involves programmati-
cally determining the most relevant features in the dataset. Some feature
extraction techniques calculate linear combinations of existing features (e.g.,
PCA), whereas other techniques involve non-linear combinations (such as
t-sne).

MDS.CH4_2.8.23.indd 212MDS.CH4_2.8.23.indd 212 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Models • 213

In addition to performing feature selection or feature extraction, you can
also perform feature importance to determine the relative importance of fea-
tures in a dataset.

In high-level terms, some algorithms adopt a “bottom-up” approach
whereby an initial set of relevant features starts with a single feature. Each
time that another feature is added, the predictive accuracy of the feature set
is calculated: features that increase the accuracy are maintained in the feature
set, and those that do not increase the accuracy are discarded. However, some
algorithms adopt a “top-down” approach that starts with a larger initial set of
features. A feature is chosen for removal from the initial set of features, and
then the accuracy of the reduced set of features is calculated: if the accuracy
decreases, then the removed feature is returned to the initial dataset, and if
the accuracy increases, then another feature is chosen for removal, and the
process is repeated.

WHAT IS FEATURE SELECTION?

Feature selection is also called variable selection, attribute selection, or vari-
able subset selection. Feature selection involves selecting a subset of the most
relevant features in a dataset, which provides these advantages:

	• reduced training time
	• simpler models that are easier to interpret
	• avoidance of the curse of dimensionality
	• better generalization due to reduced overfitting (“reduction of variance”)

Feature selection techniques are often used in domains where there are
many features and comparatively few samples (or data points). A low-value
feature can be redundant or irrelevant, which are two different concepts. For
instance, a relevant feature might be redundant when it is combined with
another strongly correlated feature.

Sometimes datasets contain a pair of features in which the categorical val-
ues of feature A are essentially a subset of the values in feature B. Determine
whether there is no loss (or an acceptable loss) of information as a result of
combining feature A and feature B into a single feature.

MDS.CH4_2.8.23.indd 213MDS.CH4_2.8.23.indd 213 08/02/23 1:39 PM08/02/23 1:39 PM

214 • Managing Datasets and Models

Another simple example involves splitting a feature into multiple features.
For example, suppose that feature A contains the first name and last name
of a set of customers. If you need to process that data based on a customer’s
last name, consider splitting feature A into two features (first name and last
name). However, you might already have a pair of features for the first name
and last name of customers and merging them into one feature might be pref-
erable (depends on the specific use-case).

Feature selection can be employed for performing regression tasks as well
as classification tasks. Supervised feature selection techniques have the fol-
lowing properties:

	• They take into account the target variable.
	• Some remove irrelevant variables.
	• Some use a filter strategy (e.g., information gain).
	• Some use a wrapper strategy (e.g., search guided by accuracy).
	• Some use the embedded strategy.

In the embedded strategy, prediction errors are used to determine whether
features are included or excluded while developing a model.

An example of a filter-based algorithm is XGBoost. Examples of a wrap-
per-based algorithm include GA as well as the RFE feature selection tech-
nique. An example of an embedded-based algorithm is the L1 Lasso method.

A more recent technique for determining dependencies that works with
numeric and categorical data is discussed online at

https://phik.readthedocs.io/en/latest/#

Classification of Feature Selection Techniques

Several types of feature selection techniques are shown here:

	• filter methods
	• wrapper methods
	• embedded methods
	• hybrid methods

In brief, filter methods for feature selection include methods that use the
distributions of features to determine the selection of features. Such tech-
niques are not as effective for selecting features, even though they execute

MDS.CH4_2.8.23.indd 214MDS.CH4_2.8.23.indd 214 08/02/23 1:39 PM08/02/23 1:39 PM

https://phik.readthedocs.io/en/latest/#

Working with Models • 215

very quickly. Examples of filter methods include chi-squared and ANOVA
(Analysis of Variance).

These methods are computationally very fast, but in practice, they do not
render good features for our models. In addition, when we have big datasets,
p-values for statistical tests tend to be very small, highlighting as significant
tiny differences in distributions that may not be really important.

Wrapper methods include greedy algorithms, which can be infeasible
due to their exhaustive examination of possible combinations of features in
a dataset. These methods use an iterative approach: select an optimal set of
features, evaluate the performance, and then repeat this process. Examples of
wrapper methods include cross-validation, forward selection, and RFE, all of
which are discussed in online articles.

Embedded methods for feature selection leverage the advantages of fil-
ter methods as well as wrapper methods. Embedded methods first train a
machine learning model, after which they use the trained model’s feature
importance to select features. Although the techniques in this group also exe-
cute quickly, we can only use the algorithms that provide feature importance.
Hybrid methods involve combinations of the other types of methods to per-
form feature selection, which includes the following:

	• feature shuffling
	• feature performance
	• target mean performance

Navigate to the following Web page (specifically see diagram #4) for filter
methods, embedded methods, wrapper methods, and hybrid methods for fea-
ture selection:

https://towardsdatascience.com/feature-selection-for-the-lazy-data-scientist-
c31ba9b4ee66

Feature Selection Algorithms

Before we look at any algorithms, keep in mind that machine learning algo-
rithms such as Lasso, decision trees, and random forests automatically per-
form feature selection during the training step of a given model.

By contrast, unsupervised feature selection techniques do not involve a
target feature because a target feature does not exist in the dataset. Instead,

MDS.CH4_2.8.23.indd 215MDS.CH4_2.8.23.indd 215 08/02/23 1:39 PM08/02/23 1:39 PM

https://towardsdatascience.com/feature-selection-for-the-lazy-data-scientist-c31ba9b4ee66
https://towardsdatascience.com/feature-selection-for-the-lazy-data-scientist-c31ba9b4ee66

216 • Managing Datasets and Models

some of these selection techniques remove redundant variables via correla-
tion. Here is a list of relevant feature selection techniques:

	• Backward Feature Elimination
	• Factor Analysis
	• Forward Feature Selection
	• Independent Component Analysis
	• LOCO (Leave One Covariate Out)
	• RFE

For example, Listing 4.16 displays the content of rfe1.py that shows you
how to use RFE to perform feature extraction.

Listing 4.16: rfe1.py

from scikit-learn.datasets import make_classification

from scikit-learn.feature_selection import RFE

from scikit-learn.tree import DecisionTreeClassifier

define data set

X, y = make_classification(n_samples=1000, n_features=10,
n_informative=5, n_redundant=5, random_state=42)

define and then fit RFE:

rfe = RFE(estimator=DecisionTreeClassifier(),
n_features_to_select=5)

rfe.fit(X, y)

summary of selected/not-selected features:

for i in range(X.shape[1]):

 print(f'Column: {i} Chosen: {rfe.support_[i]:4} Rank:
{rfe.ranking_[i]:4}')

Listing 4.16 starts with several import statements and then initializes the
variables X and y by invoking the make_classification() method that gen-
erates random values. In this case, there are 1000 rows and 10 features.

MDS.CH4_2.8.23.indd 216MDS.CH4_2.8.23.indd 216 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Models • 217

The next portion of Listing 4.16 invokes the RFE() method with an
instance of the class DecisionTreeClassifier as the value for the estima-
tor parameter, and also specifies that 5 features need to be selected. Launch
the code in Listing 4.16, and you will see the following output:

Column: 0 Selected: 0 Rank: 6

Column: 1 Selected: 1 Rank: 1

Column: 2 Selected: 0 Rank: 2

Column: 3 Selected: 1 Rank: 1

Column: 4 Selected: 1 Rank: 1

Column: 5 Selected: 1 Rank: 1

Column: 6 Selected: 0 Rank: 4

Column: 7 Selected: 1 Rank: 1

Column: 8 Selected: 0 Rank: 5

Column: 9 Selected: 0 Rank: 3

Continuous Versus Categorical Features

Categorical features must be mapped to numeric values, and one well-known
technique for doing so is called one-hot encoding. For instance, if a categori-
cal feature consists of the three colors red, green, and blue, you can represent
each color by a 1x3 vector, as shown here:

	• [1,0,0] for red
	• [0,1,0] for green
	• [0,0,1] for blue

In general, if a categorical feature consists of n distinct values, you can rep-
resent each of these values as a 1xn vector from the nxn identity matrix.
However, feature selection (and feature extraction) algorithms are unaware of
the “binding” that exists among the one-hot encoded columns.

Determining a Feature Selection Algorithm

Earlier, you saw a list of machine learning algorithms you can use for feature
selection. This section recommends specific algorithms to perform feature
selection.

MDS.CH4_2.8.23.indd 217MDS.CH4_2.8.23.indd 217 08/02/23 1:39 PM08/02/23 1:39 PM

218 • Managing Datasets and Models

If you have a supervised learning task, try decision trees (or random for-
est) because they perform feature selection as part of their algorithm. If you
want to try other algorithms after working with a decision tree or random
forest, try RFE or a feature importance method. If you have an unsupervised
learning task, start with kMeans, meanShift, or meanShift++.

WHAT IS FEATURE EXTRACTION?

Feature extraction creates new features from functions that produce combi-
nations of the original features. By contrast, feature selection involves deter-
mining a subset of the existing features. The net effect of feature selection
and feature extraction results in dimensionality reduction for a given dataset,
which is not discussed in this book.

By contrast, feature exclusion involves retaining features that might be
relevant for predicting the output. Moreover, feature exclusion involves drop-
ping-vs-keeping features for training a model, whereas feature extraction
involves deriving new (and ideally fewer) features from the existing features.

In some cases, you can perform a visual inspection of the features of a
dataset to determine the most important features. However, visual inspection
is not as reliable for larger datasets that contain dozens or hundreds of fea-
tures. Fortunately, there are algorithms that can determine the most import-
ant features of a dataset, some of which are listed in the next section.

Feature Extraction Algorithms

There are powerful algorithms that perform feature extraction, and they typi-
cally involve non-trivial mathematical concepts. For example, PCA involves
calculating eigenvalues and eigenvectors (standard material for mathematics
majors). As such, this section contains a short list of algorithms, and you can
perform an online search if you want to learn more about the details of these
algorithms:

	• PCA
	• Independent Component Analysis (ICA)
	• Linear Discriminant Analysis (LDA)

Note that the algorithms in the preceding list perform linear extraction,
whereas the following list contains non-linear extraction algorithms:

MDS.CH4_2.8.23.indd 218MDS.CH4_2.8.23.indd 218 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Models • 219

	• Locally Linear Embedding (LLE)
	• t-distributed Stochastic Neighbor Embedding (t-SNE)
	• Auto encoders

LLE is a dimensionality reduction technique that involves “manifold learn-
ing,” and you can learn more details about this concept online:

https://cs.nyu.edu/~roweis/lle/

The t-sne algorithm involves the Kullback-Leibler (KL) divergence,
which is a non-trivial concept. A suggestion: if you are unfamiliar with KL
divergence, first learn about entropy and cross entropy, after which it will be
easier for you to understand KL divergence.

Autoencoders are neural networks whose input layer and output layer are
identical, and more details are available online:

https://en.wikipedia.org/wiki/Autoencoder

You can also find many online tutorials that contain code samples that illus-
trate how to use dimensionality reduction algorithms, such as the following:

https://towardsdatascience.com/feature-extraction-techniques-d619b56e31be

Yet another useful technique is called feature hashing (distantly analo-
gous to the “kernel trick” in SVMs), which is discussed here:

https://dzone.com/articles/feature-hashing-for-scalable-machine-learning

DATA CLEANING AND MACHINE LEARNING

Data cleaning can be an enormously time-consuming task that involves a sig-
nificant amount of effort and domain knowledge. After you have cleaned a
dataset, you need to decide which machine learning algorithms to employ for
training a model on the dataset. A labeled dataset enables you to choose from
various algorithms, including:

	• logistic regression
	• Naive Bayes
	• decision trees
	• random forests
	• SVMs
	• CNNs (part of deep learning)

MDS.CH4_2.8.23.indd 219MDS.CH4_2.8.23.indd 219 08/02/23 1:39 PM08/02/23 1:39 PM

https://cs.nyu.edu/~roweis/lle/
https://en.wikipedia.org/wiki/Autoencoder
https://towardsdatascience.com/feature-extraction-techniques-d619b56e31be
https://dzone.com/articles/feature-hashing-for-scalable-machine-learning

220 • Managing Datasets and Models

If you have unlabeled data, then you can explore one or more of the following
clustering algorithms:

	• kMeans
	• meanShift
	• kMeans++
	• kMedioid
	• DBScan

Another consideration involves imbalanced datasets, which can adversely
affect the accuracy of some machine learning algorithms. There are tech-
niques for handling imbalanced datasets, which are discussed in Chapter 2.

Labeled Versus Unlabeled Data

Labeled data is often preferred because it saves you from performing the task
of labeling the data yourself. However, most data is unlabeled, and the cost of
labeling that data can be prohibitive. While it is straightforward and inexpen-
sive to manually label pictures of dogs and cats, it is much more costly to label
x-rays that contain signs of tumors.

Synthetic Data Labels

Synthetic labeling generates training data that resembles real data, which can
be done in several ways, some of which are listed here:

	• GANs (Generative Adversarial Networks)
	• ARs (AutoRegressive models)
	• VAEs (Variational Autoencoders)
	• SSL (self-supervised learning)

The techniques in the preceding list are outside the scope of this book, but
you can perform an Internet search and find numerous articles and blog posts.
Another option involves commercial products from various companies that
you can explore through an online search to determine which ones meet your
needs.

Keep in mind that generating synthetic labels is different from generat-
ing synthetic data: examples of the latter (such as SMOTE) are discussed in
Chapter 3.

MDS.CH4_2.8.23.indd 220MDS.CH4_2.8.23.indd 220 08/02/23 1:39 PM08/02/23 1:39 PM

Working with Models • 221

Training Large Datasets

If you have a dataset that is over 100 MB (or whatever you consider to be
large) and you want to obtain results more quickly, the following suggestions
might save you a significant amount of time.

First, perform data cleaning your steps on a 10% subset of the data. If
10% is still too large, then reduce that number to 5% or even a 1% subset of
the dataset. Second, use the smaller dataset in the previous step with each of
the algorithms that you plan to use. This approach will give you faster results
than the time for training the model just once on the entire dataset.

After completing the preceding sequence of steps, try randomly selecting
yet another 10% (or less) and randomly select one of the algorithms to train
the model and see if the results are comparable.

Finally, train the model on the entire dataset with all the algorithms and
ideally the results will be comparable. However, if there are differences then
you could explore the data to determine if and where there might be some-
thing anomalous in the data.

Of course, avail yourself of the GPU in Google Colaboratory (or some
other cloud-based service) because it is probably much faster and also free to
use for at least 10 hours on a daily basis.

Other Data-Related Topics

Although this chapter is oriented toward data quality, there are other con-
cerns pertaining to data that are not covered in this chapter. Even if you are
not directly involved, it is a good idea to be aware of potential concerns, some
of which are shown here:

	• data privacy
	• data protection
	• data security

Various techniques are available for the data-related topics in the previous list,
some of which are listed here:

	• cryptography
	• data deletion
	• encryption

MDS.CH4_2.8.23.indd 221MDS.CH4_2.8.23.indd 221 08/02/23 1:39 PM08/02/23 1:39 PM

222 • Managing Datasets and Models

If need be, you can perform an online search for more information about
these techniques and data-related topics.

SUMMARY

This chapter started with techniques for scaling data and the importance of
performing this task. Next, you learned how to scale numeric data via normali-
zation, standardization, and via units of measure.

In addition, you learned about the confusion matrix as well as metrics
such as precision, recall, specificity, accuracy, and F1 score. Moreover, you
learned about the ROC curve and AUC curve for evaluating a trained model.

Then you saw how to train a model using the kNN algorithm with various
datasets, including a wine dataset, a BMI dataset, and a diabetes dataset. You
also learned about the SMOTE algorithm for generating synthetic data.

Moreover, you learned about feature engineering, which comprises fea-
ture selection and feature extraction. Finally, you learned about data cleaning,
which can involve working with labeled and unlabeled data.

MDS.CH4_2.8.23.indd 222MDS.CH4_2.8.23.indd 222 08/02/23 1:39 PM08/02/23 1:39 PM

C H A P T E R 5
Matplotlib and Seaborn

This chapter introduces data visualization, along with a collection of Python-
based code samples that use Matplotlib to render charts and graphs. In addi-
tion, this chapter contains visualization code samples that combine Pandas
and Matplotlib.

The first part of this chapter briefly discusses data visualization, with a
short list of some data visualization tools, and a list of various types of visual-
ization (bar graphs, pie charts, and so forth). There is a very short introduction
to Matplotlib, followed by code samples that display the available styles in
colors in Matplotlib.

The second part of this chapter contains an assortment of Python code
samples that render horizontal lines, slanted lines, and parallel lines. This sec-
tion also contains a set of code samples that show you how to render a grid of
points in several ways.

The third part of this chapter shows you how to load images, display a
checkerboard pattern, and plot trigonometric functions in Matplotlib. The
fourth section contains examples of rendering charts and graphs in Matplotlib,
which includes histograms, bar charts, pie charts, and heat maps.

The fifth section contains code samples for rendering 3D charts, financial
data, and data from a sqlite3 database.

This chapter introduces several tools for data visualization, including
Seaborn, Bokeh, and YellowBrick, along with an introduction to scikit-learn.

You will get an introduction to Seaborn for data visualization, which is a
layer above Matplotlib. Although Seaborn does not have all of the features
that are available in Matplotlib, Seaborn provides an easier set of APIs for
rendering charts and graphs.

MDS.CH5_2.8.23.indd 223MDS.CH5_2.8.23.indd 223 08/02/23 1:39 PM08/02/23 1:39 PM

224 • Managing Datasets and Models

Also included here is a very short introduction to Bokeh, along with a
code sample that illustrates how to create more artistic graphics effects with
relative ease.

Finally, we delve into scikit-learn, which is a very powerful Python library
that supports many machine learning algorithms and visualization. If you are
new to machine learning, fear not: this section does not require a background
in machine learning to understand the Python code samples.

IMPORT STATEMENTS FOR THIS CHAPTER

The following list contains all the import statements that you will encounter
in the Python code samples for this chapter:

	• from bokeh.layouts import column
	• from bokeh.plotting import figure, output_file, show
	• from datetime import datetime
	• from itertools import product
	• from matplotlib import colors
	• from matplotlib import pyplot as plt
	• from matplotlib import style
	• from sklearn import datasets
	• from sklearn.datasets import load_digits
	• from sklearn.model_selection import train_test_split
	• from sklearn.preprocessing import StandardScaler
	• import bokeh.colors as colors
	• import math
	• import matplotlib
	• import matplotlib.pyplot as plt
	• import mplfinance as mpf
	• import numpy as np
	• import pandas as pd
	• import pylab
	• import random
	• import seaborn as sns
	• import sqlite3
	• import sweetviz as sv
	• import sys

MDS.CH5_2.8.23.indd 224MDS.CH5_2.8.23.indd 224 08/02/23 1:39 PM08/02/23 1:39 PM

Matplotlib and Seaborn • 225

WHAT IS DATA VISUALIZATION?

Data visualization refers to presenting data in a graphical manner, such as bar
charts, line graphs, and heat maps. As you probably know, big data comprises
massive amounts of data and leverages data visualization tools to assist in mak-
ing better decisions.

Good data visualization tells a meaningful story, which in turn focuses on
useful information that resides in datasets that can contain many data points
(i.e., billions of rows of data). Another aspect of data visualization is its effec-
tiveness: how well does it convey the trends that might exist in the dataset?

There are many open source data visualization tools available, some of
which are listed here (many others are available):

	• Matplotlib
	• Seaborn
	• Bokeh
	• YellowBrick
	• Tableau
	• D3.js (JavaScript and SVG)

Incidentally, in case you have not already done so, it would be helpful to install
the following Python libraries (using pip3) on your computer so that you can
launch the code samples in this chapter:

pip3 install matplotlib

pip3 install seaborn

pip3 install bokeh

Types of Data Visualization

Bar graphs, line graphs, and pie charts are common ways to present data, and
yet many other types exist, some of which are listed below:

	• 2D/3D Area Chart
	• Bar Chart
	• Gantt Chart
	• Heat Map
	• Histogram
	• Polar Area

MDS.CH5_2.8.23.indd 225MDS.CH5_2.8.23.indd 225 08/02/23 1:39 PM08/02/23 1:39 PM

226 • Managing Datasets and Models

	• Scatter Plot (2D or 3D)
	• Timeline

The Python code samples in the next several sections illustrate how to per-
form visualization via rudimentary APIs from matplotlib.

WHAT IS MATPLOTLIB?

Matplotlib is a plotting library that supports NumPy, SciPy, and toolkits such
as wxPython (among others). Matplotlib supports only version 3 of Python:
support for version 2 of Python was available only through 2020. Matplotlib is
a multi-platform library that is built on NumPy arrays.

The plotting-related code samples in this chapter use pyplot, which
is a Matplotlib module that provides a MATLAB-like interface. Here is
an example of using pyplot (copied from https://www.biorxiv.org/con-
tent/10.1101/120378v1.full.pdf) to plot a smooth curve based on negative
powers of Euler’s constant e:

import matplotlib.pyplot as plt

import numpy as np

a = np.linspace(0, 10, 100)

b = np.exp(-a)

plt.plot(a, b)

plt.show()

The code samples that plot line segments assume that you are familiar with
the equation of a (non-vertical) line in the plane: y = m*x + b, where m is
the slope and b is the y-intercept.

Furthermore, some code samples use NumPy APIs such as np.lins-
pace(), np.array(), np.random.rand(), and np.ones() (discussed in
Chapter 3), so you can refresh your memory regarding these APIs.

MDS.CH5_2.8.23.indd 226MDS.CH5_2.8.23.indd 226 08/02/23 1:39 PM08/02/23 1:39 PM

https://www.biorxiv.org/content/10.1101/120378v1.full.pdf
https://www.biorxiv.org/content/10.1101/120378v1.full.pdf

Matplotlib and Seaborn • 227

MATPLOTLIB STYLES

Listing 5.1 displays the content of mpl_styles.py that illustrates how to
plot a pie chart in Matplotlib.

Listing 5.1: mpl_styles.py

import matplotlib.pyplot as plt

print("plt.style.available:")

styles = plt.style.available

for style in styles:

 print("style:",style)

Listing 5.1 contains an import statement, followed by the variable styles
that is initialized with the set of available styles in Matplotlib. The final portion
of Listing 5.1 contains a loop that iterates through the values in the styles
variable. Launch the code in Listing 5.1, and you will see the following output:

plt.style.available:

style: Solarize_Light2

style: _classic_test_patch

style: bmh

style: classic

style: dark_background

style: fast

style: fivethirtyeight

style: ggplot

style: grayscale

style: seaborn

style: seaborn-bright

style: seaborn-colorblind

style: seaborn-dark

style: seaborn-dark-palette

MDS.CH5_2.8.23.indd 227MDS.CH5_2.8.23.indd 227 08/02/23 1:39 PM08/02/23 1:39 PM

228 • Managing Datasets and Models

style: seaborn-darkgrid

style: seaborn-deep

style: seaborn-muted

style: seaborn-notebook

style: seaborn-paper

style: seaborn-pastel

style: seaborn-poster

style: seaborn-talk

style: seaborn-ticks

style: sea born-white

style: seaborn-whitegrid

style: tableau-colorblind10

DISPLAY ATTRIBUTE VALUES

Listing 5.2 displays the content of mat_attrib_values.py that shows the
attribute values of an object in Matplotlib (subplots are discussed later in this
chapter).

Listing 5.2: mat_attrib_values.py

import matplotlib.pyplot as plt

fig, ax = plt.subplots()

print("=> attribute values:")

print(plt.getp(fig))

Listing 5.2 contains an import statement, followed by the variables fig and
ax that are initialized by invoking the subplots() method of the plt class.
The next block of code prints the attribute values in fig by invoking the plt.
getp() method. Launch the code in Listing 5.2, and you will see the follow-
ing output:

MDS.CH5_2.8.23.indd 228MDS.CH5_2.8.23.indd 228 08/02/23 1:39 PM08/02/23 1:39 PM

Matplotlib and Seaborn • 229

=> attribute values:

 agg_filter = None

 alpha = None

 animated = False

 axes = [<AxesSubplot:>]

 �children = [<matplotlib.patches.Rectangle object at
0x11c34f0...

 clip_box = None

 clip_on = True

 clip_path = None

 constrained_layout = False

 �constrained_layout_pads = (0.04167, 0.04167, 0.02,
0.02)

 contains = None

 �default_bbox_extra_artists = [<AxesSubplot:>,
<matplotlib.spines.Spine object a...

 dpi = 100.0

 edgecolor = (1.0, 1.0, 1.0, 1.0)

 facecolor = (1.0, 1.0, 1.0, 1.0)

 figheight = 4.8

 figure = None

 figwidth = 6.4

 frameon = True

 gid = None

 in_layout = True

 label =

 path_effects = []

 picker = None

 rasterized = None

 size_inches = [6.4 4.8]

 sketch_params = None

 snap = None

MDS.CH5_2.8.23.indd 229MDS.CH5_2.8.23.indd 229 08/02/23 1:39 PM08/02/23 1:39 PM

230 • Managing Datasets and Models

 tight_layout = False

 transform = IdentityTransform()

 transformed_clip_path_and_affine = (None, None)

 url = None

 visible = True

 �window_extent = TransformedBbox(Bbox(x0=0.0,
y0=0.0, x1=6.4, ...

 zorder = 0

None

COLOR VALUES IN MATPLOTLIB

Listing 5.3 displays the content of mat_colors.py that shows the colors
available in Matplotlib.

Listing 5.3: mat_colors.py

import matplotlib

import matplotlib.pyplot as plt

colors = plt.colormaps()

col_count=5

idx=0

for color in colors:

 if(color.endswith("_r") == False):

 print(color," ",end="")

 idx += 1

 if(idx % col_count == 0):

 print()

print()

print("=> color count:",idx)

MDS.CH5_2.8.23.indd 230MDS.CH5_2.8.23.indd 230 08/02/23 1:39 PM08/02/23 1:39 PM

Matplotlib and Seaborn • 231

Listing 5.3 contains two import statements, after which the variable colors
is initialized with the list of available colors. The next portion of Listing 5.3
contains a loop that iterates through the colors variable and prints the value
of each color, provided that it does not have the suffix “_r” in its name. A new
line is printed each time that five colors have been printed. Launch the code
in Listing 5.3, and you will see the following output:

Accent Blues BrBG BuGn BuPu

CMRmap Dark2 GnBu Greens Greys

OrRd Oranges PRGn Paired Pastel1

Pastel2 PiYG PuBu PuBuGn PuOr

PuRd Purples RdBu RdGy RdPu

RdYlBu RdYlGn Reds Set1 Set2

Set3 Spectral Wistia YlGn YlGnBu

YlOrBr YlOrRd afmhot autumn binary

bone brg bwr cividis cool

coolwarm copper cubehelix flag gist_earth

gist_gray gist_heat gist_ncar gist_rainbow gist_stern

gist_yarg gnuplot gnuplot2 gray hot

hsv inferno jet magma nipy_spectral

ocean pink plasma prism rainbow

seismic spring summer tab10 tab20

tab20b tab20c terrain turbo twilight

twilight_shifted viridis winter

=> color count: 83

Let’s proceed to the next section that contains a set of basic code samples that
display various types of line segments.

CUBED NUMBERS IN MATPLOTLIB

Listing 5.4 displays the content of cubed_numbers.py that illustrates how to
plot a set of points using Matplotlib.

MDS.CH5_2.8.23.indd 231MDS.CH5_2.8.23.indd 231 08/02/23 1:39 PM08/02/23 1:39 PM

232 • Managing Datasets and Models

Listing 5.4: cubed_numbers.py

import matplotlib.pyplot as plt

plt.plot([1, 2, 3, 4], [1, 8, 27, 64])

plt.axis([0, 5, 0, 70])

plt.xlabel("Integers (1-4)")

plt.ylabel("Cubed Integers")

plt.show()

Listing 5.4 plots a set of integer-valued points whose x-coordinate is between
1 and 4 inclusive and whose y-coordinate is the cube of the corresponding
x-coordinate. The code sample also labels the horizontal axis and the vertical
axis. Figure 5.1 displays these points in Listing 5.4.

FIGURE 5.1  A graph of cubed numbers

MDS.CH5_2.8.23.indd 232MDS.CH5_2.8.23.indd 232 08/02/23 1:39 PM08/02/23 1:39 PM

Matplotlib and Seaborn • 233

HORIZONTAL LINES IN MATPLOTLIB

Listing 5.5 displays the content of hlines1.py that illustrates how to plot
horizontal lines using Matplotlib. Recall that the equation of a non-vertical
line in the 2D plane is y = m*x + b, where m is the slope of the line and b is
the y-intercept of the line.

Listing 5.5: hlines1.py

import numpy as np

import matplotlib.pyplot as plt

top line

x1 = np.linspace(-5,5,num=200)

y1 = 4 + 0*x1

middle line

x2 = np.linspace(-5,5,num=200)

y2 = 0 + 0*x2

bottom line

x3 = np.linspace(-5,5,num=200)

y3 = -3 + 0*x3

plt.axis([-5, 5, -5, 5])

plt.plot(x1,y1)

plt.plot(x2,y2)

plt.plot(x3,y3)

plt.show()

Listing 5.5 uses the np.linspace() API to generate a list of 200 equally
spaced numbers for the horizontal axis, all of which are between -5 and 5. The
three lines defined via the variables y1, y2, and y3, are defined in terms of
the variables x1, x2, and x3, respectively.

MDS.CH5_2.8.23.indd 233MDS.CH5_2.8.23.indd 233 08/02/23 1:39 PM08/02/23 1:39 PM

234 • Managing Datasets and Models

Figure 5.2 displays three horizontal line segments whose equations are
contained in Listing 5.5.

FIGURE 5.2  A graph of three horizontal line segments

SLANTED LINES IN MATPLOTLIB

Listing 5.6 displays the content of diagonallines.py that illustrates how
to plot slanted lines.

Listing 5.6: diagonallines.py

import matplotlib.pyplot as plt

import numpy as np

x1 = np.linspace(-5,5,num=200)

y1 = x1

x2 = np.linspace(-5,5,num=200)

y2 = -x2

MDS.CH5_2.8.23.indd 234MDS.CH5_2.8.23.indd 234 08/02/23 1:39 PM08/02/23 1:39 PM

Matplotlib and Seaborn • 235

plt.axis([-5, 5, -5, 5])

plt.plot(x1,y1)

plt.plot(x2,y2)

plt.show()

Listing 5.6 defines two lines using the technique that you saw in Listing 5.5,
except that these two lines define y1 = x1 and y2 = -x2, which produces
slanted lines instead of horizontal lines.

Figure 5.3 shows two slanted line segments whose equations are defined
in Listing 5.6.

FIGURE 5.3  A graph of two slanted line segments

PARALLEL SLANTED LINES IN MATPLOTLIB

If two lines in the Euclidean plane have the same slope, then they are parallel.
Listing 5.7 displays the content of parallellines1.py that illustrates how
to plot parallel slanted lines.

MDS.CH5_2.8.23.indd 235MDS.CH5_2.8.23.indd 235 08/02/23 1:39 PM08/02/23 1:39 PM

236 • Managing Datasets and Models

Listing 5.7: parallellines1.py

import matplotlib.pyplot as plt

import numpy as np

lower line

x1 = np.linspace(-5,5,num=200)

y1 = 2*x1

upper line

x2 = np.linspace(-5,5,num=200)

y2 = 2*x2 + 3

horizontal axis

x3 = np.linspace(-5,5,num=200)

y3 = 0*x3 + 0

vertical axis

plt.axvline(x=0.0)

plt.axis([-5, 5, -10, 10])

plt.plot(x1,y1)

plt.plot(x2,y2)

plt.plot(x3,y3)

plt.show()

Listing 5.7 defines three lines using the technique that you saw in Listing 5.6,
where these three lines are slanted and also parallel to each other.

Figure 5.4 displays two slanted and also parallel line segments whose
equations are defined in Listing 5.4.

MDS.CH5_2.8.23.indd 236MDS.CH5_2.8.23.indd 236 08/02/23 1:39 PM08/02/23 1:39 PM

Matplotlib and Seaborn • 237

FIGURE 5.4  A graph of two slanted parallel line segments

LINES AND LABELED VERTICES IN MATPLOTLIB

Listing 5.8 displays the content of multi_lines.py that illustrates how to
plot multiple line segments with labeled vertices.

Listing 5.8: multi_lines.py

import matplotlib.pyplot as plt

x_coord = [50, 300, 175, 50]

y_coord = [50, 50, 150, 50]

plt.plot(x_coord,y_coord)

plt.scatter(x_coord,y_coord)

for x,y in zip(x_coord,y_coord):

 plt.text(x,y,'Coord ({x},{y})'.format(x=x,y=y))

x_coord = [175, 300, 50, 175]

MDS.CH5_2.8.23.indd 237MDS.CH5_2.8.23.indd 237 08/02/23 1:39 PM08/02/23 1:39 PM

238 • Managing Datasets and Models

y_coord = [50, 150, 150, 50]

plt.plot(x_coord,y_coord)

plt.scatter(x_coord,y_coord)

for x,y in zip(x_coord,y_coord):

 plt.text(x,y,'Coord ({x},{y})'.format(x=x,y=y))

plt.show()

Listing 5.8 defines the NumPy variable points that defines a 2D list of points
with three rows and four columns. The Pyplot API plot() uses the points
variable to display a grid-like pattern. Figure 5.5 shows the grid of points
defined in Listing 5.9.

FIGURE 5.5  Lines and labeled vertices

A DOTTED GRID IN MATPLOTLIB

Listing 5.9 displays the content of plotdottedgrid1.py that illustrates how
to plot a “dotted” grid pattern.

MDS.CH5_2.8.23.indd 238MDS.CH5_2.8.23.indd 238 08/02/23 1:39 PM08/02/23 1:39 PM

Matplotlib and Seaborn • 239

Listing 5.9: plotdottedgrid1.py

import numpy as np

import pylab

from itertools import product

import matplotlib.pyplot as plt

fig = pylab.figure()

ax = fig.add_subplot(1,1,1)

ax.grid(which='major', axis='both', linestyle='--')

[line.set_zorder(3) for line in ax.lines]

fig.show() # to update

plt.gca().xaxis.grid(True)

plt.show()

Listing 5.9 is similar to the code in Listing 5.8 in that both of them plot a grid-
like pattern; however, the former renders a “dotted” grid pattern whereas the
latter renders a “dotted” grid pattern by specifying the value '--' for the
linestyle parameter.

The next portion of Listing 5.9 invokes the set_zorder() method that
controls which items are displayed on top of other items, such as dots on top
of lines, or vice versa. The final portion of Listing 5.9 invokes the gca().
xaxis.grid(True) chained methods to display the vertical grid lines.

You can also use the plt.style directive to specify a style for figures.
The following code snippet specifies the classic style of Matplotlib:

plt.style.use('classic')

Figure 5.6 shows a “dashed” grid pattern based on the code in Listing 5.10.

MDS.CH5_2.8.23.indd 239MDS.CH5_2.8.23.indd 239 08/02/23 1:39 PM08/02/23 1:39 PM

240 • Managing Datasets and Models

FIGURE 5.6  A “dashed” grid pattern

LINES IN A GRID IN MATPLOTLIB

Listing 5.10 displays the content of plotlinegrid2.py that illustrates how
to plot lines in a grid.

Listing 5.10: plotlinegrid2.py

import numpy as np

import pylab

from itertools import product

import matplotlib.pyplot as plt

fig = plt.figure()

graph = fig.add_subplot(1,1,1)

graph.grid(which='major', linestyle='-', linewidth='0.5',
color='red')

MDS.CH5_2.8.23.indd 240MDS.CH5_2.8.23.indd 240 08/02/23 1:39 PM08/02/23 1:39 PM

Matplotlib and Seaborn • 241

x1 = np.linspace(-5,5,num=200)

y1 = 1*x1

graph.plot(x1,y1, 'r-o')

x2 = np.linspace(-5,5,num=200)

y2 = -x2

graph.plot(x2,y2, 'b-x')

fig.show() # to update

plt.show()

Listing 5.10 defines the NumPy variable points that defines a 2D list of
points with three rows and four columns. The Pyplot API plot() uses the
points variable to display a grid-like pattern.

Figure 5.7 displays a set of “dashed” line segment whose equations are
contained in Listing 5.10.

FIGURE 5.7  A grid of line segments

MDS.CH5_2.8.23.indd 241MDS.CH5_2.8.23.indd 241 08/02/23 1:39 PM08/02/23 1:39 PM

242 • Managing Datasets and Models

TWO LINES AND A LEGEND IN MATPLOTLIB

Listing 5.11 displays the content of plotgrid2.py that illustrates how to
display a colored grid.

Listing 5.11: two_lines_legend.py

import matplotlib.pyplot as plt

FIRST PLOT:

vals_x = [91,93,95,96,97,98,99,99,104,115]

vals_y = [1500,2000,3000,2500,1200,1500,2900,3200,5200,65
00]

plt.plot(vals_x, vals_y) # alternate style

#plt.plot(vals_x, vals_y, label='First List')

SECOND PLOT:

vals_x2 = [91,93,95,96,97,98,99,99,104,115]

vals_y2 = [1005,1006,1007,1008,1009,2031,3100,2033,3034,4
035]

plt.plot(vals_x2, vals_y2)

#plt.plot(vals_x2, vals_y2, label='Second List') #
alternate style

generate line plot:

plt.plot(vals_x, vals_y)

plt.title("Random Pairs of Numbers")

plt.xlabel("Random X Values")

plt.ylabel("Random Y Values")

plt.legend(['First List','Second List'])

#plt.legend() # alternate style

plt.show()

Listing 5.11 defines the NumPy variable data, which defines a 2D set of
points with ten rows and ten columns. The Pyplot API plot() uses the data

MDS.CH5_2.8.23.indd 242MDS.CH5_2.8.23.indd 242 08/02/23 1:39 PM08/02/23 1:39 PM

Matplotlib and Seaborn • 243

variable to display a colored grid-like pattern. Figure 5.8 displays a colored
grid whose equations are contained in Listing 5.11.

FIGURE 5.8  Two lines and a legend

LOADING IMAGES IN MATPLOTLIB

Listing 5.12 displays the content of load_images2.py that illustrates how to
display an image.

Listing 5.12: load_images2.py

from sklearn.datasets import load_digits

from matplotlib import pyplot as plt

digits = load_digits()

#set interpolation='none'

MDS.CH5_2.8.23.indd 243MDS.CH5_2.8.23.indd 243 08/02/23 1:39 PM08/02/23 1:39 PM

244 • Managing Datasets and Models

fig = plt.figure(figsize=(3, 3))

plt.imshow(digits['images'][66], cmap="gray",
interpolation='none')

plt.show()

Listing 5.12 starts with two import statements and then the digits variable
is initialized with the contents of the digits dataset. The next portion of
Listing 5.12 displays the content of one of the images in the digits dataset.
Launch the code in Listing 5.12, and you will see the image in Figure 5.9.

FIGURE 5.9  Loading an image in Matplotlib

A CHECKERBOARD IN MATPLOTLIB

Listing 5.13 displays the content of checkerboard1.py that illustrates how
to display a checkerboard.

Listing 5.13: checkerboard1.py

import matplotlib.pyplot as plt

from matplotlib import colors

import numpy as np

data = np.random.rand(10, 10) * 20

MDS.CH5_2.8.23.indd 244MDS.CH5_2.8.23.indd 244 08/02/23 1:39 PM08/02/23 1:39 PM

Matplotlib and Seaborn • 245

create discrete colormap

cmap = colors.ListedColormap(['red', 'blue'])

bounds = [0,10,20]

norm = colors.BoundaryNorm(bounds, cmap.N)

fig, ax = plt.subplots()

ax.imshow(data, cmap=cmap, norm=norm)

draw gridlines

ax.grid(which='major', axis='both', linestyle='-',
color='k', linewidth=2)

ax.set_xticks(np.arange(-.5, 10, 1));

ax.set_yticks(np.arange(-.5, 10, 1));

plt.show()

Listing 5.13 defines the NumPy variable data that defines a 2D set of points
with ten rows and ten columns. The Pyplot API plot() uses the data vari-
able to display a colored grid-like pattern. Figure 5.10 shows a colored grid
whose equations are contained in Listing 5.13.

FIGURE 5.10  A checkerboard

MDS.CH5_2.8.23.indd 245MDS.CH5_2.8.23.indd 245 08/02/23 1:39 PM08/02/23 1:39 PM

246 • Managing Datasets and Models

RANDOMIZED DATA POINTS IN MATPLOTLIB

Listing 5.14 displays the content of lin_reg_plot.py that illustrates how to
plot a graph of random points.

Listing 5.14: lin_plot_reg.py

import numpy as np

import matplotlib.pyplot as plt

trX = np.linspace(-1, 1, 101) # Linear space of 101 and
[-1,1]

#Create the y function based on the x axis

trY = 2*trX + np.random.randn(*trX.shape)*0.4+0.2

#create figure and scatter plot of the random points

plt.figure()

plt.scatter(trX,trY)

Draw one line with the line function

plt.plot (trX, .2 + 2 * trX)

plt.show()

Listing 5.14 defines the NumPy variable trX that contains 101 equally spaced
numbers that are between -1 and 1 (inclusive). The variable trY is defined in
two parts: the first part is 2*trX and the second part is a random value that is
partially based on the length of the one-dimensional array trX. The variable
trY is the sum of these two “parts,” which creates a “fuzzy” line segment.

The next portion of Listing 5.14 creates a scatterplot based on the values in
trX and trY, followed by the Pyplot API plot() that renders a line segment.
Figure 5.11 shows a random set of points based on the code in Listing 5.14.

MDS.CH5_2.8.23.indd 246MDS.CH5_2.8.23.indd 246 08/02/23 1:39 PM08/02/23 1:39 PM

Matplotlib and Seaborn • 247

FIGURE 5.11  A random set of points

A SET OF LINE SEGMENTS IN MATPLOTLIB

Listing 5.15 displays the content of line_segments.py that illustrates how
to plot a set of connected line segments in Matplotlib.

Listing 5.15: line_segments.py

import numpy as np

import matplotlib.pyplot as plt

x = [7,11,13,15,17,19,23,29,31,37]

plt.plot(x) # OR: plt.plot(x, 'ro-') or bo

plt.ylabel('Height')

plt.xlabel('Weight')

plt.show()

MDS.CH5_2.8.23.indd 247MDS.CH5_2.8.23.indd 247 08/02/23 1:39 PM08/02/23 1:39 PM

248 • Managing Datasets and Models

Listing 5.15 defines the array x that contains a hard-coded set of values. The
Pyplot API plot() uses the variable x to display a set of connected line seg-
ments. Figure 5.12 shows the result of launching the code in Listing 5.16.

FIGURE 5.12  A set of connected line segments

PLOTTING MULTIPLE LINES IN MATPLOTLIB

Listing 5.16 displays the content of plt_array2.py that illustrates the ease
with which you can plot multiple lines in Matplotlib.

Listing 5.16: plt_array2.py

import matplotlib.pyplot as plt

x = [7,11,13,15,17,19,23,29,31,37]

data = [[8, 4, 1], [5, 3, 3], [6, 0, 2], [1, 7, 9]]

plt.plot(data, 'd-')

plt.show()

MDS.CH5_2.8.23.indd 248MDS.CH5_2.8.23.indd 248 08/02/23 1:39 PM08/02/23 1:39 PM

Matplotlib and Seaborn • 249

Listing 5.16 defines the array data that contains a hard-coded set of values.
The Pyplot API plot() uses the variable data to display a line segment.
Figure 5.13 shows multiple lines based on the code in Listing 5.16.

FIGURE 5.13  Multiple lines in Matplotlib

TRIGONOMETRIC FUNCTIONS IN MATPLOTLIB

You can display the graph of trigonometric functions as easily as you can ren-
der “regular” graphs using Matplotlib. Listing 5.17 displays the content of
sincos.py that illustrates how to plot a sine function and a cosine function
in Matplotlib.

Listing 5.17: sincos.py

import numpy as np

import math

x = np.linspace(0, 2*math.pi, 101)

s = np.sin(x)

c = np.cos(x)

MDS.CH5_2.8.23.indd 249MDS.CH5_2.8.23.indd 249 08/02/23 1:39 PM08/02/23 1:39 PM

250 • Managing Datasets and Models

import matplotlib.pyplot as plt

plt.plot (s)

plt.plot (c)

plt.show()

Listing 5.17 defines the NumPy variables x, s, and c using the NumPy APIs
linspace(), sin(), and cos(), respectively. Next, the Pyplot API plot()
uses these variables to display a sine function and a cosine function.

Figure 5.14 shows a graph of two trigonometric functions based on the
code in Listing 5.17.

FIGURE 5.14  Sine and cosine functions

Let’s look at a simple dataset consisting of discrete data points, which is
the topic of the next section.

A HISTOGRAM IN MATPLOTLIB

Listing 5.18 displays the content of histogram1.py that illustrates how to
plot a histogram using Matplotlib.

MDS.CH5_2.8.23.indd 250MDS.CH5_2.8.23.indd 250 08/02/23 1:39 PM08/02/23 1:39 PM

Matplotlib and Seaborn • 251

Listing 5.18: histogram1.py

import matplotlib.pyplot as plt

x = [1, 2, 3, 4, 5, 6, 7, 4]

plt.hist(x, bins = [1, 2, 3, 4, 5, 6, 7])

plt.title("Histogram")

plt.legend(["bar"])

plt.show()

Listing 5.18 is straightforward: the variable x is initialized as a set of numbers,
followed by a block of code that renders a histogram based on the data in the
variable x. Launch the code in Listing 5.18, and you will see the histogram
that is shown in Figure 5.15.

FIGURE 5.15  A histogram based on random values

MDS.CH5_2.8.23.indd 251MDS.CH5_2.8.23.indd 251 08/02/23 1:39 PM08/02/23 1:39 PM

252 • Managing Datasets and Models

HISTOGRAM WITH DATA FROM A SQLITE3 TABLE

Listing 5.19 displays the content of rainfall_hist3.py that shows you
how to define a simple SQL query to create a histogram based on the data
from the rainfall table.

Listing 5.19: rainfall_hist3.py

import sqlite3

import pandas as pd

import matplotlib.pyplot as plt

sql = """

 SELECT

 cast(centimeters/5.00 as int)*5 as cent_floor,

 count(*) as count

FROM rainfall

GROUP by 1

ORDER by 1;

"""

con = sqlite3.connect("rain.db")

df = pd.read_sql_query(sql, con)

con.close()

print("=> Histogram of Rainfall:")

print(df)

#df.hist(column='count', bins=7, grid=False, rwidth=1.0,
color='red')

df.hist(column='count', bins=14, grid=False, rwidth=.8,
color='red')

plt.show()

Listing 5.19 starts with several import statements and then initializes the
variable sql with a SQL statement that selects data from the rainfall

MDS.CH5_2.8.23.indd 252MDS.CH5_2.8.23.indd 252 08/02/23 1:39 PM08/02/23 1:39 PM

Matplotlib and Seaborn • 253

table. The next portion of Listing 5.19 initializes the variable con to access
the appropriate data from the rain.db database, which is included in the
supplemental files for this chapter. The next code snippet invokes the read_
sql_query() method of Pandas to populate the Pandas data frame df with
the data returned by executing the SQL statement contained in the variable
sql. Launch the code in Listing 5.19, and you will see the following output:

=> Histogram of Rainfall:

 bucket_floor bucket_name count

0 0 FROM 0 TO 10 27

1 10 FROM 10 TO 20 14

2 20 FROM 20 TO 30 9

3 30 FROM 30 TO 40 9

4 40 FROM 40 TO 50 3

5 50 FROM 50 TO 60 2

6 60 FROM 60 TO 70 1

In addition to the preceding output, you will also see the histogram that is
shown in Figure 5.16.

FIGURE 5.16  A histogram created from data from sqlite3

MDS.CH5_2.8.23.indd 253MDS.CH5_2.8.23.indd 253 08/02/23 1:39 PM08/02/23 1:39 PM

254 • Managing Datasets and Models

PLOT A BEST-FITTING LINE WITH GGPLOT

Listing 5.20 displays the content of plot_best_fit.py that illustrates how
to plot a best-fitting line in Matplotlib.

Listing 5.20: plot_best_fit.py

import numpy as np

xs = np.array([1,2,3,4,5], dtype=np.float64)

ys = np.array([1,2,3,4,5], dtype=np.float64)

def best_fit_slope(xs,ys):

 m = (((np.mean(xs)*np.mean(ys))-np.mean(xs*ys)) /

 ((np.mean(xs)**2) - np.mean(xs**2)))

 b = np.mean(ys) - m * np.mean(xs)

 return m, b

m,b = best_fit_slope(xs,ys)

print('m:',m,'b:',b)

regression_line = [(m*x)+b for x in xs]

import matplotlib.pyplot as plt

from matplotlib import style

style.use('ggplot')

plt.scatter(xs,ys,color='#0000FF')

plt.plot(xs, regression_line)

plt.show()

Listing 5.20 defines the NumPy array variables xs and ys that are “fed” into
the Python function best_fit_slope() that calculates the slope m and the

MDS.CH5_2.8.23.indd 254MDS.CH5_2.8.23.indd 254 08/02/23 1:39 PM08/02/23 1:39 PM

Matplotlib and Seaborn • 255

y-intercept b for the best-fitting line. The Pyplot API scatter() displays a
scatter plot of the points xs and ys, followed by the plot() API that displays
the best-fitting line. Figure 5.17 shows a simple line based on the code in
Listing 5.20.

FIGURE 5.17  A best-fitting line for a 2D dataset

PLOT BAR CHARTS

Listing 5.21 displays the content of barchart1.py that illustrates how to
plot a bar chart in Matplotlib.

Listing 5.21: barchart1.py

import matplotlib.pyplot as plt

x = [3, 1, 3, 12, 2, 4, 4]

y = [3, 2, 1, 4, 5, 6, 7]

plt.bar(x, y)

MDS.CH5_2.8.23.indd 255MDS.CH5_2.8.23.indd 255 08/02/23 1:39 PM08/02/23 1:39 PM

256 • Managing Datasets and Models

plt.title("Bar Chart")

plt.legend(["bar"])

plt.show()

Listing 5.21 contains an import statement followed by the variables x and
y that are initialized as a list of numbers. Next, the bar chart is generated by
invoking the bar() method of the plt class. The final block of code sets the
title and legend for the bar chart and then displays the bar chart. Launch the
code in Listing 5.21, and you will see the pie chart shown in Figure 5.18.

FIGURE 5.18  A bar chart from array data

Listing 5.22 displays the content of barchart2.py that illustrates how
to plot a bar chart in Matplotlib.

Listing 5.22: barchart2.py

import matplotlib.pyplot as plt

plt.bar([0.25,1.25,2.25,3.25,4.25],

 [50,40,70,80,20],

 label="GDP1",width=.5)

MDS.CH5_2.8.23.indd 256MDS.CH5_2.8.23.indd 256 08/02/23 1:39 PM08/02/23 1:39 PM

Matplotlib and Seaborn • 257

plt.bar([.75,1.75,2.75,3.75,4.75],

 [80,20,20,50,60],

 label="GDP2", color='r',width=.5)

plt.legend()

plt.xlabel('Months')

plt.ylabel('GDP (Billion Euross)')

plt.title('Bar Chart Comparison')

Listing 5.22 contains an import statement followed by the definition of two
bar charts that are displayed in a side-by-side manner. Notice that the defini-
tion of each bar chart involves specifying the x and y (even though they are
not explicitly included), followed by a value for the label and width argu-
ments. The final block of code sets the legend and labels for the horizontal
and vertical axes. Launch the code in Listing 5.22, and you will see the pie
chart shown in Figure 5.19.

FIGURE 5.19  Two bar charts

MDS.CH5_2.8.23.indd 257MDS.CH5_2.8.23.indd 257 08/02/23 1:39 PM08/02/23 1:39 PM

258 • Managing Datasets and Models

PLOT A PIE CHART

Listing 5.23 displays the content of piechart1.py that illustrates how to
plot a pie chart in Matplotlib.

Listing 5.23: piechart1.py

import numpy as np

data to display on plots

x = [1, 2, 3, 4]

explode the first wedge:

e =(0.1, 0, 0, 0)

plt.pie(x, explode = e)

plt.title("Pie chart")

plt.show()

Listing 5.23 contains an import statement followed by the variables x and e
that are initialized as a list of numbers. The values for x are used to calculate
the relative size of each “slice” of the pie chart, and the values for the variable
e indicate that the first pie slice is “exploded” slightly (indicated by the value
0.1 in e), Launch the code in Listing 5.23, and you will see the pie chart dis-
played in Figure 5.20.

FIGURE 5.20  A basic pie chart

MDS.CH5_2.8.23.indd 258MDS.CH5_2.8.23.indd 258 08/02/23 1:39 PM08/02/23 1:39 PM

Matplotlib and Seaborn • 259

HEAT MAPS

Listing 5.24 displays the content of heatmap1.py that illustrates how to
render a heat map based on random data values.

Listing 5.24: heatmap1.py

import numpy as np

data = np.random.random((16, 16))

plt.imshow(data, cmap='tab20_r', interpolation='nearest')

plt.show()

Listing 5.24 contains an import statement, followed by the variable data
that is initialized as a 16x16 matrix of random values. The next code snip-
pet renders the heat map, and the final code snippet displays the heat map.
Launch the code in Listing 5.24 and you will see the following output:

data.head():

year 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

month

Jan 112 115 145 171 196 204 242 284 315 340 360 417

Feb 118 126 150 180 196 188 233 277 301 318 342 391

Mar 132 141 178 193 236 235 267 317 356 362 406 419

Apr 129 135 163 181 235 227 269 313 348 348 396 461

May 121 125 172 183 229 234 270 318 355 363 420 472

In addition to the preceding data, you will also see the image that is shown in
Figure 5.21.

MDS.CH5_2.8.23.indd 259MDS.CH5_2.8.23.indd 259 08/02/23 1:39 PM08/02/23 1:39 PM

260 • Managing Datasets and Models

FIGURE 5.21  A heat map from random data

SAVE PLOT AS A PNG FILE

Listing 5.25 displays the content of matplot2png.py that shows you how to
save a graphics image as a PNG file.

Listing 5.25: matplot2png.py

import matplotlib.pyplot as plt

import numpy as np

outfile="graph1.png"

plt.figure()

plt.plot(range(6))

fig, ax = plt.subplots()

MDS.CH5_2.8.23.indd 260MDS.CH5_2.8.23.indd 260 08/02/23 1:39 PM08/02/23 1:39 PM

Matplotlib and Seaborn • 261

ax.plot([2, 3, 4, 5, 5, 6, 6],

 [5, 7, 1, 3, 4, 6 ,8])

ax.plot([1, 2, 3, 4, 5],

 [2, 3, 4, 5, 6])

x = np.linspace(0, 12, 100)

plt.plot(np.sin(x))

plt.plot(np.linspace(-4,4,50))

plt.savefig(outfile, dpi=300)

Listing 5.25 contains import statements, followed by the variable outfile
that is initialized with the name of the PNG file that will be saved to the file
system. The contents of the PNG file consist of a sine wave and a set of line
segments. Launch the code in Listing 5.25, and you will see the image that is
shown in Figure 5.22.

FIGURE 5.22  A random image

MDS.CH5_2.8.23.indd 261MDS.CH5_2.8.23.indd 261 08/02/23 1:39 PM08/02/23 1:39 PM

262 • Managing Datasets and Models

WORKING WITH SWEETVIZ

SweetViz is an open source Python module that generates remarkably detailed
visualizations in the form of HTML webpages based on five lines of Python
code.

As an illustration of the preceding statement, Listing 5.26 shows the con-
tent of sweetviz1.py that generates a visualization of various aspects of the
Iris dataset that is available in scikit-learn.

Listing 5.26: sweetviz1.py

import sweetviz as sv

import seaborn as sns

df = sns.load_dataset('iris')

report = sv.analyze(df)

report.show_html()

Listing 5.26 starts with two import statements, followed an initialization of
the variable df with the contents of the Iris dataset. The next code snippet
initializes the variable report as the result of invoking the analyze() method
in SweetViz, followed by a code snippet that generates an HTML webpage
with the result of the analysis.

Launch the code from the command line, and you will see a new HTML
webpage called SWEETVIZ_REPORT.html in the same directory. Figure 5.23
shows the content of the webpage SWEETVIZ_REPORT.html.

MDS.CH5_2.8.23.indd 262MDS.CH5_2.8.23.indd 262 08/02/23 1:40 PM08/02/23 1:40 PM

Matplotlib and Seaborn • 263

FIGURE 5.23  An analysis of the Iris dataset

WORKING WITH SKIMPY

Skimpy is an open source Python module that generates an analysis of a
dataset directly from the command line: no Python code is required. Install
Skimpy with the following command:

pip3 install skimpy

MDS.CH5_2.8.23.indd 263MDS.CH5_2.8.23.indd 263 08/02/23 1:40 PM08/02/23 1:40 PM

264 • Managing Datasets and Models

Launch the following command to analyze the Titanic dataset (or a data-
set of your own choice) that redirects the output to a text file (the latter is
optional):

skimpy titanic.csv >titanic_out.txt

Figure 5.24 shows the generated output.

FIGURE 5.24  An analysis of the Titanic dataset

3D CHARTS IN MATPLOTLIB

Listing 5.27 displays the content of matplot_3d.py that illustrates how to
render a 3D plot in Matplotlib.

Listing 5.27: matplot_3d

import matplotlib.pyplot as plt

import numpy as np

zline = np.linspace(0,40,1000)

xline = 2*np.sin(2*zline)

yline = 3*np.cos(3*zline)

MDS.CH5_2.8.23.indd 264MDS.CH5_2.8.23.indd 264 08/02/23 1:40 PM08/02/23 1:40 PM

Matplotlib and Seaborn • 265

ax = plt.axes(projection="3d")

ax.plot3D(xline,yline,zline,'red',linewidth=4)

plt.show()

Listing 5.27 contains import statements, followed by the variables zline,
xline, and yline that are initialized via the NumPy methods linspace(),
sin(), and cos(), respectively. The next portion of Listing 5.28 initializes
the variable ax to display a 3D effect, which is rendered by the final code
snippet. Launch the code in Listing 5.27, and you will see the image that is
shown in Figure 5.25.

FIGURE 5.25  A 3D plot from trigonometric data

PLOTTING FINANCIAL DATA WITH MPLFINANCE

The section contains a Python-based code sample that shows you how to plot
financial data for a given stock. First, make sure that you have the necessary
Python library installed, as shown here:

pip3 install mplfinance

Listing 5.28 displays the content of financial_mpl.py that illustrates how
to plot financial data in Matplotlib.

MDS.CH5_2.8.23.indd 265MDS.CH5_2.8.23.indd 265 08/02/23 1:40 PM08/02/23 1:40 PM

266 • Managing Datasets and Models

Listing 5.28: financial_mpl.py

import matplotlib.pyplot as plt

import pandas as pd

csvfile="aapl.csv"

daily = pd.read_csv(csvfile,index_col=0,parse_dates=True)

daily.index.name = 'Date'

print("daily.head():")

print(daily.head())

print()

print("daily.tail():")

print(daily.tail())

import mplfinance as mpf

mpf.plot(daily)

#Plot types: ohlc, candle, line, renko, and pnf

Listing 5.28 contains import statements, followed by the variable csvfile
that contains AAPL data for the years 2017 and 2018. Next, the variable
daily is initialized with the contents of aapl.csv, followed by a block of
code that prints the first five lines and the final five lines of data in aapl.csv.

The final code snippet invokes the plot() method of the class mpf (which
is imported from mplfinance) to render a chart. Launch the code in Listing
5.28, and you will see the following output:

daily.head():

 Open High ... Adj Close Volume

Date ...

2017-01-03 115.800003 116.330002 ... 114.311760 28781900

2017-01-04 115.849998 116.510002 ... 114.183815 21118100

2017-01-05 115.919998 116.860001 ... 114.764473 22193600

MDS.CH5_2.8.23.indd 266MDS.CH5_2.8.23.indd 266 08/02/23 1:40 PM08/02/23 1:40 PM

Matplotlib and Seaborn • 267

2017-01-06 116.779999 118.160004 ... 116.043915 31751900

2017-01-09 117.949997 119.430000 ... 117.106812 33561900

[5 rows x 6 columns]

daily.tail():

 Open High ... Adj Close Volume

Date ...

2018-01-12 176.179993 177.360001 ... 177.089996 25418100

2018-01-16 177.899994 179.389999 ... 176.190002 29565900

2018-01-17 176.149994 179.250000 ... 179.100006 34386800

2018-01-18 179.369995 180.100006 ... 179.259995 31193400

2018-01-19 178.610001 179.580002 ... 178.460007 31269600

[5 rows x 6 columns]

Figure 5.26 shows a plot of financial data based on the code in Listing 5.28.

FIGURE 5.26  Plot of financial data

MDS.CH5_2.8.23.indd 267MDS.CH5_2.8.23.indd 267 08/02/23 1:40 PM08/02/23 1:40 PM

268 • Managing Datasets and Models

CHARTS AND GRAPHS WITH DATA FROM SQLITE3

Listing 5.29 displays the content of rainfall_multiple.py that shows you
how to generate multiple charts and graphs from that that is extracted from a
sqlite3 database.

Listing 5.29: rainfall_multiple.py

import sqlite3

import pandas as pd

import matplotlib.pyplot as plt

sql = """

 SELECT

 cast(centimeters/5.00 as int)*5 as cent_floor,

 count(*) as count

FROM rainfall

GROUP by 1

ORDER by 1;

"""

con = sqlite3.connect("rain.db")

df = pd.read_sql_query(sql, con)

con.close()

####################################

generate 7 types of charts/graphs

and save them as PNG or TIFF files

####################################

df.hist(column='count', bins=14, grid=False, rwidth=.8,
color='red')

plt.savefig("rainfall_histogram.tiff")

df.plot.pie(y='count',figsize=(8,6))

plt.savefig("rainfall_pie.png")

MDS.CH5_2.8.23.indd 268MDS.CH5_2.8.23.indd 268 08/02/23 1:40 PM08/02/23 1:40 PM

Matplotlib and Seaborn • 269

df.plot.line(y='count',figsize=(8,6))

plt.savefig("rainfall_line.png")

df.plot.scatter(y='count',x='cent_floor',figsize=(8,6))

plt.savefig("rainfall_scatter.png")

df.plot.box(figsize=(8,6))

plt.savefig("rainfall_box.png")

df.plot.hexbin(x='count', y='cent_floor',gridsize=30,
figsize=(8,6))

plt.savefig("rainfall_hexbin.png")

df["cent_floor"].plot.kde()

plt.savefig("rainfall_kde.png")

df["count"].hist()

df.plot.line(x='count', y='cent_floor', figsize=(8,6))

df.plot.scatter(x='count', y='cent_floor', figsize=(8,6))

df.plot.box(figsize=(8,6))

df.plot.hexbin(x='count', y='cent_floor',gridsize=30,
figsize=(8,6))

df.plot.pie(y='cost', figsize=(8, 6))

df["cent_floor"].plot.kde()

Listing 5.29 contains several import statements and initializes the variable
sql with a SQL statement that selects data from the rainfall table. The
next portion of Listing 5.29 initializes the variable con for accessing the rain.
db database, and then populates the Pandas data frame df with the result of
executing the SQL statement contained in the variable sql.

The next portion of Listing 5.29 contains pairs of code snippets for ren-
dering charts and graphs of the type histogram, pie, line, scatter, box, hexbin,
and kde (kernel density estimation), respectively. Launch the code in Listing
5.29, and you will see the following output:

MDS.CH5_2.8.23.indd 269MDS.CH5_2.8.23.indd 269 08/02/23 1:40 PM08/02/23 1:40 PM

270 • Managing Datasets and Models

=> Histogram of Rainfall:

 cent_floor count

0 0 14

1 5 13

2 10 4

3 15 10

4 20 3

5 25 6

6 30 3

7 35 6

8 40 2

9 45 1

10 50 1

11 55 1

12 60 1

In addition to the preceding output, you will see the following files in the
same directory where you launched Listing 5.29:

rainfall_histogram.tiff

rainfall_pie.png

rainfall_line.png

rainfall_scatter.png

rainfall_box.png

rainfall_hexbin.png

rainfall_kde.png

WORKING WITH SEABORN

Seaborn is a Python library for data visualization that also provides a high-
level interface to Matplotlib. Seaborn is easier to work with than Matplotlib,
and actually extends Matplotlib, but Seaborn is not as powerful as Matplotlib.

MDS.CH5_2.8.23.indd 270MDS.CH5_2.8.23.indd 270 08/02/23 1:40 PM08/02/23 1:40 PM

Matplotlib and Seaborn • 271

Seaborn addresses two challenges of Matplotlib. The first involves the
default Matplotlib parameters. Seaborn works with different parameters,
which provides greater flexibility than the default rendering of Matplotlib
plots. Seaborn addresses the limitations of the Matplotlib default values for
features such as colors, tick marks on the upper and right axes, and the style
(among others).

In addition, Seaborn makes it easier to plot entire data frames (somewhat
like Pandas) than doing so in Matplotlib. Nevertheless, since Seaborn extends
Matplotlib, knowledge of the latter (discussed in Chapter 6) is advantageous
and will simplify your learning curve.

Features of Seaborn

Seaborn provides a nice set of features and useful methods to control the dis-
play of data, some of which are listed here:

	• scale Seaborn plots
	• set the plot style
	• set the figure size
	• rotate label text
	• set xlim or ylim
	• set log scale
	• add titles

Some useful Seaborn methods are listed here:

	• plt.xlabel()
	• plt.ylabel()
	• plt.annotate()
	• plt.legend()
	• plt.ylim()
	• plt.savefig()

Seaborn supports various built-in datasets, just like NumPy and Pandas,
including the Iris dataset and the Titanic dataset, both of which you will see
in subsequent sections. As a starting point, the next section contains the code
that displays all the available built-in datasets in Seaborn.

MDS.CH5_2.8.23.indd 271MDS.CH5_2.8.23.indd 271 08/02/23 1:40 PM08/02/23 1:40 PM

272 • Managing Datasets and Models

SEABORN DATASET NAMES

Listing 5.30 displays the content dataset_names.py that shows the Seaborn
built-in datasets, one of which we will use in a subsequent section to render a
heat map in Seaborn.

Listing 5.30: dataset_names.py

import seaborn as sns

names = sns.get_dataset_names()

for name in names:

 print("name:",name)

Listing 5.30 contains an import statement, followed by initializing the vari-
able names with a list of the dataset names in Seaborn. Then a simple loop
iterates through the values in the names variable and prints their values. The
output from Listing 5.30 is here:

name: anagrams

name: anscombe

name: attention

name: brain_networks

name: car_crashes

name: diamonds

name: dots

name: exercise

name: flights

name: fmri

name: gammas

name: geyser

name: iris

name: mpg

name: penguins

MDS.CH5_2.8.23.indd 272MDS.CH5_2.8.23.indd 272 08/02/23 1:40 PM08/02/23 1:40 PM

Matplotlib and Seaborn • 273

name: planets

name: taxis

name: tips

name: titanic

The three-line code sample in the next section shows you how to display the
rows in the built-in “tips” dataset.

SEABORN BUILT-IN DATASETS

Listing 5.31 displays the content of seaborn_tips.py that illustrates how to
read the tips dataset into a data frame and display the first five rows of the
dataset.

Listing 5.31: seaborn_tips.py

import seaborn as sns

df = sns.load_dataset("tips")

print(df.head())

Listing 5.31 is very simple: after importing Seaborn, the variable df is ini-
tialized with the data in the built-in dataset tips, and the print() state-
ment displays the first five rows of df. Note that the load_dataset() API
searches for online or built-in datasets. The output from Listing 5.31 is here:

 total_bill tip sex smoker day time size

0 16.99 1.01 Female No Sun Dinner 2

1 10.34 1.66 Male No Sun Dinner 3

2 21.01 3.50 Male No Sun Dinner 3

3 23.68 3.31 Male No Sun Dinner 2

4 24.59 3.61 Female No Sun Dinner 4

MDS.CH5_2.8.23.indd 273MDS.CH5_2.8.23.indd 273 08/02/23 1:40 PM08/02/23 1:40 PM

274 • Managing Datasets and Models

THE IRIS DATASET IN SEABORN

Listing 5.32 displays the content of seaborn_iris.py that illustrates how to
plot the Iris dataset.

Listing 5.32: seaborn_iris.py

import seaborn as sns

import Matplotlib.pyplot as plt

Load iris data

iris = sns.load_dataset("iris")

Construct iris plot

sns.swarmplot(x="species", y="petal_length", data=iris)

Show plot

plt.show()

Listing 5.32 imports seaborn and Matplotlib.pyplot and then initializes
the variable iris with the contents of the built-in Iris dataset. Next, the
swarmplot() API displays a graph with the horizontal axis labeled species,
the vertical axis labeled petal_length, and the displayed points are from
the Iris dataset.

Figure 5.27 shows the images in the Iris dataset based on the code in
Listing 5.32.

MDS.CH5_2.8.23.indd 274MDS.CH5_2.8.23.indd 274 08/02/23 1:40 PM08/02/23 1:40 PM

Matplotlib and Seaborn • 275

FIGURE 5.27  The Iris dataset

THE TITANIC DATASET IN SEABORN

Listing 5.33 displays the content of seaborn_titanic_plot.py that illus-
trates how to plot the Titanic dataset.

Listing 5.33: seaborn_titanic_plot.py

import matplotlib.pyplot as plt

import seaborn as sns

titanic = sns.load_dataset("titanic")

g = sns.factorplot("class", "survived", "sex",
data=titanic, kind="bar", palette="muted", legend=False)

plt.show()

Listing 5.33 contains the same import statements as Listing 5.33, and then
initializes the variable titanic with the contents of the built-in Titanic
dataset. Next, the factorplot() API displays a graph with dataset attributes
that are listed in the API invocation.

MDS.CH5_2.8.23.indd 275MDS.CH5_2.8.23.indd 275 08/02/23 1:40 PM08/02/23 1:40 PM

276 • Managing Datasets and Models

Figure 5.28 shows a plot of the data in the Titanic dataset based on the
code in Listing 5.33.

FIGURE 5.28  A histogram of the Titanic dataset.

EXTRACTING DATA FROM TITANIC DATASET
IN SEABORN (1)

Listing 5.34 displays the content of seaborn_titanic.py that illustrates
how to extract subsets of data from the Titanic dataset.

Listing 5.34: seaborn_titanic.py

import matplotlib.pyplot as plt

import seaborn as sns

MDS.CH5_2.8.23.indd 276MDS.CH5_2.8.23.indd 276 08/02/23 1:40 PM08/02/23 1:40 PM

Matplotlib and Seaborn • 277

titanic = sns.load_dataset("titanic")

print("titanic info:")

titanic.info()

print("first five rows of titanic:")

print(titanic.head())

print("first four ages:")

print(titanic.loc[0:3,'age'])

print("fifth passenger:")

print(titanic.iloc[4])

#print("first five ages:")

#print(titanic['age'].head())

#print("first five ages and gender:")

#print(titanic[['age','sex']].head())

#print("descending ages:")

#print(titanic.sort_values('age', ascending = False).
head())

#print("older than 50:")

#print(titanic[titanic['age'] > 50])

#print("embarked (unique):")

#print(titanic['embarked'].unique())

#print("survivor counts:")

#print(titanic['survived'].value_counts())

MDS.CH5_2.8.23.indd 277MDS.CH5_2.8.23.indd 277 08/02/23 1:40 PM08/02/23 1:40 PM

278 • Managing Datasets and Models

#print("counts per class:")

#print(titanic['pclass'].value_counts())

#print("max/min/mean/median ages:")

#print(titanic['age'].max())

#print(titanic['age'].min())

#print(titanic['age'].mean())

#print(titanic['age'].median())

Listing 5.34 contains the same import statements as Listing 5.34, and then
initializes the variable titanic with the contents of the built-in Titanic
dataset. The next portion of Listing 5.34 displays various aspects of the
Titanic dataset, such as its structure, the first five rows, the first four ages,
and the details of the fifth passenger.

As you can see, there is a large block of “commented out” code that you
can uncomment to see the associated output, such as age, gender, persons
over 50, unique rows, and so forth. The output from Listing 5.34 is here:

#print(titanic['age'].mean())

titanic info:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 891 entries, 0 to 890

Data columns (total 15 columns):

survived 891 non-null int64

pclass 891 non-null int64

sex 891 non-null object

age 714 non-null float64

sibsp 891 non-null int64

parch 891 non-null int64

fare 891 non-null float64

embarked 889 non-null object

class 891 non-null category

who 891 non-null object

adult_male 891 non-null bool

MDS.CH5_2.8.23.indd 278MDS.CH5_2.8.23.indd 278 08/02/23 1:40 PM08/02/23 1:40 PM

Matplotlib and Seaborn • 279

deck 203 non-null category

embark_town 889 non-null object

alive 891 non-null object

alone 891 non-null bool

dtypes: bool(2), category(2), float64(2), int64(4), object(5)

memory usage: 80.6+ KB

first five rows of titanic:

survived pclass sex age sibsp parch fare embarked class \

0 0 3 male 22.0 1 0 7.2500 S Third

1 1 1 female 38.0 1 0 71.2833 C First

2 1 3 female 26.0 0 0 7.9250 S Third

3 1 1 female 35.0 1 0 53.1000 S First

4 0 3 male 35.0 0 0 8.0500 S Third

 who adult_male deck embark_town alive alone

0 man True NaN Southampton no False

1 woman False C Cherbourg yes False

2 woman False NaN Southampton yes True

3 woman False C Southampton yes False

4 man True NaN Southampton no True

first four ages:

0 22.0

1 38.0

2 26.0

3 35.0

Name: age, dtype: float64

fifth passenger:

survived 0

pclass 3

sex male

age 35

sibsp 0

MDS.CH5_2.8.23.indd 279MDS.CH5_2.8.23.indd 279 08/02/23 1:40 PM08/02/23 1:40 PM

280 • Managing Datasets and Models

parch 0

fare 8.05

embarked S

class Third

who man

adult_male True

deck NaN

embark_town Southampton

alive no

alone True

Name: 4, dtype: object

counts per class:

3 491

1 216

2 184

Name: pclass, dtype: int64

max/min/mean/median ages:

80.0

0.42

29.69911764705882

28.0

EXTRACTING DATA FROM TITANIC DATASET IN
SEABORN (2)

Listing 5.35 displays the content of seaborn_titanic2.py that illustrates
how to extract subsets of data from the Titanic dataset.

Listing 5.35: seaborn_titanic2.py

import matplotlib.pyplot as plt

import seaborn as sns

MDS.CH5_2.8.23.indd 280MDS.CH5_2.8.23.indd 280 08/02/23 1:40 PM08/02/23 1:40 PM

Matplotlib and Seaborn • 281

titanic = sns.load_dataset("titanic")

Returns a scalar

titanic.ix[4, 'age']

print("age:",titanic.at[4, 'age'])

Returns a Series of name 'age', and the age values
associated

to the index labels 4 and 5

titanic.ix[[4, 5], 'age']

print("series:",titanic.loc[[4, 5], 'age'])

Returns a Series of name '4', and the age and fare
values

associated to that row.

titanic.ix[4, ['age', 'fare']]

print("series:",titanic.loc[4, ['age', 'fare']])

Returns a DataFrame with rows 4 and 5, and columns 'age'
and 'fare'

titanic.ix[[4, 5], ['age', 'fare']]

print("dataframe:",titanic.loc[[4, 5], ['age', 'fare']])

query = titanic[

 (titanic.sex == 'female')

 & (titanic['class'].isin(['First', 'Third']))

 & (titanic.age > 30)

 & (titanic.survived == 0)

]

print("query:",query)

MDS.CH5_2.8.23.indd 281MDS.CH5_2.8.23.indd 281 08/02/23 1:40 PM08/02/23 1:40 PM

282 • Managing Datasets and Models

Listing 5.35 contains the same import statements as Listing 5.34, and then
initializes the variable titanic with the contents of the built-in Titanic
dataset. The next code snippet displays the age of the passenger with index 4
in the dataset (which equals 35).

The following code snippet displays the ages of passengers with index
values 4 and 5 in the dataset:

print("series:",titanic.loc[[4, 5], 'age'])

The next snippet displays the age and fare of the passenger with index 4 in the
dataset, followed by another code snippet displaying the age and fare of the
passengers with index 4 and index 5 in the dataset.

The final portion of Listing 5.35 is the most interesting part: it defines a
variable query as shown here:

query = titanic[

 (titanic.sex == 'female')

 & (titanic['class'].isin(['First', 'Third']))

 & (titanic.age > 30)

 & (titanic.survived == 0)

]

The preceding code block will retrieve the female passengers who are in
either first class or third class, are over 30 years old, and did not survive the
accident. The entire output from Listing 5.35 is here:

age: 35.0

series: 4 35.0

5 NaN

Name: age, dtype: float64

series: age 35

fare 8.05

Name: 4, dtype: object

dataframe: age fare

4 35.0 8.0500

5 NaN 8.4583

MDS.CH5_2.8.23.indd 282MDS.CH5_2.8.23.indd 282 08/02/23 1:40 PM08/02/23 1:40 PM

Matplotlib and Seaborn • 283

query: survived pclass sex age sibsp parch fare embarked
class \

18 0 3 female 31.0 1 0 18.0000 S Third

40 0 3 female 40.0 1 0 9.4750 S Third

132 0 3 female 47.0 1 0 14.5000 S Third

167 0 3 female 45.0 1 4 27.9000 S Third

177 0 1 female 50.0 0 0 28.7125 C First

254 0 3 female 41.0 0 2 20.2125 S Third

276 0 3 female 45.0 0 0 7.7500 S Third

362 0 3 female 45.0 0 1 14.4542 C Third

396 0 3 female 31.0 0 0 7.8542 S Third

503 0 3 female 37.0 0 0 9.5875 S Third

610 0 3 female 39.0 1 5 31.2750 S Third

638 0 3 female 41.0 0 5 39.6875 S Third

657 0 3 female 32.0 1 1 15.5000 Q Third

678 0 3 female 43.0 1 6 46.9000 S Third

736 0 3 female 48.0 1 3 34.3750 S Third

767 0 3 female 30.5 0 0 7.7500 Q Third

885 0 3 female 39.0 0 5 29.1250 Q Third

VISUALIZING A PANDAS DATA FRAME IN SEABORN

Listing 5.36 displays the content of pandas_seaborn.py that illustrates how
to display a Pandas dataset in Seaborn.

Listing 5.36: pandas_seaborn.py

import pandas as pd

import random

import matplotlib.pyplot as plt

import seaborn as sns

df = pd.DataFrame()

MDS.CH5_2.8.23.indd 283MDS.CH5_2.8.23.indd 283 08/02/23 1:40 PM08/02/23 1:40 PM

284 • Managing Datasets and Models

df['x'] = random.sample(range(1, 100), 25)

df['y'] = random.sample(range(1, 100), 25)

print("top five elements:")

print(df.head())

display a density plot

#sns.kdeplot(df.y)

display a density plot

#sns.kdeplot(df.y, df.x)

#sns.distplot(df.x)

display a histogram

#plt.hist(df.x, alpha=.3)

#sns.rugplot(df.x)

display a boxplot

#sns.boxplot([df.y, df.x])

display a violin plot

#sns.violinplot([df.y, df.x])

display a heatmap

#sns.heatmap([df.y, df.x], annot=True, fmt="d")

display a cluster map

#sns.clustermap(df)

MDS.CH5_2.8.23.indd 284MDS.CH5_2.8.23.indd 284 08/02/23 1:40 PM08/02/23 1:40 PM

Matplotlib and Seaborn • 285

display a scatterplot of the data points

sns.lmplot('x', 'y', data=df, fit_reg=False)

plt.show()

Listing 5.36 contains several familiar import statements, followed by the ini-
tialization of the Pandas variable df as a Pandas data frame. The next two code
snippets initialize the columns and rows of the data frame, and the print()
statement displays the first five rows.

For your convenience, Listing 5.37 contains an assortment of “commented
out” code snippets that use Seaborn to render a density plot, a histogram, a
boxplot, a violin plot, a heatmap, and a cluster. Uncomment the portions that
interest you to see the associated plot. The output from Listing 5.37 is here:

top five elements:

 x y

0 52 34

1 31 47

2 23 18

3 34 70

4 71 1

Figure 5.29 shows a plot of the data in the Titanic dataset based on the code
in Listing 5.36.

MDS.CH5_2.8.23.indd 285MDS.CH5_2.8.23.indd 285 08/02/23 1:40 PM08/02/23 1:40 PM

286 • Managing Datasets and Models

FIGURE 5.29  A Pandas data frame displayed via Seaborn

SEABORN HEAT MAPS

Listing 5.37 displays the contents sns_heatmap1.py that shows a heat map
from a Seaborn built-in dataset.

Listing 5.37: sns_heatmap1.py

import seaborn as sns

import matplotlib.pyplot as plt

MDS.CH5_2.8.23.indd 286MDS.CH5_2.8.23.indd 286 08/02/23 1:40 PM08/02/23 1:40 PM

Matplotlib and Seaborn • 287

data = sns.load_dataset("flights")

data = data.pivot("month", "year", "passengers")

print("data.head():")

print(data.head())

sns.heatmap(data)

plt.show()

Listing 5.37 contains import statements and then initializes the variable data
with the built-in flights dataset. The next code snippet invokes the pivot()
method that “inverts” the row and columns of the dataset. The final code por-
tion of Listing 5.37 displays the first five rows of the dataset and then gener-
ates a heat map based on the dataset. The output from Listing 5.37 is here:

data.head():

year 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

month

Jan 112 115 145 171 196 204 242 284 315 340 360 417

Feb 118 126 150 180 196 188 233 277 301 318 342 391

Mar 132 141 178 193 236 235 267 317 356 362 406 419

Apr 129 135 163 181 235 227 269 313 348 348 396 461

May 121 125 172 183 229 234 270 318 355 363 420 472

Figure 5.30 shows a plot of the data in the Titanic dataset based on the code
in Listing 5.37.

MDS.CH5_2.8.23.indd 287MDS.CH5_2.8.23.indd 287 08/02/23 1:40 PM08/02/23 1:40 PM

288 • Managing Datasets and Models

FIGURE 5.30  A Pandas data frame displayed via Seaborn

SEABORN PAIR PLOTS

This section contains several Python-based code samples that show you how
to use the Seaborn pair_plot() method to render pair plots.

Listing 5.38 displays the contents seaborn_pairplot1.py that shows a
pair plot with the Iris dataset.

Listing 5.38: seaborn_pairplot1.py

import seaborn as sns

import pandas as pd

import matplotlib.pyplot as plt

load iris data

iris = sns.load_dataset("iris")

df = pd.DataFrame(iris)

MDS.CH5_2.8.23.indd 288MDS.CH5_2.8.23.indd 288 08/02/23 1:40 PM08/02/23 1:40 PM

Matplotlib and Seaborn • 289

construct and display iris plot

g = sns.pairplot(df, height=2, aspect=1.0)

plt.show()

Listing 5.38 contains import statements and then initializes the variable
iris with the built-in iris dataset. The next code snippet initializes the
data frame df with the contents of the iris dataset. The final code portion
of Listing 5.38 constructs a pair plot of the iris dataset and then displays the
output. Figure 5.31 shows a plot of the data in the Titanic dataset based on
the code in Listing 5.38.

FIGURE 5.31  A Seaborn pair plot

MDS.CH5_2.8.23.indd 289MDS.CH5_2.8.23.indd 289 08/02/23 1:40 PM08/02/23 1:40 PM

290 • Managing Datasets and Models

Listing 5.39 displays the content seaborn_pairplot2.py that shows a
pair plot with the Iris dataset.

Listing 5.39: seaborn_pairplot2.py

import seaborn as sns

import pandas as pd

import matplotlib.pyplot as plt

load iris data

iris = sns.load_dataset("iris")

df = pd.DataFrame(iris)

IRIS columns:

sepal_length,sepal_width,petal_length,petal_
width,species

plot a subset of columns:

plot_columns = ['sepal_length', 'sepal_width']

sns.pairplot(df[plot_columns])

plt.show()

specify KDE for the diagonal:

sns.pairplot(df[plot_columns], diag_kind='kde')

plt.show()

Listing 5.39 is similar to the code in Listing 5.38: the difference is that the
former selects only two features in the iris dataset instead of all the features
in the iris dataset.

MDS.CH5_2.8.23.indd 290MDS.CH5_2.8.23.indd 290 08/02/23 1:40 PM08/02/23 1:40 PM

Matplotlib and Seaborn • 291

The next code portion of Listing 5.39 construct a pair plot of the iris
dataset and then displays the output, followed by another pair plot that spec-
ifies the kde value for the diag_kind parameter. More information about
kde is discussed in the Seaborn documentation here:

https://seaborn.pydata.org/tutorial/distributions.html#tutorial-kde

Launch the code in Listing 5.39, and you will see a pair plot as shown in
Figure 5.32.

FIGURE 5.32  A Seaborn pair plot

Figure 5.33 displays a plot of the data with the kde option for the iris
dataset based on the code in Listing 5.39.

MDS.CH5_2.8.23.indd 291MDS.CH5_2.8.23.indd 291 08/02/23 1:40 PM08/02/23 1:40 PM

https://seaborn.pydata.org/tutorial/distributions.html#tutorial-kde

292 • Managing Datasets and Models

FIGURE 5.33  A Seaborn pair plot with kde

WHAT IS BOKEH?

Bokeh is an open source project that depends on Matplotlib as well as scikit-
learn. As you will see in the subsequent code sample, Bokeh generates an
HTML webpage that is based on Python code, and then launches that web-
page in a browser. Bokeh and D3.js (which is a JavaScript layer of abstraction
over SVG) both provide elegant visualization effects that support animation
effects and user interaction.

Bokeh enables the rapid creation statistical visualization, and it works
with other tools with as Python Flask and Django. In addition to Python,
Bokeh supports Julia, Lua, and R (JSON files are generated instead of HTML
webpages).

Listing 5.40 displays the content bokeh_trig.py that illustrates how to
create a graphics effect using various Bokeh APIs.

MDS.CH5_2.8.23.indd 292MDS.CH5_2.8.23.indd 292 08/02/23 1:40 PM08/02/23 1:40 PM

Matplotlib and Seaborn • 293

Listing 5.40: bokeh_trig.py

pip3 install bokeh

from bokeh.plotting import figure, output_file, show

from bokeh.layouts import column

import bokeh.colors as colors

import numpy as np

import math

deltaY = 0.01

maxCount = 150

width = 800

height = 400

band_width = maxCount/3

x = np.arange(0, math.pi*3, 0.05)

y1 = np.sin(x)

y2 = np.cos(x)

white = colors.RGB(255,255,255)

fig1 = figure(plot_width = width, plot_height = height)

for i in range(0,maxCount):

 rgb1 = colors.RGB(i*255/maxCount, 0, 0)

 rgb2 = colors.RGB(i*255/maxCount, i*255/maxCount, 0)

 fig1.line(x, y1-i*deltaY,line_width = 2, line_color =
rgb1)

 fig1.line(x, y2-i*deltaY,line_width = 2, line_color =
rgb2)

MDS.CH5_2.8.23.indd 293MDS.CH5_2.8.23.indd 293 08/02/23 1:40 PM08/02/23 1:40 PM

294 • Managing Datasets and Models

for i in range(0,maxCount):

 rgb1 = colors.RGB(0, 0, i*255/maxCount)

 rgb2 = colors.RGB(0, i*255/maxCount, 0)

 fig1.line(x, y1+i*deltaY,line_width = 2, line_color =
rgb1)

 fig1.line(x, y2+i*deltaY,line_width = 2, line_color =
rgb2)

 if (i % band_width == 0):

 fig1.line(x, y1+i*deltaY,line_width = 5, line_color =
white)

show(fig1)

Listing 5.40 starts with a commented out pip3 code snippet that you can
launch from the command line to install Bokeh (in case you have not done so
already).

The next code block contains several Bokeh-related statements, as well as
NumPy and Math.

Notice that the variable white is defined as an (R, G, B) triple of inte-
gers, which represents the red, green, and blue components of a color. In
particular, (255, 255, 255) represents the color white (check online if you are
unfamiliar with RGB). The next portion of Listing 5.40 initializes some sca-
lar variables that are used in the two for loops that are in the second half of
Listing 5.40.

Next, the NumPy variable x is a range of values from 0 to math.PI/3,
with an increment of 0.05 between successive values. Then the NumPy vari-
ables y1 and y2 are defined as the sine and cosine values, respectively, of the
values in x. The next code snippet initializes the variable fig1 that represents
a context in which the graphics effects will be rendered. This completes the
initialization of the variables that are used in the two for loops.

The next portion of Listing 5.40 contains the first for loop that creates
a gradient-like effect by defining (R, G, B) triples whose values are based
partially on the value of the loop variable i. For example, the variable rgb1
ranges in a linear fashion from (0, 0, 0) to (255, 0, 0), which represent the

MDS.CH5_2.8.23.indd 294MDS.CH5_2.8.23.indd 294 08/02/23 1:40 PM08/02/23 1:40 PM

Matplotlib and Seaborn • 295

colors black and red, respectively. The variable rgb2 ranges in a linear fashion
from (0, 0, 0) to (255, 255, 0), which represent the colors black and yellow,
respectively. The next portion of the for loop contains two invocations of the
fig1.line() API that renders a sine wave and a cosine wave in the context
variable fig1.

The second loop is similar to the first loop: the main difference is that the
variable rgb1 varies from black to blue, and the variable rgb2 variables from
black to green. The final code snippet in Listing 5.40 invokes the show()
method that generates an HTML webpage (with the same prefix as the Python
file) and then launches the webpage in a browser.

Figure 5.34 displays the graphics effect based on the code in Listing 5.40.
If this image is displayed as black and white, launch the code from the com-
mand line and you will see the gradient-like effects in the image.

FIGURE 5.34  A Bokeh graphics sample

The next section introduces you to scikit-learn, which is a powerful Python-
based library that supports many algorithms for machine learning. After you
have read the short introduction, subsequent sections contain Python code
samples that combine Pandas, Matplotlib, and scikit-learn built-in datasets.

MDS.CH5_2.8.23.indd 295MDS.CH5_2.8.23.indd 295 08/02/23 1:40 PM08/02/23 1:40 PM

296 • Managing Datasets and Models

INTRODUCTION TO SCIKIT-LEARN

Since this book is about data visualization, you might be wondering why this
chapter contains an introduction to scikit-learn. The reason is straightforward:
the easy introduction to some scikit-learn functionality is possible without a
more formal learning process. In addition, this knowledge will bode well if
you decide to delve into machine learning (and perhaps this section will pro-
vide additional motivation to do so).

However, a thorough understanding of scikit-learn involves significantly
more time and effort, especially if you plan to learn the details of the scikit-
learn machine learning algorithms. However, if you are not interested in
learning about scikit-learn at this point in time, you can skip this section and
perhaps return to it when you are interested in learning this material.

Scikit-learn (which is installed as sklearn) is Python’s premier gener-
al-purpose machine learning library, and its home page is here:

https://scikit-learn.org/stable/

Before we discuss any code samples, please keep in mind that scikit-
learn is an immensely useful Python library that supports a huge number of
machine learning algorithms. In particular, scikit-learn supports many classi-
fication algorithms, such as logistic regression, Naive Bayes, decision trees,
random forests, and SVMs (support vector machines). Although entire books
are available that are dedicated to scikit-learn, this chapter contains only a few
pages of scikit-learn material.

If you decide that you want to acquire a deep level of knowledge about
scikit-learn, navigate to the webpages that contain detailed documentation for
scikit-learn. Moreover, if you have “how to” questions involving scikit-learn,
you can almost always find suitable answers on stackoverflow.

Scikit-learn is well-suited for classification tasks as well as regression and
clustering tasks in machine learning. Scikit-learn supports a vast collection of
machine learning algorithms, including linear regression, logistic regression,
kNN (k Nearest Neighbor), kMeans, decision trees, random forests, MLPs
(Multi-Layer Perceptrons), and SVMs (Support Vector Machines).

Moreover, scikit-learn supports dimensionality reduction techniques such
as PCA (Principal Component Analysis), hyper parameter tuning, and meth-
ods for scaling data; it is suitable for preprocessing data, cross-validation, and
so forth.

MDS.CH5_2.8.23.indd 296MDS.CH5_2.8.23.indd 296 08/02/23 1:40 PM08/02/23 1:40 PM

https://scikit-learn.org/stable/

Matplotlib and Seaborn • 297

Machine learning code samples often contain a combination of scikit-
learn, NumPy, Pandas, and Matplotlib. In addition, scikit-learn provides var-
ious built-in datasets that we can display visually. One of those datasets is the
Digits dataset, which is the topic of the next section.

The next section of this chapter provides several Python code samples
that contain a combination of Pandas, Matplotlib, and the scikit-learn built-in
Digits dataset.

THE DIGITS DATASET IN SCIKIT-LEARN

The Digits dataset in scikit-learn comprises 1,797 small 8x8 images: each
image is a hand-written digit, which is also the case for the MNIST dataset.
Listing 5.41 displays the content of load_digits1.py that illustrates how to
plot the Digits dataset.

Listing 5.41: load_digits1.py

from scikit-learn import datasets

Load in the 'digits' data

digits = datasets.load_digits()

Print the 'digits' data

print(digits)

Listing 5.41 is straightforward: after importing the datasets module, the
variable digits is initialized with the contents of the Digits dataset. The
print() statement displays the content of the digits variable, which is dis-
played here:

{images': array(

 [[[0., 0., 5., ..., 1., 0., 0.],

 [0., 0., 13., ..., 15., 5., 0.],

 [0., 3., 15., ..., 11., 8., 0.],

 ...,

MDS.CH5_2.8.23.indd 297MDS.CH5_2.8.23.indd 297 08/02/23 1:40 PM08/02/23 1:40 PM

298 • Managing Datasets and Models

 [0., 4., 11., ..., 12., 7., 0.],

 [0., 2., 14., ..., 12., 0., 0.],

 [0., 0., 6., ..., 0., 0., 0.]]),

'target': array([0, 1, 2, ..., 8, 9, 8]), 'frame': None,
'feature_names': ['pixel_0_0', 'pixel_0_1', 'pixel_0_2',
'pixel_0_3', 'pixel_0_4', 'pixel_0_5', 'pixel_0_6',
'pixel_0_7', 'pixel_1_0', 'pixel_1_1', 'pixel_1_2',
'pixel_1_3', 'pixel_1_4', 'pixel_1_5', 'pixel_1_6',
'pixel_1_7', 'pixel_2_0', 'pixel_2_1', 'pixel_2_2',
'pixel_2_3', 'pixel_2_4', 'pixel_2_5', 'pixel_2_6',
'pixel_2_7', 'pixel_3_0', 'pixel_3_1', 'pixel_3_2',
'pixel_3_3', 'pixel_3_4', 'pixel_3_5', 'pixel_3_6',
'pixel_3_7', 'pixel_4_0', 'pixel_4_1', 'pixel_4_2',
'pixel_4_3', 'pixel_4_4', 'pixel_4_5', 'pixel_4_6',
'pixel_4_7', 'pixel_5_0', 'pixel_5_1', 'pixel_5_2',
'pixel_5_3', 'pixel_5_4', 'pixel_5_5', 'pixel_5_6',
'pixel_5_7', 'pixel_6_0', 'pixel_6_1', 'pixel_6_2',
'pixel_6_3', 'pixel_6_4', 'pixel_6_5', 'pixel_6_6',
'pixel_6_7', 'pixel_7_0', 'pixel_7_1', 'pixel_7_2',
'pixel_7_3', 'pixel_7_4', 'pixel_7_5', 'pixel_7_6',
'pixel_7_7'], 'target_names': array([0, 1, 2, 3, 4, 5, 6,
7, 8, 9]), 'images': array([[[0., 0., 5., ..., 1.,
0., 0.],

 [0., 0., 13., ..., 15., 5., 0.],

 [0., 3., 15., ..., 11., 8., 0.],

// data omitted for brevity

])}

Listing 5.42 displays the content of load_digits2.py that illustrates how
to plot one digit of the Digits dataset (which you can change to display a
different digit).

Listing 5.42: load_digits2.py

from scikit-learn.datasets import load_digits

from matplotlib import pyplot as plt

MDS.CH5_2.8.23.indd 298MDS.CH5_2.8.23.indd 298 08/02/23 1:40 PM08/02/23 1:40 PM

Matplotlib and Seaborn • 299

digits = load_digits()

#set interpolation='none'

fig = plt.figure(figsize=(3, 3))

plt.imshow(digits['images'][66], cmap="gray",
interpolation='none')

plt.show()

Listing 5.42 imports the load_digits class from scikit-learn to initialize
the variable digits with the contents of the Digits dataset that is available
in scikit-learn. The next portion of Listing 5.46 initializes the variable fig and
invokes the method imshow() of the plt class to display a number in the
digits dataset.

Figure 5.35 shows a plot of one of the digits in the Digits dataset based
on the code in Listing 5.42.

FIGURE 5.35  A digit in the scikit-learn Digits dataset

Listing 5.43 displays the content of scikit-learn_digits.py that
illustrates how to access the Digits dataset in scikit-learn.

MDS.CH5_2.8.23.indd 299MDS.CH5_2.8.23.indd 299 08/02/23 1:40 PM08/02/23 1:40 PM

300 • Managing Datasets and Models

Listing 5.43: sklearn_digits.py

from scikit-learn import datasets

digits = datasets.load_digits()

print("digits shape:",digits.images.shape)

print("data shape:",digits.data.shape)

n_samples, n_features = digits.data.shape

print("(samples,features):", (n_samples, n_features))

import matplotlib.pyplot as plt

#plt.imshow(digits.images[-1], cmap=plt.cm.gray_r)

#plt.show()

plt.imshow(digits.images[0], cmap=plt.cm.binary, interpol
ation='nearest')

plt.show()

Listing 5.43 starts with one import statement followed by the variable dig-
its that contains the Digits dataset. The output from Listing 5.43 is here:

digits shape: (1797, 8, 8)

data shape: (1797, 64)

(samples,features): (1797, 64)

Figure 5.36 shows the images in the Digits dataset based on the code in
Listing 5.43.

MDS.CH5_2.8.23.indd 300MDS.CH5_2.8.23.indd 300 08/02/23 1:40 PM08/02/23 1:40 PM

Matplotlib and Seaborn • 301

FIGURE 5.36  The digits in the Digits dataset

THE IRIS DATASET IN SCIKIT-LEARN (1)

Listing 5.44 displays the content of sklearn_iris.py that illustrates how to
access the Iris dataset in scikit-learn.

In addition to support for machine learning algorithms, scikit-learn pro-
vides various built-in datasets that you can access with one line of code. In
fact, Listing 5.44 displays the content of scikit-learn_iris1.py that
illustrates how you can easily load the Iris dataset into a Pandas data frame.

Listing 5.44: scikit-learn_iris.py

import numpy as np

import pandas as pd

from scikit-learn.datasets import load_iris

iris = load_iris()

MDS.CH5_2.8.23.indd 301MDS.CH5_2.8.23.indd 301 08/02/23 1:40 PM08/02/23 1:40 PM

302 • Managing Datasets and Models

print("=> iris keys:")

for key in iris.keys():

 print(key)

print()

#print("iris dimensions:")

#print(iris.shape)

#print()

print("=> iris feature names:")

for feature in iris.feature_names:

 print(feature)

print()

X = iris.data[:, [2, 3]]

y = iris.target

print('=> Class labels:', np.unique(y))

print()

x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5

y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5

print("=> target:")

print(iris.target)

print()

print("=> all data:")

print(iris.data)

Listing 5.44 contains several import statements and then initializes the vari-
able iris with the Iris dataset. Next, a loop displays the keys in the dataset,
followed by another loop that displays the feature names.

MDS.CH5_2.8.23.indd 302MDS.CH5_2.8.23.indd 302 08/02/23 1:40 PM08/02/23 1:40 PM

Matplotlib and Seaborn • 303

The next portion of Listing 5.44 initializes the variable X with the feature
values in columns 2 and 3, and then initializes the variable y with the values
of the target column.

The variable x_min is initialized as the minimum value of column 0 and
then an additional 0.5 is subtracted from x_min. Similarly, the variable x_max
is initialized as the maximum value of column 0 and then an additional 0.5
is added to x_max. The variables y_min and y_max are the counterparts to
x_min and x_max, applied to column 1 instead of column 0.

Launch the code in Listing 5.44, and you will see the following output
(truncated to save space):

Pandas df1:

=> iris keys:

data

target

target_names

DESCR

feature_names

filename

=> iris feature names:

sepal length (cm)

sepal width (cm)

petal length (cm)

petal width (cm)

=> Class labels: [0 1 2]

=> x_min: 0.5 x_max: 7.4

=> y_min: -0.4 y_max: 3.0

MDS.CH5_2.8.23.indd 303MDS.CH5_2.8.23.indd 303 08/02/23 1:40 PM08/02/23 1:40 PM

304 • Managing Datasets and Models

=> target:

[0
 0 1 1 1 1 1 1 1 1
 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2
 2 2 2 2 2]

=> all data:

[[5.1 3.5 1.4 0.2]

 [4.9 3. 1.4 0.2]

 [4.7 3.2 1.3 0.2]

 // details omitted for brevity

 [6.5 3. 5.2 2.]

 [6.2 3.4 5.4 2.3]

 [5.9 3. 5.1 1.8]]

Scikit-Learn, Pandas, and the Iris Dataset

Listing 5.45 displays the content of pandas_iris.py that illustrates how to
load the contents of the Iris dataset into a Pandas data frame.

Listing 5.45: pandas_iris.py

import numpy as np

import pandas as pd

from scikit-learn.datasets import load_iris

iris = load_iris()

print("=> IRIS feature names:")

for feature in iris.feature_names:

 print(feature)

print()

MDS.CH5_2.8.23.indd 304MDS.CH5_2.8.23.indd 304 08/02/23 1:40 PM08/02/23 1:40 PM

Matplotlib and Seaborn • 305

Create a dataframe with the feature variables

df = pd.DataFrame(iris.data, columns=iris.feature_names)

print("=> number of rows:")

print(len(df))

print()

print("=> number of columns:")

print(len(df.columns))

print()

print("=> number of rows and columns:")

print(df.shape)

print()

print("=> number of elements:")

print(df.size)

print()

print("=> IRIS details:")

print(df.info())

print()

print("=> top five rows:")

print(df.head())

print()

X = iris.data[:, [2, 3]]

y = iris.target

print('=> Class labels:', np.unique(y))

Listing 5.45 contains several import statements and then initializes the vari-
able iris with the Iris dataset. Next, a loop displays the feature names. The

MDS.CH5_2.8.23.indd 305MDS.CH5_2.8.23.indd 305 08/02/23 1:40 PM08/02/23 1:40 PM

306 • Managing Datasets and Models

next code snippet initializes the variable df as a Pandas data frame that con-
tains the data from the Iris dataset.

The next block of code invokes some attributes and methods of a Pandas
data frame to display the number of rows, columns, and elements in the data
frame, as well as the details of the Iris dataset, the first five rows, and the
unique labels in the Iris dataset. Launch the code in Listing 5.45, and you
will see the following output:

=> IRIS feature names:

sepal length (cm)

sepal width (cm)

petal length (cm)

petal width (cm)

=> number of rows:

150

=> number of columns:

4

=> number of rows and columns:

(150, 4)

=> number of elements:

600

=> IRIS details:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 150 entries, 0 to 149

Data columns (total 4 columns):

sepal length (cm) 150 non-null float64

sepal width (cm) 150 non-null float64

petal length (cm) 150 non-null float64

petal width (cm) 150 non-null float64

MDS.CH5_2.8.23.indd 306MDS.CH5_2.8.23.indd 306 08/02/23 1:40 PM08/02/23 1:40 PM

Matplotlib and Seaborn • 307

dtypes: float64(4)

memory usage: 4.8 KB

None

=> top five rows:

 sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)

0 5.1 3.5 1.4 0.2

1 4.9 3.0 1.4 0.2

2 4.7 3.2 1.3 0.2

3 4.6 3.1 1.5 0.2

4 5.0 3.6 1.4 0.2

=> Class labels: [0 1 2]

THE IRIS DATASET IN SCIKIT-LEARN (2)

The Iris dataset in scikit-learn consists of the lengths of three different types
of Iris-based petals and sepals: Setosa, Versicolour, and Virginica.
These numeric values are stored in a 150x4 NumPy.ndarray.

Note that the rows in the Iris dataset are the sample images, and the col-
umns consist of the values for the Sepal Length, Sepal Width, Petal Length,
and Petal Width of each image. Listing 5.46 displays the content of scikit-
learn_iris.py that illustrates how to display detailed information about
the Iris dataset.

Listing 5.46: sklearn_iris.py

from scikit-learn import datasets

from scikit-learn.model_selection import train_test_split

iris = datasets.load_iris()

data = iris.data

MDS.CH5_2.8.23.indd 307MDS.CH5_2.8.23.indd 307 08/02/23 1:40 PM08/02/23 1:40 PM

308 • Managing Datasets and Models

print("iris data shape: ",data.shape)

print("iris target shape:",iris.target.shape)

print("first 5 rows iris:")

print(data[0:5])

print("keys:",iris.keys())

print("")

n_samples, n_features = iris.data.shape

print('Number of samples: ', n_samples)

print('Number of features:', n_features)

print("")

print("sepal length/width and petal length/width:")

print(iris.data[0])

import numpy as np

np.bincount(iris.target)

print("target names:",iris.target_names)

print("mean: %s " % data.mean(axis=0))

print("std: %s " % data.std(axis=0))

#print("mean: %s " % data.mean(axis=1))

#print("std: %s " % data.std(axis=1))

load the data into train and test datasets:

X_train, X_test, y_train, y_test = train_test_split(iris.
data, iris.target, random_state=0)

MDS.CH5_2.8.23.indd 308MDS.CH5_2.8.23.indd 308 08/02/23 1:40 PM08/02/23 1:40 PM

Matplotlib and Seaborn • 309

from scikit-learn.preprocessing import StandardScaler

scaler = StandardScaler()

scaler.fit(X_train)

rescale the train datasest:

X_train_scaled = scaler.transform(X_train)

print("X_train_scaled shape:",X_train_scaled.shape)

print("mean : %s " % X_train_scaled.mean(axis=0))

print("standard deviation : %s " % X_train_scaled.
std(axis=0))

import matplotlib.pyplot as plt

x_index = 3

colors = ['blue', 'red', 'green']

for label, color in zip(range(len(iris.target_names)),
colors):

 plt.hist(iris.data[iris.target==label, x_index],

 label=iris.target_names[label],

 color=color)

plt.xlabel(iris.feature_names[x_index])

plt.legend(loc='upper right')

plt.show()

Listing 5.46 starts with an import statement followed by the variables iris
and data, where the latter contains the Iris dataset. The first half of Listing
5.48 consists of self-explanatory code, such as displaying the number of images
and the number of features in the Iris dataset.

MDS.CH5_2.8.23.indd 309MDS.CH5_2.8.23.indd 309 08/02/23 1:40 PM08/02/23 1:40 PM

310 • Managing Datasets and Models

The second portion of Listing 5.46 imports the StandardScaler class in
scikit-learn, which rescales each value in X_train by subtracting the mean
and then dividing by the standard deviation. The final block of code in Listing
5.46 generates a histogram that displays some of the images in the Iris data-
set. The output from Listing 5.46 is here:

iris data shape: (150, 4)

iris target shape: (150,)

first 5 rows iris:

[[5.1 3.5 1.4 0.2]

 [4.9 31.4 0.2]

 [4.7 3.2 1.3 0.2]

 [4.6 3.1 1.5 0.2]

 [53.6 1.4 0.2]]

keys: dict_keys(['target', 'target_names', 'data',
'feature_names', 'DESCR'])

Number of samples: 150

Number of features: 4

sepal length/width and petal length/width:

[5.1 3.5 1.4 0.2]

target names: ['setosa' 'versicolor' 'virginica']

mean: [5.84333333 3.054 3.75866667 1.19866667]

std: [0.82530129 0.43214658 1.75852918 0.76061262]

X_train_scaled shape: (112, 4)

mean : [1.21331516e-15 -4.41115398e-17 7.13714802e-17
2.57730345e-17]

standard deviation : [1. 1. 1. 1.]

Figure 5.37 shows the images in the Iris dataset based on the code in Listing
5.46.

MDS.CH5_2.8.23.indd 310MDS.CH5_2.8.23.indd 310 08/02/23 1:40 PM08/02/23 1:40 PM

Matplotlib and Seaborn • 311

FIGURE 5.37  The Iris dataset

ADVANCED TOPICS IN SEABORN

Listing 5.47 displays the content sns_kde_plot1.py that shows a kde plot.

Listing 5.47: sns_kde_plot1.py

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

np.random.seed(1)

numerical_1 = np.random.randn(100)

np.random.seed(2)

numerical_2 = np.random.randn(100)

MDS.CH5_2.8.23.indd 311MDS.CH5_2.8.23.indd 311 08/02/23 1:40 PM08/02/23 1:40 PM

312 • Managing Datasets and Models

fig, ax = plt.subplots(figsize=(3,3))

sns.kdeplot(x=numerical_1,

 y= numerical_2,

 ax=ax,

 shade=True,

 color="blue",

 bw=1)

plt.show()

Listing 5.47 starts with several import statements and then sets an initial ran-
dom seed value. This value is used for initializing the variables numerical_1
and numerical_2 with a set of 100 random numbers.

The next portion of Listing 5.47 initializes the variables fig and ax as
subplots, followed by the Seaborn kdeplot() method that uses the previ-
ously initialized variables to generate a kde plot. Figure 5.38 shows the result
of launching the code in Listing 5.47.

FIGURE 5.38  A Pandas data frame displayed via Seaborn

Listing 5.48 displays the content sns_line_barchart1.py that shows a
line graph and a bar chart.

MDS.CH5_2.8.23.indd 312MDS.CH5_2.8.23.indd 312 08/02/23 1:40 PM08/02/23 1:40 PM

Matplotlib and Seaborn • 313

Listing 5.48: sns_line_barchart1.py

import seaborn as sns

import matplotlib.pyplot as plt

sns.set(style="white", rc={"lines.linewidth": 3})

fig, ax1 = plt.subplots(figsize=(5,5))

ax2 = ax1.twinx()

sns.barplot(x=['A', 'B', 'C', 'D', 'E'],

 y=[150,230,120,80,190],

 color='#224488',

 ax=ax1)

sns.lineplot(x=['X1','X2','X3','X4','X5'],

 y=[4,2,5,3,6],

 color='r',

 marker="o",

 ax=ax2)

plt.show()

sns.set()

Listing 5.48 starts with two import statements and then initializes some dis-
play-related parameters. Next, the variables fig, ax1, and ax2 are initialized
as subplots that will be populated with a bar plot and a line plot.

The next portion of Listing 5.48 defines the parameter values for a bar
plot (i.e., 5 bar elements), such as the labels for the bar elements, their coor-
dinates, and their color. The second plot is a line plot that performs a corre-
sponding initialization of required parameters. Launch the code in Listing
5.48, and you will see a plot of the data in the Titanic dataset, as shown in
Figure 5.39.

MDS.CH5_2.8.23.indd 313MDS.CH5_2.8.23.indd 313 08/02/23 1:40 PM08/02/23 1:40 PM

314 • Managing Datasets and Models

FIGURE 5.39  A line graph and bar chart

SUMMARY

This chapter started with a very short introduction to Matplotlib, along with
code samples that displayed the available styles in colors in Matplotlib.

Then you learned how to render horizontal lines, slanted lines, parallel
lines, and a grid of points. In addition, you learned how to load images, display
checkerboard patterns, and plot trigonometric functions. Moreover, you saw
how to render histograms, bar charts, pie charts, and heat maps.

Next, you saw how to create a 3D plot, how to render financial data, and
render a chart with data from a sqlite3 database. In addition, you learned
about Bokeh, along with an example of rendering graphics in Bokeh.

You also learned about scikit-learn, including examples of working with
the Digits and Iris datasets, and also how to process images.

MDS.CH5_2.8.23.indd 314MDS.CH5_2.8.23.indd 314 08/02/23 1:40 PM08/02/23 1:40 PM

A P P E N D I X

Working with awk

This appendix introduces you to the awk command, which is a versatile util-
ity for manipulating data and restructuring datasets. This utility is so versatile
that entire books have been written about the awk utility. Awk is essentially an
entire programming language in a single command, which accepts standard
input, gives standard output, and uses regular expressions and metacharacters
in the same way other Unix commands do. This lets you plug it into other
expressions and do almost anything, at the cost of adding complexity to a com-
mand string that may already be doing quite a lot already. It is almost always
worthwhile to add a comment when using awk: it is so versatile that it will not
be clear which of the many features you are using at a glance.

The first part of this appendix provides a very brief introduction of the awk
command. You will learn about some built-in variables for awk, and also how
to manipulate string variables using awk. Note that some of these string-re-
lated examples can also be handled using other bash commands.

The second part of this appendix shows you conditional logic, while
loops, and for loops in awk to manipulate the rows and columns in datasets.
This section also shows you how to delete lines and merge lines in datasets,
and also how to print the contents of a file as a single line of text. You will see
how to “join” lines and groups of lines in datasets.

The third section contains code samples that involve metacharacters and
character sets in awk commands. You will also see how to use conditional logic
in awk commands to determine whether to print a line of text.

The fourth section illustrates how to “split” a text string that contains mul-
tiple “.” characters as a delimiter, followed by examples of awk to perform
numeric calculations (such as addition, subtraction, multiplication, and divi-
sion) in files containing numeric data. This section also shows you various

MDS.Appendix_2.8.23.indd 315MDS.Appendix_2.8.23.indd 315 08/02/23 1:39 PM08/02/23 1:39 PM

316 • Managing Datasets and Models

numeric functions that are available in awk, as well as how to print text in a
fixed set of columns.

The fifth section explains how to align columns in a dataset, and how to
align and merge columns in a dataset. You will see how to delete columns,
how to select a subset of columns from a dataset, and how to work with multi-
line records in datasets. This section contains some one-line awk commands
that can be useful for manipulating the contents of datasets.

The final section of this appendix has a pair of use cases involving nested
quotes and date formats in structured datasets.

THE AWK COMMAND

The awk (Aho, Weinberger, and Kernighan) command has a C-like syntax and
you can use this utility to perform very complex operations on numbers and
text strings.

As a side comment, there is also the gawk command that is GNU awk,
as well as the nawk command is “new” awk (neither command is discussed in
this book). One advantage of nawk is that it allows you to externally set the
value of an internal variable.

Built-In Variables That Control awk

The awk command provides variables that you can change from their default
values to control how awk performs operations. Examples of such variables
(and their default values) include FS (" "), RS ("\n"), OFS (" "), ORS
("\n") , SUBSEP, and IGNORECASE. The variables FS and RS specify the
field separator and record separator, whereas the variables OFS and ORS spec-
ify the output field separator and the output record separator, respectively.

You can think of the field separators as delimiters/IFS we used in other
commands earlier. The record separators behave in a way similar to how sed
treats individual lines; for example, sed can match or delete a range of lines
instead of matching or deleting something that matches a regular expression
(and the default awk record separator is the newline character, so by default
awk and sed have similar ability to manipulate and reference lines in a text
file).

MDS.Appendix_2.8.23.indd 316MDS.Appendix_2.8.23.indd 316 08/02/23 1:39 PM08/02/23 1:39 PM

Working with awk • 317

As a simple example, you can print a blank line after each line of a file
by changing the ORS, from default of one newline to two newlines, as shown
here:

cat columns.txt | awk 'BEGIN { ORS ="\n\n" } ; { print $0 }'

Other built-in variables include FILENAME (the name of the file that awk is
currently reading), FNR (the current record number in the current file), NF
(the number of fields in the current input record), and NR (the number of input
records awk has processed since the beginning of the program’s execution).

Consult the online documentation for additional information regarding
these (and other) arguments for the awk command.

How Does the awk Command Work?

The awk command reads the input files one record at a time (by default,
one record is one line). If a record matches a pattern, then an action is per-
formed (otherwise, no action is performed). If the search pattern is not given,
then awk performs the given actions for each record of the input. The default
behavior if no action is given is to print all the records that match the given
pattern. Finally, empty braces without any action does nothing; i.e., it will not
perform the default printing operation. Note that each statement in actions
should be delimited by semicolon.

To make the preceding paragraph clearer, here are some simple examples
involving text strings and the awk command (the results are displayed after
each code snippet). The -F switch sets the field separator to whatever follows
it, in this case, a space. Switches will often provide a shortcut to an action that
normally needs a command inside a ‘BEGIN{} block):

x="a b c d e"

echo $x |awk -F" " '{print $1}'

a

echo $x |awk -F" " '{print NF}'

5

echo $x |awk -F" " '{print $0}'

a b c d e

echo $x |awk -F" " '{print $3, $1}'

c a

MDS.Appendix_2.8.23.indd 317MDS.Appendix_2.8.23.indd 317 08/02/23 1:39 PM08/02/23 1:39 PM

318 • Managing Datasets and Models

Now let’s change the FS (record separator) to an empty string to calculate the
length of a string, this time using the BEGIN{} syntax:

echo "abc" | awk 'BEGIN { FS = "" } ; { print NF }'

3

The following example illustrates several equivalent ways to specify test.
txt as the input file for an awk command:

awk < test.txt '{ print $1 }'

awk '{ print $1 }' < test.txt

awk '{ print $1 }' test.txt

Yet another way is shown here (but as we have discussed earlier, it can be inef-
ficient, so only do it if the cat is adding value in some way):

cat test.txt | awk '{ print $1 }'

This simple example of four ways to do the same task should illustrate why
commenting awk calls of any complexity is almost always a good idea. The
next person to look at your code may not know/remember the syntax you are
using.

ALIGNING TEXT WITH THE PRINTF() STATEMENT

Since awk is a programming language inside a single command, it also has its
own way of producing formatted output via the printf() statement.

Listing A.1 displays the contents of columns2.txt, and Listing A.2 dis-
plays the content of the shell script AlignColumns1.sh that shows you how
to align the columns in a text file.

Listing A.1: columns2.txt

one two

three four

one two three four

MDS.Appendix_2.8.23.indd 318MDS.Appendix_2.8.23.indd 318 08/02/23 1:39 PM08/02/23 1:39 PM

Working with awk • 319

five six

one two three

four five

Listing A.2: AlignColumns1.sh

awk '

{

 # left-align $1 on a 10-char column

 # right-align $2 on a 10-char column

 # right-align $3 on a 10-char column

 # right-align $4 on a 10-char column

 printf("%-10s*%10s*%10s*%10s*\n", $1, $2, $3, $4)

}

' columns2.txt

Listing A.2 contains a printf() statement that displays the first four fields of
each row in the file columns2.txt, where each field is 10 characters wide.

The output from launching the code in Listing A.2 is here:

one * two* * *

three * four* * *

one * two* three* four*

five * six* * *

one * two* three* *

four * five* * *

The printf() statement is reasonably powerful and as such has its own syn-
tax, which is beyond the scope of this appendix. A search online can find the
manual pages and also discussions of “how to do X with printf().”

MDS.Appendix_2.8.23.indd 319MDS.Appendix_2.8.23.indd 319 08/02/23 1:39 PM08/02/23 1:39 PM

320 • Managing Datasets and Models

CONDITIONAL LOGIC AND CONTROL STATEMENTS

Like other programming languages, awk provides support for conditional
logic (if/else) and control statements (for/while loops). awk is the only way to
put conditional logic inside a piped command stream without creating, install-
ing and adding to the path a custom executable shell script. The following
code block shows you how to use if/else logic:

echo "" | awk '

BEGIN { x = 10 }

{

 if (x % 2 == 0) }

 print "x is even"

 }

 else }

 print "x is odd"

 }

}

'

The preceding code block initializes the variable x with the value 10 and prints
“x is even” if x is divisible by 2; otherwise, it prints “x is odd.”

The while Statement

The following code block illustrates how to use a while loop in awk:

echo "" | awk '

{

 x = 0

 while(x < 4) {

 print "x:",x

 x = x + 1

 }

}

'

MDS.Appendix_2.8.23.indd 320MDS.Appendix_2.8.23.indd 320 08/02/23 1:39 PM08/02/23 1:39 PM

Working with awk • 321

The preceding code block generates the following output:

x:0

x:1

x:2

x:3

The following code block illustrates how to use a do while loop in awk:

echo "" | awk '

{

 x = 0

 do {

 print "x:",x

 x = x + 1

 } while(x < 4)

}

'

The preceding code block generates the following output:

x:0

x:1

x:2

x:3

A for Loop in Awk

Listing A.3 displays the content of Loop.sh that illustrates how to print a list
of numbers in a loop. Note that “i++” is another way of writing “I=I+1” in awk
(and most C-derived languages).

MDS.Appendix_2.8.23.indd 321MDS.Appendix_2.8.23.indd 321 08/02/23 1:39 PM08/02/23 1:39 PM

322 • Managing Datasets and Models

Listing A.3: Loop.sh

echo "" | awk '

BEGIN {}

{

 for(i=0; i<5; i++) {

 printf("%3d", i)

 }

}

END { print "\n" }

'

Listing A.3 contains a for loop that prints numbers on the same line via the
printf() statement. Notice that a new line is printed only in the END block
of the code. The output from Listing A.3 is here:

0 1 2 3 4

A for Loop with a break Statement

The following code block illustrates how to use a break statement in a for
loop in awk:

echo "" | awk '

{

 for(x=1; x<4; x++) {

 print "x:",x

 if(x == 2) {

 break;

 }

 }

}

'

MDS.Appendix_2.8.23.indd 322MDS.Appendix_2.8.23.indd 322 08/02/23 1:39 PM08/02/23 1:39 PM

Working with awk • 323

The preceding code block prints output only until the variable x has the value
2, after which the loop exits (because of the break inside the conditional logic).
The following output is displayed:

x:1

The next and continue Statements

The following code snippet illustrates how to use next and continue in a
for loop in awk:

awk '

{

 /expression1/ { var1 = 5; next }

 /expression2/ { var2 = 7; next }

 /expression3/ { continue }

 // some other code block here

' somefile

When the current line matches expression1, then var1 is assigned the value
5 and awk reads the next input line: hence, expression2 and expression3
will not be tested. If expression1 does not match and expression2 does
match, then var2 is assigned the value 7 and then awk will read the next input
line. If only expression3 results in a positive match, then awk skips the
remaining block of code and processes the next input line.

DELETING ALTERNATE LINES IN DATASETS

Listing A.4 displays the contents of linepairs.csv, and Listing A.5 displays
the content of deletelines.sh that illustrates how to print alternating lines
from the dataset linepairs.csv that have exactly two columns.

Listing A.4: linepairs.csv

a,b,c,d

e,f,g,h

MDS.Appendix_2.8.23.indd 323MDS.Appendix_2.8.23.indd 323 08/02/23 1:39 PM08/02/23 1:39 PM

324 • Managing Datasets and Models

1,2,3,4

5,6,7,8

Listing A.5: deletelines.sh

inputfile="linepairs.csv"

outputfile="linepairsdeleted.csv"

awk ' NR%2 {printf "%s", $0; print ""; next}' < $inputfile
> $outputfile

Listing A.5 checks if the current record number NR is divisible by 2, in which
case it prints the current line and skips the next line in the dataset. The output
is redirected to the specified output file, the contents of which are here:

a,b,c,d

1,2,3,4

A slightly more common task involves merging consecutive lines, which is the
topic of the next section.

MERGING LINES IN DATASETS

Listing A.6 displays the contents of columns.txt, and Listing A.7 displays
the content of ColumnCount1.sh that illustrates how to print the lines from
the text file columns.txt that have exactly two columns.

Listing A.6: columns.txt

one two three

one two

one two three four

one

one three

one four

MDS.Appendix_2.8.23.indd 324MDS.Appendix_2.8.23.indd 324 08/02/23 1:39 PM08/02/23 1:39 PM

Working with awk • 325

Listing A.7: ColumnCount1.sh

awk '

{

 if(NF == 2) { print $0 }

}

' columns.txt

Listing A.7 is straightforward: if the current record number is even, then the
current line is printed (i.e., odd-numbered rows are skipped). The output
from launching the code in Listing A.7 is here:

one two

one three

one four

If you want to display the lines that do not contain 2 columns, use the follow-
ing code snippet:

if(NF != 2) { print $0 }

Printing File Contents as a Single Line

The contents of test4.txt are here (note the blank lines):

abc

def

abc

abc

The following code snippet illustrates how to print the contents of test4.
txt as a single line:

awk '{printf("%s", $0)}' test4.txt

MDS.Appendix_2.8.23.indd 325MDS.Appendix_2.8.23.indd 325 08/02/23 1:39 PM08/02/23 1:39 PM

326 • Managing Datasets and Models

The output of the preceding code snippet is here. See if you can tell what is
happening before reading the explanation in the next paragraph:

Abcdefabcabc

Explanation: %s here is the record separator syntax for printf(), with the
end quotation mark after it means the record separator is the empty field “”.
Our default record separator for awk is /n (newline), so the printf() state-
ment strips out all the new lines. The blank rows will vanish entirely, as all
they have is the new line, so the result is that any actual text will be merged
together with nothing between them.

Had we added a space between the %s and the ending quotation mark,
there would be a space between each character block, plus an extra space for
each new line. Notice how the following comment improves the comprehen-
sion of the code snippet:

Merging all text into a single line by removing the
newlines

awk '{printf("%s", $0)}' test4.txt

Joining Groups of Lines in a Text File

Listing A.8 displays the contents of digits.txt, and Listing A.9 displays the
content of digits.sh that “joins” three consecutive lines of text in the file
digits.txt.

Listing A.8: digits.txt

1

2

3

4

5

6

7

8

9

MDS.Appendix_2.8.23.indd 326MDS.Appendix_2.8.23.indd 326 08/02/23 1:39 PM08/02/23 1:39 PM

Working with awk • 327

Listing A.9: digits.sh

awk -F" " '{

 printf("%d",$0)

 if(NR % 3 == 0) { printf("\n") }

}' digits.txt

Listing A.9 prints three consecutive lines of text on the same line, after which
a linefeed is printed. This has the effect of “joining” every three consecutive
lines of text. The output from launching digits.sh is here:

123

456

789

Joining Alternate Lines in a Text File

Listing A.10 displays the contents of columns2.txt, and Listing A.11 dis-
plays the content of JoinLines.sh that “joins” two consecutive lines of text
in the file columns2.txt.

Listing A.10: columns2.txt

one two

three four

one two three four

five six

one two three

four five

Listing A.11: JoinLines.sh

awk '

{

 printf("%s",$0)

 if($1 !~ /one/) { print " " }

}

' columns2.txt

MDS.Appendix_2.8.23.indd 327MDS.Appendix_2.8.23.indd 327 08/02/23 1:39 PM08/02/23 1:39 PM

328 • Managing Datasets and Models

The output from launching Listing A.11 is here:

one two three four

one two three four five six

one two three four five

Notice that the code in Listing A.11 depends on the presence of the string
“one” as the first field in alternating lines of text; we are merging based on
matching a simple pattern, instead of tying it to record combinations.

To merge each pair of lines instead of merging based on matching a pat-
tern, use the modified code in Listing A.12.

Listing A.12: JoinLines2.sh

awk '

BEGIN { count = 0 }

{

 printf("%s",$0)

 if(++count % 2 == 0) { print " " }

} columns2.txt

Yet another way to “join” consecutive lines is shown in Listing A.13, where the
input file and output file refer to files that you can populate with data. This is
another example of an awk command that might be a puzzle if encountered
in a program without a comment. It is doing exactly the same thing as Listing
A.12, but its purpose is less obvious because of the more compact syntax.

Listing A.13: JoinLines2.sh

inputfile="linepairs.csv"

outputfile="linepairsjoined.csv"

awk ' NR%2 {printf "%s,", $0; next;}1' < $inputfile >
$outputfile

MDS.Appendix_2.8.23.indd 328MDS.Appendix_2.8.23.indd 328 08/02/23 1:39 PM08/02/23 1:39 PM

Working with awk • 329

MATCHING WITH METACHARACTERS AND
CHARACTER SETS

If we can match a simple pattern, you can also match a regular expression.
Listing A.14 displays the content of Patterns1.sh that uses metacharacters
to match the beginning and the end of a line of text in the file columns2.txt.

Listing A.14: Patterns1.sh

awk '

 /^f/ { print $1 }

 /two $/ { print $1 }

' columns2.txt

The output from launching Listing A.14 is here:

one

five

four

Listing A.15 displays the content of RemoveColumns.txt with lines that
contain a different number of columns.

Listing A.15: columns3.txt

123 one two

456 three four

one two three four

five 123 six

one two three

four five

Listing A.16 displays the content of MatchAlpha1.sh that matches text lines
that start with alphabetic characters, as well as lines that contain numeric
strings in the second column.

MDS.Appendix_2.8.23.indd 329MDS.Appendix_2.8.23.indd 329 08/02/23 1:39 PM08/02/23 1:39 PM

330 • Managing Datasets and Models

Listing A.16: MatchAlpha1.sh

awk '

{

 if($0 ~ /^[0-9]/) { print $0 }

 if($0 ~ /^[a-z]+ [0-9]/) { print $0 }

}

' columns3.txt

The output from Listing A.16 is here:

123 one two

456 three four

five 123 six

PRINTING LINES USING CONDITIONAL LOGIC

Listing A.17 displays the content of products.txt that contains three col-
umns of information.

Listing A.17: products.txt

MobilePhone 400 new

Tablet 300 new

Tablet 300 used

MobilePhone 200 used

MobilePhone 100 used

The following code snippet prints the lines of text in products.txt whose
second column is greater than 300:

awk '$2 > 300' products.txt

The output of the preceding code snippet is here:

MobilePhone 400 new

MDS.Appendix_2.8.23.indd 330MDS.Appendix_2.8.23.indd 330 08/02/23 1:39 PM08/02/23 1:39 PM

Working with awk • 331

The following code snippet prints the lines of text in products.txt whose
product is “new:”

awk '($3 == "new")' products.txt

The output of the preceding code snippet is here:

MobilePhone 400 new

Tablet 300 new

The following code snippet prints the first and third columns of the lines of
text in products.txt whose cost equals 300:

awk ' $2 == 300 { print $1, $3 }' products.txt

The output of the preceding code snippet is here:

Tablet new

Tablet used

The following code snippet prints the first and third columns of the lines of
text in products.txt that start with the string Tablet:

awk '/^Tablet/ { print $1, $3 }' products.txt

The output of the preceding code snippet is here:

Tablet new

Tablet used

SPLITTING FILE NAMES WITH AWK

Listing A.18 displays the content of SplitFilename2.sh that illustrates how
to split a filename containing the “.” character to increment the numeric value
of one of the components of the file name. Note that this code only works for
a file name with exactly the expected syntax.

MDS.Appendix_2.8.23.indd 331MDS.Appendix_2.8.23.indd 331 08/02/23 1:39 PM08/02/23 1:39 PM

332 • Managing Datasets and Models

Listing A.18: SplitFilename2.sh

echo "05.20.144q.az.1.zip" | awk -F"." '

{

 f5=$5 + 1

 printf("%s.%s.%s.%s.%s.%s",$1,$2,$3,$4,f5,$6)

}'

The output from Listing A.18 is here:

05.20.144q.az.2.zip

WORKING WITH POSTFIX ARITHMETIC OPERATORS

Listing A.19 displays the content of mixednumbers.txt that contains post-
fix operators, which means numbers where the negative (or positive) sign
appears at the end of a column value instead of the beginning of the number.

Listing A.19: mixednumbers.txt

324.000-|10|983.000-

453.000-|30|298.000-

783.000-|20|347.000-

Listing A.20 displays the content of AddSubtract1.sh that illustrates how to
add the rows of numbers in Listing A.19.

Listing A.20: AddSubtract1.sh

myFile="mixednumbers.txt"

awk -F"|" '

BEGIN { line = 0; total = 0 }

{

 split($1, arr, "-")

MDS.Appendix_2.8.23.indd 332MDS.Appendix_2.8.23.indd 332 08/02/23 1:39 PM08/02/23 1:39 PM

Working with awk • 333

 f1 = arr[1]

 if($1 ~ /-/) { f1 = -f1 }

 line += f1

 split($2, arr, "-")

 f2 = arr[1]

 if($2 ~ /-/) { f2 = -f2 }

 line += f2

 split($3, arr, "-")

 f3 = arr[1]

 if($3 ~ /-/) { f3 = -f3 }

 line += f3

 printf("f1: %d f2: %d f3: %d line: %d\n",f1,f2,f3,
line)

 total += line

 line = 0

}

END { print "Total: ",total }

' $myfile

The output from Listing A.20 is here. See if you can work out what the code
is doing before reading the explanation that follows:

f1: -324 f2: 10 f3: -983 line: -1297

f1: -453 f2: 30 f3: -298 line: -721

f1: -783 f2: 20 f3: -347 line: -1110

Total: -3128

The code assumes we know the format of the file. The split() function
turns each field record into a length two vector: the first position is a number
and second position either an empty value or a dash, and then captures the
first position number into a variable. The if statement just sees if the original

MDS.Appendix_2.8.23.indd 333MDS.Appendix_2.8.23.indd 333 08/02/23 1:39 PM08/02/23 1:39 PM

334 • Managing Datasets and Models

field has a dash in it. If the field has a hyphen (“-”), then the numeric variable
is made negative; otherwise, it is left alone. Then it adds up the values in the
line.

NUMERIC FUNCTIONS IN AWK

The int(x) function returns the integer portion of a number. If the number
is not already an integer, it falls between two integers. Of the two possible
integers, the function will return the one closest to zero. This is different from
a rounding function, which chooses the closer integer.

For example, int(3) is 3, int(3.9) is 3, int(-3.9) is -3, and int(-3) is
-3 as well. An example of the int(x) function in an awk command is here:

awk 'BEGIN {

 print int(3.534);

 print int(4);

 print int(-5.223);

 print int(-5);

}'

The output is here:

3

4

-5

-5

The exp(x) function gives you the exponential of x, or reports an error if x is
out of range. The range of values x can have depends on your machine’s float-
ing point representation.

awk 'BEGIN{

 print exp(123434346);

 print exp(0);

 print exp(-12);

}'

MDS.Appendix_2.8.23.indd 334MDS.Appendix_2.8.23.indd 334 08/02/23 1:39 PM08/02/23 1:39 PM

Working with awk • 335

The output is here:

inf

1

6.14421e-06

The log(x) function gives you the natural logarithm of x, if x is positive;
otherwise, it reports an error (inf means infinity and nan in output means
“not a number”).

awk 'BEGIN{

 print log(12);

 print log(0);

 print log(1);

 print log(-1);

}'

The output is here:

2.48491

-inf

0

nan

The sin(x) function gives you the sine of x and cos(x) gives you the cosine
of x, with x in radians:

awk 'BEGIN {

 print cos(90);

 print cos(45);

}'

The output is here:

-0.448074

0.525322

MDS.Appendix_2.8.23.indd 335MDS.Appendix_2.8.23.indd 335 08/02/23 1:39 PM08/02/23 1:39 PM

336 • Managing Datasets and Models

The rand() function gives you a random number. The values of rand()
are uniformly-distributed between 0 and 1: the value is never 0 and never 1.
Often, you want random integers instead. Here is a user-defined function you
can use to obtain a random nonnegative integer less than n:

function randint(n) {

 return int(n * rand())

}

The product generates a random real number greater than 0 and less than n.
We then make it an integer (using int) between 0 and n - 1.

Here is an example where a similar function is used to produce random
integers between 1 and n:

awk '

Function to roll a simulated die.

function roll(n) { return 1 + int(rand() * n) }

Roll 3 six-sided dice and print total number of points.

{

 printf("%d points\n", roll(6)+roll(6)+roll(6))

}'

Note that rand() starts generating numbers from the same point (or “seed”)
each time awk is invoked. Hence, a program will produce the same results
each time it is launched. If you want a program to do different things each
time it is used, you must change the seed to a value that will be different in
each run.

Use the srand(x) function to set the starting point, or seed, for gener-
ating random numbers to the value x. Each seed value leads to a particular
sequence of “random” numbers. Thus, if you set the seed to the same value
a second time, you will get the same sequence of “random” numbers again.
If you omit the argument x, as in srand(), then the current date and time
of day are used for a seed. This is how to obtain random numbers that are
truly unpredictable. The return value of srand()is the previous seed. This
makes it easy to keep track of the seeds for use in consistently reproducing
sequences of random numbers.

MDS.Appendix_2.8.23.indd 336MDS.Appendix_2.8.23.indd 336 08/02/23 1:39 PM08/02/23 1:39 PM

Working with awk • 337

The time() function (not in all versions of awk) returns the current time
in seconds since January 1, 1970. The function ctime() (not in all versions of
awk) takes a numeric argument in seconds and returns a string representing
the corresponding date, suitable for printing or further processing.

The sqrt(x) function gives you the positive square root of x. It reports
an error if x is negative. Thus, sqrt(4) is 2.

awk 'BEGIN{

 print sqrt(16);

 print sqrt(0);

 print sqrt(-12);

}'

The output is here:

4

0

Nan

ONE-LINE AWK COMMANDS

The code snippets in this section reference the text file short1.txt, which
you can populate with any data.

The following code snippet prints each line preceded by the number of
fields in each line:

awk '{print NF ":" $0}' short1.txt

Print the right-most field in each line:

awk '{print $NF}' short1.txt

Print the lines that contain more than two fields:

awk '{if(NF > 2) print }' short1.txt

MDS.Appendix_2.8.23.indd 337MDS.Appendix_2.8.23.indd 337 08/02/23 1:39 PM08/02/23 1:39 PM

338 • Managing Datasets and Models

Print the value of the right-most field if the current line contains more than
two fields:

awk '{if(NF > 2) print $NF }' short1.txt

Remove leading and trailing whitespaces:

echo " a b c " | awk '{gsub(/^[\t]+|[\t]+$/,"");print}'

Print the first and third fields in reverse order for the lines that contain at least
three fields:

awk '{if(NF > 2) print $3, $1}' short1.txt

Print the lines that contain the string “one:”

awk '{if(/one/) print }' *txt

As you can see from the preceding code snippets, it is easy to extract informa-
tion or subsets of rows and columns from text files using simple conditional
logic and built-in variables in the awk command.

USEFUL SHORT AWK SCRIPTS

This section contains a set of short awk -based scripts for performing various
operations. Some of these scripts can also be used in other shell scripts to
perform more complex operations. Listing A.21 displays the content of the file
data.txt that is used in various code samples in this section.

Listing A.21: data.txt

this is line one that contains more than 40 characters

this is line two

this is line three that also contains more than 40
characters

four

MDS.Appendix_2.8.23.indd 338MDS.Appendix_2.8.23.indd 338 08/02/23 1:39 PM08/02/23 1:39 PM

Working with awk • 339

this is line six and the preceding line is empty

line eight and the preceding line is also empty

The following code snippet prints every line that is longer than 40 characters:

awk 'length($0) > 40' data.txt

Now print the length of the longest line in data.txt:

awk '{ if (x < length()) x = length() }

END { print "maximum line length is " x }' < data.txt

The input is processed by the expand utility to change tabs into spaces, so the
widths compared are actually the right-margin columns.

Print every line that has at least one field:

awk 'NF > 0' data.txt

The preceding code snippet illustrates an easy way to delete blank lines from
a file (or rather, to create a new file similar to the old file but from which the
blank lines have been removed).

Print seven random numbers from 0 to 100, inclusive:

awk 'BEGIN { for (i = 1; i <= 7; i++)

print int(101 * rand()) }'

Count the lines in a file:

awk 'END { print NR }' < data.txt

Print the even-numbered lines in the data file:

awk 'NR % 2 == 0' data.txt

If you use the expression 'NR % 2 == 1' in the previous code snippet, the
program would print the odd-numbered lines.

Insert a duplicate of every line in a text file:

MDS.Appendix_2.8.23.indd 339MDS.Appendix_2.8.23.indd 339 08/02/23 1:39 PM08/02/23 1:39 PM

340 • Managing Datasets and Models

awk '{print $0, '\n', $0}' < data.txt

Insert a duplicate of every line in a text file and also remove blank lines:

awk '{print $0, "\n", $0}' < data.txt | awk 'NF > 0'

Insert a blank line after every line in a text file:

awk '{print $0, "\n"}' < data.txt

PRINTING THE WORDS IN A TEXT STRING IN AWK

Listing A.22 displays the content of Fields2.sh that illustrates how to print
the words in a text string using the awk command.

Listing A.22: Fields2.sh

echo "a b c d e"| awk '

{

 for(i=1; i<=NF; i++) {

 print "Field ",i,":",$i

 }

}

'

The output from Listing A.22 is here:

Field 1 : a

Field 2 : b

Field 3 : c

Field 4 : d

Field 5 : e

MDS.Appendix_2.8.23.indd 340MDS.Appendix_2.8.23.indd 340 08/02/23 1:39 PM08/02/23 1:39 PM

Working with awk • 341

COUNT OCCURRENCES OF A STRING IN SPECIFIC ROWS

Listing A.23 and Listing A.24 display the contents data1.csv and data2.
csv, respectively, and Listing A.25 displays the content of checkrows.sh
that illustrates how to count the number of occurrences of the string “past” in
column 3 in rows 2, 5, and 7.

Listing A.23: data1.csv

in,the,past,or,the,present

for,the,past,or,the,present

in,the,past,or,the,present

for,the,paste,or,the,future

in,the,past,or,the,present

completely,unrelated,line1

in,the,past,or,the,present

completely,unrelated,line2

Listing A.24: data2.csv

in,the,past,or,the,present

completely,unrelated,line1

for,the,past,or,the,present

completely,unrelated,line2

for,the,paste,or,the,future

in,the,past,or,the,present

in,the,past,or,the,present

completely,unrelated,line3

Listing A.25: checkrows.sh

files="`ls data*.csv| tr '\n' ' '`"

echo "List of files: $files"

MDS.Appendix_2.8.23.indd 341MDS.Appendix_2.8.23.indd 341 08/02/23 1:39 PM08/02/23 1:39 PM

342 • Managing Datasets and Models

awk -F"," '

(FNR==2 || FNR==5 || FNR==7) {

 if ($3 ~ "past") { count++ }

}

END {

 printf "past: matched %d times (INEXACT) ", count

 printf "in field 3 in lines 2/5/7\n"

}' data*.csv

Listing A.25 looks for occurrences in the string past in columns 2, 5, and 7
because of the following code snippet:

(FNR==2 || FNR==5 || FNR==7) {

 if ($3 ~ "past") { count++ }

}

If a match occurs, then the value of count is incremented. The END block
reports the number of times that the string past was found in columns 2, 5,
and 7. Note that strings such as paste and pasted will match the string past.
The output from Listing A.25 is here:

List of files: data1.csv data2.csv

past: matched 5 times (INEXACT) in field 3 in lines 2/5/7

The shell script checkrows2.sh replaces the term $3 ~ "past" with the
term $3 == "past" in checkrows.sh to check for exact matches, which
produces the following output:

List of files: data1.csv data2.csv

past: matched 4 times (EXACT) in field 3 in lines 2/5/7

PRINTING A STRING IN A FIXED NUMBER OF COLUMNS

Listing A.26 displays the content of FixedFieldCount1.sh that illustrates
how to print the words in a text string using the awk command.

MDS.Appendix_2.8.23.indd 342MDS.Appendix_2.8.23.indd 342 08/02/23 1:39 PM08/02/23 1:39 PM

Working with awk • 343

Listing A.26: FixedFieldCount1.sh

echo "aa bb cc dd ee ff gg hh"| awk '

BEGIN { colCount = 3 }

{

 for(i=1; i<=NF; i++) {

 printf("%s ", $i)

 if(i % colCount == 0) {

 print " "

 }

 }

}

'

The output from Listing A.26 is here:

aa bb cc

dd ee ff

gg hh

PRINTING A DATASET IN A FIXED NUMBER OF COLUMNS

Listing A.27 displays the content of VariableColumns.txt with lines of
text that contain a different number of columns.

Listing A.27: VariableColumns.txt

this is line one

this is line number one

this is the third and final line

Listing A.28 displays the content of Fields3.sh that illustrates how to print
the words in a text string using the awk command.

MDS.Appendix_2.8.23.indd 343MDS.Appendix_2.8.23.indd 343 08/02/23 1:39 PM08/02/23 1:39 PM

344 • Managing Datasets and Models

Listing A.28: Fields3.sh

awk '{printf("%s ", $0)}' | awk '

BEGIN { columnCount = 3 }

{

 for(i=1; i<=NF; i++) {

 printf("%s ", $i)

 if(i % columnCount == 0)

 print " "

 }

}

' VariableColumns.txt

The output from Listing A.28 is here:

this is line

one this is

line number one

this is the

third and final

line

ALIGNING COLUMNS IN DATASETS

If you have read the preceding two examples, the code sample in this sec-
tion is easy to understand: you will see how to realign columns of data that
are correct in terms of their content, but have been placed in different rows
(and therefore are misaligned). Listing A.29 displays the contents of mixed-
data.csv with misaligned data values. In addition, the first line and final line
in Listing A.28 are empty lines, which will be removed by the shell script in
this section.

Listing A.29: mixed-data.csv

Sara, Jones, 1000, CA, Sally, Smith, 2000, IL,

MDS.Appendix_2.8.23.indd 344MDS.Appendix_2.8.23.indd 344 08/02/23 1:39 PM08/02/23 1:39 PM

Working with awk • 345

Dave, Jones, 3000, FL, John, Jones,

4000, CA,

Dave, Jones, 5000, NY, Mike,

Jones, 6000, NY, Tony, Jones, 7000, WA

Listing A.30 displays the contents of mixed-data.sh that illustrates how to
realign the dataset in Listing A.29.

Listing A.30: mixed-data.sh

#---

1) remove blank lines

2) remove line feeds

3) print a LF after every fourth field

4) remove trailing ',' from each row

#---

inputfile="mixed-data.csv"

grep -v "^$" $inputfile |awk -F"," '{printf("%s",$0)}' |
awk '

BEGIN { columnCount = 4 }

{

 for(i=1; i<=NF; i++) {

 printf("%s ", $i)

 if(i % columnCount == 0) { print "" }

 }

}' > temp-columns

4) remove trailing ',' from output:

cat temp-columns | sed 's/, $//' | sed 's/ $//' >
$outputfile

MDS.Appendix_2.8.23.indd 345MDS.Appendix_2.8.23.indd 345 08/02/23 1:39 PM08/02/23 1:39 PM

346 • Managing Datasets and Models

Listing A.30 starts with a grep command (online tutorials about grep are
available) that removes blank lines, followed by an awk command that prints
the rows of the dataset as a single line of text. The second awk command
initializes the columnCount variable with the value 4 in the BEGIN block,
followed by a loop that iterates through the input fields. After four fields are
printed on the same output line, a linefeed is printed, which has the effect of
realigning the input dataset as an output dataset consisting of rows that have
four fields. The output from Listing A.30 is here:

Sara, Jones, 1000, CA

Sally, Smith, 2000, IL

Dave, Jones, 3000, FL

John, Jones, 4000, CA

Dave, Jones, 5000, NY

Mike, Jones, 6000, NY

Tony, Jones, 7000, WA

ALIGNING COLUMNS AND MULTIPLE ROWS IN DATASETS

The preceding section showed you how to realign a dataset so that each row
contains the same number of columns and also represents a single data record.
The code sample in this section illustrates how to realign columns of data that
are correct in terms of their content, and also place two records in each line
of the new dataset. Listing A.31 displays the contents of mixed-data2.csv
with misaligned data values, followed by Listing A.32 that displays the con-
tents of aligned-data2.csv with the correctly formatted dataset.

Listing A.31: mixed-data2.csv

Sara, Jones, 1000, CA, Sally, Smith, 2000, IL,

Dave, Jones, 3000, FL, John, Jones,

4000, CA,

Dave, Jones, 5000, NY, Mike,

Jones, 6000, NY, Tony, Jones, 7000, WA

MDS.Appendix_2.8.23.indd 346MDS.Appendix_2.8.23.indd 346 08/02/23 1:39 PM08/02/23 1:39 PM

Working with awk • 347

Listing A.32: aligned-data2.csv

Sara, Jones, 1000, CA, Sally, Smith, 2000, IL

Dave, Jones, 3000, FL, John, Jones, 4000, CA

Dave, Jones, 5000, NY, Mike, Jones, 6000, NY

Tony, Jones, 7000, WA

Listing A.33 displays the contents of mixed-data2.sh that illustrates how to
realign the dataset in Listing A.31.

Listing A.33: mixed-data2.sh

#---

1) remove blank lines

2) remove line feeds

3) print a LF after every 8 fields

4) remove trailing ',' from each row

#---

inputfile="mixed-data2.txt"

outputfile="aligned-data2.txt"

grep -v "^$" $inputfile |awk -F"," '{printf("%s",$0)}' |
awk '

BEGIN { columnCount = 4; rowCount = 2; currRow = 0 }

{

 for(i=1; i<=NF; i++) {

 printf("%s ", $i)

 if(i % columnCount == 0) { ++currRow }

 if(currRow > 0 && currRow % rowCount == 0) {currRow =
0; print ""}

 }

}' > temp-columns

MDS.Appendix_2.8.23.indd 347MDS.Appendix_2.8.23.indd 347 08/02/23 1:39 PM08/02/23 1:39 PM

348 • Managing Datasets and Models

4) remove trailing ',' from output:

cat temp-columns | sed 's/, $//' | sed 's/ $//' >
$outputfile

Listing A.33 is very similar to Listing A.30. The key idea is to print a line-
feed character after a pair of “normal” records have been processed, which is
implemented via the code that is shown in bold in Listing A.33.

Now you can generalize Listing A.33 very easily by changing the initial
value of the rowCount variable to any other positive integer, and the code will
work correctly without any further modification. For example, if you initialize
rowCount to the value 5, then every row in the new dataset (with the possible
exception of the final output row) will contain five “normal” data records.

REMOVING A COLUMN FROM A TEXT FILE

Listing A.34 displays the contents of VariableColumns.txt with lines of
text that contain a different number of columns.

Listing A.34: VariableColumns.txt

this is line one

this is line number one

this is the third and final line

Listing A.35 displays the contents of RemoveColumn.sh that removes the
first column from a text file.

Listing A.35: RemoveColumn.sh

awk '{ for (i=2; i<=NF; i++) printf "%s ", $i; printf
"\n"; }' products.txt

The loop is between 2 and NF, which iterates over all the fields except for the
first field. In addition, printf() explicitly adds new lines. The output of the
preceding code snippet is here:

MDS.Appendix_2.8.23.indd 348MDS.Appendix_2.8.23.indd 348 08/02/23 1:39 PM08/02/23 1:39 PM

Working with awk • 349

400 new

300 new

300 used

200 used

100 used

SUBSETS OF COLUMN-ALIGNED ROWS IN DATASETS

Listing A.35 showed you how to align the rows of a dataset, and the code sam-
ple in this section illustrates how to extract a subset of the existing columns
and a subset of the rows. Listing A.36 displays the contents of sub-rows-
cols.txt of the desired dataset, which contains two columns from every
even row of the file aligned-data.txt.

Listing A.36: sub-rows-cols.txt

Sara, 1000

Dave, 3000

Dave, 5000

Tony, 7000

Listing A.37 displays the contents of sub-rows-cols.sh that illustrates how
to generate the dataset in Listing A.36. Most of the code is the same as Listing
A.33, with the new code shown in bold.

Listing A.37: sub-rows-cols.sh

#---

1) remove blank lines

2) remove line feeds

3) print a LF after every fourth field

4) remove trailing ',' from each row

#---

MDS.Appendix_2.8.23.indd 349MDS.Appendix_2.8.23.indd 349 08/02/23 1:39 PM08/02/23 1:39 PM

350 • Managing Datasets and Models

inputfile="mixed-data.txt"

grep -v "^$" $inputfile |awk -F"," '{printf("%s",$0)}' |
awk '

BEGIN { columnCount = 4 }

{

 for(i=1; i<=NF; i++) {

 printf("%s ", $i)

 if(i % columnCount == 0) { print "" }

 }

}' > temp-columns

4) remove trailing ',' from output:

cat temp-columns | sed 's/, $//' | sed 's/$//' >
temp-columns2

cat temp-columns2 | awk '

BEGIN { rowCount = 2; currRow = 0 }

{

 if(currRow % rowCount == 0) { print $1, $3 }

 ++currRow

}' > temp-columns3

cat temp-columns3 | sed 's/,$//' | sed 's/ $//' >
$outputfile

Listing A.37 contains a new block of code that redirects the output of step
#4 to a temporary file temp-columns2, whose contents are processed by
another awk command in the last section of Listing A.37. Notice that that awk
command contains a BEGIN block that initializes the variables rowCount and
currRow with the values 2 and 0, respectively.

The main block prints columns 1 and 3 of the current line if the current
row number is even, and then the value of currRow is then incremented. The
output of this awk command is redirected to yet another temporary file that

MDS.Appendix_2.8.23.indd 350MDS.Appendix_2.8.23.indd 350 08/02/23 1:39 PM08/02/23 1:39 PM

Working with awk • 351

is the input to the final code snippet, which uses the cat command and two
occurrences of the sed command to remove a trailing “,” and a trailing space,
as shown here:

cat temp-columns3 | sed 's/,$//' | sed 's/ $//' >
$outputfile

There are other ways to perform the functionality in Listing A.37, and the
main purpose is to show you different techniques for combining various bash
commands.

COUNTING WORD FREQUENCY IN DATASETS

Listing A.38 displays the content of WordCounts1.sh that illustrates how to
count the frequency of words in a file.

Listing A.38: WordCounts1.sh

awk '

Print list of word frequencies

{

 for (i = 1; i <= NF; i++)

 freq[$i]++

}

END {

 for (word in freq)

 printf "%s\t%d\n", word, freq[word]

}

' columns2.txt

Listing A.38 contains a block of code that processes the lines in columns2.
txt. Each time that a word (of a line) is encountered, the code increments the
number of occurrences of that word in the hash table freq. The END block
contains a for loop that displays the number of occurrences of each word in
columns2.txt.

MDS.Appendix_2.8.23.indd 351MDS.Appendix_2.8.23.indd 351 08/02/23 1:39 PM08/02/23 1:39 PM

352 • Managing Datasets and Models

The output from Listing A.38 is here:

two	 3

one	 3

three	 3

six	 1

four	 3

five	 2

Listing A.39 displays the content of WordCounts2.sh that performs a case-
insensitive word count.

Listing A.39: WordCounts2.sh

awk '

{

 # convert everything to lower case

 $0 = tolower($0)

 # remove punctuation

 #gsub(/[^[:alnum:]_[:blank:]]/, "", $0)

 for(i=1; i<=NF; i++) {

 freq[$i]++

 }

}

END {

 for(word in freq) {

 printf "%s\t%d\n", word, freq[word]

 }

}

' columns4.txt

MDS.Appendix_2.8.23.indd 352MDS.Appendix_2.8.23.indd 352 08/02/23 1:39 PM08/02/23 1:39 PM

Working with awk • 353

Listing A.39 contains almost identical code to that in Listing A.38, with the
addition of the following code snippet that converts the text in each input line
to lowercase letters, as shown here:

$0 = tolower($0)

Listing A.40 displays the contents of columns4.txt.

Listing A.40: columns4.txt

123 ONE TWO

456 three four

ONE TWO THREE FOUR

five 123 six

one two three

four five

The output from launching Listing A.39 with columns4.txt is here:

456	 1

two	 3

one	 3

three	 3

six	 1

123	 2

four	 3

five	 2

DISPLAYING ONLY “PURE” WORDS IN A DATASET

For simplicity, let’s work with a text string so we can see the intermediate
results as we work toward the solution.

Listing A.41 displays the contents of onlywords.sh that contains three
awk commands for displaying the words, integers, and alphanumeric strings,
respectively, in a text string.

MDS.Appendix_2.8.23.indd 353MDS.Appendix_2.8.23.indd 353 08/02/23 1:39 PM08/02/23 1:39 PM

354 • Managing Datasets and Models

Listing A.41: onlywords.sh

x="ghi abc Ghi 123 #def5 123z"

echo "Only words:"

echo $x |tr -s ' ' '\n' | awk -F" " '

{

 if($0 ~ /^[a-zA-Z]+$/) { print $0 }

}

' | sort | uniq

echo

echo "Only integers:"

echo $x |tr -s ' ' '\n' | awk -F" " '

{

 if($0 ~ /^[0-9]+$/) { print $0 }

}

' | sort | uniq

echo

echo "Only alphanumeric words:"

echo $x |tr -s ' ' '\n' | awk -F" " '

{

 if($0 ~ /^[0-9a-zA-Z]+$/) { print $0 }

}

' | sort | uniq

echo

Listing A.41 starts by initializing the variable x:

x="ghi abc Ghi 123 #def5 123z"

The next step is to split x into words:

MDS.Appendix_2.8.23.indd 354MDS.Appendix_2.8.23.indd 354 08/02/23 1:39 PM08/02/23 1:39 PM

Working with awk • 355

echo $x |tr -s ' ' '\n'

The output is here:

ghi

abc

Ghi

123

#def5

123z

The third step is to invoke awk and check for words that match the regular
expression ^[a-zA-Z]+, which matches any string consisting of one or more
uppercase and/or lowercase letters (and nothing else):

if($0 ~ /^[a-zA-Z]+$/) { print $0 }

The output is here:

ghi

abc

Ghi

Finally, if you also want to sort the output and print only the unique words,
redirect the output from the awk command to the sort command and the
uniq command.

The second awk command uses the regular expression ^[0-9]+ to
check for integers and the third awk command uses the regular expression
^[0-9a-zA-Z]+ to check for alphanumeric words. The output from launch-
ing Listing A.37 is here:

Only words:

Ghi

abc

ghi

MDS.Appendix_2.8.23.indd 355MDS.Appendix_2.8.23.indd 355 08/02/23 1:39 PM08/02/23 1:39 PM

356 • Managing Datasets and Models

Only integers:

123

Only alphanumeric words:

123

123z

Ghi

abc

ghi

Now you can replace the variable x with a dataset to retrieve only alphabetic
strings from that dataset.

WORKING WITH MULTI-LINE RECORDS IN AWK

Listing A.42 displays the contents of employee.txt and Listing A.43 dis-
plays the contents of Employees.sh that illustrates how to concatenate text
lines in a file.

Listing A.42: employees.txt

Name: Jane Edwards

EmpId: 12345

Address: 123 Main Street Chicago Illinois

Name: John Smith

EmpId: 23456

Address: 432 Lombard Avenue SF California

Listing A.43: employees.sh

inputfile="employees.txt"

outputfile="employees2.txt"

MDS.Appendix_2.8.23.indd 356MDS.Appendix_2.8.23.indd 356 08/02/23 1:39 PM08/02/23 1:39 PM

Working with awk • 357

awk '

{

 if($0 ~ /^Name:/) {

 x = substr($0,8) ","

 next

 }

 if($0 ~ /^Empid:/) {

 #skip the Empid data row

 #x = x substr($0,7) ","

 next

 }

 if($0 ~ /^Address:/) {

 x = x substr($0,9)

 print x

 }

}

' < $inputfile > $outputfile

The output from launching the code in Listing A.43 is here:

Jane Edwards, 123 Main Street Chicago Illinois

John Smith, 432 Lombard Avenue SF California

Now that you have seen a plethora of awk code snippets and shell scripts
containing the awk command that illustrate various type of tasks that you can
perform on files and datasets, you are ready for some use cases. The next
section (which is the first use case) shows you how to replace multiple field
delimiters with a single delimiter, and the second use case shows you how to
manipulate date strings.

MDS.Appendix_2.8.23.indd 357MDS.Appendix_2.8.23.indd 357 08/02/23 1:39 PM08/02/23 1:39 PM

358 • Managing Datasets and Models

A SIMPLE USE CASE

The code sample in this section shows you how to use the awk command to
split the comma-separated fields in the rows of a dataset, where fields can
contain nested quotes of arbitrary depth.

Listing A.44 displays the content of the file quotes3.csv that contains a
“,” delimiter and multiple quoted fields.

Listing A.44: quotes3.csv

field5,field4,field3,"field2,foo,bar",field1,field6,field7,"fie
ldZ"

fname1,"fname2,other,stuff",fname3,"fname4,foo,bar",fname5

"lname1,a,b","lname2,c,d","lname3,e,f","lname4,foo,bar",l
name5

Listing A.45 displays the content of the file delim1.sh that illustrates how to
replace the delimiters in delim1.csv with a “,” character.

Listing A.45: delim1.sh

#inputfile="quotes1.csv"

#inputfile="quotes2.csv"

inputfile="quotes3.csv"

grep -v "^$" $inputfile | awk '

{

 print "LINE #" NR ": " $0

 printf ("-------------------------\n")

 for (i = 0; ++i <= NF;)

 printf "field #%d : %s\n", i, $i

 printf ("\n")

}' FPAT='([^,]+)|("[^"]+")' < $inputfile

The output from launching the shell script in Listing A.44 is here:

MDS.Appendix_2.8.23.indd 358MDS.Appendix_2.8.23.indd 358 08/02/23 1:39 PM08/02/23 1:39 PM

Working with awk • 359

LINE #1: field5,field4,field3,"field2,foo,bar",field1,field6,fie
ld7,"fieldZ"

field #1 : field5

field #2 : field4

field #3 : field3

field #4 : "field2,foo,bar"

field #5 : field1

field #6 : field6

field #7 : field7

field #8 : "fieldZ"

LINE #2: fname1,"fname2,other,stuff",fname3,"fname4,foo,ba
r",fname5

field #1 : fname1

field #2 : "fname2,other,stuff"

field #3 : fname3

field #4 : "fname4,foo,bar"

field #5 : fname5

LINE #3: "lname1,a,b","lname2,c,d","lname3,e,f","lname4,f
oo,bar",lname5

field #1 : "lname1,a,b"

field #2 : "lname2,c,d"

field #3 : "lname3,e,f"

field #4 : "lname4,foo,bar"

field #5 : lname5

LINE #4: "Outer1 "Inner "Inner "Inner C" B" A" Outer1","XY
Z1,c,d","XYZ2lname3,e,f"

MDS.Appendix_2.8.23.indd 359MDS.Appendix_2.8.23.indd 359 08/02/23 1:39 PM08/02/23 1:39 PM

360 • Managing Datasets and Models

field #1 : "Outer1 "Inner "Inner "Inner C" B" A" Outer1"

field #2 : "XYZ1,c,d"

field #3 : "XYZ2lname3,e,f"

LINE #5:

As you can see, the task in this section is easily solved via the awk command.

ANOTHER USE CASE

The code sample in this section shows you how to use the awk command to
reformat the date field in a dataset and change the order of the fields in the
new dataset. We have the following input line in the original dataset,

Jane,Smith,20140805234658

The reformatted line in the output dataset has this format:

2014-08-05 23:46:58,Jane,Smith

Listing A.46 displays the content of the file dates2.csv that contains a “,”
delimiter and three fields.

Listing A.46: dates2.csv

Jane,Smith,20140805234658

Jack,Jones,20170805234652

Dave,Stone,20160805234655

John,Smith,20130805234646

Jean,Davis,20140805234649

Thad,Smith,20150805234637

Jack,Pruit,20160805234638

Listing A.47 displays the content of string2date2.sh that converts the date
field to a new format and shifts the new date to the first field.

MDS.Appendix_2.8.23.indd 360MDS.Appendix_2.8.23.indd 360 08/02/23 1:39 PM08/02/23 1:39 PM

Working with awk • 361

Listing A.47: string2date2.sh

inputfile="dates2.csv"

outputfile="formatteddates2.csv"

rm -f $outputfile; touch $outputfile

for line in `cat $inputfile`

do

 fname=`echo $line |cut -d"," -f1`

 lname=`echo $line |cut -d"," -f2`

 date1=`echo $line |cut -d"," -f3`

 # convert to new date format

 newdate=`echo $date1 | awk '{ print substr($0,1,4)"-
"substr($0,5,2)"-"substr($0,7,2)" "substr($0,9,2)":"substr
($0,11,2)":"substr($0,13,2)}'`

 # append newly formatted row to output file

 echo "${newdate},${fname},${lname}" >> $outputfile

done

The contents of the new dataset are here:

2014-08-05 23:46:58,Jane,Smith

2017-08-05 23:46:52,Jack,Jones

2016-08-05 23:46:55,Dave,Stone

2013-08-05 23:46:46,John,Smith

2014-08-05 23:46:49,Jean,Davis

2015-08-05 23:46:37,Thad,Smith

2016-08-05 23:46:38,Jack,Pruit

MDS.Appendix_2.8.23.indd 361MDS.Appendix_2.8.23.indd 361 08/02/23 1:39 PM08/02/23 1:39 PM

362 • Managing Datasets and Models

SUMMARY

This appendix introduced the awk command, which is essentially an entire
programming language packaged into a single Unix command.

We explored some of its built-in variables as well as conditional logic,
while loops, and for loops to manipulate the rows and columns in datasets.
You then saw how to delete lines and merge lines in datasets, as well as how
to print the contents of a file as a single line of text.

Next, you learned how to use metacharacters and character sets in awk
commands. You learned how to perform numeric calculations (such as addi-
tion, subtraction, multiplication, and division) in files containing numeric
data, as well as some numeric functions that are available in awk.

In addition, you saw how to align and delete columns, select a subset of
columns, and work with multi-line records in datasets. Finally, you saw simple
use cases involving nested quotation marks and date formats in a structured
dataset.

At this point, you have all the tools necessary to perform sophisticated
data cleansing and processing, and you are strongly encouraged to apply them
to some task or problem of interest. The final step of the learning process is
working on a real-life application.

MDS.Appendix_2.8.23.indd 362MDS.Appendix_2.8.23.indd 362 08/02/23 1:39 PM08/02/23 1:39 PM

Index

A

Accuracy, 170–171
Algorithms, 155
Aligning columns, 344–348
Anomaly, 64
Anomaly detection, 65–70
Attribute selection, 213
AUC curve, 176–181
Awk command, 315–362

B

Balanced accuracy, 170–171
Best-fitting line, 254–255
Binary confusion matrix, 169
Binary data, 10
“Binning” data values, 21–22
Black-box shift detector, 18
Bmi.csv dataset, 197–198
Bokeh, 292–295
Built-in variables, 316–317

C

Carling Median Rule, 49
Categorical data, 12, 32–33, 101–102,

120–125
Categorical features, 217
Caveat regarding accuracy, 171
Character sets, 329–330
Charts, 268–270

Checkerboard, 244–245
Cleaning datasets, 16
Clustering, 209
Collinearity, 1, 25
Color values, 230–231
Column-aligned rows, 349–351
Column dependencies, 15
Column subset, 116–117
Conditional logic, 320–323, 330–331
Confusion matrix, 163–175
Continuous data, 12–13, 20–21
Continuous features, 217
Control statements, 320–323
Convolutional Neural Network (CNN), 4
Correlation, 1, 26
Correlation matrix, 26
Cost-sensitive learning, 73–74
Counting missing data values, 28–29
Counting word frequency, 351–353
Count occurrences of string, 341–342
Covariate drift, 18
CSV files, 80–91, 111–115
Cubed numbers, 231–232
Currency, 125–135

D

Data-centric AI, 4–5
Data classes, 40–42
Data cleaning, 5, 27–43, 219–222
Data cleaning tasks, 120

MDS.Index_2.8.23.indd 363MDS.Index_2.8.23.indd 363 08/02/23 1:40 PM08/02/23 1:40 PM

364 • Index

Data dealing, 6
Data deduplication, 30, 95–96
Data drift, 1, 17–18
Data governance, 4
Data inconsistency, 33, 102
Data leakage, 1, 18–19
Data normalization, 40, 117–120, 156–158
Data point, 6
Data preprocessing, 15–16
Data quality, 4
Data quality assurance, 4
Data sampling techniques, 71–72
Datasets, 6–8, 19–23, 77–153, 323–328,

344–356
Data splits, 76
Data stewardship, 4
Data transformation, 151–152
Data types, 1, 10–17
Data validation, 43
Data values, uniformity of, 30–32
Data visualization, 205–208, 225–226
Data wrangling, 5, 150–152
Dates, 135–145
DBSCAN clustering method, 68–69
3D charts, 264–265
DecisionTreeClassifier, 195
Decision trees, 210–212
DeepChecks, 43
Deep learning, 70
Deleting alternate lines, 323–324
Dependency types, 23–27
Dependent column, 15
Diabetes.csv dataset, 198–200
Differential privacy, 19
Digits dataset, 297–301
Dimensionality reduction, 218
Discrete data, 13, 20–21
Discrimination threshold, 27
Display attribute values, 228–230
Doane’s formula, 22
Domain classifier, 18
Dotted grid, 238–240

Drift, 17–18
Drop redundant columns, 30, 94
Duplicate rows, 96–99
Dynamic dataset, 7

E

Embedded methods, 215
Error matrix, 169
Exploratory data analysis (EDA), 1–6,

205–208
Extract, load, and transform (ELT), 5–6
Extract, transform, and load (ETL), 5–6

F

False discovery rate (FDR), 175
False omission rate (FOR), 175
False positive rate (FPR), 174
Feature, 6
Feature drift, 18
Feature engineering, 212–213
Feature extraction, 212, 218–219
Feature hashing, 219
Feature selection, 213–218
Filter methods, 214–215
Fixed number of columns, 342–344
Fraud detection, 63–64
Freedman-Diaconis’ Choice, 23

G

GaussianNB, 195, 196
GGPLOT, 254–255
Good correlation value, 26–27
Graphs, 268–270

H

Heat maps, 207–208, 259–260
Heteroskedasticity, 24
Histogram, 205–207, 250–251
Histogram-based Outlier Score (HBOS), 67
Homoskedasticity, 1, 24–25

MDS.Index_2.8.23.indd 364MDS.Index_2.8.23.indd 364 08/02/23 1:40 PM08/02/23 1:40 PM

Index • 365

Horizontal lines, 233–234
Hot-deck imputation, 38–39, 107
Hybrid methods, 215

I

Imbalanced datasets, 70–76
Imputation, 27–43, 91–108
Inconsistent categorical data, 121
Incorrectly scaled values, 48
Input drift, 18
Integer-based ordinal data, 11
Interval data, 12
Iris dataset, 274–275, 301–311
Isolation forest, 69–70
Isolation number, 69

K

KNN-based model, 192–194, 197–200
Kullback-Leibler (KL) divergence, 219

L

Labeled data, 220
Labeled vertices, 237–238
Large datasets, 221
Linear regression, 24–25
Lines vertices, 237–238
Loading images, 243–244
Localization of data, 135
Local Outlier Factor (LOF), 66, 67

M

Machine learning, 219–222
Matching, 38–39, 107
Matplotlib, 223–314
Matplotlib styles, 227–228
Mean value imputation, 33–35, 102–104
Median Absolute Deviation (MAD), 49
Merging lines, 324–328
Metacharacters, 329–330
Missing At Random (MAR), 8–9

Missing Completely At Random (MCAR),
8–9

Missing data, 8–10, 78–79, 101
Missing Not At Random (MNAR), 8–9
Model(s), 153–222
Model-centric AI, 4–5
Model drift, 17–18
Model selection, 19–23
Modified Z-score, 49
Multicollinearity, 25
Multi-line records, 356–357
Multiple imputation, 38
Multiple rows, 346–348
Multi-row records, 111–115

N

Negative predictive value (NPV), 172–173,
175

Noisy data, 72–73
Nominal data, 10–11
Normalization, 40, 117–120, 156
Normalized confusion matrix, 165–166
Numeric functions, 334–337
Numeric Outlier (IQR), 68
Numeric values, 121–123
NumPy, 49–53

O

One-hot encoding, 32, 122, 123–125, 217
One-line awk commands, 337–338
Ordinal data, 11
Outliers, 46–63

P

Pandas code, 2, 45, 54–61
Pandas data frame, 80–91, 283–283
Parallel slanted lines, 235–237
Partitioned datasets, 190–192
Pie chart, 258
Plot bar charts, 255–257

MDS.Index_2.8.23.indd 365MDS.Index_2.8.23.indd 365 08/02/23 1:40 PM08/02/23 1:40 PM

366 • Index

Plotting financial data, 265–267
Plotting multiple lines, 248–249
PNG file, 260–261
Postfix arithmetic operators, 332–334
Precision, 172–174
Prevalence, 172–173
Principal Component Analysis (PCA), 7
Printf() statement, 318–319
Printing lines, 330–331
Probabilistic graphical model (PGM), 66
Programmatic binning techniques, 22–23
Python, 2, 45
Python-based code samples, 1–2
Python code sample, 166–168
Python Outlier Detection (PyOD), 67–68

Q

Qualitative data, 13–14
Quantitative data, 13
Quantitative data analysis techniques, 3
Quoted fields, 145–149

R

RandomForestClassifier, 195, 196
Randomized data points, 246–247
Random oversampling, 71
Random resampling, 71
Random undersampling technique, 71
Random value imputation, 36–38, 105–107
Range dates, find out of, 136–139
Ratio data, 12
Rebalancing datasets, 75
Recall, 172–174
Receiving Operator Characteristics (ROC)

curve, 176–181
Regression, 209
Resource bundle, 16
Robust standardization, 162
Row subrange, 116–117

S

Scaling data, 154–163
Scaling numeric data, 159–161
Scikit-learn, 61–63, 296–311
Scoring rule, 180
Seaborn, 223–314
Seaborn built-in datasets, 273
Seaborn dataset names, 272–273
Seaborn heat maps, 286–288
Seaborn pair plots, 288–292
Set of line segments, 247–248
Short awk scripts, 338–340
Single column CSV files, 80–86
Skewed datasets, 108–111
Skimpy, 263–264
Slanted lines, 234–235
Specificity, 172–173, 176
Splitting data, 155–163
Splitting file names, 331–332
SQLITE3, 252–253, 268–270
Standardization, 156, 160
StandardScaler Class, 161–162
Static dataset, 7
Statistical data, 14–15
Sturge’s rule, 23
SVC, 195, 196
SweetViz, 262–263
Switch date formats, 143–145
Synthetic data labels, 220
Synthetic Minority Oversampling

Technique (SMOTE), 72, 79, 149–150,
200–205

T

Text file, 348–349
Text string, 340
Titanic CSV file, 116–117
Titanic dataset, 181–189, 200–205,

275–283

MDS.Index_2.8.23.indd 366MDS.Index_2.8.23.indd 366 08/02/23 1:40 PM08/02/23 1:40 PM

Index • 367

TOC curve, 180
Training classifiers, 189–190
Trigonometric functions, 249–250
True positive rate (TPR), 174–175
Tukey’s boxplot, 49
Two-column CSV files, 86–91
Two lines and a legend, 242–243
Type I errors, 169–170
Type II errors, 169–170

U

Uniformity of data values, 30–32, 99–100
Unique dates, 141–143
Units of measure, 159
Unlabeled data, 220
Unsupervised feature selection techniques,

215

V

Variable selection, 213
Variable subset selection, 213
Variance inflation factor (VIF), 1, 25

W

Wikipedia, 3
Wine.csv dataset, 192–196
Wrapper methods, 215

X

XGBoost, 49

Z

Zero value, 39–40, 107–108
Z-scores, 59–61, 68

MDS.Index_2.8.23.indd 367MDS.Index_2.8.23.indd 367 08/02/23 1:40 PM08/02/23 1:40 PM

MDS.Index_2.8.23.indd 368MDS.Index_2.8.23.indd 368 08/02/23 1:40 PM08/02/23 1:40 PM

	Front Cover
	Half-Title Page
	Title Page
	Copyright Page
	Dedication
	Contents
	Preface
	Chapter 1: Working with Data
	Import Statements for this Chapter
	Exploratory Data Analysis (EDA)
	Dealing with Data: What Can Go Wrong?
	Analyzing Missing Data
	Explanation of Data Types
	Data Preprocessing
	Working with Data Types
	What is Drift?
	What is Data Leakage?
	Model Selection and Preparing Datasets
	Types of Dependencies Among Features
	Data Cleaning and Imputation
	Summary

	Chapter 2: Outlier and Anomaly Detection
	Import Statements for this Chapter
	Working with Outliers
	Finding Outliers with NumPy
	Finding Outliers with Pandas
	Finding Outliers with Scikit-Learn (Optional)
	Fraud Detection
	Techniques for Anomaly Detection
	Working with Imbalanced Datasets
	Summary
	Reference

	Chapter 3: Cleaning Datasets
	Prerequisites for this Chapter
	Analyzing Missing Data
	Pandas, CSV Files, and Missing Data
	Missing Data and Imputation
	Skewed Datasets
	CSV Files with Multi-Row Records
	Column Subset and Row Subrange of Titanic CSV File
	Data Normalization
	Handling Categorical Data
	Working with Currency
	Working with Dates
	Working with Quoted Fields
	What is SMOTE?
	Data Wrangling
	Summary

	Chapter 4: Working with Models
	Import Statements for this Chapter
	Techniques for Scaling Data
	Examples of Splitting and Scaling Data
	The Confusion Matrix
	The ROC Curve and AUC Curve
	Exploring the Titanic Dataset
	Steps for Training Classifiers
	Diagram for Partitioned Datasets
	A KNN-Based Model with the wine.csv Dataset
	Other Models with the wine.csv Dataset
	A KNN-Based Model with the bmi.csv Dataset
	A KNN-Based Model with the Diabetes.csv Dataset
	SMOTE and the Titanic Dataset
	EDA and Data Visualization
	What about Regression and Clustering?
	Feature Importance
	What is Feature Engineering?
	What is Feature Selection?
	What is Feature Extraction?
	Data Cleaning and Machine Learning
	Summary

	Chapter 5: Matplotlib and Seaborn
	Import Statements for this Chapter
	What is Data Visualization?
	What is Matplotlib?
	Matplotlib Styles
	Display Attribute Values
	Color Values in Matplotlib
	Cubed Numbers in Matplotlib
	Horizontal Lines in Matplotlib
	Slanted Lines in Matplotlib
	Parallel Slanted Lines in Matplotlib
	Lines and Labeled Vertices in Matplotlib
	A Dotted Grid in Matplotlib
	Lines in a Grid in Matplotlib
	Two Lines and a Legend in Matplotlib
	Loading Images in Matplotlib
	A Checkerboard in Matplotlib
	Randomized Data Points in Matplotlib
	A Set of Line Segments in Matplotlib
	Plotting Multiple Lines in Matplotlib
	Trigonometric Functions in Matplotlib
	A Histogram in Matplotlib
	Histogram with Data from a Sqlite3 Table
	Plot a Best-Fitting Line with ggplot
	Plot Bar Charts
	Plot a Pie Chart
	Heat Maps
	Save Plot as a PNG File
	Working with SweetViz
	Working with Skimpy
	3D Charts in Matplotlib
	Plotting Financial Data with Mplfinance
	Charts and Graphs with Data from Sqlite3
	Working with Seaborn
	Seaborn Dataset Names
	Seaborn Built-In Datasets
	The Iris Dataset in Seaborn
	The Titanic Dataset in Seaborn
	Extracting Data from Titanic Dataset in Seaborn (1)
	Extracting Data from Titanic Dataset in Seaborn (2)
	Visualizing a Pandas Data Frame in Seaborn
	Seaborn Heat Maps
	Seaborn Pair Plots
	What is Bokeh?
	Introduction to Scikit-Learn
	The Digits Dataset in Scikit-Learn
	The Iris Dataset in Scikit-Learn (1)
	The Iris Dataset in Scikit-Learn (2)
	Advanced Topics in Seaborn
	Summary

	Appendix: Working with awk
	The awk Command
	Aligning Text with the printf() Statement
	Conditional Logic and Control Statements
	Deleting Alternate Lines in Datasets
	Merging Lines in Datasets
	Matching with Metacharacters and Character Sets
	Printing Lines Using Conditional Logic
	Splitting File Names with awk
	Working with Postfix Arithmetic Operators
	Numeric Functions in awk
	One-Line awk Commands
	Useful Short awk Scripts
	Printing the Words in a Text String in awk
	Count Occurrences of a String in Specific Rows
	Printing a String in a Fixed Number of Columns
	Printing a Dataset in a Fixed Number of Columns
	Aligning Columns in Datasets
	Aligning Columns and Multiple Rows in Datasets
	Removing a Column from a Text File
	Subsets of Column-Aligned Rows in Datasets
	Counting Word Frequency in Datasets
	Displaying Only “Pure” Words in a Dataset
	Working with Multi-Line Records in awk
	A Simple Use Case
	Another Use Case
	Summary

	Index

